[Search for non-relative donor by the Russian register of bone marrow donors].
Zaretskaia, Iu M; Khamaganova, E G; Aleshchenko, S M; Murashova, L A
2002-01-01
To select maximally HLA compatible donor for hematological patients who need transplantation of bone marrow from non-relative donor. 75 patients with hematological malignancy were observed. All of them have indications to non-relative transplantation of the bone marrow. Methods of polymerase chain reaction with sequence-specific primers and classic microlymphocytotoxic test were used. Typing of HLA antigens of class I and alleles of class II loci enabled search for non-relative donor for transplantation of bone marrow in accordance with the requirements of the European Federation of Immunogenetics. Most of the patients (86.6%) had at least one potential HLA-A, -B, -DR compatible donor. Half of the patients had potential donors typed at the allele level by class II loci. This diminishes time of HLA compatible donor selection. DNA typing enables the search for the non-relative donors meeting modern requirements. This allowed 5 non-relative bone marrow transplantations.
Rogers, Charles R.; Jeon, Kwon Chan; Rosen, Brittany
2014-01-01
Introduction For those with certain blood or bone cancers, bone marrow donation can mean the difference between life and death. The National Marrow Donor Program® (NMDP) operates the largest bone marrow registry of potential donors; however, at times when potential matches are identified, many donors opt not to donate. The purpose of this study was to describe perspectives from college-aged students on recruitment to a bone marrow donation registry and retention to the registry/follow-through with the donation process. Methods Researchers employed a one-time qualitative study using 7 focus groups comprised of 10 – 11 college students each (n = 76). Results Results yielded three overarching themes: donor recruitment, donor retention, and factors contributing to the overall donation process. More specifically, this study identified key factors affecting bone marrow donation in an essential population: facilitators, barriers, knowledge, and ‘goodness’. Additionally, marketing and communication were found to be major determinants of potential donors staying with the NMDP. Conclusion Better explanations and awareness/promotion campaigns are necessary for recruiting potential donors to the NMDP and to increase the likelihood that the donor will follow through with the donation should a potential match be identified. Recommendations from this study may improve recruitment and retention rates among the NMDP campaigns targeting college students. PMID:25632376
Immune transfer studies in canine allogeneic marrow graft donor-recipient pairs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grosse-Wilde, H.; Krumbacher, K.; Schuening, F.D.
1986-07-01
Transfer of immunity occurring with bone marrow grafting was studied using the dog as a preclinical model. Allogeneic bone marrow transplantation (BMT) was performed between DLA-identical beagle litter-mates. The donors were immunized with tetanus toxoid (TT) or sheep red blood cells (SRBC), and their humoral response was monitored by hemagglutination. The recipients of bone marrow from TT-immunized donors showed a marked increase of antibody titer one week posttransplantation, while in the recipients of marrow from SRBC immunized donors the antibody titers were considerably lower. Within the following 60 days the antibody titers in both groups diminished gradually to pregrafting levels.more » Control experiments in which cell-free plasma from donors immunized with TT and SRBC respectively was transfused indicated that the initial rise of specific antibody titers after marrow grafting is likely to be due to a passive transfer of humoral immunity. A single challenge of these marrow graft recipients with the respective antigen 15-18 weeks posttransplantation led to a secondary type of humoral immune response. It could be demonstrated that transfer of memory against TT or SRBC was independent from the actual antibody titer and the time of vaccination of the donor. One dog was immunized with TT after serving as marrow donor. When the donor had shown an antibody response, a peripheral blood leukocytes (PBL) transfusion was given to his chimera. Subsequent challenge of the latter resulted in a secondary type of specific antibody response. This indicates that specific cellular-bound immunological memory can be transferred after BMT from the donor to his allogeneic bone marrow chimera by transfusion of peripheral blood leukocytes. The data may be of importance in clinical BMT to protect patients during the phase of reduced immune reactivity by transfer of memory cells.« less
Lavrador, Catarina; Mascarenhas, Ramiro; Coelho, Paulo; Brites, Cláudia; Pereira, Alfredo; Gogolewski, Sylwester
2016-03-01
Bone substitutes have been a critical issue as the natural source can seldom provide enough bone to support full healing. No bone substitute complies with all necessary functions and characteristics that an autograft does. Polyurethane sponges have been used as a surgical alternative to cancellous bone grafts for critical bone defect donor sites. Critical bone defects were created on the tibial tuberosity and iliac crest using an ovine model. In group I (control-untreated), no bone regeneration was observed in any animal. In group II (defects left empty but covered with a microporous polymeric membrane), the new bone bridged the top ends in all animals. In groups III and IV, bone defects were implanted with polyurethane scaffolds modified with biologically active compounds, and bone regeneration was more efficient than in group II. In groups III and IV there were higher values of bone regeneration specific parameters used for evaluation (P < 0.05) although the comparison between these groups was not possible. The results obtained in this study suggest that biodegradable polyurethane substitutes modified with biologically active substances may offer an alternative to bone graft, reducing donor site morbidity associated with autogenous cancellous bone harvesting.
Ramis, Joana M; Calvo, Javier; Matas, Aina; Corbillo, Cristina; Gayà, Antoni; Monjo, Marta
2018-06-28
Osteoinductive capacity of demineralized bone matrix (DBM) is sometimes insufficient or shows high variability between different batches of DBM. Here, we tried to improve its osteoinductive activity by alkali-urea or trypsin treatment but this strategy was unsuccessful. Then, we tested the enrichment of DBM with a bone protein extract (BPE) containing osteogenic growth factors comparing two sources: cortical bone powder and DBM. The osteoinductive capacity (alkaline phosphatase activity) of the obtained BPEs was evaluated in vitro in C2C12 cells. Specific protein levels present in the different BPE was determined by enzyme-linked immunosorbent assay or by a multiplex assay. BPE from cortical bone powder showed a lack of osteoinductive effect, in agreement with the low content on osteoinductive factors. In contrast, BPE from DBM showed osteoinductive activity but also high variability among donors. Thus, we decided to enrich DBM with BPE obtained from a pool of DBM from different donors. Following this strategy, we achieved increased osteoinductive activity and lower variability among donors. In conclusion, the use of a BPE obtained from a pool of demineralized bone to enrich DBM could be used to increase its osteoinductive effect and normalize the differences between donors.
Bardi, Marlene Silva; Jarduli, Luciana Ribeiro; Jorge, Adylson Justino; Camargo, Rossana Batista Oliveira Godoy; Carneiro, Fernando Pagotto; Gelinski, Jair Roberto; Silva, Roseclei Assunção Feliciano; Lavado, Edson Lopes
2012-01-01
Knowledge of allele and haplotype frequencies of the human leukocyte antigen (HLA) system is important in the search for unrelated bone marrow donors. The Brazilian population is very heterogeneous and the HLA system is highly informative of populations because of the high level of polymorphisms. The aim of this study was to characterize the immunogenetic profile of ethnic groups (Caucasians, Afro-Brazilians and Asians) in the north of Parana State. A study was carried out of 3978 voluntary bone marrow donors registered in the Brazilian National Bone Marrow Donor Registry and typed for the HLA-A, B and DRB1 (low resolution) loci. The alleles were characterized by the polymerase chain reaction sequence-specific oligonucleotides method using the LabType SSO kit (One Lambda, CA, USA). The ARLEQUIN v.3.11 computer program was used to calculate allele and haplotype frequencies The most common alleles found in Caucasians were HLA-A*02, 24, 01; HLA-B*35, 44, 51; DRB1*11, 13, 07; for Afro-Brazilians they were HLA-A*02, 03, 30; HLA-B*35, 15, 44; DRB1*13, 11, 03; and for Asians they were: HLA-A*24, 02, 26; HLA-B*40, 51, 52; DRB1*04, 15, 09. The most common haplotype combinations were: HLA-A*01, B*08, DRB1*03 and HLA-A*29, B*44, DRB1*07 for Caucasians; HLA-A*29, B*44, DRB1*07 and HLA-A*01, B*08 and DRB1*03 for Afro-Brazilians; and HLA-A*24, B*52, DRB1*15 and HLA-A*24, B*40 and DRB1*09 for Asians. There is a need to target and expand bone marrow donor campaigns in the north of Parana State. The data of this study may be used as a reference by the Instituto Nacional de Cancer/Brazilian National Bone Marrow Donor Registry to evaluate the immunogenetic profile of populations in specific regions and in the selection of bone marrow donors.
Bardi, Marlene Silva; Jarduli, Luciana Ribeiro; Jorge, Adylson Justino; Camargo, Rossana Batista Oliveira Godoy; Carneiro, Fernando Pagotto; Gelinski, Jair Roberto; Silva, Roseclei Assunção Feliciano; Lavado, Edson Lopes
2012-01-01
Background Knowledge of allele and haplotype frequencies of the human leukocyte antigen (HLA) system is important in the search for unrelated bone marrow donors. The Brazilian population is very heterogeneous and the HLA system is highly informative of populations because of the high level of polymorphisms. Aim The aim of this study was to characterize the immunogenetic profile of ethnic groups (Caucasians, Afro-Brazilians and Asians) in the north of Parana State. Methods A study was carried out of 3978 voluntary bone marrow donors registered in the Brazilian National Bone Marrow Donor Registry and typed for the HLA-A, B and DRB1 (low resolution) loci. The alleles were characterized by the polymerase chain reaction sequence-specific oligonucleotides method using the LabType SSO kit (One Lambda, CA, USA). The ARLEQUIN v.3.11 computer program was used to calculate allele and haplotype frequencies Results The most common alleles found in Caucasians were HLA-A*02, 24, 01; HLA-B*35, 44, 51; DRB1*11, 13, 07; for Afro-Brazilians they were HLA-A*02, 03, 30; HLA-B*35, 15, 44; DRB1*13, 11, 03; and for Asians they were: HLA-A*24, 02, 26; HLA-B*40, 51, 52; DRB1*04, 15, 09. The most common haplotype combinations were: HLA-A*01, B*08, DRB1*03 and HLA-A*29, B*44, DRB1*07 for Caucasians; HLA-A*29, B*44, DRB1*07 and HLA-A*01, B*08 and DRB1*03 for Afro-Brazilians; and HLA-A*24, B*52, DRB1*15 and HLA-A*24, B*40 and DRB1*09 for Asians. Conclusion There is a need to target and expand bone marrow donor campaigns in the north of Parana State. The data of this study may be used as a reference by the Instituto Nacional de Cancer/Brazilian National Bone Marrow Donor Registry to evaluate the immunogenetic profile of populations in specific regions and in the selection of bone marrow donors PMID:23049380
HISTOCOMPATIBILITY STUDIES IN A CLOSELY BRED COLONY OF DOGS
Rapaport, F. T.; Watanabe, K.; Cannon, F. D.; Mollen, N.; Blumenstock, D.; Ferrebee, J. W.
1972-01-01
17 Cooperstown beagles of known DL-A genotypes were exposed to supralethal total body irradiation and received a bone marrow allograft from a DL-A-identical donor; 11 littermate and 6 nonlittermate donor-recipient pairs were studied. The recipients are surviving uneventfully for 315, 364, 424, 440, 531, 531, 584, 605, 625, 635, and 649 days in the littermate group and for 211, 279, 280, 368, 479, and 480 days in the nonlittermate group. The radiation chimeras underwent bilateral nephrectomy and received a kidney allograft obtained from their respective marrow donor within 43–120 days after bone marrow transplantation. The renal allografts are surviving for 191, 200, 221, 234, 313, 349, 361, 377, 378, 405, 441, 444, 482, 557, 580, 581, and 586 days, respectively. 12 of 13 skin allografts obtained from the marrow donor are at present surviving in the recipients for 107, 110, 110, 110, 116, 122, 128, 143, 143, 162, 178, and 199 days, respectively; one graft was rejected at 84 days. In contrast, the radiation chimeras rejected 25 skin allografts obtained from DL-A-incompatible donors within 10.5–21 days (MST = 15.2 days). Skin transplants obtained from DL-A-identical siblings of the bone marrow donors were rejected within 20–36 days (MST = 25.8 days) in recipients of bone marrow cells obtained from littermate donors. Recipients of nonlittermate bone marrow transplants accorded such allografts a prolonged survival time of 27–76 days (MST = 56.2 days). Prospective selection of genotypically DL-A-identical donor-recipient pairs results in the regularly reproducible long-term survival of bone marrow allografts. The radiation chimeras produced in this manner have developed a donor-specific state of unresponsiveness to kidney and skin allografts. The results are consistent with the existence in the canine species of at least three closely linked genetic systems relevant to transplantation, including DL-A, MLC, and a possible bone marrow transplantation locus. PMID:4404277
Smith, Christopher A; Board, Tim N; Rooney, Paul; Eagle, Mark J; Richardson, Stephen M; Hoyland, Judith A
2017-01-01
To improve the safe use of allograft bone, decellularization techniques may be utilized to produce acellular scaffolds. Such scaffolds should retain their innate biological and biomechanical capacity and support mesenchymal stem cell (MSC) osteogenic differentiation. However, as allograft bone is derived from a wide age-range, this study aimed to determine whether donor age impacts on the ability an osteoinductive, acellular scaffold produced from human bone to promote the osteogenic differentiation of bone marrow MSCs (BM-MSC). BM-MSCs from young and old donors were seeded on acellular bone cubes from young and old donors undergoing osteoarthritis related hip surgery. All combinations resulted in increased osteogenic gene expression, and alkaline phosphatase (ALP) enzyme activity, however BM-MSCs cultured on old donor bone displayed the largest increases. BM-MSCs cultured in old donor bone conditioned media also displayed higher osteogenic gene expression and ALP activity than those exposed to young donor bone conditioned media. ELISA and Luminex analysis of conditioned media demonstrated similar levels of bioactive factors between age groups; however, IGF binding protein 1 (IGFBP1) concentration was significantly higher in young donor samples. Additionally, structural analysis of old donor bone indicated an increased porosity compared to young donor bone. These results demonstrate the ability of a decellularized scaffold produced from young and old donors to support osteogenic differentiation of cells from young and old donors. Significantly, the older donor bone produced greater osteogenic differentiation which may be related to reduced IGFBP1 bioavailability and increased porosity, potentially explaining the excellent clinical results seen with the use of allograft from aged donors.
Smith, Christopher A.; Board, Tim N.; Rooney, Paul; Eagle, Mark J.; Richardson, Stephen M.
2017-01-01
To improve the safe use of allograft bone, decellularization techniques may be utilized to produce acellular scaffolds. Such scaffolds should retain their innate biological and biomechanical capacity and support mesenchymal stem cell (MSC) osteogenic differentiation. However, as allograft bone is derived from a wide age-range, this study aimed to determine whether donor age impacts on the ability an osteoinductive, acellular scaffold produced from human bone to promote the osteogenic differentiation of bone marrow MSCs (BM-MSC). BM-MSCs from young and old donors were seeded on acellular bone cubes from young and old donors undergoing osteoarthritis related hip surgery. All combinations resulted in increased osteogenic gene expression, and alkaline phosphatase (ALP) enzyme activity, however BM-MSCs cultured on old donor bone displayed the largest increases. BM-MSCs cultured in old donor bone conditioned media also displayed higher osteogenic gene expression and ALP activity than those exposed to young donor bone conditioned media. ELISA and Luminex analysis of conditioned media demonstrated similar levels of bioactive factors between age groups; however, IGF binding protein 1 (IGFBP1) concentration was significantly higher in young donor samples. Additionally, structural analysis of old donor bone indicated an increased porosity compared to young donor bone. These results demonstrate the ability of a decellularized scaffold produced from young and old donors to support osteogenic differentiation of cells from young and old donors. Significantly, the older donor bone produced greater osteogenic differentiation which may be related to reduced IGFBP1 bioavailability and increased porosity, potentially explaining the excellent clinical results seen with the use of allograft from aged donors. PMID:28505164
Babbi, L; Barbanti-Brodano, G; Gasbarrini, A; Boriani, S
2016-11-01
This is an exemplary case report underlining a relevant morbidity which could be associated to the use of autologous iliac crest bone graft (ICBG) for spine fusion. Starting from 1990, a 25-years-old woman underwent two subsequent surgical treatments for non-Hodgkin lymphoma vertebral localizations. In the second surgery, arthrodesis was obtained with autograft through right posterior iliac crest osteotomy. During the chemotherapy treatment following the surgery, the patient suffered from infection at posterior iliac crest scar, the site of previous graft, caused by methicillin-resistant Staphylococcus aureus. She was subjected to surgical debridement and specific antibiotic treatment with local healing and phlogosis index reduction. Chemotherapy protocol was concluded and the patient healed with definitive lymphoma remission. After 22 years the patient had a relapse of donor site infection, requiring a new antibiotic therapy and a new surgical debridement. The relapsed infection at donor site lasted for a long period, more than one year, despite of specific care. It finally healed after another accurate surgical debridement and postoperative antibiotic therapy. This case report underlines the possible consequences on the patient's quality of life of a long-term disease affecting the iliac crest bone graft donor site. Literature concerning alternatives to autograft for spine fusion is also reviewed.
In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism.
Shih, Yu-Ru; Kang, Heemin; Rao, Vikram; Chiu, Yu-Jui; Kwon, Seong Keun; Varghese, Shyni
2017-05-23
Synthetic biomimetic matrices with osteoconductivity and osteoinductivity have been developed to regenerate bone tissues. However, whether such systems harbor donor marrow in vivo and support mixed chimerism remains unknown. We devised a strategy to engineer bone tissues with a functional bone marrow (BM) compartment in vivo by using a synthetic biomaterial with spatially differing cues. Specifically, we have developed a synthetic matrix recapitulating the dual-compartment structures by modular assembly of mineralized and nonmineralized macroporous structures. Our results show that these matrices incorporated with BM cells or BM flush transplanted into recipient mice matured into functional bone displaying the cardinal features of both skeletal and hematopoietic compartments similar to native bone tissue. The hematopoietic function of bone tissues was demonstrated by its support for a higher percentage of mixed chimerism compared with i.v. injection and donor hematopoietic cell mobilization in the circulation of nonirradiated recipients. Furthermore, hematopoietic cells sorted from the engineered bone tissues reconstituted the hematopoietic system when transplanted into lethally irradiated secondary recipients. Such engineered bone tissues could potentially be used as ectopic BM surrogates for treatment of nonmalignant BM diseases and as a tool to study hematopoiesis, donor-host cell dynamics, tumor tropism, and hematopoietic cell transplantation.
Fingerprinting of HLA class I genes for improved selection of unrelated bone marrow donors.
Martinelli, G; Farabegoli, P; Buzzi, M; Panzica, G; Zaccaria, A; Bandini, G; Calori, E; Testoni, N; Rosti, G; Conte, R; Remiddi, C; Salvucci, M; De Vivo, A; Tura, S
1996-02-01
The degree of matching of HLA genes between the selected donor and recipient is an important aspect of the selection of unrelated donors for allogeneic bone marrow transplantation (UBMT). The most sensitive methods currently used are serological typing of HLA class I genes, mixed lymphocyte culture (MLC), IEF and molecular genotyping of HLA class II genes by direct sequencing of PCR products. Serological typing of class I antigenes (A, B and C) fails to detect minor differences demonstrated by direct sequencing of DNA polymorphic regions. Molecular genotyping of HLA class I genes by DNA analysis is costly and work-intensive. To improve compatibility between donor and recipient, we have set up a new rapid and non-radioisotopic application of the 'fingerprinting PCR' technique for the analysis of the polymorphic second exon of the HLA class I A, B and C genes. This technique is based on the formation of specific patterns (PCR fingerprints) of homoduplexes and heteroduplexes between heterologous amplified DNA sequences. After an electrophoretic run on non-denaturing polyacrylamide gel, different HLA class I types give allele-specific banding patterns. HLA class I matching is performed, after the gel has been soaked in ethidium bromide or silver-stained, by visual comparison of patients' fingerprints with those of donors. Identity can be confirmed by mixing donor and recipient DNAs in an amplification cross-match. To assess the technique, 10 normal samples, 22 related allogeneic bone marrow transplanted pairs and 10 unrelated HLA-A and HLA-B serologically matched patient-donor pairs were analysed for HLA class I polymorphic regions. In all the related pairs and in 1/10 unrelated pairs, matched donor-recipient patterns were identified. This new application of PCR fingerprinting may confirm the HLA class I serological selection of unrelated marrow donors.
Rahhal, Dina N; Xu, Hong; Huang, Wei-Chao; Wu, Shengli; Wen, Yujie; Huang, Yiming; Ildstad, Suzanne T
2009-09-27
Mixed chimerism induces donor-specific tolerance to composite tissue allotransplants (CTAs). In the present studies, we used a nonmyeloablative conditioning approach to establish chimerism and promote CTA acceptance. Wistar Furth (RT1A(u)) rats were conditioned with 600 to 300 cGy total body irradiation (TBI, day-1), and 100 x 10(6) T-cell-depleted ACI (RT1A(abl)) bone marrow cells were transplanted on day 0, followed by a 11-day course of tacrolimus and one dose of antilymphocyte serum (day 10). Heterotopic osteomyocutaneous flap transplantation was performed 4 to 6 weeks after bone marrow transplantation. Mixed chimerism was initially achieved in almost all recipients, but long-term acceptance of CTA was only achieved in rats treated with 600 cGy TBI. When anti-alphabeta-T-cell receptor (TCR) monoclonal antibody (mAb) (day-3) was added into the regimens, donor chimerism was similar to recipients preconditioned without anti-alphabeta-TCR mAb. However, the long-term CTA survival was significantly improved in chimeras receiving more than or equal to 300 cGy TBI plus anti-alphabeta-TCR mAb. Higher levels of donor chimerism were associated with CTA acceptance. The majority of flap acceptors lost peripheral blood chimerism within 6 months. However, donor chimerism persisted in the transplanted bone at significantly higher levels compared with other hematopoietic compartments. The compartment donor chimerism may be responsible for the maintenance of tolerance to CTA. Long-term acceptors were tolerant to a donor skin graft challenge even in the absence of peripheral blood chimerism. Mixed chimerism established by nonmyeloablative conditioning induces long-term acceptance of CTA, which is associated with persistent chimerism preferentially in the transplanted donor bone.
Rahhal, Dina N.; Xu, Hong; Huang, Wei-Chao; Wu, Shengli; Wen, Yujie; Huang, Yiming; Ildstad, Suzanne T.
2009-01-01
Background Mixed chimerism induces donor-specific tolerance to composite tissue allotransplants (CTA). In the present studies, we used a nonmyeloablative conditioning approach to establish chimerism and promote CTA acceptance. Methods WF (RT1Au) rats were conditioned with 600-300 cGy total body irradiation (TBI, day-1), 100 × 106 T cell-depleted ACI (RT1Aabl) bone marrow cells were transplanted day 0, followed by a 11-day course of tacrolimus and one dose of anti-lymphocyte serum (day 10). Heterotopic osteomyocutaneous flap transplantation was performed 4-6 weeks after bone marrow transplantation. Results Mixed chimerism was initially achieved in almost all recipients, but long-term acceptance of CTA was only achieved in rats treated with 600 cGy TBI. When anti-αβ-TCR mAb (day-3) was added into the regimens, donor chimerism was similar to recipients preconditioned without anti-αβ-TCR mAb. However, the long-term CTA survival was significantly improved in chimeras receiving ≥ 300 cGy TBI plus anti-αβ-TCR mAb. Higher levels of donor chimerism were associated with CTA acceptance. The majority of flap-acceptors lost peripheral blood (PB) chimerism within 6 months. However, donor chimerism persisted in transplanted bone at significantly higher levels compared to other hematopoietic compartments. The compartment donor chimerism may be responsible for the maintenance of tolerance to CTA. Long-term acceptors were tolerant to a donor skin graft challenge even in the absence of PB chimerism. Conclusions Mixed chimerism established by nonmyeloablative conditioning induces long-term acceptance of CTA which is associated with persistent chimerism preferentially in transplanted donor bone. PMID:19920776
Lee, Hyunah; Park, Jae Berm; Lee, Sanghoon; Baek, Soyoung; Kim, HyunSoo; Kim, Sung Joo
2013-04-11
Mesenchymal stem cells (MSCs) are multi-potent non-hematopoietic progenitor cells possessing an immune-regulatory function, with suppression of proliferation of activated lymphocytes. In this study, adult living donor kidney transplantation (LDKT) recipients were given MSCs derived from the donor bone marrow to evaluate the safety and the feasibility of immunological changes related to the intra-osseous injection of MSC into the bone marrow. MSCs were derived from negative HLA cross-match donors. Donor bone marrow was harvested 5 weeks prior to KT. At the time of transplantation, 1 x 106 cell/kg of donor MSC was directly injected into the bone marrow of the recipient's right iliac bone. Patients' clinical outcomes, presence of mixed chimerism by short tandem repeat polymerase chain reaction, analysis of plasma FoxP3 mRNA and cytokine level, and mixed lymphocyte reaction (MLR) were performed. Seven patients enrolled in this study and received donor MSC injections simultaneously with LDKT. The median age of recipients was 36 years (32 ~ 48). The number of HLA mismatches was 3 or less in 5 and more than 3 in 2. No local complications or adverse events such as hypersensitivity occurred during or after the injection of donor MSC. There was no graft failure, but the biopsy-proven acute rejections were observed in 3 recipients during the follow-up period controlled well with steroid pulse therapy (SPT). The last serum creatinine was a median of 1.23 mg/dL (0.83 ~ 2.07). Mixed chimerism was not detected in the peripheral blood of the recipients at 1 and 8 week of post-transplantation. Donor-specific lymphocyte or T cell proliferation and Treg priming responses were observed in some patients. Plasma level of IL-10, a known mediator of MSC-induced immune suppression, increased in the patients with Treg induction. Donor MSC injection into the iliac bone at the time of KT was feasible and safe. A possible correlation was observed between the induction of inhibitory immune responses and the clinical outcome in the MSC-kidney transplanted patients. Further research will be performed to evaluate the efficacy of MSC injection for the induction of mixed chimerism and subsequent immune tolerance in KT.
Cranial Bone Graft Donor Site Reconstruction.
Çelik, Muzaffer
2017-01-01
My most important concern, in my entire experience with cranial bone grafting procedures, is managing the bone graft donor site such as donor site cavity from harvesting and weakness of the cranium. The most common patient complaint, following cranial bone grafting for aesthetic indications, is the presence of a cavity at the donor site. The authors have managed more than 200 patients since 2001, wherein the cranial bone graft-donor sites were reconstructed with tiny bone chip lamellae harvested from the area adjacent to the donor site. This procedure was associated with a low incidence of patient complaints, thereby suggesting higher patient satisfaction. This approach for cranial bone grafting appears to have a high patient acceptance.
Lin, Jiaxin; Chan, William F N; Boon, Louis; Anderson, Colin C
2018-01-01
Stable mixed hematopoietic chimerism is a robust method for inducing donor-specific tolerance with the potential to prevent rejection of donor islets in recipients with autoimmune type-1 diabetes. However, with reduced intensity conditioning, fully allogeneic chimerism in a tolerance resistant autoimmune-prone non-obese diabetic (NOD) recipient has rarely been successful. In this setting, successful multilineage chimerism has required either partial major histocompatability complex matching, mega doses of bone marrow, or conditioning approaches that are not currently clinically feasible. Irradiation free protocols with moderate bone marrow doses have not generated full tolerance; donor skin grafts were rejected. We tested whether more efficient recipient T cell depletion would generate a more robust tolerance. We show that a combination of donor-specific transfusion-cyclophosphamide and multiple T cell depleting antibodies could induce stable high levels of fully allogeneic chimerism in NOD recipients. Less effective T cell depletion was associated with instability of chimerism. Stable chimeras appeared fully donor-specific tolerant, with clonal deletion of allospecific T cells and acceptance of donor skin grafts, while recovering substantial immunocompetence. The loss of chimerism months after transplant was significantly associated with a lower level of chimerism and donor T cells within the first 2 weeks after transplant. Thus, rapid and robust recipient T cell depletion allows for stable high levels of fully allogeneic chimerism and robust donor-specific tolerance in the stringent NOD model while using a clinically feasible protocol. In addition, these findings open the possibility of identifying recipients whose chimerism will later fail, stratifying patients for early intervention.
Comparison of Bone Grafts From Various Donor Sites in Human Bone Specimens.
Kamal, Mohammad; Gremse, Felix; Rosenhain, Stefanie; Bartella, Alexander K; Hölzle, Frank; Kessler, Peter; Lethaus, Bernd
2018-05-14
The objective of the current study was to compare the three-dimensional (3D) morphometric microstructure in human cadaveric bone specimens taken from various commonly utilized donor sites for autogenous bone grafting. Autogenous bone grafts can be harvested from various anatomic sites and express heterogeneous bone quality with a specific 3D microstructure for each site. The long-term structural integrity and susceptibility to resorption of the graft depend on the selected donor bone. Micro-computed tomography generates high-resolution datasets of bone structures and calcifications making this modality versatile for microarchitecture analysis and quantification of the bone. Six bone specimens, 10 mm in length, where anatomically possible, were obtained from various anatomical sites from 10 human dentate cadavers (4 men, 6 women, mean age 69.5 years). Specimens were scanned using a micro-computed tomography device and volumetrically reconstructed. A virtual cylindrical inclusion was reconstructed to analyze the bone mineral density and structural morphometric analysis using bone indices: relative bone volume, surface density, trabecular thicknesses, and trabecular separation. Calvarial bone specimens showed the highest mineral density, followed by the chin, then mandibular ramus then the tibia, whereas iliac crest and maxillary tuberosity had lower bone mineral densities. The pairwise comparison revealed statistically significant differences in the bone mineral density and relative bone volume index in the calvaria, mandibular ramus, mandibular symphysis groups when compared with those in the iliac crest and maxillary tuberosity, suggesting higher bone quality in the former groups than in the latter; tibial specimens expressed variable results.
Marrow donor registry and cord blood bank in Taiwan.
Lee, Tsung Dao
2002-08-01
Unrelated Bone marrow transplant was initiated thirty years ago. Though there are over millions of donors registered with the bone marrow registries worldwide, Asian patients rarely find a match with all these donors. Tzu Chi Marrow Donor Registry was established to meet this need. It has become the largest Asian marrow donor registry in the world. With the introduction of high technology to test the HLA of the donors and recipients, the success rate of bone marrow transplant is greatly improved among Asian countries. 50% of blood disease Asian patients who cannot find a bone marrow matched donor will be complemented by the establishment of cord blood banks in Taiwan.
Howard, W
1999-04-01
The use of human organs and tissues for transplantation in Australia has increased significantly over the past 30 years. In 1997, the Australian Coordinating Committee on Organ Registries and Donation (ACCORD) reported a total number of 190 organ donors, 636 corneal donors and 1509 bone donors Australia wide. Of the 1509 bone donations, 143 came from cadaveric sources and 1366 were made by living donors. Bone transplantation is not as widely recognised as solid organ or corneal transplantation. Due to improved technology and surgical skills, the demand for bone transplantation has increased markedly. This Clinical Update will provide an overview of the physiological aspects of bone transplantation and explore bone banking, a key step in the complex and critical process of bone transplantation.
ERIC Educational Resources Information Center
Kaster, Elizabeth C.; Rogers, Charles R.; Jeon, Kwon Chan; Rosen, Brittany
2014-01-01
Introduction: For those with certain blood or bone cancers, bone marrow donation can mean the difference between life and death. The National Marrow Donor Program® (NMDP) operates the largest bone marrow registry of potential donors; however, at times when potential matches are identified, many donors opt not to donate. The purpose of this study…
Following damage, the majority of bone marrow-derived airway cells express an epithelial marker.
MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R
2006-12-19
Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0-1.6% with whole marrow and 0.6-1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any cytokeratin mRNA in SP or bone marrow samples by RT-PCR. The appearance of bone marrow derived cells in the tracheal epithelium is enriched by detergent-induced tissue damage and the majority of these cells express an epithelial marker. The cytokeratin positive donor derived cells in the tracheal epithelium are not present in the injected donor cells and must have acquired this novel phenotype in vivo.
Following damage, the majority of bone marrow-derived airway cells express an epithelial marker
MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R
2006-01-01
Background Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. Methods Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. Results The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0 – 1.6% with whole marrow and 0.6 – 1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any cytokeratin mRNA in SP or bone marrow samples by RT-PCR. Conclusion The appearance of bone marrow derived cells in the tracheal epithelium is enriched by detergent-induced tissue damage and the majority of these cells express an epithelial marker. The cytokeratin positive donor derived cells in the tracheal epithelium are not present in the injected donor cells and must have acquired this novel phenotype in vivo. PMID:17177981
Abnormalities in biomarkers of mineral and bone metabolism in kidney donors.
Kasiske, Bertram L; Kumar, Rajiv; Kimmel, Paul L; Pesavento, Todd E; Kalil, Roberto S; Kraus, Edward S; Rabb, Hamid; Posselt, Andrew M; Anderson-Haag, Teresa L; Steffes, Michael W; Israni, Ajay K; Snyder, Jon J; Singh, Ravinder J; Weir, Matthew R
2016-10-01
Previous studies have suggested that kidney donors may have abnormalities of mineral and bone metabolism typically seen in chronic kidney disease. This may have important implications for the skeletal health of living kidney donors and for our understanding of the pathogenesis of long-term mineral and bone disorders in chronic kidney disease. In this prospective study, 182 of 203 kidney donors and 173 of 201 paired normal controls had markers of mineral and bone metabolism measured before and at 6 and 36 months after donation (ALTOLD Study). Donors had significantly higher serum concentrations of intact parathyroid hormone (24.6% and 19.5%) and fibroblast growth factor-23 (9.5% and 8.4%) at 6 and 36 months, respectively, as compared to healthy controls, and significantly reduced tubular phosphate reabsorption (-7.0% and -5.0%) and serum phosphate concentrations (-6.4% and -2.3%). Serum 1,25-dihydroxyvitamin D3 concentrations were significantly lower (-17.1% and -12.6%), while 25-hydroxyvitamin D (21.4% and 19.4%) concentrations were significantly higher in donors compared to controls. Moreover, significantly higher concentrations of the bone resorption markers, carboxyterminal cross-linking telopeptide of bone collagen (30.1% and 13.8%) and aminoterminal cross-linking telopeptide of bone collagen (14.2% and 13.0%), and the bone formation markers, osteocalcin (26.3% and 2.7%) and procollagen type I N-terminal propeptide (24.3% and 8.9%), were observed in donors. Thus, kidney donation alters serum markers of bone metabolism that could reflect impaired bone health. Additional long-term studies that include assessment of skeletal architecture and integrity are warranted in kidney donors. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Markus, Peter M.; Selvaggi, Gennaro; Cai, Xin; Fung, John J.; Starzl, Thomas E.
