Science.gov

Sample records for donor impurity states

  1. Shallow donor-like impurity states in magnetic field in n-type InP

    NASA Astrophysics Data System (ADS)

    Aulombard, R. L.; Kadri, A.; Zitouni, K.; Konczewicz, L.

    1987-02-01

    We present the evidence of hydrogenic behavior of shallow donor-like impurity states in n-type InP (8.5 × 10 15 cm -3 ≲ N d-N a ≲ 6.2 × 10 16 cm -3) from magnetic freeze out experiments at magnetic fields up to 18 T. This occurs at T ≳ 10 K and at a magnetic field sufficiently high to induce a metal-insulator transition. At high fields, the reduction of the binding energy with respect to the hydrogenic model of LARSEN can be well accounted for by the increasing overlap of the impurity wave functions as the donor concentration increases.

  2. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    SciTech Connect

    Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.

    2014-06-07

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  3. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.

    2014-06-01

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  4. The effects of the electric and intense laser field on the binding energies of donor impurity states (1s and 2p±) and optical absorption between the related states in an asymmetric parabolic quantum well

    NASA Astrophysics Data System (ADS)

    Kasapoglu, E.; Sakiroglu, S.; Sökmen, I.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.

    2016-10-01

    We have calculated the effects of electric and intense laser fields on the binding energies of the ground and some excited states of conduction electrons coupled to shallow donor impurities as well as the total optical absorption coefficient for transitions between 1s and 2p± electron-impurity states in a asymmetric parabolic GaAs/Ga1-x AlxAs quantum well. The binding energies were obtained using the effective-mass approximation within a variational scheme. Total absorption coefficient (linear and nonlinear absorption coefficient) for the transitions between any two impurity states were calculated from first- and third-order dielectric susceptibilities derived within a perturbation expansion for the density matrix formalism. Our results show that the effects of the electric field, intense laser field, and the impurity location on the binding energy of 1s-impurity state are more pronounced compared with other impurity states. If the well center is changed to be Lc<0 (Lc>0), the effective well width decreases (increases), and thus we can obtain the red or blue shift in the resonant peak position of the absorption coefficient by changing the intensities of the electric and non-resonant intense laser field as well as dimensions of the well and impurity positions.

  5. Donor impurity states in a non-uniform quantum strip: Geometrical and electro-magnetic field effects

    NASA Astrophysics Data System (ADS)

    Suaza, Y. A.; Fonnegra-García, D.; Fulla, M. R.; Salazar-Santa, J. D.; Marín, J. H.

    2017-03-01

    The neutral donor energy structure in non-uniform height quantum strip under the presence of crossed electric and magnetic fields is studied. The quantum strip height has been modeled by including a phenomenological two-parametric function. The first of these parameters is related to the number of structural hills present on the nano-strip, while the second one allows us to control the hills height. We solve the Schrödinger equation by considering specific quantum strips whose height-to-base aspect ratio is very small, which makes possible to calculate numerically the energy structure trough the adiabatic approximation and the exact diagonalization method. In limit cases, our results are in good agreement with those ones previously reported. Periodic oscillations of the ground state energy with magnetic field strength can be tuned by applied electric field which also yields an anti-crossing of the energy levels in a quantum strip with two hills. The energy level structure are strongly sensitive to changes of nano-strip geometrical factors.

  6. Tight-Binding Description of Impurity States in Semiconductors

    ERIC Educational Resources Information Center

    Dominguez-Adame, F.

    2012-01-01

    Introductory textbooks in solid state physics usually present the hydrogenic impurity model to calculate the energy of carriers bound to donors or acceptors in semiconductors. This model treats the pure semiconductor as a homogeneous medium and the impurity is represented as a fixed point charge. This approach is only valid for shallow impurities…

  7. Conductivity of a Weyl semimetal with donor and acceptor impurities

    NASA Astrophysics Data System (ADS)

    Rodionov, Ya. I.; Syzranov, S. V.

    2015-05-01

    We study transport in a Weyl semimetal with donor and acceptor impurities. At sufficiently high temperatures transport is dominated by electron-electron interactions, while the low-temperature resistivity comes from the scattering of quasiparticles on screened impurities. Using the diagrammatic technique, we calculate the conductivity σ (T ,ω ,nA,nD) in the impurities-dominated regime as a function of temperature T , frequency ω , and the concentrations nA and nD of acceptors and donors and discuss the crossover behavior between the regimes of low and high temperatures and impurity concentrations. In a sufficiently compensated material [| nA-nD|≪ (nA+nD) ] with a small effective fine structure constant α ,σ (ω ,T ) ∝T2/(T-2-i ω .const) in a wide interval of temperatures. For very low temperatures, or in the case of an uncompensated material, the transport is effectively metallic. We discuss experimental conditions necessary for realizing each regime.

  8. Optical coefficients in a semiconductor quantum ring: Electric field and donor impurity effects

    NASA Astrophysics Data System (ADS)

    Duque, C. M.; Acosta, Ruben E.; Morales, A. L.; Mora-Ramos, M. E.; Restrepo, R. L.; Ojeda, J. H.; Kasapoglu, E.; Duque, C. A.

    2016-10-01

    The electron states in a two-dimensional quantum dot ring are calculated in the presence of a donor impurity atom under the effective mass and parabolic band approximations. The effect of an externally applied electric field is also taken into account. The wavefunctions are obtained via the exact diagonalization of the problem Hamiltonian using a 2D expansion within the adiabatic approximation. The impurity-related optical response is analyzed via the optical absorption, relative refractive index change and the second harmonics generation. The dependencies of the electron states and these optical coefficients with the changes in the configuration of the quantum ring system are discussed in detail.

  9. Donor impurity-related intraband optical absorption in a single quantum ring: Hydrostatic pressure and intense laser field effects

    NASA Astrophysics Data System (ADS)

    Barseghyan, M. G.

    2016-10-01

    The simultaneous influence of hydrostatic pressure and intense laser field on hydrogenic donor impurity states and intraband optical absorption has been investigated in GaAs/Ga_{1-tilde{x}}Al_{tilde{x}}As quantum ring. The one-electron energy spectrum and wave functions have been found using the effective mass approximation and exact diagonalization technique. The intraband absorption coefficient is calculated for different values of the hydrostatic pressure, intense laser field parameter and different locations of hydrogenic donor impurity. The simultaneous influence of hydrostatic pressure and intense laser field shows that while the increment of the first one leads only to the blueshift of the absorption spectrum, the augmentation of the second one makes the redshift. In addition, both blueshift and redshift of the spectrum have been obtained with the changes of impurity location. The obtained theoretical results indicate good controlling means of the optical spectrum of ring-like structures by the combined influence of the considered factors.

  10. Donor-impurity-related optical response and electron Raman scattering in GaAs cone-like quantum dots

    NASA Astrophysics Data System (ADS)

    Gil-Corrales, A.; Morales, A. L.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.

    2017-02-01

    The donor-impurity-related optical absorption, relative refractive index changes, and Raman scattering in GaAs cone-like quantum dots are theoretically investigated. Calculations are performed within the effective mass and parabolic band approximations, using the variational procedure to include the electron-impurity correlation effects. The study involves 1 s -like, 2px-like, and 2pz-like states. The conical structure is chosen in such a way that the cone height is large enough in comparison with the base radius thus allowing the use a quasi-analytic solution of the uncorrelated Schrödinger-like electron states.

  11. Radiative decay rates of impurity states in semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2015-10-01

    Doped semiconductor nanocrystals is a versatile material base for contemporary photonics and optoelectronics devices. Here, for the first time to the best of our knowledge, we theoretically calculate the radiative decay rates of the lowest-energy states of donor impurity in spherical nanocrystals made of four widely used semiconductors: ZnS, CdSe, Ge, and GaAs. The decay rates were shown to vary significantly with the nanocrystal radius, increasing by almost three orders of magnitude when the radius is reduced from 15 to 5 nm. Our results suggest that spontaneous emission may dominate the decay of impurity states at low temperatures, and should be taken into account in the design of advanced materials and devices based on doped semiconductor nanocrystals.

  12. Radiative decay rates of impurity states in semiconductor nanocrystals

    SciTech Connect

    Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2015-10-15

    Doped semiconductor nanocrystals is a versatile material base for contemporary photonics and optoelectronics devices. Here, for the first time to the best of our knowledge, we theoretically calculate the radiative decay rates of the lowest-energy states of donor impurity in spherical nanocrystals made of four widely used semiconductors: ZnS, CdSe, Ge, and GaAs. The decay rates were shown to vary significantly with the nanocrystal radius, increasing by almost three orders of magnitude when the radius is reduced from 15 to 5 nm. Our results suggest that spontaneous emission may dominate the decay of impurity states at low temperatures, and should be taken into account in the design of advanced materials and devices based on doped semiconductor nanocrystals.

  13. Computation of the Stark effect in P impurity states in silicon

    NASA Astrophysics Data System (ADS)

    Debernardi, A.; Baldereschi, A.; Fanciulli, M.

    2006-07-01

    We compute within the effective-mass theory and without adjustable parameters the Stark effect for shallow P donors in Si with anisotropic band structure. Valley-orbit coupling is taken into account in a nonperturbative way and scattering effects of the impurity core are included to properly describe low-lying impurity states. The ground-state energy slightly decreases with increasing electric field up to a critical value Ecr˜25keV/cm , at which the donor can be ionized by tunneling due to a field-induced mixing of the “ 1s -like” singlet ground state with a “ 2p0 -like” excited state in zero field. The resulting ground-state wave function at high field extends significantly outside the potential barrier surrounding the impurity. Calculations of the hyperfine splitting and of the A -shell superhyperfine coupling constants as a function of the electric field complete the work.

  14. Electron and donor-impurity-related Raman scattering and Raman gain in triangular quantum dots under an applied electric field

    NASA Astrophysics Data System (ADS)

    Tiutiunnyk, Anton; Akimov, Volodymyr; Tulupenko, Viktor; Mora-Ramos, Miguel E.; Kasapoglu, Esin; Morales, Alvaro L.; Duque, Carlos Alberto

    2016-04-01

    The differential cross-section of electron Raman scattering and the Raman gain are calculated and analysed in the case of prismatic quantum dots with equilateral triangle base shape. The study takes into account their dependencies on the size of the triangle, the influence of externally applied electric field as well as the presence of an ionized donor center located at the triangle's orthocenter. The calculations are made within the effective mass and parabolic band approximations, with a diagonalization scheme being applied to obtain the eigenfunctions and eigenvalues of the x- y Hamiltonian. The incident and secondary (scattered) radiation have been considered linearly-polarized along the y-direction, coinciding with the direction of the applied electric field. For the case with an impurity center, Raman scattering with the intermediate state energy below the initial state one has been found to show maximum differential cross-section more than by an order of magnitude bigger than that resulting from the scheme with lower intermediate state energy. The Raman gain has maximum magnitude around 35 nm dot size and electric field of 40 kV/cm for the case without impurity and at maximum considered values of the input parameters for the case with impurity. Values of Raman gain of the order of up to 104cm-1 are predicted in both cases.

  15. Donor impurity-related optical absorption coefficients and refractive index changes in a rectangular GaAs quantum dot in the presence of electric field

    NASA Astrophysics Data System (ADS)

    Sheng, Wang; Yun, Kang; Xianli, Li

    2016-11-01

    Within the quasi-one-dimensional effective potential model and effective mass approximation, we obtain the wavefunctions and energy eigenvalues of the ground (j = 1) and first 2 excited states (j = 2 and 3) of a donor impurity in a rectangular GaAs quantum dot in the presence of electric field. The donor impurity-related linear and nonlinear optical absorption as well as refractive index changes for the transitions j = 1-2 and j = 2-3 are investigated. The results show that the impurity position, incident optical intensity and electric field play important roles in the optical absorption coefficients and refractive index changes. We find that the impurity effect induces the blueshift for j = 1-2 and redshift for j = 3-2 in the absence of the electric field, but it leads to redshift for j = 1-2 and blueshift for j = 3-2 in the existence of the field. Also, the optical coefficient for the higher energy transitions j = 2-3 is insensitive to variation of impurity positions, while that for the low energy transition j = 1-2 depends significantly on the positions of impurity. In addition, the saturation and splitting phenomenon of the optical absorption are observed as the incident optical intensity increases. Project supported by the Science and Technology Project of Education Department of Heilongjiang Province of China (No. 12541070).

  16. Laser driven impurity states in two-dimensional quantum dots and quantum rings

    NASA Astrophysics Data System (ADS)

    Laroze, D.; Barseghyan, M.; Radu, A.; Kirakosyan, A. A.

    2016-11-01

    The hydrogenic donor impurity states in two-dimensional GaAs/Ga0.7Al0.3As quantum dot and quantum ring have been investigated under the action of intense laser field. A laser dressed effect on both electron confining and electron-impurity Coulomb interaction potentials has been considered. The single electron energy spectrum and wave functions have been found using the effective mass approximation and exact diagonalization technique. The accidental degeneracy of the impurity states have been observed for different positions of the impurity and versus values of the laser field parameter. The obtained theoretical results indicate a novel opportunity to tune the performance of quantum dots and quantum rings and to control their specific properties by means of laser field.

  17. Donor states in inverse opals

    SciTech Connect

    Mahan, G. D.

    2014-09-21

    We calculate the binding energy of an electron bound to a donor in a semiconductor inverse opal. Inverse opals have two kinds of cavities, which we call octahedral and tetrahedral, according to their group symmetry. We put the donor in the center of each of these two cavities and obtain the binding energy. The binding energies become very large when the inverse opal is made from templates with small spheres. For spheres less than 50 nm in diameter, the donor binding can increase to several times its unconfined value. Then electrons become tightly bound to the donor and are unlikely to be thermally activated to the semiconductor conduction band. This conclusion suggests that inverse opals will be poor conductors.

  18. Donor states in inverse opals

    NASA Astrophysics Data System (ADS)

    Mahan, G. D.

    2014-09-01

    We calculate the binding energy of an electron bound to a donor in a semiconductor inverse opal. Inverse opals have two kinds of cavities, which we call octahedral and tetrahedral, according to their group symmetry. We put the donor in the center of each of these two cavities and obtain the binding energy. The binding energies become very large when the inverse opal is made from templates with small spheres. For spheres less than 50 nm in diameter, the donor binding can increase to several times its unconfined value. Then electrons become tightly bound to the donor and are unlikely to be thermally activated to the semiconductor conduction band. This conclusion suggests that inverse opals will be poor conductors.

  19. Impurity State and Variable Range Hopping Conduction in Graphene

    NASA Astrophysics Data System (ADS)

    Liang, Sang-Zi; Sofo, Jorge O.

    2012-12-01

    The variable range hopping theory, as formulated for exponentially localized impurity states, does not necessarily apply in the case of graphene with covalently attached impurities. We analyze the localization of impurity states in graphene using the nearest-neighbor, tight-binding model of an adatom-graphene system with Green’s function perturbation methods. The amplitude of the impurity state wave function is determined to decay as a power law with exponents depending on sublattice, direction, and the impurity species. We revisit the variable range hopping theory in view of this result and find that the conductivity depends as a power law of the temperature with an exponent related to the localization of the wave function. We show that this temperature dependence is in agreement with available experimental results.

  20. Impurity effect on surface states of Bi (111) ultrathin films

    NASA Astrophysics Data System (ADS)

    Zhu, Kai; Tian, Dai; Wu, Lin; Xu, Jianli; Jin, Xiaofeng

    2016-08-01

    The surface impurity effect on the surface-state conductivity and weak antilocalization (WAL) effect has been investigated in epitaxial Bi (111) films by magnetotransport measurements at low temperatures. The surface-state conductivity is significantly reduced by the surface impurities of Cu, Fe, and Co. The magnetotransport data demonstrate that the observed WAL is robust against deposition of nonmagnetic impurities, but it is quenched by the deposition of magnetic impurities which break the time reversal symmetry. Our results help to shed light on the effect of surface impurities on the electron and spin transport properties of a 2D surface electron systems. Project supported by the National Basic Research Program of China (Grants Nos. 2015CB921400 and 2011CB921802) and the National Natural Science Foundation of China (Grants Nos. 11374057, 11434003, and 11421404).

  1. Theoretical studies of impurity and hole subband states in nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Mireles Higuera, Francisco

    We present a comprehensive theoretical study of the shallow donor and acceptor states and their binding energies in large bandgap bulk nitride semiconductors. An envelope function scheme within the effective mass theory in a multi-band formalism was used to obtain the impurity levels in a variational fashion. Suitable atomic pseudopotentials were employed to resemble the impurity potential of the different dopants. Numerical calculations are reported for the binding energies of several substitutional acceptor and donor impurities from groups IIA, IIB and IVA of the periodic table in gallium and aluminum nitride. It is found that both acceptors and donors have smaller binding energy in the cubic zincblende phase of these materials than in the normally grown hexagonal wurtzite phase. This finding would predict the more favorable p-type doping characteristics of the zincblende nitrides. A study of the first excited states for donor impurities was also performed under the influence of external magnetic fields. Among other interesting features, it is found that residual carbon in GaN may play an important role as a shallow donor, typically attributed to other species, and suggesting that the amphoteric behavior of carbon impurities has been overlooked in the interpretation of the experimental optical spectra. We have studied as well the problem of the eigenstates in nitride based quantum wells and superlattices. Through the use of the exact envelope function theory together with symmetry arguments, we have provided a systematic derivation for a valence band effective mass Hamiltonian suitable for wurtzite heterostructures. Correct analytical expressions for the boundary conditions at the heterointerfaces of these materials are also derived. By using numerical examples, we show that the conventional Hamiltonian and boundary conditions lead to overestimates of the subband dispersion energies of nitride quantum wells for in-plane wave numbers not at the zone center. This

  2. Effects of electron-impurity scattering on density of states in silicene: Impurity bands and band-gap narrowing

    NASA Astrophysics Data System (ADS)

    Liu, S. Y.; Zeng, Y. C.; Lei, X. L.

    2016-12-01

    Considering the interband correlation, we present a generalized multiple-scattering approach of Green's function to investigate the effects of electron-impurity scattering on the density of states in silicene at zero temperature. The reduction of energy gaps in the case of relatively high chemical potential and the transformation of split-off impurity bands into band tails for low chemical potential are found. The dependency of optical conductivity on the impurity concentration is also discussed for frequency within the terahertz regime.

  3. Gettering of donor impurities by V in GaAs and the growth of semi-insulating crystals

    NASA Technical Reports Server (NTRS)

    Ko, K. Y.; Lagowski, J.; Gatos, H. C.

    1989-01-01

    Vanadium added to the GaAs melt getters shallow donor impurities (Si and S) and decreases their concentration in the grown crystals. This gettering is driven by chemical reactions in the melt rather than in the solid. Employing V gettering, reproducibly semi-insulating GaAs were grown by horizontal Bridgman and liquid-encapsulated Czochralski techniques, although V did not introduce any midgap energy levels. The compensation mechanism in these crystals was controlled by the balance between the native midgap donor EL2 and residual shallow acceptors. Vanadium gettering contributed to the reduction of the concentration of shallow donors below the concentration of acceptors. The present findings clarify the long-standing controversy on the role of V in achieving semi-insulating GaAs.

  4. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure

    PubMed Central

    2012-01-01

    The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  5. Photoluminescence study on heavily donor and acceptor impurity doped GaAs layers grown by molecular-beam epitaxy

    SciTech Connect

    Islam, A. Z. M. Touhidul; Jung, D. W.; Noh, J. P.; Otsuka, N.

    2009-05-01

    Gallium arsenide layers doped with high concentrations of Be and Si by molecular-beam epitaxy are studied by photoluminescence (PL) spectroscopy. PL peaks from doped layers are observed at energies significantly lower than the band-gap of GaAs. The growth and doping conditions suggest that the origin of these peaks is different from that of low energy PL peaks, which were observed in earlier studies and attributed to impurity-vacancy complexes. The dependence of the peak energy on the temperature and the annealing is found to differ from that of the peaks attributed to impurity-vacancy complexes. On the basis of these observations, it is suggested that the low energy peaks are attributed to short range ordered arrangements of impurity ions. This possibility is examined by calculations of the PL spectra with models of pairs of acceptor and donor delta-doped layers and PL experiments of a superlattice of pairs of Be and Si delta-doped layers.

  6. Periodically driven Kondo impurity in nonequilibrium steady states

    NASA Astrophysics Data System (ADS)

    Iwahori, Koudai; Kawakami, Norio

    2016-12-01

    We study the nonequilibrium dynamics of a periodically driven anisotropic Kondo impurity model. The periodic time dependence is introduced for a local magnetic field which couples to the impurity spin and also for an in-plane exchange interaction. We obtain the exact results on the time evolution for arbitrary periodic time dependence at the special point in the parameter space known as the Toulouse limit. We first consider a specific case where the local magnetic field is periodically switched on and off. When the driving period is much shorter than the inverse of the Kondo temperature, an intriguing oscillating behavior (resonance phenomenon) emerges in the time average of the impurity spin polarization with increasing the local magnetic field intensity. By taking the high-frequency limit of the external driving, we elucidate that the system recovers the translational invariance in time and can be described by a mixture of the zero-temperature and infinite-temperature properties. In certain cases, the system is governed by either zero-temperature or infinite-temperature properties and, therefore, can be properly described by the corresponding equilibrium state.

  7. Bright Solid-State Emission of Disilane-Bridged Donor-Acceptor-Donor and Acceptor-Donor-Acceptor Chromophores.

    PubMed

    Shimada, Masaki; Tsuchiya, Mizuho; Sakamoto, Ryota; Yamanoi, Yoshinori; Nishibori, Eiji; Sugimoto, Kunihisa; Nishihara, Hiroshi

    2016-02-24

    The development of disilane-bridged donor-acceptor-donor (D-Si-Si-A-Si-Si-D) and acceptor-donor-acceptor (A-Si-Si-D-Si-Si-A) compounds is described. Both types of compound showed strong emission (λem =ca. 500 and ca. 400 nm, respectively) in the solid state with high quantum yields (Φ: up to 0.85). Compound 4 exhibited aggregation-induced emission enhancement in solution. X-ray diffraction revealed that the crystal structures of 2, 4, and 12 had no intermolecular π-π interactions to suppress the nonradiative transition in the solid state.

  8. Understanding Philanthropic Motivations of Northeast State Community College Donors

    ERIC Educational Resources Information Center

    Cook, Heather J.

    2012-01-01

    At Northeast State Community College (NeSCC) nearly 70% of students need some form of financial aid to attend. State support is flattening or decreasing and the gap is filled by private donors' support (Northeast State Community College, 2011). Hundreds of donors have made significant contributions to aid in the education of those in the Northeast…

  9. Shallow donorlike impurity states in n-type InP in magnetic field and under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Kadri, A.; Zitouni, K.; Konczewicz, L.; Aulombard, R. L.

    1987-04-01

    Hall-coefficient and transverse magnetoresistivity measurements performed in magnetic fields up to 18 T and hydrostatic pressures up to 16.5 kbar reveal several features of the behavior of shallow donorlike impurity states in n-type InP with impurity concentrations spanning the metal-insulator transition (2.2×1015 cm-3<~Nd-Na<~6.2×1016 cm-3). At atmospheric pressure, the variation of the binding energy of the shallow donors versus magnetic field was found to follow the predicted hydrogenic behavior with increasing effects of electron correlations (screening of the long-range Coulomb potential) and overlap of impurity wave functions as the donor concentration increased. With increasing pressure, the binding energy increased only slightly up to ~10 kbar, then much more strongly at 10 kbar<~P<~16.5 kbar. This behavior, which additionally depended on the actual magnetic field strength, showed very close similarities to effects observed earlier in other III-V compounds and suggests an increasing influence of the short-range localized impurity potential.

  10. Direct spectroscopic observation of a shallow hydrogenlike donor state in insulating SrTiO3.

    PubMed

    Salman, Z; Prokscha, T; Amato, A; Morenzoni, E; Scheuermann, R; Sedlak, K; Suter, A

    2014-10-10

    We present a direct spectroscopic observation of a shallow hydrogenlike muonium state in SrTiO(3) which confirms the theoretical prediction that interstitial hydrogen may act as a shallow donor in this material. The formation of this muonium state is temperature dependent and appears below ∼ 70K. From the temperature dependence we estimate an activation energy of ∼ 50 meV in the bulk and ∼ 23 meV near the free surface. The field and directional dependence of the muonium precession frequencies further supports the shallow impurity state with a rare example of a fully anisotropic hyperfine tensor. From these measurements we determine the strength of the hyperfine interaction and propose that the muon occupies an interstitial site near the face of the oxygen octahedron in SrTiO(3). The observed shallow donor state provides new insight for tailoring the electronic and optical properties of SrTiO(3)-based oxide interface systems.

  11. Stark effect of shallow donor impurities in HgS Inhomogeneous Quantum Dots

    NASA Astrophysics Data System (ADS)

    M’zerd, S.; Rahmani, K.; Janati, S.; Chrafih, Y.; Zorkani, I.; Jorio, A.

    2017-03-01

    Using the variational method, within the effective mass approximation, we have calculated the binding energy and the Polarizability of a shallow donor confined to move in [CdS/HgS/CdS] Inhomogeneous Quantum Dots, in the presence of a uniform electric field. We consider an infinitely deep well and we present our results as function of the size of the well and for several values of the electric field strength: (i) The Polarizability decreases when the electric field increases. We find that the Polarizability it is more influenced by the quantum confinement than by the electric field. (ii) The binding energy depends on the inner and the outer radius of the IQD, decrease when the electric field increases and depends strongly on the donor position, (iii) We have demonstrated the existence of a critical value of radius ratio which can be used to distinguish the tree dimension confinement from the spherical surface confinement.

  12. Donor-to-Donor vs Donor-to-Acceptor Interfacial Charge Transfer States in the Phthalocyanine-Fullerene Organic Photovoltaic System.

    PubMed

    Lee, Myeong H; Dunietz, Barry D; Geva, Eitan

    2014-11-06

    Charge transfer (CT) states formed at the donor/acceptor heterointerface are key for photocurrent generation in organic photovoltaics (OPV). Our calculations show that interfacial donor-to-donor CT states in the phthalocyanine-fullerene OPV system may be more stable than donor-to-acceptor CT states and that they may rapidly recombine, thereby constituting a potentially critical and thus far overlooked loss mechanism. Our results provide new insight into processes that may compete with charge separation, and suggest that the efficiency for charge separation may be improved by destabilizing donor-to-donor CT states or decoupling them from other states.

  13. Direct visualization of the N impurity state in dilute GaNAs using scanning tunneling microscopy.

    PubMed

    Ishida, Nobuyuki; Jo, Masafumi; Mano, Takaaki; Sakuma, Yoshiki; Noda, Takeshi; Fujita, Daisuke

    2015-10-28

    The interaction between nitrogen (N) impurity states in III-V compounds plays a key role in controlling optoelectronic properties of the host materials. Here, we use scanning tunneling microscopy to characterize the spatial distribution and electronic properties of N impurity states in dilute GaNAs. We demonstrated that the N impurity states can be directly visualized by taking empty state current images using the multipass scanning method. The N impurity states broadened over several nanometers and exhibited a highly anisotropic distribution with a bowtie-like shape on the GaAs(110) surface, which can be explained by anisotropic propagation of strain along the zigzag chains of Ga and As atoms in the {110} plane. Our experimental findings provide strong insights into a possible role of N impurity states in modifying properties of the host materials.

  14. Impurity shielding criteria for steady state hydrogen plasmas in the LHD, a heliotron-type device

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Kobayashi, M.; Yoshimura, S.; Tamura, N.; Yoshinuma, M.; Tanaka, K.; Suzuki, C.; Peterson, B. J.; Sakamoto, R.; Morisaki, T.; the LHD Experiment Group

    2014-07-01

    Impurity behavior has so far been investigated in steady state hydrogen plasmas in the Large Helical Device, which is a heliotron-type device and excellent for steady state operation. There was always found to be an impurity accumulation window, as observed before (Nakamura et al 2002 Plasma Phys. Control. Fusion 44 2121, Nakamura et al 2003 Nucl. Fusion 43 219). To clarify the boundary conditions, the dependences of impurity transport on edge plasma parameters are investigated with a database of steady state hydrogen discharges, and the boundary conditions for the impurity accumulation window are discussed. It is found that two different types of impurity screening effects are essential for preventing intrinsic impurities from entering the core plasma. One of them is due to positive radial electric field at the plasma edge on the low collisionality side and the other is impurity retention caused by friction force in the ergodic layer on the high collisionality side. The classification of steady state discharges on n-T space shows that the impurity behavior can be predicted by the impurity shielding criteria based on each empirical scaling.

  15. Suppression of Superfluid Density and the Pseudogap State in the Cuprates by Impurities

    SciTech Connect

    Erdenemunkh, Unurbat; Koopman, Brian; Fu, Ling; Chatterjee, Kamalesh; Wise, W. D.; Gu, G. D.; Hudson, E. W.; Boyer, Michael C.

    2016-12-16

    Here, we use scanning tunneling microscopy (STM) to study magnetic Fe impurities intentionally doped into the high-temperature superconductor Bi2Sr2CaCu2O8+δ. Our spectroscopic measurements reveal that Fe impurities introduce low-lying resonances in the density of states at Ω1 ≈ 4 meV and Ω2 ≈ 15 meV , allowing us to determine that, despite having a large magnetic moment, potential scattering of quasiparticles by Fe impurities dominates magnetic scattering. In addition, using high-resolution spatial characterizations of the local density of states near and away from Fe impurities, we detail the spatial extent of impurity-affected regions as well as provide a local view of impurity-induced effects on the superconducting and pseudogap states. Lastly, our studies of Fe impurities, when combined with a reinterpretation of earlier STM work in the context of a two-gap scenario, allow us to present a unified view of the atomic-scale effects of elemental impurities on the pseudogap and superconducting states in hole-doped cuprates; this may help resolve a previously assumed dichotomy between the effects of magnetic and nonmagnetic impurities in these materials.

  16. Suppression of Superfluid Density and the Pseudogap State in the Cuprates by Impurities

    DOE PAGES

    Erdenemunkh, Unurbat; Koopman, Brian; Fu, Ling; ...

    2016-12-16

    Here, we use scanning tunneling microscopy (STM) to study magnetic Fe impurities intentionally doped into the high-temperature superconductor Bi2Sr2CaCu2O8+δ. Our spectroscopic measurements reveal that Fe impurities introduce low-lying resonances in the density of states at Ω1 ≈ 4 meV and Ω2 ≈ 15 meV , allowing us to determine that, despite having a large magnetic moment, potential scattering of quasiparticles by Fe impurities dominates magnetic scattering. In addition, using high-resolution spatial characterizations of the local density of states near and away from Fe impurities, we detail the spatial extent of impurity-affected regions as well as provide a local view ofmore » impurity-induced effects on the superconducting and pseudogap states. Lastly, our studies of Fe impurities, when combined with a reinterpretation of earlier STM work in the context of a two-gap scenario, allow us to present a unified view of the atomic-scale effects of elemental impurities on the pseudogap and superconducting states in hole-doped cuprates; this may help resolve a previously assumed dichotomy between the effects of magnetic and nonmagnetic impurities in these materials.« less

  17. Efficient Donor Impurities in ZnO Nanorods by Polyethylene Glycol for Enhanced Optical and Glutamate Sensing Properties

    PubMed Central

    Elhag, Sami; Khun, Kimleang; Khranovskyy, Volodymyr; Liu, Xianjie; Willander, Magnus; Nur, Omer

    2016-01-01

    In this paper, we show that the possibility of using polyethylene glycol (EG) as a hydrogen source and it is used to assist the hydrothermal synthesis of ZnO nanorods (ZNRs). EG doping in ZNRs has been found to significantly improve their optical and chemical sensing characteristics toward glutamate. The EG was found to have no role on the structural properties of the ZNRs. However, the x-ray photoelectron spectroscopy (XPS) suggests that the EG could induce donor impurities effect in ZnO. Photoluminescence (PL) and UV-Vis. spectra demonstrated this doping effect. Mott-Schottky analysis at the ZNRs/electrolyte interface was used to investigate the charge density for the doped ZNRs and showed comparable dependence on the used amount of EG. Moreover, the doped ZNRs were used in potentiometric measurements for glutamate for a range from 10−6 M to 10−3 M and the potential response of the sensor electrode was linear with a slope of 91.15 mV/decade. The wide range and high sensitivity of the modified ZNRs based glutamate biosensor is attributed to the doping effect on the ZNRs that is dictated by the EG along with the high surface area-to-volume ratio. The findings in the present study suggest new avenues to control the growth of n-ZnO nanostructures and enhance the performance of their sensing devices. PMID:26861342

  18. Long-range ferromagnetic order induced by a donor impurity band exchange in SnO{sub 2}:Er{sup 3+} nanoparticles

    SciTech Connect

    Aragón, F. H.; Coaquira, J. A. H.; Chitta, V. A.; Hidalgo, P.; Brito, H. F.

    2013-11-28

    In this work, the structural and magnetic properties of Er-doped SnO{sub 2} (SnO{sub 2}:Er) nanoparticles are reported. The SnO{sub 2}:Er nanoparticles have been synthesized by a polymer precursor method with Er content from 1.0% to 10.0%. X-ray diffraction results indicate the formation of only the rutile-type structure in all samples. The estimated mean crystallite size shows a decrease from ∼10 to ∼4 nm when the Er content is increased from 1.0% to 10.0%. The particle size values have been corroborated by transmission electron microscopy technique. The thermal dependence of the magnetization is consistent with the 3+ oxidation state of erbium ions for all samples. A strong paramagnetic-like behavior coexisting with a ferromagnetic phase has been determined for samples with Er content below 5.0%. Above this concentration, only a paramagnetic behavior has been determined. Isothermal magnetization curves are consistent with the occurrence of long-range ferromagnetic order mediated by donor electrons forming bound magnetic polarons which overlap to produce a spin-split impurity band.

  19. Relative influence of surface states and bulk impurities on the electrical properties of Ge nanowires.

    PubMed

    Zhang, Shixiong; Hemesath, Eric R; Perea, Daniel E; Wijaya, Edy; Lensch-Falk, Jessica L; Lauhon, Lincoln J

    2009-09-01

    We quantitatively examine the relative influence of bulk impurities and surface states on the electrical properties of Ge nanowires with and without phosphorus (P) doping. The unintentional impurity concentration in nominally undoped Ge nanowires is less than 2 x 10(17) cm(-3) as determined by atom probe tomography. Surprisingly, P doping of approximately 10(18) cm(-3) reduces the nanowire conductivity by 2 orders of magnitude. By modeling the contributions of dopants, impurities, and surface states, we confirm that the conductivity of nominally undoped Ge nanowires is mainly due to surface state induced hole accumulation rather than impurities introduced by catalyst. In P-doped nanowires, the surface states accept the electrons generated by the P dopants, reducing the conductivity and leading to ambipolar behavior. In contrast, intentional surface-doping results in a high conductivity and recovery of n-type characteristics.

  20. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters.

    PubMed

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica M

    2017-03-10

    Impurities in superconductors and their induced bound states are important both for engineering novel states such as Majorana zero-energy modes and for probing bulk properties of the superconducting state. The high-temperature cuprates offer a clear advantage in a much larger superconducting order parameter, but the nodal energy spectrum of a pure d-wave superconductor only allows virtual bound states. Fully gapped d-wave superconducting states have, however, been proposed in several cuprate systems thanks to subdominant order parameters producing d + is- or d + id'-wave superconducting states. Here we study both magnetic and potential impurities in these fully gapped d-wave superconductors. Using analytical T-matrix and complementary numerical tight-binding lattice calculations, we show that magnetic and potential impurities behave fundamentally different in d + is- and d + id'-wave superconductors. In a d + is-wave superconductor, there are no bound states for potential impurities, while a magnetic impurity produces one pair of bound states, with a zero-energy level crossing at a finite scattering strength. On the other hand, a d + id'-wave symmetry always gives rise to two pairs of bound states and only produce a reachable zero-energy level crossing if the normal state has a strong particle-hole asymmetry.

  1. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters

    PubMed Central

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica M.

    2017-01-01

    Impurities in superconductors and their induced bound states are important both for engineering novel states such as Majorana zero-energy modes and for probing bulk properties of the superconducting state. The high-temperature cuprates offer a clear advantage in a much larger superconducting order parameter, but the nodal energy spectrum of a pure d-wave superconductor only allows virtual bound states. Fully gapped d-wave superconducting states have, however, been proposed in several cuprate systems thanks to subdominant order parameters producing d + is- or d + id′-wave superconducting states. Here we study both magnetic and potential impurities in these fully gapped d-wave superconductors. Using analytical T-matrix and complementary numerical tight-binding lattice calculations, we show that magnetic and potential impurities behave fundamentally different in d + is- and d + id′-wave superconductors. In a d + is-wave superconductor, there are no bound states for potential impurities, while a magnetic impurity produces one pair of bound states, with a zero-energy level crossing at a finite scattering strength. On the other hand, a d + id′-wave symmetry always gives rise to two pairs of bound states and only produce a reachable zero-energy level crossing if the normal state has a strong particle-hole asymmetry. PMID:28281570

  2. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters

    NASA Astrophysics Data System (ADS)

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica M.

    2017-03-01

    Impurities in superconductors and their induced bound states are important both for engineering novel states such as Majorana zero-energy modes and for probing bulk properties of the superconducting state. The high-temperature cuprates offer a clear advantage in a much larger superconducting order parameter, but the nodal energy spectrum of a pure d-wave superconductor only allows virtual bound states. Fully gapped d-wave superconducting states have, however, been proposed in several cuprate systems thanks to subdominant order parameters producing d + is- or d + id‧-wave superconducting states. Here we study both magnetic and potential impurities in these fully gapped d-wave superconductors. Using analytical T-matrix and complementary numerical tight-binding lattice calculations, we show that magnetic and potential impurities behave fundamentally different in d + is- and d + id‧-wave superconductors. In a d + is-wave superconductor, there are no bound states for potential impurities, while a magnetic impurity produces one pair of bound states, with a zero-energy level crossing at a finite scattering strength. On the other hand, a d + id‧-wave symmetry always gives rise to two pairs of bound states and only produce a reachable zero-energy level crossing if the normal state has a strong particle-hole asymmetry.

  3. Charge state of sputtered impurity ions near a limiter or divertor in a tokamak

    SciTech Connect

    Boley, C.D.; Brooks, J.N.; Kim, Y.K.

    1983-03-01

    Many impurity atoms sputtered from a limiter or divertor plate are ionized in the scrapeoff zone and return to the sputtering surface bacause of friction with incoming plasma ions. The final charge state attained by such impurities has been calculated for a variety of plasma edge conditions. The surface materials considered are tungsten, beryllium, beryllium oxide, and carbon. Estimates of the successive ionization cross sections for tungsten are developed. In all cases examined, returning impurity ions are found to be multiply ionized. This implies a significant energy gain in the sheath region, with important implications for self-sputtering of redeposited surface material.

  4. The beauty of impurities: Two revivals of Friedel's virtual bound-state concept

    NASA Astrophysics Data System (ADS)

    Georges, Antoine

    2016-03-01

    Jacques Friedel pioneered the theoretical study of impurities and magnetic impurities in metals. He discovered Friedel oscillations, introduced the concept of virtual bound-state, and demonstrated that the charge on the impurity is related to the scattering phase-shift at the Fermi level (Friedel sum-rule). After a brief review of some of these concepts, I describe how they proved useful in two new contexts. The first one concerns the Coulomb blockade in quantum dots, and its suppression by the Kondo effect. The second one is the dynamical mean-field theory of strong electronic correlations.

  5. Charge, quantum state, and energy distributions of impurities released in plasma-wall interaction processes

    SciTech Connect

    Gruen, D.M.

    1981-01-01

    Conventional wisdom has it that total sputtering yields correlate with high Z-impurity levels found in fusion plasmas. The charge, quantum states and energy distributions of sputtered atoms have been virtually ignored in these considerations. Impurity transport from the wall or limiter to the plasma is, however, strongly influenced by these factors which may play a crucial role in determining impurity levels in the deeper plasma regions. Preliminary calculations have shown that positively charged impurities would most likely be redeposited on their surfaces of origin. The conditions leading to charged or excited state atoms emission and the energy distributions of such species are reviewed. Techniques for measuring these quantities are discussed and the need for a wider data base in this field is pointed out.

  6. Partial phenotyping in voluntary blood donors of Gujarat State

    PubMed Central

    Gajjar, Maitrey; Patel, Tarak; Bhatnagar, Nidhi; Patel, Kruti; Shah, Mamta; Prajapati, Amit

    2016-01-01

    Introduction: Partial phenotyping of voluntary blood donors has vital role in transfusion practice, population genetic study and in resolving legal issues. The Rh blood group is one of the most complex and highly immunogenic blood group known in humans. The Kell system, discovered in 1946, is the third most potent system at triggering hemolytic transfusion reactions and consists of 25 highly immunogenic antigens. Knowledge of Rh & Kell phenotypes in given population is relevant for better planning and management of blood bank; the main goal is to find compatible blood for patients needing multiple blood transfusions. The aim of this study was to evaluate the frequency of Rh & Kell phenotype of voluntary donors in Gujarat state. Materials and Methods: The present study was conducted by taking 5670 samples from random voluntary blood donors coming in blood donation camp. Written consent was taken for donor phenotyping. The antigen typing of donors was performed by Qwalys-3(manufacturer: Diagast) by using electromagnetic technology on Duolys plates. Results: Out of 5670 donors, the most common Rh antigen observed in the study population was e (99.07%) followed by D (95.40%), C (88.77%), c (55.89%) and E (17.88%). The frequency of the Kell antigen (K) was 1.78 %. Discussion: The antigen frequencies among blood donors from Gujarat were compared with those published for other Indian populations. The frequency of D antigen in our study (95.4%) and north Indian donors (93.6) was significantly higher than in the Caucasians (85%) and lower than in the Chinese (99%). The frequencies of C, c and E antigens were dissimilar to other ethnic groups while the ‘e’ antigen was present in high frequency in our study as also in the other ethnic groups. Kell antigen (K) was found in only 101 (1.78 %) donors out of 5670. Frequency of Kell antigen in Caucasian and Black populations is 9% & 2% respectively. The most common Kell phenotype was K-k+, not just in Indians (96.5%) but also

  7. Impurity trapped exciton states related to rare earth ions in crystals under high hydrostatic pressure

    SciTech Connect

    Grinberg, M. Mahlik, S.

    2013-01-15

    Emission related to rare earth ions in solids takes place usually due to 4f{sup n} {yields} 4f{sup n} and 4f{sup n-1}5d{sup 1} {yields} 4f{sup n} internal transitions. In the case of band to band excitation the effective energy transfer from the host to optically active impurity is required. Among other processes one of the possibilities is capturing of the electron at excited state and hole at the ground state of impurity. Localization of electron or hole at the dopand site creates a long range Coulomb potential that attracts the second carrier which then occupies the localized Rydberg-like states. Such a system can be considered as impurity trapped exciton. Usually impurity trapped exciton is a short living phenomenon which decays non-radiatively leaving the impurity ion in the excited state. However, in several compounds doped with Eu{sup 2+} the impurity trapped exciton states become stable and contribute to the radiative processes though anomalous luminescence that appears apart of the 4f{sup 7} {yields} 4f{sup 7} and 4f{sup 7}5d{sup 1} {yields} 5f{sup 7} emission. In this contribution pressure effect on energies of the 4f{sup n-1}5d{sup 1}{yields}5f{sup n} transitions in Ln doped oxides and fluorides as well as influence of pressure on the energy of impurity trapped exciton states is discussed. The latest results on high pressure investigations of luminescence related to Pr{sup 3+}, and Eu{sup 2+} in different lattices are reviewed.

  8. Donor States in a Gallium ARSENIDE/GALLIUM(1-X) Aluminum(x)arsenide Quantum Well Wire of Circular Cross-Section

    NASA Astrophysics Data System (ADS)

    Oyoko, Hannington Odhiambo

    The present work considers the donor states in a GaAs/Ga_{1-x}Al_{x} As QWW of circular cross section. Several trial wave functions are used to describe the ground state of the donor impurity. Using these trial wave functions the binding energy of the donor impurity in the ground state is determined for the hydrogenic case epsilon(o), and for the non -hydrogenic case, epsilon(r). The binding energy for the first excited state is also determined using a trial wave function which is orthogonal to the ground state trial wave function. Here again the calculation is carried out for the hydrogenic case epsilon(o), and for the non -hydrogenic case epsilon(r). It is found that in the ground state the binding energy increases with decreasing QWW radius for both the hydrogenic (epsilon(o)) and non-hydrogenic (epsilon(r)) cases. However, the binding energy increases much more rapidly with QWW radius in the non-hydrogenic than in the hydrogenic case. The spatial dielectric function leads to substantially enhanced binding energy. For the first excited state the binding energy also increases with decreasing QWW radius but here the screening effect of epsilon(r) is negligible. It is seen from the present work that the binding energy of a donor in a GaAs/Ga_{1-x}Al_{x} As increases with decreasing QWW radius and that for the ground state binding energy it is sensitive to the screening effect of epsilon(r). This is because in the first excited state the donor electron does not approach the impurity ion as closely as in the ground state.

  9. Variable Charge State Impurities in Coupled Kinetic Plasma-Kinetic Neutral Transport Simulations

    NASA Astrophysics Data System (ADS)

    Stotler, D. P.; Hager, R.; Kim, K.; Koskela, T.; Park, G.

    2015-11-01

    A previous version of the XGC0 neoclassical particle transport code with two fully stripped impurity species was used to study kinetic neoclassical transport in the DIII-D H-mode pedestal. To properly simulate impurities in the scrape-off layer and divertor and to account for radiative cooling, however, the impurity charge state distributions must evolve as the particles are transported into regions of different electron temperatures and densities. To do this, the charge state of each particle in XGC0 is included as a parameter in the list that represents the particle's location in phase space. Impurity ionizations and recombinations are handled with a dedicated collision routine. The associated radiative cooling is accumulated during the process and applied to the electron population later in the time step. The density profiles of the neutral impurities are simulated with the DEGAS 2 neutral transport code and then used as a background for electron impact ionization in XGC0 via a test particle Monte Carlo method analogous to that used for deuterium. This work supported by US DOE contracts DE-AC02-09CH11466.

  10. Evolution of quasiparticle states with and without a Zn impurity in doped 122 iron pnictides

    NASA Astrophysics Data System (ADS)

    Pan, Lihua; Li, Jian; Tai, Yuan-Yen; Graf, Matthias J.; Zhu, Jian-Xin; Ting, C. S.

    2014-10-01

    Based on a minimal two-orbital model [Tai et al., Europhys. Lett. 103, 67001 (2013), 10.1209/0295-5075/103/67001], which captures the canonical electron-hole-doping phase diagram of the iron-pnictide BaFe2As2, we study the evolution of quasiparticle states as a function of doping using the Bogoliubov-de Gennes equations with and without a single impurity. Analyzing the density of states of uniformly doped samples, we are able to identify the origin of the two superconducting gaps observed in optimally hole- or electron-doped systems. The local density of states (LDOS) is then examined near a single impurity in samples without antiferromagnetic order. The qualitative features of our results near the single impurity are consistent with a work based on a five-orbital model [T. Kariyado et al., J. Phys. Soc. Jpn. 79, 083704 (2010), 10.1143/JPSJ.79.083704]. Some of the results are consistent with recent angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy experiments. This further supports the validity of our two-orbital model in dealing with LDOS in the single-impurity problem. Finally, we investigate the evolution of the LDOS with doping near a single impurity in the unitary or strong scattering limit, such as Zn replacing Fe. The positions of the in-gap resonance peaks exhibited in our LDOS may indirectly reflect the evolution of the Fermi surface topology according to the phase diagram. Our prediction of in-gap states and the evolution of the LDOS near a strong scattering single impurity can be validated by further experiments probing the local quasiparticle spectrum.

  11. Edge states and local electronic structure around an adsorbed impurity in a topological superconductor

    NASA Astrophysics Data System (ADS)

    Tai, Yuan-Yen; Choi, Hongchul; Ahmed, Towfiq; Ting, C. S.; Zhu, Jian-Xin

    2015-11-01

    Recently, topological superconducting states have attracted much interest. In this paper, we consider a topological superconductor with Z2 topological mirror order [Y.-Y. Tai et al., Phys. Rev. B 91, 041111(R) (2015), 10.1103/PhysRevB.91.041111] and s±-wave superconducting pairing symmetry, within a two-orbital model originally designed for iron-based superconductivity [Y.-Y. Tai et al., Europhys. Lett. 103, 67001 (2013), 10.1209/0295-5075/103/67001]. We predict the existence of gapless edge states. We also study the local electronic structure around an adsorbed interstitial magnetic impurity in the system, and find the existence of low-energy in-gap bound states even with a weak spin polarization on the impurity. We also discuss the relevance of our results to a recent scanning tunneling microscopy experiment on a Fe(Te,Se) compound with an adsorbed Fe impurity [J.-X. Yin et al., Nat. Phys. 11, 543 (2015), 10.1038/nphys3371], for which our density functional calculations show the Fe impurity is spin polarized.

  12. An impurity-induced gap system as a quantum data bus for quantum state transfer

    SciTech Connect

    Chen, Bing; Li, Yong; Song, Z.; Sun, C.-P.

    2014-09-15

    We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.

  13. Molecular Bound States of Supercritical Charged Impurities on Graphene

    NASA Astrophysics Data System (ADS)

    Velizhanin, Kirill; Adamska, Lyudmyla; Solenov, Dmitry

    2015-03-01

    Functionalization of graphene by chemical groups/atoms allows one to tune its electronic, chemical and mechanical properties. For example, metallic adatoms (e.g., Li, Ca, Y) can be important in applications ranging from hydrogen storage to superconductivity. Such adatoms bind ionically to graphene and the resulting positive ions move along graphene relatively freely, so understanding the energetics of their interaction with graphene and between each other becomes critical for assessing stability of resulting materials in practical applications. It has recently been demonstrated that ions with charge greater than Z ~ 1 induce a very peculiar non-linear electronic polarization of graphene, which is reminiscent to the Dirac vacuum reconstruction around superheavy nuclei. In our work we demonstrate that such non-linear polarization qualitatively changes not only graphene electronic structure but also the energetics of the effective graphene-mediated interaction between such ions. In my talk, I will discuss the properties of such effective interaction and its dependence on various parameters of the system. In particular, I will report on our finding that molecular bound states of supercritically charged ions can be formed on graphene at certain conditions. This work was performed under the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396.

  14. Impurity induced bond-softening and defect states in ZnO:Cu

    NASA Astrophysics Data System (ADS)

    Samanta, Kousik; Arora, A. K.; Katiyar, Ram S.

    2011-08-01

    Phonons and optical properties of Cu-doped ZnO have been investigated using micro-Raman and photoluminescence (PL) spectroscopy. Two new modes found in Raman spectra are assigned to Cu-O impurity vibrations analogous to polar A1 and E1 modes of ZnO on the basis of a Cu-O force constant lower than that of the Zn-O bond. The reduction in the frequencies of the nonpolar E2 modes also appears to arise due to softening of the mixed crystal. In the PL spectrum at 80 K a prominent blue emission arises due to Cu-related intraband transitions. Temperature dependent PL spectrum confirms the existence of donor acceptor pair transition at 3.305 eV in ZnO:Cu system.

  15. Two-electron bound states near a Coulomb impurity in gapped graphene

    NASA Astrophysics Data System (ADS)

    De Martino, Alessandro; Egger, Reinhold

    2017-02-01

    We formulate and solve the perhaps simplest two-body bound-state problem for interacting Dirac fermions in two spatial dimensions. A two-body bound state is predicted for gapped graphene monolayers in the presence of weakly repulsive electron-electron interactions and a Coulomb impurity with charge Z e >0 , where the most interesting case corresponds to Z =1 . We introduce a variational Chandrasekhar-Dirac spinor wave function and show the existence of at least one bound state. This state leaves clear signatures accessible by scanning tunneling microscopy. One may thereby obtain direct information about the strength of electron-electron interactions in graphene.

  16. Resonance states and beating pattern induced by quantum impurity scattering in Weyl/Dirac semimetals

    PubMed Central

    Zheng, Shi-Han; Wang, Rui-Qiang; Zhong, Min; Duan, Hou-Jian

    2016-01-01

    Currently, Weyl semimetals (WSMs) are drawing great interest as a new topological nontrivial phase. When most of the studies concentrated on the clean host WSMs, it is expected that the dirty WSM system would present rich physics due to the interplay between the WSM states and the impurities embedded inside these materials. We investigate theoretically the change of local density of states in three-dimensional Dirac and Weyl bulk states scattered off a quantum impurity. It is found that the quantum impurity scattering can create nodal resonance and Kondo peak/dip in the host bulk states, remarkably modifying the pristine spectrum structure. Moreover, the joint effect of the separation of Weyl nodes and the Friedel interference oscillation causes the unique battering feature. We in detail an- alyze the different contribution from the intra- and inter-node scattering processes and present various scenarios as a consequence of competition between them. Importantly, these behaviors are sensitive significantly to the displacement of Weyl nodes in energy or momentum, from which the distinctive fingerprints can be extracted to identify various semimetal materials experimentally by employing the scanning tunneling microscope. PMID:27808262

  17. Resonance states and beating pattern induced by quantum impurity scattering in Weyl/Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Zheng, Shi-Han; Wang, Rui-Qiang; Zhong, Min; Duan, Hou-Jian

    2016-11-01

    Currently, Weyl semimetals (WSMs) are drawing great interest as a new topological nontrivial phase. When most of the studies concentrated on the clean host WSMs, it is expected that the dirty WSM system would present rich physics due to the interplay between the WSM states and the impurities embedded inside these materials. We investigate theoretically the change of local density of states in three-dimensional Dirac and Weyl bulk states scattered off a quantum impurity. It is found that the quantum impurity scattering can create nodal resonance and Kondo peak/dip in the host bulk states, remarkably modifying the pristine spectrum structure. Moreover, the joint effect of the separation of Weyl nodes and the Friedel interference oscillation causes the unique battering feature. We in detail an- alyze the different contribution from the intra- and inter-node scattering processes and present various scenarios as a consequence of competition between them. Importantly, these behaviors are sensitive significantly to the displacement of Weyl nodes in energy or momentum, from which the distinctive fingerprints can be extracted to identify various semimetal materials experimentally by employing the scanning tunneling microscope.

  18. Resonant impurity states in chemically disordered half-Heusler Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Chadova, K.; Ködderitzsch, D.; Minár, J.; Ebert, H.; Kiss, J.; D'Souza, S. W.; Wollmann, L.; Felser, C.; Chadov, S.

    2016-05-01

    We address the electron transport characteristics in bulk half-Heusler alloys with their compositions tuned to the borderline between topologically nontrivial semimetallic and trivial semiconducting phases. Accurate first-principles calculations based on the coherent potential approximation (CPA) reveal that all the studied systems exhibit sets of dispersionless impurity-like resonant levels, with one of them being located at the Dirac point. By means of the Kubo-Bastin formalism we reveal that the residual conductivity of these alloys is strongly suppressed by impurity scattering, whereas the spin Hall conductivity exhibits a rather complex behavior induced by the resonant states. In particular for LaPt0.5Pd0.5Bi we find that the total spin Hall conductivity is strongly suppressed by two large and opposite contributions: the negative Fermi-surface contribution produced by the resonant impurity and the positive Fermi-sea term stemming from the occupied states. At the same time, we identify no conductivity contributions from the conical states.

  19. Asymptotic behavior of impurity-induced bound states in low-dimensional topological superconductors

    NASA Astrophysics Data System (ADS)

    Kaladzhyan, V.; Bena, C.; Simon, P.

    2016-12-01

    We study theoretically the asymptotic behavior of the Shiba bound states associated with magnetic impurities embedded in both 2D and 1D anomalous superconductors. We calculate analytically the spatial dependence of the local density of states together with the spin polarization associated with the Shiba bound states. We show that the latter quantity exhibits drastic differences between s-wave and different types of p-wave superconductors. Such properties, which could be measured using spin-polarized STM, offer therefore a way to discriminate between singlet and triplet pairing in low-dimensional superconductors, as well as a way to estimate the amplitude of the triplet pairing in these systems.

  20. The effect of magnetic field on the impurity binding energy of shallow donor impurities in a Ga1−xInxNyAs1−y/GaAs quantum well

    PubMed Central

    2012-01-01

    Using a variational approach, we have investigated the effects of the magnetic field, the impurity position, and the nitrogen and indium concentrations on impurity binding energy in a Ga1−xInxNyAs1−y/GaAs quantum well. Our calculations have revealed the dependence of impurity binding on the applied magnetic field, the impurity position, and the nitrogen and indium concentrations. PMID:23095253

  1. Efficient DMFT impurity solver using real-time dynamics with matrix product states

    NASA Astrophysics Data System (ADS)

    Ganahl, Martin; Aichhorn, Markus; Evertz, Hans Gerd; Thunström, Patrik; Held, Karsten; Verstraete, Frank

    2015-10-01

    We propose to calculate spectral functions of quantum impurity models using the time evolving block decimation (TEBD) for matrix product states. The resolution of the spectral function is improved by a so-called linear prediction approach. We apply the method as an impurity solver within the dynamical mean-field theory (DMFT) for the single- and two-band Hubbard model on the Bethe lattice. For the single-band model, we observe sharp features at the inner edges of the Hubbard bands. A finite-size scaling shows that they remain present in the thermodynamic limit. We analyze the real time-dependence of the double occupation after adding a single electron and observe oscillations at the same energy as the sharp feature in the Hubbard band, indicating a long-lived coherent superposition of states that correspond to the Kondo peak and the side peaks. For a two-band Hubbard model, we observe an even richer structure in the Hubbard bands, which cannot be related to a multiplet structure of the impurity, in addition to sharp excitations at the band edges of a type similar to the single-band case.

  2. HIV screening practices for living organ donors, New York State, 2010: need for standard policies.

    PubMed

    Kwan, Candice K; Al-Samarrai, Teeb; Smith, Lou C; Sabharwal, Charulata J; Valente, Kim A; Torian, Lucia V; McMurdo, Lisa M; Shepard, Colin W; Brooks, John T; Kuehnert, Matthew J

    2012-10-01

    Our survey of kidney and liver transplant centers in New York State found a wide variation among transplant centers in evaluation and screening for HIV risk and infection among prospective living donors. Survey results underscore the need to standardize practices. A recent transmission of human immunodeficiency virus (HIV) from a living donor to a kidney recipient revealed a possible limitation in existing screening protocols for HIV infection in living donors. We surveyed kidney and liver transplant centers (N = 18) in New York State to assess HIV screening protocols for living donors. Although most transplant centers evaluated HIV risk behaviors in living donors, evaluation practices varied widely, as did the extent of HIV testing and prevention counseling. All centers screened living donors for serologic evidence of HIV infection, either during initial evaluation or ≥1 month before surgery; however, only 50% of transplant centers repeated HIV testing within 14 days before surgery for all donors or donors with specific risk behaviors. Forty-four percent of transplant centers used HIV nucleic acid testing (NAT) to screen either all donors or donors with recognized risk behaviors, and 55% never performed HIV NAT. Results suggest the need to standardize evaluation of HIV risk behaviors and prevention counseling in New York State to prevent acquisition of HIV by prospective living organ donors, and to conduct HIV antibody testing and NAT as close to the time of donation as possible to prevent HIV transmission to recipients.

  3. Donor-impurity-related second and third harmonic generation and optical absorption in GaAs-(Ga,Al)As 3D coupled quantum dot-rings under applied electric field

    NASA Astrophysics Data System (ADS)

    Duque, C. A.; Mora-Ramos, M. E.; Correa, J. D.

    2015-11-01

    The features of some donor-impurity-related nonlinear optical properties in coupled dot-ring nanostructures are investigated with the use of the effective mass and parabolic band approximations. The electron confinement is modeled via a recently reported analytical potential, and the influence of an externally applied static electric field is taken into account. The results show that the increase in the applied field strength causes the blueshift of all the optical responses considered, whereas they can be redshifted or blueshifted depending of the impurity position. For the parameters and interlevel transitions considered in this work, the third harmonic generation is absent when the impurity moves along the same direction of the polarization of the incident resonant radiation.

  4. Tight-binding analysis of the electronic states in AlAs with N isoelectronic impurities

    SciTech Connect

    Jo, M.; Mano, T.; Sakuma, Y.; Sakoda, K.

    2014-03-28

    Incorporation of nitrogen (N) atoms into III–V semiconductors significantly changes their electronic structures. The aim of this study was to assess the electronic states in AlAs that contained N impurities. An sp{sup 3}s{sup *} tight-binding model along with valence-force-field strain calculations were used to obtain the energy levels in N-doped AlAs. The calculations showed that an isolated N atom formed a resonant state above the conduction band edge in AlAs. In contrast, NN{sub 1}[110] and NN{sub 4}[220] pairs formed bound states inside the band gap. The formation of two bound states was consistent with the photoluminescence spectrum of N δ-doped AlAs.

  5. Impurity magnetopolaron in a parabolic quantum dot: the squeezed-state variational approach

    NASA Astrophysics Data System (ADS)

    Kandemir, B. S.; Çetin, A.

    2005-02-01

    We present a calculation of the ground-state binding energy of an impurity magnetopolaron confined in a three-dimensional (3D) parabolic quantum dot potential, in the framework of a variational approach based on two successive canonical transformations. First, we apply a displaced-oscillator type unitary transformation to diagonalize the relevant Fröhlich Hamiltonian. Second, a single-mode squeezed-state transformation is introduced to deal with bilinear terms arising from the first transformation. Finally, the parameters of these transformations together with the parameters included in the electronic trial wavefunction are determined variationally to obtain the ground-state binding energy of an impurity magnetopolaron confined in a 3D parabolic quantum dot potential. Our approach has two advantages: first, the displaced-oscillator transformation allows one to obtain results valid for whole range of electron-phonon coupling strength since it is a special combination of Lee-Low-Pines and Huybrechts (LLP-H) canonical transformations, and second, the later transformation improves all-coupling results. It has been shown that the effects of quadratic terms arising from the all-coupling approach are very important and should be taken into account in studying the size-dependent physical properties of nanostructured materials.

  6. Impurity-Induced Local Magnetism and Density of States in the Superconducting State of YBa2Cu3O7

    NASA Astrophysics Data System (ADS)

    Ouazi, S.; Bobroff, J.; Alloul, H.; Le Tacon, M.; Blanchard, N.; Collin, G.; Julien, M. H.; Horvatić, M.; Berthier, C.

    2006-03-01

    O17 NMR is used to probe the local influence of nonmagnetic Zn and magnetic Ni impurities in the superconducting state of optimally doped high TC YBa2Cu3O7. Zn and Ni induce a staggered paramagnetic polarization, similar to that evidenced above TC, with a typical extension ξ=3 cell units for Zn and ξ≥3 for Ni. In addition, Zn is observed to induce a local density of states near the Fermi energy in its neighborhood, which also decays over about 3 cell units. Its magnitude decreases sharply with increasing temperature. This allows direct comparison with the STM observations done in BiSCCO.

  7. Impurity effects on the d-wave state of the pair tunneling mechanism for high-T{sub c} superconductors

    SciTech Connect

    Bang, Y.

