Science.gov

Sample records for donor impurity states

  1. Ground state energy and wave function of an off-centre donor in spherical core/shell nanostructures: Dielectric mismatch and impurity position effects

    NASA Astrophysics Data System (ADS)

    Ibral, Asmaa; Zouitine, Asmae; Assaid, El Mahdi; Feddi, El Mustapha; Dujardin, Francis

    2014-09-01

    Ground state energy and wave function of a hydrogen-like off-centre donor impurity, confined anywhere in a ZnS/CdSe spherical core/shell nanostructure are determined in the framework of the envelope function approximation. Conduction band-edge alignment between core and shell of nanostructure is described by a finite height barrier. Dielectric constant mismatch at the surface where core and shell materials meet is taken into account. Electron effective mass mismatch at the inner surface between core and shell is considered. A trial wave function where coulomb attraction between electron and off-centre ionized donor is used to calculate ground state energy via the Ritz variational principle. The numerical approach developed enables access to the dependence of binding energy, coulomb correlation parameter, spatial extension and radial probability density with respect to core radius, shell radius and impurity position inside ZnS/CdSe core/shell nanostructure.

  2. Binding energy of the ground and first few excited states of hydrogenic donor impurity in a rectangular GaAs quantum dot in the presence of electric field

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Kang, Yun; Li, Xian-Li

    2014-12-01

    Within the quasi-one-dimensional effective potential model and effective mass approximation, we calculate the ground and the first 9 excited-state binding energies of a hydrogenic donor impurity in a rectangular quantum dot (RQD) in the presence of electric field. The analytical form of the quasi-one-dimensional effective potential replacing the three-dimensional Coulomb potential in our model is derived by Fourier transforms. We discuss detailedly dependence of the binding energies on the impurity positions and electric fields. For the ground-state binding energy, our results qualitatively agree with that of Mendoza et al. (2005) in which they only calculated the ground-state binding energies in cubic quantum dots by variational method. However, for first 9 excited-state binding energies, such dependence has complex manner since there are two or three peaks in the electronic probability density distribution curves. The strengths and positions of these peaks in RQD affect the interaction potential between electron and impurity, which appears to be the critical control on the binding energies of impurity. The applied electric field pushes the positions of these peaks downwards, and the strengths of peaks located at the upper half of RQD increase while the strengths of lower peaks firstly decrease, then increase with increasing electric field. The high peak strength can lead to increase of the binding energy while the large distance between the position of peak and impurity center results in reduce of the energy, which is an interesting competition. This competition is more obvious for excited-state binding energies of off-central impurity.

  3. The effects of the electric and intense laser field on the binding energies of donor impurity states (1s and 2p±) and optical absorption between the related states in an asymmetric parabolic quantum well

    NASA Astrophysics Data System (ADS)

    Kasapoglu, E.; Sakiroglu, S.; Sökmen, I.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.

    2016-10-01

    We have calculated the effects of electric and intense laser fields on the binding energies of the ground and some excited states of conduction electrons coupled to shallow donor impurities as well as the total optical absorption coefficient for transitions between 1s and 2p± electron-impurity states in a asymmetric parabolic GaAs/Ga1-x AlxAs quantum well. The binding energies were obtained using the effective-mass approximation within a variational scheme. Total absorption coefficient (linear and nonlinear absorption coefficient) for the transitions between any two impurity states were calculated from first- and third-order dielectric susceptibilities derived within a perturbation expansion for the density matrix formalism. Our results show that the effects of the electric field, intense laser field, and the impurity location on the binding energy of 1s-impurity state are more pronounced compared with other impurity states. If the well center is changed to be Lc<0 (Lc>0), the effective well width decreases (increases), and thus we can obtain the red or blue shift in the resonant peak position of the absorption coefficient by changing the intensities of the electric and non-resonant intense laser field as well as dimensions of the well and impurity positions.

  4. Tight-Binding Description of Impurity States in Semiconductors

    ERIC Educational Resources Information Center

    Dominguez-Adame, F.

    2012-01-01

    Introductory textbooks in solid state physics usually present the hydrogenic impurity model to calculate the energy of carriers bound to donors or acceptors in semiconductors. This model treats the pure semiconductor as a homogeneous medium and the impurity is represented as a fixed point charge. This approach is only valid for shallow impurities…

  5. Optical coefficients in a semiconductor quantum ring: Electric field and donor impurity effects

    NASA Astrophysics Data System (ADS)

    Duque, C. M.; Acosta, Ruben E.; Morales, A. L.; Mora-Ramos, M. E.; Restrepo, R. L.; Ojeda, J. H.; Kasapoglu, E.; Duque, C. A.

    2016-10-01

    The electron states in a two-dimensional quantum dot ring are calculated in the presence of a donor impurity atom under the effective mass and parabolic band approximations. The effect of an externally applied electric field is also taken into account. The wavefunctions are obtained via the exact diagonalization of the problem Hamiltonian using a 2D expansion within the adiabatic approximation. The impurity-related optical response is analyzed via the optical absorption, relative refractive index change and the second harmonics generation. The dependencies of the electron states and these optical coefficients with the changes in the configuration of the quantum ring system are discussed in detail.

  6. Rashba spin splitting in quantum nanowires in the presence of hydrogenic donor impurity

    NASA Astrophysics Data System (ADS)

    Safaei, Y.; Davatolhagh, S.; Golshan, M. M.

    2013-12-01

    The electronic subband states in the presence of hydrogenic donor impurity in quantum nanowires at the interface of semiconductor heterostructures devoid of structural inversion symmetry, are modeled and described in terms of a quasi-one-dimensional hydrogen atom with Rashba spin-orbit coupling. The energy levels and the spin-dependent subband states of the corresponding one-electron Schrodinger equation, are obtained using a two-step analytic solution as a function of the width L of the nanowire and the strength of the Rashba spin-orbit coupling α. The results thus obtained are checked against purely perturbative calculations in the limit of small spin-orbit coupling. In particular, it is found that the level splitting in a suitable range of the control parameters, L and α, results in spin-dependent electronic states of negative energy (bound states) as well as positive energy (scattering states). This novel result is of considerable interest for the generation of spin currents in the presence of hydrogenic donor impurity, as electrons in the scattering states can contribute to a spin current while those in the bound states tend to remain bound to the hydrogenic impurity.

  7. Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center

    NASA Astrophysics Data System (ADS)

    Hoyos, Jaime H.; Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.

    2016-03-01

    We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.

  8. Radiative decay rates of impurity states in semiconductor nanocrystals

    SciTech Connect

    Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2015-10-15

    Doped semiconductor nanocrystals is a versatile material base for contemporary photonics and optoelectronics devices. Here, for the first time to the best of our knowledge, we theoretically calculate the radiative decay rates of the lowest-energy states of donor impurity in spherical nanocrystals made of four widely used semiconductors: ZnS, CdSe, Ge, and GaAs. The decay rates were shown to vary significantly with the nanocrystal radius, increasing by almost three orders of magnitude when the radius is reduced from 15 to 5 nm. Our results suggest that spontaneous emission may dominate the decay of impurity states at low temperatures, and should be taken into account in the design of advanced materials and devices based on doped semiconductor nanocrystals.

  9. Bound States in Boson Impurity Models

    NASA Astrophysics Data System (ADS)

    Shi, Tao; Wu, Ying-Hai; González-Tudela, A.; Cirac, J. I.

    2016-04-01

    The formation of bound states involving multiple particles underlies many interesting quantum physical phenomena, such as Efimov physics or superconductivity. In this work, we show the existence of an infinite number of such states for some boson impurity models. They describe free bosons coupled to an impurity and include some of the most representative models in quantum optics. We also propose a family of wave functions to describe the bound states and verify that it accurately characterizes all parameter regimes by comparing its predictions with exact numerical calculations for a one-dimensional tight-binding Hamiltonian. For that model, we also analyze the nature of the bound states by studying the scaling relations of physical quantities, such as the ground-state energy and localization length, and find a nonanalytical behavior as a function of the coupling strength. Finally, we discuss how to test our theoretical predictions in experimental platforms, such as photonic crystal structures and cold atoms in optical lattices.

  10. Computation of the Stark effect in P impurity states in silicon

    NASA Astrophysics Data System (ADS)

    Debernardi, A.; Baldereschi, A.; Fanciulli, M.

    2006-07-01

    We compute within the effective-mass theory and without adjustable parameters the Stark effect for shallow P donors in Si with anisotropic band structure. Valley-orbit coupling is taken into account in a nonperturbative way and scattering effects of the impurity core are included to properly describe low-lying impurity states. The ground-state energy slightly decreases with increasing electric field up to a critical value Ecr˜25keV/cm , at which the donor can be ionized by tunneling due to a field-induced mixing of the “ 1s -like” singlet ground state with a “ 2p0 -like” excited state in zero field. The resulting ground-state wave function at high field extends significantly outside the potential barrier surrounding the impurity. Calculations of the hyperfine splitting and of the A -shell superhyperfine coupling constants as a function of the electric field complete the work.

  11. Spin relaxation via exchange with donor impurity-bound electrons

    NASA Astrophysics Data System (ADS)

    Appelbaum, Ian

    In the Bir-Aronov-Pikus depolarization process affecting conduction electrons in p-type cubic semiconductors, spin relaxation is driven by exchange with short-lived valence band hole states. We have identified an analogous spin relaxation mechanism in nominally undoped silicon at low temperatures, when many electrons are bound to dilute dopant ion potentials. Inelastic scattering with externally injected conduction electrons accelerated by electric fields can excite transitions into highly spin-orbit-mixed bound excited states, driving strong spin relaxation of the conduction electrons via exchange interaction. We reveal the consequences of this spin depolarization mechanism both below and above the impact ionization threshold, where conventional charge and spin transport are restored. Based upon: Lan Qing, Jing Li, Ian Appelbaum, and Hanan Dery, Phys Rev. B 91, 241405(R) (2015). We acknowledge support from NSF, DTRA, and ONR.

  12. Dynamics of nonequilibrium electrons on neutral center states of interstitial magnesium donors in silicon

    NASA Astrophysics Data System (ADS)

    Pavlov, S. G.; Deßmann, N.; Pohl, A.; Shuman, V. B.; Portsel, L. M.; Lodygin, A. N.; Astrov, Yu. A.; Winnerl, S.; Schneider, H.; Stavrias, N.; van der Meer, A. F. G.; Tsyplenkov, V. V.; Kovalevsky, K. A.; Zhukavin, R. Kh.; Shastin, V. N.; Abrosimov, N. V.; Hübers, H.-W.

    2016-08-01

    Subnanosecond dynamics of optically excited electrons bound to excited states of neutral magnesium donor centers in silicon has been investigated. Lifetimes of nonequilibrium electrons have been derived from the decay of the differential transmission at photon energies matching the intracenter and the impurity-to-conduction band transitions. In contrast to hydrogenlike shallow donors in silicon, significantly longer lifetimes have been observed. This indicates weaker two-phonon and off-resonant interactions dominate the relaxation processes in contrast to the single-intervalley-phonon-assisted impurity-phonon interactions in the case of shallow donors in silicon.

  13. Laser driven impurity states in two-dimensional quantum dots and quantum rings

    NASA Astrophysics Data System (ADS)

    Laroze, D.; Barseghyan, M.; Radu, A.; Kirakosyan, A. A.

    2016-11-01

    The hydrogenic donor impurity states in two-dimensional GaAs/Ga0.7Al0.3As quantum dot and quantum ring have been investigated under the action of intense laser field. A laser dressed effect on both electron confining and electron-impurity Coulomb interaction potentials has been considered. The single electron energy spectrum and wave functions have been found using the effective mass approximation and exact diagonalization technique. The accidental degeneracy of the impurity states have been observed for different positions of the impurity and versus values of the laser field parameter. The obtained theoretical results indicate a novel opportunity to tune the performance of quantum dots and quantum rings and to control their specific properties by means of laser field.

  14. Donor states in inverse opals

    SciTech Connect

    Mahan, G. D.

    2014-09-21

    We calculate the binding energy of an electron bound to a donor in a semiconductor inverse opal. Inverse opals have two kinds of cavities, which we call octahedral and tetrahedral, according to their group symmetry. We put the donor in the center of each of these two cavities and obtain the binding energy. The binding energies become very large when the inverse opal is made from templates with small spheres. For spheres less than 50 nm in diameter, the donor binding can increase to several times its unconfined value. Then electrons become tightly bound to the donor and are unlikely to be thermally activated to the semiconductor conduction band. This conclusion suggests that inverse opals will be poor conductors.

  15. Donor states in inverse opals

    NASA Astrophysics Data System (ADS)

    Mahan, G. D.

    2014-09-01

    We calculate the binding energy of an electron bound to a donor in a semiconductor inverse opal. Inverse opals have two kinds of cavities, which we call octahedral and tetrahedral, according to their group symmetry. We put the donor in the center of each of these two cavities and obtain the binding energy. The binding energies become very large when the inverse opal is made from templates with small spheres. For spheres less than 50 nm in diameter, the donor binding can increase to several times its unconfined value. Then electrons become tightly bound to the donor and are unlikely to be thermally activated to the semiconductor conduction band. This conclusion suggests that inverse opals will be poor conductors.

  16. Topological state engineering by potential impurities on chiral superconductors

    NASA Astrophysics Data System (ADS)

    Kaladzhyan, Vardan; Röntynen, Joel; Simon, Pascal; Ojanen, Teemu

    2016-08-01

    In this work we consider the influence of potential impurities deposited on top of two-dimensional chiral superconductors. As discovered recently, magnetic impurity lattices on an s -wave superconductor may give rise to a rich topological phase diagram. We show that a similar mechanism takes place in chiral superconductors decorated by nonmagnetic impurities, thus avoiding the delicate issue of magnetic ordering of adatoms. We illustrate the method by presenting the theory of potential impurity lattices embedded on chiral p -wave superconductors. While a prerequisite for the topological state engineering is a chiral superconductor, the proposed procedure results in vistas of nontrivial descendant phases with different Chern numbers.

  17. Impurity effect on surface states of Bi (111) ultrathin films

    NASA Astrophysics Data System (ADS)

    Zhu, Kai; Tian, Dai; Wu, Lin; Xu, Jianli; Jin, Xiaofeng

    2016-08-01

    The surface impurity effect on the surface-state conductivity and weak antilocalization (WAL) effect has been investigated in epitaxial Bi (111) films by magnetotransport measurements at low temperatures. The surface-state conductivity is significantly reduced by the surface impurities of Cu, Fe, and Co. The magnetotransport data demonstrate that the observed WAL is robust against deposition of nonmagnetic impurities, but it is quenched by the deposition of magnetic impurities which break the time reversal symmetry. Our results help to shed light on the effect of surface impurities on the electron and spin transport properties of a 2D surface electron systems. Project supported by the National Basic Research Program of China (Grants Nos. 2015CB921400 and 2011CB921802) and the National Natural Science Foundation of China (Grants Nos. 11374057, 11434003, and 11421404).

  18. The effect of hydrostatic pressure on the binding energy and diamagnetic susceptibility of a laser dressed donor impurity in a GaAs/GaAlAs nanowire superlattice

    NASA Astrophysics Data System (ADS)

    Safarpour, Gh.; Jamasb, A.; Dialameh, M.; Yazdanpanahi, S.

    2014-12-01

    In this paper the effects of hydrostatic pressure and laser radiation on the binding energy and diamagnetic susceptibility of an off-center hydrogenic donor impurity in a nanowire superlattice (NWSL) are studied. The energy eigenvalues and corresponding wave functions of ground and first excited states are numerically computed using finite difference method for a NWSL with circular cross-section which involved an array of spherical quantum dots (QDs). The numerical results show that oscillatory behaviors appear in binding energies and diamagnetic susceptibilities of ground and first excited states as impurity shifts away from center of QDs. Maximum values of ground state binding energy (first excited state binding energy) occur when impurity is located at the center of QDs (at the center of barriers). Additionally, binding energies of ground and first excited states shift towards higher (lower) energies as pressure (laser radiation) increases. An opposite behavior is observed for absolute value of diamagnetic susceptibility as pressure or laser radiation increases. Also, as the QDs' volume increases the binding energies (I) decrease or (II) increase, reach maximum values and then decrease; which strongly depend on the position of impurity.

  19. Local Impurity States in Antiferromagnetic Cr-ALLOYS

    NASA Astrophysics Data System (ADS)

    Galkin, V. Yu.

    The concept of local impurity states within the energy gap of a spin-density-wave (SDW) system is introduced. It is shown that resonant scattering of conduction electrons at these states may lead to greatly enhanced low-temperature resistivity. This impurity resonance scattering (IRS) model is employed to explain the variation of residual resistivity and temperature dependence of resistivity at low temperatures of Cr-Fe and Cr-Si systems on V and Mn doping and application of high pressure.

  20. Level Anticrossing of Impurity States in Semiconductor Nanocrystals

    PubMed Central

    Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Turkov, Vadim K.; Ponomareva, Irina O.; Leonov, Mikhail Yu.; Perova, Tatiana S.; Berwick, Kevin; Baranov, Alexander V.; Fedorov, Anatoly V.

    2014-01-01

    The size dependence of the quantized energies of elementary excitations is an essential feature of quantum nanostructures, underlying most of their applications in science and technology. Here we report on a fundamental property of impurity states in semiconductor nanocrystals that appears to have been overlooked—the anticrossing of energy levels exhibiting different size dependencies. We show that this property is inherent to the energy spectra of charge carriers whose spatial motion is simultaneously affected by the Coulomb potential of the impurity ion and the confining potential of the nanocrystal. The coupling of impurity states, which leads to the anticrossing, can be induced by interactions with elementary excitations residing inside the nanocrystal or an external electromagnetic field. We formulate physical conditions that allow a straightforward interpretation of level anticrossings in the nanocrystal energy spectrum and an accurate estimation of the states' coupling strength. PMID:25369911

  1. Gettering of donor impurities by V in GaAs and the growth of semi-insulating crystals

    NASA Technical Reports Server (NTRS)

    Ko, K. Y.; Lagowski, J.; Gatos, H. C.

    1989-01-01

    Vanadium added to the GaAs melt getters shallow donor impurities (Si and S) and decreases their concentration in the grown crystals. This gettering is driven by chemical reactions in the melt rather than in the solid. Employing V gettering, reproducibly semi-insulating GaAs were grown by horizontal Bridgman and liquid-encapsulated Czochralski techniques, although V did not introduce any midgap energy levels. The compensation mechanism in these crystals was controlled by the balance between the native midgap donor EL2 and residual shallow acceptors. Vanadium gettering contributed to the reduction of the concentration of shallow donors below the concentration of acceptors. The present findings clarify the long-standing controversy on the role of V in achieving semi-insulating GaAs.

  2. Universal impurity-induced bound state in topological superfluids.

    PubMed

    Hu, Hui; Jiang, Lei; Pu, Han; Chen, Yan; Liu, Xia-Ji

    2013-01-11

    We predict a universal midgap bound state in topological superfluids, induced by either nonmagnetic or magnetic impurities in the strong scattering limit. This universal state is similar to the lowest-energy Caroli-de Gennes-Martricon bound state in a vortex core, but is bound to localized impurities. We argue that the observation of such a universal bound state can be a clear signature for identifying topological superfluids. We theoretically examine our argument for a spin-orbit coupled ultracold atomic Fermi gas trapped in a two-dimensional harmonic potential by performing extensive self-consistent calculations within the mean-field Bogoliubov-de Gennes theory. A realistic scenario for observing a universal bound state in ultracold 40K atoms is proposed.

  3. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure.

    PubMed

    Barseghyan, Manuk G; Restrepo, Ricardo L; Mora-Ramos, Miguel E; Kirakosyan, Albert A; Duque, Carlos A

    2012-01-01

    : The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  4. Local Density of States for Single Impurity in Graphene

    NASA Astrophysics Data System (ADS)

    Yang, Ling

    2011-12-01

    Graphene consists of an atom-thick layer of carbon atoms arranged in a honeycomb lattice, and its low-energy electronic excitations are well described as massless Dirac fermions with spin half and an additional pseudospin degree of freedom. Impurities in graphene can have a significant effect on the local electronic structure of graphene when the Fermi level is near the Dirac point. We study the local electronic spectra and real-space and k-space local density of state (LDOS) maps of graphene with different impurities (diagonal and non-diagonal impurity potential) such as vacancies, substitutional impurities, and adatoms. In the presence of a perpendicular magnetic field, we use a linearization approximation for the energy dispersion and employ a T-matrix formalism to calculate the Green's function. We investigate the effect of an external magnetic field on the Friedel oscillations and impurity-induced resonant states. Using a multimode description for an scanning tunneling microscope (STM) tip, we calculate STM currents for the substitutional and vacancies case and find that strong resonances in the LDOS at finite energies lead to the presence of steps in the STM current and suppression of the Fano factor. We also describe in detail the theory of scanning tunneling spectroscopy in graphene in the presence of adatoms, magnetic or not, with localized orbitals of arbitrary symmetry, corresponding to any given angular momentum state.We show that quantum interference effects which are naturally inbuilt in the honeycomb lattice, in combination with the orbital symmetry of the localized state, allow scanning tunneling probes to characterize adatoms and defects in graphene.

  5. Impurity-induced bound states in superconductors with topological order.

    PubMed

    Wang, Fei; Liu, Qin; Ma, Tianxing; Jiang, Xunya

    2012-11-14

    The study of classical spins in topological insulators (Liu and Ma 2009 Phys. Rev. B 80 115216) is generalized to topological superconductors. Based on the characteristic features of the so-called F-function, the Bogoliubov-de Gennes Hamiltonian for superconductors is classified to positive, negative, and zero 'gap' categories for topologically trivial and nontrivial phases of a topological superconductor as well as a BCS superconductor, respectively. It is found that the F-function determines directly the presence or absence of localized excited states, induced by bulk classical spins and nonmagnetic impurities, in the superconducting gap and their persistence with respect to impurity strength. Our results provide an alternative way to identify topologically insulating and superconducting phases in experiments without resorting to the surface properties.

  6. Photoluminescence study on heavily donor and acceptor impurity doped GaAs layers grown by molecular-beam epitaxy

    SciTech Connect

    Islam, A. Z. M. Touhidul; Jung, D. W.; Noh, J. P.; Otsuka, N.

    2009-05-01

    Gallium arsenide layers doped with high concentrations of Be and Si by molecular-beam epitaxy are studied by photoluminescence (PL) spectroscopy. PL peaks from doped layers are observed at energies significantly lower than the band-gap of GaAs. The growth and doping conditions suggest that the origin of these peaks is different from that of low energy PL peaks, which were observed in earlier studies and attributed to impurity-vacancy complexes. The dependence of the peak energy on the temperature and the annealing is found to differ from that of the peaks attributed to impurity-vacancy complexes. On the basis of these observations, it is suggested that the low energy peaks are attributed to short range ordered arrangements of impurity ions. This possibility is examined by calculations of the PL spectra with models of pairs of acceptor and donor delta-doped layers and PL experiments of a superlattice of pairs of Be and Si delta-doped layers.

  7. Bright Solid-State Emission of Disilane-Bridged Donor-Acceptor-Donor and Acceptor-Donor-Acceptor Chromophores.

    PubMed

    Shimada, Masaki; Tsuchiya, Mizuho; Sakamoto, Ryota; Yamanoi, Yoshinori; Nishibori, Eiji; Sugimoto, Kunihisa; Nishihara, Hiroshi

    2016-02-24

    The development of disilane-bridged donor-acceptor-donor (D-Si-Si-A-Si-Si-D) and acceptor-donor-acceptor (A-Si-Si-D-Si-Si-A) compounds is described. Both types of compound showed strong emission (λem =ca. 500 and ca. 400 nm, respectively) in the solid state with high quantum yields (Φ: up to 0.85). Compound 4 exhibited aggregation-induced emission enhancement in solution. X-ray diffraction revealed that the crystal structures of 2, 4, and 12 had no intermolecular π-π interactions to suppress the nonradiative transition in the solid state.

  8. Understanding Philanthropic Motivations of Northeast State Community College Donors

    ERIC Educational Resources Information Center

    Cook, Heather J.

    2012-01-01

    At Northeast State Community College (NeSCC) nearly 70% of students need some form of financial aid to attend. State support is flattening or decreasing and the gap is filled by private donors' support (Northeast State Community College, 2011). Hundreds of donors have made significant contributions to aid in the education of those in the…

  9. Direct spectroscopic observation of a shallow hydrogenlike donor state in insulating SrTiO3.

    PubMed

    Salman, Z; Prokscha, T; Amato, A; Morenzoni, E; Scheuermann, R; Sedlak, K; Suter, A

    2014-10-10

    We present a direct spectroscopic observation of a shallow hydrogenlike muonium state in SrTiO(3) which confirms the theoretical prediction that interstitial hydrogen may act as a shallow donor in this material. The formation of this muonium state is temperature dependent and appears below ∼ 70K. From the temperature dependence we estimate an activation energy of ∼ 50 meV in the bulk and ∼ 23 meV near the free surface. The field and directional dependence of the muonium precession frequencies further supports the shallow impurity state with a rare example of a fully anisotropic hyperfine tensor. From these measurements we determine the strength of the hyperfine interaction and propose that the muon occupies an interstitial site near the face of the oxygen octahedron in SrTiO(3). The observed shallow donor state provides new insight for tailoring the electronic and optical properties of SrTiO(3)-based oxide interface systems.

  10. Density of states in gapped superconductors with pairing-potential impurities

    NASA Astrophysics Data System (ADS)

    Bespalov, Anton; Houzet, Manuel; Meyer, Julia S.; Nazarov, Yuli V.

    2016-03-01

    We study the density of states in disordered s -wave superconductors with a small gap anisotropy. We consider disorder in the form of common nonmagnetic scatterers and pairing-potential impurities, which interact with electrons via an electric potential and a local distortion of the superconducting gap. Using quasiclassical Green functions, we determine the bound-state spectrum at a single impurity and the density of states at a finite concentration of impurities. We show that, if the gap is isotropic, an isolated impurity with suppressed pairing supports an infinite number of Andreev states. With growing impurity concentration, the energy-dependent density of states evolves from a sharp gap edge with an impurity band below it to a smeared BCS singularity in the so-called universal limit. Within one spin sector, pairing-potential impurities and weak spin-polarized magnetic impurities have essentially the same effect on the density of states. We note that, if a gap anisotropy is present, the density of states becomes sensitive to ordinary potential disorder, and the existence of Andreev states localized at pairing-potential impurities requires special conditions. An unusual feature related to the anisotropy is a nonmonotonic dependence of the gap edge smearing on impurity concentration.

  11. Nonmagnetic impurity in the spin-gap state

    SciTech Connect

    Nagaosa, N.; Ng, T.

    1995-06-01

    The effects of nonmagnetic strong scatterers (unitary limit) on magnetic and transport properties are studied for resonating-valence-bond states in both the slave-boson and slave-fermion mean-field theories with the gap for the triplet excitations. In the {ital d}-wave pairing state of the slave-boson mean-field theory in two dimensions, there is no true gap for spinons, but the Anderson localization occurs, which leads to the local moment when the repulsive interaction is taken into account. In the slave-fermion mean-field theory, local moments are found bound to nonmagnetic impurities as a result of (staggered) gauge interaction. However, in both theories, localization of spinon does not appear in the resistivity, which shows the classical value for the holon.

  12. Direct visualization of the N impurity state in dilute GaNAs using scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Ishida, Nobuyuki; Jo, Masafumi; Mano, Takaaki; Sakuma, Yoshiki; Noda, Takeshi; Fujita, Daisuke

    2015-10-01

    The interaction between nitrogen (N) impurity states in III-V compounds plays a key role in controlling optoelectronic properties of the host materials. Here, we use scanning tunneling microscopy to characterize the spatial distribution and electronic properties of N impurity states in dilute GaNAs. We demonstrated that the N impurity states can be directly visualized by taking empty state current images using the multipass scanning method. The N impurity states broadened over several nanometers and exhibited a highly anisotropic distribution with a bowtie-like shape on the GaAs(110) surface, which can be explained by anisotropic propagation of strain along the zigzag chains of Ga and As atoms in the {110} plane. Our experimental findings provide strong insights into a possible role of N impurity states in modifying properties of the host materials.The interaction between nitrogen (N) impurity states in III-V compounds plays a key role in controlling optoelectronic properties of the host materials. Here, we use scanning tunneling microscopy to characterize the spatial distribution and electronic properties of N impurity states in dilute GaNAs. We demonstrated that the N impurity states can be directly visualized by taking empty state current images using the multipass scanning method. The N impurity states broadened over several nanometers and exhibited a highly anisotropic distribution with a bowtie-like shape on the GaAs(110) surface, which can be explained by anisotropic propagation of strain along the zigzag chains of Ga and As atoms in the {110} plane. Our experimental findings provide strong insights into a possible role of N impurity states in modifying properties of the host materials. Electronic supplementary information (ESI) available: Identification of N impurity positions in terms of depth of depressions in the filled state topographic image. Filled state topographic images of N impurity in the fourth plane. Slight modification of topographic height

  13. Localized states of a semi-infinite zigzag graphene sheet with impurity lines

    SciTech Connect

    Cunha, A. M. C.; Ahmed, Maher Z.; Cottam, M. G.; Filho, R. N. Costa

    2014-07-07

    The localized states of a semi-infinite zigzag graphene sheet are studied using a tight-binding model that allows for the inclusion of either one or two lines of impurities. These impurity lines of atoms are placed in rows labeled as n (n=1, 2, 3, …), where n=1 is the free edge. The localized defect modes associated with these impurities are studied analytically and numerically within a tridiagonal matrix formalism. For one impurity line, the modes are analyzed according to the position of that line on the sheet, whereas the modes for two impurities are studied also according to their separation and their positions relative to the edge. When an impurity line is located at the edge (n=1), it is found that the edge states are modified. When the impurities are positioned away from an edge (n>1), additional localized modes are found to occur that may be relatively flat in their dispersion.

  14. On the entanglement of electronic states of impurity atoms in nanoparticles

    SciTech Connect

    Basharov, Askhat M; Znamenskiy, Nikolay V; Gorbachev, Valery N

    2006-08-31

    By using the derived master equations, it is shown that the decay of electronic impurities in a nanocrystal can be described as a collective relaxation of particles. A set of entangled states of impurity atoms is found, which have immunity to this relaxation. These states can be used for decoherence-free quantum processing. (quantum optics and information)

  15. Impurity shielding criteria for steady state hydrogen plasmas in the LHD, a heliotron-type device

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Kobayashi, M.; Yoshimura, S.; Tamura, N.; Yoshinuma, M.; Tanaka, K.; Suzuki, C.; Peterson, B. J.; Sakamoto, R.; Morisaki, T.; the LHD Experiment Group

    2014-07-01

    Impurity behavior has so far been investigated in steady state hydrogen plasmas in the Large Helical Device, which is a heliotron-type device and excellent for steady state operation. There was always found to be an impurity accumulation window, as observed before (Nakamura et al 2002 Plasma Phys. Control. Fusion 44 2121, Nakamura et al 2003 Nucl. Fusion 43 219). To clarify the boundary conditions, the dependences of impurity transport on edge plasma parameters are investigated with a database of steady state hydrogen discharges, and the boundary conditions for the impurity accumulation window are discussed. It is found that two different types of impurity screening effects are essential for preventing intrinsic impurities from entering the core plasma. One of them is due to positive radial electric field at the plasma edge on the low collisionality side and the other is impurity retention caused by friction force in the ergodic layer on the high collisionality side. The classification of steady state discharges on n-T space shows that the impurity behavior can be predicted by the impurity shielding criteria based on each empirical scaling.

  16. Efficient Donor Impurities in ZnO Nanorods by Polyethylene Glycol for Enhanced Optical and Glutamate Sensing Properties.

    PubMed

    Elhag, Sami; Khun, Kimleang; Khranovskyy, Volodymyr; Liu, Xianjie; Willander, Magnus; Nur, Omer

    2016-01-01

    In this paper, we show that the possibility of using polyethylene glycol (EG) as a hydrogen source and it is used to assist the hydrothermal synthesis of ZnO nanorods (ZNRs). EG doping in ZNRs has been found to significantly improve their optical and chemical sensing characteristics toward glutamate. The EG was found to have no role on the structural properties of the ZNRs. However, the x-ray photoelectron spectroscopy (XPS) suggests that the EG could induce donor impurities effect in ZnO. Photoluminescence (PL) and UV-Vis. spectra demonstrated this doping effect. Mott-Schottky analysis at the ZNRs/electrolyte interface was used to investigate the charge density for the doped ZNRs and showed comparable dependence on the used amount of EG. Moreover, the doped ZNRs were used in potentiometric measurements for glutamate for a range from 10(-6) M to 10(-3) M and the potential response of the sensor electrode was linear with a slope of 91.15 mV/decade. The wide range and high sensitivity of the modified ZNRs based glutamate biosensor is attributed to the doping effect on the ZNRs that is dictated by the EG along with the high surface area-to-volume ratio. The findings in the present study suggest new avenues to control the growth of n-ZnO nanostructures and enhance the performance of their sensing devices. PMID:26861342

  17. Efficient Donor Impurities in ZnO Nanorods by Polyethylene Glycol for Enhanced Optical and Glutamate Sensing Properties

    PubMed Central

    Elhag, Sami; Khun, Kimleang; Khranovskyy, Volodymyr; Liu, Xianjie; Willander, Magnus; Nur, Omer

    2016-01-01

    In this paper, we show that the possibility of using polyethylene glycol (EG) as a hydrogen source and it is used to assist the hydrothermal synthesis of ZnO nanorods (ZNRs). EG doping in ZNRs has been found to significantly improve their optical and chemical sensing characteristics toward glutamate. The EG was found to have no role on the structural properties of the ZNRs. However, the x-ray photoelectron spectroscopy (XPS) suggests that the EG could induce donor impurities effect in ZnO. Photoluminescence (PL) and UV-Vis. spectra demonstrated this doping effect. Mott-Schottky analysis at the ZNRs/electrolyte interface was used to investigate the charge density for the doped ZNRs and showed comparable dependence on the used amount of EG. Moreover, the doped ZNRs were used in potentiometric measurements for glutamate for a range from 10−6 M to 10−3 M and the potential response of the sensor electrode was linear with a slope of 91.15 mV/decade. The wide range and high sensitivity of the modified ZNRs based glutamate biosensor is attributed to the doping effect on the ZNRs that is dictated by the EG along with the high surface area-to-volume ratio. The findings in the present study suggest new avenues to control the growth of n-ZnO nanostructures and enhance the performance of their sensing devices. PMID:26861342

  18. Binding Energies and Linear and Nonlinear Optical Properties of a Donor Impurity in a Three-Dimensional Quantum Pseudodot

    NASA Astrophysics Data System (ADS)

    Kirak, Muharrem; Yilmaz, Sait

    2013-12-01

    A theoretical study of the electronic properties of the ground state and excited states and the linear and the third-order nonlinear optical properties (i. e., absorption coefficients and refractive indices) in a spherical GaAs pseudodot system is reported. The variational procedure has been employed in determining sublevel energy eigenvalues and their wave functions within the effective mass approximation. Our results indicate that the chemical potential of the electron gas and the minimum value of the pseudoharmonic potential have a great influence on the electrical and optical properties of hydrogenic impurity states. Also, we have found that the magnitudes of the absorption coefficient and the refractive index change of the spherical quantum dot increase for transitions between higher levels.

  19. Quasiparticle states and quantum interference induced by magnetic impurities on a two-dimensional topological superconductor.

    PubMed

    Fu, Zhen-Guo; Zhang, Ping; Wang, Zhigang; Li, Shu-Shen

    2012-04-11

    We theoretically study the effect of localized magnetic impurities on two-dimensional topological superconductor (TSC). We show that the local density of states (LDOS) can be tuned by the effective exchange field m, the chemical potential μ of TSC, and the distance Δr as well as the relative spin angle α between two impurities. The changes in Δr between two impurities alter the interference and result in significant modifications to the bonding and antibonding states. Furthermore, the bound-state spin LDOS induced by single and double magnetic impurity scattering, the quantum corrals and the quantum mirages are also discussed. Finally, we briefly compare the impurities in TSC with those in topological insulators.

  20. Long-range ferromagnetic order induced by a donor impurity band exchange in SnO{sub 2}:Er{sup 3+} nanoparticles

    SciTech Connect

    Aragón, F. H.; Coaquira, J. A. H.; Chitta, V. A.; Hidalgo, P.; Brito, H. F.

    2013-11-28

    In this work, the structural and magnetic properties of Er-doped SnO{sub 2} (SnO{sub 2}:Er) nanoparticles are reported. The SnO{sub 2}:Er nanoparticles have been synthesized by a polymer precursor method with Er content from 1.0% to 10.0%. X-ray diffraction results indicate the formation of only the rutile-type structure in all samples. The estimated mean crystallite size shows a decrease from ∼10 to ∼4 nm when the Er content is increased from 1.0% to 10.0%. The particle size values have been corroborated by transmission electron microscopy technique. The thermal dependence of the magnetization is consistent with the 3+ oxidation state of erbium ions for all samples. A strong paramagnetic-like behavior coexisting with a ferromagnetic phase has been determined for samples with Er content below 5.0%. Above this concentration, only a paramagnetic behavior has been determined. Isothermal magnetization curves are consistent with the occurrence of long-range ferromagnetic order mediated by donor electrons forming bound magnetic polarons which overlap to produce a spin-split impurity band.

  1. Cr impurity-induced electronic states in ZnTe(110) surface

    NASA Astrophysics Data System (ADS)

    Kanazawa, Ken; Nishimura, Taku; Yoshida, Shoji; Shigekawa, Hidemi; Kuroda, Shinji

    2015-08-01

    The impurity states of Cr atoms, which substituted Zn sites in the topmost layer of a p-type ZnTe(110) surface, were investigated by scanning tunneling microscopy/spectroscopy (STM/STS) and we firstly observed Cr-induced impurity states in the energy gap region of the host ZnTe including the unoccupied states by STS. Furthermore, we compared the observed energy levels and spatial distributions of the local density of states with those in the previous theoretical study [Katayama-Yoshida et al., Phys. Status Solidi A 204, 15 (2007)] and successfully identified the impurity states as the respective spin-polarized impurity states predicted by the theoretical study.

  2. Impurity effect on surface states of Bi (111) ultrathin films

    NASA Astrophysics Data System (ADS)

    Zhu, Kai; Tian, Dai; Wu, Lin; Xu, Jianli; Jin, Xiaofeng

    2016-08-01

    The surface impurity effect on the surface-state conductivity and weak antilocalization (WAL) effect has been investigated in epitaxial Bi (111) films by magnetotransport measurements at low temperatures. The surface-state conductivity is significantly reduced by the surface impurities of Cu, Fe, and Co. The magnetotransport data demonstrate that the observed WAL is robust against deposition of nonmagnetic impurities, but it is quenched by the deposition of magnetic impurities which break the time reversal symmetry. Our results help to shed light on the effect of surface impurities on the electron and spin transport properties of a 2D surface electron systems. Project supported by the National Basic Research Program of China (Grants Nos. 2015CB921400 and 2011CB921802) and the National Natural Science Foundation of China (Grants Nos. 11374057, 11434003, and 11421404).

  3. Paramagnetic state of the isolated gold impurity in silicon

    NASA Astrophysics Data System (ADS)

    Son, N. T.; Gregorkiewicz, T.; Ammerlaan, C. A. J.

    1992-11-01

    The paper reports on the observation of the electron paramagnetic resonance spectrum of the isolated substitutional gold impurity in silicon. The spectrum has orthorhombic I (C2v) symmetry and an effective spin S=1/2. It has been detected in silver-doped samples with gold being introduced as contamination of the isotope used for diffusion. Parameters of the spectrum are given and an electronic model is proposed. With the results of the current study the puzzling question concerning paramagnetism of the isolated gold impurity in silicon appears to be clarified.

  4. Tetrahedrally symmetric DX-like states of substitutional donors in GaAs and AlxGa1-xAs alloys

    NASA Astrophysics Data System (ADS)

    Chadi, D. J.

    1992-09-01

    The structural and electronic properties of Si, Ge, Sn, S, Se, and Te substitutional donors in GaAs are examined via self-consistent pseudopotential calculations. Two distinct negatively charged DX-like deep donor states are found. The first has a broken-bond atomic configuration while the second arises from a symmetric ``breathing-mode'' relaxation around the impurity. The energies of the two configurations are especially close for Sn, Se, and Te donors. Experimental data on DX centers in AlxGa1-xAs alloys are analyzed within this model.

  5. Direct spectroscopic observation of a shallow hydrogenlike donor state in insulating SrTiO3.

    PubMed

    Salman, Z; Prokscha, T; Amato, A; Morenzoni, E; Scheuermann, R; Sedlak, K; Suter, A

    2014-10-10

    We present a direct spectroscopic observation of a shallow hydrogenlike muonium state in SrTiO(3) which confirms the theoretical prediction that interstitial hydrogen may act as a shallow donor in this material. The formation of this muonium state is temperature dependent and appears below ∼ 70K. From the temperature dependence we estimate an activation energy of ∼ 50 meV in the bulk and ∼ 23 meV near the free surface. The field and directional dependence of the muonium precession frequencies further supports the shallow impurity state with a rare example of a fully anisotropic hyperfine tensor. From these measurements we determine the strength of the hyperfine interaction and propose that the muon occupies an interstitial site near the face of the oxygen octahedron in SrTiO(3). The observed shallow donor state provides new insight for tailoring the electronic and optical properties of SrTiO(3)-based oxide interface systems. PMID:25375730

  6. Effects of impurity states on exchange coupling in Fe/Fe3O4 junctions

    NASA Astrophysics Data System (ADS)

    Inoue, J.; Honda, S.; Itoh, H.; Mibu, K.; Yanagihara, H.; Kita, E.

    2012-05-01

    Exchange coupling (EC) in Fe/Fe3O4 junctions containing magnetic impurities and in-gap states at the interface is calculated using a formula obtained by a cleaved layer method. The model for EC is constructed by performing first-principles calculations of the electronic and magnetic states of Co, Mn, and Cr impurities on the Fe surface and those of in-gap states in a bulk γ-Fe2O3, which has the same lattice structure as Fe3O4 but contains Fe defects. We show that the effect of Co impurities on EC is opposite to that of Cr and Mn impurities and that in-gap states tend to cause parallel magnetization alignment of two ferromagnets. These results are attributed to the change in electronic states caused by the presence of impurities. Further, we compare calculated results with experimental ones obtained in Fe/Fe3O4 junctions and suggest that doping magnetic impurities at the interface could be a useful way to control the magnitude and sign of the EC.

  7. The beauty of impurities: Two revivals of Friedel's virtual bound-state concept

    NASA Astrophysics Data System (ADS)

    Georges, Antoine

    2016-03-01

    Jacques Friedel pioneered the theoretical study of impurities and magnetic impurities in metals. He discovered Friedel oscillations, introduced the concept of virtual bound-state, and demonstrated that the charge on the impurity is related to the scattering phase-shift at the Fermi level (Friedel sum-rule). After a brief review of some of these concepts, I describe how they proved useful in two new contexts. The first one concerns the Coulomb blockade in quantum dots, and its suppression by the Kondo effect. The second one is the dynamical mean-field theory of strong electronic correlations. xml:lang="fr"

  8. Observation of dopant-induced impurity states in bottom-up graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Pedramrazi, Zahra; Chen, Chen; Marangoni, Tomas; Cloke, Ryan; Cao, Ting; Louie, Steven; Fischer, Felix; Crommie, Michael

    Graphene nanoribbons (GNRs) provide a means for inducing energy gaps in graphene and are a promising candidate for many nanotechnological applications. New bottom-up fabrication techniques allow the structure of GNRs to be tuned with atomic precision, thus providing new opportunities for modifying their electronic structure. Here we report the synthesis of bottom-up armchair GNRs (AGNRs) with isolated substitutional boron-dopant centers; thus creating localized impurity states in the GNR. These impurities are realized via dilute doping of pristine n =7 AGNRs with sparse boron-containing monomer units, resulting in uniform-width n =7 AGNR segments where only two carbon atoms have been substitutionally replaced by boron atoms. Scanning tunneling microscopy (STM) and spectroscopy (STS) were performed to study the electronic structure of these AGNR impurity systems, enabling us to observe localized mid-gap impurity states.

  9. Theory of the electronic states and absorption spectrum of the LiCl:Ag+ impurity system

    NASA Astrophysics Data System (ADS)

    Jackson, Koblar A.; Lin, Chun C.

    1990-01-01

    The impurity absorption spectra of Ag+ and Cu+ impurities in alkali halide hosts show characteristically different features, despite the similar nature of the corresponding free ions. We use the self-interaction-corrected local-spin-density (SIC-LSD) theory to calculate the electronic structure of the ground state (4d) and the 5s and 5p excited states of the LiCl:Ag+ impurity ion. The method of linear combinations of atomic orbitals is used to determine the wave functions and energy levels. By comparing with previous calculations for LiCl:Cu+, we are able to attribute the differences in the d-->s and d-->p transitions in the ultraviolet spectra of these systems to the increased bonding between host crystal and impurity orbitals in LiCl:Ag+, due to the more extensive nature of the Ag+ 4d orbitals. A modification of the earlier SIC-LSD impurity-crystal procedure is introduced to treat the strongly mixed impurity states.

  10. Impurity trapped exciton states related to rare earth ions in crystals under high hydrostatic pressure

    SciTech Connect

    Grinberg, M. Mahlik, S.

    2013-01-15

    Emission related to rare earth ions in solids takes place usually due to 4f{sup n} {yields} 4f{sup n} and 4f{sup n-1}5d{sup 1} {yields} 4f{sup n} internal transitions. In the case of band to band excitation the effective energy transfer from the host to optically active impurity is required. Among other processes one of the possibilities is capturing of the electron at excited state and hole at the ground state of impurity. Localization of electron or hole at the dopand site creates a long range Coulomb potential that attracts the second carrier which then occupies the localized Rydberg-like states. Such a system can be considered as impurity trapped exciton. Usually impurity trapped exciton is a short living phenomenon which decays non-radiatively leaving the impurity ion in the excited state. However, in several compounds doped with Eu{sup 2+} the impurity trapped exciton states become stable and contribute to the radiative processes though anomalous luminescence that appears apart of the 4f{sup 7} {yields} 4f{sup 7} and 4f{sup 7}5d{sup 1} {yields} 5f{sup 7} emission. In this contribution pressure effect on energies of the 4f{sup n-1}5d{sup 1}{yields}5f{sup n} transitions in Ln doped oxides and fluorides as well as influence of pressure on the energy of impurity trapped exciton states is discussed. The latest results on high pressure investigations of luminescence related to Pr{sup 3+}, and Eu{sup 2+} in different lattices are reviewed.

  11. Hybridization of impurity states with the Shockley surface band versus bulk states

    NASA Astrophysics Data System (ADS)

    Barral, María Andrea; Llois, Ana María; Aligia, Armando A.

    2004-07-01

    The characteristics of the Shockley surface states on Cu(111) in the presence of Co impurity adsorbates are studied by means of one electron calculation performed using a well parametrized Hamiltonian in a local basis. Local densities of states in the spillover region as well as the relative hybridization strengths of Co “ d ” orbitals with bulk and surface states are obtained. We show that Co 3d orbitals hybridize mostly with Cu bulk conduction states, thus giving ground to recent experimental results [N. Knorr, M. A. Schneider, L. Diekhoner, P. Wahl, and K. Kern, Phys. Rev. Lett. 88, 096804 (2002)] in the sense that the observed Kondo resonances are being dominated by Cu bulk electrons.

  12. Shallow donor states induced by in-diffused Cu in ZnO: a combined HREELS and hybrid DFT study.

    PubMed

    Qiu, Hengshan; Gallino, Federico; Di Valentin, Cristiana; Wang, Yuemin

    2011-02-11

    A combined experimental and first principles study of Cu defects in bulk ZnO is presented. Cu particles are epitaxially deposited on the polar O-ZnO(0001) surface at room temperature. Upon heating, a broadening of the quasielastic peak in high resolution electron energy loss spectra is observed, corresponding to an electronic doping effect of Cu atoms in bulk ZnO with an ionization energy of 88 meV. Cu impurities in ZnO, although commonly acting as acceptors, are presently observed to induce shallow donor states. We assign these to interstitial Cu species on the basis of a hybrid density functional study. PMID:21405480

  13. Effect of ion doping with donor and acceptor impurities on intensity and lifetime of photoluminescence from SiO2 films with silicon quantum dots.

    PubMed

    Mikhaylov, A N; Tetelbaum, D I; Burdov, V A; Gorshkov, O N; Belov, A I; Kambarov, D A; Belyakov, V A; Vasiliev, V K; Kovalev, A I; Gaponova, D M

    2008-02-01

    Doping with donor and acceptor impurities is an effective way to control light emission originated from quantum-size effect in Si nanocrystals. Combined measurements of photoluminescence intensity and kinetics give valuable information on mechanisms of the doping influence. Phosphorus, boron, and nitrogen were introduced by ion implantation into Si+ -implanted thermal SiO2 films either before or after synthesis of Si nanocrystals performed at Si excess of about 10 at.% and annealing temperatures of 1000 and 1100 degrees C. After the implantation of the impurity ions the samples were finally annealed at 1000 degrees C. It is found that, independently of ion kind, the ion irradiation (the first stage of the doping process) completely quenches the photoluminescence related to Si nanocrystals (peak at around 750 nm) and modifies visible luminescence of oxygen-deficient centers in the oxide matrix. The doping with phosphorus increases significantly intensity of the 750 nm photoluminescence excited by a pulse 337 nm laser for the annealing temperature of 1000 degrees C, while introduction of boron and nitrogen atoms reduces this emission for all the regimes used. In general, the effective lifetimes (ranging from 4 to 40 micros) of the 750 nm photoluminescence correlate with the photoluminescence intensity. Several factors such as radiation damage, influence of impurities on the nanocrystals formation, carrier-impurity interaction are discussed. The photoluminescence decay is dominated by the non-radiative processes due to formation or passivation of dangling bonds, whereas the intensity of photoluminescence (for excitation pulses much shorter than the photoluminescence decay) is mainly determined by the radiative lifetime. The influence of phosphorus doping on radiative recombination in Si quantum dots is analyzed theoretically.

  14. Variable Charge State Impurities in Coupled Kinetic Plasma-Kinetic Neutral Transport Simulations

    NASA Astrophysics Data System (ADS)

    Stotler, D. P.; Hager, R.; Kim, K.; Koskela, T.; Park, G.

    2015-11-01

    A previous version of the XGC0 neoclassical particle transport code with two fully stripped impurity species was used to study kinetic neoclassical transport in the DIII-D H-mode pedestal. To properly simulate impurities in the scrape-off layer and divertor and to account for radiative cooling, however, the impurity charge state distributions must evolve as the particles are transported into regions of different electron temperatures and densities. To do this, the charge state of each particle in XGC0 is included as a parameter in the list that represents the particle's location in phase space. Impurity ionizations and recombinations are handled with a dedicated collision routine. The associated radiative cooling is accumulated during the process and applied to the electron population later in the time step. The density profiles of the neutral impurities are simulated with the DEGAS 2 neutral transport code and then used as a background for electron impact ionization in XGC0 via a test particle Monte Carlo method analogous to that used for deuterium. This work supported by US DOE contracts DE-AC02-09CH11466.

  15. Impurity-Induced Bound States in Superconductors with Spin-Orbit Coupling.

    PubMed

    Kim, Younghyun; Zhang, Junhua; Rossi, E; Lutchyn, Roman M

    2015-06-12

    We study the effect of strong spin-orbit coupling (SOC) on bound states induced by impurities in superconductors. The presence of SOC breaks the SU(2)-spin symmetry and causes the superconducting order parameter to have generically both singlet (s-wave) and triplet (p-wave) components. We find that in the presence of SOC the spectrum of Yu-Shiba-Rusinov (YSR) states is qualitatively different in s-wave and p-wave superconductors, a fact that can be used to identify the superconducting pairing symmetry of the host system. We also predict that, in the presence of SOC, the spectrum of the impurity-induced bound states depends on the orientation of the magnetic moment S of the impurity and, in particular, that by changing the orientation of S, the fermion-parity of the lowest energy bound state can be tuned. We then study the case of a dimer of magnetic impurities and show that, in this case, the YSR spectrum for a p-wave superconductor is qualitatively very different from the one for an s-wave superconductor even in the limit of vanishing SOC. PMID:26196821

  16. Excited states and valley effects in a negatively charged impurity in a silicon FinFET.

    SciTech Connect

    Hollenberg, Lloyd; Klimeck, Gerhard; Carroll, Malcolm S.; Rahman, Rajib; Muller, Richard Partain; Rogge, Sven; Verduijn, Arjan; Lansbergen, Gabriel

    2010-07-01

    The observation and characterization of a single atom system in silicon is a significant landmark in half a century of device miniaturization, and presents an important new laboratory for fundamental quantum and atomic physics. We compare with multi-million atom tight binding (TB) calculations the measurements of the spectrum of a single two-electron (2e) atom system in silicon - a negatively charged (D-) gated Arsenic donor in a FinFET. The TB method captures accurate single electron eigenstates of the device taking into account device geometry, donor potentials, applied fields, interfaces, and the full host bandstructure. In a previous work, the depths and fields of As donors in six device samples were established through excited state spectroscopy of the D0 electron and comparison with TB calculations. Using self-consistent field (SCF) TB, we computed the charging energies of the D- electron for the same six device samples, and found good agreement with the measurements. Although a bulk donor has only a bound singlet ground state and a charging energy of about 40 meV, calculations show that a gated donor near an interface can have a reduced charging energy and bound excited states in the D- spectrum. Measurements indeed reveal reduced charging energies and bound 2e excited states, at least one of which is a triplet. The calculations also show the influence of the host valley physics in the two-electron spectrum of the donor.

  17. Quasibound states and transport characteristics of Au chains with a substitutional S impurity.

    PubMed

    Wawrzyniak-Adamczewska, M; Kostyrko, T

    2013-02-27

    Electronic transport properties of short gold atom chains with a single sulfur impurity were studied using density functional theory. It is found that the role of the impurity atom in the transport properties is twofold. First, it acts as a scattering center in the dominating 6s-orbital transmission channel and generally leads to a decrease of the transmission function in a wide energy region around the Fermi level. Second, it gives rise to a quasibound state manifesting as a peak near the Fermi level both in the partial density of states as well as in the transmission function. Because of the hybridization of the sulfur 3p and gold 5d orbitals in its formation, the quasibound state moves locally upward in the gold 5d transmission channel and brings about an enhancement of the transmission function in a narrow energy region near the Fermi level. The height of the peak of the quasibound state in the transmission function depends significantly on the position of the impurity in the chain and its energy varies with the bias voltage. The current-voltage (I-V) characteristics become asymmetric with a departure of the impurity from the central position in the chain and they are nonlinear for small values of the voltage (V < 0.1 V). It is proposed that a careful analysis of the I-V characteristics or the voltage dependence of the differential conductance may be used for unambiguous location of the light impurity in experiments with gold chains.

  18. An extended Foerster-Dexter model for correlated donor-acceptor placement in solid state materials

    NASA Astrophysics Data System (ADS)

    Rotman, S. R.; Hartmann, F. X.

    1987-09-01

    The current theory of donor-acceptor interactions in solid-state materials is based on a random distribution of donors and acceptors through the crystal. In this paper, we present a model to calculate the observable transfer rates for the correlated positioning of donors and acceptors in laser materials. Chemical effects leading to such correlations are discussed.

  19. Unsteady-state transfer of impurities during crystal growth of sucrose in sugarcane solutions

    NASA Astrophysics Data System (ADS)

    Martins, P. M.; Ferreira, A.; Polanco, S.; Rocha, F.; Damas, A. M.; Rein, P.

    2009-07-01

    In this work, we present growth rate data of sucrose crystals in the presence of impurities that can be used by both sugar technologists and crystal growth scientists. Growth rate curves measured in a pilot-scale evaporative crystallizer suggest a period of slow growth that follows the seeding of crystals into supersaturated technical solutions. The observed trend was enhanced by adding typical sugarcane impurities such as starch, fructose or dextran to the industrial syrups. Maximum growth rates of sucrose resulted at intermediate rather than high supersaturation levels in the presence of the additives. The effects of the additives on the sucrose solubility and sucrose mass transfer in solution were taken into account to explain the observed crystal growth kinetics. A novel mechanism was identified of unsteady-state adsorption of impurities at the crystal surface and their gradual replacement by the crystallizing solute towards the equilibrium occupation of the active sites for growth. Specifically designed crystallization experiments at controlled supersaturation confirmed this mechanism by showing increasing crystal growth rates with time until reaching a steady-state value for a given supersaturation level and impurity content.

  20. New method for studying steady states in quantum impurity problems: the interacting resonant level model.

    PubMed

    Doyon, Benjamin

    2007-08-17

    We develop a new perturbative method for studying any steady states of quantum impurities, in or out of equilibrium. We show that steady-state averages are completely fixed by basic properties of the steady-state (Hershfield's) density matrix along with dynamical "impurity conditions." This gives the full perturbative expansion without Feynman diagrams (matrix products instead are used), and "resums" into an equilibrium average that may lend itself to numerical procedures. We calculate the universal current in the interacting resonant level model (IRLM) at finite bias V to first order in Coulomb repulsion U for all V and temperatures. We find that the bias, like the temperature, cuts off low-energy processes. In the IRLM, this implies a power-law decay of the current at large V (also recently observed by Boulat and Saleur at some finite value of U).

  1. An impurity-induced gap system as a quantum data bus for quantum state transfer

    SciTech Connect

    Chen, Bing; Li, Yong; Song, Z.; Sun, C.-P.

    2014-09-15

    We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.

  2. Probe of local impurity states by bend resistance measurements in graphene cross junctions

    NASA Astrophysics Data System (ADS)

    Du, J.; Li, J. Y.; Kang, N.; Lin, Li; Peng, Hailin; Liu, Zhongfan; Xu, H. Q.

    2016-06-01

    We report on low-temperature transport measurements on four-terminal cross junction devices fabricated from high-quality graphene grown by chemical vapor deposition. At high magnetic fields, the bend resistance reveals pronounced peak structures at the quantum Hall plateau transition, which can be attributed to the edge state transport through the junctions. We further demonstrate that the bend resistance is drastically affected by the presence of local impurity states in the junction regions, and exhibits an unusual asymmetric behavior with respect to the magnetic field direction. The observations can be understood in a model taking into account the combination of the edge transport and an asymmetric scatterer. Our results demonstrate that a graphene cross junction may serve as a sensitive probe of local impurity states in graphene at the nanoscale.

  3. Molecular Bound States of Supercritical Charged Impurities on Graphene

    NASA Astrophysics Data System (ADS)

    Velizhanin, Kirill; Adamska, Lyudmyla; Solenov, Dmitry

    2015-03-01

    Functionalization of graphene by chemical groups/atoms allows one to tune its electronic, chemical and mechanical properties. For example, metallic adatoms (e.g., Li, Ca, Y) can be important in applications ranging from hydrogen storage to superconductivity. Such adatoms bind ionically to graphene and the resulting positive ions move along graphene relatively freely, so understanding the energetics of their interaction with graphene and between each other becomes critical for assessing stability of resulting materials in practical applications. It has recently been demonstrated that ions with charge greater than Z ~ 1 induce a very peculiar non-linear electronic polarization of graphene, which is reminiscent to the Dirac vacuum reconstruction around superheavy nuclei. In our work we demonstrate that such non-linear polarization qualitatively changes not only graphene electronic structure but also the energetics of the effective graphene-mediated interaction between such ions. In my talk, I will discuss the properties of such effective interaction and its dependence on various parameters of the system. In particular, I will report on our finding that molecular bound states of supercritically charged ions can be formed on graphene at certain conditions. This work was performed under the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396.

  4. Impurity effects in crystal growth from solutions: Steady states, transients and step bunch motion

    NASA Astrophysics Data System (ADS)

    Ranganathan, Madhav; Weeks, John D.

    2014-05-01

    We analyze a recently formulated model in which adsorbed impurities impede the motion of steps in crystals grown from solutions, while moving steps can remove or deactivate adjacent impurities. In this model, the chemical potential change of an atom on incorporation/desorption to/from a step is calculated for different step configurations and used in the dynamical simulation of step motion. The crucial difference between solution growth and vapor growth is related to the dependence of the driving force for growth of the main component on the size of the terrace in front of the step. This model has features resembling experiments in solution growth, which yields a dead zone with essentially no growth at low supersaturation and the motion of large coherent step bunches at larger supersaturation. The transient behavior shows a regime wherein steps bunch together and move coherently as the bunch size increases. The behavior at large line tension is reminiscent of the kink-poisoning mechanism of impurities observed in calcite growth. Our model unifies different impurity models and gives a picture of nonequilibrium dynamics that includes both steady states and time dependent behavior and shows similarities with models of disordered systems and the pinning/depinning transition.

  5. Impurity States in Ionic Crystals: a Self-Interaction - Corrected Local Spin Density Theory Study.

    NASA Astrophysics Data System (ADS)

    Jackson, Koblar Alan

    1988-12-01

    While the local spin density theory (LSD) has been successfully used to calculate the electronic properties of a variety of condensed matter systems, its use does not provide an adequate description of point impurities in insulating crystals. Unphysical self-interaction effects in LSD lead to calculated one-electron properties which do not agree well with corresponding experimental properties in the limit of localized states. As an additional result of the spurious self-interactions, LSD calculations underestimate the host crystal band gaps in these systems by typically 40%. Recently the self-interaction-correction (SIC) was developed to remove the non-physical effects of electronic self-interaction from LSD. The resulting SIC-LSD theory is self-interaction free, and its use greatly improves the description of both localized states and insulator band gaps compared to uncorrected LSD. In the first part of this work, a novel method for calculating multiplet -dependent atomic wave functions in SIC-LSD is described, and calculated SIC-LSD wave functions for the quintet and triplet excited states of atomic oxygen are shown to be in excellent agreement with the corresponding Hartree-Fock wave functions, further establishing the success of SIC -LSD in calculating the properties of localized states. SIC -LSD is then applied to the NaCl:Cu^+ and LiCl:Ag^+ impurity systems. Transitions associated with the impurity ions in these systems are studied, and the calculated transition energies are found to be in good agreement with experiment. By examining the impurity state wave functions, characteristic differences between the absorption spectra for the Cu^+ and Ag^+ systems are explained.

  6. Resonant impurity states in chemically disordered half-Heusler Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Chadova, K.; Ködderitzsch, D.; Minár, J.; Ebert, H.; Kiss, J.; D'Souza, S. W.; Wollmann, L.; Felser, C.; Chadov, S.

    2016-05-01

    We address the electron transport characteristics in bulk half-Heusler alloys with their compositions tuned to the borderline between topologically nontrivial semimetallic and trivial semiconducting phases. Accurate first-principles calculations based on the coherent potential approximation (CPA) reveal that all the studied systems exhibit sets of dispersionless impurity-like resonant levels, with one of them being located at the Dirac point. By means of the Kubo-Bastin formalism we reveal that the residual conductivity of these alloys is strongly suppressed by impurity scattering, whereas the spin Hall conductivity exhibits a rather complex behavior induced by the resonant states. In particular for LaPt0.5Pd0.5Bi we find that the total spin Hall conductivity is strongly suppressed by two large and opposite contributions: the negative Fermi-surface contribution produced by the resonant impurity and the positive Fermi-sea term stemming from the occupied states. At the same time, we identify no conductivity contributions from the conical states.