2010-01-01
Mixed allogeneic chimerism (A + B → A) was induced in rats by reconstitution of lethally irradiated LEW recipients with a mixture of T-cell depleted (TCD) syngeneic and TCD allogeneic ACI bone marrow. Thirty-seven percent of animals repopulated as stable mixed lymphopoietic chimeras, while the remainder had no detectable allogeneic chimerism. When evaluated for evidence of donor-specific transplantation tolerance, only those recipients with detectable allogeneic lymphoid chimerism exhibited acceptance of donor-specific skin and cardiac allografts. Despite transplantation over a major histocompatibility complex (MHO)- and minor-disparate barrier, animals accepted donor-specific ACI skin and primarily vascularized cardiac allografts permanently, while rejecting third party Brown Norway (BN) grafts. The tolerance induced was also donor-specific in vitro as evidenced by specific hyporeactivity to the allogeneic donor lymphoid elements, yet normal reactivity to MHC-disparate third party rat lymphoid cells. This model for mixed chimerism in the rat will be advantageous to investigate specific transplantation tolerance to primarily vascularized solid organ grafts that can be performed with relative ease in the rat, but not in the mouse, and may provide a method to study the potential existence of organ- or tissue-specific alloantigens in primarily vascularized solid organ allografts. PMID:8162277
In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism
Shih, Yu-Ru; Kang, Heemin; Rao, Vikram; Chiu, Yu-Jui; Kwon, Seong Keun; Varghese, Shyni
2017-01-01
Synthetic biomimetic matrices with osteoconductivity and osteoinductivity have been developed to regenerate bone tissues. However, whether such systems harbor donor marrow in vivo and support mixed chimerism remains unknown. We devised a strategy to engineer bone tissues with a functional bone marrow (BM) compartment in vivo by using a synthetic biomaterial with spatially differing cues. Specifically, we have developed a synthetic matrix recapitulating the dual-compartment structures by modular assembly of mineralized and nonmineralized macroporous structures. Our results show that these matrices incorporated with BM cells or BM flush transplanted into recipient mice matured into functional bone displaying the cardinal features of both skeletal and hematopoietic compartments similar to native bone tissue. The hematopoietic function of bone tissues was demonstrated by its support for a higher percentage of mixed chimerism compared with i.v. injection and donor hematopoietic cell mobilization in the circulation of nonirradiated recipients. Furthermore, hematopoietic cells sorted from the engineered bone tissues reconstituted the hematopoietic system when transplanted into lethally irradiated secondary recipients. Such engineered bone tissues could potentially be used as ectopic BM surrogates for treatment of nonmalignant BM diseases and as a tool to study hematopoiesis, donor–host cell dynamics, tumor tropism, and hematopoietic cell transplantation. PMID:28484009
... allograft bone comes from donors who have died. Tissue banks screen these donors and disinfect and test the donated bone to make sure it is safe to use. If the transplanted bone comes ... an autograft. Autograft bone often comes from your ribs, hips or a leg.
Sellathamby, S; Balasubramanian, P; Sivalingam, S; Shaji, R V; Mathews, V; George, B; Viswabandya, A; Srivastava, A; Chandy, M
2006-04-01
Analysis of chimerism by polymerase chain reaction amplification of STR or VNTR has become a routine procedure for the evaluation of engraftment after allogeneic stem cell transplantation. Knowledge of the frequency of different STR or VNTR alleles in unrelated individuals in a population is useful for forensic work. In the context of HLA identical sibling bone marrow transplantation the informativeness of these markers needs to be evaluated. We evaluated five STRs (THO1, VWA, FES, ACTBP2, and F13A1) and 1 VNTR (APOB) for informativeness in stem cell transplants from HLA identical sibling donors. All four markers used individually allowed us to discriminate 20-56% of the patient donor pairs. Using a combination of all these markers along with a polymorphic marker in the beta-globin gene and the sex chromosome specific amelogenin marker, we were able to discriminate 99% of the patient donor pairs. We have established an algorithm for evaluating chimerism following HLA identical sibling donor transplants in the Indian population using molecular markers in 310 patients. Analysis of heterozygote frequencies in different populations is similar suggesting that this algorithm can be used universally for transplant centers to evaluate chimerism following allogeneic bone marrow transplantation.
Schwartz, Z; Somers, A; Mellonig, J T; Carnes, D L; Dean, D D; Cochran, D L; Boyan, B D
1998-04-01
Demineralized freeze-dried bone allografts (DFDBA) have been used extensively in periodontal therapy. DFDBA is used because it contains bone morphogenetic protein (BMP), which induces new bone formation during the healing process. Most commercial bone banks do not verify the presence or activity of BMP in DFDBA nor the ability of DFDBA to induce new bone. Recently, we showed that different bone bank preparations of DFDBA, even from the same bank, varied considerably in their ability to induce new bone, suggesting inherent differences in the quality of the material. Therefore, we examined whether donor age or gender contributed to the variability seen with these preparations. Twenty-seven batches of DFDBA from different donors were donated by one bone bank which had been shown previously to supply DFDBA that was consistently able to induce new bone formation. Each batch was implanted bilaterally in the thigh muscle of nude mice. After 56 days, the implants were excised and examined by light microscopy and histomorphometry. Seventy percent of the preparations tested induced new bone formation. Most of these preparations produced ossicles containing cortical bone surrounding bone marrow-like tissue. The ability to induce bone appears to be age-dependent, with DFDBA from older donors being less likely to have strong bone-inducing activity. By contrast, no difference in ability to induce new bone was noticed between male or female donors. The results of this study confirm that commercial preparations of DFDBA differ in their ability to induce new bone formation. In fact, some of the batches had no activity at all. The ability of DFDBA to induce new bone formation is suggested to be age-dependent, but not gender-dependent by our study. These results indicate that commercial bone banks need to verify the ability of DFDBA to induce new bone formation and should reconsider the advisability of using bone from older donors.
Pauley, Penelope; Matthews, Brya G; Wang, Liping; Dyment, Nathaniel A; Matic, Igor; Rowe, David W; Kalajzic, Ivo
2014-09-01
Osteogenesis imperfecta is a serious genetic disorder that results from improper type I collagen production. We aimed to evaluate whether bone marrow stromal cells (BMSC) delivered locally into femurs were able to engraft, differentiate into osteoblasts, and contribute to formation of normal bone matrix in the osteogenesis imperfect murine (oim) model. Donor BMSCs from bone-specific reporter mice (Col2.3GFP) were expanded in vitro and transplanted into the femoral intramedullary cavity of oim mice. Engraftment was evaluated after four weeks. We detected differentiation of donor BMSCs into Col2.3GFP+ osteoblasts and osteocytes in cortical and trabecular bone of transplanted oim femurs. New bone formation was detected by deposition of dynamic label in the proximity to the Col2.3GFP+ osteoblasts, and new bone showed more organized collagen structure and expression of type I α2 collagen. Col2.3GFP cells were not found in the contralateral femur indicating that transplanted osteogenic cells did not disseminate by circulation. No osteogenic engraftment was observed following intravenous transplantation of BMSCs. BMSC cultures derived from transplanted femurs showed numerous Col2.3GFP+ colonies, indicating the presence of donor progenitor cells. Secondary transplantation of cells recovered from recipient femurs and expanded in vitro also showed Col2.3GFP+ osteoblasts and osteocytes confirming the persistence of donor stem/progenitor cells. We show that BMSCs delivered locally in oim femurs are able to engraft, differentiate into osteoblasts and osteocytes and maintain their progenitor potential in vivo. This suggests that local delivery is a promising approach for introduction of autologous MSC in which mutations have been corrected.
Larsen, Mikko; Pelzer, Michael; Friedrich, Patricia F.; Wood, Christina M.; Bishop, Allen T.
2011-01-01
Background: Segmental bone defects pose reconstructive challenges. Composite tissue allotransplantation offers a potential solution but requires long-term immunosuppression with attendant health risks. This study demonstrates a novel method of composite-tissue allotransplantation, permitting long-term drug-free survival, with use of therapeutic angiogenesis of autogenous vessels to maintain circulation. Methods: Ninety-three rats underwent femoral allotransplantation, isotransplantation, or allografting. Group-1 femora were transplanted across a major histocompatibility complex barrier, with microsurgical pedicle anastomoses. The contralateral saphenous artery and vein (termed the AV bundle) of the recipient animal were implanted within the medullary canal to allow development of an autogenous circulation. In Group 2, allotransplantation was also performed, but with AV bundle ligation. Group 3 bones were frozen allografts rather than composite-tissue allotransplantation femora, and Group 4 bones were isotransplants. Paired comparison allowed evaluation of AV bundle effect, bone allogenicity (isogeneic or allogeneic), and initial circulation and viability (allotransplant versus allograft). Two weeks of immunosuppression therapy maintained blood flow initially, during development of a neoangiogenic autogenous blood supply from the AV bundle in patent groups. At eighteen weeks, skin grafts from donor, recipient, and third-party rats were tested for immunocompetence and donor-specific tolerance. At twenty-one weeks, bone circulation was quantified and new bone formation was measured. Results: Final circulatory status depended on both the initial viability of the graft and the successful development of neoangiogenic circulation. Median cortical blood flow was highest in Group 1 (4.6 mL/min/100 g), intermediate in Group 4 isotransplants (0.4 mL/min/100 g), and absent in others. Capillary proliferation and new bone formation were generally highest in allotransplants (15.0%, 6.4 μm3/μm2/yr) and isotransplants with patent AV bundles (16.6%, 50.3 μm3/μm2/yr) and less in allotransplants with ligated AV bundles (4.4%, 0.0 μm3/μm2/yr) or allografts (8.1%, 24.1 μm3/μm2/yr). Donor and third-party-type skin grafts were rejected, indicating immunocompetence without donor-specific tolerance. Conclusions: In the rat model, microvascular allogeneic bone transplantation in combination with short-term immunosuppression and AV bundle implantation creates an autogenous neoangiogenic circulation, permitting long-term allotransplant survival with measurable blood flow. Clinical Relevance: These methods may allow future composite-tissue allotransplantation of bone without the appreciable health risks that are associated with long-term immunosuppression or immune tolerance induction. PMID:21266640
Ashizuka, Shuichi; Peranteau, William H; Hayashi, Satoshi; Flake, Alan W
2006-03-01
In utero hematopoietic cell transplantation (IUHCT) is a non-ablative approach that achieves mixed allogeneic chimerism and donor-specific tolerance. However, clinical application of IUHCT has been limited by minimal engraftment. We have previously demonstrated in the murine model that low-level allogeneic chimerism achieved by IUHCT can be enhanced to near-complete donor chimerism by postnatal minimally myeloablative total body irradiation (TBI) followed by same-donor bone marrow transplantation. Because of concerns of toxicity related to even low-dose TBI in early life, we wondered if a potentially less toxic strategy utilizing a single myelosuppressive agent, Busulfan (BU), would provide similar enhancement of engraftment. In this study, mixed chimerism was created by IUHCT in a fully allogeneic strain combination. After birth, chimeric mice were conditioned with BU followed by transplantation of bone marrow cells congenic to the prenatal donor. We demonstrate that: 1) low-level chimerism after IUHCT can be converted to high-level chimerism by this protocol; 2) enhancement of chimerism is BU dose-dependent; and 3) BU reduces the proliferative potential of hematopoietic progenitor cells thus conferring a competitive advantage to the non-BU-treated postnatal donor cells. This study confirms the potential of IUHCT for facilitation of minimally toxic postnatal regimens to achieve therapeutic levels of allogeneic engraftment.
Karahan, G E; de Vaal, Y J H; Krop, J; Wehmeier, C; Roelen, D L; Claas, F H J; Heidt, S
2017-10-01
Humoral responses against mismatched donor HLA are routinely measured as serum HLA antibodies, which are mainly produced by bone marrow-residing plasma cells. Individuals with a history of alloimmunization but lacking serum antibodies may harbor circulating dormant memory B cells, which may rapidly become plasma cells on antigen reencounter. Currently available methods to detect HLA-specific memory B cells are scarce and insufficient in quantifying the complete donor-specific memory B cell response due to their dependence on synthetic HLA molecules. We present a highly sensitive and specific tool for quantifying donor-specific memory B cells in peripheral blood of individuals using cell lysates covering the complete HLA class I and class II repertoire of an individual. Using this enzyme-linked immunospot (ELISpot) assay, we found a median frequency of 31 HLA class I and 89 HLA class II-specific memory B cells per million IgG-producing cells directed at paternal HLA in peripheral blood samples from women (n = 22) with a history of pregnancy, using cell lysates from spouses. The donor-specific memory B cell ELISpot can be used in HLA diagnostic laboratories as a cross-match assay to quantify donor-specific memory B cells in patients with a history of sensitizing events. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Mann, Kenneth A; Miller, Mark A; Goodheart, Jacklyn R; Izant, Timothy H; Cleary, Richard J
2014-03-01
Biological adaptation following placement of a total knee replacements (TKRs) affects peri-implant bone mineral density (BMD) and implant fixation. We quantified the proximal tibial bone strain and implant-bone micro-motion for functioning postmortem retrieved TKRs and assessed the strain/micro-motion relationships with chronological (donor age and time in service) and patient (body weight and BMD) factors. Twenty-two tibial constructs were functionally loaded to one body weight (60% medial/40% lateral), and the bone strains and tray/bone micro-motions were measured using a digital image correlation system. Donors with more time in service had higher bone strains (p = 0.044), but there was not a significant (p = 0.333) contribution from donor age. Donors with lower peri-implant BMD (p = 0.0039) and higher body weight (p = 0.0286) had higher bone strains. Long term implants (>11 years) had proximal bone strains 900 µϵ that were almost twice as high as short term (<5 years) implants 570 µϵ. Micro-motion was greater for younger donors (p = 0.0161) and longer time in service (p = 0.0008). Increased bone strain with long term in vivo service could contribute to loosening of TKRs by failure of the tibial peri-implant bone. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
ErbB2 and bone sialoprotein as markers for metastatic osteosarcoma cells
Valabrega, G; Fagioli, F; Corso, S; Madon, E; Brach del Prever, A; Biasin, E; Linari, A; Aglietta, M; Giordano, S
2003-01-01
Osteosarcoma is the most common malignant bone neoplasia occurring in young patients in the first two decades of life, and represents 20% of all primitive malignant bone tumours. At present, treatment of metastatic osteosarcoma is unsatisfactory. High-dose chemotherapy followed by CD34+ leukapheresis rescue may improve these poor results. Neoplastic cells contaminating the apheresis may, however, contribute to relapse. To identify markers suitable for detecting osteosarcoma cells in aphereses we analysed the expression of bone-specific genes (Bone Sialoprotein (BSP) and Osteocalcin) and oncogenes (Met and ErbB2) in 22 patients with metastatic osteosarcoma and six healthy stem cell donors. The expression of these genes in aphereses of patients affected by metastatic osteosarcoma was assessed by RT–PCR and Southern blot analysis. Met and Osteocalcin proved to be not useful markers since they are positive in aphereses of both patients with metastatic osteosarcoma and healthy stem cell donors. On the contrary, BSP was expressed at significant levels in 85% of patients. Moreover, 18% of patients showed a strong and significantly positive (seven to 16 times higher than healthy stem cell donors) ErbB2 expression. In all positive cases, neoplastic tissue also expressed ErbB2. Our data show that ErbB2 can be a useful marker for tumour contamination in aphereses of patients affected by ErbB2-expressing osteosarcomas and that analysis of Bone Sialoprotein expression can be an alternative useful marker. PMID:12569382
Kuzmina, L A; Petinati, N A; Sats, N V; Drize, N J; Risinskaya, N V; Sudarikov, A B; Vasilieva, V A; Drokov, M Y; Michalzova, E D; Parovichnikova, E N; Savchenko, V G
2016-09-01
The present study involved three patients with graft failure following allogeneic hematopoietic stem cell transplantation (allo-HSCT). We obtained multipotent mesenchymal stromal cells (MSCs) from the original hematopoietic cell donors and implanted these cells in the periosteum to treat long-term bone marrow aplasia. The results showed that in all patients endogenous blood formation was recovered 2 weeks after MSC administration. Donor MSCs were found in recipient bone marrow three and 5 months following MSC implantation. Thus, our findings indicate that functional donor MSCs can persist in patient bone marrow.
[Regulatory problems regarding bone marrow transplantation from non-consanguinous donors].
Moratti, A
1999-01-01
The paper reports the normative rules and the Italian Ministry of Health administrative instructions concerning the bone marrow unrelated donor (MUD) search in the Italian Bone Marrow Donor Registry (IBMDR) and in international registries from the preliminary activation to a MUD bone marrow transplant (BMT), when a volunteer donor, perfectly compatible with a recipient lacking a HLA identical sibling, is found. The article describes all the expenses pertinent to the different stages of search and the documents necessary to obtain the reimbursement of these expenses. A very recent Ministry Decree establishing that all the search costs will be charged to the competent local sanitary authority is added.
Rojas Montero, G M; Alvarez López, M R; López Bermejo, A; Moya Quiles, M R; Muro Amador, M
2006-11-01
To perform a descriptive study of the activity of the Bank of marrow donors from Murcia Region. All donors in the Bank of bone marrow from 1994 until 2004 (n=3137). This study analysed the number of donors, their origin and, performed donor searches activity. Donors were typed by serological microlymphocytotoxicity and molecular PCR-SSO and PCR-SSP techniques. The Bank of bone marrow has 3,137 voluntary donors typed in low- and high-resolution. A total of 680 donor searches have been realized. The origin of the donors according to several Areas of Health in which the Autonomous Community of Murcia is divided, is the following one: Area I (28%), Area II (18 %), Area III (23 %), Area IV (6 %), Area VI (10 %) and other provinces (12%). An increase is observed in the number of annual donors as well as an increase very marked of donor searches that are realized every year, especially in 2004.
Zayed, Mohammed; Caniglia, Christopher; Misk, Nabil; Dhar, Madhu S.
2017-01-01
Mesenchymal stem cells (MSCs) have been demonstrated to be useful for cartilage tissue regeneration. Bone marrow (BM) and synovial fluid (SF) are promising sources for MSCs to be used in cartilage regeneration. In order to improve the clinical outcomes, it is recommended that prior to clinical use, the cellular properties and, specifically, their chondrogenic potential must be investigated. The purpose of this study is to compare and better understand the in vitro chondrogenic potential of equine bone marrow-derived mesenchymal stem cells (BMMSCs) and synovial fluid-derived mesenchymal stem cells (SFMSCs) populated from the same equine donor. BM- and SF-derived MSCs cultures were generated from five equine donors, and the MSCs were evaluated in vitro for their morphology, proliferation, trilineage differentiation, and immunophenotyping. Differences in their chondrogenic potentials were further evaluated quantitatively using glycosaminoglycan (GAG) content and via immunofluorescence of chondrogenic differentiation protein markers, SRY-type HMG box9, Aggrecan, and collagen II. The BMMSCs and SFMSCs were similar in cellular morphology, viability, and immunophenotype, but, varied in their chondrogenic potential, and expression of the key chondrogenic proteins. The SFMSCs exhibited a significant increase in GAG content compared to the BMMSCs (P < 0.0001) in three donors, suggesting increased levels of chondrogenesis. The expression of the key chondrogenic proteins correlated positively with the GAG content, suggesting that the differentiation process is dependent on the expression of the target proteins in these three donors. Our findings suggest that even though SFMSCs were hypothesized to be more chondrogenic relative to BMMSCs, there was considerable donor-to-donor variation in the primary cultures of MSCs which can significantly affect their downstream application. PMID:28149840
Pino, Ana María; Ríos, Susana; Astudillo, Pablo; Fernández, Mireya; Figueroa, Paula; Seitz, Germán; Rodríguez, J Pablo
2010-03-01
Osteoporosis is characterized by low bone mass, microarchitectural deterioration of bone tissue leading to increased bone fragility, and a resulting susceptibility to fractures. Distinctive environmental bone marrow conditions appear to support the development and maintenance of the unbalance between bone resorption and bone formation; these complex bone marrow circumstances would be reflected in the fluid surrounding bone marrow cells. The content of regulatory molecules in the extracellular fluid from the human bone marrow is practically unknown. Since the content of cytokines such as adiponectin, leptin, osteoprogeterin (OPG), soluble receptor activator of nuclear factor kappaB ligand (s-RANKL), tumor necrosis factor alpha, and interleukin 6 (IL-6) may elicit conditions promoting or sustaining osteoporosis, in this work we compared the concentrations of the above-mentioned cytokines and also the level of the soluble receptors for both IL-6 and leptin in the extracellular fluid from the bone marrow of nonosteoporotic and osteoporotic human donors. A supernatant fluid (bone marrow supernatant fluid [BMSF]) was obtained after spinning the aspirated bone marrow samples; donors were classified as nonosteoporotic or osteoporotic after dual-energy X-ray absorptiometry (DXA) measuring. Specific commercially available kits were used for all measurements. The cytokines' concentration in BMSF showed differently among nonosteoporotic and osteoporotic women; this last group was characterized by higher content of proinflammatory and adipogenic cytokines. Also, osteoporotic BMSF differentiated by decreased leptin bioavailability, suggesting that insufficient leptin action may distinguish the osteoporotic bone marrow. Copyright 2010 American Society for Bone and Mineral Research.
Engelstad, Mark E; Morse, Timothy
2010-12-01
The anterior iliac crest, posterior iliac crest, and proximal tibia are common cancellous donor sites used for autogenous bone grafting. Donor site selection is partly dependent on the expected volume of available bone, but reports of cancellous bone volumes at each of these sites are variable. The goal of this study was to compare the volumes of cancellous bone harvested from donor sites within the same cadaver. Within each of 10 fresh frozen cadavers, cancellous bone was harvested from 3 donor sites-anterior iliac crest, posterior iliac crest, and proximal tibia-using established surgical techniques. Bone volumes were measured by fluid displacement. Mean compressed cancellous bone volumes from the 3 donor sites were compared among cadavers. Within each cadaver, the 3 donor sites were given a volume rank score from 1 (least volume) to 3 (most volume). Among cadavers, mean compressed cancellous bone volumes from the proximal tibia (11.3 mL) and posterior iliac crest (10.1 mL) were significantly greater than the anterior iliac crest (7.0 mL). Within cadavers, the mean volume rank score of the proximal tibia (mean rank, 2.7) was statistically greater than that for the posterior iliac crest (mean rank, 2.0), which was statistically greater than that for the anterior iliac crest (mean rank, 1.2). Strong correlations in bone volume existed between the proximal tibia and iliac crests (r = 0.67) and between the anterior iliac crest and posterior iliac crest (r = 0.93). The proximal tibia and posterior iliac crest yielded a significantly greater mean volume of compressed cancellous bone than the anterior iliac crest. Within individual cadaver skeletons, the proximal tibia was most likely to yield the largest cancellous volume, whereas the anterior iliac crest was most likely to yield the smallest cancellous volume. Although the proximal tibia contains relatively large volumes of cancellous bone, further investigation is required to determine how much cancellous bone can safely be harvested. Copyright © 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Guest, Ian; Ilic, Zoran; Scrable, Heidi; Sell, Stewart
2015-12-01
Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16-18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best.
Guest, Ian; Ilic, Zoran; Sell, Stewart
2015-01-01
Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16–18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best. PMID:26796640
The composition of human cortical allograft bone derived from FDA/AATB-screened donors.
Pietrzak, William S; Woodell-May, Jennifer
2005-07-01
Allograft human bone is an integral part of the surgeons' armamentarium and will continue to be for the near future. The intraoperative handling and/or mechanical properties are critical to its function. These properties are significantly influenced by the composition and the structure of the bone, which varies from donor to donor. Published studies of human bone composition use bone derived from a population that may differ from the population of qualified donors from which allograft bone is derived and may not well represent the pool of clinical allograft bone. This study investigated the cortical bone composition from 20 donors (males and females, 17 to 65 years of age) that had passed the US Food and Drug Administration and American Association of Tissue Banks screening procedures for donor qualification. As such, this represents a subset of the general population. The analysis yielded the following composition: mineral (ash) = 67.0% +/- 1.3% (w/w); matrix (predominantly type I collagen and other proteins) = 31.9% +/- 1.1% (w/w); and lipid (hexane extractables) = 1.1% +/- 1.5% (w/w). In general, these results were well within the ranges specified in the literature, with the significance being the demonstration of low variability within the study population. No age or gender compositional dependency was evident in this series, possibly as a result of the relatively homogenous population, which may have limited the ability to observe trends. Visually, the bone powders ranged from nearly white to red-brown. The more intense colors appeared to be associated with greater lipid content, perhaps indicating the presence of residual oxidized lipids.
Computer-assisted selection of donor sites for autologous grafts
NASA Astrophysics Data System (ADS)
Krol, Zdzislaw; Zeilhofer, Hans-Florian U.; Sader, Robert; Hoffmann, Karl-Heinz; Gerhardt, Paul; Horch, Hans-Henning
1997-05-01
A new method is proposed for a precise planning of autologous bone grafts in cranio- and maxillofacial surgery. In patients with defects of the facial skeleton, autologous bone transplants can be harvested from various donor sites in the body. The preselection of a donor site depends i.a. on the morphological fit of the available bone mass and the shape of the part that is to be transplanted. A thorough planning and simulation of the surgical intervention based on 3D CT studies leads to a geometrical description and the volumetric characterization of the bone part to be resected and transplanted. Both, an optimal fit and a minimal lesion of the donor site are guidelines in this process. We use surface similarity and voxel similarity measures in order to select the optimal donor region for an individually designed transplant.
Kemper, Oliver; Herten, Monika; Fischer, Johannes; Haversath, Marcel; Beck, Sascha; Classen, Tim; Warwas, Sebastian; Tassemeier, Tjark; Landgraeber, Stefan; Lensing-Höhn, Sabine; Krauspe, Rüdiger; Jäger, Marcus
2014-01-01
Background Iloprost, a stable prostacyclin I2 analogue, seems to have an osteoblast-protective potential, whereas indomethacin suppresses new bone formation. The aim of this study was to investigate human bone marrow stromal cell (BMSC) proliferation and differentiation towards the osteoblastic lineage by administration of indomethacin and/or iloprost. Material/Methods Human bone marrow cells were obtained from 3 different donors (A=26 yrs/m; B=25 yrs/f, C=35 yrs/m) via vacuum aspiration of the iliac crest followed by density gradient centrifugation and flow cytometry with defined antigens (CD105+/73+/45−/14−). The cells were seeded and incubated as follows: without additives (Group 0; donor A/B/C), with 10−7 M iloprost only (Group 0+ilo; A/B), with indomethacin only in concentrations of 10−6 M (Group 1, A), 10−5 M (Group 2, B), 10−4 M (Group 3, A/B), and together with 10−7 M iloprost (Groups 4–6, A/B/C). On Day 10 and 28, UV/Vis spectrometric and immunocytochemical assays (4 samples per group and donor) were performed to investigate cell proliferation (cell count measurement) and differentiation towards the osteoblastic lineage (CD34−, CD45−, CD105+, type 1 collagen (Col1), osteocalcin (OC), alkaline phosphatase (ALP), Runx2, Twist, specific ALP-activity). Results Indomethacin alone suppressed BMSC differentiation towards the osteoblastic lineage by downregulation of Runx2, Col1, and ALP. In combination with indomethacin, iloprost increased cell proliferation and differentiation and it completely suppressed Twist expression at Day 10 and 28. Iloprost alone did not promote cell proliferation, but moderately enhanced Runx2 and Twist expression. However, the proliferative effects and the specific ALP-activity varied donor-dependently. Conclusions Iloprost partially antagonized the suppressing effects of indomethacin on BMSC differentiation towards the osteoblast lineage. It enhanced the expression of Runx2 and, only in the presence of indomethacin, it completely suppressed Twist. Thus, in the treatment of avascular osteonecrosis or painful bone marrow edema, the undesirable effects of indomethacin might be counterbalanced by iloprost. PMID:25382306
Restoration of Viral Immunity in Immunodeficient Humans by the Adoptive Transfer of T Cell Clones
NASA Astrophysics Data System (ADS)
Riddell, Stanley R.; Watanabe, Kathe S.; Goodrich, James M.; Li, Cheng R.; Agha, Mounzer E.; Greenberg, Philip D.
1992-07-01
The adoptive transfer of antigen-specific T cells to establish immunity is an effective therapy for viral infections and tumors in animal models. The application of this approach to human disease would require the isolation and in vitro expansion of human antigen-specific T cells and evidence that such T cells persist and function in vivo after transfer. Cytomegalovirus-specific CD8^+ cytotoxic T cell (CTL) clones could be isolated from bone marrow donors, propagated in vitro, and adoptively transferred to immunodeficient bone marrow transplant recipients. No toxicity developed and the clones provided persistent reconstitution of CD8^+ cytomegalovirus-specific CTL responses.
Bone allograft banking in South Australia.
Campbell, D G; Oakeshott, R D
1995-12-01
The South Australian Bone Bank had expanded to meet an increased demand for allograft bone. During a 5 year period from 1988 to 1992, 2361 allografts were harvested from 2146 living donors and 30 cadaveric donors. The allografts were screened by contemporary banking techniques which include a social history, donor serum tests for HIV-1, HIV-2, hepatitis B and C, syphilis serology, graft microbiology and histology. Grafts were irradiated with 25 kGy. The majority of grafts were used for arthroplasty or spinal surgery and 99 were used for tumour reconstruction. Of the donated grafts 336 were rejected by the bank. One donor was HIV-positive and two had false positive screens. There were seven donors with positive serology for hepatitis B, eight for hepatitis C and nine for syphilis. Twenty-seven grafts had positive cultures. Bone transplantation is the most frequent non-haematogenous allograft in South Australia and probably nationally. The low incidence of infectious viral disease in the donor population combined with an aggressive discard policy has ensured relative safety of the grafts. The frequency of graft rejection was similar to other bone banks but the incidence of HIV was lower.
Cocaine-contaminated allogeneic bone marrow transplantation.
Keung, Y K; Morgan, D; Cobos, E
2001-01-01
Should a person with history of drug addiction be categorically denied as a bone marrow donor? The answer to the question is controversial. We report a case of allogeneic bone marrow transplantation for refractory acute myeloid leukemia preceded by essential thrombocythemia. The donor used cocaine and marijuana the night before the bone marrow harvest. Copyright 2001 S. Karger AG, Basel
Bogdanovic, G; Priftakis, P; Taemmeraes, B; Gustafsson, A; Flaegstad, T; Winiarski, J; Dalianis, T
1998-11-01
In allogeneic bone marrow transplanted (BMT) patients BK virus (BKV) reactivation has been associated with haemorrhagic cystitis (HC). However, it is far from obvious which patients will develop HC, since BKV, a human polyomavirus, is ubiquitious and infects children at an early age. To investigate if a primary BKV infection, as such or possibly due to transmission of BKV by the marrow graft during BMT, was correlated to the development of HC, 45 children were followed for possible BKV seroconversion and development of HC at different time points after BMT. Serum samples were collected from the 45 allogeneic BMT children and their donors before transplantation, and from the patients at 3, 6 and 12 months after BMT. These sera were analysed for the presence of specific antibodies towards BKV by hemagglutination inhibition (HAI) and by IgG- and IgM-class specific enzyme linked immunosorbent (ELISA) assays. Twelve of the 45 BMT children had a documented episode of HC or hematuria. All patients and 98% of the donors were HAI positive before BMT, while with ELISA 87% of the patients and 84% of the donors were positive. Moreover, most HC and hematuria children (11/12) were seropositive with both assays before BMT, making it impossible to investigate possible BKV transmission through the bone marrow graft during BMT by serology. Still, serological changes such as ELISA seroconversion, IgM antibodies and/or HAI titer increases were significantly (p=0.016) more common in patients with HC (58%) than without HC (24%), but these changes occured mainly after HC symptomatology had already resolved. However, there was a near significant difference (p=0.053) in BKV seroprevalence by ELISA among the donors of patients with HC or hematuria (67%) as compared to the donors (91%) of patients without HC.
Charif, N; Li, Y Y; Targa, L; Zhang, L; Ye, J S; Li, Y P; Stoltz, J F; Han, H Z; de Isla, N
2017-01-01
With their proliferation, differentiation into specific cell types, and secretion properties, mesenchymal stromal/stem cells (MSC) are very interesting tools to be used in regenerative medicine. Bone marrow (BM) was the first MSC source characterized. In the frame of autologous MSC therapy, it is important to detect donor's parameters affecting MSC potency. Age of the donors appears as one parameter that could greatly affect MSC properties. Moreover, in vitro cell expansion is needed to obtain the number of cells necessary for clinical developments. It will lead to in vitro cell aging that could modify cell properties. This review recapitulates several studies evaluating the effect of in vitro and in vivo MSC aging on cell properties.
Assessment of an improved bone washing protocol for deceased donor human bone.
Eagle, M J; Man, J; Rooney, P; Hogg, P; Kearney, J N
2015-03-01
NHSBT Tissue Services issues bone to surgeons in the UK in two formats, fresh-frozen unprocessed bone from living donors and processed bone from deceased donors. Processed bone may be frozen or freeze dried and all processed bone is currently subjected to a washing protocol to remove blood and bone marrow. In this study we have improved the current bone washing protocol for cancellous bone and assessed the success of the protocol by measuring the removal of the bone marrow components: soluble protein, DNA and haemoglobin at each step in the process, and residual components in the bone at the end of the process. The bone washing protocol is a combination of sonication, warm water washes, centrifugation and chemical (ethanol and hydrogen peroxide) treatments. We report that the bone washing protocol is capable of removing up to 99.85 % soluble protein, 99.95 % DNA and 100 % of haemoglobin from bone. The new bone washing protocol does not render any bone cytotoxic as shown by contact cytotoxicity assays. No microbiological cell growth was detected in any of the wash steps. This process is now in use for processed cancellous bone issued by NHSBT.
La Prairie, A J; Gross, M
1991-02-01
The banking of femoral heads from patients who undergo total hip arthroplasty provides a valuable resource for orthopedic surgery. Quality assurance of the banked bone used in clinical procedures requires documented policies for screening, procuring, storing and distributing. Potential donors are screened at the time of donation for malignant disease, possible communicable disease, sepsis and high-risk life-styles. After negative culture results are confirmed and appropriate documentation has been completed, the bone is frozen at -70 degrees C. A quarantine period of 90 days follows. The donor is followed up 90 days or more postoperatively. At that time written consent is obtained for donation of the recovered tissue to the bone bank and for serology testing for human immunodeficiency virus (HIV-1) antibody, hepatitis B surface antigen (HBsAG), hepatitis B core antibody (HBcAb) and syphilis, and the donor is rescreened for contraindications. This protocol meets or exceeds all existing standards. The combination of obtaining consent and serology testing at 90 days streamlines the logistics of banking bone from surgical donors.
Zahariadis, G; Plitt, S S; O'Brien, S; Yi, Q-L; Fan, W; Preiksaitis, J K
2007-01-01
To determine the potential safety benefit of introducing nucleic acid testing (NAT) in tissue and organ donors, the risk of virus transmission was examined in a Canadian population. Anonymous data on Northern Alberta tissue and organ donors from 1998 to 2004 were used to determine the seroprevalence and estimate the seroincidence and residual risk of HIV, HBV, HCV and HTLV infection. Of the 3372 donors identified, 71.1% were surgical bone, 13.2% were living organ and 15.6% were deceased organ/tissue donors. Seroprevalence was: HIV 0.00%, HBV 0.09%, HCV 0.48% and HTLV 0.03%. Incidence (/100,000 p-yrs) and residual risks (/100,000 donors) could only be estimated for HBV (24.2 and 3.9) and HCV (11.2 and 2.2). Risk estimates were higher for deceased donors than surgical bone donors. HCV had the highest prevalence and HBV had the highest estimated incidence. HIV and HTLV risks were extremely low precluding accurate quantification. In this region of low overall viral prevalence, HCV NAT would be most effective in deceased organ donors. In surgical bone donors the cost of implementing NAT is high without significant added safety benefit.
Wheeler, Jonathan; Sanders, Megan; Loo, Stanley; Moaveni, Zac; Bartlett, Glenn; Keall, Heather; Pinkerton, Mark
2016-05-01
The authors aimed to accurately assess the donor site morbidity from iliac crest bone grafts for secondary bone grafting in patients with cleft lip and palate alveolar defects. Fifty patients between 3 months and 10 years following alveolar bone grafting for cleft lip and palate were entered into the study. Two-thirds of patients had no significant concerns about the donor site. The remaining third had some concerns about the appearance of their hips and less than 10% of patients expressing strong agreement with statements about concerns with shape, appearance, and self-consciousness about the iliac crest donor site. Examination findings showed the average length of scar being 5.4 cm and a third of patients having some minor palpable boney irregularities of the iliac crest. The authors found that the alveolar crest donor site is well tolerated by patients long term but has a measurable morbidity long term.