    1998-01-01

    We consider the impurity effects on the d-wave state in Anderson{close_quote}s interlayer pair tunneling (IPT) mechanism for high-T{sub c} superconductors. We found that the change of density of states and the T{sub c} suppression with impurities are qualitatively the same as the conventional BCS-type d-wave theory despite different gap equations. In particular, for the T{sub c} suppression with the in-plane impurities we solve the T{sub c} equation of the IPT mechanism explicitly including strong inelastic scattering [{Sigma}{sup {double_prime}}{approximately}{alpha}({h_bar}w+{pi}k{sub B}T)]. As expected, the effect of impurities for the T{sub c} suppression is strongly reduced by inelastic scattering and the results can fit most of the experimental data by varying the impurity scattering strength. The insensitivity of T{sub c} with the out-of-plane rare-earth impurities is shown to be consistent with the IPT mechanism. {copyright} {ital 1998} {ital The American Physical Society}

  8. Ground State Properties and Localized Excited States around a Magnetic Impurity Described by the Anisotropic s- d Interaction in Superconductivity

    NASA Astrophysics Data System (ADS)

    Yoshioka, Tomoki; Ohashi, Yoji

    1998-04-01

    We investigate the electronic state around a magnetic impurity in thesuperconductivity in order to clarify how the anisotropy of thes-d interaction works in the presence of the superconductingenergy gap. Using the numerical renormalization group method, weobtain regions induced by the anisotropy where two localizedexcited states with different energies appear at the same time; theycannot obtain as far as the isotropic interaction is considered. Thismeans that the anisotropy of the s-d interaction works relevantlyin some cases in the superconducting state. We also examine whether ornot the bound state energy for the anisotropic and antiferromagnetics-d interaction is scaled by T K/Δ (T K: Kondotemperature, Δ: superconducting order parameter), and find thatit does not hold in the regions with two bound states.

  9. Living donor liver transplantation for inborn errors of metabolism - An underutilized resource in the United States.

    PubMed

    Pham, Thomas A; Enns, Gregory M; Esquivel, Carlos O

    2016-09-01

    Inborn metabolic diseases of the liver can be life-threatening disorders that cause debilitating and permanent neurological damage. Symptoms may manifest as early as the neonatal period. Liver transplant replaces the enzymatically deficient liver, allowing for metabolism of toxic metabolites. LDLT for metabolic disorders is rarely performed in the United States as compared to countries such as Japan, where they report >2000 cases performed within the past two decades. Patient and graft survival is comparable to that of the United States, where most of the studies are based on deceased donors. No living donor complications were observed, suggesting that LDLT is as safe and effective as deceased donor transplants performed in the USA. Increased utilization of living donors in the USA will allow for early transplantation to prevent permanent neurological damage in those with severe disease. Pediatric transplant centers should consider utilizing living donors when feasible for children with metabolic disorders of the liver.

  10. Living donor liver transplantation in Brazil—current state

    PubMed Central

    Andraus, Wellington; D’Alburquerque, Luiz A. C.

    2016-01-01

    Currently in Brazil, living donor liver transplantation (LDLT) represents 8.5% of liver transplantation (LT), being the majority pediatric one. Up to now, according to Brazilian Organ Transplantation Association (ABTO) annual report, 2,086 procedures have been done nationwide, most of them in southeast and south regions. Based on national centers reports, biliary complication is the most common recipient postoperative complication (14.5–20.6%), followed by hepatic artery thrombosis (3.1–10.7%) and portal vein thrombosis (2.3–9.1%). Patient and graft overall 5-y survival correspond to 76% and 74%, respectively. Regarding the donor, morbidity rate ranges from 12.4% to 28.3%, with a national mortality rate of 0.14%. In conclusion, Brazilian LDLT programs enhance international experience that this is a feasible and safe procedure, as well as an excellent alternative strategy to overcome organs shortage. PMID:27115012

  11. Far-infrared spectroscopy of impurities in semiconductors

    NASA Astrophysics Data System (ADS)

    Stradling, R. A.

    1991-06-01

    Far-infrared spectroscopy of the electronic transitions between bound states of impurities provides a very high resolution technique for studying chemical shifts and thereby identifying residual contaminants. The use of photoconductivity generated within the sample itself, usually by the photothermal mechanism ("photothermal ionisation spectroscopy"), enables very high sensitivity to be achieved even with very thin films or ultrahigh-purity material. The current knowledge about the identity of the residual shallow donors in GaAs, InP, InAs and InSb obtained with this technique is reviewed. With high-purity materials the magneto-optical spectrum of the shallow donors can be particularly rich and more than fifty lines can be observed with both GaAs and InP. Hydrostatic pressure provides a valuable additional experimental parameter in studies of impurities. Not only does the pressure-induced increase in mass improve the resolution of the "fine structure" due to different chemical species but additional states can be introduced into the forbidden energy gap. Results with both InSb and GaAs have shown that generally donors in direct-gap III-V materials may be expected to have three types of state: the familiar gamma-associated donors, localised states with A 1 symmetry which are normally resonant within the conduction band and metastable DX states. Negatively charged shallow donor states (D - states) and "molecular" combinations where the electrons are shared between two or more donor sites have been studied by infrared spectroscopy of III-V materials. These states are important precursors of the metal-insulator transition. Recently there have been a number of studies of impurities within quantum wells and heterostructures. The dependence of impurity energy on distance from the well edge has been established and it has been shown that high concentrations of D - states can be formed by remote deping of the structures.

  12. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Screening influence on the Stark effect of impurity states in strained wurtzite GaN/AlxGa1-xN heterojunctions under pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Ban, Shi-Liang

    2009-12-01

    The screening effect of the random-phase-approximation on the states of shallow donor impurities in free strained wurtzite GaN/AlxGa1-xN heterojunctions under hydrostatic pressure and an external electric field is investigated by using a variational method and a simplified coherent potential approximation. The variations of Stark energy shift with electric field, impurity position, Al component and areal electron density are discussed. Our results show that the screening dramatically reduces both the blue and red shifts as well as the binding energies of impurity states. For a given impurity position, the change in binding energy is more sensitive to the increase in hydrostatic pressure in the presence of the screening effect than that in the absence of the screening effect. The weakening of the blue and red shifts, induced by the screening effect, strengthens gradually with the increase of electric field. Furthermore, the screening effect weakens the mixture crystal effect, thereby influencing the Stark effect. The screening effect strengthens the influence of energy band bending on binding energy due to the areal electron density.

  13. Deceased donor organ procurement injuries in the United States

    PubMed Central

    Taber, Tim E; Neidlinger, Nikole A; Mujtaba, Muhammad A; Eidbo, Elling E; Cauwels, Roxane L; Hannan, Elizabeth M; Miller, Jennifer R; Paramesh, Anil S

    2016-01-01

    AIM: To determine the incidence of surgical injury during deceased donor organ procurements. METHODS: Organ damage was classified into three tiers, from 1-3, with the latter rendering the organ non-transplantable. For 12 consecutive months starting in January of 2014, 36 of 58 organ procurement organization’s (OPO)’s prospectively submitted quality data regarding organ damage (as reported by the transplanting surgeon and confirmed by the OPO medical director) seen on the procured organ. RESULTS: These 36 OPOs recovered 5401 of the nations’s 8504 deceased donors for calendar year 2014. A total of 19043 organs procured were prospectively analyzed. Of this total, 59 organs sustained damage making them non-transplantable (0 intestines; 4 pancreata; 5 lungs; 6 livers; 43 kidneys). The class 3 damage was spread over 22 (of 36) reporting OPO’s. CONCLUSION: While damage to the procured organ is rare with organ loss being approximately 0.3% of procured organs, loss of potential transplantable organs does occur during procurement. PMID:27358788

  14. Living kidney donor follow-up: state-of-the-art and future directions, conference summary and recommendations.

    PubMed

    Leichtman, Alan; Abecassis, Michael; Barr, Mark; Charlton, Marian; Cohen, David; Confer, Dennis; Cooper, Mathew; Danovitch, Gabriel; Davis, Connie; Delmonico, Francis; Dew, Mary Amanda; Garvey, Cathy; Gaston, Robert; Gill, John; Gillespie, Brenda; Ibrahim, Hassan; Jacobs, Cheryl; Kahn, Jeffery; Kasiske, Bert; Kim, Joseph; Lentine, Krista; Manyalich, Marti; Medina-Pestana, Jose; Merion, Robert; Moxey-Mims, Marva; Odim, Jonah; Opelz, Gerhard; Orlowski, Janice; Rizvi, Abid; Roberts, John; Segev, Dorry; Sledge, Tina; Steiner, Robert; Taler, Sandra; Textor, Steven; Thiel, Gil; Waterman, Amy; Williams, Errol; Wolfe, Robert; Wynn, James; Matas, Arthur J

    2011-12-01

    In light of continued uncertainty regarding postkidney donation medical, psychosocial and socioeconomic outcomes for traditional living donors and especially for donors meeting more relaxed acceptance criteria, a meeting was held in September 2010 to (1) review limitations of existing data on outcomes of living kidney donors; (2) assess and define the need for long-term follow-up of living kidney donors; (3) identify the potential system requirements, infrastructure and costs of long-term follow-up for living kidney donor outcomes in the United States and (4) explore practical options for future development and funding of United States living kidney donor data collection, metrics and endpoints. Conference participants included prior kidney donors, physicians, surgeons, medical ethicists, social scientists, donor coordinators, social workers, independent donor advocates and representatives of payer organizations and the federal government. The findings and recommendations generated at this meeting are presented.

  15. Donor states in a semimagnetic Cd1 -xinMnxin Te /Cd1 -xoutMnxout Te Double Quantum Well

    NASA Astrophysics Data System (ADS)

    Kalpana, Panneer Selvam; Nithiananthi, Perumal; Jayakumar, Kalyanasundaram

    2017-02-01

    The theoretical investigation has been carried out on the binding energy of donor associated with the electrons confined in a Cd1 -xinMnxin Te /Cd1 -xoutMnxout Te Double Quantum Well (DQW) as a function of central barrier width for various well dimensions and impurity locations in the barrier and the well. The magnetic field can act as a tool to continuously change the interwell coupling inside this DQW systems and its effect on donor binding has also been studied. Moreover, the polaronic corrections, which is due to the strong exchange interaction between the magnetic moment of Mn2+ ion and the spin of the confined carrier, to the binding energy of the hydrogenic donor impurity has also been estimated with and without the application of magnetic field. The binding energy of the donor impurity is determined by solving the Schrodinger equation variationally in the effective mass approximation and the effect due to Bound Magnetic Polaron (BMP) is included using mean field theory with the modified Brillouin function. The results are reported and discussed.

  16. Low-temperature effects of resonance electronic states at transition-element impurities in the kinetic, magnetic, and acoustic properties of semiconductors

    NASA Astrophysics Data System (ADS)

    Okulov, V. I.; Govorkova, T. E.; Gudkov, V. V.; Zhevstovskikh, I. V.; Korolyev, A. V.; Lonchakov, A. T.; Okulova, K. A.; Pamyatnykh, E. A.; Paranchich, S. Yu.

    2007-02-01

    New research results on phenomena due to the existence of electronic resonance energy levels and hybridized states at impurities of transition elements in semiconductors are presented. The data show that the thermal conductivity and ultrasonic parameters of mercury selenide containing iron impurities have resonance anomalies due to the influence of these impurities. A consistent and detailed interpretation is offered for the set of observed effects of hybridized states in mercury selenide with iron impurities. The proposed interpretation of the data obtained on other systems is discussed.

  17. High-magnetic-field and high-hydrostatic-pressure investigation of hydrogenic- and resonant-impurity states in n-type indium arsenide

    NASA Astrophysics Data System (ADS)

    Kadri, A.; Aulombard, R. L.; Zitouni, K.; Baj, M.; Konczewicz, L.

    1985-06-01

    Hall-effect and transverse-magnetoresistance measurements were performed on pure n-type InAs samples (n~=2×1016 cm-3) under magnetic fields up to 180 kG and hydrostatic pressures up to 18 kbar in the temperature range 2.7-8 K. At P<13 kbar, the magnetic freezeout takes place into a shallow-donor level which shifts downward from the Γ conduction-band minimum with the pressure coefficient -0.077 meV/kbar. At P>13 kbar, additional magnetic freezeout into a resonant-impurity level was observed. This resonant level lies at 68+/-1 meV above the Γ conduction band and moves with pressure at the rate of -4 meV/kbar with respect to this minimum. An extra deepening of the shallow-donor level takes place when the pressure and the magnetic field are sufficiently high to induce the occupation of the resonant states.

  18. Projections in donor organs available for liver transplantation in the United States: 2014-2025.

    PubMed

    Parikh, Neehar D; Hutton, David; Marrero, Wesley; Sanghani, Kunal; Xu, Yongcai; Lavieri, Mariel

    2015-06-01

    With the aging US population, demographic shifts, and obesity epidemic, there is potential for further exacerbation of the current liver donor shortage. We aimed to project the availability of liver grafts in the United States. We performed a secondary analysis of the Organ Procurement and Transplantation Network database of all adult donors from 2000 to 2012 and calculated the total number of donors available and transplanted donor livers stratified by age, race, and body mass index (BMI) group per year. We used National Health and Nutrition Examination Survey and Centers for Disease Control and Prevention historical data to stratify the general population by age, sex, race, and BMI. We then used US population age and race projections provided by the US Census Bureau and the Weldon Cooper Center for Public Service and made national and regional projections of available donors and donor liver utilization from 2014 to 2025. We performed sensitivity analyses and varied the rate of the rise in obesity, proportion of Hispanics, population growth, liver utilization rate, and donation after cardiac death (DCD) utilization. The projected adult population growth in the United States from 2014 to 2025 will be 7.1%. However, we project that there will be a 6.1% increase in the number of used liver grafts. There is marked regional heterogeneity in liver donor growth. Projections were significantly affected by changes in BMI, DCD utilization, and liver utilization rates but not by changes in the Hispanic proportion of the US population or changes in the overall population growth. Overall population growth will outpace the growth of available donor organs and thus potentially exacerbate the existing liver graft shortage. The projected growth in organs is highly heterogeneous across different United Network for Organ Sharing regions. Focused strategies to increase the liver donor pool are warranted.

  19. [State of collective immunity to poliomyelitis in Moscow donors].

    PubMed

    Seĭbil', V B; Malyshkina, L P; Lavrova, I K; Efimova, V F; Sadovnikova, V N

    2002-01-01

    Immunity induced by immunization with oral poliomyelitis vaccine has long been considered to last for life, similarly to immunity developing after infection with wild poliomyelitis virus. Vaccine virus cannot circulate among the immune population for a long time. The vaccination of children against poliomyelitis, carried out in the course of many years, has made it possible to suggest that a considerable number of immune persons were present among the adult population. The examination of 1,030 Moscow donors has revealed that antibodies to poliomyelitis virus of types 1, 2 and 3 were detected in 47.3%, 45.5% and 76.4% of the examinees respectively, the values of the average geometric titers being low. It is known that passages of poliomyelitis vaccine virus through nonimmune persons may result in emergence of revertant viruses with increased neurovirulence. The nonimmune adult population, especially the mothers of vaccinated and revaccinated children, may serve as favorable environment for the circulation of vaccine viruses and the appearance of revertant viruses.

  20. The influence of impurity profiles on mobility of two-dimensional electron gas in AlGaAs/InGaAs/GaAs heterostructures modulation-doped by donors and acceptors

    NASA Astrophysics Data System (ADS)

    Protasov, D. Yu.; Zhuravlev, K. S.

    2017-03-01

    The low-temperature mobility of two-dimensional electron gas (2DEG) limited scattering by ionized impurities, alloy disorder, acoustic and optical phonons, and interface roughness was calculated for novel pseudomorphic modulation-doped by donors and acceptors InGaAs/AlGaAs quantum well structures promising for high power microwave transistors. Due to the high 2DEG density in the quantum well intersubband transitions were taken into account. Scattering by the ionized donors from δ-layer located in AlGaAs barriers dominates, whereas scattering by the ionized acceptors occupying the most part of AlGaAs barriers is negligibly weak. The width of donor doping profile is a key parameter to control 2DEG mobility, thus, increasing of the profile width from 0.25 nm to 4 nm due to segregation and diffusion of donor atoms halves the mobility. We have proposed a few approaches for the weakening of Coulomb scattering and the increase in 2DEG mobility in the novel heterostructures. The predicted mobility enhancement due to δ-layer splitting into two δ-sublayers was verified experimentally.

  1. Prevalence of Torque teno virus in healthy donors of Paraná State, southern Brazil

    PubMed Central

    Mazzola, Jocimara Costa; Saito, Patrícia Keiko; Yamakawa, Roger Haruki; Watanabe, Maria Angélica Ehara; da Silva Junior, Waldir Veríssimo; Matta, Alessandra Cristina Gobbi; Borelli, Sueli Donizete

    2015-01-01

    Objective To determine the prevalence of the Torque teno virus in healthy donors in the northern and northwestern regions of the state of Paraná, southern Brazil. Methods The Torque teno virus was detected by a nested polymerase chain reaction using a set of oligoprimers for the N22 region. Results The prevalence of the virus was 69% in 551 healthy blood donors in southern Brazil. There was no statistically significant difference between the presence of the virus and the variables gender, ethnicity and marital status. There was significant difference in the prevalence of the virus regarding the age of the donors (p-value = 0.024) with a higher incidence (74.7%) in 18- to 24-year-old donors. Conclusion A high prevalence of Torque teno virus was observed in the population studied. Further studies are needed to elucidate the routes of contamination and the clinical implications of the virus in the healthy population. PMID:26408369

  2. Tunneling spectroscopy of a phosphorus impurity atom on the Ge(111)-(2 × 1) surface

    SciTech Connect

    Savinov, S. V.; Oreshkin, A. I. E-mail: oreshkin@spmlab.ru; Oreshkin, S. I.; Haesendonck, C. van

    2015-06-15

    We numerically model the Ge(111)-(2 × 1) surface electronic properties in the vicinity of a P donor impurity atom located near the surface. We find a notable increase in the surface local density of states (LDOS) around the surface dopant near the bottom of the empty surface state band π*, which we call a split state due to its limited spatial extent and energetic position inside the band gap. We show that despite the well-established bulk donor impurity energy level position at the very bottom of the conduction band, a surface donor impurity on the Ge(111)-(2 × 1) surface might produce an energy level below the Fermi energy, depending on the impurity atom local environment. It is demonstrated that the impurity located in subsurface atomic layers is visible in a scanning tunneling microscope (STM) experiment on the Ge(111)-(2 × 1) surface. The quasi-1D character of the impurity image, observed in STM experiments, is confirmed by our computer simulations with a note that a few π-bonded dimer rows may be affected by the presence of the impurity atom. We elaborate a model that allows classifying atoms on the experimental low-temperature STM image. We show the presence of spatial oscillations of the LDOS by the density-functional theory method.

  3. Impurity Resonant States p-type Doping in Wide-Band-Gap Nitrides

    PubMed Central

    Liu, Zhiqiang; Yi, Xiaoyan; Yu, Zhiguo; Yuan, Gongdong; Liu, Yang; Wang, Junxi; Li, Jinmin; Lu, Na; Ferguson, Ian; Zhang, Yong

    2016-01-01

    In this work, a new strategy for achieving efficient p-type doping in high bandgap nitride semiconductors to overcome the fundamental issue of high activation energy has been proposed and investigated theoretically, and demonstrated experimentally. Specifically, in an AlxGa1−xN/GaN superlattice structure, by modulation doping of Mg in the AlxGa1−xN barriers, high concentration of holes are generated throughout the material. A hole concentration as high as 1.1 × 1018 cm−3 has been achieved, which is about one order of magnitude higher than that typically achievable by direct doping GaN. Results from first-principle calculations indicate that the coupling and hybridization between Mg 2p impurity and the host N 2p orbitals are main reasons for the generation of resonant states in the GaN wells, which further results in the high hole concentration. We expect this approach to be equally applicable for other high bandgap materials where efficient p-type doing is difficult. Furthermore, a two-carrier-species Hall-effect model is proposed to delineate and discriminate the characteristics of the bulk and 2D hole, which usually coexist in superlattice-like doping systems. The model reported here can also be used to explain the abnormal freeze-in effect observed in many previous reports. PMID:26777294

  4. On controlling the electronic states of shallow donors using a finite-size metal gate

    SciTech Connect

    Levchuk, E. A. Makarenko, L. F.

    2016-01-15

    The effect of an external electric field on the states of a shallow donor near a semiconductor surface is numerically simulated. A disk-shaped metal gate is considered as an electric-field source. The wavefunctions and energies of bound states are determined by the finite-element method. The critical characteristics of electron relocation between the donor and gate are determined for various gate diameters and boundary conditions, taking into account dielectric mismatch. The empirical dependences of these characteristics on the geometrical parameters and semiconductor properties are obtained. A simple trial function is proposed, which can be used to calculate the critical parameters using the Ritz variational method.

  5. Impurity-modulated Aharonov-Bohm oscillations and intraband optical absorption in quantum dot-ring nanostructures

    NASA Astrophysics Data System (ADS)

    Barseghyan, M. G.; Manaselyan, A. Kh.; Laroze, D.; Kirakosyan, A. A.

    2016-07-01

    In this work we study the electronic states in quantum dot-ring complex nanostructures with an on-center hydrogenic impurity. The influence of the impurity on Aharonov-Bohm energy spectra oscillations and intraband optical absorption is investigated. It is shown that in the presence of a hydrogenic donor impurity the Aharonov-Bohm oscillations in quantum dot-ring structures become highly tunable. Furthermore, the presence of the impurity drastically changes the intraband absorption spectra due to the strong controllability of the electron localization type.

  6. Electrical flicker-noise generated by filling and emptying of impurity states in injectors of quantum-cascade lasers

    SciTech Connect

    Yamanishi, Masamichi Hirohata, Tooru; Hayashi, Syohei; Fujita, Kazuue; Tanaka, Kazunori

    2014-11-14

    Free running line-widths (>100 kHz), much broader than intrinsic line-widths ∼100 Hz, of existing quantum-cascade lasers are governed by strong flicker frequency-noise originating from electrical flicker noise. Understanding of microscopic origins of the electrical flicker noises in quantum-cascade lasers is crucially important for the reduction of strength of flicker frequency-noise without assistances of any type of feedback schemes. In this article, an ad hoc model that is based on fluctuating charge-dipoles induced by electron trappings and de-trappings at indispensable impurity states in injector super-lattices of a quantum-cascade laser is proposed, developing theoretical framework based on the model. The validity of the present model is evaluated by comparing theoretical voltage-noise power spectral densities based on the model with experimental ones obtained by using mid-infrared quantum-cascade lasers with designed impurity-positioning. The obtained experimental results on flicker noises, in comparison with the theoretical ones, shed light on physical mechanisms, such as the inherent one due to impurity states in their injectors and extrinsic ones due to surface states on the ridge-walls and due to residual deep traps, for electrical flicker-noise generation in existing mid-infrared quantum-cascade lasers. It is shown theoretically that quasi-delta doping of impurities in their injectors leads to strong suppression of electrical flicker noise by minimization of the dipole length at a certain temperature, for instance ∼300 K and, in turn, is expected to result in substantial narrowing of the free running line-width down below 10 kHz.

  7. PREVALENCE OF CHAGAS DISEASE AMONG BLOOD DONOR CANDIDATES IN TRIANGULO MINEIRO, MINAS GERAIS STATE, BRAZIL

    PubMed Central

    LOPES, Patrícia da Silva; RAMOS, Eliezer Lucas Pires; GÓMEZ-HERNÁNDEZ, César; FERREIRA, Gabriela Lícia Santos; REZENDE-OLIVEIRA, Karine

    2015-01-01

    Despite public health campaigns and epidemiological surveillance activities, Chagas disease remains a major health problem in Latin America. According to data from the World Health Organization, there are approximately 7-8 million people infected with Trypanosoma cruzi worldwide, a large percentage of which in Latin America. This study aims to examine the serological profile of blood donors in blood banks of Hemominas hematology center, in the town of Ituiutaba, Minas Gerais State, Brazil. The study sample consisted of 53,941 blood donors, which were grouped according to gender and age. Sample collections were performed from January 1991 to December 2011, and 277 donors (0.5%) were considered serologically ineligible due to Chagas disease. Analysis of data showed no significant difference between genders. As for age, the highest proportion of ineligible donors was from 40 to 49 years (30%), and there was a positive correlation between increasing age and the percentage of patients seropositive for Chagas disease. Therefore, adopting strategies that allow the safe identification of donors with positive serology for Chagas disease is essential to reduce or eliminate indeterminate serological results. PMID:27049698

  8. PREVALENCE OF CHAGAS DISEASE AMONG BLOOD DONOR CANDIDATES IN TRIANGULO MINEIRO, MINAS GERAIS STATE, BRAZIL.

    PubMed

    Lopes, Patrícia da Silva; Ramos, Eliezer Lucas Pires; Gómez-Hernández, César; Ferreira, Gabriela Lícia Santos; Rezende-Oliveira, Karine

    2015-12-01

    Despite public health campaigns and epidemiological surveillance activities, Chagas disease remains a major health problem in Latin America. According to data from the World Health Organization, there are approximately 7-8 million people infected with Trypanosoma cruzi worldwide, a large percentage of which in Latin America. This study aims to examine the serological profile of blood donors in blood banks of Hemominas hematology center, in the town of Ituiutaba, Minas Gerais State, Brazil. The study sample consisted of 53,941 blood donors, which were grouped according to gender and age. Sample collections were performed from January 1991 to December 2011, and 277 donors (0.5%) were considered serologically ineligible due to Chagas disease. Analysis of data showed no significant difference between genders. As for age, the highest proportion of ineligible donors was from 40 to 49 years (30%), and there was a positive correlation between increasing age and the percentage of patients seropositive for Chagas disease. Therefore, adopting strategies that allow the safe identification of donors with positive serology for Chagas disease is essential to reduce or eliminate indeterminate serological results.

  9. Impurity Studies of Cd(0.8)Zn(0.2)Te Crystals Using Photoluminescence and Glow Discharge Mass Spectroscopy

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Lehoczky, Sandor L.; Scripa, Rosalie N.

    2005-01-01

    Cd(1-x)Zn(x)Te semiconductor crystal is a highly promising material for room temperature x- and gamma-ray detector applications because of its high resistivity, long carrier lifetime, and relatively high hole and electron mobilities. This paper reports the investigation of the impurities in several Cd(1-x)Zn(x)Te (x = 0.20) crystals grown using the vertical Bridgman method under a Cd overpressure. The impurity concentrations were measured using glow discharge mass spectroscopy (GDMS). The energy states of the impurities were studied using photoluminescence (PL) spectroscopy at liquid helium temperature. The PL spectra showed a series of sharp high energy lines which are associated with free excitons and excitons bound to impurities as donors and acceptors in the crystals. The impurities also contributed to donor-acceptor pair recombination. The correlation between the GDMS and PL results will be reported.

  10. Donor and Acceptor States in GaAs-(Ga, Al)As Quantum Dots:. Effects of Hydrostatic Pressure and AN Intense Laser

    NASA Astrophysics Data System (ADS)

    Miguez, A.; Franco, R.; Silva-Valencia, J.

    We calculated the binding energies of shallow donors and acceptors in a spherical GaAs-Ga1-xAlx As quantum dot under the combined effect of isotropic hydrostatic pressure and an intense laser. We used a variational approach within the effective mass approximation. The binding energy was computed as a function of hydrostatic pressure, dot sizes and laser field amplitude. The results showed that the impurity binding energy increases with pressure and decreases with the laser field amplitude when other parameters are fixed. We also found that the pressure effects are more dramatic for donor than acceptor impurities, especially for quantum dots with small radii.

  11. Serologic survey on hantavirus in blood donors from the state of Santa Catarina, Brazil.

    PubMed

    Cordova, Caio Maurício Mendes de; Figueiredo, Luiz Tadeu Moraes

    2014-01-01

    Emergent diseases such as Hantavirus Cardio-pulmonary Syndrome (HCPS) are able to create a significant impact on human populations due to their seriousness and high fatality rate. Santa Catarina, located in the South of Brazil, is the leading state for HCPS with 267 reported cases from 1999 to 2011. We present here a serological survey on hantavirus in blood donors from different cities of the state of Santa Catarina, with an IgG-ELISA using a recombinant nucleocapsid protein from Araraquara hantavirus as an antigen. In total, 314 donors from blood banks participated in the study, geographically covering the whole state. Among these, 14 individuals (4.4%) had antibodies to hantavirus: four of 50 (8% positivity) from Blumenau, four of 52 (7.6%) from Joinville, three of 50 (6%) from Florianópolis, two of 50 (4%) from Chapecó and one of 35 (2.8%) from Joaçaba. It is possible that hantaviruses are circulating across almost the whole state, with important epidemiological implications. Considering that the seropositive blood donors are healthy individuals, it is possible that hantaviruses may be causing unrecognized infections, which are either asymptomatic or clinically nonspecific, in addition to HCPS. It is also possible that more than one hantavirus type could be circulating in this region, causing mostly benign infections.

  12. Hepatitis C virus infection in blood donors from the state of Puebla, Mexico

    PubMed Central

    2010-01-01

    Background Worldwide, 130 million persons are estimated to be infected with HCV. Puebla is the Mexican state with the highest mortality due to hepatic cirrhosis. Therefore, it is imperative to obtain epidemiological data on HCV infection in asymptomatic people of this region. The objective of present study was to analyze the prevalence of antibodies and genotypes of hepatitis C virus (HCV) in blood donors from Puebla, Mexico. Results The overall prevalence was 0.84% (515/61553). Distribution by region was: North, 0.86% (54/6270); Southeast, 1.04% (75/7197); Southwest, 0.93% (36/3852); and Central, 0.79% (350/44234). Ninety-six donors were enrolled for detection and genotyping of virus, from which 37 (38.5%) were HCV-RNA positive. Detected subtypes were: 1a (40.5%), 1b (27.0%), mixed 1a/1b (18.9%), undetermined genotype 1 (5.4%), 2a (2.7%), 2b (2.7%), and mixed 1a/2a (2.7%). All recovered donors with S/CO > 39 were HCV-RNA positive (11/11) and presented elevated ALT; in donors with S/CO < 39 HCV-RNA, positivity was of 30.4%; and 70% had normal values of ALT. The main risk factors associated with HCV infection were blood transfusion and surgery. Conclusions HCV prevalence of donors in Puebla is similar to other Mexican states. The most prevalent genotype is 1, of which subtype 1a is the most frequent. PMID:20100349

  13. Donor acceptor electronic couplings in π-stacks: How many states must be accounted for?

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-04-01

    Two-state model is commonly used to estimate the donor-acceptor electronic coupling Vda for electron transfer. However, in some important cases, e.g. for DNA π-stacks, this scheme fails to provide accurate values of Vda because of multistate effects. The Generalized Mulliken-Hush method enables a multistate treatment of Vda. In this Letter, we analyze the dependence of calculated electronic couplings on the number of the adiabatic states included in the model. We suggest a simple scheme to determine this number. The superexchange correction of the two-state approximation is shown to provide good estimates of the electronic coupling.

  14. Donor/Acceptor Mixed Self-Assembled Monolayers for Realising a Multi-Redox-State Surface.

    PubMed

    Casado-Montenegro, Javier; Marchante, Elena; Crivillers, Núria; Rovira, Concepció; Mas-Torrent, Marta

    2016-06-17

    Mixed molecular self-assembled monolayers (SAMs) on gold, based on two types of electroactive molecules, that is, electron-donor (ferrocene) and electron-acceptor (anthraquinone) molecules, are prepared as an approach to realise surfaces exhibiting multiple accessible redox states. The SAMs are investigated in different electrolyte media. The nature of these media has a strong impact on the types of redox processes that take place and on the redox potentials. Under optimised conditions, surfaces with three redox states are achieved. Such states are accessible in a relatively narrow potential window in which the SAMs on gold are stable. This communication elucidates the key challenges in fabricating bicomponent SAMs as electrochemical switches.

  15. Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues

    SciTech Connect

    Beletskiy, Evgeny V.; Schmidt, Jacob C.; Wang, Xue B.; Kass, Steven R.

    2012-11-14

    Enzymes and their mimics use hydrogen bonds to catalyze chemical transformations. Small molecule transition state analogs of oxyanion holes are characterized by gas phase IR and photoelectron spectroscopy and their binding constants in acetonitrile. As a result, a new class of hydrogen bond catalysts is proposed (OH donors that can contribute three hydrogen bonds to a single functional group) and demonstrated in a Friedel-Crafts reaction.

  16. Studies on Valence Fluctuation and Orbital Occupancy in an Impurity Anderson Model with f2 Local-Singlet Ground State

    NASA Astrophysics Data System (ADS)

    Shiina, Ryousuke

    2017-03-01

    An interplay of valence fluctuation and orbital occupancy is studied for a two-orbital impurity Anderson model having f2 singlet ground and triplet excited states in the localized limit. Employing the numerical renormalization group method, we identify the existence of a quantum phase transition between the local-singlet and the Kondo-singlet states in a variation of the c-f hybridization, and clarify how it depends on the f2 singlet-triplet energy splitting. It is found that the transition takes place definitely at a finite strength of the hybridization even when the singlet-triplet splitting is infinitely large. It is also found that as the splitting becomes small, the occupancies of the singlet and triplet states display a drastic change in the vicinity of the transition point. The origin of these findings is discussed in view of the features of valence fluctuation from the local many-body singlet state.

  17. Effect of hydrostatic pressure and alloy composition on sulfur- and selenium-related impurity states in heavily doped n-type GaxIn1-xSb

    NASA Astrophysics Data System (ADS)

    Zitouni, K.; Kadri, A.; Aulombard, R. L.

    1986-08-01

    The properties of sulfur- and selenium-related impurity states have been studied as a function of pressure and composition in heavily doped GaxIn1-xSb. Hall-coefficient and electrical-resistivity measurements were made under hydrostatic pressures of up to 25 kbar, in the alloy composition range 0.30<~x<~0.78 and in the temperature range 77 K<~T<~300 K. In both S-doped and Se-doped samples, the results show the existence of an impurity level forming a localized resonance in the Γ1c band continuum. At x=0.78 and P=0 kbar, the resonance lay ~130+/-10 meV and ~180+/-10 meV above the Γ1c band edge in S-doped and Se-doped samples, respectively. As x decreased, the resonance remained almost fixed with respect to the top of the valence band. As the pressure increased, the impurity level was driven into the fundamental gap, independently of nearby band edges, thus demonstrating ``deep-level behavior.'' Furthermore, the pressure-induced occupation of this impurity level led to time-dependent effects at T<~110 K. The activated thermal electron emission over a potential barrier gave clear evidence for a large lattice relaxation around the impurity centers. These results show the dominant effect of the local non-Coulombic component of the impurity potential, suggesting the complex nature of the impurity centers.

  18. Impurity-related nonlinear optical rectification in double quantum dot under electric field

    NASA Astrophysics Data System (ADS)

    Bejan, D.

    2016-11-01

    The characteristics of donor-impurity-related nonlinear optical rectification in asymmetric double quantum dot under electric field are investigated within the compact density-matrix formalism and the effective mass approximation. The results show that: (i) the binding energy of the ground state varies strongly with the impurity position and it is raised or decreased by the applied field, depending on the impurity position; (ii) the optical rectification spectra are rather sensitive to the impurity position and the electric field intensity; (iii) the changes in the impurity position within the double quantum dot and the electric field value may induce red or blue shift of the resonant peaks of the nonlinear optical rectification.

  19. The Impact of Heterogeneity and Dark Acceptor States on FRET: Implications for Using Fluorescent Protein Donors and Acceptors

    PubMed Central

    Vogel, Steven S.; Nguyen, Tuan A.; van der Meer, B. Wieb; Blank, Paul S.

    2012-01-01

    Förster resonance energy transfer (FRET) microscopy is widely used to study protein interactions in living cells. Typically, spectral variants of the Green Fluorescent Protein (FPs) are incorporated into proteins expressed in cells, and FRET between donor and acceptor FPs is assayed. As appreciable FRET occurs only when donors and acceptors are within 10 nm of each other, the presence of FRET can be indicative of aggregation that may denote association of interacting species. By monitoring the excited-state (fluorescence) decay of the donor in the presence and absence of acceptors, dual-component decay analysis has been used to reveal the fraction of donors that are FRET positive (i.e., in aggregates)._However, control experiments using constructs containing both a donor and an acceptor FP on the same protein repeatedly indicate that a large fraction of these donors are FRET negative, thus rendering the interpretation of dual-component analysis for aggregates between separately donor-containing and acceptor-containing proteins problematic. Using Monte-Carlo simulations and analytical expressions, two possible sources for such anomalous behavior are explored: 1) conformational heterogeneity of the proteins, such that variations in the distance separating donor and acceptor FPs and/or their relative orientations persist on time-scales long in comparison with the excited-state lifetime, and 2) FP dark states. PMID:23152925

  20. Unconventional features in the quantum Hall regime of disordered graphene: Percolating impurity states and Hall conductance quantization

    NASA Astrophysics Data System (ADS)

    Leconte, Nicolas; Ortmann, Frank; Cresti, Alessandro; Roche, Stephan

    2016-03-01

    We report on the formation of critical states in disordered graphene, at the origin of variable and unconventional transport properties in the quantum Hall regime, such as a zero-energy Hall conductance plateau in the absence of an energy band gap and Landau-level degeneracy breaking. By using efficient real-space transport methodologies, we compute both the dissipative and Hall conductivities of large-size graphene sheets with random distribution of model single and double vacancies. By analyzing the scaling of transport coefficients with defect density, system size, and magnetic length, we elucidate the origin of anomalous quantum Hall features as magnetic-field-dependent impurity states, which percolate at some critical energies. These findings shed light on unidentified states and quantum-transport anomalies reported experimentally.

  1. Impurity breakdown and terahertz luminescence in n-GaN epilayers under external electric field

    NASA Astrophysics Data System (ADS)

    Shalygin, V. A.; Vorobjev, L. E.; Firsov, D. A.; Panevin, V. Yu.; Sofronov, A. N.; Melentyev, G. A.; Antonov, A. V.; Gavrilenko, V. I.; Andrianov, A. V.; Zakharyin, A. O.; Suihkonen, S.; Törma, P. T.; Ali, M.; Lipsanen, H.

    2009-12-01

    We report on the observation and experimental studies of impurity breakdown and terahertz luminescence in n-GaN epilayers under external electric field. The terahertz electroluminescence is observed in a wide range of doping levels (at noncompensated donor density from 4.5×1016 to 3.4×1018 cm-3). Spectra of terahertz luminescence and photoconductivity are studied by means of Fourier transform spectrometry. Distinctive features of the spectra can be assigned to intracenter electron transitions between excited and ground states of silicon and oxygen donors and to hot electron transitions to the donor states.

  2. Lindblad-driven discretized leads for nonequilibrium steady-state transport in quantum impurity models: Recovering the continuum limit

    NASA Astrophysics Data System (ADS)

    Schwarz, F.; Goldstein, M.; Dorda, A.; Arrigoni, E.; Weichselbaum, A.; von Delft, J.

    2016-10-01

    The description of interacting quantum impurity models in steady-state nonequilibrium is an open challenge for computational many-particle methods: the numerical requirement of using a finite number of lead levels and the physical requirement of describing a truly open quantum system are seemingly incompatible. One possibility to bridge this gap is the use of Lindblad-driven discretized leads (LDDL): one couples auxiliary continuous reservoirs to the discretized lead levels and represents these additional reservoirs by Lindblad terms in the Liouville equation. For quadratic models governed by Lindbladian dynamics, we present an elementary approach for obtaining correlation functions analytically. In a second part, we use this approach to explicitly discuss the conditions under which the continuum limit of the LDDL approach recovers the correct representation of thermal reservoirs. As an analytically solvable example, the nonequilibrium resonant level model is studied in greater detail. Lastly, we present ideas towards a numerical evaluation of the suggested Lindblad equation for interacting impurities based on matrix product states. In particular, we present a reformulation of the Lindblad equation, which has the useful property that the leads can be mapped onto a chain where both the Hamiltonian dynamics and the Lindblad driving are local at the same time. Moreover, we discuss the possibility to combine the Lindblad approach with a logarithmic discretization needed for the exploration of exponentially small energy scales.

  3. The excited states of stilbene and stilbenoid donor-acceptor dye systems. A theoretical study

    NASA Astrophysics Data System (ADS)

    Rettig, Wolfgang; Strehmel, Bernd; Majenz, Wilfried

    1993-07-01

    Semiempirical calculations within the CNDO/S framework are used to characterize the nature of the "phantom-singlet" excited state P * (double-bond twisted geometry) of stilbene and stilbenoid donor-acceptor dye systems including the laser dyes DCM and DASPMI. P * is highly polar (closed shell "hole-pair" nature) for weakly perturbed stilbenes but for larger donor-acceptor strength, the order of ground and excited state is reversed, and P * becomes of small polarity ("dot-dot" nature), fully consistent with the established model of biradicaloid states. For stilbene, a slight geometric symmetry reduction is necessary in order to localize the orbitals on the subunits. Only then are the calculated results consistent with those for methyl-substituted stilbene. The localized orbital description of twisted stilbene shows that P * contains negligible doubly excited character and possesses a very small gap to the ground state contrary to what is stated in the previous literature. The planar systems are also investigated and correlated with Dähne's triad rule of polymethine systems.

  4. Donor-Acceptor Conjugated Linear Polyenes: A Study of Excited State Intramolecular Charge Transfer, Photoisomerization and Fluorescence Probe Properties.

    PubMed

    Hota, Prasanta Kumar; Singh, Anil Kumar

    2014-07-27

    Numerous studies of donor-acceptor conjugated linear polyenes have been carried out with the goal to understand the exact nature of the excited state electronic structure and dynamics. In this article we discuss our endeavours with regard to the excited state intramolecular charge transfer, photoisomerization and fluorescence probe properties of various donor-acceptor substituted compounds of diphenylpolyene [Ar(CH = CH) n Ar] series and ethenylindoles.

  5. Effect of the state of vacancy equilibrium on diffusion of chromium impurity in gallium arsenide

    SciTech Connect

    Khludkov, S. S.

    2008-03-15

    The results of studying the diffusion of Cr impurity in GaAs according to electrical measurements are reported. Dependences of the diffusion coefficient and limiting solubility of electrically active Cr atoms in GaAs on temperature (at fixed pressures of As vapors) and on the pressure of As vapors (at fixed temperatures) are determined. The dependence of the Cr diffusion coefficient in GaAs on the ratio between the volume of the sample under study to the volume of the cell in the case of pronounced deviation from the crystal's stoichiometry towards Ga excess is established. The obtained experimental data are analyzed on the basis of concepts concerning the dissociative mechanism of migration of Cr atoms in the GaAs crystal lattice; according to this mechanism, the diffusion coefficient depends heavily on the concentration of Ga vacancies.

  6. State of deceased donor transplantation in India: A model for developing countries around the world.

    PubMed

    Abraham, Georgi; Vijayan, Madhusudan; Gopalakrishnan, Natarajan; Shroff, Sunil; Amalorpavanathan, Joseph; Yuvaraj, Anand; Nair, Sanjeev; Sundarrajan, Saravanan

    2016-06-24

    Renal replacement therapy (RRT) resources are scarce in India, with wide urban-rural and interstate disparities. The burden of end-stage renal disease is expected to increase further due to increasing prevalence of risk factors like diabetes mellitus. Renal transplantation, the best RRT modality, is increasing in popularity, due to improvements made in public education, the deceased donor transplantation (DDT) programme and the availability of free and affordable transplant services in government hospitals and certain non-governmental philanthropic organizations. There are about 120000 haemodialysis patients and 10000 chronic peritoneal dialysis patients in India, the majority of them waiting for a donor kidney. Shortage of organs, lack of transplant facilities and high cost of transplant in private facilities are major barriers for renal transplantation in India. The DDT rate in India is now 0.34 per million population, among the lowest in the world. Infrastructural development in its infancy and road traffic rules not being strictly implemented by the authorities, have led to road traffic accidents being very common in urban and rural India. Many patients are declared brain dead on arrival and can serve as potential organ donors. The DDT programme in the state of Tamil Nadu has met with considerable success and has brought down the incidence of organ trade. Government hospitals in Tamil Nadu, with a population of 72 million, provide free transplantation facilities for the underprivileged. Public private partnership has played an important role in improving organ procurement rates, with the help of trained transplant coordinators in government hospitals. The DDT programmes in the southern states of India (Tamil Nadu, Kerala, Pondicherry) are advancing rapidly with mutual sharing due to public private partnership providing vital organs to needy patients. Various health insurance programmes rolled out by the governments in the southern states are effective in

  7. State of deceased donor transplantation in India: A model for developing countries around the world

    PubMed Central

    Abraham, Georgi; Vijayan, Madhusudan; Gopalakrishnan, Natarajan; Shroff, Sunil; Amalorpavanathan, Joseph; Yuvaraj, Anand; Nair, Sanjeev; Sundarrajan, Saravanan

    2016-01-01

    Renal replacement therapy (RRT) resources are scarce in India, with wide urban-rural and interstate disparities. The burden of end-stage renal disease is expected to increase further due to increasing prevalence of risk factors like diabetes mellitus. Renal transplantation, the best RRT modality, is increasing in popularity, due to improvements made in public education, the deceased donor transplantation (DDT) programme and the availability of free and affordable transplant services in government hospitals and certain non-governmental philanthropic organizations. There are about 120000 haemodialysis patients and 10000 chronic peritoneal dialysis patients in India, the majority of them waiting for a donor kidney. Shortage of organs, lack of transplant facilities and high cost of transplant in private facilities are major barriers for renal transplantation in India. The DDT rate in India is now 0.34 per million population, among the lowest in the world. Infrastructural development in its infancy and road traffic rules not being strictly implemented by the authorities, have led to road traffic accidents being very common in urban and rural India. Many patients are declared brain dead on arrival and can serve as potential organ donors. The DDT programme in the state of Tamil Nadu has met with considerable success and has brought down the incidence of organ trade. Government hospitals in Tamil Nadu, with a population of 72 million, provide free transplantation facilities for the underprivileged. Public private partnership has played an important role in improving organ procurement rates, with the help of trained transplant coordinators in government hospitals. The DDT programmes in the southern states of India (Tamil Nadu, Kerala, Pondicherry) are advancing rapidly with mutual sharing due to public private partnership providing vital organs to needy patients. Various health insurance programmes rolled out by the governments in the southern states are effective in

  8. Quasi-localized Impurity State in Doped Topological Crystalline Insulator Sn0.9In0.1Te Probed by 125Te-NMR

    NASA Astrophysics Data System (ADS)

    Maeda, Satoki; Katsube, Shota; Zheng, Guo-qing

    2017-02-01

    The In-doped topological crystalline insulator Sn1-xInxTe is a promising candidate for a topological superconductor, where it is theoretically suggested that In creates an impurity state responsible for superconductivity. We synthesized high purity Sn1-xInxTe samples and performed 125Te-nuclear magnetic resonance (NMR) measurements. The NMR spectra under a magnetic field of H0 = 5 T show a broadening characteristic due to a localized impurity state. The spin-lattice relaxation rate (1/T1) divided by temperature shows a Curie-Weiss like temperature-dependence under H0 = 0.1 T but is temperature-independent under H0 = 5 T. These results indicate the existence of quasi-localized impurity states due to In doping.

  9. Study of impurity states in p-type Hg1-xCdxTe using far-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Biao; Gui, Yongsheng; Chen, Zhanghai; Ye, Hongjuan; Chu, Junhao; Wang, Shanli; Ji, Rongbin; He, Li

    1998-09-01

    This letter reports the far-infrared (FIR) transmission spectra of undoped and Sb-doped p-type Hg1-xCdxTe films grown by a liquid-phase epitaxy (LPE) or molecular-beam epitaxy (MBE) technique. The activation energies of cation vacancy acceptor are found to be ˜10-12 meV and are almost independent on Cd composition. The absorption strength per Hg vacancy, useful for evaluating the cation vacancy density from the absorption spectra, is derived as 3.4×10-12 cm. Further, Zeeman splitting resulting from two different acceptors is observed from magnetotransmission measurement for the Sb-doped LPE sample, and light hole effective mass is estimated. FIR transmission seems to be a powerful tool for nondestructive characterization of impurity states in Hg1-xCdxTe.

  10. Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle

    NASA Astrophysics Data System (ADS)

    Nakra Mohajer, Soukaina; El Harouny, El Hassan; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi

    2016-09-01

    Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.

  11. Dissociation of charge-transfer states at donor-acceptor interfaces of organic heterojunctions

    NASA Astrophysics Data System (ADS)

    Inche Ibrahim, M. L.

    2017-02-01

    The dissociation of charge-transfer (CT) states into free charge carriers at donor-acceptor (DA) interfaces is an important step in the operation of organic solar cells and related devices. In this paper, we show that the effect of DA morphology and architecture means that the directions of CT states (where a CT state’s direction is defined as the direction from the electron to the hole of the CT state) may deviate from the direction of the applied electric field. The deviation means that the electric field is not fully utilized to assist, and could even hinder the dissociation process. Furthermore, we show that the correct charge carrier mobilities that should be used to describe CT state dissociation are the actual mobilites at DA interfaces. The actual mobilities are defined in this paper, and in general are not the same as the mobilities that are used to calculate electric currents which are the mobilites along the direction of the electric field. Then, to correctly describe CT state dissociation, we modify the widely used Onsager-Braun (OB) model by including the effect of DA morphology and architecture, and by employing the correct mobilities. We verify that when the modified OB model is used to describe CT state dissociation, the fundamental issues that concern the original OB model are resolved. This study demonstrates that DA morphology and architecture play an important role by strongly influencing the CT state dissociation as well as the mobilites along the direction of the electric field.

  12. Donor-acceptor substituted phenylethynyltriphenylenes – excited state intramolecular charge transfer, solvatochromic absorption and fluorescence emission

    PubMed Central

    Nandy, Ritesh

    2010-01-01

    Summary Several 2-(phenylethynyl)triphenylene derivatives bearing electron donor and acceptor substituents on the phenyl rings have been synthesized. The absorption and fluorescence emission properties of these molecules have been studied in solvents of different polarity. For a given derivative, solvent polarity had minimal effect on the absorption maxima. However, for a given solvent the absorption maxima red shifted with increasing conjugation of the substituent. The fluorescence emission of these derivatives was very sensitive to solvent polarity. In the presence of strongly electron withdrawing (–CN) and strongly electron donating (–NMe2) substituents large Stokes shifts (up to 130 nm, 7828 cm−1) were observed in DMSO. In the presence of carbonyl substituents (–COMe and –COPh), the largest Stokes shift (140 nm, 8163 cm−1) was observed in ethanol. Linear correlation was observed for the Stokes shifts in a Lippert–Mataga plot. Linear correlation of Stokes shift was also observed with E T(30) scale for protic and aprotic solvents but with different slopes. These results indicate that the fluorescence emission arises from excited state intramolecular charge transfer in these molecules where the triphenylene chromophore acts either as a donor or as an acceptor depending upon the nature of the substituent on the phenyl ring. HOMO–LUMO energy gaps have been estimated from the electrochemical and spectral data for these derivatives. The HOMO and LUMO surfaces were obtained from DFT calculations. PMID:21085512

  13. Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    PubMed

    Fahrenbach, Albert C; Bruns, Carson J; Li, Hao; Trabolsi, Ali; Coskun, Ali; Stoddart, J Fraser

    2014-02-18

    The ability to design and confer control over the kinetics of theprocesses involved in the mechanisms of artificial molecular machines is at the heart of the challenge to create ones that can carry out useful work on their environment, just as Nature is wont to do. As one of the more promising forerunners of prototypical artificial molecular machines, chemists have developed bistable redox-active donor-acceptor mechanically interlocked molecules (MIMs) over the past couple of decades. These bistable MIMs generally come in the form of [2]rotaxanes, molecular compounds that constitute a ring mechanically interlocked around a dumbbell-shaped component, or [2]catenanes, which are composed of two mechanically interlocked rings. As a result of their interlocked nature, bistable MIMs possess the inherent propensity to express controllable intramolecular, large-amplitude, and reversible motions in response to redox stimuli. In this Account, we rationalize the kinetic behavior in the ground state for a large assortment of these types of bistable MIMs, including both rotaxanes and catenanes. These structures have proven useful in a variety of applications ranging from drug delivery to molecular electronic devices. These bistable donor-acceptor MIMs can switch between two different isomeric states. The favored isomer, known as the ground-state co-conformation (GSCC) is in equilibrium with the less favored metastable state co-conformation (MSCC). The forward (kf) and backward (kb) rate constants associated with this ground-state equilibrium are intimately connected to each other through the ground-state distribution constant, KGS. Knowing the rate constants that govern the kinetics and bring about the equilibration between the MSCC and GSCC, allows researchers to understand the operation of these bistable MIMs in a device setting and apply them toward the construction of artificial molecular machines. The three biggest influences on the ground-state rate constants arise from

  14. Multiple Charge Transfer States at Ordered and Disordered Donor/Acceptor Interfaces

    NASA Astrophysics Data System (ADS)

    Fusella, Michael; Verreet, Bregt; Lin, Yunhui; Brigeman, Alyssa; Purdum, Geoffrey; Loo, Yueh-Lin; Giebink, Noel; Rand, Barry

    The presence of charge transfer (CT) states in organic solar cells is accepted, but their role in photocurrent generation is not well understood. Here we investigate solar cells based on rubrene and C60 to show that CT state properties are influenced by molecular ordering at the donor/acceptor (D/A) interface. Crystalline rubrene films are produced with domains of 100s of microns adopting the orthorhombic phase, as confirmed by grazing incidence XRD, with the (h00) planes parallel to the substrate. C60 grown atop these films adopts a highly oriented face-centered cubic phase with the (111) plane parallel to the substrate. For this highly ordered system we have discovered the presence of four CT states. Polarized external quantum efficiency (EQE) measurements assign three of these to crystalline origins with the remaining one well aligned with the disordered CT state. Varying the thickness of a disordered blend of rubrene:C60 atop the rubrene template modulates the degree of crystallinity at the D/A interface. Strikingly, this process alters the prominence of the four CT states measured via EQE, and results in a transition from single to multiple electroluminescence peaks. These results underscore the impact of molecular structure at the heterojunction on charge photogeneration.

  15. Density of states determination in organic donor-acceptor blend layers enabled by molecular doping

    NASA Astrophysics Data System (ADS)

    Fischer, Janine; Ray, Debdutta; Kleemann, Hans; Pahner, Paul; Schwarze, Martin; Koerner, Christian; Vandewal, Koen; Leo, Karl

    2015-06-01

    Charge carrier transport is a key parameter determining the efficiency of organic solar cells, and is closely related to the density of free and trapped states. For trap characterization, impedance spectroscopy is a suitable, non-invasive method, applicable to complete organic semiconductor devices. In order to contribute to the capacitive signal, the traps must be filled with charge carriers. Typically, trap filling is achieved by illuminating the device or by injecting charge carriers through application of a forward bias voltage. However, in both cases, the exact number of charge carriers in the device is not known and depends strongly on the measurement conditions. Here, hole trap states of the model blend layer ZnPc:C60 are filled by weak p-doping, enabling trap characterization in a blend layer at a controlled hole density. We evaluate impedance spectra at different temperatures in order to determine the density of occupied states (DOOS) directly from the capacitance-frequency spectra by assuming a simple energy diagram. The reconstructed DOOS distribution is analyzed at different doping concentrations and device thicknesses and compared to thermally stimulated current measurements performed on the same devices. In both methods, a pronounced Gaussian peak at about 0.4 eV below the transport level is found as well as deep, exponential tail states, providing a deeper insight into the density of states distribution of this donor-acceptor blend layer. Additionally, the effect of doping-induced trap filling on the solar cell characteristics is studied in these devices.

  16. Existence of zero-energy impurity states in different classes of topological insulators and superconductors and their relation to topological phase transitions

    NASA Astrophysics Data System (ADS)

    Kimme, Lukas; Hyart, Timo

    2016-01-01

    We consider the effects of impurities on topological insulators and superconductors. We start by identifying the general conditions under which the eigenenergies of an arbitrary Hamiltonian H belonging to one of the Altland-Zirnbauer symmetry classes undergo a robust zero energy crossing as a function of an external parameter which can be, for example, the impurity strength. We define a generalized root of detH and use it to predict or rule out robust zero-energy crossings in all symmetry classes. We complement this result with an analysis based on almost degenerate perturbation theory, which allows a derivation of the asymptotic low-energy behavior of the ensemble averaged density of states ρ ˜Eα for all symmetry classes and makes it transparent that the exponent α does not depend on the choice of the random matrix ensemble. Finally, we show that a lattice of impurities can drive a topologically trivial system into a nontrivial phase, and in particular we demonstrate that impurity bands carrying extremely large Chern numbers can appear in different symmetry classes of two-dimensional topological insulators and superconductors. We use the generalized root of detH (k ) to reveal a spiderweblike momentum space structure of the energy gap closings that separate the topologically distinct phases in px+i py superconductors in the presence of an impurity lattice.

  17. Coexistence of impurity-induced quasi-one-dimensional electronic structure and topological surface states of Bi2Se3

    NASA Astrophysics Data System (ADS)

    Shokri, R.

    2016-02-01

    Using scanning tunneling spectroscopy (microscopy) (STS, STM) in combination with angle-resolved photoelectron spectroscopy (ARPES), we report on the coexistence of the topological surface state with a long range periodic modulation of the electronic structure on the surface of Bi2Se3 at room temperature. The electronic modulation manifests itself as a two-dimensional commensurate superlattice characterized by stripes running parallel to the surface lattice vectors when the near-surface region of samples are doped with trace amounts of iron or cesium. In both cases, the electronic signature is observed in STM only at energies within the valence band more than 130 meV blow the Dirac point energy (ED). ARPES experiments show the presence of intact Dirac cone, indicating that the electronic stripes do not influence the Dirac surface states. We suggest that the stripe states are the bulk properties of Bi2Se3 induced by trace amounts of cesium and iron impurities residing in bismuth and selenium substitutional sites and/or in the van-der-Waals gap.

  18. Ground-state thermodynamics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    PubMed

    Fahrenbach, Albert C; Bruns, Carson J; Cao, Dennis; Stoddart, J Fraser

    2012-09-18

    Fashioned through billions of years of evolution, biological molecular machines, such as ATP synthase, myosin, and kinesin, use the intricate relative motions of their components to drive some of life's most essential processes. Having control over the motions in molecules is imperative for life to function, and many chemists have designed, synthesized, and investigated artificial molecular systems that also express controllable motions within molecules. Using bistable mechanically interlocked molecules (MIMs), based on donor-acceptor recognition motifs, we have sought to imitate the sophisticated nanoscale machines present in living systems. In this Account, we analyze the thermodynamic characteristics of a series of redox-switchable [2]rotaxanes and [2]catenanes. Control and understanding of the relative intramolecular movements of components in MIMs have been vital in the development of a variety of applications of these compounds ranging from molecular electronic devices to drug delivery systems. These bistable donor-acceptor MIMs undergo redox-activated switching between two isomeric states. Under ambient conditions, the dominant translational isomer, the ground-state coconformation (GSCC), is in equilibrium with the less favored translational isomer, the metastable-state coconformation (MSCC). By manipulating the redox state of the recognition site associated with the GSCC, we can stimulate the relative movements of the components in these bistable MIMs. The thermodynamic parameters of model host-guest complexes provide a good starting point to rationalize the ratio of GSCC to MSCC at equilibrium. The bistable [2]rotaxanes show a strong correlation between the relative free energies of model complexes and the ground-state distribution constants (K(GS)). This relationship does not always hold for bistable [2]catenanes, most likely because of the additional steric and electronic constraints present when the two rings are mechanically interlocked with each other

  19. Effect of a metallic gate on the energy levels of a shallow donor

    SciTech Connect

    Slachmuylders, A. F.; Partoens, B.; Peeters, F. M.; Magnus, W.

    2008-02-25

    We have investigated the effect of a metallic gate on the bound states of a shallow donor located near the gate. We calculate the energy spectrum as a function of the distance between the metallic gate and the donor and find an anticrossing behavior in the energy levels for certain distances. We show how a transverse electric field can tune the average position of the electron with respect to the metallic gate and the impurity.

  20. Estimation of electronic coupling in π-stacked donor-bridge-acceptor systems: Correction of the two-state model

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-02-01

    Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽda=(E2-E1)μ12/Rda+(2E3-E1-E2)2μ13μ23/Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model.

  1. On the Matsubara-Toyozawa Formalism to Treat Impurity Bands in δ-DOPED Quantum Wells

    NASA Astrophysics Data System (ADS)

    da Cunha Lima, I. C.; da Silva, A. Ferreira

    We obtain the density of the ground and excited states for electrons bound to shallow donors in a δ-dopping of a quantum well. We use the Matsubara-Toyozawa technique to treat disorder. The impurity bands are calculated for a concentration of 9.4×109 cm-2. We show that for this concentration of interest the excited bands do not overlap the ground state.

  2. Impurity gettering

    SciTech Connect

    Picraux, S.T.

    1995-06-01

    Transition metal impurities are well known to cause detrimental effects when present in the active regions of Si devices. Their presence degrades minority carrier lifetime, provides recombination-generation centers, increases junction leakage current and reduces gate oxide integrity. Thus, gettering processes are used to reduce the available metal impurities from the active region of microelectronic circuits. Gettering processes are usually divided into intrinsic (or internal) and extrinsic (or external) categories. Intrinsic refers to processing the Si wafer in a way to make available internal gettering sites, whereas extrinsic implies externally introduced gettering sites. Special concerns have been raised for intrinsic gettering. Not only will the formation of the precipitated oxide and denuded zone be difficult to achieve with the lower thermal budgets, but another inherent limit may set in. In this or any process which relies on the precipitation of metal silicides the impurity concentration can only be reduced as low as the solid solubility limit. However, the solubilities of transition metals relative to silicide formation are typically found to be {approx_gt}10{sup 12}/cm{sup 3} at temperatures of 800 C and above, and thus inadequate to getter to the needed concentration levels. It is thus anticipated that future microelectronic device processing will require one or more of the following advances in gettering technology: (1) new and more effective gettering mechanisms; (2) quantitative models of gettering to allow process optimization at low process thermal budgets and metal impurity concentrations, and/or (3) development of front side gettering methods to allow for more efficient gettering close to device regions. These trend-driven needs provide a driving force for qualitatively new approaches to gettering and provide possible new opportunities for the use of ion implantation in microelectronics processing.

  3. Selective stabilization of the chorismate mutase transition state by a positively charged hydrogen bond donor.

    PubMed

    Kienhöfer, Alexander; Kast, Peter; Hilvert, Donald

    2003-03-19

    Citrulline was incorporated via chemical semisynthesis at position 90 in the active site of the AroH chorismate mutase from Bacillus subtilis. The wild-type arginine at this position makes hydrogen-bonding interactions with the ether oxygen of chorismate. Replacement of the positively charged guanidinium group with the isosteric but neutral urea has a dramatic effect on the ability of the enzyme to convert chorismate into prephenate. The Arg90Cit variant exhibits a >104-fold decrease in the catalytic rate constant kcat with a 2.7-fold increase in the Michaelis constant Km. In contrast, its affinity for a conformationally constrained inhibitor molecule that effectively mimics the geometry but not the dissociative character of the transition state is only reduced by a factor of approximately 6. These results show that an active site merely complementary to the reactive conformation of chorismate is insufficient for catalysis of the mutase reaction. Instead, electrostatic stabilization of the polarized transition state by provision of a cationic hydrogen bond donor proximal to the oxygen in the breaking C-O bond is essential for high catalytic efficiency.

  4. The effect of dielectric constant on binding energy and impurity self-polarization in a GaAs-Ga1- x Al x As spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Mese, A. I.; Cicek, E.; Erdogan, I.; Akankan, O.; Akbas, H.

    2017-03-01

    The ground state, 1s, and the excited state, 2p, energies of a hydrogenic impurity in a GaAs-Ga1- x Al x As spherical quantum dot, are computed as a function of the donor positions. We study how the impurity self-polarization depends on the location of the impurity and the dielectric constant. The excited state anomalous impurity self-polarization in the quantum dot is found to be present in the absence of any external influence and strongly depends on the impurity position and the radius of the dot. Therefore, the excited state anomalous impurity self-polarization can give information about the impurity position in the system. Also, the variation of E_{b1s} and E_{b2p} with the dielectric constant can be utilized as a tool for finding out the correct dielectric constant of the dot material by measuring the 1s or 2p state binding energy for a fixed dot radius and a fixed impurity position.

  5. "Hot or cold": how do charge transfer states at the donor-acceptor interface of an organic solar cell dissociate?