  7. Using bound exciton transitions to optically resolve neutral donor hyperfine states of various donor species in Silicon-28

    NASA Astrophysics Data System (ADS)

    Salvail, Jeff; Dluhy, Phillip; Saeedi, Kamyar; Szech, Michael; Riemann, Helge; Abromisov, Nikolai; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Michael

    2014-03-01

    Phosphorus in silicon is established as a promising resource for use in quantum information processing tasks. The neutral donor hyperfine states have been shown to have record long coherence times, high fidelity gates via RF pulses, and projective readout via optical bound exciton transitions. As Shannon's theory of information tells us, we can process more information in an alphabet of more symbols, so there is motivation to look at donors with higher nuclear spin than the I = 1 / 2 of 31P, which provide access to Hilbert spaces of dimension greater than two. In this talk I will describe optical studies of the donors 75As (I = 3 / 2), 121Sb (I = 5 / 2), and 209Bi (I = 9 / 2) in 28Si.

  8. Efficient DMFT impurity solver using real-time dynamics with matrix product states

    NASA Astrophysics Data System (ADS)

    Ganahl, Martin; Aichhorn, Markus; Evertz, Hans Gerd; Thunström, Patrik; Held, Karsten; Verstraete, Frank

    2015-10-01

    We propose to calculate spectral functions of quantum impurity models using the time evolving block decimation (TEBD) for matrix product states. The resolution of the spectral function is improved by a so-called linear prediction approach. We apply the method as an impurity solver within the dynamical mean-field theory (DMFT) for the single- and two-band Hubbard model on the Bethe lattice. For the single-band model, we observe sharp features at the inner edges of the Hubbard bands. A finite-size scaling shows that they remain present in the thermodynamic limit. We analyze the real time-dependence of the double occupation after adding a single electron and observe oscillations at the same energy as the sharp feature in the Hubbard band, indicating a long-lived coherent superposition of states that correspond to the Kondo peak and the side peaks. For a two-band Hubbard model, we observe an even richer structure in the Hubbard bands, which cannot be related to a multiplet structure of the impurity, in addition to sharp excitations at the band edges of a type similar to the single-band case.

  9. On compensation and impurities in state-of-the-art GaN epilayers grown on sapphire

    SciTech Connect

    Wickenden, A.E.; Gaskill, D.K.; Koleske, D.D.; Doverspike, K.; Simons, D.S.; Chi, P.H.

    1996-11-01

    A comparison between 300 K electron transport data for state-of-the-art wurtzite GaN grown on sapphire substrates and corresponding theoretical calculations shows a large difference, with experimental mobility less than the predicted mobility for a given carrier concentration. The comparison seems to imply that GaN films are greatly compensated, but the discrepancy may also be due to the poorly known values of the materials parameters used in the calculations. In this work, recent analysis of transport and SIMS measurements on silicon-doped GaN films are shown to imply that the compensation, N{sub A}/N{sub D}, is less than 0.3. In addition, the determination of an activation energy of 34 meV in a GaN film doped to a level of 6 {times} 10{sup 16} cm{sup {minus}3} suggests either that a second, native donor exists in the doped films at a level of between 6 {times} 10{sup 16} cm{sup {minus}3} and 1 {times} 10{sup 17} cm{sup {minus}3}, or that the activation energy of Si in GaN is dependent on the concentration, being influenced by impurity banding or some other physical effect. GaN films grown without silicon doping are highly resistive.

  10. Properties of the deep donor states of AlxGa1 - xAs:Se

    NASA Astrophysics Data System (ADS)

    Oh, E. G.; Hanna, M. C.; Lu, Z. H.; Szmyd, D. M.; Majerfeld, A.

    1993-07-01

    A study of the electrical and optical properties of the Se deep donor states in AlxGa1-xAs:Se grown by metalorganic vapor phase epitaxy (MOVPE) process is reported. A novel experimental technique is presented to determine the absolute energy and the true density of the deep donor. The characteristics of the Se deep donor states are obtained from deep level transient spectroscopy, photoluminescence, photocapacitance, Hall effect measurements, isothermal capacitance transient measurements, and a quasistatic capacitance voltage technique. It is found that the Se dopant gives rise to at least two energy levels in the band gap. One is the generally observed deep donor level, commonly called the DX level and the other is a new shallower donor state which also exhibits DX-like properties. The concentration of the shallower state is less than 5% of the deep donor density. The densities of both donors increase with the mole fraction of H2Se used during MOVPE growth. Thermal emission activation energies of 0.29±0.01 and 0.24±0.01 eV were found for the deep and shallower donor states, respectively, for 0.23≤x≤0.41. The Se donor ionization energies relative to the Γ minimum are determined for samples with different AlAs mole fractions, and also, the true densities of Se donors are obtained. We propose a macroscopic model for the emission and capture mechanisms of Se donors in AlxGa1-xAs, which allows a consistent interpretation of the results obtained by different measurement techniques and provides a natural explanation for the low temperature Hall density saturation phenomenon and the persistent photoconductivity effect.

  11. Ground state and magnetic susceptibility of intermediate-valence Tm impurities

    NASA Astrophysics Data System (ADS)

    Allub, R.; Aligia, A. A.

    1995-09-01

    We consider the appropriate generalization of the Anderson model for a Tm impurity in a cubic crystal field. In the 4f12 configuration we include only the two multiplets of lowest energy: a single Γ1 and a triplet Γ4. Similarly we include only the doublet ground state of the 4f13 configuration, and (to make our numerical method feasible) we assume that the conduction-electron partial waves with symmetry Γ8 can be neglected. We study the model using Wilson's renormalization group. The resulting ground state is a singlet or a doublet depending mainly of the relative strength of the hybridization of the 4f13 doublet with both 4f12 states. A doublet ground state is consistent with the experimental evidence.

  12. Nonmagnetic impurity effects of the spin disordered state in NiGa2S4

    NASA Astrophysics Data System (ADS)

    Nambu, Yusuke; Nakatsuji, Satoru; Maeno, Yoshiteru

    2006-03-01

    Nonmagnetic impurity effects of the spin disordered state in the triangular antiferromagnet NiGa2S4[1] was studied through magnetic and thermal measurements for Zn substituted insulating materials Ni1-xZnxGa2S4 (0.0 <= x <= 0.3)[2]. Only 1 % Zn substitution is enough to strongly suppress the coherence observed in the spin disordered state. However, suppression is not complete and the robust feature of the quadratic temperature dependent specific heat and its scaling behavior with the Weiss temperature indicate the existence of a coherent Nambu-Goldstone mode. Absence of either conventional magnetic long-range order or bulk spin freezing suggests a novel symmetry breaking of the ground state. [1] Satoru Nakatsuji, Yusuke Nambu, Hiroshi Tonomura, Osamu Sakai, Seth Jonas, Collin Broholm, Hirokazu Tsunetsugu, Yiming Qiu and Yoshiteru Maeno, Science 309, 1697 (2005). [2] Yusuke Nambu, Satoru Nakatsuji and Yoshiteru Maeno, preprint.

  13. The linear and nonlinear optical properties of a hydrogenic donor impurity in a nanowire superlattice: Effects of laser radiation and hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Safarpour, Gh.; Izadi, M. A.; Khajehei, N.; Dialameh, M.

    2014-12-01

    The effects of laser radiation and hydrostatic pressure on the linear and nonlinear optical properties of an impure GaAs/Ga1-xAlxAs nanowire superlattice (NWSL) are analyzed using the finite difference method and compact density-matrix approach. In this regards the transition between ground and first excited states is considered to obtain linear, third order nonlinear and total optical absorption coefficients (ACs) and refractive index (RI) changes. Our calculations show that presence of laser radiation causes an increment in ACs and RI changes and shifts optical spectrum towards lower energies. Additionally, applying pressure leads to a decrement in ACs and RI changes with a small blue shift in the spectrum. Moreover, the nonlinear terms of ACs and RI changes are very sensitive to laser radiation and pressure, and saturation in optical spectrum can be adjusted by magnitudes of laser radiation and pressure.

  14. Distribution of impurity states and charge transport in Zr0.25Hf0.75Ni1+xSn1-ySby nanocomposites

    NASA Astrophysics Data System (ADS)

    Liu, Yuanfeng; Makongo, Julien P. A.; Page, Alexander; Sahoo, Pranati; Uher, Ctirad; Stokes, Kevin; Poudeu, Pierre F. P.

    2016-02-01

    Energy filtering of charge carriers in a semiconducting matrix using atomically coherent nanostructures can lead to a significant improvement of the thermoelectric figure of merit of the resulting composite. In this work, several half-Heusler/full-Heusler (HH/FH) nanocomposites with general compositions Zr0.25Hf0.75Ni1+xSn1-ySby (0≤x≤0.15 and y=0.005, 0.01 and 0.025) were synthesized in order to investigate the behavior of extrinsic carriers at the HH/FH interfaces. Electronic transport data showed that energy filtering of carriers at the HH/FH interfaces in Zr0.25Hf0.75Ni1+xSn1-ySby samples strongly depends on the doping level (y value) as well as the energy levels occupied by impurity states in the samples. For example, it was found that carrier filtering at HH/FH interfaces is negligible in Zr0.25Hf0.75Ni1+xSn1-ySby (y=0.01 and 0.025) composites where donor states originating from Sb dopant dominate electronic conduction. However, we observed a drastic decrease in the effective carrier density upon introduction of HH/FH interfaces for the mechanically alloyed Zr0.25Hf0.75Ni1+xSn0.995Sb0.005 samples where donor states from unintentional Fe impurities contribute the largest fraction of conduction electrons. This work demonstrates the ability to synergistically integrate the concepts of doping and energy filtering through nanostructuring for the optimization of electronic transport in semiconductors.

  15. Impurity effects on the d-wave state of the pair tunneling mechanism for high-T{sub c} superconductors

    SciTech Connect

    Bang, Y.

    1998-01-01

    We consider the impurity effects on the d-wave state in Anderson{close_quote}s interlayer pair tunneling (IPT) mechanism for high-T{sub c} superconductors. We found that the change of density of states and the T{sub c} suppression with impurities are qualitatively the same as the conventional BCS-type d-wave theory despite different gap equations. In particular, for the T{sub c} suppression with the in-plane impurities we solve the T{sub c} equation of the IPT mechanism explicitly including strong inelastic scattering [{Sigma}{sup {double_prime}}{approximately}{alpha}({h_bar}w+{pi}k{sub B}T)]. As expected, the effect of impurities for the T{sub c} suppression is strongly reduced by inelastic scattering and the results can fit most of the experimental data by varying the impurity scattering strength. The insensitivity of T{sub c} with the out-of-plane rare-earth impurities is shown to be consistent with the IPT mechanism. {copyright} {ital 1998} {ital The American Physical Society}

  16. Living donor liver transplantation in Brazil—current state

    PubMed Central

    Andraus, Wellington; D’Alburquerque, Luiz A. C.

    2016-01-01

    Currently in Brazil, living donor liver transplantation (LDLT) represents 8.5% of liver transplantation (LT), being the majority pediatric one. Up to now, according to Brazilian Organ Transplantation Association (ABTO) annual report, 2,086 procedures have been done nationwide, most of them in southeast and south regions. Based on national centers reports, biliary complication is the most common recipient postoperative complication (14.5–20.6%), followed by hepatic artery thrombosis (3.1–10.7%) and portal vein thrombosis (2.3–9.1%). Patient and graft overall 5-y survival correspond to 76% and 74%, respectively. Regarding the donor, morbidity rate ranges from 12.4% to 28.3%, with a national mortality rate of 0.14%. In conclusion, Brazilian LDLT programs enhance international experience that this is a feasible and safe procedure, as well as an excellent alternative strategy to overcome organs shortage. PMID:27115012

  17. STM images of subsurface Mn atoms in GaAs: evidence of hybridization of surface and impurity states.

    PubMed

    Jancu, J-M; Girard, J-Ch; Nestoklon, M O; Lemaître, A; Glas, F; Wang, Z Z; Voisin, P

    2008-11-01

    We show that scanning tunneling microscopy (STM) images of subsurface Mn atoms in GaAs are formed by hybridization of the impurity state with intrinsic surface states. They cannot be interpreted in terms of bulk-impurity wave-function imaging. Atomic-resolution images obtained using a low-temperature apparatus are compared with advanced, parameter-free tight-binding simulations accounting for both the buckled (110) surface and vacuum electronic properties. Splitting of the acceptor state due to buckling is shown to play a prominent role.

  18. Probing the electronic states and impurity effects in black phosphorus vertical heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolong; Wang, Lin; Wu, Yingying; Gao, Heng; Wu, Yabei; Qin, Guanhua; Wu, Zefei; Han, Yu; Xu, Shuigang; Han, Tianyi; Ye, Weiguang; Lin, Jiangxiazi; Long, Gen; He, Yuheng; Cai, Yuan; Ren, Wei; Wang, Ning

    2016-03-01

    Atomically thin black phosphorus (BP) is a promising two-dimensional material for fabricating electronic and optoelectronic nano-devices with high mobility and tunable bandgap structures. However, the charge-carrier mobility in few-layer phosphorene (monolayer BP) is mainly limited by the presence of impurity and disorders. In this study, we demonstrate that vertical BP heterostructure devices offer great advantages in probing the electron states of monolayer and few-layer phosphorene at temperatures down to 2 K through capacitance spectroscopy. Electronic states in the conduction and valence bands of phosphorene are accessible over a wide range of temperature and frequency. Exponential band tails have been determined to be related to disorders. Unusual phenomena such as the large temperature-dependence of the electron state population in few-layer phosphorene have been observed and systematically studied. By combining the first-principles calculation, we identified that the thermal excitation of charge trap states and oxidation-induced defect states were the main reasons for this large temperature dependence of the electron state population and degradation of the on-off ratio in phosphorene field-effect transistors.

  19. Exactly Solvable Model for Impurity Scattering at the Edge of the ν = 2 / 3 FQH State

    NASA Astrophysics Data System (ADS)

    Heinrich, Chris; Levin, Michael

    We present an exactly solvable model for impurity scattering on the edge of a ν = 2 / 3 FQH state that is valid in the strong scattering limit. For this model we obtain exact mode expansions for the charge density and current operators, as well as the exact low energy spectrum. Importantly, we find that the low energy theory of the model consists of decoupled and counterpropagating charge and neutral modes, agreeing with the earlier work of Kane, Fisher, and Polchinski. Unlike the previous derivation, which relied on perturbative renormalization group arguments, our approach allows us to derive the emergence of decoupled charge and neutral modes from a microscopic model which is initially far from the decoupled fixed point.

  20. Photoluminescence Properties of Sn-Related Donor State in AlxGa1-xAs

    NASA Astrophysics Data System (ADS)

    Kang, Junyong; Iida, Seishi; Huang, Qisheng; Fukuda, Tsuguo

    1993-08-01

    We have investigated the near-gap recombinations in Sn-doped AlxGa1-xAs by photoluminescence. By analyzing the variations of spectral lineshapes under various excitation intensities, only one type of recombination was assigned to associate with the Sn-related donor state, which was different from the hydrogenlike shallow donor states and the DX centers. Phonon replicas were observed to accompany the recombination in the samples with high AlAs mole fractions of direct gaps, as well as in those of indirect gaps. The Franck-Condon shift and the phonon energy of the recombination were found to increase with increasing AlAs mole fraction. This behavior was explained in terms of a variation of local lattice distortion around an ionized Sn-related donor and a weighted average of two local vibrational mode frequencies of the Sn-related donor.

  1. Deconstructing the Risk for Malaria in United States Donors Deferred for Travel to Mexico

    PubMed Central

    Spencer, Bryan; Kleinman, Steven; Custer, Brian; Cable, Ritchard; Wilkinson, Susan L; Steele, Whitney; High, Patrick M; Wright, David

    2013-01-01

    Background More than 66,000 blood donors are deferred annually in the U.S. due to travel to malaria-endemic areas of Mexico. Mexico accounts for the largest share of malaria travel deferrals, yet it has extremely low risk for malaria transmission throughout most of its national territory, suggesting a suboptimal balance between blood safety and availability. This study sought to determine whether donor deferral requirements might be relaxed for parts of Mexico without compromising blood safety. Study Design and Methods Travel destination was recorded from a representative sample of presenting blood donors deferred for malaria travel from six blood centers during 2006. We imputed to these donors reporting Mexican travel a risk for acquiring malaria equivalent to Mexican residents in the destination location, adjusted for length of stay. We extrapolated these results to the overall U.S. blood donor population. Results Risk for malaria in Mexico varies significantly across endemic areas and is greatest in areas infrequently visited by study donors. Over 70% of blood donor deferrals were triggered by travel to the state of Quintana Roo on the Yucatán Peninsula, an area of very low malaria transmission. Eliminating the travel deferral requirement for all areas except the state of Oaxaca might result in the recovery of almost 65,000 blood donors annually at risk of approximately one contaminated unit collected every 20 years. Conclusion Deferral requirements should be relaxed for presenting donors who travelled to areas within Mexico that confer exceptionally small risks for malaria, such as Quintana Roo. PMID:21564102

  2. In-gap bound states induced by interstitial Fe impurities in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Zhang, Degang

    2015-12-01

    Based on a two-orbit four-band tight binding model, we investigate the low-lying electronic states around the interstitial excess Fe ions in the iron-based superconductors by using T-matrix approach. It is shown that the local density of states at the interstitial Fe impurity (IFI) possesses a strong resonance inside the gap, which seems to be insensitive to the doping and the pairing symmetry in the Fe-Fe plane, while a single or two resonances appear at the nearest neighboring (NN) Fe sites. The location and height of the resonance peaks only depend on the hopping t and the pairing parameter ΔI between the IFI and the NN Fe sites. These in-gap resonances are originated in the Andreev's bound states due to the quasiparticle tunneling through the IFI, leading to the change of the magnitude of the superconducting order parameter. When both t and ΔI are small, this robust zero-energy bound state near the IFI is consistent with recent scanning tunneling microscopy observations.

  3. Atomistic simulations of negatively charged donor states probed in STM experiments

    NASA Astrophysics Data System (ADS)

    Tankasala, Archana; Salfi, Joe; Rogge, Sven; Klimeck, Gerhard; Rahman, Rajib

    A single donor in silicon binding two electrons (D-) is important for electron spin readout and two-qubit operations in a donor based silicon (Si) quantum computer, and has recently been probed in Scanning Tunneling Microscope (STM) experiments for sub-surface dopants. In this work, atomistic configuration interaction technique is used to compute the two-electron states of the donor taking into account the geometry of the STM-vacuum-silicon-reservoir device. While 45 meV charging energy is obtained for D- in bulk Si, the electrostatics of the device reduces the charging energy to 30 meVs. It is also shown that the reduced charging energy enables spin triplet states to be bound to the donor. The exchange splitting between the singlet and triplet states can be tuned by an external electric field. The computed wavefunctions of the D- state helps to understand how the contribution of the momentum space valley states change with donor depth and electric field.

  4. Edge states, spin transport, and impurity-induced local density of states in spin-orbit coupled graphene

    NASA Astrophysics Data System (ADS)

    Seshadri, Ranjani; Sengupta, K.; Sen, Diptiman

    2016-01-01

    We study graphene, which has both spin-orbit coupling (SOC), taken to be of the Kane-Mele form, and a Zeeman field induced due to proximity to a ferromagnetic material. We show that a zigzag interface of graphene having SOC with its pristine counterpart hosts robust chiral edge modes in spite of the gapless nature of the pristine graphene; such modes do not occur for armchair interfaces. Next we study the change in the local density of states (LDOS) due to the presence of an impurity in graphene with SOC and Zeeman field, and demonstrate that the Fourier transform of the LDOS close to the Dirac points can act as a measure of the strength of the spin-orbit coupling; in addition, for a specific distribution of impurity atoms, the LDOS is controlled by a destructive interference effect of graphene electrons which is a direct consequence of their Dirac nature. Finally, we study transport across junctions, which separates spin-orbit coupled graphene with Kane-Mele and Rashba terms from pristine graphene both in the presence and absence of a Zeeman field. We demonstrate that such junctions are generally spin active, namely, they can rotate the spin so that an incident electron that is spin polarized along some direction has a finite probability of being transmitted with the opposite spin. This leads to a finite, electrically controllable, spin current in such graphene junctions. We discuss possible experiments that can probe our theoretical predictions.

  5. [State of collective immunity to poliomyelitis in Moscow donors].

    PubMed

    Seĭbil', V B; Malyshkina, L P; Lavrova, I K; Efimova, V F; Sadovnikova, V N

    2002-01-01

    Immunity induced by immunization with oral poliomyelitis vaccine has long been considered to last for life, similarly to immunity developing after infection with wild poliomyelitis virus. Vaccine virus cannot circulate among the immune population for a long time. The vaccination of children against poliomyelitis, carried out in the course of many years, has made it possible to suggest that a considerable number of immune persons were present among the adult population. The examination of 1,030 Moscow donors has revealed that antibodies to poliomyelitis virus of types 1, 2 and 3 were detected in 47.3%, 45.5% and 76.4% of the examinees respectively, the values of the average geometric titers being low. It is known that passages of poliomyelitis vaccine virus through nonimmune persons may result in emergence of revertant viruses with increased neurovirulence. The nonimmune adult population, especially the mothers of vaccinated and revaccinated children, may serve as favorable environment for the circulation of vaccine viruses and the appearance of revertant viruses.

  6. Coexistence of two deep donor states, DX- and DX0, of the Sn donor in Ga1-xAlxAs

    NASA Astrophysics Data System (ADS)

    von Bardeleben, H. J.; Buyanova, I.; Belyaev, A.; Sheinkman, M.

    1992-05-01

    We present results of correlated electron-paramagnetic-resonance and photoconductivity measurements on the tin donor in Ga1-xAlxAs (0.3donor state, DX0(Sn), according to the reaction DX--->DX0+e-, in agreement with negative-U models for the DX ground state. The DX0 state, which has been previously attributed by us to the Aab1 antibonding state, is observed only in a limited alloy range 0.3state in the electron-capture process of the single donors, the existence of which has been postulated previously from an analysis of the electron-capture kinetics of the DX center as well as from low-temperature photo-DLTS (deep-level transient spectroscopy) measurements: the one-electron Aab1 state. As Aab1 states are a fundamental property of substitutional donors, these results are also relevant for the analysis of DX-center properties of the other substitutional donors Si, Se, Te, and S in Ga1-xAlxAs.

  7. Tunneling spectroscopy of a phosphorus impurity atom on the Ge(111)-(2 × 1) surface

    SciTech Connect

    Savinov, S. V.; Oreshkin, A. I. E-mail: oreshkin@spmlab.ru; Oreshkin, S. I.; Haesendonck, C. van

    2015-06-15

    We numerically model the Ge(111)-(2 × 1) surface electronic properties in the vicinity of a P donor impurity atom located near the surface. We find a notable increase in the surface local density of states (LDOS) around the surface dopant near the bottom of the empty surface state band π*, which we call a split state due to its limited spatial extent and energetic position inside the band gap. We show that despite the well-established bulk donor impurity energy level position at the very bottom of the conduction band, a surface donor impurity on the Ge(111)-(2 × 1) surface might produce an energy level below the Fermi energy, depending on the impurity atom local environment. It is demonstrated that the impurity located in subsurface atomic layers is visible in a scanning tunneling microscope (STM) experiment on the Ge(111)-(2 × 1) surface. The quasi-1D character of the impurity image, observed in STM experiments, is confirmed by our computer simulations with a note that a few π-bonded dimer rows may be affected by the presence of the impurity atom. We elaborate a model that allows classifying atoms on the experimental low-temperature STM image. We show the presence of spatial oscillations of the LDOS by the density-functional theory method.

  8. Quantum confined acceptors and donors in InSe nanosheets

    SciTech Connect

    Mudd, G. W.; Patanè, A. Makarovsky, O.; Eaves, L.; Kudrynskyi, Z. R.; Kovalyuk, Z. D.; Fay, M. W.; Zólyomi, V.; Falko, V.

    2014-12-01

    We report on the radiative recombination of photo-excited carriers bound at native donors and acceptors in exfoliated nanoflakes of nominally undoped rhombohedral γ-polytype InSe. The binding energies of these states are found to increase with the decrease in flake thickness, L. We model their dependence on L using a two-dimensional hydrogenic model for impurities and show that they are strongly sensitive to the position of the impurities within the nanolayer.

  9. Origin of major donor states in In-Ga-Zn oxide

    NASA Astrophysics Data System (ADS)

    Nakashima, Motoki; Oota, Masashi; Ishihara, Noritaka; Nonaka, Yusuke; Hirohashi, Takuya; Takahashi, Masahiro; Yamazaki, Shunpei; Obonai, Toshimitsu; Hosaka, Yasuharu; Koezuka, Junichi

    2014-12-01

    To clarify the origin of the major donor states in indium gallium zinc oxide (IGZO), we report measurement results and an analysis of several physical properties of IGZO thin films. Specifically, the concentration of H atoms and O vacancies (VO), carrier concentration, and conductivity are investigated by hard X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, thermal desorption spectroscopy, and Hall effect measurements. The results of these experiments suggest that the origin of major donor states is H occupancy of VO sites. Furthermore, we use first-principles calculations to investigate the influence of the coexistence of VO and H in crystalline InGaO3(ZnO)m (m = 1). The results indicate that when H is trapped in VO, a stable complex is created that serves as a shallow-level donor.

  10. Origin of major donor states in In–Ga–Zn oxide

    SciTech Connect

    Nakashima, Motoki; Oota, Masashi; Ishihara, Noritaka; Nonaka, Yusuke; Hirohashi, Takuya; Takahashi, Masahiro; Yamazaki, Shunpei; Obonai, Toshimitsu; Hosaka, Yasuharu; Koezuka, Junichi

    2014-12-07

    To clarify the origin of the major donor states in indium gallium zinc oxide (IGZO), we report measurement results and an analysis of several physical properties of IGZO thin films. Specifically, the concentration of H atoms and O vacancies (V{sub O}), carrier concentration, and conductivity are investigated by hard X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, thermal desorption spectroscopy, and Hall effect measurements. The results of these experiments suggest that the origin of major donor states is H occupancy of V{sub O} sites. Furthermore, we use first-principles calculations to investigate the influence of the coexistence of V{sub O} and H in crystalline InGaO{sub 3}(ZnO){sub m} (m = 1). The results indicate that when H is trapped in V{sub O}, a stable complex is created that serves as a shallow-level donor.

  11. Impurity Resonant States p-type Doping in Wide-Band-Gap Nitrides.

    PubMed

    Liu, Zhiqiang; Yi, Xiaoyan; Yu, Zhiguo; Yuan, Gongdong; Liu, Yang; Wang, Junxi; Li, Jinmin; Lu, Na; Ferguson, Ian; Zhang, Yong

    2016-01-01

    In this work, a new strategy for achieving efficient p-type doping in high bandgap nitride semiconductors to overcome the fundamental issue of high activation energy has been proposed and investigated theoretically, and demonstrated experimentally. Specifically, in an AlxGa(1-x)N/GaN superlattice structure, by modulation doping of Mg in the AlxGa(1-x)N barriers, high concentration of holes are generated throughout the material. A hole concentration as high as 1.1 × 10(18) cm(-3) has been achieved, which is about one order of magnitude higher than that typically achievable by direct doping GaN. Results from first-principle calculations indicate that the coupling and hybridization between Mg 2p impurity and the host N 2p orbitals are main reasons for the generation of resonant states in the GaN wells, which further results in the high hole concentration. We expect this approach to be equally applicable for other high bandgap materials where efficient p-type doing is difficult. Furthermore, a two-carrier-species Hall-effect model is proposed to delineate and discriminate the characteristics of the bulk and 2D hole, which usually coexist in superlattice-like doping systems. The model reported here can also be used to explain the abnormal freeze-in effect observed in many previous reports. PMID:26777294

  12. Impurity Resonant States p-type Doping in Wide-Band-Gap Nitrides

    PubMed Central

    Liu, Zhiqiang; Yi, Xiaoyan; Yu, Zhiguo; Yuan, Gongdong; Liu, Yang; Wang, Junxi; Li, Jinmin; Lu, Na; Ferguson, Ian; Zhang, Yong

    2016-01-01

    In this work, a new strategy for achieving efficient p-type doping in high bandgap nitride semiconductors to overcome the fundamental issue of high activation energy has been proposed and investigated theoretically, and demonstrated experimentally. Specifically, in an AlxGa1−xN/GaN superlattice structure, by modulation doping of Mg in the AlxGa1−xN barriers, high concentration of holes are generated throughout the material. A hole concentration as high as 1.1 × 1018 cm−3 has been achieved, which is about one order of magnitude higher than that typically achievable by direct doping GaN. Results from first-principle calculations indicate that the coupling and hybridization between Mg 2p impurity and the host N 2p orbitals are main reasons for the generation of resonant states in the GaN wells, which further results in the high hole concentration. We expect this approach to be equally applicable for other high bandgap materials where efficient p-type doing is difficult. Furthermore, a two-carrier-species Hall-effect model is proposed to delineate and discriminate the characteristics of the bulk and 2D hole, which usually coexist in superlattice-like doping systems. The model reported here can also be used to explain the abnormal freeze-in effect observed in many previous reports. PMID:26777294

  13. Impurity Resonant States p-type Doping in Wide-Band-Gap Nitrides

    NASA Astrophysics Data System (ADS)

    Liu, Zhiqiang; Yi, Xiaoyan; Yu, Zhiguo; Yuan, Gongdong; Liu, Yang; Wang, Junxi; Li, Jinmin; Lu, Na; Ferguson, Ian; Zhang, Yong

    2016-01-01

    In this work, a new strategy for achieving efficient p-type doping in high bandgap nitride semiconductors to overcome the fundamental issue of high activation energy has been proposed and investigated theoretically, and demonstrated experimentally. Specifically, in an AlxGa1-xN/GaN superlattice structure, by modulation doping of Mg in the AlxGa1-xN barriers, high concentration of holes are generated throughout the material. A hole concentration as high as 1.1 × 1018 cm-3 has been achieved, which is about one order of magnitude higher than that typically achievable by direct doping GaN. Results from first-principle calculations indicate that the coupling and hybridization between Mg 2p impurity and the host N 2p orbitals are main reasons for the generation of resonant states in the GaN wells, which further results in the high hole concentration. We expect this approach to be equally applicable for other high bandgap materials where efficient p-type doing is difficult. Furthermore, a two-carrier-species Hall-effect model is proposed to delineate and discriminate the characteristics of the bulk and 2D hole, which usually coexist in superlattice-like doping systems. The model reported here can also be used to explain the abnormal freeze-in effect observed in many previous reports.

  14. A Framework for Conducting Deceased Donor Research in the United States.

    PubMed

    Glazier, Alexandra K; Heffernan, Kate Gallin; Rodrigue, James R

    2015-11-01

    There are a number of regulatory barriers both perceived and real that have hampered widespread clinical research in the field of donation and transplantation. This article sets forth a framework clarifying the existing legal requirements and their application to the conduct of research on deceased donors and donor organs within the United States. Recommendations are focused on resolving some of the ambiguity surrounding deceased donor authorization for research, Health Insurance Portability and Accountability Act requirements and the role of institutional review board oversight. The successful conduct of clinical research in the field of donation and transplantation requires an understanding of these regulatory nuances as well as identification of important ethical principles to consider. Facilitation of these concepts will ultimately provide support for innovative research designed to increase the availability of organs for transplantation. Further work identifying the optimal infrastructure for overview of clinical research in the field should be given priority.

  15. PREVALENCE OF CHAGAS DISEASE AMONG BLOOD DONOR CANDIDATES IN TRIANGULO MINEIRO, MINAS GERAIS STATE, BRAZIL.

    PubMed

    Lopes, Patrícia da Silva; Ramos, Eliezer Lucas Pires; Gómez-Hernández, César; Ferreira, Gabriela Lícia Santos; Rezende-Oliveira, Karine

    2015-12-01

    Despite public health campaigns and epidemiological surveillance activities, Chagas disease remains a major health problem in Latin America. According to data from the World Health Organization, there are approximately 7-8 million people infected with Trypanosoma cruzi worldwide, a large percentage of which in Latin America. This study aims to examine the serological profile of blood donors in blood banks of Hemominas hematology center, in the town of Ituiutaba, Minas Gerais State, Brazil. The study sample consisted of 53,941 blood donors, which were grouped according to gender and age. Sample collections were performed from January 1991 to December 2011, and 277 donors (0.5%) were considered serologically ineligible due to Chagas disease. Analysis of data showed no significant difference between genders. As for age, the highest proportion of ineligible donors was from 40 to 49 years (30%), and there was a positive correlation between increasing age and the percentage of patients seropositive for Chagas disease. Therefore, adopting strategies that allow the safe identification of donors with positive serology for Chagas disease is essential to reduce or eliminate indeterminate serological results.

  16. PREVALENCE OF CHAGAS DISEASE AMONG BLOOD DONOR CANDIDATES IN TRIANGULO MINEIRO, MINAS GERAIS STATE, BRAZIL.

    PubMed

    Lopes, Patrícia da Silva; Ramos, Eliezer Lucas Pires; Gómez-Hernández, César; Ferreira, Gabriela Lícia Santos; Rezende-Oliveira, Karine

    2015-12-01

    Despite public health campaigns and epidemiological surveillance activities, Chagas disease remains a major health problem in Latin America. According to data from the World Health Organization, there are approximately 7-8 million people infected with Trypanosoma cruzi worldwide, a large percentage of which in Latin America. This study aims to examine the serological profile of blood donors in blood banks of Hemominas hematology center, in the town of Ituiutaba, Minas Gerais State, Brazil. The study sample consisted of 53,941 blood donors, which were grouped according to gender and age. Sample collections were performed from January 1991 to December 2011, and 277 donors (0.5%) were considered serologically ineligible due to Chagas disease. Analysis of data showed no significant difference between genders. As for age, the highest proportion of ineligible donors was from 40 to 49 years (30%), and there was a positive correlation between increasing age and the percentage of patients seropositive for Chagas disease. Therefore, adopting strategies that allow the safe identification of donors with positive serology for Chagas disease is essential to reduce or eliminate indeterminate serological results. PMID:27049698

  17. PREVALENCE OF CHAGAS DISEASE AMONG BLOOD DONOR CANDIDATES IN TRIANGULO MINEIRO, MINAS GERAIS STATE, BRAZIL

    PubMed Central

    LOPES, Patrícia da Silva; RAMOS, Eliezer Lucas Pires; GÓMEZ-HERNÁNDEZ, César; FERREIRA, Gabriela Lícia Santos; REZENDE-OLIVEIRA, Karine

    2015-01-01

    Despite public health campaigns and epidemiological surveillance activities, Chagas disease remains a major health problem in Latin America. According to data from the World Health Organization, there are approximately 7-8 million people infected with Trypanosoma cruzi worldwide, a large percentage of which in Latin America. This study aims to examine the serological profile of blood donors in blood banks of Hemominas hematology center, in the town of Ituiutaba, Minas Gerais State, Brazil. The study sample consisted of 53,941 blood donors, which were grouped according to gender and age. Sample collections were performed from January 1991 to December 2011, and 277 donors (0.5%) were considered serologically ineligible due to Chagas disease. Analysis of data showed no significant difference between genders. As for age, the highest proportion of ineligible donors was from 40 to 49 years (30%), and there was a positive correlation between increasing age and the percentage of patients seropositive for Chagas disease. Therefore, adopting strategies that allow the safe identification of donors with positive serology for Chagas disease is essential to reduce or eliminate indeterminate serological results. PMID:27049698

  18. Emergence of magnetic topological states in topological insulators doped with magnetic impurities

    NASA Astrophysics Data System (ADS)

    Tran, Minh-Tien; Nguyen, Hong-Son; Le, Duc-Anh

    2016-04-01

    Emergence of the topological invariant and the magnetic moment in topological insulators doped with magnetic impurities is studied based on a mutual cooperation between the spin-orbit coupling of electrons and the spin exchange of these electrons with magnetic impurity moments. The mutual cooperation is realized based on the Kane-Mele model in the presence of magnetic impurities. The topological invariants and the spontaneous magnetization are self-consistently determined within the dynamical mean-field theory. We find different magnetic topological phase transitions, depending on the electron filling. At half filling an antiferromagnetic topological insulator, which exhibits the quantum spin Hall effect, exists in the phase region between the paramagnetic topological insulator and the trivially topological antiferromagnetic insulator. At quarter and three-quarter fillings, a ferromagnetic topological insulator, which exhibits the quantum anomalous Hall effect, occurs in the strong spin-exchange regime.

  19. Impurity-modulated Aharonov-Bohm oscillations and intraband optical absorption in quantum dot-ring nanostructures

    NASA Astrophysics Data System (ADS)

    Barseghyan, M. G.; Manaselyan, A. Kh.; Laroze, D.; Kirakosyan, A. A.

    2016-07-01

    In this work we study the electronic states in quantum dot-ring complex nanostructures with an on-center hydrogenic impurity. The influence of the impurity on Aharonov-Bohm energy spectra oscillations and intraband optical absorption is investigated. It is shown that in the presence of a hydrogenic donor impurity the Aharonov-Bohm oscillations in quantum dot-ring structures become highly tunable. Furthermore, the presence of the impurity drastically changes the intraband absorption spectra due to the strong controllability of the electron localization type.

  20. Electrical flicker-noise generated by filling and emptying of impurity states in injectors of quantum-cascade lasers

    SciTech Connect

    Yamanishi, Masamichi Hirohata, Tooru; Hayashi, Syohei; Fujita, Kazuue; Tanaka, Kazunori

    2014-11-14

    Free running line-widths (>100 kHz), much broader than intrinsic line-widths ∼100 Hz, of existing quantum-cascade lasers are governed by strong flicker frequency-noise originating from electrical flicker noise. Understanding of microscopic origins of the electrical flicker noises in quantum-cascade lasers is crucially important for the reduction of strength of flicker frequency-noise without assistances of any type of feedback schemes. In this article, an ad hoc model that is based on fluctuating charge-dipoles induced by electron trappings and de-trappings at indispensable impurity states in injector super-lattices of a quantum-cascade laser is proposed, developing theoretical framework based on the model. The validity of the present model is evaluated by comparing theoretical voltage-noise power spectral densities based on the model with experimental ones obtained by using mid-infrared quantum-cascade lasers with designed impurity-positioning. The obtained experimental results on flicker noises, in comparison with the theoretical ones, shed light on physical mechanisms, such as the inherent one due to impurity states in their injectors and extrinsic ones due to surface states on the ridge-walls and due to residual deep traps, for electrical flicker-noise generation in existing mid-infrared quantum-cascade lasers. It is shown theoretically that quasi-delta doping of impurities in their injectors leads to strong suppression of electrical flicker noise by minimization of the dipole length at a certain temperature, for instance ∼300 K and, in turn, is expected to result in substantial narrowing of the free running line-width down below 10 kHz.

  1. Impurity Studies of Cd(0.8)Zn(0.2)Te Crystals Using Photoluminescence and Glow Discharge Mass Spectroscopy

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Lehoczky, Sandor L.; Scripa, Rosalie N.

    2005-01-01

    Cd(1-x)Zn(x)Te semiconductor crystal is a highly promising material for room temperature x- and gamma-ray detector applications because of its high resistivity, long carrier lifetime, and relatively high hole and electron mobilities. This paper reports the investigation of the impurities in several Cd(1-x)Zn(x)Te (x = 0.20) crystals grown using the vertical Bridgman method under a Cd overpressure. The impurity concentrations were measured using glow discharge mass spectroscopy (GDMS). The energy states of the impurities were studied using photoluminescence (PL) spectroscopy at liquid helium temperature. The PL spectra showed a series of sharp high energy lines which are associated with free excitons and excitons bound to impurities as donors and acceptors in the crystals. The impurities also contributed to donor-acceptor pair recombination. The correlation between the GDMS and PL results will be reported.

  2. Serologic survey on hantavirus in blood donors from the state of Santa Catarina, Brazil.

    PubMed

    Cordova, Caio Maurício Mendes de; Figueiredo, Luiz Tadeu Moraes

    2014-01-01

    Emergent diseases such as Hantavirus Cardio-pulmonary Syndrome (HCPS) are able to create a significant impact on human populations due to their seriousness and high fatality rate. Santa Catarina, located in the South of Brazil, is the leading state for HCPS with 267 reported cases from 1999 to 2011. We present here a serological survey on hantavirus in blood donors from different cities of the state of Santa Catarina, with an IgG-ELISA using a recombinant nucleocapsid protein from Araraquara hantavirus as an antigen. In total, 314 donors from blood banks participated in the study, geographically covering the whole state. Among these, 14 individuals (4.4%) had antibodies to hantavirus: four of 50 (8% positivity) from Blumenau, four of 52 (7.6%) from Joinville, three of 50 (6%) from Florianópolis, two of 50 (4%) from Chapecó and one of 35 (2.8%) from Joaçaba. It is possible that hantaviruses are circulating across almost the whole state, with important epidemiological implications. Considering that the seropositive blood donors are healthy individuals, it is possible that hantaviruses may be causing unrecognized infections, which are either asymptomatic or clinically nonspecific, in addition to HCPS. It is also possible that more than one hantavirus type could be circulating in this region, causing mostly benign infections.

  3. Normal development following chromatin transfer correlates with donor cell initial epigenetic state.

    PubMed

    McLean, Cameron A; Wang, Zhongde; Babu, Kavitha; Edwards, Angie; Kasinathan, Poothappillai; Robl, James; Sheppard, Allan M

    2010-04-01

    If the full potential of chromatin transfer (CT) technology is to be realized for both animal production and biomedical applications it is imperative that the efficiency of the reprogramming process be improved, and the potential for deleterious development be eliminated. Generation of the first cloned animals from adult somatic cells demonstrated that development is substantially an epigenetic process (Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH, 1997. Viable offspring derived from fetal and adult mammalian cells. Nature. 385(6619): 810-813.). In this study, we provide preliminary evidence that the epigenetic state of the donor cell, may be valuable in assessing potential cloning success. We have measured key indicators of cellular epigenetic state in both serially derived cell populations of the same genetic origin, but differing in epigenomic status, and in a distinct cohort of donor cell populations with diverse genetic origins and epigenomic status. Specifically, the relative abundance of particular histone modifications in donor populations prior to manipulation has been correlated with the measurable variance in reprogramming efficiencies observed following CT, as defined by the number of resulting live births and healthy progeny, and the concomitant incidence of deleterious growth measures (notably the appearance of large offspring syndrome (LOS)). Thus, we suggest that the likely outcome and relative success of cloning may be predictable based on the expression of discriminating histone marks present in the donor cell population before CT. This approach may provide the basis of a prognostic signature for the future evaluation and risk assessment of putative donor cells prior to CT, and thus increase future cloning success and alleviate the incidence of abnormal development.

  4. Hepatitis C virus infection in blood donors from the state of Puebla, Mexico

    PubMed Central

    2010-01-01

    Background Worldwide, 130 million persons are estimated to be infected with HCV. Puebla is the Mexican state with the highest mortality due to hepatic cirrhosis. Therefore, it is imperative to obtain epidemiological data on HCV infection in asymptomatic people of this region. The objective of present study was to analyze the prevalence of antibodies and genotypes of hepatitis C virus (HCV) in blood donors from Puebla, Mexico. Results The overall prevalence was 0.84% (515/61553). Distribution by region was: North, 0.86% (54/6270); Southeast, 1.04% (75/7197); Southwest, 0.93% (36/3852); and Central, 0.79% (350/44234). Ninety-six donors were enrolled for detection and genotyping of virus, from which 37 (38.5%) were HCV-RNA positive. Detected subtypes were: 1a (40.5%), 1b (27.0%), mixed 1a/1b (18.9%), undetermined genotype 1 (5.4%), 2a (2.7%), 2b (2.7%), and mixed 1a/2a (2.7%). All recovered donors with S/CO > 39 were HCV-RNA positive (11/11) and presented elevated ALT; in donors with S/CO < 39 HCV-RNA, positivity was of 30.4%; and 70% had normal values of ALT. The main risk factors associated with HCV infection were blood transfusion and surgery. Conclusions HCV prevalence of donors in Puebla is similar to other Mexican states. The most prevalent genotype is 1, of which subtype 1a is the most frequent. PMID:20100349

  5. Donor acceptor electronic couplings in π-stacks: How many states must be accounted for?

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-04-01

    Two-state model is commonly used to estimate the donor-acceptor electronic coupling Vda for electron transfer. However, in some important cases, e.g. for DNA π-stacks, this scheme fails to provide accurate values of Vda because of multistate effects. The Generalized Mulliken-Hush method enables a multistate treatment of Vda. In this Letter, we analyze the dependence of calculated electronic couplings on the number of the adiabatic states included in the model. We suggest a simple scheme to determine this number. The superexchange correction of the two-state approximation is shown to provide good estimates of the electronic coupling.

  6. Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues

    SciTech Connect

    Beletskiy, Evgeny V.; Schmidt, Jacob C.; Wang, Xue B.; Kass, Steven R.

    2012-11-14

    Enzymes and their mimics use hydrogen bonds to catalyze chemical transformations. Small molecule transition state analogs of oxyanion holes are characterized by gas phase IR and photoelectron spectroscopy and their binding constants in acetonitrile. As a result, a new class of hydrogen bond catalysts is proposed (OH donors that can contribute three hydrogen bonds to a single functional group) and demonstrated in a Friedel-Crafts reaction.

  7. Electronic properties of substitutional impurities in InGaN monolayer quantum wells

    SciTech Connect

    Alfieri, G.; Tsutsumi, T.; Micheletto, R.

    2015-05-11

    InGaN alloys and, in particular, InGaN monolayer quantum wells (MLQWs) are attracting an increasing amount of interest for opto-electronic applications. Impurities, incorporated during growth, can introduce electronic states that can degrade the performance of such devices. For this reason, we present a density functional and group theoretical study of the electronic properties of C, H, or O impurities in an InGaN MLQW. Analysis of the formation energy and symmetry reveals that these impurities are mostly donors and can be held accountable for the reported degradation of InGaN-based devices.

  8. Impurity Flow and Ion Temperature Measurements in CDX-U using a Modulated Optical Solid-State Spectrometer

    NASA Astrophysics Data System (ADS)

    Post-Zwicker, Andrew; Kaita, Robert; Munsat, Tobin; Miller, Timothy

    1999-11-01

    A Modulated Optical Solid-State Spectrometer (MOSS) 1 was recently installed on the Current Drive Experiment - Upgrade (CDX-U) to measure impurity ion temperature and flow. The device is based on a Fourier transform spectrometer and does not use a conventional diffraction grating. Intensity (average signal level), Doppler shift (modulation phase) and width (modulation amplitude) are extracted from the single output to determine the ion temperature and flow velocity. Rotation and ion temperature profiles are used to study transport. Initial results from these experiments are presented. 1J. Howard, Rev. Sci. Instr., 70(1), (1999) 368.

  9. Trends and Outcomes for Donor Oocyte Cycles in the United States, 2000–2010

    PubMed Central

    Kawwass, Jennifer F.; Monsour, Michael; Crawford, Sara; Kissin, Dmitry M.; Session, Donna R.; Kulkarni, Aniket D.; Jamieson, Denise J.

    2015-01-01

    IMPORTANCE The prevalence of oocyte donation for in vitro fertilization (IVF) has increased in the United States, but little information is available regarding maternal or infant outcomes to improve counseling and clinical decision making. OBJECTIVES To quantify trends in donor oocyte cycles in the United States and to determine predictors of a good perinatal outcome among IVF cycles using fresh (noncryopreserved) embryos derived from donor oocytes. DESIGN, SETTING, AND PARTICIPANTS Analysis of data from the Centers for Disease Control and Prevention’s National ART Surveillance System, to which fertility centers are mandated to report and which includes data on more than 95% of all IVF cycles performed in the United States. Data from 2000 to 2010 described trends. Data from 2010 determined predictors. MAIN OUTCOMES AND MEASURES Good perinatal outcome, defined as a singleton live-born infant delivered at 37 weeks or later and weighing 2500 g or more. RESULTS From 2000 to 2010, data from 443 clinics (93% of all US fertility centers) were included. The annual number of donor oocyte cycles significantly increased, from 10 801 to 18 306. Among all donor oocyte cycles, an increasing trend was observed from 2000 to 2010 in the proportion of cycles using frozen (vs fresh) embryos (26.7% [95% CI, 25.8%–27.5%] to 40.3% [95% CI, 39.6%–41.1%]) and elective single-embryo transfers (vs transfer of multiple embryos) (0.8% [95% CI, 0.7%–1.0%]to 14.5% [95% CI, 14.0%–15.1%]). Good perinatal outcomes increased from 18.5% (95% CI, 17.7%–19.3%) to 24.4% (95% CI, 23.8%–25.1%) (P < .001 for all listed trends). Mean donor and recipient ages remained stable at 28 (SD, 2.8) years and 41 (SD, 5.3) years, respectively. In 2010, 396 clinics contributed data. For donor oocyte cycles using fresh embryos (n = 9865), 27.5% (95% CI, 26.6%–28.4%) resulted in good perinatal outcome. Transfer of an embryo at day 5 (adjusted odds ratio [OR], 1.17 [95% CI, 1.04–1.32]) and elective

  10. Unperturbed state and solitary structures in an electron-positron plasma having dust impurity and density inhomogeneity

    NASA Astrophysics Data System (ADS)

    Malik, Hitendra K.; Malik, Rakhee; Malik

    2014-08-01

    An electron-positron pair plasma having dust impurity and density non-uniformity is studied for its unperturbed state and evolution of solitary structures under the effect of either positively charged or negatively charged dust grains. Zeroth-order equations are solved to examine the unperturbed state of the plasma via unperturbed potential φ0, drift velocities of the electrons and positrons (v e0 and v p0), and plasma (positron) density gradient n p0η. It is observed that the dust distribution affects the gradient n p0η significantly, which increases very sharply with a small increment in the dust density gradient n d0η. With relation to the solitary structures, a modified form of Korteweg-deVries equation (mKdV equation) is realized in the said plasma, which reveals that a tailing structure is associated with the soliton (sech2 structure). This tail is less prominent in the present pair plasma, contrary to the observation made in ordinary plasmas having only ions and electrons. The dust impurity is found to influence the solitary structure much significantly and its presence suppresses the rarefactive solitons, which are generally observed in multi-component species plasmas.

  11. State of deceased donor transplantation in India: A model for developing countries around the world.

    PubMed

    Abraham, Georgi; Vijayan, Madhusudan; Gopalakrishnan, Natarajan; Shroff, Sunil; Amalorpavanathan, Joseph; Yuvaraj, Anand; Nair, Sanjeev; Sundarrajan, Saravanan

    2016-06-24

    Renal replacement therapy (RRT) resources are scarce in India, with wide urban-rural and interstate disparities. The burden of end-stage renal disease is expected to increase further due to increasing prevalence of risk factors like diabetes mellitus. Renal transplantation, the best RRT modality, is increasing in popularity, due to improvements made in public education, the deceased donor transplantation (DDT) programme and the availability of free and affordable transplant services in government hospitals and certain non-governmental philanthropic organizations. There are about 120000 haemodialysis patients and 10000 chronic peritoneal dialysis patients in India, the majority of them waiting for a donor kidney. Shortage of organs, lack of transplant facilities and high cost of transplant in private facilities are major barriers for renal transplantation in India. The DDT rate in India is now 0.34 per million population, among the lowest in the world. Infrastructural development in its infancy and road traffic rules not being strictly implemented by the authorities, have led to road traffic accidents being very common in urban and rural India. Many patients are declared brain dead on arrival and can serve as potential organ donors. The DDT programme in the state of Tamil Nadu has met with considerable success and has brought down the incidence of organ trade. Government hospitals in Tamil Nadu, with a population of 72 million, provide free transplantation facilities for the underprivileged. Public private partnership has played an important role in improving organ procurement rates, with the help of trained transplant coordinators in government hospitals. The DDT programmes in the southern states of India (Tamil Nadu, Kerala, Pondicherry) are advancing rapidly with mutual sharing due to public private partnership providing vital organs to needy patients. Various health insurance programmes rolled out by the governments in the southern states are effective in

  12. State of deceased donor transplantation in India: A model for developing countries around the world

    PubMed Central

    Abraham, Georgi; Vijayan, Madhusudan; Gopalakrishnan, Natarajan; Shroff, Sunil; Amalorpavanathan, Joseph; Yuvaraj, Anand; Nair, Sanjeev; Sundarrajan, Saravanan

    2016-01-01

    Renal replacement therapy (RRT) resources are scarce in India, with wide urban-rural and interstate disparities. The burden of end-stage renal disease is expected to increase further due to increasing prevalence of risk factors like diabetes mellitus. Renal transplantation, the best RRT modality, is increasing in popularity, due to improvements made in public education, the deceased donor transplantation (DDT) programme and the availability of free and affordable transplant services in government hospitals and certain non-governmental philanthropic organizations. There are about 120000 haemodialysis patients and 10000 chronic peritoneal dialysis patients in India, the majority of them waiting for a donor kidney. Shortage of organs, lack of transplant facilities and high cost of transplant in private facilities are major barriers for renal transplantation in India. The DDT rate in India is now 0.34 per million population, among the lowest in the world. Infrastructural development in its infancy and road traffic rules not being strictly implemented by the authorities, have led to road traffic accidents being very common in urban and rural India. Many patients are declared brain dead on arrival and can serve as potential organ donors. The DDT programme in the state of Tamil Nadu has met with considerable success and has brought down the incidence of organ trade. Government hospitals in Tamil Nadu, with a population of 72 million, provide free transplantation facilities for the underprivileged. Public private partnership has played an important role in improving organ procurement rates, with the help of trained transplant coordinators in government hospitals. The DDT programmes in the southern states of India (Tamil Nadu, Kerala, Pondicherry) are advancing rapidly with mutual sharing due to public private partnership providing vital organs to needy patients. Various health insurance programmes rolled out by the governments in the southern states are effective in

  13. State of deceased donor transplantation in India: A model for developing countries around the world.

    PubMed

    Abraham, Georgi; Vijayan, Madhusudan; Gopalakrishnan, Natarajan; Shroff, Sunil; Amalorpavanathan, Joseph; Yuvaraj, Anand; Nair, Sanjeev; Sundarrajan, Saravanan

    2016-06-24

    Renal replacement therapy (RRT) resources are scarce in India, with wide urban-rural and interstate disparities. The burden of end-stage renal disease is expected to increase further due to increasing prevalence of risk factors like diabetes mellitus. Renal transplantation, the best RRT modality, is increasing in popularity, due to improvements made in public education, the deceased donor transplantation (DDT) programme and the availability of free and affordable transplant services in government hospitals and certain non-governmental philanthropic organizations. There are about 120000 haemodialysis patients and 10000 chronic peritoneal dialysis patients in India, the majority of them waiting for a donor kidney. Shortage of organs, lack of transplant facilities and high cost of transplant in private facilities are major barriers for renal transplantation in India. The DDT rate in India is now 0.34 per million population, among the lowest in the world. Infrastructural development in its infancy and road traffic rules not being strictly implemented by the authorities, have led to road traffic accidents being very common in urban and rural India. Many patients are declared brain dead on arrival and can serve as potential organ donors. The DDT programme in the state of Tamil Nadu has met with considerable success and has brought down the incidence of organ trade. Government hospitals in Tamil Nadu, with a population of 72 million, provide free transplantation facilities for the underprivileged. Public private partnership has played an important role in improving organ procurement rates, with the help of trained transplant coordinators in government hospitals. The DDT programmes in the southern states of India (Tamil Nadu, Kerala, Pondicherry) are advancing rapidly with mutual sharing due to public private partnership providing vital organs to needy patients. Various health insurance programmes rolled out by the governments in the southern states are effective in

  14. Honoring our donors: a survey of memorial ceremonies in United States anatomy programs.

    PubMed

    Jones, Trahern W; Lachman, Nirusha; Pawlina, Wojciech

    2014-01-01

    Many anatomy programs that incorporate dissection of donated human bodies hold memorial ceremonies of gratitude towards body donors. The content of these ceremonies may include learners' reflections on mortality, respect, altruism, and personal growth told through various humanities modalities. The task of planning is usually student- and faculty-led with participation from other health care students. Objective information on current memorial ceremonies for body donors in anatomy programs in the United States appears to be lacking. The number of programs in the United States that currently plan these memorial ceremonies and information on trends in programs undertaking such ceremonies remain unknown. Gross anatomy program directors throughout the United States were contacted and asked to respond to a voluntary questionnaire on memorial ceremonies held at their institution. The results (response rate 68.2%) indicated that a majority of human anatomy programs (95.5%) hold memorial ceremonies. These ceremonies are, for the most part, student-driven and nondenominational or secular in nature. Participants heavily rely upon speech, music, poetry, and written essays, with a small inclusion of other humanities modalities, such as dance or visual art, to explore a variety of themes during these ceremonies. PMID:24753299

  15. Honoring our donors: a survey of memorial ceremonies in United States anatomy programs.

    PubMed

    Jones, Trahern W; Lachman, Nirusha; Pawlina, Wojciech

    2014-01-01

    Many anatomy programs that incorporate dissection of donated human bodies hold memorial ceremonies of gratitude towards body donors. The content of these ceremonies may include learners' reflections on mortality, respect, altruism, and personal growth told through various humanities modalities. The task of planning is usually student- and faculty-led with participation from other health care students. Objective information on current memorial ceremonies for body donors in anatomy programs in the United States appears to be lacking. The number of programs in the United States that currently plan these memorial ceremonies and information on trends in programs undertaking such ceremonies remain unknown. Gross anatomy program directors throughout the United States were contacted and asked to respond to a voluntary questionnaire on memorial ceremonies held at their institution. The results (response rate 68.2%) indicated that a majority of human anatomy programs (95.5%) hold memorial ceremonies. These ceremonies are, for the most part, student-driven and nondenominational or secular in nature. Participants heavily rely upon speech, music, poetry, and written essays, with a small inclusion of other humanities modalities, such as dance or visual art, to explore a variety of themes during these ceremonies.

  16. Bound states in disclinated graphene with Coulomb impurities in the presence of a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    de Souza, J. F. O.; de Lima Ribeiro, C. A.; Furtado, Claudio

    2014-06-01

    In this contribution, we study the effects caused by an impurity on the quantum dynamics of massive excitations in a disclinated graphene in the presence of an external magnetic field. Within a continuum approach, the problem is mathematically modeled by the definition of a special vector potential containing all the information about the topology and the interacting fields. The presence of disclination is introduced by a term in the Dirac equation that translates the appearance of a phase associated with the transport of the spinor around the apex of the cone. We solve exactly the Dirac equation for this problem and the eigenvalues are obtained. We observe the influence of the disclination on the spectrum of energy and the allowed values of magnetic field.

  17. Electronic coupling for charge transfer in donor-bridge-acceptor systems. Performance of the two-state FCD model.

    PubMed

    Voityuk, Alexander A

    2012-10-28

    Electronic coupling is a key parameter that determines the rate of electron transfer reactions and electrical conductivity of molecular wires. To examine the performance of a two-state approach based on the orthogonal transformation of adiabatic states to diabatic states, we compare the effective donor-acceptor coupling V(DA) computed with three different approaches in model donor-bridge-acceptor (D-B-A) systems. It is found that V(DA) derived with the two-state method accounts properly for both the direct and superexchange interactions. The approach becomes, however, less accurate with the increasing energy difference of the donor and acceptor states. We suggest a simple diagnostic to identify the situation when the estimated coupling might be inaccurate and consider how to improve the performance of the two-state scheme in such a case.

  18. Commodified kin: death, mourning, and competing claims on the bodies of organ donors in the United States.

    PubMed

    Sharp, L A

    2001-03-01

    A pronounced disjunction characterizes symbolic constructions of the cadaveric donor body in the United States, where procurement professionals and surviving donor kin vie with one another in their desires to honor this unusual category of the dead. Of special concern is the medicalized commodification of donor bodies, a process that shapes both their social worth and emotional value. Among professionals, metaphorical thinking is key: death and body fragmentation are cloaked in ecological imagery that stresses renewal and rebirth. Such objectification also obscures the origins of transplantable organs, renders individual donors anonymous, and silences kin who mourn their dead. In response, donor kin have grown increasingly assertive, generating alternative public mortuary forms that exclude professional mediators. In so doing, they challenge the medical assumption that anonymity is central to transplantation's continued success. Through donor quilts and Web cemeteries, they proclaim the personal identities of donors who, at times, may speak beyond the grave, offering critiques of donation as socio-medical process in the United States. PMID:12715820

  19. States rule differently on subject of AIDS and disclosure of a blood donor's identity.

    PubMed

    Decker, R

    1989-05-01

    Last month, Dr. Decker analyzed recent court decisions that maintain the standard that providing blood and human tissue is a service, not a sale of goods. Under most conditions, he concluded, hospitals can't be held liable for damages to a patient who acquires an infectious virus from blood transfusions or tissue transplants. This month, Dr. Decker considers the effect of AIDS on rulings dealing with the disclosure of a blood donor's identity. In 1988, the Supreme Court of the United States twice declined to review lower court decisions dealing with the disclosure of the names of blood donors in situations where the recipient had contracted AIDS. The issues are complex and require the balancing of conflicting rights. Further, previous decisions have not been consistent from one state to another. Hospital materials managers must understand the issues involved in the court decisions as they carry out their responsibility to the hospital and its patients to provide the safest possible supply of blood. In this dialogue, Dr. Decker reviews the case law and develops the issues.

  20. Photoluminescence properties of Sn-related donor state in Al(x)Ga(1-x)As

    NASA Astrophysics Data System (ADS)

    Kang, Junyog; Iida, Seishi; Huang, Qisheng; Fukuda, Tsuguo

    1993-08-01

    We have investigated the near-gap recombinations in Sn-doped Al(x)Ga(1-x)As by photoluminescence. By analyzing the variations of spectral lineshapes under various excitation intensities, only one type of recombination was assigned to associated with the Sn-related donor state, which was different from the hydrogenlike shallow donor states and the DX centers. Phonon replicas were observed to accompany the recombination in the samples with high AlAs mole fractions of direct gaps, as well as in those of indirect gaps. The Franck-Condon shift and the phonon energy of the recombination were found to increase with increasing AlAs mole fraction. This behavior was explained in terms of a variation of local lattice distortion around an ionized Sn-related donor and a weighted average of two local vibrational mode frequencies of the Sn-related donor.

  1. The impacts of electronic state hybridization on the binding energy of single phosphorus donor electrons in extremely downscaled silicon nanostructures

    SciTech Connect

    The Anh, Le Manoharan, Muruganathan; Moraru, Daniel; Tabe, Michiharu; Mizuta, Hiroshi

    2014-08-14

    We present the density functional theory calculations of the binding energy of the Phosphorus (P) donor electrons in extremely downscaled single P-doped Silicon (Si) nanorods. In past studies, the binding energy of donor electrons was evaluated for the Si nanostructures as the difference between the ionization energy for the single P-doped Si nanostructures and the electron affinity for the un-doped Si nanostructures. This definition does not take into account the strong interaction of donor electron states and Si electron states explicitly at the conductive states and results in a monotonous increase in the binding energy by reducing the nanostructure's dimensions. In this paper, we introduce a new approach to evaluate the binding energy of donor electrons by combining the projected density of states (PDOS) analysis and three-dimensional analysis of associated electron wavefunctions. This enables us to clarify a gradual change of the spatial distribution of the 3D electron wavefunctions (3DWFs) from the donor electron ground state, which is fully localized around the P donor site to the first conductive state, which spreads over the outer Si nanorods contributing to current conduction. We found that the energy of the first conductive state is capped near the top of the atomistic effective potential at the donor site with respect to the surrounding Si atoms in nanorods smaller than about 27 a{sub 0}. This results in the binding energy of approximately 1.5 eV, which is virtually independent on the nanorod's dimensions. This fact signifies a good tolerance of the binding energy, which governs the operating temperature of the single dopant-based transistors in practice. We also conducted the computationally heavy transmission calculations of the single P-doped Si nanorods connected to the source and drain electrodes. The calculated transmission spectra are discussed in comparison with the atomistic effective potential distributions and the PDOS-3DWFs method.