Hatakeyama, Naoki; Hori, Tsukasa; Yamamoto, Masaki; Inazawa, Natsuko; Iesato, Kotoe; Miyazaki, Toru; Ikeda, Hisami; Tsutsumi, Hiroyuki; Suzuki, Nobuhiro
2011-12-01
PTR is a serious problem in patients being treated for hematologic disorders. Two patients with acute leukemia developed PTR after allogeneic BMT from one HLA-antigen-mismatched mother attributable to HLA antibodies, which could not be detected in their serum before BMT. HLA antibodies, whose specificity resembled that of each patient, were detected in each donor's serum. Each donor had probably been immunized during pregnancy by their partner's HLA antigens expressed by the fetus, consequently, transplanted donor-derived cells provoked HLA antibodies in each recipient early after BMT, and those HLA antibodies induced PTR. If the mothers are selected as donors for their children, they should be tested for the presence of HLA antibodies. © 2010 John Wiley & Sons A/S.
Tian, C; Bagley, J; Iacomini, J
2006-09-01
Genetic modification of hematopoietic stem cells (HSCs) resulting in a state of molecular chimerism can be used to induce donor-specific tolerance to allografts. However, the requirements for maintaining tolerance in molecular chimeras remain unknown. Here, we examined whether long-term expression of a retrovirally encoded alloantigen in hematopoietic cells is required to maintain donor-specific tolerance in molecular chimeras. To this end, mice were reconstituted with syngeneic bone marrow transduced with retroviruses carrying the gene encoding the allogeneic MHC class I molecule Kb. Following induction of molecular chimerism, mice were depleted of cells expressing Kb by administration of the anti-Kb monoclonal antibody Y-3. Mice that were effectively depleted of cells expressing the retrovirally encoded MHC class I antigen rejected Kb disparate skin allografts. In contrast, control molecular chimeras accepted Kb disparate skin allografts indefinitely. These data suggest maintenance of tolerance in molecular chimeras requires long-term expression of retrovirally transduced alloantigen on the progeny of retrovirally transduced HSCs.
Terzaghi, Clara; Longo, Alessia; Legnani, Claudio; Bernasconi, Davide Paolo; Faré, Maristella
2015-03-01
The aim of this study was to analyze factors contributing to bacteriological contamination of bone and tendon allograft. Between 2008 and 2011, 2,778 bone and tendon allografts obtained from 196 organ and tissue donors or tissue donors only were retrospectively analysed. Several variables were taken into account: donor type (organ and tissue donors vs. tissue donor), cause of death, time interval between death and tissue procurement, duration of the procurement procedure, type of allografts, number of team members, number of trainees members, associated surgical procedures, positivity to haemoculture, type of procurement. The overall incidence of graft contamination was 23 %. The cause of death, the procurement time, the duration of procurement, the associated surgical procedures were not associated with increased risk of contamination. Significant effect on contamination incidence was observed for the number of staff members performing the procurement. In addition, our study substantiated significantly higher contamination rate among bone allografts than from tendon grafts. According to these observations, in order to minimize the contamination rate of procured musculoskeletal allografts, we recommend appropriate donor selection, use of standard sterile techniques, immediate packaging of each allograft to reduce graft exposure. Allograft procurement should be performed by a small surgical team.
Chitphakdithai, Pintip; Miller, John P.; Logan, Brent R.; King, Roberta J.; Rizzo, J. Douglas; Leitman, Susan F.; Anderlini, Paolo; Haagenson, Michael D.; Kurian, Seira; Klein, John P.; Horowitz, Mary M.; Confer, Dennis L.
2009-01-01
Limited data are available describing donor adverse events (AEs) associated with filgrastim mobilized peripheral blood stem cell (PBSC) collections in unrelated volunteers. We report results in 2408 unrelated PBSC donors prospectively evaluated by the National Marrow Donor Program (NMDP) between 1999 and 2004. Female donors had higher rates of AEs, requiring central line placement more often (17% vs 4%, P < .001), experiencing more apheresis-related AEs (20% vs 7%, P < .001), more bone pain (odds ratio [OR] = 1.49), and higher rates of grades II-IV and III-IV CALGB AEs (OR = 2.22 and 2.32). Obese donors experienced more bone pain (obese vs normal, OR = 1.73) and heavy donors had higher rates of CALGB toxicities (> 95 kg vs < 70 kg, OR = 1.49). Six percent of donors experienced grade III-IV CALGB toxicities and 0.6% experienced toxicities that were considered serious and unexpected. Complete recovery is universal, however, and no late AEs attributable to donation have been identified. In conclusion, PBSC collection in unrelated donors is generally safe, but nearly all donors will experience bone pain, 1 in 4 will have significant headache, nausea, or citrate toxicity, and a small percentage will experience serious short-term adverse events. In addition, women and larger donors are at higher risk for donation-related AEs. PMID:19190248
KSC CENTER DIRECTOR ACCEPTS PLAQUE FOR RECORD-SETTING BONE MARROW DONOR REGISTRATION DRIVE
NASA Technical Reports Server (NTRS)
1996-01-01
Kennedy Space Center's Bone Marrow Donor Registration Drive Chairman Dr. George A. Martin and Center Director Jay Honeycutt (left to right) accept a plaque from the Leukemia Society of America's Associate Executive Director Martin Bernstine and the American Red Cross' Southeast Regional Director Jeff Koenreich. Representatives from the American Red Cross and the Leukemia Society of America came to KSC to honor those involved in the record-setting Bone Marrow Donor Registration Drive held here earlier this year. Over 900 potential donors were added to the National Bone Marrow Registry as a result of the KSC drive. The drive established a new record for the most people registered in a single day for the American Red Cross in the three state region of which Florida is a part.
Müller, Marc Andreas; Mehrkens, Arne; Zürcher, Roman; Vavken, Patrick; Valderrabano, Victor
2014-12-08
The harvest of iliac crest bone grafts (ICBG) is associated with relevant donor site pain, but may be lowered by the application of lidocaine loaded on biodegradable, hemostatic putty for sustained local analgesic release. The goal of this double-blind controlled trial was to assess the efficacy of adding lidocaine to a hemostatic putty (Orthostat ™) to treat donor site pain following harvest of ICBG in foot and ankle procedures. After ICBG harvest during a foot and ankle procedure, the resulting bone defect was either filled with Orthostat™ (n = 7) or with the same hemostatic putty loaded with lidocaine (Orthostat-L™, n = 7). During the first 72 postoperative hours, donor site and surgical site pain were managed by patient controlled morphine delivery and a peripheral nerve block. Donor site pain was periodically quantified on a Visual Analog (VAS) and a Wong Baker FACES scale. Pain scores were plotted over time to calculate the area under the curve (AUC) to quantify the overall pain experienced in specific time intervals. Orthostat-L™ significantly reduced donor site pain over the first 12 hours postoperatively as evidenced by a significant decrease of the AUC in both VAS (p = 0.0366) and Wong Baker FACES pain score plots (p = 0.0024). Cumulated morphine uses were not significantly decreased with Orthostat-L™. The addition of lidocaine to a hemostatic putty offers a significant ICBG donor site pain reduction over the first 12 postoperative hours. ClinicalTrials.gov NCT01504035. Registered January 2nd 2012.
Friedl, Gerald; Windhager, Reinhard; Schmidt, Helena; Aigner, Reingard
2009-08-01
While the importance of physical factors in the maintenance and regeneration of bone tissue has been recognized for many years and the mechano-sensitivity of bone cells is well established, there is increasing evidence that body fat constitutes an independent risk factor for complications in bone fracture healing and aseptic loosening of implants. Although mechanical causes have been widely suggested, we hypothesized that the osteogenic mechano-response of human mesenchymal stem cells (hMSCs) may be altered in obese patients. We determined the phenotypic and genotypic response of undifferentiated hMSCs of 10 donors to cyclic tensile strain (CTS) under controlled in vitro conditions and analyzed the potential relationship relevant to the donor's anthropomorphometric and biochemical parameters related to donor's fat and bone metabolism. The osteogenic marker genes were all statistically significantly upregulated by CTS, which was accompanied by a significant increase in cell-based ALP activity. Linear correlation analysis revealed that there was a significant correlation between phenotypic CTS response and the body mass index of the donor (r = -0.91, p < 0.001) and phenotypic CTS response was also significantly related to leptin levels (r = -0.68) and estradiol levels (r = 0.67) within the bone marrow microenvironment of the donor. Such an upstream imprinting process mediated by factors tightly related to the donor's fat metabolism, which hampers the mechanosensitivity of hMSCs in obese patients, may be of pathogenetic relevance for the complications associated with obesity that are seen in orthopedic surgery.
Hospital-based allogenic bone bank--10-year experience.
Hou, C-H; Yang, R-S; Hou, S-M
2005-01-01
Bone banking in a hospital provides resources of allogenic bone grafts. However, they may transmit infection from donor to recipient. We found few reports discussing the infection rate and monitoring processes associated with bone banks. The discard rate using the screening test was 18.5% (309/1674) in this series. The leading cause was hepatitis B antigen (HBsAg) positive donor serum (67%), followed by Venereal Disease Research Laboratory (VDRL) positive donor serum (15%), and anti-hepatitis C virus (HCV) positive donor serum (12%). The overall infection rate in the recipients was 1.3% (17/1365). Among 1353 implanted allografts, 22 cases (1.6%) had a positive swab culture result after thawing. Only four out of these 22 cases (18.2%) developed infection. However, the wound cultures of the infected recipients were different from the swab culture of thawing allografts except in one case. Among the 1331 recipients with sterile allograft bones, 13 (1%) were found to have infection. In conclusion, our bone bank operates under a strict monitoring system which results in a low infection rate. The recipient's status, the aseptic technique and environment during operation is likely to be more critical in prevention of allograft-related infection.
Shamshad, Ghassan Umair; Ahmed, Suhaib; Bhatti, Farhat Abbas; Ali, Nadir
2012-12-01
To determine the frequency of mixed donor chimerism in patients of non-malignant haematological diseases after allogeneic bone marrow transplant. A cross-sectional, observational study. Department of Haematology, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from July 2010 to June 2011. Donor chimerism was assessed in patients of aplastic anaemia and beta-thalassaemia major who underwent allogeneic bone marrow transplantation (BMT). Peripheral blood samples were used to assess chimerism status by analysis of short tandem repeats (STR). In patients where pre-transplant blood sample was not available, swab of buccal mucosa was used for pre-transplant STR profile. A standard set of primers for STR markers were used and the amplified DNA was resolved by gel electrophoresis and stained with silver nitrate. The percentage of donor origin DNA was estimated by densitometer. Out of 84 patients, 52 (62%) were males, while 32 (38%) were females. In patients of beta-thalassaemia major, 31 (62%) developed mixed donor chimerism (MC), 13 (26%) developed complete donor chimerism (CC) and 6 (12%) had graft failure. In aplastic anaemia, 17 patients (50%) achieved MC, 13 (38.2%) had CC and 4 (11.8%) developed graft failure. The combined frequency of mixed donor chimerism for both the diseases was 58.3%. D3S1358 was the most informative STR marker in these patients. Majority of the studied patients developed mixed donor chimerism following bone marrow transplantation, whereas only a minor percentage of the patients had graft failure. Analysis of D3S1358 was the most informative in assessing donor chimerism in patients who underwent BMT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoner, R.D.; Bond, V.P.
1963-01-14
Immunological competence of immunized mouse bone marrow, spleen, lymph node, and thymus cells was demonstrated when specific recall tetanus antitoxin responses were elicited after transfer of these cells to isologous irradiated mice or rats. Lesser amounts of antibody were obtained as the genetic strain distance was increased between the relation of donor and host in the parental to F/sub 1/ and in the homologous combination within the same species. It was not possible in the heterologous situation to elicit significant amounts of antibody from rat bone marrow and other lymphoid cells following their transplantation into irradiated mice. Minimal but notmore » significant antibody responses were elicited from cells obtained from immunized rat spleen and thymus tissue. In a few experiments, it was possible to elicit antibody formation from a buffy coat suspension of circulating white cells following their transfer to irradiated recipients. Isologous nonimmunized bone marrow did not stimulate or hasten recovery of the ability to eiicit secondary antibody responses in previously immunized irradiated mice. The capacity to elicit primary antibody responses to tetanus toxoid was depressed in parental-bone-marrow-protected F/sub 1/ mice when these chimeras exhibited varying degrees of secondary disease. The depression of primary antibody responses in irradiated F/sub 1/ mice given parental bone marrow provides evidence for a donor mediated immunological depression of antibody synthesis by host-lymphoid tissues. (auth)« less
Carbonaro, Denise A.; Jin, Xiangyang; Cotoi, Daniel; Mi, Tiejuan; Yu, Xiao-Jin; Skelton, Dianne C.; Dorey, Frederick; Kellems, Rodney E.; Blackburn, Michael R.
2008-01-01
Adenosine deaminase (ADA)–deficient severe combined immune deficiency (SCID) may be treated by allogeneic hematopoietic stem cell transplantation without prior cytoreductive conditioning, although the mechanism of immune reconstitution is unclear. We studied this process in a murine gene knockout model of ADA-deficient SCID. Newborn ADA-deficient pups received transplants of intravenous infusion of normal congenic bone marrow, without prior cytoreductive conditioning, which resulted in long-term survival, multisystem correction, and nearly normal lymphocyte numbers and mitogenic proliferative responses. Only 1% to 3% of lymphocytes and myeloid cells were of donor origin without a selective expansion of donor-derived lymphocytes; immune reconstitution was by endogenous, host-derived ADA-deficient lymphocytes. Preconditioning of neonates with 100 to 400 cGy of total body irradiation before normal donor marrow transplant increased the levels of engrafted donor cells in a radiation dose–dependent manner, but the chimerism levels were similar for lymphoid and myeloid cells. The absence of selective reconstitution by donor T lymphocytes in the ADA-deficient mice indicates that restoration of immune function occurred by rescue of endogenous ADA-deficient lymphocytes through cross-correction from the engrafted ADA-replete donor cells. Thus, ADA-deficient SCID is unique in its responses to nonmyeloablative bone marrow transplantation, which has implications for clinical bone marrow transplantation or gene therapy. PMID:18356486
Carbonaro, Denise A; Jin, Xiangyang; Cotoi, Daniel; Mi, Tiejuan; Yu, Xiao-Jin; Skelton, Dianne C; Dorey, Frederick; Kellems, Rodney E; Blackburn, Michael R; Kohn, Donald B
2008-06-15
Adenosine deaminase (ADA)-deficient severe combined immune deficiency (SCID) may be treated by allogeneic hematopoietic stem cell transplantation without prior cytoreductive conditioning, although the mechanism of immune reconstitution is unclear. We studied this process in a murine gene knockout model of ADA-deficient SCID. Newborn ADA-deficient pups received transplants of intravenous infusion of normal congenic bone marrow, without prior cytoreductive conditioning, which resulted in long-term survival, multisystem correction, and nearly normal lymphocyte numbers and mitogenic proliferative responses. Only 1% to 3% of lymphocytes and myeloid cells were of donor origin without a selective expansion of donor-derived lymphocytes; immune reconstitution was by endogenous, host-derived ADA-deficient lymphocytes. Preconditioning of neonates with 100 to 400 cGy of total body irradiation before normal donor marrow transplant increased the levels of engrafted donor cells in a radiation dose-dependent manner, but the chimerism levels were similar for lymphoid and myeloid cells. The absence of selective reconstitution by donor T lymphocytes in the ADA-deficient mice indicates that restoration of immune function occurred by rescue of endogenous ADA-deficient lymphocytes through cross-correction from the engrafted ADA-replete donor cells. Thus, ADA-deficient SCID is unique in its responses to nonmyeloablative bone marrow transplantation, which has implications for clinical bone marrow transplantation or gene therapy.
Nyman, Jeffry S.; Gorochow, Lacey E.; Horch, R. Adam; Uppuganti, Sasidhar; Zein-Sabatto, Ahbid; Manhard, Mary Katherine; Does, Mark D.
2012-01-01
With an ability to quantify matrix-bound and pore water in bone, 1H nuclear magnetic resonance (NMR) relaxometry can potentially be implemented in clinical imaging to assess the fracture resistance of bone in a way that is independent of current X-ray techniques, which assess bone mineral density as a correlate of bone strength. Working towards that goal, we quantified the effect of partial dehydration in air on the mechanical and NMR properties of human cortical bone in order to understand whether NMR is sensitive to water-bone interactions at low energy and whether such interactions contribute to the age-related difference in the toughness of bone. Cadaveric femurs were collected from male and female donors falling into two age groups: 21 to 60 years of age (young) and 74 to 99 years of age (old). After extracting two samples from the medial cortex of the mid-shaft, tensile tests were conducted on Wet specimens and paired, Partially Dry (PtlD) specimens (prepared by low-energy drying in air to remove ~3% of original mass before testing). Prior analysis by micro-computed tomography found that there were no differences in intra-cortical porosity between the Wet and PtlD specimens nor did an age-related difference in porosity exist. PtlD specimens from young and old donors had significantly less toughness than Wet specimens, primarily due to a dehydration-related decrease in post-yield strain. The low-energy drying protocol did not affect the modulus and yield strength of bone. Subsequent dehydration of the PtlD specimens in a vacuum oven at 62 °C and then 103 °C, with quantification of water loss at each temperature, revealed an age-related shift from more loosely bound water to more tightly bound water. NMR detected a change in both bound and pore water pools with low-energy air-drying, and both pools were effectively removed when bone was oven-dried at 62 °C, irrespective of donor age. Although not strictly significant due to variability in the drying and testing conditions, the absolute difference in toughness between Wet and PtlD tended to be greater for the younger donors that had higher bone toughness and more bound water for the wet condition than did the older donors. With sensitivity to low-energy bone-water interactions, NMR, which underpins magnetic resonance imaging, has potential to assess fracture resistance of bone as it relates to bone toughness. PMID:23631897
Nyman, Jeffry S; Gorochow, Lacey E; Adam Horch, R; Uppuganti, Sasidhar; Zein-Sabatto, Ahbid; Manhard, Mary Katherine; Does, Mark D
2013-06-01
With an ability to quantify matrix-bound and pore water in bone, (1)H nuclear magnetic resonance (NMR) relaxometry can potentially be implemented in clinical imaging to assess the fracture resistance of bone in a way that is independent of current X-ray techniques, which assess bone mineral density as a correlate of bone strength. Working towards that goal, we quantified the effect of partial dehydration in air on the mechanical and NMR properties of human cortical bone in order to understand whether NMR is sensitive to water-bone interactions at low energy and whether such interactions contribute to the age-related difference in the toughness of bone. Cadaveric femurs were collected from male and female donors falling into two age groups: 21-60 years of age (young) and 74-99 years of age (old). After extracting two samples from the medial cortex of the mid-shaft, tensile tests were conducted on Wet specimens and paired, Partially Dry (PtlD) specimens (prepared by low-energy drying in air to remove ∼3% of original mass before testing). Prior analysis by micro-computed tomography found that there were no differences in intra-cortical porosity between the Wet and PtlD specimens nor did an age-related difference in porosity exist. PtlD specimens from young and old donors had significantly less toughness than Wet specimens, primarily due to a dehydration-related decrease in post-yield strain. The low-energy drying protocol did not affect the modulus and yield strength of bone. Subsequent dehydration of the PtlD specimens in a vacuum oven at 62°C and then 103°C, with quantification of water loss at each temperature, revealed an age-related shift from more loosely bound water to more tightly bound water. NMR detected a change in both bound and pore water pools with low-energy air-drying, and both pools were effectively removed when bone was oven-dried at 62°C, irrespective of donor age. Although not strictly significant due to variability in the drying and testing conditions, the absolute difference in toughness between Wet and PtlD tended to be greater for the younger donors that had higher bone toughness and more bound water for the wet condition than did the older donors. With sensitivity to low-energy bone-water interactions, NMR, which underpins magnetic resonance imaging, has potential to assess fracture resistance of bone as it relates to bone toughness. Published by Elsevier Ltd.
Maiers, M; Gragert, L; Madbouly, A; Steiner, D; Marsh, S G E; Gourraud, P-A; Oudshoorn, M; Zanden, H; Schmidt, A H; Pingel, J; Hofmann, J; Müller, C; Eberhard, H-P
2013-01-01
This project has the goal to validate bioinformatics methods and tools for HLA haplotype frequency analysis specifically addressing unique issues of haematopoietic stem cell registry data sets. In addition to generating new methods and tools for the analysis of registry data sets, the intent is to produce a comprehensive analysis of HLA data from 20 million donors from the Bone Marrow Donors Worldwide (BMDW) database. This report summarizes the activity on this project as of the 16IHIW meeting in Liverpool. PMID:23280139
Bone marrow uptake of 99mTc-MIBI in patients with multiple myeloma.
Fonti, R; Del Vecchio, S; Zannetti, A; De Renzo, A; Di Gennaro, F; Catalano, L; Califano, C; Pace, L; Rotoli, B; Salvatore, M
2001-02-01
In a previous study, we showed the ability of technetium-99m methoxyisobutylisonitrile (99mTc-MIBI) scan to identify active disease in patients with multiple myeloma (Eur J Nucl Med 1998; 25: 714-720). In particular, a semiquantitative score of the extension and intensity of bone marrow uptake was derived and correlated with both the clinical status of the disease and plasma cell bone marrow infiltration. In order to estimate quantitatively 99mTc-MIBI bone marrow uptake and to verify the intracellular localization of the tracer, bone marrow samples obtained from 24 multiple myeloma patients, three patients with monoclonal gammopathy of undetermined significance (MGUS) and two healthy donors were studied for in vitro uptake. After centrifugation over Ficoll-Hypaque gradient, cell suspensions were incubated with 99mTc-MIBI and the uptake was expressed as the percentage of radioactivity specifically retained within the cells. The cellular localization of the tracer was assessed by micro-autoradiography. Twenty-two out of 27 patients underwent 99mTc-MIBI scan within a week of bone marrow sampling. Whole-body images were obtained 10 min after intravenous injection of 555 MBq of the tracer; the extension and intensity of 99mTc-MIBI uptake were graded using the semiquantitative score. A statistically significant correlation was found between in vitro uptake of 99mTc-MIBI and both plasma cell infiltration (Pearson's coefficient of correlation r=0.69, P<0.0001) and in vivo score (Spearman rank correlation coefficient r=0.60, P<0.01). No specific tracer uptake was found in bone marrow samples obtained from the two healthy donors. Micro-autoradiography showed localization of 99mTc-MIBI inside the plasma cells infiltrating the bone marrow. Therefore, our findings show that the degree of tracer uptake both in vitro and in vivo is related to the percentage of infiltrating plasma cells which accumulate the tracer in their inner compartments.
Kaneku, Hugo
2010-01-01
This chapter summarizes some of the recent findings published on the role in organ transplantation of HLA antibodies, and--more important--donor-specific HLA antibodies. The negative impact of both, preformed and de novo DSA is now better recognized in recipients of kidney, heart, lung, liver, pancreas, islet cells and bone marrow transplants. An appropriate design of a schedule to monitor HLA antibodies may identify patients at higher risk for immunological events earlier and allow interventions to avoid later graft loss. The value of strategies like preemptive treatment of antibodies and the use of new agents like bortezomib and eculizumab are of interest and need further investigation.
Kwong, P J; Nam, H Y; Wan Khadijah, W E; Kamarul, T; Abdullah, R B
2014-04-01
The aim of this study was to produce cloned caprine embryos using either caprine bone marrow-derived mesenchymal stem cells (MSCs) or ear fibroblast cells (EFCs) as donor karyoplasts. Caprine MSCs were isolated from male Boer goats of an average age of 1.5 years. To determine the pluripotency of MSCs, the cells were induced to differentiate into osteocytes, chondrocytes and adipocytes. Subsequently, MSCs were characterized through cell surface antigen profiles using specific markers, prior to their use as donor karyoplasts for nuclear transfer. No significant difference (p > 0.05) in fusion rates was observed between MSCs (87.7%) and EFCs (91.3%) used as donor karyoplasts. The cleavage rate of cloned embryos derived with MSCs (87.0%) was similar (p > 0.05) to those cloned using EFCs (84.4%). However, the in vitro development of MSCs-derived cloned embryos (25.3%) to the blastocyst stage was significantly higher (p < 0.05) than those derived with EFCs (20.6%). In conclusion, MSCs could be reprogrammed by caprine oocytes, and production of cloned caprine embryos with MSCs improved their in vitro developmental competence, but not in their fusion and cleavage rate as compared to cloning using somatic cells such as EFCs. © 2014 Blackwell Verlag GmbH.
Treating Families of Bone Marrow Recipients and Donors
ERIC Educational Resources Information Center
Cohen, Marie; And Others
1977-01-01
Luekemia and aplastic anemia are beginning to be treated by bone marrow transplants, involving donors and recipients from the same family. Such intimate involvement in the patient's life and death struggles typically produces a family crisis and frequent maladaptive responses by various family members. (Author)
Mixed chimerism and split tolerance
Al-Adra, David P.
2011-01-01
Establishing hematopoietic mixed chimerism can lead to donor-specific tolerance to transplanted organs and may eliminate the need for long-term immunosuppressive therapy, while also preventing chronic rejection. In this review, we discuss central and peripheral mechanisms of chimerism induced tolerance. However, even in the long-lasting presence of a donor organ or donor hematopoietic cells, some allogeneic tissues from the same donor can be rejected; a phenomenon known as split tolerance. With the current goal of creating mixed chimeras using clinically feasible amounts of donor bone marrow and with minimal conditioning, split tolerance may become more prevalent and its mechanisms need to be explored. Some predisposing factors that may increase the likelihood of split tolerance are immunogenicity of the graft, certain donor-recipient combinations, prior sensitization, location and type of graft and minimal conditioning chimerism induction protocols. Additionally, split tolerance may occur due to a differential susceptibility of various types of tissues to rejection. The mechanisms involved in a tissue’s differential susceptibility to rejection include the presence of polymorphic tissue-specific antigens and variable sensitivity to indirect pathway effector mechanisms. Finally, we review the clinical attempts at allograft tolerance through the induction of chimerism; studies that are revealing the complex relationship between chimerism and tolerance. This relationship often displays split tolerance, and further research into its mechanisms is warranted. PMID:22509425
Albert, Réka; Vásárhelyi, Gábor; Bodó, Gábor; Kenyeres, Annamária; Wolf, Ervin; Papp, Tamás; Terdik, Tünde; Módis, László; Felszeghy, Szabolcs
2012-09-01
One of the most promising applications for the restoration of small or moderately sized focal articular lesions is mosaicplasty (MP). Although recurrent hemarthrosis is a rare complication after MP, recently, various strategies have been designed to find an effective filling material to prevent postoperative bleeding from the donor site. The porous biodegradable polymer Polyactive (PA; a polyethylene glycol terephthalate - polybutylene terephthalate copolymer) represents a promising solution in this respect. A histological evaluation of the longterm PA-filled donor sites obtained from 10 experimental horses was performed. In this study, attention was primarily focused on the bone tissue developed in the plug. A computer-assisted image analysis and quantitative polarized light microscopic measurements of decalcified, longitudinally sectioned, dimethylmethylene blue (DMMB)- and picrosirius red (PS) stained sections revealed that the coverage area of the bone trabecules in the PA-filled donor tunnels was substantially (25%) enlarged compared to the neighboring cancellous bone. For this quantification, identical ROIs (regions of interest) were used and compared. The birefringence retardation values were also measured with a polarized light microscope using monochromatic light. Identical retardation values could be recorded from the bone trabeculae developed in the PA and in the neighboring bone, which indicates that the collagen orientation pattern does not differ significantly among these bone trabecules. Based on our new data, we speculate that PA promotes bone formation, and some of the currently identified degradation products of PA may enhance osteo-conduction and osteoinduction inside the donor canal.
Alloreactive Regulatory T Cells Allow the Generation of Mixed Chimerism and Transplant Tolerance.
Ruiz, Paulina; Maldonado, Paula; Hidalgo, Yessia; Sauma, Daniela; Rosemblatt, Mario; Bono, Maria Rosa
2015-01-01
The induction of donor-specific transplant tolerance is one of the main goals of modern immunology. Establishment of a mixed chimerism state in the transplant recipient has proven to be a suitable strategy for the induction of long-term allograft tolerance; however, current experimental recipient preconditioning protocols have many side effects, and are not feasible for use in future therapies. In order to improve the current mixed chimerism induction protocols, we developed a non-myeloablative bone-marrow transplant (NM-BMT) protocol using retinoic acid (RA)-induced alloantigen-specific Tregs, clinically available immunosuppressive drugs, and lower doses of irradiation. We demonstrate that RA-induced alloantigen-specific Tregs in addition to a NM-BMT protocol generates stable mixed chimerism and induces tolerance to allogeneic secondary skin allografts in mice. Therefore, the establishment of mixed chimerism through the use of donor-specific Tregs rather than non-specific immunosuppression could have a potential use in organ transplantation.
Staley, Elizabeth M.; Tanner, Scott M.; Daft, Joseph G.; Stanus, Andrea L.; Martin, Steven M.; Lorenz, Robin G.
2013-01-01
Bone marrow reconstitution is utilized as a tool for disease treatment and as a research technique to elucidate the function of bone marrow derived cells. Clinically successful engraftment is indicated by the development of a functioning immune repertoire. In research, reconstitution is considered successful if >85% of splenic leukocytes are of donor origins. Previous work suggests that splenic reconstitution may not be indicative of reconstitution in the mucosa. We sought to evaluate mucosal reconstitution in animals following a standard bone marrow eradication and reconstitution technique. Bone marrow was harvested from adult B6.SJL donor mice (CD45.1) and injected via either the retro-orbital or intraperitoneal route into lethally irradiated B6 (CD45.2) adult or neonatal recipients respectively. Expression of CD45 by flow cytometry was used to calculate reconstitution with respect to immune compartment and cell type. In reconstituted adult animals 93.2±1.5% of splenic leukocytes expressed the donor CD45.1 antigen thus meeting the standard definition of reconstitution, however only 58.6±13.6% of intestinal lamina propria lymphocytes and 52.4±16.0% of intestinal intraepithelial lymphocytes were of donor origin, confirming splenic reconstitution fails to represent peripheral immune reconstitution. T-cells in the gastrointestinal tract are the most poorly reconstituted, while B-cells appear to be almost universally replaced by donor cells. The inadequate mucosal reconstitution was not corrected by evaluating later timepoints or by performing the bone marrow transfer during the neonatal period. This demonstration that substantial host T-cells remain in the intestinal mucosa after a “successful” bone marrow transplantation should cause a re-evaluation of data from research bone marrow chimera experiments, as well as the mechanisms for complications after clinical bone marrow transplantation. PMID:23334064
Staley, Elizabeth M; Tanner, Scott M; Daft, Joseph G; Stanus, Andrea L; Martin, Steven M; Lorenz, Robin G
2013-03-01
Bone marrow reconstitution is utilized as a tool for disease treatment and as a research technique to elucidate the function of bone marrow derived cells. Clinically successful engraftment is indicated by the development of a functioning immune repertoire. In research, reconstitution is considered successful if >85% of splenic leukocytes are of donor origins. Previous work suggests that splenic reconstitution may not be indicative of reconstitution in the mucosa. We sought to evaluate mucosal reconstitution in animals following a standard bone marrow eradication and reconstitution technique. Bone marrow was harvested from adult B6.SJL donor mice (CD45.1) and injected via either the retro-orbital or intraperitoneal route into lethally irradiated B6 (CD45.2) adult or neonatal recipients respectively. The expression of CD45 by flow cytometry was used to calculate reconstitution with respect to immune compartment and cell type. In reconstituted adult animals 93.2±1.5% of splenic leukocytes expressed the donor CD45.1 antigen thus meeting the standard definition of reconstitution, however only 58.6±13.6% of intestinal lamina propria lymphocytes and 52.4±16.0% of intestinal intraepithelial lymphocytes were of donor origin, confirming splenic reconstitution fails to represent peripheral immune reconstitution. T-cells in the gastrointestinal tract are the most poorly reconstituted, while B-cells appear to be almost universally replaced by donor cells. The inadequate mucosal reconstitution was not corrected by evaluating later time points or by performing the bone marrow transfer during the neonatal period. This demonstration that substantial host T-cells remain in the intestinal mucosa after a "successful" bone marrow transplantation should cause a re-evaluation of data from research bone marrow chimera experiments, as well as the mechanisms for complications after clinical bone marrow transplantation. Copyright © 2013 Elsevier B.V. All rights reserved.
Distribution of potential eye and tissue donors within an Australian teaching hospital.
Dutch, Martin J; Denahy, Anthony F
2017-12-11
Eye and Tissue donation has the capacity to transform lives, yet the vast majority of potential in-hospital donors are not recognised. Studies which describe the relative importance of specific units or wards in determining the size of the donor pool are limited. The aim of this study was to map the distribution of potential Eye and Tissue donors within the study hospital. A 12-month retrospective analysis of all patient deaths at the study hospital was undertaken. The ability to donate corneal, heart valve, bone and skin tissue was investigated. Patients were classified as potential donors if they met specific age criteria and had an absence of contraindications based on electronic database search. There were 985 deaths during the study period. Deaths occurred under the care of 26 separate clinical units, and within 28 unique wards and treatment spaces. Four hundred and forty nine (45.6%) patients were identified as potential eye or tissue donors. The majority of potential donors occurred in ICU, Emergency and palliative care units. Of the subset of 328 deaths ≤ 70 years, the frequency of potential tissue donors was 55% (n = 181). ED and ICU had significantly higher frequencies of potential donor than other wards (86 and 77%, p < 0.01). The current study has identified the ED, ICU and PCUs are being important sites for potential Eye and Tissue Donors within our hospital. These will provide an important focus for future interventions to improve the rate of eye and tissue donation.
Origins of endothelial and osteogenic cells in the subcutaneous collagen gel implant.
Bilic-Curcic, I; Kalajzic, Z; Wang, L; Rowe, D W
2005-11-01
The interdependent relationship between vascular endothelial cells and osteoblasts during bone formation and fracture healing has been long appreciated. This paper reports a heterotopic implant model using FGF-2-expanded bone marrow stromal cells (BMSC) derived from Tie2eGFP (endothelial marker) and pOBCol3.6GFPcyan or topaz (early osteoblast marker) transgenic mice to appreciate the host/donor relationships of cells participating in the process of heterotopic bone formation. The study included various combinations of Tie2eGFP and pOBCol3.6GFPcyan and topaz transgenics as BMSC or whole bone marrow (WBM) donors and also as recipients. Rat tail collagen was used as a carrier of donor cells and implantation was done in lethally irradiated mice rescued with WBM injection. Development of ossicles in the implants was followed weekly during the 4- to 5-week long post-implantation period. By 4-5 weeks after total body irradiation (TBI) and implantation, a well-formed bone spicule had developed that was invested with bone marrow. Experiments showed absolute dominance of donor-derived cells in the formation of endothelial-lined vessels inside the implants as well as the marrow stromal-derived osteogenic cells. Host-derived fibroblasts and osteogenic cells were confined to the fibrous capsule surrounding the implant. In addition, cells lining the endosteal surface of newly formed marrow space carrying a pOBCol3.6GFP marker were observed that were contributed by WBM donor cells and the host. Thus, FGF-2-expanded BMSC appear to be a source of endothelial and osteogenic progenitor cells capable of eliciting heterotopic bone formation independent of cells from the host. This model should be useful for understanding the interactions between these two cell types that control osteogenic differentiation in vivo.