    PubMed

    Bässler, Heinz; Köhler, Anna

    2015-11-21

    Electron transfer from an excited donor to an acceptor in an organic solar cell (OSC) is an exothermic process, determined by the difference in the electronegativities of donor and acceptor. It has been suggested that the associated excess energy facilitates the escape of the initially generated electron-hole pair from their mutual coulomb well. Recent photocurrent excitation spectroscopy on conjugated polymer/PCBM cells challenged this view. In this perspective we shall briefly outline the strengths and weaknesses of relevant experimental approaches and concepts. We shall enforce the notion that the charge separating state is a vibrationally cold charge transfer (CT) state. It can easily dissociate provided that (i) there is electrostatic screening at the interface and (ii) the charge carriers are delocalized, e.g. if the donor is a well ordered conjugated polymer. Both effects diminish the coulomb attraction and assure that the in-built electric field existing in the OSC under short current condition is already sufficient to separate most the CT states. The remaining CT excitations relax towards tail states of the disorder controlled density of states distribution, such as excimer forming states, that are more tightly bound and have longer lifetimes.

  6. Influence of impurity and recycling on high-β steady-state plasmas sustained by rotating magnetic fields current drive

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Grossnickle, J. A.; Hoffman, A. L.; Vlases, G. C.

    2009-06-01

    A new upgrade of the Translation, Confinement, and Sustainment (TCS) device, TCSU, has been built to form and sustain high temperature compact toroids (CT), known as Field Reversed Configurations, using Rotating Magnetic Fields (RMF). In TCS the plasma temperature was limited to several 10s of eV due to high impurity content. These impurities are greatly reduced in TCSU by using advanced plasma chamber and helium glow discharge cleaning. Reducing impurity radiation, when coupled with reduced overall recycling, enabled the plasma to enter into a new, collisionless regime with temperatures well over 200 eV, substantially exceeding the radiation barrier. This is a first for CTs at low input power density. This was achieved using the simple even-parity RMF drive (despite transient opening of field lines by the RMF) because the associated energy loss is sheath-limited, coupled with the low edge density resulting from the RMF pinch effect.

  7. Thermoelectric effects of the single-spin state in the ferromagnetic-normal junction with artificial magnetic impurities

    NASA Astrophysics Data System (ADS)

    Xu, Li; Li, Zhi-Jian; Hou, Hai-Yan; Niu, Pengbin; Nie, Yi-Hang

    2016-10-01

    We theoretically analyze the thermoelectric properties of the single-spin state based on the resonant tunneling of electron in the ferromagnetic-normal junction with artificial magnetic impurities. The thermoelectric coefficients, such as electrical conductance G, thermal conductance K, thermopower S and effective figure of merit Y, have been calculated using the nonequilibrium Green function in the linear regime. It is found that the thermoelectric coefficients can achieve considerable values by adjusting key parameters of the hybrid mesoscopic structure, such as the level detuning, the interdot hopping coefficient, the external magnetic field and the angle θ. When the level detuning changes, the spectra of electrical conductance and thermal conductance exhibit the electronic Dicke-like effect in the low temperature. Two valleys of electrical conductance and thermal conductance are always located at the single-spin level of QD2 ({{\\varepsilon}2\\uparrow} and ~{{\\varepsilon}2\\downarrow} ), and can achieve the antiresonant point by adjusting the interdot hopping coefficient. Thermoelectric coefficients can achieve considerable values near valleys because the Wiedemann-Franz law is strongly violated. Thermopower S and effective figure of merit Y can get larger values in the vicinity of {{\\varepsilon}2\\uparrow} by adjusting key parameters of the hybrid mesoscopic structure, such as the level detuning, the interdot hopping coefficient and the polarization. But the thermoelectric effect is reversed by changing the angle θ. When the angle θ increases, S and Y are suppressed in the vicinity of {{\\varepsilon}2\\uparrow}, meanwhile, S and Y are enhanced in the vicinity of {{\\varepsilon}2\\downarrow}. {χ+}=\\cos \\fracθ{2}|\\uparrow >+\\sin \\fracθ{2}|\\downarrow > shows that an electron in the state {χ+} can virtually tunnel into the spin-up (or spin-down) state of the ferromagnet. The amplitude of electron tunneling is \\cos \\fracθ{2} (or \\sin \\fracθ{2

  8. Non-linear optical response of an impurity in a cylindrical quantum dot under the action of a magnetic field

    NASA Astrophysics Data System (ADS)

    Portacio, Alfonso A.; Rodríguez, Boris A.; Villamil, Pablo

    2017-04-01

    The linear and nonlinear optical response in a cylindrical quantum dot (CQD) of GaAs / Ga0.6Al0.4 As with a donor impurity in a uniform magnetic field applied in the axial direction of the cylinder is studied theoretically. The calculations were carried out in approximations of effective mass and two-level quantum systems. Using the variational method, the binding energies and the wave functions of the 1s-like y 2pz-like states for different positions of the impurity inside the CQD were found. It was found that the binding energy is greatest in the center of the CQD and diminishes as the impurity moves radially and/or axially. The optical rectification, the change in the refractive index, and the optical absorption were studied as functions of the energy of a photon incident on the CQD and different intensities of the magnetic field, with an impurity located at various positions. It was found that in a CDQ with an impurity inside, the effect of the variation of the intensity of the magnetic field on the optical response is much less than the effect produced by the variation of the position of the impurity. The physical reason for this behavior is that in nanostructures with impurities the Coulomb confinement is stronger than the magnetic confinement. It was also found that when the impurity is in the center of the quantum dot, the optical rectification coefficient is zero, due to the symmetry that the wave function of the impurity exhibits at this geometric point. When the impurity moves in the axial direction, the symmetry is broken and the optical rectification coefficient is different from zero, and its value increases as the impurity moves away from the center of the CQD.

  9. Mobile impurities in ferromagnetic liquids

    NASA Astrophysics Data System (ADS)

    Kantian, Adrian; Schollwoeck, Ulrich; Giamarchi, Thierry

    2011-03-01

    Recent work has shown that mobile impurities in one dimensional interacting systems may exhibit behaviour that differs strongly from that predicted by standard Tomonaga-Luttinger liquid theory, with the appearance of power-law divergences in the spectral function signifying sublinear diffusion of the impurity. Using time-dependent matrix product states, we investigate a range of cases of mobile impurities in systems beyond the analytically accessible examples to assess the existence of a new universality class of low-energy physics in one-dimensional systems. Correspondence: Adrian.Kantian@unige.ch This work was supported in part by the Swiss SNF under MaNEP and division II.

  10. The influence of the nature of an electron donor solvent on the solvation state of tert-butyl-substituted dibenzenediisoindol macroring according to the NMR data

    NASA Astrophysics Data System (ADS)

    Aleksandriiskii, V. V.; Islyaikin, M. K.; Burmistrov, V. A.

    2007-11-01

    The influence of the nature of electron donors on the conformational and solvation state of a symmetrical tert-butyl-substituted macroheterocyclic compound was studied in binary mixtures containing electron donor solvating solvents and tetrachloromethane by 1H NMR spectroscopy and semiempirical quantum-chemical methods. The structure of H-complexes was determined. The macroring was found to selectively bind electron donors containing carbonyl and thiocarbonyl groups.

  11. Multi-state analysis illustrates treatment success after stem cell transplantation for acute myeloid leukemia followed by donor lymphocyte infusion.

    PubMed

    Eefting, Matthias; de Wreede, Liesbeth C; Halkes, Constantijn J M; von dem Borne, Peter A; Kersting, Sabina; Marijt, Erik W A; Veelken, Hendrik; Putter, Hein; Schetelig, Johannes; Falkenburg, J H Frederik

    2016-04-01

    In the field of hematopoietic stem cell transplantation, the common approach is to focus outcome analyses on time to relapse and death, without assessing the impact of post-transplant interventions. We investigated whether a multi-state model would give insight into the events after transplantation in a cohort of patients who were transplanted using a strategy including scheduled donor lymphocyte infusions. Seventy-eight consecutive patients who underwent myeloablative T-cell depleted allogeneic stem cell transplantation for acute myeloid leukemia or myelodysplastic syndrome were studied. We constructed a multi-state model to analyze the impact of donor lymphocyte infusion and graft-versus-host disease on the probabilities of relapse and non-relapse mortality over time. Based on this model we introduced a new measure for outcome after transplantation which we called 'treatment success': being alive without relapse and immunosuppression for graft-versus-host disease. All relevant clinical events were implemented into the multi-state model and were denoted treatment success or failure (either transient or permanent). Both relapse and non-relapse mortality were causes of failure of comparable magnitude. Whereas relapse was the dominant cause of failure from the transplantation state, its rate was reduced after graft-versus-host disease, and especially after donor lymphocyte infusion. The long-term probability of treatment success was approximately 40%. This probability was increased after donor lymphocyte infusion. Our multi-state model helps to interpret the impact of post-transplantation interventions and clinical events on failure and treatment success, thus extracting more information from observational data.

  12. Underutilization of Living Donor Liver Transplantation in the United States: Bias against MELD 20 and Higher.

    PubMed

    Perumpail, Ryan B; Yoo, Eric R; Cholankeril, George; Hogan, Lupe; Deis, Melodie; Concepcion, Waldo C; Bonham, C Andrew; Younossi, Zobair M; Wong, Robert J; Ahmed, Aijaz

    2016-09-28

    Background and Aims: Utilization of living donor liver transplantation (LDLT) and its relationship with recipient Model for End-Stage Liver Disease (MELD) needs further evaluation in the United States (U.S.). We evaluated the association between recipient MELD score at the time of surgery and survival following LDLT. Methods: All U.S. adult LDLT recipients with MELD < 25 were evaluated using the 1995-2012 United Network for Organ Sharing registry. Survival following LDLT was stratified into three MELD categories (MELD < 15 vs. MELD 15-19 vs. MELD 20-24) and evaluated using Kaplan-Meier methods and multivariate Cox proportional hazards models. Results: Overall, 2,258 patients underwent LDLT. Compared to patients with MELD < 15, overall 5-year survival following LDLT was similar among patients with MELD 15-19 (80.9% vs. 80.3%, p = 0.77) and MELD 20-24 (81.2% vs. 80.3%, p = 0.73). When compared to patients with MELD < 15, there was no significant difference in long-term post-LDLT survival among those with MELD 15-19 (HR: 1.11, 95% CI: 0.85-1.45, p = 0.45) and a non-significant trend towards lower survival in patients with MELD 20-24 (HR: 1.28, 95% CI: 0.91-1.81, p = 0.16). Only 14% of LDLTs were performed in patients with MELD 20-24 and the remaining 86% in patients with MELD < 20. Conclusion: LDLT is underutilized in patients with MELD 20 and higher.

  13. Underutilization of Living Donor Liver Transplantation in the United States: Bias against MELD 20 and Higher

    PubMed Central

    Perumpail, Ryan B.; Yoo, Eric R.; Cholankeril, George; Hogan, Lupe; Deis, Melodie; Concepcion, Waldo C.; Bonham, C. Andrew; Younossi, Zobair M.; Wong, Robert J.; Ahmed, Aijaz

    2016-01-01

    Abstract Background and Aims: Utilization of living donor liver transplantation (LDLT) and its relationship with recipient Model for End-Stage Liver Disease (MELD) needs further evaluation in the United States (U.S.). We evaluated the association between recipient MELD score at the time of surgery and survival following LDLT. Methods: All U.S. adult LDLT recipients with MELD < 25 were evaluated using the 1995–2012 United Network for Organ Sharing registry. Survival following LDLT was stratified into three MELD categories (MELD < 15 vs. MELD 15–19 vs. MELD 20–24) and evaluated using Kaplan-Meier methods and multivariate Cox proportional hazards models. Results: Overall, 2,258 patients underwent LDLT. Compared to patients with MELD < 15, overall 5-year survival following LDLT was similar among patients with MELD 15–19 (80.9% vs. 80.3%, p = 0.77) and MELD 20–24 (81.2% vs. 80.3%, p = 0.73). When compared to patients with MELD < 15, there was no significant difference in long-term post-LDLT survival among those with MELD 15–19 (HR: 1.11, 95% CI: 0.85−1.45, p = 0.45) and a non-significant trend towards lower survival in patients with MELD 20–24 (HR: 1.28, 95% CI: 0.91−1.81, p = 0.16). Only 14% of LDLTs were performed in patients with MELD 20–24 and the remaining 86% in patients with MELD < 20. Conclusion: LDLT is underutilized in patients with MELD 20 and higher. PMID:27777886

  14. Electronic properties of the residual donor in unintentionally doped β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Son, N. T.; Goto, K.; Nomura, K.; Thieu, Q. T.; Togashi, R.; Murakami, H.; Kumagai, Y.; Kuramata, A.; Higashiwaki, M.; Koukitu, A.; Yamakoshi, S.; Monemar, B.; Janzén, E.

    2016-12-01

    Electron paramagnetic resonance was used to study the donor that is responsible for the n-type conductivity in unintentionally doped (UID) β-Ga2O3 substrates. We show that in as-grown materials, the donor requires high temperature annealing to be activated. In partly activated materials with the donor concentration in the 1016 cm-3 range or lower, the donor is found to behave as a negative-U center (often called a DX center) with the negative charge state DX- lying ˜16-20 meV below the neutral charge state d0 (or Ed), which is estimated to be ˜28-29 meV below the conduction band minimum. This corresponds to a donor activation energy of Ea˜44-49 meV. In fully activated materials with the donor spin density close to ˜1 × 1018 cm-3, donor electrons become delocalized, leading to the formation of impurity bands, which reduces the donor activation energy to Ea˜15-17 meV. The results clarify the electronic structure of the dominant donor in UID β-Ga2O3 and explain the large variation in the previously reported donor activation energy.

  15. Volunteer donor apheresis.

    PubMed

    Waxman, Dan A

    2002-02-01

    Volunteer donor apheresis has evolved from early plasmapheresis procedures that collected single components into technically advanced multicomponent procedures that can produce combinations of red blood cells, platelets, and plasma units. Blood collection and utilization is increasing annually in the United States. The number of apheresis procedures is also increasing such that single donor platelet transfusions now exceed platelet concentrates from random donors. Donor qualifications for apheresis vary from those of whole blood. Depending on the procedure, the donor weight, donation interval, and platelet count must be taken into consideration. Adverse effects of apheresis are well known and fortunately occur in only a very small percentage of donors. The recruitment of volunteer donors is one of the most challenging aspects of a successful apheresis program. As multicomponent apheresis becomes more commonplace, it is important for collection centers to analyze the best methods to recruit and collect donors.

  16. Donors' health state the year after peripheral haematopoietic progenitor cell collection: A prospective follow-up study in related and unrelated donors compared to first-time platelet donors.

    PubMed

    Bank, I; Wiersum-Osselton, J C; Van Walraven, S M; Netelenbos, T; Fechter, M; Marijt-van der Kreek, T; Bär, B M A M; Van der Bom, J G; Brand, A

    2016-12-01

    Granulocyte colony-stimulating factor (G-CSF) mobilized peripheral haematopoietic progenitor cells collected by apheresis (HPC-A) are the most common source used for allogeneic hematopoietic stem cell transplantation (HSCT). Retrospective short and long-term donor follow-up studies show very low risks of serious complications and do not report compelling evidence of increased cancer occurrence. Some studies reported a prolonged period of leucopenia without an obvious association with infectious complications. However, beyond the first few weeks after the procedure a relationship between events is elusive. We therefore evaluated medical service utilization by prospectively recruited HPC-A donors and first-time platelet apheresis donors for comparison for 1 year after donation. Data were prospectively collected using questionnaires and by medical record review. A total of 215 HPC-A donors (111 unrelated donors and 104 related donors) and 96 first-time platelet donors consented to participation in the study. Follow-up was available for 202 (96%): questionnaires were returned by 74% and records from nonstudy contacts were available for 94% of donors. During the 1-year follow-up, 94 of the donors who returned questionnaires sought medical attention for diagnostic evaluation and/or treatment: 41% of HPC-A donors and 40% of platelet donors. Medical service utilization the first year after HPC-A donation is similar to that after first-time platelet donation. The occurrence of serious medical conditions in both related and unrelated HPC-A donors underscores the importance of participation in long-term follow-up in large cohorts. The findings in this relatively small cohort contribute to evidence on the safety of G-CSF mobilization and HPC-A. J. Clin. Apheresis 31:523-528, 2016. © 2015 Wiley Periodicals, Inc.

  17. Matched unrelated donor transplants-State of the art in the 21st century.

    PubMed

    Altaf, Syed Y; Apperley, Jane F; Olavarria, Eduardo

    2016-10-01

    Hematopoietic stem cell transplantation (HSCT) is the therapy of choice in many hematological malignant and non-malignant diseases by using human leukocyte antigen (HLA)-matched siblings as stem cell source but only one third of the patients will have HLA-matched siblings. Hence, physicians rely on the availability of matched unrelated donors (URD). The possibility of finding a matched URD is now more than 70% due to continuous expansion of URD registries around the world. The use of URD in adult patients is steadily increasing and in the last 8 years has superseded the numbers of matched sibling donor transplants and has become the most commonly used stem cell source. There is also an increasing trend to use peripheral blood (PB) stem cells rather than bone marrow (BM) stem cells. Outcomes following URD transplants depend mainly upon the indication and urgency of transplant, age and comorbidities of recipients, cytomegalovirus (CMV) matching/mismatching between donor and the recipient, and degree of HLA matching. In some studies outcome of unrelated stem cell transplants in terms of treatment-related mortality (TRM), disease-free survival (DFS), and overall survival (OS) is comparable to sibling donors.

  18. Chagas Disease Screening in Maternal Donors of Publicly Banked Umbilical Cord Blood, United States

    PubMed Central

    Gilner, Jennifer B.; Hernandez, Jose; Kurtzberg, Joanne; Heine, R. Phillips

    2016-01-01

    To assess patterns of Chagas disease, we reviewed results of screening umbilical cord blood from a US public cord blood bank during 2007–2014. Nineteen maternal donors tested positive for Trypanosoma cruzi parasites (0.04%). Because perinatal transmission of Chagas disease is associated with substantial illness, targeted prenatal programs should screen for this disease. PMID:27433974

  19. Resonant and deep impurity levels under hydrostatic pressure in pure n-type InAs

    NASA Astrophysics Data System (ADS)

    Kadri, A.; Aulombard, R. L.; Zitouni, K.; Konczewicz, L.

    1986-05-01

    Hall coefficient ( RH) and electrical resistivity (ϱ 0) were measured as a function of hydrostatic pressure up to 18 kbar, in the 4.2 K-120 K temperature range, on nominally undopted n-type InAs with free carrier concentration ∼2 × 10 16 cm -3. In the 4.2-30 K range, RH and ϱ 0 versus pressure variations indicate the deionization of impurity states which are resonant in the Γ 1c band at normal pressure. The position and the pressure variation of the resonant impurity level are discussed. At T>30 K, evidence is made for the existence of a donor-like impurity level lying ∼10 meV below the Γ 1c band minimum and moving with pressure at the rate of -1.8 meV/kbar with respect to this band.

  20. Analysis of Impurity Band Formation and Related Effects Near the P/N Junction in Compensated GaAs and Si.

    DTIC Science & Technology

    1986-09-01

    levels are shifted with respect to the edge of the conduction or valence band, forming impurity tands and causing changes in the band gap. In addition...Levels, (d) Densities of States for Conduction Band and Donor Levels, and (e) Densities of States for Acceptor Levels and Valence Band. Each Fig.(page...acceptor state distributions and the density-of-states data for the valence band. The horizontal axis is in this case referred to the edge of

  1. Observation of Low-Temperature Softening of Transverse Elastic Modulus Due to Cobalt Impurities in Mercury Selenide

    NASA Astrophysics Data System (ADS)

    Zhevstovskikh, Irina V.; Okulov, Vsevolod I.; Gudkov, Vladimir V.; Sarychev, Maksim N.; Medvedev, Kirill A.; Andriichuk, Myroslav D.; Paranchich, Lidiya D.

    2016-12-01

    Influence on elastic moduli of donor electron d-states of cobalt impurities has been investigated in mercury selenide crystals. Experiments have been carried out at the frequency of 53 MHz in the temperature interval of 1.3-100 K. Softening of the (C_{11} - C_{12})/2 modulus below 10 K has been observed in the impurity crystals in contrast with the (C_{11} + C_{12} + 2C_{44})/2 and C_{44} moduli those have exhibited hardening at cooling typical for dielectric and semiconductor crystals. The softening of the elastic modulus has been interpreted as manifestation of hybridization of the impurity d-states in the conduction band of the crystal. Comparison of theoretical calculations with experimental data has been proved to be in good agreement and has made it possible to determine the parameters characterizing the hybridized electron states.

  2. Instabilities and bifurcations of nonlinear impurity modes.

    PubMed

    Kevrekidis, Panayotis G; Kivshar, Yuri S; Kovalev, Alexander S

    2003-04-01

    We study the structure and stability of nonlinear impurity modes in the discrete nonlinear Schrödinger equation with a single on-site nonlinear impurity emphasizing the effects of interplay between discreteness, nonlinearity, and disorder. We show how the interaction of a nonlinear localized mode (a discrete soliton or discrete breather) with a repulsive impurity generates a family of stationary states near the impurity site, as well as examine both theoretical and numerical criteria for the transition between different localized states via a cascade of bifurcations.

  3. Designing calcium release channel inhibitors with enhanced electron donor properties: stabilizing the closed state of ryanodine receptor type 1.

    PubMed

    Ye, Yanping; Yaeger, Daniel; Owen, Laura J; Escobedo, Jorge O; Wang, Jialu; Singer, Jeffrey D; Strongin, Robert M; Abramson, Jonathan J

    2012-01-01

    New drugs with enhanced electron donor properties that target the ryanodine receptor from skeletal muscle sarcoplasmic reticulum (RyR1) are shown to be potent inhibitors of single-channel activity. In this article, we synthesize derivatives of the channel activator 4-chloro-3-methyl phenol (4-CmC) and the 1,4-benzothiazepine channel inhibitor 4-[-3{1-(4-benzyl) piperidinyl}propionyl]-7-methoxy-2,3,4,5-tetrahydro-1,4-benzothiazepine (K201, JTV519) with enhanced electron donor properties. Instead of activating channel activity (~100 μM), the 4-methoxy analog of 4-CmC [4-methoxy-3-methyl phenol (4-MmC)] inhibits channel activity at submicromolar concentrations (IC(50) = 0.34 ± 0.08 μM). Increasing the electron donor characteristics of K201 by synthesizing its dioxole congener results in an approximately 16 times more potent RyR1 inhibitor (IC(50) = 0.24 ± 0.05 μM) compared with K201 (IC(50) = 3.98 ± 0.79 μM). Inhibition is not caused by an increased closed time of the channel but seems to be caused by an open state block of RyR1. These alterations to chemical structure do not influence the ability of these drugs to affect Ca(2+)-dependent ATPase activity of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase type 1. Moreover, the FKBP12 protein, which stabilizes RyR1 in a closed configuration, is shown to be a strong electron donor. It seems as if FKBP12, K201, its dioxole derivative, and 4-MmC inhibit RyR1 channel activity by virtue of their electron donor characteristics. These results embody strong evidence that designing new drugs to target RyR1 with enhanced electron donor characteristics results in more potent channel inhibitors. This is a novel approach to the design of new, more potent drugs with the aim of functionally modifying RyR1 single-channel activity.

  4. Binding energy of the donor impurities in GaAs-Ga 1- x Al x As quantum well wires with Morse potential in the presence of electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Aciksoz, Esra; Bayrak, Orhan; Soylu, Asim

    2016-10-01

    The behavior of a donor in the GaAs-Ga1-x Al x As quantum well wire represented by the Morse potential is examined within the framework of the effective-mass approximation. The donor binding energies are numerically calculated for with and without the electric and magnetic fields in order to show their influence on the binding energies. Moreover, how the donor binding energies change for the constant potential parameters (D e, r e, and a) as well as with the different values of the electric and magnetic field strengths is determined. It is found that the donor binding energy is highly dependent on the external electric and magnetic fields as well as parameters of the Morse potential. Project supported by the Turkish Science Research Council (TÜBİTAK) and the Financial Supports from Akdeniz and Nigde Universities.

  5. Temperature-Dependent Compensation and Optical Quenching by Thermal Oxygen Donors in Germanium

    NASA Technical Reports Server (NTRS)

    Watson, D.; Guptill, M.; Huffman, J.; Krabach, T.; Raines, S.

    1994-01-01

    Photothermal ionization spectroscopy of germanium, doped in the impurity-band conduction range with gallium acceptors and with thermal oxygen donors, reveals that the donors and acceptors compensate each other at temperatures higher than about 5K, but that the impurities coexist as neutral donors and acceptors at lower temperatures.

  6. Rich Donors, Poor Countries

    ERIC Educational Resources Information Center

    Thomas, M. A.

    2012-01-01

    The shifting ideological winds of foreign aid donors have driven their policy towards governments in poor countries. Donors supported state-led development policies in poor countries from the 1940s to the 1970s; market and private-sector driven reforms during the 1980s and 1990s; and returned their attention to the state with an emphasis on…

  7. Ab initio multiconfiguration self-consistent-field calculations of the excited states of a Mn impurity in CaF2

    NASA Astrophysics Data System (ADS)

    Lewandowski, A. C.; Wilson, T. M.

    1994-08-01

    We analyze Mn absorption in CaF2:Mn by the employment of ab inito quantum-mechanical cluster calculations and ligand-field methods. The [MnF8]6- Oh cluster is chosen to represent the isolated Mn2+ substitutional impurity in an otherwise perfect crystal. The methods of unrestricted open-shell Hartree-Fock self-consistent field (SCF), Mo/ller-Plesset perturbation theory to second- and fourth-order, and singles and doubles configuration interaction are used to calculate the spin sextet and quartet ground states. With the active space consisting of the Mn 3d molecular orbitals, the spin quartet excited states are calculated by the method of multiconfiguration SCF. It was found that the presence of an external field designed to reproduce the Madelung potential difference within the cluster did not significantly affect the Mn d-to-d transitions. The crystal-field term splitting diagrams for the eight-coordinated Mn2+ impurity in Oh symmetry are calculated. The results showed a narrowing of the multiplet terms in energy with respect to the six-coordinated Oh result. This increases the crystal-field parameter Dq from the previously published value of 420-570 cm-1.

  8. Analytical modeling of AlGaN/AlN/GaN heterostructures including effects of distributed surface donor states

    SciTech Connect

    Goyal, Nitin; Fjeldly, Tor A.

    2014-07-14

    In this paper, a physics based analytical model is presented for calculation of the two-dimensional electron gas density and the bare surface barrier height of AlGaN/AlN/GaN material stacks. The presented model is based on the concept of distributed surface donor states and the self-consistent solution of Poisson equation at the different material interfaces. The model shows good agreement with the reported experimental data and can be used for the design and characterization of advanced GaN devices for power and radio frequency applications.

  9. Computational characterization of competing energy and electron transfer states in bimetallic donor-acceptor systems for photocatalytic conversion

    NASA Astrophysics Data System (ADS)

    Fredin, Lisa A.; Persson, Petter

    2016-09-01

    The rapidly growing interest in photocatalytic systems for direct solar fuel production such as hydrogen generation from water splitting is grounded in the unique opportunity to achieve charge separation in molecular systems provided by electron transfer processes. In general, both photoinduced and catalytic processes involve complicated dynamics that depend on both structural and electronic effects. Here the excited state landscape of metal centered light harvester-catalyst pairs is explored using density functional theory calculations. In weakly bound systems, the interplay between structural and electronic factors involved can be constructed from the various mononuclear relaxed excited states. For this study, supramolecular states of electron transfer and excitation energy transfer character have been constructed from constituent full optimizations of multiple charge/spin states for a set of three Ru-based light harvesters and nine transition metal catalysts (based on Ru, Rh, Re, Pd, and Co) in terms of energy, structure, and electronic properties. The complete set of combined charge-spin states for each donor-acceptor system provides information about the competition of excited state energy transfer states with the catalytically active electron transfer states, enabling the identification of the most promising candidates for photocatalytic applications from this perspective.

  10. Asymmetric Stark shift in an impurity doped dome-shaped quantum dot with wetting layer

    NASA Astrophysics Data System (ADS)

    Niculescu, E. C.; Cristea, M.; Bejan, D.

    2017-02-01

    The effects of vertical electric field and donor impurity on the electronic properties of the dome-shaped InAs/GaAs quantum dot coupled to its wetting layer were investigated. The dependence of the electron density, energy and Stark shift of the S-, P- and WL-states on the applied electric field was studied with and without impurity. The S- and P-states have no significant qualitative changes in the shape of the wave functions with increasing the electric field, except that they become slightly shifted due to the competition between the field action and the quantum confinement. The wave function of the WL-state is strongly modified in polarized structures. Our results reveal that the Stark shift of electron energies can be fitted with a quadratic dependence on the electric field, the linear and quadratic terms corresponding to the dipole moment and static electron polarizability. Their estimated values reasonable agree with those calculated.

  11. Elemental Impurities in Pharmaceutical Excipients.

    PubMed

    Li, Gang; Schoneker, Dave; Ulman, Katherine L; Sturm, Jason J; Thackery, Lisa M; Kauffman, John F

    2015-12-01

    Control of elemental impurities in pharmaceutical materials is currently undergoing a transition from control based on concentrations in components of drug products to control based on permitted daily exposures in drug products. Within the pharmaceutical community, there is uncertainty regarding the impact of these changes on manufactures of drug products. This uncertainty is fueled in part by a lack of publically available information on elemental impurity levels in common pharmaceutical excipients. This paper summarizes a recent survey of elemental impurity levels in common pharmaceutical excipients as well as some drug substances. A widely applicable analytical procedure was developed and was shown to be suitable for analysis of elements that are subject to United States Pharmacopoeia Chapter <232> and International Conference on Harmonization's Q3D Guideline on Elemental Impurities. The procedure utilizes microwave-assisted digestion of pharmaceutical materials and inductively coupled plasma mass spectrometry for quantitative analysis of these elements. The procedure was applied to 190 samples from 31 different excipients and 15 samples from eight drug substances provided through the International Pharmaceutical Excipient Council of the Americas. The results of the survey indicate that, for the materials included in the study, relatively low levels of elemental impurities are present.

  12. Impurity bubbles in a BEC

    NASA Astrophysics Data System (ADS)

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm

    2013-05-01

    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  13. Donors in Ge as qubits —Establishing physical attributes

    NASA Astrophysics Data System (ADS)

    Baena, A.; Saraiva, A. L.; Menezes, Marcos G.; Koiller, Belita

    2016-10-01

    Quantum electronic devices at the single-impurity level demand the understanding of the physical attributes of dopants with an unprecedented accuracy. Germanium-based technologies have been developed recently, creating the necessity to adapt the latest theoretical tools to the unique electronic structure of this material. We investigate basic properties of donors in Ge which are not known experimentally, but are indispensable for qubit implementations. Our approach provides a description of the wave function at multiscale, associating microscopic information from density functional theory and envelope functions from state-of-the-art multivalley effective mass calculations, including a central-cell correction designed to reproduce the energetics of all group-V donor species (P, As, Sb and Bi). With this formalism, we predict the binding energies of negatively ionized donors (D- state). Furthermore, we investigate the signatures of buried donors to be expected from scanning tunneling microscopy (STM). The naive assumption that attributes of donor electrons in other semiconductors may be extrapolated to Ge is shown to fail, similarly to earlier attempts to recreate in Si qubits designed for GaAs. Our results suggest that the mature techniques available for qubit realizations may be adapted to germanium to some extent, but the peculiarities of the Ge band structure will demand new ideas for fabrication and control.

  14. Trends in Usage and Outcomes for Expanded Criteria Donor Kidney Transplantation in the United States Characterized by Kidney Donor Profile Index

    PubMed Central

    Rege, Aparna; Irish, Bill; Castleberry, Anthony; Vikraman, Deepak; Sanoff, Scott; Ravindra, Kadiyala; Sudan, Debra

    2016-01-01

    There has been increasing concern in the kidney transplant community about the declining use of expanded criteria donors (ECD) despite improvement in survival and quality of life. The recent introduction of the Kidney Donor Profile Index (KDPI), which provides a more granular characterization of donor quality, was expected to increase utilization of marginal kidneys and decrease the discard rates. However, trends and practice patterns of ECD kidney utilization on a national level based on donor organ quality as per KDPI are not well known. We, therefore, performed a trend analysis of all ECD recipients in the United Network for Organ Sharing (UNOS) registry between 2002 and 2012, after calculating the corresponding KDPI, to enable understanding the trends of usage and outcomes based on the KDPI characterization. High-risk recipient characteristics (diabetes, body mass index ≥30 kg/m2, hypertension, and age ≥60 years) increased over the period of the study (trend test p<0.001 for all). The proportion of ECD transplants increased from 18% in 2003 to a peak of 20.4% in 2008 and then declined thereafter to 17.3% in 2012. Using the KDPI >85% definition, the proportion increased from 9.4% in 2003 to a peak of 12.1% in 2008 and declined to 9.7% in 2012. Overall, although this represents a significant utilization of kidneys with KDPI >85% over time (p<0.001), recent years have seen a decline in usage, probably related to regulations imposed by Centers for Medicare & Medicaid Services (CMS). When comparing the hazards of graft failure by KDPI, ECD kidneys with KDPI >85% have a slightly lower risk of graft failure compared to standard criteria donor (SCD) kidneys with KDPI >85%, with a hazard ratio (HR) of 0.95, a confidence interval (CI) of 0.94-0.96, and statistical significance of p<0.001. This indicates that some SCD kidneys may actually have a lower estimated quality, with a higher Kidney Donor Risk Index (KDRI), than some ECDs. The incidence of

  15. Valency configuration of transition metal impurities in ZnO

    SciTech Connect

    Petit, Leon; Schulthess, Thomas C; Svane, Axel; Temmerman, Walter M; Szotek, Zdzislawa; Janotti, Anderson

    2006-01-01

    We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM=Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn{sub 1-x}TM{sub x}O, the localized TM{sup 2+} configuration is energetically favored over the itinerant d-electron configuration of the local spin density (LSD) picture. Our calculations indicate furthermore that the (+/0) donor level is situated in the ZnO gap. Consequently, for n-type conditions, with the Fermi energy {epsilon}F close to the conduction band minimum, TM remains in the 2+ charge state, while for p-type conditions, with {epsilon}F close to the valence band maximum, the 3+ charge state is energetically preferred. In the latter scenario, modeled here by co-doping with N, the additional delocalized d-electron charge transfers into the entire states at the top of the valence band, and hole carriers will only exist, if the N concentration exceeds the TM impurity concentration.

  16. Enhanced ionized impurity scattering in nanowires

    NASA Astrophysics Data System (ADS)

    Oh, Jung Hyun; Lee, Seok-Hee; Shin, Mincheol

    2013-06-01

    The electronic resistivity in silicon nanowires is investigated by taking into account scattering as well as the donor deactivation from the dielectric mismatch. The effects of poorly screened dopant atoms from the dielectric mismatch and variable carrier density in nanowires are found to play a crucial role in determining the nanowire resistivity. Using Green's function method within the self-consistent Born approximation, it is shown that donor deactivation and ionized impurity scattering combined with the charged interface traps successfully to explain the increase in the resistivity of Si nanowires while reducing the radius, measured by Björk et al. [Nature Nanotech. 4, 103 (2009)].

  17. Ionization of high-density deep donor defect states explains the low photovoltage of iron pyrite single crystals.

    PubMed

    Cabán-Acevedo, Miguel; Kaiser, Nicholas S; English, Caroline R; Liang, Dong; Thompson, Blaise J; Chen, Hong-En; Czech, Kyle J; Wright, John C; Hamers, Robert J; Jin, Song

    2014-12-10

    Iron pyrite (FeS2) is considered a promising earth-abundant semiconductor for solar energy conversion with the potential to achieve terawatt-scale deployment. However, despite extensive efforts and progress, the solar conversion efficiency of iron pyrite remains below 3%, primarily due to a low open circuit voltage (VOC). Here we report a comprehensive investigation on {100}-faceted n-type iron pyrite single crystals to understand its puzzling low VOC. We utilized electrical transport, optical spectroscopy, surface photovoltage, photoelectrochemical measurements in aqueous and acetonitrile electrolytes, UV and X-ray photoelectron spectroscopy, and Kelvin force microscopy to characterize the bulk and surface defect states and their influence on the semiconducting properties and solar conversion efficiency of iron pyrite single crystals. These insights were used to develop a circuit model analysis for the electrochemical impedance spectroscopy that allowed a complete characterization of the bulk and surface defect states and the construction of a detailed energy band diagram for iron pyrite crystals. A holistic evaluation revealed that the high-density of intrinsic surface states cannot satisfactorily explain the low photovoltage; instead, the ionization of high-density bulk deep donor states, likely resulting from bulk sulfur vacancies, creates a nonconstant charge distribution and a very narrow surface space charge region that limits the total barrier height, thus satisfactorily explaining the limited photovoltage and poor photoconversion efficiency of iron pyrite single crystals. These findings lead to suggestions to improve single crystal pyrite and nanocrystalline or polycrystalline pyrite films for successful solar applications.

  18. Impurities and electronic localization in graphene bilayers

    NASA Astrophysics Data System (ADS)

    Ojeda Collado, H. P.; Usaj, Gonzalo; Balseiro, C. A.

    2015-01-01

    We analyze the electronic properties of bilayer graphene with Bernal stacking and a low concentration of adatoms. Assuming that the host bilayer lies on top of a substrate, we consider the case where impurities are adsorbed only on the upper layer. We describe nonmagnetic impurities as a single orbital hybridized with carbon's pz states. The effect of impurity doping on the local density of states with and without a gated electric field perpendicular to the layers is analyzed. We look for Anderson localization in the different regimes and estimate the localization length. In the biased system, the field-induced gap is partially filled by strongly localized impurity states. Interestingly, the structure, distribution, and localization length of these states depend on the field polarization.

  19. Evidence of Delocalization in Charge-Transfer State Manifold for Donor:Acceptor Organic Photovoltaics.

    PubMed

    Guan, Zhiqiang; Li, Ho-Wa; Zhang, Jinfeng; Cheng, Yuanhang; Yang, Qingdan; Lo, Ming-Fai; Ng, Tsz-Wai; Tsang, Sai-Wing; Lee, Chun-Sing

    2016-08-24

    How charge-transfer states (CTSs) assist charge separation of a Coulombically bound exciton in organic photovoltaics has been a hot topic. It is believed that the delocalization feature of a CTS plays a crucial role in the charge separation process. However, the delocalization of the "hot" and the "relaxed" CTSs is still under debate. Here, with a novel frequency dependent charge-modulated electroabsorption spectroscopy (CMEAS) technique, we elucidate clearly that both "hot" and "relaxed" CTSs are loosely bound and delocalized states. This is confirmed by comparing the CMEAS results of CTSs with those of localized polaron states. Our results reveal the role of CTS delocalization on charge separation and indicate that no substantial delocalization gradient exists in CTSs.

  20. Identification of rhenium donors and sulfur vacancy acceptors in layered MoS2 bulk samples

    NASA Astrophysics Data System (ADS)

    Brandão, F. D.; Ribeiro, G. M.; Vaz, P. H.; González, J. C.; Krambrock, K.

    2016-06-01

    MoS2 monolayers, a two-dimensional (2D) direct semiconductor material with an energy gap of 1.9 eV, offer many opportunities to be explored in different electronic devices. Defects often play dominant roles in the electronic and optical properties of semiconductor devices. However, little experimental information about intrinsic and extrinsic defects or impurities is available for this 2D system, and even for macroscopic 3D samples for which MoS2 shows an indirect bandgap of 1.3 eV. In this work, we evaluate the nature of impurities with unpaired spins using electron paramagnetic resonance (EPR) in different geological macroscopic samples. Regarding the fact that monolayers are mostly obtained from natural crystals, we expect that the majority of impurities found in macroscopic samples are also randomly present in MoS2 monolayers. By EPR at low temperatures, rhenium donors and sulfur vacancy acceptors are identified as the main impurities in bulk MoS2 with a corresponding donor concentration of about 108-12 defects/cm2 for MoS2 monolayer. Electrical transport experiments as a function of temperature are in good agreement with the EPR results, revealing a shallow donor state with an ionization energy of 89 meV and a concentration of 7 × 1015 cm-3, which we attribute to rhenium, as well as a second deeper donor state with ionization energy of 241 meV with high concentration of 2 × 1019 cm-3 and net acceptor concentration of 5 × 1018 cm-3 related to sulfur vacancies.

  1. The Risk of End-Stage Renal Disease Among Living Donor Liver Transplant Recipients in the United States.

    PubMed

    Goldberg, D S; Ruebner, R L; Abt, P L

    2015-10-01

    Since initiation of model for end-stage liver disease (MELD)-based allocation for liver transplantation, the risk of posttransplant end-stage renal disease (ESRD) has increased. Recent US data have demonstrated comparable, if not superior survival, among recipients of living donor liver transplants (LDLT) when compared to deceased donor liver transplant (DDLT) recipients. However, little is known about the incidence of ESRD post-LDLT. We analyzed linked Scientific Registry of Transplant Recipients (SRTR) and US Renal Data System (USRDS) data of first-time liver-alone transplant recipients from February 27, 2002 to March 1, 2011, and restricted the cohort to recipients with a laboratory MELD score ≤25 not on dialysis prior to transplantation, in order to evaluate the incidence of ESRD post-LDLT, and to compare the incidence among LDLT versus DDLT recipients. There were 28 707 DDLT and 1917 LDLT recipients included in the analyses. The 1-, 3- and 5-year unadjusted risk of ESRD was 1.7%, 2.9% and 3.4% in LDLT recipients, compared with 1.5%, 3.0% and 4.8% in DDLT recipients (p > 0.05), respectively. In multivariable competing risk Cox regression models, there was no association between receiving an LDLT and risk of ESRD (sub-hazard ratio: 0.99, 95% CI: 0.77-1.26, p = 0.92). In conclusion, the incidence of ESRD post-LDLT in the United States is low, and there are no significant differences among LDLT and DDLT recipients with MELD scores ≤25 at transplantation.

  2. Donor Human Milk for the High-Risk Infant: Preparation, Safety, and Usage Options in the United States.

    PubMed

    2017-01-01

    The use of donor human milk is increasing for high-risk infants, primarily for infants born weighing <1500 g or those who have severe intestinal disorders. Pasteurized donor milk may be considered in situations in which the supply of maternal milk is insufficient. The use of pasteurized donor milk is safe when appropriate measures are used to screen donors and collect, store, and pasteurize the milk and then distribute it through established human milk banks. The use of nonpasteurized donor milk and other forms of direct, Internet-based, or informal human milk sharing does not involve this level of safety and is not recommended. It is important that health care providers counsel families considering milk sharing about the risks of bacterial or viral contamination of nonpasteurized human milk and about the possibilities of exposure to medications, drugs, or herbs in human milk. Currently, the use of pasteurized donor milk is limited by its availability and affordability. The development of public policy to improve and expand access to pasteurized donor milk, including policies that support improved governmental and private financial support for donor milk banks and the use of donor milk, is important.

  3. Mesomeric and twisted intramolecular-charge-transfer states as a key to polarity-dependent fluorescence of donor acceptor-substituted aryl pyrenes

    NASA Astrophysics Data System (ADS)

    Dekhtyar, M.; Rettig, W.; Weigel, W.

    2008-03-01

    Computational study by the AM1 method has been performed for pyrene-based donor-acceptor-substituted systems, with the aim to elucidate the origin of their polarity-dependent fluorescence governed by mesomeric and twisted internal-charge-transfer (MICT and TICT, resp.) states. Using theoretical methods, principal relationships have been established between the constitution of arylpyrene derivatives (donor-acceptor strength of substituents, the substitution pattern, sterical hindrance, inclusion of additional aryl spacers between the donor and acceptor moieties, etc.) and environmental effects (solvent polarity and external electric field strength), and the properties of the MICT and TICT states (energy, localization, dipole moment, allowedness). These relationships have been compared to the experimental fluorescence properties. The substituent-induced donor-acceptor difference has been varied in a continuous way in both directions by employing point charges in the molecular surrounding ("sparkles"). A remarkable feature of the phenylpyrene molecule has thus been revealed: it can exist in two MICT and two TICT states, the CT states in each pair being oppositely polarized and much the same in energy. It is shown, moreover, that the quantum-chemically calculated trends in MICT and TICT energies in the families of related compounds can be qualitatively judged from simple MO considerations including the analysis of frontier MO energies and shapes for the isolated molecular subunits. The approach employed is, therefore, applicable as a first-step tool in the design of compounds with the desired features of polarity-sensitive fluorescence.

  4. An introduction to blocked impurity band detectors

    NASA Technical Reports Server (NTRS)

    Geist, Jon

    1988-01-01

    Blocked impurity band detectors fabricated using standard silicon technologies offer the possibility of combining high sensitivity and high accuracy in a single detector operating in a low background environment. The solid state photomultiplier described by Petroff et al., which is a new type of blocked impurity band detector, offers even higher sensitivity as well as operation in the visible spectral region. The principle of operation and possible application of blocked impurity band detectors for stellar seismology and the search for extra-solar planets are described.

  5. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    PubMed

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy

  6. Valley spin-orbit interaction for the triplet and doublet 1sground states of lithium donor center in monoisotopic {sup 28}Si

    SciTech Connect

    Ezhevskii, Alexander A.; Popkov, Sergey A.; Soukhorukov, Andrey V.; Guseinov, Davud V.; Konakov, Anton A.; Abrosimov, Nikolai V.; Riemann, Helge

    2013-12-04

    Valley spin-orbit interaction for the triplet and doublet 1s-ground states of lithium donor center in monoisotopic {sup 28}Si was studied in order to determine its contribution to the electron spin relaxation rate. We observed new electron paramagnetic resonance spectra of lithium in monoisotopic silicon with g<2.000 and found the spin Hamiltonian parameters for it. Using our experimental results and taking into account spin-orbit coupling between the triplet states and the triplet and doublet states we found that the lithium donor electron spectrum and g-factors for its states strongly depend on both the internal strains in the crystal and the intervalley spin-orbit interactions.

  7. Motion of a distinguishable Impurity in the Bose gas: Arrested expansion without a lattice and impurity snaking

    SciTech Connect

    Neil J. Robinson; Caux, Jean -Sebastien; Konik, Robert M.

    2016-04-07

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. In conclusion, when the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton’s cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.

  8. Motion of a distinguishable Impurity in the Bose gas: Arrested expansion without a lattice and impurity snaking

    DOE PAGES

    Neil J. Robinson; Caux, Jean -Sebastien; Konik, Robert M.

    2016-04-07

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. In conclusion, when the impurity is injected with a finite center-of-mass momentum,more » the impurity moves through the background gas in a snaking manner, arising from a quantum Newton’s cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.« less

  9. Motion of a Distinguishable Impurity in the Bose Gas: Arrested Expansion Without a Lattice and Impurity Snaking

    NASA Astrophysics Data System (ADS)

    Robinson, Neil J.; Caux, Jean-Sébastien; Konik, Robert M.

    2016-04-01

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.

  10. Donor Designation: Racial and Ethnic Differences in United States Non-Designators’ Preferred Methods for Disclosing Intent to Donate Organs

    PubMed Central

    Purnell, Tanjala S.; Powe, Neil R.; Troll, Misty U.; Wang, Nae-Yuh; LaVeist, Thomas A.; Boulware, L. Ebony

    2011-01-01

    Main Problem Little is known about racial/ethnic differences in preferred methods of disclosing deceased organ donation intentions among persons not previously designating their organ donation preferences publicly or the association of medical mistrust with preferences. Methods We surveyed 307 United States (US) adults who had not yet designated their donation intentions via drivers’ licenses or organ donor cards (non-designators) to identify their preferred disclosure methods (personal discussions with family, physicians, or religious representatives or public registration via mail/telephone/computer, workplace, place of religious worship, or grocery store/bank/post office) and to assess the association of mistrust with preferences. In multivariable models, we assessed racial/ethnic differences in preferences and the influence of medical mistrust on preferences. Results Non-designators most preferred discussions with physicians (65%) or family members (63%). After adjustment, African Americans (AAs) were more likely than Whites to prefer discussion with religious representatives. In contrast, AAs and Hispanics were less likely than Whites to prefer registration at a workplace or through mail/telephone/computer. Medical mistrust was common and associated with less willingness to disclose via several methods. Conclusions Encouraging donation intention disclosure via discussions with physicians, family, and religious representatives and addressing medical mistrust could enhance strategies to improve non-designators’ donation rates. PMID:21777299

  11. Submonolayer epitaxy with impurities

    NASA Astrophysics Data System (ADS)

    Kotrla, Miroslav; Krug, Joachim; Smilauer, Pavel

    2000-03-01

    The effect of impurities on epitaxial growth in the submonolayer regime is studied using kinetic Monte Carlo simulations of a two-species solid-on-solid growth model. Both species are mobile, and attractive interactions among adatoms and between adatoms and impurities are incorporated. Impurities can be codeposited with the growing material or predeposited prior to growth. The activated exchange of impurities and adatoms is identified as the key kinetic process in the formation a growth morphology in which the impurities decorate the island edges. The dependence of the island density N on flux F and coverage θ is studied in detail. The impurities strongly increase the island density without appreciably changing the exponent \\chi in the power law relation N ~ F^\\chi, apart from a saturation of the flux dependence at large F and small θ. Within the present model, even completely decorated island edges do not provide efficient barriers to the attachment of adatoms, and therefore the mechanism for the increase of \\chi proposed by D. Kandel [Phys. Rev. Lett. 78, 499 (1997)] is not operative. A simple analytic theory taking into account only the dependence of the adatom diffusion constant on impurity coverage is shown to provide semi-quantitative agreement with many features observed in the simulations.

  12. Impurities in snowpacks.

    PubMed

    Sommerfeld, R A

    1989-04-01

    Snow can be involved in the acquisition, transport, storage and release of atmospheric impurities. Because it can store impurities for periods of time ranging from hours to millenia, it provides a medium for monitoring atmospheric impurities for a wide range of time scales.In most climates, snow is involved in the precipitation process. It can acquire atmospheric impurities either as aerosols or as gases. The aereosols can be included in the body of the snow crystals or adhered to their surfaces. Gases may be included in bubbles, particularly in the case of rime, or adsorbed on the ice surfaces. The amount of ice surface in a small storm is about 10(10) m(2).Snow on the ground can store the impurities acquired in the precipitation process and can acquire additional impurities as dry deposition. The low temperatures and the fact that ice is a solid reduces biological activity and rates of inorganic reactions. However, the assumption that there is no activity in the winter is not well found. Exchange is possible between different layers of the snow and between the snow and the atmosphere, resulting in relocation of gases and aerosols. These processes also insure that the impurities reside on the exterior surfaces of the ice particles that form the snowpack. Biological activity is possible near the ground-snow interface in most climates.The seasonal snowpack releases its impurities when it melts. Because below freezing processes relocate any internal impurities to the ice surfaces within the snowpack, the impurities are available to the first melt water. Pulses of both acidic and alkalinic impurities have been observed with the initial snow melt water. However, the monitoring of such pulses is difficult and the measurements are inconsistent.Impurities are incorporated for longer periods of time in perennial snowpacks and finally in ice fields. These can be glaciers, or, at the largest scale, continental ice sheets. Coring such ice is expensive but provides data on

  13. Phase Shift of the Asymmetric Friedel-Anderson Impurity

    NASA Astrophysics Data System (ADS)

    Bergmann, Gerd

    2013-04-01

    The ground state of the asymmetric Friedel-Anderson (aFA) impurity is calculated within the FAIR (Friedel artificially inserted resonance) theory. Its properties are investigated by means of the fidelity with different Friedel impurities and by its Friedel oscillations. Friedel impurities with a specific phase shift δ at the Fermi level possess a finite fidelity with the aFA impurity. This phase shift δ determines other properties of the aFA impurity such as the amplitude and displacement of its Friedel oscillations. One can find the parameters of a Friedel impurity which coincides in its Friedel oscillations almost perfectly with the aFA impurity, thereby avoiding an Anderson orthogonality catastrophe.

  14. Numerical Studies of Impurities in Fusion Plasmas

    DOE R&D Accomplishments Database

    Hulse, R. A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.

  15. Blood discard rate and the prevalence of infectious and contagious diseases in blood donors from provincial towns of the state of Paraná, Brazil

    PubMed Central

    Borelli, Sueli Donizete; Mazzola, Jocimara Costa; Matta, Alessandra Cristina Gobbi; Takemoto, Angélica Yukari; Bértoli, Marta

    2013-01-01

    Background So that an improvement in the selection of donors can be achieved and the risk to the recipient of transfused blood can be reduced, prospective donors are submitted to clinical and serological screening. Objective This study investigated the blood discard rate and the rate of infectious and contagious diseases in blood donors from provincial towns of the state of Paraná, Brazil. Methods This study was an exploratory cross-sectional descriptive investigation with a quantitative approach of donations between January and December 2011. Results In the study period the Regional Blood center in Maringá, Brazil received 8337 blood donations from people living in the city and neighboring towns. However, 278 (3.33%) donations were discarded during serological screening owing to one or more positive serological markers. A total of 46.4% of the discarded blood units were confirmed positive by serology with anti-HBc being the most common (66.7%), followed by syphilis (22.5%), HBsAg (4.7%), anti-hepatitis C virus (3.1%), human immunodeficiency virus (1.5%) and Chagas' disease (1.5%). The rate of infectious-contagious diseases that can be transmitted by blood transfusions was 1.55% (129/8337) of the donor population with a frequency of 1.03% for anti-HBc and 0.35% for syphilis. Conclusion This study demonstrates a high prevalence of the anti-HBc marker in prospective blood donors from provincial towns in the state of Paraná, Brazil. PMID:24478604

  16. Experimental Demonstration of the Dependence of the First Hyperpolarizability of Donor-Acceptor Substituted Polyenes on the Ground-State Polarization and Bond Length Alternation

    NASA Technical Reports Server (NTRS)

    Bourhill, G.; Bredas, J-L.; Cheng, L-T.; Marder, S. R.; Meyers, F.; Perry, J. W.; Tiemann, B. G.

    1993-01-01

    The dependence of the product of the first hyperpolarizability, beta, and the ground-state dipole moment, mu, for a series of donor-acceptor polyenes with a large range of ground-state polarization, was measured in a variety of solvents by electric field induced second harmonic generation. The observed behavior of mu times beta as a function of ground-state polarization agrees well with theoretical predictions. In particular, as a function of increasing polarization, mu times beta was found to first increase, peak in a positive sense, decrease, pass through zero, become large and negative, and eventually peak in a negative sense.

  17. Detection of 549 new HLA alleles in potential stem cell donors from the United States, Poland and Germany.

    PubMed

    Hernández-Frederick, C J; Cereb, N; Giani, A S; Ruppel, J; Maraszek, A; Pingel, J; Sauter, J; Schmidt, A H; Yang, S Y

    2016-01-01

    We characterized 549 new human leukocyte antigen (HLA) class I and class II alleles found in newly registered stem cell donors as a result of high-throughput HLA typing. New alleles include 101 HLA-A, 132 HLA-B, 105 HLA-C, 2 HLA-DRB1, 89 HLA-DQB1 and 120 HLA-DPB1 alleles. Mainly, new alleles comprised single nucleotide variations when compared with homologous sequences. We identified nonsynonymous nucleotide mutations in 70.7% of all new alleles, synonymous variations in 26.4% and nonsense substitutions in 2.9% (null alleles). Some new alleles (55, 10.0%) were found multiple times, HLA-DPB1 alleles being the most frequent among these. Furthermore, as several new alleles were identified in individuals from ethnic minority groups, the relevance of recruiting donors belonging to such groups and the importance of ethnicity data collection in donor centers and registries is highlighted.

  18. Assessment of variation in live donor kidney transplantation across transplant centers in the United States1 - 8

    PubMed Central

    Reese, Peter P.; Feldman, Harold I.; Bloom, Roy D.; Abt, Peter L.; Thomasson, Arwin; Shults, Justine; Grossman, Robert; Asch, David A.

    2012-01-01

    Background Transplant centers vary in the proportion of kidney transplants performed using live donors. Clinical innovations that facilitate live donation may drive this variation. Methods We assembled a cohort of renal transplant candidates at 194 US centers using registry data from 1999 – 2005. We measured magnitude of live donor transplant (LDKTx) through development of a standardized live donor transplant ratio (SLDTR) at each center that accounted for center population differences. We examined associations between center characteristics and the likelihood that individual transplant candidates underwent LDKTx. To identify practices through which centers increase LDKTx, we also examined center characteristics associated with consistently being in the upper three quartiles of SLDTR. Results The cohort comprised 148,168 patients, among whom 34,593 (23.3%) underwent LDKTx. In multivariable logistic regression, candidates had an increased likelihood of undergoing LDKTx at centers with greater use of “unrelated donors” (defined as non-spouses and non-first-degree family members of the recipient; OR 1.31 for highest versus lowest use, p=0.02) and at centers with programs to overcome donor-recipient incompatibility (OR 1.33, p=0.01.) Centers consistently in the upper three SLDTR quartiles were also more likely to use “unrelated” donors (OR 8.30 per tertile of higher use, p<0.01), to have incompatibility programs (OR 4.79, p<0.01), and to use laparoscopic nephrectomy (OR 2.53 per tertile of higher use, p=0.02). Conclusion Differences in center population do not fully account for differences in the use of LDKTx. To maximize opportunities for LDKTx, centers may accept more unrelated donors and adopt programs to overcome biological incompatibility. PMID:21562451

  19. Surface donor states distribution post SiN passivation of AlGaN/GaN heterostructures

    SciTech Connect

    Goyal, Nitin; Fjeldly, Tor A.

    2014-07-21

    In this paper, we present a physics based analytical model to describe the effect of SiN passivation on two-dimensional electron gas density and surface barrier height in AlGaN/GaN heterostructures. The model is based on an extraction technique to calculate surface donor density and surface donor level at the SiN/AlGaN interface. The model is in good agreement with the experimental results and promises to become a useful tool in advanced design and characterization of GaN based heterostructures.

  20. Optical density of states in ultradilute GaAsN alloy: Coexistence of free excitons and impurity band of localized and delocalized states

    SciTech Connect

    Bhuyan, Sumi; Pal, Bipul; Bansal, Bhavtosh; Das, Sanat K.; Dhar, Sunanda

    2014-07-14

    Optically active states in liquid phase epitaxy-grown ultra-dilute GaAsN are studied. The feature-rich low temperature photoluminescence spectrum has contributions from excitonic band states of the GaAsN alloy, and two types of defect states—localized and extended. The degree of delocalization for extended states both within the conduction and defect bands, characterized by the electron temperature, is found to be similar. The degree of localization in the defect band is analyzed by the strength of the phonon replicas. Stronger emission from these localized states is attributed to their giant oscillator strength.

  1. Prevalence of anti-hepatitis C virus antibody among pregnant women and blood donors at Bowen University Teaching Hospital, Ogbomoso, Oyo State, Nigeria.

    PubMed

    Hilda, Awoyelu E; Kola, Oloke Julius; Kolawole, Oladipo E

    2016-09-27

    Hepatitis C virus is one of the emerging infectious diseases that can be transmitted through blood-to-blood contact. This study was carried out to determine the prevalence of anti-HCV antibodies among potential blood donors and pregnant women attending Bowen University Teaching Hospital (BUTH), Ogbomoso, Oyo State. This hospital-based study was conducted from December 2014 to September 2015. The study group (N = 279) included potential blood donors and pregnant women. Data on socio-demographic characteristics and potential risk factors were collected using a structured questionnaire. The presence of anti-HCV antibodies in serum samples of the studied subjects were detected using third-generation Enzyme Linked Immunosorbent Assay (ELISA) (WKEA Med Supplies Corp, China). Chisquare test was utilized to assess the association between the socio-demographic variables and HCV status. Logistic regression was done to determine the strength of association between risk factors and HCV status. Statistical significance was set at P ˂ 0.05. Overall seroprevalence of hepatitis C virus infection was found to be 1.79% consisting 0.36% of pregnant women and 1.43% of blood donors. None of the socio-demographic characteristics and potential risk factors among the study groups were significantly associated with hepatitis C virus infection. This study found a seroprevalence of anti-HCV antibody to be 1.79%, thus, screening of pregnant women and blood donors for HCV infections with the use of ELISA is recommended because of its important role in detecting the presence of anti-HCV antibody with utmost specificity and sensitivity. HCV, Pregnant women, Blood donors, Seroprevalence, Socio-demographic factor, BOWEN, Ogbomoso.

  2. Impurity gettering in semiconductors

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500.degree. C. to about 700.degree. C. for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal.

  3. Impurity gettering in semiconductors

    DOEpatents

    Sopori, B.L.

    1995-06-20

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device is disclosed. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500 C to about 700 C for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal. 1 fig.

  4. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Spectrum and Binding Energy of an Off-Center Hydrogenic Donor in a Spherical Quantum Dot

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-Hui; Huang, Jin-Sheng; Yin, Miao; Zeng, Qi-Jun; Zhang, Jun-Pei

    2010-08-01

    Off-center impurity effects in a spherical quantum dot are theoretically studied by degenerate perturbation method in strong confinement. The energy levels and binding energies are computed for the typical GaAs material as function of the donor position. The numerical results show the quantum size effect. We note that the energy levels and binding energies are not only related to the position of donor and the strength of confinement, but also related to the fold of degenerate states. We can see obviously that gaps will appear among the degenerate states and the splitting of energy levels and binding energies will appear as the position of the impurity is shifted away off the center.

  5. The temporal dynamics of impurity photoconductivity in quantum wells in GaAs

    SciTech Connect

    Aleshkin, V. Ya. E-mail: aleshkin@ipm.sci-nnov.ru

    2015-10-15

    A theory of cascade capture at charged donors in quantum wells (QWs) is developed without using the Fokker-Planck approximation, which is not valid in QWs. The time dependences of impurity photoconductivity and photoelectron concentration in GaAs QWs are determined. The cascade capture time as a function of the charge donor concentration is calculated.

  6. Three hundred and seventy-two novel HLA class II alleles identified in potential hematopoietic stem cell donors from Germany, the United States, and Poland.

    PubMed

    Hernández-Frederick, C J; Cereb, N; Giani, A S; Ruppel, J; Maraszek, A; Pingel, J; Sauter, J; Schmidt, A H; Yang, S Y

    2014-11-01

    We have characterized 372 novel human leukocyte antigen (HLA) class II alleles identified in newly registered stem cell donors, this includes 281 HLA-DRB1 alleles, 89 HLA-DQB1 alleles and 2 HLA-DPB1 alleles. Most novel alleles were single nucleotide variants when compared to their respective most homologous alleles. In 66.4% of all novel alleles non-synonymous nucleotide variations were identified, in 30.4% synonymous substitutions and in 3.2% nonsense mutations. Ninty-three (25.0%) novel alleles were found in several individuals; most often these were novel HLA-DRB1 alleles. Lastly, we underline the importance of recruiting ethnic minority donors in countries such as Germany and the United States, as novel alleles were frequently found among these groups.

  7. A theory of planned behavior study of college students' intention to register as organ donors in Japan, Korea, and the United States.

    PubMed

    Bresnahan, Mary; Lee, Sun Young; Smith, Sandi W; Shearman, Sachiyo; Nebashi, Reiko; Park, Cheong Yi; Yoo, Jina

    2007-01-01

    This study investigated willingness of Americans, Koreans, and Japanese to register as organ donors using the theory of planned behavior. Although previous research showed that attitude toward donation and communication with family predicted organ donation behaviors for respondents in the United States, these variables were also significant for respondents in Japan and Korea. Perceived behavioral control predicted intention to register for Japanese participants whereas knowledge about organ donation was associated with reluctance to register for Koreans. Spiritual connection and concern were shown to be causal factors underlying attitude in all 3 countries. In spite of positive attitudes toward organ donation and comparable knowledge with Americans and Japanese, most Korean participants declined to take an application to register as a donor. Implications of these findings for future research are discussed.