  2. The impacts of electronic state hybridization on the binding energy of single phosphorus donor electrons in extremely downscaled silicon nanostructures

    NASA Astrophysics Data System (ADS)

    The Anh, Le; Moraru, Daniel; Manoharan, Muruganathan; Tabe, Michiharu; Mizuta, Hiroshi

    2014-08-01

    We present the density functional theory calculations of the binding energy of the Phosphorus (P) donor electrons in extremely downscaled single P-doped Silicon (Si) nanorods. In past studies, the binding energy of donor electrons was evaluated for the Si nanostructures as the difference between the ionization energy for the single P-doped Si nanostructures and the electron affinity for the un-doped Si nanostructures. This definition does not take into account the strong interaction of donor electron states and Si electron states explicitly at the conductive states and results in a monotonous increase in the binding energy by reducing the nanostructure's dimensions. In this paper, we introduce a new approach to evaluate the binding energy of donor electrons by combining the projected density of states (PDOS) analysis and three-dimensional analysis of associated electron wavefunctions. This enables us to clarify a gradual change of the spatial distribution of the 3D electron wavefunctions (3DWFs) from the donor electron ground state, which is fully localized around the P donor site to the first conductive state, which spreads over the outer Si nanorods contributing to current conduction. We found that the energy of the first conductive state is capped near the top of the atomistic effective potential at the donor site with respect to the surrounding Si atoms in nanorods smaller than about 27 a0. This results in the binding energy of approximately 1.5 eV, which is virtually independent on the nanorod's dimensions. This fact signifies a good tolerance of the binding energy, which governs the operating temperature of the single dopant-based transistors in practice. We also conducted the computationally heavy transmission calculations of the single P-doped Si nanorods connected to the source and drain electrodes. The calculated transmission spectra are discussed in comparison with the atomistic effective potential distributions and the PDOS-3DWFs method.

  3. Expanding the donor pool: can the Spanish model work in the United States?

    PubMed

    Chang, George J; Mahanty, Harish D; Ascher, Nancy L; Roberts, John P

    2003-10-01

    Since the creation of the Organizacion Nacional de Trasplantes (ONT) in 1989, the organ donation rate in Spain has doubled. Although often attributed to improved donor recruitment efforts, this increase may also represent higher utilization of marginal donors. Therefore, age-related donor recruitment in Spain and the US was evaluated. Data from the ONT, the US Scientific Registry of Transplant Recipients (SRTR), the US Census Bureau, and the Tempus databank of Spain's Instituto Nacional de Estadistica (INE) were analyzed. Between 1989 and 1999, the number of donors in Spain increased from 14.3 to 33.7 per million population (pmp; 136% increase) compared with an increase in the US from 16.2 to 21.5 donors pmp (33%). The largest difference between Spain and the US in the increased number of donors was in the 45-year-old group, representing 30.3% of donors in Spain in 1999 (44 donors pmp). If the US increased its older donor rates to match Spain's, an incremental 1235 donors per year would be realized. The high Spanish organ donation rates are largely attributable to increased use of older donors. Utilizing similar proportions of older donors in the US would increase the donor pool by almost 40%.

  4. Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle

    NASA Astrophysics Data System (ADS)

    Nakra Mohajer, Soukaina; El Harouny, El Hassan; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi

    2016-09-01

    Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.

  5. Density of states determination in organic donor-acceptor blend layers enabled by molecular doping

    NASA Astrophysics Data System (ADS)

    Fischer, Janine; Ray, Debdutta; Kleemann, Hans; Pahner, Paul; Schwarze, Martin; Koerner, Christian; Vandewal, Koen; Leo, Karl

    2015-06-01

    Charge carrier transport is a key parameter determining the efficiency of organic solar cells, and is closely related to the density of free and trapped states. For trap characterization, impedance spectroscopy is a suitable, non-invasive method, applicable to complete organic semiconductor devices. In order to contribute to the capacitive signal, the traps must be filled with charge carriers. Typically, trap filling is achieved by illuminating the device or by injecting charge carriers through application of a forward bias voltage. However, in both cases, the exact number of charge carriers in the device is not known and depends strongly on the measurement conditions. Here, hole trap states of the model blend layer ZnPc:C60 are filled by weak p-doping, enabling trap characterization in a blend layer at a controlled hole density. We evaluate impedance spectra at different temperatures in order to determine the density of occupied states (DOOS) directly from the capacitance-frequency spectra by assuming a simple energy diagram. The reconstructed DOOS distribution is analyzed at different doping concentrations and device thicknesses and compared to thermally stimulated current measurements performed on the same devices. In both methods, a pronounced Gaussian peak at about 0.4 eV below the transport level is found as well as deep, exponential tail states, providing a deeper insight into the density of states distribution of this donor-acceptor blend layer. Additionally, the effect of doping-induced trap filling on the solar cell characteristics is studied in these devices.

  6. Charge Transfer States in Dilute Donor-Acceptor Blend Organic Heterojunctions.

    PubMed

    Liu, Xiao; Ding, Kan; Panda, Anurag; Forrest, Stephen R

    2016-08-23

    We study the charge transfer (CT) states in small-molecule blend heterojunctions comprising the nonpolar donor, tetraphenyldibenzoperiflanthene (DBP), and the acceptor, C70, using electroluminescence and steady-state and time-resolved photoluminescence spectroscopy along with density functional theory calculations. We find that the CT exciton energy blue shifts as the C70 concentration in the blend is either decreased or increased away from 50 vol %. At 20 K, the increase in CT state lifetime is correlated with the increasing diameter of C70 nanocrystallites in the blends. A quantum confinement model is used to quantitatively describe the dependence of both CT energy and lifetime on the C70 or DBP domain size. Two discrete CT emission peaks are observed for blends whose C70 concentration is >65%, at which point C70 nanocrystallites with diameters >4 nm appear in high-resolution transmission electron micrographs. The presence of two CT states is attributed to coexistence of crystalline C70 and amorphous phases in the blends. Furthermore, analysis of CT dissociation efficiency versus photon energy suggests that the >90% dissociation efficiency of delocalized CT2 states from the crystalline phase significantly contributes to surprisingly efficient photogeneration in highly dilute (>80% C70) DBP/C70 heterojunctions. PMID:27487403

  7. Multiple Charge Transfer States at Ordered and Disordered Donor/Acceptor Interfaces

    NASA Astrophysics Data System (ADS)

    Fusella, Michael; Verreet, Bregt; Lin, Yunhui; Brigeman, Alyssa; Purdum, Geoffrey; Loo, Yueh-Lin; Giebink, Noel; Rand, Barry

    The presence of charge transfer (CT) states in organic solar cells is accepted, but their role in photocurrent generation is not well understood. Here we investigate solar cells based on rubrene and C60 to show that CT state properties are influenced by molecular ordering at the donor/acceptor (D/A) interface. Crystalline rubrene films are produced with domains of 100s of microns adopting the orthorhombic phase, as confirmed by grazing incidence XRD, with the (h00) planes parallel to the substrate. C60 grown atop these films adopts a highly oriented face-centered cubic phase with the (111) plane parallel to the substrate. For this highly ordered system we have discovered the presence of four CT states. Polarized external quantum efficiency (EQE) measurements assign three of these to crystalline origins with the remaining one well aligned with the disordered CT state. Varying the thickness of a disordered blend of rubrene:C60 atop the rubrene template modulates the degree of crystallinity at the D/A interface. Strikingly, this process alters the prominence of the four CT states measured via EQE, and results in a transition from single to multiple electroluminescence peaks. These results underscore the impact of molecular structure at the heterojunction on charge photogeneration.

  8. The quadratic Zeeman effect used for state-radius determination in neutral donors and donor bound excitons in Si:P

    NASA Astrophysics Data System (ADS)

    Litvinenko, K. L.; Li, Juerong; Stavrias, N.; Meaney, A. J.; Christianen, P. C. M.; Engelkamp, H.; Homewood, K. P.; Pidgeon, C. R.; Murdin, B. N.

    2016-04-01

    We have measured the near-infrared photoluminescence spectrum of phosphorus doped silicon (Si:P) and extracted the donor-bound exciton (D0X) energy at magnetic fields up to 28 T. At high field the Zeeman effect is strongly nonlinear because of the diamagnetic shift, also known as the quadratic Zeeman effect (QZE). The magnitude of the QZE is determined by the spatial extent of the wave-function. High field data allows us to extract values for the radius of the neutral donor (D0) ground state, and the light and heavy hole D0X states, all with more than an order of magnitude better precision than previous work. Good agreement was found between the experimental state radius and an effective mass model for D0. The D0X results are much more surprising, and the radius of the m J = ±3/2 heavy hole is found to be larger than that of the m J = ±1/2 light hole.

  9. Effect of a metallic gate on the energy levels of a shallow donor

    SciTech Connect

    Slachmuylders, A. F.; Partoens, B.; Peeters, F. M.; Magnus, W.

    2008-02-25

    We have investigated the effect of a metallic gate on the bound states of a shallow donor located near the gate. We calculate the energy spectrum as a function of the distance between the metallic gate and the donor and find an anticrossing behavior in the energy levels for certain distances. We show how a transverse electric field can tune the average position of the electron with respect to the metallic gate and the impurity.

  10. Estimation of electronic coupling in π-stacked donor-bridge-acceptor systems: Correction of the two-state model

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-02-01

    Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽda=(E2-E1)μ12/Rda+(2E3-E1-E2)2μ13μ23/Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model.

  11. Spectroscopic signature for bundling, edge states and impurities in 1D and 0D materials

    NASA Astrophysics Data System (ADS)

    Lingam, Kiran Kumar

    Study of nanomaterials has gained interest of researchers from various fields of science and technology due to their unique electronic and vibrational properties as compared to their bulk counterparts. In particular, carbon nanotechnology has evolved rapidly over the past few decades and nowadays, carbon nanotubes are used in various fields such as energy storage, electronics etc. However, the quest for new properties of this material is never ending and the invention of graphene generated enormous interest in the scientific community due to its excellent properties such as strength, high electron mobility, thermal conductivity etc. In this thesis, I aim at gaining better understanding of the electronic properties of carbon nanostructures and also discuss the effect of impurities on the vibrational properties of Bismuth nanorods. In the case of SWNTs, I have studied the effect of surrounding environment on their electronic properties, in particular Sub-nm SWNTs. Due to their unique electronic and vibrational properties, single walled carbon nanotubes (SWNTs) with sub-nanometer diameters d ˜ 0.5-0.9 nm have recently gained interest in the carbon community. Using UV-Vis-NIR spectroscopy and ultra-centrifugation, we have conducted a detailed study of the π plasmon energy (present at˜5-7 eV) in sub-nm SWCNTs as a function of the size of the bundle. We find that the energy of the π plasmon peak E varies with the bundle diameter Dh as E = (0.023 eV )*ln(Dh/do) + 5.3 7 eV, where do = 0.5 nm and corresponds to the smallest tube diameter. This is compared with the same data for HiPCo and Carbolex SWCNTs of larger diameter (1-1.4 nm) confirming a clear dependence of E on the bundle size, which is present in addition to the previously reported dependence of E on SWCNT diameter d. In case of graphene, the carbon atoms at the edges of graphene sheet contribute to its electronic properties. This effect becomes more prominent in confined structures such as graphene

  12. Existence of zero-energy impurity states in different classes of topological insulators and superconductors and their relation to topological phase transitions

    NASA Astrophysics Data System (ADS)

    Kimme, Lukas; Hyart, Timo

    2016-01-01

    We consider the effects of impurities on topological insulators and superconductors. We start by identifying the general conditions under which the eigenenergies of an arbitrary Hamiltonian H belonging to one of the Altland-Zirnbauer symmetry classes undergo a robust zero energy crossing as a function of an external parameter which can be, for example, the impurity strength. We define a generalized root of detH and use it to predict or rule out robust zero-energy crossings in all symmetry classes. We complement this result with an analysis based on almost degenerate perturbation theory, which allows a derivation of the asymptotic low-energy behavior of the ensemble averaged density of states ρ ˜Eα for all symmetry classes and makes it transparent that the exponent α does not depend on the choice of the random matrix ensemble. Finally, we show that a lattice of impurities can drive a topologically trivial system into a nontrivial phase, and in particular we demonstrate that impurity bands carrying extremely large Chern numbers can appear in different symmetry classes of two-dimensional topological insulators and superconductors. We use the generalized root of detH (k ) to reveal a spiderweblike momentum space structure of the energy gap closings that separate the topologically distinct phases in px+i py superconductors in the presence of an impurity lattice.

  13. Current practice of artificial insemination by donor in the United States.

    PubMed

    Curie-Cohen, M; Luttrell, L; Shapiro, S

    1979-03-15

    Of 711 physicians likely to perform artificial insemination by donor surveyed to determine their current practices, 471 responded, of whom 379 reported that they performed this procedure. They accounted for approximately 3576 births by this means in 1977. In addition to treating infertility, 26 per cent of these physicians used the procedure to prevent transmission of a genetic disease, and 10 per cent used if for single women. Donors of semen were primarily from universities, were only superficially screened for genetic diseases, and were then matched phenotypically to the recipient's husband. Most recipients were inseminated twice per cycle. Only 17 per cent of physicians used the same donor for a given recipient, and 32 per cent used multiple donors within a single cycle. Only 37 per cent kept records on children, and only 30 per cent on donors. The identity of donors usually was carefully guarded to ensure privacy and to avoid legal complications.

  14. Electronic states and wavefunctions of diatomic donor molecular ions in silicon: multi-valley envelope function theory.

    PubMed

    Klymenko, M V; Remacle, F

    2014-02-12

    Using the Burt-Foreman envelope function theory and effective mass approximation, we develop a theoretical model for an arbitrary number of interacting donor atoms embedded in silicon which reproduces the electronic energy spectrum with high computational efficiency, taking into account the effective mass anisotropy and the valley-orbit coupling. We show that the variation of the relative magnitudes of the electronic coupling between the donor atoms with respect to the valley-orbit coupling as a function of the internuclear distance leads to different kinds of spatial interference patterns of the wavefunction. We also report on the impact of the orientation of the diatomic phosphorus donor molecular ion in the crystal lattice on the ionization energy and on the energy separation between the ground state and the lowest excited state. PMID:24451236

  15. Electronic states and wavefunctions of diatomic donor molecular ions in silicon: multi-valley envelope function theory.

    PubMed

    Klymenko, M V; Remacle, F

    2014-02-12

    Using the Burt-Foreman envelope function theory and effective mass approximation, we develop a theoretical model for an arbitrary number of interacting donor atoms embedded in silicon which reproduces the electronic energy spectrum with high computational efficiency, taking into account the effective mass anisotropy and the valley-orbit coupling. We show that the variation of the relative magnitudes of the electronic coupling between the donor atoms with respect to the valley-orbit coupling as a function of the internuclear distance leads to different kinds of spatial interference patterns of the wavefunction. We also report on the impact of the orientation of the diatomic phosphorus donor molecular ion in the crystal lattice on the ionization energy and on the energy separation between the ground state and the lowest excited state.

  16. Cost-Effectiveness of Blood Donor Screening for Babesia microti in Endemic Regions of the United States

    PubMed Central

    Simon, Matthew S.; Leff, Jared A.; Pandya, Ankur; Cushing, Melissa; Shaz, Beth H.; Calfee, David P.; Schackman, Bruce R.; Mushlin, Alvin I.

    2014-01-01

    Background Babesia microti is the leading reported cause of red blood cell (RBC) transfusion-transmitted infection in the United States (US). Donor screening assays are in development. Study Design and Methods A decision analytic model estimated the cost-effectiveness of screening strategies for preventing transfusion-transmitted babesiosis (TTB) in a hypothetical cohort of transfusion recipients in Babesia-endemic areas of the US. Strategies included: (1) No screening, (2) Uniform Donor Health History Questionnaire (UDHQ), “status quo”, (3) Recipient risk-targeting using donor antibody (Ab) and polymerase chain reaction (PCR) screening, (4) Universal endemic donor Ab screening, (5) Universal endemic donor Ab and PCR screening. Outcome measures were TTB cases averted, costs, quality-adjusted life years (QALYs) and incremental cost-effectiveness ratios ($/QALY). We assumed a societal willingness to pay of $1 million/QALY based on screening for other transfusion-transmitted infections. Results Compared to no screening, the UDHQ avoids 0.02 TTB cases per 100,000 RBC transfusions at an incremental cost effectiveness ratio (ICER) of $160,000/QALY whereas recipient risk-targeted strategy using Ab/PCR avoids 1.62 TTB cases per 100,000 RBC transfusions at an ICER of $713,000/QALY compared to the UDHQ. Universal endemic Ab screening avoids 3.39 cases at an ICER of $760,000/QALY compared to the recipient-risk targeted strategy. Universal endemic Ab/PCR screening avoids 3.60 cases and has an ICER of $8.8 million/QALY compared to universal endemic Ab screening. Results are sensitive to blood donor Babesia prevalence, TTB transmission probability, screening test costs, risk and severity of TTB complications, and impact of babesiosis diagnosis on donor quality of life. Conclusion Antibody screening for Babesia in endemic regions is appropriate from an economic perspective based on the societal willingness to pay for preventing infectious threats to blood safety. PMID

  17. Impurity gettering

    SciTech Connect

    Picraux, S.T.

    1995-06-01

    Transition metal impurities are well known to cause detrimental effects when present in the active regions of Si devices. Their presence degrades minority carrier lifetime, provides recombination-generation centers, increases junction leakage current and reduces gate oxide integrity. Thus, gettering processes are used to reduce the available metal impurities from the active region of microelectronic circuits. Gettering processes are usually divided into intrinsic (or internal) and extrinsic (or external) categories. Intrinsic refers to processing the Si wafer in a way to make available internal gettering sites, whereas extrinsic implies externally introduced gettering sites. Special concerns have been raised for intrinsic gettering. Not only will the formation of the precipitated oxide and denuded zone be difficult to achieve with the lower thermal budgets, but another inherent limit may set in. In this or any process which relies on the precipitation of metal silicides the impurity concentration can only be reduced as low as the solid solubility limit. However, the solubilities of transition metals relative to silicide formation are typically found to be {approx_gt}10{sup 12}/cm{sup 3} at temperatures of 800 C and above, and thus inadequate to getter to the needed concentration levels. It is thus anticipated that future microelectronic device processing will require one or more of the following advances in gettering technology: (1) new and more effective gettering mechanisms; (2) quantitative models of gettering to allow process optimization at low process thermal budgets and metal impurity concentrations, and/or (3) development of front side gettering methods to allow for more efficient gettering close to device regions. These trend-driven needs provide a driving force for qualitatively new approaches to gettering and provide possible new opportunities for the use of ion implantation in microelectronics processing.

  18. Increasing the Number of Organ Transplants in the United States by Optimizing Donor Authorization Rates.

    PubMed

    Goldberg, D S; French, B; Abt, P L; Gilroy, R K

    2015-08-01

    While recent policies have focused on allocating organs to patients most in need and lessening geographic disparities, the only mechanism to increase the actual number of transplants is to maximize the potential organ supply. We conducted a retrospective cohort study using OPTN data on all "eligible deaths" from 1/1/08 to 11/1/13 to evaluate variability in donor service area (DSA)-level donor authorization rates, and to quantify the potential gains associated with increasing authorization rates. Despite adjustments for donor demographics (age, race/ethnicity, cause of death) and geographic factors (rural/urban status of donor hospital, statewide participation in deceased-donor registries) among 52 571 eligible deaths, there was significant variability (p < 0.001) in donor authorization rates across the 58 DSAs. Overall DSA-level adjusted authorization rates ranged from 63.5% to 89.5% (median: 72.7%). An additional 773-1623 eligible deaths could have been authorized, yielding 2679-5710 total organs, if the DSAs with authorization rates below the median and 75th percentile, respectively, implemented interventions to perform at the level of the corresponding reference DSA. Opportunities exist within the current organ acquisition framework to markedly improve DSA-level donor authorization rates. Such initiatives would mitigate waitlist mortality while increasing the number of transplants.

  19. Spin relaxation and donor-acceptor recombination of Se+ in 28-silicon

    NASA Astrophysics Data System (ADS)

    Lo Nardo, Roberto; Wolfowicz, Gary; Simmons, Stephanie; Tyryshkin, Alexei M.; Riemann, Helge; Abrosimov, Nikolai V.; Becker, Peter; Pohl, Hans-Joachim; Steger, Michael; Lyon, Stephen A.; Thewalt, Mike L. W.; Morton, John J. L.

    2015-10-01

    Selenium impurities in silicon are deep double donors and their optical and electronic properties have been recently investigated due to their application for infrared detection. However, a singly ionized selenium donor (Se+) possesses an electron spin which makes it a potential candidate as a silicon-based spin qubit, with significant potential advantages compared to the more commonly studied group V donors. Here we study the electron spin relaxation (T1) and coherence (T2) times of Se+ in isotopically purified 28-silicon, and find them to be up to two orders of magnitude longer than shallow group V donors at temperatures above ˜15 K . We further study the dynamics of donor-acceptor recombination between selenium and boron, demonstrating that it is possible to control the donor charge state through optical excitation of neutral Se0.

  20. "Hot or cold": how do charge transfer states at the donor-acceptor interface of an organic solar cell dissociate?

    PubMed

    Bässler, Heinz; Köhler, Anna

    2015-11-21

    Electron transfer from an excited donor to an acceptor in an organic solar cell (OSC) is an exothermic process, determined by the difference in the electronegativities of donor and acceptor. It has been suggested that the associated excess energy facilitates the escape of the initially generated electron-hole pair from their mutual coulomb well. Recent photocurrent excitation spectroscopy on conjugated polymer/PCBM cells challenged this view. In this perspective we shall briefly outline the strengths and weaknesses of relevant experimental approaches and concepts. We shall enforce the notion that the charge separating state is a vibrationally cold charge transfer (CT) state. It can easily dissociate provided that (i) there is electrostatic screening at the interface and (ii) the charge carriers are delocalized, e.g. if the donor is a well ordered conjugated polymer. Both effects diminish the coulomb attraction and assure that the in-built electric field existing in the OSC under short current condition is already sufficient to separate most the CT states. The remaining CT excitations relax towards tail states of the disorder controlled density of states distribution, such as excimer forming states, that are more tightly bound and have longer lifetimes.

  1. Becoming a Donor

    MedlinePlus

    ... by Organ and Gender. > U.S. Waiting List Candidate Data HOW TO BECOME A DONOR The most important thing to do is to sign up as an organ and tissue donor in your state's donor registry. To cover all bases, it's also helpful to: Designate your decision on ...

  2. Gate-modulated conductance of few-layer WSe{sub 2} field-effect transistors in the subgap regime: Schottky barrier transistor and subgap impurity states

    SciTech Connect

    Wang, Junjie; Feng, Simin; Rhodes, Daniel; Balicas, Luis; Nguyen, Minh An T.; Watanabe, K.; Taniguchi, T.; Mallouk, Thomas E.; Terrones, Mauricio; Zhu, J.

    2015-04-13

    Two key subjects stand out in the pursuit of semiconductor research: material quality and contact technology. The fledging field of atomically thin transition metal dichalcogenides (TMDCs) faces a number of challenges in both efforts. This work attempts to establish a connection between the two by examining the gate-dependent conductance of few-layer (1-5L) WSe{sub 2} field effect devices. Measurements and modeling of the subgap regime reveal Schottky barrier transistor behavior. We show that transmission through the contact barrier is dominated by thermionic field emission (TFE) at room temperature, despite the lack of intentional doping. The TFE process arises due to a large number of subgap impurity states, the presence of which also leads to high mobility edge carrier densities. The density of states of such impurity states is self-consistently determined to be approximately 1–2 × 10{sup 13}/cm{sup 2}/eV in our devices. We demonstrate that substrate is unlikely to be a major source of the impurity states and suspect that lattice defects within the material itself are primarily responsible. Our experiments provide key information to advance the quality and understanding of TMDC materials and electrical devices.

  3. Underutilization of Living Donor Liver Transplantation in the United States: Bias against MELD 20 and Higher

    PubMed Central

    Perumpail, Ryan B.; Yoo, Eric R.; Cholankeril, George; Hogan, Lupe; Deis, Melodie; Concepcion, Waldo C.; Bonham, C. Andrew; Younossi, Zobair M.; Wong, Robert J.; Ahmed, Aijaz

    2016-01-01

    Abstract Background and Aims: Utilization of living donor liver transplantation (LDLT) and its relationship with recipient Model for End-Stage Liver Disease (MELD) needs further evaluation in the United States (U.S.). We evaluated the association between recipient MELD score at the time of surgery and survival following LDLT. Methods: All U.S. adult LDLT recipients with MELD < 25 were evaluated using the 1995–2012 United Network for Organ Sharing registry. Survival following LDLT was stratified into three MELD categories (MELD < 15 vs. MELD 15–19 vs. MELD 20–24) and evaluated using Kaplan-Meier methods and multivariate Cox proportional hazards models. Results: Overall, 2,258 patients underwent LDLT. Compared to patients with MELD < 15, overall 5-year survival following LDLT was similar among patients with MELD 15–19 (80.9% vs. 80.3%, p = 0.77) and MELD 20–24 (81.2% vs. 80.3%, p = 0.73). When compared to patients with MELD < 15, there was no significant difference in long-term post-LDLT survival among those with MELD 15–19 (HR: 1.11, 95% CI: 0.85−1.45, p = 0.45) and a non-significant trend towards lower survival in patients with MELD 20–24 (HR: 1.28, 95% CI: 0.91−1.81, p = 0.16). Only 14% of LDLTs were performed in patients with MELD 20–24 and the remaining 86% in patients with MELD < 20. Conclusion: LDLT is underutilized in patients with MELD 20 and higher. PMID:27777886

  4. Racial differences in determinants of live donor kidney transplantation in the United States.

    PubMed

    Purnell, T S; Xu, P; Leca, N; Hall, Y N

    2013-06-01

    Few studies have compared determinants of live donor kidney transplantation (LDKT) across all major US racial-ethnic groups. We compared determinants of racial-ethnic differences in LDKT among 208 736 patients who initiated treatment for end-stage kidney disease during 2005-2008. We performed proportional hazards and bootstrap analyses to estimate differences in LDKT attributable to sociodemographic and clinical factors. Mean LDKT rates were lowest among blacks (1.19 per 100 person-years [95% CI: 1.12-1.26]), American Indians/Alaska Natives-AI/ANs (1.40 [1.06-1.84]) and Pacific Islanders (1.10 [0.78-1.84]), intermediate among Hispanics (2.53 [2.39-2.67]) and Asians (3.89 [3.51-4.32]), and highest among whites (6.46 [6.31-6.61]). Compared with whites, the largest proportion of the disparity among blacks (20%) and AI/ANs (29%) was attributed to measures of predialysis care, while the largest proportion among Hispanics (14%) was attributed to health insurance coverage. Contextual poverty accounted for 16%, 4%, 18%, and 6% of the disparity among blacks, Hispanics, AI/ANs and Pacific Islanders but none of the disparity among Asians. In the United States, significant disparities in rates of LDKT persist, but determinants of these disparities vary by race-ethnicity. Efforts to expand preESKD insurance coverage, to improve access to high-quality predialysis care and to overcome socioeconomic barriers are important targets for addressing disparities in LDKT.

  5. Thermoelectric effects of the single-spin state in the ferromagnetic-normal junction with artificial magnetic impurities

    NASA Astrophysics Data System (ADS)

    Xu, Li; Li, Zhi-Jian; Hou, Hai-Yan; Niu, Pengbin; Nie, Yi-Hang

    2016-10-01

    We theoretically analyze the thermoelectric properties of the single-spin state based on the resonant tunneling of electron in the ferromagnetic-normal junction with artificial magnetic impurities. The thermoelectric coefficients, such as electrical conductance G, thermal conductance K, thermopower S and effective figure of merit Y, have been calculated using the nonequilibrium Green function in the linear regime. It is found that the thermoelectric coefficients can achieve considerable values by adjusting key parameters of the hybrid mesoscopic structure, such as the level detuning, the interdot hopping coefficient, the external magnetic field and the angle θ. When the level detuning changes, the spectra of electrical conductance and thermal conductance exhibit the electronic Dicke-like effect in the low temperature. Two valleys of electrical conductance and thermal conductance are always located at the single-spin level of QD2 ({{\\varepsilon}2\\uparrow} and ~{{\\varepsilon}2\\downarrow} ), and can achieve the antiresonant point by adjusting the interdot hopping coefficient. Thermoelectric coefficients can achieve considerable values near valleys because the Wiedemann-Franz law is strongly violated. Thermopower S and effective figure of merit Y can get larger values in the vicinity of {{\\varepsilon}2\\uparrow} by adjusting key parameters of the hybrid mesoscopic structure, such as the level detuning, the interdot hopping coefficient and the polarization. But the thermoelectric effect is reversed by changing the angle θ. When the angle θ increases, S and Y are suppressed in the vicinity of {{\\varepsilon}2\\uparrow}, meanwhile, S and Y are enhanced in the vicinity of {{\\varepsilon}2\\downarrow}. {χ+}=\\cos \\fracθ{2}|\\uparrow >+\\sin \\fracθ{2}|\\downarrow > shows that an electron in the state {χ+} can virtually tunnel into the spin-up (or spin-down) state of the ferromagnet. The amplitude of electron tunneling is \\cos \\fracθ{2} (or \\sin \\fracθ{2

  6. The electronic structure of the Mott insulator VO2: the strongly correlated metal state is screened by impurity band

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Tak

    A Mott insulator VO2 (3d1) has a direct gap (Δdirect ~Vdirect) of 0.6 eV and an indirect gap of Δact ~Vdirect ~ 0.15 eV coming from impurity indirect band. At Tc, Δdirect =Δact = O is satisfied and the insulator-to-metal transition (IMT) occurs. The metallic carriers near core region can be trapped when a critical onsite Coulomb Uc exists. Then, a potential energy is defined as Vg =Vdirect +Uc +Vindirect = - (2 2 3) EF (1 + e (NtotNtotntot) (1 - exp (-Δact-ΔactkB T))) +Uc kB T))) +Uc ntot) (1 - exp (-Δact-ΔactkB T))) +Uc kB T))) +Uc 3) EF (1 + e (NtotNtotntot) (1 - exp (-Δact-ΔactkB T))) +Uc kB T))) +Uc ntot) (1 - exp (-Δact-ΔactkB T))) +Uc kB T))) +Uc , where Vdirect = - (2 2 3 3) EF is the screened Coulomb pseudopotential at K = 0. Δρ =NtotNtotntot ~ 0 . 018 % ntot ~ 0 . 018 % [1] is defined as the critical doping quantity, where ntot is the carrier density in the direct band and Ntot is the carrier density in the impurity band. In Uc < (2

  7. Ex Vivo Lung Perfusion – State of the Art in Lung Donor Pool Expansion

    PubMed Central

    Popov, Aron-Frederik; Sabashnikov, Anton; Patil, Nikhil P.; Zeriouh, Mohamed; Mohite, Prashant N.; Zych, Bartlomiej; Saez, Diana Garcia; Schmack, Bastian; Ruhparwar, Arjang; Dohmen, Pascal M.; Karck, Matthias; Simon, Andre R.; Weymann, Alexander

    2015-01-01

    Lung transplantation remains the gold standard for patients with end-stage lung disease. Nevertheless, the number of suitable donor lungs for the increasing number of patients on the waiting list necessitates alternative tools to expand the lung donor pool. Modern preservation and lung assessment techniques could contribute to improved function in previously rejected lungs. Ex vivo lung perfusion (EVLP) already demonstrated its value in identification of transplantable grafts from the higher risk donor pool. Moreover, lungs from EVLP did not show significantly different postoperative results compared to standard criteria lungs. This could be explained by the reduction of the ischemia-reperfusion injury through EVLP application. The aim of this article is to review technical characteristics and the growing clinical EVLP experience with special attention to EVLP application for donation after cardiac death (DCD) lungs. PMID:25644463

  8. Computer Simulation of Stress-Strain State of Pipeline Section Affected by Abrasion Due to Mechanical Impurities

    NASA Astrophysics Data System (ADS)

    Burkov, P. V.; Afanas’ev, R. G.; Burkova, S. P.

    2016-04-01

    The paper presents the effect of abrasive wear of the pipeline section occurred due to mechanical impurities in the transported gas flow. The approaches to the detection of the maximum specific wear of the pipeline wall and the geometry of abrasion are the main problems of computer simulation described in this paper.

  9. Mobile impurities in ferromagnetic liquids

    NASA Astrophysics Data System (ADS)

    Kantian, Adrian; Schollwoeck, Ulrich; Giamarchi, Thierry

    2011-03-01

    Recent work has shown that mobile impurities in one dimensional interacting systems may exhibit behaviour that differs strongly from that predicted by standard Tomonaga-Luttinger liquid theory, with the appearance of power-law divergences in the spectral function signifying sublinear diffusion of the impurity. Using time-dependent matrix product states, we investigate a range of cases of mobile impurities in systems beyond the analytically accessible examples to assess the existence of a new universality class of low-energy physics in one-dimensional systems. Correspondence: Adrian.Kantian@unige.ch This work was supported in part by the Swiss SNF under MaNEP and division II.

  10. Chagas Disease Screening in Maternal Donors of Publicly Banked Umbilical Cord Blood, United States.

    PubMed

    Edwards, James M; Gilner, Jennifer B; Hernandez, Jose; Kurtzberg, Joanne; Heine, R Phillips

    2016-08-01

    To assess patterns of Chagas disease, we reviewed results of screening umbilical cord blood from a US public cord blood bank during 2007-2014. Nineteen maternal donors tested positive for Trypanosoma cruzi parasites (0.04%). Because perinatal transmission of Chagas disease is associated with substantial illness, targeted prenatal programs should screen for this disease. PMID:27433974

  11. Chagas Disease Screening in Maternal Donors of Publicly Banked Umbilical Cord Blood, United States

    PubMed Central

    Gilner, Jennifer B.; Hernandez, Jose; Kurtzberg, Joanne; Heine, R. Phillips

    2016-01-01

    To assess patterns of Chagas disease, we reviewed results of screening umbilical cord blood from a US public cord blood bank during 2007–2014. Nineteen maternal donors tested positive for Trypanosoma cruzi parasites (0.04%). Because perinatal transmission of Chagas disease is associated with substantial illness, targeted prenatal programs should screen for this disease. PMID:27433974

  12. ICU Management of the Potential Organ Donor: State of the Art.

    PubMed

    Maciel, Carolina B; Greer, David M

    2016-09-01

    End-organ failure is associated with high mortality and morbidity, in addition to increased health care costs. Organ transplantation is the only definitive treatment that can improve survival and quality of life in such patients; however, due to the persistent mismatch between organ supply and demand, waiting lists continue to grow across the world. Careful intensive care management of the potential organ donor with goal-directed therapy has the potential to optimize organ function and improve donation yield. PMID:27498101

  13. Rich Donors, Poor Countries

    ERIC Educational Resources Information Center

    Thomas, M. A.

    2012-01-01

    The shifting ideological winds of foreign aid donors have driven their policy towards governments in poor countries. Donors supported state-led development policies in poor countries from the 1940s to the 1970s; market and private-sector driven reforms during the 1980s and 1990s; and returned their attention to the state with an emphasis on…

  14. Binding energy of the donor impurities in GaAs-Ga 1- x Al x As quantum well wires with Morse potential in the presence of electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Aciksoz, Esra; Bayrak, Orhan; Soylu, Asim

    2016-10-01

    The behavior of a donor in the GaAs-Ga1-x Al x As quantum well wire represented by the Morse potential is examined within the framework of the effective-mass approximation. The donor binding energies are numerically calculated for with and without the electric and magnetic fields in order to show their influence on the binding energies. Moreover, how the donor binding energies change for the constant potential parameters (D e, r e, and a) as well as with the different values of the electric and magnetic field strengths is determined. It is found that the donor binding energy is highly dependent on the external electric and magnetic fields as well as parameters of the Morse potential. Project supported by the Turkish Science Research Council (TÜBİTAK) and the Financial Supports from Akdeniz and Nigde Universities.

  15. Analytical modeling of AlGaN/AlN/GaN heterostructures including effects of distributed surface donor states

    SciTech Connect

    Goyal, Nitin; Fjeldly, Tor A.

    2014-07-14

    In this paper, a physics based analytical model is presented for calculation of the two-dimensional electron gas density and the bare surface barrier height of AlGaN/AlN/GaN material stacks. The presented model is based on the concept of distributed surface donor states and the self-consistent solution of Poisson equation at the different material interfaces. The model shows good agreement with the reported experimental data and can be used for the design and characterization of advanced GaN devices for power and radio frequency applications.

  16. EPR study of the ground state of Mn2+ impurity ions in alumoborates MAl3(BO3)4 (M = Y, Eu, Tm)

    NASA Astrophysics Data System (ADS)

    Prokhorov, А А; Prokhorov, A. D.; Chernush, L. F.; Dyakonov, V. P.; Szymczak, H.; Dejneka, A.

    2015-06-01

    New data about the ground state of the Mn2+ impurity ions in a series of single crystals of alumbrados MAl3(BO3)4, where M = Y,Eu,Tm were obtained. The electron paramagnetic resonance (EPR) spectra of the Mn2+ spectra were studied, the parameters of the spin Hamiltonian describing the angular dependence of the spectrum were defined. It was shown that Mn2+ ions substitute trivalent ions of rare earth metals without changing the symmetry of the substitution site. The charge compensation process was found to be a nonlocal one. The cooling of the crystals leads to the increase of the splitting of the ground state, which is associated with the anisotropy of the thermal expansion coefficient. It was shown that an application of the superposition model to explain the distortions induced by an impurity Mn2+ ion has some limitations. The EPR linewidth of the Mn2+ ion in the TmAl3(BO3)4 crystal increases with increasing temperature as a result of the dipole-dipole and exchange interactions with the excited states of the host lattice Tm3+ ion.

  17. Photoluminescence due to impurity-cluster-bound exciton in highly doped and highly compensated Si

    NASA Astrophysics Data System (ADS)

    Tajima, Michio; Tanaka, Koji; Dubois, Sébastien; Veirman, Jordi; Nakagawa, Kei; Ogura, Atsushi

    2015-11-01

    We have investigated photoluminescence (PL) at 4.2 K in highly doped and highly compensated Si with donor and acceptor impurities in the intermediate concentration range from 1 × 1016 to 3 × 1018 cm-3. PL spectra were dominated by the radiative recombination of excitons bound by impurity clusters and the donor-acceptor pair emission. The peak position of the exciton emission shifts to the lower energy side monotonically with an increase in the sum of the donor and acceptor concentrations, where the relationship between the position and the concentration is universal regardless of the species of impurities and is valid also for uncompensated Si. This allowed us to suggest that the cluster consists of multiple species of donor and acceptor impurities and that the difference in the species does not cause a detectable variation in the binding energy of an exciton. A possible method for quantifying the donor and acceptor impurities is proposed.

  18. Ab initio multiconfiguration self-consistent-field calculations of the excited states of a Mn impurity in CaF2

    NASA Astrophysics Data System (ADS)

    Lewandowski, A. C.; Wilson, T. M.

    1994-08-01

    We analyze Mn absorption in CaF2:Mn by the employment of ab inito quantum-mechanical cluster calculations and ligand-field methods. The [MnF8]6- Oh cluster is chosen to represent the isolated Mn2+ substitutional impurity in an otherwise perfect crystal. The methods of unrestricted open-shell Hartree-Fock self-consistent field (SCF), Mo/ller-Plesset perturbation theory to second- and fourth-order, and singles and doubles configuration interaction are used to calculate the spin sextet and quartet ground states. With the active space consisting of the Mn 3d molecular orbitals, the spin quartet excited states are calculated by the method of multiconfiguration SCF. It was found that the presence of an external field designed to reproduce the Madelung potential difference within the cluster did not significantly affect the Mn d-to-d transitions. The crystal-field term splitting diagrams for the eight-coordinated Mn2+ impurity in Oh symmetry are calculated. The results showed a narrowing of the multiplet terms in energy with respect to the six-coordinated Oh result. This increases the crystal-field parameter Dq from the previously published value of 420-570 cm-1.

  19. Computational characterization of competing energy and electron transfer states in bimetallic donor-acceptor systems for photocatalytic conversion

    NASA Astrophysics Data System (ADS)

    Fredin, Lisa A.; Persson, Petter

    2016-09-01

    The rapidly growing interest in photocatalytic systems for direct solar fuel production such as hydrogen generation from water splitting is grounded in the unique opportunity to achieve charge separation in molecular systems provided by electron transfer processes. In general, both photoinduced and catalytic processes involve complicated dynamics that depend on both structural and electronic effects. Here the excited state landscape of metal centered light harvester-catalyst pairs is explored using density functional theory calculations. In weakly bound systems, the interplay between structural and electronic factors involved can be constructed from the various mononuclear relaxed excited states. For this study, supramolecular states of electron transfer and excitation energy transfer character have been constructed from constituent full optimizations of multiple charge/spin states for a set of three Ru-based light harvesters and nine transition metal catalysts (based on Ru, Rh, Re, Pd, and Co) in terms of energy, structure, and electronic properties. The complete set of combined charge-spin states for each donor-acceptor system provides information about the competition of excited state energy transfer states with the catalytically active electron transfer states, enabling the identification of the most promising candidates for photocatalytic applications from this perspective.

  20. Computational characterization of competing energy and electron transfer states in bimetallic donor-acceptor systems for photocatalytic conversion.

    PubMed

    Fredin, Lisa A; Persson, Petter

    2016-09-14

    The rapidly growing interest in photocatalytic systems for direct solar fuel production such as hydrogen generation from water splitting is grounded in the unique opportunity to achieve charge separation in molecular systems provided by electron transfer processes. In general, both photoinduced and catalytic processes involve complicated dynamics that depend on both structural and electronic effects. Here the excited state landscape of metal centered light harvester-catalyst pairs is explored using density functional theory calculations. In weakly bound systems, the interplay between structural and electronic factors involved can be constructed from the various mononuclear relaxed excited states. For this study, supramolecular states of electron transfer and excitation energy transfer character have been constructed from constituent full optimizations of multiple charge/spin states for a set of three Ru-based light harvesters and nine transition metal catalysts (based on Ru, Rh, Re, Pd, and Co) in terms of energy, structure, and electronic properties. The complete set of combined charge-spin states for each donor-acceptor system provides information about the competition of excited state energy transfer states with the catalytically active electron transfer states, enabling the identification of the most promising candidates for photocatalytic applications from this perspective.

  1. Computational characterization of competing energy and electron transfer states in bimetallic donor-acceptor systems for photocatalytic conversion.

    PubMed

    Fredin, Lisa A; Persson, Petter

    2016-09-14

    The rapidly growing interest in photocatalytic systems for direct solar fuel production such as hydrogen generation from water splitting is grounded in the unique opportunity to achieve charge separation in molecular systems provided by electron transfer processes. In general, both photoinduced and catalytic processes involve complicated dynamics that depend on both structural and electronic effects. Here the excited state landscape of metal centered light harvester-catalyst pairs is explored using density functional theory calculations. In weakly bound systems, the interplay between structural and electronic factors involved can be constructed from the various mononuclear relaxed excited states. For this study, supramolecular states of electron transfer and excitation energy transfer character have been constructed from constituent full optimizations of multiple charge/spin states for a set of three Ru-based light harvesters and nine transition metal catalysts (based on Ru, Rh, Re, Pd, and Co) in terms of energy, structure, and electronic properties. The complete set of combined charge-spin states for each donor-acceptor system provides information about the competition of excited state energy transfer states with the catalytically active electron transfer states, enabling the identification of the most promising candidates for photocatalytic applications from this perspective. PMID:27634263

  2. Infrared transitions between hydrogenic states in GaInNAs/GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Al, E. B.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sökmen, I.

    2016-08-01

    The effects of nitrogen and indium concentrations on the 1s, 2s, 2p0 and 2p±-like donor impurity energy states in a single Ga1‑xInxNyAs1‑y/GaAs quantum well (QW) are investigated by variational approach within the effective mass approximation. The results are presented as a function of the well width and the donor impurity position. It is found that the impurity binding and transition energies depend strongly on the indium concentration while depends weakly on the nitrogen concentration.

  3. Interaction-induced localization of mobile impurities in ultracold systems

    PubMed Central

    Li, Jian; An, Jin; Ting, C. S.

    2013-01-01

    The impurities, introduced intentionally or accidentally into certain materials, can significantly modify their characteristics or reveal their intrinsic physical properties, and thus play an important role in solid-state physics. Different from those static impurities in a solid, the impurities realized in cold atomic systems are naturally mobile. Here we propose an effective theory for treating some unique behaviors exhibited by ultracold mobile impurities. Our theory reveals the interaction-induced transition between the extended and localized impurity states, and also explains the essential features obtained from several previous models in a unified way. Based on our theory, we predict many intriguing phenomena in ultracold systems associated with the extended and localized impurities, including the formation of the impurity-molecules and impurity-lattices. We hope this investigation can open up a new avenue for the future studies on ultracold mobile impurities. PMID:24192986

  4. Interaction-induced localization of mobile impurities in ultracold systems

    NASA Astrophysics Data System (ADS)

    Li, Jian; An, Jin; Ting, C. S.

    2013-11-01

    The impurities, introduced intentionally or accidentally into certain materials, can significantly modify their characteristics or reveal their intrinsic physical properties, and thus play an important role in solid-state physics. Different from those static impurities in a solid, the impurities realized in cold atomic systems are naturally mobile. Here we propose an effective theory for treating some unique behaviors exhibited by ultracold mobile impurities. Our theory reveals the interaction-induced transition between the extended and localized impurity states, and also explains the essential features obtained from several previous models in a unified way. Based on our theory, we predict many intriguing phenomena in ultracold systems associated with the extended and localized impurities, including the formation of the impurity-molecules and impurity-lattices. We hope this investigation can open up a new avenue for the future studies on ultracold mobile impurities.

  5. A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor-acceptor organic materials

    NASA Astrophysics Data System (ADS)

    Busby, Erik; Xia, Jianlong; Wu, Qin; Low, Jonathan Z.; Song, Rui; Miller, John R.; Zhu, X.-Y.; Campos, Luis M.; Sfeir, Matthew Y.

    2015-04-01

    The ability to advance our understanding of multiple exciton generation (MEG) in organic materials has been restricted by the limited number of materials capable of singlet fission. A particular challenge is the development of materials that undergo efficient intramolecular fission, such that local order and strong nearest-neighbour coupling is no longer a design constraint. Here we address these challenges by demonstrating that strong intrachain donor-acceptor interactions are a key design feature for organic materials capable of intramolecular singlet fission. By conjugating strong-acceptor and strong-donor building blocks, small molecules and polymers with charge-transfer states that mediate population transfer between singlet excitons and triplet excitons are synthesized. Using transient optical techniques, we show that triplet populations can be generated with yields up to 170%. These guidelines are widely applicable to similar families of polymers and small molecules, and can lead to the development of new fission-capable materials with tunable electronic structure, as well as a deeper fundamental understanding of MEG.

  6. Endohedral Impurities in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis

    2003-03-01

    A generalization of the Anderson model that includes pseudo-Jahn-Teller impurity coupling is proposed to describe distortions of an endohedral impurity in a carbon nanotube. Treating the distortion within mean-field theory, spontaneous axial symmetry breaking is found when the vibronic coupling strength g exceeds a critical value g_c. The effective potential in the symmetry-broken state is found to have O(2) symmetry, in agreement with numerical calculations. The consequences of such a distortion on electronic transport will be discussed.

  7. Elemental Impurities in Pharmaceutical Excipients.

    PubMed

    Li, Gang; Schoneker, Dave; Ulman, Katherine L; Sturm, Jason J; Thackery, Lisa M; Kauffman, John F

    2015-12-01

    Control of elemental impurities in pharmaceutical materials is currently undergoing a transition from control based on concentrations in components of drug products to control based on permitted daily exposures in drug products. Within the pharmaceutical community, there is uncertainty regarding the impact of these changes on manufactures of drug products. This uncertainty is fueled in part by a lack of publically available information on elemental impurity levels in common pharmaceutical excipients. This paper summarizes a recent survey of elemental impurity levels in common pharmaceutical excipients as well as some drug substances. A widely applicable analytical procedure was developed and was shown to be suitable for analysis of elements that are subject to United States Pharmacopoeia Chapter <232> and International Conference on Harmonization's Q3D Guideline on Elemental Impurities. The procedure utilizes microwave-assisted digestion of pharmaceutical materials and inductively coupled plasma mass spectrometry for quantitative analysis of these elements. The procedure was applied to 190 samples from 31 different excipients and 15 samples from eight drug substances provided through the International Pharmaceutical Excipient Council of the Americas. The results of the survey indicate that, for the materials included in the study, relatively low levels of elemental impurities are present. PMID:26398581

  8. Elemental Impurities in Pharmaceutical Excipients.

    PubMed

    Li, Gang; Schoneker, Dave; Ulman, Katherine L; Sturm, Jason J; Thackery, Lisa M; Kauffman, John F

    2015-12-01

    Control of elemental impurities in pharmaceutical materials is currently undergoing a transition from control based on concentrations in components of drug products to control based on permitted daily exposures in drug products. Within the pharmaceutical community, there is uncertainty regarding the impact of these changes on manufactures of drug products. This uncertainty is fueled in part by a lack of publically available information on elemental impurity levels in common pharmaceutical excipients. This paper summarizes a recent survey of elemental impurity levels in common pharmaceutical excipients as well as some drug substances. A widely applicable analytical procedure was developed and was shown to be suitable for analysis of elements that are subject to United States Pharmacopoeia Chapter <232> and International Conference on Harmonization's Q3D Guideline on Elemental Impurities. The procedure utilizes microwave-assisted digestion of pharmaceutical materials and inductively coupled plasma mass spectrometry for quantitative analysis of these elements. The procedure was applied to 190 samples from 31 different excipients and 15 samples from eight drug substances provided through the International Pharmaceutical Excipient Council of the Americas. The results of the survey indicate that, for the materials included in the study, relatively low levels of elemental impurities are present.

  9. Impurity bubbles in a BEC

    NASA Astrophysics Data System (ADS)

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm

    2013-05-01

    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  10. Valency configuration of transition metal impurities in ZnO

    SciTech Connect

    Petit, Leon; Schulthess, Thomas C; Svane, Axel; Temmerman, Walter M; Szotek, Zdzislawa; Janotti, Anderson

    2006-01-01

    We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM=Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn{sub 1-x}TM{sub x}O, the localized TM{sup 2+} configuration is energetically favored over the itinerant d-electron configuration of the local spin density (LSD) picture. Our calculations indicate furthermore that the (+/0) donor level is situated in the ZnO gap. Consequently, for n-type conditions, with the Fermi energy {epsilon}F close to the conduction band minimum, TM remains in the 2+ charge state, while for p-type conditions, with {epsilon}F close to the valence band maximum, the 3+ charge state is energetically preferred. In the latter scenario, modeled here by co-doping with N, the additional delocalized d-electron charge transfers into the entire states at the top of the valence band, and hole carriers will only exist, if the N concentration exceeds the TM impurity concentration.

  11. Ionization of high-density deep donor defect states explains the low photovoltage of iron pyrite single crystals.

    PubMed

    Cabán-Acevedo, Miguel; Kaiser, Nicholas S; English, Caroline R; Liang, Dong; Thompson, Blaise J; Chen, Hong-En; Czech, Kyle J; Wright, John C; Hamers, Robert J; Jin, Song

    2014-12-10

    Iron pyrite (FeS2) is considered a promising earth-abundant semiconductor for solar energy conversion with the potential to achieve terawatt-scale deployment. However, despite extensive efforts and progress, the solar conversion efficiency of iron pyrite remains below 3%, primarily due to a low open circuit voltage (VOC). Here we report a comprehensive investigation on {100}-faceted n-type iron pyrite single crystals to understand its puzzling low VOC. We utilized electrical transport, optical spectroscopy, surface photovoltage, photoelectrochemical measurements in aqueous and acetonitrile electrolytes, UV and X-ray photoelectron spectroscopy, and Kelvin force microscopy to characterize the bulk and surface defect states and their influence on the semiconducting properties and solar conversion efficiency of iron pyrite single crystals. These insights were used to develop a circuit model analysis for the electrochemical impedance spectroscopy that allowed a complete characterization of the bulk and surface defect states and the construction of a detailed energy band diagram for iron pyrite crystals. A holistic evaluation revealed that the high-density of intrinsic surface states cannot satisfactorily explain the low photovoltage; instead, the ionization of high-density bulk deep donor states, likely resulting from bulk sulfur vacancies, creates a nonconstant charge distribution and a very narrow surface space charge region that limits the total barrier height, thus satisfactorily explaining the limited photovoltage and poor photoconversion efficiency of iron pyrite single crystals. These findings lead to suggestions to improve single crystal pyrite and nanocrystalline or polycrystalline pyrite films for successful solar applications.

  12. Why Minority Donors Are Needed

    MedlinePlus

    ... Español Search Register with your state as an Organ Donor Home Why Donate Becoming a Donor About Donation & ... Why Donate RELATED INFORMATION Minority Focused Grantee Publications Organ Donation Process Enrolling as a Donor Trying to Save a Life Testing for Brain ...

  13. Analytical advances in pharmaceutical impurity profiling.

    PubMed

    Holm, René; Elder, David P

    2016-05-25

    Impurities will be present in all drug substances and drug products, i.e. nothing is 100% pure if one looks in enough depth. The current regulatory guidance on impurities accepts this, and for drug products with a dose of less than 2g/day identification of impurities is set at 0.1% levels and above (ICH Q3B(R2), 2006). For some impurities, this is a simple undertaking as generally available analytical techniques can address the prevailing analytical challenges; whereas, for others this may be much more challenging requiring more sophisticated analytical approaches. The present review provides an insight into current development of analytical techniques to investigate and quantify impurities in drug substances and drug products providing discussion of progress particular within the field of chromatography to ensure separation of and quantification of those related impurities. Further, a section is devoted to the identification of classical impurities, but in addition, inorganic (metal residues) and solid state impurities are also discussed. Risk control strategies for pharmaceutical impurities aligned with several of the ICH guidelines, are also discussed.

  14. Donor-Derived Strongyloides stercoralis Infection in Solid Organ Transplant Recipients in the United States, 2009–2013

    PubMed Central

    Abanyie, F. A.; Gray, E. B.; Delli Carpini, K. W.; Yanofsky, A.; McAuliffe, I.; Rana, M.; Chin-Hong, P. V.; Barone, C. N.; Davis, J. L.; Montgomery, S. P.; Huprikar, S.

    2016-01-01

    Infection with Strongyloides stercoralis is typically asymptomatic in immunocompetent hosts, despite chronic infection. In contrast, immunocompromised hosts such as solid organ transplant recipients are at risk for hyperinfection syndrome and/or disseminated disease, frequently resulting in fatal outcomes. Infection in these recipients may result from reactivation of latent infection or infection through transmission from an infected donor. We describe the Centers for Disease Control and Prevention's experience with seven clusters of donor-derived infection from 2009 to 2013. Six of the seven (86%) donors were born in Latin America; donor screening was not performed prior to organ transplantation in any of these investigations. Eleven of the 20 (55%) organ recipients were symptomatic, two of whom died from complications of strongyloidiasis. We also describe the New York Organ Donor Network (NYODN) experience with targeted donor screening from 2010 to 2013. Of the 233 consented potential donors tested, 10 tested positive for Strongyloides antibody; and 18 organs were transplanted. The majority (86%) of the donors were born in Central or South America. Fourteen recipients received prophylaxis after transplantation; no recipients developed strongyloidiasis. The NYODN experience provides evidence that when targeted donor screening is performed prior to transplantation, donor-derived infection can be averted in recipients. PMID:25703251

  15. Enhanced ionized impurity scattering in nanowires

    NASA Astrophysics Data System (ADS)

    Oh, Jung Hyun; Lee, Seok-Hee; Shin, Mincheol

    2013-06-01

    The electronic resistivity in silicon nanowires is investigated by taking into account scattering as well as the donor deactivation from the dielectric mismatch. The effects of poorly screened dopant atoms from the dielectric mismatch and variable carrier density in nanowires are found to play a crucial role in determining the nanowire resistivity. Using Green's function method within the self-consistent Born approximation, it is shown that donor deactivation and ionized impurity scattering combined with the charged interface traps successfully to explain the increase in the resistivity of Si nanowires while reducing the radius, measured by Björk et al. [Nature Nanotech. 4, 103 (2009)].

  16. Evidence of Delocalization in Charge-Transfer State Manifold for Donor:Acceptor Organic Photovoltaics.

    PubMed

    Guan, Zhiqiang; Li, Ho-Wa; Zhang, Jinfeng; Cheng, Yuanhang; Yang, Qingdan; Lo, Ming-Fai; Ng, Tsz-Wai; Tsang, Sai-Wing; Lee, Chun-Sing

    2016-08-24

    How charge-transfer states (CTSs) assist charge separation of a Coulombically bound exciton in organic photovoltaics has been a hot topic. It is believed that the delocalization feature of a CTS plays a crucial role in the charge separation process. However, the delocalization of the "hot" and the "relaxed" CTSs is still under debate. Here, with a novel frequency dependent charge-modulated electroabsorption spectroscopy (CMEAS) technique, we elucidate clearly that both "hot" and "relaxed" CTSs are loosely bound and delocalized states. This is confirmed by comparing the CMEAS results of CTSs with those of localized polaron states. Our results reveal the role of CTS delocalization on charge separation and indicate that no substantial delocalization gradient exists in CTSs.

  17. Characteristics and Motivational Factors of Major Donors to Bowling Green State University

    ERIC Educational Resources Information Center

    Latta, Marcia Sloan

    2010-01-01

    With declining state support, increased financial need on the part of the fastest growing demographic sections of the population, and public policy that discourages major increases in tuition for public higher education, the only logical source of additional finances for public colleges and universities is increased private funding through…

  18. Identification of rhenium donors and sulfur vacancy acceptors in layered MoS2 bulk samples

    NASA Astrophysics Data System (ADS)

    Brandão, F. D.; Ribeiro, G. M.; Vaz, P. H.; González, J. C.; Krambrock, K.

    2016-06-01

    MoS2 monolayers, a two-dimensional (2D) direct semiconductor material with an energy gap of 1.9 eV, offer many opportunities to be explored in different electronic devices. Defects often play dominant roles in the electronic and optical properties of semiconductor devices. However, little experimental information about intrinsic and extrinsic defects or impurities is available for this 2D system, and even for macroscopic 3D samples for which MoS2 shows an indirect bandgap of 1.3 eV. In this work, we evaluate the nature of impurities with unpaired spins using electron paramagnetic resonance (EPR) in different geological macroscopic samples. Regarding the fact that monolayers are mostly obtained from natural crystals, we expect that the majority of impurities found in macroscopic samples are also randomly present in MoS2 monolayers. By EPR at low temperatures, rhenium donors and sulfur vacancy acceptors are identified as the main impurities in bulk MoS2 with a corresponding donor concentration of about 108-12 defects/cm2 for MoS2 monolayer. Electrical transport experiments as a function of temperature are in good agreement with the EPR results, revealing a shallow donor state with an ionization energy of 89 meV and a concentration of 7 × 1015 cm-3, which we attribute to rhenium, as well as a second deeper donor state with ionization energy of 241 meV with high concentration of 2 × 1019 cm-3 and net acceptor concentration of 5 × 1018 cm-3 related to sulfur vacancies.

  19. Acidic C-H Bond as a Proton Donor in Excited State Intramolecular Proton Transfer Reactions.

    PubMed

    Stasyuk, Anton J; Cyrański, Michał K; Gryko, Daniel T; Solà, Miquel

    2015-03-10

    An unprecedented type of excited state intramolecular proton transfer in a series of benzo[h]quinoline (BHQ) derivatives substituted at position 10 with strong CH acid character is described using density functional theory/time-dependent density functional theory computational approaches with a hybrid functional and the 6-311++G(d,p) triple-ξ quality basis set. Our results show that for 10-malononitrile-substituted BHQ (2CNBHQ) the excited state intramolecular proton transfer C-H···N reaction is a barrierless process. Calculations also reveal that the reaction profiles of the 4-amino-substituted 2CNBHQ show a large dependence on the polarity of the environment. PMID:26579756

  20. Effects of impurity size and heavy doping on energy-band-structure parameters of various impurity-Si systems

    NASA Astrophysics Data System (ADS)

    Van Cong, H.

    2016-04-01

    The effects of impurity size and heavy doping on energy-band-structure parameters of various donor (or acceptor)-Si systems were investigated. A satisfactory description was obtained for intrinsic properties such as: the effective dielectric constant, effective impurity ionization energy, effective intrinsic band gap, being doping-independent, and critical impurity density, Ncn(cp) GMM, which is derived from our simple generalized Mott model (GMM), as well as for extrinsic properties such as: the Fermi energy, reduced band gap, optical band gap, being doping-dependent, and critical impurity density, Ncn(cp) SSS, which is determined by our complicated spin-susceptibility-singularity (SSS) method. That gives: Ncn(cp) SSS ≡ Ncn(cp) GMM for all the studied donor (or acceptor)-Si systems.

  1. Impurities in Bose-Einstein Condensates: From Polaron to Soliton.

    PubMed

    Shadkhoo, Shahriar; Bruinsma, Robijn

    2015-09-25

    We propose that impurities in a Bose-Einstein condensate which is coupled to a transversely laser-pumped multimode cavity form an experimentally accessible and analytically tractable model system for the study of impurities solvated in correlated liquids and the breakdown of linear-response theory [corrected]. As the strength of the coupling constant between the impurity and the Bose-Einstein condensate is increased, which is possible through Feshbach resonance methods, the impurity passes from a large to a small polaron state, and then to an impurity-soliton state. This last transition marks the breakdown of linear-response theory.

  2. Spectral properties of superconductors with ferromagnetically ordered magnetic impurities

    NASA Astrophysics Data System (ADS)

    Persson, Daniel; Shevtsov, Oleksii; Löfwander, Tomas; Fogelström, Mikael

    2015-12-01

    We present a comprehensive theoretical study of thermodynamic properties of superconductors with a dilute concentration of magnetic impurities, with focus on how the properties of the superconducting host change if the magnetic moments of the impurities order ferromagnetically. Scattering off the magnetic impurities leads to the formation of a band of Yu-Shiba-Rusinov states within the superconducting energy gap that drastically influences superconductivity. In the magnetically ordered system, the magnetization displays a sudden drop as a function of the impurity density or magnetic moment amplitude. The drop occurs as the spin-polarized impurity band crosses the Fermi level and is associated with a quantum phase transition first put forward by Sakurai for the single impurity case. Taking into account that the background magnetic field created by the ordered impurity moments enters as a Zeeman shift, we find that the superconducting phase transition changes from second order to first order for high enough impurity concentrations.

  3. In-situ impurity measurements in PDX Edge plasma

    SciTech Connect

    Staib, P.; Dylla, H.F.; Rossnagel, S.M.