2014-01-01
Background After the largest outbreaks of Q fever ever recorded in history occurred in the Netherlands, concern arose that Coxiella may be transmitted via donated tissues of latent or chronically infected donors. The Dutch Health Council recently advised to screen tissue donors, donating high risk tissues, for Coxiella infection. Methods After validation of an enzyme immunoassay (EIA) test for IgG antibodies against phase 2 of C. burnetii for use on post-mortem samples, serum samples of 1033 consecutive Dutch post-mortem tissue donors were tested for IgG antibodies against phase 2 of C. burnetii. Confirmation of reactive results was done by immunofluorescence assay (IFA). All available tissues (corneas, heart valves, skin and bone marrow) from donors with IgG reactivity were tested for presence of Coxiella DNA by PCR. Risk factors for IgG reactivity were investigated. Results After validation of the tests for use on post-mortem samples, 50/1033 donors (4.8%) screened positive for phase 2 anti-Coxiella IgG by EIA, and 31 were confirmed by IFA (3.0%). One donor showed a serological profile compatible with chronic infection. All tested tissues (25 corneas, 6 heart valves, 4 skin and 3 bone marrow) from donors with IgG reactivity tested negative for the presence of Coxiella DNA. Except for living in a postal code area with a high number of Q fever notifications, no risk factors for IgG reactivity were found. Conclusions The strong correlation between notifications and seroprevalence confirms that the used assays are sufficiently specific for use on post-mortem samples, although one has to be aware of differences between batches. Thus, this study provides a validated method for screening tissue donors for infection with Coxiella burnetii that can be used in future outbreaks. PMID:24393298
ASSOCIATION BETWEEN NON-ENZYMATIC GLYCATION, RESORPTION, AND MICRODAMAGE IN HUMAN TIBIAL CORTICES
Karim, Lamya; Diab, Tamim; Vashishth, Deepak
2015-01-01
Purpose/Introduction Changes in the quality of bone material contribute significantly to bone fragility. In order to establish a better understanding of the interaction of the different components of bone quality and their influence on bone fragility we investigated the relationship between non-enzymatic glycation, resorption, and microdamage generated in vivo in cortical bone using bone specimens from the same donors. Methods Total fluorescent advanced glycation end-products (AGEs) were measured in 96 human cortical bone samples from 83 donors. Resorption pit density, average resorption pit area, and percent resorption area were quantified in samples from 48 common donors with AGE measurements. Linear microcrack density and diffuse damage were measured in 21 common donors with AGE and resorption measurements. Correlation analyses were performed between all measured variables to establish the relationships among them and their variation with age. Results We found that average resorption pit area and percent resorption area decreased with increasing AGEs independently of age. Resorption pit density and percent resorption area demonstrated negative age-adjusted correlation with diffuse damage. Furthermore, average resorption pit area, resorption pit density, and percent resorption area were found to decrease significantly with age. Conclusions The current study demonstrated the in vivo interrelationship between the organic constituents, remodeling, and damage formation in cortical bone. In addition to the age-related reduction in resorption, there is a negative correlation between AGEs and resorption independent of age. This inverse relationship indicates that AGEs alter the resorption process and/or accumulate in the tissue as a result of reduced resorption and may lead to bone fragility by adversely affecting fracture resistance through altered bone matrix properties. PMID:25326375
Assessing bone banking activities at University of Malaya medical centre.
Mohd, Suhaili; Samsuddin, Sharifah Mazni; Ramalingam, Saravana; Min, Ng Wuey; Yusof, Norimah; Zaman, T Kamarul; Mansor, Azura
2015-12-01
The main advantage of establishing in-house bone banks is its ability to readily provide allograft bones for local surgeries. Bone procurement activities of our university bone bank during the 10 years of operation were reviewed. Socio-demographic data of donors, types of bone procured, cases of rejected bones and types of allograft bones transplanted are presented. From 179 potential donors, 73 % were accepted with 213 procured bones. Femoral head was the common bone transplanted (45 %), as it was also the most common procured (82 %). Bones were rejected mainly due to non-technical reasons (83 %) rather than positive results of microbiological (13 %) and serological (4 %) tests. Comprehensive data could not be obtained for further analysis due to difficulties in retrieving information. Therefore, quality assurance system was improved to establish more systematic documentations, as the basis of good banking practice with process control hence allowing traceability.
Stem cell-mediated osteogenesis: therapeutic potential for bone tissue engineering
Neman, Josh; Hambrecht, Amanda; Cadry, Cherie; Jandial, Rahul
2012-01-01
Intervertebral disc degeneration often requires bony spinal fusion for long-term relief. Current arthrodesis procedures use bone grafts from autogenous bone, allogenic backed bone, or synthetic materials. Autogenous bone grafts can result in donor site morbidity and pain at the donor site, while allogenic backed bone and synthetic materials have variable effectiveness. Given these limitations, researchers have focused on new treatments that will allow for safe and successful bone repair and regeneration. Mesenchymal stem cells have received attention for their ability to differentiate into osteoblasts, cells that synthesize new bone. With the recent advances in scaffold and biomaterial technology as well as stem cell manipulation and transplantation, stem cells and their scaffolds are uniquely positioned to bring about significant improvements in the treatment and outcomes of spinal fusion and other injuries. PMID:22500114
Stem cell-mediated osteogenesis: therapeutic potential for bone tissue engineering.
Neman, Josh; Hambrecht, Amanda; Cadry, Cherie; Jandial, Rahul
2012-01-01
Intervertebral disc degeneration often requires bony spinal fusion for long-term relief. Current arthrodesis procedures use bone grafts from autogenous bone, allogenic backed bone, or synthetic materials. Autogenous bone grafts can result in donor site morbidity and pain at the donor site, while allogenic backed bone and synthetic materials have variable effectiveness. Given these limitations, researchers have focused on new treatments that will allow for safe and successful bone repair and regeneration. Mesenchymal stem cells have received attention for their ability to differentiate into osteoblasts, cells that synthesize new bone. With the recent advances in scaffold and biomaterial technology as well as stem cell manipulation and transplantation, stem cells and their scaffolds are uniquely positioned to bring about significant improvements in the treatment and outcomes of spinal fusion and other injuries.
Mochizuki, Kanako; Sugimori, Chiharu; Qi, Zhirong; Lu, Xuzhang; Takami, Akiyoshi; Ishiyama, Ken; Kondo, Yukio; Yamazaki, Hirohito; Okumura, Hirokazu; Nakao, Shinji
2008-09-01
A small population of CD55(-)CD59(-) blood cells was detected in a patient who developed donor-type late graft failure after allogeneic stem cell transplantation (SCT) for treatment of aplastic anemia (AA). Chimerism and PIGA gene analyses showed the paroxysmal nocturnal hemoglobinuria (PNH)-type granulocytes to be of a donor-derived stem cell with a thymine insertion in PIGA exon 2. A sensitive mutation-specific polymerase chain reaction (PCR)-based analysis detected the mutation exclusively in DNA derived from the donor bone marrow (BM) cells. The patient responded to immunosuppressive therapy and achieved transfusion independence. The small population of PNH-type cells was undetectable in any of the 50 SCT recipients showing stable engraftment. The de novo development of donor cell-derived AA with a small population of PNH-type cells in this patient supports the concept that glycosyl phosphatidylinositol-anchored protein-deficient stem cells have a survival advantage in the setting of immune-mediated BM injury.
Pearl-Yafe, Michal; Yolcu, Esma S; Stein, Jerry; Kaplan, Ofer; Shirwan, Haval; Yaniv, Isaac; Askenasy, Nadir
2007-10-01
The interaction between the Fas receptor and its cognate ligand (FasL) has been implicated in the mutual suppression of donor and host hematopoietic cells after transplantation. Following the observation of deficient early engraftment of Fas and FasL-defective donor cells and recipients, we determined the role of the Fas-FasL interaction. Donor cells were recovered after syngeneic (CD45.1-->CD45.2) transplants from various organs and assessed for expression of Fas/FasL in reference to lineage markers, carboxyfluorescein succinimidyl ester dilution, Sca-1 and c-kit expression. Naïve and bone marrow-homed cells were challenged for apoptosis ex vivo. The Fas receptor and ligand were markedly upregulated to 40% to 60% (p < 0.001 vs 5-10% in naïve cells) within 2 days after syngeneic transplantation, while residual host cells displayed modest and delayed upregulation of these molecules ( approximately 10%). All lin(-)Sca(+)c-kit(+) cells were Fas(+)FasL(+), including 95% of Sca-1(+) and 30% of c-kit(+) cells. Fas and FasL expression varied in donor cells that homed to bone marrow, spleen, liver and lung, and was induced by interaction with the stroma, irradiation, cell cycling, and differentiation. Bone marrow-homed donor cells challenged with supralethal doses of FasL were insensitive to apoptosis (3.2% +/- 1% vs 38% +/- 5% in naïve bone marrow cells), and engraftment was not affected by pretransplantation exposure of donor cells to an apoptotic challenge with FasL. There was no evidence of Fas-mediated suppression of donor and host cell activity after transplantation. Resistance to Fas-mediated apoptosis evolves as a functional characteristic of hematopoietic reconstituting stem and progenitor cells, providing them competitive engraftment advantage over committed progenitors.
Gordon, S; Holdsworth, R; Müller, C; Tiedemann, K
2007-04-01
Good communication between the bone marrow registries, the donor centres, tissue typing laboratories and clinical units is paramount to ensure timely identification, testing and selection of donors for unrelated bone marrow transplants. This panel session focussed on how to improve communication so that there was a clear understanding of prioritization of requests from clinicians, typing strategies in the laboratories and requests for donors to the registries. This paper outlined some of the strategies discussed in this session.
Tian, Chaorui; Yuan, Xueli; Bagley, Jessamyn; Blazar, Bruce R.; Sayegh, Mohamed H.; Iacomini, John
2008-01-01
The observation that bone marrow derived hematopoietic cells are potent inducers of tolerance has generated interest in trying to establish transplantation tolerance by inducing a state of hematopoietic chimerism through allogeneic bone marrow transplantation. However, this approach is associated with serious complications that limit its utility for tolerance induction. Here we describe the development of a novel approach that allows for tolerance induction without the need for an allogeneic bone marrow transplant by combining non-myeloablative host conditioning with delivery of donor alloantigen by adoptively transferred T cells. CBA/Ca mice were administered 2.5Gy whole body irradiation (WBI). The following day the mice received Kb disparate T cells from MHC class I transgenic CBK donor mice, as well as rapamycin on days 0–13 and anti-CD40L monoclonal antibody on days 0–5, 8,11 and 14 relative to T cell transfer. Mice treated using this approach were rendered specifically tolerant to CBK skin allografts through a mechanism involving central and peripheral deletion of alloreactive T cells. These data suggest robust tolerance can be established without the need for bone marrow transplantation using clinically relevant non-myeloablative conditioning combined with antigen delivery by T cells. PMID:18280792
Boquett, Juliano; Schüler-Faccini, Lavínia; Jobim, Luis Fernando; Jobim, Mariana; Fagundes, Nelson Jurandi Rosa; Hünemeier, Tábita
2015-06-01
The Brazil Ministry of Health maintains a Registry of Bone Marrow Donors that corresponds to approximately 12% of the Bone Marrow Donors Worldwide registry. This registry contains information on ethnicity (by self-assessment of color) and HLA-A, -B, and -DRB1 type. The self-assessment of color tool has been extensively used for admixed population characterization. In this context, Brazil represents a highly admixed population, resulting from 5 centuries of colonization and interbreeding, mainly, but not exclusively, among Native Americans, Europeans, and Africans. Here we evaluated self-assessed skin color and HLA genetic information from 71,291 bone marrow donors of southern Brazil to verify how likely is the HLA profiling correspondence within and between self-assessed color groups. We found that HLA itself was a better ancestry indicator than was self-assessed color. Therefore, self-assessment of color in highly admixed populations, such as that of Brazil, is not indicative of higher correspondence in the HLA profiles within skin color groups. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Distant metastasis of intraosseous dentinogenic ghost cell tumour to the donor site of a bone graft
Park, H-R; Min, J-H; Huh, K-H; Yi, W-J; Heo, M-S; Lee, S-S; Cho, Y-A
2013-01-01
A dentinogenic ghost cell tumour (DGCT) is an extremely rare odontogenic tumour which is considered as a solid, neoplastic variant of calcifying odontogenic cyst. Intraosseous DGCTs are more aggressive than extraosseous DGCTs and have a high propensity for local recurrence. This report describes a case of a diagnosis of recurrent DGCT at the primary site and a distant donor site. A 25-year-old female patient visited a dental hospital for a complaint of facial swelling for the previous month. Incisional biopsy was performed and the specimen was diagnosed as DGCT. Partial mandibulectomy for tumour resection and iliac bone graft was performed. 2 years later, the tumour recurred on the mandible and iliac bone. The recurrent lesion on the donor site was diagnosed as metastasized DGCT. This report highlights the possibility of distant metastasis occurring at a graft donor site. PMID:23420853
Enders, Gisela; Daiminger, Anja; Lindemann, Lisa; Knotek, Frank; Bäder, Ursula; Exler, Simone; Enders, Martin
2012-08-01
In Germany, studies on the IgG seroprevalence in pregnancy and in women of childbearing age are rare. Therefore, we retrospectively evaluated the CMV IgG seropositive rate in 40,324 pregnant women as well as in 31,093 female and male bone marrow donors over 15 consecutive years (1996-2010). Furthermore, the result of a study conducted in 1999 investigating 1,305 healthy adolescents with known ethnicity was included. The overall CMV IgG seroprevalence in pregnant women (15-50 years) was 42.3%. Age-dependent analysis revealed a significantly higher seropositive rate (55.6%) in young women (15-25 years) than in those aged 26-40 years (37-42%) and in women older than 40 years (48.3%). Over the study period of 15 years, the rate of seroprevalence in pregnant women declined significantly (χ(2) test < 0.01) from 44.3% in the first interval period (1996-2000), to 42.8% (2001-2005) and to 40.9% (2006-2010). The most influencing factor on CMV seropositivity appeared to be the socioeconomic status (SES), which we characterized by type of health insurance: Seroprevalence in women with low, middle and upper SES was 91.8, 46.9 and 33.7%, respectively. Female bone marrow donors of childbearing age (15-45 years) showed a significantly higher seropositive rate of 36.5% than age-matched male donors (28.6%). In adolescents aged 13-16 years, no gender-specific differences were recognized. Concerning ethnicity, youngsters with German descent had a significantly lower seroprevalence (29.9%) than those with non-German descent (67.4%).
Sats, Natalia; Risinskaya, Natalya; Sudarikov, Andrey; Dubniak, Daria; Kraizman, Alina
2018-01-01
Multipotent mesenchymal stromal cells (MSCs) participate in the formation of bone marrow niches for hematopoietic stem cells. Donor MSCs can serve as a source of recovery for niches in patients with graft failure (GF) after allogeneic bone marrow (BM) transplantation. Since only few MSCs reach the BM after intravenous injection, MSCs were implanted into the iliac spine. For 8 patients with GF after allo-BMT, another hematopoietic stem cell transplantation with simultaneous implantation of MSCs from their respective donors into cancellous bone was performed. BM was aspirated from the iliac crest of these patients at 1-2, 4-5, and 9 months after the intraosseous injection of donor MSCs. Patients' MSCs were cultivated, and chimerism was determined. In 6 out of 8 patients, donor hematopoiesis was restored. Donor cells (9.4 ± 3.3%) were detected among MSCs. Thus, implanted MSCs remain localized at the site of administration and do not lose the ability to proliferate. These results suggest that MSCs could participate in the restoration of niches for donor hematopoietic cells or have an immunomodulatory effect, preventing repeated rejection of the graft. Perhaps, intraosseous implantation of MSCs contributes to the success of the second transplantation of hematopoietic stem cells and patient survival. PMID:29760731
Petinati, Nataliya; Drize, Nina; Sats, Natalia; Risinskaya, Natalya; Sudarikov, Andrey; Drokov, Michail; Dubniak, Daria; Kraizman, Alina; Nareyko, Maria; Popova, Natalia; Firsova, Maya; Kuzmina, Larisa; Parovichnikova, Elena; Savchenko, Valeriy
2018-01-01
Multipotent mesenchymal stromal cells (MSCs) participate in the formation of bone marrow niches for hematopoietic stem cells. Donor MSCs can serve as a source of recovery for niches in patients with graft failure (GF) after allogeneic bone marrow (BM) transplantation. Since only few MSCs reach the BM after intravenous injection, MSCs were implanted into the iliac spine. For 8 patients with GF after allo-BMT, another hematopoietic stem cell transplantation with simultaneous implantation of MSCs from their respective donors into cancellous bone was performed. BM was aspirated from the iliac crest of these patients at 1-2, 4-5, and 9 months after the intraosseous injection of donor MSCs. Patients' MSCs were cultivated, and chimerism was determined. In 6 out of 8 patients, donor hematopoiesis was restored. Donor cells (9.4 ± 3.3%) were detected among MSCs. Thus, implanted MSCs remain localized at the site of administration and do not lose the ability to proliferate. These results suggest that MSCs could participate in the restoration of niches for donor hematopoietic cells or have an immunomodulatory effect, preventing repeated rejection of the graft. Perhaps, intraosseous implantation of MSCs contributes to the success of the second transplantation of hematopoietic stem cells and patient survival.
Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering
Fernandes, Gabriela; Yang, Shuying
2016-01-01
Presently, there is a high paucity of bone grafts in the United States and worldwide. Regenerating bone is of prime concern due to the current demand of bone grafts and the increasing number of diseases causing bone loss. Autogenous bone is the present gold standard of bone regeneration. However, disadvantages like donor site morbidity and its decreased availability limit its use. Even allografts and synthetic grafting materials have their own limitations. As certain specific stem cells can be directed to differentiate into an osteoblastic lineage in the presence of growth factors (GFs), it makes stem cells the ideal agents for bone regeneration. Furthermore, platelet-rich plasma (PRP), which can be easily isolated from whole blood, is often used for bone regeneration, wound healing and bone defect repair. When stem cells are combined with PRP in the presence of GFs, they are able to promote osteogenesis. This review provides in-depth knowledge regarding the use of stem cells and PRP in vitro, in vivo and their application in clinical studies in the future. PMID:28018706
Lange, Andrzej; Dlubek, Dorota; Zdziarski, Robert; Chodorowska, Anna; Mordak-Domagala, Monika; Klimczak, Aleksandra; Lange, Janusz; Jaskula, Emilia
2014-10-01
A Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL) case was maintained in remission with the use of chemo-immunotherapy. The latter involved sibling bone marrow transplant (BMT) (three procedures) followed by intravenous (IV) donor lymphocyte infusion (DLI). The third relapse responded to routine chemotherapy and again DLI was employed. During hematological and molecular remission verified at the level of iliac crest aspiration, extra-medullary relapse in the bones was apparent. A novel procedure of donor lymphocyte injection to the bone leukemic lesions was developed and employed. A dose of 10(6) donor lymphocytes/kg body weight (BW) of the recipient were each time injected to the plane of the right and left tibia, the head of the humerus, and the calcaneus, which resulted in healing of the destructive process. In consequence of this novel approach, in addition to the healing of bone lesions, an accumulation of cytotoxic activated T-cells in the marrow was documented, which was mirrored by an increase in the number of transcripts for interferon (IFN)-γ, interleukin (IL)-17, as well as RORγt. The local administration of DLI directly to the leukemic lesions requires a lower dose that diminishes the toxicity due to the general immune system activation.
Wu, Wei; Le, Andrew V.; Mendez, Julio J.; Chang, Julie; Niklason, Laura E.
2015-01-01
Adipose-derived mesenchymal cells (ACs) and bone marrow-derived mesenchymal cells (BMCs) have been widely used for bone regeneration and can be seeded on a variety of rigid scaffolds. However, to date, a direct comparison of mesenchymal cells (MC) harvested from different tissues from the same donor and cultured in identical osteogenic conditions has not been investigated. Indeed, it is unclear whether marrow-derived or fat-derived MC possess intrinsic differences in bone-forming capabilities, since within-patient comparisons have not been previously done. This study aims at comparing ACs and BMCs from three donors ranging in age from neonatal to adult. Matched cells from each donor were studied in three distinct bioreactor settings, to determine the best method to create a viable osseous engineered construct. Human ACs and BMCs were isolated from each donor, cultured, and seeded on decellularized porcine bone (DCB) constructs. The constructs were then subjected to either static or dynamic (stirring or perfusion) bioreactor culture conditions for 7–21 days. Afterward, the constructs were analyzed for cell adhesion and distribution and osteogenic differentiation. ACs demonstrated higher seeding efficiency than BMCs. However, static and dynamic culture significantly increased BMCs proliferation more than ACs. In all conditions, BMCs demonstrated stronger osteogenic activity as compared with ACs, through higher alkaline phosphatase activity and gene expression for various bony markers. Conversely, ACs expressed more collagen I, which is a nonspecific matrix molecule in most connective tissues. Overall, dynamic bioreactor culture conditions enhanced osteogenic gene expression in both ACs and BMCs. Scaffolds seeded with BMCs in dynamic stirring culture conditions exhibit the greatest osteogenic proliferation and function in vitro, proving that marrow-derived MC have superior bone-forming potential as compared with adipose-derived cells. PMID:25668104
Computer-aided osteotomy design for harvesting autologous bone grafts in reconstructive surgery
NASA Astrophysics Data System (ADS)
Krol, Zdzislaw; Zerfass, Peter; von Rymon-Lipinski, Bartosz; Jansen, Thomas; Hauck, Wolfgang; Zeilhofer, Hans-Florian U.; Sader, Robert; Keeve, Erwin
2001-05-01
Autologous grafts serve as the standard grafting material in the treatment of maxillofacial bone tumors, traumatic defects or congenital malformations. The pre-selection of a donor site depends primarily on the morphological fit of the available bone mass and the shape of the part that has to be transplanted. To achieve sufficient incorporation of the autograft into the host bone, precise planning and simulation of the surgical intervention based on 3D CT studies is required. This paper presents a method to identify an optimal donor site by performing an optimization of appropriate similarity measures between donor region and a given transplant. At the initial stage the surgeon has to delineate the osteotomy border lines in the template CT data set and to define a set of constraints for the optimization of appropriate similarity measures between donor region and a given transplant. At the initial stage the surgeon has to delineate the osteotomy border lines in the template CT data set and to define a set of constraints for the optimization task in the donor site CT data set. The following fully automatic optimization stage delivers a set of sub-optimal and optimal donor sites for a given template. All generated solutions can be explored interactively on the computer display using an efficient graphical interface. Reconstructive operations supported by our system were performed on 28 patients. We found that the operation time can be considerably shortened by this approach.
Clinical management of aplastic anemia
DeZern, Amy E; Brodsky, Robert A
2011-01-01
Acquired aplastic anemia is a potentially fatal bone marrow failure disorder that is characterized by pancytopenia and a hypocellular bone marrow. Hematopoietic stem-cell transplantation or bone marrow transplantation (BMT) is the treatment of choice for young patients who have a matched sibling donor. Immunosuppression with either anti-thymocyte globulin and cyclosporine or high-dose cyclophosphamide is an effective therapy for patients who are not suitable BMT candidates owing to age or lack of a suitable donor. Results of BMT from unrelated and mismatched donors are improving, but presently this treatment option is best reserved for those patients who do not respond, relapse or develop secondary clonal disorders following immunosuppressive therapy. Efforts are currently underway to both improve immunosuppressive regimens and to expand the application of BMT. PMID:21495931
21 CFR 1271.80 - What are the general requirements for donor testing?
Code of Federal Regulations, 2010 CFR
2010-04-01
... ADMINISTRATION HUMAN CELLS, TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Donor Eligibility § 1271.80 What are... donor specimen for testing at the time of recovery of cells or tissue from the donor; or up to 7 days before or after recovery, except: (1) For donors of peripheral blood stem/progenitor cells, bone marrow...
21 CFR 1271.80 - What are the general requirements for donor testing?
Code of Federal Regulations, 2012 CFR
2012-04-01
... donor specimen for testing at the time of recovery of cells or tissue from the donor; or up to 7 days before or after recovery, except: (1) For donors of peripheral blood stem/progenitor cells, bone marrow... ADMINISTRATION HUMAN CELLS, TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Donor Eligibility § 1271.80 What are...
21 CFR 1271.80 - What are the general requirements for donor testing?
Code of Federal Regulations, 2013 CFR
2013-04-01
... donor specimen for testing at the time of recovery of cells or tissue from the donor; or up to 7 days before or after recovery, except: (1) For donors of peripheral blood stem/progenitor cells, bone marrow... ADMINISTRATION HUMAN CELLS, TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Donor Eligibility § 1271.80 What are...
21 CFR 1271.80 - What are the general requirements for donor testing?
Code of Federal Regulations, 2014 CFR
2014-04-01
... donor specimen for testing at the time of recovery of cells or tissue from the donor; or up to 7 days before or after recovery, except: (1) For donors of peripheral blood stem/progenitor cells, bone marrow... ADMINISTRATION HUMAN CELLS, TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Donor Eligibility § 1271.80 What are...
21 CFR 1271.80 - What are the general requirements for donor testing?
Code of Federal Regulations, 2011 CFR
2011-04-01
... donor specimen for testing at the time of recovery of cells or tissue from the donor; or up to 7 days before or after recovery, except: (1) For donors of peripheral blood stem/progenitor cells, bone marrow... ADMINISTRATION HUMAN CELLS, TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Donor Eligibility § 1271.80 What are...
Villa, Max M.; Wang, Liping; Huang, Jianping; Rowe, David W.; Wei, Mei
2015-01-01
Osteoprogenitor cells combined with supportive biomaterials represent a promising approach to advance the standard of care for bone grafting procedures. However, this approach faces challenges, including inconsistent bone formation, cell survival in the implant, and appropriate biomaterial degradation. We have developed a collagen–hydroxyapatite (HA) scaffold that supports consistent osteogenesis by donor derived osteoprogenitors, and is more easily degraded than a pure ceramic scaffold. Herein, the material properties are characterized as well as cell attachment, viability, and progenitor distribution in vitro. Furthermore, we examined the biological performance in vivo in a critical-size mouse calvarial defect. To aid in the evaluation of the in-house collagen–HA scaffold, the in vivo performance was compared with a commercial collagen–HA scaffold (Healos®, Depuy). The in-house collagen–HA scaffold supported consistent bone formation by predominantly donor-derived osteoblasts, nearly completely filling a 3.5 mm calvarial defect with bone in all samples (n=5) after 3 weeks of implantation. In terms of bone formation and donor cell retention at 3 weeks postimplantation, no statistical difference was found between the in-house and commercial scaffold following quantitative histomorphometry. The collagen–HA scaffold presented here is an open and well-defined platform that supports robust bone formation and should facilitate the further development of collagen–hydroxyapatite biomaterials for bone tissue engineering. PMID:24909953
Karim, Lamya; Vashishth, Deepak
2011-01-01
Alterations in microdamage morphology and accumulation are typically attributed to impaired remodeling, but may also result from changes in microdamage initiation and propagation. Such alterations are relevant for cancellous bone with high metabolic activity and numerous bone quality changes. This study investigates the role of trabecular microarchitecture on morphology and accumulation of microdamage in human cancellous bone. Trabecular bone cores from donors of varying ages and bone volume fraction (BV/TV) were separated into high and low BV/TV groups. Samples were subjected to no load or uniaxial compression to 0.6% (pre-yield) or 1.1% (post-yield) strain. Microdamage was stained with lead uranyl acetate and specimens were imaged via microcomputed tomography to quantify microdamage and determine its morphology in three-dimensions (3D). Donors with high BV/TV had greater post yield strain and were tougher than low BV/TV donors. High BV/TV bone had less microdamage than low BV/TV bone under post- but not pre-yield loading. Microdamage under both loading conditions showed significant correlations with microarchitecture and BV/TV, but the key predictor was structure model index (SMI). As SMI increased (more trabecular rods), microdamage morphology became crack-like. Thus, low BV/TV and increased SMI have strong influences on microdamage accumulation in bone through altered initiation. PMID:21538510
Li, Feng; Wang, Xujun; Niyibizi, Christopher
2010-01-01
Currently, there are conflicting data in literature regarding contribution of bone marrow stromal cells (BMSCs) to bone formation when the cells are systemically delivered in recipient animals. To understand if BMSCs contribute to bone cell phenotype and bone formation in osteogenesis imperfecta bones (OI), MSCs marked with GFP were directly infused into the femurs of a mouse model of OI (oim). The contribution of the cells to the cell phenotype and bone formation was assessed by histology, immunohistochemistry and biomechanical loading of recipient bones. Two weeks following infusion of BMSCs, histological examination of the recipient femurs demonstrated presence of new bone when compared to femurs injected with saline which showed little or no bone formation. The new bone contained few donor cells as demonstrated by GFP fluorescence. At six weeks following cell injection, new bone was still detectable in the recipient femurs but was enhanced by injection of the cells suspended in pepsin solublized type I collagen. Immunofluorescence and immunohistochemical staining showed that donor GFP positive cells in the new bone were localized with osteocalcin expressing cells suggesting that the cells differentiated into osteoblasts in vivo. Biomechanical loading to failure in thee point bending, revealed that, femurs infused with BMSCs in PBS or in soluble type I collagen were biomechanically stronger than those injected with PBS or type I collagen alone. Taken together, the results indicate that transplanted cells differentiated into osteoblasts in vivo and contributed to bone formation in vivo; we also speculate that donor cells induced differentiation or recruitment of endogenous cells to initiate reparative process at early stages following transplantation. PMID:20570757
2010-06-01
Boulad F, Carabasi M et al. Infusions of donor leukocytes to treat Epstein - Barr virus -associated lymphoproliferative disorders after allogeneic bone...Ng CY, Loftin SK, Sixbey JW, Gan Y et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein - Barr virus -induced lymphoma in... Epstein - Barr virus lymphoma after hemopoietic stem-cell transplantation. Blood 2000; 95: 1502-1505. 10. Davis TA, Czerwinski DK, Levy R. Therapy
In utero transplantation of human bone marrow-derived multipotent mesenchymal stem cells in mice.
Chou, Shiu-Huey; Kuo, Tom K; Liu, Ming; Lee, Oscar K
2006-03-01
Mesenchymal stem cells (MSCs) are multipotent cells that can be isolated from human bone marrow and possess the potential to differentiate into progenies of embryonic mesoderm. However, current evidence is based predominantly on in vitro experiments. We used a murine model of in utero transplantation (IUT) to study the engraftment capabilities of human MSCs. MSCs were obtained from bone marrow by negative immunoselection and limiting dilution, and were characterized by flow cytometry and by in vitro differentiation into osteoblasts, chondrocytes, and adipocytes. MSCs were transplanted into fetal mice at a gestational age of 14 days. Engraftment of human MSCs was determined by flow cytometry, polymerase chain reaction, and fluorescence in situ hybridization (FISH). MSCs engrafted into tissues originating from all three germ layers and persisted for up to 4 months or more after delivery, as evidenced by the expression of the human-specific beta-2 microglobulin gene and by FISH for donor-derived cells. Donor-derived CD45+ cells were detectable in the peripheral blood of recipients, suggesting the participation of MSCs in hematopoiesis at the fetal stage. This model can further serve to evaluate possible applications of MSCs. Copyright 2006 Orthopaedic Research Society.
Bustos, Martha L; Mura, Marco; Marcus, Paula; Hwang, David; Ludkovski, Olga; Wong, Amy P; Waddell, Thomas K
2013-01-01
We have previously reported a subpopulation of bone marrow cells (BMC) that express Clara cell secretory protein (CCSP), generally felt to be specific to lung Clara cells. Ablation of lung Clara cells has been reported using a transgenic mouse that expresses thymidine kinase under control of the CCSP promoter. Treatment with ganciclovir results in permanent elimination of CCSP+ cells, failure of airway regeneration, and death. To determine if transtracheal delivery of wild-type bone marrow CCSP+ cells is beneficial after ablation of lung CCSP+ cells, transgenic mice were treated with ganciclovir followed by transtracheal administration of CCSP+ or CCSP− BMC. Compared with mice administered CCSP− cells, mice treated with CCSP+ cells had more donor cells lining the airway epithelium, where they expressed epithelial markers including CCSP. Although donor CCSP+ cells did not substantially repopulate the airway, their administration resulted in increased host ciliated cells, better preservation of airway epithelium, reduction of inflammatory cells, and an increase in animal survival time. Administration of CCSP+ BMC is beneficial after permanent ablation of lung Clara cells by increasing bronchial epithelial repair. Therefore, CCSP+ BMC could be important for treatment of lung diseases where airways re-epithelialization is compromised. PMID:23609017
Arai, Ayako; Imadome, Ken-ichi; Wang, Ludan; Wu, Nan; Kurosu, Tetsuya; Wake, Atsushi; Yamamoto, Hisashi; Ota, Yasunori; Harigai, Masayoshi; Fujiwara, Shigeyoshi; Miura, Osamu
2012-01-01
We report the case of a 35-year-old woman with chronic active Epstein-Barr virus (EBV) infection (CAEBV). She underwent allogeneic bone marrow transplantation (BMT) from an unrelated male donor and achieved a complete response. However, her CAEBV relapsed one year after BMT. EBV-infected cells proliferated clonally and revealed a 46XY karyotype. In addition, the infecting EBV strain differed from that detected before BMT. These findings indicated that her disease had developed from donor cells. This is the first report of donor cell-derived CAEBV that recurred after transplantation, suggesting that host factors may be responsible for the development of this disease.
Das, Anusuya; Segar, Claire E.; Chu, Yihsuan; Wang, Tiffany W.; Lin, Yong; Yang, Chunxi; Du, Xeujun; Ogle, Roy C.; Cui, Quanjun; Botchwey, Edward A.
2015-01-01
Bone grafting procedures are performed to treat wounds incurred during wartime trauma, accidents, and tumor resections. Endogenous mechanisms of repair are often insufficient to ensure integration between host and donor bone and subsequent restoration of function. We investigated the role that bone marrow-derived cells play in bone regeneration and sought to increase their contributions by functionalizing bone allografts with bioactive lipid coatings. Polymer-coated allografts were used to locally deliver the immunomodulatory small molecule FTY720 in tibial defects created in rat bone marrow chimeras containing genetically-labeled bone marrow for monitoring cell origin and fate. Donor bone marrow contributed significantly to both myeloid and osteogenic cells in remodeling tissue surrounding allografts. FTY720 coatings altered the phenotype of immune cells two weeks post-injury, which was associated with increased vascularization and bone formation surrounding allografts. Consequently, degradable polymer coating strategies that deliver small molecule growth factors such as FTY720 represent a novel therapeutic strategy for harnessing endogenous bone marrow-derived progenitors and enhancing healing in load-bearing bone defects. PMID:26125501
Sorokina, Tamara; Shipounova, Irina; Bigildeev, Alexey; Petinati, Nataliya; Drize, Nina; Turkina, Anna; Chelysheva, Ekaterina; Shukhov, Oleg; Kuzmina, Larisa; Parovichnikova, Elena; Savchenko, Valery
2016-09-01
The development of leukemia impairs normal hematopoiesis and marrow stromal microenvironment. The aim of the investigation was to study the ability of multipotent mesenchymal stromal cells (MSCs) derived from the bone marrow of patients with leukemia to maintain normal hematopoietic progenitor cells. MSCs were obtained from the bone marrow of 14 patients with acute lymphoblastic (ALL), 25 with myeloid (AML), and 15 with chronic myeloid (CML) leukemia. As a control, MSCs from 22 healthy donors were used. The incidence of cobblestone area forming cells (CAFC 7-8 d) in the bone marrow of healthy donor cultivated on the supportive layer of patients MSCs was measured. The ability of MSCs from AML and ALL patients at the moment of diagnosis to maintain normal CAFC was significantly decreased when compared to donors. After chemotherapy, the restoration of ALL patients' MSCs functions was slower than that of AML. CML MSCs maintained CAFC better than donors' at the moment of diagnosis and this ability increased with treatment. The ability of patients' MSCs to maintain normal hematopoietic progenitor cells was shown to change in comparison with MSCs from healthy donors and depended on nosology. During treatment, the functional capacity of patients' MSCs had been partially restored. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Mclaren, Patrick J.; Hyde, Melissa K.; White, Katherine M.