  8. Magnetic impurities in spin-split superconductors

    NASA Astrophysics Data System (ADS)

    van Gerven Oei, W.-V.; Tanasković, D.; Žitko, R.

    2017-02-01

    Hybrid semiconductor-superconductor quantum dot devices are tunable physical realizations of quantum impurity models for a magnetic impurity in a superconducting host. The binding energy of the localized subgap Shiba states is set by the gate voltages and external magnetic field. In this work we discuss the effects of the Zeeman spin splitting, which is generically present both in the quantum dot and in the (thin-film) superconductor. The unequal g factors in semiconductor and superconductor materials result in respective Zeeman splittings of different magnitude. We consider both classical and quantum impurities. In the first case we analytically study the spectral function and the subgap states. The energy of bound states depends on the spin-splitting of the Bogoliubov quasiparticle bands as a simple rigid shift. For the case of collinear magnetization of impurity and host, the Shiba resonance of a given spin polarization remains unperturbed when it overlaps with the branch of the quasiparticle excitations of the opposite spin polarization. In the quantum case, we employ numerical renormalization group calculations to study the effect of the Zeeman field for different values of the g factors of the impurity and of the superconductor. We find that in general the critical magnetic field for the singlet-doublet transition changes nonmonotonically as a function of the superconducting gap, demonstrating the existence of two different transition mechanisms: Zeeman splitting of Shiba states or gap closure due to Zeeman splitting of Bogoliubov states. We also study how in the presence of spin-orbit coupling, modeled as an additional noncollinear component of the magnetic field at the impurity site, the Shiba resonance overlapping with the quasiparticle continuum of the opposite spin gradually broadens and then merges with the continuum.

  9. Identification of 2127 new HLA class I alleles in potential stem cell donors from Germany, the United States and Poland.

    PubMed

    Hernández-Frederick, C J; Giani, A S; Cereb, N; Sauter, J; Silva-González, R; Pingel, J; Schmidt, A H; Ehninger, G; Yang, S Y

    2014-03-01

    We describe 2127 new human leukocyte antigen (HLA) class I alleles found in registered stem cell donors. These alleles represent 28.9% of the currently known class I alleles. Comparing new allele sequences to homologous sequences, we found 68.1% nonsynonymous nucleotide substitutions, 28.9% silent mutations and 3.0% nonsense mutations. Many substitutions occurred at positions that have not been known to be polymorphic before. A large number of HLA alleles and nucleotide variations underline the extreme diversity of the HLA system. Strikingly, 156 new alleles were found not only multiple times, but also in carriers of various parentage, suggesting that some new alleles are not necessarily rare. Moreover, new alleles were found especially often in minority donors. This emphasizes the benefits of specifically recruiting such groups of individuals.

  10. Magnetic impurity in a Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Sun, Jin-Hua; Xu, Dong-Hui; Zhang, Fu-Chun; Zhou, Yi

    2015-11-01

    We utilize the variational method to study the Kondo screening of a spin-1 /2 magnetic impurity in a three-dimensional (3D) Weyl semimetal with two Weyl nodes along the kz axis. The model reduces to a 3D Dirac semimetal when the separation of the two Weyl nodes vanishes. When the chemical potential lies at the nodal point, μ =0 , the impurity spin is screened only if the coupling between the impurity and the conduction electron exceeds a critical value. For finite but small μ , the impurity spin is weakly bound due to the low density of states, which is proportional to μ2, contrary to that in a 2D Dirac metal such as graphene and 2D helical metal, where the density of states is proportional to |μ | . The spin-spin correlation function Ju v(r ) between the spin v component of the magnetic impurity at the origin and the spin u component of a conduction electron at spatial point r is found to be strongly anisotropic due to the spin-orbit coupling, and it decays in the power law. The main difference of the Kondo screening in 3D Weyl semimetals and in Dirac semimetals is in the spin x (y ) component of the correlation function in the spatial direction of the z axis.

  11. Characterization of liquid phase epitaxial GaAs forblocked-impurity-band far-infrared detectors

    SciTech Connect

    Cardozo, B.L.; Reichertz, L.A.; Beeman, J.W.; Haller, E.E.

    2004-04-07

    GaAs Blocked-Impurity-Band (BIB) photoconductor detectors have the potential to become the most sensitive, low noise detectors in the far-infrared below 45.5 cm{sup -1} (220 {micro}m). We have studied the characteristics of liquid phase epitaxial GaAs films relevant to BIB production, including impurity band formation and the infrared absorption of the active section of the device. Knowledge of the far-infrared absorption spectrum as a function of donor concentration combined with variable temperature Hall effect and resistivity studies leads us to conclude that the optimal concentration for the absorbing layer of a GaAs BIB detector lies between 1 x 10{sup 15} and 6.7 x 10{sup 15} cm{sup -3}. At these concentrations there is significant wavefunction overlap which in turn leads to absorption beyond the 1s ground to 2p bound excited state transition of 35.5 cm{sup -1} (282 {micro}m). There still remains a gap between the upper edge of the donor band and the bottom of the conduction band, a necessity for proper BIB detector operation.

  12. Excited State Dynamics Can Be Used to Probe Donor-Acceptor Distances for H-Tunneling Reactions Catalyzed by Flavoproteins

    PubMed Central

    Hardman, Samantha J.O.; Pudney, Christopher R.; Hay, Sam; Scrutton, Nigel S.

    2013-01-01

    In enzyme systems where fast motions are thought to contribute to H-transfer efficiency, the distance between hydrogen donor and acceptor is a very important factor. Sub-ångstrom changes in donor-acceptor distance can have a large effect on the rate of reaction, so a sensitive probe of these changes is a vital tool in our understanding of enzyme function. In this study we use ultrafast transient absorption spectroscopy to investigate the photoinduced electron transfer rates, which are also very sensitive to small changes in distance, between coenzyme analog, NAD(P)H4, and the isoalloxazine center in the model flavoenzymes morphinone reductase (wild-type and selected variants) and pentaerythritol tetranitrate reductase (wild-type). It is shown that upon addition of coenzyme to the protein the rate of photoinduced electron transfer is increased. By comparing the magnitude of this increase with existing values for NAD(P)H4-FMN distances, based on charge-transfer complex absorbance and experimental kinetic isotope effect reaction data, we show that this method can be used as a sensitive probe of donor-acceptor distance in a range of enzyme systems. PMID:24314085

  13. On impurity handling in high performance stellarator/heliotron plasmas

    NASA Astrophysics Data System (ADS)

    Burhenn, R.; Feng, Y.; Ida, K.; Maassberg, H.; McCarthy, K. J.; Kalinina, D.; Kobayashi, M.; Morita, S.; Nakamura, Y.; Nozato, H.; Okamura, S.; Sudo, S.; Suzuki, C.; Tamura, N.; Weller, A.; Yoshinuma, M.; Zurro, B.

    2009-06-01

    The Large Helical Device (LHD) and Wendelstein 7-X (W7-X, under construction) are experiments specially designed to demonstrate long-pulse (quasi steady state) operation, which is an intrinsic property of stellarators and heliotrons. Significant progress has been made in establishing high performance plasmas. A crucial point is the increasing impurity confinement at high density observed at several machines (TJ-II, W7-AS, LHD) which can lead to impurity accumulation and early pulse termination by radiation collapse. In addition, theoretical predictions for non-axisymmetric configurations predict the absence of impurity screening by ion temperature gradients in standard ion-root plasmas. Nevertheless, scenarios were found where impurity accumulation was successfully avoided in LHD and W7-AS due to the onset of friction forces in the (high density and low temperature) scrape-off-layer (SOL), the generation of magnetic islands at the plasma boundary and to a certain degree also by edge localized modes, flushing out impurities and reducing the net impurity influx into the core. In both the W7-AS high density H-mode regime and in the case of application of sufficient electron cyclotron radiation heating power a reduction in impurity core confinement was observed. The exploration of such purification mechanisms is a demanding task for successful steady-state operation. Impurity transport at the plasma edge/SOL was identified to play a major role for the global impurity behaviour in addition to the core confinement.

  14. Dynamical impurity problems

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1993-12-31

    In the past few years there has been a resurgence of interest in dynamical impurity problems, as a result of developments in the theory of correlated electron systems. The general dynamical impurity problem is a set of conduction electrons interacting with an impurity which has internal degrees of freedom. The simplest and earliest example, the Kondo problem, has attracted interest since the mid-sixties not only because of its physical importance but also as an example of a model displaying logarithmic divergences order by order in perturbation theory. It provided one of the earliest applications of the renormalization group method, which is designed to deal with just such a situation. As we shall see, the antiferromagnetic Kondo model is controlled by a strong-coupling fixed point, and the essence of the renormalization group solution is to carry out the global renormalization numerically starting from the original (weak-coupling) Hamiltonian. In these lectures, we shall describe an alternative route in which we identify an exactly solvable model which renormalizes to the same fixed point as the original dynamical impurity problem. This approach is akin to determining the critical behavior at a second order phase transition point by solving any model in a given universality class.

  15. Donor Tag Game

    MedlinePlus

    ... Games > Donor Tag Game Printable Version Donor Tag Game This feature requires version 6 or later of ... LGBTQ+ Donors Blood Donor Community Real Stories SleevesUp Games Facebook Avatars and Badges Banners eCards Enter your ...

  16. Hydrostatic pressure investigation of the metastable character of S and Se impurity states in Ga 0.78In 0.22Sb mixed crystals

    NASA Astrophysics Data System (ADS)

    Zitouni, K.; Kadri, A.; Konczewicz, L.; Aulombard, R. L.

    1986-05-01

    Hall effect and resistivity measurements have been made on S-doped and Se-doped Ga xIn 1- xSb ( x = 0.78) at hydrostatic pressure up to 15 kbar. With increasing pressure at T = 300 K, in both kind of samples, the electrons are strongly trapped into a resonant impurity level. Moreover, the occupation of this level leads to time-dependent effects at T < 110 K. The activated thermal electron emission, with a potential barrier of ∼180 meV in S-doped and ∼240 meV in Se-doped samples, gives clear evidence for a large lattice relaxation around the impurity centers similar to that responsible for presistent photoconductivity observed in many semiconductor compounds and alloys.

  17. Detection of impurity diamagnetic susceptibility and its behavior in n-Ge:As in the region of the insulator–metal phase transition

    SciTech Connect

    Veinger, A. I. Zabrodskii, A. G.; Makarova, T. L.; Tisnek, T. V.; Goloshchapov, S. I.; Semenikhin, P. V.

    2015-10-15

    The method of superconducting quantum interference device (SQUID) magnetometry is used to measure and study low-temperature (T ≤ 100K) susceptibility in a series of samples of heavily doped Ge:As samples on the insulator side of the insulator–metal phase transition. Subtracting the known values of the magnetic susceptibility of the lattice from the measurement results, the values of the impurity magnetic susceptibility of the system are obtained. Using the method of electron spin resonance, the paramagnetic component of the impurity susceptibility is determined. Subtraction of the paramagnetic component from the total impurity susceptibility is used to obtain, for the first time, the values of the impurity diamagnetic susceptibility (∼5 × 10{sup –8} cm{sup 3}/g). The obtained result is consistent with estimates obtained for the localization radius of an electron at an As donor. Lowering the temperature to T ≤ 4 K leads to an increase in the diamagnetic susceptibility, which is consistent with the observed increase in the paramagnetic susceptibility. The observed effect is accounted for by the transition of impurity electrons from the singlet state to the triplet one.

  18. Chromium as resonant donor impurity in PbTe

    NASA Astrophysics Data System (ADS)

    Nielsen, M. D.; Levin, E. M.; Jaworski, C. M.; Schmidt-Rohr, K.; Heremans, J. P.

    2012-01-01

    We synthesize and perform structural, thermoelectric, magnetic, and 125Te NMR characterization measurements on chromium-doped PbTe. 125Te NMR and magnetic measurements show that Pb1-xCrxTe is a solid solution up to x = 0.4 at.% and forms an n-type dilute paramagnetic semiconductor. The Cr level is resonant and pins the Fermi level about 100 meV into the conduction band at liquid nitrogen temperatures and below, but it moves into the gap as the temperature increases to 300 K. 125Te NMR spectra exhibit a Knight shift that correlates well with Hall effect measurements and resolve peaks of Te near Cr. Magnetic behavior indicates that Cr exists mainly as Cr2+. No departure from the Pisarenko relation for PbTe is observed. Secondary Cr2Te3 and Cr3+δTe4 phases are present in samples with x > 0.4%.

  19. Three Redox States of a Diradical Acceptor-Donor-Acceptor Triad: Gating the Magnetic Coupling and the Electron Delocalization.

    PubMed

    Souto, Manuel; Lloveras, Vega; Vela, Sergi; Fumanal, Maria; Ratera, Imma; Veciana, Jaume

    2016-06-16

    The diradical acceptor-donor-acceptor triad 1(••), based on two polychlorotriphenylmethyl (PTM) radicals connected through a tetrathiafulvalene(TTF)-vinylene bridge, has been synthesized. The generation of the mixed-valence radical anion, 1(•-), and triradical cation species, 1(•••+), obtained upon electrochemical reduction and oxidation, respectively, was monitored by optical and ESR spectroscopy. Interestingly, the modification of electron delocalization and magnetic coupling was observed when the charged species were generated and the changes have been rationalized by theoretical calculations.

  20. Characteristics of impurity-induced pseudogap

    NASA Astrophysics Data System (ADS)

    Numata, Yoshinori; Uto, Tatsuro; Matuda, Azusa

    2016-05-01

    We have performed STM/STS measurements on a single crystal of Bi2.1Sr1.9Ca (Cu1-xCox) 2O8+δ (Co-Bi2212), to reveal impurity effects on the pseudogap in cuprate high-Tc superconductors. We report a drastic change in the temperature dependence of a pseudogap and in the density of states (DOS) modulation with a 4a period, in a certain doping range. In the Co 4% substituted samples, the pseudogap gradually closed like a gap of a BCS superconductor for slightly overdoped and overdoped regime, while their low temperature values were enhanced due to impurity. In addition, a disappearance of a 4a periodic modulation and a development of new modulation were observed in the DOS spatial distribution. These results indicate an intimate relation between the DOS modulation and the pseudogap, and qualitative difference in the impurity enhanced pseudogap and conventional one.

  1. Single atom impurity in a single molecular transistor

    NASA Astrophysics Data System (ADS)

    Ray, S. J.

    2014-10-01

    The influence of an impurity atom on the electrostatic behaviour of a Single Molecular Transistor was investigated through Ab-initio calculations in a double-gated geometry. The charge stability diagram carries unique signature of the position of the impurity atom in such devices which together with the charging energy of the molecule could be utilised as an electronic fingerprint for the detection of such impurity states in a nano-electronic device. The two gated geometry allows additional control over the electrostatics as can be seen from the total energy surfaces (for a specific charge state), which is sensitive to the positions of the impurity. These devices which are operational at room temperature can provide significant advantages over the conventional silicon based single dopant devices functional at low temperature. The present approach could be a very powerful tool for the detection and control of individual impurity atoms in a single molecular device and for applications in future molecular electronics.

  2. Single atom impurity in a single molecular transistor

    SciTech Connect

    Ray, S. J.

    2014-10-21

    The influence of an impurity atom on the electrostatic behaviour of a Single Molecular Transistor was investigated through Ab-initio calculations in a double-gated geometry. The charge stability diagram carries unique signature of the position of the impurity atom in such devices which together with the charging energy of the molecule could be utilised as an electronic fingerprint for the detection of such impurity states in a nano-electronic device. The two gated geometry allows additional control over the electrostatics as can be seen from the total energy surfaces (for a specific charge state), which is sensitive to the positions of the impurity. These devices which are operational at room temperature can provide significant advantages over the conventional silicon based single dopant devices functional at low temperature. The present approach could be a very powerful tool for the detection and control of individual impurity atoms in a single molecular device and for applications in future molecular electronics.

  3. Quantum dynamics of impurities coupled to a Fermi sea

    NASA Astrophysics Data System (ADS)

    Parish, Meera M.; Levinsen, Jesper

    2016-11-01

    We consider the dynamics of an impurity atom immersed in an ideal Fermi gas at zero temperature. We focus on the coherent quantum evolution of the impurity following a quench to strong impurity-fermion interactions, where the interactions are assumed to be short range like in cold-atom experiments. To approximately model the many-body time evolution, we use a truncated basis method, where at most two particle-hole excitations of the Fermi sea are included. When the system is initially noninteracting, we show that our method exactly captures the short-time dynamics following the quench, and we find that the overlap between initial and final states displays a universal nonanalytic dependence on time in this limit. We further demonstrate how our method can be used to compute the impurity spectral function, as well as describe many-body phenomena involving coupled impurity spin states, such as Rabi oscillations in a medium or highly engineered quantum quenches.

  4. Reevaluating the dead donor rule.

    PubMed

    Collins, Mike

    2010-04-01

    The dead donor rule justifies current practice in organ procurement for transplantation and states that organ donors must be dead prior to donation. The majority of organ donors are diagnosed as having suffered brain death and hence are declared dead by neurological criteria. However, a significant amount of unrest in both the philosophical and the medical literature has surfaced since this practice began forty years ago. I argue that, first, declaring death by neurological criteria is both unreliable and unjustified but further, the ethical principles which themselves justify the dead donor rule are better served by abandoning that rule and instead allowing individuals who have suffered severe and irreversible brain damage to become organ donors, even though they are not yet dead and even though the removal of their organs would be the proximal cause of death.

  5. Electric field and image charge effects on impurity-bound polarons in a CdS colloidal quantum dot embedded in organic matrices

    NASA Astrophysics Data System (ADS)

    Asatryan, A. L.; Vartanian, A. L.; Kirakosyan, A. A.; Vardanyan, L. A.

    2016-12-01

    An adiabatic variational approach is used to study the ground and first excited states of a hydrogen-like impurity bound polaron in a colloidal quantum dot (QD) under an external electric field, including image charge effect (ICE). The binding energy (BE) of donor impurity is calculated by taking into account the interaction of an electron with both bulk-type longitudinal optical (LO) phonons and interface optical phonons. Calculations have been carried out for CdS colloidal quantum dots embedded in thiophenol and oleic acid. Both parabolic confinement and electric field effects on the binding energy and its polaronic shift for 1s and 2s hydrogen-like states with and without ICE are investigated in detail.

  6. Observation of the Triplet Metastable State of Shallow Donor Pairs in AlN Crystals with a Negative-U Behavior: A High-Frequency EPR and ENDOR Study

    NASA Astrophysics Data System (ADS)

    Orlinskii, Sergei B.; Schmidt, Jan; Baranov, Pavel G.; Bickermann, Matthias; Epelbaum, Boris M.; Winnacker, Albrecht

    2008-06-01

    Theoretical predictions about the n-type conductivity in nitride semiconductors are discussed in the light of results of a high-frequency EPR an ENDOR study. It is shown that two types of effective-mass-like, shallow donors with a delocalized wave function exist in unintentionally doped AlN. The experiments demonstrate how the transformation from a shallow donor to a deep (DX) center takes place and how the deep DX center can be reconverted into a shallow donor forming a spin triplet and singlet states.

  7. Substitutional nitrogen impurities in pulsed-laser annealed silicon

    NASA Astrophysics Data System (ADS)

    Murakami, Kouichi; Itoh, Hisayoshi; Takita, Kôki; Masuda, Kohzoh

    1984-07-01

    Single-crystal Si samples with nitrogen (N) impurities (Si:N) and with N and phosphorus (P) impurities (Si:N:P) have been investigated by electron spin resonance measurements. It was found that substitutional N impurities Ns cannot be incorporated into Si by cw laser annealing of N ion-implanted Si or by N doping during crystal growth; however, Ns is incorporated into Si by pulsed-laser annealing (PLA) of N ion-implanted Si. The spin density of Ns decreases with doping of P shallow donors into PLA Si:N and increases by introduction of slight point defects in PLA Si:N:P. These results suggest that Ns with a negative charge are formed in PLA Si: N:P system.

  8. Alternative Donor--Acceptor Stacks from Crown Ethers and Naphthalene Diimide Derivatives: Rapid, Selective Formation from Solution and Solid State Grinding

    SciTech Connect

    Advanced Light Source; Liu, Yi; Klivansky, Liana; Cao, Dennis; Snauko, Marian; Teat, Simon J.; Struppe, Jochem O.; Koshkakaryan, Gayane

    2009-01-22

    Self assembling {pi}-conjugated molecules into ordered structures are of increasing interest in the field of organic electronics. One particular example is charge transfer complexes containing columnar alternative donor-acceptor (ADA) stacks, where neutral and ionic ground states can be readily tuned to modulate electrical, optical, and ferroelectrical properties. Aromatic-aromatic and charge transfer interactions have been the leading driving forces in assisting the self-assembly of ADA stacks. Various folding structures containing ADA stacks were assembled in solution with the aid of solvophobic or ion-binding interactions. Meanwhile, examples of solid ADA stacks, which are more appealing for practical use in devices, were obtained from cocrystalization of binary components or mesophase assembly of liquid crystals in bulk blends. Regardless of these examples, faster and more controllable approaches towards precise supramolecular order in the solid state are still highly desirable.

  9. Designing shallow donors in diamond

    NASA Astrophysics Data System (ADS)

    Moussa, Jonathan

    2015-03-01

    The production of n-type semiconducting diamond has been a long-standing experimental challenge. The first-principles simulation of shallow dopants in semiconductors has been a long-standing theoretical challenge. A desirable theoretical goal is to identify impurities that will act as shallow donors in diamond and assess their experimental viability. I will discuss this identification process for the LiN4 donor complex. It builds a scientific argument from several models and computational results in the absence of computational tools that are both trustworthy and computationally tractable for this task. I will compare the theoretical assessment of viability with recent experimental efforts to co-dope diamond with lithium and nitrogen. Finally, I discuss the computational tools needed to facilitate future work on this problem and some preliminary simulations of donors near diamond surfaces. Sandia National Laboratories is a multi-program lab managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  10. High-contrast fluorescence sensing of aqueous Cu(I) with triarylpyrazoline probes: dissecting the roles of ligand donor strength and excited state proton transfer.

    PubMed

    Morgan, M Thomas; Bagchi, Pritha; Fahrni, Christoph J

    2013-03-07

    Cu(I)-responsive fluorescent probes based on a photoinduced electron transfer (PET) mechanism generally show incomplete fluorescence recovery relative to the intrinsic quantum yield of the fluorescence reporter. Previous studies on probes with an N-aryl thiazacrown Cu(I)-receptor revealed that the recovery is compromised by incomplete Cu(I)-N coordination and resultant ternary complex formation with solvent molecules. Building upon a strategy that successfully increased the fluorescence contrast and quantum yield of Cu(I) probes in methanol, we integrated the arylamine PET donor into the backbone of a hydrophilic thiazacrown ligand with a sulfonated triarylpyrazoline as a water-soluble fluorescence reporter. This approach was not only expected to disfavor ternary complex formation in aqueous solution but also to maximize PET switching through a synergistic Cu(I)-induced conformational change. The resulting water-soluble probe 1 gave a strong 57-fold fluorescence enhancement upon saturation with Cu(I) with high selectivity over other cations, including Cu(II), Hg(II), and Cd(II); however, the recovery quantum yield did not improve over probes with the original N-aryl thiazacrown design. Concluding from detailed photophysical data, including responses to acidification, solvent isotope effects, quantum yields, and time-resolved fluorescence decay profiles, the fluorescence contrast of 1 is compromised by inadequate coordination of Cu(I) to the weakly basic arylamine nitrogen of the PET donor and by fluorescence quenching via two distinct excited state proton transfer pathways operating under neutral and acidic conditions.

  11. Complete Monitoring of Coherent and Incoherent Spin Flip Domains in the Recombination of Charge-Separated States of Donor-Iridium Complex-Acceptor Triads.

    PubMed

    Klein, Johannes H; Schmidt, David; Steiner, Ulrich E; Lambert, Christoph

    2015-09-02

    The spin chemistry of photoinduced charge-separated (CS) states of three triads comprising one or two triarylamine donors, a cyclometalated iridium complex sensitizer and a naphthalene diimide (NDI) acceptor, was investigated by transient absorption spectroscopy in the ns-μs time regime. Strong magnetic-field effects (MFE) were observed for two triads with a phenylene bridge between iridium complex sensitizer and NDI acceptor. For these triads, the lifetimes of the CS states increased from 0.6 μs at zero field to 40 μs at about 2 T. Substituting the phenylene by a biphenyl bridge causes the lifetime of the CS state at zero field to increase by more than 2 orders of magnitude (τ = 79 μs) and the MFE to disappear almost completely. The kinetic MFE was analyzed in the framework of a generalized Hayashi-Nagakura scheme describing coherent (S, T0 ↔ T±) as well as incoherent (S, T0 ⇌ T±) processes by a single rate constant k±. The magnetic-field dependence of k± of the triads with phenylene bridge spans 2 orders of magnitude and exhibits a biphasic behavior characterized by a superposition of two Lorentzians. This biphasic MFE is observed for the first time and is clearly attributable to the coherent (B < 10 mT) and incoherent (10 mT < B < 2 T) domains of spin motion induced by isotropic and anisotropic hyperfine coupling. The parameters of both domains are well understood in terms of the structural properties of the two triads, including the effect of electron hopping in the triad with two donor moieties. The kinetic model also accounts for the reduction of the MFE on reducing the rate constant of charge recombination in the triad with the biphenyl bridge.

  12. Photon-modulated impurity scattering on a topological insulator surface

    NASA Astrophysics Data System (ADS)

    Deng, Ming-Xun; Deng, W. Y.; Shao, D. X.; Wang, Rui-Qiang; Shen, R.; Sheng, L.; Xing, D. Y.

    2017-03-01

    We consider the Dirac electron scattering off a pointlike impurity absorbed on the surface of a topological insulator, which is irradiated by a beam of circularly polarized light. It is found that the Dirac electron backscattering is allowed even for a nonmagnetic impurity due to the reshuffled spectrum caused by the light, and so exhibits interesting spin texture and Friedel oscillation in the real space. Furthermore, in the charge density of states, the interplay of the light irradiation and impurity scattering can lead to an in-gap bound state around the Dirac point, heavily modulating the Dirac dispersion. We discuss the different scenarios for resonant and off-resonant lights in detail. The impurity scattering feature is sensitive to the parameters of the polarized light, which suggests a possibility to optically manipulate the topological surface states.

  13. Reduction of electron accumulation at InN(0001) surfaces via saturation of surface states by potassium and oxygen as donor- or acceptor-type adsorbates

    SciTech Connect

    Eisenhardt, A.; Reiß, S.; Krischok, S. Himmerlich, M.

    2014-01-28

    The influence of selected donor- and acceptor-type adsorbates on the electronic properties of InN(0001) surfaces is investigated implementing in-situ photoelectron spectroscopy. The changes in work function, surface band alignment, and chemical bond configurations are characterized during deposition of potassium and exposure to oxygen. Although an expected opponent charge transfer characteristic is observed with potassium donating its free electron to InN, while dissociated oxygen species extract partial charge from the substrate, a reduction of the surface electron accumulation occurs in both cases. This observation can be explained by adsorbate-induced saturation of free dangling bonds at the InN resulting in the disappearance of surface states, which initially pin the Fermi level and induce downward band bending.

  14. Recent trends in the impurity profile of pharmaceuticals

    PubMed Central

    Pilaniya, Kavita; Chandrawanshi, Harish K.; Pilaniya, Urmila; Manchandani, Pooja; Jain, Pratishtha; Singh, Nitin

    2010-01-01

    Various regulatory authorities such as the International Conference on Harmonization (ICH), the United States Food and Drug administration (FDA), and the Canadian Drug and Health Agency (CDHA) are emphasizing on the purity requirements and the identification of impurities in Active Pharmaceutical Ingredients (APIs). The various sources of impurity in pharmaceutical products are — reagents, heavy metals, ligands, catalysts, other materials like filter aids, charcoal, and the like, degraded end products obtained during \\ after manufacturing of bulk drugs from hydrolysis, photolytic cleavage, oxidative degradation, decarboxylation, enantiomeric impurity, and so on. The different pharmacopoeias such as the British Pharmacopoeia, United State Pharmacopoeia, and Indian Pharmacopoeia are slowly incorporating limits to allowable levels of impurities present in APIs or formulations. Various methods are used to isolate and characterize impurities in pharmaceuticals, such as, capillary electrophoresis, electron paramagnetic resonance, gas–liquid chromatography, gravimetric analysis, high performance liquid chromatography, solid-phase extraction methods, liquid–liquid extraction method, Ultraviolet Spectrometry, infrared spectroscopy, supercritical fluid extraction column chromatography, mass spectrometry, Nuclear magnetic resonance (NMR) spectroscopy, and RAMAN spectroscopy. Among all hyphenated techniques, the most exploited techniques for impurity profiling of drugs are Liquid Chromatography (LC)-Mass Spectroscopy (MS), LC-NMR, LC-NMR-MS, GC-MS, and LC-MS. This reveals the need and scope of impurity profiling of drugs in pharmaceutical research. PMID:22247862

  15. Donor spectroscopy at large hydrostatic pressures and transport studies in compound semiconductors

    SciTech Connect

    Hsu, Leonardo

    1997-06-01

    In the first part of this work, the author describes studies of donors in AlSb and in GaAs at large hydrostatic pressures, two materials in which the conduction band minimum is not parabolic, but has a camel`s back shape. These donors were found to display only one or two absorption lines corresponding to ground to bound excited state transitions. It is shown that due to the non-parabolic dispersion, camel's back donors may have as few as one bound excited state and that higher excited states are auto-ionized. Thus, it is possible that transitions to these other states may be lost in the continuum. In the second part, calculations of mobilities in GaN and other group III-Nitride based structures were performed. GaN is interesting in that the carriers in nominally undoped material are thought to originate from impurities which have an ionization energy level resonant with the conduction band, rather than located in the forbidden gap. These donors have a short range potential associated with them which can be effective in scattering electrons in certain situations. It was found that effects of these resonant donors can be seen only at high doping levels in III-Nitride materials and in AlxGa1-xN alloys, where the defect level can be pushed into the forbidden gap. Calculations were also performed to find intrinsic mobility limits in AlxGa1-xN/GaN modulation doped heterostructures. Theoretical predictions show that electron mobilities in these devices are capable of rivaling those found in the best AlxGa1-xAs/GaAs heterostructures structures today. However, the currently available nitride heterostructures, while displaying mobilities superior to those in bulk material, have sheet carrier concentrations too large to display true two-dimensional electron gas behavior.

  16. Kinetic neoclassical calculations of impurity radiation profiles

    SciTech Connect

    Stotler, D. P.; Battaglia, D. J.; Hager, R.; Kim, K.; Koskela, T.; Park, G.; Reinke, M. L.

    2016-12-30

    Modifications of the drift-kinetic transport code XGC0 to include the transport, ionization, and recombination of individual charge states, as well as the associated radiation, are described. The code is first applied to a simulation of an NSTX H-mode discharge with carbon impurity to demonstrate the approach to coronal equilibrium. The effects of neoclassical phenomena on the radiated power profile are examined sequentially through the activation of individual physics modules in the code. Orbit squeezing and the neoclassical inward pinch result in increased radiation for temperatures above a few hundred eV and changes to the ratios of charge state emissions at a given electron temperature. As a result, analogous simulations with a neon impurity yield qualitatively similar results.

  17. Kinetic neoclassical calculations of impurity radiation profiles

    DOE PAGES

    Stotler, D. P.; Battaglia, D. J.; Hager, R.; ...

    2016-12-30

    Modifications of the drift-kinetic transport code XGC0 to include the transport, ionization, and recombination of individual charge states, as well as the associated radiation, are described. The code is first applied to a simulation of an NSTX H-mode discharge with carbon impurity to demonstrate the approach to coronal equilibrium. The effects of neoclassical phenomena on the radiated power profile are examined sequentially through the activation of individual physics modules in the code. Orbit squeezing and the neoclassical inward pinch result in increased radiation for temperatures above a few hundred eV and changes to the ratios of charge state emissions atmore » a given electron temperature. As a result, analogous simulations with a neon impurity yield qualitatively similar results.« less

  18. Impurities in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1985-01-01

    Metallic impurities, both singly and in combinations, affect the performance of silicon solar cells. Czochralski silicon web crystals were grown with controlled additions of secondary impurities. The primary electrical dopants were boron and phosphorus. The silicon test ingots were grown under controlled and carefully monitored conditions from high-purity charge and dopant material to minimize unintentional contamination. Following growth, each crystal was characterized by chemical, microstructural, electrical, and solar cell tests to provide a detailed and internally consistent description of the relationships between silicon impurity concentration and solar cell performance. Deep-level spectroscopy measurements were used to measure impurity concentrations at levels below the detectability of other techniques and to study thermally-induced changes in impurity activity. For the majority of contaminants, impurity-induced performance loss is due to a reduction of the base diffusion length. From these observations, a semi-empirical model which predicts cell performance as a function of metal impurity concentration was formulated. The model was then used successfully to predict the behavior of solar cells bearing as many as 11 different impurities.

  19. Impurities in Kevlar 49 fibers

    SciTech Connect

    Pruneda, C.O.; Morgan, R.J.; Lim, R.; Gregory, L.J.; Fischer, J.W.

    1984-12-11

    The impurities in Kevlar 49 fibers (poly(p-phenylene terephthalamide)PPTA) are reported and discussed in terms of the fiber fabrication processes. These impurities were monitored by inductively coupled plasma emission and optical emission spectroscopy. The principal impurities Na/sub 2/SO/sub 4/ and total S were analyzed chemically. From these chemical analyses together with C, N, H elemental analyses we show that there are 1.5 wt % impurities present in Kevlar 49 fibers of which approx. 50% are in the form of Na/sub 2/SO/sub 4/ and the remainder probably in the form of benzene sulfonic -SO/sub 3/H PPTA side groups. There are 3 of these acid groups per each PPTA macromolecule. Organic impurities, such as terephthalic acid are discussed in the light of degradation studies of PPTA-H/sub 2/SO/sub 4/ spinning dopes. Electron microprobe x-ray spectroscopy and laser-induced damage studies were utilized to investigate the distribution of impurities through the fiber cross-section. The distribution of impurities throughout the fiber are determined by the fiber fabrication processes and are discussed at the microscopic and molecular level. The defects caused by these impurities and their effect on the deformation and failure modes are also considered. 22 references, 3 tables.

  20. Large impurity effects in rubrene crystals: First-principles calculations

    SciTech Connect

    Tsetseris, L.; Pantelides, Sokrates T.

    2008-01-01

    Carrier mobilities of rubrene films are among the highest values reported for any organic semiconductor. Here, we probe with first-principles calculations the sensitivity of rubrene crystals on impurities. We find that isolated oxygen impurities create distinct peaks in the electronic density of states consistent with observations of defect levels in rubrene and that increased O content changes the position and shape of rubrene energy bands significantly. We also establish a dual role of hydrogen as individual H species and H impurity pairs create and annihilate deep carrier traps, respectively. The results are relevant to the performance and reliability of rubrene-based devices.

  1. Coupling of impurity modes in one-dimensional periodic systems.

    PubMed

    Royo, P; Stanley, R P; Ilegems, M

    2001-07-01

    One-dimensional periodic dielectric structures are known to exhibit band gaps because of their symmetry. Defect states can be found in the band gaps if an impurity layer is added to the lattice such that the symmetry of the structure is broken. In this paper, we consider the case where a second impurity layer is added and we discuss the existence of coupling between the two defects. We discuss the possibility of exploiting the coupling of impurity modes in the realization of tunable wavelength emitting devices and dual-wavelength vertical-cavity surface-emitting lasers.

  2. Frequency shifts of vibrational and rotational states of dilute H2, D2, and HD impurities in solid Ar under pressure

    NASA Astrophysics Data System (ADS)

    Silvi, B.; Chandrasekharan, V.; Chergui, M.; Etters, R. D.

    1986-02-01

    The frequency shifts of the vibrational and rotational transitions of H2, D2, and HD molecules trapped in solid Ar are calculated at zero temperature and at pressures 0<=P<=373 kbar. It is found that the pure vibrational and rotational-vibrational transition frequencies are strongly red-shifted in the solid at P=0, compared to gas-phase values, and the agreement with Raman scattering measurements is generally good. The calculated pure rotational transitions also show a small red shift at P=0 in the solid and are in generally good agreement with the measurements of Jodl and Bier, but less so with those of Prochaska and Andrews, who, except for D2(Ar), measure small blue shifts. The calculated local-mode frequencies of the impurity molecules in the solid at P=0 are also in good agreement with experiment, especially when thermal corrections are considered. With increasing pressure all transition frequencies and the local-mode frequencies are strongly blue-shifted with respect to P=0 solid values.

  3. Discovery of iron group impurity ion spin states in single crystal Y{sub 2}SiO{sub 5} with strong coupling to whispering gallery photons

    SciTech Connect

    Goryachev, Maxim; Farr, Warrick G.; Carmo Carvalho, Natalia do; Creedon, Daniel L.; Le Floch, Jean-Michel; Probst, Sebastian; Bushev, Pavel; Tobar, Michael E.

    2015-06-08

    Interaction of Whispering Gallery Modes (WGMs) with dilute spin ensembles in solids is an interesting paradigm of Hybrid Quantum Systems potentially beneficial for Quantum Signal Processing applications. Unexpected ion transitions are measured in single crystal Y{sub 2}SiO{sub 5} using WGM spectroscopy with large Zero Field Splittings at 14.7 GHz, 18.4 GHz, and 25.4 GHz, which also feature considerable anisotropy of the g-tensors as well as two inequivalent lattice sites, indicating spins from Iron Group Ion (IGI) impurities. The comparison of undoped and Rare-Earth doped crystals reveal that the IGIs are introduced during co-doping of Eu{sup 3+} or Er{sup 3+} with concentration at much lower levels of order 100 ppb. The strong coupling regime between an ensemble of IGI spins and WGM photons have been demonstrated at 18.4 GHz and near zero field. This approach together with useful optical properties of these ions opens avenues for “spins-in-solids” Quantum Electrodynamics.

  4. Diagram theory for the twofold-degenerate Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Moskalenko, V. A.; Dohotaru, L. A.; Digor, D. F.; Cebotari, I. D.

    2014-02-01

    We develop a diagram technique for investigating the twofold-degenerate Anderson impurity model in the normal state with the strong electronic correlations of d electrons of the impurity ion taken into account. We discuss the properties of the Slater-Kanamori model of d electrons. After finding the eigenfunctions and eigenvalues of all 16 local states, we determine the local one-particle propagator. We construct the perturbation theory around the atomic limit of the impurity ion and obtain a Dyson-type equation establishing the relation between the impurity electron propagator and the normal correlation function. As a result of summing infinite series of ladder diagrams, we obtain an approximation for the correlation function.

  5. Energy levels of isoelectronic impurities by large scale LDA calculations

    SciTech Connect

    Li, Jingbo; Wang, Lin-Wang

    2002-11-22

    Isoelectronic impurity states are localized states induced by stoichiometric single atom substitution in bulk semiconductor. Photoluminescence spectra indicate deep impurity levels of 0.5 to 0.9eV above the top of valence band for systems like: GaN:As, GaN:P, CdS:Te, ZnS:Te. Previous calculations based on small supercells seemingly confirmed these experimental results. However, the current ab initio calculations based on thousand atom supercells indicate that the impurity levels of the above systems are actually much shallower(0.04 to 0.23 eV), and these impurity levels should be compared with photoluminescence excitation spectra, not photoluminescence spectra.

  6. Forced diffusion of impurities in natural diamond and polycrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Popovici, Galina; Sung, T.; Khasawinah, S.; Prelas, M. A.; Wilson, R. G.

    1995-06-01

    A method is proposed for the determination of the state of an impurity (donor, acceptor, or deep level) in semiconductor lattice. To demonstrate the method boron was diffused into type Ia natural diamond under a dc electric field. The concentration and diffusion profiles of boron were affected by the applied field. Boron diffuses as a negative ion since it is an acceptor shallow enough to be partially ionized at the temperature of diffusion. The drift velocity of boron ions at the temperature of diffusion was also estimated. The diffusion of lithium and oxygen from a Li2CO3 source in chemical vapor deposited diamond films was performed under bias at 1000 °C in an argon atmosphere. After diffusion, the concentrations of Li, O, and H in the diamond films were found to be around (3-4)×1019 cm-3. No dependence of these concentrations on the applied bias was observed. It was found that the diffusion of Li goes primarily through grain boundaries, which may explain why it does not depend on the applied voltage. Fluorine was present as an impurity in the dopant source. Its concentration in the films was around (1-2)×1017 cm-3 and did depend on the applied bias, indicating that fluorine may have formed a shallow level in the diamond band gap.

  7. Related impurities in peptide medicines.

    PubMed

    D'Hondt, Matthias; Bracke, Nathalie; Taevernier, Lien; Gevaert, Bert; Verbeke, Frederick; Wynendaele, Evelien; De Spiegeleer, Bart

    2014-12-01

    Peptides are an increasingly important group of pharmaceuticals, positioned between classic small organic molecules and larger bio-molecules such as proteins. Currently, the peptide drug market is growing twice as fast as other drug markets, illustrating the increasing clinical as well as economical impact of this medicine group. Most peptides today are manufactured by solid-phase peptide synthesis (SPPS). This review will provide a structured overview of the most commonly observed peptide-related impurities in peptide medicines, encompassing the active pharmaceutical ingredients (API or drug substance) as well as the finished drug products. Not only is control of these peptide-related impurities and degradants critical for the already approved and clinically used peptide-drugs, these impurities also possess the capability of greatly influencing initial functionality studies during early drug discovery phases, possibly resulting in erroneous conclusions. The first group of peptide-related impurities is SPPS-related: deletion and insertion of amino acids are related to inefficient Fmoc-deprotection and excess use of amino acid reagents, respectively. Fmoc-deprotection can cause racemization of amino acid residues and thus diastereomeric impurities. Inefficient deprotection of amino acid side chains results into peptide-protection adducts. Furthermore, unprotected side chains can react with a variety of reagents used in the synthesis. Oxidation of amino acid side chains and dimeric-to-oligomeric impurities were also observed. Unwanted peptide counter ions such as trifluoroacetate, originating from the SPPS itself or from additional purification treatments, may also be present in the final peptide product. Contamination of the desired peptide product by other unrelated peptides was also seen, pointing out the lack of appropriate GMP. The second impurity group results from typical peptide degradation mechanisms such as β-elimination, diketopiperazine, pyroglutamate

  8. Highly n -doped silicon: Deactivating defects of donors

    NASA Astrophysics Data System (ADS)

    Mueller, D. Christoph; Fichtner, Wolfgang

    2004-12-01

    We report insight into the deactivation mechanisms of group V donors in heavily doped silicon. Based on our ab initio calculations, we suggest a three step model for the donor deactivation. In highly n -type Si grown at low temperatures, in the absence of excess native point defects, the intrinsic limit to ne seems to rise in part by means of donor deactivating distortions of the silicon lattice in the proximity of two or more donor atoms that share close sites. Also, donor dimers play an important part in the deactivation at high doping concentrations. While the dimers constitute a stable or metastable inactive donor configuration, the lattice distortions lower the donor levels gradually below the impurity band in degenerate silicon. On the other hand, we find that, in general, none of the earlier proposed deactivating donor pair defects is stable at any position of the Fermi level. The lattice distortions may be viewed as a precursor to Frenkel pair generation and donor-vacancy clustering process (step 2) that account for deactivation at elevated temperature and longer annealing times. Ultimately, and most prominently in the case of the large Sb atoms, precipitation of the donor atoms may set in as the last step of the deactivation process chain.

  9. A Combined Theoretical and Experimental Study of Dissociation of Charge Transfer States at the Donor-Acceptor Interface of Organic Solar Cells.

    PubMed

    Tscheuschner, Steffen; Bässler, Heinz; Huber, Katja; Köhler, Anna

    2015-08-13

    The observation that in efficient organic solar cells almost all electron-hole pairs generated at the donor-acceptor interface escape from their mutual coulomb potential remains to be a conceptual challenge. It has been argued that it is the excess energy dissipated in the course of electron or hole transfer at the interface that assists this escape process. The current work demonstrates that this concept is unnecessary to explain the field dependence of electron-hole dissociation. It is based upon the formalism developed by Arkhipov and co-workers as well as Baranovskii and co-workers. The key idea is that the binding energy of the dissociating "cold" charge-transfer state is reduced by delocalization of the hole along the polymer chain, quantified in terms of an "effective mass", as well as the fractional strength of dipoles existent at the interface in the dark. By covering a broad parameter space, we determine the conditions for efficient electron-hole dissociation. Spectroscopy of the charge-transfer state on bilayer solar cells as well as measurements of the field dependence of the dissociation yield over a broad temperature range support the theoretical predictions.

  10. Global migration of impurities in tokamaks

    NASA Astrophysics Data System (ADS)

    Hakola, A.; Airila, M. I.; Björkas, C.; Borodin, D.; Brezinsek, S.; Coad, J. P.; Groth, M.; Järvinen, A.; Kirschner, A.; Koivuranta, S.; Krieger, K.; Kurki-Suonio, T.; Likonen, J.; Lindholm, V.; Makkonen, T.; Mayer, M.; Miettunen, J.; Müller, H. W.; Neu, R.; Petersson, P.; Rohde, V.; Rubel, M.; Widdowson, A.; the ASDEX Upgrade Team; Contributors, JET-EFDA

    2013-12-01

    The migration of impurities in tokamaks has been studied with the help of tracer-injection (13C and 15N) experiments in JET and ASDEX Upgrade since 2001. We have identified a common pattern for the migrating particles: scrape-off layer flows drive impurities from the low-field side towards the high-field side of the vessel. Migration is also sensitive to the density and magnetic configuration of the plasma, and strong local variations in the resulting deposition patterns require 3D treatment of the migration process. Moreover, re-erosion of the deposited particles has to be taken into account to properly describe the migration process during steady-state operation of the tokamak.

  11. Spin pumping through magnetic impurity effect

    NASA Astrophysics Data System (ADS)

    Deng, Wei-Yin; Sheng, Li; Xing, Ding-Yu

    2015-08-01

    We propose a simple adiabatic quantum spin pump to generate pure spin current. The spin pump is driven by an ac gate voltage and a time-dependent magnetic impurity potential. It is found that the total pumped spin per cycle exhibits oscillations, whose magnitude decays exponentially with changing strength of the impurity potential. The proposed method may be useful for spintronic applications. Project supported by the State Key Program for Basic Research of China (Grant Nos. 2015CB921202, 2014CB921103, 2011CB922103, and 2010CB923400), the National Natural Science Foundation of China (Grant Nos. 11225420, 11174125, and 91021003), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

  12. Estimated risk of human immunodeficiency virus and hepatitis C virus infection among potential organ donors from 17 organ procurement organizations in the United States.

    PubMed

    Ellingson, K; Seem, D; Nowicki, M; Strong, D M; Kuehnert, M J

    2011-06-01

    To prevent unintentional transmission of bloodborne pathogens through organ transplantation, organ procurement organizations (OPOs) screen potential donors by serologic testing to identify human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infection. Newly acquired infection, however, may be undetectable by serologic testing. Our objective was to estimate the incidence of undetected infection among potential organ donors and to assess the significance of risk reductions conferred by nucleic acid testing (NAT) versus serology alone. We calculated prevalence of HIV and HCV-stratified by OPO risk designation-in 13,667 potential organ donors managed by 17 OPOs from 1/1/2004 to 7/1/2008. We calculated incidence of undetected infection using the incidence-window period approach. The prevalence of HIV was 0.10% for normal risk potential donors and 0.50% for high risk potential donors; HCV prevalence was 3.45% and 18.20%, respectively. For HIV, the estimated incidence of undetected infection by serologic screening was 1 in 50,000 for normal risk potential donors and 1 in 11,000 for high risk potential donors; for HCV, undetected incidence by serologic screening was 1 in 5000 and 1 in 1000, respectively. Projected estimates of undetected infection with NAT screening versus serology alone suggest that NAT screening could significantly reduce the rate of undetected HCV for all donor risk strata.

  13. Mobile Magnetic Impurities in a Fermi Superfluid: A Route to Designer Molecules

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Sarang; Parker, Colin V.; Demler, Eugene

    2015-01-01

    A magnetic impurity in a fermionic superfluid hosts bound quasiparticle states known as Yu-Shiba-Rusinov states. We argue here that, if the impurity is mobile (i.e., has a finite mass), the impurity and its bound Yu-Shiba-Rusinov quasiparticle move together as a midgap molecule, which has an unusual "Mexican-hat" dispersion that is tunable via the fermion density. We map out the impurity dispersion, which consists of an "atomic" branch (in which the impurity is dressed by quasiparticle pairs) and a "molecular" branch (in which the impurity binds a quasiparticle). We discuss the experimental realization and detection of midgap Shiba molecules, focusing on Li-Cs mixtures, and comment on the prospects they offer for realizing exotic many-body states.

  14. Transport Simulations of DIII-D Discharges with Impurity Injection

    NASA Astrophysics Data System (ADS)

    Mandrekas, J.; Stacey, W. M.; Murakami, M.

    2001-10-01

    Several recent DIII-D discharges with external impurity injection into L-mode plasmas are analyzed with a coupled main plasma and multi-charge state 1frac 12-D impurity transport code. These discharges exhibit various degrees of confinement improvement, which has been attributed to the synergistic effects of impurity induced enhancement of the E×B shearing rate and reduction of the drift wave turbulence growth rate (M. Murakami, et. al., Nucl. Fusion 41) (2001) 317.. Impurity transport is described by empirical and neoclassical transport models. Both the standard neoclassical theory as well as an enhanced theory which takes into account the effects of external momentum input and radial momentum transport (W.M. Stacey, Phys. Plasmas 8) (2001) 158. have been considered.

  15. Effect of impurity doping in gapped bilayer graphene

    SciTech Connect

    Han, Qi; Yan, Baoming; Jia, Zhenzhao; Niu, Jingjing; Yu, Dapeng; Wu, Xiaosong

    2015-10-19

    Impurity doping plays a pivotal role in semiconductor electronics. We study the doping effect in a two-dimensional semiconductor, gapped bilayer graphene. By employing in situ deposition of calcium on the bilayer graphene, dopants are controllably introduced. Low temperature transport results show a variable range hopping conduction near the charge neutrality point persisting up to 50 K, providing evidence for the impurity levels inside the gap. Our experiment confirms a predicted peculiar effect in the gapped bilayer graphene, i.e., formation of in-gap states even if the bare impurity level lies in the conduction band. The result provides perspective on the effect of doping and impurity levels in semiconducting bilayer graphene.

  16. Magnetic impurities on the surface of a topological insulator

    SciTech Connect

    Liu, Qin; Liu, Chao-Xing; Xu, Cenke; Qi, Xiao-Liang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-25

    The surface states of a topological insulator are described by an emergent relativistic massless Dirac equation in 2+1 dimensions. In contrast to graphene, there is an odd number of Dirac points, and the electron spin is directly coupled to the momentum. We show that a magnetic impurity opens up a local gap and suppresses the local density of states. Furthermore, the Dirac electronic states mediate an RKKY interaction among the magnetic impurities which is always ferromagnetic, whenever the chemical potential lies near the Dirac point. These effects can be directly measured in STM experiments. We also study the case of quenched disorder through a renormalization group analysis.

  17. Time-resolved EPR studies of charge recombination and triplet-state formation within donor-bridge-acceptor molecules having wire-like oligofluorene bridges.

    PubMed

    Miura, Tomoaki; Carmieli, Raanan; Wasielewski, Michael R

    2010-05-13

    Spin-selective charge recombination of photogenerated radical ion pairs within a series of donor-bridge-acceptor (D-B-A) molecules, where D = phenothiazine (PTZ), B = oligo(2,7-fluorenyl), and A = perylene-3,4:9,10-bis(dicarboximide) (PDI), PTZ-FL(n)-PDI, where n = 1-4 (compounds 1-4), is studied using time-resolved electron paramagnetic resonance (TREPR) spectroscopy in which the microwave source is either continuous-wave or pulsed. Radical ion pair TREPR spectra are observed for 3 and 4 at 90-294 K, while the neutral triplet state of PDI ((3)*PDI) is observed at 90-294 K for 2-4 and at 90 K for 1. (3)*PDI is produced by three mechanisms, as elucidated by its zero-field splitting parameters and spin polarization pattern. The mechanisms are spin-orbit-induced intersystem crossing (SO-ISC) in PDI aggregates, direct spin-orbit charge-transfer intersystem crossing (SOCT) from the singlet radical pair within 1, and radical pair intersystem crossing (RP-ISC) as a result of S-T(0) mixing of the radical ion pair states in 2-4. The temperature dependence of the spin-spin exchange interaction (2J) shows a dramatic decrease at low temperatures, indicating that the electronic coupling between the radical ions decreases due to an increase in the average fluorene-fluorene dihedral angle at low temperatures. The charge recombination rates for 3 and 4 decrease at low temperature, but that for 2 is almost temperature-independent. These results strongly suggest that the dominant mechanism of charge recombination for n >or= 3 is incoherent thermal hopping, which results in wire-like charge transfer.

  18. The origin of deep-level impurity transitions in hexagonal boron nitride

    SciTech Connect

    Du, X. Z.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2015-01-12

    Deep ultraviolet photoluminescence (PL) emission spectroscopy has been employed to investigate the origin of the widely observed deep level impurity related donor-acceptor pair (DAP) transition with an emission peak near 4.1 eV in hexagonal boron nitride (h-BN). A set of h-BN epilayers were grown by metal-organic chemical vapor deposition (MOCVD) under different ammonia (NH{sub 3}) flow rates to explore the role of nitrogen vacancies (V{sub N}) in the deep-level transitions. The emission intensity of the DAP transition near 4.1 eV was found to decrease exponentially with an increase of the NH{sub 3} flow rate employed during the MOCVD growth, implying that impurities involved are V{sub N}. The temperature-dependent PL spectra were measured from 10 K up to 800 K, which provided activation energies of ∼0.1 eV for the shallow impurity. Based on the measured energy level of the shallow impurity (∼0.1 eV) and previously estimated bandgap value of about 6.5 eV for h-BN, we deduce a value of ∼2.3 eV for the deep impurity involved in this DAP transition. The measured energy levels together with calculation results and formation energies of the impurities and defects in h-BN suggest that V{sub N} and carbon impurities occupying the nitrogen sites, respectively, are the most probable shallow donor and deep acceptor impurities involved in this DAP transition.

  19. Dielectric Response to Impurity Ions in GALLIUM(1 -X)ALUMINUM(X)ARSENIDE/GALLIUM-ARSENIDE/GALLIUM(1- X)aluminum(x) Arsenide Quantum Wells.

    NASA Astrophysics Data System (ADS)

    Elabsy, Abdelsalam Mohamed

    The present work considers the dielectric response to donor and acceptor ions by the valence electrons in GaAs quantum wells (QWs) of infinite and finite depths. It is found that, as far as the binding energy for a donor is concerned, the dielectric response of the GaAs QWs leads to deviations with respect to the hydrogenic theory. The effect of the nonparabolicity of the GaAs conduction band on the binding energy for a hydrogenic donor placed at on- and off-center positions in a GaAs QW, leads to substantially enhanced binding. A model of the kinetic energy operator, adapted by Morrow and Brownstein for an electron in the presence of an abrupt heterojunction, has also been used to calculate the binding energy for a donor placed at the center of the GaAs QW. It is found that the binding energy considering the linearized screening theory is larger than that for the hydrogenic theory. It is also found that an acceptor ion binding a heavy hole is much more affected by the dielectric response of the valence electrons of the GaAs than that associated with a light hole. It is clear from this work that consideration of the dielectric response of the valence electrons of a GaAs QW is an important factor in investigating the energy states of impurities.

  20. ALUMINUM IMPURITY DIFFUSION IN MAGNESIUM

    SciTech Connect

    Brennan, Sarah; Warren, Andrew; Coffey, Kevin; Kulkarni, Nagraj S; Todd, Peter J; Sohn, Yong Ho; Klimov, Mikhail

    2012-01-01

    The Al impurity diffusion in polycrystalline Mg (99.9%) via depth profiling with secondary ion mass spectrometry was studied in the temperature range of 673-573K, utilizing the thin film method and thin film solution to the diffusion equation. Multiple samples were utilized and multiple profiles were obtained to determine statistically confident coefficient with maximum standard deviation of 16%. Activation energy and pre-exponential factor of Al impurity diffusion in Mg was determined as 155 kJ/mole and 3.9 x 10-3 m2/sec.

  1. Effects of electron-phonon interaction and impurity on optical properties of hexagonal-shaped quantum wires

    NASA Astrophysics Data System (ADS)

    Khordad, R.; Bahramiyan, H.

    2017-03-01

    We have investigated the influence of electron-phonon (e-p) interaction and hydrogenic donor impurity simultaneously on energy difference, binding energy, the linear, nonlinear and total refractive index changes and absorption coefficients of a hexagonal-shaped quantum wire. For this goal, we have used finite-element method (FEM), a compact density matrix approach and an iterative procedure. It is deduced that energy difference and binding energy decrease by changing the impurity position with and without e-p interaction. The dipole matrix elements have complex behaviours in the presence of impurity with and without e-p interaction. The refractive index changes and absorption coefficients increase and shift towards lower energies by enhancing a 1 with central impurity. In the presence of central impurity, the absorption coefficients and refractive index changes enhance and shift toward higher energies when e-p interaction is considered.

  2. Impurity doping effects on the orbital thermodynamic properties of hydrogenated graphene, graphane, in Harrison model

    NASA Astrophysics Data System (ADS)

    Yarmohammadi, Mohsen

    2016-12-01

    Using the Harrison model and Green's function technique, impurity doping effects on the orbital density of states (DOS), electronic heat capacity (EHC) and magnetic susceptibility (MS) of a monolayer hydrogenated graphene, chair-like graphane, are investigated. The effect of scattering between electrons and dilute charged impurities is discussed in terms of the self-consistent Born approximation. Our results show that the graphane is a semiconductor and its band gap decreases with impurity. As a remarkable point, comparatively EHC reaches almost linearly to Schottky anomaly and does not change at low temperatures in the presence of impurity. Generally, EHC and MS increases with impurity doping. Surprisingly, impurity doping only affects the salient behavior of py orbital contribution of carbon atoms due to the symmetry breaking.

  3. Impurity effects on BCS-BEC crossover in ultracold atomic Fermi gases

    NASA Astrophysics Data System (ADS)

    Che, Yanming; Zhang, Leifeng; Wang, Jibiao; Chen, Qijin

    2017-01-01

    We present a systematic investigation of the effects of "nonmagnetic" impurities on the s -wave BCS-BEC crossover in atomic Fermi gases within a pairing fluctuation theory. Both pairing and impurity scattering T matrices are treated self-consistently at the same time. While the system is less sensitive to impurity scattering in the Born limit, for strong impurity scatterers, both the frequency and the gap function are highly renormalized, leading to significant suppression of the superfluid Tc, the order parameter, and the superfluid density. We also find the formation of impurity bands and smearing of coherence peak in the fermion density of states, leading to a spectrum weight transfer and finite lifetime of Bogoliubov quasiparticles. In the BCS regime, the superfluidity may be readily destroyed by the impurity of high density, leading to a superfluid-insulator quantum phase transition at zero temperature. In comparison, the superfluidity in unitary and BEC regimes is relatively more robust.

  4. Solid-state and solution-state coordination chemistry of the zinc triad with the mixed N,S donor ligand bis(2-methylpyridyl) sulfide.

    PubMed

    Berry, Steven M; Bebout, Deborah C; Butcher, Raymond J

    2005-01-10

    The binding of group 12 metal ions to bis(2-methylpyridyl) sulfide (1) was investigated by X-ray crystallography and NMR. Seven structures of the chloride and perchlorate salts of Hg(II), Cd(II), and Zn(II) with 1 are reported. Hg(1)(2)(ClO(4))(2), Cd(1)(2)(ClO(4))(2), and Zn(1)(2)(ClO(4))(2).CH(3)CN form mononuclear, six-coordinate species in the solid state with 1 binding in a tridentate coordination mode. Hg(1)(2)(ClO(4))(2) has a distorted trigonal prismatic coordination geometry while Cd(1)(2)(ClO(4))(2) and Zn(1)(2)(ClO(4))(2).CH(3)CN have distorted octahedral geometries. With chloride anions, the 1:1 metal to ligand complexes Hg(1)Cl(2), [Cd(1)Cl(2)](2), and Zn(1)Cl(2) are formed. A bidentate binding mode that lacks thioether coordination is observed for 1 in the four-coordinate, distorted tetrahedral complexes Zn(1)Cl(2) and Hg(1)Cl(2). [Cd(1)Cl(2)](2) is dimeric with a distorted octahedral coordination geometry and a tridentate 1. Hg(1)Cl(2) is comprised of pairs of loosely associated monomers and Zn(1)Cl(2) is monomeric. In addition, Hg(2)(1)Cl(4) is formed with alternating chloride and thioether bridges. The distorted square pyramidal Hg(II) centers result in a supramolecular zigzagging chain in the solid state. The solution (1)H NMR spectra of [Hg(1)(2)](2+) and [Hg(1)(NCCH(3))(x)()](2+) reveal (3)(-)(5)J((199)Hg(1)H) due to slow ligand exchange found in these thioether complexes. Implications for use of Hg(II) as a metallobioprobe are discussed.

  5. O-Glycosyl Donors

    NASA Astrophysics Data System (ADS)

    López, J. Cristóbal

    O-Glycosyl donors, despite being one of the last successful donors to appear, have developed themselves into a burgeoning class of glycosyl donors. They can be classified in two main types: O-alkyl and O-aryl (or hetaryl) glycosyl donors. They share, however, many characteristics, they can be (1) synthesized from aldoses, either by modified Fisher glycosidation (O-alkyl) or by nucleophilic aromatic substitution (O-aryl or O-hetaryl), (2) stable to diverse chemical manipulations, (3) directly used for saccharide coupling, and (4) chemoselectively activated. Among these, n-pentenyl glycosides stand apart. They were the first O-alkyl glycosyl donors to be described and have paved the way to many conceptual developments in oligosaccharide synthesis. The development of the chemoselectivity-based "armed-disarmed" approach for saccharide coupling, including its stereoelectronic or torsional variants, now extended to other kinds of glycosyl donors, was first recognized in n-pentenyl glycosides. The chemical manipulation of the anomeric substituent in the glycosyl donor to induce reactivity differences between related species (sidetracking) was also introduced in n-pentenyl glycosides. An evolution of this concept, the "latent-active" strategy for glycosyl couplings, first described in thioglycosyl donors (vide infra), has been elegantly applied to O-glycosyl donors. Thus, allyl and vinyl glycosides, 2-(benzyloxycarbonyl)benzyl (BCB) glycosides and 2'-carboxybenzyl (CB) glycosides are useful "latent-active" glycosyl pairs. Finally, unprotected 3-methoxy-2-pyridyl (MOP) glycosides have been used in glycosylation processes with moderate success.

  6. Control of impurities in toroidal plasma devices

    DOEpatents

    Ohkawa, Tihiro

    1980-01-01

    A method and apparatus for plasma impurity control in closed flux plasma systems such as Tokamak reactors is disclosed. Local axisymmetrical injection of hydrogen gas is employed to reverse the normally inward flow of impurities into the plasma.

  7. Kinetics of thermal donor generation in silicon

    NASA Technical Reports Server (NTRS)

    Mao, B.-Y.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    The generation kinetics of thermal donors at 450 C in Czochralski-grown silicon was found to be altered by high-temperature preannealing (e.g., 1100 C for 30 min). Thus, when compared with as-grown Si, high-temperature preannealed material exhibits a smaller concentration of generated thermal donors and a faster thermal donor saturation. A unified mechanism of nucleation and oxygen diffusion-controlled growth (based on solid-state plate transformation theory) is proposed to account for generation kinetics of thermal donors at 450 C, in as-grown and high-temperature preannealed Czochralski silicon crystals. This mechanism is consistent with the main features of the models which have been proposed to explain the formation of oxygen thermal donors in silicon.