    1980-07-01

    The surface analysis station of PDX combines several surface analysis techniques (AES, XPS, SIMS) for in-situ measurement of impurity fluxes in the edge-plasma. The major impurities deposited on a sample surface during nondiverted PDX discharges are oxygen, titanium (limiter material) and chlorine. The impurity fluxes measured at different radial positions decreased by a factor of ten from the plasma edge to the wall. The sample surface collecting the impurity ions is located behind a circular aperture. The observed broadening of the deposition profile of Ti relative to the aperture diameter enables an estimate to be made of the ratio of charge state/energy of Ti ions in the edge plasma. Time-resolved analyses of the deposited impurities are presented which indicate that the time behavior for various impurities may be quite different for different impurity species. This aspect is discussed in relation to probable impurity release mechanisms.

  4. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    PubMed

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy

  5. Impurity scattering and Friedel oscillations in monolayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Zou, Yong-Lian; Song, Juntao; Bai, Chunxu; Chang, Kai

    2016-07-01

    We study the impurity scattering effect in black phosphorene (BP) in this work. For a single impurity, we calculate the impurity-induced local density of states (LDOS) in momentum space numerically based on a tight-binding Hamiltonian. In real space, we calculate the LDOS and Friedel oscillation analytically. The LDOS shows strong anisotropy in BP. Many impurities in BP are investigated using the T -matrix approximation when the density is low. Midgap states appear in the band gap with peaks in the DOS. The peaks of midgap states are dependent on the impurity potential. For finite positive potential, the impurity tends to bind negative charge carriers and vice versa. The infinite-impurity-potential problem is related to chiral symmetry in BP.

  6. Prevalence of Antibodies to Hepatitis E Virus in Veterinarians Working with Swine and in Normal Blood Donors in the United States and Other Countries

    PubMed Central

    Meng, X. J.; Wiseman, B.; Elvinger, F.; Guenette, D. K.; Toth, T. E.; Engle, R. E.; Emerson, S. U.; Purcell, R. H.

    2002-01-01

    Hepatitis E virus (HEV) is endemic in many developing and some industrialized countries. It has been hypothesized that animals may be the source of infection. The recent identification of swine HEV in U.S. pigs and the demonstration of its ability to infect across species have lent credence to this hypothesis. To assess the potential risk of zoonotic HEV infection, we tested a total of 468 veterinarians working with swine (including 389 U.S. swine veterinarians) and 400 normal U.S. blood donors for immunoglobulin G anti-HEV. Recombinant capsid antigens from a U.S. strain of swine HEV and from a human HEV strain (Sar-55) were each used in an enzyme-linked immunosorbent assay. The anti-HEV prevalence assayed with the swine HEV antigen showed 97% concordance with that obtained with the human HEV antigen (κ = 92%). Among the 295 swine veterinarians tested from the eight U.S. states (Minnesota, Indiana, Nebraska, Iowa, Illinois, Missouri, North Carolina, and Alabama) from which normal blood donor samples were available, 26% were positive with Sar-55 antigen and 23% were positive with swine HEV antigen. In contrast, 18% of the blood donors from the same eight U.S. states were positive with Sar-55 antigen and 17% were positive with swine HEV antigen. Swine veterinarians in the eight states were 1.51 times more likely when tested with swine HEV antigen (95% confidence interval, 1.03 to 2.20) and 1.46 times more likely when tested with Sar-55 antigen (95% confidence interval, 0.99 to 2.17) to be anti-HEV positive than normal blood donors. We did not find a difference in anti-HEV prevalence between veterinarians who reported having had a needle stick or cut and those who had not or between those who spent more time (≥80% of the time) and those who spent less time (≤20% of the time) working with pigs. Similarly, we did not find a difference in anti-HEV prevalence according to four job categories (academic, practicing, student, and industry veterinarians). There was a

  7. Cross-type spectrum rearrangement in graphene with weakly bound impurity centres: an impurity band with anomalous dispersion.

    PubMed

    Skrypnyk, Yuriy V; Loktev, Vadim M

    2013-05-15

    It is demonstrated that an anomalous dispersion region appears in the energy spectrum of charge carriers in graphene on increasing the concentration of weakly bound impurity centres. The corresponding spectrum rearrangement evolves in the neighbourhood of the impurity resonance energy and is of the cross type. The opening of the anomalous dispersion region in the impure graphene is accompanied by a doubling of the number of Dirac points in its electron spectrum. The stated spectrum rearrangement unfolds in a threshold manner, i.e. it takes place when the impurity concentration exceeds a certain critical value, which is determined by the mutual spatial overlap of individual impurity states.

  8. Valley spin-orbit interaction for the triplet and doublet 1sground states of lithium donor center in monoisotopic {sup 28}Si

    SciTech Connect

    Ezhevskii, Alexander A.; Popkov, Sergey A.; Soukhorukov, Andrey V.; Guseinov, Davud V.; Konakov, Anton A.; Abrosimov, Nikolai V.; Riemann, Helge

    2013-12-04

    Valley spin-orbit interaction for the triplet and doublet 1s-ground states of lithium donor center in monoisotopic {sup 28}Si was studied in order to determine its contribution to the electron spin relaxation rate. We observed new electron paramagnetic resonance spectra of lithium in monoisotopic silicon with g<2.000 and found the spin Hamiltonian parameters for it. Using our experimental results and taking into account spin-orbit coupling between the triplet states and the triplet and doublet states we found that the lithium donor electron spectrum and g-factors for its states strongly depend on both the internal strains in the crystal and the intervalley spin-orbit interactions.

  9. Thermally Induced Re-Trapping of Impurity Pairs in Silicon

    NASA Astrophysics Data System (ADS)

    Tessema, Genene

    Trapping and de-trapping of the acceptor-donor impurity pairs in semiconductors have been studied in crystalline silicon. The existence of such pairs in semiconductors are reported to have influence on the optical and electrical properties of materials. The perturbed γ - γ angular correlation (PAC) method is employed here to study such thermally induced dynamics of impurity complexes in the host lattice. The various types of pairs which are identified via the measured quadrupole interaction frequencies (QIF) showed distinct population of the complexes at different annealing temperatures. Efforts made to re-trap formed complexes after their dissociation by high sample temperatures produce positive results for some impurities.

  10. Pressure-induced shallow-to-deep donor-state transition in 119doped GaAs observed by Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Gibart, P.; Williamson, D. L.; Moser, J.; Basmaji, P.

    1990-08-01

    The Sn DX center in GaAs, a deep donor state of Sn, has been observed by Mössbauer measurements at high pressure. The size of the pressure-induced Sn DX Mössbauer resonance compared to the net conduction-electron concentration at zero pressure provides evidence that the Sn DX center localizes two or three electrons in the ground state.

  11. Impurity transport in Tokamaks

    NASA Astrophysics Data System (ADS)

    Amano, T.

    1983-12-01

    Theoretical and experimental efforts directed towards gaining an understanding of impurity behavior in Tokamaks are reviewed. In the Alcator Tokamak experiments, a laser blow-off technique was used to introduce trace amounts of impurities into ohmically heated plasmas. After a series of experiments in which they injected Si, Al, Fe, Mo impurities, an equation representing empirical impurity confinement time was derived. The scaling of this equation was compared with the results of impurity injection experiments on other Tokamaks, FT-I, PDX, TFR, ISX-B. Impurity confinement times in all these cases agree remarkably well, except for the TFR confinement times, which were about a factor of two larger than predicted. In the presence of intense neutral beam injection impurity ions behave differently. Specifically, in the ISX-B experiments, a marked accumulation of impurity ions toward the center of the plasma was observed in the case of counter neutral beam injection. This was interpreted semi-quantitatively by the neoclassical effect of the rotation of the plasma driven by the neutral beam.

  12. An introduction to blocked impurity band detectors

    NASA Technical Reports Server (NTRS)

    Geist, Jon

    1988-01-01

    Blocked impurity band detectors fabricated using standard silicon technologies offer the possibility of combining high sensitivity and high accuracy in a single detector operating in a low background environment. The solid state photomultiplier described by Petroff et al., which is a new type of blocked impurity band detector, offers even higher sensitivity as well as operation in the visible spectral region. The principle of operation and possible application of blocked impurity band detectors for stellar seismology and the search for extra-solar planets are described.

  13. Guidelines and strategy of the International Conference of Harmonization (ICH) and its member states to overcome existing impurity control problems for antibiotics in China.

    PubMed

    Jiang, Yu; Xia, Jun-Ping; Yang, Jian-Hong; Zhang, Zhe-Feng; Hu, Chang-Qin; Zhang, Zhi-Rong

    2015-07-01

    In the present report, we review the technical guidelines and principles on impurity research and control for antibiotics established by various agencies, including the International Conference of Harmonization (ICH), the US Food and Drug Administration (FDA), the European Medicines Agency (EMA) and the China Food and Drug Administration (CFDA). Progresses with the US Pharmacopoeia (USP), the European Pharmacopoeia (EP) and the Chinese Pharmacopoeia (ChP) to control impurities in antibiotics are also presented. Next, our discussion is focused on analyzing the CFDA's requirements on impurity research and control for antibiotics, and the implementation of ICH, FDA and other technical guidelines for generic drugs impurity control in China. Existing problems are further reviewed, in order to improve the overall process for the control of antibiotic purity.

  14. Guidelines and strategy of the International Conference of Harmonization (ICH) and its member states to overcome existing impurity control problems for antibiotics in China.

    PubMed

    Jiang, Yu; Xia, Jun-Ping; Yang, Jian-Hong; Zhang, Zhe-Feng; Hu, Chang-Qin; Zhang, Zhi-Rong

    2015-07-01

    In the present report, we review the technical guidelines and principles on impurity research and control for antibiotics established by various agencies, including the International Conference of Harmonization (ICH), the US Food and Drug Administration (FDA), the European Medicines Agency (EMA) and the China Food and Drug Administration (CFDA). Progresses with the US Pharmacopoeia (USP), the European Pharmacopoeia (EP) and the Chinese Pharmacopoeia (ChP) to control impurities in antibiotics are also presented. Next, our discussion is focused on analyzing the CFDA's requirements on impurity research and control for antibiotics, and the implementation of ICH, FDA and other technical guidelines for generic drugs impurity control in China. Existing problems are further reviewed, in order to improve the overall process for the control of antibiotic purity. PMID:26233840

  15. Motion of a Distinguishable Impurity in the Bose Gas: Arrested Expansion Without a Lattice and Impurity Snaking

    NASA Astrophysics Data System (ADS)

    Robinson, Neil J.; Caux, Jean-Sébastien; Konik, Robert M.

    2016-04-01

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.

  16. Motion of a distinguishable Impurity in the Bose gas: Arrested expansion without a lattice and impurity snaking

    DOE PAGES

    Neil J. Robinson; Caux, Jean -Sebastien; Konik, Robert M.

    2016-04-07

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. In conclusion, when the impurity is injected with a finite center-of-mass momentum,more » the impurity moves through the background gas in a snaking manner, arising from a quantum Newton’s cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.« less

  17. Motion of a Distinguishable Impurity in the Bose Gas: Arrested Expansion Without a Lattice and Impurity Snaking.

    PubMed

    Robinson, Neil J; Caux, Jean-Sébastien; Konik, Robert M

    2016-04-01

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion-a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas. PMID:27104716

  18. Blood discard rate and the prevalence of infectious and contagious diseases in blood donors from provincial towns of the state of Paraná, Brazil

    PubMed Central

    Borelli, Sueli Donizete; Mazzola, Jocimara Costa; Matta, Alessandra Cristina Gobbi; Takemoto, Angélica Yukari; Bértoli, Marta

    2013-01-01

    Background So that an improvement in the selection of donors can be achieved and the risk to the recipient of transfused blood can be reduced, prospective donors are submitted to clinical and serological screening. Objective This study investigated the blood discard rate and the rate of infectious and contagious diseases in blood donors from provincial towns of the state of Paraná, Brazil. Methods This study was an exploratory cross-sectional descriptive investigation with a quantitative approach of donations between January and December 2011. Results In the study period the Regional Blood center in Maringá, Brazil received 8337 blood donations from people living in the city and neighboring towns. However, 278 (3.33%) donations were discarded during serological screening owing to one or more positive serological markers. A total of 46.4% of the discarded blood units were confirmed positive by serology with anti-HBc being the most common (66.7%), followed by syphilis (22.5%), HBsAg (4.7%), anti-hepatitis C virus (3.1%), human immunodeficiency virus (1.5%) and Chagas' disease (1.5%). The rate of infectious-contagious diseases that can be transmitted by blood transfusions was 1.55% (129/8337) of the donor population with a frequency of 1.03% for anti-HBc and 0.35% for syphilis. Conclusion This study demonstrates a high prevalence of the anti-HBc marker in prospective blood donors from provincial towns in the state of Paraná, Brazil. PMID:24478604

  19. Oxygen uptake induced by electron transfer from donors to the triplet state of methylene blue and xanthene dyes in air-saturated aqueous solution.

    PubMed

    Görner, Helmut

    2008-03-01

    The effects of oxygen in the photolysis of rose bengal, eosin, erythrosin and methylene blue were studied in the presence of formate and electron donors, such as ascorbic acid, aromatic amino acids or aliphatic amines, e.g. triethylamine (TEA). The overall reaction is conversion of oxygen via the hydroperoxyl/superoxide ion radical into hydrogen peroxide. The quantum yield of oxygen uptake (Phi(-O2)) increases with the donor concentration. The photoinduced formation of H2O2 is initiated by quenching of the triplet state of the dye by the donor and subsequent reactions of both the dye and donor radicals with oxygen. For methylene blue and the xanthene dyes in the presence of 10 mM ascorbic acid or 0.1 M TEA Phi(-O2)=0.07-0.25. The spectral and kinetic properties of the specific dye transients, including the radicals involved and the pH and concentration dependences, are discussed. PMID:18389155

  20. Detection of 549 new HLA alleles in potential stem cell donors from the United States, Poland and Germany.

    PubMed

    Hernández-Frederick, C J; Cereb, N; Giani, A S; Ruppel, J; Maraszek, A; Pingel, J; Sauter, J; Schmidt, A H; Yang, S Y

    2016-01-01

    We characterized 549 new human leukocyte antigen (HLA) class I and class II alleles found in newly registered stem cell donors as a result of high-throughput HLA typing. New alleles include 101 HLA-A, 132 HLA-B, 105 HLA-C, 2 HLA-DRB1, 89 HLA-DQB1 and 120 HLA-DPB1 alleles. Mainly, new alleles comprised single nucleotide variations when compared with homologous sequences. We identified nonsynonymous nucleotide mutations in 70.7% of all new alleles, synonymous variations in 26.4% and nonsense substitutions in 2.9% (null alleles). Some new alleles (55, 10.0%) were found multiple times, HLA-DPB1 alleles being the most frequent among these. Furthermore, as several new alleles were identified in individuals from ethnic minority groups, the relevance of recruiting donors belonging to such groups and the importance of ethnicity data collection in donor centers and registries is highlighted.

  1. Surface donor states distribution post SiN passivation of AlGaN/GaN heterostructures

    SciTech Connect

    Goyal, Nitin; Fjeldly, Tor A.

    2014-07-21

    In this paper, we present a physics based analytical model to describe the effect of SiN passivation on two-dimensional electron gas density and surface barrier height in AlGaN/GaN heterostructures. The model is based on an extraction technique to calculate surface donor density and surface donor level at the SiN/AlGaN interface. The model is in good agreement with the experimental results and promises to become a useful tool in advanced design and characterization of GaN based heterostructures.

  2. Ab initio ground and excited state potential energy surfaces for NO-Kr complex and dynamics of Kr solids with NO impurity.

    PubMed

    Castro-Palacios, Juan Carlos; Rubayo-Soneira, Jesús; Ishii, Keisaku; Yamashita, Koichi

    2007-04-01

    The intermolecular potentials for the NO(X 2Pi)-Kr and NO(A 2Sigma+)-Kr systems have been calculated using highly accurate ab initio calculations. The spin-restricted coupled cluster method for the ground 1 2A' state [NO(X 2Pi)-Kr] and the multireference singles and doubles configuration interaction method for the excited 2 2A' state [NO(A 2Sigma+)-Kr], respectively, were used. The potential energy surfaces (PESs) show two linear wells and one that is almost in the perpendicular position. An analytical representation of the PESs has been constructed for the triatomic systems and used to carry out molecular dynamics (MD) simulations of the NO-doped krypton matrix response after excitation of NO. MD results are shown comparatively for three sets of potentials: (1) anisotropic ab initio potentials [NO molecule direction fixed during the dynamics and considered as a point (its center of mass)], (2) isotropic ab initio potentials (isotropic part in a Legendre polynomial expansion of the PESs), and (3) fitted Kr-NO potentials to the spectroscopic data. An important finding of this work is that the anisotropic and isotropic ab initio potentials calculated for the Kr-NO triatomic system are not suitable for describing the dynamics of structural relaxation upon Rydberg excitation of a NO impurity in the crystal. However, the isotropic ab initio potential in the ground state almost overlaps the published experimental potential, being almost independent of the angle asymmetry. This fact is also manifested in the radial distribution function around NO. However, in the case of the excited state the isotropic ab initio potential differs from the fitted potentials, which indicates that the Kr-NO interaction in the matrix is quite different because of the presence of the surrounding Kr atoms acting on the NO molecule. MD simulations for isotropic potentials reasonably reproduce the experimental observables for the femtosecond response and the bubble size but do not match

  3. Influence of magnetic shear on impurity transport

    SciTech Connect

    Nordman, H.; Fueloep, T.; Candy, J.; Strand, P.; Weiland, J.

    2007-05-15

    The magnetic shear dependence of impurity transport in tokamaks is studied using a quasilinear fluid model for ion temperature gradient (ITG) and trapped electron (TE) mode driven turbulence in the collisionless limit and the results are compared with nonlinear gyrokinetic results using GYRO [J. Candy and R. E. Waltz, J. Comput. Phys 186, 545 (2003)]. It is shown that the impurity transport is sensitive to the magnetic shear, in particular for weak, negative, and large positive shear where a strong reduction of the effective impurity diffusivity is obtained. The fluid and gyrokinetic results are in qualitative agreement, with the gyrokinetic diffusivities typically a factor 2 larger than the fluid diffusivities. The steady state impurity profiles in source-free plasmas are found to be considerably less peaked than the electron density profiles for moderate shear. Comparisons between anomalous and neoclassical transport predictions are performed for ITER-like profiles [R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys. Controlled Fusion 44, 519 (2002)].

  4. Numerical Studies of Impurities in Fusion Plasmas

    DOE R&D Accomplishments Database

    Hulse, R. A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.

  5. Impurity induced resistivity upturns in underdoped cuprates

    NASA Astrophysics Data System (ADS)

    Das, Nabyendu; Singh, Navinder

    2016-01-01

    Impurity induced low temperature upturns in both the ab-plane and the c-axis dc-resistivities of cuprates in the pseudogap state have been observed in experiments. We provide an explanation of this phenomenon by incorporating impurity scattering of the charge carriers within a phenomenological model proposed by Yang, Rice and Zhang. The scattering between charge carriers and the impurity atom is considered within the lowest order Born approximation. Resistivity is calculated within Kubo formula using the impurity renormalized spectral functions. Using physical parameters for cuprates, we describe qualitative features of the upturn phenomena and its doping evolution that coincides with the experimental findings. We stress that this effect is largely due to the strong electronic correlations.

  6. Optical density of states in ultradilute GaAsN alloy: Coexistence of free excitons and impurity band of localized and delocalized states

    SciTech Connect

    Bhuyan, Sumi; Pal, Bipul; Bansal, Bhavtosh; Das, Sanat K.; Dhar, Sunanda

    2014-07-14

    Optically active states in liquid phase epitaxy-grown ultra-dilute GaAsN are studied. The feature-rich low temperature photoluminescence spectrum has contributions from excitonic band states of the GaAsN alloy, and two types of defect states—localized and extended. The degree of delocalization for extended states both within the conduction and defect bands, characterized by the electron temperature, is found to be similar. The degree of localization in the defect band is analyzed by the strength of the phonon replicas. Stronger emission from these localized states is attributed to their giant oscillator strength.

  7. Impurity gettering in semiconductors

    DOEpatents

    Sopori, B.L.

    1995-06-20

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device is disclosed. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500 C to about 700 C for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal. 1 fig.

  8. The temporal dynamics of impurity photoconductivity in quantum wells in GaAs

    SciTech Connect

    Aleshkin, V. Ya. E-mail: aleshkin@ipm.sci-nnov.ru

    2015-10-15

    A theory of cascade capture at charged donors in quantum wells (QWs) is developed without using the Fokker-Planck approximation, which is not valid in QWs. The time dependences of impurity photoconductivity and photoelectron concentration in GaAs QWs are determined. The cascade capture time as a function of the charge donor concentration is calculated.

  9. Identification of 2127 new HLA class I alleles in potential stem cell donors from Germany, the United States and Poland.

    PubMed

    Hernández-Frederick, C J; Giani, A S; Cereb, N; Sauter, J; Silva-González, R; Pingel, J; Schmidt, A H; Ehninger, G; Yang, S Y

    2014-03-01

    We describe 2127 new human leukocyte antigen (HLA) class I alleles found in registered stem cell donors. These alleles represent 28.9% of the currently known class I alleles. Comparing new allele sequences to homologous sequences, we found 68.1% nonsynonymous nucleotide substitutions, 28.9% silent mutations and 3.0% nonsense mutations. Many substitutions occurred at positions that have not been known to be polymorphic before. A large number of HLA alleles and nucleotide variations underline the extreme diversity of the HLA system. Strikingly, 156 new alleles were found not only multiple times, but also in carriers of various parentage, suggesting that some new alleles are not necessarily rare. Moreover, new alleles were found especially often in minority donors. This emphasizes the benefits of specifically recruiting such groups of individuals.

  10. Multichannel Kondo impurity dynamics in a Majorana device.

    PubMed

    Altland, A; Béri, B; Egger, R; Tsvelik, A M

    2014-08-15

    We study the multichannel Kondo impurity dynamics realized in a mesoscopic superconducting island connected to metallic leads. The effective "impurity spin" is nonlocally realized by Majorana bound states and strongly coupled to lead electrons by non-Fermi liquid correlations. We explore the spin dynamics and its observable ramifications near the low-temperature fixed point. The topological protection of the system raises the perspective to observe multichannel Kondo impurity dynamics in experimentally realistic environments.

  11. Towards quantum information processing with impurity spins insilicon

    SciTech Connect

    Schenkel, T.; Liddle, J.A.; Bokor, J.; Rangelow, I.W.; Park,S.J.; Persaud, A.

    2004-03-01

    The finding of algorithms for factoring and data base search that promise substantially increased computational power, as well as the expectation for efficient simulation of quantum systems have spawned an intense interest in the realization of quantum information processors [1]. Solid state implementations of quantum computers scaled to >1000 quantum bits ('qubits') promise to revolutionize information technology, but requirements with regard to sources of decoherence in solid state environments are sobering. Here, we briefly review basic approaches to impurity spin based qubits and present progress in our effort to form prototype qubit test structures. Since Kane's bold silicon based spin qubit proposal was first published in 1998 [2], several groups have taken up the challenge of fabricating elementary building blocks [3-5], and several exciting variations of single donor qubit schemes have emerged [6]. Single donor atoms, e. g. {sup 31}P, are 'natural quantum dots' in a silicon matrix, and the spins of electrons and nuclei of individual donor atoms are attractive two level systems for encoding of quantum information. The coupling to the solid state environment is weak, so that decoherence times are long (hours for nuclear spins, and {approx}60 ms for electron spins of isolated P atoms in silicon [7]), while control over individual spins for one qubit operations becomes possible when individual qubits are aligned to electrodes that allow shifting of electron spin resonances in global magnetic fields by application of control voltages. Two qubit operations require an interaction that couples, and entangles qubits. The exchange interaction, J, is a prime candidate for mediation of two qubit operations, since it can be turned on and off by variation of the wave function overlap between neighboring qubits, and coherent manipulation of quantum information with the exchange interaction alone has been shown to be universal [8]. However, detailed band structure

  12. Characterization of liquid phase epitaxial GaAs forblocked-impurity-band far-infrared detectors

    SciTech Connect

    Cardozo, B.L.; Reichertz, L.A.; Beeman, J.W.; Haller, E.E.

    2004-04-07

    GaAs Blocked-Impurity-Band (BIB) photoconductor detectors have the potential to become the most sensitive, low noise detectors in the far-infrared below 45.5 cm{sup -1} (220 {micro}m). We have studied the characteristics of liquid phase epitaxial GaAs films relevant to BIB production, including impurity band formation and the infrared absorption of the active section of the device. Knowledge of the far-infrared absorption spectrum as a function of donor concentration combined with variable temperature Hall effect and resistivity studies leads us to conclude that the optimal concentration for the absorbing layer of a GaAs BIB detector lies between 1 x 10{sup 15} and 6.7 x 10{sup 15} cm{sup -3}. At these concentrations there is significant wavefunction overlap which in turn leads to absorption beyond the 1s ground to 2p bound excited state transition of 35.5 cm{sup -1} (282 {micro}m). There still remains a gap between the upper edge of the donor band and the bottom of the conduction band, a necessity for proper BIB detector operation.

  13. Impurity-induced conductance anomaly in zigzag carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chang, Po-Yao; Huang, Wen-Min; Lin, Hsiu-Hau

    2009-02-01

    Impurities in carbon nanotubes give rise to rich physics due to the honeycomb lattice structure. We concentrate on the conductance through a point-like defect in metallic zigzag carbon nanotube via the Landauer-Büttiker approach. At low bias, the conductance is suppressed due to the presence of an additional impurity state existing only on one of the sublattices. In consequence, the suppression is exactly half of the perfect conductance without impurity. Furthermore, there exists a transport resonance at larger bias where the perfect conductance is recovered as if the impurity were absent. Implications of these conductance anomalies are elaborated and experimental detections in realistic carbon nanotubes are also discussed.

  14. Dynamical impurity problems

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1993-12-31

    In the past few years there has been a resurgence of interest in dynamical impurity problems, as a result of developments in the theory of correlated electron systems. The general dynamical impurity problem is a set of conduction electrons interacting with an impurity which has internal degrees of freedom. The simplest and earliest example, the Kondo problem, has attracted interest since the mid-sixties not only because of its physical importance but also as an example of a model displaying logarithmic divergences order by order in perturbation theory. It provided one of the earliest applications of the renormalization group method, which is designed to deal with just such a situation. As we shall see, the antiferromagnetic Kondo model is controlled by a strong-coupling fixed point, and the essence of the renormalization group solution is to carry out the global renormalization numerically starting from the original (weak-coupling) Hamiltonian. In these lectures, we shall describe an alternative route in which we identify an exactly solvable model which renormalizes to the same fixed point as the original dynamical impurity problem. This approach is akin to determining the critical behavior at a second order phase transition point by solving any model in a given universality class.

  15. Three Redox States of a Diradical Acceptor-Donor-Acceptor Triad: Gating the Magnetic Coupling and the Electron Delocalization.

    PubMed

    Souto, Manuel; Lloveras, Vega; Vela, Sergi; Fumanal, Maria; Ratera, Imma; Veciana, Jaume

    2016-06-16

    The diradical acceptor-donor-acceptor triad 1(••), based on two polychlorotriphenylmethyl (PTM) radicals connected through a tetrathiafulvalene(TTF)-vinylene bridge, has been synthesized. The generation of the mixed-valence radical anion, 1(•-), and triradical cation species, 1(•••+), obtained upon electrochemical reduction and oxidation, respectively, was monitored by optical and ESR spectroscopy. Interestingly, the modification of electron delocalization and magnetic coupling was observed when the charged species were generated and the changes have been rationalized by theoretical calculations.

  16. Detection of impurity diamagnetic susceptibility and its behavior in n-Ge:As in the region of the insulator–metal phase transition

    SciTech Connect

    Veinger, A. I. Zabrodskii, A. G.; Makarova, T. L.; Tisnek, T. V.; Goloshchapov, S. I.; Semenikhin, P. V.

    2015-10-15

    The method of superconducting quantum interference device (SQUID) magnetometry is used to measure and study low-temperature (T ≤ 100K) susceptibility in a series of samples of heavily doped Ge:As samples on the insulator side of the insulator–metal phase transition. Subtracting the known values of the magnetic susceptibility of the lattice from the measurement results, the values of the impurity magnetic susceptibility of the system are obtained. Using the method of electron spin resonance, the paramagnetic component of the impurity susceptibility is determined. Subtraction of the paramagnetic component from the total impurity susceptibility is used to obtain, for the first time, the values of the impurity diamagnetic susceptibility (∼5 × 10{sup –8} cm{sup 3}/g). The obtained result is consistent with estimates obtained for the localization radius of an electron at an As donor. Lowering the temperature to T ≤ 4 K leads to an increase in the diamagnetic susceptibility, which is consistent with the observed increase in the paramagnetic susceptibility. The observed effect is accounted for by the transition of impurity electrons from the singlet state to the triplet one.

  17. Hybrid functional calculations of Copper impurities and related complexes in Silicon

    NASA Astrophysics Data System (ADS)

    Sharan, Abhishek; Gui, Zhigang; Janotti, Anderson

    Copper impurities affect electronic and optical properties of semiconductors. Cu is an ubiquitous impurity and can be introduced unintentionally during various processing step. In silicon, the fast-diffusing interstitial Cu donor often passivates shallow-acceptor dopants, affecting the electronic characteristics of devices, while deep levels associated with other forms of the Cu impurity degrade device performance. Here we revisit the problem of the Cu impurity in Si using first principles calculation based on a hybrid functional. We discuss the relative stability of the substitutional and interstitial forms, as well as the formation of complexes with hydrogen and oxygen impurities. The results of our calculations will be compared with recent experiments on the electrical activity of Cu impurities in Si.

  18. Mapping itinerant electrons around Kondo impurities.

    PubMed

    Prüser, H; Wenderoth, M; Weismann, A; Ulbrich, R G

    2012-04-20

    We investigate single Fe and Co atoms buried below a Cu(100) surface using low temperature scanning tunneling spectroscopy. By mapping the local density of states of the itinerant electrons at the surface, the Kondo resonance near the Fermi energy is analyzed. Probing bulk impurities in this well-defined scattering geometry allows separating the physics of the Kondo system and the measuring process. The line shape of the Kondo signature shows an oscillatory behavior as a function of depth of the impurity as well as a function of lateral distance. The oscillation period along the different directions reveals that the spectral function of the itinerant electrons is anisotropic. PMID:22680744

  19. Impurities in the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Boyle, D. P.; Bell, R. E.; Kaita, R.; Majeski, R.; Biewer, T. M.; Gray, T. K.; Tritz, K.; Widmann, K.

    2014-10-01

    The Lithium Tokamak Experiment (LTX) is designed to study the low-recycling regime through the use of close-fitting, lithium-coated, heatable shell quadrants surrounding the plasma volume. Lithium coatings can getter and bury impurities, but they can also become covered by impurity compounds. Liquefied coatings can both dissolve impurity compounds and bring them to the surface, while sputtering and evaporation rates increase strongly with temperature. Here, we use spectroscopic measurements to assess the effects of varying wall conditions on plasma impurities, mainly Li, C, and O. A passive Doppler spectroscopy system measures toroidal and poloidal impurity profiles using fixed-wavelength and variable-wavelength visible spectrometers. In addition, survey and high-resolution extreme ultraviolet spectrometers detect emission from higher charge states. Preliminary results show that fresh Li coatings generally reduced C and O emission. C emission decreased sharply following the first solid Li coatings. Inverted toroidal profiles in a discharge with solid Li coatings show peaked Li III emissivity and temperature profiles. Recently, experiments with fresh liquid coatings led to especially strong O reduction. Results from these and additional experiments will be presented. Supported by US DOE Contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  20. Alternative Donor--Acceptor Stacks from Crown Ethers and Naphthalene Diimide Derivatives: Rapid, Selective Formation from Solution and Solid State Grinding

    SciTech Connect

    Advanced Light Source; Liu, Yi; Klivansky, Liana; Cao, Dennis; Snauko, Marian; Teat, Simon J.; Struppe, Jochem O.; Koshkakaryan, Gayane

    2009-01-22

    Self assembling {pi}-conjugated molecules into ordered structures are of increasing interest in the field of organic electronics. One particular example is charge transfer complexes containing columnar alternative donor-acceptor (ADA) stacks, where neutral and ionic ground states can be readily tuned to modulate electrical, optical, and ferroelectrical properties. Aromatic-aromatic and charge transfer interactions have been the leading driving forces in assisting the self-assembly of ADA stacks. Various folding structures containing ADA stacks were assembled in solution with the aid of solvophobic or ion-binding interactions. Meanwhile, examples of solid ADA stacks, which are more appealing for practical use in devices, were obtained from cocrystalization of binary components or mesophase assembly of liquid crystals in bulk blends. Regardless of these examples, faster and more controllable approaches towards precise supramolecular order in the solid state are still highly desirable.

  1. Single atom impurity in a single molecular transistor

    SciTech Connect

    Ray, S. J.

    2014-10-21

    The influence of an impurity atom on the electrostatic behaviour of a Single Molecular Transistor was investigated through Ab-initio calculations in a double-gated geometry. The charge stability diagram carries unique signature of the position of the impurity atom in such devices which together with the charging energy of the molecule could be utilised as an electronic fingerprint for the detection of such impurity states in a nano-electronic device. The two gated geometry allows additional control over the electrostatics as can be seen from the total energy surfaces (for a specific charge state), which is sensitive to the positions of the impurity. These devices which are operational at room temperature can provide significant advantages over the conventional silicon based single dopant devices functional at low temperature. The present approach could be a very powerful tool for the detection and control of individual impurity atoms in a single molecular device and for applications in future molecular electronics.

  2. Stimulated Terahertz Stokes Emission of Silicon Crystals Doped with Antimony Donors

    SciTech Connect

    Pavlov, S.G.; Huebers, H.-W.; Hovenier, J.N.; Klaassen, T.O.; Carder, D.A.; Phillips, P.J.; Redlich, B.; Riemann, H.; Zhukavin, R.Kh.; Shastin, V.N.

    2006-01-27

    Stimulated Stokes emission has been observed from silicon crystals doped by antimony donors when optically excited by radiation from a tunable infrared free electron laser. The photon energy of the emission is equal to the pump photon energy reduced by the energy of the intervalley transverse acoustic (TA) g phonon in silicon ({approx_equal}2.92 THz). The emission frequency covers the range of 4.6-5.8 THz. The laser process occurs due to a resonant coupling of the 1s(E) and 1s(A{sub 1}) donor states (separation {approx_equal}2.97 THz) via the g-TA phonon, which conserves momentum and energy within a single impurity center.

  3. Designing shallow donors in diamond

    NASA Astrophysics Data System (ADS)

    Moussa, Jonathan

    2015-03-01

    The production of n-type semiconducting diamond has been a long-standing experimental challenge. The first-principles simulation of shallow dopants in semiconductors has been a long-standing theoretical challenge. A desirable theoretical goal is to identify impurities that will act as shallow donors in diamond and assess their experimental viability. I will discuss this identification process for the LiN4 donor complex. It builds a scientific argument from several models and computational results in the absence of computational tools that are both trustworthy and computationally tractable for this task. I will compare the theoretical assessment of viability with recent experimental efforts to co-dope diamond with lithium and nitrogen. Finally, I discuss the computational tools needed to facilitate future work on this problem and some preliminary simulations of donors near diamond surfaces. Sandia National Laboratories is a multi-program lab managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  4. Mapping Local Quantum Capacitance and Charged Impurities in Graphene via Plasmonic Impedance Imaging.

    PubMed

    Shan, Xiaonan; Chen, Shan; Wang, Hui; Chen, Zixuan; Guan, Yan; Wang, Yixian; Wang, Shaopeng; Chen, Hong-Yuan; Tao, Nongjian

    2015-10-28

    Local quantum capacitance of graphene is imaged with plasmonics-based electrical impedance microscopy, from which the local density and polarity of charged impurities, electron and hole puddles associated with the charged impurities, and the density of the impurity states are determined. PMID:26356349

  5. Transition metal-mediated donor-acceptor coordination of low-oxidation state Group 14 element halides.

    PubMed

    Swarnakar, Anindya K; Ferguson, Michael J; McDonald, Robert; Rivard, Eric

    2016-04-14

    The reactivity of tungsten carbonyl adducts of Group 14 element (Ge, Sn and Pb) dihalides towards the metal-based donors (η(5)-C5H5)Rh(PMe2Ph)2 and Pt(PCy3)2 was examined. When (η(5)-C5H5)Rh(PMe2Ph)2 was treated with the Lewis acid supported Ge(ii) complex, THF·GeCl2·W(CO)5, cyclopentadienyl ring activation occurred, whereas the analogous Lewis acidic units SnCl2·W(CO)5 and PbCl2 form direct adducts with the Rh complex to yield Rh-Sn and Rh-Pb dative bonds. Attempts to prepare metal coordinated element(ii) hydrides by adding hydride sources to the above mentioned rhodium-E(ii) halide complexes were unsuccessful; in each case insoluble products were formed along with regeneration of free (η(5)-C5H5)Rh(PMe2Ph)2. In a parallel study, ECl2·W(CO)5 (E = Ge or Sn) groups were shown to participate in E-Cl oxidation addition chemistry with (Cy3P)2Pt to give the formal Pt(ii) complexes ClPt(PCy3)2ECl·W(CO)5.

  6. Complete Monitoring of Coherent and Incoherent Spin Flip Domains in the Recombination of Charge-Separated States of Donor-Iridium Complex-Acceptor Triads.

    PubMed

    Klein, Johannes H; Schmidt, David; Steiner, Ulrich E; Lambert, Christoph

    2015-09-01

    The spin chemistry of photoinduced charge-separated (CS) states of three triads comprising one or two triarylamine donors, a cyclometalated iridium complex sensitizer and a naphthalene diimide (NDI) acceptor, was investigated by transient absorption spectroscopy in the ns-μs time regime. Strong magnetic-field effects (MFE) were observed for two triads with a phenylene bridge between iridium complex sensitizer and NDI acceptor. For these triads, the lifetimes of the CS states increased from 0.6 μs at zero field to 40 μs at about 2 T. Substituting the phenylene by a biphenyl bridge causes the lifetime of the CS state at zero field to increase by more than 2 orders of magnitude (τ = 79 μs) and the MFE to disappear almost completely. The kinetic MFE was analyzed in the framework of a generalized Hayashi-Nagakura scheme describing coherent (S, T0 ↔ T±) as well as incoherent (S, T0 ⇌ T±) processes by a single rate constant k±. The magnetic-field dependence of k± of the triads with phenylene bridge spans 2 orders of magnitude and exhibits a biphasic behavior characterized by a superposition of two Lorentzians. This biphasic MFE is observed for the first time and is clearly attributable to the coherent (B < 10 mT) and incoherent (10 mT < B < 2 T) domains of spin motion induced by isotropic and anisotropic hyperfine coupling. The parameters of both domains are well understood in terms of the structural properties of the two triads, including the effect of electron hopping in the triad with two donor moieties. The kinetic model also accounts for the reduction of the MFE on reducing the rate constant of charge recombination in the triad with the biphenyl bridge.

  7. Complete Monitoring of Coherent and Incoherent Spin Flip Domains in the Recombination of Charge-Separated States of Donor-Iridium Complex-Acceptor Triads.

    PubMed

    Klein, Johannes H; Schmidt, David; Steiner, Ulrich E; Lambert, Christoph

    2015-09-01

    The spin chemistry of photoinduced charge-separated (CS) states of three triads comprising one or two triarylamine donors, a cyclometalated iridium complex sensitizer and a naphthalene diimide (NDI) acceptor, was investigated by transient absorption spectroscopy in the ns-μs time regime. Strong magnetic-field effects (MFE) were observed for two triads with a phenylene bridge between iridium complex sensitizer and NDI acceptor. For these triads, the lifetimes of the CS states increased from 0.6 μs at zero field to 40 μs at about 2 T. Substituting the phenylene by a biphenyl bridge causes the lifetime of the CS state at zero field to increase by more than 2 orders of magnitude (τ = 79 μs) and the MFE to disappear almost completely. The kinetic MFE was analyzed in the framework of a generalized Hayashi-Nagakura scheme describing coherent (S, T0 ↔ T±) as well as incoherent (S, T0 ⇌ T±) processes by a single rate constant k±. The magnetic-field dependence of k± of the triads with phenylene bridge spans 2 orders of magnitude and exhibits a biphasic behavior characterized by a superposition of two Lorentzians. This biphasic MFE is observed for the first time and is clearly attributable to the coherent (B < 10 mT) and incoherent (10 mT < B < 2 T) domains of spin motion induced by isotropic and anisotropic hyperfine coupling. The parameters of both domains are well understood in terms of the structural properties of the two triads, including the effect of electron hopping in the triad with two donor moieties. The kinetic model also accounts for the reduction of the MFE on reducing the rate constant of charge recombination in the triad with the biphenyl bridge. PMID:26091082

  8. Impurity effects of transverse Ising model with multi-impurity

    NASA Astrophysics Data System (ADS)

    Huang, Xuchu; Yang, Zhihua

    2015-02-01

    We study the transverse Ising spin model with multi-impurity under the exact solution. The influence mechanisms of the concentration, configuration, impurity-inducing-interaction are investigated through the deformation energy, long-range order and the specific heat. It reveals a way that the impurities have crucial effects on the magnetic order of the system, which can be used to scale the order-disorder transition. In particular, the change of the exchange coupling interaction or magnetic field can lead to the deviation of the phase point. Moreover, the impurity excitation cannot be neglected in thermodynamic properties even though the concentration is only a few percent.

  9. Evaluating the extent of intramolecular charge transfer in the excited states of rhenium(I) donor-acceptor complexes with time-resolved vibrational spectroscopy.

    PubMed

    Yue, Yuankai; Grusenmeyer, Tod; Ma, Zheng; Zhang, Peng; Pham, Tri Tat; Mague, Joel T; Donahue, James P; Schmehl, Russell H; Beratan, David N; Rubtsov, Igor V

    2013-12-12

    Excited states in transition-metal complexes, even in those featuring ligands with strong electron donating and accepting properties, often involve only partial charge transfer between the donor and acceptor ligands. The excited-state properties of [Re(bpy)(CO)3L](+) compounds were studied, where L is 4-dimethylaminobenzonitrile (Re4DMABN), 3-dimethylaminobenzonitrile (Re3DMABN), and benzonitrile (ReBN) using time-resolved infrared (TRIR) and electronic spectroscopy methods as well as electronic structure computations. The DMABN complexes exhibit strongly solvent-dependent luminescence; the excited state lifetime decreases from microseconds in dichloromethane to several nanoseconds in mixed MeOH:DCM (1:1) solvent. Despite the similarities in the solvent dependence of the excited state dynamics and redox properties for Re3DMABN and Re4DMABN, the nature of the lowest energy excited states formed in these two compounds is drastically different. For example, the lowest energy excited state for Re4DMABN in the mixed solvent is assigned to the (4DMABN → bpy) ligand-to-ligand charge transfer (LLCT) state featuring partial charge transfer character. An equilibrium between a 3DMABN intraligand triplet ((3)IL) and a metal-ligand-to-ligand charge transfer (MLLCT) state is found for Re3DMABN in the mixed solvent with the latter at ca. 400 cm(-1) lower energy. The origin of such a drastic difference between the states involved in Re4DMABN and Re3DMABN is attributed to a difference in the energies of polarized quinoidal resonance structures in 4DMABN and 3DMABN ligands.

  10. Influence of grain boundary silica impurity on alumina toughness

    SciTech Connect

    Moya, J.S.; Kriven, W.M.; Pask, J.A.

    1980-08-01

    In a series of previous reports the effect of silica impurity on aggregation state and on electropheretic, pressing, filtering and sintering behavior on alumina powders was presented. The results obtained showed that the silica surface impurity plays an important role in the ceramic processing of powders by (a) decreasing the pH values of the isoelectric point (i.e.p.), which affects the aggregation state of the powder, and (b) decreasing the compactability and the activation energy for the initial stage of sintering. In the phase of the studies emphasis was given to the effect of the presence of silica impurity on the toughness and fracture behavior of alumina samples.

  11. Reduction of electron accumulation at InN(0001) surfaces via saturation of surface states by potassium and oxygen as donor- or acceptor-type adsorbates

    SciTech Connect

    Eisenhardt, A.; Reiß, S.; Krischok, S. Himmerlich, M.

    2014-01-28

    The influence of selected donor- and acceptor-type adsorbates on the electronic properties of InN(0001) surfaces is investigated implementing in-situ photoelectron spectroscopy. The changes in work function, surface band alignment, and chemical bond configurations are characterized during deposition of potassium and exposure to oxygen. Although an expected opponent charge transfer characteristic is observed with potassium donating its free electron to InN, while dissociated oxygen species extract partial charge from the substrate, a reduction of the surface electron accumulation occurs in both cases. This observation can be explained by adsorbate-induced saturation of free dangling bonds at the InN resulting in the disappearance of surface states, which initially pin the Fermi level and induce downward band bending.

  12. Ethnic differences in intention to enroll in a state organ donor registry and intention to talk with family about organ donation.

    PubMed

    Park, Hee Sun; Smith, Sandi W; Yun, Doshik

    2009-10-01

    This study compared African Americans, Asian Americans, Hispanic Americans, Native Americans, and White Americans on their intentions to enroll in a state organ donor registry and to talk with family about organ donation. The overall results showed that attitudes and subjective norms from the theory of planned behavior were significantly related to intention to enroll whereas perceived behavioral control was not. Attitudes, subjective norms, and perceived behavioral control were significantly related to intention to talk with family. The differences among ethnic groups were small, but the relationship between attitudes and intention to enroll was stronger for Asian Americans and weaker for African Americans than for White Americans. The implications of these and other findings are discussed for organ donation campaigns. PMID:20183372

  13. Distance distributions recovered from steady-state fluorescence measurements on thirteen donor-acceptor pairs with different Förster distances.

    PubMed

    Wiczk, W; Eis, P S; Fishman, M N; Johnson, M L; Lakowicz, J R

    1991-12-01

    The end-to-end distance distribution of a flexible molecule was recovered from steady-state fluorescence energy transfer measurements using the method suggested by Cantor and Pechukas (Proc. Natl. Acad. Sci. USA 68, 2099-2101, 1971). In this method, the Förster distance (R 0) is varied by attaching different donor-acceptor (D-A) pairs to the flexible linker of interest. Distance distributions are then recovered from energy transfer efficiency measurements on the set of D-A pairs with differentR 0 values. Thirteen D-A pair compounds were synthesized withR 0 values ranging from 6 to 32 Å. Each compound contained a tryptamine donor linked by an alkyl chain (∼10 carbons) to 1 of 13 acceptors. Using these compounds, we have experimentally confirmed the Cantor and Pechukas method for recovering distance distributions. The measured transfer efficiencies, as a function ofR 0, were fit to the transfer efficiencies predicted for both Gaussian and skewed Gaussian distance distributions. The data support the existence of a skewed Gaussian distribution, and we believe that this is the first experimental observation of an asymmetric distribution for a flexible molecule using fluorescence resonance energy transfer measurements. Finally, the experimentally recovered distance distribution was found to be in good agreement with the distribution predicted from the rotational isomeric state model of Flory (Statistical Mechanics of Chain Molecules, John Wiley & Sons, New York, 1969, Chaps. 1, 3, and 5) but not with the predicted distribution for a freely rotating or freely jointed chain. PMID:24243077

  14. Calculation of the spin-polarized electronic structure of an interstitial iron impurity in silicon

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, H.; Zunger, Alex

    1985-06-01

    We apply our self-consistent, all-electron, spin-polarized Green's-function method within an impurity-centered, dynamic basis set to study the interstitial iron impurity in silicon. We use two different formulations of the interelectron interactions: the local-spin-density (LSD) formalism and the self-interaction-corrected (SIC) local-spin-density (SIC-LSD) formalism. We find that the SIC-LSD approach is needed to obtain the correct high-spin ground state of Si:Fe+. We propose a quantitative explanation to the observed donor ionization energy and the high-spin ground states for Si:Fe+ within the SIC-LSD approach. For both Si:Fe0 and Si:Fe+, this approach leads to a hyperfine field, contact spin density, and ionization energy in better agreement with experiments than the simple LSD approach. The apparent dichotomy between the covalently delocalized nature of Si:Fe as suggested on the one hand by its reduced hyperfine field (relative to the free atom) and extended spin density and by the occurrence of two closely spaced, stable charge states (within 0.4 eV) and on the other hand by the atomically localized picture (suggested, for example, by the stability of a high-spin, ground-state configuration) is resolved. We find a large reduction in the hyperfine field and contact spin density due to the covalent hybridization between the impurity 3d orbitals and the tails of the delocalized sp3 hybrid orbitals of the surrounding silicon atoms. Using the calculated results, we discuss (i) the underlying mechanism for the stability and plurality of charged states, (ii) the covalent reduction in the hyperfine field, (iii) the remarkable constancy of the impurity Mössbauer isomer shift for different charged states, (iv) comparison with the multiple charged states in ionic crystals, and (v) some related speculation about the mechanism of (Fe2+/Fe3+) oxidation-reduction ionizations in heme proteins and electron-transporting biological systems.

  15. Impurity sources in TEXTOR

    NASA Astrophysics Data System (ADS)

    Pospieszczyk, A.; Bay, H. L.; Bogen, P.; Hartwig, H.; Hintz, E.; Konen, L.; Ross, G. G.; Rusbuldt, D.; Samm, U.; Schweer, B.

    1987-02-01

    The deuterium, oxygen and carbon fluxes from the main limiter and the deuterium fluxes from the wall are measured in TEXTOR for an "all carbon" surrounding as a function of central density ne, of applied ICRH-power and of different wall conditions (carbonization). For this purpose, emission spectroscopy both with filter systems and spectrometers has been used. It is found that a major release mechanism for light impurities is via the formation of molecules. Oxygen seems to enter the discharge from the liner via O-D containing molecules, whereas the limiter acts as the main carbon source by the release of hydro-carbons as indicated by the observed CD-band spectra. Both oxygen and carbon fluxes are reduced by about a factor of two after a fresh carbonization. Above a certain critical density the plasma detaches from the limiter and forms a stable discharge with a radiation cooled boundary layer and with a major fraction of particles now reaching the wall instead of the limiter. The critical density rises with decreasing impurity fluxes or with increasing heating powers.

  16. Donor spectroscopy at large hydrostatic pressures and transport studies in compound semiconductors

    SciTech Connect

    Hsu, L.

    1997-06-01

    In the first part of this work, the author describes studies of donors in AlSb and in GaAs at large hydrostatic pressures, two materials in which the conduction band minimum is not parabolic, but has a camel`s back shape. These donors were found to display only one or two absorption lines corresponding to ground to bound excited state transitions. It is shown that due to the non-parabolic dispersion, camel`s back donors may have as few as one bound excited state and that higher excited states are auto-ionized. Thus, it is possible that transitions to these other states may be lost in the continuum. In the second part, calculations of mobilities in GaN and other group III-Nitride based structures were performed. GaN is interesting in that the carriers in nominally undoped material are thought to originate from impurities which have an ionization energy level resonant with the conduction band, rather than located in the forbidden gap. These donors have a short range potential associated with them which can be effective in scattering electrons in certain situations. It was found that effects of these resonant donors can be seen only at high doping levels in III-Nitride materials and in Al{sub x}Ga{sub 1{minus}x}N alloys, where the defect level can be pushed into the forbidden gap. Calculations were also performed to find intrinsic mobility limits in Al{sub x}Ga{sub 1{minus}x}N/GaN modulation doped heterostructures. Theoretical predictions show that electron mobilities in these devices are capable of rivaling those found in the best Al{sub x}Ga{sub 1{minus}x}As/GaAs heterostructures structures today. However, the currently available nitride heterostructures, while displaying mobilities superior to those in bulk material, have sheet carrier concentrations too large to display true two-dimensional electron gas behavior.

  17. Influence of the image charge effect on the hydrogen-like impurity-bound polaron in a spherical quantum dot in the presence of an electric field

    NASA Astrophysics Data System (ADS)

    Vartanian, Arshak L.; Vardanyan, Lyudvig A.

    2016-01-01

    We have investigated the influence of an external electric field on the binding energies and polaronic shifts of the ground and some first few excited states of a hydrogenic impurity in a spherical quantum dot by taking into account the image charge effect. By using Landau-Pekar variational method the general analytical expression is obtained for the impurity bound-polaron energies. It has been numerically identified the conditions (electric field, nominal radius of quantum dot, etc.) in which the bound-polaron states can be existence in GaAs quantum dot. We have shown that the polaronic shifts in the binding energy of 1s-like state are the same in cases with and without image charge effect while they for 2s-like state are not coincide and have different monotonic behavior versus confinement potential. Electron-phonon interaction lifts the degeneracy of the 2px-, 2py-, and 2pz-like states of a donor impurity and reduces their binding energies.

  18. X-point Shallow Donors in GaAs under pressure

    NASA Astrophysics Data System (ADS)

    Hsu, L.; Haller, E. E.

    1996-03-01

    Transitions from the ground to bound excited states associated with shallow donors in GaAs under large hydrostatic pressure are studied with IR absorption spectroscopy. A modified Merrill-Basset diamond anvil cell was used to apply hydrostatic pressures of several GPa to lightly doped ( 10^15 cm-3) n-type GaAs samples. At such pressures, the energy of the conduction band at the X point falls below that at the Γ point and the wavefunctions of donor impurities take on X-band character. The deep DX centers which exist at these pressures were converted to shallow donors by illumination at low temperature with a red LED. The X-band absorption spectra for Sn and Si show one line each at 50 and 61 meV, respectively. The spectrum for S shows a broad absorption starting at 90 meV, which shifts to lower energies with increasing pressure. The presence of only one line in the Si and Sn spectra can be explained by the non-parabolicity of the X-point conduction band minimum. The binding energies of these donors are estimated to be 74, 85, and 117 meV for Sn, Si, and S respectively. This work supported by USNSF DMR-94 17763.

  19. High-contrast fluorescence sensing of aqueous Cu(I) with triaryl-pyrazoline probes: Dissecting the roles of ligand donor strength and excited state proton transfer

    PubMed Central

    Morgan, M. Thomas; Bagchi, Pritha; Fahrni, Christoph J.

    2012-01-01

    Cu(I)-responsive fluorescent probes based on a photoinduced electron transfer (PET) mechanism generally show incomplete fluorescence recovery relative to the intrinsic quantum yield of the fluorescence reporter. Previous studies on probes with an N-aryl thiazacrown Cu(I)-receptor revealed that the recovery is compromised by incomplete Cu(I)-N coordination and resultant ternary complex formation with solvent molecules. Building upon a strategy that successfully increased the fluorescence contrast and quantum yield of Cu(I) probes in methanol, we integrated the arylamine PET donor into the backbone of a hydrophilic thiazacrown ligand with a sulfonated triarylpyrazoline as a water-soluble fluorescence reporter. This approach was not only expected to disfavor ternary complex formation in aqueous solution but also to maximize PET switching through a synergistic Cu(I)-induced conformational change. The resulting water-soluble probe 1 gave a strong 57-fold fluorescence enhancement upon saturation with Cu(I) with high selectivity over other cations, including Cu(II), Hg(II), and Cd(II); however, the recovery quantum yield did not improve over probes with the original N-aryl thiazacrown design. Concluding from detailed photophysical data, including responses to acidification, solvent isotope effects, quantum yields, and time-resolved fluorescence decay profiles, the fluorescence contrast of 1 is compromised by inadequate coordination of Cu(I) to the weakly basic arylamine nitrogen of the PET donor and by fluorescence quenching via two distinct excited state proton transfer pathways operating under neutral and acidic conditions. PMID:23169532

  20. Impurities in Kevlar 49 fibers

    SciTech Connect

    Pruneda, C.O.; Morgan, R.J.; Lim, R.; Gregory, L.J.; Fischer, J.W.

    1984-12-11

    The impurities in Kevlar 49 fibers (poly(p-phenylene terephthalamide)PPTA) are reported and discussed in terms of the fiber fabrication processes. These impurities were monitored by inductively coupled plasma emission and optical emission spectroscopy. The principal impurities Na/sub 2/SO/sub 4/ and total S were analyzed chemically. From these chemical analyses together with C, N, H elemental analyses we show that there are 1.5 wt % impurities present in Kevlar 49 fibers of which approx. 50% are in the form of Na/sub 2/SO/sub 4/ and the remainder probably in the form of benzene sulfonic -SO/sub 3/H PPTA side groups. There are 3 of these acid groups per each PPTA macromolecule. Organic impurities, such as terephthalic acid are discussed in the light of degradation studies of PPTA-H/sub 2/SO/sub 4/ spinning dopes. Electron microprobe x-ray spectroscopy and laser-induced damage studies were utilized to investigate the distribution of impurities through the fiber cross-section. The distribution of impurities throughout the fiber are determined by the fiber fabrication processes and are discussed at the microscopic and molecular level. The defects caused by these impurities and their effect on the deformation and failure modes are also considered. 22 references, 3 tables.

  1. Recent trends in the impurity profile of pharmaceuticals

    PubMed Central

    Pilaniya, Kavita; Chandrawanshi, Harish K.; Pilaniya, Urmila; Manchandani, Pooja; Jain, Pratishtha; Singh, Nitin

    2010-01-01

    Various regulatory authorities such as the International Conference on Harmonization (ICH), the United States Food and Drug administration (FDA), and the Canadian Drug and Health Agency (CDHA) are emphasizing on the purity requirements and the identification of impurities in Active Pharmaceutical Ingredients (APIs). The various sources of impurity in pharmaceutical products are — reagents, heavy metals, ligands, catalysts, other materials like filter aids, charcoal, and the like, degraded end products obtained during \\ after manufacturing of bulk drugs from hydrolysis, photolytic cleavage, oxidative degradation, decarboxylation, enantiomeric impurity, and so on. The different pharmacopoeias such as the British Pharmacopoeia, United State Pharmacopoeia, and Indian Pharmacopoeia are slowly incorporating limits to allowable levels of impurities present in APIs or formulations. Various methods are used to isolate and characterize impurities in pharmaceuticals, such as, capillary electrophoresis, electron paramagnetic resonance, gas–liquid chromatography, gravimetric analysis, high performance liquid chromatography, solid-phase extraction methods, liquid–liquid extraction method, Ultraviolet Spectrometry, infrared spectroscopy, supercritical fluid extraction column chromatography, mass spectrometry, Nuclear magnetic resonance (NMR) spectroscopy, and RAMAN spectroscopy. Among all hyphenated techniques, the most exploited techniques for impurity profiling of drugs are Liquid Chromatography (LC)-Mass Spectroscopy (MS), LC-NMR, LC-NMR-MS, GC-MS, and LC-MS. This reveals the need and scope of impurity profiling of drugs in pharmaceutical research. PMID:22247862

  2. Discovery of iron group impurity ion spin states in single crystal Y{sub 2}SiO{sub 5} with strong coupling to whispering gallery photons

    SciTech Connect

    Goryachev, Maxim; Farr, Warrick G.; Carmo Carvalho, Natalia do; Creedon, Daniel L.; Le Floch, Jean-Michel; Probst, Sebastian; Bushev, Pavel; Tobar, Michael E.

    2015-06-08

    Interaction of Whispering Gallery Modes (WGMs) with dilute spin ensembles in solids is an interesting paradigm of Hybrid Quantum Systems potentially beneficial for Quantum Signal Processing applications. Unexpected ion transitions are measured in single crystal Y{sub 2}SiO{sub 5} using WGM spectroscopy with large Zero Field Splittings at 14.7 GHz, 18.4 GHz, and 25.4 GHz, which also feature considerable anisotropy of the g-tensors as well as two inequivalent lattice sites, indicating spins from Iron Group Ion (IGI) impurities. The comparison of undoped and Rare-Earth doped crystals reveal that the IGIs are introduced during co-doping of Eu{sup 3+} or Er{sup 3+} with concentration at much lower levels of order 100 ppb. The strong coupling regime between an ensemble of IGI spins and WGM photons have been demonstrated at 18.4 GHz and near zero field. This approach together with useful optical properties of these ions opens avenues for “spins-in-solids” Quantum Electrodynamics.

  3. Modeling impurities and tilted plates in the ITER divertor

    SciTech Connect

    Rensink, M.E.; Rognlien, T.D.

    1996-07-29

    The UEDGE 2-D edge transport code is used to model the effect of impurities and tilted divertor plates for the ITER SOL/divertor region. The impurities are modeled as individual charge states using either the FMOMBAL 21-moment description or parallel force balance. Both helium and neon impurities are used together with a majority hydrogenic species. A fluid description of the neutrals is used that includes parallel inertia and neutral-neutral collisions. Effects of geometry are analyzed by using the nonorthogonal mesh capability of UEDGE to obtain solutions with the divertor plate tilted at various angles.

  4. Large impurity effects in rubrene crystals: First-principles calculations

    SciTech Connect

    Tsetseris, L.; Pantelides, Sokrates T.

    2008-01-01

    Carrier mobilities of rubrene films are among the highest values reported for any organic semiconductor. Here, we probe with first-principles calculations the sensitivity of rubrene crystals on impurities. We find that isolated oxygen impurities create distinct peaks in the electronic density of states consistent with observations of defect levels in rubrene and that increased O content changes the position and shape of rubrene energy bands significantly. We also establish a dual role of hydrogen as individual H species and H impurity pairs create and annihilate deep carrier traps, respectively. The results are relevant to the performance and reliability of rubrene-based devices.

  5. Impurity-defect emission from undoped Cd1- x Zn x Te single crystals near the fundamental absorption edge

    NASA Astrophysics Data System (ADS)

    Krivobok, V. S.; Denisov, I. A.; Mozhevitina, E. N.; Nikolaev, S. N.; Onishchenko, E. E.; Pruchkina, A. A.; Silina, A. A.; Smirnova, N. A.; Chernopitsskii, M. A.; Shmatov, N. I.

    2016-05-01

    Shallow impurity-defect states in undoped Cd1- x Zn x Te ( x ˜ 3-6%) single crystals have been studied using low-temperature photoluminescence measurements. It has been found that the effect exerted by zinc is mainly reduced to a rigid shift of all the specific features associated with the exciton radiation, which made it possible, with a high (˜0.3 meV) accuracy, to measure the band gap and the zinc concentration in solid solutions. Hydrogen-like donors with the ground-state energy of ˜14 meV and four types of acceptors with average activation energies of 59.3 ± 0.6 meV, 69.6 ± 1.5 meV, 155.8 ± 2.0 meV, and 52.3 ± 0.6 meV have been identified in all the crystals studied. Based on a comparison with the results of the analysis of the impurity background and the data available in the literature on impurity-defect emission in undoped CdTe, the first three acceptors can be assigned to the substitutional impurities NaCd, PTe, and CuCd, respectively. The most shallow acceptor (52.3 ± 0.6 meV) is a complex defect in which there is a nonstandard excited level separated by only 7 meV from the ground level. This level is formed apparently due to the removal of degeneracy, which is characteristic of T D acceptors, by the low-symmetry potential of the complex defect.

  6. Monitoring Changes in the Redox State of Myoglobin in Cardiomyocytes by Raman Spectroscopy Enables the Protective Effect of NO Donors to Be Evaluated.