2012-01-01
Increasing the number of bone marrow (BM) donors is important to ensure sufficient diversity on BM registries to meet the needs of patients. This study used an experimental approach to test the hypothesis that providing information about the risks of BM donation to allay unsubstantiated fears would reduce male and female participants' perceptions…
Seijas, Roberto; Rius, Marta; Ares, Oscar; García-Balletbó, Montserrat; Serra, Iván; Cugat, Ramón
2015-04-01
To determine whether the use of plasma rich in growth factors accelerates healing of the donor site in bone-tendon-bone anterior cruciate ligament (ACL) reconstruction (patellar graft). The use of the patellar graft presents post-operative problems such as anterior knee pain, which limits its use and leads to preference being taken for alternative grafts. A double-blind, randomized, clinical trial was performed comparing two groups of patients who underwent ACL reconstruction using patellar tendon graft and comparing the use of plasma rich in growth factors at the donor site after graft harvest in terms of local regeneration by ultrasound assessment. The plasma rich in growth factors group shows earlier donor site regeneration in comparison with the control group (2 months earlier), with significant differences in the first 4 months of the follow-up. The application of plasma rich in growth factors shows accelerated tissue regeneration processes with respect to the control group. This fact, together with the previously published with similar conclusions, can create a knowledge basis in order to set out new recovery guidelines following ACL reconstruction. Therapeutic study, Level I.
The extent of clonal structure in different lymphoid organs
1992-01-01
To gain insight into the clonal organization of lymphoid organs, we studied the distribution in situ of donor-derived cells in near- physiological chimeras. We introduced RT7b fetal liver cells into nonirradiated congenic RT7a neonatal rats. The chimerism 6-20 wk after injection ranged from 0.3 to 20%. The numbers of cell clones simultaneously contributing to cell generation in a particular histological feature were deduced from the variance in donor cell distribution. In bone marrow and thymus, donor-derived lymphoid cells were found scattered among host cells, indicating a high mobility of cells. In bone marrow, donor cells were evenly distributed over the entire marrow, even at low chimerism. This indicates that leukopoiesis is maintained by the proliferation of many clones. In the thymus, the various lobules showed different quantities of donor-derived lymphoid cells. Mathematical analysis of these differences indicated that 17-18 cell division cycles occur in the cortex. In spleen, the distribution of donor-derived cells over the germinal centers indicated that 5 d after antigenic stimulation, germinal centers develop oligoclonally. The main conclusions of this work are that (a) bone marrow and thymus are highly polyclonal; (b) 17-18 divisions occur between prothymocyte and mature T cell; and (c) lymphoid cells disperse rapidly while proliferating and differentiating. PMID:1569396
Role of T cells in sex differences in syngeneic bone marrow transfers.
Raveche, E S; Santoro, T; Brecher, G; Tjio, J H
1985-11-01
Transferred marrow cells will proliferate in normal mice not exposed to irradiation or any other type of stem cell depletion when five consecutive transfers of 40 million cells are given. Approximately 25% of the mitotic cells are of male donor origin observed cytogenetically in all of the female recipient spleens and marrow analyzed from two weeks to one and one-half years after transfusions. Male donor stem cells are accepted and form a stable component of the self-renewing stem cell pool. In contrast, only 5% female cells are found in male recipients. This sex difference in engraftment is not hormonal since castration of recipients does not alter the percentage of donor cells. Rigorous T depletion of female donor bone marrow, however, increases the percentage of donor engraftment to the level observed when male marrow, either whole or T depleted, is transferred to female recipients. The success of T-depleted female stem cells to seed male recipients is observed in both C57BL/6, a responder strain in which females readily respond to the H-Y antigen as manifest by skin graft rejection, and CBA/J, a strain in which females do not readily respond to H-Y. In addition, recipient nude BALB/c males, which lack a thymus, fail to accept whole bone marrow from BALB/c females. However, male bone marrow cells seed BALB/c nude females. These studies demonstrate that the poor engraftment of female cells in transfused male recipients is abrogated by the removal of T cells from the donor female marrow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsue, K.; Niki, T.; Shiobara, S.
1990-01-01
We describe the clinical course of a 16 year old girl with aplastic anemia who was treated by syngeneic bone marrow transplantation. Engraftment was not obtained by simple infusion of bone marrow without immunosuppression. The patient received a high-dose cyclophosphamide and thoracoabdominal irradiation, followed by second marrow transplantation from the same donor. Incomplete but significant hematologic recovery was observed; however, marrow failure recurred 5 months after transplantation. Since donor and recipient pairs were genotypically identical, graft failure could not be attributed to immunological reactivity of recipient cells to donor non-HLA antigens. This case report implies that graft failure in somemore » cases of aplastic anemia might be mediated by inhibitory cells resistant to cyclophosphamide and irradiation.« less
Nishio, Nobuhiro; Takahashi, Yoshiyuki; Ohashi, Haruhiko; Doisaki, Sayoko; Muramatsu, Hideki; Hama, Asahito; Shimada, Akira; Yagasaki, Hiroshi; Kojima, Seiji
2011-03-01
DC is an inherited bone marrow failure syndrome mainly characterized by nail dystrophy, abnormal skin pigmentation, and oral leukoplakia. Bone marrow failure is the most common cause of death in patients with DC. Because previous results of HSCT with a myeloablative regimen were disappointing, we used a reduced-intensity conditioning regimen for two patients with classic DC, and one patient with cryptic DC who harbored the TERT mutation. Graft sources included two mismatched-related bone marrow (BM) donors and one unrelated BM donor. Successful engraftment was achieved with few regimen-related toxicities in all patients. They were alive 10, 66, and 72 months after transplantation, respectively. Long-term follow-up is crucial to determine the late effects of our conditioning regimen. © 2010 John Wiley & Sons A/S.
Dong, X Neil; Qin, An; Xu, Jiake; Wang, Xiaodu
2011-08-01
Advanced glycation end products (AGEs) have been observed to accumulate in bone with increasing age and may impose effects on bone resorption activities. However, the underlying mechanism of AGEs accumulation in bone is still poorly understood. In this study, human cortical bone specimens from young (31±6years old), middle-aged (51±3years old) and elderly (76±4years old) groups were examined to determine the spatial-temporal distribution of AGEs in bone matrix and its effect on bone resorption activities by directly culturing osteoclastic cells on bone slices. The results of this study indicated that the fluorescence intensity (excitation wave length 360nm and emission wave length 470±40nm) could be used to estimate the relative distribution of AGEs in bone (pentosidine as its marker) under an epifluorescence microscope. Using the fluorescence intensity as the relative measure of AGEs concentration, it was found that the concentration of AGEs varied with biological tissue ages, showing the greatest amount in the interstitial tissue, followed by the old osteons, and the least amount in newly formed osteons. In addition, AGEs accumulation was found to be dependent on donor ages, suggesting that the younger the donor the less AGEs were accumulated in the tissue. Most interestingly, AGEs accumulation appeared to initiate from the region of cement lines, and spread diffusively to the other parts as the tissue aged. Finally, it was observed that the bone resorption activities of osteoclasts were positively correlated with the in situ concentration of AGEs and such an effect was enhanced with increasing donor age. These findings may help elucidate the mechanism of AGEs accumulation in bone and its association with bone remodeling process. Copyright © 2011 Elsevier Inc. All rights reserved.
Dong, X. Neil; Qin, An; Xu, Jiake; Wang, Xiaodu
2011-01-01
Advanced glycation end products (AGEs) have been observed to accumulate in bone with increasing age and may impose effects on bone resorption activities. However, the underlying mechanism of AGEs accumulation in bone is still poorly understood. In this study, human cortical bone specimens from young (31±6 years old), middle-aged (51±3 years old) and elderly (76±4 years old) groups were examined to determine the spatial-temporal distribution of AGEs in bone matrix and its effect on bone resorption activities by directly culturing osteoclastic cells on bone slices. The results of this study indicated that the fluorescence intensity (excitation wave length 360 nm and emission wave length 470±40 nm) could be used to estimate the relative distribution of AGEs in bone (pentosidine as its marker) under an epifluorescence microscope. Using the fluorescence intensity as the relative measure of AGEs concentration, it was found that the concentration of AGEs varied with biological tissue ages, showing the greatest amount in the interstitial tissue, followed by the old osteons, and the least amount in newly formed osteons. In addition, AGEs accumulation was found to be dependent on donor ages, suggesting that the younger the donor the less AGEs were accumulated in the tissue. Most interestingly, AGEs accumulation appeared to initiate from the region of cement lines, and spread diffusively to the other parts as the tissue aged. Finally, it was observed that the bone resorption activities of osteoclasts were positively correlated with the in situ concentration of AGEs and such an effect was enhanced with increasing donor age. These findings may help elucidate the mechanism of AGEs accumulation in bone and its association with bone remodeling process. PMID:21530698
Clinical efficacy of stem cell mediated osteogenesis and bioceramics for bone tissue engineering.
Neman, Josh; Hambrecht, Amanda; Cadry, Cherie; Goodarzi, Amir; Youssefzadeh, Jonathan; Chen, Mike Y; Jandial, Rahul
2012-01-01
Lower back pain is a common disorder that often requires bony spinal fusion for long-term relief. Current arthrodesis procedures use bone grafts from autogenous bone, allogenic backed bone or synthetic materials. Autogenous bone grafts can result in donor site morbidity and pain at the donor site, while allogenic backed bone and synthetic materials have variable effectiveness. Given these limitations, researchers have focused on new treatments that will allow for safe and successful bone repair and regeneration. Mesenchymal stem cells (MSCs) have received attention for their ability to differentiate into osteoblasts, cells that synthesize the extracellular matrix and regulate matrix mineralization. Successful bone regeneration requires three elements: MSCs that serve as osteoblastic progenitors, osteoinductive growth factors and their pathways that promote development and differentiation of the cells as well as an osteoconductive scaffold that allows for the formation of a vascular network. Future treatments should strive to combine mesenchymal stem cells, cell-seeded scaffolds and gene therapy to optimize the efficiency and safety of tissue repair and bone regeneration.
Thomson, Angus W; Humar, Abhinav; Lakkis, Fadi G; Metes, Diana M
2018-05-01
Dendritic cells (DC) are rare, bone marrow (BM)-derived innate immune cells that critically maintain self-tolerance in the healthy steady-state. Regulatory DC (DCreg) with capacity to suppress allograft rejection and promote transplant tolerance in pre-clinical models can readily be generated from BM precursors or circulating blood monocytes. These DCreg enhance allograft survival via various mechanisms, including promotion of regulatory T cells. In non-human primates receiving minimal immunosuppressive drug therapy (IS), infusion of DCreg of donor origin, one week before transplant, safely prolongs renal allograft survival and selectively attenuates anti-donor CD8 + memory T cell responses in the early post-transplant period. Based on these observations, and in view of the critical need to reduce patient dependence on non-specific IS agents that predispose to cardiometabolic side effects and renal insufficiency, we will conduct a first-in-human safety and preliminary efficacy study of donor-derived DCreg infusion to achieve early (18 months post-transplant) complete IS withdrawal in low-risk, living donor liver transplant recipients receiving standard-of-care IS (mycophenolate mofetil, tacrolimus and steroids). We will test the hypothesis that, although donor-derived DCreg are short-lived, they will induce robust donor-specific T cell hyporesponsiveness. We will examine immunological mechanisms by sequential analysis of blood and tissue samples, incorporating cutting-edge technologies. Copyright © 2017 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Yoshida, Nao; Kobayashi, Ryoji; Yabe, Hiromasa; Kosaka, Yoshiyuki; Yagasaki, Hiroshi; Watanabe, Ken-Ichiro; Kudo, Kazuko; Morimoto, Akira; Ohga, Shouichi; Muramatsu, Hideki; Takahashi, Yoshiyuki; Kato, Koji; Suzuki, Ritsuro; Ohara, Akira; Kojima, Seiji
2014-12-01
The current treatment approach for severe aplastic anemia in children is based on studies performed in the 1980s, and updated evidence is required. We retrospectively compared the outcomes of children with acquired severe aplastic anemia who received immunosuppressive therapy within prospective trials conducted by the Japanese Childhood Aplastic Anemia Study Group or who underwent bone marrow transplantation from an HLA-matched family donor registered in the Japanese Society for Hematopoietic Cell Transplantation Registry. Between 1992 and 2009, 599 children (younger than 17 years) with severe aplastic anemia received a bone marrow transplant from an HLA-matched family donor (n=213) or immunosuppressive therapy (n=386) as first-line treatment. While the overall survival did not differ between patients treated with immunosuppressive therapy or bone marrow transplantation [88% (95% confidence interval: 86-90) versus 92% (90-94)], failure-free survival was significantly inferior in patients receiving immunosuppressive therapy than in those undergoing bone marrow transplantation [56% (54-59) versus 87% (85-90); P<0.0001]. There was no significant improvement in outcomes over the two time periods (1992-1999 versus 2000-2009). In multivariate analysis, age <10 years was identified as a favorable factor for overall survival (P=0.007), and choice of first-line immunosuppressive therapy was the only unfavorable factor for failure-free survival (P<0.0001). These support the current algorithm for treatment decisions, which recommends bone marrow transplantation when an HLA-matched family donor is available in pediatric severe aplastic anemia. Copyright© Ferrata Storti Foundation.
Yoshida, Nao; Kobayashi, Ryoji; Yabe, Hiromasa; Kosaka, Yoshiyuki; Yagasaki, Hiroshi; Watanabe, Ken-ichiro; Kudo, Kazuko; Morimoto, Akira; Ohga, Shouichi; Muramatsu, Hideki; Takahashi, Yoshiyuki; Kato, Koji; Suzuki, Ritsuro; Ohara, Akira; Kojima, Seiji
2014-01-01
The current treatment approach for severe aplastic anemia in children is based on studies performed in the 1980s, and updated evidence is required. We retrospectively compared the outcomes of children with acquired severe aplastic anemia who received immunosuppressive therapy within prospective trials conducted by the Japanese Childhood Aplastic Anemia Study Group or who underwent bone marrow transplantation from an HLA-matched family donor registered in the Japanese Society for Hematopoietic Cell Transplantation Registry. Between 1992 and 2009, 599 children (younger than 17 years) with severe aplastic anemia received a bone marrow transplant from an HLA-matched family donor (n=213) or immunosuppressive therapy (n=386) as first-line treatment. While the overall survival did not differ between patients treated with immunosuppressive therapy or bone marrow transplantation [88% (95% confidence interval: 86–90) versus 92% (90–94)], failure-free survival was significantly inferior in patients receiving immunosuppressive therapy than in those undergoing bone marrow transplantation [56% (54–59) versus 87% (85–90); P<0.0001]. There was no significant improvement in outcomes over the two time periods (1992–1999 versus 2000–2009). In multivariate analysis, age <10 years was identified as a favorable factor for overall survival (P=0.007), and choice of first-line immunosuppressive therapy was the only unfavorable factor for failure-free survival (P<0.0001). These support the current algorithm for treatment decisions, which recommends bone marrow transplantation when an HLA-matched family donor is available in pediatric severe aplastic anemia. PMID:25193958
Computer-based planning of optimal donor sites for autologous osseous grafts
NASA Astrophysics Data System (ADS)
Krol, Zdzislaw; Chlebiej, Michal; Zerfass, Peter; Zeilhofer, Hans-Florian U.; Sader, Robert; Mikolajczak, Pawel; Keeve, Erwin
2002-05-01
Bone graft surgery is often necessary for reconstruction of craniofacial defects after trauma, tumor, infection or congenital malformation. In this operative technique the removed or missing bone segment is filled with a bone graft. The mainstay of the craniofacial reconstruction rests with the replacement of the defected bone by autogeneous bone grafts. To achieve sufficient incorporation of the autograft into the host bone, precise planning and simulation of the surgical intervention is required. The major problem is to determine as accurately as possible the donor site where the graft should be dissected from and to define the shape of the desired transplant. A computer-aided method for semi-automatic selection of optimal donor sites for autografts in craniofacial reconstructive surgery has been developed. The non-automatic step of graft design and constraint setting is followed by a fully automatic procedure to find the best fitting position. In extension to preceding work, a new optimization approach based on the Levenberg-Marquardt method has been implemented and embedded into our computer-based surgical planning system. This new technique enables, once the pre-processing step has been performed, selection of the optimal donor site in time less than one minute. The method has been applied during surgery planning step in more than 20 cases. The postoperative observations have shown that functional results, such as speech and chewing ability as well as restoration of bony continuity were clearly better compared to conventionally planned operations. Moreover, in most cases the duration of the surgical interventions has been distinctly reduced.
Establishment of Donor Chimerism Using Allogeneic Bone Marrow with AMP Cell Co-infusion
2016-09-01
specific immunosuppression. Induction of tolerance to the CTA is the ideal solution. Combined mixed allogeneic chimerism induction and kidney ...transplantation has been shown to induce robust tolerance to the kidney allograft despite transient mixed chimerism in non-human primates and humans...solution. Mixed chimerism induction via hematopoietic cell transplantation (HCT) has been shown to facilitate tolerance induction to kidney allografts
Das, Anusuya; Segar, Claire E; Chu, Yihsuan; Wang, Tiffany W; Lin, Yong; Yang, Chunxi; Du, Xeujun; Ogle, Roy C; Cui, Quanjun; Botchwey, Edward A
2015-09-01
Bone grafting procedures are performed to treat wounds incurred during wartime trauma, accidents, and tumor resections. Endogenous mechanisms of repair are often insufficient to ensure integration between host and donor bone and subsequent restoration of function. We investigated the role that bone marrow-derived cells play in bone regeneration and sought to increase their contributions by functionalizing bone allografts with bioactive lipid coatings. Polymer-coated allografts were used to locally deliver the immunomodulatory small molecule FTY720 in tibial defects created in rat bone marrow chimeras containing genetically-labeled bone marrow for monitoring cell origin and fate. Donor bone marrow contributed significantly to both myeloid and osteogenic cells in remodeling tissue surrounding allografts. FTY720 coatings altered the phenotype of immune cells two weeks post-injury, which was associated with increased vascularization and bone formation surrounding allografts. Consequently, degradable polymer coating strategies that deliver small molecule growth factors such as FTY720 represent a novel therapeutic strategy for harnessing endogenous bone marrow-derived progenitors and enhancing healing in load-bearing bone defects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Klomps, Lawrence V; Zomorodi, Naseem; Kim, H Mike
2017-12-01
Rotator cuff muscle fatty degeneration after a chronic tendon tear is an irreversible pathologic change associated with poor clinical outcomes of tendon repair, and its exact pathogenesis remains unknown. We sought to investigate the role of transplanted bone marrow cells in the development of fatty degeneration, specifically in adipocyte accumulation, using a mouse model. Fourteen mice were divided into 2 bone marrow chimeric animal groups: bone marrow transplantation (BMT) group and reverse BMT group. For the BMT group, C57BL/6J wild-type mice underwent whole body irradiation followed by BMT into the retro-orbital sinus from green fluorescent protein (GFP)-transgenic donor mice. For the reverse BMT group, GFP-transgenic mice received BMT from C57BL/6J wild-type donor mice after irradiation. The supraspinatus tendon, infraspinatus tendon, and suprascapular nerve were surgically transected 3 weeks after transplantation. The rotator cuff muscles were harvested 13 weeks after transplantation for histologic analysis and GFP immunohistochemistry. On histologic examination, both groups showed substantial fatty degeneration, fibrosis, and atrophy of the cuff muscles. The BMT group showed no noticeable GFP immunostaining, whereas the reverse BMT group showed significantly stronger GFP staining in most adipocytes (P < .001). However, both groups also showed that a small number of adipocytes originated from transplanted bone marrow cells. A small number of myocytes showed a large cytoplasmic lipid vacuole resembling adipocytes. This study's findings suggest that most adipocytes in fatty degeneration of the rotator cuff muscles originate from sources other than bone marrow-derived stem cells, and there may be more than 1 source for the adipocytes. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Granulocyte-mobilized bone marrow.
Arcese, William; De Angelis, Gottardo; Cerretti, Raffaella
2012-11-01
In the last few years, mobilized peripheral blood has overcome bone marrow as a graft source, but, despite the evidence of a more rapid engraftment, the incidence of chronic graft-versus-host disease is significantly higher with, consequently, more transplant-related mortality on the long follow-up. Overall, the posttransplant outcome of mobilized peripheral blood recipients is similar to that of patients who are bone marrow grafted. More recently, the use of bone marrow after granulocyte colony-stimulating factor (G-CSF) donor priming has been introduced in the transplant practice. Herein, we review biological acquisitions and clinical results on the use of G-CSF-primed bone marrow as a source of hematopoietic stem cells (HSC) for allogeneic stem cell transplantation. G-CSF the increases the HSC compartment and exerts an intense immunoregulatory effect on marrow T-cells resulting in the shift from Th1 to Th2 phenotype with higher production of anti-inflammatory cytokines. The potential advantages of these biological effects have been translated in the clinical practice by using G-CSF primed unmanipulated bone marrow in the setting of transplant from human leukocyte antigen (HLA)-haploidentical donor with highly encouraging results. For patients lacking an HLA-identical sibling, the transplant of G-CSF primed unmanipulated bone marrow from a haploidentical donor combined with an intense in-vivo immunosuppression is a valid alternative achieving results that are well comparable with those reported for umbilical cord blood, HLA-matched unrelated peripheral blood/bone marrow or T-cell-depleted haploidentical transplant.
Isolation of Precursor Cells from Waste Solid Fat Tissue
NASA Technical Reports Server (NTRS)
Byerly, Diane; Sognier, Marguerite A.
2009-01-01
A process for isolating tissue-specific progenitor cells exploits solid fat tissue obtained as waste from such elective surgical procedures as abdominoplasties (tummy tucks) and breast reductions. Until now, a painful and risky process of aspiration of bone marrow has been used to obtain a limited number of tissue- specific progenitor cells. The present process yields more tissue-specific progenitor cells and involves much less pain and risk for the patient. This process includes separation of fat from skin, mincing of the fat into small pieces, and forcing a fat saline mixture through a sieve. The mixture is then digested with collagenase type I in an incubator. After centrifugation tissue-specific progenitor cells are recovered and placed in a tissue-culture medium in flasks or Petri dishes. The tissue-specific progenitor cells can be used for such purposes as (1) generating three-dimensional tissue equivalent models for studying bone loss and muscle atrophy (among other deficiencies) and, ultimately, (2) generating replacements for tissues lost by the fat donor because of injury or disease.
Ultra-Sensitive Droplet Digital PCR for the Assessment of Microchimerism in Cellular Therapies.
Kliman, David; Castellano-Gonzalez, Gloria; Withers, Barbara; Street, Janine; Tegg, Elizabeth; Mirochnik, Oksana; Lai, Joey; Clancy, Leighton; Gottlieb, David; Blyth, Emily
2018-05-01
Current techniques to assess chimerism after hematopoietic stem cell transplantation (HSCT) are limited in both sensitivity and precision. These drawbacks are problematic in the context of cellular therapies that frequently result in microchimerism (donor chimerism <1%). We have developed a highly sensitive droplet digital PCR (ddPCR) assay using commercially available regents with good performance throughout the range of clinically relevant chimerism measurements, including microchimerism. We tested the assay using spiked samples of known donor-recipient ratios and in clinical samples from HSCT recipients and patients enrolled on clinical trials of microtransplantation and third-party virus-specific T cells (VSTs). The levels of detection and quantification of the assay were .008% and .023%, with high levels of precision with samples of DNA content ranging from 1 to 300 ng DNA. From the panel of 29 insertion-deletion probes multiple informative markers were found for each of 43 HSCT donor-recipient pairs. In the case of third-party cellular therapies in which there were 3 DNA contributors (recipient, HSCT donor, and T-cell donor), a marker to detect the cellular product in a background of recipient and donor cells was available for 11 of 12 cases (92%). Chimerism by ddPCR was able to quantify chimerism in HSCT recipients and comparison against standard STR analysis in 8 HSCT patients demonstrated similar results, with the advantage of fast turnaround time. Persistence of donor microchimerism in patients undergoing microtransplantation for acute myeloid leukemia was detectable for up to 57 days in peripheral blood and bone marrow. The presence of microtransplant product DNA in bone marrow T cells after cell sorting was seen in the 1 patient tested. In patients receiving third-party VSTs for treatment of refractory viral infections, VST donor DNA was detected at low levels in 7 of 9 cases. ddPCR offers advantages over currently available methods for assessment of chimerism in standard HSCT and cellular therapies. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Acellular dermal matrix in soft tissue reconstruction prior to bone grafting. A case report.
Ruiz-Magaz, Vanessa; Hernández-Alfaro, Federico; Díaz-Carandell, Artur; Biosca-Gómez-de-Tejada, María-José
2010-01-01
When hard tissue augmentation is scheduled as a part of an oral rehabilitation, prior to the treatment, it is important to assess if the quality of the underlying gingiva at the recipient site can support the bone grafting procedure. The most frequent complication during autologous onlay grafts are wound dehiscences in the recipient site, so the integrity of soft tissues is a basic aspect of successful reconstructive and plastic surgical procedure. Connective tissue grafts can improve the quality and quantity of soft tissue in oral sites where a hard tissue reconstruction is going to take place. However, particularly when large grafts are harvested, the autogenous donor site can present significant postoperative morbidity, such as necrosis of the palate fibromucosa and bone exposition, pain and bleeding. Another important limitation with the use of autogenous grafts is the limited supply of donor connective tissue. If a large site needs to be grafted, more than one surgical procedure may be required. An Acellular Dermal Matrix (ADM) graft has become increasingly popular as a substitute for donor connective tissue, eliminating the disadvantages described for the autogenous donor graft. The amount of tissue harvested is unlimited, so it gives an option for treating patients that have inadequate harvestable tissue or that present a large defect to be treated. The outcome of using ADM as a matrix for soft tissue reconstruction 12 weeks before bone grafting can reduce the risk of exposure and failure of the bone graft.
Bone Marrow CD11c+ Cell-Derived Amphiregulin Promotes Pulmonary Fibrosis
Ding, Lin; Liu, Tianju; Wu, Zhe; Hu, Biao; Nakashima, Taku; Ullenbruch, Matthew; De Los Santos, Francina Gonzalez; Phan, Sem H.
2016-01-01
Amphiregulin (AREG), an epidermal growth factor receptor ligand, is implicated in tissue repair and fibrosis but its cellular source and role in regeneration vs. fibrosis remain unclear. In this study we hypothesize that AREG induced in bone marrow derived CD11c+ cells is essential for pulmonary fibrosis. Thus the objectives were to evaluate the importance and role of AREG in pulmonary fibrosis, identify the cellular source of AREG induction and analyze its regulation of fibroblast function and activation. The results showed that lung AREG expression was significantly induced in bleomycin-induced pulmonary fibrosis. AREG deficiency in knockout (KO) mice significantly diminished pulmonary fibrosis. Analysis of AREG expression in major lung cell types revealed induction in fibrotic lungs predominantly occurred in CD11c+ cells. Moreover depletion of bone marrow derived CD11c+ cells suppressed both induction of lung AREG expression and pulmonary fibrosis. Conversely, adoptive transfer of bone marrow-derived CD11c+ cells from BLM-treated donor mice exacerbated pulmonary fibrosis but not if the donor cells were made AREG-deficient prior to transfer. CD11c+ cell conditioned media or co-culture stimulated fibroblast proliferation, activation and myofibroblast differentiation in an AREG dependent manner. Furthermore recombinant AREG induced telomerase reverse transcriptase (TERT) which appeared to be essential for the proliferative effect. Finally AREG significantly enhanced fibroblast motility, which was associated with increased expression of α6 integrin. These findings suggested that induced AREG specifically in recruited bone marrow-derived CD11c+ cells promoted bleomycin induced pulmonary fibrosis by activation of fibroblast TERT dependent proliferation, motility and indirectly, myofibroblast differentiation. PMID:27206766
Hydrogel-beta-TCP scaffolds and stem cells for tissue engineering bone.
Weinand, Christian; Pomerantseva, Irina; Neville, Craig M; Gupta, Rajiv; Weinberg, Eli; Madisch, Ijad; Shapiro, Frederic; Abukawa, Harutsugi; Troulis, Maria J; Vacanti, Joseph P
2006-04-01
Trabecular bone is a material of choice for reconstruction after trauma and tumor resection and for correction of congenital defects. Autologous bone grafts are available in limited shapes and sizes; significant donor site morbidity is another major disadvantage to this approach. To overcome these limitations, we used a tissue engineering approach to create bone replacements in vitro, combining bone-marrow-derived differentiated mesenchymal stem cells (MSCs) suspended in hydrogels and 3-dimensionally printed (3DP) porous scaffolds made of beta-tricalcium-phosphate (beta-TCP). The scaffolds provided support for the formation of bone tissue in collagen I, fibrin, alginate, and pluronic F127 hydrogels during culturing in oscillating and rotating dynamic conditions. Histological evaluation including toluidine blue, alkaline phosphatase, and von Kossa staining was done at 1, 2, 4, and 6 weeks. Radiographic evaluation and high-resolution volumetric CT (VCT) scanning, expression of bone-specific genes and biomechanical compression testing were performed at 6 weeks. Both culture conditions resulted in similar bone tissue formation. Histologically collagen I and fibrin hydrogels specimens had superior bone tissue, although radiopacities were detected only in collagen I samples. VCT scan revealed density values in all but the Pluronic F127 samples, with Houndsfield unit values comparable to native bone in collagen I and fibrin glue samples. Expression of bone-specific genes was significantly higher in the collagen I samples. Pluronic F127 hydrogel did not support formation of bone tissue. All samples cultured in dynamic oscillating conditions had slightly higher mechanical strength than under rotating conditions. Bone tissue can be successfully formed in vitro using constructs comprised of collagen I hydrogel, MSCs, and porous beta-TCP scaffolds.
Determinants of Microdamage in Elderly Human Vertebral Trabecular Bone
Follet, Hélène; Farlay, Delphine; Bala, Yohann; Viguet-Carrin, Stéphanie; Gineyts, Evelyne; Burt-Pichat, Brigitte; Wegrzyn, Julien; Delmas, Pierre; Boivin, Georges; Chapurlat, Roland
2013-01-01
Previous studies have shown that microdamage accumulates in bone as a result of physiological loading and occurs naturally in human trabecular bone. The purpose of this study was to determine the factors associated with pre-existing microdamage in human vertebral trabecular bone, namely age, architecture, hardness, mineral and organic matrix. Trabecular bone cores were collected from human L2 vertebrae (n = 53) from donors 54–95 years of age (22 men and 30 women, 1 unknown) and previous cited parameters were evaluated. Collagen cross-link content (PYD, DPD, PEN and % of collagen) was measured on surrounding trabecular bone. We found that determinants of microdamage were mostly the age of donors, architecture, mineral characteristics and mature enzymatic cross-links. Moreover, linear microcracks were mostly associated with the bone matrix characteristics whereas diffuse damage was associated with architecture. We conclude that linear and diffuse types of microdamage seemed to have different determinants, with age being critical for both types. PMID:23457465
Vulic, Ante; Panoskaltsis-Mortari, Angela; McDyer, John F.; Luznik, Leo
2016-01-01
Background Despite broad and intense conventional immunosuppression, long-term survival after lung transplantation lags behind that for other solid organ transplants, primarily because of allograft rejection. Therefore, new strategies to promote lung allograft acceptance are urgently needed. The purpose of the present study was to induce allograft tolerance with a protocol compatible with deceased donor organ utilization. Methods Using the MHC-mismatched mouse orthotopic lung transplant model, we investigated a conditioning regimen consisting of pretransplant T cell depletion, low dose total body irradiation and posttransplant (donor) bone marrow and splenocyte infusion followed by posttransplantation cyclophosphamide (PTTT-PTB/PTCy). Results Our results show that C57BL/6 recipients of BALB/c lung allografts undergoing this complete short-duration nonmyeloablative conditioning regimen had durable lung allograft acceptance. Mice that lacked 1 or more components of this regimen exhibited significant graft loss. Mechanistically, animals with lung allograft acceptance had established higher levels of donor chimerism, lymphocyte responses which were attenuated to donor antigens but maintained to third-party antigens, and clonal deletion of donor-reactive host Vβ T cells. Frequencies of Foxp3+ T regulatory cells were comparable in both surviving and rejected allografts implying that their perturbation was not a dominant cell-regulatory mechanism. Donor chimerism was indispensable for sustained tolerance, as evidenced by acute rejection of allografts in established chimeric recipients of PTTT-PTB/PTCy following a chimerism-ablating secondary recipient lymphocyte infusion. Conclusion Together, these data provide proof-of-concept for establishing lung allograft tolerance with tandem donor bone marrow transplantation (BMT) using a short-duration nonmyeloablative conditioning regimen and PTCy. PMID:27861294
Stem Cell Therapy to Improve Burn Wound Healing
2017-03-01
Aim(s) • Perform Phase 1 Trial of Allogeneic MSCs in Burns • Perform Phase 2 Trial of Allogeneic MSCs in Burns • Collect Tissue Repository for...for safety/dose studies CY15 Goal – Continue Phase 1 and, Start Tissue Repository Continue donors recruitment, screening and Bone Marrow Aspiration...1 Trial and Collect Tissue Repository Continue donors recruitment, screening and Bone Marrow Aspiration as needed. Continue patients screening
Beelen, D W; Ottinger, H; Kolbe, K; Pönisch, W; Sayer, H G; Knauf, W; Stockschläder, M; Scheid, C; Schaefer, U W
2002-12-01
Recombinant human granulocyte colony-stimulating factor (rhG-CSF) mobilized peripheral blood progenitor cells (PBPCs) from healthy individuals are a rapidly emerging alternative source to bone marrow for allogeneic transplantation. Although widely applied in the meantime, only limited information on feasibility and safety of mobilization and collection of PBPCs is currently available from prospective multicenter studies specifically designed to investigate this donation modality. This ongoing multicenter study on the performance as well as the short- and long-term safety profile of rhG-CSF-induced mobilization and collection of PBPCs was initiated in October 1999. The study is designed to recruit a total of 300 healthy family donors who will be followed regularly for a period of 5 years after donation. The first interim report presented here summarizes results obtained after enrollment of 150 donors from nine German institutions. The study protocol allowed the individual choice between two dose regimens of rh-CSF (10 micro g/kg per day vs 2x8 micro g/kg per day of donor body weight). The primary endpoint was defined as a yield of > or =5x10(6) CD34(+) cells/kg of recipient body weight in a single leukapheresis product. This endpoint was attained by 50% of donors receiving the lower rhG-CSF dose regimen and by 75% of donors with the higher dose regimen ( p<0.0009). A total of 478 acute adverse events attributable to the mobilization procedure were recorded and manifested predominantly as transient bone pain and headaches (80%). No persistent hematologic or nonhematologic adverse events have occurred in this study so far. Thus, the current experience in a prospective multicenter study supports previous single-center and retrospective registry reports in that the collection of PBPCs after rhG-CSF mobilization is feasible and associated with frequent, but generally mild and acceptable side effects.