  8. Phonon induced spin relaxation times of single donors and donor clusters in silicon

    NASA Astrophysics Data System (ADS)

    Hsueh, Yuling; Buch, Holger; Hollenberg, Lloyd; Simmons, Michelle; Klimeck, Gerhard; Rahman, Rajib

    2014-03-01

    The phonon induced relaxation times (T1) of electron spins bound to single phosphorous (P) donors and P donor clusters in silicon is computed using the atomistic tight-binding method. The electron-phonon Hamiltonian is directly computed from the strain dependent tight-binding Hamiltonian, and the relaxation time is computed from Fermi's Golden Rule using the donor states and the electron-phonon Hamiltonian. The self-consistent Hartree method is used to compute the multi-electron wavefunctions in donor clusters. The method takes into account the full band structure of silicon including the spin-orbit interaction, and captures both valley repopulation and single valley g-factor shifts in a unified framework. The single donor relaxation rate varies proportionally to B5, and is of the order of seconds at B =2T, both in good agreement with experimental single donor data (A. Morello et. al., Nature 467, 687 (2010)). T1 calculations in donor clusters show variations for different electron numbers and donor numbers and locations. The computed T1 in a 4P:5e donor cluster match well with a scanning tunneling microscope patterned P donor cluster (H. Buch et. al., Nature Communications 4, 2017 (2013)).

  9. Screening charged impurities and lifting the orbital degeneracy in graphene by populating Landau levels.

    PubMed

    Luican-Mayer, Adina; Kharitonov, Maxim; Li, Guohong; Lu, Chih-Pin; Skachko, Ivan; Gonçalves, Alem-Mar B; Watanabe, K; Taniguchi, T; Andrei, Eva Y

    2014-01-24

    We report the observation of an isolated charged impurity in graphene and present direct evidence of the close connection between the screening properties of a 2D electron system and the influence of the impurity on its electronic environment. Using scanning tunneling microscopy and Landau level spectroscopy, we demonstrate that in the presence of a magnetic field the strength of the impurity can be tuned by controlling the occupation of Landau-level states with a gate voltage. At low occupation the impurity is screened, becoming essentially invisible. Screening diminishes as states are filled until, for fully occupied Landau levels, the unscreened impurity significantly perturbs the spectrum in its vicinity. In this regime we report the first observation of Landau-level splitting into discrete states due to lifting the orbital degeneracy.

  10. Fundamental aspects of metallic impurities and impurity interactions in silicon during device processing

    SciTech Connect

    Graff, K.

    1995-08-01

    A review on the behavior of metallic impurities in silicon can be considerably simplified by a restriction on pure, dislocation-free, monocrystalline silicon. In this case interactions between different impurities and between impurities and grown-in lattice defects can be reduced. This restriction is observed in Chapter 1 for discussing the general behavior of metallic impurities in silicon.

  11. The influence of ionized impurity scattering on the thermopower of Si nanowires.

    PubMed

    Oh, Jung Hyun; Jang, Moon-Gyu; Shin, Mincheol

    2013-12-18

    The thermopower of Si nanowires was investigated on the basis of electronic transport theory, taking into account ionized impurity scattering as well as electron-phonon scattering. It was found that the enhancement of the Seebeck coefficient in nanowires arising from quantum confinement is unimportant due to the ionized impurity scattering associated with donor deactivation. Furthermore, because the electrical conductivity is degraded significantly as the nanowire size becomes smaller, despite the accompanying slightly enhanced Seebeck coefficient, the reduction of the nanowire size is not beneficial, at least for the thermopower of devices.

  12. Profile of Rh, Kell, Duffy, Kidd, and Diego blood group systems among blood donors in the Southwest region of the Paraná state, Southern Brazil.

    PubMed

    Zacarias, Joana Maira Valentini; Langer, Ieda Bernadete Volkweis; Visentainer, Jeane Eliete Laguila; Sell, Ana Maria

    2016-12-01

    The aim of this study was to assess the distribution of alleles and genotypes of the blood group systems Rh, Kell, Duffy, Kidd, and Diego in 251 regular blood donors registered in the hemotherapy unit of the Southwestern region of Paraná, Southern Brazil. The frequencies were obtained by direct counting on a spreadsheet program and statistical analyses were conducted in order to compare them with other Brazilian populations using chi-squared with Yates correction on OpenEpi software. The frequencies of RHD* negative, RHCE*c/c and RHCE*e/e were higher than expected for the Caucasian population. A difference was also observed for FY alleles, FY*01/FY*01 genotype and FY*02N.01 -67T/C (GATA Box mutation). Two homozygous individuals were defined as a low frequency phenotype K + k- (KEL*01.01/KEL*01.01) and, for Diego blood group system the rare DI*01 allele was found in ten blood donors, of which one was DI*01/DI* 01 (0.4%). The allele and genotype frequencies of Kidd blood group system were similar to expected to Caucasians. The results showed the direction in which to choose donors, the importance of extended genotyping in adequate blood screening and the existence of rare genotypes in Brazilian regular blood donors.

  13. Payment for donor kidneys: pros and cons.

    PubMed

    Friedman, E A; Friedman, A L

    2006-03-01

    Continuous growth of the end stage renal disease population treated by dialysis, outpaces deceased donor kidneys available, lengthens the waiting time for a deceased donor transplant. As estimated by the United States Department of Health & Human Services: '17 people die each day waiting for transplants that can't take place because of the shortage of donated organs.' Strategies to expand the donor pool--public relations campaigns and Drivers' license designation--have been mainly unsuccessful. Although illegal in most nations, and viewed as unethical by professional medical organizations, the voluntary sale of purchased donor kidneys now accounts for thousands of black market transplants. The case for legalizing kidney purchase hinges on the key premise that individuals are entitled to control of their body parts even to the point of inducing risk of life. One approach to expanding the pool of kidney donors is to legalize payment of a fair market price of about 40,000 dollars to donors. Establishing a federal agency to manage marketing and purchase of donor kidneys in collaboration with the United Network for Organ Sharing might be financially self-sustaining as reduction in costs of dialysis balances the expense of payment to donors.

  14. Donor Telomere Length SAA

    Cancer.gov

    A new NCI study has found that, among patients with severe aplastic anemia who received a hematopoietic cell transplant from an unrelated donor, those whose donor white blood cells had longer telomeres had higher survival rates five-years after transplant

  15. Flat panel display Impurity doping technology for flat panel displays

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshiharu

    2005-08-01

    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified.

  16. Magnetic Vortex Induced by Nonmagnetic Impurity in Frustrated Magnets

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Zeng; Hayami, Satoru; Batista, Cristian D.

    2016-05-01

    We study the effect of a nonmagnetic impurity inserted in a two-dimensional frustrated ferromagnet above its saturation magnetic field Hsat for arbitrary spin S . We demonstrate that the ground state includes a magnetic vortex that is nucleated around the impurity over a finite range of magnetic field Hsat≤H ≤HsatI. Upon approaching the quantum critical point at H =Hsat, the radius of the magnetic vortex diverges as the magnetic correlation length: ξ ∝1 /√{H -Hsat }. These results are derived both for the lattice and in the continuum limit.

  17. Neutrality point of graphene with coplanar charged impurities.

    PubMed

    Fogler, Michael M

    2009-12-04

    The ground state and the transport properties of graphene subject to the potential of in-plane charged impurities are studied. The screening of the impurity potential is shown to be nonlinear, producing a fractal structure of electron and hole puddles. Statistical properties of this density distribution as well as the charge compressibility of the system are calculated in the leading-log approximation. The conductivity depends logarithmically on alpha, the dimensionless strength of the Coulomb interaction. The theory is asymptotically exact when alpha is small, which is the case for graphene on a substrate with a high dielectric constant.

  18. Deformation potential constants of gallium impurity in germanium

    NASA Astrophysics Data System (ADS)

    Martin, A. D.; Fisher, P.; Freeth, C. A.; Salib, E. H.; Simmonds, P. E.

    1983-12-01

    The deformation potential constants and intensity parameters of some of the states and optically induced transitions of gallium impurity in germanium have been determined both experimentally and theoretically. The latter are based on the effective mass wavefunctions of Kohn and Schechter and of Mendelson and James. Reasonably good agreement is found between the experimental and theoretical results.

  19. Observation of impurity accumulation and concurrent impurity influx in PBX

    SciTech Connect

    Sesnic, S.S.; Fonck, R.J.; Ida, K.; Bol, K.; Couture, P.; Gammel, G.; Kaita, R.; Kaye, S.; Kugel, H.; LeBlanc, B.

    1986-07-01

    Impurity studies in L- and H-mode discharges in PBX have shown that both types of discharges can evolve into either an impurity accumulative or nonaccumulative case. In a typical accumulative discharge, Zeff peaks in the center to values of about 5. The central metallic densities can be high, n/sub met//n/sub e/ approx. = 0.01, resulting in central radiated power densities in excess of 1 W/cm/sup 3/, consistent with bolometric estimates. The radial profiles of metals obtained independently from the line radiation in the soft x-ray and the VUV regions are very peaked. Concurrent with the peaking, an increase in the impurity influx coming from the edge of the plasma is observed. At the beginning of the accumulation phase the inward particle flux for titanium has values of 6 x 10/sup 10/ and 10 x 10/sup 10/ particles/cm/sup 2/s at minor radii of 6 and 17 cm. At the end of the accumulation phase, this particle flux is strongly increased to values of 3 x 10/sup 12/ and 1 x 10/sup 12/ particles/cm/sup 2/s. This increased flux is mainly due to influx from the edge of the plasma and to a lesser extent due to increased convective transport. Using the measured particle flux, an estimate of the diffusion coefficient D and the convective velocity v is obtained.

  20. Robustness against non-magnetic impurities in topological superconductors

    NASA Astrophysics Data System (ADS)

    Nagai, Y.; Ota, Y.; Machida, M.

    2014-12-01

    We study the robustness against non-magnetic impurities in a three-dimensional topological superconductor, focusing on an effective model (massive Dirac Bogoliubov-de Gennes (BdG) Hamiltonian with s-wave on-site pairing) of CuxBi2Se3 with the parameter set determined by the first-principles calculation. With the use of the self-consistent T- matrix approximation for impurity scattering, we discuss the impurity-concentration dependence of the zero-energy density of states. We show that a single material variable, measuring relativistic effects in the Dirac-BdG Hamiltonian, well characterizes the numerical results. In the nonrelativistic limit, the odd-parity fully-gapped topological superconductivity is fragile against non-magnetic impurities, since this superconductivity can be mapped onto the p-wave superconductivity. On the other hand, in the ultrarelativistic limit, the superconductivity is robust against the non-magnetic impurities, since the effective model has the s-wave superconductivity. We derive the effective Hamiltonian in the both limit.

  1. Reprint of ``Characteristics of impurity-induced pseudogap"

    NASA Astrophysics Data System (ADS)

    Numata, Yoshinori; Uto, Tatsuro; Matuda, Azusa

    2016-11-01

    We have performed STM/STS measurements on a single crystal of Bi2.1Sr1.9Ca (Cu1-xCox) 2O8+δ (Co-Bi2212), to reveal impurity effects on the pseudogap in cuprate high-Tc superconductors. We report a drastic change in the temperature dependence of a pseudogap and in the density of states (DOS) modulation with a 4a period, in a certain doping range. In the Co 4% substituted samples, the pseudogap gradually closed like a gap of a BCS superconductor for slightly overdoped and overdoped regime, while their low temperature values were enhanced due to impurity. In addition, a disappearance of a 4a periodic modulation and a development of new modulation were observed in the DOS spatial distribution. These results indicate an intimate relation between the DOS modulation and the pseudogap, and qualitative difference in the impurity enhanced pseudogap and conventional one.

  2. Optical Hyperpolarization and Detection of Electron and Nuclear Spins of Phosphorus Donors in Highly Enriched Silicon-28

    NASA Astrophysics Data System (ADS)

    Yang, Albion

    The linewidths of optical transitions associated with shallow impurities have been shown in recent studies to be much narrower in isotopically enriched 28Si as compared to natural Si. This is true of the no-phonon P donor bound exciton transition in 28Si, and using photoluminescence excitation spectroscopy, fine structure previously not seen in natural Si is revealed. Under a small external magnetic field, the P bound exciton transition shows a complicated structure consisting of six sets of doublets, with the doublet splitting being due to the splitting of the donor ground state by the hyperfine interaction between the spin of the donor electron and that of the 31P nucleus. The electron spin populations and the 31P nuclear spin populations can be determined by measuring the relative intensities of the hyperfine components in the photoluminescence excitation spectrum. Additionally, the predominant Auger recombination channel of these bound excitons is used to observe the same resolved hyperfine components in the photocurrent spectrum. By selectively ionizing donors in a specific hyperfine state via optical pumping of a specific hyperfine component, large polarizations of the electron and nuclear spins of 31P donors can be achieved at low field. Electron and nuclear polarizations of 90% and 76%, respectively, are obtained in less than a second, providing an initialization mechanism for qubits based on these spins, and enabling further ESR and NMR studies on dilute 31P in 28Si. A measurement of the homogeneous linewidth of the transitions associated with the 31P bound exciton, determined by spectral hole burning, is also presented. The observed 10 neV linewidth is only four times the limit set by the bound exciton lifetime.

  3. Deep Impurity States in Gallium Arsenide.

    DTIC Science & Technology

    1981-10-01

    determinations using a level to conduction band) and the capture rates mercury Schottky barrier. mercry chotky arrer.(fr m conduction band to deep level) as a...heating. The luminescence is dispersed through a grating spectrometer and detected with a cooled lead- sulphide photoconduc- tor. An important feature in the

  4. μ SR insight into the impurity problem in quantum kagome antiferromagnets

    NASA Astrophysics Data System (ADS)

    Gomilšek, M.; Klanjšek, M.; Pregelj, M.; Luetkens, H.; Li, Y.; Zhang, Q. M.; Zorko, A.

    2016-07-01

    Impurities, which are unavoidable in real materials, may play an important role in the magnetism of frustrated spin systems with a spin-liquid ground state. We address the impurity issue in quantum kagome antiferromagnets by investigating ZnCu3(OH) 6SO4 (Zn-brochantite) by means of muon spin spectroscopy. We show that muons dominantly couple to impurities, originating from Cu-Zn intersite disorder, and that the impurity spins are highly correlated with the kagome spins, allowing us to probe the host kagome physics via a Kondo-like effect. The low-temperature plateau in the impurity susceptibility suggests that the kagome spin-liquid ground state is gapless. The corresponding spin fluctuations exhibit an unconventional spectral density and a nontrivial field dependence.

  5. Impurity diffusion in transition-metal oxides

    SciTech Connect

    Peterson, N.L.

    1982-06-01

    Intrinsic tracer impurity diffusion measurements in ceramic oxides have been primarily confined to CoO, NiO, and Fe/sub 3/O/sub 4/. Tracer impurity diffusion in these materials and TiO/sub 2/, together with measurements of the effect of impurities on tracer diffusion (Co in NiO and Cr in CoO), are reviewed and discussed in terms of impurity-defect interactions and mechanisms of diffusion. Divalent impurities in divalent solvents seem to have a weak interaction with vacancies whereas trivalent impurities in divalent solvents strongly influence the vacancy concentrations and significantly reduce solvent jump frequencies near a trivalent impurity. Impurities with small ionic radii diffuse more slowly with a larger activation energy than impurities with larger ionic radii for all systems considered in this review. Cobalt ions (a moderate size impurity) diffuse rapidly along the open channels parallel to the c-axis in TiO/sub 2/ whereas chromium ions (a smaller-sized impurity) do not. 60 references, 11 figures.

  6. Gaseous trace impurity analyzer and method

    DOEpatents

    Edwards, Jr., David; Schneider, William

    1980-01-01

    Simple apparatus for analyzing trace impurities in a gas, such as helium or hydrogen, comprises means for drawing a measured volume of the gas as sample into a heated zone. A segregable portion of the zone is then chilled to condense trace impurities in the gas in the chilled portion. The gas sample is evacuated from the heated zone including the chilled portion. Finally, the chilled portion is warmed to vaporize the condensed impurities in the order of their boiling points. As the temperature of the chilled portion rises, pressure will develop in the evacuated, heated zone by the vaporization of an impurity. The temperature at which the pressure increase occurs identifies that impurity and the pressure increase attained until the vaporization of the next impurity causes a further pressure increase is a measure of the quantity of the preceding impurity.

  7. Self-pumping impurity control

    DOEpatents

    Brooks, J.N.; Mattas, R.F.

    1983-12-21

    It is an object of the present invention to provide an apparatus for removing impurities from the plasma in a fusion reactor without an external vacuum pumping system. It is also an object of the present invention to provide an apparatus for removing the helium ash from a fusion reactor. It is another object of the present invention to provide an apparatus which removes helium ash and minimizes tritium recycling and inventory.

  8. [Motivations of oocytes donors].

    PubMed

    Cauvin, P

    2009-01-01

    Oocyte donation is a complex situation that requires the applicant couple to deal with the presence of the donor in the history of the child conception. Accepting the eggs is not the same thing than accepting the donor. Her place in the child's life depends on how his parents will accept her phantasmal reality beyond her real person. Paying attention to the story told by the donors on their motivations may help parents internalize this conception to three. We show from two clinical observations, that the generosity of donors is connected to personal issues that do not relate to unborn child or its parents. If there are two mothers in oocyte donation, they are not really in competition because there are also two children: the child conceived through donation is that of the project of the couple, the child to which the donor thinks, is and will remain in phantasmal domain, i.e. linked to the personal history of the donor. We also show that the psychological interview fully responds to the donor expectations when it seeks to highlight her motives.

  9. Sperm donors describe the experience of contact with their donor-conceived offspring

    PubMed Central

    Hertz, R.; Nelson, M.K.; Kramer, W.

    2015-01-01

    This study explores the attitudes and experiences of 57 sperm donors who responded to a survey posted online in the United States and indicated that they had had contact with their donor-conceived offspring or the parents of their donor-conceived offspring. On average, 18 years had elapsed since the respondents donated sperm. In the interim between donating and having contact with offspring, most had become curious about their offspring. Most made contact through a bank or online registry. Most respondents had communicated with at least one offspring at least once and most had exchanged photos with offspring. Approximately two-thirds had met in person once; the same proportion had communicated over email or text. Other forms of communication were less common. Almost half of the respondents now considered their donor-conceived offspring to be like a family member. At the same time, donors are respectful of the integrity of the family in which their offspring were raised. Donors with contact are open to having their partners and children know their donor-conceived offspring. Although contact is generally positive, donors report that establishing boundaries and defining the relationship can be very difficult. Some donors also urge those who are thinking of donating to consider the consequences and some suggest avoiding anonymity. There were no significant differences in attitudes and experiences between those who donated anonymously and those who had been identity-release for their offspring when they turned 18. PMID:26175887

  10. Dynamics of {sup 3}He impurities in {sup 4}He films

    SciTech Connect

    Clements, B.E. |; Krotscheck, E. |; Saarela, M.

    1995-08-01

    Using a microscopic variational theory the authors calculate the binding energy of {sup 3}He impurities in films of {sup 4}He absorbed to a graphite substrate. Without adjustable parameters, they obtain excellent agreement with the experimental binding energies for the ground state of the {sup 3}He impurity. To calculate excited states, they then introduce a time-dependent variational wave function. In that way, the impurity acquires a hydrodynamic effective mass for its motion parallel to the surface due to hydrodynamic backflow. Excited states have a finite lifetime. When these effects are included, both the energy of the first excited state of the impurity, and the effective mass of the ground state, also agree well with experimental data.

  11. Kinetic theory for a mobile impurity in a degenerate Tonks-Girardeau gas.

    PubMed

    Gamayun, O; Lychkovskiy, O; Cheianov, V

    2014-09-01

    A kinetic theory describing the motion of an impurity particle in a degenerate Tonks-Girardeau gas is presented. The theory is based on the one-dimensional Boltzmann equation. An iterative procedure for solving this equation is proposed, leading to the exact solution in a number of special cases and to an approximate solution with the explicitly specified precision in a general case. Previously we reported that the impurity reaches a nonthermal steady state, characterized by an impurity momentum p(∞) depending on its initial momentum p(0) [E. Burovski, V. Cheianov, O. Gamayun, and O. Lychkovskiy, Phys. Rev. A 89, 041601(R) (2014)]. In the present paper the detailed derivation of p(∞)(p(0)) is provided. We also study the motion of an impurity under the action of a constant force F. It is demonstrated that if the impurity is heavier than the host particles, m(i)>m(h), damped oscillations of the impurity momentum develop, while in the opposite case, m(i)state momentum as a function of the applied force is determined. In the limit of weak force it is found to be force independent for a light impurity and proportional to √[F] for a heavy impurity.

  12. Natural orbitals renormalization group approach to the two-impurity Kondo critical point

    NASA Astrophysics Data System (ADS)

    He, Rong-Qiang; Dai, Jianhui; Lu, Zhong-Yi

    2015-04-01

    The problem of two magnetic impurities in a normal metal exposes the two opposite tendencies in the formation of a singlet ground state, driven respectively by the single-ion Kondo effect with conduction electrons to screen impurity spins or the Ruderman-Kittel-Kasuya-Yosida interaction between the two impurities to directly form impurity spin singlet. However, whether the competition between these two tendencies can lead to a quantum critical point has been debated over more than two decades. Here, we study this problem by applying the newly proposed natural orbitals renormalization group method to a lattice version of the two-impurity Kondo model with a direct exchange K between the two impurity spins. The method allows for unbiased access to the ground state wave functions and low-lying excitations for sufficiently large system sizes. We demonstrate the existence of a quantum critical point, characterized by the power-law divergence of impurity staggered susceptibility with critical exponent γ =0.60 (1 ) , on the antiferromagnetic side of K when the interimpurity distance R is even lattice spacing, while a crossover behavior is recovered when R is odd lattice spacing. These results have ultimately resolved the long-standing discrepancy between the numerical renormalization group and quantum Monte Carlo studies, confirming a link of this two-impurity Kondo critical point to a hidden particle-hole symmetry predicted by the local Fermi liquid theory.

  13. Live donor transplantation--the incompetent donor: comparative law.

    PubMed

    Wolfman, Samuel; Shaked, Tali

    2008-12-01

    Informed consent of the patient to medical treatment is an essential prerequisite for any invasive medical procedure. However in emergency cases, when the patient is unable to sign a consent form due to unconsciousness or to psychotic state, than the primary medical consideration shall take place. In such a case, in order to save life or even prevent a major medical hazard to the patient, doctors are allowed, in certain cases and in accordance with well accepted medical practice, to perform invasive procedures, major surgery or risky pharmacological treatment, without the explicit consent of the patient. All the above refers to the cases when avoidance of such non-consented treatment may harm severely the health and wellbeing of the patient and there is no doubt that such treatment is for the ultimate benefit of the patient. The question, however, shall arise when such a medical procedure is not necessarily for the benefit of the patient, but rather for the benefit of somebody else. Such is the case in the transplantation area and the question of living donor-donee relationship. This paper shall analyze the legal situation in cases of non competent donors whose consent cannot be considered legal consent given in full understanding and out of free will. It will also compare three legal systems, the Israeli, the American and the traditional Jewish law, with regard to the different approaches to this human problem, where the autonomy of the donor may be sacrificed for the purpose of saving life of another person.

  14. Impurity-induced divertor plasma oscillations

    SciTech Connect

    Smirnov, R. D. Krasheninnikov, S. I.; Pigarov, A. Yu.; Kukushkin, A. S.; Rognlien, T. D.

    2016-01-15

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  15. Impurity-induced divertor plasma oscillations

    NASA Astrophysics Data System (ADS)

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-01

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  16. Impurity-induced divertor plasma oscillations

    SciTech Connect

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-07

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. As a result, the implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  17. Impurity-induced divertor plasma oscillations

    DOE PAGES

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; ...

    2016-01-07

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ionmore » transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. As a result, the implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.« less

  18. Heteroaromatic donors in donor-acceptor-donor based fluorophores facilitate zinc ion sensing and cell imaging.

    PubMed

    Sreejith, Sivaramapanicker; Divya, Kizhumuri P; Jayamurthy, Purushothaman; Mathew, Jomon; Anupama, V N; Philips, Divya Susan; Anees, Palappuravan; Ajayaghosh, Ayyappanpillai

    2012-11-01

    The excited state intra molecular charge transfer (ICT) property of fluorophores has been extensively used for the design of fluorescent chemosensors. Herein, we report the synthesis and properties of three donor–π-acceptor–π-donor (D–π-A–π-D) based molecular probes BP, BT and BA. Two heteroaromatic rings, pyrrole (BP), and thiophene (BT) and a non-heteroaromatic ring N-alkoxy aniline (BA) were selected as donor moieties which were linked to a bipyridine binding site through a vinylic linkage. The heteroaromatic systems BP and BT perform selective and ratiometric emission signalling for zinc ions whereas the non-heteroaromatic probe BA does not. The advantages of the D–π-A–π-D design strategy in the design of ICT based probes for the selective fluorescent ratiometric signalling of zinc ions in biological media is discussed. Further, the use of BP, BT and BA for imaging Zn(2+) ions from MCF-7 cell lines is demonstrated.

  19. Interactions of structural defects with metallic impurities in multicrystalline silicon

    SciTech Connect

    McHugo, S.A.; Thompson, A.C.; Hieslmair, H.

    1997-04-01

    Multicrystalline silicon is one of the most promising materials for terrestrial solar cells. It is critical to getter impurities from the material as well as inhibit contamination during growth and processing. Standard processing steps such as, phosphorus in-diffusion for p-n junction formation and aluminum sintering for backside ohmic contact fabrication, intrinsically possess gettering capabilities. These processes have been shown to improve L{sub n} values in regions of multicrystalline silicon with low structural defect densities but not in highly dislocated regions. Recent Deep Level Transient Spectroscopy (DLTS) results indirectly reveal higher concentrations of iron in highly dislocated regions while further work suggests that the release of impurities from structural defects, such as dislocations, is the rate limiting step for gettering in multicrystalline silicon. The work presented here directly demonstrates the relationship between metal impurities, structural defects and solar cell performance in multicrystalline silicon. Edge-defined Film-fed Growth (EFG) multicrystalline silicon in the as-grown state and after full solar cell processing was used in this study. Standard solar cell processing steps were carried out at ASE Americas Inc. Metal impurity concentrations and distributions were determined by use of the x-ray fluorescence microprobe (beamline 10.3.1) at the Advanced Light Source, Lawrence Berkeley National Laboratory. The sample was at atmosphere so only elements with Z greater than silicon could be detected, which includes all metal impurities of interest. Structural defect densities were determined by preferential etching and surface analysis using a Scanning Electron Microscope (SEM) in secondary electron mode. Mapped areas were exactly relocated between the XRF and SEM to allow for direct comparison of impurity and structural defect distributions.

  20. Impurity effect in electron-doped high-T c superconductors

    NASA Astrophysics Data System (ADS)

    Shen, Xiao-Ling; Zhou, Tao

    2016-12-01

    The quasiparticle states around a nonmagnetic impurity in electron-doped high-T c superconductors are studied systematically based on the Bogoliubov-de Gennes equations. In the antiferromagnetic state, one in-gap impurity resonance state is revealed. As the impurity scattering potential increases, the resonance peak shifts to the gap edge and finally disappears for a strong impurity. The antiferromagnetic order and superconducting order coexist when the doping density increases. In this coexisting state, the in-gap resonance peaks are rather robust and appear in pairs that are lying symmetric with the Fermi energy. The peak positions and intensities strongly depend on the impurity potentials and the next-nearest-neighbour hopping constants. For a rather strong impurity, the resonance peaks shift to near the gap edge. When further increasing the doping density, the system is in the pure superconducting state. The resonance peaks still appear in pairs, with the peak intensities being weaker compared to those in the coexisting state. The two resonance peaks may occasionally merge into one zero-energy peak for both the coexisting state and the pure superconducting state. The spin-resolved LDOS are also investigated and may be used to detect possible antiferromagnetic order.

  1. Optical and electronic properties of quantum dots with magnetic impurities

    NASA Astrophysics Data System (ADS)

    Govorov, Alexander O.

    2008-10-01

    The article discusses some of the recent results on semiconductor quantum dots with magnetic impurities. A single Mn impurity incorporated in a quantum dot strongly changes the optical response of a quantum-dot system. A character of Mn-carrier interaction is very different for II-VI and III-V quantum dots (QDs). In the II-VI QDs, a Mn impurity influences mostly the spin-structure of an exciton. In the III-V dots, a spatial localization of hole by a Mn impurity can be very important, and ultimately yields a totally different spin structure. A Mn-doped QD with a variable number of mobile carriers represents an artificial magnetic atom. Due to the Mn-carrier interaction, the order of filling of electronic shells in the magnetic QDs can be very different to the case of the real atoms. The "periodic" table of the artificial magnetic atoms can be realized in voltage-tunable transistor structures. For the electron numbers corresponding to the regime of Hund's rule, the magnetic Mn-carrier coupling is especially strong and the magnetic-polaron states are very robust. Magnetic QD molecules are also very different to the real molecules. QD molecules can demonstrate spontaneous breaking of symmetry and phase transitions. Single QDs and QD molecules can be viewed as voltage-tunable nanoscale memory cells where information is stored in the form of robust magnetic-polaron states. To cite this article: A.O. Govorov, C. R. Physique 9 (2008).

  2. Laparoscopic donor nephrectomy.

    PubMed

    Deger, S; Giessing, M; Roigas, J; Wille, A H; Lein, M; Schönberger, B; Loening, S A

    2005-01-01

    Laparoscopic live donor nephrectomy (LDN) has removed disincentives of potential donors and may bear the potential to increase kidney donation. Multiple modifications have been made to abbreviate the learning curve while at the same time guarantee the highest possible level of medical quality for donor and recipient. We reviewed the literature for the evolution of the different LDN techniques and their impact on donor, graft and operating surgeon, including the subtleties of different surgical accesses, vessel handling and organ extraction. We performed a literature search (PubMed, DIMDI, medline) to evaluate the development of the LDN techniques from 1995 to 2003. Today more than 200 centres worldwide perform LDN. Hand-assistance has led to a spread of LDN. Studies comparing open and hand-assisted LDN show a reduction of operating and warm ischaemia times for the hand-assisted LDN. Different surgical access sites (trans- or retroperitoneal), different vessel dissection approaches, donor organ delivery techniques, delivery sites and variations of hand-assistance techniques reflect the evolution of LDN. Proper techniques and their combination for the consecutive surgical steps minimize both warm ischaemia time and operating time while offering the donor a safe minimally invasive laparoscopic procedure. LDN has breathed new life into the moribund field of living kidney donation. Within a few years LDN could become the standard approach in living kidney donation. Surgeons working in this field must be trained thoroughly and well acquainted with the subtleties of the different LDN techniques and their respective advantages and disadvantages.

  3. Effect of the Type-I to Tipe-II Transition on the Shallow Donor Binding Energy in GaAs/AlAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    da Cunha Lima, A. T.; da Cunha Lima, I. C.; Ferreira da Silva, A.

    1996-03-01

    In GaAs-Ga_1-xAl_xAs quantum wells with x <= 0.4 the low energy states of the conduction band are obtained from Γ-type bulk states. The other minima with different simmetries, e.g. L and X, give states with higher energies. However, for x > 0.4 and below a certain value of the QW width, the GaAs layer becomes a barrier for the electron. We have calculated the binding energy of a shallow donor in the GaAs layer of a GaAs/AlAs QW (x =1.) for widths just larger and smaller than the one corresponding to the type-I to type-II transition (37ÅWe have used, for estimating the impurity ground state energy, a trial function composed of the unperturbed envelope function modulated by a separable confining function exp(-ρ/α)× exp (-\\vert z-z_i\\vert/β) where α and β are variational parameters and zi is the impurity position in the growth direction. Our results show an important decrease of the binding energy, and also a change in the state symmetry, since the obtained bound state in the type-II structure is predominantly a p-like state.

  4. Comparison between psychosocial long-term outcomes of recipients and donors after adult-to-adult living donor liver transplantation.

    PubMed

    Noma, Shun'ichi; Hayashi, Akiko; Uehara, Minako; Uemoto, Shinji; Murai, Toshiya

    2011-01-01

    The purpose of this study was to examine psychosocial states of recipients and donors several years after living donor liver transplantation (LDLT) and to find out the pre-transplant predictors of desirable post-transplant psychosocial states. The recipients and donors of adult-to-adult LDLT at Kyoto University Hospital, Japan, from November 2001 through July 2003 were interviewed and examined by means of questionnaires about anxiety, depression, and quality of life (QOL), and the participants were evaluated by the same test batteries sent by mail three to five yr after LDLT. Twenty-seven pairs of recipients and donors, 13 recipients, and three donors participated in this study. The recipients and the donors had a decline in social QOL. The main predictor of psychosocial states of the recipients was the length of wait for LDLT, and the predictors of the donors were family or support system availability and recipients' depressive states at LDLT. The donors who were spouses of the recipients had better QOL than other donors. It might be better to perform LDLT as soon as possible once LDLT has been judged to be necessary, and the relative who is on close terms with the recipient should be selected as donor.

  5. Citrate anticoagulation: Are blood donors donating bone?

    PubMed

    Bialkowski, Walter; Bruhn, Roberta; Edgren, Gustaf; Papanek, Paula

    2016-10-01

    An estimated 2.4 million volunteer apheresis blood donation procedures were performed in the United States in 2010, and increases in the proportion of transfused blood products derived from apheresis blood collections have been consistently reported. Anticoagulation is required during apheresis and is achieved with citrate. Donor exposure to citrate causes an acute physiological response to maintain serum mineral homeostasis. Some data are available on the sequelae of this acute response in the days and weeks following exposure, raising questions about bone mineral density in regular apheresis donors. New research is emerging that addresses the potential long-term health outcomes of repeated citrate exposure. This article reviews the acute physiological response to citrate anticoagulation in volunteer blood donors, presents contrasting perspectives on the potential effects of citrate exposure on bone density, and identifies key knowledge gaps in our understanding of long-term health outcomes in apheresis donors. J. Clin. Apheresis 31:459-463, 2016. © 2015 Wiley Periodicals, Inc.

  6. Impurity-induced moments in underdoped cuprates

    SciTech Connect

    Khaliullin, G. |; Kilian, R.; Krivenko, S.; Fulde, P.

    1997-11-01

    We examine the effect of a nonmagnetic impurity in a two-dimensional spin liquid in the spin-gap phase, employing a drone-fermion representation of spin-1/2 operators. The properties of the local moment induced in the vicinity of the impurity are investigated and an expression for the nuclear-magnetic-resonance Knight shift is derived, which we compare with experimental results. Introducing a second impurity into the spin liquid an antiferromagnetic interaction between the moments is found when the two impurities are located on different sublattices. The presence of many impurities leads to a screening of this interaction as is shown by means of a coherent-potential approximation. Further, the Kondo screening of an impurity-induced local spin by charge carriers is discussed. {copyright} {ital 1997} {ital The American Physical Society}

  7. Impure placebo is a useless concept.

    PubMed

    Louhiala, Pekka; Hemilä, Harri; Puustinen, Raimo

    2015-08-01

    Placebos are allegedly used widely in general practice. Surveys reporting high level usage, however, have combined two categories, 'pure' and 'impure' placebos. The wide use of placebos is explained by the high level usage of impure placebos. In contrast, the prevalence of the use of pure placebos has been low. Traditional pure placebos are clinically ineffective treatments, whereas impure placebos form an ambiguous group of diverse treatments that are not always ineffective. In this paper, we focus on the impure placebo concept and demonstrate problems related to it. We also show that the common examples of impure placebos are not meaningful from the point of view of clinical practice. We conclude that the impure placebo is a scientifically misleading concept and should not be used in scientific or medical literature. The issues behind the concept, however, deserve serious attention in future research.

  8. Anisotropic inflation from vector impurity

    SciTech Connect

    Kanno, Sugumi; Kimura, Masashi; Soda, Jiro; Yokoyama, Shuichiro E-mail: mkimura@sci.osaka-cu.ac.jp E-mail: shu@a.phys.nagoya-u.ac.jp

    2008-08-15

    We study an inflationary scenario with a vector impurity. We show that the universe undergoes anisotropic inflationary expansion due to a preferred direction determined by the vector. Using the slow roll approximation, we find a formula for determining the anisotropy of the inflationary universe. We discuss possible observable predictions of this scenario. In particular, it is stressed that primordial gravitational waves can be induced from curvature perturbations. Hence, even in low scale inflation, a sizable amount of primordial gravitational waves may be produced during inflation.

  9. A nonmagnetic impurity in a 2D quantum critical antiferromagnet

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    2003-03-01

    We compute the properties of a mobile hole and a static impurity injected into a two-dimensional antiferromagnet or superconductor in the vicinity of a magnetic quantum critical point. A static S=1/2 impurity doped into a quantum-disordered spin gap system induces a local moment with spin S=1/2 and a corresponding Curie-like impurity susceptibility, while the same impurity in a Néel ordered state only gives a finite impurity susceptibility. For the quantum critical system however an interesting field-theoretical prediction has been made that there the impurity spin susceptibility still has a Curie-like divergence, but with a universal effective spin that is neither an integer nor a half-odd integer [1]. In large-scale quantum Monte Carlo (QMC) simulations using the loop algorithm we calculate the impurity susceptibility and find that, unfortunately, this effect is not observable since the renormalization of the effective spin away from S=1/2 is minimal. Other predictions of the field theory, such as a new critical exponent η' describing the time-dependent impurity spin correlations can however be confirmed [2]. Next we compute the spectral function of a hole injected into a 2D antiferromagnet or superconductor in the vicinity of a magnetic quantum critical point [3]. We show that, near van Hove singularities, the problem maps onto that of a static vacancy. This allows the calculation of the spectral function in a QMC simulation without encountering the negative sign problem. We find a vanishing quasiparticle residue at the critical point, a new exponent η_h0.080.04 describing the frequency dependence of the spectral function G_h(ω)(ɛ_0-ω)-1+ηh and discuss possible relevance to photoemission spectra of cuprate superconductors near the antinodal points. ^1 S. Sachdev, C. Buragohain and M. Vojta, Science 286, 2479 (1999). ^2 M. Troyer, in Prog. Theor. Phys. Suppl. 145 (2002); M. Körner and M. Troyer, ibid. ^3 S. Sachdev, M. Troyer, and M. Vojta, Phys. Rev

  10. Structure and vibrations of different charge Ge impurity in α-quartz

    SciTech Connect

    Kislov, A. N. Mikhailovich, A. P. Zatsepin, A. F.

    2014-10-21

    Atomic structure and localized vibrations of α‐SiO{sub 2}:Ge are studied using computer modeling techniques. The simulation was carried out by the lattice dynamics calculation of the local density of vibrational states. Local structures parameters are calculated, localized symmetrized vibrations frequency caused by Ge impurity in different charge states are defined. The movements of atoms located near Ge impurity are analyzed and their contribution into localized vibrations of different type is evaluated.

  11. Role of sawtooth in avoiding impurity accumulation and maintaining good confinement in JET radiative mantle discharges

    NASA Astrophysics Data System (ADS)

    Nave, M. F. F.; Rapp, J.; Bolzonella, T.; Dux, R.; Mantsinen, M. J.; Budny, R.; Dumortier, P.; von Hellermann, M.; Jachmich, S.; Koslowski, H. R.; Maddison, G.; Messiaen, A.; Monier-Garbet, P.; Ongena, J.; Puiatti, M. E.; Strachan, J.; Telesca, G.; Unterberg, B.; Valisa, M.; de Vries, P.; JET-EFDA Workprogramme

    2003-10-01

    Impurity injection in the JET ELMy H-mode regime has produced high-confinement, quasi-steady-state plasmas with densities close to the Greenwald density. However, at large Ar densities, a sudden loss of confinement is observed. A possible correlation between loss of confinement and the observed MHD phenomena, both in the core and in the edge of the plasma, was considered. The degradation in confinement coincided with impurity profile peaking following the disappearance of sawtooth activity. In addition, impurity density profile analysis confirmed that central MHD modes prevented impurity peaking. Experiments were designed to understand the role of sawtooth crashes in re-distributing impurities. Ion-cyclotron radio frequency heating was used to control the central q-profile and maintain sawtooth activity. This resulted in quasi-steady-state, high-performance plasmas with high Ar densities. At H_{98y}*f_GWD\\sim 0.8 and high Ar injection rates, quasi-steady-states, which previously only lasted <1tgrE, were now maintained for the duration of the heating (Dgr t ~ 9tgr E). The increased central heating may have an additional beneficial effect in opposing impurity accumulation by changing the core power balance and modifying the impurity transport as predicted by neo-classical theory.

  12. Molecular engineering of organic dyes with a hole-extending donor tail for efficient all-solid-state dye-sensitized solar cells.

    PubMed

    Lu, Jianfeng; Chang, Yu-Cheng; Cheng, Hsu-Yang; Wu, Hui-Ping; Cheng, Yibing; Wang, Mingkui; Diau, Eric Wei-Guang

    2015-08-10

    We report a new concept for the design of metal-free organic dyes (OD5-OD9) with an extended donor-π-acceptor (D-π-A) molecular framework, in which the donor terminal unit is attached by a hole-extending side chain to retard back electron transfer and charge recombination; the π-bridge component contains varied thiophene-based substituents to enhance the light-harvesting ability of the device. The best dye (OD9) has a D-A-π-A configuration with the hexyloxyphenylthiophene (HPT) side chain as a hole-extension component and a benzothiadiazole (BTD) internal acceptor as a π-extension component. The co-sensitization of OD9 with the new porphyrin dye LW24 enhanced the light-harvesting ability to 800 nm; thus, a power conversion efficiency 5.5 % was achieved. Photoinduced absorption (PIA) and transient absorption spectral (TAS) techniques were applied to account for the observed trend of the open-circuit voltage (VOC ) of the devices. This work provides insights into the molecular design, photovoltaic performance, and kinetics of charge recombination.

  13. Method for detecting trace impurities in gases

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1981-01-01

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (.about.2 ppm) present in commercial Xe and ppm levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  14. Method for detecting trace impurities in gases

    DOEpatents

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  15. Identification and characterization of potential impurities in raloxifene hydrochloride.

    PubMed

    Reddy, Reguri Buchi; Goud, Thirumani Venkateshwar; Nagamani, Nagabushanam; Kumar, Nutakki Pavan; Alagudurai, Anandan; Murugan, Raman; Parthasarathy, Kannabiran; Karthikeyan, Vinayagam; Balaji, Perumal

    2012-01-01

    During the synthesis of the bulk drug Raloxifene hydrochloride, eight impurities were observed, four of which were found to be new. All of the impurities were detected using the gradient high performance liquid chromatographic (HPLC) method, whose area percentages ranged from 0.05 to 0.1%. LCMS was performed to identify the mass number of these impurities, and a systematic study was carried out to characterize them. These impurities were synthesized and characterized by spectral data, subjected to co-injection in HPLC, and were found to be matching with the impurities present in the sample. Based on their spectral data (IR, NMR, and Mass), these impurities were characterized as Raloxifene-N-Oxide [Impurity: 1]; EP impurity A [Impurity: 2]; EP impurity B [Impurity: 3]; Raloxifene Dimer [Impurity: 4]; HABT (6-Acetoxy-2-[4-hydroxyphenyl]-1-benzothiophene or 6-Hydroxy-2-[4-acetoxyphenyl]-1-benzothiophene) [Impurity: 5]; PEBE (Methyl[4-[2-(piperidin-1-yl)ethoxy

  16. Path-integral Monte Carlo simulations for electronic dynamics on molecular chains. II. Transport across impurities

    NASA Astrophysics Data System (ADS)

    Mühlbacher, Lothar; Ankerhold, Joachim

    2005-05-01

    Electron transfer (ET) across molecular chains including an impurity is studied based on a recently improved real-time path-integral Monte Carlo (PIMC) approach [L. Mühlbacher, J. Ankerhold, and C. Escher, J. Chem. Phys. 121 12696 (2004)]. The reduced electronic dynamics is studied for various bridge lengths and defect site energies. By determining intersite hopping rates from PIMC simulations up to moderate times, the relaxation process in the extreme long-time limit is captured within a sequential transfer model. The total transfer rate is extracted and shown to be enhanced for certain defect site energies. Superexchange turns out to be relevant for extreme gap energies only and then gives rise to different dynamical signatures for high- and low-lying defects. Further, it is revealed that the entire bridge compound approaches a steady state on a much shorter time scale than that related to the total transfer. This allows for a simplified description of ET along donor-bridge-acceptor systems in the long-time range.

  17. Neoclassical transport in density pedestals with non-trace impurities

    NASA Astrophysics Data System (ADS)

    Buller, Stefan; Pusztai, Istvan; Landreman, Matt

    2016-10-01

    We study neoclassical transport in steady-state density pedestals with non-trace impurities using the Eulerian δf code Perfect, with an emphasis on radially global effects and the effects of impurities. To properly describe transport in a tokamak pedestal, radial coupling must be included, which strongly affects the transport. We find that radial coupling reduces the pedestal heat flux compared to local predictions. Furthermore, the influence of the pedestal persists several orbit widths into the core. The electron flux is significant in the pedestal, and global neoclassical transport is not intrinsically ambipolar. Thus, the impurity flux is not simply opposing the ion flux. The resulting radial current gives a torque that is balanced by a non-negligible radial transport of toroidal momentum. The effective Prandtl number is comparable to typical turbulent values in the core (0.1 - 0.3), and is sensitive to the impurity content. Global effects have a strong contribution to the poloidal flows of low- Z ions, which give rise to larger in-out flow asymmetries. Supported by the INCA Grant of Vetenskapsrådet (Dnr. 330-2014-6313). ML is supported by the USDoE Grants DEFG0293ER54197 and DEFC0208ER54964. The simulations used computational resources of Hebbe at C3SE (C3SE2016-1-10 & SNIC2016-1-161).

  18. PROCESS FOR RECOVERY OF URANIUM VALUES FROM IMPURE SOLUTIONS THEREOF

    DOEpatents

    Kilner, S.B.

    1959-11-01

    A process is presented for the recovery of uraninm values from impure solutions which are obtained, for example, by washing residual uranium salt or uranium metal deposits from stainless steel surfaces using an aqueous or certain acidic aqueous solutions. The solutions include uranyl and oxidized iron, chromium, nickel, and copper ions and may contain manganese, zinc, and silver ions. In accordance with one procedure. the uranyl ions are reduced to the uranous state, and the impurity ions are complexed with cyanide under acidic conditions. The solution is then treated with ammonium hydroxide or alkali metal hydroxide to precipitate uranous hydroxide away from the complexed impurity ions in the solution. Alternatively, an excess of alkali metal cyanide is added to the reduced solution until the solution becomes sufficiently alkaline for the uranons hydroxide to precipitate. An essential feature in operating the process is in maintaining the pH of the solution sufficiently acid during the complexing operation to prevent the precipitation of the impurity metal hydroxides.

  19. Computer applications in the search for unrelated stem cell donors.

    PubMed

    Müller, Carlheinz R

    2002-08-01

    The majority of patients which are eligible for a blood stem cell transplantation from an allogeneic donor do not have a suitable related donor so that an efficient unrelated donor search is a prerequisite for this treatment. Currently, there are over 7 million volunteer donors in the files of 50 registries in the world and in most countries the majority of transplants are performed from a foreign donor. Evidently, computer and communication technology must play a crucial role in the complex donor search process on the national and international level. This article describes the structural elements of the donor search process and discusses major systematic and technical issues to be addressed in the development and evolution of the supporting telematic systems. The theoretical considerations are complemented by a concise overview over the current state of the art which is given by describing the scope, relevance, interconnection and technical background of three major national and international computer appliances: The German Marrow Donor Information System (GERMIS) and the European Marrow Donor Information System (EMDIS) are interoperable business-to-business e-commerce systems and Bone Marrow Donors World Wide (BMDW) is the basic international donor information desk on the web.

  20. Coulomb impurities in two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Zhu, Jia-Lin; Li, Guo; Yang, Ning

    2017-03-01

    Introducing a powerful method, we obtain the exact solutions for a Coulomb impurity in two-dimensional infinite and finite topological insulators. The level order and zero-energy degeneracy of the spectra are found to be quite different between topological trivial and nontrivial phases. For quantum dots of topological insulator, the variation of the edge and Coulomb states with dot size, Coulomb potential, and magnetic field are clearly shown. It is found that for small dots the edge states can be strongly coupled with the Coulomb states and for large dots the edge states are insensitive to the Coulomb fields but sensitive to the magnetic fields.

  1. Donor identification 'kills gamete donation'? A response.

    PubMed

    Allan, Sonia

    2012-12-01

    Two Australian government inquiries have recently called for the release of information to donor-conceived people about their gamete donors. A national inquiry, recommended 'as a matter of priority' that uniform legislation to be passed nationwide. A state-based inquiry argued that all donor-conceived people should have access to information and called for the enactment of retrospective legislation that would override donor anonymity. This paper responds to an opinion piece published in Human Reproduction in October 2012 by Professor Pennings in which he criticized such recommendations and questioned the motives of people that advocate for information release. I answer the arguments of Pennings, and argue that all parties affected by donor conception should be considered, and a compromise reached. The contact veto system is one such compromise. I discuss the education and support services recommended by the Victorian government and question Pennings' assertions that legislation enabling information release will lead to a decrease in gamete donation. Finally, I rebut Pennings' assertion that there is a 'hidden agenda' behind the call for information release. There is no such agenda in my work. If there is from others, then it is their discriminatory views that need to be addressed, not the move toward openness and honesty or the call for information by donor-conceived people.

  2. Optical Control of Donor Spin Qubits in Silicon

    PubMed Central

    Gullans, M. J.; Taylor, J. M.

    2016-01-01

    We show how to achieve optical, spin-selective transitions from the ground state to excited orbital states of group-V donors (P, As, Sb, Bi) in silicon. We consider two approaches based on either resonant, far-infrared (IR) transitions of the neutral donor or resonant, near-IR excitonic transitions. For far-IR light, we calculate the dipole matrix elements between the valley-orbit and spin-orbit split states for all the goup-V donors using effective mass theory. We then calculate the maximum rate and amount of electron-nuclear spin-polarization achievable through optical pumping with circularly polarized light. We find this approach is most promising for Bi donors due to their large spin-orbit and valley-orbit interactions. Using near-IR light, spin-selective excitation is possible for all the donors by driving a two-photon Λ-transition from the ground state to higher orbitals with even parity. We show that externally applied electric fields or strain allow similar, spin-selective Λ-transition to odd-parity excited states. We anticipate these results will be useful for future spectroscopic investigations of donors, quantum control and state preparation of donor spin qubits, and for developing a coherent interface between donor spin qubits and single photons. PMID:28127227

  3. Non-perturbative study of impurity effects on the Kubo conductivity in macroscopic periodic and quasiperiodic lattices

    NASA Astrophysics Data System (ADS)

    Sánchez, Vicenta; Ramírez, Carlos; Sánchez, Fernando; Wang, Chumin

    2014-09-01

    In this paper, we analyze the effects of site and bond impurities on the electrical conductance of periodic and quasiperiodic systems with macroscopic length by means of a real-space renormalization plus a convolution method developed for the Kubo-Greenwood formula. All analyzed systems are connected to semi-infinite periodic leads. Analytical and numerical conductivity spectra are obtained for one and two site impurities in a periodic chain, where the separation between impurities determines the number of maximums in the spectra. We also found transparent states at the zero chemical potential in Fibonacci chains of every three generations with bond impurities, whose existence was confirmed by an analytical analysis within the Landauer formalism. For many impurities, the spectral average of the conductivity versus the system length reveals a power-law behavior, when the distance between impurities follows the Fibonacci sequence. Finally, we present an analysis of the conductance spectra of segmented periodic and Fibonacci chains and nanowires.

  4. Effect of dilute strongly pinning impurities on charge density waves

    NASA Astrophysics Data System (ADS)

    Okamoto, Jun-ichi; Millis, Andrew J.

    2015-05-01

    We study theoretically the effects of strong pinning centers on a charge density wave in the limit that the charge density wave coherence length is shorter than the average interimpurity distance. An analysis based on a Ginzburg-Landau model shows that long-range forces arising from the elastic response of the charge density wave induce a kind of collective pinning which suppresses impurity-induced phase fluctuations, leading to a long-range ordered ground state. The correlations induced by impurities are characterized by a length scale parametrically longer than the average interimpurity distance. Long-wavelength fluctuations are found to be gapped, implying the stability of the ground state. We also present Monte Carlo simulations that confirm the basic features of the analytical results.

  5. Eliminating Impurity Traps in the Silane Process

    NASA Technical Reports Server (NTRS)

    Coleman, L. M.

    1982-01-01

    Redistribution reaction section of silane process progressively separates heavier parts of chlorosilane feedstock until light silane product is available for pyrolysis. Small amount of liquid containing impurities is withdrawn from processing stages in which trapping occurs and passed to earlier processing stage in which impurities tend to be removed via chemical reactions.

  6. Cryogenic Laser Calorimetry for Impurity Analysis

    NASA Technical Reports Server (NTRS)

    Swimm, R. T.

    1985-01-01

    The results of a one-year effort to determine the applicability of laser-calorimetric spectroscopy to the study of deep-level impurities in silicon are presented. Critical considerations for impurity analysis by laser-calorimetric spectroscopy are discussed, the design and performance of a cryogenic laser calorimeter is described, and measurements of background absorption in high-purity silicon are presented.

  7. The effect of structurally related impurities on crystallinity reduction of sulfamethazine by grinding.

    PubMed

    Hamada, Yoshito; Ono, Makoto; Ohara, Motomu; Yonemochi, Etsuo

    2016-12-30

    In this study, the effect of structurally related impurities on crystallinity reduction of sulfamethazine by grinding was evaluated. The crystallinity of sulfamethazine was not decreased when it was ground alone. However, when structurally related impurities with sulfonamide derivatives were blended, the crystallinity of sulfamethazine was decreased by grinding. Other materials without a sulfonamide moiety showed no such effect. The Raman spectra of sulfamethazine demonstrated that there was a difference between its crystalline and amorphous states within its sulfonamide structure. It was suggested that the sulfonamide structure of the impurities was important in causing the inhibition of recrystallization of sulfamethazine during grinding.

  8. Analytical control of process impurities in Pazopanib hydrochloride by impurity fate mapping.

    PubMed

    Li, Yan; Liu, David Q; Yang, Shawn; Sudini, Ravinder; McGuire, Michael A; Bhanushali, Dharmesh S; Kord, Alireza S

    2010-08-01

    Understanding the origin and fate of organic impurities within the manufacturing process along with a good control strategy is an integral part of the quality control of drug substance. Following the underlying principles of quality by design (QbD), a systematic approach to analytical control of process impurities by impurity fate mapping (IFM) has been developed and applied to the investigation and control of impurities in the manufacturing process of Pazopanib hydrochloride, an anticancer drug approved recently by the U.S. FDA. This approach requires an aggressive chemical and analytical search for potential impurities in the starting materials, intermediates and drug substance, and experimental studies to track their fate through the manufacturing process in order to understand the process capability for rejecting such impurities. Comprehensive IFM can provide elements of control strategies for impurities. This paper highlights the critical roles that analytical sciences play in the IFM process and impurity control. The application of various analytical techniques (HPLC, LC-MS, NMR, etc.) and development of sensitive and selective methods for impurity detection, identification, separation and quantification are highlighted with illustrative examples. As an essential part of the entire control strategy for Pazopanib hydrochloride, analytical control of impurities with 'meaningful' specifications and the 'right' analytical methods is addressed. In particular, IFM provides scientific justification that can allow for control of process impurities up-stream at the starting materials or intermediates whenever possible.

  9. The Influence of Impurities on the Zinc Fixed Point

    NASA Astrophysics Data System (ADS)

    Rudtsch, Steffen; Aulich, Antje

    2017-02-01

    Impurities are considered to be the most significant source of uncertainty for the realization of the International Temperature Scale of 1990 by means of metal fixed points. The determination and further reduction in this uncertainty require a traceable chemical analysis of dissolved impurities in the fixed-point metal and accurate knowledge of the specific temperature change caused by impurities (slope of the liquidus line). We determined the slope of the liquidus line for three binary systems and present results and conclusions from the chemical analysis of zinc with a nominal purity of 7N. For the Fe-Zn system, we determined a liquidus slope of (-0.91± 0.14) mK / (μ g{\\cdot } g^{-1}) from the evaluation of freezing plateaus and (-0.76 ± 0.20) mK / (μ g{\\cdot } g^{-1}) from the evaluation of melting plateaus; for the Pb-Zn system, the corresponding results are (-0.27 ± 0.05) mK / (μ g{\\cdot } g^{-1}) and (-0.26 ± 0.05) mK / (μ g{\\cdot } g^{-1}). Although for the Sb-Zn system, we determined a liquidus slope of about -0.8 mK / (μ g{\\cdot } g^{-1}), our investigations showed that a correction of the influence of antimony is highly questionable because antimony can be found in zinc in a fully dissolved state or precipitated as an insoluble compound. Iron is the only impurity where a correction of the fixed-point temperature was possible. For the realization of the zinc fixed point at PTB, this correction is between 2 μ K and 16 μ K depending on the batch of zinc used. The influence of the sum of all impurities was estimated by means of the OME method. The resulting uncertainty contribution is between 12 μK and 48 μK.

  10. Living Donor Liver Transplantation

    MedlinePlus

    ... instructions before and after surgery. • Have a compatible blood type. • Have an emotional tie with the recipient. • Not ... test is to find out if the donor's blood type matches the recipient’s blood type. Next, the transplant ...

  11. Dialing for Donors

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2012-01-01

    When times get tough, grown children often turn to their parents for help--for some extra cash, even somewhere to stay. For colleges and universities, that role is filled by alumni donors. In 2011, with education budgets slashed across the country, giving accounted for 6.5 percent of college expenditures, according to the Council for Aid to…

  12. Spin noise and magnetic screening of impurities in a BCS superconductor

    NASA Astrophysics Data System (ADS)

    Le Dall, Matthias; da Silva, Luis G. G. V. Dias; de Sousa, Rogério

    The coupling of a localized impurity to a BCS superconductor (SC) leads to the formation of impurity Cooper-pairs via the proximity effect, generating two bound states within the SC energy gap, the so-called Yu-Rusinov-Shiba (YSR) states. They are similar to the Andreev Bound States that originate from Andreev reflection, e.g. when the impurity is hosted in a Josephson junction, and are known to produce sharp sub-gap resonances in charge noise [de Sousa et al., PRB 2009], providing a natural explanation for the observation of microresonators in superconducting devices [Simmonds et al., PRL 2004]. Here we present a theory for the spin noise generated by magnetic impurities in a SC, and discuss the impact of the Shiba states on models of flux noise in superconducting qubits. We use a combination of analytical methods and the numerical renormalization group technique to calculate the spin noise of an Anderson impurity in a SC, unveiling the competition between the proximity effect and Kondo correlations. Both mechanisms produce magnetic screening and a corresponding reduction in spin noise, giving rise to new insights on the kinds of impurities that are responsible for the observed 1 /fα flux noise in superconducting circuits. This research is supported by NSERC CRD/478366-2015.

  13. Impurity Profiles in the MST Reversed-Field Pinch

    NASA Astrophysics Data System (ADS)

    Woehrer, D.; den Hartog, D. J.; Chapman, J. T.

    1996-11-01

    We have spectroscopically measured the radial distribution of several impurities in the MST Reversed-Field Pinch plasma.(This work was supported by the U. S. Department of Energy.) For several years we have operated a passive high-speed Doppler spectrometer [D. J. Den Hartog and R. J. Fonck, Rev. Sci. Instrum. 65, 3238 (1994)] on MST to measure impurity flow velocity and ion temperature. We have evidence that the flow velocity radial profile has substantial structure, with the flow at the edge sometimes oppositely directed to that in the core. These measurements were taken by comparing the flow of an edge state (C III, for example) to a core state (C V). It is crucial that we precisely measure this flow profile and its variation during a sawtooth cycle. Therefore, we must accurately measure the location of the various emission shells of the impurity ionization states. This is being accomplished with an array of small f = 20 cm holographic grating monochromators. Light is coupled into them via separate fused silica fiber optic bundles from a radial array of light collection chords. We will make measurements of emission profiles from ions such as B III, B IV, C III, C V, and O V.

  14. Impurity scattering rate and coherence factor in vortex core of sign-reversing s -wave superconductors

    NASA Astrophysics Data System (ADS)

    Nagai, Yuki; Kato, Yusuke

    2010-11-01

    We investigate the impurity scattering rates for quasiparticles in vortex cores of sign-reversing s -wave superconductors as a probe to detect the internal phase difference of the order parameters among different Fermi surfaces. The impurity scattering rates and coherence factors are related to quasiparticle interference effect by the scanning tunneling microscopy and spectroscopy technique. With use of the Born and Kramer-Pesch approximations for the Andreev bound states, we show that the sign-reversed forward scatterings are dominant in vortex cores. Owing to the coherence factor in vortex cores of ±s -wave superconductors, the impurity scattering rate of the Andreev bound states has a characteristic distribution on the Fermi surfaces. For comparison, the impurity scattering rates in vortex cores of s -wave and d -wave superconductors are also discussed.

  15. Binding of holes to magnetic impurities in a strongly correlated system

    SciTech Connect

    Poilblanc, D.; Scalapino, D.J.; Hanke, W. )

    1994-11-01

    The effect of a magnetic ([ital S]=1/2) impurity coupled to a two-dimensional system of correlated electrons (described by the [ital t]-[ital J] model) is studied by exact diagonalizations. It is found that, if the exchange coupling of the impurity with the neighboring spins is ferromagnetic or weakly antiferromagnetic, an extra hole can form bound states of different spatial symmetries with the impurity extending to a few lattice spacings. The binding energy is maximum when the impurity is completely decoupled (vacancy) and vanishes for an antiferromagnetic coupling exceeding [similar to]0.3[ital J]. Several peaks appear in the single-hole spectral function below the lower edge of the quasiparticle band as signatures of the [ital d]-, [ital s]-, and [ital p]-wave bound states.

  16. Lanczos transformation for quantum impurity problems in d-dimensional lattices: Application to graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Büsser, C. A.; Martins, G. B.; Feiguin, A. E.

    2013-12-01

    We present a completely unbiased and controlled numerical method to solve quantum impurity problems in d-dimensional lattices. This approach is based on a canonical transformation, of the Lanczos form, where the complete lattice Hamiltonian is exactly mapped onto an equivalent one-dimensional system, in the same spirit as Wilson's numerical renormalization, and Haydock's recursion method. We introduce many-body interactions in the form of a Kondo or Anderson impurity and we solve the low-dimensional problem using the density matrix renormalization group. The technique is particularly suited to study systems that are inhomogeneous, and/or have a boundary. The resulting dimensional reduction translates into a reduction of the scaling of the entanglement entropy by a factor Ld-1, where L is the linear dimension of the original d-dimensional lattice. This allows one to calculate the ground state of a magnetic impurity attached to an L×L square lattice and an L×L×L cubic lattice with L up to 140 sites. We also study the localized edge states in graphene nanoribbons by attaching a magnetic impurity to the edge or the center of the system. For armchair metallic nanoribbons we find a slow decay of the spin correlations as a consequence of the delocalized metallic states. In the case of zigzag ribbons, the decay of the spin correlations depends on the position of the impurity. If the impurity is situated in the bulk of the ribbon, the decay is slow as in the metallic case. On the other hand, if the adatom is attached to the edge, the decay is fast, within few sites of the impurity, as a consequence of the localized edge states, and the short correlation length. The mapping can be combined with ab initio band structure calculations to model the system, and to understand correlation effects in quantum impurity problems starting from first principles.