    PubMed

    Almohammedi, Abdullah; Kapetanaki, Sofia M; Hudson, Andrew J; Storey, Nina M

    2015-10-20

    Raman microspectroscopy has been used to monitor changes in the redox and ligand-coordination states of the heme complex in myoglobin during the preconditioning of ex vivo cardiomyocytes with pharmacological drugs that release nitric oxide (NO). These chemical agents are known to confer protection on heart tissue against ischemia-reperfusion injury. Subsequent changes in the redox and ligand-coordination states during experimental simulations of ischemia and reperfusion have also been monitored. We found that these measurements, in real time, could be used to evaluate the preconditioning treatment of cardiomyocytes and to predict the likelihood of cell survival following a potentially lethal period of ischemia. Evaluation of the preconditioning treatment was done at the single-cell level. The binding of NO to myoglobin, giving a 6-coordinate ferrous-heme complex, was inferred from the measured Raman bands of a cardiomyocyte by comparison to pure solution of the protein in the presence of NO. A key change in the Raman spectrum was observed after perfusion of the NO-donor was completed, where, if the preconditioning treatment was successful, the bands corresponding to the nitrosyl complex were replaced by bands corresponding to metmyoglobin, Mb(III). An observation of Mb(III) bands in the Raman spectrum was made for all of the cardiomyocytes that recovered contractile function, whereas the absence of Mb(III) bands always indicated that the cardiomyocyte would be unable to recover contractile function following the simulated conditions of ischemia and reperfusion in these experiments.

  7. A Combined Theoretical and Experimental Study of Dissociation of Charge Transfer States at the Donor-Acceptor Interface of Organic Solar Cells.

    PubMed

    Tscheuschner, Steffen; Bässler, Heinz; Huber, Katja; Köhler, Anna

    2015-08-13

    The observation that in efficient organic solar cells almost all electron-hole pairs generated at the donor-acceptor interface escape from their mutual coulomb potential remains to be a conceptual challenge. It has been argued that it is the excess energy dissipated in the course of electron or hole transfer at the interface that assists this escape process. The current work demonstrates that this concept is unnecessary to explain the field dependence of electron-hole dissociation. It is based upon the formalism developed by Arkhipov and co-workers as well as Baranovskii and co-workers. The key idea is that the binding energy of the dissociating "cold" charge-transfer state is reduced by delocalization of the hole along the polymer chain, quantified in terms of an "effective mass", as well as the fractional strength of dipoles existent at the interface in the dark. By covering a broad parameter space, we determine the conditions for efficient electron-hole dissociation. Spectroscopy of the charge-transfer state on bilayer solar cells as well as measurements of the field dependence of the dissociation yield over a broad temperature range support the theoretical predictions.

  8. Energy levels of isoelectronic impurities by large scale LDA calculations

    SciTech Connect

    Li, Jingbo; Wang, Lin-Wang

    2002-11-22

    Isoelectronic impurity states are localized states induced by stoichiometric single atom substitution in bulk semiconductor. Photoluminescence spectra indicate deep impurity levels of 0.5 to 0.9eV above the top of valence band for systems like: GaN:As, GaN:P, CdS:Te, ZnS:Te. Previous calculations based on small supercells seemingly confirmed these experimental results. However, the current ab initio calculations based on thousand atom supercells indicate that the impurity levels of the above systems are actually much shallower(0.04 to 0.23 eV), and these impurity levels should be compared with photoluminescence excitation spectra, not photoluminescence spectra.

  9. Electron spin resonance of Ni-doped CuGeO3 in the paramagnetic, spin-Peierls, and antiferromagnetic states: Comparison with nonmagnetic impurities

    NASA Astrophysics Data System (ADS)

    Grenier, B.; Monod, P.; Hagiwara, M.; Matsuda, M.; Katsumata, K.; Clément, S.; Renard, J.-P.; Barra, A. L.; Dhalenne, G.; Revcolevschi, A.

    2002-03-01

    We have performed electron-spin-resonance measurements on single crystals of the doped spin-Peierls compounds CuGe1-ySiyO3 and Cu1-xMxGeO3 with M=Zn, Mg, Ni (x,y<=0.1). The first part of our experiments was performed in the paramagnetic and spin-Peierls phases at 9.5, 95, and 190 GHz. All nonmagnetic impurities (Si, Zn and Mg) were found to hardly affect the position and linewidth of the single line resonance, in spite of the moment formation due to the broken chains. In contrast to Si, Zn, and Mg dopings, the presence of Ni (S=1) at low concentration induces a spectacular shift toward high fields of the ESR line (up to 40% for x=0.002), together with a large broadening. This shift is strictly proportional to the ratio of Ni to Cu susceptibilities: Hence it is strongly enhanced below the spin-Peierls transition. We interpret this shift and the broadening as due to the exchange field induced by the Ni ions onto strongly exchange coupled Cu spins. Second, the antiferromagnetic resonance was investigated in Ni-doped samples. The frequency vs magnetic-field relation of the resonance is well explained by the classical theory with orthorhombic anisotropy, with g values remarkably reduced, in accordance with the study of the spin-Peierls and paramagnetic phases. The easy, second-easy, and hard axes are found to be a, c, and b axes, respectively. These results, which are dominated by the single ion anisotropy of Ni2+, are discussed in comparison with those in the Zn- and Si-doped CuGeO3.

  10. Terahertz radiation associated with the impurity electron transition in quantum wells upon optical and electrical pumping

    SciTech Connect

    Firsov, D. A. Vorobjev, L. E.; Panevin, V. Yu.; Sofronov, A. N.; Balagula, R. M.; Makhov, I. S.; Kozlov, D. V.; Vasil’ev, A. P.

    2015-01-15

    Radiation in the terahertz (THz) spectral range from structures with GaAs/AlGaAs doped quantum wells is investigated under conditions of the interband optical excitation of electron-hole pairs in n-type structures and impurity breakdown in a longitudinal electric field in p-type structures. The emission spectra are obtained. Emission is observed at low temperatures and shown to be determined by optical transitions between impurity states and transitions between the band and impurity states. Upon optical interband pumping, the impurity states are depopulated due to the recombination of electron-hole pairs with the involvement of impurities, while, in an electric field, the impurity states are depopulated due to impact ionization.

  11. Substitutional impurity in the graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Sierański, K.; Szatkowski, J.

    2015-09-01

    The process of formation of the localized defect states due to substitutional impurity in sp2-bonded graphene quantum dot is considered using a simple tight-binding-type calculation. We took into account the interaction of the quantum dot atoms surrounding the substitutional impurity from the second row of elements. To saturate the external dangling sp2 orbitals of the carbon additionally 18 hydrogen atoms were introduced. The chemical formula of the quantum dot is H18C51X, where X is the symbol of substitutional atom. The position of the localized levels is determined relative to the host-atoms (C) εp energies. We focused on the effect of substitutional doping by the B, N and O on the eigenstate energies and on the total energy change of the graphene dots including for O the effect of lattice distorsion. We conclude that B, N, and O can form stable substitutional defects in graphene quantum dot.

  12. Spin pumping through magnetic impurity effect

    NASA Astrophysics Data System (ADS)

    Deng, Wei-Yin; Sheng, Li; Xing, Ding-Yu

    2015-08-01

    We propose a simple adiabatic quantum spin pump to generate pure spin current. The spin pump is driven by an ac gate voltage and a time-dependent magnetic impurity potential. It is found that the total pumped spin per cycle exhibits oscillations, whose magnitude decays exponentially with changing strength of the impurity potential. The proposed method may be useful for spintronic applications. Project supported by the State Key Program for Basic Research of China (Grant Nos. 2015CB921202, 2014CB921103, 2011CB922103, and 2010CB923400), the National Natural Science Foundation of China (Grant Nos. 11225420, 11174125, and 91021003), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

  13. Block Lanczos density-matrix renormalization group method for general Anderson impurity models: Application to magnetic impurity problems in graphene

    NASA Astrophysics Data System (ADS)

    Shirakawa, Tomonori; Yunoki, Seiji

    2014-11-01

    We introduce a block Lanczos (BL) recursive technique to construct quasi-one-dimensional models, suitable for density-matrix renormalization group (DMRG) calculations, from single- as well as multiple-impurity Anderson models in any spatial dimensions. This new scheme, named BL-DMRG method, allows us to calculate not only local but also spatially dependent static and dynamical quantities of the ground state for general Anderson impurity models without losing elaborate geometrical information of the lattice. We show that the BL-DMRG method can be easily extended to treat a multiorbital Anderson impurity model where not only inter- and intraorbital Coulomb interactions but also Hund's coupling and pair hopping interactions are included. We also show that the symmetry adapted BL bases can be utilized, when it is appropriate, to reduce the computational cost. As a demonstration, we apply the BL-DMRG method to three different models for graphene with a structural defect and with a single hydrogen or fluorine absorbed, where a single Anderson impurity is coupled to conduction electrons in the honeycomb lattice. These models include (i) a single adatom on the honeycomb lattice, (ii) a substitutional impurity in the honeycomb lattice, and (iii) an effective model for a single carbon vacancy in graphene. Our analysis of the local dynamical magnetic susceptibility and the local density of states at the impurity site reveals that, for the particle-hole symmetric case at half-filling of electron density, the ground state of model (i) behaves as an isolated magnetic impurity with no Kondo screening, while the ground state of the other two models forms a spin-singlet state where the impurity moment is screened by the conduction electrons. We also calculate the real-space dependence of the spin-spin correlation functions between the impurity site and the conduction sites for these three models. Our results clearly show that, reflecting the presence or absence of unscreened

  14. ATOMIC AND MOLECULAR PHYSICS: Quantum Impurity Models with Coupled Cluster Method

    NASA Astrophysics Data System (ADS)

    Liang, Jin-Jun; Emary, Clive; Brandes, Tobias

    2010-09-01

    We investigate the ground-state properties of the Anderson single impurity model (finite Coulomb impurity repulsion) with the Coupled Cluster Method. We consider different CCM reference states and approximation schemes and make comparison with exact Green's function results for the non-interacting model and with Brillouin-Wigner perturbation theory for the full interacting model. Our results show that coupled cluster techniques are well suited to quantum impurity problems.

  15. Effect of Rashba spin-orbit interaction on the ground state energy of a D0 centre in a GaAs quantum dot with Gaussian confinement

    NASA Astrophysics Data System (ADS)

    Kumar, D. Sanjeev; Boda, Aalu; Mukhopadhyay, Soma; Chatterjee, Ashok

    2015-12-01

    The ground state energy of a neutral hydrogenic donor impurity (D0) trapped in a three-dimensional GaAs quantum dot with Gaussian confinement is calculated in the presence of Rashba spin-orbit interaction. The effect of the spin-orbit interaction is incorporated by performing a unitary transformation and retaining terms up to quadratic in the spin-orbit interaction coefficient. For the resulting Hamiltonian, the Rayleigh-Ritz variational method is employed with a simple wave function within the framework of effective-mass envelope function theory to determine the ground state energy and the binding energy of the donor complex. The results show that the Rashba spin-orbit interaction reduces the total GS energy of the donor impurity.

  16. Effect of impurity doping in gapped bilayer graphene

    SciTech Connect

    Han, Qi; Yan, Baoming; Jia, Zhenzhao; Niu, Jingjing; Yu, Dapeng; Wu, Xiaosong

    2015-10-19

    Impurity doping plays a pivotal role in semiconductor electronics. We study the doping effect in a two-dimensional semiconductor, gapped bilayer graphene. By employing in situ deposition of calcium on the bilayer graphene, dopants are controllably introduced. Low temperature transport results show a variable range hopping conduction near the charge neutrality point persisting up to 50 K, providing evidence for the impurity levels inside the gap. Our experiment confirms a predicted peculiar effect in the gapped bilayer graphene, i.e., formation of in-gap states even if the bare impurity level lies in the conduction band. The result provides perspective on the effect of doping and impurity levels in semiconducting bilayer graphene.

  17. A DMRG approach to impurities and interactions in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Struck, Alexander; Reyes, Sebastian; Eggert, Sebastian

    2009-03-01

    Carbon nanotubes (CNTs) are well suited to study strong electronic correlations in quasi-one-dimensional systems experimentally and theoretically. Of particular interest is the interplay of interactions between the conducting electrons and impurities in the nanotube. Impurities include the boundaries of short tubes as well as structural imperfections such as the Stone-Wales lattice distortion. Interactions can lead to different phases of the electron liquid, depending on their range and strength, and can produce quasi-localized ground states of e.g. the Mott insulator type or a charge density wave. Here we discuss a systematic approach using the density-matrix renormalization group (DMRG) method to treat a recently derived lattice model for a single-wall armchair CNT with short-range interactions and a Stone-Wales impurity. We show interaction driven modifications to the expected density patterns that can lead to anomalous Friedel oscillations around the impurity.

  18. Living donor nephrectomy.

    PubMed

    Jacobs, S C; Flowers, J L; Dunkin, B; Sklar, G N; Cho, E

    1999-03-01

    The need for more organs for kidney transplantation is increasing. Cadaver sources for these organs are stable, therefore living donation must increase if the need is to be met. Less perfect kidneys are now being transplanted. The pool of potential donors is being expanded. The process of kidney donation is being made easier in an effort to increase the number of donors. The donor work-up is being streamlined. Laparoscopic donor nephrectomy has been introduced, and appears to be promising as a technique of lessening donor pain and suffering, while maintaining excellent graft results.

  19. Impurity entanglement in the J-J2-δ quantum spin chain

    NASA Astrophysics Data System (ADS)

    Deschner, Andreas; Sørensen, Erik S.

    2011-10-01

    The contribution to the entanglement of an impurity attached to one end of a J-J2-δ quantum spin chain (S = 1/2) is studied. Two different measures of the impurity contribution to the entanglement have been proposed: the impurity entanglement entropy Simp and the negativity {N} . The first, Simp, is based on a subtractive procedure where the entanglement entropy in the absence of the impurity is subtracted from results with the impurity present. The other, {N} , is the negativity of a part of the system separated from the impurity and the impurity itself. In this paper we compare the two measures and discuss their similarities and the differences between them. In the J-J2-δ model it is possible to perform very precise variational calculations close to the Majumdar-Ghosh point (J2 = J/2 and δ = 0) where the system is gapped with a dimerized ground state. We describe in detail how such calculations are done and how they can be used to calculate {N} as well as Simp for any impurity coupling JK. We then study the complete crossover in the impurity entanglement as JK is varied between 0 and 1 close to the Majumdar-Ghosh point. In particular, we study the impurity entanglement when a staggered nearest neighbour interaction proportional to δ is introduced. In this case we observe a very rapid reduction in the impurity entanglement as δ is increased.

  20. Impurity Effects in Highly Frustrated Diamond-Lattice Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Savary, Lucile

    2012-02-01

    We consider the effects of local impurities in highly frustrated diamond lattice antiferromagnets, which exhibit large but non-extensive ground state degeneracies. Such models are appropriate to many A-site magnetic spinels. We argue very generally that sufficiently dilute impurities induce an ordered magnetic ground state, and provide a mechanism of degeneracy breaking. The states which are selected can be determined by a ``swiss cheese model'' analysis, which we demonstrate numerically for a particular impurity model in this case. Moreover, we present criteria for estimating the stability of the resulting ordered phase to a competing frozen (spin glass) one. The results may explain the contrasting finding of frozen and ordered ground states in CoAl2O4 and MnSc2S4, respectively.

  1. Magnetic impurities on the surface of a topological insulator

    SciTech Connect

    Liu, Qin; Liu, Chao-Xing; Xu, Cenke; Qi, Xiao-Liang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-25

    The surface states of a topological insulator are described by an emergent relativistic massless Dirac equation in 2+1 dimensions. In contrast to graphene, there is an odd number of Dirac points, and the electron spin is directly coupled to the momentum. We show that a magnetic impurity opens up a local gap and suppresses the local density of states. Furthermore, the Dirac electronic states mediate an RKKY interaction among the magnetic impurities which is always ferromagnetic, whenever the chemical potential lies near the Dirac point. These effects can be directly measured in STM experiments. We also study the case of quenched disorder through a renormalization group analysis.

  2. Multivalley effective mass theory simulation of donors in silicon

    NASA Astrophysics Data System (ADS)

    Gamble, John King; Jacobson, N. Tobias; Nielsen, Erik; Baczewski, Andrew D.; Moussa, Jonathan E.; Montaño, Inès; Muller, Richard P.

    2015-06-01

    Last year, Salfi et al. made the first direct measurements of a donor wave function and found extremely good theoretical agreement with atomistic tight-binding theory results [Salfi et al., Nat. Mater. 13, 605 (2014), 10.1038/nmat3941]. Here, we show that multivalley effective mass theory, applied properly, does achieve close agreement with tight-binding results and hence gives reliable predictions. To demonstrate this, we variationally solve the coupled six-valley Shindo-Nara equations, including silicon's full Bloch functions. Surprisingly, we find that including the full Bloch functions necessitates a tetrahedral, rather than spherical, donor central cell correction to accurately reproduce the experimental energy spectrum of a phosphorus impurity in silicon. We cross-validate this method against atomistic tight-binding calculations, showing that the two theories agree well for the calculation of donor-donor tunnel coupling. Further, we benchmark our results by performing a statistical uncertainty analysis, confirming that derived quantities such as the wave function profile and tunnel couplings are robust with respect to variational energy fluctuations. Finally, we apply this method to exhaustively enumerate the tunnel coupling for all donor-donor configurations within a large search volume, demonstrating conclusively that the tunnel coupling has no spatially stable regions. Although this instability is problematic for reliably coupling donor pairs for two-qubit operations, we identify specific target locations where donor qubits can be placed with scanning tunneling microscopy technology to achieve reliably large tunnel couplings.

  3. Interactions of structural defects with metallic impurities in multicrystalline silicon

    SciTech Connect

    McHugo, S.A.; Hieslmair, H.; Weber, E.R.; Rosenblum, M.D.; Kalejs, J.P.

    1996-11-01

    Interactions between structural defects and metallic impurities were studied in multicrystalline silicon for solar cells applications. The objective was to gain insight into the relationship between solar cell processing, metallic impurity behavior and the resultant effect on material/device performance. With an intense synchrotron x-ray source, high sensitivity x-ray fluorescence measurements were utilized to determine impurity distributions with a spatial resolution of {approx} 1{micro}m. Diffusion length mapping and final solar cell characteristics gauged material/device performance. The materials were tested in both the as-grown state and after full solar cell processing. Iron and nickel metal impurities were located at structural defects in as-grown material, while after solar cell processing, both impurities were still observed in low performance regions. These results indicate that multicrystalline silicon solar cell performance is directly related to metal impurities which are not completely removed during typical processing treatments. A discussion of possible mechanisms for this incomplete removal is presented.

  4. The impact of neutral impurity concentration on charge drift mobility

    NASA Astrophysics Data System (ADS)

    Mei, Hao; Wang, Guojian; Mei, Dongming; Yang, Gang; Guan, Yutong

    High-purity germanium crystals are being grown using the Czochralski technique at the University of South Dakota. The carrier concentration, mobility and resistivity are measured by Hall Effect system. Many factors contribute to the overall mobility. We investigated the impact of neutral impurity concentration on charge drift mobility. Several samples with measured mobility lager than 35000 cm2/Vs from the grown crystals were used for this investigation. With the measured mobility and the ionized impurity concentration, we were able to calculate the neutral impurity concentration by the Matthiessen's rule. The correlations between the neutral impurity concentrations with the radius of the crystals were studied. We report that the concentration of neutral impurity constrains charge draft mobility for high-purity germanium crystals and the non-uniform distribution of neutral impurity could result in an anisotropy of draft time distribution in a given germanium detector. This work is supported by DOE Grant DE-FG02-10ER46709 and the state of South Dakota.

  5. Classical impurities and boundary Majorana zero modes in quantum chains

    NASA Astrophysics Data System (ADS)

    Müller, Markus; Nersesyan, Alexander A.

    2016-09-01

    We study the response of classical impurities in quantum Ising chains. The Z2 degeneracy they entail renders the existence of two decoupled Majorana modes at zero energy, an exact property of a finite system at arbitrary values of its bulk parameters. We trace the evolution of these modes across the transition from the disordered phase to the ordered one and analyze the concomitant qualitative changes of local magnetic properties of an isolated impurity. In the disordered phase, the two ground states differ only close to the impurity, and they are related by the action of an explicitly constructed quasi-local operator. In this phase the local transverse spin susceptibility follows a Curie law. The critical response of a boundary impurity is logarithmically divergent and maps to the two-channel Kondo problem, while it saturates for critical bulk impurities, as well as in the ordered phase. The results for the Ising chain translate to the related problem of a resonant level coupled to a 1d p-wave superconductor or a Peierls chain, whereby the magnetic order is mapped to topological order. We find that the topological phase always exhibits a continuous impurity response to local fields as a result of the level repulsion of local levels from the boundary Majorana zero mode. In contrast, the disordered phase generically features a discontinuous magnetization or charging response. This difference constitutes a general thermodynamic fingerprint of topological order in phases with a bulk gap.

  6. The effects of donor dopant concentration on the grain boundary layer characteristics in n-doped BaTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Al-Allak, H. M.; Illingsworth, J.; Brinkman, A. W.; Russell, G. J.; Woods, J.

    1988-12-01

    Positive temperature coefficient of resistance BaTiO3 specimens containing different donor dopant concentrations of Ho ranging from 0.05 to 1.8 at. % were investigated. The intergranular barrier layer capacitance per unit area, C'L, measured at a constant frequency of 30 kHz at both 40 and 160 °C was found to be proportional to the donor concentration up to 0.55 at. %, but then began to decrease as the donor concentration was increased beyond this. This indicated that both the density of acceptor states at the grain surfaces, Ns, and the relative permittivity ɛL of the material within the barrier layer were not affected by donor impurity concentrations below 0.55 at. % Ho. However, above this level of Ho concentration, the decrease in C'L appears to be related mainly to an increase in the value of Ns although it is possible that there were changes in ɛL. Initially both the maximum resistance and the room-temperature resistance (normalized per grain boundary per unit area), ρ'max and ρcold, respectively, were found to decrease sharply with donor concentration towards a broad minimum between ˜0.5 and ˜1.5 at. %, followed thereafter by a gradual increase. The temperature Tmax at which ρ'max occurred was also affected by the donor concentration; initially Tmax was found to increase with donor concentration followed by a reduction forming a broad maximum between about the same donor concentration limits corresponding to the minima in ρcold and ρ'max. These results are interpreted in terms of the well-established Heywang model.

  7. The origin of deep-level impurity transitions in hexagonal boron nitride

    SciTech Connect

    Du, X. Z.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2015-01-12

    Deep ultraviolet photoluminescence (PL) emission spectroscopy has been employed to investigate the origin of the widely observed deep level impurity related donor-acceptor pair (DAP) transition with an emission peak near 4.1 eV in hexagonal boron nitride (h-BN). A set of h-BN epilayers were grown by metal-organic chemical vapor deposition (MOCVD) under different ammonia (NH{sub 3}) flow rates to explore the role of nitrogen vacancies (V{sub N}) in the deep-level transitions. The emission intensity of the DAP transition near 4.1 eV was found to decrease exponentially with an increase of the NH{sub 3} flow rate employed during the MOCVD growth, implying that impurities involved are V{sub N}. The temperature-dependent PL spectra were measured from 10 K up to 800 K, which provided activation energies of ∼0.1 eV for the shallow impurity. Based on the measured energy level of the shallow impurity (∼0.1 eV) and previously estimated bandgap value of about 6.5 eV for h-BN, we deduce a value of ∼2.3 eV for the deep impurity involved in this DAP transition. The measured energy levels together with calculation results and formation energies of the impurities and defects in h-BN suggest that V{sub N} and carbon impurities occupying the nitrogen sites, respectively, are the most probable shallow donor and deep acceptor impurities involved in this DAP transition.

  8. Electronic Structure and Valence of Mn impurities in III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Schulthess, Thomas C.

    2003-11-01

    Mn doped III-V semiconductors have recently become very popular materials since they are ferromagnetic at reasonably high temperatures and in some cases show carrier induced magnetism, where the Curie temperature can be altered by changes in the carrier concentration. It is expected that these materials will play an important role in Spintronics devices. Substitutional Mn impurities in III-V semiconductors can acquire either a divalent or a trivalent configuration. For example, it is generally accepted that Mn in GaAs is in a (d^5+h) configuration with five occupied Mn d-orbitals and a delocalized hole in the valence band. In contrast, Mn in GaN is believed to be in a d^4 configuration with a deep impurity state that has d-character. But there have recently been some discussions about the possibility of having some Mn ion in GaN assuming a divalent (d^5+h) type configuration. In order to achieve carrier induced ferromagnetism, the desired state of the Mn ions in III-V semiconductors is the (d^5+h) configuration. We have therefore performed ab-initio calculations of the Mn valence when it substitutes Ga in various III-V semiconductor hosts. We use the self-interaction corrected local spin density (SIC-LSD) method which is able to treat localized impurity orbitals properly. In particular we find that the method is capable of predicting the (d^5+h) state of Mn in GaAs. For Mn in GaP and GaN the calculations predict a trivalent d^4 state in the idealized system. The energy differences between d^4 and (d^5+h) configurations in GaP are, however, very small. Introduction of defects or donors does change the valence of Mn in GaP, favoring the divalent state under certain circumstances. Work done in collaboration with W. Temmerman and S. Szotek, Daresbury Laboratory, G. M. Stocks, ORNL, and W. H. Butler, MINT Center University of Alabama. This work supported by the Defense Advanced Research Agency and by DOE Office of Science trough ASCR/MICS and BES/DMSE under Contract No

  9. Transverse Ising model with multi-impurity

    NASA Astrophysics Data System (ADS)

    Huang, Xuchu; Yang, Zhihua

    2015-05-01

    We study the transverse Ising spin model with spin-1 impurities under the exact solution. We develop a universal method to deal with the multi-impurity problem by introducing a displacement quantity in the wave function and get a recursive formula to simplify the calculation of the partition function. This allows us to rigorously determine the impurity effects for a specific distribution of impurity in the thermodynamic limit. The low temperature behaviors are governed by the interplay between host and impurity excitations, and the quantum critical fluctuations around the critical point of the transverse Ising model are tuned by the transverse field and the concentration of impurity. However the impurity effects are limited, which depends on the host-impurity exchange interaction and the coupling strength of impurities.

  10. Expanded criteria donors.

    PubMed

    Feng, Sandy; Lai, Jennifer C

    2014-08-01

    The greatest challenge facing liver transplantation today is the shortage of donor livers. Demand far exceeds supply, and this deficit has driven expansion of what is considered an acceptable organ. The evolving standard has not come without costs, however, as each new frontier of expanded donor quality (i.e., advancing donor age, donation after cardiac death, and split liver) may have traded wait-list for post-transplant morbidity and mortality. This article delineates the nature and severity of risk associated with specific deceased donor liver characteristics and recommends strategies to maximally mitigate these risks. PMID:25017080

  11. Remuneration of hematopoietic stem cell donors: principles and perspective of the World Marrow Donor Association.

    PubMed

    Boo, Michael; van Walraven, Suzanna M; Chapman, Jeremy; Lindberg, Brian; Schmidt, Alexander H; Shaw, Bronwen E; Switzer, Galen E; Yang, Edward; Egeland, Torstein

    2011-01-01

    Hematopoietic stem cell transplantation is a curative procedure for life-threatening hematologic diseases. Donation of hematopoietic stem cells (HSCs) from an unrelated donor, frequently residing in another country, may be the only option for 70% of those in need of unrelated hematopoietic stem cell transplantation. To maximize the opportunity to find the best available donor, individual donor registries collaborate internationally. To provide homogeneity of practice among registries, the World Marrow Donor Association (WMDA) sets standards against which registries are accredited and provides guidance and regulations about unrelated donor safety and care. A basic tenet of the donor registries is that unrelated HSC donation is an altruistic act; nonpayment of donors is entrenched in the WMDA standards and in international practice. In the United States, the prohibition against remuneration of donors has recently been challenged. Here, we describe the reasons that the WMDA continues to believe that HSC donors should not be paid because of ethical concerns raised by remuneration, potential to damage the public will to act altruistically, the potential for coercion and exploitation of donors, increased risk to patients, harm to local transplantation programs and international stem cell exchange, and the possibility of benefiting some patients while disadvantaging others.

  12. Kinetics of thermal donor generation in silicon

    NASA Technical Reports Server (NTRS)

    Mao, B.-Y.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    The generation kinetics of thermal donors at 450 C in Czochralski-grown silicon was found to be altered by high-temperature preannealing (e.g., 1100 C for 30 min). Thus, when compared with as-grown Si, high-temperature preannealed material exhibits a smaller concentration of generated thermal donors and a faster thermal donor saturation. A unified mechanism of nucleation and oxygen diffusion-controlled growth (based on solid-state plate transformation theory) is proposed to account for generation kinetics of thermal donors at 450 C, in as-grown and high-temperature preannealed Czochralski silicon crystals. This mechanism is consistent with the main features of the models which have been proposed to explain the formation of oxygen thermal donors in silicon.

  13. Endohedral impurities in carbon nanotubes.

    PubMed

    Clougherty, Dennis P

    2003-01-24

    A generalization of the Anderson model that includes pseudo-Jahn-Teller impurity coupling is proposed to describe distortions of an endohedral impurity in a carbon nanotube. Within mean-field theory, spontaneous axial symmetry breaking is found when the vibronic coupling strength g exceeds a critical value. The effective potential is found to have O(2) symmetry, in agreement with numerical calculations. For metallic zigzag nanotubes endohedrally doped with transition metals in the dilute limit, the low-energy properties of the system may display two-channel Kondo behavior; however, strong vibronic coupling is seen to exponentially suppress the Kondo energy scale. PMID:12570507

  14. Endohedral Impurities in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.

    2003-01-01

    A generalization of the Anderson model that includes pseudo-Jahn-Teller impurity coupling is proposed to describe distortions of an endohedral impurity in a carbon nanotube. Within mean-field theory, spontaneous axial symmetry breaking is found when the vibronic coupling strength g exceeds a critical value. The effective potential is found to have O(2) symmetry, in agreement with numerical calculations. For metallic zigzag nanotubes endohedrally doped with transition metals in the dilute limit, the low-energy properties of the system may display two-channel Kondo behavior; however, strong vibronic coupling is seen to exponentially suppress the Kondo energy scale.

  15. ALUMINUM IMPURITY DIFFUSION IN MAGNESIUM

    SciTech Connect

    Brennan, Sarah; Warren, Andrew; Coffey, Kevin; Kulkarni, Nagraj S; Todd, Peter J; Sohn, Yong Ho; Klimov, Mikhail

    2012-01-01

    The Al impurity diffusion in polycrystalline Mg (99.9%) via depth profiling with secondary ion mass spectrometry was studied in the temperature range of 673-573K, utilizing the thin film method and thin film solution to the diffusion equation. Multiple samples were utilized and multiple profiles were obtained to determine statistically confident coefficient with maximum standard deviation of 16%. Activation energy and pre-exponential factor of Al impurity diffusion in Mg was determined as 155 kJ/mole and 3.9 x 10-3 m2/sec.

  16. Modeling of multi-dimensional impurity transport in a realistic tokamak geometry

    NASA Astrophysics Data System (ADS)

    Fukano, A.; Noritake, M.; Hoshino, K.; Yamazaki, R.; Hatayama, A.

    2007-06-01

    A 3D Monte Carlo transport code of heavy metal impurities is developed. The code includes most of important processes of heavy metal impurities, such as Larmor gyration, friction force, Coulomb collision, multi-step ionization and recombination process. The code outputs the 2D density profiles of tungsten impurity on realistic tokamak geometry. Calculations are made for given background plasma profiles for attached and detached plasma, which are the typical conditions in front of the divertor plate. In the attached plasma state, impurity tungsten particles are ionized to higher charge states near the divertor plate due to high background plasma electron temperature. On the other hand, in the detached plasma state, ions in higher charge states exist in the upstream of the divertor region mainly due to low background plasma electron temperature in front of the target plate. Although the code is still under development, it well describes the qualitative feature of impurity transport in the realistic tokamak geometry.

  17. Payment for donor kidneys: pros and cons.

    PubMed

    Friedman, E A; Friedman, A L

    2006-03-01

    Continuous growth of the end stage renal disease population treated by dialysis, outpaces deceased donor kidneys available, lengthens the waiting time for a deceased donor transplant. As estimated by the United States Department of Health & Human Services: '17 people die each day waiting for transplants that can't take place because of the shortage of donated organs.' Strategies to expand the donor pool--public relations campaigns and Drivers' license designation--have been mainly unsuccessful. Although illegal in most nations, and viewed as unethical by professional medical organizations, the voluntary sale of purchased donor kidneys now accounts for thousands of black market transplants. The case for legalizing kidney purchase hinges on the key premise that individuals are entitled to control of their body parts even to the point of inducing risk of life. One approach to expanding the pool of kidney donors is to legalize payment of a fair market price of about 40,000 dollars to donors. Establishing a federal agency to manage marketing and purchase of donor kidneys in collaboration with the United Network for Organ Sharing might be financially self-sustaining as reduction in costs of dialysis balances the expense of payment to donors. PMID:16482095

  18. A Model Approach to Flux-Pinning Properties of YBa2Cu 3O7-delta Thin Film Vortex States via Non-Superconducting Impurities

    NASA Astrophysics Data System (ADS)

    Gamble, Ronald S., Jr.

    Thin film YBa2Cu3O7--delta (YBCO) samples with added non-superconducting nanodot defects of CeO 2 and BaSnO2 are the focus of recent high-temperature superconductor studies. These nanodots allow magnetic flux to penetrate at these sites of the superconducting lattice thus creating a magnetic flux vortex state. Examining the structure shows that these quantized magnetic flux vortices arrange themselves in a self-assembled lattice. The nanodots, with non-superconducting properties, serve to present structural properties to restrict motion of these vorticies under a pinning-force and to enhance the critical current density. A formulation of a new model for the system by a variation in the electron pair velocity via the virtual work from the nanodot defects in accordance to the well-known Superconductivity theories is tested. A solution to the expression for the magnetic flux, zero net force and pair velocity will generate a setting for the optimal deposition parameters of number density, growth geometry and mass density of these nanodot structures. With a calculation of pair velocities from a similar work, a comparison is made between experimental and theoretical velocity calculations using growth geometry and chemical potential. This will yield insight into how the current density for a doped high-temperature superconductor will be modified and tuned based on the dynamics and density of the nanodots themselves.

  19. First-principles electronic structure and formation energies of group V and VII impurities in the α-Fe{sub 2}O{sub 3} alloys

    SciTech Connect

    Xia, Congxin; Jia, Yu; Zhang, Qiming

    2014-09-21

    Based on density functional theory, the electronic structures, formation energy, and transition level of the selected group V and VII impurities in α-Fe{sub 2}O{sub 3} are investigated by means of first-principles methods. Numerical results show that the group V and VII atoms-doped α-Fe{sub 2}O{sub 3} can be energetically favorable under the Fe-rich condition. Group V atom substituting O atom can induce the acceptor impurity level, while the deep donor impurity states are formed inside the band gap when group VII atom substitute O atom in the α-Fe{sub 2}O{sub 3}. Moreover, our results show that halogen atom F substituting O atom should be very easy in the α-Fe{sub 2}O{sub 3}. In addition, our results also show that for both group V and VII atom-doped α-Fe{sub 2}O{sub 3}, the upper sides of valence band are modified obviously, while the conduction band edge does not change.

  20. Donor Telomere Length SAA

    Cancer.gov

    A new NCI study has found that, among patients with severe aplastic anemia who received a hematopoietic cell transplant from an unrelated donor, those whose donor white blood cells had longer telomeres had higher survival rates five-years after transplant

  1. Dealing with Donor Anger.

    ERIC Educational Resources Information Center

    McNamee, Mike

    1995-01-01

    Techniques that reduce donors' resistance to college fund-raising requests, either direct mail or telephone solicitations, are offered. These include: respecting the prospects' concerns about privacy; offering nonintrusive giving options; honesty and clarity of communication; reinforcing donor sense of control; connecting with prospects'…

  2. Donor deactivation in silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Björk, Mikael T.; Schmid, Heinz; Knoch, Joachim; Riel, Heike; Riess, Walter

    2009-02-01

    The operation of electronic devices relies on the density of free charge carriers available in the semiconductor; in most semiconductor devices this density is controlled by the addition of doping atoms. As dimensions are scaled down to achieve economic and performance benefits, the presence of interfaces and materials adjacent to the semiconductor will become more important and will eventually completely determine the electronic properties of the device. To sustain further improvements in performance, novel field-effect transistor architectures, such as FinFETs and nanowire field-effect transistors, have been proposed as replacements for the planar devices used today, and also for applications in biosensing and power generation. The successful operation of such devices will depend on our ability to precisely control the location and number of active impurity atoms in the host semiconductor during the fabrication process. Here, we demonstrate that the free carrier density in semiconductor nanowires is dependent on the size of the nanowires. By measuring the electrical conduction of doped silicon nanowires as a function of nanowire radius, temperature and dielectric surrounding, we show that the donor ionization energy increases with decreasing nanowire radius, and that it profoundly modifies the attainable free carrier density at values of the radius much larger than those at which quantum and dopant surface segregation effects set in. At a nanowire radius of 15 nm the carrier density is already 50% lower than in bulk silicon due to the dielectric mismatch between the conducting channel and its surroundings.

  3. Temperature and donor concentration dependence of the conduction electron Lande g-factor in silicon

    SciTech Connect

    Konakov, Anton A.; Ezhevskii, Alexander A.; Soukhorukov, Andrey V.; Guseinov, Davud V.; Popkov, Sergey A.; Burdov, Vladimir A.

    2013-12-04

    Temperature and donor concentration dependence of the conduction electron g-factor in silicon has been investigated both experimentally and theoretically. We performed electron spin resonance experiments on Si samples doped with different densities of phosphorus and lithium. Theoretical consideration is based on the renormalization of the electron energy in a weak magnetic field by the interaction with possible perturbing agents, such as phonons and impurity centers. In the second-order perturbation theory interaction of the electron subsystem with the lattice vibrations as well as ionized donors results in decreasing the conduction electron g-factor, which becomes almost linear function both of temperature and impurity concentration.

  4. Impurity effects on coupled quantum dot spin qubits in semiconductors

    NASA Astrophysics Data System (ADS)

    Nguyen, Nga; Das Sarma, Sankar

    2011-03-01

    Localized electron spins confined in semiconductor quantum dots are being studied by many groups as possible elementary qubits for solid-state quantum computation. We theoretically consider the effects of having unintentional charged impurities in laterally coupled two-dimensional double (GaAs) quantum dot systems, where each dot contains one or two electrons and a single charged impurity in the presence of an external magnetic field. We calculate the effect of the impurity on the 2-electron energy spectrum of each individual dot as well as on the spectrum of the coupled-double-dot 2-electron system. We find that the singlet-triplet exchange splitting between the two lowest energy states, both for the individual dots and the coupled dot system, depends sensitively on the location of the impurity and its coupling strength (i.e. the effective charge). We comment on the impurity effect in spin qubit operations in the double dot system based on our numerical results. This work is supported by LPS-CMTC and CNAM.

  5. Control of impurities in toroidal plasma devices

    DOEpatents

    Ohkawa, Tihiro

    1980-01-01

    A method and apparatus for plasma impurity control in closed flux plasma systems such as Tokamak reactors is disclosed. Local axisymmetrical injection of hydrogen gas is employed to reverse the normally inward flow of impurities into the plasma.

  6. Fundamental aspects of metallic impurities and impurity interactions in silicon during device processing

    SciTech Connect

    Graff, K.

    1995-08-01

    A review on the behavior of metallic impurities in silicon can be considerably simplified by a restriction on pure, dislocation-free, monocrystalline silicon. In this case interactions between different impurities and between impurities and grown-in lattice defects can be reduced. This restriction is observed in Chapter 1 for discussing the general behavior of metallic impurities in silicon.

  7. Sperm donors describe the experience of contact with their donor-conceived offspring.

    PubMed

    Hertz, R; Nelson, M K; Kramer, W

    2015-01-01

    This study explores the attitudes and experiences of 57 sperm donors who responded to a survey posted online in the United States and indicated that they had had contact with their donor-conceived offspring or the parents of their donor-conceived offspring. On average, 18 years had elapsed since the respondents donated sperm. In the interim between donating and having contact with offspring, most had become curious about their offspring. Most made contact through a bank or online registry. Most respondents had communicated with at least one offspring at least once and most had exchanged photos with offspring. Approximately two-thirds had met in person once; the same proportion had communicated over email or text. Other forms of communication were less common. Almost half of the respondents now considered their donor-conceived offspring to be like a family member. At the same time, donors are respectful of the integrity of the family in which their offspring were raised. Donors with contact are open to having their partners and children know their donor-conceived offspring. Although contact is generally positive, donors report that establishing boundaries and defining the relationship can be very difficult. Some donors also urge those who are thinking of donating to consider the consequences and some suggest avoiding anonymity. There were no significant differences in attitudes and experiences between those who donated anonymously and those who had been identity-release for their offspring when they turned 18. PMID:26175887

  8. Sperm donors describe the experience of contact with their donor-conceived offspring

    PubMed Central

    Hertz, R.; Nelson, M.K.; Kramer, W.

    2015-01-01

    This study explores the attitudes and experiences of 57 sperm donors who responded to a survey posted online in the United States and indicated that they had had contact with their donor-conceived offspring or the parents of their donor-conceived offspring. On average, 18 years had elapsed since the respondents donated sperm. In the interim between donating and having contact with offspring, most had become curious about their offspring. Most made contact through a bank or online registry. Most respondents had communicated with at least one offspring at least once and most had exchanged photos with offspring. Approximately two-thirds had met in person once; the same proportion had communicated over email or text. Other forms of communication were less common. Almost half of the respondents now considered their donor-conceived offspring to be like a family member. At the same time, donors are respectful of the integrity of the family in which their offspring were raised. Donors with contact are open to having their partners and children know their donor-conceived offspring. Although contact is generally positive, donors report that establishing boundaries and defining the relationship can be very difficult. Some donors also urge those who are thinking of donating to consider the consequences and some suggest avoiding anonymity. There were no significant differences in attitudes and experiences between those who donated anonymously and those who had been identity-release for their offspring when they turned 18. PMID:26175887

  9. Observation of impurity accumulation and concurrent impurity influx in PBX

    SciTech Connect

    Sesnic, S.S.; Fonck, R.J.; Ida, K.; Bol, K.; Couture, P.; Gammel, G.; Kaita, R.; Kaye, S.; Kugel, H.; LeBlanc, B.

    1986-07-01

    Impurity studies in L- and H-mode discharges in PBX have shown that both types of discharges can evolve into either an impurity accumulative or nonaccumulative case. In a typical accumulative discharge, Zeff peaks in the center to values of about 5. The central metallic densities can be high, n/sub met//n/sub e/ approx. = 0.01, resulting in central radiated power densities in excess of 1 W/cm/sup 3/, consistent with bolometric estimates. The radial profiles of metals obtained independently from the line radiation in the soft x-ray and the VUV regions are very peaked. Concurrent with the peaking, an increase in the impurity influx coming from the edge of the plasma is observed. At the beginning of the accumulation phase the inward particle flux for titanium has values of 6 x 10/sup 10/ and 10 x 10/sup 10/ particles/cm/sup 2/s at minor radii of 6 and 17 cm. At the end of the accumulation phase, this particle flux is strongly increased to values of 3 x 10/sup 12/ and 1 x 10/sup 12/ particles/cm/sup 2/s. This increased flux is mainly due to influx from the edge of the plasma and to a lesser extent due to increased convective transport. Using the measured particle flux, an estimate of the diffusion coefficient D and the convective velocity v is obtained.

  10. Donor Magneto-Spectroscopy and Magnetic Field - Metal-Insulator Transition in MERCURY(1-X) Cadmium(x)tellurium and Indium Antimonide

    NASA Astrophysics Data System (ADS)

    Choi, Jung Bum

    Far infrared (FIR) magneto-transmission studies of n-type Hg_{1-x}Cd _{x}Te (x = 0.198, 0.204, 0.224, 0.237, 0.270) for temperatures down to 1.5K and magnetic fields up to 9T in Voigt and Faraday geometries have been performed. Magneto-optical transitions of donor bound electrons are observed; including the (000) --> (001) and (010) --> (01k_{z}) in the Voigt geometry, and the (000) --> (110) in the Faraday geometry. These identifications are confirmed by their resonance positions, selection rules, and temperature dependence. The experimental observations are consistent with calculations of resonance positions and lineshapes based on the hydrogenic donor model including central cell effects. This work confirms the donor bound electronic ground state for Hg_{1-x}Cd_{x} Te. The magneto-transport and FIR spectroscopy have been combined to probe the nature of the impurity band in the vicinity of the magnetic field induced metal-insulator transition. The results obtained in Hg_ {1-x}Cd_{x}Te and InSb show the persistance of the (000) --> (110) impurity transition through the metal-insulator critical field. This observation demonstrates the existence of the metallic impurity band which is split off from the conduction band. In the studies of the critical behavior of InSb, the conductivity measured for temperatures down to 0.45K shows a dominant linear dependence on temperature near the transition field. Furthermore, the zero-temperature extrapolated conductivity was found to drop continuously to zero at the transition field with a critical exponent of nu = 1.07 +/- 0.07.

  11. [Altruism and the donor].

    PubMed

    Langlois, A

    1991-08-01

    On December 20, 1988, the government of France passed a law to protect people who voluntarily participate in biomedical research. This article makes extensive reference to a major study, titled From Biology to Ethics, by Jean Bernard, a well-respected authority in the field of bioethics. The author looks at models proposed by Bernard, as examples for health volunteers, in particular, the blood donor and the self-experimenter. To set the tone of the article, she recalls the concept of altruism, as first proposed by Auguste Comte, then makes a linkage between his philosophy and Bernard's point of view. By trial and error, in their discussions, various ethics committees and the French State Council have agreed upon what constitutes fair compensation under the law. Unlike their Canadian counterparts, medical researchers in France have free access to volunteers who are not in perfect health--e.g., the elderly, people suffering from kidney deficiency, cirrhosis of the liver, etc.--but these "experimental subjects" receive no monetary compensation. Thus, healthy and less-than-healthy volunteers do not receive equal treatment under the law. This inequity, added to the fear of what amounts to a tax on the human body and the difficulty of ensuring just compensation, is giving rise to a great deal of uncertainty.

  12. [Altruism and the donor].

    PubMed

    Langlois, A

    1991-08-01

    On December 20, 1988, the government of France passed a law to protect people who voluntarily participate in biomedical research. This article makes extensive reference to a major study, titled From Biology to Ethics, by Jean Bernard, a well-respected authority in the field of bioethics. The author looks at models proposed by Bernard, as examples for health volunteers, in particular, the blood donor and the self-experimenter. To set the tone of the article, she recalls the concept of altruism, as first proposed by Auguste Comte, then makes a linkage between his philosophy and Bernard's point of view. By trial and error, in their discussions, various ethics committees and the French State Council have agreed upon what constitutes fair compensation under the law. Unlike their Canadian counterparts, medical researchers in France have free access to volunteers who are not in perfect health--e.g., the elderly, people suffering from kidney deficiency, cirrhosis of the liver, etc.--but these "experimental subjects" receive no monetary compensation. Thus, healthy and less-than-healthy volunteers do not receive equal treatment under the law. This inequity, added to the fear of what amounts to a tax on the human body and the difficulty of ensuring just compensation, is giving rise to a great deal of uncertainty. PMID:1878857

  13. Magnetic Vortex Induced by Nonmagnetic Impurity in Frustrated Magnets

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Zeng; Hayami, Satoru; Batista, Cristian D.

    2016-05-01

    We study the effect of a nonmagnetic impurity inserted in a two-dimensional frustrated ferromagnet above its saturation magnetic field Hsat for arbitrary spin S . We demonstrate that the ground state includes a magnetic vortex that is nucleated around the impurity over a finite range of magnetic field Hsat≤H ≤HsatI. Upon approaching the quantum critical point at H =Hsat, the radius of the magnetic vortex diverges as the magnetic correlation length: ξ ∝1 /√{H -Hsat }. These results are derived both for the lattice and in the continuum limit.

  14. Magnetic Vortex Induced by Nonmagnetic Impurity in Frustrated Magnets.

    PubMed

    Lin, Shi-Zeng; Hayami, Satoru; Batista, Cristian D

    2016-05-01

    We study the effect of a nonmagnetic impurity inserted in a two-dimensional frustrated ferromagnet above its saturation magnetic field H_{sat} for arbitrary spin S. We demonstrate that the ground state includes a magnetic vortex that is nucleated around the impurity over a finite range of magnetic field H_{sat}≤H≤H_{sat}^{I}. Upon approaching the quantum critical point at H=H_{sat}, the radius of the magnetic vortex diverges as the magnetic correlation length: ξ∝1/sqrt[H-H_{sat}]. These results are derived both for the lattice and in the continuum limit. PMID:27203342

  15. Impurity entanglement through electron scattering in a magnetic field

    NASA Astrophysics Data System (ADS)

    Metavitsiadis, Alexandros; Dillenschneider, Raoul; Eggert, Sebastian

    2014-04-01

    We study the entanglement of magnetic impurities in an environment of electrons through successive scattering while an external magnetic field is applied. We show that the dynamics of the problem can be approximately described by a reduced model of three interacting spins, which reveals an intuitive view on how spins can be entangled by controlled electron scattering. The role of the magnetic field is rather crucial. Depending on the initial state configuration, the magnetic field can either increase or decrease the resulting entanglement but more importantly it can allow the impurities to be maximally entangled.

  16. Impurity Transport in a Simulated Gas Target Divertor

    NASA Astrophysics Data System (ADS)

    Blush, L. M.; Luckhardt, S.; Seraydarian, R.; Whyte, D.; Conn, R. W.; Schmitz, L.

    1997-11-01

    Previous simulated gas target divertor experiments in the PISCES-A linear plasma device (n <= 3 × 10^19 m-3, kTe <= 20 eV) indicated enhanced impurity retention near the target in comparison to a high recycling divertor regime. A 1 1\\over2-D fluid modeling code suggested that impurities are impeded from transporting away from the target by friction with the neutral and ionized hydrogen. In recent experiments with a PISCES-A ``slot-type'' divertor configuration, we have implemented a spectroscopic detection system to measure the axial density profiles of several impurity charge states. Moreover, we envision adding two extended cylindrical baffles spanning a pumped vacuum section to achieve strong differential pumping. This arrangement will isolate the plasma source from the gas target region and allow us to seed the background hydrogen plasma with higher impurities concentrations and investigate a regime dominated by impurity radiation. In preliminary design experiments, PISCES-A was successfully operated with an electrically isolated, copper baffle (d=5 cm, l=33.5 cm) mounted to reduce the vacuum conductance between the source and target regions. This work supported by US-DoE contract DE-FG03-95ER-54301.

  17. Control of impurity concentration in liquid metals by neutron scattering

    SciTech Connect

    Morozov, V. A.; Novikov, A. G.; Savostin, V. V.

    2011-12-15

    A technique is proposed for determining the impurity concentration in liquid metal-impurity systems. This technique does not require special measurements or geometry: information about the impurity concentration can be obtained directly from the data collected during the diffraction experiment. The impurity concentrations in a lead melt with a potassium impurity and in a sodium melt with a lead impurity are determined.

  18. Self-pumping impurity control

    DOEpatents

    Brooks, J.N.; Mattas, R.F.

    1983-12-21

    It is an object of the present invention to provide an apparatus for removing impurities from the plasma in a fusion reactor without an external vacuum pumping system. It is also an object of the present invention to provide an apparatus for removing the helium ash from a fusion reactor. It is another object of the present invention to provide an apparatus which removes helium ash and minimizes tritium recycling and inventory.

  19. Screening for impurities in butoprozine.

    PubMed

    Drenth, B F; Jagersma, T; Wormeester, A J; de Zeeuw, R A

    1983-08-26

    The purity analysis of butoprozine is described. Both gas chromatography-mass spectrometry (GC-MS) and high pressure liquid chromatography (HPLC) with UV-vis detection (conventional and multichannel) were used. In the butoprozine example disadvantages for both techniques became apparent: incorrect conclusions with regard to the purity of the drug would have been drawn if only one of these chromatographic techniques had been used. GC-MS allowed the identification of an impurity not found by HPLC. PMID:6622208

  20. Impurity diffusion in transition-metal oxides

    SciTech Connect

    Peterson, N.L.

    1982-06-01

    Intrinsic tracer impurity diffusion measurements in ceramic oxides have been primarily confined to CoO, NiO, and Fe/sub 3/O/sub 4/. Tracer impurity diffusion in these materials and TiO/sub 2/, together with measurements of the effect of impurities on tracer diffusion (Co in NiO and Cr in CoO), are reviewed and discussed in terms of impurity-defect interactions and mechanisms of diffusion. Divalent impurities in divalent solvents seem to have a weak interaction with vacancies whereas trivalent impurities in divalent solvents strongly influence the vacancy concentrations and significantly reduce solvent jump frequencies near a trivalent impurity. Impurities with small ionic radii diffuse more slowly with a larger activation energy than impurities with larger ionic radii for all systems considered in this review. Cobalt ions (a moderate size impurity) diffuse rapidly along the open channels parallel to the c-axis in TiO/sub 2/ whereas chromium ions (a smaller-sized impurity) do not. 60 references, 11 figures.

  1. Donor level of interstitial hydrogen in semiconductors: Deep level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Kolkovsky, Vl.; Dobaczewski, L.; Nielsen, K. Bonde; Kolkovsky, V.; Larsen, A. Nylandsted; Weber, J.

    2009-12-01

    The behaviour of hydrogen in crystalline semiconductors has attracted considerable interest during several decades. Due to its high diffusion rate and ability to react with a wide variety of lattice imperfections such as intrinsic point defects, impurities, interfaces and surfaces, hydrogen is an impurity of fundamental importance in semiconductor materials. It has been already evidenced in previous investigations that the most fundamental hydrogen-related defects in-group IV semiconductors are interstitial hydrogen atoms occupying the bond-centre site ( BC) or the interstitial tetrahedral site ( T). Using first-principles calculations Van de Walle predicted similar properties of isolated hydrogen in other II-VI and III-V semiconductors. Another interesting prediction shown in that work was the existence of a universal alignment for the hydrogen electronic (-/+) level. Until now there is no direct experimental information regarding the individual isolated hydrogen states in compound semiconductors and most reported properties have been inferred indirectly. In the present work in-situ conventional deep level transient spectroscopy (DLTS) and high-resolution Laplace DLTS techniques are used to analyse hydrogen-related levels after low-temperature proton implantation in different II-VI and III-V semiconductors including GaAs, ZnO and CdTe. From these experimental observations the donor level of isolated hydrogen is found to keep almost a constant value in the absolute energy scale taking into account different band-offsets calculated for the whole group of semiconductors.

  2. Gaseous trace impurity analyzer and method

    DOEpatents

    Edwards, Jr., David; Schneider, William

    1980-01-01

    Simple apparatus for analyzing trace impurities in a gas, such as helium or hydrogen, comprises means for drawing a measured volume of the gas as sample into a heated zone. A segregable portion of the zone is then chilled to condense trace impurities in the gas in the chilled portion. The gas sample is evacuated from the heated zone including the chilled portion. Finally, the chilled portion is warmed to vaporize the condensed impurities in the order of their boiling points. As the temperature of the chilled portion rises, pressure will develop in the evacuated, heated zone by the vaporization of an impurity. The temperature at which the pressure increase occurs identifies that impurity and the pressure increase attained until the vaporization of the next impurity causes a further pressure increase is a measure of the quantity of the preceding impurity.

  3. Cadaveric donor selection and management.

    PubMed

    Studer, Sean M; Orens, Jonathan B

    2006-10-01

    While there is little doubt that proper donor selection is extremely important to achieve good outcomes from transplantation, there are only limited data regarding the current criteria utilized to select the "ideal donor". Importantly, there are not enough donor lungs available for all of those in need. Until an adequate supply of donor organs exists, lives will be lost on the transplant waiting list. While efforts have been made to increase donor awareness, additional transplants can be realized by improving donor utilization. This can be achieved by active participation of transplant teams in donor management and by utilizing "extended criteria" organs. Further studies are needed to assess the impact of using "extended criteria" donors, as this practice could result in increased posttransplant morbidity and mortality. This article summarizes the approach to identification of potential lung donors, optimal donor management, and the clinical importance of various donor factors upon recipient outcomes.

  4. μ SR insight into the impurity problem in quantum kagome antiferromagnets

    NASA Astrophysics Data System (ADS)

    Gomilšek, M.; Klanjšek, M.; Pregelj, M.; Luetkens, H.; Li, Y.; Zhang, Q. M.; Zorko, A.

    2016-07-01

    Impurities, which are unavoidable in real materials, may play an important role in the magnetism of frustrated spin systems with a spin-liquid ground state. We address the impurity issue in quantum kagome antiferromagnets by investigating ZnCu3(OH) 6SO4 (Zn-brochantite) by means of muon spin spectroscopy. We show that muons dominantly couple to impurities, originating from Cu-Zn intersite disorder, and that the impurity spins are highly correlated with the kagome spins, allowing us to probe the host kagome physics via a Kondo-like effect. The low-temperature plateau in the impurity susceptibility suggests that the kagome spin-liquid ground state is gapless. The corresponding spin fluctuations exhibit an unconventional spectral density and a nontrivial field dependence.

  5. Laparoscopic donor nephrectomy.

    PubMed

    Deger, S; Giessing, M; Roigas, J; Wille, A H; Lein, M; Schönberger, B; Loening, S A

    2005-01-01

    Laparoscopic live donor nephrectomy (LDN) has removed disincentives of potential donors and may bear the potential to increase kidney donation. Multiple modifications have been made to abbreviate the learning curve while at the same time guarantee the highest possible level of medical quality for donor and recipient. We reviewed the literature for the evolution of the different LDN techniques and their impact on donor, graft and operating surgeon, including the subtleties of different surgical accesses, vessel handling and organ extraction. We performed a literature search (PubMed, DIMDI, medline) to evaluate the development of the LDN techniques from 1995 to 2003. Today more than 200 centres worldwide perform LDN. Hand-assistance has led to a spread of LDN. Studies comparing open and hand-assisted LDN show a reduction of operating and warm ischaemia times for the hand-assisted LDN. Different surgical access sites (trans- or retroperitoneal), different vessel dissection approaches, donor organ delivery techniques, delivery sites and variations of hand-assistance techniques reflect the evolution of LDN. Proper techniques and their combination for the consecutive surgical steps minimize both warm ischaemia time and operating time while offering the donor a safe minimally invasive laparoscopic procedure. LDN has breathed new life into the moribund field of living kidney donation. Within a few years LDN could become the standard approach in living kidney donation. Surgeons working in this field must be trained thoroughly and well acquainted with the subtleties of the different LDN techniques and their respective advantages and disadvantages. PMID:16754618

  6. Impurities in Silicon Nanocrystals: The intentional and the inherent

    NASA Astrophysics Data System (ADS)

    Rowe, David J.

    Silicon nanocrystals (SiNCs) have become an important class of materials in the fields of photovoltaics, thermoelectrics, lighting, and medicine. Impurities within SiNCs dramatically alter the electrical and optical properties of the host material, whether the impurity is intentionally added in an attempt to manipulate properties, or is inherent to the material and its natural state. Despite such remarkable changes, impurity incorporation within SiNCs remains poorly understood, since concepts applied to understanding impurities in bulk materials may not completely translate to nanomaterials. Understanding the effect of SiNC impurities requires new technologies to produce materials suitable for study combined with new insights to expound the differences in the nanoscale physics. Nonthermal plasma-assisted gas-phase synthesis provides an excellent route to producing and investigating impurities within SiNCs due to the unique chemical reaction environment of the plasma. The robustness of such a technique allows for the production of very pure SiNCs or SiNCs with added impurities simply by adding different chemicals to the plasma. The chapters in this document focus on the effect that different impurities have on the properties of SiNCs. Chapter 2 focuses on heavily P-doped SiNCs exhibiting the first known observation of a unique electrical and optical property known as localized surface plasmon resonance (LSPR) within free-standing SiNCs. Chapter 3 explains the synthesis of B- and P-doped SiGeNC alloys and their deposition into thin films for thermoelectric applications. Chapter 4 highlights research which uses P-doped SiNCs to form emitter layers for pn-junction type solar cells, including device fabrication and optical characterization. Chapter 5 examines inherent impurities in the form of dangling bond defects which may be responsible for the quenching of SiNC photoluminescence, and their evolution during the process of air-ambient oxidation. Several appendices at

  7. Impurity-to-band activation energy in phosphorus doped diamond

    NASA Astrophysics Data System (ADS)

    Stenger, I.; Pinault-Thaury, M.-A.; Kociniewski, T.; Lusson, A.; Chikoidze, E.; Jomard, F.; Dumont, Y.; Chevallier, J.; Barjon, J.

    2013-08-01

    The value of the impurity-to-band activation energy EA of a dopant is a basic feature of the electrical conductivity of semiconductors. Various techniques were used to determine EA in n-type diamond doped with phosphorus, giving values of EA varying from 0.43 eV to 0.63 eV, the value EA of 0.6 eV being commonly accepted for the ionization energy of phosphorus donors in diamond. Nevertheless, up to now, the dispersion of the experimental values of EA remains unexplained. In this work, we investigate the electrical properties of a set of n-type diamond homoepitaxial films with different phosphorus concentrations by Hall effect measurements in order to deduce EA and to understand the evolution of this energy with the dopant concentration. We show that, below 2 × 1019 cm-3 phosphorus, the decrease of EA is mainly controlled by the concentration of ionized defects resulting from the donor compensation. The role of ionized defects in the decrease of EA is analyzed on the basis of existing models adapted to the case of diamond. The proposed model provides a correct description of the experimental data. It can be used to quantitatively predict the activation energy of phosphorus in n-type diamond for given donor and compensating acceptor concentrations.

  8. Determining the spin-orbit coupling via spin-polarized spectroscopy of magnetic impurities

    NASA Astrophysics Data System (ADS)

    Kaladzhyan, V.; Simon, P.; Bena, C.

    2016-10-01

    We study the spin-resolved spectral properties of the impurity states associated to the presence of magnetic impurities in two-dimensional as well as one-dimensional systems with Rashba spin-orbit coupling. We focus on Shiba bound states in superconducting materials, as well as on impurity states in metallic systems. Using a combination of a numerical T -matrix approximation and a direct analytical calculation of the bound-state wave function, we compute the local density of states (LDOS) together with its Fourier transform (FT). We find that the FT of the spin-polarized LDOS, a quantity accessible via spin-polarized scanning tunneling microscopy, allows to accurately extract the strength of the spin-orbit coupling. Also, we confirm that the presence of magnetic impurities is strictly necessary for such measurement, and that non-spin-polarized experiments cannot have access to the value of the spin-orbit coupling.

  9. Dynamics of {sup 3}He impurities in {sup 4}He films

    SciTech Connect

    Clements, B.E. |; Krotscheck, E. |; Saarela, M.

    1995-08-01

    Using a microscopic variational theory the authors calculate the binding energy of {sup 3}He impurities in films of {sup 4}He absorbed to a graphite substrate. Without adjustable parameters, they obtain excellent agreement with the experimental binding energies for the ground state of the {sup 3}He impurity. To calculate excited states, they then introduce a time-dependent variational wave function. In that way, the impurity acquires a hydrodynamic effective mass for its motion parallel to the surface due to hydrodynamic backflow. Excited states have a finite lifetime. When these effects are included, both the energy of the first excited state of the impurity, and the effective mass of the ground state, also agree well with experimental data.