Zhang, C; Chen, X-H; Zhang, X; Gao, L; Gao, L; Kong, P-Y; Peng, X-G; Sun, A-H; Gong, Y; Zeng, D-F; Wang, Q-Y
2010-06-01
Unmanipulated haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor-mobilised peripheral blood stem cells (G-PBSCs) and granulocyte-colony stimulating factor-mobilised bone marrow (G-BM) has been developed as an alternative transplantation strategy for patients with haematologic malignancies. However, little information is available about the factors predicting the outcome of peripheral blood stem cell (PBSC) collection and bone marrow (BM) harvest in this transplantation. The effects of donor characteristics and procedure factors on CD34(+) cell yield were investigated. A total of 104 related healthy donors received granulocyte-colony stimulating factor (G-CSF) followed by PBSC collection and BM harvest. Male donors had significantly higher yields compared with female donors. In multiple regression analysis for peripheral blood collection, age and flow rate were negatively correlated with cell yield, whereas body mass index, pre-aphaeresis white blood cell (WBC) and circulating immature cell (CIC) counts were positively correlated with cell yields. For BM harvest, age was negatively correlated with cell yields, whereas pre-BM collection CIC counts were positively correlated with cell yield. All donors achieved the final product of >or=6 x10(6) kg(-1) recipient body weight. This transplantation strategy has been shown to be a feasible approach with acceptable outcomes in stem cell collection for patients who received HLA-haploidentical/mismatched transplantation with combined G-PBSCs and G-BM. In donors with multiple high-risk characteristics for poor aphaeresis CD34(+) cell yield, BM was an alternative source.
Organization and Development of Bone Marrow Donation and Transplantation in Poland.
Filipiak, Jagoda; Dudkiewicz, Małgorzata; Czerwiński, Jarosław; Kosmala, Karolina; Łęczycka, Anna; Malanowski, Piotr; Żalikowska-Hołoweńko, Jolanta; Małkowski, Piotr; Danielewicz, Roman
2015-10-01
This paper describes bone marrow donation and transplantation in Poland in terms of its history, current state, and information on the quality control system. Based on data gathered from the informatics systems of the Polish Central Unrelated Potential Bone Marrow Donor and Cord Blood Registry and the Polish transplant registries, as well as World Marrow Donor Association statistics, we performed an overview study to collect and compare numbers on hematopoietic stem cells donations and transplantations in Poland in the years 2010-2014. In the last 5 years, the number of registered potential hematopoietic stem cells donors in Poland increased by more than 4 times, from about 146,000 to over 750,000. During the same period, the number of patients qualified to hematopoietic stem cells transplantation from unrelated donor increased from 557 in 2010 to 817 in 2014. We observed a striking change in the percentage of transplantations performed in Polish centers using material collected from national donors--from 24% to 60%. This shift was also evident in the number of search procedures closed with acceptation of Polish donors--from 27% in 2010 to 58% in 2014. Another consequence of Polish registry growth is the increasing number of donations from Polish donors for international patients. Between 2010 and 2014, the percent of donation for non-national patient increased from 33% to 76%, placing Poland in 6th place in the ranking of the HSC "exporters" worldwide. Growth of transplantation rates involves standardization process, which is a natural way of development for national organizations in the field of HSCT because of its international character.
NASA Astrophysics Data System (ADS)
Grivtsova, L. Yu; Melkova, K. N.; Kupryshkina, N. A.; Vorotnikov, I. K.; Grigoryeva, T. A.; Selchuk, V. Yu; Grebennikova, O. P.; Titova, G. V.; Tupitsyn, N. N.
2018-01-01
60 samples of G-CSF-primed bone marrow (39 cancer patients and 21 healthy donors) to be used for transplantation to cancer patients were analyzed and compared by main characteristics with historical control and 13 bone marrow samples from control patient with mastopathy. Basing on morphological and multicolor flow cytometry findings certain characteristics of G-CSF-primed bone marrow were discovered, such as a significant increase in blast count in cancer patients as compared to donors and control patients (p<0.037), a higher neutrophil maturation index (p<0.001) and a lower percentage of mature lymphocytes (p<0.008) as compared to the control group. Among lymphocyte populations G-CSF-priming was associated with a significant increase in the total of mature CD3+ T-cells and CD8+ T-killers (p<0.0001) and a decrease in CD56+CD3- and/or CD16+CD3- NK-cells (p<0.006) both in cancer patients and healthy donors in comparison with the controls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallera, D.A.; Youle, R.J.; Neville, D.M. Jr.
1982-03-01
A new method has been devised to eliminate T cells from murine bone marrow grafts across major histocompatibility barriers and thus prevent graft-vs.-host disease (GVHD). The method utilizes a monoclonal antibody directed at the Thy-1.2 antigen but is complement independent. To make anti-Thy-1.2 toxic, the antibody is covalently linked to the toxin ricin. Ricin ordinarily binds, enters, and kills cells through receptors containing galactose. The hybrid protein, anti-Thy-1.2-ricin, can enter and kill cells via the Thy-1.2 receptor. In the presence of lactose the usual entry route for ricin is largely blocked and the hybrid is shown to be a highlymore » selective reagent that is T cell specific in its inhibition of mitogen-stimulated splenocytes. We have used a model of severe and fatal GVHD where BALB/c splenocytes and bone marrow cells are given to irradiated C57BL/6 recipients. Over 90% of these mice die by day 70, exhibiting signs of GVHD. When donor cells are pretreated with 0.5 microgram/ml of anti-Thy-1.2-ricin plus 200 mM lactose before injection, 10 of 11 animals survive through day 70 without signs of GVHD. These studies demonstrate that ricin linked to monoclonal antibodies may have utility related to the prevention of GVHD in human bone marrow transplantation.« less
Chitphakdithai, Pintip; Logan, Brent R.; Shaw, Bronwen E.; Wingard, John R.; Lazarus, Hillard M.; Waller, Edmund K.; Seftel, Matthew; Stroncek, David F.; Lopez, Angela M.; Maharaj, Dipnarine; Hematti, Peiman; O'Donnell, Paul V.; Loren, Alison W.; Leitman, Susan F.; Anderlini, Paolo; Goldstein, Steven C.; Levine, John E.; Navarro, Willis H.; Miller, John P.; Confer, Dennis L.
2013-01-01
Although peripheral blood stem cells (PBSCs) have replaced bone marrow (BM) as the most common unrelated donor progenitor cell product collected, a direct comparison of concurrent PBSC versus BM donation experiences has not been performed. We report a prospective study of 2726 BM and 6768 PBSC donors who underwent collection from 2004 to 2009. Pain and toxicities were assessed at baseline, during G-CSF administration, on the day of collection, within 48 hours of donation, and weekly until full recovery. Peak levels of pain and toxicities did not differ between the 2 donation processes for most donors. Among obese donors, PBSC donors were at increased risk of grade 2 to 4 pain as well as grade 2 to 4 toxicities during the pericollection period. In contrast, BM donors were more likely to experience grade 2 to 4 toxicities at 1 week and pain at 1 week and 1 month after the procedure. BM donors experienced slower recovery, with 3% still not fully recovered at 24 weeks, whereas 100% of PBSC donors had recovered. Other factors associated with toxicity included obesity, increasing age, and female sex. In summary, this study provides extensive detail regarding individualized risk patterns of PBSC versus BM donation toxicity, suggesting donor profiles that can be targeted with interventions to minimize toxicity. PMID:23109243
Pulsipher, Michael A; Chitphakdithai, Pintip; Logan, Brent R; Shaw, Bronwen E; Wingard, John R; Lazarus, Hillard M; Waller, Edmund K; Seftel, Matthew; Stroncek, David F; Lopez, Angela M; Maharaj, Dipnarine; Hematti, Peiman; O'Donnell, Paul V; Loren, Alison W; Leitman, Susan F; Anderlini, Paolo; Goldstein, Steven C; Levine, John E; Navarro, Willis H; Miller, John P; Confer, Dennis L
2013-01-03
Although peripheral blood stem cells (PBSCs) have replaced bone marrow (BM) as the most common unrelated donor progenitor cell product collected, a direct comparison of concurrent PBSC versus BM donation experiences has not been performed. We report a prospective study of 2726 BM and 6768 PBSC donors who underwent collection from 2004 to 2009. Pain and toxicities were assessed at baseline, during G-CSF administration, on the day of collection, within 48 hours of donation, and weekly until full recovery. Peak levels of pain and toxicities did not differ between the 2 donation processes for most donors. Among obese donors, PBSC donors were at increased risk of grade 2 to 4 pain as well as grade 2 to 4 toxicities during the pericollection period. In contrast, BM donors were more likely to experience grade 2 to 4 toxicities at 1 week and pain at 1 week and 1 month after the procedure. BM donors experienced slower recovery, with 3% still not fully recovered at 24 weeks, whereas 100% of PBSC donors had recovered. Other factors associated with toxicity included obesity, increasing age, and female sex. In summary, this study provides extensive detail regarding individualized risk patterns of PBSC versus BM donation toxicity, suggesting donor profiles that can be targeted with interventions to minimize toxicity.
Ingram, Charlotte; Schlaphoff, Terry; Borrill, Veronica; Christoffels, Alan
2018-01-01
Human leukocyte antigen- (HLA-) A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 allele and haplotype frequencies were studied in a subset of 237 volunteer bone marrow donors registered at the South African Bone Marrow Registry (SABMR). Hapl-o-Mat software was used to compute allele and haplotype frequencies from individuals typed at various resolutions, with some alleles in multiple allele code (MAC) format. Four hundred and thirty-eight HLA-A, 235 HLA-B, 234 HLA-DRB1, 41 HLA-DQB1, and 29 HLA-C alleles are reported. The most frequent alleles were A∗02:02g (0.096), B∗07:02g (0.082), C∗07:02g (0.180), DQB1∗06:02 (0.157), and DRB1∗15:01 (0.072). The most common haplotype was A∗03:01g~B∗07:02g~C∗07:02g~DQB1∗06:02~DRB1∗15:01 (0.067), which has also been reported in other populations. Deviations from Hardy-Weinberg equilibrium were observed in A, B, and DRB1 loci, with C~DQB1 being the only locus pair in linkage disequilibrium. This study describes allele and haplotype frequencies from a subset of donors registered at SABMR, the only active bone marrow donor registry in Africa. Although the sample size was small, our results form a key resource for future population studies, disease association studies, and donor recruitment strategies. PMID:29850621
Lauthe, O; Soubeyrand, M; Babinet, A; Dumaine, V; Anract, P; Biau, D J
2018-05-01
Aims The primary aim of this study was to determine the morbidity of a tibial strut autograft and characterize the rate of bony union following its use. Patients and Methods We retrospectively assessed a series of 104 patients from a single centre who were treated with a tibial strut autograft of > 5 cm in length. A total of 30 had a segmental reconstruction with continuity of bone, 27 had a segmental reconstruction without continuity of bone, 29 had an arthrodesis and 18 had a nonunion. Donor-site morbidity was defined as any event that required a modification of the postoperative management. Union was assessed clinically and radiologically at a median of 36 months (IQR, 14 to 74). Results Donor-site morbidity occurred in four patients (4%; 95% confidence interval (CI) 1 to 10). One patient had a stress fracture of the tibia, which healed with a varus deformity, requiring an osteotomy. Two patients required evacuation of a haematoma and one developed anterior compartment syndrome which required fasciotomies. The cumulative probability of union was 90% (95% CI 80 to 96) at five years. The type of reconstruction (p = 0.018), continuity of bone (p = 0.006) and length of tibial graft (p = 0.037) were associated with the time to union. Conclusion The tibial strut autograft has a low risk of morbidity and provides adequate bone stock for treating various defects of long bones. Cite this article: Bone Joint J 2018;100-B:667-74.
Kleinclauss, François; Bittard, Hugues; Perruche, Sylvain; de Carvalho-Bittencourt, Marcello; Chalopin, Jean-Marc; Hervé, Patrick; Tiberghien, Pierre; Saas, Philippe
2003-12-01
The ultimate objective of organ transplantation is to obtain a state of tolerance, i.e. long-term acceptance of the graft without immunosuppressive therapy in order to limit the complications of these treatments (viral infections, tumours, etc.). The various immunological mechanisms allowing a state of tolerance will be described in this review. Among these various experimental strategies, combined bone marrow (or haematopoietic stem cell) transplantation and organ transplantation, made possible by the development of non-myeloablative or less intensive conditioning, appears to be one of the most promising lines of research. This approach leads to colonization of the recipient by donor cells. This state is described as "macro-chimerism" and achieves a real state of central tolerance in relation to an organ derived from the bone marrow donor. We have shown recently that intravenous injection of apoptotic cells in combination with allogeneic bone marrow cells increases the success rate of bone marrow transplantation. In a model of combined bone marrow/solid organ transplantation, these apoptotic cells induce tolerance limited to the donor's bone marrow cell antigens without inducing auto-immunization. We therefore propose a new approach to cell-based therapy (using the immunomodulating properties of apoptotic cells) to promote the success of haematopoietic stem cell transplantation. This approach can be particularly useful in combined haematopoietic stem cell and organ transplantation in order to induce a state of macro-chimerism.
HLA-typing analysis following allogeneic bone grafting for sinus lifting.
Piaia, Marcelo; Bub, Carolina Bonet; Succi, Guilherme de Menezes; Torres, Margareth; Costa, Thiago Henrique; Pinheiro, Fabricio Costa; Napimoga, Marcelo Henrique
2017-03-01
According to the Brazilian Association of Organ Transplants, in 2015, 19,408 bone transplants were performed in Brazil, over 90% by Dental Surgeons. The surgical technique itself has a respectable number of reports regarding its clinical efficacy, as measured by long-term survival of dental implants in grafted areas. Uncertainty remains, however, as to whether fresh frozen grafts from human bone donors remain immunologically innocuous in the body of the host. Six male with no previous medical history of note, including systemic diseases, surgery or blood transfusion were selected. These patients underwent reconstructive procedures (sinus lifting) using fresh frozen human bone from a tissue bank. All patients had venous blood samples collected prior to surgery and 6 months after the procedure. Anti-HLA analysis for the detection of HLA (human leukocyte antigen) antibodies was performed using methods such as the LABScreen PRA Class I and Class II, LABScreen Single Antigen Class I and Class II, Luminex Platform. Reactive individuals to the screening tests (LABScreen PRA) were further investigated to determine the specificity of the antibodies detected (LABScreen Single Antigen) with a cutoff value of median fluorescence intensity ≥500. As a result, it was observed that two patients (33%) were positive in screening tests, one presenting with anti-HLA Class I and II sensitization and the other with anti-HLA class II. The specificity analysis showed that the patients sensitized to HLA class II presented 4 specificities, 3 of which immunologically relevant. In the second individual, 23 specificities were identified, 6 of which immunologically important for HLA class I and 4 specificities for HLA class II, 3 of these were immunologically important. All specificities detected had average fluorescence. These findings are suggestive that sinus-lifting procedures with allogeneic bone can induce immunological sensitization.
The establishment of a bank of stored clinical bone marrow stromal cell products
2012-01-01
Background Bone marrow stromal cells (BMSCs) are being used to treat a variety of conditions. For many applications a supply of cryopreserved products that can be used for acute therapy is needed. The establishment of a bank of BMSC products from healthy third party donors is described. Methods The recruitment of healthy subjects willing to donate marrow for BMSC production and the Good Manufacturing Practices (GMP) used for assessing potential donors, collecting marrow, culturing BMSCs and BMSC cryopreservation are described. Results Seventeen subjects were enrolled in our marrow collection protocol for BMSC production. Six of the 17 subjects were found to be ineligible during the donor screening process and one became ill and their donation was cancelled. Approximately 12 ml of marrow was aspirated from one posterior iliac crest of 10 donors; one donor donated twice. The BMSCs were initially cultured in T-75 flasks and then expanded for three passages in multilayer cell factories. The final BMSC product was packaged into units of 100 × 106 viable cells, cryopreserved and stored in a vapor phase liquid nitrogen tank under continuous monitoring. BMSC products meeting all lot release criteria were obtained from 8 of the 11 marrow collections. The rate of growth of the primary cultures was similar for all products except those generated from the two oldest donors. One lot did not meet the criteria for final release; its CD34 antigen expression was greater than the cut off set at 5%. The mean number of BMSC units obtained from each donor was 17 and ranged from 3 to 40. Conclusions The production of large numbers of BMSCs from bone marrow aspirates of healthy donors is feasible, but is limited by the high number of donors that did not meet eligibility criteria and products that did not meet lot release criteria. PMID:22309358
The Human Tissue Act 2004 and the child donor.
Baston, Jenny
2009-05-01
In 2001, the inquiry panel appointed to investigate the removal, retention and disposal of human organs and tissues at the Royal Liverpool Children's Hospital published its report. The panel's recommendations led to a new approach to consent for organ removal and storage under the new Human Tissue Act 2004. For child bone marrow donors, the new consent process requires all donor children or their parent to undergo a separate assessment before the bone marrow donation. They must be assessed by an accredited assessor who will submit a recommendation to the Human Tissue Authority for consideration. The unfortunate circumstances highlighted in the inquiry have led to changes to law, practice and culture that are benefiting other children and families.
Lacetera, Nicola; Macis, Mario; Stith, Sarah S
2014-01-01
Many U.S. states have passed legislation providing leave to organ and bone marrow donors and/or tax benefits for live and deceased organ and bone marrow donations and to employers of donors. We exploit cross-state variation in the timing of such legislation to analyze its impact on organ donations by living and deceased persons, on measures of the quality of the transplants, and on the number of bone marrow donations. We find that these provisions do not have a significant impact on the quantity of organs donated. The leave laws, however, do have a positive impact on bone marrow donations, and the effect increases with the size of the population of beneficiaries and with the generosity of the legislative provisions. Our results suggest that this legislation works for moderately invasive procedures such as bone marrow donation, but these incentives may be too low for organ donation, which is riskier and more burdensome. Copyright © 2013 Elsevier B.V. All rights reserved.
The influence of lifelong exposure to environmental fluoride on bone quality in humans
NASA Astrophysics Data System (ADS)
Chachra, Debbie
The objective of this study was to determine if lifelong exposure to environmental sources of fluoride (including fluoridated water) had an effect on bone quality in humans. Ninety-two femoral heads were obtained from individuals undergoing total hip arthroplasty in regions with and without fluoridated water (Toronto and Montreal, respectively), so that the donors would have had a wide range of fluoride exposure. As the samples were obtained at surgery, the femoral heads were affected by osteoarthritis (75), osteoporosis (9) and other diseases. The fluoride content of cancellous bone was assessed by instrumental neutron activation analysis. A number of contributors to bone quality were assessed. The compressive and torsional mechanical properties were measured for cancellous cores excised from the centre of the femoral head. The architecture was assessed by image analysis of an x-ray of a 5 mm thick coronal section of the femoral head, as well as of histological sections taken from the superior (weightbearing) and the inferior (nonweightbearing) surface of the femoral head. The degree of mineralization was measured using backscattered electron imaging and microhardness, again at the superior and the inferior surface. Femoral heads from Toronto donors had a greater mean fluoride content than those from Montreal donors (1033 +/- 438 ppm vs. 643 +/- 220 ppm). However, the fluoride content of the Toronto donors ranged approximately twelve-fold (192--2264 ppm) and entirely contained the range of Montreal donors. Therefore, fluoridated water exposure is not the only determinant of fluoride content. The logarithm of the bone fluoride content increased with age. No substantive effect of fluoride, independent of age, was observed for the mechanical properties. Similarly, at the inferior surface, the architecture was affected by age but not by fluoride incorporation but the degree of mineralization was not affected by either. However, the degree of mineralization (measured by both backscattered electron imaging and microhardness) at the superior surface increased linearly with the fluoride content. As osteoarthritis results in a reduced degree of mineralization at the superior surface, this suggests that the presence of fluoride (which increases the degree of mineralization in osteoarthritis-affected bone) may aid in preventing this loss.
Kidney transplantation restored uncoupled bone turnover in end-stage renal disease.
Kawarazaki, Hiroo; Shibagaki, Yugo; Kido, Ryo; Nakajima, Ichiro; Fuchinoue, Shohei; Ando, Katsuyuki; Fujita, Toshiro; Fukagawa, Masafumi; Teraoka, Satoshi; Fukumoto, Seiji
2012-07-01
While kidney transplantation (KTx) reverses many disorders associated with end-stage renal disease (ESRD), patients who have received KTx often have chronic kidney disease and bone and mineral disorder (CKD-MBD). However, it is unknown how bone metabolism changes by KTx. Living donor-KTx recipients (n = 34) at Tokyo Women's Medical University were prospectively recruited and the levels of bone-specific alkaline phosphatase (BAP) and serum cross-linked N-telopeptides of Type 1 collagen (NTX) were measured before, 6 and 12 months after transplantation. Before KTx, serum BAP was within the reference range in more than half of patients while NTX was high in most patients. Serum NTX was higher in patients with longer dialysis durations compared to that with shorter durations before KTx. However, there was no difference in serum BAP between these patients. After KTx, BAP increased while NTX decreased along with the decline of PTH. In addition, the numbers of patients who showed high BAP and NTX were comparable after KTx. These results suggest that bone formation is suppressed and uncoupled with bone resorption in patients with ESRD and this uncoupling is restored by KTx. Further studies are necessary to clarify the mechanism of bone uncoupling in patients with ESRD.
Quantification of transplant-derived circulating cell-free DNA in absence of a donor genotype
Kharbanda, Sandhya; Koh, Winston; Martin, Lance R.; Khush, Kiran K.; Valantine, Hannah; Pritchard, Jonathan K.; De Vlaminck, Iwijn
2017-01-01
Quantification of cell-free DNA (cfDNA) in circulating blood derived from a transplanted organ is a powerful approach to monitoring post-transplant injury. Genome transplant dynamics (GTD) quantifies donor-derived cfDNA (dd-cfDNA) by taking advantage of single-nucleotide polymorphisms (SNPs) distributed across the genome to discriminate donor and recipient DNA molecules. In its current implementation, GTD requires genotyping of both the transplant recipient and donor. However, in practice, donor genotype information is often unavailable. Here, we address this issue by developing an algorithm that estimates dd-cfDNA levels in the absence of a donor genotype. Our algorithm predicts heart and lung allograft rejection with an accuracy that is similar to conventional GTD. We furthermore refined the algorithm to handle closely related recipients and donors, a scenario that is common in bone marrow and kidney transplantation. We show that it is possible to estimate dd-cfDNA in bone marrow transplant patients that are unrelated or that are siblings of the donors, using a hidden Markov model (HMM) of identity-by-descent (IBD) states along the genome. Last, we demonstrate that comparing dd-cfDNA to the proportion of donor DNA in white blood cells can differentiate between relapse and the onset of graft-versus-host disease (GVHD). These methods alleviate some of the barriers to the implementation of GTD, which will further widen its clinical application. PMID:28771616
Shaw, Bronwen E; Logan, Brent R; Kiefer, Deidre M; Chitphakdithai, Pintip; Pedersen, Tanya L; Abdel-Azim, Hisham; Abidi, Muneer H; Akpek, Gorgun; Diaz, Miguel A; Artz, Andrew S; Dandoy, Christopher; Gajewski, James L; Hematti, Peiman; Kamble, Rammurti T; Kasow, Kimberley A; Lazarus, Hillard M; Liesveld, Jane L; Majhail, Navneet S; O'Donnell, Paul V; Olsson, Richard F; Savani, Bipin N; Schears, Raquel M; Stroncek, David F; Switzer, Galen E; Williams, Eric P; Wingard, John R; Wirk, Baldeep M; Confer, Dennis L; Pulsipher, Michael A
2015-10-01
Previous studies have shown that risks of collection-related pain and symptoms are associated with sex, body mass index, and age in unrelated donors undergoing collection at National Marrow Donor Program centers. We hypothesized that other important factors (race, socioeconomic status [SES], and number of procedures at the collection center) might affect symptoms in donors. We assessed outcomes in 2726 bone marrow (BM) and 6768 peripheral blood stem cell (PBSC) donors collected between 2004 and 2009. Pain/symptoms are reported as maximum levels over mobilization and collection (PBSC) or within 2 days of collection (BM) and at 1 week after collection. For PBSC donors, race and center volumes were not associated with differences in pain/symptoms at any time. PBSC donors with high SES levels reported higher maximum symptom levels 1 week after donation (P = .017). For BM donors, black males reported significantly higher levels of pain (OR, 1.90; CI, 1.14 to 3.19; P = .015). No differences were noted by SES group. BM donors from low-volume centers reported more toxicity (OR, 2.09; CI, 1.26 to 3.46; P = .006). In conclusion, race and SES have a minimal effect on donation-associated symptoms. However, donors from centers performing ≤ 1 BM collection every 2 months have more symptoms after BM donation. Approaches should be developed by registries and low-volume centers to address this issue. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Bone Marrow CD11c+ Cell-Derived Amphiregulin Promotes Pulmonary Fibrosis.
Ding, Lin; Liu, Tianju; Wu, Zhe; Hu, Biao; Nakashima, Taku; Ullenbruch, Matthew; Gonzalez De Los Santos, Francina; Phan, Sem H
2016-07-01
Amphiregulin (AREG), an epidermal growth factor receptor ligand, is implicated in tissue repair and fibrosis, but its cellular source and role in regeneration versus fibrosis remain unclear. In this study, we hypothesize that AREG induced in bone marrow-derived CD11c(+) cells is essential for pulmonary fibrosis. Thus, the objectives were to evaluate the importance and role of AREG in pulmonary fibrosis, identify the cellular source of AREG induction, and analyze its regulation of fibroblast function and activation. The results showed that lung AREG expression was significantly induced in bleomycin-induced pulmonary fibrosis. AREG deficiency in knockout mice significantly diminished pulmonary fibrosis. Analysis of AREG expression in major lung cell types revealed induction in fibrotic lungs predominantly occurred in CD11c(+) cells. Moreover, depletion of bone marrow-derived CD11c(+) cells suppressed both induction of lung AREG expression and pulmonary fibrosis. Conversely, adoptive transfer of bone marrow-derived CD11c(+) cells from bleomycin-treated donor mice exacerbated pulmonary fibrosis, but not if the donor cells were made AREG deficient prior to transfer. CD11c(+) cell-conditioned media or coculture stimulated fibroblast proliferation, activation, and myofibroblast differentiation in an AREG-dependent manner. Furthermore, recombinant AREG induced telomerase reverse transcriptase, which appeared to be essential for the proliferative effect. Finally, AREG significantly enhanced fibroblast motility, which was associated with increased expression of α6 integrin. These findings suggested that induced AREG specifically in recruited bone marrow-derived CD11c(+) cells promoted bleomycin-induced pulmonary fibrosis by activation of fibroblast telomerase reverse transcriptase-dependent proliferation, motility, and indirectly, myofibroblast differentiation. Copyright © 2016 by The American Association of Immunologists, Inc.
The Prolonged Life-Span of Alveolar Macrophages
Murphy, Jaime; Summer, Ross; Wilson, Andrew A.; Kotton, Darrell N.; Fine, Alan
2008-01-01
To further examine the half-life of alveolar macrophages, chimeric CD 45.2 mice were generated through bone marrow transplantation of donor CD 45.1 cells. Before administration of donor cells, recipient mice were divided into two cohorts: the first cohort received total body irradiation; the second cohort also received irradiation—however, the thorax, head, and upper extremities were shielded with lead. Flow cytometric analysis was then performed on blood, peritoneal, and bronchoalveolar lavage cells over time to quantify engraftment. The data generated for the unshielded cohort of mice revealed a macrophage half-life of 30 days. In the shielded cohort, however, we found that by 8 months there was negligible replacement of recipient alveolar macrophages by donor cells, despite reconstitution of the blood and peritoneum by donor bone marrow. Consistent with these findings, the mean fluorescent intensity of alveolar macrophages remained stable over a 4-week period after in vivo PKH26 dye loading. Together, these data show that previous alveolar macrophage half-life studies were confounded by the fact that they did not account for the toxic effects of irradiation conditioning regimens, and demonstrate that the bone marrow does not significantly contribute to the alveolar macrophage compartment during steady-state conditions. PMID:18192503
Halagan, Michael; Oliveira, Danielli Cristina; Maiers, Martin; Fabreti-Oliveira, Raquel A; Moraes, Maria Elisa Hue; Visentainer, Jeane Eliete Laguila; Pereira, Noemi Farah; Romero, Matilde; Cardoso, Juliana Fernandes; Porto, Luís Cristóvão
2018-04-26
The Registries of Bone Marrow Donors around the world include more than 30 million volunteer donors from 57 different countries, and were responsible for over 17,000 hematopoietic stem cell transplants in 2016. The Brazilian Bone Marrow Volunteer Donor Registry (REDOME) was established in 1993 and is the third largest registry in the world with more than 4.3 million donors. We characterized HLA allele and haplotypes frequencies from REDOME comparing them with the donor self-reported race group classification. Five-locus haplotype frequencies (A~C~B~DRB1~DQB1) were estimated for each of the six race groups, resolving phase and allelic ambiguity using the expectation-maximization (EM) algorithm. The top 100 haplotypes in the race groups were separated into eight clusters of haplotypes, based on haplotype similarity, using CLUTO. We present HLA allele and haplotype frequency data from six race groups from 2,938,259 individuals from REDOME. The most frequent haplotype was the same for all groups: A*01:01g~C*07:01g~B*08:01g~DRB1*03:01g~DQB1*02:01g. Some frequent haplotypes such as A*02:01g~C*16:01g~B*44:03~DRB1*07:01g~DQB1*02:01g was not found in people with Preta (Sub-Saharan African descent). A cluster including Branca (European) and Parda or non-informed (admixed) could be distinguished from both Preta (SubSaharan) and Indígena (Amerindian) groups, and from the Amarela (Asian) ones, which clustered with their original population. These results have implications on cross-population matching and can help in donor searches and population-based recruitment strategies.
HLA matching in unrelated donor bone marrow transplantation.
Charron, D J
1996-11-01
The availability of an HLA-matched sibling donor in only 30% to 35% of patients requiring allogeneic bone marrow transplantation (BMT) has led to the proposal of unrelated donors as an alternative source of bone marrow. The greater HLA incompatibility, which, although present, was undetected until recently in many unrelated donor BMT cases, has resulted in a higher rate of posttransplant complications and impaired acturial survival when compared with HLA-matched sibling BMT. Molecular HLA typing enables us to evaluate the impact of incompatibility at each locus in the outcome of unrelated donor BMT. The overall retrospective data would recommend that HLA-A, -B and -C allelic molecular matching should be implemented in addition to HLA-DR allelic matching. Further retrospective analysis is needed in order to assess which incompatibility or combinations are better tolerated than others. Only the definitive knowledge at the sequence level of the donor and the recipient HLA allelic diversity involved in controlling the allogeneic immune response will allow us to understand the precise biologic rationale of the graft-versus-host disease. Knowledge and control of the HLA incompatibilities should allow us to offset the detrimental effects of histoincompatibility while developing strategies to take advantage of the beneficial graft-versus-leukemia effect. Also the role of minor histocompatibility antigens remains largely unknown and will require careful evaluation before minor antigens can be used as a selection criterion in BMT. Carefully designed prospective studies will enable us to test the impact of each HLA locus. HLA typing and BMT represent a successful example of productive cooperation between basic and clinical sciences that should be pursued for the improvement of the clinical outcome of unrelated donor BMT.
Sroga, Grażyna E; Siddula, Alankrita; Vashishth, Deepak
2015-01-01
To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs) at the levels that corresponded to approx. 25-30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation) or ribose (ribosylation). Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN) in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women). More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples). Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar supplementation in food and drinks.
Sroga, Grażyna E.; Siddula, Alankrita; Vashishth, Deepak
2015-01-01
To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs) at the levels that corresponded to approx. 25–30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation) or ribose (ribosylation). Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN) in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women). More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples). Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar supplementation in food and drinks. PMID:25679213
Cooling, Laura L W; Herrst, Michelle; Hugan, Sherri L
2018-01-01
ABO-incompatible (ABOi) hematopoietic stem cell transplants (HSCTs) can present challenges in the blood bank. During transplantation, patients receive components that are ABO-compatible with both the donor graft and recipient; this practice can strain group O red blood cell (RBC) inventories.1 In addition, there are risks for acute hemolysis at the time of infusion and in the early post-transplant period.1,2 In ABO major-incompatible bone marrow HSCTs, which contain significant quantities of donor RBCs that are ABOi with recipient plasma, it is common to perform a RBC depletion of the bone marrow in an effort to minimize hemolysis at the time of infusion.2 Furthermore, patients with high-titer ABO antibodies may undergo a prophylactic, pre-transplant plasma exchange to further reduce the risk of acute hemolysis, delayed RBC engraftment, and pure RBC aplasia.2-4 ABO minor-incompatible HSCTs, in which donor plasma is ABOi with the recipient, have less risk for hemolysis at the time of infusion but can result in transient hemolysis approximately 10-21 days post-transplant, especially in patients undergoing nonmyeloablative HSCT and/or patients who have not received methotrexate for graft-versus-host-disease (GVHD) prophylaxis.1-4 In these patients, viable donor B-lymphocytes in the graft may expand and produce ABO antibodies capable of hemolyzing patient RBCs.
Fate of bone marrow stromal cells in a syngenic model of bone formation.
Boukhechba, Florian; Balaguer, Thierry; Bouvet-Gerbettaz, Sébastien; Michiels, Jean-François; Bouler, Jean-Michel; Carle, Georges F; Scimeca, Jean-Claude; Rochet, Nathalie
2011-09-01
Bone marrow stromal cells (BMSCs) have been demonstrated to induce bone formation when associated to osteoconductive biomaterials and implanted in vivo. Nevertheless, their role in bone reconstruction is not fully understood and rare studies have been conducted to follow their destiny after implantation in syngenic models. The aim of the present work was to use sensitive and quantitative methods to track donor and recipient cells after implantation of BMSCs in a syngenic model of ectopic bone formation. Using polymerase chain reaction (PCR) amplification of the Sex determining Region Y (Sry) gene and in situ hybridization of the Y chromosome in parallel to histological analysis, we have quantified within the implants the survival of the donor cells and the colonization by the recipient cells. The putative migration of the BMSCs in peripheral organs was also analyzed. We show here that grafted cells do not survive more than 3 weeks after implantation and might migrate in peripheral lymphoid organs. These cells are responsible for the attraction of host cells within the implants, leading to the centripetal colonization of the biomaterial by new bone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez del Pino, J.; Benito, M.; Randolph, M.A.
1990-12-01
To evaluate the effects of irradiation on heterotopically placed vascularized knee isografts, a single dose of 10 Gy of total-body irradiation was given to Lewis donor rats. Irradiation was delivered either 2 or 6 days prior to harvesting or subsequent transplantation, and evaluated at 1, 2, and 4 weeks after grafting. Irradiation caused endothelial depopulation of the graft artery, although vascular pedicle patency was maintained throughout the study. Bone graft viability and mineralization were normal. Dramatic changes in the bone marrow were seen that included an increase of its fat content (P less than 0.001), and a concomitant decrease inmore » bone marrow-derived immunocompetent cells. These changes were more prominent in recipients of grafts from day -6 irradiated donor rats. Total-body irradiation did not prejudice the use of vascularized bone grafts, and exhibited an associated immunosuppresant effect over the vascular endothelium and bone marrow. This may be a further rational conditioning procedure to avoid recipient manipulation in vascularized bone allotransplantation.« less
Protecting the interests of the child bone marrow donor.