  17. Kinetic model of phase separation in binary mixtures with hard mobile impurities.

    PubMed

    Ginzburg, V V; Peng, G; Qiu, F; Jasnow, D; Balazs, A C

    1999-10-01

    We develop a mean-field rate-equation model for the kinetics of phase separation in binary mixtures with hard mobile impurities. For impurities preferentially wet by one of the components, the phase separation is arrested in the late stage. The "steady-state" domain size depends strongly on both the particle diffusion constant and the particle concentration. We compare theoretical results with the simulation data and find good qualitative agreement.

  18. Compliance with donor age recommendations in oocyte donor recruitment advertisements in the USA.

    PubMed

    Alberta, Hillary B; Berry, Roberta M; Levine, Aaron D

    2013-04-01

    IVF using donated oocytes offers benefits to many infertile patients, yet the technique also raises a number of ethical concerns, including worries about potential physical and psychological risks to oocyte donors. In the USA, oversight of oocyte donation consists of a combination of federal and state regulations and self-regulatory guidelines promulgated by the American Society for Reproductive Medicine. This study assesses compliance with one of these self-regulatory guidelines - specifically, ASRM's preferred minimum age for donors of 21. To assess compliance, 539 oocyte donor recruitment advertisements from two recruitment channels (Craigslist and college newspapers) were collected and evaluated. Of these, 61% in the Craigslist dataset and 43% in the college newspaper dataset listed minimum ages between 18 and 20, which is inconsistent with ASRM's preferred minimum age recommendation of 21. Advertisements placed by oocyte donor recruitment agencies were more likely than advertisements placed by clinics to specify minimum ages between 18 and 20. These results indicate that ASRM should evaluate and consider revising its donor age guidelines. IVF using donated human eggs can help many patients who have difficulty having children. However, the technique also raises ethical concerns, including concerns about potential physical and psychological harms to egg donors. In the USA, oversight of egg donation relies on a combination of federal and state regulation and professional self-regulation. Governmental regulations address only limited aspects of egg donation, such as the potential spread of infectious diseases and the reporting of success rates, leaving voluntary guidelines developed by an association of medical professionals to address most issues, including ethical concerns raised by the practice. One of these voluntary guidelines recommends that egg donors should be at least 21 years of age. In this article, we analysed 539 egg donor recruitment advertisements

  19. HLA Matching Trumps Donor Age: Donor-Recipient Pairing Characteristics That Impact Long-Term Success in Living Donor Kidney Transplantation in the Era of Paired Kidney Exchange

    PubMed Central

    Milner, John; Melcher, Marc L.; Lee, Brian; Veale, Jeff; Ronin, Matthew; D'Alessandro, Tom; Hil, Garet; Fry, Phillip C.; Shannon, Patrick W.

    2016-01-01

    Background We sought to identify donor characteristics influencing long-term graft survival, expressed by a novel measure, kidney life years (KLYs), in living donor kidney transplantation (LDKT). Methods Cox and multiple regression analyses were applied to data from the Scientific Registry for Transplant Research from 1987 to 2015. Dependent variable was KLYs. Results Living donor kidney transplantation (129 273) were performed from 1987 to 2013 in the United States. To allow sufficient time to assess long-term results, outcomes of LDKTs between 1987 and 2001 were analyzed. After excluding cases where a patient died with a functioning graft (8301) or those missing HLA data (9), 40 371 cases were analyzed. Of 18 independent variables, the focus became the 4 variables that were the most statistically and clinically significant in that they are potentially modifiable in donor selection (P <0.0001; ie, HLA match points, donor sex, donor biological sibling and donor age). HLA match points had the strongest relationship with KLYs, was associated with the greatest tendency toward graft longevity on Cox regression, and had the largest increase in KLYs (2.0 year increase per 50 antigen Match Points) based on multiple regression. Conclusions In cases when a patient has multiple potential donors, such as through paired exchange, graft life might be extended when a donor with favorable matching characteristics is selected. PMID:27830179

  20. Fabrication of Gate-tunable Graphene Devices for Scanning Tunneling Microscopy Studies with Coulomb Impurities.

    PubMed

    Jung, Han Sae; Tsai, Hsin-Zon; Wong, Dillon; Germany, Chad; Kahn, Salman; Kim, Youngkyou; Aikawa, Andrew S; Desai, Dhruv K; Rodgers, Griffin F; Bradley, Aaron J; Velasco, Jairo; Watanabe, Kenji; Taniguchi, Takashi; Wang, Feng; Zettl, Alex; Crommie, Michael F

    2015-07-24

    Owing to its relativistic low-energy charge carriers, the interaction between graphene and various impurities leads to a wealth of new physics and degrees of freedom to control electronic devices. In particular, the behavior of graphene's charge carriers in response to potentials from charged Coulomb impurities is predicted to differ significantly from that of most materials. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) can provide detailed information on both the spatial and energy dependence of graphene's electronic structure in the presence of a charged impurity. The design of a hybrid impurity-graphene device, fabricated using controlled deposition of impurities onto a back-gated graphene surface, has enabled several novel methods for controllably tuning graphene's electronic properties. Electrostatic gating enables control of the charge carrier density in graphene and the ability to reversibly tune the charge and/or molecular states of an impurity. This paper outlines the process of fabricating a gate-tunable graphene device decorated with individual Coulomb impurities for combined STM/STS studies. These studies provide valuable insights into the underlying physics, as well as signposts for designing hybrid graphene devices.

  1. Determining factors for the presence of impurities in selectively collected biowaste.

    PubMed

    Puig-Ventosa, Ignasi; Freire-González, Jaume; Jofra-Sora, Marta

    2013-05-01

    The presence of impurities in biodegradable waste (biowaste) causes problems with the management of waste, among which are additional costs derived from the need to improve pre-treatment of biowaste, loss of treatment capacity and the difficulty selling treated biowaste as compost owing to its low quality. When treated biowaste is used for soil conditioning it can also cause soil pollution. Understanding the reasons why impurities are in biowaste and the factors affecting the percentage of impurities present can be used to determine ways to minimise these negative effects. This article attempts to identify the main causes for the presence of impurities in biowaste. In order to do so, it carries out an empirical analysis of the level of impurities in biowaste from municipal waste collection in two steps. First, a bivariate analysis focuses on significant correlations between the presence of impurities and several variables. Second, the construction of an explanatory model based on the significant relations obtained in the first step, and on literature research, are used to check the stated hypothesis. The estimates demonstrate that the collection system, the global levels of separate collection, the urban density of the municipality and the requirement to use compostable bags may be the main drivers of impurity levels in biowaste.

  2. Paramagnetic Attraction of Impurity-Helium Solids

    NASA Technical Reports Server (NTRS)

    Bernard, E. P.; Boltnev, R. E.; Khmelenko, V. V.; Lee, D. M.

    2003-01-01

    Impurity-helium solids are formed when a mixture of impurity and helium gases enters a volume of superfluid helium. Typical choices of impurity gas are hydrogen deuteride, deuterium, nitrogen, neon and argon, or a mixture of these. These solids consist of individual impurity atoms and molecules as well as clusters of impurity atoms and molecules covered with layers of solidified helium. The clusters have an imperfect crystalline structure and diameters ranging up to 90 angstroms, depending somewhat on the choice of impurity. Immediately following formation the clusters aggregate into loosely connected porous solids that are submerged in and completely permeated by the liquid helium. Im-He solids are extremely effective at stabilizing high concentrations of free radicals, which can be introduced by applying a high power RF dis- charge to the impurity gas mixture just before it strikes the super fluid helium. Average concentrations of 10(exp 19) nitrogen atoms/cc and 5 x 10(exp 18) deuterium atoms/cc can be achieved this way. It shows a typical sample formed from a mixture of atomic and molecular hydrogen and deuterium. It shows typical sample formed from atomic and molecular nitrogen. Much of the stability of Im-He solids is attributed to their very large surface area to volume ratio and their permeation by super fluid helium. Heat resulting from a chance meeting and recombination of free radicals is quickly dissipated by the super fluid helium instead of thermally promoting the diffusion of other nearby free radicals.

  3. Direct Visualization of an Impurity Depletion Zone

    NASA Technical Reports Server (NTRS)

    Chernov, Alex A.; Garcia-Ruiz, Juan Ma; Thomas, Bill R.

    2000-01-01

    When a crystal incorporates more impurity per unit of its volume than the impurity concentration in solution, the solution in vicinity of the growing crystal is depleted with respect to the impurity I,2. With a stagnant solution, e. g. in microgravity or gels, an impurity depletion zone expands as the crystal grows and results in greater purity in most of the outer portion of the crystal than in the core. Crystallization in gel provides an opportunity to mimic microgravity conditions and visualize the impurity depletion zone. Colorless, transparent apoferritin (M congruent to 450 KDa) crystals were grown in the presence of red holoferritin dimer as a microheterogeneous impurity (M congruent to 900 KDa) within agarose gel by counterdiffusion with Cd(2+) precipitant. Preferential trapping of dimers, (distribution coefficient K = 4 (exp 1,2)) results in weaker red color around the crystals grown in the left tube in the figure as compared to the control middle tube without crystals. The left and the middle tubes contain colored ferritin dimers, the right tube contains colored trimers. The meniscus in the left tube separate gel (below) and liquid solution containing Cd(2+) (above). Similar solutions, though without precipitants, were present on top of the middle and right tube allowing diffusion of dimers and trimers. The area of weaker color intensity around crystals directly demonstrates overlapped impurity depletion zones.

  4. Being a Living Donor: Risks

    MedlinePlus

    ... Living Donation / Being a Living Donor / Risks Facts History Organs Frequently Asked Questions Discussing Living Donation Types Related Non-Related Non-Directed Paired Donation Blood Type Incompatible Positive Crossmatch Being a Living Donor ...

  5. DETECTING LOW-LEVEL SYNTHESIS IMPURITIES IN MODIFIED PHOSPHOROTHIOATE OLIGONUCLEOTIDES USING LIQUID CHROMATOGRAPHY – HIGH RESOLUTION MASS SPECTROMETRY

    PubMed Central

    Nikcevic, Irena; Wyrzykiewicz, Tadeusz K.; Limbach, Patrick A.

    2010-01-01

    Summary An LC-MS method based on the use of high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS) for profiling oligonucleotides synthesis impurities is described. Oligonucleotide phosphorothioatediesters (phosphorothioate oligonucleotides), in which one of the non-bridging oxygen atoms at each phosphorus center is replaced by a sulfur atom, are now one of the most popular oligonucleotide modifications due to their ease of chemical synthesis and advantageous pharmacokinetic properties. Despite significant progress in the solid-phase oligomerization chemistry used in the manufacturing of these oligonucleotides, multiple classes of low-level impurities always accompany synthetic oligonucleotides. Liquid chromatography-mass spectrometry has emerged as a powerful technique for the identification of these synthesis impurities. However, impurity profiling, where the entire complement of low-level synthetic impurities is identified in a single analysis, is more challenging. Here we present an LC-MS method based the use of high resolution-mass spectrometry, specifically Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS or FTMS). The optimal LC-FTMS conditions, including the stationary phase and mobile phases for the separation and identification of phosphorothioate oligonucleotides, were found. The characteristics of FTMS enable charge state determination from single m/z values of low-level impurities. Charge state information then enables more accurate modeling of the detected isotopic distribution for identification of the chemical composition of the detected impurity. Using this approach, a number of phosphorothioate impurities can be detected by LC-FTMS including failure sequences carrying 3′-terminal phosphate monoester and 3′-terminal phosphorothioate monoester, incomplete backbone sulfurization and desulfurization products, high molecular weight impurities, and chloral, isobutyryl, and N3 (2-cyanoethyl) adducts

  6. Electronic states in low-dimensional nano-structures: Comparison between the variational and plane wave basis method

    NASA Astrophysics Data System (ADS)

    Hu, Min; Wang, Hailong; Gong, Qian; Wang, Shumin

    2017-04-01

    A comparison is made between the plane wave basis and variational method. Within the framework of effective-mass approximation theory, the variational and plane wave basis method are used to calculate ground state energy and ground state binding energy in low-dimensional nano-structures under the external electric field. Comparing calculation results, the donor binding energies of ground state display the consistent trend, both of them are strongly dependent on the quantum size, impurity position and external electric field. However, the impurity ground state energy calculated using variational method may be larger than the real value and it results in the smaller binding energy for variational method. In addition, the binding energy is more sensitive to the external electric field for the variational method, which can be seen more clearly from Stark shift.

  7. Donor-related issues in hand transplantation.

    PubMed

    McDiarmid, Sue V; Azari, Kodi K

    2011-11-01

    The policies and procedures for solid-organ donation, under the auspices of the Organ Procurement and Transplantation Network, currently cannot be applied to hand donation, because a hand allograft is considered a tissue in the United States and is under the jurisdiction of the Food and Drug Administration. Hand transplant centers have developed their own protocols. This article discusses the unique elements of such protocols, including training and education, the consent process, the necessary recipient and donor data, donor management, and operating room procedures. Candidate listing, allocation, and oversight of hand donation in the future are also discussed.

  8. Anderson metal-insulator transitions with classical magnetic impurities

    SciTech Connect

    Jung, Daniel; Kettemann, Stefan

    2014-08-20

    We study the effects of classical magnetic impurities on the Anderson metal-insulator transition (AMIT) numerically. In particular we find that while a finite concentration of Ising impurities lowers the critical value of the site-diagonal disorder amplitude W{sub c}, in the presence of Heisenberg impurities, W{sub c} is first increased with increasing exchange coupling strength J due to time-reversal symmetry breaking. The resulting scaling with J is compared to analytical predictions by Wegner [1]. The results are obtained numerically, based on a finite-size scaling procedure for the typical density of states [2], which is the geometric average of the local density of states. The latter can efficiently be calculated using the kernel polynomial method [3]. Although still suffering from methodical shortcomings, our method proves to deliver results close to established results for the orthogonal symmetry class [4]. We extend previous approaches [5] by combining the KPM with a finite-size scaling analysis. We also discuss the relevance of our findings for systems like phosphor-doped silicon (Si:P), which are known to exhibit a quantum phase transition from metal to insulator driven by the interplay of both interaction and disorder, accompanied by the presence of a finite concentration of magnetic moments [6].

  9. Theoretical Studies of the Interaction of Excitons with Charged Impurities in Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Tayo, Benjamin O.

    A fundamental theory of the electronic and optical properties of semiconductors shows the importance of impurities, which are often unavoidable and can alter intrinsic properties of semiconductor materials substantially. While the subject of impurity doping is well understood in bulk semiconductors, the role and impact of doping in low dimensional materials like carbon nanotubes is still under investigation and there exists significant debate on the exact nature of electronic impurity levels in single-walled carbon nanotubes associated with adatoms. In this work, we address the role of impurities in single-walled carbon nanotubes. A simple model is developed for studying the interaction of bright (singlet) excitons in semiconducting single-wall nanotubes with charged impurities. The model reveals a red shift in the energy of excitonic states in the presence of an impurity, thus indicating binding of excitons in the impurity potential well. Signatures of several bound states were found in the absorption spectrum below the onset of excitonic optical transitions in the bare nanotube. The dependence of the binding energy on the model parameters, such as impurity charge and position, was determined and analytical fits were derived for a number of tubes of different diameter. The nanotube family splitting is seen in the diameter dependence, gradually decreasing with the diameter. By calculating the partial absorption coefficient for a small segment of nanotube the local nature of the wave function of the bound states was derived. Our studies provide useful insights into the role of the physical environment (here, a charged impurity atom) in the manipulation of the excited states of carbon nanotubes. We performed very detailed calculations of the electronic and optical properties of carbon nanotubes in the presence of an immobile impurity atom, thus going beyond previous many-body perturbation theory (MBPT) studies in which the carbon nanotubes were considered in vacuum

  10. Impurities near an antiferromagnetic-singlet quantum critical point

    DOE PAGES

    Mendes-Santos, T.; Costa, N. C.; Batrouni, G.; ...

    2017-02-15

    Heavy-fermion systems and other strongly correlated electron materials often exhibit a competition between antiferromagnetic (AF) and singlet ground states. We examine the effect of impurities in the vicinity of such an AF-singlet quantum critical point (QCP), through an appropriately defined “impurity susceptibility” χimp, using exact quantum Monte Carlo simulations. Our key finding is a connection within a single calculational framework between AF domains induced on the singlet side of the transition and the behavior of the nuclear magnetic resonance (NMR) relaxation rate 1/T1. Furthermore, we show that local NMR measurements provide a diagnostic for the location of the QCP, whichmore » agrees remarkably well with the vanishing of the AF order parameter and large values of χimp.« less

  11. Enhanced antiferromagnetic exchange between magnetic impurities in a superconducting host.

    PubMed

    Yao, N Y; Glazman, L I; Demler, E A; Lukin, M D; Sau, J D

    2014-08-22

    It is generally believed that superconductivity only weakly affects the indirect exchange between magnetic impurities. If the distance r between impurities is smaller than the superconducting coherence length (r ≲ ξ), this exchange is thought to be dominated by Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions, identical to the those in a normal metallic host. This perception is based on a perturbative treatment of the exchange interaction. Here, we provide a nonperturbative analysis and demonstrate that the presence of Yu-Shiba-Rusinov bound states induces a strong 1/r(2) antiferromagnetic interaction that can dominate over conventional RKKY even at distances significantly smaller than the coherence length (r ≪ ξ). Experimental signatures, implications, and applications are discussed.

  12. Impurities near an antiferromagnetic-singlet quantum critical point

    NASA Astrophysics Data System (ADS)

    Mendes-Santos, T.; Costa, N. C.; Batrouni, G.; Curro, N.; dos Santos, R. R.; Paiva, T.; Scalettar, R. T.

    2017-02-01

    Heavy-fermion systems and other strongly correlated electron materials often exhibit a competition between antiferromagnetic (AF) and singlet ground states. Using exact quantum Monte Carlo simulations, we examine the effect of impurities in the vicinity of such an AF-singlet quantum critical point (QCP), through an appropriately defined "impurity susceptibility" χimp. Our key finding is a connection within a single calculational framework between AF domains induced on the singlet side of the transition and the behavior of the nuclear magnetic resonance (NMR) relaxation rate 1 /T1 . We show that local NMR measurements provide a diagnostic for the location of the QCP, which agrees remarkably well with the vanishing of the AF order parameter and large values of χimp.

  13. Effect of impurities on optical properties of pentaerythritol tetranitrate

    NASA Astrophysics Data System (ADS)

    Tsyshevskiy, Roman; Sharia, Onise; Kuklja, Maija M.

    2012-03-01

    Despite numerous efforts, the electronic nature of initiation of high explosives to detonation in general and mechanisms of their sensitivity to laser initiation in particular are far from being completely understood. Recent experiments show that Nd:YAG laser irradiation (at 1064nm) causes resonance explosive decomposition of PETN samples. In an attempt to shed some light on electronic excitations and to develop a rigorous interpretation to these experiments, the electronic structure and optical properties of PETN and a series of common impurities were studied. Band gaps (S0→S1) and optical singlet-triplet (S0→T1) transitions in both an ideal material and PETN containing various defects were simulated by means of state-of-the-art quantum-chemical computational techniques. It was shown that the presence of impurities in the PETN crystal causes significant narrowing of the band gap. The structure and role of molecular excitons in PETN are discussed.

  14. National Marrow Donor Program

    DTIC Science & Technology

    2009-08-14

    Recipient Pair HLA typing project to characterize class I and class II alleles of donor/recipient paired samples from NMDP’s Repository was initiated...24 • Initiated investigation of the first class II non-ARS mismatch (DRB1*140101/1454) where both alleles have been seen in the same genotype... MHC Major Histocompatibility Complex B-LCLs B-Lymphocytic Cell Lines MICA MHC Class I-Like Molecule, Chain A BARDA Biomedical Advanced Research and

  15. Progress in nonmagnetic impurity doping studies on Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Li, Jun; Guo, Yan-Feng; Yang, Zhao-Rong; Yamaura, Kazunari; Takayama-Muromachi, Eiji; Wang, Hua-Bing; Wu, Pei-Heng

    2016-05-01

    We review the progress of nonmagnetic impurity doping studies on Fe-based superconductors. On the theoretical side, two highly promising candidates for the pairing symmetry order parameter, i.e. the multi-gap s ++ and s ± wave models, have been proposed but continuously debated. The debate arises because of the complex gap structure and exceptional magnetic and metallic behaviors of Fe-based superconductors, which may vary the influence of nonmagnetic defects in the chemical potential, impurity disorder, inter- and intra-band scattering strength, and electron localization. This creates difficulties in directly obtaining the most important information for understanding the symmetry order parameter. Experimentally, nonmagnetic impurity substitution studies have been widely carried out, which have provided very useful insights. We review herein the various nonmagnetic impurity doping experiments, including the controlled defects within the superconducting Fe2 X 2 planes through sample quality improvement, single impurity effects on the electronic state and local moment, the magnetic response of the Fe2 X 2 planes both on the macroscopic scale as the antiferromagnetic state and the local scale of moment, as well as the significant effect of modifying the transport properties. The experiments enable us to qualitatively analyze the nonmagnetic impurity effects on the superconducting state for many Fe-based superconductors. We also propose herein some strategies for nonmagnetic impurity doping study. As an important model for explaining the nonmagnetic impurity doping effects, the pair-breaking model is compared with various theoretical approaches via analysis of the pair-breaking rates of various Fe-superconductors.

  16. Complications of donor apheresis.

    PubMed

    Winters, Jeffrey L

    2006-07-01

    A decreasing blood donor pool in the presence of increasing blood transfusion demands has resulted in the need to maximally utilize each blood donor. This has led to a trend in the increasing use of automated blood collections. While apheresis donation shares many reactions and injuries with whole blood donation, because of the differences, unique complications also exist. Overall, evidence in the literature suggests that the frequency of reactions to apheresis donation is less than that seen in whole blood donation, though the risk of reactions requiring hospitalization is substantially greater. The most common apheresis-specific reaction is hypocalcemia due to citrate anticoagulation, which, while usually mild, has the potential for severely injuring the donor. Other reactions to apheresis donation are uncommon (e.g., hypotension) or rare (e.g., air embolism). More worrisome, and in need of additional study, are the long-term effects of apheresis donation. Recent evidence suggests that repeated apheresis platelet donations may adversely effect thrombopoiesis as well as bone mineralization. Granulocyte donation has also been implicated in unexpected long-term consequences.

  17. Correlation Between Chromophore Impurity Content and Fired Colour Data of Kaolin Clay

    NASA Astrophysics Data System (ADS)

    Agrawal, Parvesh; Misra, S. N.; Sharma, T.

    Different kaolin clay specimen exhibit varying colours after firing depending upon the relative presence of different mineral impurities, physical state of mineral constituents etc. Spectrophotometers used for determining colour values generate many sets of colour data. Interpretation of such colour values is a subjective matter. Increase in darkness, yellowness etc as a consequence of increase in chromophore impurity content in kaolin clay have been shown. However, the inverse of above ie; gradual change in colour values along with gradual change in chromophore impurity content over a realistic range has not been studied. Whether the colour data of kaolin clay after firing can be taken up as a function of impurity content needs to be investigated. Thus, to identify the correlation between kaolin clay impurity content and it's fired colour data the present investigation examined the hypotheses i) The colour development after firing of kaolin clay is an indicator of chromophore impurity content present therein and ii) All the colour variables (L, a, b, ISO2470, redness) constituting a colour data set of pressed kaolin clay specimen after firing will vary in similar manner such that to represent variation in impurity content. The study indicated that the colour values obtained by spectrophotometry of clay specimens after firing represent the chromophore impurity present therein in a less reliable manner. To relatively estimate the quantity of chromophore impurity present in a clay sample from its fired colour, the sample should be mixed with 50% by weight of potash feldspar, pressed in to tablet suitable for colour measurement and fired at or above 1220°C to vitrify. After that the ‘L’, ‘a’ and ‘ISO2470’ values obtained truly represent the chromophore present therein.

  18. A High-Energy Charge-Separated State of 1.70 eV from a High-Potential Donor-Acceptor Dyad: A Catalyst for Energy-Demanding Photochemical Reactions.

    PubMed

    Lim, Gary N; Obondi, Christopher O; D'Souza, Francis

    2016-09-12

    A high potential donor-acceptor dyad composed of zinc porphyrin bearing three meso-pentafluorophenyl substituents covalently linked to C60 , as a novel dyad capable of generating charge-separated states of high energy (potential) has been developed. The calculated energy of the charge-separated state was found to be 1.70 eV, the highest reported for a covalently linked porphyrin-fullerene dyad. Intramolecular photoinduced electron transfer leading to charge-separated states of appreciable lifetimes in polar and nonpolar solvents has been established from studies involving femto- to nanosecond transient absorption techniques. The high energy stored in the form of charge-separated states along with its persistence of about 50-60 ns makes this dyad a potential electron-transporting catalyst to carry out energy-demanding photochemical reactions. This type of high-energy harvesting dyad is expected to open new research in the areas of artificial photosynthesis especially producing energy (potential) demanding light-to-fuel products.

  19. Removal of some impurities from carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Feng, Yongcheng; Zhou, Gumin; Wang, Guoping; Qu, Meizhen; Yu, Zuolong

    2003-07-01

    A non-destructive mild oxidation method of removing some impurities from as-grown carbon nanotubes (CNTs), including single-wall carbon nanotubes (SWNTs) and multi-wall carbon nanotubes (MWNTs), by H 2O 2 oxidation and HCl treatment, has been investigated, and somewhat pure carbon nanotubes have been prepared. The CNTs from which some impurities were removed have been evaluated by transmission electron microscopy (TEM) and temperature programmed oxidation and gas chromatography (TPO-GC).

  20. Precipitating Chromium Impurities in Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Salama, A. M.

    1982-01-01

    Two new treatments for silicon wafers improve solar-cell conversion efficiency by precipitating electrically-active chromium impurities. One method is simple heat treatment. Other involves laser-induced damage followed by similar heat treatment. Chromium is one impurity of concern in metallurgical-grade silicon for solar cells. In new treatment, chromium active centers are made electrically inactive by precipitating chromium from solid solution, enabling use of lower grade, lower cost silicon in cell manufacture.

  1. Role of the carbonate impurities on the surface state of pyrite and arsenopyrite under treatment by high power electromagnetic pulses (HPEMP): oxidation of 50-100 μm size particles

    NASA Astrophysics Data System (ADS)

    Filippova, I.; Chanturiya, V.; Filippov, L.; Ryazantseva, M.; Bunin, I.

    2013-03-01

    Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and Transmission Electron Microscopy (TEM) have shown the variation of surface phase compositions of carbonate bearing pyrite and arsenopyrite as a result of the combined action of chemical oxidation and thermal processes after the treatment by high power electromagnetic pulses (HPEMP). The monitoring of the surface phase composition allowed to determine the correlation between the treatment conditions, the surface phase composition, and the flotation yield. Thus, HPEMP treatment may be regarded as a tool controlling the surface composition and the sorption ability of flotation collector onto minerals surface, and therefore, allowing to control the hydrophobic-hydrophilic surface balance. It was confirmed in this study that the flotation of pyrite with xanthate as a result of the influence HPEMP may vary depending on the presence of impurities such as calcite.

  2. Incorporation of pervasive impurities on HVPE GaN growth directions

    NASA Astrophysics Data System (ADS)

    Freitas, J. A.; Culbertson, J. C.; Mahadik, N. A.; Glaser, E. R.; Sochacki, T.; Bockowski, M.; Lee, S. K.; Shim, K. B.

    2016-12-01

    High crystallinity thick films with low free carrier concentration (≤1×1015/cm3) and low compensation are required for many GaN-based electronic device applications. It has been demonstrated that low pressure chemical vapor and molecular beam epitaxy techniques can reproducibility deposit homoepitaxial films with low residual impurity concentrations. However, their typical slow growth rates prevent their utilization for thick film growth. Presently, hydride vapor phase epitaxy is the sole method that can deposit films with residual impurity concentrations ≤5×1016/cm3 at hundreds of microns per hour growth rate. It is crucial to verify if this method can reproducibly deliver thick free-standing GaN films of high crystalline quality with exceptionally low and uniform free carrier concentration. X-ray diffraction, Raman scattering, and low temperature photoluminescence experiments were carried out on a number of samples prepared by dicing a free-standing wafer into several pieces perpendicular and parallel to the major growth directions; namely, c-plane {0001}, a-plane {11-20}, and m-plane {1-100}. SIMS depth profiles were employed to identify and quantify the concentration of the pervasive impurities. Spatial maps of a Raman line sensitive to free-carrier concentration were measured to determine the spatial distribution of the net impurity concentration. The reduced concentration of un-compensated shallow donors was also verified by low temperature electron paramagnetic resonance.

  3. Electronic structure and correlations of vitamin B12 studied within the Haldane-Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Kandemir, Zafer; Mayda, Selma; Bulut, Nejat

    2016-04-01

    We study the electronic structure and correlations of vitamin B12 (cyanocobalamine) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. The parameters of the effective Haldane-Anderson model are obtained within the Hartree-Fock (HF) approximation. The quantum Monte Carlo (QMC) technique is then used to calculate the one-electron and magnetic correlation functions of this effective model. We observe that new states form inside the semiconductor gap found by HF due to the intra-orbital Coulomb interaction at the impurity 3d orbitals. In particular, the lowest unoccupied states correspond to an impurity bound state, which consists of states from mainly the CN axial ligand and the corrin ring as well as the Co eg-like orbitals. We also observe that the Co (3d) orbitals can develop antiferromagnetic correlations with the surrounding atoms depending on the filling of the impurity bound states. In addition, we make comparisons of the HF+QMC data with the density functional theory calculations. We also discuss the photoabsorption spectrum of cyanocobalamine.

  4. Interstitial impurity-induced magnetism in α-PbO surface.

    PubMed

    Arguelles, E; Amino, S; Aspera, S; Nakanishi, H; Kasai, H

    2015-01-14

    We have investigated the effects of 3d transition metal (TM) and non-magnetic interstitial impurities in α-PbO (0 0 1) surface using ab-initio calculations. The calculated impurity-induced magnetic moments are 2.25 μB, 3.11 μB and 0.94 μB for Fe, Mn and Pb interstitials respectively. In the bonding process, TM's lower energy lying d(z2) states form overlaps with nearest neighbour oxygen atoms' p(z) states, with other non-bonding spin split d states situated near or at the Fermi level. These spin split orbitals introduce spin polarised p impurity states of oxygen atoms near the surface.

  5. Electro-migration of impurities in TlBr

    NASA Astrophysics Data System (ADS)

    Kim, Ki Hyun; Kim, Eunlim; Kim, H.; Tappero, R.; Bolotnikov, A. E.; Camarda, G. S.; Hossain, A.; Cirignano, L.; James, R. B.

    2013-10-01

    We observed the electro-migration of Cu, Ag, and Au impurities that exist in positive-ion states in TlBr detectors under electric field strengths typically used for device operation. The migration occurred predominantly through bulk- and specific-channels, which are presumed to be a network of grain and sub-grain boundaries. The electro-migration velocity of Cu, Ag, and Au in TlBr is about 4-8 × 10-8 cm/s at room temperature under an electric field of 500-800 V/mm. The instability and polarization effects of TlBr detectors might well be correlated with the electro-migration of residual impurities in TlBr, which alters the internal electric field over time. The effect may also have been due to migration of the electrode material itself, which would allow for the possibility of a better choice for contact material and for depositing an effective diffusion barrier. From our findings, we suggest that applying our electro-migration technique for purifying material is a promising new way to remove electrically active metallic impurities in TlBr crystals, as well as other materials.

  6. Predictors of Alumni Donor Behavior in Graduates of the Traditional MBA and iMBA Programs at The Pennsylvania State University

    ERIC Educational Resources Information Center

    Ketter, Jason W.

    2013-01-01

    The affordability of a degree from a public university is the subject of much heated debate in the halls of many state governments. The taxpayer, as well as the individual paying tuition, is asking the question: What is the return on investment for the millions of dollars used to support public higher education? The taxpayer views public…

  7. Systematic defect donor levels in III-V and II-VI semiconductors revealed by hybrid functional density-functional theory

    NASA Astrophysics Data System (ADS)

    Petretto, Guido; Bruneval, Fabien

    2015-12-01

    The identification of defect levels from photoluminescence spectroscopy is a useful but challenging task. Density-functional theory (DFT) is a highly valuable tool to this aim. However, the semilocal approximations of DFT that are affected by a band gap underestimation are not reliable to evaluate defect properties, such as charge transition levels. It is now established that hybrid functional approximations to DFT improve the defect description in semiconductors. Here we demonstrate that the use of hybrid functionals systematically stabilizes donor defect states in the lower part of the band gap for many defects, impurities or vacancies, in III-V and in II-VI semiconductors, even though these defects are usually considered as acceptors. These donor defect states are a very general feature and, to the best of our knowledge, have been overlooked in previous studies. The states we identify here may challenge the older assignments to photoluminescent peaks. Though appealing to screen quickly through the possible stable charge states of a defect, semilocal approximations should not be trusted for that purpose.

  8. Effect of Bridge Alteration on Ground- and Excited-State Properties of Ruthenium(II) Complexes with Electron-Donor-Substituted Dipyrido[3,2-a:2',3'-c]phenazine Ligands.

    PubMed

    Shillito, Georgina E; Larsen, Christopher B; McLay, James R W; Lucas, Nigel T; Gordon, Keith C

    2016-11-07

    A series of Ru(II) 2,2'-bipyridine (bpy) complexes with an electron-accepting dipyrido[3,2-a:2',3'-c]phenazine (dppz) ligand coupled to an electron-donating triarylamine (TAA) group have been investigated. Systematic alteration of a bridging unit between the dppz and TAA allowed exploration into how communication between the donor and acceptor is perturbed by distance, as well as by steric and electronic effects. The effect of the bridging group on the electronic properties of the systems was characterized using a variety of spectroscopic methods, including Fourier transform-Raman (FT-Raman) spectroscopy, resonance Raman spectroscopy, and transient resonance Raman (TR(2)) spectroscopy. These methods were used in conjunction with ground- and excited-state absorption spectroscopy, electrochemical studies, and DFT calculations. The ground-state electronic absorption spectra show distinct variation with the bridging group, with the wavelength observed for the lowest energy electronic transition ranging from 449 nm to 522 nm, accompanied by large changes in the molar absorptivity. The lowest-energy Franck-Condon state was determined to be intra-ligand charge transfer (ILCT) in nature for most compounds. The presence of higher-energy metal-to-ligand charge transfer (MLCT) Ru(II) → bpy and Ru(II) → dppz transitions was also confirmed via resonance Raman spectroscopy. The TR(2) spectra showed characteristic dppz(• -) and TAA(• +) vibrations, indicating that the THEXI state formed was also ILCT in nature. Excited-state lifetime measurements reveal that the rate of decay is in accordance with the energy gap law and is not otherwise affected by the nature of the bridging unit.

  9. Electron spin polarization transfer to the charge-separated state from locally excited triplet configuration: theory and its application to characterization of geometry and electronic coupling in the electron donor-acceptor system.

    PubMed

    Kobori, Yasuhiro; Fuki, Masaaki; Murai, Hisao

    2010-11-18

    We present a theoretical model of analysis of the time-resolved electron paramagnetic resonance (TREPR) spectrum of the charge-separated (CS) state generated by the photoinduced electron transfer (ET) reaction via the locally excited triplet state in an electron donor-acceptor (D-A) system with a fixed molecular orientation. We show, by the stochastic-Liouville equation, that chemically induced dynamic electron polarization (CIDEP) of the triplet mechanism is explained by lack of transfer of quantum coherence terms in the primary triplet spin state, resulting in net emissive or absorptive electron spin polarization (ESP) which is dependent on anisotropy of the singlet-triplet intersystem crossing in the precursor excited state. This disappearance of the coherence is clearly shown to occur when the photoinduced ET rate is smaller than the angular frequency of the Zeeman splitting: the transferred coherence terms are averaged to be zero due to effective quantum oscillations during the time that the chemical reaction proceeds. The above theory has been applied to elucidate the molecular geometries and spin-spin exchange interactions (2J) of the CS states for both folded and extended conformers by computer simulations of TREPR spectra of the zinc porphyrin-fullerene dyad (ZnP-C(60)) bridged by diphenyldisilane. On the extended conformation, the electronic coupling is estimated from the 2J value. It has been revealed that the coupling term is smaller than the reported electronic interactions of the porphyrin-C(60) systems bridged by diphenylamide spacers. The difference in the electronic couplings has been explained by the difference in the LUMO levels of the bridge moieties that mediate the superexchange coupling for the long-range ET reaction.

  10. Large-Scale Quantum Many-Body Perturbation on Spin and Charge Separation in the Excited States of the Synthesized Donor-Acceptor Hybrid PBI-Macrocycle Complex.

    PubMed

    Ziaei, Vafa; Bredow, Thomas

    2017-03-17

    The reliable calculation of the excited states of charge-transfer (CT) compounds poses a major challenge to the ab initio community because the frequently employed method, time-dependent density functional theory (TD-DFT), massively relies on the underlying density functional, resulting in heavily Hartree-Fock (HF) exchange-dependent excited-state energies. By applying the highly sophisticated many-body perturbation approach, we address the encountered unreliabilities and inconsistencies of not optimally tuned (standard) TD-DFT regarding photo-excited CT phenomena, and present results concerning accurate vertical transition energies and the correct energetic ordering of the CT and the first visible singlet state of a recently synthesized thermodynamically stable large hybrid perylene bisimide-macrocycle complex. This is a large-scale application of the quantum many-body perturbation approach to a chemically relevant CT system, demonstrating the system-size independence of the quality of the many-body-based excitation energies. Furthermore, an optimal tuning of the ωB97X hybrid functional can well reproduce the many-body results, making TD-DFT a suitable choice but at the expense of introducing a range-separation parameter, which needs to be optimally tuned.

  11. Synthesis, spectral behaviour and photophysics of donor-acceptor kind of chalcones: Excited state intramolecular charge transfer and fluorescence quenching studies

    NASA Astrophysics Data System (ADS)

    Pannipara, Mehboobali; Asiri, Abdullah M.; Alamry, Khalid A.; Arshad, Muhammad N.; El-Daly, Samy A.

    2015-02-01

    The spectral and photophysical properties of two chalcones containing electron donating and accepting groups with intramolecular charge transfer characteristics were synthesized and characterized by 1H NMR, 13C NMR and X-ray crystallography. Both compounds show very strong solvent polarity dependent changes in their photophysical characteristics, namely, remarkable red shift in the emission spectra with increasing solvent polarity, large change in Stokes shift, significant reduction in the fluorescence quantum yield; indicating that the fluorescence states of these compounds are of intramolecular charge transfer (ICT) character. The solvent effect on the photophysical parameters such as singlet absorption, molar absorptivity, oscillator strength, dipole moment, fluorescence spectra, and fluorescence quantum yield of both compounds have been investigated comprehensively. For both dyes, Lippert-Mataga and Reichardt's correlations were used to estimate the difference between the excited and ground state dipole moments (Δμ). The interactions of dyes with colloidal silver nanoparticles (Ag NPs) were also studied in ethanol using steady state fluorescence quenching measurements. The fluorescence quenching data reveal that dynamic quenching and energy transfer play a major role in the fluorescence quenching of dyes by Ag NPs.

  12. Metallic impurities in gallium nitride grown by molecular beam epitaxy

    SciTech Connect

    McHugo, S.A.; Krueger, J.; Kisielowski, C.

    1997-04-01

    Transition metals are often encountered in trace amounts in semiconductors. They have been extensively studied in most elemental and compound systems, since they form deep donor and/or acceptor levels which usually degrade the electronic and optical material properties. Only very little is known about transition metals in recent III-V semiconducting materials, such as GaN, AlN and InN. These few studies have been done exclusively on Metal-Organic Chemical Vapor Deposition (MOCVD) or Hybrid Vapor Phase Epitaxy HVPE-grown GaN. Preliminary x-ray fluorescence studies at the Advanced Light Source, beamline 10.3.1, Lawrence Berkeley National Laboratory have revealed that GaN materials grown by Molecular Beam Epitaxy (MBE) have Fe, Ni and Cr as the dominant transition metal contaminants. This finding is commensurate with the extremely high concentrations of hydrogen, carbon and oxygen (up to 10{sup 20} cm{sup {minus}3}) measured by Secondary Ion Mass Spectroscopy (SIMS). Preliminary work using the mapping capabilities of the x-ray fluorescence microprobe revealed the metal impurities were inhomogeneously distributed over the film. Future work of this collaboration will be to find a correlation between the existence of transition metals in MBE films, as revealed by x-ray fluorescence, and Photoluminescence (PL) spectra taken in the infrared region. Also, the authors will make use of the 1 {mu}m spatial resolution of x-ray microprobe to locate the contaminants in relation to structural defects in the GaN films. Because of the large strain caused by the lattice mismatch between the GaN films and the substrates, the films grow in a columnar order with high densities of grain boundaries and dislocations. These structural defects offer preferential sites for metal precipitation or agglomeration which could degrade the optical properties of this material more so than if the impurities were left dissolved in the GaN.

  13. Transport signatures of Kondo physics and quantum criticality in graphene with magnetic impurities

    NASA Astrophysics Data System (ADS)

    Ruiz-Tijerina, David A.; Dias da Silva, Luis G. G. V.

    2017-03-01

    Localized magnetic moments have been predicted to develop in graphene samples with vacancies or adsorbates. The interplay between such magnetic impurities and graphene's Dirac quasiparticles leads to remarkable many-body phenomena, which have, so far, proved elusive to experimental efforts. In this article we study the thermodynamic, spectral, and transport signatures of quantum criticality and Kondo physics of a dilute ensemble of atomic impurities in graphene. We consider vacancies and adatoms that either break or preserve graphene's C3 v and inversion symmetries. In a neutral graphene sample, all cases display symmetry-dependent quantum criticality, leading to enhanced impurity scattering for asymmetric impurities, in a manner analogous to bound-state formation by nonmagnetic resonant scatterers. Kondo correlations emerge only in the presence of a back gate, with estimated Kondo temperatures well within the experimentally accessible domain for all impurity types. For symmetry-breaking impurities at charge neutrality, quantum criticality is signaled by T-2 resistivity scaling, leading to full insulating behavior at low temperatures, while low-temperature resistivity plateaus appear both in the noncritical and Kondo regimes. By contrast, the resistivity contribution from symmetric vacancies and hollow-site adsorbates vanishes at charge neutrality and for arbitrary back-gate voltages, respectively. This implies that local probing methods are required for the detection of both Kondo and quantum critical signatures in these symmetry-preserving cases.

  14. Model for the catalytic oxidation of CO, including gas-phase impurities and CO desorption.

    PubMed

    Buendía, G M; Rikvold, P A

    2013-07-01

    We present results of kinetic Monte Carlo simulations of a modified Ziff-Gulari-Barshad model for the reaction CO+O → CO(2) on a catalytic surface. Our model includes impurities in the gas phase, CO desorption, and a modification known to eliminate the unphysical O poisoned phase. The impurities can adsorb and desorb on the surface, but otherwise remain inert. In a previous work that did not include CO desorption [Buendía and Rikvold, Phys. Rev. E 85, 031143 (2012)], we found that the impurities have very distinctive effects on the phase diagram and greatly diminish the reactivity of the system. If the impurities do not desorb, once the system reaches a stationary state, the CO(2) production disappears. When the impurities are allowed to desorb, there are regions where the CO(2) reaction window reappears, although greatly reduced. Following experimental evidence that indicates that temperature effects are crucial in many catalytic processes, here we further analyze these effects by including a CO desorption rate. We find that the CO desorption has the effect to smooth the transition between the reactive and the CO rich phase, and most importantly it can counteract the negative effects of the presence of impurities by widening the reactive window such that now the system remains catalytically active in the whole range of CO pressures.

  15. [Psychosomatic selection of living liver donors].

    PubMed

    Erim, Y; Senf, W

    2001-01-01

    In the Essen University Clinic for Psychotherapy and Psychosomatics, between January and December 2000, 54 potential liver donors and 12 kidney donors were examined. All the kidney donors were found to be suitable; 7 potential liver donors were rejected on psychosomatic grounds. Reasons for the rejection were addiction (1 donor), suspected financial dependency of the donor on the recipient (1 donor) and, in the case of one donor not related to the recipient, the apparent lack of a special emotional attachment. During the actual evaluation interview, 4 potential donors reversed their original decision. Such a psychosomatic evaluation is a great help for donors in clarifying their motives and their decision.

  16. Effect of weak impurities on electronic properties of graphene: Functional renormalization-group analysis

    NASA Astrophysics Data System (ADS)

    Katanin, A.

    2013-12-01

    We consider an effect of weak impurities on the electronic properties of graphene within the functional renormalization-group approach. The energy dependences of the electronic self-energy and density of states near the neutrality point are discussed. Depending on the symmetry of the impurities, the electronic damping Γ and density of states ρ can deviate substantially from those given by the self-consistent Born approximation. We investigate the crossover from the results of the self-consistent Born approximation, which are valid far from the neutrality point to the strong-coupling (diffusive) regime near the neutrality point. For impurities, which are diagonal in both valley and sublattice indices, we obtain a finite density of states at the Fermi level with values which are much bigger than the result of the self-consistent Born approximation.

  17. Startup impurity diagnostics in Wendelstein 7-X stellarator in the first operational phase

    NASA Astrophysics Data System (ADS)

    Thomsen, H.; Langenberg, A.; Zhang, D.; Bertschinger, G.; Biedermann, C.; Biel, W.; Burhenn, R.; Buttenschön, B.; Grosser, K.; König, R.; Kubkowska, M.; Marchuk, O.; Pablant, N.; Ryc, L.; Pedersen, T. S.; W7-X Team

    2015-10-01

    An essential element for stationary stellarator operation is the understanding of the impurity transport behavior. Neoclassical theory predicts an impurity transport towards the plasma core for the standard ion root regime in stellarators [1,2]. The performance of a quasi-stationary device like Wendelstein 7-X stellarator (W7-X, presently in the commissioning phase in Greifswald, Germany) could be limited in case of strong impurity accumulation. Therefore, a set of plasma diagnostics is foreseen to obtain key experimental quantities for the neoclassical transport modeling as ion temperature profile, density gradients and impurity concentration [1]. The core impurity content is monitored by the High Efficiency eXtreme ultraviolet Overview Spectrometer system (HEXOS) [2], covering the wavelength range 2.5-160 nm (intermediate ionization states of all relevant heavy intrinsic impurity species) with high spectral resolution and a time resolution of 1 ms, adequate for transport analysis. Impurity radiation at shorter wave lengths (4 nm-0.06 nm) will be monitored with the SX pulse height analysis system (PHA) [3]. The ion temperature profile can be deduced from inversion of data from the High Resolution X-ray Imaging Spectrometer (HR-XIS), which measures the concentration and temperature of argon tracer gas in helium-like ionization stages [6,7,8]. A second X-ray Imaging Crystal Spectrometer (XICS), which will additionally provide the poloidal ion rotation velocity, is under preparation [8,9]. The total radiation will be measured by two bolometer cameras [10,11]. The status of the impurity diagnostics for the first operational phase in W7-X is summarized in this paper and an outlook for the next experimental campaign is given.

  18. Signatures of distinct impurity configurations in atomic-resolution valence electron-energy-loss spectroscopy: Application to graphene

    NASA Astrophysics Data System (ADS)

    Kapetanakis, Myron D.; Oxley, Mark P.; Zhou, Wu; Pennycook, Stephen J.; Idrobo, Juan-Carlos; Pantelides, Sokrates T.

    2016-10-01

    The detection and identification of impurities and other point defects in materials is a challenging task. Signatures for point defects are typically obtained using spectroscopies without spatial resolution. Here we demonstrate the power of valence electron-energy-loss spectroscopy (VEELS) in an aberration-corrected scanning transmission-electron microscope (STEM) to provide energy-resolved and atomically resolved maps of electronic excitations of individual impurities which, combined with theoretical simulations, yield unique signatures of distinct bonding configurations of impurities. We report VEELS maps for isolated Si impurities in graphene, which are known to exist in two distinct configurations. We also report simulations of the maps, based on density functional theory and dynamical scattering theory, which agree with and provide direct interpretation of observed features. We show that theoretical VEELS maps exhibit distinct and unambiguous signatures for the threefold- and fourfold-coordinated configurations of Si impurities in different energy-loss windows, corresponding to impurity-induced bound states, resonances, and antiresonances. With the advent of new monochromators and detectors with high energy resolution and low signal-to-noise ratio, the present work ushers an atomically resolved STEM-based spectroscopy of individual impurities as an alternative to conventional spectroscopies for probing impurities and defects.

  19. Electronic structure and local magnetism of 3d-5d impurity substituted CeFe2

    NASA Astrophysics Data System (ADS)

    Das, Rakesh; Das, G. P.; Srivastava, S. K.

    2016-04-01

    We present here a systematic first-principles study of electronic structure and local magnetic properties of Ce[Fe0.75M0.25]2 compounds, where M is a 3d, 4d or 5d transition or post-transition element, using the generalized gradient approximation of the density functional theory. The d-f band hybridizations existing in CeFe2 get modified by the impurity M in an orderly manner across a period for each impurity series: the hybridization is strongest for the Mn group impurity in the period and gets diminished on either side of it. The weakening of the d-f hybridization strength is also associated with a relative localization of the Ce 4f states with respect to the delocalized 4f states in CeFe2. The above effects are most prominent for 3d impurity series, while for 4d and 5d impurities, the hybridizations and relocalizations are relatively weak due primarily to the relatively extended nature of 4d and 5d wavefunctions. The Ce local moment is found to decrease from the CeFe2 value in proportion to the strength of relocalization, thus following almost the same orderly trend as obeyed by the d-f hybridization. Further, depending on the way the spin-up and spin-down densities of states of an impurity shift relative to the Fermi energy, the impurity local moments are highest for Mn or Fe group, reduce on either side, become zero for Ni to Ga, and are small but negative for V and Ti. The Ce hyperfine field is found to follow the M local moment in a linear fashion, and vice-versa.

  20. Lowest excited states and optical absorption spectra of donor-acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals.

    PubMed

    Pandey, Laxman; Doiron, Curtis; Sears, John S; Brédas, Jean-Luc

    2012-11-07

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated.

  1. Defining and measuring blood donor altruism: a theoretical approach from biology, economics and psychology

    PubMed Central

    Evans, R; Ferguson, E

    2014-01-01

    Background and Objectives While blood donation is traditionally described as a behaviour motivated by pure altruism, the assessment of altruism in the blood donation literature has not been theoretically informed. Drawing on theories of altruism from psychology, economics and evolutionary biology, it is argued that a theoretically derived psychometric assessment of altruism is needed. Such a measure is developed in this study that can be used to help inform both our understanding of the altruistic motives of blood donors and recruitment intervention strategies. Materials and Methods A cross-sectional survey (N = 414), with a 1-month behavioural follow-up (time 2, N = 77), was designed to assess theoretically derived constructs from psychological, economic and evolutionary biological theories of altruism. Theory of planned behaviour (TPB) variables and co-operation were also assessed at time 1 and a measure of behavioural co-operation at time 2. Results Five theoretical dimensions (impure altruism, kinship, self-regarding motives, reluctant altruism and egalitarian warm glow) of altruism were identified through factor analyses. These five altruistic motives differentiated blood donors from non-donors (donors scored higher on impure altruism and reluctant altruism), showed incremental validity over TPB constructs to predict donor intention and predicted future co-operative behaviour. Conclusions These findings show that altruism in the context of blood donation is multifaceted and complex and, does not reflect pure altruism. This has implication for recruitment campaigns that focus solely on pure altruism. PMID:24117697

  2. Transport analysis of tungsten impurity in ITER

    NASA Astrophysics Data System (ADS)

    Murakami, Y.; Amano, T.; Shimizu, K.; Shimada, M.

    2003-03-01

    The radial distribution of tungsten impurity in ITER is calculated by using the 1.5D transport code TOTAL coupled with NCLASS, which can solve the neo-classical impurity flux considering arbitrary aspect ratio and collisionality. An impurity screening effect is observed when the density profile is flat and the line radiation power is smaller than in the case without impurity transport by a factor of 2. It is shown that 90 MW of line radiation power is possible without significant degradation of plasma performance ( HH98( y,2) ˜1) when the fusion power is 700 MW (fusion gain Q=10). The allowable tungsten density is about 7×10 15/m 3, which is 0.01% of the electron density and the increase of the effective ionic charge Zeff is about 0.39. In this case, the total radiation power is more than half of the total heating power 210 MW, and power to the divertor region is less than 100 MW. This operation regime gives an opportunity for high fusion power operation in ITER with acceptable divertor conditions. Simulations for the case with an internal transport barrier (ITB) are also performed and it is found that impurity shielding by an ITB is possible with density profile control.

  3. Gettering of metal impurities in silicon

    SciTech Connect

    Schroeter, W.; Spiecker, E.; Apel, M.

    1995-08-01

    Gettering means the removal of metallic impurities from the device-active area of the wafer by transport to a predesigned region-called gettering layer (GL). We introduce an interface at z = d{sub GL}, at which the effect of the gettering mechanism on the metal impurity distribution in the wafer is quantified, e.g. by specifying currents or by interfacial reactions of metal impurities, self interstitials etc. between GL and wafer. In response metal impurities will diffuse out of the wafer into the gettering layer. Following such a concept, in general three species of the metal impurity (M) are involved in gettering: M{sub p} {l_arrow} M{sub i} {l_arrow} M{sub GL}. M{sub p} denotes immobile species in the wafer, which are precipitated into suicides or segregated at extended defects or whose diffusivity is too small to contribute noticeably to transport during the gettering procedure - like many substitutional metal species.

  4. [Clinical evaluation of living donor].

    PubMed

    Scolari, Maria Piera; Comai, G; La Manna, G; Liviano D'Arcangelo, G; Monti, M; Feliciangeli, G; Stefoni, S

    2009-01-01

    When possible, living donor transplantation represents the best therapeutic strategy for patients suffering from chronic renal failure. Studying the donor allows a complete and thorough clinical, laboratory and instrumental assessment that guarantees good organ function whilst protecting the health of the donor. The main parameters considered within this framework are age, renal function, nephrological complications, comorbidities (diabetes, hypertension, obesity, etc.), malignancies, and infection. Moreover, particular attention is paid to the sociopsychological aspects of the donation, particularly related to the donor, the recipient, and the entire family situation.

  5. Silicon quantum dots with counted antimony donor implants

    NASA Astrophysics Data System (ADS)

    Singh, Meenakshi; Pacheco, Jose; Perry, Daniel; Wendt, Joel; Manginell, Ronald; Dominguez, Jason; Pluym, Tammy; Luhman, Dwight; Bielejec, Edward; Lilly, Michael; Carroll, Malcolm

    Antimony donor implants next to silicon quantum dots have been detected with integrated solid-state diode detectors with single ion precision. Devices with counted number of donors have been fabricated and low temperature transport measurements have been performed. Charge offsets, indicative of donor ionization and coupling to the quantum dot, have been detected in these devices. The number of offsets corresponds to 10-50% of the number of donors counted. We will report on tunneling time measurements and spin readout measurements on the donor offsets. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  6. Electronic structure of vitamin B12 within the framework of the Haldane-Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Kandemir, Zafer; Mayda, Selma; Bulut, Nejat

    2015-03-01

    We study the electronic structure of vitamin B12 (cyanocobalamine C63H88CoN14O14P) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. Here, our purpose is to understand the many-body effects originating from the transition-metal impurity. In this approach, the cobalt 3 d orbitals are treated as the impurity states placed in a semiconductor host which consists of the rest of the molecule. The parameters of the resulting effective Haldane-Anderson model are obtained within the Hartree-Fock approximation for the electronic structure of the molecule. The quantum Monte Carlo technique is then used to calculate the one-electron and magnetic correlation functions of this effective Haldane-Anderson model for vitamin B12. We find that new states form inside the semiconductor gap due to the on-site Coulomb interaction at the impurity 3 d orbitals and that these states become the highest occupied molecular orbitals. In addition, we present results on the charge distribution and spin correlations around the Co atom. We compare the results of this approach with those obtained by the density-functional theory calculations.

  7. Donor cell leukemia.

    PubMed

    Ruiz-Arguelles, Alejandro

    2012-04-01

    Minimal residual disease refers to the tumour cells that are still present in a given patient after completion of a therapeutic scheme. The demonstration and quantification of residual neoplastic cells has a crucial impact in clinical decision making, for it might prompt continuation of treatment, while the absence of such cells might serve as evidence to withdraw therapy. Therefore, both sensitivity and specificity of the methods used to unravel residual neoplastic cells must be highly reliable and robust. Flow cytometry has been widely used for this purpose, and its clinical performance depends mainly on the criteria of interpretation, rather than in the technique by itself; molecular biology techniques have proved to be highly sensitive and specific but unfortunately they cannot be used in all patients or in all types of leukemia. Finally, the development of donor cell leukemia in transplanted patients, might mimic residual disease and add more confusion to an already controversial issue. These topics are discussed in this paper.

  8. Strong quantum scarring by local impurities

    NASA Astrophysics Data System (ADS)

    Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa

    2016-11-01

    We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications.

  9. Magnetic impurities in small metal clusters

    NASA Astrophysics Data System (ADS)

    Pastor, G. M.

    2005-09-01

    [Dedicated to Bernhard Mühlschlegel on the occasion of his 80th birthday]Magnetic impurities in small metallic clusters are investigated in the framework of the Anderson model by using exact diagonalization and geometry optimization methods.The singlet-triplet spin gap E shows a remarkable dependence as a function of band-filling, cluster structure, and impurity position that can be interpreted in terms of the environment-specific conduction-electron spectrum. The low-energy spin excitations involve similar energies as isomerizations. Interesting correlations between cluster structure and magnetic behavior are revealed. Finite-temperature properties such as specific heat, effective impurity moment, and magnetic susceptibility are calculated exactly in the canonical ensemble. A finite-size equivalent of the Kondo effect is identified and its structural dependence is discussed.

  10. Strong quantum scarring by local impurities

    PubMed Central

    Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa

    2016-01-01

    We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications. PMID:27892510

  11. Baryon as impurity for phase transition in string landscape

    NASA Astrophysics Data System (ADS)

    Kasai, Aya; Nakai, Yuichiro; Ookouchi, Yutaka

    2016-06-01

    We consider a decay of a false vacuum in flux compactifications of type IIB string theory and study a catalytic effect for a phase transition induced by a new type of impurities. We concentrate on the large N dual of a D5-brane/anti-D5-brane system which has a rich vacuum structure. We show that D3-branes wrapping the 3-cycles can form a baryon bound state with a monopole. We find that these baryon-like objects can make the lifetime of the metastable vacuum shorter.

  12. Nonlinear optical and electro-optical properties of ionic lyotropic smectics with different impurities

    NASA Astrophysics Data System (ADS)

    Klimusheva, Gertruda; Bugaychuk, S.; Mirnaya, Tatyana; Vakhnin, Alexander; Kolesnik, O.

    2004-09-01

    Metal-organic ionic smectices (MOIS) have investigated to find their photorefractive properties. For the first time the multiplexing holographic recording of permanent gratings is obtained in pure lyotropic MOIS. It is proposed new mechanism of holographic recording in ionic smectics involving photo-chemical processes associated with multi-photon absorption. Dynamic grating recording has obtained in MOIS doped by electrochromic impurity (viologen) and in ionic smectic glasses composed by decanoate Co2+. A regeneration of viologen from radical state to initial molecule state becomes the main recording mechanism in MOIS with viologen impurity. Electronic absorption of Co2+ determines the recording of dynamic gratings in the ionic smectic glasses.

  13. Anatomy of quantum critical wave functions in dissipative impurity problems

    NASA Astrophysics Data System (ADS)

    Blunden-Codd, Zach; Bera, Soumya; Bruognolo, Benedikt; Linden, Nils-Oliver; Chin, Alex W.; von Delft, Jan; Nazir, Ahsan; Florens, Serge

    2017-02-01

    Quantum phase transitions reflect singular changes taking place in a many-body ground state; however, computing and analyzing large-scale critical wave functions constitutes a formidable challenge. Physical insights into the sub-Ohmic spin-boson model are provided by the coherent-state expansion (CSE), which represents the wave function by a linear combination of classically displaced configurations. We find that the distribution of low-energy displacements displays an emergent symmetry in the absence of spontaneous symmetry breaking while experiencing strong fluctuations of the order parameter near the quantum critical point. Quantum criticality provides two strong fingerprints in critical low-energy modes: an algebraic decay of the average displacement and a constant universal average squeezing amplitude. These observations, confirmed by extensive variational matrix-product-state (VMPS) simulations and field theory arguments, offer precious clues into the microscopics of critical many-body states in quantum impurity models.

  14. Impurities in nonlinear optical oxide crystals

    NASA Astrophysics Data System (ADS)

    Morris, Patricia A.

    1990-11-01

    Impurities in nonlinear optical oxide crystals can affect many of the properties for device applications. The structures of typical crystals are tolerant with respect to occupancy and are nonstoichiometric on the cation sublattices (e.g. the A sublattice in crystals with the general formula AMO 3). This may, at least in part, be due to the presence of the relatively strong covalent nature of the acentric oxide groups determining the nonlinear optical properties. These circumstances make the incorporation of impurities into the lattice relatively easy and result in large distribution coefficients for many impurities. Generally, little purification during growth will occur with respect to these impurities and therefore, it is usually necessary to purify the starting materials of any unwanted ions. Chemical or powder processing and firing procedures can be used to prevent any contamination of the crystal growth precursors by common impurities (e.g. Si, Al, Fe, Ca, Na, K, Mg, Cl, and S) at a level of <10 parts per million total concentration. A combination of analytical techniques, including those which require little or no sample preparation (e.g. secondary ion mass spectrometry, neutron activation analysis, or laser microprobe mass spectrometry), should be used to determine the impurities present in a material. For example, the effects of protons incorporated (OH -) in the lattice of these crystals can be very detrimental and can be detected using infrared spectroscopy. The growth of many of these crystals requires flux techniques, but the temperature dependence of any nonstoichiometry present and of the distribution coefficients make the use of slow cooling techniques generally not recommended when uniformity of properties is required.

  15. Assessing elements of informed consent among living donors

    PubMed Central

    Valapour, M; Kahn, JP; Bailey, R; Matas, AJ

    2011-01-01

    Living organ donors – 50% of solid organ donors in the United States – represent a unique population who accept medical risk for the benefit of another. One of the main justifications for this practice has been respect for donor autonomy, as realized through informed consent. In this retrospective study of living donors, we investigate 2 key criteria of informed consent: (1) depth of understanding and (2) degree of voluntariness. In our survey of 262 living kidney donors 2 to 40 months post donation, we found that more than 90% understood the effects of living donation on recipient outcomes, the screening process, and the short-term medical risks of donation. In contrast, only 69% understood the psychological risks of donation; 52% the long-term medical risks of donation; and 32%, the financial risks of donation. Understanding the effects of living donation on recipient outcomes was the only factor that would affect donors' decision to donate again. 40% of donors reported feeling some pressure to donate. Donors who are related to the recipient were more likely to report feeling pressure to donate. We conclude that more studies of informed consent are needed to identify factors that may compromise the validity of informed consent. PMID:21158924

  16. The physics of Kondo impurities in graphene.

    PubMed

    Fritz, Lars; Vojta, Matthias

    2013-03-01

    This article summarizes our understanding of the Kondo effect in graphene, primarily from a theoretical perspective. We shall describe different ways to create magnetic moments in graphene, either by adatom deposition or via defects. For dilute moments, the theoretical description is in terms of effective Anderson or Kondo impurity models coupled to graphene's Dirac electrons. We shall discuss in detail the physics of these models, including their quantum phase transitions and the effect of carrier doping, and confront this with existing experimental data. Finally, we will point out connections to other quantum impurity problems, e.g., in unconventional superconductors, topological insulators, and quantum spin liquids.