  10. Natural orbitals renormalization group approach to the two-impurity Kondo critical point

    NASA Astrophysics Data System (ADS)

    He, Rong-Qiang; Dai, Jianhui; Lu, Zhong-Yi

    2015-04-01

    The problem of two magnetic impurities in a normal metal exposes the two opposite tendencies in the formation of a singlet ground state, driven respectively by the single-ion Kondo effect with conduction electrons to screen impurity spins or the Ruderman-Kittel-Kasuya-Yosida interaction between the two impurities to directly form impurity spin singlet. However, whether the competition between these two tendencies can lead to a quantum critical point has been debated over more than two decades. Here, we study this problem by applying the newly proposed natural orbitals renormalization group method to a lattice version of the two-impurity Kondo model with a direct exchange K between the two impurity spins. The method allows for unbiased access to the ground state wave functions and low-lying excitations for sufficiently large system sizes. We demonstrate the existence of a quantum critical point, characterized by the power-law divergence of impurity staggered susceptibility with critical exponent γ =0.60 (1 ) , on the antiferromagnetic side of K when the interimpurity distance R is even lattice spacing, while a crossover behavior is recovered when R is odd lattice spacing. These results have ultimately resolved the long-standing discrepancy between the numerical renormalization group and quantum Monte Carlo studies, confirming a link of this two-impurity Kondo critical point to a hidden particle-hole symmetry predicted by the local Fermi liquid theory.

  11. Kinetic theory for a mobile impurity in a degenerate Tonks-Girardeau gas.

    PubMed

    Gamayun, O; Lychkovskiy, O; Cheianov, V

    2014-09-01

    A kinetic theory describing the motion of an impurity particle in a degenerate Tonks-Girardeau gas is presented. The theory is based on the one-dimensional Boltzmann equation. An iterative procedure for solving this equation is proposed, leading to the exact solution in a number of special cases and to an approximate solution with the explicitly specified precision in a general case. Previously we reported that the impurity reaches a nonthermal steady state, characterized by an impurity momentum p(∞) depending on its initial momentum p(0) [E. Burovski, V. Cheianov, O. Gamayun, and O. Lychkovskiy, Phys. Rev. A 89, 041601(R) (2014)]. In the present paper the detailed derivation of p(∞)(p(0)) is provided. We also study the motion of an impurity under the action of a constant force F. It is demonstrated that if the impurity is heavier than the host particles, m(i)>m(h), damped oscillations of the impurity momentum develop, while in the opposite case, m(i)state momentum as a function of the applied force is determined. In the limit of weak force it is found to be force independent for a light impurity and proportional to √[F] for a heavy impurity.

  12. Distinctive Characteristics of Educational Donors

    ERIC Educational Resources Information Center

    James, Russell N., III.

    2008-01-01

    Examining the charitable behavior of 56,663 US households, this paper evaluates the distinctive characteristics of educational donors as compared with donors to noneducational charitable organizations and with nondonors. In general, educational donors had significantly greater income, wealth, and education than other donors. Educational donors…

  13. Donor-transmitted, donor-derived, and de novo cancer after liver transplant.

    PubMed

    Chapman, Jeremy R; Lynch, Stephen V

    2014-03-01

    Cancer is the third most common cause of death (after cardiovascular disease and infection) for patients who have a functioning kidney allograft. Kidney and liver transplant recipients have similar cancer risks because of immunosuppression but different risks because of differences in primary diseases that cause renal and hepatic failure and the inherent behavior of cancers in the liver. There are 4 types of cancer that may develop in liver allograft recipients: (1) recurrent cancer, (2) donor-transmitted cancer, (3) donor-derived cancer, and (4) de novo cancer. Identification of potential donor cancer transmission may occur at postmortem examination of a deceased donor or when a probable donor-transmitted cancer is identified in another recipient. Donor-transmitted cancer after liver transplant is rare in Australia, the United Kingdom, and the United States. Aging of the donor pool may increase the risk of subclinical cancer in donors. Liver transplant recipients have a greater risk of de novo cancer than the general population, and risk factors for de novo cancer in liver transplant recipients include primary sclerosing cholangitis, alcoholic liver disease, smoking, and increased age. Liver transplant recipients may benefit from cancer screening because they have a high risk, are clearly identifiable, and are under continuous medical supervision.

  14. Theory of Valence-Fluctuating Tm Impurities. I

    NASA Astrophysics Data System (ADS)

    Saso, Tetsuro

    1989-11-01

    A new formalism is presented for describing mixed valent Tm impurities fluctuating between two magnetic configurations. Based on the self-consistent perturbation scheme, the present formalism incorporates not only the valence fluctuation between 4f12 and 4f13, but also the multiscattering process of 4f13 and a conduction electron, yielding a singlet bound state. Thus the ground state is a Kondo singlet, which however is different from the ordinary Kondo state and conceptually new in that the length of the local moment of the impurity is fluctuating between the two values j{=}6 and J{=}7/2. Numerical calculations are presented for the spectral distribution function of these states. Systematic study of the Kondo temperature TK yields that TK is substantially low when the number of f electrons is close to 12. Contribution of the above scattering processes to the f-electron spectral function and the magnetic susceptibility is also disscussed.

  15. Impurity-induced divertor plasma oscillations

    NASA Astrophysics Data System (ADS)

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-01

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  16. Impurity-induced divertor plasma oscillations

    DOE PAGES

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-07

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ionmore » transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. As a result, the implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.« less

  17. Molecular engineering of organic dyes with a hole-extending donor tail for efficient all-solid-state dye-sensitized solar cells.

    PubMed

    Lu, Jianfeng; Chang, Yu-Cheng; Cheng, Hsu-Yang; Wu, Hui-Ping; Cheng, Yibing; Wang, Mingkui; Diau, Eric Wei-Guang

    2015-08-10

    We report a new concept for the design of metal-free organic dyes (OD5-OD9) with an extended donor-π-acceptor (D-π-A) molecular framework, in which the donor terminal unit is attached by a hole-extending side chain to retard back electron transfer and charge recombination; the π-bridge component contains varied thiophene-based substituents to enhance the light-harvesting ability of the device. The best dye (OD9) has a D-A-π-A configuration with the hexyloxyphenylthiophene (HPT) side chain as a hole-extension component and a benzothiadiazole (BTD) internal acceptor as a π-extension component. The co-sensitization of OD9 with the new porphyrin dye LW24 enhanced the light-harvesting ability to 800 nm; thus, a power conversion efficiency 5.5 % was achieved. Photoinduced absorption (PIA) and transient absorption spectral (TAS) techniques were applied to account for the observed trend of the open-circuit voltage (VOC ) of the devices. This work provides insights into the molecular design, photovoltaic performance, and kinetics of charge recombination. PMID:26119886

  18. Interactions of structural defects with metallic impurities in multicrystalline silicon

    SciTech Connect

    McHugo, S.A.; Thompson, A.C.; Hieslmair, H.

    1997-04-01

    Multicrystalline silicon is one of the most promising materials for terrestrial solar cells. It is critical to getter impurities from the material as well as inhibit contamination during growth and processing. Standard processing steps such as, phosphorus in-diffusion for p-n junction formation and aluminum sintering for backside ohmic contact fabrication, intrinsically possess gettering capabilities. These processes have been shown to improve L{sub n} values in regions of multicrystalline silicon with low structural defect densities but not in highly dislocated regions. Recent Deep Level Transient Spectroscopy (DLTS) results indirectly reveal higher concentrations of iron in highly dislocated regions while further work suggests that the release of impurities from structural defects, such as dislocations, is the rate limiting step for gettering in multicrystalline silicon. The work presented here directly demonstrates the relationship between metal impurities, structural defects and solar cell performance in multicrystalline silicon. Edge-defined Film-fed Growth (EFG) multicrystalline silicon in the as-grown state and after full solar cell processing was used in this study. Standard solar cell processing steps were carried out at ASE Americas Inc. Metal impurity concentrations and distributions were determined by use of the x-ray fluorescence microprobe (beamline 10.3.1) at the Advanced Light Source, Lawrence Berkeley National Laboratory. The sample was at atmosphere so only elements with Z greater than silicon could be detected, which includes all metal impurities of interest. Structural defect densities were determined by preferential etching and surface analysis using a Scanning Electron Microscope (SEM) in secondary electron mode. Mapped areas were exactly relocated between the XRF and SEM to allow for direct comparison of impurity and structural defect distributions.

  19. Copper thiocyanate: polytypes, defects, impurities, and surfaces.

    PubMed

    Tsetseris, Leonidas

    2016-07-27

    Copper thiocyanate (CuSCN) is an established solid state dye in solar cells and has emerged as a key material for applications in transparent conductors and solution-processed thin film transistors. Here we report the results of density-functional theory calculations on several fundamental properties related to the performance of CuSCN in the above-mentioned systems. We describe the structural and electronic properties of CuSCN phases and show that the material is prone to polytypism. We also perform a systematic study on various defects and hydrogen impurities and determine their effect on the electronic properties of the host system, particularly with respect to doping. Finally, we show that non-polar surfaces have low formation energies, suggesting easy cleavage along certain directions. PMID:27248787

  20. Computer applications in the search for unrelated stem cell donors.

    PubMed

    Müller, Carlheinz R

    2002-08-01

    The majority of patients which are eligible for a blood stem cell transplantation from an allogeneic donor do not have a suitable related donor so that an efficient unrelated donor search is a prerequisite for this treatment. Currently, there are over 7 million volunteer donors in the files of 50 registries in the world and in most countries the majority of transplants are performed from a foreign donor. Evidently, computer and communication technology must play a crucial role in the complex donor search process on the national and international level. This article describes the structural elements of the donor search process and discusses major systematic and technical issues to be addressed in the development and evolution of the supporting telematic systems. The theoretical considerations are complemented by a concise overview over the current state of the art which is given by describing the scope, relevance, interconnection and technical background of three major national and international computer appliances: The German Marrow Donor Information System (GERMIS) and the European Marrow Donor Information System (EMDIS) are interoperable business-to-business e-commerce systems and Bone Marrow Donors World Wide (BMDW) is the basic international donor information desk on the web. PMID:12216954

  1. Computer applications in the search for unrelated stem cell donors.

    PubMed

    Müller, Carlheinz R

    2002-08-01

    The majority of patients which are eligible for a blood stem cell transplantation from an allogeneic donor do not have a suitable related donor so that an efficient unrelated donor search is a prerequisite for this treatment. Currently, there are over 7 million volunteer donors in the files of 50 registries in the world and in most countries the majority of transplants are performed from a foreign donor. Evidently, computer and communication technology must play a crucial role in the complex donor search process on the national and international level. This article describes the structural elements of the donor search process and discusses major systematic and technical issues to be addressed in the development and evolution of the supporting telematic systems. The theoretical considerations are complemented by a concise overview over the current state of the art which is given by describing the scope, relevance, interconnection and technical background of three major national and international computer appliances: The German Marrow Donor Information System (GERMIS) and the European Marrow Donor Information System (EMDIS) are interoperable business-to-business e-commerce systems and Bone Marrow Donors World Wide (BMDW) is the basic international donor information desk on the web.

  2. Independent donor ethical assessment: aiming to standardize donor advocacy.

    PubMed

    Choudhury, Devasmita; Jotterand, Fabrice; Casenave, Gerald; Smith-Morris, Carolyn

    2014-06-01

    Living organ donation has become more common across the world. To ensure an informed consent process, given the complex issues involved with organ donation, independent donor advocacy is required. The choice of how donor advocacy is administered is left up to each transplant center. This article presents the experience and process of donor advocacy at University of Texas Southwestern Medical Center administered by a multidisciplinary team consisting of physicians, surgeons, psychologists, medical ethicists and anthropologists, lawyers, a chaplain, a living kidney donor, and a kidney transplant recipient. To ensure that advocacy remains fair and consistent for all donors being considered, the donor advocacy team at University of Texas Southwestern Medical Center developed the Independent Donor Ethical Assessment, a tool that may be useful to others in rendering donor advocacy. In addition, the tool may be modified as circumstances arise to improve donor advocacy and maintain uniformity in decision making.

  3. Independent donor ethical assessment: aiming to standardize donor advocacy.

    PubMed

    Choudhury, Devasmita; Jotterand, Fabrice; Casenave, Gerald; Smith-Morris, Carolyn

    2014-06-01

    Living organ donation has become more common across the world. To ensure an informed consent process, given the complex issues involved with organ donation, independent donor advocacy is required. The choice of how donor advocacy is administered is left up to each transplant center. This article presents the experience and process of donor advocacy at University of Texas Southwestern Medical Center administered by a multidisciplinary team consisting of physicians, surgeons, psychologists, medical ethicists and anthropologists, lawyers, a chaplain, a living kidney donor, and a kidney transplant recipient. To ensure that advocacy remains fair and consistent for all donors being considered, the donor advocacy team at University of Texas Southwestern Medical Center developed the Independent Donor Ethical Assessment, a tool that may be useful to others in rendering donor advocacy. In addition, the tool may be modified as circumstances arise to improve donor advocacy and maintain uniformity in decision making. PMID:24919733

  4. Anisotropic inflation from vector impurity

    SciTech Connect

    Kanno, Sugumi; Kimura, Masashi; Soda, Jiro; Yokoyama, Shuichiro E-mail: mkimura@sci.osaka-cu.ac.jp E-mail: shu@a.phys.nagoya-u.ac.jp

    2008-08-15

    We study an inflationary scenario with a vector impurity. We show that the universe undergoes anisotropic inflationary expansion due to a preferred direction determined by the vector. Using the slow roll approximation, we find a formula for determining the anisotropy of the inflationary universe. We discuss possible observable predictions of this scenario. In particular, it is stressed that primordial gravitational waves can be induced from curvature perturbations. Hence, even in low scale inflation, a sizable amount of primordial gravitational waves may be produced during inflation.

  5. Impurity-induced moments in underdoped cuprates

    SciTech Connect

    Khaliullin, G. |; Kilian, R.; Krivenko, S.; Fulde, P.

    1997-11-01

    We examine the effect of a nonmagnetic impurity in a two-dimensional spin liquid in the spin-gap phase, employing a drone-fermion representation of spin-1/2 operators. The properties of the local moment induced in the vicinity of the impurity are investigated and an expression for the nuclear-magnetic-resonance Knight shift is derived, which we compare with experimental results. Introducing a second impurity into the spin liquid an antiferromagnetic interaction between the moments is found when the two impurities are located on different sublattices. The presence of many impurities leads to a screening of this interaction as is shown by means of a coherent-potential approximation. Further, the Kondo screening of an impurity-induced local spin by charge carriers is discussed. {copyright} {ital 1997} {ital The American Physical Society}

  6. Fermi-Edge Transmission Resonance in Graphene Driven by a Single Coulomb Impurity

    NASA Astrophysics Data System (ADS)

    Karnatak, Paritosh; Goswami, Srijit; Kochat, Vidya; Nath Pal, Atindra; Ghosh, Arindam

    2014-07-01

    The interaction between the Fermi sea of conduction electrons and a nonadiabatic attractive impurity potential can lead to a power-law divergence in the tunneling probability of charge through the impurity. The resulting effect, known as the Fermi edge singularity (FES), constitutes one of the most fundamental many-body phenomena in quantum solid state physics. Here we report the first observation of FES for Dirac fermions in graphene driven by isolated Coulomb impurities in the conduction channel. In high-mobility graphene devices on hexagonal boron nitride substrates, the FES manifests in abrupt changes in conductance with a large magnitude ≈e2/h at resonance, indicating total many-body screening of a local Coulomb impurity with fluctuating charge occupancy. Furthermore, we exploit the extreme sensitivity of graphene to individual Coulomb impurities and demonstrate a new defect-spectroscopy tool to investigate strongly correlated phases in graphene in the quantum Hall regime.

  7. Fermi-edge transmission resonance in graphene driven by a single Coulomb impurity.

    PubMed

    Karnatak, Paritosh; Goswami, Srijit; Kochat, Vidya; Pal, Atindra Nath; Ghosh, Arindam

    2014-07-11

    The interaction between the Fermi sea of conduction electrons and a nonadiabatic attractive impurity potential can lead to a power-law divergence in the tunneling probability of charge through the impurity. The resulting effect, known as the Fermi edge singularity (FES), constitutes one of the most fundamental many-body phenomena in quantum solid state physics. Here we report the first observation of FES for Dirac fermions in graphene driven by isolated Coulomb impurities in the conduction channel. In high-mobility graphene devices on hexagonal boron nitride substrates, the FES manifests in abrupt changes in conductance with a large magnitude ≈e(2)/h at resonance, indicating total many-body screening of a local Coulomb impurity with fluctuating charge occupancy. Furthermore, we exploit the extreme sensitivity of graphene to individual Coulomb impurities and demonstrate a new defect-spectroscopy tool to investigate strongly correlated phases in graphene in the quantum Hall regime. PMID:25062215

  8. Trace organic impurities in gaseous helium

    NASA Technical Reports Server (NTRS)

    Schehl, T. A.

    1973-01-01

    A program to determine trace organic impurities present in helium has been initiated. The impurities were concentrated in a cryogenic trap to permit detection and identification by a gas chromatographic-mass spectrometric technique. Gaseous helium (GHe) exhibited 63 GC flame ionization response peaks. Relative GC peak heights and identifications of 25 major impurities by their mass spectra are given. As an aid to further investigation, identities are proposed for 16 other components, and their mass spectra are given.

  9. Pressure-dependent measurements on n+ GaAs (Si, Sn): the effect of deep donor (DX) states on the electrical properties and persistent photoconductivity

    NASA Astrophysics Data System (ADS)

    Foster, T. J.; Maude, D. K.; Eaves, L.; Portal, J. C.; Dmowski, L.; Nathan, M.; Heiblum, M.; Harris, J. J.; Beall, R. B.

    1988-10-01

    Shubnikov-de Haas and persistent photoconductivity measurements are used to study the mobility, free electron density (n) and the occupancy of the DX centre in heavily doped n-GaAs as a function of doping level and hydrostatic pressure. The results show that the DX centre produces a resonant donor level between the Γ - and L-conduction band minima at a concentration comparable with the doping level. For the Si-doped samples, comparison with local vibration mode measurements indicates that the DX level can be identified with SiGa. The level acts to pin the Fermi energy at electron concentrations around 1.8 × 1019 cm-3. Analysis of the results indicates that macroscopic charge separation is not responsible for persistent photoconductivity in these samples.

  10. Pressure-dependent measurement on n+GaAs (Si, Sn): The effect of deep donor (DX) states on the electrical properties and presistent photoconductivity effects

    NASA Astrophysics Data System (ADS)

    Portal, J. C.; Maude, D. K.; Dmowski, L.; Foster, T.; Eaves, L.; Nathan, M.; Heiblum, M.; Harris, G. G.; Beall, R. S.

    Shubnikov-de Haas measurements up to magnetic fields of 20 T are used to study the effects of hydrostatic pressure on the free electron concentration (n) and mobility (mu) of MBE-grown n(+)GaAs layers heavily doped with either Si or Sn. This type of layer forms the electrical contacts to a variety of (AlGa)As/GaAs tunneling devices and superlattices that were investigated under hydrostatic pressure. Increasing the pressure from zero causes an immediate and large decrease of n and increase of mu in n(+) samples doped at 1.8 x 10 to the 19th/cu cm. Illumination with red light at low temperatures (40 K) leads to a persistent restoration of n to its zero pressure level. This is accompanied by a decrease in mu. It is concluded that the trap involved is a deep donor with DX character, present in the n(+)GaAs layers, at concentrations comparable to the doping level. It was found that the energy of the level relative to the L-minima decreases with increasing doping and that its pressure coefficient is close to that of the L-minima. At doping levels above 1.8 x 10 to the 19th/cu cm, the level is partially occupied even at atmospheric pressure. The properties of the deep donor level appear to be very similar for both Si-and Sn-doping. Examples of how these DX centers affect the current-voltage characteristics of tunneling devices as a function of hydrostatic pressure are given.

  11. Role of donor-acceptor domain formation and interface states in initial degradation of P3HT:PCBM-based solar cells

    NASA Astrophysics Data System (ADS)

    Arora, Swati; Rajouria, Satish Kumar; Kumar, Pankaj; Bhatnagar, P. K.; Arora, Manoj; Tandon, R. P.

    2011-03-01

    This work is devoted to identifying the degradation mechanism in various structures of a poly(3-hexylthiophene) (P3HT):6,6-phenyl C61-butyric acid methyl ester (PCBM)-based solar cell. We have tried to identify the dominant initial degradation mechanism on the basis of experimental studies carried out on different structures of an organic solar cell. It is known that many of these problems can be solved by means of the following: using proper electrodes and a suitable annealing temperature and duration, improving the morphology of the active film and maintaining a donor-acceptor phase-segregated ordered network as far as possible. The present studies have been carried out both in the dark and under illumination, and it is suggested that initial degradation plays a key role in device performance. The dominant degradation mechanism is the growth of the donor-acceptor complex with time, which not only reduces the effective surface area but also hampers the charge separation. The little change in VOC and the significant change in JSC suggest that once the LiF/Al electrode is improved, one must modify the structure either by introducing a thin layer of high-molecular-weight P3HT between PEDOT:PSS (poly(3,4-ethylenedioxythiopene) poly(styrenesulfonate)) and photoactive P3HT:PCBM layers or by introducing an optimized content of P3HT nanofibrils/nanoparticles into the P3HT:PCBM blend. The best structure was found to be ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al and it can be improved by the above two methods.

  12. Magnetic impurities on the surface of a topological insulator.

    PubMed

    Liu, Qin; Liu, Chao-Xing; Xu, Cenke; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2009-04-17

    The surface states of a topological insulator are described by an emergent relativistic massless Dirac equation in 2 + 1 dimensions. In contrast with graphene, there is an odd number of Dirac points, and the electron spin is directly coupled to the momentum. We show that a magnetic impurity opens up a local gap and suppresses the local density of states. Furthermore, the Dirac electronic states mediate an RKKY interaction among the magnetic impurities which is always ferromagnetic, whenever the chemical potential lies near the Dirac point. Through this exchange mechanism, magnetic atoms uniformly deposited on the surface of a topological insulator could naturally form a ferromagnetically ordered film. These effects can be directly measured in STM experiments. We also study the case of quenched disorder through a renormalization group analysis.

  13. Method for detecting trace impurities in gases

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1981-01-01

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (.about.2 ppm) present in commercial Xe and ppm levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  14. Method for detecting trace impurities in gases

    DOEpatents

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  15. Structure and vibrations of different charge Ge impurity in α-quartz

    SciTech Connect

    Kislov, A. N. Mikhailovich, A. P. Zatsepin, A. F.

    2014-10-21

    Atomic structure and localized vibrations of α‐SiO{sub 2}:Ge are studied using computer modeling techniques. The simulation was carried out by the lattice dynamics calculation of the local density of vibrational states. Local structures parameters are calculated, localized symmetrized vibrations frequency caused by Ge impurity in different charge states are defined. The movements of atoms located near Ge impurity are analyzed and their contribution into localized vibrations of different type is evaluated.

  16. Mineral impurities in coal combustion

    SciTech Connect

    Raask, E.

    1985-01-01

    This article discusses the many and varied problems associated with coal combustion and suggests remedial measures to assist in producing electrical energy from coal more efficiently. Contents include: influence of coal mineral matter on boiler design; mineral impurities in coal; quality of coal utilized in power stations; coal grinding, abrasive fuel minerals and plant wear; particulates silicate minerals in boiler flame; reactions of nonsilicate impurities in coal flame; creation, capture and coalescence of particulate ash in boiler flame; slag viscosity; sintering, fusion and slagging propensities of coal ashes, adhesion of ash deposit on boiler tubes and refractory materials; deposition mechanisms, rate measurements and the mode of formation of boiler deposits; thermal radiation and heat transfer properties of boiler deposits; measures to combat boiler fouling and slagging; some specific ash-related problems with US Coals; use of additives in coal fired boilers; high temperature corrosion in coal-fired plants; ash impaction erosion wear; low temeprature fouling and corrosion; comparison of ash-related problems in pulverized fuel and other coal-fired systems.

  17. FDA seeks temporary blood donor changes. Food and Drug Administration.

    PubMed

    1997-02-01

    The Food and Drug Administration (FDA) has requested that blood collection agencies exclude donors at risk of Group O HIV, following two cases identified in 1996. Group O is very rare in the United States. Blood donors would be excluded if they were born or lived in Cameroon, Central African Republic, Chad, Congo, Equatorial Guinea, Gabon, Niger or Nigeria since 1977, or had sexual conduct with anyone traveling to those areas. The number of excluded donors would be minute.

  18. The nature of dielectric state and self compensation mechanisms in PbTe doped with Ga

    NASA Astrophysics Data System (ADS)

    Petrenko, T. L.; Bryksa, V. P.

    2014-04-01

    The long-standing problem of impurity states in narrow-gap PbTe crystals doped with group-III element Ga was analized by means of density functional theory. We focus on the mechanisms of the self-compensation during growth as well as during post-growth annealing to clarify the mechanism of dielectric state formation necessary for the device fabrication. The unique feature of the presented work is consideration of the simplest impurity complex {{\\left( 2{\\rm{Ga}} \\right)}_{{\\rm{Pb}}}} as well as of a lead vacancy {{V}_{{\\rm{Pb}}}}, gallium substituting for Pb site {\\rm{G}}{{{\\rm{a}}}_{{\\rm{Pb}}}} and interstitial gallium {\\rm{G}}{{{\\rm{a}}}_{\\operatorname{int}}} in various charge states. Calculations show that complex {{\\left( 2{\\rm{Ga}} \\right)}_{{\\rm{Pb}}}} has the lowest formation energy among other gallium-related defects and is a double donor. {\\rm{G}}{{{\\rm{a}}}_{\\operatorname{int}}} is a single donor while {\\rm{G}}{{{\\rm{a}}}_{{\\rm{Pb}}}} is amphoteric impurity which act as a donor or acceptor depending on the Fermi level position. Moreover, we conclude that neutral impurity {\\rm{Ga}}_{{\\rm{Pb}}}^{0} is metastable due to the self-compensation and formation of {{(2{\\rm{Ga}})}_{{\\rm{Pb}}}} complex with simultaneous creation of {{V}_{{\\rm{Pb}}}}. Calculated binding energy of this complex suggests that it is stable for the actual temperatures and concentrations. In addition the {{(2{\\rm{Ga}})}_{{\\rm{Pb}}}} defect is responsible for spontaneous creation of lead vacancy which prevents an increasing of the carrier concentration. Therefore, the considered complex determines the most striking features of PbTe crystals doped with Ga, namely DX-like properties and dielectric state formation. This defect plays a crucial role in real crystals and clarifies the nature of properties important for device fabrication.

  19. Blood Donor Locator Service--Social Security Administration. Final rules.

    PubMed

    1991-12-24

    We are issuing these final regulations to govern the Blood Donor Locator Service, which we will establish and conduct, as required by section 8008 of the Technical and Miscellaneous Revenue Act of 1988 (Pub. L. 100-647). Under these regulations, we will furnish to participating States at their request the last known personal mailing address (residence or post office box) of blood donors whose blood donation shows that they are or may be infected with the human immunodeficiency virus (HIV) which causes acquired immune deficiency syndrome, if the State or an authorized blood donation facility has been unable to locate the donors. If our records or those of the Internal Revenue Service (IRS) contain an adequate personal mailing address for the donor, we will provide it to the State so that the State or the blood donation facility can inform the donor that he or she may need medical care and treatment. PMID:10116070

  20. PROCESS FOR RECOVERY OF URANIUM VALUES FROM IMPURE SOLUTIONS THEREOF

    DOEpatents

    Kilner, S.B.

    1959-11-01

    A process is presented for the recovery of uraninm values from impure solutions which are obtained, for example, by washing residual uranium salt or uranium metal deposits from stainless steel surfaces using an aqueous or certain acidic aqueous solutions. The solutions include uranyl and oxidized iron, chromium, nickel, and copper ions and may contain manganese, zinc, and silver ions. In accordance with one procedure. the uranyl ions are reduced to the uranous state, and the impurity ions are complexed with cyanide under acidic conditions. The solution is then treated with ammonium hydroxide or alkali metal hydroxide to precipitate uranous hydroxide away from the complexed impurity ions in the solution. Alternatively, an excess of alkali metal cyanide is added to the reduced solution until the solution becomes sufficiently alkaline for the uranons hydroxide to precipitate. An essential feature in operating the process is in maintaining the pH of the solution sufficiently acid during the complexing operation to prevent the precipitation of the impurity metal hydroxides.

  1. Lanthanide complexes of the hexadentate N-donor podand tris[3-(2-pyridyl)pyrazolyl]hydroborate: Solid-state and solution properties

    SciTech Connect

    Jones, P.L.; Amoroso, A.J.; Jeffery, J.C.; Rees, L.H.

    1997-01-01

    The hexadentate N{sub 6}-donor podand tris[3-(2-pyridyl)pyrazolyl]hydroborate (Tp{sup Py}) contains 2-pyridyl fragments attached to the pyrazolyl C{sup 3}-positions such that each arm is a bidentate chelate. Three series of lanthanide(III) complexes were prepared: [M(Tp{sup Py})(MeOH){sub 2}F][PF{sub 6}] (series A), [M(Tp{sup Py})(NO{sub 3}){sub 2}] (series B), and [M(Tp{sup Py}){sub 2}]-[BPh{sub 4}] (series C). Crystallographic studies showed that series A and B have a 1:1 metal:Tp{sup Py} ratio, with the metal ion lying within the podand cavity and the remaining coordination sites occupied by solvent molecules and/or counterions to give 9-coordination (A, with one fluoride and two methanol ligands) or 10-coordination (B, with two bidentate nitrate ligands). The C complexes were prepared in the absence of any coordinating anions and have a 1:2 metal:Tp{sup Py} ratio with an unusual icosahedral geometry arising from coordination of the 12 nitrogen donors from two interleaved podands. Conductivity studies on the B complexes show that in water the nitrates dissociate to give [M(Tp{sup Py})(H{sub 2}O){sub q}](NO{sub 3}){sub 2}; the relaxivity of [Gd(Tp{sup Py}(NO{sub 3}){sub 2}] in water is 4.4 s{sup -1} mM{sup -1}, a value comparable to those of clinically useful MRI contrast enhancement agents. Comparison of emission lifetimes of [M(Tp{sup Py})(NO{sub 3}){sub 2}] M = Eu, Tb) in H{sub 2}O/d{sub 2}O and CH{sub 3}OH/Cd{sub 3}OD give values for q, the number of coordinated solvent molecules, of 3.6 (water) and 2.6 (methanol). The C complex [Tb(Tp{sup Py}){sub 2}][BPh{sub 4}] also has q = 2.6 in methanol, suggesting that partial ligand dissociation allows access of solvent molecules to the metal coordination sphere.

  2. Compliance with donor age recommendations in oocyte donor recruitment advertisements in the USA.

    PubMed

    Alberta, Hillary B; Berry, Roberta M; Levine, Aaron D

    2013-04-01

    IVF using donated oocytes offers benefits to many infertile patients, yet the technique also raises a number of ethical concerns, including worries about potential physical and psychological risks to oocyte donors. In the USA, oversight of oocyte donation consists of a combination of federal and state regulations and self-regulatory guidelines promulgated by the American Society for Reproductive Medicine. This study assesses compliance with one of these self-regulatory guidelines - specifically, ASRM's preferred minimum age for donors of 21. To assess compliance, 539 oocyte donor recruitment advertisements from two recruitment channels (Craigslist and college newspapers) were collected and evaluated. Of these, 61% in the Craigslist dataset and 43% in the college newspaper dataset listed minimum ages between 18 and 20, which is inconsistent with ASRM's preferred minimum age recommendation of 21. Advertisements placed by oocyte donor recruitment agencies were more likely than advertisements placed by clinics to specify minimum ages between 18 and 20. These results indicate that ASRM should evaluate and consider revising its donor age guidelines. IVF using donated human eggs can help many patients who have difficulty having children. However, the technique also raises ethical concerns, including concerns about potential physical and psychological harms to egg donors. In the USA, oversight of egg donation relies on a combination of federal and state regulation and professional self-regulation. Governmental regulations address only limited aspects of egg donation, such as the potential spread of infectious diseases and the reporting of success rates, leaving voluntary guidelines developed by an association of medical professionals to address most issues, including ethical concerns raised by the practice. One of these voluntary guidelines recommends that egg donors should be at least 21 years of age. In this article, we analysed 539 egg donor recruitment advertisements

  3. Compliance with donor age recommendations in oocyte donor recruitment advertisements in the USA.

    PubMed

    Alberta, Hillary B; Berry, Roberta M; Levine, Aaron D

    2013-04-01

    IVF using donated oocytes offers benefits to many infertile patients, yet the technique also raises a number of ethical concerns, including worries about potential physical and psychological risks to oocyte donors. In the USA, oversight of oocyte donation consists of a combination of federal and state regulations and self-regulatory guidelines promulgated by the American Society for Reproductive Medicine. This study assesses compliance with one of these self-regulatory guidelines - specifically, ASRM's preferred minimum age for donors of 21. To assess compliance, 539 oocyte donor recruitment advertisements from two recruitment channels (Craigslist and college newspapers) were collected and evaluated. Of these, 61% in the Craigslist dataset and 43% in the college newspaper dataset listed minimum ages between 18 and 20, which is inconsistent with ASRM's preferred minimum age recommendation of 21. Advertisements placed by oocyte donor recruitment agencies were more likely than advertisements placed by clinics to specify minimum ages between 18 and 20. These results indicate that ASRM should evaluate and consider revising its donor age guidelines. IVF using donated human eggs can help many patients who have difficulty having children. However, the technique also raises ethical concerns, including concerns about potential physical and psychological harms to egg donors. In the USA, oversight of egg donation relies on a combination of federal and state regulation and professional self-regulation. Governmental regulations address only limited aspects of egg donation, such as the potential spread of infectious diseases and the reporting of success rates, leaving voluntary guidelines developed by an association of medical professionals to address most issues, including ethical concerns raised by the practice. One of these voluntary guidelines recommends that egg donors should be at least 21 years of age. In this article, we analysed 539 egg donor recruitment advertisements

  4. Impurity trapped excitons under high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Grinberg, Marek

    2013-09-01

    Paper summarizes the results on pressure effect on energies of the 4fn → 4fn and 4fn-15d1 → 4fn transitions as well as influence of pressure on anomalous luminescence in Lnα+ doped oxides and fluorides. A model of impurity trapped exciton (ITE) was developed. Two types of ITE were considered. The first where a hole is localized at the Lnα+ ion (creation of Ln(α+1)+) and an electron is attracted by Coulomb potential at Rydberg-like states and the second where an electron captured at the Lnα+ ion (creation of Ln(α-1)+) and a hole is attracted by Coulomb potential at Rydberg-like states. Paper presents detailed analysis of nonlinear changes of energy of anomalous luminescence of BaxSr1-xF2:Eu2+ (x > 0.3) and LiBaF3:Eu2+, and relate them to ITE-4f65d1 states mixing.

  5. Cryogenic Laser Calorimetry for Impurity Analysis

    NASA Technical Reports Server (NTRS)

    Swimm, R. T.

    1985-01-01

    The results of a one-year effort to determine the applicability of laser-calorimetric spectroscopy to the study of deep-level impurities in silicon are presented. Critical considerations for impurity analysis by laser-calorimetric spectroscopy are discussed, the design and performance of a cryogenic laser calorimeter is described, and measurements of background absorption in high-purity silicon are presented.

  6. Eliminating Impurity Traps in the Silane Process

    NASA Technical Reports Server (NTRS)

    Coleman, L. M.

    1982-01-01

    Redistribution reaction section of silane process progressively separates heavier parts of chlorosilane feedstock until light silane product is available for pyrolysis. Small amount of liquid containing impurities is withdrawn from processing stages in which trapping occurs and passed to earlier processing stage in which impurities tend to be removed via chemical reactions.

  7. Effect of dilute strongly pinning impurities on charge density waves

    NASA Astrophysics Data System (ADS)

    Okamoto, Jun-ichi; Millis, Andrew J.

    2015-05-01

    We study theoretically the effects of strong pinning centers on a charge density wave in the limit that the charge density wave coherence length is shorter than the average interimpurity distance. An analysis based on a Ginzburg-Landau model shows that long-range forces arising from the elastic response of the charge density wave induce a kind of collective pinning which suppresses impurity-induced phase fluctuations, leading to a long-range ordered ground state. The correlations induced by impurities are characterized by a length scale parametrically longer than the average interimpurity distance. Long-wavelength fluctuations are found to be gapped, implying the stability of the ground state. We also present Monte Carlo simulations that confirm the basic features of the analytical results.

  8. Bound excitons at nitrogen and bismuth isoelectronic impurities

    NASA Astrophysics Data System (ADS)

    Christian, Theresa; Alberi, Kirstin; Beaton, Daniel; Fluegel, Brian; Mascarenhas, Angelo

    When nitrogen and bismuth dopants are simultaneously incorporated into a host lattice such as gallium arsenide (GaAs) or gallium phosphide (GaP), each dopant species contributes to the evolution of the electronic structure. Bound excitons in these systems luminescence from localized states whose distinctive radiative signatures provide invaluable clues into the nature of impurity clustering and inter-impurity interactions within the host lattice. Spectroscopic studies of these states will be presented for a series of samples grown by molecular beam epitaxy. Research was supported by the U. S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC36-08GO28308 and by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under Contract No. DE-AC05-06OR23100.

  9. Magnetic Field Effect on Crossover Temperature from Non-Fermi Liquid to Fermi Liquid Behavior in f2-Impurity Systems with Crystalline-Electric-Field Singlet State Competing with Kondo--Yosida Singlet State

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shinya; Miyake, Kazumasa

    2011-12-01

    We investigate the magnetic field dependence of the physical properties of f2-configuration systems with a crystalline-electric field (CEF) singlet ground state, which gives rise to a non-Fermi liquid (NFL) fixed point due to the competition between the Kondo--Yosida singlet and CEF singlet states. On the basis of the numerical renormalization group method, we find that the magnetic field breaks this NFL fixed point via two mechanisms: one causing the polarization of f-electrons and the other giving the ``channel'' anisotropy. These two mechanisms induce a difference in the magnetic field dependence of the characteristic temperature TF*(H), the crossover temperature from NFL to Fermi-liquid behavior. While the polarization of f-electrons gives TF*(H) \\propto Hx (x ≃ 2.0), the ``channel'' anisotropy gives the H-independent TF*(H). These two mechanisms cross over continuously at approximately the crossover magnetic field Hc, where an anomalous H-dependence of TF*(H) appears. Such TF*(H) well reproduces the NFL behaviors observed in Th1-xUxRu2Si2. We also find that the H-dependence of the resistivity and the magnetic susceptibility are in good agreement with the experimental results of this material. These results suggest that the NFL behaviors observed in Th1-xUxRu2Si2 can be understood if this material is located in the CEF singlet side near the critical phase boundary between the two singlet states.

  10. Analytical control of process impurities in Pazopanib hydrochloride by impurity fate mapping.

    PubMed

    Li, Yan; Liu, David Q; Yang, Shawn; Sudini, Ravinder; McGuire, Michael A; Bhanushali, Dharmesh S; Kord, Alireza S

    2010-08-01

    Understanding the origin and fate of organic impurities within the manufacturing process along with a good control strategy is an integral part of the quality control of drug substance. Following the underlying principles of quality by design (QbD), a systematic approach to analytical control of process impurities by impurity fate mapping (IFM) has been developed and applied to the investigation and control of impurities in the manufacturing process of Pazopanib hydrochloride, an anticancer drug approved recently by the U.S. FDA. This approach requires an aggressive chemical and analytical search for potential impurities in the starting materials, intermediates and drug substance, and experimental studies to track their fate through the manufacturing process in order to understand the process capability for rejecting such impurities. Comprehensive IFM can provide elements of control strategies for impurities. This paper highlights the critical roles that analytical sciences play in the IFM process and impurity control. The application of various analytical techniques (HPLC, LC-MS, NMR, etc.) and development of sensitive and selective methods for impurity detection, identification, separation and quantification are highlighted with illustrative examples. As an essential part of the entire control strategy for Pazopanib hydrochloride, analytical control of impurities with 'meaningful' specifications and the 'right' analytical methods is addressed. In particular, IFM provides scientific justification that can allow for control of process impurities up-stream at the starting materials or intermediates whenever possible.

  11. Impurity effect on weak antilocalization in the topological insulator Bi2Te3.

    PubMed

    He, Hong-Tao; Wang, Gan; Zhang, Tao; Sou, Iam-Keong; Wong, George K L; Wang, Jian-Nong; Lu, Hai-Zhou; Shen, Shun-Qing; Zhang, Fu-Chun

    2011-04-22

    We study the weak antilocalization (WAL) effect in topological insulator Bi(2)Te(3) thin films at low temperatures. The two-dimensional WAL effect associated with surface carriers is revealed in the tilted magnetic field dependence of magnetoconductance. Our data demonstrate that the observed WAL is robust against deposition of nonmagnetic Au impurities on the surface of the thin films, but it is quenched by the deposition of magnetic Fe impurities which destroy the π Berry phase of the topological surface states. The magnetoconductance data of a 5 nm Bi(2)Te(3) film suggests that a crossover from symplectic to unitary classes is observed with the deposition of Fe impurities.

  12. Calculation of cohesion and changes in electronic structure due to impurity segregation at boundaries in iron

    SciTech Connect

    Rez, P.; Alvarez, J.R.

    1999-11-12

    It is well known that impurities in iron which segregate to grain boundaries can dramatically change physical properties. Carbon and boron tend to increase ductility while phosphorus and sulfur lead to embrittlement. Cohesion at boundaries in iron can be understood by studying changes in the iron d states responsible for bonding. Since the effects are quite localized, relatively small systems can be used to model the electronic structure. Both FLAPW and LKKR calculations show that the average energy of the d band is lower for B and C impurities and higher for P and S impurities. These results are consistent with the macroscopic changes in cohesion.

  13. Influence of the impurity scattering on charge transport in unconventional superconductor junctions

    NASA Astrophysics Data System (ADS)

    Lu, Bo; Burset, Pablo; Tanuma, Yasunari; Golubov, Alexander A.; Asano, Yasuhiro; Tanaka, Yukio

    2016-07-01

    We study the influence of nonmagnetic impurity scatterings on the tunneling conductance of a junction consisting of a normal metal and a disordered unconventional superconductor by solving the quasiclassical Eilenberger equation self-consistently. We find that the impurity scatterings in both the Born and the unitary limits affect the formation of the Andreev bound states and modify strongly the tunneling spectra around zero bias. Our results are interpreted well by the appearance of odd-frequency Cooper pairs near the interface and by the divergent behavior of the impurity self-energy. The present paper provides a useful tool to identify the pairing symmetry of unconventional superconductors in experiments.

  14. Vibrational signatures of isotopic impurities and complexes in II-VI compound semiconductors

    NASA Astrophysics Data System (ADS)

    Talwar, Devki N.; Feng, Zhe Chuan; Yang, Tzuen-Rong

    2012-05-01

    In II-VI compound semiconductors, we have used a comprehensive Green's function theory to study the vibrational properties of isotopic defects and to ascertain the microstructure of complex centers involving dopants and intrinsic impurities. The phonons generated by a realistic lattice-dynamical model for the host materials are integrated in simulating the Green's functions to help explicate the observed localized vibrational modes (LVMs) for various defect centers. Contrary to the distinct force constants required for isolated defects, the isotopic shift of LVMs has offered strong revelations for inflexible ‘impurity-host’ interactions in each isotopic defect. In compound semiconductors a unique force variation correlation with bond covalency is proposed providing corrections to the nearest-neighbor (NN) force constants for the closest mass isoelectronic and impurities carrying static charges. The articulation is extremely useful for defining perturbations and for analyzing the infrared absorption data on LVMs of complex defect centers. In corroboration with experiments, the Green's functions theory of impurity modes in Li-doped CdTe:Al (ZnSe:Al) has established second NN LiCd(Zn)-AlCd(Zn) pairs indicating the passivation of group-I acceptors via interaction with group-III elements as donors. The proposal of an antisite complex model AlZn-ZnSe-AlZn for the X center is consistent with the existing absorption results on impurity modes and is equally justified by theoretical considerations—making it the more likely identity for the native defect compensating neighboring AlZn donors in ZnSe.

  15. Spin noise and magnetic screening of impurities in a BCS superconductor

    NASA Astrophysics Data System (ADS)

    Le Dall, Matthias; da Silva, Luis G. G. V. Dias; de Sousa, Rogério

    The coupling of a localized impurity to a BCS superconductor (SC) leads to the formation of impurity Cooper-pairs via the proximity effect, generating two bound states within the SC energy gap, the so-called Yu-Rusinov-Shiba (YSR) states. They are similar to the Andreev Bound States that originate from Andreev reflection, e.g. when the impurity is hosted in a Josephson junction, and are known to produce sharp sub-gap resonances in charge noise [de Sousa et al., PRB 2009], providing a natural explanation for the observation of microresonators in superconducting devices [Simmonds et al., PRL 2004]. Here we present a theory for the spin noise generated by magnetic impurities in a SC, and discuss the impact of the Shiba states on models of flux noise in superconducting qubits. We use a combination of analytical methods and the numerical renormalization group technique to calculate the spin noise of an Anderson impurity in a SC, unveiling the competition between the proximity effect and Kondo correlations. Both mechanisms produce magnetic screening and a corresponding reduction in spin noise, giving rise to new insights on the kinds of impurities that are responsible for the observed 1 /fα flux noise in superconducting circuits. This research is supported by NSERC CRD/478366-2015.

  16. A High-Energy Charge-Separated State of 1.70 eV from a High-Potential Donor-Acceptor Dyad: A Catalyst for Energy-Demanding Photochemical Reactions.

    PubMed

    Lim, Gary N; Obondi, Christopher O; D'Souza, Francis

    2016-09-12

    A high potential donor-acceptor dyad composed of zinc porphyrin bearing three meso-pentafluorophenyl substituents covalently linked to C60 , as a novel dyad capable of generating charge-separated states of high energy (potential) has been developed. The calculated energy of the charge-separated state was found to be 1.70 eV, the highest reported for a covalently linked porphyrin-fullerene dyad. Intramolecular photoinduced electron transfer leading to charge-separated states of appreciable lifetimes in polar and nonpolar solvents has been established from studies involving femto- to nanosecond transient absorption techniques. The high energy stored in the form of charge-separated states along with its persistence of about 50-60 ns makes this dyad a potential electron-transporting catalyst to carry out energy-demanding photochemical reactions. This type of high-energy harvesting dyad is expected to open new research in the areas of artificial photosynthesis especially producing energy (potential) demanding light-to-fuel products.

  17. Paramagnetic Attraction of Impurity-Helium Solids

    NASA Technical Reports Server (NTRS)

    Bernard, E. P.; Boltnev, R. E.; Khmelenko, V. V.; Lee, D. M.

    2003-01-01

    Impurity-helium solids are formed when a mixture of impurity and helium gases enters a volume of superfluid helium. Typical choices of impurity gas are hydrogen deuteride, deuterium, nitrogen, neon and argon, or a mixture of these. These solids consist of individual impurity atoms and molecules as well as clusters of impurity atoms and molecules covered with layers of solidified helium. The clusters have an imperfect crystalline structure and diameters ranging up to 90 angstroms, depending somewhat on the choice of impurity. Immediately following formation the clusters aggregate into loosely connected porous solids that are submerged in and completely permeated by the liquid helium. Im-He solids are extremely effective at stabilizing high concentrations of free radicals, which can be introduced by applying a high power RF dis- charge to the impurity gas mixture just before it strikes the super fluid helium. Average concentrations of 10(exp 19) nitrogen atoms/cc and 5 x 10(exp 18) deuterium atoms/cc can be achieved this way. It shows a typical sample formed from a mixture of atomic and molecular hydrogen and deuterium. It shows typical sample formed from atomic and molecular nitrogen. Much of the stability of Im-He solids is attributed to their very large surface area to volume ratio and their permeation by super fluid helium. Heat resulting from a chance meeting and recombination of free radicals is quickly dissipated by the super fluid helium instead of thermally promoting the diffusion of other nearby free radicals.

  18. Lanczos transformation for quantum impurity problems in d-dimensional lattices: Application to graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Büsser, C. A.; Martins, G. B.; Feiguin, A. E.

    2013-12-01

    We present a completely unbiased and controlled numerical method to solve quantum impurity problems in d-dimensional lattices. This approach is based on a canonical transformation, of the Lanczos form, where the complete lattice Hamiltonian is exactly mapped onto an equivalent one-dimensional system, in the same spirit as Wilson's numerical renormalization, and Haydock's recursion method. We introduce many-body interactions in the form of a Kondo or Anderson impurity and we solve the low-dimensional problem using the density matrix renormalization group. The technique is particularly suited to study systems that are inhomogeneous, and/or have a boundary. The resulting dimensional reduction translates into a reduction of the scaling of the entanglement entropy by a factor Ld-1, where L is the linear dimension of the original d-dimensional lattice. This allows one to calculate the ground state of a magnetic impurity attached to an L×L square lattice and an L×L×L cubic lattice with L up to 140 sites. We also study the localized edge states in graphene nanoribbons by attaching a magnetic impurity to the edge or the center of the system. For armchair metallic nanoribbons we find a slow decay of the spin correlations as a consequence of the delocalized metallic states. In the case of zigzag ribbons, the decay of the spin correlations depends on the position of the impurity. If the impurity is situated in the bulk of the ribbon, the decay is slow as in the metallic case. On the other hand, if the adatom is attached to the edge, the decay is fast, within few sites of the impurity, as a consequence of the localized edge states, and the short correlation length. The mapping can be combined with ab initio band structure calculations to model the system, and to understand correlation effects in quantum impurity problems starting from first principles.

  19. Few cycle pulses in semi-holographic Fermi liquid with impurities

    NASA Astrophysics Data System (ADS)

    Belonenko, Mikhail B.; Konobeeva, Natalia N.; Galkina, Elena N.

    2016-03-01

    Special aspects of few cycle pulses propagation in semi-holographic Fermi liquid with impurities are considered in this paper. Green’s function poles which are in charge of excitation states dispersion law of the liquid under consideration were given according to the ADS/CFT correspondence. The impact of both Fermi liquid parameters and its impurities on the few cycle pulse shape was defined.

  20. Effect of abnormal high solubility of impurity in nanocrystalls and its metrological aspects

    NASA Astrophysics Data System (ADS)

    Oksengendler, B. L.; Nikiforov, V. N.; Sredin, V. G.; Turaeva, N. N.; Maksimov, S. E.

    2011-04-01

    The problem of doping impurity intrusion into nanoparticles is analyzed. Thermodynamical model of the effect is developed, taking into account specific properties of nanoparticles: quantum confinement of elementary excitations and the impact of nanoparticle surface states compared with bulk ones. We obtained the size dependence of impact equilibrium solubility in nanoparticles. Magnetometric experiments, carried out on nanoparticle ensemble of iron oxide doped with gadolinium and other impurities, show lack of contradictions and good qualitative accordance between the model and the experiment.

  1. Localization at the edge of a 2D topological insulator by Kondo impurities with random anisotropies.

    PubMed

    Altshuler, B L; Aleiner, I L; Yudson, V I

    2013-08-23

    We consider chiral electrons moving along the one-dimensional helical edge of a two-dimensional topological insulator and interacting with a disordered chain of Kondo impurities. Assuming the electron-spin couplings of random anisotropies, we map this system to the problem of the pinning of the charge density wave by the disordered potential. This mapping proves that arbitrary weak anisotropic disorder in coupling of chiral electrons with spin impurities leads to the Anderson localization of the edge states.

  2. Blood Donor Management in China

    PubMed Central

    Shi, Ling; Wang, Jingxing; Liu, Zhong; Stevens, Lori; Sadler, Andrew; Ness, Paul; Shan, Hua

    2014-01-01

    Summary Despite a steady increase in total blood collections and voluntary non-remunerated blood donors, China continues to have many challenges with its blood donation system. The country's donation rate remains low at 9%o, with over 60% of donors being first-time donors. Generally there is a lack of adequate public awareness about blood donation. The conservative donor selection criteria, the relatively long donation interval, and the small donation volume have further limited blood supply. To ensure a sufficient and safe blood supply that meets the increasing clinical need for blood products, there is an urgent need to strengthen the country's blood donor management. This comprehensive effort should include educating and motivating more individuals especially from the rural areas to be involved in blood donation, developing rational and evidence-based selection criteria for donor eligibility, designing a donor follow-up mechanism to encourage more future donations, assessing the current donor testing strategy, improving donor service and care, building regional and national shared donor deferral database, and enhancing the transparency of the blood donation system to gain more trust from the general public. The purpose of the review is to provide an overview of the key process of and challenges with the blood donor management system in China. PMID:25254023

  3. Screening of a charged impurity in graphene in a magnetic field

    NASA Astrophysics Data System (ADS)

    Sobol, O. O.; Pyatkovskiy, P. K.; Gorbar, E. V.; Gusynin, V. P.

    2016-09-01

    The electron states in the field of a charged impurity in graphene in a magnetic field are studied numerically. It is shown that a charged impurity removes the degeneracy of Landau levels converting them into bandlike structures. As the charge of impurity grows, the repulsion of sublevels of different Landau levels with the same value of orbital momentum takes place leading to the redistribution of the wave function profiles of these sublevels near the impurity. By studying the polarization effects, it is shown in agreement with the recent experiments that the effective charge of impurity can be very effectively tuned by chemical potential. If the chemical potential is situated inside a Landau level, then the charge of impurity is strongly diminished. In addition, the polarization function in this case has a peak at zero momentum, which leads to the sign-changing oscillations of the screened potential as a function of distance. If the chemical potential lies between the Landau levels, then the screened potential does not change sign, the screening is minimal, and the charged impurity can strongly affect the electron spectrum.

  4. Determining factors for the presence of impurities in selectively collected biowaste.

    PubMed

    Puig-Ventosa, Ignasi; Freire-González, Jaume; Jofra-Sora, Marta

    2013-05-01

    The presence of impurities in biodegradable waste (biowaste) causes problems with the management of waste, among which are additional costs derived from the need to improve pre-treatment of biowaste, loss of treatment capacity and the difficulty selling treated biowaste as compost owing to its low quality. When treated biowaste is used for soil conditioning it can also cause soil pollution. Understanding the reasons why impurities are in biowaste and the factors affecting the percentage of impurities present can be used to determine ways to minimise these negative effects. This article attempts to identify the main causes for the presence of impurities in biowaste. In order to do so, it carries out an empirical analysis of the level of impurities in biowaste from municipal waste collection in two steps. First, a bivariate analysis focuses on significant correlations between the presence of impurities and several variables. Second, the construction of an explanatory model based on the significant relations obtained in the first step, and on literature research, are used to check the stated hypothesis. The estimates demonstrate that the collection system, the global levels of separate collection, the urban density of the municipality and the requirement to use compostable bags may be the main drivers of impurity levels in biowaste. PMID:23524997

  5. Fabrication of Gate-tunable Graphene Devices for Scanning Tunneling Microscopy Studies with Coulomb Impurities.

    PubMed

    Jung, Han Sae; Tsai, Hsin-Zon; Wong, Dillon; Germany, Chad; Kahn, Salman; Kim, Youngkyou; Aikawa, Andrew S; Desai, Dhruv K; Rodgers, Griffin F; Bradley, Aaron J; Velasco, Jairo; Watanabe, Kenji; Taniguchi, Takashi; Wang, Feng; Zettl, Alex; Crommie, Michael F

    2015-01-01

    Owing to its relativistic low-energy charge carriers, the interaction between graphene and various impurities leads to a wealth of new physics and degrees of freedom to control electronic devices. In particular, the behavior of graphene's charge carriers in response to potentials from charged Coulomb impurities is predicted to differ significantly from that of most materials. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) can provide detailed information on both the spatial and energy dependence of graphene's electronic structure in the presence of a charged impurity. The design of a hybrid impurity-graphene device, fabricated using controlled deposition of impurities onto a back-gated graphene surface, has enabled several novel methods for controllably tuning graphene's electronic properties. Electrostatic gating enables control of the charge carrier density in graphene and the ability to reversibly tune the charge and/or molecular states of an impurity. This paper outlines the process of fabricating a gate-tunable graphene device decorated with individual Coulomb impurities for combined STM/STS studies. These studies provide valuable insights into the underlying physics, as well as signposts for designing hybrid graphene devices. PMID:26273961

  6. Charge and energy transfer in a bithiophene perylenediimide based donor-acceptor-donor system for use in organic photovoltaics.

    PubMed

    Wenzel, Jan; Dreuw, Andreas; Burghardt, Irene

    2013-07-28

    The elementary charge and excitation energy transfer steps in a novel symmetric donor-acceptor-donor triad first described in Roland et al. Phys. Chem. Chem. Phys., 2012, 14, 273, consisting of a central perylenediimide moiety as a potential electron acceptor and two identical electron rich bithiophene compounds, have been investigated using quantum chemical methodology. These elementary processes determine the applicability of such systems in photovoltaic devices. The molecular structure, excited states and the photo-physical properties are investigated using smaller model systems and including solvation effects. The donor and acceptor π-systems are separated by an ethyl bridge such that the molecular orbitals are either located on the donor or acceptor moiety making the identification of locally excited versus charge transfer states straightforward. Using excited state geometry optimizations, the mechanism of photo-initiated charge separation could be identified. Geometry relaxation in the excited donor state leads to a near-degeneracy with the locally excited acceptor state, entailing strong excitonic coupling and resonance energy transfer. This energy transfer process is driven by planarization and bond length alternation of the donor molecule. Geometry relaxation of the locally excited acceptor state in turn reveals a crossing with the energetically lowest charge transfer excited state. The energetic position of the latter depends in a sensitive fashion on the solvent. This provides an explanation of the sequential process observed in the experiment, favoring ultrafast (∼130 fs) formation of the excited acceptor state followed by slower (∼3 ps scale) formation of the charge separated state.

  7. Multiple magnetic impurities on surfaces: Scattering and quasiparticle interference

    NASA Astrophysics Data System (ADS)

    Mitchell, Andrew K.; Derry, Philip G.; Logan, David E.

    2015-06-01

    We study systems of multiple interacting quantum impurities deposited on a metallic surface in a three-dimensional host. For the real-space two-impurity problem, using numerical renormalization group calculations, a rich range of behavior is shown to arise due to the interplay between Kondo physics and effective Ruderman-Kittel-Kasuya-Yosida interactions—provided the impurity separation is small. Such calculations allow identification of the minimum impurity separation required for a description in terms of independent impurities, and thereby the onset of the "dilute-impurity limit" in many-impurity systems. A "dilute-cluster" limit is also identified in systems with higher impurity density, where interimpurity interactions are important only within independent clusters. We calculate the quasiparticle interference due to two and many impurities, and explore the consequences of the independent impurity and cluster paradigms. Our results provide a framework to investigate the effects of disorder due to interacting impurities at experimentally relevant surface coverages.

  8. Anderson metal-insulator transitions with classical magnetic impurities

    SciTech Connect

    Jung, Daniel; Kettemann, Stefan

    2014-08-20

    We study the effects of classical magnetic impurities on the Anderson metal-insulator transition (AMIT) numerically. In particular we find that while a finite concentration of Ising impurities lowers the critical value of the site-diagonal disorder amplitude W{sub c}, in the presence of Heisenberg impurities, W{sub c} is first increased with increasing exchange coupling strength J due to time-reversal symmetry breaking. The resulting scaling with J is compared to analytical predictions by Wegner [1]. The results are obtained numerically, based on a finite-size scaling procedure for the typical density of states [2], which is the geometric average of the local density of states. The latter can efficiently be calculated using the kernel polynomial method [3]. Although still suffering from methodical shortcomings, our method proves to deliver results close to established results for the orthogonal symmetry class [4]. We extend previous approaches [5] by combining the KPM with a finite-size scaling analysis. We also discuss the relevance of our findings for systems like phosphor-doped silicon (Si:P), which are known to exhibit a quantum phase transition from metal to insulator driven by the interplay of both interaction and disorder, accompanied by the presence of a finite concentration of magnetic moments [6].

  9. Impurity channels of the long-lived Mossbauer effect

    PubMed Central

    Liu, Yao-Yuan; Cheng, Yao

    2015-01-01

    Recent reports have suggested that the nuclear resonant absorption of a long-lived Mossbauer state e.g., 93mNb is mediated by an entangled photon pair (biphoton) rather than by a single photon. Multipolar nuclear excitation in crystals of a single isotope with a natural abundance of 100% spreads in a region containing billions of identical nuclei. As a consequence of the delocalisation, additional decay channels via the impurities, the crystal defects, and the sample boundary, give rise to a density- and temperature-dependent decay. In this letter we report our discovery of impurity channels, the intensity of which is proportional to the square of the 93mNb density. PMID:26503613

  10. Kondo phase transitions of magnetic impurities in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fang, Tie-Feng; Sun, Qing-feng

    2013-02-01

    We propose carbon nanotubes (CNTs) with magnetic impurities as a versatile platform to achieve exciting Kondo physics, where the CNT bath is gapped by the spin-orbit interaction and renormalized by interference effects. While the strong-coupling phase is inaccessible for the special case of half-filled impurities in neutral armchair CNTs, the system in general can undergo quantum phase transitions to the Kondo ground state. The resultant position-specific phase diagrams are investigated upon variation of the CNT radius, chirality, and carrier doping, revealing several striking features, e.g., the existence of a maximal radius for nonarmchair CNTs to realize phase transitions, and an interference-induced suppression of the Kondo screening. We show that by tuning the Fermi energy via electrostatic gating, the quantum critical region can be experimentally accessed.

  11. Low temperature pulsed EPR study at 34 GHz of the triplet states of the primary electron donor P865 and the carotenoid in native and mutant bacterial reaction centers of Rhodobacter sphaeroides†

    PubMed Central

    Marchanka, Aliaksandr; Paddock, Mark; Lubitz, Wolfgang; van Gastel, Maurice

    2008-01-01

    The photosynthetic charge separation in bacterial reaction centers occurs predominantly along one of two nearly symmetric branches of cofactors. Low temperature EPR spectra of the triplet states of the chlorophyll and carotenoid pigments in the reaction center of Rb. sphaeroides R-26.1, 2.4.1 and two double mutants GD(M203)/AW(M260) and LH(M214)/AW(M260) have been recorded at 34 GHz to investigate the relative activities of the ‘A’ and ‘B’ branches. The triplet states are found to derive from radical pair and intersystem crossing mechanisms and the rates of formation are anisotropic. The former mechanism is operative for Rb. sphaeroides R-26.1, 2.4.1 and mutant GD(M203)/AW(M260) and indicates that A-branch charge separation proceeds at temperatures down to 10 K. The latter mechanism, derived from the spin polarization and operative for mutant LH(M214)/AW(M260) indicates that no long-lived radical pairs are formed upon direct excitation of the primary donor and that virtually no charge separation at the B-branch occurs at low temperatures. When the temperature is raised above 30 K, B-branch charge separation is observed, which is at most 1% of A-branch charge separation. B-branch radical pair formation can be induced at 10 K with low yield by direct excitation of the bacteriopheophytin of the B-branch at 590 nm. The formation of a carotenoid triplet state is observed. The rate of formation depends on the orientation of the reaction center in the magnetic field and is caused by a magnetic field dependence of the oscillation frequency by which the singlet and triplet radical pair precursor states interchange. Combination of these findings with literature data provides strong evidence that the thermally activated transfer step on the B-branch occurs between the primary donor, P865, and the accessory bacteriochlorophyll, whereas this step is barrierless down to 10 K along the A-branch. PMID:18052205

  12. Predictors of Alumni Donor Behavior in Graduates of the Traditional MBA and iMBA Programs at The Pennsylvania State University

    ERIC Educational Resources Information Center

    Ketter, Jason W.