Terry, Louise M; Campbell, Anne
2004-01-01
At a time when designer babies have been created to act as cord blood donors to sick siblings, ethical debate has focused predominantly on the extent to which it is acceptable to create one human being to assist another. However, children are frequently used this way, by their families and doctors who extract their bone marrow, to try to save the life of another, usually a sibling. With any life-threatening illness, there is the possibility that the urgency of the sick sibling's need means that the short-term welfare of the donor child receives less attention than it should by parents and doctors. This article suggests ways to protect the interests of such children and empower them within the decision-making process and concludes that the drive to save life must be tempered by recognition of the intrinsic worth of donor children and their rights not to be exploited.
Current and emerging basic science concepts in bone biology: implications in craniofacial surgery.
Oppenheimer, Adam J; Mesa, John; Buchman, Steven R
2012-01-01
Ongoing research in bone biology has brought cutting-edge technologies into everyday use in craniofacial surgery. Nonetheless, when osseous defects of the craniomaxillofacial skeleton are encountered, autogenous bone grafting remains the criterion standard for reconstruction. Accordingly, the core principles of bone graft physiology continue to be of paramount importance. Bone grafts, however, are not a panacea; donor site morbidity and operative risk are among the limitations of autologous bone graft harvest. Bone graft survival is impaired when irradiation, contamination, and impaired vascularity are encountered. Although the dura can induce calvarial ossification in children younger than 2 years, the repair of critical-size defects in the pediatric population may be hindered by inadequate bone graft donor volume. The novel and emerging field of bone tissue engineering holds great promise as a limitless source of autogenous bone. Three core constituents of bone tissue engineering have been established: scaffolds, signals, and cells. Blood supply is the sine qua non of these components, which are used both individually and concertedly in regenerative craniofacial surgery. The discerning craniofacial surgeon must determine the proper use for these bone graft alternatives, while understanding their concomitant risks. This article presents a review of contemporary and emerging concepts in bone biology and their implications in craniofacial surgery. Current practices, areas of controversy, and near-term future applications are emphasized.
Jones, Olcay Y; Gok, Faysal; Rushing, Elisabeth J; Horkayne-Szakaly, Iren; Ahmed, Atif A
2011-01-01
Somatic tissue engraftment was studied in BXSB mice treated with mesenchymal stem cell transplantation. Hosts were conditioned with nonlethal radiation prior to introducing donor cells from major histocompatibility complex-matched green fluorescent protein transgenic mice. Transplant protocols differed for route of injection, ie, intravenous (i.v.) versus intraperitoneal (i.p.), and source of mesenchymal stem cells, ie, unfractionated bone marrow cells, ex vivo expanded mesenchymal stem cells, or bone chips. Tissue chimerism was determined after short (10-12 weeks) or long (62 weeks) posttransplant follow-up by immunohistochemistry for green fluorescent protein. Engraftment of endothelial cells was seen in several organs including liver sinusoidal cells in i.v. treated mice with ex vivo expanded mesenchymal stem cells or with unfractionated bone marrow cells. Periportal engraftment of liver hepatocytes, but not engraftment of endothelial cells, was found in mice injected i.p. with bone chips. Engraftment of adipocytes was a common denominator in both i.v. and i.p. routes and occurred during early phases post-transplant. Disease control was more robust in mice that received both i.v. bone marrow and i.p. bone chips compared to mice that received i.v. bone marrow alone. Thus, the data support potential use of mesenchymal stem cell transplant for treatment of severe lupus. Future studies are needed to optimize transplant conditions and tailor protocols that may in part be guided by fat and endothelial biomarkers. Furthermore, the role of liver chimerism in disease control and the nature of cellular communication among donor hematopoietic and mesenchymal stem cells in a chimeric host merit further investigation.
Donation of peripheral blood stem cells to unrelated strangers: A thematic analysis
Billen, Annelies; Madrigal, J. Alejandro; Scior, Katrina; Shaw, Bronwen E.; Strydom, Andre
2017-01-01
Background Donation of haematopoietic stem cells, either through bone marrow (BM) or peripheral blood stem cell (PBSC) collection, is a generally safe procedure for healthy donors, although side effects are a known risk. Previous research, including our recent quantitative study, has shown that the psychosocial response to donating is usually a positive one and most donors would be willing to donate again in the future. This is often despite experiencing significant side effects during the donation process. Due to the relative recent introduction of PBSC, a comprehensive understanding of the range of physical and emotional issues donors may experience is lacking, as well as an understanding of specific donor characteristics Qualitative research can provide rich narrative data into these areas. This study was set up in order to identify specific donor characteristics and to further explore the relationship between pre-donation physical health and the donation experience, as previously identified in our quantitative study. Methods It involved in-depth telephone interviews with 14 PBSC donors who participated in our original quantitative study. Thematic analysis was used to analyse the findings and the results provide a summary of participants’ characteristics using themes and constituent codes. Results We identified several donor characteristics, including strong intrinsic motivation, altruism, sense of duty, determination, low levels of ambivalence and the ability to develop a strong emotional relationship with an (unknown/anonymous) recipient whilst being able to manage strong feelings and emotions. Conclusions These personality traits may explain the resilience that has been observed previously in haematopoietic stem cells donors. Significant feelings of grief were reported after a recipient’s death. Possibilities to alleviate these symptoms may include raising awareness of potential poor outcomes in the recipient and offering improved counselling services if the recipient dies. We acknowledge several limitations including the sampling frame. PMID:29069088
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibata, Y.
1989-05-01
Administration of Corynebacterium parvum (CP), 56 mg/kg ip to CBA/J mice effected the induction of prostaglandin E2 (PGE2) producing macrophages (M phi) in the bone marrow and the spleen. Maximal release of PGE2 from M phi cultured in vitro with calcium ionophore A23187 for 2 h was reached by marrow M phi removed on 5 days after CP (450 ng/mg cell protein), and by splenic M phi 9 days after CP (400 ng/mg). Neither M phi population, however, yielded more than 6.0 ng/mg leukotriene C4. To assess ontogenic relationships mice were depleted of bone marrow and blood monocytes by ivmore » injection of the bone-seeking isotope, 89Sr. CP was given at several points before or after bone marrow cell depletion. PGE2 production by splenic M phi harvested on day 9 after CP was profoundly impaired when CP was administered either concurrently with or 3 days after 89Sr. When CP was administered 1, 3, 5, and 7 days before 89Sr, however, the induction of PGE2-producing M phi in the spleen was unaffected. To determine whether bone marrow cells from CP-injected donors can restore PGE2-producing splenic M phi (PGSM) in 89Sr-mice, recipient mice which had and had not received CP 3 days after 89Sr were transfused with 5 x 10(6) syngeneic bone marrow cells from donor mice prepared at varying intervals after CP administration. The results clearly indicate the capacity of bone marrow cells harvested on either day 1 or 2 following CP to restore PGSM in CP-primed, but not unprimed, recipients.« less
Shaw, Bronwen E.; Logan, Brent R.; Kiefer, Deidre M.; Chitphakdithai, Pintip; Pedersen, Tanya L.; Abdel-Azim, Hisham; Abidi, Muneer H.; Akpek, Gorgun; Diaz, Miguel A.; Artz, Andrew S.; Dandoy, Christopher; Gajewski, James L.; Hematti, Peiman; Kamble, Rammurti T.; Kasow, Kimberley A.; Lazarus, Hillard M.; Liesveld, Jane L.; Majhail, Navneet S.; O’Donnell, Paul V.; Olsson, Richard F.; Savani, Bipin N.; Schears, Raquel M.; Stroncek, David F.; Switzer, Galen E.; Williams, Eric P.; Wingard, John R.; Wirk, Baldeep M.; Confer, Dennis L.; Pulsipher, Michael A.
2015-01-01
Previous studies have shown that risks of collection-related pain and symptoms are associated with sex, body mass index (BMI), and age in unrelated donors undergoing collection at National Marrow Donor Program (NMDP) centers. We hypothesized that other important factors (race, socioeconomic status (SES), and number of procedures at the collection center) might affect symptoms in donors. We assessed outcomes in 2,726 bone marrow (BM) and 6,768 peripheral blood stem cell (PBSC) donors collected between 2004 and 2009. Pain/symptoms are reported as maximum levels over mobilization and collection (PBSC) or within 2 days of collection (BM) and at 1 week after collection. For PBSC donors, race and center volumes were not associated with differences in pain/symptoms at any time. PBSC donors with high SES levels reported higher maximum symptom levels 1 week post donation (p=0.017). For BM donors, black males reported significantly higher levels of pain (OR=1.90, CI=1.14-3.19, p=0.015). No differences were noted by SES groups. BM donors from low volume centers reported more toxicity (OR=2.09, CI=1.26-3.46, p=0.006). In conclusion, race and SES have a minimal effect on donation associated symptoms. However, donors from centers performing ≤1 BM collection every 2 months have more symptoms following BM donation. Approaches should be developed by registries and low volume centers to address this issue. PMID:26116089
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasumizu, R.; Hiai, H.; Sugiura, K.
1988-09-15
The transplantation of bone marrow cells from BALB/c (but not C57BL/6 and C3H/HeN) mice was observed to lead to the development of thymic lymphomas (leukemias) in AKR/J mice. Two leukemic cell lines, CAK1.3 and CAK4.4, were established from the primary culture of two thymic lymphoma, and surface phenotypes of these cell lines found to be H-2d and Thy-1.2+, indicating that these lymphoma cells are derived from BALB/c donor bone marrow cells. Further analyses of surface markers revealed that CAK1.3 is L3T4+ Lyt2+ IL2R-, whereas CAK4.4 is L3T4- Lyt2- IL2R+. Both CAK1.3 and CAK4.4 were transplantable into BALB/c but not AKR/Jmore » mice, further indicating that these cells are of BALB/c bone marrow donor origin. The cells were found to produce XC+-ecotropic viruses, but xenotropic and mink cell focus-forming viruses were undetectable. Inasmuch as thymic lymphomas are derived from bone marrow cells of leukemia-resistant BALB/c strain of mice under the allogeneic environment of leukemia-prone AKR/J mice, this animal model may serve as a useful tool not only for the analysis of leukemic relapse after bone marrow transplantation but also for elucidation of the mechanism of leukemogenesis.« less
Garmaeva, T Ts; Kulikov, S M
2015-01-01
A population of hematological cancer patients as recipients of many blood components and that of donors of blood components and bone marrow are related to the common event of contamination with viruses of blood-borne infections; which occurs and is detectable during long-term treatment and follow-up. They share interaction traits and diverse communication mechanisms, which call for complex interrelated trials in both groups with a mandatory epidemiological evidenced-based investigation of all cases of posttransfusion hepatitis B and/or C. The identity of infection with hepatitis B and C viruses, human immunodeficiency virus, and their association should be simultaneously studied in the populations of both donors and recipients of blood components and bone marrow.
Scott, Naomi M; Ng, Royce L X; McGonigle, Terence A; Gorman, Shelley; Hart, Prue H
2015-11-01
During respiratory inflammation, it is generally assumed that dendritic cells differentiating from the bone marrow are immunogenic rather than immunoregulatory. Using chimeric mice, the outcomes of airways inflammation on bone marrow progenitor cells were studied. Immune responses were analyzed in chimeric mice engrafted for >16 weeks with bone marrow cells from mice with experimental allergic airways disease (EAAD). Responses to sensitization and challenge with the allergen causing inflammation in the bone marrow-donor mice were significantly reduced in the chimeric mice engrafted with bone marrow cells from mice with EAAD (EAAD-chimeric). Responses to intranasal LPS and topical fluorescein isothiocyanate (non-specific challenges) were significantly attenuated. Fewer activated dendritic cells from the airways and skin of the EAAD-chimeric mice could be tracked to the draining lymph nodes, and may contribute to the significantly reduced antigen/chemical-induced hypertrophy in the draining nodes, and the reduced immune responses to sensitizing allergens. Dendritic cells differentiating in vitro from the bone marrow of >16 weeks reconstituted EAAD-chimeric mice retained an ability to poorly prime immune responses when transferred into naïve mice. Dendritic cells developing from bone marrow progenitors during airways inflammation are altered such that daughter cells have reduced antigen priming capabilities.
Samuel, G N; Kerridge, I H; Vowels, M; Trickett, A; Chapman, J; Dobbins, T
2007-10-01
Over the past decade umbilical cord blood (UCB) has been increasingly used as a source of haematopoietic stem cells (HSCs) for patients who require a HSC transplant but do not have an HLA-matched donor. It was anticipated that using UCB as an alternative source of HSCs would increase the chance of finding a donor, particularly for the otherwise underrepresented ethnic minority groups. To evaluate the effectiveness of the Australian public UCB banks to increase the ethnic diversity of available HSC donations, this paper analyses the ethnic diversity of the Sydney Cord Blood Bank (SCBB), comparing this diversity to that of the Australian Bone Marrow Donor Registry (ABMDR). It also examines the ethnic diversity of those patients who, after requesting a haematopoietic stem cell transplantation in the 2-year period between 2003 and 2005, managed to find a suitably matched bone marrow or UCB donor. We show that the ethnic mix of donors to the SCBB has remained generally broad in source, is comparative to the Australian population, and is more diverse than the ABMDR. This, however, may still not be sufficient to substantially increase the likelihood of finding a donor for some ethnic minority groups.
Newly acquired kiwi fruit allergy after bone marrow transplantation from a kiwi-allergic donor.
Garzorz, N; Thomas, J; Eberlein, B; Haferlach, C; Ring, J; Biedermann, T; Schmidt-Weber, C; Eyerich, K; Seifert, F; Eyerich, S
2016-07-01
The phenomenon of allergy transfer from an allergic donor to a non-allergic recipient via hematopoietic cell transplantation has been described by several reports. However, it could not yet been conclusively shown that allergic reaction of the recipient is elicited by the donor's cells. In the case of a 46-year-old male patient who - for the first time in his life - had two episodes of oral allergic syndrome upon kiwi consumption after having received myeloablative hematopoietic stem cell transplantation (HCT) from his kiwi-allergic sister, we aimed to clarify the origin of allergen reactive cells in the donor. We not only intended to demonstrate if allergy was transferred by HCT but also to present an experimental workup for the analysis of allergy transfer by HCT. Allergic sensitization to kiwi in recipient and donor was proven by ImmunoCAP. Furthermore, origin of peripheral blood mononuclear cells (PBMCs) was analyzed by chromosomal fluorescence in situ hybridization (FISH). To confirm allergic reaction and activation of hematopoietic cells by customized kiwi extract, we performed basophil activation test from whole blood as well as T cell proliferation assays from purified PBMCs of both recipient and donor. Basophil activation upon kiwi extract was demonstrated in both recipient and donor. Besides, we showed proliferation of CD4(+) T cells after incubation with kiwi extract. FISH analysis proved that hematopoietic cells of the male recipient completely originated from the female donor. Exemplified in this patient, we show for the first time that allergy transfer is mediated by the donor's cells. Moreover, our experimental approach using customized kiwi extract to prove contribution of kiwi-specific T and B cells in both kiwi-allergic recipient and donor could serve as a model approach for future studies. © 2016 European Academy of Dermatology and Venereology.
Urbinati, Fabrizia; Hargrove, Philip W.; Geiger, Sabine; Romero, Zulema; Wherley, Jennifer; Kaufman, Michael L.; Hollis, Roger P.; Chambers, Christopher B.; Persons, Derek A.; Kohn, Donald B.; Wilber, Andrew
2015-01-01
Sickle cell disease (SCD) can be cured by allogeneic hematopoietic stem cell (HSC) transplant. However, this is only possible when a matched donor is available making the development of gene therapy using autologous HSCs a highly desired alternative. We used a culture model of human erythropoiesis to directly compare two insulated, self-inactivating, and erythroid-specific lentiviral vectors, encoding for γ-globin (V5m3-400) or a modified β-globin (βAS3-FB) for production of anti-sickling hemoglobin (Hb) and correction of red cell deformability after deoxygenation. Bone marrow CD34+ cells from three SCD patients were transduced using V5m3-400 or βAS3-FB and compared to mock transduced SCD or healthy donor CD34+ cells. Lentiviral transduction did not impair cell growth or differentiation, as gauged by proliferation and acquisition of erythroid markers. Vector copy number averaged ~1 copy per cell and corrective globin mRNA levels were increased more than 7-fold over mock-transduced controls. Erythroblasts derived from healthy donor and mock-transduced SCD cells produced a low level of HbF that was increased to 23.6 ± 4.1% per vector copy for cells transduced with V5m3-400. Equivalent levels of modified HbA of 17.6 ± 3.8% per vector copy were detected for SCD cells transduced with βAS3-FB. These levels of anti-sickling Hb production were sufficient to reduce sickling of terminal stage RBCs upon deoxygenation. We conclude that the achieved levels of HbF and modified HbA would likely prove therapeutic to SCD patients who lack matched donors. PMID:25681747
Blood-Forming Stem Cell Transplants
... to Ask about Your Treatment Research Blood-Forming Stem Cell Transplants On This Page What are bone marrow ... Considering becoming a bone marrow or a blood stem cell donor? View this video on YouTube. Follow a ...
Improving efficiency of a regional stand alone bone bank.
Warnock, Jonathan M; Rowan, Clare H; Davidson, Helen; Millar, Ciara; McAlinden, M Gavan
2016-03-01
The introduction of a stand-alone Bone Bank in our Regional Orthopaedic Hospital has improved the availability of femoral head allograft. Benninger et al. (Bone Joint J 96-B:1307-1311, 2014), demonstrated their institutions bank to be cost effective despite a 30 % discard rate for harvested allograft. We sought to audit our own discard rates and subsequent cost-effectiveness of our bone bank. Donor recruitment. Before approaching a potential donor, our establishment's nurse specialists review their clinical notes and biochemical laboratory results, available on a regional Electronic Care Records. They view femoral head architecture on radiographs against set criteria, Patient Archive and Communication system (SECTRA, Sweden). In total 1383 femoral heads were harvested, 247 were discarded giving an overall rate of 17.9 %. The most common reasons for discard of harvested graft was a positive microbiology/bacteriology result, n = 96 (38.9 %). After a rise in discard rates in 2007, we have steadily reduced our discard rates since 2006/2007 (28.2 %), 2008/2009 (17 %), 2010/2011 (14.8 %), and finally to 10.3 % in 2012/2013. In the current financial year, our cost to harvest, test, store and release a femoral head is £ 610. With a structured donor recruitment process and unique pre-operative radiographic analysis we have successfully reduced our discard rates bi-annually making our bone bank increasingly cost-effective.
Bone marrow-derived SP cells can contribute to the respiratory tract of mice in vivo.
Macpherson, Heather; Keir, Pamela; Webb, Sheila; Samuel, Kay; Boyle, Shelagh; Bickmore, Wendy; Forrester, Lesley; Dorin, Julia
2005-06-01
Recent work has indicated that adult bone marrow-derived cells have the ability to contribute to both the haematopoietic system and other organs. Haematopoietic reconstitution by whole bone marrow and selected but not fully characterised cell populations have resulted in reports indicating high-level repopulation of lung epithelia. The well-characterised cells from the side population have a robust ability for haematopoietic reconstitution. We have used freshly isolated side population cells derived from ROSA26 adult bone marrow and demonstrate that despite being unable to contribute to embryos following blastocyst injection, or air liquid interface cultures or denuded tracheal xenografts, they could contribute to the tracheal epithelium in vivo. Epithelial damage is reported to be important in encouraging the recruitment of marrow-derived stem cells into non-haematopoietic organs. Here we demonstrate that mice engrafted with side population cells have donor-derived cells present in the epithelial lining of the trachea following damage and repair. Donor-derived cells were found at a frequency of 0.83%. Widefield and confocal microscopy revealed donor cells that expressed cytokeratins, indicative of cells of an epithelial nature. These results imply that SP haematopoietic stem cells from the bone marrow do not have the ability to contribute to airway epithelia themselves but require factors present in vivo to allow them to acquire characteristics of this tissue.
Reduction in morbidity after iliac crest bone harvesting: the concept of preemptive analgesia.
Hoard, M A; Bill, T J; Campbell, R L
1998-09-01
The technique of autologous iliac crest bone grafting is an important aspect in the treatment of patients with cleft lip, cleft palate, and other craniofacial disorders. In patients with cleft lip and palate, the alveolar bone graft creates a continuous maxillary arch, closes the oronasal fistula, provides bony support for facial soft tissue and teeth, and facilitates orthodontic movement of teeth. The anatomic and physiologic benefits of this and similar autologous bone graft procedures are apparent. However, pain at the donor site represents a significant source of postoperative morbidity. This study was conducted to evaluate postoperative pain and the ability to perform activities of daily living after bupivacaine infiltration to iliac crest donor sites. Thirty-four alveolar bone graft patients (18 females, 16 males) treated at two teaching hospitals were included in the study. Eleven of the patients received intraoperative bupivacaine at the iliac donor site and 23 did not. A questionnaire was returned by all participants, and telephone follow-up was obtained. Responses to postoperative pain, time period to ambulation, and ability to perform activities of daily living were evaluated. Patients who received postoperative bupivacaine experienced delayed onset of postoperative pain, earlier ambulation, and were able to return to normal daily activity in a shorter period of time than those patients who received no local anesthesia. The concept of preemptive analgesia and its application to craniofacial surgery is discussed.
Hepatitis B transmission by cell and tissue allografts: How safe is safe enough?
Solves, Pilar; Mirabet, Vicente; Alvarez, Manuel
2014-01-01
More than 2 million human tissue transplants (bone, tendon, cartilage, skin, cornea, amniotic membrane, stem cells, heart valve, blood vessel, etc.), are performed worldwide every year. Cells and tissues are shared between countries which have different regulations and laboratory equipment and represent a risk of hepatitis B virus (HBV) transmission that has become a global safety concern. While the risk of transfusion-transmitted HBV infection from blood donations has been estimated, the rate of HBV transmission from donors to recipients of allografts is unknown and varies between different tissues. There are various important ways of reducing the transmission risk, but donor screening and donor testing are still the main factors for preventing HBV transmission. HBV detection is included in the routine screening tests for cell and tissue donors. The standard test for preventing transplant-transmitted hepatitis B is the hepatitis B surface antigen. The implementation of methods involving nucleic acid amplification and the new generation of reactives to detect viral antibodies or antigens with an immunoassay, has increased the sensitivity and the specificity of the screening tests. The objective of our research was to review the literature and critically analyse the different steps for avoiding HBV transmission in cell and tissue donors, focusing on the screening tests performed. PMID:24966613
de Alencar, Paulo Gilberto Cimbalista; Vieira, Inácio Facó Ventura
2010-01-01
Bone banks are necessary for providing biological material for a series of orthopedic procedures. The growing need for musculoskeletal tissues for transplantation has been due to the development of new surgical techniques, and this has led to a situation in which a variety of hospital services have been willing to have their own source of tissue for transplantation. To increase the safety of transplanted tissues, standards for bone bank operation have been imposed by the government, which has limited the number of authorized institutions. The good performance in a bone bank depends on strict control over all stages, including: formation of well-trained harvesting teams; donor selection; conducting various tests on the tissues obtained; and strict control over the processing techniques used. Combination of these factors enables greater scope of use and numbers of recipient patients, while the incidence of tissue contamination becomes statistically insignificant, and there is traceability between donors and recipients. This paper describes technical considerations relating to how a bone bank functions, the use of grafts and orthopedic applications, the ethical issues and the main obstacles encountered.
2014-10-01
group, Pig 22227, was due to a gastrointestinal bleed , related to either infectious gastroenteritis/colitis or stress ulcer formation. The third... upper extremity transplantation. Delays in progress and incomplete groups will be discussed in detail in Section 5 – Changes/Problems. Table 1...Implemented successfully first clinical protocol for upper extremity transplantation using donor bone marrow cell therapies and tacrolimus
Orthogonal cutting of cancellous bone with application to the harvesting of bone autograft.
Malak, Sharif F F; Anderson, Iain A
2008-07-01
Autogenous bone graft harvesting results in cell death within the graft and trauma at the donor site. The latter can be mitigated by using minimally invasive tools and techniques, while cell morbidity may be reduced by improving cutter design and cutting parameters. We have performed orthogonal cutting experiments on bovine cancellous bone samples, to gain a basic understanding of the cutting mechanism and to determine design guidelines for tooling. Measurements were performed at cutting speeds from 11.2 to 5000 mm/min, with tool rake angles of 23 degrees, 45 degrees and 60 degrees, and depths of cut in the range of 0.1-3.0 mm. Horizontal and vertical cutting forces were measured, and the chip formation process video recorded. Continuous chip formation was observed for rake angles of 45 degrees and 60 degrees , and depths of cut greater than 0.8 mm. Chip formation for depths of cut greater than 1.0 mm was accompanied by bone marrow extruding out of the free surfaces and away from the rake face. Specific cutting energies decreased with increasing rake angle, increasing depth of cut and increasing cutting speed. Our orthogonal cutting experiments showed that a rake angle of 60 degrees and a depth of cut of 1mm, will avoid excessive fragmentation, keep specific cutting energy low and promote bone marrow extrusion, which may be beneficial for cell survival. We demonstrate how drill bit clearance angle and feed rate can be calculated facilitating a 1mm depth of cut.
Wada, Taizo; Miyamoto, Satoshi; Okamoto, Hiroyuki; Matsuda, Yusuke; Toma, Tomoko; Imai, Kohsuke; Takagi, Masatoshi; Morio, Tomohiro; Yachie, Akihiro
2017-07-01
We describe a patient who presented with prolonged neutropenia due to anti-human neutrophil antigen (HNA)-2 (CD177) antibody after allogeneic bone marrow transplantation. A granulocyte immunofluorescence test showed bimodal expression of antineutrophil antibody that resulted from specific binding of anti-HNA-2 to CD177 + neutrophils from healthy donors. The patient did not respond to granulocyte colony stimulating factor, which is able to upregulate CD177 expression on neutrophils. The low percentage of CD177 + cells in the few remaining neutrophils supports the possibility of elimination of CD177-upregulated neutrophils. These findings might explain an inferior response to neutrophil growth factors in neutropenia secondary to anti-HNA-2 antibody. © 2016 Wiley Periodicals, Inc.
National Marrow Donor Program. HLA Typing for Bone Marrow Transplantation
2014-11-30
educate the transplant community about the critical importance of establishing a nationwide contingency response plan. 2. Rapid Identification of...Expand Network Communications 59 IIB 4.2 Central Contingency Management 59 IIC Immunogenetic Studies 63 IIC.1.1 Donor Recipient Pair Project 63 IIC...Amendment CMCR Centers for Medical Countermeasures Against Radiation CMDP China Marrow Donor Program CME Continuing Medical Education CMF Community
Pasquini, Marcelo C; Wang, Zhiwei; Horowitz, Mary M; Gale, Robert Peter
2010-01-01
These data indicate increasing use of HCT for persons with blood and bone marrow disorders. Recent trends include increasing use of alternative donors including HLA-matched unrelated persons and of HLA-matched umbilical cord blood cells, increasing use of blood cell rather than bone marrow grafts and increasing use of reduced-intensity pretransplant conditioning regimens. Many of these shifts are driven by logistical considerations like the need for donors in persons without an HLA-identical sibling or expanding access to allotransplants to older patients. In other instances, like the shift from bone marrow to blood cell grafts or from conventional to reduced-intensity pretransplant conditioning regimens few randomized clinical trials have been reported to justify these shifts. More data are needed to critically-assess the impact of these changes.
Cell lineage in vascularized bone transplantation.
Willems, Wouter F; Larsen, Mikko; Friedrich, Patricia F; Bishop, Allen T
2014-01-01
The biology behind vascularized bone allotransplantation remains largely unknown. We aim to study cell traffic between donor and recipient following bone auto-, and allografting. Vascularized femoral transplantation was performed with arteriovenous bundle implantation and short-term immunosuppression. Twenty male Piebald Virol Glaxo (PVG; RT1(c) ) rats received isotransplants from female PVG (RT1(c) ) rats and 22 male PVG rats received allografts from female Dark Agouti rats (DA, RT1(a) ), representing a major histocompatibility mismatch. Both groups were randomly analyzed at 4 or 18 weeks. Bone remodeling areas (inner and outer cortical samples) were labeled and laser capture microdissected. Analysis of sex-mismatch genes by real-time reverse transcription-polymerase chain reaction provided the relative Expression Ratio (rER) of donor (female) to recipient (male) cells. The rER was 0.456 ± 0.266 at 4 weeks and 0.749 ± 0.387 at 18 weeks (p = 0.09) in allotransplants. In isotransplants, the rER was 0.412 ± 0.239 and 0.467 ± 0.252 at 4 and 18 weeks, respectively (p = 0.21). At 4 weeks, the rER at the outer cortical area of isotransplants was significantly lower in isotransplants as compared with allotransplants (0.247 ± 0.181 vs. 0.549 ± 0.184, p = 0.007). Cells in the inner and outer cortical bone remodeling areas in isotransplants were mainly donor derived (rER < 0.5) at 18 weeks, whereas allotransplants contained mainly recipient-derived cells (rER > 0.5) at 18 weeks. Applying novel methodology, we describe detailed cell traffic in vascularized bone transplants, elaborating our comprehension on bone transplantation. Copyright © 2013 Wiley Periodicals, Inc.
Anthias, Chloe; Billen, Annelies; Arkwright, Rebecca; Szydlo, Richard M; Madrigal, J Alejandro; Shaw, Bronwen E
2016-05-01
Previous studies have demonstrated the importance of bone marrow (BM) harvest yield in determining transplant outcomes, but little is known regarding donor and procedure variables associated with achievement of an optimal yield. We hypothesized that donor demographics and variables relating to the procedure were likely to impact the yield (total nucleated cells [TNCs]/kg recipient weight) and quality (TNCs/mL) of the harvest. To test our hypothesis, BM harvests of 110 consecutive unrelated donors were evaluated. The relationship between donor or procedure characteristics and the BM harvest yield was examined. The relationship between donor and recipient weight significantly influenced the harvest yield; only 14% of BM harvests from donors who weighed less than their recipient achieved a TNC count of more than 4 × 10(8) /kg compared to 56% of harvests from donors heavier than their recipient (p = 0.001). Higher-volume harvests were significantly less likely to achieve an optimal yield than lower-volume harvests (32% vs. 78%; p = 0.007), and higher-volume harvests contained significantly fewer TNCs/mL, indicating peripheral blood contamination. BM harvest quality also varied significantly between collection centers adding to recent concerns regarding maintenance of BM harvest expertise within the transplant community. Since the relationship between donor and recipient weight has a critical influence yield, we recommend prioritizing this secondary donor characteristic when selecting from multiple well-matched donors. Given the declining number of requests for BM harvests, it is crucial that systems are developed to train operators and ensure expertise in this procedure is retained. © 2016 AABB.
Burns, Linda J.; Logan, Brent R.; Chitphakdithai, Pintip; Miller, John P.; Drexler, Rebecca; Spellman, Stephen; Switzer, Galen E.; Wingard, John R.; Anasetti, Claudio; Confer, Dennis L.
2016-01-01
We report a comparison of time to recovery, side effects, and change in blood counts from baseline to post-donation of unrelated donors who participated in the Blood and Marrow Transplant Clinical Trials Network (BMT CTN) phase III randomized, multicenter trial (0201) in which donor/recipient pairs were randomized to either peripheral blood stem cell (PBSC) or bone marrow (BM) donation. Of the entire cohort, 262 donated PBSC and 264 donated BM; 372 (71%) donors were from domestic and 154 (29%) from international centers (145 German and 9 Canadian). PBSC donors recovered in less time with a median time to recovery of 1 week compared to 2.3 weeks for BM donors. The number of donors reporting full recovery was significantly greater for donors of PBSC than of BM at 1, 2, and 3 weeks and 3 months post-donation. Multivariate analysis showed that PBSC donors were more likely to recover at any time post donation compared to BM donors (HR 2.08 [95% CI 1.73–2.50], p<0.001). Other characteristics that significantly increased the likelihood of complete recovery were being an international donor and donation in more recent years. Donors of BM were more likely to report grade 2–4 skeletal pain, body symptoms and fatigue at 1 week post donation. In logistic regression analysis of domestic donors only in which toxicities at peri-collection time points (day 5 filgrastim for PBSC donors and day 2 post-collection of BM donors) could be analyzed, no variable was significantly associated with grade 2–4 skeletal pain, including product donated (BM vs PBSC, OR 1.13 [95% CI 0.74–1.74], p=0.556). Blood counts were impacted by product donated, with mean change from baseline to post-donation being greater for white blood cells, neutrophils, mononuclear cells and platelets in PBSC donors whereas BM donors experienced a greater mean change in hemoglobin. This analysis provided an enhanced understanding of donor events as product donated was independent of physician bias or donor preference. PMID:27013014
Worm, Paulo V; Ferreira, Nelson P; Faria, Mario B; Ferreira, Marcelo P; Kraemer, Jorge L; Collares, Marcus V M
2010-12-22
As a consequence of the progressive evolution of neurosurgical techniques, there has been increasing concern with the esthetic aspects of burr holes. Therefore, the objective of this study was to compare the use of cortical bone graft and bone dust for correcting cranial deformities caused by neurosurgical trephines. Twenty-three patients were enrolled for cranial burr hole reconstruction with a 1-year follow-up. A total of 108 burr holes were treated; 36 burr holes were reconstructed with autogenous cortical bone discs (33.3%), and the remaining 72 with autogenous wet bone powder (66.6%). A trephine was specifically designed to produce this coin-shaped bone plug of 14 mm in diameter, which fit perfectly over the burr holes. The reconstructions were studied 12 months after the surgical procedure, using three-dimensional quantitative computed tomography. Additionally, general and plastic surgeons blinded for the study evaluated the cosmetic results of those areas, attributing scores from 0 to 10. The mean bone densities were 987.95 ± 186.83 Hounsfield units (HU) for bone fragment and 473.55 ± 220.34 HU for bone dust (P < 0.001); the mean cosmetic scores were 9.5 for bone fragment and 5.7 for bone dust (P < 0.001). The use of autologous bone discs showed better results than bone dust for the reconstruction of cranial burr holes because of their lower degree of bone resorption and, consequently, better cosmetic results. The lack of donor site morbidity associated with procedural low cost qualifies the cortical autograft as the first choice for correcting cranial defects created by neurosurgical trephines.
Cervellin, M; de Girolamo, L; Bait, C; Denti, M; Volpi, P
2012-01-01
Bone-patellar tendon-bone technique (BPTB) for anterior cruciate ligament injuries is associated with a higher risk of donor-site morbidity. To evaluate whether platelet-rich plasma (PRP), due to its anti-inflammatory properties and capacity to stimulate tissue regeneration, was able to reduce the anterior knee pain, the kneeling pain, and donor-site morbidity, as evidenced by evaluation of VISA and VAS scoring scales and MRI analysis of the tendon and bone defect, we performed a clinical randomized controlled study where PRP gel was applied to donor site after ACL reconstruction with BPTB. Forty young athletes with the indication of ACL reconstruction with patellar tendon grafts were randomly assigned to group A (n = 20 patients, control group) or group B (n = 20 patients, PRP group). The autologous PRP gel was applied to both the patellar and tendon bone plug harvest site and stabilized by the peritenon suture. At 12-month follow-up, all patients underwent clinical examination and VAS and VISA questionnaires, respectively, evaluating the average daily pain of the knee and the pain during particular activities involving the knee, were filled. MRI at the same time point was also performed. VISA scores were significantly higher in the patients treated with PRP (84.5 ± 11.8 and 97.8 ± 2.5 for group A and for group B; P = 0.041), whereas no significant difference in postoperative VAS scores between the two groups was observed (1 ± 1.4 and 0.6 ± 0.9 for group A and group B, n.s.). In 85% of PRP group patients, the tibial and patellar bone defect was satisfactorily filled by new bony tissue (>70% of bone gap filled), whereas this percentage was just of 60% in control group patients, but this difference was not statistically significant. The study shows the usefulness of PRP in reducing subjective pain at the donor-site level after ACL reconstruction with BPTB. However, this approach deserves further investigations to confirm PRP efficacy and to elucidate its mechanism of action. Prospective randomized controlled study, Level I.