  17. Fractional impurity moments in two-dimensional noncollinear magnets.

    PubMed

    Wollny, Alexander; Fritz, Lars; Vojta, Matthias

    2011-09-23

    We study dilute magnetic impurities and vacancies in two-dimensional frustrated magnets with noncollinear order. Taking the triangular-lattice Heisenberg model as an example, we use quasiclassical methods to determine the impurity contributions to the magnetization and susceptibility. Most importantly, each impurity moment is not quantized but receives nonuniversal screening corrections due to local relief of frustration. At finite temperatures, where bulk long-range order is absent, this implies an impurity-induced magnetic response of Curie form, with a prefactor corresponding to a fractional moment per impurity. We also discuss the behavior in an applied magnetic field, where we find a singular linear-response limit for overcompensated impurities.

  18. Identification, Characterization, and Quantification of Impurities of Safinamide Mesilate: Process-Related Impurities and Degradation Products.

    PubMed

    Zou, Liang; Sun, Lili; Zhang, Hui; Hui, Wenkai; Zou, Qiaogen; Zhu, Zheying

    2017-02-02

    The characterization of process-related impurities and degradation products of safinamide mesilate (SAFM) in bulk drugand a stability-indicating HPLC method for the separation and quantification of all the impurities were investigated. Four process-related impurities (Imp-B, Imp-C, Imp-D, and Imp-E) were found in the SAFM bulk drug. Five degradation products (Imp-A, Imp-C, Imp-D, Imp-E, and Imp-F) were observed in SAFM under oxidative conditions. Imp-C, Imp-D, and Imp-E were also degradation products and process-related impurities. Remarkably, one new compound, identified as (S)-2-[4-(3-fluoro-benzyloxy) benzamido] propanamide (i.e., Imp-D), is being reported here as an impurity for the first time. Furthermore, the structures of the aforementioned impurities were characterized and confirmed via IR, NMR, and MS techniques, and the most probable formation mechanisms of all impurities proposed according to the synthesis route. Optimum separation was achieved on an Inertsil ODS-3 column (250 × 4.6 mm, 5 μm), using 0.1% formic acid in water (pH adjusted to 5.0) and acetonitrile as the mobile phase in gradient mode. The proposed method was found to be stability-indicating, precise, linear, accurate, sensitive, and robust for the quantitation of SAFM and its process-related substances, including its degradation products.

  19. Native hole trap in bulk GaAs and its association with the double-charge state of the arsenic antisite defect

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Lin, D. G.; Chen, T.-P.; Skowronski, M.; Gatos, H. C.

    1985-01-01

    A dominant hole trap has been identified in p-type bulk GaAs employing deep level transient and photocapacitance spectroscopies. The trap is present at a concentration up to about 4 x 10 to the 16th per cu cm, and it has two charge states with energies 0.54 + or - 0.02 and 0.77 + or - 0.02 eV above the top of the valence band (at 77 K). From the upper level the trap can be photoexcited to a persistent metastable state just as the dominant midgap level, EL2. Impurity analysis and the photoionization characteristics rule out association of the trap with impurities Fe, Cu, or Mn. Taking into consideration theoretical results, it appears most likely that the two charge states of the trap are the single and double donor levels of the arsenic antisite As(Ga) defect.

  20. ν=5/2 fractional quantum Hall state in low-mobility electron systems: Different roles of disorder

    NASA Astrophysics Data System (ADS)

    Gamez, Gerardo; Muraki, Koji

    2013-08-01

    We report the observation of a fully developed fractional quantum Hall state at ν=5/2 in GaAs/AlxGa1-xAs quantum wells with mobility well below 107 cm2/Vs. This is achieved either by strong illumination or reducing the barrier Al composition without illumination. We explain both results in terms of screening of the ionized remote impurity (RI) potential by nearby neutral shallow donors. Despite the dramatic improvement in the transport features, the energy gap Δ5/2 is limited to a rather small value (˜100 mK), which indicates that once the RI potential is well screened and the 5/2 state emerges, the size of Δ5/2 is limited by the mobility, i.e., by background impurities.

  1. Urinary biomarkers after donor nephrectomy.

    PubMed

    Hoogendijk-van den Akker, Judith M; Warlé, Michiel C; van Zuilen, Arjan D; Kloke, Heinrich J; Wever, Kim E; d'Ancona, Frank C H; Ӧzdemir, Denise M D; Wetzels, Jack F M; Hoitsma, Andries J

    2015-05-01

    As the beginning of living-donor kidney transplantation, physicians have expressed concern about the possibility that unilateral nephrectomy can be harmful to a healthy individual. To investigate whether the elevated intra-abdominal pressure (IAP) during laparoscopic donor nephrectomy causes early damage to the remaining kidney, we evaluated urine biomarkers after laparoscopic donor nephrectomy. We measured albumin and alpha-1-microglobulin (α-1-MGB) in urine samples collected during and after open and laparoscopic donor nephrectomy and laparoscopic cholecystectomy and colectomy. Additionally, kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) were measured in urine samples collected during and after laparoscopic donor nephrectomy and colectomy. The same biomarkers were studied in patients randomly assigned to standard or low IAP during laparoscopic donor nephrectomy. We observed a peak in urinary albumin excretion during all procedures. Urine α-1-MGB rose in the postoperative period with a peak on the third postoperative day after donor nephrectomy. Urine α-1-MGB did not increase after laparoscopic cholecystectomy and colectomy. After laparoscopic nephrectomy, we observed slight increases in urine KIM-1 during surgery and in urine NGAL at day 2-3 after the procedure. After laparoscopic colectomy, both KIM-1 and NGAL were increased in the postoperative period. There were no differences between the high- and low-pressure procedure. Elevated urinary α-1-MGB suggests kidney damage after donor nephrectomy, occurring irrespective of IAP during the laparoscopic procedure.

  2. Effect of nonmagnetic impurities on s± superconductivity in the presence of incipient bands

    NASA Astrophysics Data System (ADS)

    Chen, X.; Mishra, V.; Maiti, S.; Hirschfeld, P. J.

    2016-08-01

    Several Fe chalcogenide superconductors without hole pockets at the Fermi level display high temperature superconductivity, in apparent contradiction to naive spin fluctuation pairing arguments. Recently, scanning tunneling microscopy experiments studied the influence of impurities on some of these materials and claimed that nonmagnetic impurities do not create in-gap states, leading to the conclusion that the gap must be s++, i.e., conventional s wave with no gap sign change. Here we critique this argument, and give various ways sign-changing gaps can be consistent with the absence of such bound states. In particular, we calculate the bound states for an s± system with a hole pocket below the Fermi level, and show that the nonmagnetic impurity bound state energy generically tracks the gap edge Em i n in the system, thereby rendering it unobservable. A failure to observe a bound state in the case of a nonmagnetic impurity therefore cannot be used as an argument to exclude sign-changing pairing states.

  3. Influence of Bi-related impurity states on the bandgap and spin-orbit splitting energy of dilute III-V-Bi alloys: InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix

    NASA Astrophysics Data System (ADS)

    Samajdar, D. P.; Dhar, S.

    2016-01-01

    Valence Band Anticrossing (VBAC) Model is used to calculate the changes in band structure of Bi containing alloys such as InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix due to the incorporation of dilute concentrations of bismuth. The coupling parameter CBi which gives the magnitude of interaction of Bi impurity states with the LH, HH and SO sub bands in VBAC depends on the increase in the HH/LH related energy level EHH/LH+, location of the Bi related impurity level EBi and valence band offset ΔEVBM between the endpoint compounds in the corresponding III-V-Bi. The reduction in band gap as well as the enhancement of the spin-orbit splitting energy is well explained using this model and the calculated results are compared with the results of Virtual Crystal Approximation (VCA) and Density Functional Theory (DFT) calculations, as well as with the available experimental data and are found to have good agreement. The incorporation of Bi mainly perturbs the valence band due to the interaction of the Bi impurity states with the HH, LH and SO bands. The lowering of the conduction band minimum (CBM) due to VCA is added with the upward movement of the HH/LH bands to get the total reduction in band gap for the bismides. The valence band shifts of 31.9, 32.5, 20.8 and 12.4 meV/at%Bi for InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix respectively constitute 65, 76, 59 and 31% of the total band gap reduction and the rest is the contribution of the conduction band shift. The spin-orbit splitting energy also shows significant increase with the maximum change in InPBi and the minimum in InSbBi. The same is true for Ga containing bismides if we make a comparison with the available values for GaAsBi and GaPBi with that of GaSbBi. It has also been observed that the increase in splitting energy is greater in case of the bismides such as InAsBi, InPBi and GaAsBi than the bismides such as InSbBi and GaSbBi with the parent substrates having higher values of splitting energy. This may

  4. Photoionization and electrostatic multipoles properties of spherical core/shell/shell quantum nanolayer with off-center impurity

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. A.; Kazaryan, E. M.; Sarkisyan, H. A.

    2017-04-01

    The electronic, optical and electrostatic properties of the spherical core/shell/shell quantum nanolayer with an off-centered impurity have been studied. Spherical nanolayers of both "small" and "large" radii have been considered in the framework of perturbation theory and the variational method. Photoionization cross-section that corresponds to the electron transitions from the impurity ground state to the size-quantized levels have been studied. The dependence of the photoionization cross section on the photon energy, impurity position and the geometrical parameters of the spherical nanolayer have been obtained. The electrostatic multipoles of the considered system have been investigated.

  5. Donor human milk banking and the emergence of milk sharing.

    PubMed

    Landers, Susan; Hartmann, Ben T

    2013-02-01

    Donor human milk has emerged as the preferred substrate to feed extremely preterm infants, when mother's own milk is unavailable. This article summarizes the clinical data demonstrating the safety, efficacy, and cost-effectiveness of feeding donor human milk to premature babies. It describes the current state of milk banking in North America, as well as other parts of the world, and the differing criteria for donor selection, current pasteurization techniques, and quality control measures. A risk assessment methodology is proposed, which would allow milk banks globally to assess the safety of their process and respond appropriately to differing risk environments.

  6. Hepatitis B surface antigen in blood donors. An epidemiologic study.

    PubMed

    Jayaprakash, P A; Shanmugam, J; Hariprasad, D

    1983-01-01

    Of 8085 volunteer donors attending the blood bank at SCTIMST screened for hepatitis B surface antigen (HBsAg) carrier state by counterimmunoelectrophoresis, 103 (1.27%) were HBsAg positive. The personal data of donors showed a higher rate of HBsAg among men than women and in the age group of 21 to 30 years than in the other age groups. A significantly higher rate was noted among donors belonging to the lower socioeconomic group (p less than 0.05).

  7. Defects and impurities in mercuric iodine processing

    SciTech Connect

    van Scyoc, J.M.; James, R.B.; Schlesinger, T.E.; Gilbert, T.S.

    1996-03-01

    In the fabrication of mercuric iodide HgI{sub 2} room temperature radiation detectors, as in any semiconductor process, the quality of the final device is very sensitive to the impurities and defects present. Each process step can change the effects of existing defects, reduce the number of defects, or introduce new defects. In HgI{sub 2} detectors these defects act as trapping and recombination centers, thereby degrading immediate performance and leading to unstable devices. In this work we characterized some of the defects believed to strongly affect detector operation. Specifically, we studied impurities that are known to be present in typical HgI{sub 2} materials. Leakage current measurements were used to study the introduction and characteristics of these impurities, as such experiments reveal the mobile nature of these defects. In particular, we found that copper, which acts as a hole trap, introduces a positively charged center that diffuses and drifts readily in typical device environments. These measurements suggest that Cu, and related impurities like silver, may be one of the leading causes of HgI{sub 2} detector failures.

  8. Process and system for removing impurities from a gas

    SciTech Connect

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  9. Development of Impurity Profiling Methods Using Modern Analytical Techniques.

    PubMed

    Ramachandra, Bondigalla

    2017-01-02

    This review gives a brief introduction about the process- and product-related impurities and emphasizes on the development of novel analytical methods for their determination. It describes the application of modern analytical techniques, particularly the ultra-performance liquid chromatography (UPLC), liquid chromatography-mass spectrometry (LC-MS), high-resolution mass spectrometry (HRMS), gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC). In addition to that, the application of nuclear magnetic resonance (NMR) spectroscopy was also discussed for the characterization of impurities and degradation products. The significance of the quality, efficacy and safety of drug substances/products, including the source of impurities, kinds of impurities, adverse effects by the presence of impurities, quality control of impurities, necessity for the development of impurity profiling methods, identification of impurities and regulatory aspects has been discussed. Other important aspects that have been discussed are forced degradation studies and the development of stability indicating assay methods.

  10. 40 CFR 158.340 - Discussion of formation of impurities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and products produced by an integrated system. (1) Each impurity associated with the active ingredient...) Products not produced by an integrated system. Each impurity associated with the active ingredient...

  11. Parallel Impurity Spreading During Massive Gas Injection

    NASA Astrophysics Data System (ADS)

    Izzo, V. A.

    2016-10-01

    Extended-MHD simulations of disruption mitigation in DIII-D demonstrate that both pre-existing islands (locked-modes) and plasma rotation can significantly influence toroidal spreading of impurities following massive gas injection (MGI). Given the importance of successful disruption mitigation in ITER and the large disparity in device parameters, empirical demonstrations of disruption mitigation strategies in present tokamaks are insufficient to inspire unreserved confidence for ITER. Here, MHD simulations elucidate how impurities injected as a localized jet spread toroidally and poloidally. Simulations with large pre-existing islands at the q = 2 surface reveal that the magnetic topology strongly influences the rate of impurity spreading parallel to the field lines. Parallel spreading is largely driven by rapid parallel heat conduction, and is much faster at low order rational surfaces, where a short parallel connection length leads to faster thermal equilibration. Consequently, the presence of large islands, which alter the connection length, can slow impurity transport; but the simulations also show that the appearance of a 4/2 harmonic of the 2/1 mode, which breaks up the large islands, can increase the rate of spreading. This effect is seen both for simulations with spontaneously growing and directly imposed 4/2 modes. Given the prevalence of locked-modes as a cause of disruptions, understanding the effect of large islands is of particular importance. Simulations with and without islands also show that rotation can alter impurity spreading, even reversing the predominant direction of spreading, which is toward the high-field-side in the absence of rotation. Given expected differences in rotation for ITER vs. DIII-D, rotation effects are another important consideration when extrapolating experimental results. Work supported by US DOE under DE-FG02-95ER54309.

  12. Distribution Coefficients of Impurities in Metals

    NASA Astrophysics Data System (ADS)

    Pearce, J. V.

    2014-04-01

    Impurities dissolved in very pure metals at the level of parts per million often cause an elevation or depression of the freezing temperature of the order of millikelvins. This represents a significant contribution to the uncertainty of standard platinum resistance thermometer calibrations. An important parameter for characterizing the behavior of impurities is the distribution coefficient , which is the ratio of the solid solubility to liquid solubility. A knowledge of for a given binary system is essential for contemporary methods of evaluating or correcting for the effect of impurities, and it is therefore of universal interest to have the most complete set of values possible. A survey of equilibrium values of (in the low concentration limit) reported in the literature for the International Temperature Scale of 1990 fixed points of Hg, Ga, In, Sn, Zn, Al, Au, Ag, and Cu is presented. In addition, thermodynamic calculations of using MTDATA are presented for 170 binary systems. In total, the combined values of from all available sources for 430 binary systems are presented. In addition, by considering all available values of for impurities in 25 different metal solvents (1300 binary systems) enough data are available to characterize patterns in the value of for a given impurity as a function of its position in the periodic table. This enables prediction of for a significant number of binary systems for which data and calculations are unavailable. By combining data from many sources, values of for solutes (atomic number from 1 to 94) in ITS-90 fixed points from Hg to Cu are suggested, together with some tentative predicted values where literature data and calculations are unavailable.

  13. Living kidney donors and ESRD.

    PubMed

    Ross, Lainie Friedman

    2015-07-01

    There are more than 325 living kidney donors who have developed end-stage renal disease and have been listed on the Organ Procurement and Transplantation Network (OPTN)/United Network for Organ Sharing (UNOS) deceased donor kidney wait list. The OPTN/UNOS database records where these kidney donors are listed and, if they donated after April 1994, where that donation occurred. These 2 locations are often not the same. In this commentary, I examine whether a national living donor registry should be created and whether transplantation centers should be notified when one of their living kidney donors develops end-stage renal disease. I consider and refute 5 potential objections to center notification. I explain that transplantation centers should look back at these cases and input data into a registry to attempt to identify patterns that could improve donor evaluation protocols. Creating a registry and mining the information it contains is, in my view, our moral and professional responsibility to future patients and the transplantation endeavor. As individuals and as a community, we need to acknowledge the many unknown risks of living kidney donation and take responsibility for identifying these risks. We then must share information about these risks, educate prospective donors about them, and attempt to minimize them.

  14. Mechnical tuning of ionized donors in silicon

    NASA Astrophysics Data System (ADS)

    Franke, David P.; Hrubesch, Florian M.; Kuenzl, Markus; Itoh, Kohei M.; Hoehne, Felix; Dreher, Lukas; Brandt, Martin S.

    2015-03-01

    Ionized donors in silicon have been shown to have extraordinarily long coherence times, exceeding tens of minutes even at room temperature, which, combined with the very advanced state of silicon technology, makes them attractive candidates for the realization of solid state qubits. The corresponding near perfect isolation from their environment, however, renders the individual addressing and coupling of such qubits a major challenge on the way towards a spin quantum computer based on ionized donors. We show that the application of strain to the silicon host crystal leads to shifts of the nuclear spin resonance frequencies of 75As+ due to the nuclear quadrupole interaction with crystal fields. This shift can be larger than the resonance linewidth already for modest strains, as we demonstrate by electrically detected electron nuclear double resonance (ED ENDOR) measurements on arsenic donors in strained silicon. We discuss how quadrupole interactions could allow for the individual addressing of ionized nuclear spins by mechanical tuning of their resonance frequency and, possibly, permit the elastic coupling of nuclear spin qubits to a mechanical resonator.

  15. The Potts model on a Bethe lattice with nonmagnetic impurities

    SciTech Connect

    Semkin, S. V. Smagin, V. P.

    2015-10-15

    We have obtained a solution for the Potts model on a Bethe lattice with mobile nonmagnetic impurities. A method is proposed for constructing a “pseudochaotic” impurity distribution by a vanishing correlation in the arrangement of impurity atoms for the nearest sites. For a pseudochaotic impurity distribution, we obtained the phase-transition temperature, magnetization, and spontaneous magnetization jumps at the phase-transition temperature.

  16. Divertor impurity sources; effects of hot surfaces and thin films on impurity production

    NASA Astrophysics Data System (ADS)

    Stamp, M. F.; Andrew, P.; Brezinsek, S.; Huber, A.; JET EFDA Contributors

    2005-03-01

    Strong continuum emission has been observed from divertor tiles at visible wavelengths and identified as Planck radiation from surfaces with temperatures of typically ˜ 2600 K. Such hot spots (which are not tile edges) can persist for several seconds and are more common at the inner divertor, than the outer. Surprisingly, these hot spots do not usually produce significant impurity fluxes. In contrast, ELMs may produce a significant enhancement of impurity fluxes, depending on strike point location and ELM size.

  17. [Kidney grafts from elderly donors].

    PubMed

    Hiesse, Christian; Pessione, Fabienne; Cohen, Sophie

    2003-06-07

    FROM AN EPIDEMIOLOGICAL POINT OF VIEW: The epidemiology of renal transplantation had greatly changed over the past 10 years. The increasing number of patients with renal failure and candidates for transplantation increases the demand for grafts, whereas the sampling rate of organs remains stable. The mean age of the donors is rising, hence underlining the question of the use of organs of so-called "borderline" quality. THE WEAK POINTS OF ELDERLY GRAFTS: Aging of the kidneys affects the structure of the parenchyma and renal function, which decreases, notably in hypertensive persons. The elderly graft exhibits a critical mass of nephrons that is insufficient to fulfil the functional requirements of a poorly equipped recipient. The recipient is more sensitive to the added agressions: prolonged ischemia and immunological and medicinal agressions. THE RESULTS OF RENAL GRAFT FROM ELDERLY DONORS: They are quantitatively and qualitatively inferior to those of renal transplants from "ideal" donors. The donor's age is a significant factor influencing negatively influences the survival of the transplanted kidney, but dependent on past vascular history. Good results regarding the maintenance of dialysis are obtained by selecting the donors and by avoiding added risk factors. THE ASSESSMENT OF A GRAFT FROM AN ELDERLY DONOR: This, basically, relies on clinical criteria: donor's history, cause of death and accurate measurement of the renal function. A biopsy of the graft, at the time of sampling, provides useful information. TRANSPLANTATION STRATEGY OF A GRAFT FROM AN ELDERLY DONOR: Donor-recipient matching by age is a common approach. Grafting of both kidneys in the same recipient is a method presently under assessment. The episode of ischemia must be reduced and the immunosuppressive therapy adapted.

  18. Electronic structure and spatial distribution of the spin density of shallow nitrogen donors in the SiC lattice

    NASA Astrophysics Data System (ADS)

    Muzafarova, M. V.; Il'in, I. V.; Anisimov, A. N.; Mokhov, E. N.; Soltamov, V. A.; Baranov, P. G.

    2016-12-01

    The discovery of unique magnetooptical properties of paramagnetic centers in silicon carbide, which make it possible to control spins of small arrays of centers of atomic sizes to single centers at room temperatures, using the techniques of optical detection of the magnetic resonance, posed a number of problems, among which one of the main ones is the creation of conditions under which spin relaxation effects are minimized. As studies of properties of spin nitrogen-vacancy centers in diamond showed, the main contribution to spin relaxation is made by the interaction with nitrogen donors, being a major impurity in diamond. A similar problem exists for silicon carbide, since nitrogen donors are also basic background impurities. The objective of this work is to study the spatial distribution of the spin density of nitrogen donors in two basic silicon carbide polytypes, i.e., 4 H-SiC and 6 H-SiC, to use this information for minimizing the interaction of nitrogen donors with paramagnetic centers in silicon carbide. The results of the study are analyzed by magnetic resonance methods; the spin density distribution on the nearest coordination spheres of nitrogen donors occupying carbon sites in silicon carbide is determined. It is concluded that paramagnetic centers in the 4 H-SiC polytype, including silicon vacancies, can be more stable to the interactions with unpaired donor electrons, since electrons are not localized on the coordination sphere closest to the paramagnetic center in this case.

  19. GaAs Blocked-Impurity-Band Detectors for Far-Infrared Astronomy

    SciTech Connect

    Cardozo, Benjamin Lewin

    2004-01-01

    High-purity and doped GaAs films have been grown by Liquid-phase epitaxy (LPE) for development of a blocked impurity band (BIB) detector for far-infrared radiation. The film growth process developed has resulted in the capability to grow GaAs with a net active impurity concentration below 1 x 1013 cm-3, ideal for the blocking layer of the BIB detector. The growth of n-type LPE GaAs films with donor concentrations below the metal-insulator transition, as required for the absorbing layer of a BIB detector, has been achieved. The control of the donor concentration, however, was found to be insufficient for detector production. The growth by LPE of a high-purity film onto a commercially grown vapor-phase epitaxial (VPE) n-type GaAs doped absorbing layer resulted in a BIB device that showed a significant reduction in the low-temperature dark current compared to the absorbing layer only. Extended optical response was not detected, most likely due to the high compensation of the commercially grown GaAs absorbing layer, which restricts the depletion width of the device.

  20. Monte Carlo method for magnetic impurities in metals

    NASA Technical Reports Server (NTRS)

    Hirsch, J. E.; Fye, R. M.

    1986-01-01

    The paper discusses a Monte Carlo algorithm to study properties of dilute magnetic alloys; the method can treat a small number of magnetic impurities interacting wiith the conduction electrons in a metal. Results for the susceptibility of a single Anderson impurity in the symmetric case show the expected universal behavior at low temperatures. Some results for two Anderson impurities are also discussed.

  1. Shape of impurity electronic absorption bands in nematic liquid crystal

    SciTech Connect

    Aver`yanov, E.M.

    1994-11-01

    The impurity-matrix anisotropic static intermolecular interactions, orientation-statistical properties, and electronic structure of uniaxial impurity molecules are shown to have a significant influence on spectral moments of the electronic absorption bands of impurities in the nematic liquid crystal. 14 refs., 3 figs.

  2. Resonant impurities and their electronic behavior in single-layer graphene

    NASA Astrophysics Data System (ADS)

    Wang, Lin

    The electronic behavior of single-layer graphene (SLG) containing resonant impurities wasinvestigated, particularly by quantum capacitance measurements. Before introducing resonant impurities into SLG, the properties of pristine SLG devices top-gated using ultra-thin Y2O3 dielectric layers were systematically studied by structure characterization, DC transport measurements and AC quantum capacitance measurements. Y2O 3 is an ideal candidate of dielectric materials for SLG top-gated devices by introducing very few short-range impurities. This facilitates us to probe the quantum capacitance and the density of states (D = Cq/e 2) of pristine and disordered graphene due to its very large capacitance. A new type of resonant impurities of Ag adatoms deposited on SLG was successfully detected through quantum capacitance measurements. The midgap states induced by Ag-adatoms are visible at room temperature and more evident at cryogenic temperatures. Theintensity of Ag-adatom-induced resonances becomes stronger at higher impurity concentration and higher magnetic fields, which agrees fairly well with theoretical calculations based on the density functional theory (DFT) and tight-binding model (TB). We elucidated that the appearance of the robust resonant peak near the charge neutrality point (CNP) and the splitting of zero Landau level (LL) for Ag-adsorbed graphene are manifestations of the hybridization effect of electrons from graphene bands and the resonant impurity bands. With a very high density of Ag adatoms, SLG capacitors show unconventional negative quantum capacitance behavior. The Ag adatoms act as resonant impurities and form nearly dispersionless resonant impurity bands near the CNP. Resonant impurities quench the kinetic energy and drive the electrons to the Coulomb energy dominated regime with negative compressibility. In the absence of a magnetic field, negative quantum capacitance is observed near the CNP. In the quantum Hall regime, negative quantum

  3. How to Motivate Whole Blood Donors to Become Plasma Donors

    PubMed Central

    2014-01-01

    This study tested the efficacy of interventions to recruit new plasma donors among whole blood donors. A sample of 924 donors was randomized to one of three conditions: control; information only by nurse; and information plus self-positive image message by nurse (SPI). Participants in the control condition only received a leaflet describing the plasma donation procedure. In the two experimental conditions the leaflet was explained face-to-face by a nurse. The dependent variables were the proportion of new plasma donors and the number of donations at six months. Overall, 141 (15.3%) new plasma donors were recruited at six months. There were higher proportions of new plasma donors in the two experimental conditions compared to the control condition (P < .001); the two experimental conditions did not differ. Also, compared to the control condition, those in the experimental conditions (all Ps < .001) gave plasma more often (information only by nurse:  d = .26; SPI: d = .32); the SPI intervention significantly outperformed (P < .05) the information only by nurse condition. The results suggest that references to feelings of SPI such as feeling good and being proud and that giving plasma is a rewarding personal experience favor a higher frequency of plasma donation. PMID:25530909

  4. How to motivate whole blood donors to become plasma donors.

    PubMed

    Godin, Gaston; Germain, Marc

    2014-01-01

    This study tested the efficacy of interventions to recruit new plasma donors among whole blood donors. A sample of 924 donors was randomized to one of three conditions: control; information only by nurse; and information plus self-positive image message by nurse (SPI). Participants in the control condition only received a leaflet describing the plasma donation procedure. In the two experimental conditions the leaflet was explained face-to-face by a nurse. The dependent variables were the proportion of new plasma donors and the number of donations at six months. Overall, 141 (15.3%) new plasma donors were recruited at six months. There were higher proportions of new plasma donors in the two experimental conditions compared to the control condition (P < .001); the two experimental conditions did not differ. Also, compared to the control condition, those in the experimental conditions (all Ps < .001) gave plasma more often (information only by nurse:  d = .26; SPI: d = .32); the SPI intervention significantly outperformed (P < .05) the information only by nurse condition. The results suggest that references to feelings of SPI such as feeling good and being proud and that giving plasma is a rewarding personal experience favor a higher frequency of plasma donation.

  5. Computational Modeling of Uranium Corrosion and the role of Impurities(Fe, Cr, Al, C and Si)

    SciTech Connect

    Balasubramanian, K; Sikehaus, W; Balazs, B; Mclean II, W

    2005-10-31

    -MCSCF) followed by multi-reference configuration interaction (MRSDCI) computations that included up to 60 million configurations for modeling of uranium-hydriding with cluster models will be presented. Our computed potential energy surface for the insertion of a U site into H{sub 2} reveals that pure U site has to surpass a barrier of 20.9 kcal/mole for the U-hydriding. Once the barrier is surpassed a stable product is formed which is 22.4 kcal/mole more stable than the reactants. We have also developed a computational model to study the role of the UH{sub 3} product and other impurities such as Fe, Cr, Si, C, Al, etc., on the uranium hydriding reaction. Our model reveals that the product UH{sub 3} is highly ionic and thus U transfers electron density to the three hydrogens resulting in a U{sup +3} state. U{sup +3} is shown to insert into H{sub 2} spontaneously thus demonstrating the U-site in the product UH{sub 3} binds to H{sub 2} spontaneously forming a complex in which H{sub 2} is separated far enough so as to cause liberation of H atoms in the presence of U. Our computed potential energy surfaces reveal a 21 kcal/mole activation energy barrier for pure U reaction with H{sub 2}. However, the presence of the product UH{sub 3} catalyzes the U-hydriding. We have also modeled the presence of Si impurities for the U-hydriding reaction to show that the activation barrier is lowered by the presence of Si. However carbon impurity does not influence the hydriding process. Our computations reveal an electron donor-acceptor model for the U-hydriding, where H{sub 2} exchanges electronic density from its occupied 1{sigma}{sub g} orbital to the U(6d {sigma}) orbital and back donation from the U(6d {pi}) orbital back to H{sub 2} 1{sigma}{sub u} antibonding orbital. As seen from the figures shown below our recent works show that elemental impurities such as Al do not have impact on hydriding, elements such as Fe and Cr have small impact while the elemental carbon inhibits corrosion through

  6. Cancer of the colon in an egg donor: policy repercussions for donor recruitment.

    PubMed

    Ahuja, K K; Simons, E G

    1998-01-01

    This paper describes the tragic case of a young woman who died of cancer of the colon after successfully donating eggs to her younger sister. Although there is no direct link between her operation and the subsequent development of bowel carcinoma, this case imparts a feeling of unease when seen in conjunction with other cases reported during the last few years. It is a reminder that little is known of the long-term consequences of some aspects of assisted conception. Women undergoing ovarian stimulation for themselves or a matched recipient have the right to be advised, in an agreed format, that there is some concern about unproven potential risks from the stimulatory drugs. The safety of egg donors must assume priority over all other considerations, including lack of donors or any moral position. The recent decision by the Human Fertilisation and Embryology Authority (HFEA) to withdraw any form of payment or recompense to egg donors does not seem to us to be based on a balance of scientific advances, patient needs and the ethics of gamete supply. They state that the intention to withdraw payments was implicit in the 1990 Human Fertilisation and Embryology (HFE) Act. However the Act was based on the Warnock report made 6 years earlier. Even in 1990 ovum donation was uncommon and fertility drugs had not yet caused any unease. The Act provided the HFEA with discretionary powers to issue directions so that the future policies would be consistent with any emerging new medical evidence. It is imperative that the HFEA provide convincing evidence on how the current policy of payment to donors harms society, donors or recipients, and how in the UK the new policy will improve medical practice in assisted conception. Successful pilot studies must precede the implementation of any new policy. Failure to do this could cause irreversible harm to the practice of assisted conception using donor gametes, which will ultimately be against the basic aims of the 1990 HFE Act.

  7. Covalent magnetism and magnetic impurities.

    PubMed

    Gruber, C; Bedolla, P O; Mohn, P

    2013-05-08

    We use the model of covalent magnetism and its application to magnetic insulators applied to the case of insulating carbon doped BaTiO3. Since the usual Stoner mechanism is not applicable we study the possibility of the formation of magnetic order based on a mechanism favoring singly occupied orbitals. On the basis of our model parameters we formulate a criterion similar to the Stoner criterion but also valid for insulators. We describe the model of covalent magnetism using a molecular orbital picture and determine the occupation numbers for spin-up and spin-down states. Our model allows a simulation of the results of our ab initio calculations for E(ℳ) which are found to be in very good agreement.

  8. Currents and Green's functions of impurities out of equilibrium: Results from inchworm quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Antipov, Andrey E.; Dong, Qiaoyuan; Kleinhenz, Joseph; Cohen, Guy; Gull, Emanuel

    2017-02-01

    We generalize the recently developed inchworm quantum Monte Carlo method to the full Keldysh contour with forward, backward, and equilibrium branches to describe the dynamics of strongly correlated impurity problems with time-dependent parameters. We introduce a method to compute Green's functions, spectral functions, and currents for inchworm Monte Carlo and show how systematic error assessments in real time can be obtained. We then illustrate the capabilities of the algorithm with a study of the behavior of quantum impurities after an instantaneous voltage quench from a thermal equilibrium state.

  9. Impurities in noncubic crystals: stabilization mechanisms for Jahn-Teller ions in layered perovskites.

    PubMed

    García-Lastra, J M; Aramburu, J A; Barriuso, M T; Moreno, M

    2004-11-26

    Mechanisms responsible for the local geometry around Jahn-Teller impurities in K2NiF4 type lattices are shown to be different from those generating the warping in cubic crystals. The present density functional theory calculations reveal that the elastic anisotropy of the host lattice (visible for closed shell impurities) and the electric field created by the rest of lattice ions upon active electrons make it possible to have d(9) ions in an elongated geometry but with a A(1g) ground state. The puzzling difference between equilibrium geometries for Cu2+ and Ni+ in layered perovskites can reasonably be understood.

  10. The Consultancy Activity on In Silico Models for Genotoxic Prediction of Pharmaceutical Impurities.

    PubMed

    Pavan, Manuela; Kovarich, Simona; Bassan, Arianna; Broccardo, Lorenza; Yang, Chihae; Fioravanzo, Elena

    2016-01-01

    The toxicological assessment of DNA-reactive/mutagenic or clastogenic impurities plays an important role in the regulatory process for pharmaceuticals; in this context, in silico structure-based approaches are applied as primary tools for the evaluation of the mutagenic potential of the drug impurities. The general recommendations regarding such use of in silico methods are provided in the recent ICH M7 guideline stating that computational (in silico) toxicology assessment should be performed using two (Q)SAR prediction methodologies complementing each other: a statistical-based method and an expert rule-based method.Based on our consultant experience, we describe here a framework for in silico assessment of mutagenic potential of drug impurities. Two main applications of in silico methods are presented: (1) support and optimization of drug synthesis processes by providing early indication of potential genotoxic impurities and (2) regulatory evaluation of genotoxic potential of impurities in compliance with the ICH M7 guideline. Some critical case studies are also discussed.

  11. Assembly and Study of Different Mercury Cells with Known Impurity Content and Isotopic Composition

    NASA Astrophysics Data System (ADS)

    Del Campo, D.; Chimenti, V.; Reyes, J.; Castrillón, J. A. Rodríguez; Moldovan, M.; Alonso, J. I. García

    2008-02-01

    The “Centro Español de Metrología” is carrying out a project to improve the knowledge of the influence of impurities and isotopic composition on the temperature of the mercury triple point. High-purity mercury from the Almaden mine (stated purity of 99.9998%) was further purified by vacuum distillation. Three mercury fractions, the original mercury from Almaden and two distilled fractions, were characterized in terms of both impurities and isotopic composition and used to measure the mercury triple point. The original mercury sample contained silver at 560 ng · g-1 as the main impurity while the impurity levels were much lower (silver < 1 ng · g-1) in the two distilled fractions. The isotopic composition of the distilled fractions showed delta values, expressed as 1,000×(^{198/202}Hg_sample-^{198/202} Hg_reference)/^{198/202}Hg_reference, of 1.37±0.07 (1 σ) for the first distilled sample and -1.55±0.03 (1 σ) for the second distilled sample with reference to the original Almaden mercury. For the measurement of the mercury triple point, an alcohol stirred bath was used that allowed two cells to be compared nearly simultaneously. It was observed that the presence of the silver impurities in the high-purity mercury modified slightly the mercury triple point while the effect of variations in the isotopic composition can be considered negligible.

  12. Scattering-induced quantum correlation in electronic waveguides with static magnetic impurities

    NASA Astrophysics Data System (ADS)

    Ghanbari-Adivi, E.; Soltani, M.; Alami, Z.; Sheikhali, M.

    2016-10-01

    Entanglement generation due to low-energy scattering of the transporting electrons in an electronic waveguide by a quantum dot magnetic impurity is theoretically investigated. The transverse confining potential of the waveguide is considered as a two-dimensional harmonic potential, and the interaction of the electron with the impurity is described by a zero-range pseudopotential modulated by an Ising or a Heisenberg spin interaction. Our calculation shows that the scattering process leads to creation of a considerable amount of entanglement in the state of the reflected and transmitted electrons. The situation is extended to the scattering of the electrons by two well-separated magnetic impurities localized on the nanowire axis. It is shown that the scattering process causes the magnetic impurities embedded in the nanowire to share their quantum information; subsequently, they can be entangled by spin interaction with the injected electron. The created entanglement between the impurities is calculated and discussed. It is shown that the exact three-dimensional problem can be approximated as a one-dimensional problem under certain circumstances. The approximate results are compared to exact calculations and discussed.

  13. Protein Crystal Growth Dynamics and Impurity Incorporation

    NASA Technical Reports Server (NTRS)

    Chernov, Alex A.; Thomas, Bill

    2000-01-01

    The general concepts and theories of crystal growth are proven to work for biomolecular crystallization. This allowed us to extract basic parameters controlling growth kinetics - free surface energy, alpha, and kinetic coefficient, beta, for steps. Surface energy per molecular site in thermal units, alpha(omega)(sup 2/3)/kT approx. = 1, is close to the one for inorganic crystals in solution (omega is the specific molecular volume, T is the temperature). Entropic restrictions on incorporation of biomolecules into the lattice reduce the incorporation rate, beta, by a factor of 10(exp 2) - 10(exp 3) relative to inorganic crystals. A dehydration barrier of approx. 18kcal/mol may explain approx. 10(exp -6) times difference between frequencies of adding a molecule to the lattice and Brownian attempts to do so. The latter was obtained from AFM measurements of step and kink growth rates on orthorhombic lysozyme. Protein and many inorganic crystals typically do not belong to the Kossel type, thus requiring a theory to account for inequivalent molecular positions within its unit cell. Orthorhombic lysozyme will serve as an example of how to develop such a theory. Factors deteriorating crystal quality - stress and strain, mosaicity, molecular disorder - will be reviewed with emphasis on impurities. Dimers in ferritin and lysozyme and acetylated lysozyme, are microheterogeneous i.e. nearly isomorphic impurities that are shown to be preferentially trapped by tetragonal lysozyme and ferritin crystals, respectively. The distribution coefficient, K defined as a ratio of the (impurity/protein) ratios in crystal and in solution is a measure of trapping. For acetylated lysoyzme, K = 2.15 or, 3.42 for differently acetylated forms, is independent of both the impurity and the crystallizing protein concentration. The reason is that impurity flux to the surface is constant while the growth rate rises with supersaturation. About 3 times lower dimer concentration in space grown ferritin and

  14. Donor selection in heart transplantation

    PubMed Central

    Emani, Sitaramesh; Sai-Sudhakar, Chittoor B.; Higgins, Robert S. D.; Whitson, Bryan A.

    2014-01-01

    There is increased scrutiny on the quality in health care with particular emphasis on institutional heart transplant survival outcomes. An important aspect of successful transplantation is appropriate donor selection. We review the current guidelines as well as areas of controversy in the selection of appropriate hearts as donor organs to ensure optimal outcomes. This decision is paramount to the success of a transplant program as well as recipient survival and graft function post-transplant. PMID:25132976

  15. Theory of Electronic Structures of Selenium and Tellurium with and without Impurities

    NASA Astrophysics Data System (ADS)

    Cho, Hwa-Suck; Scheicher, R. H.; Jeong, Junho; Das, T. P.; Paudyal, D. D.; Maharjan, N. B.; Mishra, D. R.; Byahut, S. P.

    2003-03-01

    As part of our program to understand at an electronic level the mechanism for influence of impurity ions on glass transition temperatures in chalcogen glasses we are carrying out electronic structure investigations of pure Se and Te and with Te and Se impurities respectively, to examine how well one can explain available nuclear quadrupole interaction (NQI) tensors for ^77Se and ^125Te nuclei in the latter four systems(See for instance, P. Boolchand et al., Phys. Rev. Lett. 30, 1292 (1973); Solid State Commun. 13, 1619 (1973).) and thus obtain an assessment of the accuracy of the electronic structures of these systems. Our results on the chains of selenium and tellurium show good agreement with NQI data for the pure and impurity systems. Investigations are in progress on Se and Te rings that occur in amorphous systems.

  16. Drag force on a moving impurity in a spin-orbit-coupled Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    He, Pei-Song; Zhu, Yao-Hui; Liu, Wu-Ming

    2014-05-01

    We investigate the drag force on a moving impurity in a spin-orbit-coupled Bose-Einstein condensate. We prove rigorously that the superfluid critical velocity is zero when the impurity moves in all directions but one, in contrast to the case of liquid helium and superconductor, where it is finite in all directions. We also find that when the impurity moves in all directions except the two special ones, the drag force has nonzero transverse component with a small velocity. When the velocity becomes large and the states of the upper band are also excited, the transverse force becomes very small due to opposite contributions of the two bands. The characteristics of the superfluid critical velocity and the transverse force are results of the order-by-disorder mechanism in spin-orbit-coupled boson systems.

  17. Features of impurity photoconductivity in Si:Er/Si epitaxial diodes

    SciTech Connect

    Antonov, A. V.; Kudryavtsev, K. E. Shengurov, D. V.; Shmagin, V. B.; Krasilnik, Z. F.

    2013-11-15

    The photocurrent spectra of Si:Er/Si epitaxial diode structures are studied. It is shown that the nature of the sub-band-gap photoresponse is determined by the epitaxial growth temperature of the Si:Er layer and is not related to the composition of erbium emission centers. It is found that the absorption of light with photon energies lower than the energy-gap of silicon is determined by impurity-defect complexes that appear during the growth of the epitaxial layer and form a quasi-continuous spectrum of states in the energy gap of silicon. It is assumed that these impurity centers are not related to optically active erbium centers and are not involved in excitation-energy transfer to the rare-earth impurity.

  18. Cobalt(II), nickel(II) and copper(II) complexes of a hexadentate pyridine amide ligand. Effect of donor atom (ether vs. thioether) on coordination geometry, spin-state of cobalt and M(III)-M(II) redox potential.

    PubMed

    Pandey, Sharmila; Das, Partha Pratim; Singh, Akhilesh Kumar; Mukherjee, Rabindranath

    2011-10-28

    Using an acyclic hexadentate pyridine amide ligand, containing a -OCH(2)CH(2)O- spacer between two pyridine-2-carboxamide units (1,4-bis[o-(pyrydine-2-carboxamidophenyl)]-1,4-dioxabutane (H(2)L(9)), in its deprotonated form), four new complexes, [Co(II)(L(9))] (1) and its one-electron oxidized counterpart [Co(III)(L(9))][NO(3)]·2H(2)O (2), [Ni(II)(L(9))] (3) and [Cu(II)(L(9))] (4), have been synthesized. Structural analyses revealed that the Co(II) centre in 1 and the Ni(II) centre in 3 are six-coordinate, utilizing all the available donor sites and the Cu(II) centre in 4 is effectively five-coordinated (one of the ether O atoms does not participate in coordination). The structural parameters associated with the change in the metal coordination environment have been compared with corresponding complexes of thioether-containing hexadentate ligands. The μ(eff) values at 298 K of 1-4 correspond to S = 3/2, S = 0, S = 1 and S = 1/2, respectively. Absorption spectra for all the complexes have been investigated. EPR spectral properties of the copper(II) complex 4 have been investigated, simulated and analyzed. Cyclic voltammetric experiments in CH(2)Cl(2) reveal quasireversible Co(III)-Co(II), Ni(III)-Ni(II) and Cu(II)-Cu(I) redox processes. In going from ether O to thioether S coordination, the effect of the metal coordination environment on the redox potential values of Co(III)-Co(II) (here the effect of spin-state as well), Ni(III)-Ni(II) and Cu(II)-Cu(I) processes have been systematically analyzed.

  19. Levothyroxine sodium revisited: A wholistic structural elucidation approach of new impurities via HPLC-HRMS/MS, on-line H/D exchange, NMR spectroscopy and chemical synthesis.

    PubMed

    Ruggenthaler, M; Grass, J; Schuh, W; Huber, C G; Reischl, R J

    2017-02-20

    The structural elucidation of unknown pharmaceutical impurities plays an important role in the quality control of newly developed and well-established active pharmaceutical ingredients (APIs). The United States Pharmacopeia (USP) monograph for the API Levothyroxine Sodium, a synthetic thyroid hormone, features two high pressure liquid chromatography (HPLC) methods using UV-VIS absorption detection to determine organic impurities in the drug substance. The impurity profile of the first USP method ("Procedure 1") has already been extensively studied, however for the second method ("Procedure 2"), which exhibits a significantly different impurity profile, no wholistic structural elucidation of impurities has been performed yet. Applying minor modifications to the chromatographic parameters of USP "Procedure 2" and using various comprehensive structural elucidation methods such as high resolution tandem mass spectrometry with on-line hydrogen-deuterium (H/D) exchange or two-dimensional nuclear magnetic resonance spectroscopy (NMR) we gained new insights about the complex impurity profile of the synthetic thyroid hormone. This resulted in the characterization of 24 compounds previously unknown to literature and the introduction of two new classes of Levothyroxine Sodium impurities. Five novel compounds were unambiguously identified via isolation or synthesis of reference substances and subsequent NMR spectroscopic investigation. Additionally, Collision-Induced Dissociation (CID)-type fragmentation of identified major impurities as well as neutral loss fragmentation patterns of many characterized impurities were discussed.

  20. Power Radiated from ITER and CIT by Impurities

    DOE R&D Accomplishments Database

    Cummings, J.; Cohen, S. A.; Hulse, R.; Post, D. E.; Redi, M. H.; Perkins, J.

    1990-07-01

    The MIST code has been used to model impurity radiation from the edge and core plasmas in ITER and CIT. A broad range of parameters have been varied, including Z{sub eff}, impurity species, impurity transport coefficients, and plasma temperature and density profiles, especially at the edge. For a set of these parameters representative of the baseline ITER ignition scenario, it is seen that impurity radiation, which is produced in roughly equal amounts by the edge and core regions, can make a major improvement in divertor operation without compromising core energy confinement. Scalings of impurity radiation with atomic number and machine size are also discussed.

  1. Incorporation of impurity to a tetragonal lysozyme crystal

    NASA Astrophysics Data System (ADS)

    Kurihara, Kazuo; Miyashita, Satoru; Sazaki, Gen; Nakada, Toshitaka; Durbin, Stephen D.; Komatsu, Hiroshi; Ohba, Tetsuhiko; Ohki, Kazuo

    1999-01-01

    Concentration of a phosphor-labeled impurity (ovalbumin) incorporated into protein (hen egg white lysozyme) crystals during growth was measured by fluorescence.This technique enabled us to measure the local impurity concentration in a crystal quantitatively. Impurity concentration increased with growth rate, which could not be explained by two conventional models (equilibrium adsorption model and Burton-Prim-Slichter model); a modified model is proposed. Impurity concentration also increased with the pH of the solution. This result is discussed considering the electrostatic interaction between the impurity and the crystallizing species.

  2. Motivations for Giving of Alumni Donors, Lapsed Donors and Non-Donors: Implications for Christian Higher Education

    ERIC Educational Resources Information Center

    Rugano, Emilio Kariuki

    2011-01-01

    This descriptive and causal comparative study sought to identify motivations for alumni donor acquisition and retention in Christian institutions of higher learning. To meet this objective, motivations for alumni donors, lapsed donors, and non-donors were analyzed and compared. Data was collected through an electronic survey of a stratified sample…

  3. Effect of impurities and processing on silicon solar cells. Volume 1: Characterization methods for impurities in silicon and impurity effects data base

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Campbell, R. B.; Blais, P. D.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1980-01-01

    Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. Discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, conventional solar cell I-V techniques, and descriptions of silicon chemical analysis are presented and discussed. The tabulated data include lists of impurity segregation coefficients, ingot impurity analyses and estimated concentrations, typical deep level impurity spectra, photoconductive and open circuit decay lifetimes for individual metal-doped ingots, and a complete tabulation of the cell I-V characteristics of nearly 200 ingots.

  4. Theoretical Study of Radiation from a Broad Range of Impurity Ions for Magnetic Fusion Diagnostics

    SciTech Connect

    Safronova, Alla

    2014-03-14

    Spectroscopy of radiation emitted by impurities plays an important role in the study of magnetically confined fusion plasmas. The measurements of these impurities are crucial for the control of the general machine conditions, for the monitoring of the impurity levels, and for the detection of various possible fault conditions. Low-Z impurities, typically present in concentrations of 1%, are lithium, beryllium, boron, carbon, and oxygen. Some of the common medium-Z impurities are metals such as iron, nickel, and copper, and high-Z impurities, such as tungsten, are present in smaller concentrations of 0.1% or less. Despite the relatively small concentration numbers, the aforementioned impurities might make a substantial contribution to radiated power, and also influence both plasma conditions and instruments. A detailed theoretical study of line radiation from impurities that covers a very broad spectral range from less than 1 Å to more than 1000 Å has been accomplished and the results were applied to the LLNL Electron Beam Ion Trap (EBIT) and the Sustained Spheromak Physics Experiment (SSPX) and to the National Spherical Torus Experiment (NSTX) at Princeton. Though low- and medium-Z impurities were also studied, the main emphasis was made on the comprehensive theoretical study of radiation from tungsten using different state-of-the-art atomic structure codes such as Relativistic Many-Body Perturbation Theory (RMBPT). The important component of this research was a comparison of the results from the RMBPT code with other codes such as the Multiconfigurational Hartree–Fock developed by Cowan (COWAN code) and the Multiconfiguration Relativistic Hebrew University Lawrence Atomic Code (HULLAC code), and estimation of accuracy of calculations. We also have studied dielectronic recombination, an important recombination process for fusion plasma, for variety of highly and low charged tungsten ions using COWAN and HULLAC codes. Accurate DR rate coefficients are needed for

  5. Donor conception, secrecy and the search for information.

    PubMed

    Allan, Sonia

    2012-06-01

    Donor conception has historically been shrouded in secrecy. Such secrecy has been underpinned by social views and legal issues concemrning the adults involved in the process--the donor, the recipient parent(s), and, at times, the doctor. However, there is increasing recognition of the need to focus upon donor-conceived people's interests and rights to have identifying and non-identifying information about their donors. This editorial examines issues raised in relation to information release, while also introducing some of the arguments presented by other authors in this Special Issue of the JLM. It also considers recent Australian federal and State government inquiries that have favoured information release and the former Victorian Infertility Treatment Authority's service model to support people in the process of information access and release. While there has been a clear shift to favouring openness and honesty, legislative action is still required to ensure the balancing and realisation of people's interests.

  6. Electrophobic interaction induced impurity clustering in metals

    SciTech Connect

    Zhou, Hong-Bo; Wang, Jin-Long; Jiang, W.; Lu, Guang-Hong; Aguiar, J. A.; Liu, Feng

    2016-10-01

    We introduce the concept of electrophobic interaction, analogous to hydrophobic interaction, for describing the behavior of impurity atoms in a metal, a 'solvent of electrons'. We demonstrate that there exists a form of electrophobic interaction between impurities with closed electron shell structure, which governs their dissolution behavior in a metal. Using He, Be and Ar as examples, we predict by first-principles calculations that the electrophobic interaction drives He, Be or Ar to form a close-packed cluster with a clustering energy that follows a universal power-law scaling with the number of atoms (N) dissolved in a free electron gas, as well as W or Al lattice, as Ec is proportional to (N2/3-N). This new concept unifies the explanation for a series of experimental observations of close-packed inert-gas bubble formation in metals, and significantly advances our fundamental understanding and capacity to predict the solute behavior of impurities in metals, a useful contribution to be considered in future material design of metals for nuclear, metallurgical, and energy applications.

  7. The effects of polaronic mass and conduction band non-parabolicity on a donor binding energy under the simultaneous effect of pressure and temperature basing on the numerical FEM in a spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Sali, A.; Kharbach, J.; Rezzouk, A.; Ouazzani Jamil, M.

    2017-04-01

    Basing on the numerical Finite Element Method (FEM), we have investigated the influences of polaronic mass and conduction band non-parabolicity on the binding energy of the ground state of an on-center hydrogenic donor impurity in a spherical GaAs / Ga1 - x AlxAs quantum dot structure. The calculations have been made with a realistic potential barrier height in the framework of the effective mass approximation including the combined effect of hydrostatic pressure and temperature. The donor binding energy is computed as a function of dot size, Al concentration x , hydrostatic pressure and temperature both in the absence and presence of polaronic mass and conduction band non-parabolicity effects. We have taken into account the electronic effective mass, dielectric constant, and conduction band offset between the dot and barriers varying with pressure and temperature. It has been found that the binding energy is strongly affected by the effect of polaronic mass and conduction band non-parabolicity for narrow quantum dot and large Al concentration x. The results show again that the donor binding energy increases linearly with the pressure in direct gap regime and its variation is larger for narrower dots only and drops slightly with the temperature. A good agreement is obtained with the existing literature values.

  8. Magnetically dead layers at sp-impurity-decorated grain boundaries and surfaces in nickel

    NASA Astrophysics Data System (ADS)

    Všianská, M.; Šob, M.

    2011-07-01

    With the help of ab initio electronic structure calculations, we study segregation of the sp elements from the 13th-16th group and the third, fourth, and fifth period of the Periodic Table (i.e., Al, Si, P, S, Ga, Ge, As, Se, In, Sn, Sb, and Te) at the Σ5(210) grain boundary (GB) and (210) free surface (FS) in fcc ferromagnetic nickel, and analyze the geometric configuration and the distribution of magnetic moments at the GB and FS without and with impurities. Whereas there is a slight enhancement of magnetization at the clean GB and FS with respect to bulk nickel (3-7% and 24%, respectively), most of these impurities nearly kill or substantially reduce the magnetic moments at the FS and, when segregating interstitially at the GB (i.e., Si, P, S, Ge, As, and Se), they produce magnetically dead layers at the boundary. We demonstrate that the existence of magnetically dead layers is a common phenomenon at the sp-impurity-decorated GB and FS in nickel. It is caused by a strong hybridization of sp states of the impurities with the d states of nickel and a redistribution of electron states in both majority and minority bands.

  9. Non-magnetic impurity effects in LiFeAs studied by STM/STS

    NASA Astrophysics Data System (ADS)

    Hanaguri, T.; Khim, Seung Hyun; Lee, Bumsung; Kim, Kee Hoon; Kitagawa, K.; Matsubayashi, K.; Mazaki, Y.; Uwatoko, Y.; Takigawa, M.; Takagi, H.

    2012-02-01

    Detecting the possible sign reversal of the superconducting gap in iron-based superconductors is highly non-trivial. Here we use non-magnetic impurity as a sign indicator. If the sign of the superconducting gap is positive everywhere in momentum space, in-gap bound state should not be observed near the impurity site unless it is magnetic. On the other hand, if there is a sign-reversal in the gap, even non-magnetic impurity may create in-gap bound state [1]. We performed STM/STS experiments on self-flux and Sn-flux grown LiFeAs crystals and examined the effects of Sn impurity. In STM images of Sn-flux grown samples, we found a ring-like object which may represent Sn. Tunneling spectrum taken at this defect site exhibits in-gap bound state. Together with flat-bottom superconducting gap observed far from the defects, sign-reversing s-wave gap is the most plausible gap structure in LiFeAs. [1] T. Kariyado and M. Ogata, JPSJ 79, 083704 (2010).

  10. Synthesis of the impurities during the manufacture of bulk drug midazolam and separation of these impurities by HPLC.

    PubMed

    Sati, Bhawana; Sati, Hemlata; Saklani, Sarla; Bhatt, Prakash Chandra; Mishra, Ravinesh

    2013-09-01

    During the manufacture of bulk drug midazolam various impurities arised that can be the related products or degradation products. Structures of eight impurities that can arise during the manufacture of bulk drug midazolam were proposed. In the present work, synthesis of these impurities and their characterization by different spectroscopic techniques have been done. HPLC method was developed for the separation of impurities from the bulk drug. The developed method separates midazolam from its eight impurities/degradation products within a run time of 45 min.

  11. Suppression of spin transport in ferromagnet/oxide/semiconductor junctions by magnetic impurities in the tunnel barrier

    NASA Astrophysics Data System (ADS)

    Spiesser, Aurélie; Saito, Hidekazu; Yuasa, Shinji; Jansen, Ron

    2016-10-01

    We have studied how the insertion of sub-monolayer amounts of Mn impurities in the middle of the oxide tunnel barrier of Fe/GeO2 on p-type Ge affects the spin transport, using three-terminal Hanle measurements. Strikingly, the magnitude of the Hanle spin voltage is strongly reduced by increasing the amount of Mn dopants and is even completely absent for devices having an amount of Mn impurities equivalent to a 0.2-nm-thick layer. This demonstrates that magnetic impurities in the tunnel barrier are detrimental to the spin transport in ferromagnet/oxide/semiconductor junctions, and that the localized states associated with such magnetic impurities do not produce three-terminal Hanle spin signals.

  12. Donor-driven spin relaxation in multivalley semiconductors.

    PubMed

    Song, Yang; Chalaev, Oleg; Dery, Hanan

    2014-10-17

    The observed dependence of spin relaxation on the identity of the donor atom in n-type silicon has remained without explanation for decades and poses a long-standing open question with important consequences for modern spintronics. Taking into account the multivalley nature of the conduction band in silicon and germanium, we show that the spin-flip amplitude is dominated by short-range scattering off the central-cell potential of impurities after which the electron is transferred to a valley on a different axis in k space. Through symmetry arguments, we show that this spin-flip process can strongly affect the spin relaxation in all multivalley materials in which time-reversal cannot connect distinct valleys. From the physical insights gained from the theory, we provide guidelines to significantly enhance the spin lifetime in semiconductor spintronics devices.

  13. Courting Female Donors

    ERIC Educational Resources Information Center

    Strout, Erin

    2007-01-01

    Women are expected to own half the wealth in the United States by 2010. They also account for 58 percent of undergraduates at colleges today. Those statistics should loom large for higher-education fund raisers at a time when almost every institution is either in the middle of its largest fund-raising campaign ever or planning to announce one. But…

  14. The hydrostatic pressure and temperature effects on hydrogenic impurity binding energies in lattice matched InP/In0.53Ga0.47As/InP square quantum well

    NASA Astrophysics Data System (ADS)

    Başer, P.; Elagoz, S.

    2017-02-01

    The on-center shallow-donor impurity binding energy in lattice matched InP/In0.53Ga0.47As square quantum well structure have been theoretically investigated using effective mass and variational techniques. The effects of hydrostatic pressure, temperature and well width has been calculated and the results are discussed.

  15. Cadaveric donor selection and management.

    PubMed

    Studer, Sean M; Orens, Jonathan B

    2004-12-01

    The current availability of lung donors is far exceeded by the number of potential transplant recipients who are waiting for an organ. This disparity results in significant morbidity and mortality for those on the waiting list. Although it is desirable to increase overall consent rates for organ donation, doing so requires an intervention to affect societal response. In contrast, increased procurement of organs from marginal donors and improved donor management may be realized through increased study and practice changes within the transplant community. Transplantation of organs from marginal or extended-criteria donors may result in some increase in complications or mortality, but this possibility must be weighed against the morbidity and risk of death risk faced by individuals on the waiting list. The effects of this trade-off are currently being studied in kidney transplantation, and perhaps in the near future lung transplantation may benefit from a similar analysis. Until that time, the limited data regarding criteria for donor acceptability must be incorporated into practice to maximize the overall benefits of lung transplantation.

  16. Dengue antibodies in blood donors

    PubMed Central

    Ribas-Silva, Rejane Cristina; Eid, Andressa Ahmad

    2012-01-01

    Background Dengue is an urban arbovirus whose etiologic agent is a virus of the genus Flavorius with four distinct antigen serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) that is transmitted to humans through the bite of the mosquito Aedes aegypti. The Campo Mourão region in Brazil is endemic for dengue fever. Obtective The aim of this study was to evaluate the presence of IgG and IgM antibodies specific to the four serotypes of dengue in donors of the blood donor service in the city of Campo Mourão. Methods Epidemiological records were evaluated and 4 mL of peripheral blood from 213 blood donors were collected in tubes without anticoagulant. Serum was then obtained and immunochromatographic tests were undertaken (Imuno-Rápido Dengue IgM/IgGTM). Individuals involved in the study answered a social and epidemiological questionnaire on data which included age, gender and diagnosis of dengue. Results Only three (1.4%) of the 213 blood tests were positive for IgG anti-dengue antibodies. No donors with IgM antibody, which identifies acute infection, were identified. Conclusions The results of the current analysis show that the introduction of quantitative or molecular serological methods to determine the presence of anti-dengue antibodies or the detection of the dengue virus in blood donors in endemic regions should be established so that the quality of blood transfusions is guaranteed. PMID:23049418

  17. Study of strong-coupling impurity bound polaron in a quantum pseudodot

    NASA Astrophysics Data System (ADS)

    Khordad, R.

    2015-01-01

    In the present work, we have studied the first internal excited state energy and transition frequency of strong-coupling impurity bound polaron in a quantum pseudodot using the well-known Lee-Low-Pines (LLP) unitary transformation method. We show the effect of Coulomb bound potential, electron-phonon (e-p) coupling strength, the quantum dot radius and potential height on first internal excited state energy and the transition frequency of the impurity bound polaron. According to the results, it is found that the first internal excited state energy is decreased with increasing quantum dot radius. Also, this energy is increased with enhancing potential height. The transition frequency is increased with increasing the e-p coupling strength. Also, the first internal excited state energy is increased with decreasing the e-p coupling strength. The transition frequency is enhanced with increasing the Coulomb bound potential.

  18. Sensitivity of a 3D fully-gapped topological superconductor to non-magnetic impurities

    NASA Astrophysics Data System (ADS)

    Ota, Yukihiro; Nagai, Yuki; Machida, Masahiko

    2015-03-01

    Topological superconductors (TSC) are notable materials, owing to the mathematical curiosity and the application potential. The bulk TSC can emerge by copper intercalation into topological insulator Bi2Se3. In this paper, we theoretically study the non-magnetic impurity effects in the mean-field model of CuxBi2Se3, focusing on the odd-parity fully-gapped superconducting state. Calculating the density of states with a self-consistent T-matrix approach, we test the presence of mid-gap states, leading to pair-breaking effects. Remarkably, the sensitivity to non-magnetic impurities strongly depend on a normal-state dispersion character, i.e., either non-relativistic or relativistic dispersion relations. We show unification picture for understanding this intriguing result, deriving a low-energy effective superconducting theory.

  19. [Laboratory tests applied to transfusion problems. Identification of dangerous universal donors and their frequency].

    PubMed

    De Bartolo, M; Giordano, F; Violante, A; Bonomi, P

    1977-01-01

    We studied 504 subjects, whose blood group wes O; they were periodic or occasional blood donors from Transfusional Center A.V.I.S., Policlinico "Umberto I", Roma. Our research was based on the principle stated by Gandini: he states that the natural isoagglutinin concentration equal or superior to 1:200 and the presence of hemolytic isoantibodies may make universal donors dangerous. Our results indicated that the percentage of this kind of donors is 27.75%. Sice 17.26% of our studied subjects showed hemolytic antibodies, we consider it is sufficient to identify dangerous donors through a dosage of hemolytic isoantibodies.