    2013-01-01

    The affordability of a degree from a public university is the subject of much heated debate in the halls of many state governments. The taxpayer, as well as the individual paying tuition, is asking the question: What is the return on investment for the millions of dollars used to support public higher education? The taxpayer views public…

  13. Models for impurity effects in tokamaks

    SciTech Connect

    Hogan, J.T.

    1980-03-01

    Models for impurity effects in tokamaks are described with an emphasis on the relationship between attainment of high ..beta.. and impurity problems. We briefly describe the status of attempts to employ neutral beam heating to achieve high ..beta.. in tokamaks and propose a qualitative model for the mechanism by which heavy metal impurities may be produced in the startup phase of the discharge. We then describe paradoxes in impurity diffusion theory and discuss possible resolutions in terms of the effects of large-scale islands and sawtooth oscillations. Finally, we examine the prospects for the Zakharov-Shafranov catastrophe (long time scale disintegration of FCT equilibria) in the context of present and near-term experimental capability.

  14. Continuous-time quantum Monte Carlo impurity solvers

    NASA Astrophysics Data System (ADS)

    Gull, Emanuel; Werner, Philipp; Fuchs, Sebastian; Surer, Brigitte; Pruschke, Thomas; Troyer, Matthias

    2011-04-01

    Continuous-time quantum Monte Carlo impurity solvers are algorithms that sample the partition function of an impurity model using diagrammatic Monte Carlo techniques. The present paper describes codes that implement the interaction expansion algorithm originally developed by Rubtsov, Savkin, and Lichtenstein, as well as the hybridization expansion method developed by Werner, Millis, Troyer, et al. These impurity solvers are part of the ALPS-DMFT application package and are accompanied by an implementation of dynamical mean-field self-consistency equations for (single orbital single site) dynamical mean-field problems with arbitrary densities of states. Program summaryProgram title: dmft Catalogue identifier: AEIL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: ALPS LIBRARY LICENSE version 1.1 No. of lines in distributed program, including test data, etc.: 899 806 No. of bytes in distributed program, including test data, etc.: 32 153 916 Distribution format: tar.gz Programming language: C++ Operating system: The ALPS libraries have been tested on the following platforms and compilers: Linux with GNU Compiler Collection (g++ version 3.1 and higher), and Intel C++ Compiler (icc version 7.0 and higher) MacOS X with GNU Compiler (g++ Apple-version 3.1, 3.3 and 4.0) IBM AIX with Visual Age C++ (xlC version 6.0) and GNU (g++ version 3.1 and higher) compilers Compaq Tru64 UNIX with Compq C++ Compiler (cxx) SGI IRIX with MIPSpro C++ Compiler (CC) HP-UX with HP C++ Compiler (aCC) Windows with Cygwin or coLinux platforms and GNU Compiler Collection (g++ version 3.1 and higher) RAM: 10 MB-1 GB Classification: 7.3 External routines: ALPS [1], BLAS/LAPACK, HDF5 Nature of problem: (See [2].) Quantum impurity models describe an atom or molecule embedded in a host material with which it can exchange electrons. They are basic to nanoscience as

  15. Precipitating Chromium Impurities in Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Salama, A. M.

    1982-01-01

    Two new treatments for silicon wafers improve solar-cell conversion efficiency by precipitating electrically-active chromium impurities. One method is simple heat treatment. Other involves laser-induced damage followed by similar heat treatment. Chromium is one impurity of concern in metallurgical-grade silicon for solar cells. In new treatment, chromium active centers are made electrically inactive by precipitating chromium from solid solution, enabling use of lower grade, lower cost silicon in cell manufacture.

  16. Role of impurities in fusion plasmas

    SciTech Connect

    Tokar, M. Z.

    2008-10-15

    The role of impurity at the plasma edge of fusion devices is considered by analysing the influence on radiation losses and anomalous transport of particle and energy. The conditions critical for the development of radiative instabilities leading to the formation of detachment and MARFE and those necessary for the creation of a stable radiating edge, protecting the wall elements from intensive heat loads, are analyzed. Mechanisms responsible for anomalous transport suppression with impurity seeding are elucidated.

  17. Method of removing phosphorus impurities from yellowcake

    SciTech Connect

    Brown, R.A.; Winkley, D.C.

    1983-04-05

    PhospHorus impurities are removed from yellowcake by dissolving it in hydrochloric or sulfuric acid to a U/sub 3/O/sub 88/ assay of at least 150 g/l at a pH of 2; precipitating uranium peroxide W hydrogen peroxide while keeping the pH between 2.2 and 2.6 and recovering the uranium peroxide from the phosphorus impurities remaining in solution.

  18. Photoluminescence imaging of electronic-impurity-induced exciton quenching in single-walled carbon nanotubes.

    PubMed

    Crochet, Jared J; Duque, Juan G; Werner, James H; Doorn, Stephen K

    2012-02-01

    The electronic properties of single-walled carbon nanotubes can be altered by surface adsorption of electronic impurities or dopants. However, fully understanding the influence of these impurities is difficult because of the inherent complexity of the solution-based colloidal chemistry of nanotubes, and because of a lack of techniques for directly imaging dynamic processes involving these impurities. Here, we show that photoluminescence microscopy can be used to image exciton quenching in semiconducting single-walled carbon nanotubes during the early stages of chemical doping with two different species. The addition of AuCl(3) leads to localized exciton-quenching sites, which are attributed to a mid-gap electronic impurity level, and the adsorbed species are also found sometimes to be mobile on the surface of the nanotubes. The addition of H(2)O(2) leads to delocalized exciton-quenching hole states, which are responsible for long-range photoluminescence blinking, and are also mobile.

  19. Quantum transport in three-dimensional Weyl electron system in the presence of charged impurity scattering

    NASA Astrophysics Data System (ADS)

    Ominato, Yuya; Koshino, Mikito

    2015-01-01

    We theoretically study the quantum transport in a three-dimensional Weyl electron system in the presence of the charged impurity scattering using a self-consistent Born approximation. The scattering strength is characterized by the effective fine-structure constant α , which depends on the dielectric constant and the Fermi velocity of the linear band. We find that the Boltzmann theory fails at the band touching point, where the conductivity takes a nearly constant value almost independent of α , even though the density of states linearly increases with α . There the magnitude of the conductivity only depends on the impurity density. The qualitative behavior is quite different from the case of the Gaussian impurities, where the minimum conductivity vanishes below a certain critical impurity strength.

  20. Mechanisms of impurity diffusion in rutile

    SciTech Connect

    Peterson, N.L.; Sasaki, J.

    1984-01-01

    Tracer diffusion of /sup 46/Sc, /sup 51/Cr, /sup 54/Mn, /sup 59/Fe, /sup 60/Co, /sup 63/Ni, and /sup 95/Zr, was measured as functions of crystal orientation, temperature, and oxygen partial pressure in rutile single crystals using the radioactive tracer sectioning technique. Compared to cation self-diffusion, divalent impurities (e.g., Co and Ni) diffuse extremely rapidly in TiO/sub 2/ and exhibit a large anisotropy in the diffusion behavior; divalent-impurity diffusion parallel to the c-axis is much larger than it is perpendicular to the c-axis. The diffusion of trivalent impurity ions (Sc and Cr) and tetravalent impurity ions (Zr) is similar to cation self-diffusion, as a function of temperature and of oxygen partial pressure. The divalent impurity ions Co and Ni apparently diffuse as interstitial ions along open channels parallel to the c-axis. The results suggest that Sc, Cr, and Zr ions diffuse by an interstitialcy mechanism involving the simultaneous and cooperative migration of tetravalent interstitial titanium ions and the tracer-impurity ions. Iron ions diffused both as divalent and as trivalent ions. 8 figures.

  1. Theoretical investigation on properties of the ground and lowest excited states of a red emitter with donor-π-acceptor structure

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojun; Zhang, Xiao; Hou, Yanbing; Teng, Feng; Lou, Zhidong

    2011-03-01

    The ground and excited state properties of DCDPC, particularly designed as a red emitter for organic light emitting diodes applications have been studied by means of density functional theory (DFT) and time-dependent (TD)DFT. The electronic and geometrical structures of DCDPC in acetone, tetrahydrofuran and benzene solvents are reported for the first time. The experimental absorption and fluorescence spectra are reproduced by calculations. By comparison with experimental data, insight on the performance of 10 exchange correlation functionals is also given. M06 in the frame of DFT and TDDFT with a polarizable continuum model and a medium sized basis set emerges as the most effective strategy. Beside the good agreement between the calculational and experimental spectra proving the accuracy of the strategy, the calculations allow further insights into the electronic structure for the family of isophorone-based light emitting materials with D-π-A structure, especially the electronic and geometrical structures for the excited states.

  2. Systematic defect donor levels in III-V and II-VI semiconductors revealed by hybrid functional density-functional theory

    NASA Astrophysics Data System (ADS)

    Petretto, Guido; Bruneval, Fabien

    2015-12-01

    The identification of defect levels from photoluminescence spectroscopy is a useful but challenging task. Density-functional theory (DFT) is a highly valuable tool to this aim. However, the semilocal approximations of DFT that are affected by a band gap underestimation are not reliable to evaluate defect properties, such as charge transition levels. It is now established that hybrid functional approximations to DFT improve the defect description in semiconductors. Here we demonstrate that the use of hybrid functionals systematically stabilizes donor defect states in the lower part of the band gap for many defects, impurities or vacancies, in III-V and in II-VI semiconductors, even though these defects are usually considered as acceptors. These donor defect states are a very general feature and, to the best of our knowledge, have been overlooked in previous studies. The states we identify here may challenge the older assignments to photoluminescent peaks. Though appealing to screen quickly through the possible stable charge states of a defect, semilocal approximations should not be trusted for that purpose.

  3. Impurity in a Bose-Einstein condensate in a double well

    SciTech Connect

    Mulansky, F.; Mumford, J.; O'Dell, D. H. J.

    2011-12-15

    We compare and contrast the mean-field and many-body properties of a Bose-Einstein condensate trapped in a double-well potential with a single impurity atom. The mean-field solutions display a rich structure of bifurcations, as parameters such as the boson-impurity interaction strength and the tilt between the two wells are varied. In particular, we study a pitchfork bifurcation in the lowest mean-field stationary solution, which occurs when the boson-impurity interaction exceeds a critical magnitude. This bifurcation, which is present for both repulsive and attractive boson-impurity interactions, corresponds to the spontaneous formation of an imbalance in the number of particles between the two wells. If the boson-impurity interaction is large, the bifurcation is associated with the onset of a Schroedinger-cat state in the many-body ground state. We calculate the coherence and number fluctuations between the two wells, and also the entanglement entropy between the bosons and the impurity. We find that the coherence can be greatly enhanced at the bifurcation.

  4. Influence of hydrogen impurities on p-type resistivity in Mg-doped GaN films

    SciTech Connect

    Yang, Jing; Zhao, Degang Jiang, Desheng; Chen, Ping; Zhu, Jianjun; Liu, Zongshun; Le, Lingcong; He, Xiaoguang; Li, Xiaojing; Zhang, Y. T.; Du, G. T.

    2015-03-15

    The effects of hydrogen impurities on p-type resistivity in Mg-doped GaN films were investigated. It was found that hydrogen impurities may have the dual role of passivating Mg{sub Ga} acceptors and passivating donor defects. A decrease in p-type resistivity when O{sub 2} is introduced during the postannealing process is attributed to the fact that annealing in an O{sub 2}-containing environment can enhance the dissociation of Mg{sub Ga}-H complexes as well as the outdiffusion of H atoms from p-GaN films. However, low H concentrations are not necessarily beneficial in Mg-doped GaN films, as H atoms may also be bound at donor species and passivate them, leading to the positive effect of reduced compensation.

  5. Diamagnetic susceptibility of a hydrogenic donor in a group IV-VI quantum dot-quantum well heterostructure

    NASA Astrophysics Data System (ADS)

    Saravanamoorthy, S. N.; Peter, A. John

    2016-05-01

    Electronic properties of a hydrogenic donor impurity in a CdSe/Pb0.8Cd0.2Se/CdSe quantum dot quantum well system are investigated for various radii of core with shell materials. Confined energies are obtained taking into account the geometrical size of the system and thereby the donor binding energies are found. The diamagnetic susceptibility is estimated for a confined shallow donor in the well system. The results show that the diamagnetic susceptibility strongly depends on core and shell radii and it is more sensitive to variations of the geometrical size of the well material.

  6. Piezospectroscopy of isolated lithium donors and lithium-oxygen donor complexes in silicon

    NASA Astrophysics Data System (ADS)

    Jagannath, C.; Ramdas, A. K.

    1981-05-01

    The effect of uniaxial stress on the excitation spectra of interstitial lithium donors (Li) and of lithium-oxygen donor complexes (Li-O) in silicon is studied under a high resolution. For a compressive force, F-->, along [001], each 1s-->np transition in Si(Li) splits into three components, the central component occurring at the zero-stress position even at 2 kbar, the highest stress used. The intensity of the high-energy component decreases dramatically while that of the low-energy component increases. At the highest stress only the central and the low-energy components survive and the position of the low-energy component reaches a constant value as the stress increases. Interstitial lithium donors have an anomalous, "inverted" ground state with the fivefold 1s(E+T2) state close to the effective-mass position, its site symmetry being Td; the totally symmetric 1s(A1) state lies 6Δc=1.76+/-0.04 meV above it. The inverted ground state, the small value of 6Δc, the stress dependence of the ground-state wave functions, and a shear-deformation-potential constant Ξu of 8.77 +/- 0.07 eV characterizing both the ground and the excited states account for its striking piezospectroscopic behavior. Our studies in Li-O donor centers show that they have a group-V-like ground state with 1s(A1) lying below 1s(E) and 1s(T2). One of the donor species has a symmetry lower than Td with a symmetry axis along <100>, showing the effects of orientational degeneracy in its piezospectroscopic behavior.

  7. Electronic structure and correlations of vitamin B12 studied within the Haldane-Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Kandemir, Zafer; Mayda, Selma; Bulut, Nejat

    2016-04-01

    We study the electronic structure and correlations of vitamin B12 (cyanocobalamine) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. The parameters of the effective Haldane-Anderson model are obtained within the Hartree-Fock (HF) approximation. The quantum Monte Carlo (QMC) technique is then used to calculate the one-electron and magnetic correlation functions of this effective model. We observe that new states form inside the semiconductor gap found by HF due to the intra-orbital Coulomb interaction at the impurity 3d orbitals. In particular, the lowest unoccupied states correspond to an impurity bound state, which consists of states from mainly the CN axial ligand and the corrin ring as well as the Co eg-like orbitals. We also observe that the Co (3d) orbitals can develop antiferromagnetic correlations with the surrounding atoms depending on the filling of the impurity bound states. In addition, we make comparisons of the HF+QMC data with the density functional theory calculations. We also discuss the photoabsorption spectrum of cyanocobalamine.

  8. GaInP semiconductor compounds doped with the Sb isovalent impurity

    SciTech Connect

    Skachkov, A. F.

    2015-05-15

    GaInP{sub 1−x}Sb{sub x} layers containing different Sb fractions are produced by metal-organic vaporphase epitaxy on GaAs and Ge substrates. The charge-carrier mobilities in the GaInP{sub 1−x}Sb{sub x} layers are measured at room temperature and 77 K. The room-temperature charge-carrier mobilities in the GaInP{sub 1−x}Sb{sub x} layers additionally doped with donor and acceptor impurities are measured. The photoluminescence peaks of GaInP{sub 1−x}Sb{sub x} are detected. The influence of the Sb impurity on the band gap and charge-carrier mobility in GaInP is determined.

  9. Characterization of human milk donors.

    PubMed

    Osbaldiston, Richard; Mingle, Leigh A

    2007-11-01

    The primary objective of this research was to create a detailed characterization of human milk donors, including descriptive information about demographics and lifestyle, involvement with the milk bank, reasons for donating, problems encountered while breastfeeding and pumping milk, barriers to donating milk, affective experiences, and personal values. Data were collected via telephone interview of 87 donors and 19 nondonor controls. Few relationships were found between the descriptive information and amount of milk donated. Donors reported fewer problems pumping milk than nondonors. Strategies for recruiting new donors and strategies for increasing donation amounts are presented.

  10. Silicon quantum dots with counted antimony donor implants

    NASA Astrophysics Data System (ADS)

    Singh, Meenakshi; Pacheco, Jose; Perry, Daniel; Wendt, Joel; Manginell, Ronald; Dominguez, Jason; Pluym, Tammy; Luhman, Dwight; Bielejec, Edward; Lilly, Michael; Carroll, Malcolm

    Antimony donor implants next to silicon quantum dots have been detected with integrated solid-state diode detectors with single ion precision. Devices with counted number of donors have been fabricated and low temperature transport measurements have been performed. Charge offsets, indicative of donor ionization and coupling to the quantum dot, have been detected in these devices. The number of offsets corresponds to 10-50% of the number of donors counted. We will report on tunneling time measurements and spin readout measurements on the donor offsets. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  11. Lowest excited states and optical absorption spectra of donor-acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals.

    PubMed

    Pandey, Laxman; Doiron, Curtis; Sears, John S; Brédas, Jean-Luc

    2012-11-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated.

  12. Valley relaxation in graphene due to charged impurities

    NASA Astrophysics Data System (ADS)

    Boross, Péter; Pályi, András

    2015-07-01

    Monolayer graphene is an example of materials with multivalley electronic structure. In such materials, the valley index is being considered as an information carrier. Consequently, relaxation mechanisms leading to loss of valley information are of interest. Here, we calculate the rate of valley relaxation induced by charged impurities in graphene. A special model of graphene is applied, where the pz orbitals are two-dimensional Gaussian functions, with a spatial extension characterized by an effective Bohr radius aeB. We obtain the valley relaxation rate by solving the Boltzmann equation, for the case of noninteracting electrons, as well as for the case when the impurity potential is screened due to electron-electron interaction. For the latter case, we take into account local-field effects and evaluate the dielectric matrix in the random phase approximation. Our main findings are as follows: (i) The valley relaxation rate is proportional to the electronic density of states at the Fermi energy. (ii) Charged impurities located in the close vicinity of the graphene plane, at distance d ≲0.3 Å , are much more efficient in inducing valley relaxation than those farther away, the effect of the latter being suppressed exponentially with increasing graphene-impurity distance d . (iii) Both in the absence and in the presence of electron-electron interaction, the valley relaxation rate shows pronounced dependence on the effective Bohr radius aeB. The trends are different in the two cases: In the absence (presence) of screening, the valley relaxation rate decreases (increases) for increasing effective Bohr radius. This last result highlights that a quantitative calculation of the valley relaxation rate should incorporate electron-electron interactions as well as an accurate knowledge of the electronic wave functions on the atomic length scale.

  13. Removal of organic impurities from liquid carbon dioxide

    NASA Astrophysics Data System (ADS)

    Zito, Richard R.

    2002-09-01

    The use of a high velocity stream of carbon dioxide snowflakes to clean large optics is well known, and has gained widespread acceptance in the astronomical community as a telescope maintenance technique. Ultimately, however, the success of carbon dioxide snow cleaning depends on the availability of high purity carbon dioxide. The higher the purity of the carbon dioxide, the longer will be the time interval between required mirror washings. The highest grades of commercially produced liquid carbon dioxide are often not available in the more remote regions of the world - such as where major astronomical observatories are often located. Furthermore, the purity of even the highest grades of carbon dioxide are only nominal, and wide variations are known to occur from tank to tank. Occasionally, visible deposits of organic impurities are left behind during cleaning with carbon dioxide that is believed to be 99.999% pure. A zeolite molecular sieve based filtration system has proven to be very effective in removing these organic impurities. A zeolite is a complex alumino-silicate. One example has an empirical formula of Na2O(Al2O3)(SiO2)2yH2O, where y=0 to 8. The zeolites have an open crystal structure and are capable of trapping impurities like 8-methylheptadecane (an oil) and 2,6-octadine-1-ol,3,7- dimethyl-,(E)- (a fatty acid). In fact, a zeolite can trap 29.5% of its own weight in SAE 20 lubricant at 25 degree(s)C. After filtration of liquid CO2 through zeolites, the concentration of measured impurities was below the detection limit for state-of-the-art gas chromatography systems.

  14. Organ Donor FAQ's: Who Can Be a Donor

    MedlinePlus

    ... citizens have been organ donors. Can non-resident aliens donate and receive organs? Non-resident aliens can both donate and receive organs in the ... the 12,375 organ donors were non-resident aliens. In this same year, 259 (1%) of the ...

  15. Economic evaluation of pooled solvent/detergent treated plasma versus single donor fresh-frozen plasma in patients receiving plasma transfusions in the United States.

    PubMed

    Huisman, Eline L; de Silva, Shamika U; de Peuter, Maria A

    2014-08-01

    This study assessed the cost-effectiveness of Octaplas™ versus fresh frozen plasma (FFP) in patients receiving plasma transfusions in the United States (US). Acute and long-term complications of plasma transfusions were modelled in a decision tree followed by a Markov model, using a healthcare payer perspective. Over a lifetime time horizon, patients receiving Octaplas™ accumulate slightly more life years (0.00613 [95% uncertainty interval (95%UI): 0.00166-0.01561]) and quality-adjusted life years (QALY) (0.023 [95%UI: 0.012-0.044]) at lower cost compared with those treated with FFP. Octaplas™ demonstrated to be the dominant treatment option over FFP (95%UI: Dominant-US$ 15,764/QALY).

  16. Metallic impurities in gallium nitride grown by molecular beam epitaxy

    SciTech Connect

    McHugo, S.A.; Krueger, J.; Kisielowski, C.

    1997-04-01

    Transition metals are often encountered in trace amounts in semiconductors. They have been extensively studied in most elemental and compound systems, since they form deep donor and/or acceptor levels which usually degrade the electronic and optical material properties. Only very little is known about transition metals in recent III-V semiconducting materials, such as GaN, AlN and InN. These few studies have been done exclusively on Metal-Organic Chemical Vapor Deposition (MOCVD) or Hybrid Vapor Phase Epitaxy HVPE-grown GaN. Preliminary x-ray fluorescence studies at the Advanced Light Source, beamline 10.3.1, Lawrence Berkeley National Laboratory have revealed that GaN materials grown by Molecular Beam Epitaxy (MBE) have Fe, Ni and Cr as the dominant transition metal contaminants. This finding is commensurate with the extremely high concentrations of hydrogen, carbon and oxygen (up to 10{sup 20} cm{sup {minus}3}) measured by Secondary Ion Mass Spectroscopy (SIMS). Preliminary work using the mapping capabilities of the x-ray fluorescence microprobe revealed the metal impurities were inhomogeneously distributed over the film. Future work of this collaboration will be to find a correlation between the existence of transition metals in MBE films, as revealed by x-ray fluorescence, and Photoluminescence (PL) spectra taken in the infrared region. Also, the authors will make use of the 1 {mu}m spatial resolution of x-ray microprobe to locate the contaminants in relation to structural defects in the GaN films. Because of the large strain caused by the lattice mismatch between the GaN films and the substrates, the films grow in a columnar order with high densities of grain boundaries and dislocations. These structural defects offer preferential sites for metal precipitation or agglomeration which could degrade the optical properties of this material more so than if the impurities were left dissolved in the GaN.

  17. Evaluation of 100 patients for living donor liver transplantation.

    PubMed

    Trotter, J F; Wachs, M; Trouillot, T; Steinberg, T; Bak, T; Everson, G T; Kam, I

    2000-05-01

    The initial success of living donor liver transplantation (LDLT) in the United States has resulted in a growing interest in this procedure. The impact of LDLT on liver transplantation will depend in part on the proportion of patients considered medically suitable for LDLT and the identification of suitable donors. We report the outcome of our evaluation of the first 100 potential transplant recipients for LDLT at the University of Colorado Health Sciences Center (Denver, CO). All patients considered for LDLT had first been approved for conventional liver transplantation by the Liver Transplant Selection Committee and met the listing criteria of United Network for Organ Sharing status 1, 2A, or 2B. Once listed, those patients deemed suitable for LDLT were given the option to consider LDLT and approach potential donors. Donors were evaluated with a preliminary screening questionnaire, followed by formal evaluation. Of the 100 potential transplant recipients evaluated, 51 were initially rejected based on recipient characteristics that included imminent cadaveric transplantation (8 patients), refusal of evaluation (4 patients), lack of financial approval (6 patients), and medical, psychosocial, or surgical problems (33 patients). Of the remaining 49 patients, considered ideal candidates for LDLT, 24 patients were unable to identify a suitable donor for evaluation. Twenty-six donors were evaluated for the remaining 25 potential transplant recipients. Eleven donors were rejected: 9 donors for medical reasons and 2 donors who refused donation after being medically approved. The remaining 15 donor-recipient pairs underwent LDLT. Using our criteria for the selection of recipients and donors for LDLT gave the following results: (1) 51 of 100 potential transplant recipients (51%) were rejected for recipient issues, (2) only 15 of the remaining 49 potential transplant recipients (30%) were able to identify an acceptable donor, and (3) 15 of 100 potential living donor

  18. Optimized donor management and organ preservation before kidney transplantation.

    PubMed

    Mundt, Heiko M; Yard, Benito A; Krämer, Bernhard K; Benck, Urs; Schnülle, Peter

    2016-09-01

    Kidney transplantation is a major medical improvement for patients with end-stage renal disease, but organ shortage limits its widespread use. As a consequence, the proportion of grafts procured from extended criteria donors (ECD) has increased considerably, but this comes along with increased rates of delayed graft function (DGF) and a higher incidence of immune-mediated rejection that limits organ and patient survival. Furthermore, most grafts are derived from brain dead organ donors, but the unphysiological state of brain death is associated with significant metabolic, hemodynamic, and pro-inflammatory changes, which further compromise patient and graft survival. Thus, donor interventions to preserve graft quality are fundamental to improve long-term transplantation outcome, but interventions must not harm other potentially transplantable grafts. Several donor pretreatment strategies have provided encouraging results in animal models, but evidence from human studies is sparse, as most clinical evidence is derived from single-center or nonrandomized trials. Furthermore, ethical matters have to be considered especially concerning consent from donors, donor families, and transplant recipients to research in the field of donor treatment. This review provides an overview of clinically proven and promising preclinical strategies of donor treatment to optimize long-term results after kidney transplantation.

  19. Full density-matrix numerical renormalization group calculation of impurity susceptibility and specific heat of the Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Merker, L.; Weichselbaum, A.; Costi, T. A.

    2012-08-01

    Recent developments in the numerical renormalization group (NRG) allow the construction of the full density matrix (FDM) of quantum impurity models [see A. Weichselbaum and J. von Delft, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.99.076402 99, 076402 (2007)] by using the completeness of the eliminated states introduced by F. B. Anders and A. Schiller [F. B. Anders and A. Schiller, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.95.196801 95, 196801 (2005)]. While these developments prove particularly useful in the calculation of transient response and finite-temperature Green's functions of quantum impurity models, they may also be used to calculate thermodynamic properties. In this paper, we assess the FDM approach to thermodynamic properties by applying it to the Anderson impurity model. We compare the results for the susceptibility and specific heat to both the conventional approach within NRG and to exact Bethe ansatz results. We also point out a subtlety in the calculation of the susceptibility (in a uniform field) within the FDM approach. Finally, we show numerically that for the Anderson model, the susceptibilities in response to a local and a uniform magnetic field coincide in the wide-band limit, in accordance with the Clogston-Anderson compensation theorem.

  20. Photoemission spectroscopy of magnetic and nonmagnetic impurities on the surface of the Bi2Se3 topological insulator.

    PubMed

    Valla, T; Pan, Z-H; Gardner, D; Lee, Y S; Chu, S

    2012-03-16

    Dirac-like surface states on surfaces of topological insulators have a chiral spin structure that suppresses backscattering and protects the coherence of these states in the presence of nonmagnetic scatterers. In contrast, magnetic scatterers should open the backscattering channel via the spin-flip processes and degrade the state's coherence. We present angle-resolved photoemission spectroscopy studies of the electronic structure and the scattering rates upon the adsorption of various magnetic and nonmagnetic impurities on the surface of Bi2Se3, a model topological insulator. We reveal a remarkable insensitivity of the topological surface state to both nonmagnetic and magnetic impurities in the low impurity concentration regime. Scattering channels open up with the emergence of hexagonal warping in the high-doping regime, irrespective of the impurity's magnetic moment.

  1. Tungsten(VI) Carbyne/Bis(carbene) Tautomerization Enabled by N-Donor SBA15 Surface Ligands: A Solid-State NMR and DFT Study.

    PubMed

    Bendjeriou-Sedjerari, Anissa; Sofack-Kreutzer, Julien; Minenkov, Yury; Abou-Hamad, Edy; Hamzaoui, Bilel; Werghi, Baraa; Anjum, Dalaver H; Cavallo, Luigi; Huang, Kuo-Wei; Basset, Jean-Marie

    2016-09-01

    Designing supported well-defined bis(carbene) complexes remains a key challenge in heterogeneous catalysis. The reaction of W(≡CtBu)(CH2 tBu)3 with amine-modified mesoporous SBA15 silica, which has vicinal silanol/silylamine pairs [(≡SiOH)(≡SiNH2 )], leads to [(≡SiNH2 -)(≡SiO-)W(≡CHtBu)(CH2 tBu)2 ] and [(≡SiNH2 -)(≡SiO-)W(=CHtBu)2 (CH2 tBu). Variable temperature, (1) H-(1) H 2D double-quantum, (1) H-(13) C HETCOR, and HETCOR with spin diffusion solid-state NMR spectroscopy demonstrate tautomerization between the alkyl alkylidyne and the bis(alkylidene) on the SBA15 surface. Such equilibrium is possible through the coordination of W to the surface [(≡Si-OH)(≡Si-NH2 )] groups, which act as a [N,O] pincer ligand. DFT calculations provide a rationalization for the surface-complex tautomerization and support the experimental results. This direct observation of such a process shows the strong similarity between molecular mechanisms in homogeneous and heterogeneous catalysis. In propane metathesis (at 150 °C), the tungsten bis(carbene) tautomer is favorable, with a turnover number (TON) of 262. It is the highest TON among all the tungsten alkyl-supported catalysts.

  2. Tungsten(VI) Carbyne/Bis(carbene) Tautomerization Enabled by N-Donor SBA15 Surface Ligands: A Solid-State NMR and DFT Study.

    PubMed

    Bendjeriou-Sedjerari, Anissa; Sofack-Kreutzer, Julien; Minenkov, Yury; Abou-Hamad, Edy; Hamzaoui, Bilel; Werghi, Baraa; Anjum, Dalaver H; Cavallo, Luigi; Huang, Kuo-Wei; Basset, Jean-Marie

    2016-09-01

    Designing supported well-defined bis(carbene) complexes remains a key challenge in heterogeneous catalysis. The reaction of W(≡CtBu)(CH2 tBu)3 with amine-modified mesoporous SBA15 silica, which has vicinal silanol/silylamine pairs [(≡SiOH)(≡SiNH2 )], leads to [(≡SiNH2 -)(≡SiO-)W(≡CHtBu)(CH2 tBu)2 ] and [(≡SiNH2 -)(≡SiO-)W(=CHtBu)2 (CH2 tBu). Variable temperature, (1) H-(1) H 2D double-quantum, (1) H-(13) C HETCOR, and HETCOR with spin diffusion solid-state NMR spectroscopy demonstrate tautomerization between the alkyl alkylidyne and the bis(alkylidene) on the SBA15 surface. Such equilibrium is possible through the coordination of W to the surface [(≡Si-OH)(≡Si-NH2 )] groups, which act as a [N,O] pincer ligand. DFT calculations provide a rationalization for the surface-complex tautomerization and support the experimental results. This direct observation of such a process shows the strong similarity between molecular mechanisms in homogeneous and heterogeneous catalysis. In propane metathesis (at 150 °C), the tungsten bis(carbene) tautomer is favorable, with a turnover number (TON) of 262. It is the highest TON among all the tungsten alkyl-supported catalysts. PMID:27514022

  3. Donor-acceptor-donor tetrazines containing a ferrocene unit: synthesis, electrochemical and spectroscopic properties.

    PubMed

    Janowska, Izabela; Miomandre, Fabien; Clavier, Gilles; Audebert, Pierre; Zakrzewski, Janusz; Thi, Khuyen Hoang; Ledoux-Rak, Isabelle

    2006-11-30

    Donor-acceptor-donor tetrazines containing ferrocene moieties and phenyl unit as a pi-bridge have been synthesized and characterized. UV-vis spectroscopic and cyclic voltamperometric results indicate sizable intramolecular charge transfer interactions in the ground state when the ferrocene is directly bound to the tetrazine. On the other hand, the results show reduction of the electron-donor strength of ferrocene moieties when there is a phenyl linkage. Both tetrazines display a high reduction potential. The role of ferrocenyl groups appear to be detrimental to maximize the cubic hyperpolarizability gamma of tetrazines, as compared to purely organic groups such as thiophene. A possible explanation for this behavior may originate from metal-to-ligand charge transfer processes.

  4. Gettering of metal impurities in silicon

    SciTech Connect

    Schroeter, W.; Spiecker, E.; Apel, M.

    1995-08-01

    Gettering means the removal of metallic impurities from the device-active area of the wafer by transport to a predesigned region-called gettering layer (GL). We introduce an interface at z = d{sub GL}, at which the effect of the gettering mechanism on the metal impurity distribution in the wafer is quantified, e.g. by specifying currents or by interfacial reactions of metal impurities, self interstitials etc. between GL and wafer. In response metal impurities will diffuse out of the wafer into the gettering layer. Following such a concept, in general three species of the metal impurity (M) are involved in gettering: M{sub p} {l_arrow} M{sub i} {l_arrow} M{sub GL}. M{sub p} denotes immobile species in the wafer, which are precipitated into suicides or segregated at extended defects or whose diffusivity is too small to contribute noticeably to transport during the gettering procedure - like many substitutional metal species.

  5. Model for the catalytic oxidation of CO, including gas-phase impurities and CO desorption

    NASA Astrophysics Data System (ADS)

    Buendía, G. M.; Rikvold, P. A.

    2013-07-01

    We present results of kinetic Monte Carlo simulations of a modified Ziff-Gulari-Barshad model for the reaction CO+O → CO2 on a catalytic surface. Our model includes impurities in the gas phase, CO desorption, and a modification known to eliminate the unphysical O poisoned phase. The impurities can adsorb and desorb on the surface, but otherwise remain inert. In a previous work that did not include CO desorption [Buendía and Rikvold, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.031143 85, 031143 (2012)], we found that the impurities have very distinctive effects on the phase diagram and greatly diminish the reactivity of the system. If the impurities do not desorb, once the system reaches a stationary state, the CO2 production disappears. When the impurities are allowed to desorb, there are regions where the CO2 reaction window reappears, although greatly reduced. Following experimental evidence that indicates that temperature effects are crucial in many catalytic processes, here we further analyze these effects by including a CO desorption rate. We find that the CO desorption has the effect to smooth the transition between the reactive and the CO rich phase, and most importantly it can counteract the negative effects of the presence of impurities by widening the reactive window such that now the system remains catalytically active in the whole range of CO pressures.

  6. Impurity effects on the Ni/Ni{sub 3}Al interface cohesion

    SciTech Connect

    Liu, Y.; Chen, K.Y.; Lu, G.; Zhang, J.H.; Hu, Z.Q.

    1997-05-01

    The effects of B, C, N, O, H, P and S impurities on the Ni/Ni{sub 3}Al interface cohesion have been investigated by employing first-principles electronic structure calculations based on the discrete variational method. The binding energy, bond order, difference electron density, orbital occupations and density of states have been calculated to study the impurity-induced changes in the energetics and electronic structure. The impurities promote the Ni/Ni{sub 3}Al interface cohesion and prefer to occupy the interface interstitial sites in the order S < P < H < O < N < B < C. The impurity-nickel covalent-like bonds form mainly due to impurity-p/Ni-d hybridization (except H-s/Ni-p hybridization in the H case). Meanwhile, the Ni-Ni bonding becomes weaker because of charge depletion on Ni atoms and bond misorientation resulting from the more homogeneous electron redistribution. In the order B, C, N and O, the impurity-metal bond varies from being homopolar to being much more heteropolar with increasing ionicity percentage, which results in decreasing p-d hybridization effects.

  7. Effect of weak impurities on electronic properties of graphene: Functional renormalization-group analysis

    NASA Astrophysics Data System (ADS)

    Katanin, A.

    2013-12-01

    We consider an effect of weak impurities on the electronic properties of graphene within the functional renormalization-group approach. The energy dependences of the electronic self-energy and density of states near the neutrality point are discussed. Depending on the symmetry of the impurities, the electronic damping Γ and density of states ρ can deviate substantially from those given by the self-consistent Born approximation. We investigate the crossover from the results of the self-consistent Born approximation, which are valid far from the neutrality point to the strong-coupling (diffusive) regime near the neutrality point. For impurities, which are diagonal in both valley and sublattice indices, we obtain a finite density of states at the Fermi level with values which are much bigger than the result of the self-consistent Born approximation.

  8. Electronic structure and local magnetism of 3d-5d impurity substituted CeFe2

    NASA Astrophysics Data System (ADS)

    Das, Rakesh; Das, G. P.; Srivastava, S. K.

    2016-04-01

    We present here a systematic first-principles study of electronic structure and local magnetic properties of Ce[Fe0.75M0.25]2 compounds, where M is a 3d, 4d or 5d transition or post-transition element, using the generalized gradient approximation of the density functional theory. The d-f band hybridizations existing in CeFe2 get modified by the impurity M in an orderly manner across a period for each impurity series: the hybridization is strongest for the Mn group impurity in the period and gets diminished on either side of it. The weakening of the d-f hybridization strength is also associated with a relative localization of the Ce 4f states with respect to the delocalized 4f states in CeFe2. The above effects are most prominent for 3d impurity series, while for 4d and 5d impurities, the hybridizations and relocalizations are relatively weak due primarily to the relatively extended nature of 4d and 5d wavefunctions. The Ce local moment is found to decrease from the CeFe2 value in proportion to the strength of relocalization, thus following almost the same orderly trend as obeyed by the d-f hybridization. Further, depending on the way the spin-up and spin-down densities of states of an impurity shift relative to the Fermi energy, the impurity local moments are highest for Mn or Fe group, reduce on either side, become zero for Ni to Ga, and are small but negative for V and Ti. The Ce hyperfine field is found to follow the M local moment in a linear fashion, and vice-versa.

  9. Shuttling electrons on and off As donor atoms in silicon

    NASA Astrophysics Data System (ADS)

    Tyryshkin, A. M.; Lyon, S. A.; Lo, C. C.; Lo Nardo, R.; Morton, J. J. L.; Simmons, S.; Weis, C. D.; Schenkel, T.; Bokor, J.; Meijer, J.; Rogalla, D.

    2013-03-01

    Hybrid quantum devices where electron spins are used for state initialization, fast manipulation, long range entanglement and detection, while nuclear spins are used for long term storage promise revolutionary advantages. Here we report our first experiments using a silicon-based device that utilizes electron and nuclear spins of arsenic donors. The device is a large-area, parallel-plate capacitor fabricated on a silicon-on-insulator (SOI) wafer where the SOI layer is implanted with arsenic donors, and a back gate is formed in the silicon below the buried oxide by a high-energy boron implantation. The electrons can be controllably stripped from the donors and then reintroduced to the ionized donors by applying appropriate gate voltages. We use ensemble ESR experiments (X-band, magnetic field of 0.35 T) to track the occupancy of the donors during these operations. Pulsed ESR is used to characterize the spin state of the donor electrons and the effect of applied electric fields below the ionization threshold. The spin state of the arsenic nuclei, and the effect of electron removal and reintroduction on the nuclear state is expected to be observable in pulsed ENDOR experiments. The work is funded by LPS and NSF-MWN.

  10. Donor human milk banking and the emergence of milk sharing.

    PubMed

    Landers, Susan; Hartmann, Ben T

    2013-02-01

    Donor human milk has emerged as the preferred substrate to feed extremely preterm infants, when mother's own milk is unavailable. This article summarizes the clinical data demonstrating the safety, efficacy, and cost-effectiveness of feeding donor human milk to premature babies. It describes the current state of milk banking in North America, as well as other parts of the world, and the differing criteria for donor selection, current pasteurization techniques, and quality control measures. A risk assessment methodology is proposed, which would allow milk banks globally to assess the safety of their process and respond appropriately to differing risk environments. PMID:23178068

  11. Shallow-donor lasers in uniaxially stressed silicon

    SciTech Connect

    Kovalevsky, K. A. Zhukavin, R. Kh.; Tsyplenkov, V. V.; Shastin, V. N.; Abrosimov, N. V.; Riemann, H.; Pavlov, S. G.; Huebers, H.-W.

    2013-02-15

    The effects of the terahertz-stimulated emission of Group-V donors (phosphorus, antimony, arsenic, bismuth) in uniaxially stressed silicon, excited by CO{sub 2} laser radiation are experimentally studied. It is shown that uniaxial compressive stress of the crystal along the [100] direction increases the gain and efficiency of stimulated radiation, significantly decreasing the threshold pump intensity. The donor frequencies are measured and active transitions are identified in stressed silicon. The dependence of the residual population of active donor states on the uniaxial compressive stress along the [100] direction is theoretically estimated.

  12. Donor human milk banking and the emergence of milk sharing.

    PubMed

    Landers, Susan; Hartmann, Ben T

    2013-02-01

    Donor human milk has emerged as the preferred substrate to feed extremely preterm infants, when mother's own milk is unavailable. This article summarizes the clinical data demonstrating the safety, efficacy, and cost-effectiveness of feeding donor human milk to premature babies. It describes the current state of milk banking in North America, as well as other parts of the world, and the differing criteria for donor selection, current pasteurization techniques, and quality control measures. A risk assessment methodology is proposed, which would allow milk banks globally to assess the safety of their process and respond appropriately to differing risk environments.

  13. Impurity and particle control for INTOR

    SciTech Connect

    Post, D.

    1985-02-01

    The INTOR impurity control system studies have been focused on the development of an impurity control system which would be able to provide the necessary heat removal and He pumping while satisfying the requirements for (1) minimum plasma contamination by impurities, (2) reasonable component lifetime (approx. 1 year), and (3) minimum size and cost. The major systems examined were poloidal divertors and pumped limiters. The poloidal divertor was chosen as the reference option since it offered the possibility of low sputtering rates due to the formation of a cool, dense plasma near the collector plates. Estimates of the sputtering rates associated with pumped limiters indicated that they would be too high for a reasonable system. Development of an engineering design concept was done for both the poloidal divertor and the pumped limiter.

  14. On charged impurity structures in liquid helium

    NASA Astrophysics Data System (ADS)

    Pelmenev, A. A.; Krushinskaya, I. N.; Bykhalo, I. B.; Boltnev, R. E.

    2016-03-01

    The thermoluminescence spectra of impurity-helium condensates (IHC) submerged in superfluid helium have been observed for the first time. Thermoluminescence of impurity-helium condensates submerged in superfluid helium is explained by neutralization reactions occurring in impurity nanoclusters. Optical spectra of excited products of neutralization reactions between nitrogen cations and thermoactivated electrons were rather different from the spectra observed at higher temperatures, when the luminescence due to nitrogen atom recombination dominates. New results on current detection during the IHC destruction are presented. Two different mechanisms of nanocluster charging are proposed to describe the phenomena observed during preparation and warm-up of IHC samples in bulk superfluid helium, and destruction of IHC samples out of liquid helium.

  15. Electronic structure of vitamin B12 within the framework of the Haldane-Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Kandemir, Zafer; Mayda, Selma; Bulut, Nejat

    2015-03-01

    We study the electronic structure of vitamin B12 (cyanocobalamine C63H88CoN14O14P) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. Here, our purpose is to understand the many-body effects originating from the transition-metal impurity. In this approach, the cobalt 3 d orbitals are treated as the impurity states placed in a semiconductor host which consists of the rest of the molecule. The parameters of the resulting effective Haldane-Anderson model are obtained within the Hartree-Fock approximation for the electronic structure of the molecule. The quantum Monte Carlo technique is then used to calculate the one-electron and magnetic correlation functions of this effective Haldane-Anderson model for vitamin B12. We find that new states form inside the semiconductor gap due to the on-site Coulomb interaction at the impurity 3 d orbitals and that these states become the highest occupied molecular orbitals. In addition, we present results on the charge distribution and spin correlations around the Co atom. We compare the results of this approach with those obtained by the density-functional theory calculations.

  16. The Lombardy Rare Donor Programme

    PubMed Central

    Revelli, Nicoletta; Villa, Maria Antonietta; Paccapelo, Cinzia; Manera, Maria Cristina; Rebulla, Paolo; Migliaccio, Anna Rita; Marconi, Maurizio

    2014-01-01

    Background In 2005, the government of Lombardy, an Italian region with an ethnically varied population of approximately 9.8 million inhabitants including 250,000 blood donors, founded the Lombardy Rare Donor Programme, a regional network of 15 blood transfusion departments coordinated by the Immunohaematology Reference Laboratory of the Ca’ Granda Ospedale Maggiore Policlinico in Milan. During 2005 to 2012, Lombardy funded LORD-P with 14.1 million euros. Materials and methods During 2005–2012 the Lombardy Rare Donor Programme members developed a registry of blood donors and a bank of red blood cell units with either rare blood group phenotypes or IgA deficiency. To do this, the Immunohaematology Reference Laboratory performed extensive serological and molecular red blood cell typing in 59,738 group O or A, Rh CCDee, ccdee, ccDEE, ccDee, K− or k− donors aged 18–55 with a record of two or more blood donations, including both Caucasians and ethnic minorities. In parallel, the Immunohaematology Reference Laboratory implemented a 24/7 service of consultation, testing and distribution of rare units for anticipated or emergent transfusion needs in patients developing complex red blood cell alloimmunisation and lacking local compatible red blood cell or showing IgA deficiency. Results Red blood cell typing identified 8,747, 538 and 33 donors rare for a combination of common antigens, negative for high-frequency antigens and with a rare Rh phenotype, respectively. In June 2012, the Lombardy Rare Donor Programme frozen inventory included 1,157 red blood cell units. From March 2010 to June 2012 one IgA-deficient donor was detected among 1,941 screened donors and IgA deficiency was confirmed in four previously identified donors. From 2005 to June 2012, the Immunohaematology Reference Laboratory provided 281 complex red blood cell alloimmunisation consultations and distributed 8,008 Lombardy Rare Donor Programme red blood cell units within and outside the region

  17. STM imaging of impurity resonances on Bi2Se3.

    PubMed

    Alpichshev, Zhanybek; Biswas, Rudro R; Balatsky, Alexander V; Analytis, J G; Chu, J-H; Fisher, I R; Kapitulnik, A

    2012-05-18

    In this Letter we present detailed study of the density of states near defects in Bi2Se3. In particular, we present data on the commonly found triangular defects in this system. While we do not find any measurable quasiparticle scattering interference effects, we do find localized resonances, which can be well fitted by theory [R. R. Biswas and A. V. Balatsky, Phys. Rev. B 81, 233405(R) (2010)] once the potential is taken to be extended to properly account for the observed defects. The data together with the fits confirm that while the local density of states around the Dirac point of the electronic spectrum at the surface is significantly disrupted near the impurity by the creation of low-energy resonance state, the Dirac point is not locally destroyed. We discuss our results in terms of the expected protected surface state of topological insulators.

  18. Undercompensated kondo impurity with quantum critical point

    PubMed

    Schlottmann

    2000-02-14

    The low-temperature properties of a magnetic impurity of spin S interacting with an electron gas via anisotropic spin exchange are studied via Bethe's ansatz. For S>1/2 the impurity is only partially compensated at T = 0, leaving an effective spin that is neither integer nor half integer. The entropy has an essential singularity at H = T = 0, and the susceptibility and the specific heat follow power laws of H and T with nonuniversal exponents, which are the consequence of a quantum critical point. The results for the generalization to an arbitrary number of channels are also reported. PMID:11017567

  19. The physics of Kondo impurities in graphene.

    PubMed

    Fritz, Lars; Vojta, Matthias

    2013-03-01

    This article summarizes our understanding of the Kondo effect in graphene, primarily from a theoretical perspective. We shall describe different ways to create magnetic moments in graphene, either by adatom deposition or via defects. For dilute moments, the theoretical description is in terms of effective Anderson or Kondo impurity models coupled to graphene's Dirac electrons. We shall discuss in detail the physics of these models, including their quantum phase transitions and the effect of carrier doping, and confront this with existing experimental data. Finally, we will point out connections to other quantum impurity problems, e.g., in unconventional superconductors, topological insulators, and quantum spin liquids.

  20. Native hole trap in bulk GaAs and its association with the double-charge state of the arsenic antisite defect

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Lin, D. G.; Chen, T.-P.; Skowronski, M.; Gatos, H. C.

    1985-01-01

    A dominant hole trap has been identified in p-type bulk GaAs employing deep level transient and photocapacitance spectroscopies. The trap is present at a concentration up to about 4 x 10 to the 16th per cu cm, and it has two charge states with energies 0.54 + or - 0.02 and 0.77 + or - 0.02 eV above the top of the valence band (at 77 K). From the upper level the trap can be photoexcited to a persistent metastable state just as the dominant midgap level, EL2. Impurity analysis and the photoionization characteristics rule out association of the trap with impurities Fe, Cu, or Mn. Taking into consideration theoretical results, it appears most likely that the two charge states of the trap are the single and double donor levels of the arsenic antisite As(Ga) defect.

  1. Optical spectra and intensities of graphene magnetic dot bound to a negatively charged Coulomb impurity

    SciTech Connect

    Lee, C. M. E-mail: apkschan@cityu.edu.hk; Chan, K. S. E-mail: apkschan@cityu.edu.hk

    2014-07-28

    Employing numerical diagonalization, we study the optical properties of an electron in a monolayer-graphene magnetic dot bound to an off-center negatively charged Coulomb impurity based on the massless Dirac-Weyl model. Numerical results show that, since the electron-hole symmetry is broken by the Coulomb potential, the optical absorption spectra of the magnetic dot in the presence of a Coulomb impurity are different between the electron states and the hole states. Effects of both the magnetic field and the dot size on the absorption coefficient are presented as functions of the incident photon energies.

  2. Conductance of a helical edge liquid coupled to a magnetic impurity.

    PubMed

    Tanaka, Yoichi; Furusaki, A; Matveev, K A

    2011-06-10

    Transport in an ideal two-dimensional quantum spin Hall device is dominated by the counterpropagating edge states of electrons with opposite spins, giving the universal value of the conductance, 2e(2)/h. We study the effect on the conductance of a magnetic impurity, which can backscatter an electron from one edge state to the other. In the case of isotropic Kondo exchange we find that the correction to the electrical conductance caused by such an impurity vanishes in the dc limit, while the thermal conductance does acquire a finite correction due to the spin-flip backscattering.

  3. Impurity Crystal in a Bose-Einstein Condensate

    SciTech Connect

    Roberts, David C.; Rica, Sergio

    2009-01-16

    We investigate the behavior of impurity fields immersed in a larger condensate field in various dimensions. We discuss the localization of a single impurity field within a condensate and note the effects of surface energy. We derive the functional form of the attractive condensate-mediated interaction between two impurities. Generalizing the analysis to N impurity fields, we show that within various parameter regimes a crystal of impurity fields can form spontaneously in the condensate. Finally, the system of condensate and crystallized impurity structure is shown to have nonclassical rotational inertia, which is characteristic of superfluidity; i.e., the system can be seen to exhibit supersolid behavior.

  4. Influence of impurities on the crystallization of dextrose monohydrate

    NASA Astrophysics Data System (ADS)

    Markande, Abhay; Nezzal, Amale; Fitzpatrick, John; Aerts, Luc; Redl, Andreas

    2012-08-01

    The effects of impurities on dextrose monohydrate crystallization were investigated. Crystal nucleation and growth kinetics in the presence of impurities were studied using an in-line focused beam reflectance monitoring (FBRM) technique and an in-line process refractometer. Experimental data were obtained from runs carried out at different impurity levels between 4 and 11 wt% in the high dextrose equivalent (DE) syrup. It was found that impurities have no significant influence on the solubility of dextrose in water. However, impurities have a clear influence on the nucleation and growth kinetics of dextrose monohydrate crystallization. Nucleation and growth rate were favored by low levels of impurities in the syrup.

  5. Living kidney donors and ESRD.

    PubMed

    Ross, Lainie Friedman

    2015-07-01

    There are more than 325 living kidney donors who have developed end-stage renal disease and have been listed on the Organ Procurement and Transplantation Network (OPTN)/United Network for Organ Sharing (UNOS) deceased donor kidney wait list. The OPTN/UNOS database records where these kidney donors are listed and, if they donated after April 1994, where that donation occurred. These 2 locations are often not the same. In this commentary, I examine whether a national living donor registry should be created and whether transplantation centers should be notified when one of their living kidney donors develops end-stage renal disease. I consider and refute 5 potential objections to center notification. I explain that transplantation centers should look back at these cases and input data into a registry to attempt to identify patterns that could improve donor evaluation protocols. Creating a registry and mining the information it contains is, in my view, our moral and professional responsibility to future patients and the transplantation endeavor. As individuals and as a community, we need to acknowledge the many unknown risks of living kidney donation and take responsibility for identifying these risks. We then must share information about these risks, educate prospective donors about them, and attempt to minimize them.

  6. Synthesis, Properties, and Design Principles of Donor-Acceptor Nanohoops.

    PubMed

    Darzi, Evan R; Hirst, Elizabeth S; Weber, Christopher D; Zakharov, Lev N; Lonergan, Mark C; Jasti, Ramesh

    2015-09-23

    We have synthesized a series of aza[8]cycloparaphenylenes containing one, two, and three nitrogens to probe the impact of nitrogen doping on optoelectronic properties and solid state packing. Alkylation of these azananohoops afforded the first donor-acceptor nanohoops where the phenylene backbone acts as the donor and the pyridinium units act as the acceptor. The impact on the optoelectronic properties was then studied experimentally and computationally to provide new insight into the effect of functionalization on nanohoops properties. PMID:27162989

  7. Dependence of the concentration of ionized donors on epitaxy temperature for Si:Er/Si layers grown by sublimation molecular-beam epitaxy

    SciTech Connect

    Kuznetsov, V. P.; Shmagin, V. B.; Drozdov, M. N.; Marychev, M. O.; Kudryavtsev, K. E.; Kuznetsov, M. V.; Andreev, B. A.; Kornaukhov, A. V.; Krasilnik, Z. F.

    2011-01-15

    The dependence of the concentrations of the Er impurity and ionized donors on the epitaxy temperature has been studied before and after annealing of Si:Er/Si layers grown by sublimation molecular-beam epitaxy. n-Si:Er layers have been grown in the temperature range 400-800 Degree-Sign C and annealed in hydrogen atmosphere at a temperature of 800 Degree-Sign C for 30 min. The possible nature of the donor centers is discussed.

  8. Tuning the Rainbow: Systematic Modulation of Donor-Acceptor Systems through Donor Substituents and Solvent.

    PubMed

    Larsen, Christopher B; van der Salm, Holly; Shillito, Georgina E; Lucas, Nigel T; Gordon, Keith C

    2016-09-01

    A series of donor-acceptor compounds is reported in which the energy of the triarylamine donor is systematically tuned through para substitution with electron-donating methoxy and electron-withdrawing cyano groups. The acceptor units investigated are benzothiadiazole (btd), dipyridophenazine (dppz), and its [ReCl(CO)3(dppz)] complex. The effect of modulating donor energy on the electronic and photophysical properties is investigated using (1)H NMR spectroscopy, DFT calculations, electrochemistry, electronic absorption and emission spectroscopies, ground state and resonance Raman spectroscopy, and transient absorption spectroscopy. Qualitative correlations between the donor energy and the properties of interest are obtained using Hammett σ(+) constants. Methoxy and cyano groups are shown to destabilize and stabilize, respectively, the frontier molecular orbitals, with the HOMO affected more significantly than the LUMO, narrowing the HOMO-LUMO band gap as the substituent becomes more electron-donating-observable as a bathochromic shift in low-energy charge-transfer absorption bands. Charge-transfer emission bands are also dependent on the electron-donating/withdrawing nature of the substituent, and in combination with the highly solvatochromic nature of charge-transfer states, emission can be tuned to span the entire visible region. PMID:27500590

  9. The linear optical properties of a multi-shell spherical quantum dot of a parabolic confinement for cases with and without a hydrogenic impurity

    NASA Astrophysics Data System (ADS)

    Şahin, Mehmet; Köksal, Koray

    2012-12-01

    Throughout this work, we aim to explore the linear optical properties of a semiconductor multi-shell spherical quantum dot with and without a hydrogenic donor impurity. The core and well layers are defined by the parabolic electronic potentials in the radial direction. The energy levels and corresponding wavefunctions of the structure are calculated by using the shooting technique in the framework of the effective-mass approximation. We investigate the intersublevel absorption coefficients of a single electron and the hydrogenic donor impurity comparatively as a function of the photon energy. In addition, we carry out the effect of a donor impurity and the layer thickness on the oscillator strengths and magnitude and position of absorption coefficient peaks. We illustrate the electron probability distribution and variation of the energy levels in cases with and without the impurity for different thicknesses of layers. This kind of structure gives an opportunity to tune and control the absorption coefficient of the system by changing three different thickness parameters. Also it provides a possibility to separate 0s and 1p electrons in different regions of the quantum dot.

  10. Influence of Bi-related impurity states on the bandgap and spin-orbit splitting energy of dilute III-V-Bi alloys: InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix

    NASA Astrophysics Data System (ADS)

    Samajdar, D. P.; Dhar, S.

    2016-01-01

    Valence Band Anticrossing (VBAC) Model is used to calculate the changes in band structure of Bi containing alloys such as InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix due to the incorporation of dilute concentrations of bismuth. The coupling parameter CBi which gives the magnitude of interaction of Bi impurity states with the LH, HH and SO sub bands in VBAC depends on the increase in the HH/LH related energy level EHH/LH+, location of the Bi related impurity level EBi and valence band offset ΔEVBM between the endpoint compounds in the corresponding III-V-Bi. The reduction in band gap as well as the enhancement of the spin-orbit splitting energy is well explained using this model and the calculated results are compared with the results of Virtual Crystal Approximation (VCA) and Density Functional Theory (DFT) calculations, as well as with the available experimental data and are found to have good agreement. The incorporation of Bi mainly perturbs the valence band due to the interaction of the Bi impurity states with the HH, LH and SO bands. The lowering of the conduction band minimum (CBM) due to VCA is added with the upward movement of the HH/LH bands to get the total reduction in band gap for the bismides. The valence band shifts of 31.9, 32.5, 20.8 and 12.4 meV/at%Bi for InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix respectively constitute 65, 76, 59 and 31% of the total band gap reduction and the rest is the contribution of the conduction band shift. The spin-orbit splitting energy also shows significant increase with the maximum change in InPBi and the minimum in InSbBi. The same is true for Ga containing bismides if we make a comparison with the available values for GaAsBi and GaPBi with that of GaSbBi. It has also been observed that the increase in splitting energy is greater in case of the bismides such as InAsBi, InPBi and GaAsBi than the bismides such as InSbBi and GaSbBi with the parent substrates having higher values of splitting energy. This may

  11. Impurity in a Bose-Einstein Condensate and the Efimov Effect

    NASA Astrophysics Data System (ADS)

    Levinsen, Jesper; Parish, Meera M.; Bruun, Georg M.

    2015-09-01

    We investigate the zero-temperature properties of an impurity particle interacting with a Bose-Einstein condensate (BEC), using a variational wave function that includes up to two Bogoliubov excitations of the BEC. This allows one to capture three-body Efimov physics, as well as to recover the first nontrivial terms in the weak-coupling expansion. We show that the energy and quasiparticle residue of the dressed impurity (polaron) are significantly lowered by three-body correlations, even for weak interactions where there is no Efimov trimer state in a vacuum. For increasing attraction between the impurity and the BEC, we observe a smooth crossover from atom to Efimov trimer, with a superposition of states near the Efimov resonance. We furthermore demonstrate that three-body loss does not prohibit the experimental observation of these effects. Our results thus suggest a route to realizing Efimov physics in a stable quantum many-body system for the first time.

  12. Effect of nonmagnetic impurities on s± superconductivity in the presence of incipient bands

    NASA Astrophysics Data System (ADS)

    Chen, X.; Mishra, V.; Maiti, S.; Hirschfeld, P. J.

    2016-08-01

    Several Fe chalcogenide superconductors without hole pockets at the Fermi level display high temperature superconductivity, in apparent contradiction to naive spin fluctuation pairing arguments. Recently, scanning tunneling microscopy experiments studied the influence of impurities on some of these materials and claimed that nonmagnetic impurities do not create in-gap states, leading to the conclusion that the gap must be s++, i.e., conventional s wave with no gap sign change. Here we critique this argument, and give various ways sign-changing gaps can be consistent with the absence of such bound states. In particular, we calculate the bound states for an s± system with a hole pocket below the Fermi level, and show that the nonmagnetic impurity bound state energy generically tracks the gap edge Em i n in the system, thereby rendering it unobservable. A failure to observe a bound state in the case of a nonmagnetic impurity therefore cannot be used as an argument to exclude sign-changing pairing states.

  13. Cancer of the colon in an egg donor: policy repercussions for donor recruitment.

    PubMed

    Ahuja, K K; Simons, E G

    1998-01-01

    This paper describes the tragic case of a young woman who died of cancer of the colon after successfully donating eggs to her younger sister. Although there is no direct link between her operation and the subsequent development of bowel carcinoma, this case imparts a feeling of unease when seen in conjunction with other cases reported during the last few years. It is a reminder that little is known of the long-term consequences of some aspects of assisted conception. Women undergoing ovarian stimulation for themselves or a matched recipient have the right to be advised, in an agreed format, that there is some concern about unproven potential risks from the stimulatory drugs. The safety of egg donors must assume priority over all other considerations, including lack of donors or any moral position. The recent decision by the Human Fertilisation and Embryology Authority (HFEA) to withdraw any form of payment or recompense to egg donors does not seem to us to be based on a balance of scientific advances, patient needs and the ethics of gamete supply. They state that the intention to withdraw payments was implicit in the 1990 Human Fertilisation and Embryology (HFE) Act. However the Act was based on the Warnock report made 6 years earlier. Even in 1990 ovum donation was uncommon and fertility drugs had not yet caused any unease. The Act provided the HFEA with discretionary powers to issue directions so that the future policies would be consistent with any emerging new medical evidence. It is imperative that the HFEA provide convincing evidence on how the current policy of payment to donors harms society, donors or recipients, and how in the UK the new policy will improve medical practice in assisted conception. Successful pilot studies must precede the implementation of any new policy. Failure to do this could cause irreversible harm to the practice of assisted conception using donor gametes, which will ultimately be against the basic aims of the 1990 HFE Act.

  14. Density matrix renormalization group study in energy space for a single-impurity Anderson model and an impurity quantum phase transition

    NASA Astrophysics Data System (ADS)

    Shirakawa, Tomonori; Yunoki, Seiji

    2016-05-01

    The density matrix renormalization group method is introduced in energy space to study Anderson impurity models. The method allows for calculations in the thermodynamic limit and is advantageous for studying not only the dynamical properties, but also the quantum entanglement of the ground state at the vicinity of an impurity quantum phase transition. This method is applied to obtain numerically exactly the ground-state phase diagram of the single-impurity Anderson model on the honeycomb lattice at half-filling. The calculation of local static quantities shows that the phase diagram contains two distinct phases, the local moment (LM) phase and the asymmetric strong coupling (ASC) phase, but no Kondo screening phase. These results are supported by the local spin and charge excitation spectra, which exhibit qualitatively different behavior in these two phases and also reveal the existence of the valence fluctuating point at the phase boundary. For comparison, we also study the low-energy effective pseudogap Anderson model using the method introduced here. Although the high-energy excitations are obviously different, we find that the ground-state phase diagram and the asymptotically low-energy excitations are in good quantitative agreement with those for the single-impurity Anderson model on the honeycomb lattice, thus providing a quantitative justification for the previous studies based on low-energy approximate approaches. Furthermore, we find that the lowest entanglement level is doubly degenerate for the LM phase, whereas it is singlet for the ASC phase and is accidentally threefold degenerate at the valence fluctuating point. This should be contrasted with the degeneracy of the energy spectrum because the ground state is found to be always singlet. Our results therefore clearly demonstrate that the low-lying entanglement spectrum can be used to determine with high accuracy the phase boundary of the impurity quantum phase transition.

  15. Being a Living Donor: Risks

    MedlinePlus

    ... for blood transfusions side effects associated with allergic reactions to the anesthesia death The best source of information about risks and expected donor outcomes is your transplant team. In addition, it’s important to take an active role in ...

  16. Donor selection in heart transplantation

    PubMed Central

    Emani, Sitaramesh; Sai-Sudhakar, Chittoor B.; Higgins, Robert S. D.; Whitson, Bryan A.

    2014-01-01

    There is increased scrutiny on the quality in health care with particular emphasis on institutional heart transplant survival outcomes. An important aspect of successful transplantation is appropriate donor selection. We review the current guidelines as well as areas of controversy in the selection of appropriate hearts as donor organs to ensure optimal outcomes. This decision is paramount to the success of a transplant program as well as recipient survival and graft function post-transplant. PMID:25132976

  17. Process and system for removing impurities from a gas

    DOEpatents

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  18. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers

    NASA Astrophysics Data System (ADS)

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N. V.; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-12-01

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affinities of the donor and the acceptor, the triplet-triplet state can have a stronger oscillator strength than the charge-transfer exciton. We discuss the possibility of intramolecular singlet fission from the triplet-triplet state, and how such fission can be detected experimentally.

  19. Distribution Coefficients of Impurities in Metals

    NASA Astrophysics Data System (ADS)

    Pearce, J. V.

    2014-04-01

    Impurities dissolved in very pure metals at the level of parts per million often cause an elevation or depression of the freezing temperature of the order of millikelvins. This represents a significant contribution to the uncertainty of standard platinum resistance thermometer calibrations. An important parameter for characterizing the behavior of impurities is the distribution coefficient , which is the ratio of the solid solubility to liquid solubility. A knowledge of for a given binary system is essential for contemporary methods of evaluating or correcting for the effect of impurities, and it is therefore of universal interest to have the most complete set of values possible. A survey of equilibrium values of (in the low concentration limit) reported in the literature for the International Temperature Scale of 1990 fixed points of Hg, Ga, In, Sn, Zn, Al, Au, Ag, and Cu is presented. In addition, thermodynamic calculations of using MTDATA are presented for 170 binary systems. In total, the combined values of from all available sources for 430 binary systems are presented. In addition, by considering all available values of for impurities in 25 different metal solvents (1300 binary systems) enough data are available to characterize patterns in the value of for a given impurity as a function of its position in the periodic table. This enables prediction of for a significant number of binary systems for which data and calculations are unavailable. By combining data from many sources, values of for solutes (atomic number from 1 to 94) in ITS-90 fixed points from Hg to Cu are suggested, together with some tentative predicted values where literature data and calculations are unavailable.

  20. GaAs Blocked-Impurity-Band Detectors for Far-Infrared Astronomy

    SciTech Connect

    Cardozo, Benjamin Lewin

    2004-01-01

    High-purity and doped GaAs films have been grown by Liquid-phase epitaxy (LPE) for development of a blocked impurity band (BIB) detector for far-infrared radiation. The film growth process developed has resulted in the capability to grow GaAs with a net active impurity concentration below 1 x 1013 cm-3, ideal for the blocking layer of the BIB detector. The growth of n-type LPE GaAs films with donor concentrations below the metal-insulator transition, as required for the absorbing layer of a BIB detector, has been achieved. The control of the donor concentration, however, was found to be insufficient for detector production. The growth by LPE of a high-purity film onto a commercially grown vapor-phase epitaxial (VPE) n-type GaAs doped absorbing layer resulted in a BIB device that showed a significant reduction in the low-temperature dark current compared to the absorbing layer only. Extended optical response was not detected, most likely due to the high compensation of the commercially grown GaAs absorbing layer, which restricts the depletion width of the device.

  1. The Potts model on a Bethe lattice with nonmagnetic impurities

    SciTech Connect

    Semkin, S. V. Smagin, V. P.

    2015-10-15

    We have obtained a solution for the Potts model on a Bethe lattice with mobile nonmagnetic impurities. A method is proposed for constructing a “pseudochaotic” impurity distribution by a vanishing correlation in the arrangement of impurity atoms for the nearest sites. For a pseudochaotic impurity distribution, we obtained the phase-transition temperature, magnetization, and spontaneous magnetization jumps at the phase-transition temperature.

  2. Motivations for Giving of Alumni Donors, Lapsed Donors and Non-Donors: Implications for Christian Higher Education

    ERIC Educational Resources Information Center

    Rugano, Emilio Kariuki

    2011-01-01

    This descriptive and causal comparative study sought to identify motivations for alumni donor acquisition and retention in Christian institutions of higher learning. To meet this objective, motivations for alumni donors, lapsed donors, and non-donors were analyzed and compared. Data was collected through an electronic survey of a stratified sample…

  3. Tunable Dirac-point resonance induced by a STM-coupled Anderson impurity on a topological insulator surface

    NASA Astrophysics Data System (ADS)

    Deng, Ming-Xun; Wang, Rui-Qiang; Luo, Wei; Sheng, L.; Wang, B. G.; Xing, D. Y.

    2016-09-01

    The interaction effect between the surface states of a topological insulator (TI) and a STM-coupled Anderson impurity is studied by using equations of motion of the Green’s functions. Remarkably, we show that when a coupling between the Anderson impurity and the STM tip is included, the tunneling resonance and the Kondo peak can be tuned to be exactly at the Dirac point, by adjusting the impurity level and Fermi energy, such that the local density of states at the Dirac point is significantly enhanced. This is in contrast to the case of a STM-decoupled Anderson impurity, where both resonances are always fully suppressed at the Dirac point. Our finding suggests a pathway to experimentally control the fundamental properties of the electrons on a TI surface.

  4. Pressure dependence of donor excitation spectra in AlSb

    SciTech Connect

    Hsu, L.; McCluskey, M.D.; Haller, E.E.

    2002-01-16

    We have investigated the behavior of ground to bound excited-state electronic transitions of Se and Te donors in AlSb as a function of hydrostatic pressure. Using broadband far-infrared Fourier transform spectroscopy, we observe qualitatively different behaviors of the electronic transition energies of the two donors. While the pressure derivative of the Te transition energy is small and constant, as might be expected for a shallow donor, the pressure derivatives of the Se transition energies are quadratic and large at low pressures, indicating that Se is actually a deep donor. In addition, at pressures between 30 and 50 kbar, we observe evidence of an anti-crossing between one of the selenium electronic transitions and a two-phonon mode.

  5. Spatially resolving valley quantum interference of a donor in silicon.

    PubMed

    Salfi, J; Mol, J A; Rahman, R; Klimeck, G; Simmons, M Y; Hollenberg, L C L; Rogge, S

    2014-06-01

    Electron and nuclear spins of donor ensembles in isotopically pure silicon experience a vacuum-like environment, giving them extraordinary coherence. However, in contrast to a real vacuum, electrons in silicon occupy quantum superpositions of valleys in momentum space. Addressable single-qubit and two-qubit operations in silicon require that qubits are placed near interfaces, modifying the valley degrees of freedom associated with these quantum superpositions and strongly influencing qubit relaxation and exchange processes. Yet to date, spectroscopic measurements have only probed wavefunctions indirectly, preventing direct experimental access to valley population, donor position and environment. Here we directly probe the probability density of single quantum states of individual subsurface donors, in real space and reciprocal space, using scanning tunnelling spectroscopy. We directly observe quantum mechanical valley interference patterns associated with linear superpositions of valleys in the donor ground state. The valley population is found to be within 5% of a bulk donor when 2.85 ± 0.45 nm from the interface, indicating that valley-perturbation-induced enhancement of spin relaxation will be negligible for depths greater than 3 nm. The observed valley interference will render two-qubit exchange gates sensitive to atomic-scale variations in positions of subsurface donors. Moreover, these results will also be of interest for emerging schemes proposing to encode information directly in valley polarization. PMID:24705384

  6. Spatially resolving valley quantum interference of a donor in silicon.

    PubMed

    Salfi, J; Mol, J A; Rahman, R; Klimeck, G; Simmons, M Y; Hollenberg, L C L; Rogge, S

    2014-06-01

    Electron and nuclear spins of donor ensembles in isotopically pure silicon experience a vacuum-like environment, giving them extraordinary coherence. However, in contrast to a real vacuum, electrons in silicon occupy quantum superpositions of valleys in momentum space. Addressable single-qubit and two-qubit operations in silicon require that qubits are placed near interfaces, modifying the valley degrees of freedom associated with these quantum superpositions and strongly influencing qubit relaxation and exchange processes. Yet to date, spectroscopic measurements have only probed wavefunctions indirectly, preventing direct experimental access to valley population, donor position and environment. Here we directly probe the probability density of single quantum states of individual subsurface donors, in real space and reciprocal space, using scanning tunnelling spectroscopy. We directly observe quantum mechanical valley interference patterns associated with linear superpositions of valleys in the donor ground state. The valley population is found to be within 5% of a bulk donor when 2.85 ± 0.45 nm from the interface, indicating that valley-perturbation-induced enhancement of spin relaxation will be negligible for depths greater than 3 nm. The observed valley interference will render two-qubit exchange gates sensitive to atomic-scale variations in positions of subsurface donors. Moreover, these results will also be of interest for emerging schemes proposing to encode information directly in valley polarization.

  7. Metal-based impurities in graphenes: application for electroanalysis.

    PubMed

    Chee, Sze Yin; Pumera, Martin

    2012-05-01

    We show here that metallic impurities presented in graphenes prepared from graphite can be usefully employed for electroanalysis. We demonstrate that cumene hydroperoxide electrochemical reduction on graphene containing iron-based impurities provides significantly larger voltammetric currents than the same experiment using iron oxide nanoparticles. This opens doors for turning metallic impurities into potentially useful components of graphene based electrochemical systems.

  8. Monte Carlo method for magnetic impurities in metals

    NASA Technical Reports Server (NTRS)

    Hirsch, J. E.; Fye, R. M.

    1986-01-01

    The paper discusses a Monte Carlo algorithm to study properties of dilute magnetic alloys; the method can treat a small number of magnetic impurities interacting wiith the conduction electrons in a metal. Results for the susceptibility of a single Anderson impurity in the symmetric case show the expected universal behavior at low temperatures. Some results for two Anderson impurities are also discussed.

  9. Impurity Screening in Ohmic and H-Mode Plasmas in the Alcator C-Mod Tokamak^*

    NASA Astrophysics Data System (ADS)

    McCracken, G. M.

    1996-11-01

    The impurity density in the confined plasma is determined not only by the impurity production rate but also by screening, i.e. the balance between the perpendicular and parallel transport in the SOL. The relative importance of screening has been studied by injecting gaseous recycling (Ne, Ar) and non-recycling impurities (N, C) into various poloidal positions of the SOL and divertor in C-Mod. The density of the non-recycling impurities in the core is a function of the poloidal position of injection, while the screening of recycling impurities is not. In both cases screening is significantly worse ( ~3x) during divertor detachment. For a given injection rate of N2 gas into H-mode discharges, the number of impurities in the core is typically a factor of 3 greater than for ohmic discharges. Optical imaging of low charge states of the injected non-recycling impurities using a camera and spectral filters shows a directed plume, indicating flow of impurities towards the divertor target at all positions studied, even at the inboard midplane. This implies that the friction force due to plasma flow dominates the parallel ion temperature gradient force. The spatial distribution of low charge states in the divertor has been studied using a multichord visible spectrometer, and the distribution of the nitrogen radiation has been been studied using a 20 chord bolometer array. The results show that for attached discharges the nitrogen radiation is predominantly in the SOL below the X-point. The position of the radiation is not strongly dependent on the position of nitrogen injection. The screening has been compared with calculations using the DIVIMP Monte Carlo code [1] and with an analytical model of the impurity transport. Work supported by U.S. DOE Contract No. DE-AC02-78ET51013. În collaboration with B Lipschultz, B LaBombard, J A Goetz, R Granetz, D Jablonski, H Ohkawa, J Terry, MIT, S Lisgo, P C Stangeby, University of Toronto, ^1P.C. Stangeby and D. Elder, J. Nucl. Mater

  10. Diagnosis and management of tuberculosis in transplant donors: a donor-derived infections consensus conference report.

    PubMed

    Morris, M I; Daly, J S; Blumberg, E; Kumar, D; Sester, M; Schluger, N; Kim, S-H; Schwartz, B S; Ison, M G; Humar, A; Singh, N; Michaels, M; Orlowski, J P; Delmonico, F; Pruett, T; John, G T; Kotton, C N

    2012-09-01

    Mycobacterium tuberculosis is a ubiquitous organism that infects one-third of the world's population. In previous decades, access to organ transplantation was restricted to academic medical centers in more developed, low tuberculosis (TB) incidence countries. Globalization, changing immigration patterns, and the expansion of sophisticated medical procedures to medium and high TB incidence countries have made tuberculosis an increasingly important posttransplant infectious disease. Tuberculosis is now one of the most common bacterial causes of solid-organ transplant donor-derived infection reported in transplant recipients in the United States. Recognition of latent or undiagnosed active TB in the potential organ donor is critical to prevent emergence of disease in the recipient posttransplant. Donor-derived tuberculosis after transplantation is associated with significant morbidity and mortality, which can best be prevented through careful screening and targeted treatment. To address this growing challenge and provide recommendations, an expert international working group was assembled including specialists in transplant infectious diseases, transplant surgery, organ procurement and TB epidemiology, diagnostics and management. This working group reviewed the currently available data to formulate consensus recommendations for screening and management of TB in organ donors. PMID:22883346

  11. Role of the independent donor advocacy team in ethical decision making.

    PubMed

    Rudow, Dianne LaPointe; Brown, Robert S

    2005-09-01

    Adult living donor liver transplantation has developed as a direct result of the critical shortage of deceased donors. Recent regulations passed by New York State require transplant programs to appoint an Independent Donor Advocacy Team to evaluate, educate, and consent to all potential living liver donors. Ethical issues surround the composition of the team, who appoints them, and the role the team plays in the process. Critics of living liver donation have questioned issues surrounding motivation and the ability of donors to provide true informed consent during a time of family crisis. This article will address issues surrounding the controversies and discuss how using the team can effectively evaluate and educate potential living liver donors and improve practice to ensure safety of living donors.

  12. Jamming and percolation in random sequential adsorption of extended objects on a triangular lattice with quenched impurities

    NASA Astrophysics Data System (ADS)

    Budinski-Petković, Lj; Lončarević, I.; Jakšić, Z. M.; Vrhovac, S. B.

    2016-05-01

    Random sequential adsorption (RSA) on a triangular lattice with defects is studied by Monte Carlo simulations. The lattice is initially randomly covered by point-like impurities at a certain concentration p. The deposited objects are formed by self-avoiding random walks on the lattice. Jamming coverage {θ\\text{jam}} and percolation threshold θ \\text{p}\\ast are determined for a wide range of impurity concentrations p for various object shapes. Rapidity of the approach to the jamming state is found to be independent on the impurity concentration. The jamming coverage {θ\\text{jam}} decreases with the impurity concentration p and this decrease is more prominent for objects of larger size. For a certain defect concentration, decrease of the jamming coverage with the length of the walk \\ell making the object is found to obey an exponential law, {θ\\text{jam}}={θ0}+{θ1}{{\\text{e}}-\\ell /r} . The results for RSA of polydisperse mixtures of objects of various sizes suggest that, in the presence of impurities, partial jamming coverage of small objects can have even larger values than in the case of an ideal lattice. Percolation in the presence of impurities is also studied and it is found that the percolation threshold θ \\text{p}\\ast is practically insensitive to the concentration of point defects p. Percolation can be reached at highest impurity concentrations with angled objects, and the critical defect concentration p c is lowest for the most compact objects.

  13. Blood Donation by Elderly Repeat Blood Donors

    PubMed Central

    Zeiler, Thomas; Lander-Kox, Jutta; Alt, Timo

    2014-01-01

    Summary Background Upper age limits for blood donors are intended to protect elderly blood donors from donor reactions. However, due to a lack of data about adverse reactions in elderly blood donors, upper age limits are arbitrary and vary considerably between different countries. Methods Here we present data from 171,231 voluntary repeat whole blood donors beyond the age of 68 years. Results Blood donations from repeat blood donors beyond the age of 68 years increased from 2,114 in 2005 to 38,432 in 2012 (from 0,2% to 4.2% of all whole blood donations). Adverse donor reactions in repeat donors decreased with age and were lower than in the whole group (0.26%), even in donors older than 71 years (0.16%). However, from the age of 68 years, the time to complete recovery after donor reactions increased. Donor deferrals were highest in young blood donors (21.4%), but increased again in elderly blood donors beyond 71 years (12.6%). Conclusion Blood donation by regular repeat blood donors older than 71 years may be safely continued. However, due to a lack of data for donors older than 75 years, blood donation in these donors should be handled with great caution. PMID:25254019

  14. Protein Crystal Growth Dynamics and Impurity Incorporation

    NASA Technical Reports Server (NTRS)

    Chernov, Alex A.; Thomas, Bill

    2000-01-01

    The general concepts and theories of crystal growth are proven to work for biomolecular crystallization. This allowed us to extract basic parameters controlling growth kinetics - free surface energy, alpha, and kinetic coefficient, beta, for steps. Surface energy per molecular site in thermal units, alpha(omega)(sup 2/3)/kT approx. = 1, is close to the one for inorganic crystals in solution (omega is the specific molecular volume, T is the temperature). Entropic restrictions on incorporation of biomolecules into the lattice reduce the incorporation rate, beta, by a factor of 10(exp 2) - 10(exp 3) relative to inorganic crystals. A dehydration barrier of approx. 18kcal/mol may explain approx. 10(exp -6) times difference between frequencies of adding a molecule to the lattice and Brownian attempts to do so. The latter was obtained from AFM measurements of step and kink growth rates on orthorhombic lysozyme. Protein and many inorganic crystals typically do not belong to the Kossel type, thus requiring a theory to account for inequivalent molecular positions within its unit cell. Orthorhombic lysozyme will serve as an example of how to develop such a theory. Factors deteriorating crystal quality - stress and strain, mosaicity, molecular disorder - will be reviewed with emphasis on impurities. Dimers in ferritin and lysozyme and acetylated lysozyme, are microheterogeneous i.e. nearly isomorphic impurities that are shown to be preferentially trapped by tetragonal lysozyme and ferritin crystals, respectively. The distribution coefficient, K defined as a ratio of the (impurity/protein) ratios in crystal and in solution is a measure of trapping. For acetylated lysoyzme, K = 2.15 or, 3.42 for differently acetylated forms, is independent of both the impurity and the crystallizing protein concentration. The reason is that impurity flux to the surface is constant while the growth rate rises with supersaturation. About 3 times lower dimer concentration in space grown ferritin and

  15. Charge Kondo anomalies in PbTe doped with Tl impurities.

    PubMed

    Costi, T A; Zlatić, V

    2012-01-20

    We investigate the properties of PbTe doped with a small concentration x of Tl impurities acting as acceptors and described by Anderson impurities with negative onsite correlation energy. We use the numerical renormalization group method to show that the resulting charge Kondo effect naturally accounts for the unusual low temperature and doping dependence of normal state properties, including the self-compensation effect in the carrier density and the nonmagnetic Kondo anomaly in the resistivity. These are found to be in good qualitative agreement with experiment. Our results for the Tl s-electron spectral function provide a new interpretation of point contact data.

  16. Majorana fermions at odd junctions in a wire network of ferromagnetic impurities

    NASA Astrophysics Data System (ADS)

    Björnson, Kristofer; Black-Schaffer, Annica M.

    2016-09-01

    We consider a wire network of ferromagnetic impurities on the surface of an s -wave superconductor with a strong Rashba spin-orbit interaction. Within the topological phase, zero-energy Majorana fermions appear at the wire end points as well as at junctions between an odd number of wire segments, while no clearly isolated subgap states are present at junctions between an even number of wire segments, providing strong, experimentally accessible signatures for Majorana fermions. We also investigate the quasiparticle energy gap with respect to varying the Rashba spin-orbit coupling and magnetic impurity strength.

  17. Electron tunneling into superconducting indium and lead films containing the magnetic impurity manganese

    SciTech Connect

    Tsang, Juine Kai

    1980-01-01

    Tunneling measurements of quench-condensed In-Mn and Pb-Mn alloy films were made. The results were compared with Shiba's theory of superconductors containing magnetic impurities. The localized excited impurity states predicted by Shiba's theory were observed in both alloys. In addition to s-wave scattering, it was necessary to include p- and d-wave scattering of the conduction electrons in the theory in order to explain the experimental data. Partial agreement between the theory and the experimental data was obtained using phase shifts from band calculations by A.B. Kunz. The results on In-Mn also agree with thermal conductivity data.

  18. IDENTIFYING IMPURITIES IN SURPLUS NON PIT PLUTONIUM FEEDS FOR MOX OR ALTERNATIVE DISPOSITION

    SciTech Connect

    Allender, J; Moore, E

    2010-07-14

    This report provides a technical basis for estimating the level of corrosion products in materials stored in DOE-STD-3013 containers based on extrapolating available chemical sample results. The primary focus is to estimate the levels of nickel, iron, and chromium impurities in plutonium-bearing materials identified for disposition in the United States Mixed Oxide fuel process.

  19. Who is the best alternative allotransplant donor?

    PubMed Central

    Gale, RP; Eapen, M

    2015-01-01

    Assuming that most physicians will chose an HLA-identical sibling as the best allotransplant donor, the question arises who is the best alternative donor when an HLA-identical sibling is unavailable? The most commonly used alternative donors are HLA-identical or -mismatched unrelated donors, HLA-matched or -mismatched umbilical cord blood donor or a related, HLA-haplotype-matched related donors. Each alternative donor option has advantages and disadvantages. We discuss selected aspects of these issues based on data from randomized clinical trials and observational databases. However, because there are limited data to address specific clinical settings, quantification of expert opinion is sometimes needed. PMID:26039206

  20. Scattering-induced quantum correlation in electronic waveguides with static magnetic impurities

    NASA Astrophysics Data System (ADS)

    Ghanbari-Adivi, E.; Soltani, M.; Alami, Z.; Sheikhali, M.

    2016-07-01

    Entanglement generation due to low-energy scattering of the transporting electrons in an electronic waveguide by a quantum dot magnetic impurity is theoretically investigated. The transverse confining potential of the waveguide is considered as a two-dimensional harmonic potential, and the interaction of the electron with the impurity is described by a zero-range pseudopotential modulated by an Ising or a Heisenberg spin interaction. Our calculation shows that the scattering process leads to creation of a considerable amount of entanglement in the state of the reflected and transmitted electrons. The situation is extended to the scattering of the electrons by two well-separated magnetic impurities localized on the nanowire axis. It is shown that the scattering process causes the magnetic impurities embedded in the nanowire to share their quantum information; subsequently, they can be entangled by spin interaction with the injected electron. The created entanglement between the impurities is calculated and discussed. It is shown that the exact three-dimensional problem can be approximated as a one-dimensional problem under certain circumstances. The approximate results are compared to exact calculations and discussed.

  1. Scattering-induced quantum correlation in electronic waveguides with static magnetic impurities

    NASA Astrophysics Data System (ADS)

    Ghanbari-Adivi, E.; Soltani, M.; Alami, Z.; Sheikhali, M.

    2016-10-01

    Entanglement generation due to low-energy scattering of the transporting electrons in an electronic waveguide by a quantum dot magnetic impurity is theoretically investigated. The transverse confining potential of the waveguide is considered as a two-dimensional harmonic potential, and the interaction of the electron with the impurity is described by a zero-range pseudopotential modulated by an Ising or a Heisenberg spin interaction. Our calculation shows that the scattering process leads to creation of a considerable amount of entanglement in the state of the reflected and transmitted electrons. The situation is extended to the scattering of the electrons by two well-separated magnetic impurities localized on the nanowire axis. It is shown that the scattering process causes the magnetic impurities embedded in the nanowire to share their quantum information; subsequently, they can be entangled by spin interaction with the injected electron. The created entanglement between the impurities is calculated and discussed. It is shown that the exact three-dimensional problem can be approximated as a one-dimensional problem under certain circumstances. The approximate results are compared to exact calculations and discussed.

  2. The Consultancy Activity on In Silico Models for Genotoxic Prediction of Pharmaceutical Impurities.

    PubMed

    Pavan, Manuela; Kovarich, Simona; Bassan, Arianna; Broccardo, Lorenza; Yang, Chihae; Fioravanzo, Elena

    2016-01-01

    The toxicological assessment of DNA-reactive/mutagenic or clastogenic impurities plays an important role in the regulatory process for pharmaceuticals; in this context, in silico structure-based approaches are applied as primary tools for the evaluation of the mutagenic potential of the drug impurities. The general recommendations regarding such use of in silico methods are provided in the recent ICH M7 guideline stating that computational (in silico) toxicology assessment should be performed using two (Q)SAR prediction methodologies complementing each other: a statistical-based method and an expert rule-based method.Based on our consultant experience, we describe here a framework for in silico assessment of mutagenic potential of drug impurities. Two main applications of in silico methods are presented: (1) support and optimization of drug synthesis processes by providing early indication of potential genotoxic impurities and (2) regulatory evaluation of genotoxic potential of impurities in compliance with the ICH M7 guideline. Some critical case studies are also discussed.

  3. Comparison of density functionals for nitrogen impurities in ZnO

    NASA Astrophysics Data System (ADS)

    Sakong, Sung; Gutjahr, Johann; Kratzer, Peter

    2013-06-01

    Hybrid functionals and empirical correction schemes are compared to conventional semi-local density functional theory (DFT) calculations in order to assess the predictive power of these methods concerning the formation energy and the charge transfer level of impurities in the wide-gap semiconductor ZnO. While the generalized gradient approximation fails to describe the electronic structure of the N impurity in ZnO correctly, methods that widen the band gap of ZnO by introducing additional non-local potentials yield the formation energy and charge transfer level of the impurity in reasonable agreement with hybrid functional calculations. Summarizing the results obtained with different methods, we corroborate earlier findings that the formation of substitutional N impurities at the oxygen site in ZnO from N atoms is most likely slightly endothermic under oxygen-rich preparation conditions, and introduces a deep level more than 1 eV above the valence band edge of ZnO. Moreover, the comparison of methods elucidates subtle differences in the predicted electronic structure, e.g., concerning the orientation of unoccupied orbitals in the crystal field and the stability of the charged triplet state of the N impurity. Further experimental or theoretical analysis of these features could provide useful tests for validating the performance of DFT methods in their application to defects in wide-gap materials.

  4. Comparison of density functionals for nitrogen impurities in ZnO.

    PubMed

    Sakong, Sung; Gutjahr, Johann; Kratzer, Peter

    2013-06-21

    Hybrid functionals and empirical correction schemes are compared to conventional semi-local density functional theory (DFT) calculations in order to assess the predictive power of these methods concerning the formation energy and the charge transfer level of impurities in the wide-gap semiconductor ZnO. While the generalized gradient approximation fails to describe the electronic structure of the N impurity in ZnO correctly, methods that widen the band gap of ZnO by introducing additional non-local potentials yield the formation energy and charge transfer level of the impurity in reasonable agreement with hybrid functional calculations. Summarizing the results obtained with different methods, we corroborate earlier findings that the formation of substitutional N impurities at the oxygen site in ZnO from N atoms is most likely slightly endothermic under oxygen-rich preparation conditions, and introduces a deep level more than 1 eV above the valence band edge of ZnO. Moreover, the comparison of methods elucidates subtle differences in the predicted electronic structure, e.g., concerning the orientation of unoccupied orbitals in the crystal field and the stability of the charged triplet state of the N impurity. Further experimental or theoretical analysis of these features could provide useful tests for validating the performance of DFT methods in their application to defects in wide-gap materials. PMID:23802971

  5. Time-reversal breaking and spin transport induced by magnetic impurities in a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Derakhshan, V.; Ketabi, S. A.; Moghaddam, A. G.

    2016-09-01

    We employed the formalism of bond currents, expressed in terms of non-equilibrium Green’s function to obtain the local currents and transport features of zigzag silicene ribbon in the presence of magnetic impurity. When only intrinsic and Rashba spin-orbit interactions are present, silicene behaves as a two-dimensional topological insulator with gapless edge states. But in the presence of finite intrinsic spin-orbit interaction, the edge states start to penetrate into the bulk of the sample by increasing Rashba interaction strength. The exchange interaction induced by local impurities breaks the time-reversal symmetry of the gapless edge states and influences the topological properties strongly. Subsequently, the singularity of partial Berry curvature disappears and the silicene nanoribbon becomes a trivial insulator. On the other hand, when the concentration of the magnetic impurities is low, the edge currents are not affected significantly. In this case, when the exchange field lies in the x-y plane, the spin mixing around magnetic impurity is more profound rather than the case in which the exchange field is directed along the z-axis. Nevertheless, when the exchange field of magnetic impurities is placed in the x-y plane, a spin-polarized conductance is observed. The resulting conductance polarization can be tuned by the concentration of the impurities and even completely polarized spin transport is achievable.

  6. Time-reversal breaking and spin transport induced by magnetic impurities in a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Derakhshan, V.; Ketabi, S. A.; Moghaddam, A. G.

    2016-09-01

    We employed the formalism of bond currents, expressed in terms of non-equilibrium Green’s function to obtain the local currents and transport features of zigzag silicene ribbon in the presence of magnetic impurity. When only intrinsic and Rashba spin–orbit interactions are present, silicene behaves as a two-dimensional topological insulator with gapless edge states. But in the presence of finite intrinsic spin–orbit interaction, the edge states start to penetrate into the bulk of the sample by increasing Rashba interaction strength. The exchange interaction induced by local impurities breaks the time-reversal symmetry of the gapless edge states and influences the topological properties strongly. Subsequently, the singularity of partial Berry curvature disappears and the silicene nanoribbon becomes a trivial insulator. On the other hand, when the concentration of the magnetic impurities is low, the edge currents are not affected significantly. In this case, when the exchange field lies in the x–y plane, the spin mixing around magnetic impurity is more profound rather than the case in which the exchange field is directed along the z-axis. Nevertheless, when the exchange field of magnetic impurities is placed in the x–y plane, a spin-polarized conductance is observed. The resulting conductance polarization can be tuned by the concentration of the impurities and even completely polarized spin transport is achievable.

  7. Donor-driven spin relaxation in multivalley semiconductors.

    PubMed

    Song, Yang; Chalaev, Oleg; Dery, Hanan

    2014-10-17

    The observed dependence of spin relaxation on the identity of the donor atom in n-type silicon has remained without explanation for decades and poses a long-standing open question with important consequences for modern spintronics. Taking into account the multivalley nature of the conduction band in silicon and germanium, we show that the spin-flip amplitude is dominated by short-range scattering off the central-cell potential of impurities after which the electron is transferred to a valley on a different axis in k space. Through symmetry arguments, we show that this spin-flip process can strongly affect the spin relaxation in all multivalley materials in which time-reversal cannot connect distinct valleys. From the physical insights gained from the theory, we provide guidelines to significantly enhance the spin lifetime in semiconductor spintronics devices. PMID:25361275

  8. Donor-driven spin relaxation in multivalley semiconductors.

    PubMed

    Song, Yang; Chalaev, Oleg; Dery, Hanan

    2014-10-17

    The observed dependence of spin relaxation on the identity of the donor atom in n-type silicon has remained without explanation for decades and poses a long-standing open question with important consequences for modern spintronics. Taking into account the multivalley nature of the conduction band in silicon and germanium, we show that the spin-flip amplitude is dominated by short-range scattering off the central-cell potential of impurities after which the electron is transferred to a valley on a different axis in k space. Through symmetry arguments, we show that this spin-flip process can strongly affect the spin relaxation in all multivalley materials in which time-reversal cannot connect distinct valleys. From the physical insights gained from the theory, we provide guidelines to significantly enhance the spin lifetime in semiconductor spintronics devices.

  9. Quantum correlations of magnetic impurities by a multiple electron scattering in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gamboa Angulo, Didier; Cordourier Maruri, Guillermo; de Coss Gómez, Romeo

    In this work we analyze the quantum correlations and polarizations states of magnetic impurities spins, when a multiple electron scattering was taken place. A sequence of non-correlated electrons interacts through scattering producing quantum correlation which will have an impact on the electronic transmission. We consider a short range Heisenberg interaction between ballistic electron and static impurities. We analyze the cases when the electron scattering is produce by one and two impurities, obtaining the electronic transmission rates. Concurrence and fidelity calculations are performed to obtain the level of quantum entanglement and polarization correlations. We also discuss the possible application of this model to metallic and semiconductor carbon nanotubes, which could have important implications on spintronics and quantum information devices.

  10. Atomistic view of impurities interacting with a quasi-one-dimensional charge density wave

    NASA Astrophysics Data System (ADS)

    Oh, Deok Mahn; Yeom, Han Woong

    2016-06-01

    Atomistic details of the interaction of impurities with quasi-one-dimensional charge density wave (CDW) are revealed by scanning tunneling microscopy. Oxygen and pentacene adsorbates are utilized as strongly and weakly interacting impurities, respectively, on the well-known CDW state of the In atomic wire array on the Si(111) surface. Distinct CDW pinning configurations are identified for oxygen impurities with different atomic structures, indicating the strong pinning. The governing role of local strain field for the strong pinning is elucidated. In contrast, a few different pinning configurations occur for a unique adsorption structure of pentacene indicating a weak pinning. Pentacene molecules commonly induce characteristic phase shifts, which readily couple with other phase defects, in particular, solitons in order to avoid interwire phase misfits. This work provides the mechanism and methodology for the atomic scale control over phases, solitons, and domain boundaries of CDW.

  11. Features of impurity photoconductivity in Si:Er/Si epitaxial diodes

    SciTech Connect

    Antonov, A. V.; Kudryavtsev, K. E. Shengurov, D. V.; Shmagin, V. B.; Krasilnik, Z. F.

    2013-11-15

    The photocurrent spectra of Si:Er/Si epitaxial diode structures are studied. It is shown that the nature of the sub-band-gap photoresponse is determined by the epitaxial growth temperature of the Si:Er layer and is not related to the composition of erbium emission centers. It is found that the absorption of light with photon energies lower than the energy-gap of silicon is determined by impurity-defect complexes that appear during the growth of the epitaxial layer and form a quasi-continuous spectrum of states in the energy gap of silicon. It is assumed that these impurity centers are not related to optically active erbium centers and are not involved in excitation-energy transfer to the rare-earth impurity.

  12. Power Radiated from ITER and CIT by Impurities

    DOE R&D Accomplishments Database

    Cummings, J.; Cohen, S. A.; Hulse, R.; Post, D. E.; Redi, M. H.; Perkins, J.

    1990-07-01

    The MIST code has been used to model impurity radiation from the edge and core plasmas in ITER and CIT. A broad range of parameters have been varied, including Z{sub eff}, impurity species, impurity transport coefficients, and plasma temperature and density profiles, especially at the edge. For a set of these parameters representative of the baseline ITER ignition scenario, it is seen that impurity radiation, which is produced in roughly equal amounts by the edge and core regions, can make a major improvement in divertor operation without compromising core energy confinement. Scalings of impurity radiation with atomic number and machine size are also discussed.

  13. Power radiated from ITER and CIT by impurities

    SciTech Connect

    Cummings, J.; Cohen, S.A.; Hulse, R.; Post, D.E.; Redi, M.H.; Perkins, J.

    1990-07-01

    The MIST code has been used to model impurity radiation from the edge and core plasmas in ITER and CIT. A broad range of parameters have been varied, including Z{sub eff}, impurity species, impurity transport coefficients, and plasma temperature and density profiles, especially at the edge. For a set of these parameters representative of the baseline ITER ignition scenario, it is seen that impurity radiation, which is produced in roughly equal amounts by the edge and core regions, can make a major improvement in divertor operation without compromising core energy confinement. Scalings of impurity radiation with atomic number and machine size are also discussed. 22 refs., 16 figs.

  14. 21 CFR 1271.60 - What quarantine and other requirements apply before the donor-eligibility determination is complete?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the donor (e.g., by a distinct identification code affixed to the HCT/P container); (2) Stating that... before the donor-eligibility determination is complete? 1271.60 Section 1271.60 Food and Drugs FOOD AND... TISSUE-BASED PRODUCTS Donor Eligibility § 1271.60 What quarantine and other requirements apply before...

  15. Coulomb impurity scattering in topological insulator thin films

    SciTech Connect

    Yin, Gen; Wickramaratne, Darshana; Lake, Roger K.; Zhao, Yuanyuan

    2014-07-21

    Inter-surface coupling in thin-film topological insulators can reduce the surface state mobility by an order of magnitude in low-temperature transport measurements. The reduction is caused by a reduction in the group velocity and an increased s{sub z} component of the surface-state spin which weakens the selection rule against large-angle scattering. An intersurface potential splits the degenerate bands into a Rashba-like bandstructure. This reduces the intersurface coupling, it largely restores the selection rule against large angle scattering, and the ring-shaped valence band further reduces backscattering by requiring, on average, larger momentum transfer for backscattering events. The effects of temperature, Fermi level, and intersurface potential on the Coulomb impurity scattering limited mobility are analyzed and discussed.

  16. Donor substrate regulation of transketolase.

    PubMed

    Esakova, Olga A; Meshalkina, Ludmilla E; Golbik, Ralph; Hübner, Gerhard; Kochetov, German A

    2004-11-01

    The influence of substrates on the interaction of apotransketolase with thiamin diphosphate was investigated in the presence of magnesium ions. It was shown that the donor substrates, but not the acceptor substrates, enhance the affinity of the coenzyme either to only one active center of transketolase or to both active centers, but to different degrees in each, resulting in a negative cooperativity for coenzyme binding. In the absence of donor substrate, negative cooperativity is not observed. The donor substrate did not affect the interaction of the apoenzyme with the inactive coenzyme analogue, N3'-pyridyl-thiamin diphosphate. The influence of the donor substrate on the coenzyme-apotransketolase interaction was predicted as a result of formation of the transketolase reaction intermediate 2-(alpha,beta-dihydroxyethyl)-thiamin diphosphate, which exhibited a higher affinity to the enzyme than thiamin diphosphate. The enhancement of thiamin diphosphate's affinity to apotransketolase in the presence of donor substrate is probably one of the mechanisms underlying the substrate-affected transketolase regulation at low coenzyme concentrations.

  17. Extrinsic germanium Blocked Impurity Bank (BIB) detectors

    NASA Technical Reports Server (NTRS)

    Krabach, Timothy N.; Huffman, James E.; Watson, Dan M.

    1989-01-01

    Ge:Ga blocked-impurity-band (BIB) detectors with long wavelength thresholds greater than 190 microns and peak quantum efficiencies of 4 percent, at an operating temperature of 1.8 K, have been fabricated. These proof of concept devices consist of a high purity germanium blocking layer epitaxially grown on a Ga-doped Ge substrate. This demonstration of BIB behavior in germanium enables the development of far infrared detector arrays similar to the current silicon-based devices. Present efforts are focussed on improving the chemical vapor deposition process used to create the blocking layer and on the lithographic processing required to produce monolithic detector arrays in germanium. Approaches to test the impurity levels in both the blocking and active layers are considered.

  18. Impurities: Curse and blessing for crystal growers

    NASA Astrophysics Data System (ADS)

    Fox, Donald K.; Mazelsky, R.

    1990-11-01

    The indespensability of high-quality source materials research and development has been established for many years. However, because contributors to this field are diverse and communication of research results is often fragmented, transfer of the new knowledge is very slow. This paper describes how increasing source purity has improved the quality of several crystals, and how the addition of controlled impurities has decreased the defect density in these crystals. Experimental evidence is presented in this paper.

  19. Phonon sidebands of excitons bound to isoelectronic impurities in semiconductors

    SciTech Connect

    Zhang, Y.; Ge, W.; Sturge, M.D. ); Zheng, J.; Wu, B. )

    1993-03-15

    The configuration coordinate (CC) and momentum conservation (MC) models have been widely used to explain the phonon sidebands of impurity spectra in semiconductors. In this paper, the distinction between the CC and MC models is discussed. We conclude that the MC model only applies to shallow Coulombic impurities; in other cases, such as isoelectronic traps, the CC model is more appropriate. We show that the Huang-Rhys parameters for bulk phonon modes coupling to a bound electron or exciton can be calculated from the bound-state wave function in [ital k] space if the phonon-induced intervalley and intravalley electron scattering processes of the pure crystal are known. We study in detail the phonon sidebands of nitrogen-bound excitons in GaP, giving the selection rules for electron-phonon coupling in the CC model, and showing that their strength can be well accounted for by the CC model. The apparently anomalous [ital X]'' peak of the LO-phonon sideband in GaP:N is shown to be associated with intervalley scattering in the conduction band. The MC model, which has been used in an attempt to explain the phonon sidebands of GaP:N in some previous work, is shown to be inapplicable to this case.

  20. Interleaved numerical renormalization group as an efficient multiband impurity solver

    NASA Astrophysics Data System (ADS)

    Stadler, K. M.; Mitchell, A. K.; von Delft, J.; Weichselbaum, A.

    2016-06-01

    Quantum impurity problems can be solved using the numerical renormalization group (NRG), which involves discretizing the free conduction electron system and mapping to a "Wilson chain." It was shown recently that Wilson chains for different electronic species can be interleaved by use of a modified discretization, dramatically increasing the numerical efficiency of the RG scheme [Phys. Rev. B 89, 121105(R) (2014), 10.1103/PhysRevB.89.121105]. Here we systematically examine the accuracy and efficiency of the "interleaved" NRG (iNRG) method in the context of the single impurity Anderson model, the two-channel Kondo model, and a three-channel Anderson-Hund model. The performance of iNRG is explicitly compared with "standard" NRG (sNRG): when the average number of states kept per iteration is the same in both calculations, the accuracy of iNRG is equivalent to that of sNRG but the computational costs are significantly lower in iNRG when the same symmetries are exploited. Although iNRG weakly breaks SU(N ) channel symmetry (if present), both accuracy and numerical cost are entirely competitive with sNRG exploiting full symmetries. iNRG is therefore shown to be a viable and technically simple alternative to sNRG for high-symmetry models. Moreover, iNRG can be used to solve a range of lower-symmetry multiband problems that are inaccessible to sNRG.

  1. Effect of impurities and processing on silicon solar cells. Volume 1: Characterization methods for impurities in silicon and impurity effects data base

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Campbell, R. B.; Blais, P. D.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1980-01-01

    Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. Discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, conventional solar cell I-V techniques, and descriptions of silicon chemical analysis are presented and discussed. The tabulated data include lists of impurity segregation coefficients, ingot impurity analyses and estimated concentrations, typical deep level impurity spectra, photoconductive and open circuit decay lifetimes for individual metal-doped ingots, and a complete tabulation of the cell I-V characteristics of nearly 200 ingots.

  2. Association of metabolic syndrome with kidney function and histology in living kidney donors.

    PubMed

    Ohashi, Y; Thomas, G; Nurko, S; Stephany, B; Fatica, R; Chiesa, A; Rule, A D; Srinivas, T; Schold, J D; Navaneethan, S D; Poggio, E D

    2013-09-01

    The selection of living kidney donors is based on a formal evaluation of the state of health. However, this spectrum of health includes subtle metabolic derangements that can cluster as metabolic syndrome. We studied the association of metabolic syndrome with kidney function and histology in 410 donors from 2005 to 2012, of whom 178 donors were systematically followed after donation since 2009. Metabolic syndrome was defined as per the NCEP ATPIII criteria, but using a BMI > 25 kg/m(2) instead of waist circumference. Following donation, donors received counseling on lifestyle modification. Metabolic syndrome was present in 50 (12.2%) donors. Donors with metabolic syndrome were more likely to have chronic histological changes on implant biopsies than donors with no metabolic syndrome (29.0% vs. 9.3%, p < 0.001). This finding was associated with impaired kidney function recovery following donation. At last follow-up, reversal of metabolic syndrome was observed in 57.1% of donors with predonation metabolic syndrome, while only 10.8% of donors developed de novo metabolic syndrome (p < 0.001). In conclusion, metabolic syndrome in donors is associated with chronic histological changes, and nephrectomy in these donors was associated with subsequent protracted recovery of kidney function. Importantly, weight loss led to improvement of most abnormalities that define metabolic syndrome.

  3. Dynamics of homology searching during gene conversion in Saccharomyces cerevisiae revealed by donor competition.

    PubMed

    Coïc, Eric; Martin, Joshua; Ryu, Taehyun; Tay, Sue Yen; Kondev, Jané; Haber, James E

    2011-12-01

    One of the least understood aspects of homologous recombination is the process by which the ends of a double-strand break (DSB) search the entire genome for homologous templates that can be used to repair the break. We took advantage of the natural competition between the alternative donors HML and HMR employed during HO endonuclease-induced switching of the budding yeast MAT locus. The strong mating-type-dependent bias in the choice of the donors is enforced by the recombination enhancer (RE), which lies 17 kb proximal to HML. We investigated factors that improve the use of the disfavored donor. We show that the normal heterochromatic state of the donors does not impair donor usage, as donor choice is not affected by removing this epigenetic silencing. In contrast, increasing the length of homology shared by the disfavored donor increases its use. This result shows that donor choice is not irrevocable and implies that there are several encounters between the DSB ends and even the favored donor before recombination is accomplished. The increase by adding more homology is not linear; these results can be explained by a thermodynamic model that determines the energy cost of using one donor over the other. An important inference from this analysis is that when HML is favored as the donor, RE causes a reduction in its effective genomic distance from MAT from 200 kb to ∼20 kb, which we hypothesize occurs after the DSB is created, by epigenetic chromatin modifications around MAT.

  4. [Living donor transplantation. Surgical complications].

    PubMed

    Karam, Georges

    2008-02-01

    Although nephrectomy by open surgery is the most used technique for the extraction of kidney transplants in the living donor, nephrectomy under laparaoscopy is increasingly practiced. Laparoscopic nephrectomy is less invasive and performed under videoscopy control, after insufflation of the peritoneal cavity. Three to four incisions are done in order to enter the surgical instruments. The kidney is extracted through a horizontal sus-pubic incision. The exposition is either exclusively transperitoneal, retroperitoneal or hand assisted. The advantages of laparoscopy are esthetical, financial due to a shorter hospitalisation and a quicker recovery, as well a confort for the donor. The disadvantages are a longer warm ischemia time and possibly a higher risk of delayed graft function. Randomised studies having compared laparoscopy and open surgery in the living donor have not find any significant difference regarding the per- and perioperative in the complications.

  5. [Living donor transplantation. Surgical complications].

    PubMed

    Karam, Georges

    2008-02-01

    Although nephrectomy by open surgery is the most used technique for the extraction of kidney transplants in the living donor, nephrectomy under laparaoscopy is increasingly practiced. Laparoscopic nephrectomy is less invasive and performed under videoscopy control, after insufflation of the peritoneal cavity. Three to four incisions are done in order to enter the surgical instruments. The kidney is extracted through a horizontal sus-pubic incision. The exposition is either exclusively transperitoneal, retroperitoneal or hand assisted. The advantages of laparoscopy are esthetical, financial due to a shorter hospitalisation and a quicker recovery, as well a confort for the donor. The disadvantages are a longer warm ischemia time and possibly a higher risk of delayed graft function. Randomised studies having compared laparoscopy and open surgery in the living donor have not find any significant difference regarding the per- and perioperative in the complications. PMID:18160357

  6. Theoretical Study of Radiation from a Broad Range of Impurity Ions for Magnetic Fusion Diagnostics

    SciTech Connect

    Safronova, Alla

    2014-03-14

    Spectroscopy of radiation emitted by impurities plays an important role in the study of magnetically confined fusion plasmas. The measurements of these impurities are crucial for the control of the general machine conditions, for the monitoring of the impurity levels, and for the detection of various possible fault conditions. Low-Z impurities, typically present in concentrations of 1%, are lithium, beryllium, boron, carbon, and oxygen. Some of the common medium-Z impurities are metals such as iron, nickel, and copper, and high-Z impurities, such as tungsten, are present in smaller concentrations of 0.1% or less. Despite the relatively small concentration numbers, the aforementioned impurities might make a substantial contribution to radiated power, and also influence both plasma conditions and instruments. A detailed theoretical study of line radiation from impurities that covers a very broad spectral range from less than 1 Å to more than 1000 Å has been accomplished and the results were applied to the LLNL Electron Beam Ion Trap (EBIT) and the Sustained Spheromak Physics Experiment (SSPX) and to the National Spherical Torus Experiment (NSTX) at Princeton. Though low- and medium-Z impurities were also studied, the main emphasis was made on the comprehensive theoretical study of radiation from tungsten using different state-of-the-art atomic structure codes such as Relativistic Many-Body Perturbation Theory (RMBPT). The important component of this research was a comparison of the results from the RMBPT code with other codes such as the Multiconfigurational Hartree–Fock developed by Cowan (COWAN code) and the Multiconfiguration Relativistic Hebrew University Lawrence Atomic Code (HULLAC code), and estimation of accuracy of calculations. We also have studied dielectronic recombination, an important recombination process for fusion plasma, for variety of highly and low charged tungsten ions using COWAN and HULLAC codes. Accurate DR rate coefficients are needed for

  7. Donor criteria in hepatic transplantation.

    PubMed

    Jonas, S; Bechstein, W O; Keck, H; Lemmens, H P; Blumhardt, G; Neuhaus, P

    1994-01-01

    The early outcome of 201 liver grafts transplanted consecutively between September 1988 and November 1991 was investigated retrospectively. Donors were categorized according to their hospitalization periods in an intensive care unit (ICU) prior to harvesting, their causes of death, and the variables generally believed to be critical in liver donation, such as arterial hypotension (n = 69; 34.3%), cardiopulmonary resuscitation (n = 20; 9.9%), elevated serum-aminotransferases (s-AT) (n = 11; 5.5%), or an age over 50 years (n = 16; 8.0%). Ninety-one donors (45.3%) spent less than 24 h in an ICU; 29 donors (14.4%) and 14 donors (7.0%) had hospitalization periods generally considered critical of 4-6 days and more than 6 days, respectively. The most common causes of death were subarachnoidal bleeding (n = 70; 34.8%), isolated head injuries (n = 68; 33.8%), and polytraumata (n = 33; 16.4%). The postischemic hepatocellular damage was evaluated comparing peak post-transplant s-AT, which did not differ significantly between groups; nor did donor and recipient ages or cold ischemia times. Fourteen grafts (7.0%) showed a reversible preservation injury presenting with post-transplant s-AT elevated above 2000 IU/l. Five cases (2.5%) of a primary non-functioning graft (PNF) underwent early retransplantation successfully. Serum-aminotransferases (AST: 4944 +/- 2280 IU/l; ATL: 3186 +/- 1918 IU/l) were significantly (P < 0.01) elevated as compared to primary functioning grafts (AST: 699 +/- 935 IU/l; ALT: 620 +/- 701 IU/l). The donor structure of both groups reflected the distribution of variables in the entire collective. No significant overrepresentations were observed.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Vacancy and Doping States in Monolayer and bulk Black Phosphorus.

    PubMed

    Guo, Yuzheng; Robertson, John

    2015-09-18

    The atomic geometries and transition levels of point defects and substitutional dopants in few-layer and bulk black phosphorus are calculated. The vacancy is found to reconstruct in monolayer P to leave a single dangling bond, giving a negative U defect with a +/- transition level at 0.24 eV above the valence band edge. The V(-) state forms an unusual 4-fold coordinated site. In few-layer and bulk black P, the defect becomes a positive U site. The divacancy is much more stable than the monovacancy, and it reconstructs to give no deep gap states. Substitutional dopants such as C, Si, O or S do not give rise to shallow donor or acceptor states but instead reconstruct to form non-doping sites analogous to DX or AX centers in GaAs. Impurities on black P adopt the 8-N rule of bonding, as in amorphous semiconductors, rather than simple substitutional geometries seen in tetrahedral semiconductors.

  9. Role of cardiovascular imaging in selection of donor hearts

    PubMed Central

    Nair, Nandini; Gongora, Enrique

    2015-01-01

    AIM:To perform a systematic review of literature on use of cardiovascular imaging in assessment of donor hearts. METHODS: A systematic search of current literature from January 1965 to August 2015 was performed using PubMed and Google Scholar to investigate the different imaging modalities used to assess donor hearts. RESULTS: Recent literature still estimates only a 32% utilization of available donor hearts in the United States. Most common imaging modality used is transthoracic echocardiography. Use of advanced imaging modalities such as 3D echocardiography, cardiac computer tomography and cardiac magnetic resonance to evaluate donor hearts is not reported in literature. This review attempts to highlight the relevant imaging modalities that can be used to assess cardiac function in a time-efficient manner. The algorithm suggested in this review would hopefully pave the way to standardized protocols that can be adopted by organ procuring organizations to increase the donor pool. CONCLUSION: Use of advanced imaging techniques for a thorough assessment of organs will likely increase the donor pool. PMID:26722663

  10. Gamete Donor Consent and Human Embryonic Stem Cell Research.

    PubMed

    Siegel, Andrew W

    2015-06-01

    There is a lack of consensus on whether the derivation and use of human embryonic stem cells (hESCs) from embryos remaining after infertility treatment morally require the informed consent of third-party gamete donors who contributed to the creation of the embryos. The principal guidelines for oversight and funding of hESC research in the United States make minimal or no demands for consent from gamete donors. In this article, I consider the arguments supporting and opposing gamete donor consent for hESC research and embryo research more broadly. I argue that it is not morally permissible to use leftover embryos in research without the informed consent of gamete donors, and that we should place restrictions on the use of existing hESC lines that may have been derived without informed consent. While the standard argument for this position relies on an appeal to gamete donors' interest in controlling what happens with their genetic material, I identify shortcomings with the standard approach and seek instead to locate the deeper moral foundations for gamete donor consent in rights to bodily integrity.

  11. Non-magnetic impurity effects in LiFeAs studied by STM/STS

    NASA Astrophysics Data System (ADS)

    Hanaguri, T.; Khim, Seung Hyun; Lee, Bumsung; Kim, Kee Hoon; Kitagawa, K.; Matsubayashi, K.; Mazaki, Y.; Uwatoko, Y.; Takigawa, M.; Takagi, H.

    2012-02-01

    Detecting the possible sign reversal of the superconducting gap in iron-based superconductors is highly non-trivial. Here we use non-magnetic impurity as a sign indicator. If the sign of the superconducting gap is positive everywhere in momentum space, in-gap bound state should not be observed near the impurity site unless it is magnetic. On the other hand, if there is a sign-reversal in the gap, even non-magnetic impurity may create in-gap bound state [1]. We performed STM/STS experiments on self-flux and Sn-flux grown LiFeAs crystals and examined the effects of Sn impurity. In STM images of Sn-flux grown samples, we found a ring-like object which may represent Sn. Tunneling spectrum taken at this defect site exhibits in-gap bound state. Together with flat-bottom superconducting gap observed far from the defects, sign-reversing s-wave gap is the most plausible gap structure in LiFeAs. [1] T. Kariyado and M. Ogata, JPSJ 79, 083704 (2010).

  12. [The safety of blood donors].

    PubMed

    Courchelle, J; Baudry, C; Bourboul, M-C; Coudurier, N

    2011-04-01

    For a long time, safety has been patient-centred and taken for granted. Indeed, it needed a dramatic accident and the study of post-donation information for the question to be looked into again. However, under various statutory, organizational aspects and the professionalization of the staffs, safety has always accompanied the donor throughout its course of donation. Self-sufficiency is, certainly, the first mission of the Établissement Français du Sang: while we have to supply patients with sufficient blood products complying with quality criteria, we must not however forget the essential respect for the safety of the donor.

  13. Suppression of spin transport in ferromagnet/oxide/semiconductor junctions by magnetic impurities in the tunnel barrier

    NASA Astrophysics Data System (ADS)

    Spiesser, Aurélie; Saito, Hidekazu; Yuasa, Shinji; Jansen, Ron

    2016-10-01

    We have studied how the insertion of sub-monolayer amounts of Mn impurities in the middle of the oxide tunnel barrier of Fe/GeO2 on p-type Ge affects the spin transport, using three-terminal Hanle measurements. Strikingly, the magnitude of the Hanle spin voltage is strongly reduced by increasing the amount of Mn dopants and is even completely absent for devices having an amount of Mn impurities equivalent to a 0.2-nm-thick layer. This demonstrates that magnetic impurities in the tunnel barrier are detrimental to the spin transport in ferromagnet/oxide/semiconductor junctions, and that the localized states associated with such magnetic impurities do not produce three-terminal Hanle spin signals.

  14. Microscopic theory of dipole-dipole interaction in ensembles of impurity atoms in a Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Kuraptsev, A. S.; Sokolov, I. M.

    2016-08-01

    We develop a consistent quantum theory of the collective effects that take place when electromagnetic radiation interacts with a dense ensemble of impurity centers embedded in a transparent dielectric and placed in a Fabry-Perot cavity. We have calculated the spontaneous decay dynamics of an excited impurity atom as a specific example of applying the developed general theory. We analyze the dependence of the decay rate on the density of impurity centers and the sample sizes as well as on the characteristic level shifts of impurity atoms caused by the internal fields of the dielectric. We show that a cavity can affect significantly the pattern of collective processes, in particular, the lifetimes of collective states.

  15. Linear response of a one-dimensional conductor coupled to a dynamical impurity with a Fermi edge singularity

    NASA Astrophysics Data System (ADS)

    Snyman, I.

    2014-02-01

    I study the dynamical correlations that a quantum impurity induces in the Fermi sea to which it is coupled. I consider a quantum transport setup in which the impurity can be realized in a double quantum dot. The same Hamiltonian describes tunneling states in metallic glasses, and can be mapped onto the Ohmic spin-boson model. It exhibits a Fermi edge singularity, i.e., many fermion correlations result in an impurity decay rate with a nontrivial power-law energy dependence. I show that there is a simple relation between temporal impurity correlations on the one hand and the linear response of the Fermi sea to external perturbations on the other. This results in a power-law singularity in the space and time dependence of the nonlocal polarizability of the Fermi sea, which can be detected in transport experiments.

  16. Effect of single interstitial impurity in iron-based superconductors with sign-changed s-wave pairing symmetry

    NASA Astrophysics Data System (ADS)

    Yu, Xiang-Long; Liu, Da-Yong; Quan, Ya-Min; Zheng, Xiao-Jun; Zou, Liang-Jian

    2015-12-01

    We employ the self-consistent Bogoliubov-de Gennes (BdG) formulation to investigate the effect of single interstitial nonmagnetic/magnetic impurity in iron-based superconductors with s ± -wave pairing symmetry. We find that both the nonmagnetic and magnetic impurities can induce bound states within the superconducting (SC) gap and a π phase shift of SC order parameter at the impurity site. However, different from the interstitial-nonmagnetic-impurity case characterized by two symmetric peaks with respect to zero energy, the interstitial magnetic one only induces single bound-state peak. In the strong scattering regime this peak can appear at the Fermi level, which has been observed in the recent scanning tunneling microscope (STM) experiment of Fe(Te,Se) superconductor with interstitial Fe impurities (Yin et al. 2015 [44]). This novel single in-gap peak feature also distinguishes the interstitial case from the substitutional one with two peaks. These results provide important information for comparing the different impurity effects in the iron-based superconductors.

  17. Information rights and donor conception: lessons from adoption?

    PubMed

    Chisholm, Richard

    2012-06-01

    This article reviews the Australian experience in providing information rights for people separated through adoption, and considers its relevance in adjusting the competing interests of those involved in donor conception. The Australian laws, which differ from State to State, create information rights for adults who have been adopted, and also--with more qualifications--for other family members, such as birth parents and siblings. Some laws also seek to protect privacy, notably by use of the "contact veto". The author argues that the review of the Australian laws provides strong support for the rights of donor offspring, when adult, to information about their genetic origins. It also raises important questions about the rights and interests of other family members involved in donor conception, and how they might be accommodated.

  18. Thermal diffusion segregation of an impurity in a driven granular fluid

    SciTech Connect

    Reyes, Francisco Vega; Garzó, Vicente

    2014-12-09

    We study segregation of an impurity in a driven granular fluid under two types of steady states. In the first state, the granular gas is driven by a stochastic volume force field with a Fourier-type profile while in the second state, the granular gas is sheared in such a way that inelastic cooling is balanced by viscous heating. We compare theoretical results derived from a solution of the (inelastic) Boltzmann equation at Navier-Stokes (NS) order with those obtained from the Direct Monte Carlo simulation (DSMC) method and molecular dynamics (MD) simulations. Good agreement is found between theory and simulation, which provides strong evidence of the reliability of NS granular hydrodynamics for these steady states (including the dynamics of the impurity), even at high inelasticity. In addition, preliminary results for thermal diffusion in granular fluids at moderate densities are also presented. As for dilute gases, excellent agreement is also found in this more general case.

  19. The excited state dynamics of KLa(MoO{sub 4}){sub 2}:Pr{sup 3+}: From a case study to the determination of the energy levels of rare earth impurities relative to the bandgap in oxidising host lattices

    SciTech Connect

    Cavalli, Enrico Boutinaud, Philippe; Bettinelli, Marco; Dorenbos, Pieter

    2008-05-15

    The luminescence properties of KLa(MoO{sub 4}){sub 2} (KLM) single crystals doped with Pr{sup 3+} have been measured in the 10-600 K temperature range in order to investigate the mechanisms involved in the radiationless processes. At variance with previously studied scheelite-like molybdates activated with Pr{sup 3+}, no effects attributed to the formation of intervalence charge transfer states have been observed. The model proposed in order to account for this behaviour allows the determination of the energy of the Pr{sup 3+} levels relative to the valence and conduction bands of the host. This model has firstly been confirmed for Tb{sup 3+}-doped KLM, for which suitable experimental data are available, and then extended to the other rare earth ions on the basis of the systematic nature of the lanthanide energy levels properties. The obtained conclusions are finally supported in the light of the comparison with some other representative cases. - Graphical abstract: The study of the excited state dynamics of KLa(MoO{sub 4}){sub 2} single crystals doped with Pr{sup 3+} allows to determine the energies of the levels of the active ion relative to the valence and conduction bands of the host. This model has then been extended to the other rare earth ions on the basis of the systematic nature of the lanthanide energy levels properties.

  20. Single-Donor Leukophoretic Technique

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.

    1977-01-01

    Leukocyte separation-and-retrieval device utilizes granulocyte and monocyte property of leukoadhesion to glass surfaces as basis of their separation from whole blood. Device is used with single donor technique and has application in biological and chemical processing, veterinary research and clinical care.