  20. Theoretical explanation for strong poloidal impurity asymmetry in tokamak pedestals

    NASA Astrophysics Data System (ADS)

    Espinosa, Silvia

    2016-10-01

    Stronger impurity density in-out poloidal asymmetries than predicted by the most comprehensive neoclassical models have been measured in H-mode tokamak pedestals during the last decade. However, these pioneering theories neglect the impurity diamagnetic drift, while recent measurements indicate that it can be of the same order as the ExB drift that is retained. In order to keep both drifts self-consistently, stronger radial gradients of the impurity density must be allowed. As a result, radial impurity flow effects need to be included for the first time. These effects substantially alter the parallel impurity flow. The resulting modification in the impurity friction with the banana regime background ions then allows stronger poloidal variation of the impurity density, temperature and potential. Even the six-fold high field side accumulation of boron density measured on Alcator C-Mod can be explained without invoking anomalous transport. Moreover, the potential can no longer be assumed to be a flux function since the impurity density variation gives a poloidally varying potential that results in strong poloidal variation of the radial electric field. The fact that the magnitude of the negative radial electric field and the impurity temperature are both larger on the low field side is also correctly predicted. Finally, this pedestal neoclassical model with radial flows may provide insight on how to control impurity accumulation in JET. Supported by DOE Grant DE-FG0291ER54109 and La Caixa Fellowship.

  1. Dynamics of homology searching during gene conversion in Saccharomyces cerevisiae revealed by donor competition.

    PubMed

    Coïc, Eric; Martin, Joshua; Ryu, Taehyun; Tay, Sue Yen; Kondev, Jané; Haber, James E

    2011-12-01

    One of the least understood aspects of homologous recombination is the process by which the ends of a double-strand break (DSB) search the entire genome for homologous templates that can be used to repair the break. We took advantage of the natural competition between the alternative donors HML and HMR employed during HO endonuclease-induced switching of the budding yeast MAT locus. The strong mating-type-dependent bias in the choice of the donors is enforced by the recombination enhancer (RE), which lies 17 kb proximal to HML. We investigated factors that improve the use of the disfavored donor. We show that the normal heterochromatic state of the donors does not impair donor usage, as donor choice is not affected by removing this epigenetic silencing. In contrast, increasing the length of homology shared by the disfavored donor increases its use. This result shows that donor choice is not irrevocable and implies that there are several encounters between the DSB ends and even the favored donor before recombination is accomplished. The increase by adding more homology is not linear; these results can be explained by a thermodynamic model that determines the energy cost of using one donor over the other. An important inference from this analysis is that when HML is favored as the donor, RE causes a reduction in its effective genomic distance from MAT from 200 kb to ∼20 kb, which we hypothesize occurs after the DSB is created, by epigenetic chromatin modifications around MAT.

  2. Kondo behavior and conductance through 3d impurities in gold chains doped with oxygen

    NASA Astrophysics Data System (ADS)

    Barral, M. A.; Di Napoli, S.; Blesio, G.; Roura-Bas, P.; Camjayi, A.; Manuel, L. O.; Aligia, A. A.

    2017-03-01

    Combining ab initio calculations and effective models derived from them, we discuss the electronic structure of oxygen doped gold chains when one Au atom is replaced by any transition-metal atom of the 3d series. The effect of O doping is to bring extended Au 5dxz and 5dyz states to the Fermi level, which together with the Au states of zero angular momentum projection leads to three possible channels for the screening of the magnetism of the impurity. For most 3d impurities the expected physics is similar to that of the underscreened Kondo model, with singular Fermi liquid behavior. For Fe and Co under a tetragonal crystal field introduced by leads, the system might display a non-Fermi liquid behavior. Ni and Cu impurities are described by a S = 1 two channel Kondo model and an SU(4) impurity Anderson model in the intermediate valence regime, respectively. In both cases, the system is a Fermi liquid, but the conductance shows some observable differences with the ordinary SU(2) Anderson model.

  3. The excited state dynamics of KLa(MoO{sub 4}){sub 2}:Pr{sup 3+}: From a case study to the determination of the energy levels of rare earth impurities relative to the bandgap in oxidising host lattices

    SciTech Connect

    Cavalli, Enrico Boutinaud, Philippe; Bettinelli, Marco; Dorenbos, Pieter

    2008-05-15

    The luminescence properties of KLa(MoO{sub 4}){sub 2} (KLM) single crystals doped with Pr{sup 3+} have been measured in the 10-600 K temperature range in order to investigate the mechanisms involved in the radiationless processes. At variance with previously studied scheelite-like molybdates activated with Pr{sup 3+}, no effects attributed to the formation of intervalence charge transfer states have been observed. The model proposed in order to account for this behaviour allows the determination of the energy of the Pr{sup 3+} levels relative to the valence and conduction bands of the host. This model has firstly been confirmed for Tb{sup 3+}-doped KLM, for which suitable experimental data are available, and then extended to the other rare earth ions on the basis of the systematic nature of the lanthanide energy levels properties. The obtained conclusions are finally supported in the light of the comparison with some other representative cases. - Graphical abstract: The study of the excited state dynamics of KLa(MoO{sub 4}){sub 2} single crystals doped with Pr{sup 3+} allows to determine the energies of the levels of the active ion relative to the valence and conduction bands of the host. This model has then been extended to the other rare earth ions on the basis of the systematic nature of the lanthanide energy levels properties.

  4. Diamagnetic susceptibility of an off-center hydrogenic donor in pyramid-like and cone-like quantum dots

    NASA Astrophysics Data System (ADS)

    Avazzadeh, Z.; Bahramiyan, H.; Khordad, R.; Mohammadi, S. A.

    2016-04-01

    In this study, the diamagnetic susceptibility of an off-center hydrogenic donor impurity confined by pyramid and cone-like quantum dots has been investigated. To this end, the finite-element method and the Arnoldi algorithm are used to find energy eigenvalues and eigenvectors of the systems. Then, the effect of impurity position and dot size has been investigated on the diamagnetic susceptibility. We have found that the diamagnetic susceptibility has a maximum around the impurity position 4nm for two quantum dots. The diamagnetic susceptibility in the cone-like quantum dot is smaller than that in the pyramid quantum dot. Numerical studies reveal that the diamagnetic susceptibility depends strongly on the geometry of the dot.

  5. Role of cardiovascular imaging in selection of donor hearts

    PubMed Central

    Nair, Nandini; Gongora, Enrique

    2015-01-01

    AIM:To perform a systematic review of literature on use of cardiovascular imaging in assessment of donor hearts. METHODS: A systematic search of current literature from January 1965 to August 2015 was performed using PubMed and Google Scholar to investigate the different imaging modalities used to assess donor hearts. RESULTS: Recent literature still estimates only a 32% utilization of available donor hearts in the United States. Most common imaging modality used is transthoracic echocardiography. Use of advanced imaging modalities such as 3D echocardiography, cardiac computer tomography and cardiac magnetic resonance to evaluate donor hearts is not reported in literature. This review attempts to highlight the relevant imaging modalities that can be used to assess cardiac function in a time-efficient manner. The algorithm suggested in this review would hopefully pave the way to standardized protocols that can be adopted by organ procuring organizations to increase the donor pool. CONCLUSION: Use of advanced imaging techniques for a thorough assessment of organs will likely increase the donor pool. PMID:26722663

  6. Gamete Donor Consent and Human Embryonic Stem Cell Research.

    PubMed

    Siegel, Andrew W

    2015-06-01

    There is a lack of consensus on whether the derivation and use of human embryonic stem cells (hESCs) from embryos remaining after infertility treatment morally require the informed consent of third-party gamete donors who contributed to the creation of the embryos. The principal guidelines for oversight and funding of hESC research in the United States make minimal or no demands for consent from gamete donors. In this article, I consider the arguments supporting and opposing gamete donor consent for hESC research and embryo research more broadly. I argue that it is not morally permissible to use leftover embryos in research without the informed consent of gamete donors, and that we should place restrictions on the use of existing hESC lines that may have been derived without informed consent. While the standard argument for this position relies on an appeal to gamete donors' interest in controlling what happens with their genetic material, I identify shortcomings with the standard approach and seek instead to locate the deeper moral foundations for gamete donor consent in rights to bodily integrity.

  7. Sublattice asymmetry of impurity doping in graphene: A review

    PubMed Central

    Ferreira, Mauro S

    2014-01-01

    Summary In this review we highlight recent theoretical and experimental work on sublattice asymmetric doping of impurities in graphene, with a focus on substitutional nitrogen dopants. It is well known that one current limitation of graphene in regards to its use in electronics is that in its ordinary state it exhibits no band gap. By doping one of its two sublattices preferentially it is possible to not only open such a gap, which can furthermore be tuned through control of the dopant concentration, but in theory produce quasi-ballistic transport of electrons in the undoped sublattice, both important qualities for any graphene device to be used competetively in future technology. We outline current experimental techniques for synthesis of such graphene monolayers and detail theoretical efforts to explain the mechanisms responsible for the effect, before suggesting future research directions in this nascent field. PMID:25161855

  8. Edge and impurity response in two-dimensional quantum antiferromagnets

    NASA Astrophysics Data System (ADS)

    Metlitski, Max A.; Sachdev, Subir

    2008-11-01

    Motivated by recent Monte Carlo simulations of Höglund and Sandvik (arXiv:0808.0408), we study edge response in square lattice quantum antiferromagnets. We use the O(3) nonlinear σ model to compute the decay asymptotics of the staggered magnetization, energy density, and local magnetic susceptibility away from the edge. We find that the total edge susceptibility is negative and diverges logarithmically as the temperature T→0 . We confirm the predictions of the continuum theory by performing a 1/S expansion of the microscopic Heisenberg model with the edge. We propose a qualitative explanation of the edge dimerization seen in Monte Carlo simulations by a theory of valence-bond-solid correlations in the Néel state. We also discuss the extension of the latter theory to the response of a single nonmagnetic impurity, and its connection to the theory of the deconfined critical point.

  9. The use of neoplastic donors to increase the donor pool.

    PubMed

    Fiaschetti, P; Pretagostini, R; Stabile, D; Peritore, D; Oliveti, A; Gabbrielli, F; Cenci, S; Ricci, A; Vespasiano, F; Grigioni, W F

    2012-09-01

    The aim of the study was to evaluate the experience of the Centre-Sud Transplant Organization (OCST) area using cadaveric donor with neoplastic diseases to evaluate the possibility of transmission to recipients. From January 1, 2003, to December 31, 2010, the neoplastic risk has been reported to be 5.4% (377/4654 referred donors). In 2003, the number of donors with a tumor and their mean age were respectively: 60 (10.3%) and 59.6 ± 19.9; 2004: 33 (5.2%) and 61.4 ± 15.9; 2005: 32 (6%) and 62.8 ± 15.5; 2006: 46 (7%) and 60.7 ± 19.1; 2007: 51 (7%) and 58.9 ± 16; in 2008: 58 (7%) and 59.7 ± 19.6; 2009: 47 (7%) and 57 ± 26; 2010: 49 (7%) and 64 ± 16. The organ most affected by tumor has been the central nervous system (18%). The tumor was diagnosed before in 325 (86%) cases, versus during organ retrieval in 48 (12.7%) donor operations but before, which four cases (1%) occured after transplantation. According to the histological types and grades, 28 evaluated donors (8.2%) were suitable for transplantation. The histological types were: thyroid carcinoma (n = 3); prostate carcinoma (n = 8), renal clear cell carcinoma (n = 7), oncocytoma (n = 1), meningiomas (n = 2), dermofibrosarcoma (n = 1); verrucous carcinoma of the vulva (n = 1), colon adenocarcinoma (n = 1), grade II astrocytoma (n = 1), adrenal gland tumor (n = 1), gastric GIST (n = 1), oligodendroglioma (n = 1). Forty-five organs were retrieved (22 livers, 19 kidneys, 3 hearts, and 1 pancreas) and transplanted into 44 recipients with 1 liver-kidney combined transplantation. Four recipients died due to causes not related to the tumor. No donor-transmitted tumor was detected among the recipients. Donation is absolutely not indicated in cases of tumors with high metastatic potential and high grades. Performing an accurate evaluation of the donor, taking into account the histological grade, currently can allow, organ retrieval and transplantation with an acceptable risk.

  10. Determination of the impurities in drug products containing montelukast and in silico/in vitro genotoxicological assessments of sulfoxide impurity.

    PubMed

    Emerce, Esra; Cok, Ismet; Degim, I Tuncer

    2015-10-14

    Impurities affecting safety, efficacy, and quality of pharmaceuticals are of increasing concern for regulatory agencies and pharmaceutical industries, since genotoxic impurities are understood to play important role in carcinogenesis. The study aimed to analyse impurities of montelukast chronically used in asthma theraphy and perform genotoxicological assessment considering regulatory approaches. Impurities (sulfoxide, cis-isomer, Michael adducts-I&II, methylketone, methylstyrene) were quantified using RP-HPLC analysis on commercial products available in Turkish market. For sulfoxide impurity, having no toxicity data and found to be above the qualification limit, in silico mutagenicity prediction analysis, miniaturized bacterial gene mutation test, mitotic index determination and in vitro chromosomal aberration test w/wo metabolic activation system were conducted. In the analysis of different batches of 20 commercial drug products from 11 companies, only sulfoxide impurity exceeded qualification limit in pediatric tablets from 2 companies and in adult tablets from 7 companies. Leadscope and ToxTree programs predicted sulfoxide impurity as nonmutagenic. It was also found to be nonmutagenic in Ames MPF Penta I assay. Sulfoxide impurity was dose-dependent cytotoxic in human peripheral lymphocytes, however, it was found to be nongenotoxic. It was concluded that sulfoxide impurity should be considered as nonmutagenic and can be classified as ordinary impurity according to guidelines.

  11. Entanglement in quantum impurity problems is nonperturbative

    NASA Astrophysics Data System (ADS)

    Saleur, H.; Schmitteckert, P.; Vasseur, R.

    2013-08-01

    We study the entanglement entropy of a region of length 2L with the remainder of an infinite one-dimensional gapless quantum system in the case where the region is centered on a quantum impurity. The coupling to this impurity is not scale invariant, and the physics involves a crossover between weak- and strong-coupling regimes. While the impurity contribution to the entanglement has been computed numerically in the past, little is known analytically about it, since in particular the methods of conformal invariance cannot be applied because of the presence of a crossover length. We show in this paper that the small coupling expansion of the entanglement entropy in this problem is quite generally plagued by strong infrared divergences, implying a nonperturbative dependence on the coupling. The large coupling expansion turns out to be better behaved, thanks to powerful results from the boundary CFT formulation and, in some cases, the underlying integrability of the problem. However, it is clear that this expansion does not capture well the crossover physics. In the integrable case—which includes problems such as an XXZ chain with a modified link, the interacting resonant level model or the anisotropic Kondo model—a nonperturbative approach is in principle possible using form factors. We adapt in this paper the ideas of Cardy [J. Stat. Phys.JSTPBS0022-471510.1007/s10955-007-9422-x 130, 129 (2008)] and Castro-Alvaredo and Doyon [J. Stat. Phys.JSTPBS0022-471510.1007/s10955-008-9664-2 134, 105 (2009)] to the gapless case and show that, in the rather simple case of the resonant level model, and after some additional renormalizations, the form-factors approach yields remarkably accurate results for the entanglement all the way from short to large distances. This is confirmed by detailed comparison with numerical simulations. Both our form factor and numerical results are compatible with a nonperturbative form at short distance.

  12. Identification, isolation and characterization of process related impurities in ezetimibe.

    PubMed

    Guntupalli, Srikanth; Ray, Uttam Kumar; Murali, N; Gupta, P Badrinadh; Kumar, Vundavilli Jagadeesh; Satheesh, D; Islam, Aminul

    2014-01-01

    During the synthesis of ezetimibe, two process related impurities were detected were HPLC analysis at levels ranging from 0.05 to 0.8%. These two impurities were isolated by column chromatography and co-injected with ezetimibe sample to confirm the retention times in HPLC. These two impurities were characterized as 2-(4-hydroxybenzyl)-N,5-bis(4-fluorophenyl) pentanamide (impurity-I) and 1-(4-fluorophenyl)-3(3-(4-fluorophenyl)propyl)-4-(4-hydroxyphenyl)azetidin-2-one (impurity-II). Isolation, structural elucidation of these impurities by spectral data ((1)H NMR, (13)C NMR, MS and IR) and probable mechanism of their formation have been discussed.

  13. Investigation of reduction process and related impurities in ezetimibe.

    PubMed

    Zhang, Dengfeng; Su, Jiangtao

    2015-03-25

    During the synthesis of ezetimibe bulk drug, research for the impurities which especially come from the last two steps of synthetic route is of great significance for the quality by design (QbD) concept. The design spaces of last two steps of reduction reaction were established. The critical parameters were discussed under the QbD concept, which have noticeable impact on the impurity profile such as the new process related impurities mentioned in this paper. Three novel reduction process related impurities were prepared by designed synthetic route and co-injected with ezetimibe sample for identification. These novel process related impurities were also detected in different laboratory batches of ezetimibe bulk drug and characterized using MS, (1)H, (13)C, 2D NMR and IR techniques. The synthesis, isolation, identification, structural elucidation and formation of impurities were also discussed in detail.

  14. Macromolecule Crystal Quality Improvement in Microgravity: The Role of Impurities

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matt; Cassanto, John M.

    2000-01-01

    While macromolecule impurities may affect crystal size and morphology the over-riding question is; "How do macromolecule impurities effect crystal X-ray quality and diffraction resolution?" In the case of chicken egg white lysozyme, crystals can be grown in the presence of a number of impurities without affecting diffraction resolution. One impurity however, the lysozyme dimer, does negatively impact the X-ray crystal properties. Crystal quality improvement as a result of better partitioning of this impurity during crystallization in microgravity has been reported'. In our recent experimental work dimer partitioning was found to be not significantly different between the two environments. Mosaicity analysis of pure crystals showed a reduced mosaicity and increased signal to noise for the microgravity grown crystals. Dimer incorporation however, did greatly reduce the resolution limit in both ground and microgravity grown crystals. These results indicate that impurity effects in microgravity are complex and may rely on the conditions or techniques employed.

  15. Solvent as electron donor: Donor/acceptor electronic coupling is a dynamical variable

    SciTech Connect

    Castner, E.W. Jr.; Kennedy, D.; Cave, R.J.

    2000-04-06

    The authors combine analysis of measurements by femtosecond optical spectroscopy, computer simulations, and the generalized Mulliken-Hush (GMH) theory in the study of electron-transfer reactions and electron donor-acceptor interactions. The study focus is on ultrafast photoinduced electron-transfer reactions from aromatic amine solvent donors to excited-state acceptors. The experimental results from femtosecond dynamical measurements fall into three categories: six coumarin acceptors reductively quenched by N,N-dimethylaniline (DMA), eight electron-donating amine solvents reductively quenching coumarin 152 (7-(dimethylamino)-4-(trifluoromethyl)-coumarin), and reductive quenching dynamics of two coumarins by DMA as a function of dilution in the nonreactive solvents toluene and chlorobenzene. Applying a combination of molecular dynamics trajectories, semiempirical quantum mechanical calculations (of the relevant adiabatic electronic states), and GMH theory to the C152/DMA photoreaction, the authors calculate the electron donor/acceptor interaction parameter H{sub DA} at various time frames, H{sub DA} is strongly modulated by both inner-sphere and outer-sphere nuclear dynamics, leading us to conclude that H{sub DA} must be considered as a dynamical variable.

  16. Quantification of active pharmaceutical ingredient and impurities in sildenafil citrate obtained from the Internet

    PubMed Central

    Nutan, Mohammad T.; Dodla, Uday Krishna Reddy

    2014-01-01

    Background: The accessibility of prescription drugs produced outside of the United States, most notably sildenafil citrate (innovator product, Viagra®), has been made much easier by the Internet. Of greatest concern to clinicians and policymakers is product quality and patient safety. The US Food and Drug Administration (FDA) has issued warnings to potential buyers that the safety of drugs purchased from the Internet cannot be guaranteed, and may present a health risk to consumers from substandard products. Objective: The objective of this study was to determine whether generic sildenafil citrate tablets from international markets obtained via the Internet are equivalent to the US innovator product regarding major aspects of pharmaceutical quality: potency, accuracy of labeling, and presence and level of impurities. This will help identify aspects of drug quality that may impact public health risks. Methods: A total of 15 sildenafil citrate tablets were obtained for pharmaceutical analysis: 14 generic samples from international Internet pharmacy websites and the US innovator product. According to US Pharmacopeial guidelines, tablet samples were tested using high-performance liquid chromatography for potency of active pharmaceutical ingredient (API) and levels of impurities (impurities A, B, C, and D). Impurity levels were compared with International Conference on Harmonisation (ICH) limits. Results: Among the 15 samples, 4 samples possessed higher impurity B levels than the ICH qualification threshold, 8 samples possessed higher impurity C levels than the ICH qualification threshold, and 4 samples possessed more than 1% impurity quantity of maximum daily dose (MDD). For API, 6 of the samples failed to fall within the 5% assay limit. Conclusions: Quality assurance tests are often used to detect formulation defects of drug products during the manufacturing and/or storage process. Results suggest that manufacturing standards for sildenafil citrate generic drug

  17. Assessment of Embrittlement of VHTR Structural Alloys in Impure Helium Environments

    SciTech Connect

    Crone, Wendy; Cao, Guoping; Sridhara, Kumar

    2013-05-31

    The helium coolant in high-temperature reactors inevitably contains low levels of impurities during steady-state operation, primarily consisting of small amounts of H{sub 2}, H{sub 2}O, CH{sub 4}, CO, CO{sub 2}, and N{sub 2} from a variety of sources in the reactor circuit. These impurities are problematic because they can cause significant long-term corrosion in the structural alloys used in the heat exchangers at elevated temperatures. Currently, the primary candidate materials for intermediate heat exchangers are Alloy 617, Haynes 230, Alloy 800H, and Hastelloy X. This project will evaluate the role of impurities in helium coolant on the stress-assisted grain boundary oxidation and creep crack growth in candidate alloys at elevated temperatures. The project team will: • Evaluate stress-assisted grain boundary oxidation and creep crack initiation and crack growth in the temperature range of 500-850°C in a prototypical helium environment. • Evaluate the effects of oxygen partial pressure on stress-assisted grain boundary oxidation and creep crack growth in impure helium at 500°C, 700°C, and 850°C respectively. • Characterize the microstructure of candidate alloys after long-term exposure to an impure helium environment in order to understand the correlation between stress-assisted grain boundary oxidation, creep crack growth, material composition, and impurities in the helium coolant. • Evaluate grain boundary engineering as a method to mitigate stress-assisted grain boundary oxidation and creep crack growth of candidate alloys in impure helium. The maximum primary helium coolant temperature in the high-temperature reactor is expected to be 850-1,000°C.Corrosion may involve oxidation, carburization, or decarburization mechanisms depending on the temperature, oxygen partial pressure, carbon activity, and alloy composition. These corrosion reactions can substantially affect long-term mechanical properties such as crack- growth rate and fracture

  18. Analysis of the effects of impurities in silicon

    NASA Technical Reports Server (NTRS)

    Wohlgemuth, J.; Giuliano, M. N.

    1980-01-01

    A solar cell fabrication and analysis program was conducted to determine the effects on the resultant solar cell efficiency of impurities intentionally incorporated into silicon. It was found that certain impurities such as titanium, tantalum, and vanadium were bad, even in very small concentrations. Cell performance appeared relatively tolerable to impurities such as copper, carbon, calcium, chromium, iron and nickel (in the concentration levels which were considered).

  19. Impurity Correction Techniques Applied to Existing Doping Measurements of Impurities in Zinc

    NASA Astrophysics Data System (ADS)

    Pearce, J. V.; Sun, J. P.; Zhang, J. T.; Deng, X. L.

    2017-01-01

    Impurities represent the most significant source of uncertainty in most metal fixed points used for the realization of the International Temperature Scale of 1990 (ITS-90). There are a number of different methods for quantifying the effect of impurities on the freezing temperature of ITS-90 fixed points, many of which rely on an accurate knowledge of the liquidus slope in the limit of low concentration. A key method of determining the liquidus slope is to measure the freezing temperature of a fixed-point material as it is progressively doped with a known amount of impurity. Recently, a series of measurements of the freezing and melting temperature of `slim' Zn fixed-point cells doped with Ag, Fe, Ni, and Pb were presented. Here, additional measurements of the Zn-X system are presented using Ga as a dopant, and the data (Zn-Ag, Zn-Fe, Zn-Ni, Zn-Pb, and Zn-Ga) have been re-analyzed to demonstrate the use of a fitting method based on Scheil solidification which is applied to both melting and freezing curves. In addition, the utility of the Sum of Individual Estimates method is explored with these systems in the context of a recently enhanced database of liquidus slopes of impurities in Zn in the limit of low concentration.

  20. Angular self-localization of impurities rotating in a bosonic bath

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Seiringer, Robert; Lemeshko, Mikhail

    2017-03-01

    The existence of a self-localization transition in the polaron problem has been under an active debate ever since Landau suggested it 84 years ago. Here we reveal the self-localization transition for the rotational analog of the polaron—the angulon quasiparticle. We show that, unlike for the polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states. The predicted effects can potentially be addressed in experiments on cold molecules trapped in superfluid helium droplets and ultracold quantum gases, as well as on electronic excitations in solids and Bose-Einstein condensates.

  1. Photoionization cross-section of isotropic defects or impurity centers in isolators

    NASA Astrophysics Data System (ADS)

    Lima, H.; Batista, J. V.; Couto dos Santos, M. A.

    2016-08-01

    An analytical expression to calculate the photoionization cross-section of isotropic defects or impurity centers is being proposed by using the time-dependent perturbation theory. The ground-state wave function of the electron captured in the impurity state is described by a three-dimensional isotropic harmonic oscillator and the electron excited state in the continuum conduction band is described by a plane wave. The expression has been obtained considering all multipoles terms in the Hamiltonian, and that the radiation field which interacts with electrons is semi-classical and linearly polarized. This approximation is assumed because the effects of the linear contribution are dominant. The available data of the Al2O3:C and Lu2SiO5:Ce systems are in good agreement with our predictions. Such satisfactory comparison is a strong indication that the present model can be used to provide good predictions of the photoionization cross-section in several areas.

  2. Donor behavior of Sb in ZnO

    SciTech Connect

    Liu, H. Y.; Izyumskaya, N.; Avrutin, V.; Oezguer, Ue.; Morkoc, H.; Yankovich, A. B.; Kvit, A. V.; Voyles, P. M.

    2012-08-01

    Electrical behavior of Sb in ZnO:Sb layers doped in a wide concentration range was studied using temperature dependent Hall effect measurements. The layers were grown by plasma-enhanced molecular beam epitaxy, and the Sb concentration was changed by varying the Sb flux, resulting in electron concentrations in the range of 10{sup 16} to nearly 10{sup 20} cm{sup -3}. Upon annealing, the electron concentration increased slightly and more notable was that the electron mobility significantly improved, reaching a room-temperature value of 110 cm{sup 2}/V s and a low-temperature value of 145 cm{sup 2}/V s, close to the maximum of {approx}155 cm{sup 2}/V s set by ionized impurity scattering. Hall data and structural data suggest that Sb predominantly occupies Zn sublattice positions and acts as a shallow donor in the whole concentration range studied. In the layers with high Sb content ({approx}1 at. %), acceptor-type compensating defects (possibly Sb on oxygen sites and/or point-defect complexes involving Sb{sub O}) are formed. The increase of electron concentration with increasing oxygen pressure and the increase in ZnO:Sb lattice parameter at high Sb concentrations suggest that acceptors involving Sb{sub O} rather than Sb{sub Zn}-2V{sub Zn} complexes are responsible for the compensation of the donors.

  3. Single-Donor Leukophoretic Technique

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.

    1977-01-01

    Leukocyte separation-and-retrieval device utilizes granulocyte and monocyte property of leukoadhesion to glass surfaces as basis of their separation from whole blood. Device is used with single donor technique and has application in biological and chemical processing, veterinary research and clinical care.

  4. Gas chromatographic analysis of trace gas impurities in tungsten hexafluoride.

    PubMed

    Laurens, J B; de Coning, J P; Swinley, J M

    2001-03-09

    Highly reactive fluorinated gaseous matrices require special equipment and techniques for the gas chromatographic analysis of trace impurities in these gases. The impurities that were analysed at the low-microg/l levels included oxygen, nitrogen, carbon dioxide, carbon monoxide, sulfur hexafluoride and hydrogen. This paper describes the use of a system utilising backflush column switching to protect the columns and detectors in the analysis of trace gas impurities in tungsten hexafluoride. Two separate channels were used for the analysis of H2, O2, N2, CO, CO2 and SF6 impurities with pulsed discharge helium ionisation detection.

  5. HPLC-MS Examination of Impurities in Pentaerythritol Tetranitrate

    NASA Astrophysics Data System (ADS)

    Brown, Geoffrey W.; Giambra, Anna M.

    2014-04-01

    Pentaerythritol tetranitrate (PETN) has trace homolog impurities that can be detected by high-performance liquid chromatography-mass spectrometry. Consideration of observed impurity masses and candidate structures based on known pentaerythritol impurities allows identification of 22 compounds in the data. These are all consistent with either fully nitrated homologs or derivatives substituted with methyl, methoxy, or hydroxyl groups in place of a nitric ester. Examining relative impurity concentrations in three starting batches of PETN and six subsequently processed batches shows that it is possible to use relative concentration profiles as a fingerprint to differentiate batches and follow them through recrystallization steps.

  6. Oxygen impurity radiation from Tokamak-like plasmas

    NASA Technical Reports Server (NTRS)

    Rogerson, J. E.; Davis, J.; Jacobs, V. L.

    1977-01-01

    We have constructed a nonhydrodynamic coronal model for calculating radiation from impurity atoms in a heated plasma. Some recent developments in the calculation of dielectronic recombination rate coefficients and collisional excitation rate coefficients are included. The model is applied to oxygen impurity radiation during the first few milliseconds of a TFR Tokamak plasma discharge, and good agreement with experimental results is obtained. Estimates of total line and continuum radiation from the oxygen impurity are given. It is shown that impurity radiation represents a considerable energy loss.

  7. The dead donor rule, voluntary active euthanasia, and capital punishment.

    PubMed

    Coons, Christian; Levin, Noah

    2011-06-01

    We argue that the dead donor rule, which states that multiple vital organs should only be taken from dead patients, is justified neither in principle nor in practice. We use a thought experiment and a guiding assumption in the literature about the justification of moral principles to undermine the theoretical justification for the rule. We then offer two real world analogues to this thought experiment, voluntary active euthanasia and capital punishment, and argue that the moral permissibility of terminating any patient through the removal of vital organs cannot turn on whether or not the practice violates the dead donor rule. Next, we consider practical justifications for the dead donor rule. Specifically, we consider whether there are compelling reasons to promulgate the rule even though its corresponding moral principle is not theoretically justified. We argue that there are no such reasons. In fact, we argue that promulgating the rule may actually decrease public trust in organ procurement procedures and medical institutions generally - even in states that do not permit capital punishment or voluntary active euthanasia. Finally, we examine our case against the dead donor rule in the light of common arguments for it. We find that these arguments are often misplaced - they do not support the dead donor rule. Instead, they support the quite different rule that patients should not be killed for their vital organs.

  8. Impurity Role In Mechanically Induced Defects

    SciTech Connect

    Howell, R.H.; Asoka-Kumar, P.; Hartley, J.; Sterne, P.

    2000-02-25

    An improved understanding of dislocation dynamics and interactions is an outstanding problem in the multi scale modeling of materials properties, and is the current focus of major theoretical efforts world wide. We have developed experimental and theoretical tools that will enable us to measure and calculate quantities defined by the defect structure. Unique to the measurements is a new spectroscopy that determines the detailed elemental composition at the defect site. The measurements are based on positron annihilation spectroscopy performed with a 3 MeV positron beam [1]. Positron annihilation spectroscopy is highly sensitive to dislocations and associated defects and can provide unique elements of the defect size and structure. Performing this spectroscopy with a highly penetrating positron beam enables flexibility in sample handling. Experiments on fatigued and stressed samples have been done and in situ measurement capabilities have been developed. We have recently performed significant upgrades to the accelerator operation and novel new experiments have been performed [2-4] To relate the spectrographic results and the detailed structure of a defect requires detailed calculations. Measurements are coupled with calculated results based on a description of positions of atoms at the defect. This gives an atomistic view of dislocations and associated defects including impurity interactions. Our ability to probe impurity interactions is a unique contribution to defect understanding not easily addressed by other atomistic spectroscopies.

  9. Impurity pellet injection experiments at TFTR

    SciTech Connect

    Marmar, E.S.

    1992-01-01

    Impurity (Li and C) pellet injection experiments on TFTR have produced a number of new and significant results. (1) We observe reproducible improvements of TFTR supershots after wall-conditioning by Li pellet injection ( lithiumization'). (2) We have made accurate measurements of the pitch angle profiles of the internal magnetic field using two novel techniques. The first measures the internal field pitch from the polarization angles of Li[sup +] line emission from the pellet ablation cloud, while the second measures the pitch angle profiles by observing the tilt of the cigar-shaped Li[sup +] emission region of the ablation cloud. (3) Extensive measurements of impurity pellet penetration into plasmas with central temperatures ranging from [approximately]0.3 to [approximately]7 keV have been made and compared with available theoretical models. Other aspects of pellet cloud physics have been investigated. (4) Using pellets as a well defined perturbation has allowed study of transport phenomena. In the case of small pellet perturbations, the characteristics of the background plasmas are probed, while with large pellets, pellet induced effects are clearly observed. These main results are discussed in more detail in this paper.

  10. Spin-polarized currents and noise in normal-metal/superconductor junctions with Yu-Shiba-Rusinov impurities

    NASA Astrophysics Data System (ADS)

    Persson, Daniel; Shevtsov, Oleksii; Löfwander, Tomas; Fogelström, Mikael

    2016-10-01

    Conventional superconductors disordered by magnetic impurities demonstrate physical properties that are drastically different from their pristine counterparts. In our previous work [D. Persson et al., Phys. Rev. B 92, 245430 (2015), 10.1103/PhysRevB.92.245430], we explored the spectral and thermodynamic properties of such systems for two extreme cases: completely random and ferromagnetically aligned impurity magnetic moments. Here we consider the transport properties of these systems and show that they have a potential to be used in superconducting spintronic devices. Each magnetic impurity contributes a Yu-Shiba-Rusinov (YSR) bound state to the spectrum, residing at subgap energies. Provided the YSR states form metallic bands, we demonstrate that the tunneling current carried by these states can be highly spin polarized when the impurities are ferromagnetically ordered. The spin polarization can be switched by tuning the bias voltage. Moreover, even when the impurity spins are completely uncorrelated, one can still achieve almost 100 % spin polarization of the current, if the tunnel interface is spin active. We compute electric current and noise, varying parameters of the interface between tunneling and fully transparent regimes, and analyze the relative role of single-particle and Andreev reflection processes.

  11. Influences of impurities on iodine removal efficiency of silver alumina adsorbent

    SciTech Connect

    Fukasawa, Tetsuo; Funabashi, Kiyomi; Kondo, Yoshikazu

    1997-08-01

    Silver impregnated alumina adsorbent (AgA), which was developed for iodine removal from off-gas of nuclear power and reprocessing plants has been tested laying emphasis on investigation of the influences gaseous impurities have on adsorbent chemical stability and iodine removal efficiency. The influences of the major impurities such as nitrogen oxides and water vapor were checked on the chemical state of impregnated silver compound (AgNO{sub 3}) and decontamination factor (DF) value. At 150{degrees}C, a forced air flow with 1.5% nitrogen oxide (NO/NO{sub 2}=1/1) reduced silver nitrate to metallic silver, whereas pure air and air with 1.5% NO{sub 2} had no effect on the chemical state of silver. Metallic silver showed a lower DF value for methyl iodide in pure air (without impurities) than silver nitrate and the lower DF of metallic silver was improved when impurities were added. At 40{degrees}C, a forced air flow with 1.5% nitrogen dioxide (NO{sub 2}) increased the AgA weight by about 20%, which was caused by the adsorption of nitric acid solution on the AgA surface. AgA with l0wt% silver showed higher weight increase than that with 24wt% silver which had lower porosity. Adsorption of acid solution lowered the DF value, which would be due to the hindrance of contact between methyl iodide and silver. The influences of other gaseous impurities were also investigated and AgA showed superior characteristics at high temperatures. 14 refs., 11 figs.

  12. Two new two-dimensional coordination polymers based on isophthalate and a flexible N-donor ligand containing benzimidazole and pyridine rings: synthesis, crystal structures and a solid-state UV-Vis study.

    PubMed

    Hasi, Qi Meige; Fan, Yan; Hou, Chen; Yao, Xiao Qiang; Liu, Jia Cheng

    2016-10-01

    In coordination chemistry and crystal engineering, many factors influence the construction of coordination polymers and the final frameworks depend greatly on the organic ligands used. N-Donor ligands with diverse coordination modes and conformations have been employed to assemble metal-organic frameworks. Carboxylic acid ligands can deprotonate completely or partially when bonding to metal ions and can also act as donors or acceptors of hydrogen bonds and are thus good candidates for the construction of supramolecular architectures. Two new transition metal complexes, namely poly[diaqua(μ4-1,4-bis{[1-(pyridin-3-ylmethyl)-1H-benz[d]imidazol-2-yl]methoxy}benzene)bis(μ2-isophthalato)dicobalt(II)], [Co(C8H4O4)(C34H28N6O2)0.5(H2O)]n, (1), and poly[diaqua(μ4-1,4-bis{[1-(pyridin-3-ylmethyl)-1H-benz[d]imidazol-2-yl]methoxy}benzene)bis(μ2-isophthalato)dicadmium(II)], [Cd(C8H4O4)(C34H28N6O2)0.5(H2O)]n, have been constructed using a symmetric N-donor ligand and a carboxylate ligand under hydrothermal conditions. X-ray crystallographic studies reveal that complexes (1) and (2) are isostructural, both of them exhibiting three-dimensional supramolecular architectures built by hydrogen bonds in which the coordinated water molecules serve as donors, while the O atoms of the carboxylate groups act as acceptors. Furthermore, (1) and (2) have been characterized by elemental, IR spectroscopic, powder X-ray diffraction (PXRD) and thermogravimetric analyses. The UV-Vis absorption spectrum of complex (1) has also been investigated.

  13. Defect properties of Sb- and Bi-doped CuInSe{sub 2}: The effect of the deep lone-pair s states

    SciTech Connect

    Park, Ji-Sang; Yang, Ji-Hui; Ramanathan, Kannan; Wei, Su-Huai

    2014-12-15

    Bi or Sb doping has been used to make better material properties of polycrystalline Cu{sub 2}(In,Ga)Se{sub 2} as solar cell absorbers, including the experimentally observed improved electrical properties. However, the mechanism is still not clear. Using first-principles method, we investigate the stability and electronic structure of Bi- and Sb-related defects in CuInSe{sub 2} and study their effects on the doping efficiency. Contrary to previous thinking that Bi or Sb substituted on the anion site, we find that under anion-rich conditions, the impurities can substitute on cation sites and are isovalent to In because of the formation of the impurity lone pair s states. When the impurities substitute for Cu, the defects act as shallow double donors and help remove the deep In{sub Cu} level, thus resulting in the improved carrier life time. On the other hand, under anion-poor conditions, impurities at the Se site create amphoteric deep levels that are detrimental to the device performance.

  14. Polarons and Mobile Impurities Near a Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Shadkhoo, Shahriar

    This dissertation aims at improving the current understanding of the physics of mobile impurities in highly correlated liquid-like phases of matter. Impurity problems pose challenging and intricate questions in different realms of many-body physics. For instance, the problem of ''solvation'' of charged solutes in polar solvents, has been the subject of longstanding debates among chemical physicists. The significant role of quantum fluctuations of the solvent, as well as the break down of linear response theory, render the ordinary treatments intractable. Inspired by this complicated problem, we first attempt to understand the role of non-specific quantum fluctuations in the solvation process. To this end, we calculate the dynamic structure factor of a model polar liquid, using the classical Molecular Dynamics (MD) simulations. We verify the failure of linear response approximation in the vicinity of a hydrated electron, by comparing the outcomes of MD simulations with the predictions of linear response theory. This nonlinear behavior is associated with the pronounced peaks of the structure factor, which reflect the strong fluctuations of the local modes. A cavity picture is constructed based on heuristic arguments, which suggests that the electron, along with the surrounding polarization cloud, behave like a frozen sphere, for which the linear response theory is broken inside and valid outside. The inverse radius of the spherical region serves as a UV momentum cutoff for the linear response approximation to be applicable. The problem of mobile impurities in polar liquids can be also addressed in the framework of the ''polaron'' problem. Polaron is a quasiparticle that typically acquires an extended state at weak couplings, and crossovers to a self-trapped state at strong couplings. Using the analytical fits to the numerically obtained charge-charge structure factor, a phenomenological approach is proposed within the Leggett's influence functional formalism, which

  15. Impurity induced crystallinity and optical emissions in ZnO nanorod arrays

    NASA Astrophysics Data System (ADS)

    Panda, N. R.; Acharya, B. S.

    2015-01-01

    We report the growth of ZnO nanocrystallites doped with impurities such as B, N and S by green chemistry route using ultrasound. The effect of intrinsic defects and impurity doping on the structural and optical properties of ZnO nanostructures has been studied and discussed. Characterization studies carried out using x-ray diffraction (XRD) reveal the change in lattice parameters and crystallinity of ZnO in the presence of dopant. This has been explained on the basis of the dopant substitution at regular anion and interstitial sites. Study on surface morphology by field emission scanning electron microscopy (FESEM) shows a change from particle-like structure to aligned nanorods nucleated at definite sites. Elemental analysis such as x-ray photon electron spectroscopy (XPS) has been carried out to ascertain the dopant configuration in ZnO. This has been corroborated by the results obtained from FTIR and Raman studies. UV-vis light absorption and PL studies show an expansion of the band gap which has been explained on the basis of Moss-Burstein shift in the electronic band gap of ZnO by impurity incorporation. The optical emissions corresponding to excitonic transition and defect centres present in the band gap of ZnO is found to shift towards lower/higher wavelength sides. New PL bands observed have been assigned to the transitions related to the impurity states present in the band gap of ZnO along with intrinsic defects.

  16. Study of the impurity composition and effective plasma charge in the GOL-3 facility

    SciTech Connect

    Sorokina, N. V. Burdakov, A. V.; Ivanov, I. A.; Polosatkin, S. V.; Postupaev, V. V.; Rovenskikh, A. F.; Shoshin, A. A.

    2015-07-15

    Heating and confinement of plasma in a multimirror magnetic configuration have been studied at the GOL-3 facility (Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk). The experiments are aimed at estimating the densities and charge states of the main impurities in the GOL-3 plasma and determining their contribution to the effective plasma charge. Plasma with a density of ∼10{sup 15} cm{sup −3} was heated by a relativistic electron beam (1 MeV, 8 μs, ⩽200 kJ). At the end of electron beam injection, the plasma temperature reached 1 keV. The densities of impurities were determined using VUV and visible spectroscopy, as well as mass spectrometry of the residual vacuum. To determine the effective plasma charge, the experimental data were compared with the results of numerical simulations of the ionization balance of impurities. It is shown that the effective plasma charge calculated with allowance for the contributions from the main impurities does not exceed Z{sub eff} = 1.8, which cannot explain the experimentally observed improved confinement of low-density plasma.

  17. Impurity modes in Frenkel exciton systems with dipolar interactions and cubic symmetry.

    PubMed

    Avgin, I; Huber, D L

    2013-04-28

    We introduce a continuum model for impurity modes of Frenkel excitons in fully occupied face-centered and body-centered cubic lattices with dipole-dipole interactions and parallel moments. In the absence of impurities, the model reproduces the small-k behavior found in numerical calculations of dipolar lattice sums. The exciton densities of states near the upper and lower band edges are calculated and compared with the corresponding results for a random array of dipoles. The Green function obtained with the continuum model, together with a spherical approximation to the Brillouin zone, is used to determine the conditions for the formation of a localized exciton mode associated with a shift in the transition energy of a single chromophore. The dependence of the local mode energy on the magnitude of the shift is ascertained. The formation of impurity bands at high concentrations of perturbed sites is investigated using the coherent potential approximation. The contribution of the impurity bands to the optical absorption is calculated in the coherent potential approximation. The locations of the optical absorption peaks of the dipolar system are shown to depend on the direction of propagation of the light relative to the dipolar axis, a property that is maintained in the presence of short-range interactions.

  18. Tuning oxygen impurities and microstructure of nanocrystalline silicon photovoltaic materials through hydrogen dilution.

    PubMed

    Wen, Chao; Xu, Hao; He, Wei; Li, Zhengping; Shen, Wenzhong

    2014-01-01

    As a great promising material for third-generation thin-film photovoltaic cells, hydrogenated nanocrystalline silicon (nc-Si:H) thin films have a complex mixed-phase structure, which determines its defectful nature and easy residing of oxygen impurities. We have performed a detailed investigation on the microstructure properties and oxygen impurities in the nc-Si:H thin films prepared under different hydrogen dilution ratio treatment by the plasma-enhanced chemical vapor deposition (PECVD) process. X-ray diffraction, transmission electron microscopy, Raman spectroscopy, and optical transmission spectroscopy have been utilized to fully characterize the microstructure properties of the nc-Si:H films. The oxygen and hydrogen contents have been obtained from infrared absorption spectroscopy. And the configuration state of oxygen impurities on the surface of the films has been confirmed by X-ray photoelectron spectroscopy, indicating that the films were well oxidized in the form of SiO2. The correlation between the hydrogen content and the volume fraction of grain boundaries derived from the Raman measurements shows that the majority of the incorporated hydrogen is localized inside the grain boundaries. Furthermore, with the detailed information on the bonding configurations acquired from the infrared absorption spectroscopy, a full explanation has been provided for the mechanism of the varying microstructure evolution and oxygen impurities based on the two models of ion bombardment effect and hydrogen-induced annealing effect.

  19. Characteristics of multivalent impurity doped C 60 films grown by MBE

    NASA Astrophysics Data System (ADS)

    Nishinaga, Jiro; Aihara, Tomoyuki; Kawaharazuka, Atsushi; Horikoshi, Yoshiji

    2007-04-01

    Metal-doped C 60 films (aluminum, gallium and germanium) are grown on GaAs and quartz glass substrates by solid source molecular beam epitaxy. Mechanical and optical properties of the films are investigated by Vickers hardness test and photoluminescence (PL) measurement. Vickers hardness values of all the impurity-doped C 60 films are considerably enhanced. PL peaks of the electron transition between the highest occupied molecular orbital and the lowest unoccupied molecular orbital states of C 60 molecules are confirmed in Al-doped and Ga-doped C 60 films, but not in Ge-doped C 60 films. Optimized bonding structures of these impurity atoms to C 60 molecules are determined by using ab initio calculations. Stable covalent bonds between impurities and C 60 molecules are verified to be formed. The impurity atoms may act as bridges between C 60 molecules. The distortion of C 60 cages due to the bonding with metals is confirmed. In the Al- and Ga-doped C 60 films, this distortion probably makes the dipole forbidden transition relieved. The binding energies are found to be related to the experimentally determined Vickers hardness.

  20. Temperature and pressure coefficients of iron resonant impurity level in PbTe

    NASA Astrophysics Data System (ADS)

    Skipetrov, E. P.; Kruleveckaya, O. V.; Skipetrova, L. A.; Slynko, V. E.

    2017-01-01

    We investigate temperature dependences of galvanomagnetic parameters in weak magnetic fields (4.2 ≤ T ≤ 300 K, B ≤ 0.07 T) in the p-Pb1-yFeyTe alloy from the middle part of the single-crystal ingot, where the Fermi level is pinned by the resonant impurity level lying under the top of the valence band. Experiments are performed under hydrostatic compression up to 10 kbar. Using scanning electron microscopy, we find microscopic inclusions of the secondary phase enriched with iron and show that the main phase is characterized by a good uniformity of the spatial distribution of impurities. A monotonous increase of the free hole concentration at liquid-helium temperature under pressure and anomalous temperature dependences of the Hall coefficient in the whole investigated pressure range are revealed. Experimental results are explained by a model assuming pinning of the Fermi level by the impurity level and a redistribution of electrons between the valence band and impurity states with increasing temperature and under pressure. In the framework of the two-band Kane dispersion law, theoretical temperature dependences of the Hall coefficient under pressure, which are in satisfactory agreement with the experimental ones at low temperatures, are calculated and temperature and pressure coefficients of the iron deep level are determined. Diagrams of the electronic structure rearrangement with increasing temperature for Pb1-yFeyTe at pressures up to 10 kbar are proposed.

  1. Tuning oxygen impurities and microstructure of nanocrystalline silicon photovoltaic materials through hydrogen dilution

    PubMed Central

    2014-01-01

    As a great promising material for third-generation thin-film photovoltaic cells, hydrogenated nanocrystalline silicon (nc-Si:H) thin films have a complex mixed-phase structure, which determines its defectful nature and easy residing of oxygen impurities. We have performed a detailed investigation on the microstructure properties and oxygen impurities in the nc-Si:H thin films prepared under different hydrogen dilution ratio treatment by the plasma-enhanced chemical vapor deposition (PECVD) process. X-ray diffraction, transmission electron microscopy, Raman spectroscopy, and optical transmission spectroscopy have been utilized to fully characterize the microstructure properties of the nc-Si:H films. The oxygen and hydrogen contents have been obtained from infrared absorption spectroscopy. And the configuration state of oxygen impurities on the surface of the films has been confirmed by X-ray photoelectron spectroscopy, indicating that the films were well oxidized in the form of SiO2. The correlation between the hydrogen content and the volume fraction of grain boundaries derived from the Raman measurements shows that the majority of the incorporated hydrogen is localized inside the grain boundaries. Furthermore, with the detailed information on the bonding configurations acquired from the infrared absorption spectroscopy, a full explanation has been provided for the mechanism of the varying microstructure evolution and oxygen impurities based on the two models of ion bombardment effect and hydrogen-induced annealing effect. PMID:24994958

  2. Of kin and kidneys: do kinship networks contribute to racial disparities in living donor kidney transplantation?

    PubMed

    Daw, Jonathan

    2014-03-01

    In the United States, racial disparities in kidney transplantation are large and especially stark for living donor transplants. Medical researchers frequently attribute this to the availability of medically compatible living kidney donors, who are usually kin. This paper evaluates this hypothesis by testing whether African American transplant candidates likely have lesser access to suitable living donors in their kinship networks than white candidates. This paper evaluates this hypothesis using a simulation design. Contrary to prior research on this topic, this simulation analysis concludes that black-white disparities in living donor kidney transplantation are unlikely to be the result of group differences in the availability of suitable donors. Although individual white kin are individually more likely to be suitable donors, African Americans' larger average kinship networks compensate for this difference.

  3. The role of the Van Hove singularity in the time evolution of electronic states in a low-dimensional superlattice semiconductor

    NASA Astrophysics Data System (ADS)

    Garmon, Kenneth Sterling, Jr.

    2007-12-01

    In this dissertation we will study a wide range of phenomena from atomic, molecular, and optical to solid-state physics. We will find a common theme in problems from these different branches of physics in that they can all be modeled by some variation of a simple bi-linear Hamiltonian. Each of these models will also share a key feature in that they all contain one or more singularities (called a Van Hove singularity in the context of solid-state) in the density of allowed states associated with a branch point that results near the edge of a continuous energy spectrum. In addition, the fact that each of these models is one-dimensional will maximize the effect of the singularity on the system. We will show that when a discrete state is coupled with the continuum that in the vicinity of the singularity Fermi's golden rule breaks down; the golden rule normally predicts that the de-excitation rate of the discrete state should be proportional to g2 where gis the dimensionless coupling constant between the discrete state and the continuum. Relying on a non-perturbative approach, we will show that the de-excitation rate is actually proportional to g4/3 in the vicinity of the singularity. This results in a dramatic amplification of the decay rate. In the main topic of the dissertation, we will consider a nano-scale semiconductor superlattice with either a single impurity site or multiple impurities (which behave as electron donors or acceptors) in which there are two Van Hove singularities in the density of electron states which occur at the two edges of the conduction band. These singularities result in the non-analytic g4/3 amplification of the charge transfer rate from the discrete impurity site into the electronic conduction band where gis the coupling constant between the impurity state and the conduction band. We will demonstrate other results including an asymmetry in the optical absorption profile for monochromatic light incident on a core electron state in the

  4. Transport through an impurity tunnel coupled to a Si/SiGe quantum dot

    SciTech Connect

    Foote, Ryan H. Ward, Daniel R.; Thorgrimsson, Brandur; Savage, D. E.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.; Prance, J. R.; Gamble, John King; Nielsen, Erik; Saraiva, A. L.

    2015-09-07

    Achieving controllable coupling of dopants in silicon is crucial for operating donor-based qubit devices, but it is difficult because of the small size of donor-bound electron wavefunctions. Here, we report the characterization of a quantum dot coupled to a localized electronic state and present evidence of controllable coupling between the quantum dot and the localized state. A set of measurements of transport through the device enable the determination that the most likely location of the localized state is consistent with a location in the quantum well near the edge of the quantum dot. Our results are consistent with a gate-voltage controllable tunnel coupling, which is an important building block for hybrid donor and gate-defined quantum dot devices.

  5. Laboratory and genetic assessment of iron deficiency in blood donors.

    PubMed

    Kiss, Joseph E

    2015-03-01

    More than 9 million individuals donate blood annually in the United States. Between 200 and 250 mg of iron is removed with each whole blood donation, reflecting losses from the hemoglobin in red blood cells. Replenishment of iron stores takes many months, leading to a high rate of iron depletion. In an effort to better identify and prevent iron deficiency, blood collection centers are now considering various strategies to manage donor iron loss. This article highlights laboratory and genetic tests to assess the iron status of blood donors and their applicability as screening tests for blood donation.

  6. Optical hyperpolarization of nitrogen donor spins in bulk diamond

    NASA Astrophysics Data System (ADS)

    Loretz, M.; Takahashi, H.; Segawa, T. F.; Boss, J. M.; Degen, C. L.

    2017-02-01

    We report hyperpolarization of the electronic spins associated with substitutional nitrogen defects in bulk diamond crystals. Hyperpolarization is achieved by optical pumping of nitrogen vacancy centers followed by rapid cross relaxation at the energy level matching condition in a 51 mT bias field. The maximum observed donor spin polarization is 0.9 % , corresponding to an enhancement of 25 compared to the thermal Boltzmann polarization. A further accumulation of polarization is impeded by an anomalous optical saturation effect that we attribute to charge state conversion processes. Hyperpolarized nitrogen donors may form a useful resource for increasing the efficiency of diamond-based dynamic nuclear polarization devices.

  7. Anomalous impurity segregation and local bonding fluctuation in l-Si.

    PubMed

    Fisicaro, G; Huet, K; Negru, R; Hackenberg, M; Pichler, P; Taleb, N; La Magna, A

    2013-03-15

    Anomalous impurity redistribution after a laser irradiation process in group-IV elements has been reported in numerous papers. In this Letter, we correlate this still unexplained behavior with the peculiar bonding character of the liquid state of group-IV semiconductors. Analyzing the B-Si system in a wide range of experimental conditions we demonstrate that this phenomenon derives from the non-Fickian diffusion transport of B in l-Si. The proposed diffusion model relies on the balance between two impurity states in different bonding configurations: one migrating at higher diffusivity than the other. This microscopic mechanism explains the anomalous B segregation, whereas accurate comparisons between experimental chemical profiles and simulation results validate the model.

  8. Effects of vorticity and impurity on NMR relaxation rate in chiral p-wave superconductors

    NASA Astrophysics Data System (ADS)

    Tanaka, Kenta K.; Ichioka, Masanori; Onari, Seiichiro

    2016-11-01

    In order to study site-selective NMR in chiral p-wave superconductors, we calculate local nuclear relaxation rate T1-1 in the vortex lattice state by Eilenberger theory with and without non-magnetic impurity scattering in the Born limit and unitary limit. The local T1-1 in the NMR resonance line shape is different between two chiral states p±, depending on whether the chirality is parallel or anti-parallel to the vorticity. In the p--wave, anomalous suppression of local T1-1 occurs around the vortex core due to the negative coherence term coming from odd-frequency s-wave Cooper pair induced around the vortex. We especially examine the site dependence of the anomalous suppression of local T1-1, including the applied magnetic field dependence and the impurity effects.

  9. 40 CFR 158.340 - Discussion of formation of impurities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... require an expanded discussion of information on impurities: (1) From other possible chemical reactions... why they may be present. The discussion should be based on established chemical theory and on what the... range of levels) of these impurities. (iii) The intended reactions and side reactions which may occur...

  10. 19 CFR 158.13 - Allowance for moisture and impurities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 2 2013-04-01 2013-04-01 false Allowance for moisture and impurities. 158.13... EXPORTED Damaged or Defective Merchandise § 158.13 Allowance for moisture and impurities. (a) Application... section 507, Tariff Act of 1930, as amended (19 U.S.C. 1507), for all detectable moisture and...

  11. 19 CFR 158.13 - Allowance for moisture and impurities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Allowance for moisture and impurities. 158.13... EXPORTED Damaged or Defective Merchandise § 158.13 Allowance for moisture and impurities. (a) Application... section 507, Tariff Act of 1930, as amended (19 U.S.C. 1507), for all detectable moisture and...

  12. 19 CFR 158.13 - Allowance for moisture and impurities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Allowance for moisture and impurities. 158.13... EXPORTED Damaged or Defective Merchandise § 158.13 Allowance for moisture and impurities. (a) Application... section 507, Tariff Act of 1930, as amended (19 U.S.C. 1507), for all detectable moisture and...

  13. 19 CFR 158.13 - Allowance for moisture and impurities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Allowance for moisture and impurities. 158.13... EXPORTED Damaged or Defective Merchandise § 158.13 Allowance for moisture and impurities. (a) Application... section 507, Tariff Act of 1930, as amended (19 U.S.C. 1507), for all detectable moisture and...

  14. 19 CFR 158.13 - Allowance for moisture and impurities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Allowance for moisture and impurities. 158.13... EXPORTED Damaged or Defective Merchandise § 158.13 Allowance for moisture and impurities. (a) Application... section 507, Tariff Act of 1930, as amended (19 U.S.C. 1507), for all detectable moisture and...

  15. Impurity transport through a strongly interacting bosonic quantum gas

    SciTech Connect

    Johnson, T. H.; Clark, S. R.; Bruderer, M.; Jaksch, D.

    2011-08-15

    Using near-exact numerical simulations, we study the propagation of an impurity through a one-dimensional Bose lattice gas for varying bosonic interaction strengths and filling factors at zero temperature. The impurity is coupled to the Bose gas and confined to a separate tilted lattice. The precise nature of the transport of the impurity is specific to the excitation spectrum of the Bose gas, which allows one to measure properties of the Bose gas nondestructively, in principle, by observing the impurity; here we focus on the spatial and momentum distributions of the impurity as well as its reduced density matrix. For instance, we show it is possible to determine whether the Bose gas is commensurately filled as well as the bandwidth and gap in its excitation spectrum. Moreover, we show that the impurity acts as a witness to the crossover of its environment from the weakly to the strongly interacting regime, i.e., from a superfluid to a Mott insulator or Tonks-Girardeau lattice gas, and the effects on the impurity in both of these strongly interacting regimes are clearly distinguishable. Finally, we find that the spatial coherence of the impurity is related to its propagation through the Bose gas.

  16. Amphiphilic NO-donor antioxidants.

    PubMed

    Chegaev, Konstantin; Lazzarato, Loretta; Rolando, Barbara; Marini, Elisabetta; Lopez, Gloria V; Bertinaria, Massimo; Di Stilo, Antonella; Fruttero, Roberta; Gasco, Alberto

    2007-02-01

    Models of amphiphilic NO-donor antioxidants 24-26 were designed and synthesized. The products were obtained by linking a lipophilic tail (C(6), C(8), C(10)) with a polar head constituted by the 2,6-dimethoxyphenol antioxidant joined to the NO-donor 3-furoxancarboxamide substructure through a bridge containing a quaternary ammonium group. Compound 23, containing the shortest C(2)-alkyl chain, was also studied as a reference. The antioxidant properties (TBARS and LDL oxidation assays) and the vasodilator properties of the compounds were studied in vitro. The ability of these products to interact with phospholipid vesicles was also investigated by NMR techniques. The results indicate that both activities are modulated by the ability of the compounds to accumulate on phospholipid layers.

  17. Si in GaN -- On the nature of the background donor

    SciTech Connect

    Wetzel, C.; Chen, A.L.; Suski, T.; Ager, J.W. III; Walukiewicz, W.

    1996-08-01

    A characterization of the Si impurity in GaN is performed by Raman spectroscopy. Applying hydrostatic pressure up to 25 GPa the authors study the behavior of the LO phonon-plasmon mode in a series of high mobility Si doped GaN films. In contrast to earlier results on unintentionally doped bulk GaN crystals no freeze out of the free carriers could be observed in Si doped samples. The authors find that Si is a shallow hydrogenic donor throughout the pressure range studied. This result positively excludes Si incorporation as a dominant source of free electrons in previously studied bulk GaN samples.

  18. 21 CFR 630.6 - Donor notification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Donor notification. 630.6 Section 630.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL REQUIREMENTS FOR BLOOD, BLOOD COMPONENTS, AND BLOOD DERIVATIVES § 630.6 Donor notification. (a) Notification of donors. You, an...

  19. The Mg impurity in nitride alloys

    SciTech Connect

    Zvanut, M. E.; Willoughby, W. R.; Sunay, U. R.; Koleske, D. D.; Allerman, A. A.; Wang, Ke; Araki, Tsutomu; Nanishi, Yasushi

    2014-02-21

    Although several magnetic resonance studies address the Mg acceptor in GaN, there are few reports on Mg doping in the alloys, where hole production depends strongly on the Al or In content. Our electron paramagnetic resonance (EPR) measurements of the p-type alloys suggest that the Mg impurity retains the axial symmetry, characteristic of a p-type dopant in both alloys; however, In and Al produce additional, different characteristics of the acceptor. In InGaN, the behavior is consistent with a lowering of the acceptor level and increasing hole density as In concentration increases. For AlGaN, the amount of neutral Mg decreases with increasing Al content, which is attributed to different kinetics of hydrogen diffusion thought to occur in samples with higher Al mole fraction.

  20. Light-absorbing impurities in Arctic snow

    NASA Astrophysics Data System (ADS)

    Doherty, S. J.; Warren, S. G.; Grenfell, T. C.; Clarke, A. D.; Brandt, R. E.

    2010-08-01

    Absorption of radiation by ice is extremely weak at visible and near-ultraviolet wavelengths, so small amounts of light-absorbing impurities in snow can dominate the absorption of solar radiation at these wavelengths, reducing the albedo relative to that of pure snow, contributing to the surface energy budget and leading to earlier snowmelt. In this study Arctic snow is surveyed for its content of light-absorbing impurities, expanding and updating the 1983-1984 survey of Clarke and Noone. Samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean during 2005-2009, on tundra, glaciers, ice caps, sea ice, frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack is accessible for sampling. Sampling was carried out in summer on the Greenland ice sheet and on the Arctic Ocean, of melting glacier snow and sea ice as well as cold snow. About 1200 snow samples have been analyzed for this study. The snow is melted and filtered; the filters are analyzed in a specially designed spectrophotometer system to infer the concentration of black carbon (BC), the fraction of absorption due to non-BC light-absorbing constituents and the absorption Ångstrom exponent of all particles. The reduction of snow albedo is primarily due to BC, but other impurities, principally brown (organic) carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. The meltwater from selected snow samples was saved for chemical analysis to identify sources of the impurities. Median BC amounts in surface snow are as follows (nanograms of carbon per gram of snow): Greenland 3, Arctic Ocean snow 7, melting sea ice 8, Arctic Canada 8, Subarctic Canada 14, Svalbard 13, Northern Norway 21, Western Arctic Russia 26, Northeastern Siberia 17. Concentrations are more variable in the European Arctic than in Arctic Canada or the Arctic Ocean, probably because of the proximity to BC sources. Individual