Brockhausen, Inka; Nair, Dileep G; Chen, Min; Yang, Xiaojing; Allingham, John S; Szarek, Walter A; Anastassiades, Tassos
2016-04-01
Glucosamine-6-phosphate N-acetyltransferase1 (GNA1) catalyses the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to glucosamine-6-phosphate (GlcN6P) to form N-acetylglucosamine-6-phosphate (GlcNAc6P), which is an essential intermediate in UDP-GlcNAc biosynthesis. An analog of GlcNAc, N-butyrylglucosamine (GlcNBu) has shown healing properties for bone and articular cartilage in animal models of arthritis. The goal of this work was to examine whether GNA1 has the ability to transfer a butyryl group from butyryl-CoA to GlcN6P to form GlcNBu6P, which can then be converted to GlcNBu. We developed fluorescent and radioactive assays and examined the donor specificity of human GNA1. Acetyl, propionyl, n-butyryl, and isobutyryl groups were all transferred to GlcN6P, but isovaleryl-CoA and decanoyl-CoA did not serve as donor substrates. Site-specific mutants were produced to examine the role of amino acids potentially affecting the size and properties of the AcCoA binding pocket. All of the wild type and mutant enzymes showed activities of both acetyl and butyryl transfer and can therefore be used for the enzymatic synthesis of GlcNBu for biomedical applications.
Pauna, Henrique F.; Monsanto, Rafael C.; Schachern, Patricia A.; Costa, Sady S.; Kwon, Geeyoun; Paparella, Michael M.; Cureoglu, Sebahattin
2016-01-01
Objective Endoscopic procedures are becoming common in middle ear surgery. Inflammation due to chronic ear disease can cause bony erosion of the carotid artery and Fallopian canals, making them more vulnerable during surgery. The objective of this study was to determine whether or not chronic ear disease increases dehiscence of the carotid artery and Fallopian canals. Design Comparative human temporal bone study. Setting Otopathology laboratory. Participants We selected 78 temporal bones from 55 deceased donors with chronic otitis media or cholesteatoma, and then compared those 2 groups with a control group of 27 temporal bones from 19 deceased donors with no middle ear disease. Main outcome measures We analyzed the middle ear, carotid artery canal, and Fallopian canal, looking for signs of dehiscence of its bony coverage, using light microscopy. Results We found an increased incidence in dehiscence of the carotid artery and Fallopian canals in temporal bones with chronic middle ear disease. The size of the carotid artery canal dehiscence was larger in the middle ear diseased groups, and its bony coverage, when present, was also thinner compared to the control group. Dehiscence of the carotid artery canal was more frequently located closer to the promontory. The incidence of Fallopian canal dehiscence was significantly higher in temporal bones from donors older than 18 years with chronic middle ear disease. Conclusion The increased incidence of the carotid artery and Fallopian canal dehiscence in temporal bones with chronic middle ear disease elevates the risk of adverse events during middle ear surgery. Level of Evidence N/A. PMID:27455393
Supplying osteogenesis to dead bone using an osteogenic matrix cell sheet.
Uchihara, Yoshinobu; Akahane, Manabu; Okuda, Akinori; Shimizu, Takamasa; Masuda, Keisuke; Kira, Tsutomu; Kawate, Kenji; Tanaka, Yasuhito
2018-02-22
To evaluate whether osteogenic matrix cell sheets can supply osteogenesis to dead bone. Femur bone fragments (5 mm in length) were obtained from Fisher 344 rats and irradiated by a single exposure of 60 Gy to produce bones that were no longer viable. Osteogenic matrix cell sheets were created from rat bone marrow-derived stromal cells (BMSCs). After wrapping the dead bone with an osteogenic matrix cell sheet, it was subcutaneously transplanted into the back of a rat and harvested after 4 weeks. Bone formation around the dead bone was evaluated by X-ray imaging and histology. Alkaline phosphatase (ALP) and osteocalcin (OC) mRNA expression levels were measured to confirm osteogenesis of the transplanted bone. The contribution of donor cells to bone formation was assessed using the Sry gene and PKH26. After the cell sheet was transplanted together with dead bone, X-ray images showed abundant calcification around the dead bone. In contrast, no newly formed bone was seen in samples that were transplanted without the cell sheet. Histological sections also showed newly formed bone around dead bone in samples transplanted with the cell sheet, whereas many empty lacunae and no newly formed bone were observed in samples transplanted without the cell sheet. ALP and OC mRNA expression levels were significantly higher in dead bones transplanted with cell sheets than in those without a cell sheet (P < 0.01). Sry gene expression and cells derived from cell sheets labeled with PKH26 were detected in samples transplanted with a cell sheet, indicating survival of donor cells after transplantation. Our study indicates that osteogenic matrix cell sheet transplantation can supply osteogenesis to dead bone. Copyright © 2018. Published by Elsevier B.V.
Lown, Robert N.; Tulpule, Sameer; Russell, Nigel H.; Craddock, Charles F.; Roest, Rochelle; Madrigal, J. Alejandro; Shaw, Bronwen E.
2013-01-01
Approximately 1 in 20 unrelated donors are asked to make a second donation of hematopoietic progenitor cells, the majority for the same patient. Anthony Nolan undertook a study of subsequent hematopoietic progenitor cell donations made by its donors from 2005 to 2011, with the aims of predicting those donors more likely to be called for a second donation, assessing rates of serious adverse reactions and examining harvest yields. This was not a study of factors predictive of second allografts. During the study period 2591 donations were made, of which 120 (4.6%) were subsequent donations. The median time between donations was 179 days (range, 21–4016). Indications for a second allogeneic transplant included primary graft failure (11.7%), secondary graft failure (53.2%), relapse (30.6%) and others (1.8%). On multivariate analysis, bone marrow harvest at first donation was associated with subsequent donation requests (odds ratio 2.00, P=0.001). The rate of serious adverse reactions in donors making a subsequent donation appeared greater than the rate in those making a first donation (relative risk=3.29, P=0.005). Harvest yields per kilogram recipient body weight were equivalent between donations, although females appeared to have a lower yield at the subsequent donation. Knowledge of these factors will help unrelated donor registries to counsel their donors. PMID:23812935
Allogeneic Transplantation: Peripheral Blood versus Bone Marrow
Bensinger, William I.
2013-01-01
Purpose of Review Peripheral Blood Stem Cells (PBSC) have been widely adopted as a source of stem cells for allogeneic transplantation although controversy remains regarding their role compared to the use of bone marrow (BM). Recent Findings Ten year follow-up has been reported from several large randomized trials and a recently completed trial using unrelated donor stem cells have been reported. In addition, two meta-analyses have been reported from the findings of a number of randomized studies. Several studies indicate that PBSC confer survival advantages over BM with matched sibling donors for most disease categories except where the risks of disease recurrence within the first year are low, but with the extra risk of more chronic GVHD. Using PBSC from unrelated donors does not appear to be more beneficial than BM, but with early follow-up. New strategies for rapid mobilization of PBSC from normal donors using plerixafor have been reported. Early studies suggest that filgrastim stimulated BM may confer some of the advantages of PBSC without the risks of chronic GVHD. Summary PBSC are a preferred source of stem cells for many types of allogeneic transplant where matched related donors are available. Whether the same benefits accrue from unrelated donors will require further follow-up. PMID:22185938
Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice.
Govey, Peter M; Zhang, Yue; Donahue, Henry J
2016-01-01
Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone's capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure.
Gorskaya, Yu F; Danilova, T A; Nesterenko, V G
2011-06-01
The study was carried out on CBA mice using the method of heterotopic transplantation. A fragment of the femoral bone marrow (1/2) or spleen (1/5 of the organ) was transplanted under the renal capsule of a recipient. The following donor-recipient cross-transplantation variants were studied: young-young (Y-Y), young-old (Y-O), old-old (O-O), and old-young (O-Y). Cell suspensions were prepared from 2-month transplants inoculated in monolayer cultures and the cloning efficiency (ECF-F) of stromal precursor cells (CFC-F) was evaluated. The bone marrow transplant ECF-F and the count of CFC-F in the O-O group were 8-fold lower than in the Y-Y group. In the O-Y group, ECF-F was 3-fold higher than in the O-O group, but by 2.5 times lower than in the Y-Y group. ECF-F in Y-O group was 2-fold lower than in Y-Y group. The ECF-F and CFC-F count in spleen transplants in the O-O group were 4- and 6-fold lower, respectively, than in Y-Y group. However, in O-Y group ECF-F was 7-fold higher than in O-O group and higher than even in Y-Y group. The weight of induced ectopic bone tissue after transplantation of the osteoinductor (fragments of the allogenic urinary bladder mucosa) was 2-fold lower in the O-O vs. Y-Y group. However, comparison of the ectopic bone tissue weights in different experimental groups showed that osteoinductor activity of the bladder epithelium did not decrease, but increased 3-fold with age (O-Y:Y-Y). A 5-fold reduction of this proportion in groups where the osteoinductor was transplanted from old donors to old and young recipients (O-Y:O-O) could be attributed to age-specific reduction of the count of inducible osteogenic precursor cells (IOPC). The data in general suggest that age-specific reduction of the stromal precursor count and functional activity could be caused by the true reduction (exhaustion) of cell pool (bone marrow CFC-F; presumably, IOPC) and by the regulatory effects of the organism (bone marrow and splenic CFC-F, IOPC). These data seem to be significant for understanding of the role of osteogenic stromal precursor cells in the development of age-associated bone tissue defects, for example, senile osteoporosis.
Design and mechanical behavior of the MD series of bone dowels
NASA Astrophysics Data System (ADS)
Bianchi, John R.
Allograft bone dowels, developed at the University of Florida Tissue Bank, Inc (UFTB) and Regeneration Technologies, Inc (RTI), offer an alternative to the more conventional metallic and other synthetic dowels for spinal fusions. These dowels are machined from the long bone of human donor tissue. They are an advance over current implants because they possess the precise dimensional characteristics that are typical of metallic or other synthetic implants, are composed of mostly cortical bone, do not cause additional donor site morbidity associated with autografts, yet they retain the advantageous osteogenic characteristics of allografts and autografts. Allograft and autograft tissues have a well-established history in spinal fusions. However, postoperative failures are commonly reported. These failures are due to the variations in geometric, material, and mechanical properties of the implants. In addition, little research effort has been placed on insuring that these types of implants have at least a minimum level of load bearing capacity. The results of this research developed a novel method, based on statistical procedures and fracture mechanisms, that defines the strength of the MD-series of bone dowels and uses this technique to establish a nondestructive mechanical quality control procedure. In addition, the influence of donor characteristics such as age, and sex on the strength of the dowels was established. The role of different tissue banking processing steps on the strength of machined tissue was identified, as well as differences in strength among different dowel designs determined.
Garcia, Maria C; Chapman, Jeremy R; Shaw, Peter J; Gottlieb, David J; Ralph, Angelique; Craig, Jonathan C; Tong, Allison
2013-07-01
Hematopoietic stem cell (HSC) transplantation using bone marrow and peripheral blood stem cells is a lifesaving treatment for patients with leukemia or other blood disorders. However, donors face the risk of physical and psychosocial complications. We aimed to synthesize qualitative studies on the experiences and perspectives of HSC donors. We searched MEDLINE, Embase, PsycINFO, CINAHL, Google Scholar, and reference lists of relevant articles to November 13, 2012. Thematic synthesis was used to analyze the findings. Thirty studies involving 1552 donors were included. The decision to donate included themes of saving life, family loyalty, building a positive identity, religious conviction, fear of invasive procedures, and social pressure and obligation. Five themes about the donation experience were identified: mental preparedness (pervasive pain, intense disappointment over recipient death, exceeding expectations, and valuing positive recipient gains), burden of responsibility (striving to be a quality donor, unresolved guilt, and exacerbated grief), feeling neglected (medical dismissiveness and family inattention), strengthened relationships (stronger family ties, establishing blood bonds), and personal sense of achievement (satisfaction and pride, personal development, hero status, and social recognition). Although HSC donation was appreciated as an opportunity to save life, some donors felt anxious and unduly compelled to donate. HSC donors became emotionally invested and felt responsible for their recipient's outcomes and were profoundly grieved and disappointed if the transplantation was unsuccessful. To maximize donor satisfaction and mitigate the psychosocial risks for HSC donors, strategies to address the emotional challenges of anxiety, sense of coercion, guilt, and grief in donors are warranted. Copyright © 2013 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Nanocomposites and bone regeneration
NASA Astrophysics Data System (ADS)
James, Roshan; Deng, Meng; Laurencin, Cato T.; Kumbar, Sangamesh G.
2011-12-01
This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.
Stem cell mobilization and collection from pediatric patients and healthy children.
Karakukcu, Musa; Unal, Ekrem
2015-08-01
Today, hematopoietic stem cell transplantation (HSCT) is a standard treatment for a variety of conditions in children, including certain malignancies, hemoglobinopathies, bone marrow failure syndromes, immunodeficiency and inborn metabolic disease. Two fundamentally different types of HSCT are categorized by the source of the stem cells. The first, autologous HSCT represents infusion of patient's own hematopoietic stem cells (HSCs) obtained from the patient; the second, allogeneic HSCT refers to the infusion of HSCs obtained from a donor via bone marrow harvest or apheresis. Bone marrow has been the typical source for HSCs for pediatric donors. Bone marrow harvest is a safe procedure mainly related to mild and transient side effects. Recently, a dramatically increased use of mobilized peripheral blood stem cells (PBSCs) in the autologous as well as allogeneic setting has been seen worldwide. There are limited data comparing mobilization regimens; also mobilization practices vary widely in children. The most commonly used approach includes granulocyte colony stimulating factor (G-CSF) at 10 mg/kg/day as a single daily dose for 4 days before the day of leukapheresis. G-CSF induced pain was less reported in children compared to adult donors. For the collection, there are several technical problems, derived from the size of the patient or donor, which must be considered before and during the apheresis. Vascular access, extracorporeal circuit volume, blood flow rates are the main limiting factors for PBSC collection in small children. Most children younger than 12 years require central vascular access for apheresis; line placement may require either general anesthesia or conscious sedation and many of the complications arise from the central venous catheter. In this review, we discuss that the ethical considerations and some principals regarding children serving as stem cell donors and the commonest sources of HSCs are presented in children, together with a discussion of how to collect and process these cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Phadnis, Smruti M; Joglekar, Mugdha V; Dalvi, Maithili P; Muthyala, Sudhakar; Nair, Prabha D; Ghaskadbi, Surendra M; Bhonde, Ramesh R; Hardikar, Anandwardhan A
2011-03-01
The scarcity of human islets for transplantation remains a major limitation of cell replacement therapy for diabetes. Bone marrow-derived progenitor cells are of interest because they can be isolated, expanded and offered for such therapy under autologous/allogeneic settings. We characterized and compared human bone marrow-derived mesenchymal cells (hBMC) obtained from (second trimester), young (1-24 years) and adult (34-81 years) donors. We propose a novel protocol that involves assessment of paracrine factors from regenerating pancreas in differentiation and maturation of hBMC into endocrine pancreatic lineage in vivo. We observed that donor age was inversely related to growth potential of hBMC. Following in vitro expansion and exposure to specific growth factors involved in pancreatic development, hBMC migrated and formed islet-like cell aggregates (ICA). ICA show increased abundance of pancreatic transcription factors (Ngn3, Brn4, Nkx6.1, Pax6 and Isl1). Although efficient differentiation was not achieved in vitro, we observed significant maturation and secretion of human c-peptide (insulin) upon transplantation into pancreactomized and Streptozotocin (STZ)-induced diabetic mice. Transplanted ICA responded to glucose and maintained normoglycemia in diabetic mice. Our data demonstrate that hBMC have tremendous in vitro expansion potential and can be differentiated into multiple lineages, including the endocrine pancreatic lineage. Paracrine factors secreted from regenerating pancreas help in efficient differentiation and maturation of hBMC, possibly via recruiting chromatin modulators, to generate glucose-responsive insulin-secreting cells.
Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice
Govey, Peter M.; Zhang, Yue; Donahue, Henry J.
2016-01-01
Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104
Chen, M J; Chu, C C; Shyr, M H; Lin, C L; Lin, P Y; Yang, K L
2010-02-01
HLA-B*5214, a novel rare allele of HLA-B*52 variant, was found in a Taiwanese volunteer bone marrow donor by sequence-based typing method. The sequence of B*5214 is identical to that of B*520101 in exon 2 but differs from B*520101 in exon 3 at nucleotide positions 419 A-->T and 435 A-->G. Alteration of these two nucleotides resulted an amino acid substitution at amino acid residue 116 Y-->F ( TAC-->TTC) and a silent exchange at residue 121 K-->K (AAA-->AAG).
Xu, Rongyao; Ge, Jie; Fu, Yu; Zhang, Yuchao; Du, Yifei; Ye, Jinhai; Cheng, Jie; Jiang, Hongbing
2016-01-01
Bone mesenchymal stem cells (BMSCs) senescence contributes to age-related bone loss. The alveolar bone in jaws originates from neural crest cells and possesses significant site- and age-related properties. However, such intrinsic characteristics of BMSCs from alveolar bone (AB-BMSCs) and the underlying regulatory mechanisms still remain unknown. Here, we found that the expression of special AT-rich binding protein 2 (SATB2) in human AB-BMSCs significantly decreased with aging. SATB2 knockdown on AB-BMSCs from young donors displayed these aging-related phenotypes in vitro. Meanwhile, enforced SATB2 overexpression could rejuvenate AB-BMSCs from older donors. Importantly, satb2 gene- modified BMSCs therapy could prevent the alveolar bone loss during the aging of rats. Mechanistically, the stemness regulator Nanog was identified as the direct transcriptional target of SATB2 in BMSCs and functioned as a downstream mediator of SATB2. Collectively, our data reveal that SATB2 in AB-BMSCs associates with their age-related properties, and prevents AB-BMSCs senescence via maintaining Nanog expression. These findings highlight the translational potential of transcriptional factor-based cellular reprogramming for anti-aging therapy. PMID:27632702
Schäck, Luisa Marilena; Noack, Sandra; Weist, Ramona; Jagodzinski, Michael; Krettek, Christian; Buettner, Manuela; Hoffmann, Andrea
2013-12-15
The most widely used technique for isolation of human bone marrow stromal cells (hBMSCs) from bone marrow includes density gradient centrifugation, recovery of the mononuclear cell population, and subsequent isolation of hBMSCs by virtue of their plastic adherence. During subsequent in vitro cultivation, they may lose their original characteristics since in vitro the stem cell niche cannot yet be properly mimicked. To further characterize these culture-induced changes in regard to mRNA and extra- and intracellular protein expression, as well as potential differences between hBMSCs from different donors, we investigated a panel of CD antigens for their presence on in vitro cultured hBMSCs. Interestingly, after culture-induced downregulation of their extracellular expression, both CD146 and CD271 persist intracellularly, which hints at the possibility that culture-induced changes may be reversed by appropriate stimuli. Further, CD34-a protein whose expression on hBMSCs is still controversial-is expressed at the intracellular level in hBMSCs of all donors independently of passage number. CD34 mRNA levels are significantly higher in female than in male donors. In summary, we further elucidate phenotypical changes induced by in vitro culture of hBMSCs, highlight interindividual differences in the phenotype of these cells and for the first time show the intracellular expression of CD34.
Burns, Linda J; Logan, Brent R; Chitphakdithai, Pintip; Miller, John P; Drexler, Rebecca; Spellman, Stephen; Switzer, Galen E; Wingard, John R; Anasetti, Claudio; Confer, Dennis L
2016-06-01
We report a comparison of time to recovery, side effects, and change in blood counts from baseline to after donation from unrelated donors who participated in the Blood and Marrow Transplant Clinical Trials Network phase III randomized, multicenter trial (0201) in which donor-recipient pairs were randomized to either peripheral blood stem cell (PBSC) or bone marrow (BM) donation. Of the entire cohort, 262 donated PBSC and 264 donated BM; 372 (71%) donors were from domestic and 154 (29%) were from international centers (145 German and 9 Canadian). PBSC donors recovered in less time, with a median time to recovery of 1 week compared with 2.3 weeks for BM donors. The number of donors reporting full recovery was significantly greater for donors of PBSC than of BM at 1, 2, and 3 weeks and 3 months after donation. Multivariate analysis showed that PBSC donors were more likely to recover at any time after donation compared with BM donors (hazard ratio, 2.08; 95% confidence interval [CI], 1.73 to 2.50; P < .001). Other characteristics that significantly increased the likelihood of complete recovery were being an international donor and donation in more recent years. Donors of BM were more likely to report grades 2 to 4 skeletal pain, body symptoms, and fatigue at 1 week after donation. In logistic regression analysis of domestic donors only in which toxicities at peri-collection time points (day 5 filgrastim for PBSC donors and day 2 after collection of BM donors) could be analyzed, no variable was significantly associated with grades 2 to 4 skeletal pain, including product donated (BM versus PBSC; odds ratio, 1.13; 95% CI, .74 to 1.74; P = .556). Blood counts were affected by product donated, with greater mean change from baseline to after donation for white blood cells, neutrophils, mononuclear cells, and platelets in PBSC donors whereas BM donors experienced a greater mean change in hemoglobin. This analysis provided an enhanced understanding of donor events as product donated was independent of physician bias or donor preference. Copyright © 2016 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
GORANTLA, VIJAY S.; SCHNEEBERGER, STEFAN; MOORE, LINDA R.; DONNENBERG, VERA S.; ZIMMERLIN, LUDOVIC; ANDREW LEE, W. P.; DONNENBERG, ALBERT D.
2014-01-01
Background aims Donor-derived vertebral bone marrow (BM) has been proposed to promote chimerism in solid organ transplantation with cadaveric organs. Reports of successful weaning from immunosuppression in patients receiving directed donor transplants in combination with donor BM or blood cells and novel peri-transplant immunosuppression has renewed interest in implementing similar protocols with cadaveric organs. Methods We performed six pre-clinical full-scale separations to adapt vertebral BM preparations to a good manufacturing practice (GMP) environment. Vertebral bodies L4–T8 were transported to a class 10 000 clean room, cleaned of soft tissue, divided and crushed in a prototype bone grinder. Bone fragments were irrigated with medium containing saline, albumin, DNAse and gentamicin, and strained through stainless steel sieves. Additional cells were eluted after two rounds of agitation using a prototype BM tumbler. Results The majority of recovered cells (70.9 ± 14.1%, mean ± SD) were eluted directly from the crushed bone, whereas 22.3% and 5.9% were eluted after the first and second rounds of tumbling, respectively. Cells were pooled and filtered (500, 200 μm) using a BM collection kit. Larger lumbar vertebrae yielded about 1.6 times the cells of thoracic vertebrae. The average product yielded 5.2 ± 1.2×1010 total cells, 6.2 ± 2.2×108 of which were CD45+ CD34+. Viability was 96.6 ± 1.9% and 99.1 ± 0.8%, respectively. Multicolor flow cytometry revealed distinct populations of CD34+ CD90+ CD117 dim hematopoietic stem cells (15.5 ± 7.5% of the CD34 + cells) and CD45− CD73+ CD105+ mesenchymal stromal cells (0.04 ± 0.04% of the total cells). Conclusions This procedure can be used to prepare clinical-grade cells suitable for use in human allotransplantation in a GMP environment. PMID:21905958
Worm, Paulo V.; Ferreira, Nelson P.; Faria, Mario B.; Ferreira, Marcelo P.; Kraemer, Jorge L.; Collares, Marcus V. M.
2010-01-01
Background: As a consequence of the progressive evolution of neurosurgical techniques, there has been increasing concern with the esthetic aspects of burr holes. Therefore, the objective of this study was to compare the use of cortical bone graft and bone dust for correcting cranial deformities caused by neurosurgical trephines. Methods: Twenty-three patients were enrolled for cranial burr hole reconstruction with a 1-year follow-up. A total of 108 burr holes were treated; 36 burr holes were reconstructed with autogenous cortical bone discs (33.3%), and the remaining 72 with autogenous wet bone powder (66.6%). A trephine was specifically designed to produce this coin-shaped bone plug of 14 mm in diameter, which fit perfectly over the burr holes. The reconstructions were studied 12 months after the surgical procedure, using three-dimensional quantitative computed tomography. Additionally, general and plastic surgeons blinded for the study evaluated the cosmetic results of those areas, attributing scores from 0 to 10. Results: The mean bone densities were 987.95 ± 186.83 Hounsfield units (HU) for bone fragment and 473.55 ± 220.34 HU for bone dust (P < 0.001); the mean cosmetic scores were 9.5 for bone fragment and 5.7 for bone dust (P < 0.001). Conclusions: The use of autologous bone discs showed better results than bone dust for the reconstruction of cranial burr holes because of their lower degree of bone resorption and, consequently, better cosmetic results. The lack of donor site morbidity associated with procedural low cost qualifies the cortical autograft as the first choice for correcting cranial defects created by neurosurgical trephines. PMID:21206899
Singh, Lakshman; Brennan, Tracy A.; Russell, Elizabeth; Kim, Jung-Hoon; Chen, Qijun; Johnson, F. Brad; Pignolo, Robert J.
2016-01-01
Bone marrow derived mesenchymal progenitor cells (MPCs) play an important role in bone homeostasis. Age-related changes occur in bone resulting in a decrease in bone density and a relative increase in adipocity. Although in vitro studies suggest the existence of an age-related lineage switch between osteogenic and adipogenic fates, stem cell and microenvironmental contributions to this process have not been elucidated in vivo. In order to study the effects of MPC and microenvironmental aging on functional engraftment and lineage switching, transplantation studies were performed under non-myeloablative conditions in old recipients, with donor MPCs derived from young and old green fluorescent protein (GFP) transgenic mice. Robust engraftment by young MPCs or their progeny was observed in the marrow, bone-lining region and in the matrix of young recipients; however, significantly lower engraftment was seen at the same sites in old recipients transplanted with old MPCs. Differentiation of transplanted MPCs strongly favored adipogenesis over osteogenesis in old recipients irrespective of MPC donor age, suggesting that microenvironmental alterations that occur with in vivo aging are predominately responsible for MPC lineage switching. These data indicate that aging alters bone-fat reciprocity and differentiation of mesenchymal progenitors toward an adipogenic fate. PMID:26805026
Singh, Lakshman; Brennan, Tracy A; Russell, Elizabeth; Kim, Jung-Hoon; Chen, Qijun; Brad Johnson, F; Pignolo, Robert J
2016-04-01
Bone marrow derived mesenchymal progenitor cells (MPCs) play an important role in bone homeostasis. Age-related changes occur in bone resulting in a decrease in bone density and a relative increase in adipocity. Although in vitro studies suggest the existence of an age-related lineage switch between osteogenic and adipogenic fates, stem cell and microenvironmental contributions to this process have not been elucidated in vivo. In order to study the effects of MPC and microenvironmental aging on functional engraftment and lineage switching, transplantation studies were performed under non-myeloablative conditions in old recipients, with donor MPCs derived from young and old green fluorescent protein (GFP) transgenic mice. Robust engraftment by young MPCs or their progeny was observed in the marrow, bone-lining region and in the matrix of young recipients; however, significantly lower engraftment was seen at the same sites in old recipients transplanted with old MPCs. Differentiation of transplanted MPCs strongly favored adipogenesis over osteogenesis in old recipients irrespective of MPC donor age, suggesting that microenvironmental alterations that occur with in vivo aging are predominately responsible for MPC lineage switching. These data indicate that aging alters bone-fat reciprocity and differentiation of mesenchymal progenitors towards an adipogenic fate. Copyright © 2016 Elsevier Inc. All rights reserved.
Can bone marrow differentiate into renal cells?
Imai, Enyu; Ito, Takahito
2002-10-01
A considerable plasticity of adult stem cells has been confirmed in a wide variety of tissues. In particular, the pluripotency of bone marrow-derived stem cells may influence the regeneration of injured tissues and may provide novel avenues in regenerative medicine. Bone marrow contains at least hematopoietic and mesenchymal stem cells, and both can differentiate into a wide range of differentiated cells. Side population (SP) cells, which are originally defined in bone marrow cells by high efflux of DNA-binding dye, seem to be a new class of multipotent stem cells. Irrespective of the approach used to obtain stem cells, the fates of marrow-derived cells following bone marrow transplantation can be traced by labeling donor cells with green fluorescence protein or by identifying donor Y chromosome in female recipients. So far, bone marrow-derived cells have been reported to differentiate into renal cells, including mesangial cells, endothelial cells, podocytes, and tubular cells in the kidney, although controversy exists. Further studies are required to address this issue. Cell therapy will be promising when we learn to control stem cells such as bone marrow-derived stem cells, embryonic stem cells, and resident stem cells in the kidney. Identification of factors that support stem cells or promote their differentiation should provide a relevant step towards cell therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krieg, A.M.; Gourley, M.F.; Steinberg, A.D.
1991-05-01
Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymicmore » epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells.« less
Computer algorithms in the search for unrelated stem cell donors.
Steiner, David
2012-01-01
Hematopoietic stem cell transplantation (HSCT) is a medical procedure in the field of hematology and oncology, most often performed for patients with certain cancers of the blood or bone marrow. A lot of patients have no suitable HLA-matched donor within their family, so physicians must activate a "donor search process" by interacting with national and international donor registries who will search their databases for adult unrelated donors or cord blood units (CBU). Information and communication technologies play a key role in the donor search process in donor registries both nationally and internationaly. One of the major challenges for donor registry computer systems is the development of a reliable search algorithm. This work discusses the top-down design of such algorithms and current practice. Based on our experience with systems used by several stem cell donor registries, we highlight typical pitfalls in the implementation of an algorithm and underlying data structure.
Pagliuca, Simona; Peffault de Latour, Régis; Volt, Fernanda; Locatelli, Franco; Zecca, Marco; Dalle, Jean-Hugues; Comoli, Patrizia; Vettenranta, Kim; Diaz, Miguel Angel; Reuven, Or; Bertrand, Yves; Diaz de Heredia, Cristina; Nagler, Arnon; Ghavamzadeh, Ardeshir; Sufliarska, Sabina; Lawson, Sarah; Kenzey, Chantal; Rocha, Vanderson; Dufour, Carlo; Gluckman, Eliane; Passweg, Jakob; Ruggeri, Annalisa
2017-11-01
Cord blood transplantation (CBT) from HLA-identical siblings is an attractive option for patients with bone marrow failure (BMF) syndrome because of the low risk of graft-versus-host disease (GVHD) and the absence of risk to the donor. We analyzed outcomes of 117 patients with inherited or acquired BMF syndrome who received CBT from a related HLA-identical donor in European Society for Blood and Marrow Transplantation centers between 1988 and 2014. Ninety-seven patients had inherited and 20 patients acquired BMF syndrome. Eighty-two patients received a single cord blood (CB) unit, whereas 35 patients received a combination of CB and bone marrow cells from the same donor. Median age at CBT was 6.7 years, and median follow-up was 86.7 months. The cumulative incidence function (CIF) of neutrophil recovery was 88.8% (95% CI, 83.1% to 94.9%), 100-day CIF of grades II to IV acute GVHD was 15.2%, and 7-year CIF of chronic GVHD was 14.5%. Overall survival at 7 years was 87.9% (95% CI, 80.8% to 92.6%), 89% for inherited and 81% for acquired BMF syndromes (P = .66). Results of this study are consistent with outcomes of bone marrow transplantation shown by previous series in the same setting and indicate that in pediatric patients with BMF syndrome, CBT from an HLA-identical sibling donor is associated with excellent long-term outcomes and that collection of CB unit at birth of a new sibling is strongly recommended. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Pan, L; Bressler, S; Cooke, K R; Krenger, W; Karandikar, M; Ferrara, J L
1996-10-01
Peripheral blood cells (PBPC) are an alternative source of bone marrow for allogeneic transplantation. Reports from recent clinical trials granulocyte colony-stimulating factor (G-CSF)-mobilized PBPC for allogeneic transplantation show incidence and severity of graft-vs.-host disease (GVHD) similar to those observed in conventional bone marrow transplantation (BMT), despite the presence of 10- to 20-fold more T cell in the PBPC inoculum. In the present study, we examined the effects of pretreatment of donors with G-CSF on GVHD, long-term engraftment, and lymphocyte reconstitution in a murine parent-->F1 model (B6.Ly-5a-->B6d2F1) using splenocytes as a source of peripheral progenitor cells. Recipients of splenocytes from G-CSF-treated donors experienced less mortality from acute GVHD and showed sustained weight gain by day 100 after transplantation. At that time, there was no histological evidence od GVHD in either liver or gut. Recipients of splenocytes from G-CSF-treated donors showed complete donor engraftment within 1 month, which was sustained until the end of the observation period. In contrast, recipients of T cell-depleted splenocytes showed slower donor engraftment and persistent donor/host chimerism. In addition, lymphocyte phenotype and function in mice receiving splenocytes from G-CSF-treated donors was significantly restored by day 100 after transplantation. Thus, the use of G-CSF-mobilized PBPC may provide significant advantages to conventional BMT by reducing GVHD without impairing long-term engraftment and immunologic reconstruction.
Kojima, Hiroko; Uemura, Toshimasa
2005-01-28
Core binding factor alpha-1 (Cbfa1), known as an essential transcription factor for osteogenic lineage, has two major N-terminal isoforms: Pebp2alphaA and Til-1. To study the roles of these isoforms in bone regeneration, we applied an adenoviral vector carrying their genes to transduce primary osteoprogenitor cells in vitro and in vivo. Overexpression of the two isoforms induced rapid and marked osteoblast differentiation, with Til-1 being more effective in vitro, by examination of the alkaline phosphatase activity, calcium content, and Alizarin red staining. Til-1 overexpressing cells/porous ceramic composites were transplanted into subcutaneous and bone defect sites in Fischer rats (cultured bone transplantation model) and markedly affected in vivo bone formation and osteoblast markers. The results demonstrated that the reconstitution of bone tissues, such as cortical bone and trabecular bone was accelerated by implantation of Til-1 overexpressing cells/porous ceramic composites. Moreover, the new bone formation by Til-1 overexpression appeared to reflect replacement of new bone within the implant boundaries. To ascertain whether implanted Cbfa1 overexpressing cells could differentiate into osteogenic cells to create bone or whether it stimulated the surrounding recipient tissue to regenerate bone, implanted male donor cells were visualized by fluorescent in situ hybridization analysis. The proportion of implanted cells in the presumptive bone forming region was over 80% and did not change throughout from 3 days to 8 weeks after implantation. These findings suggested that the newly formed bone in the porous area of the scaffold is mostly produced by the implanted donor cells or their derived cells, effectively by Til-1 overexpression.
Li, Zicong; He, Xiaoyan; Chen, Liwen; Shi, Junsong; Zhou, Rong; Xu, Weihua; Liu, Dewu; Wu, Zhenfang
2013-10-01
The somatic cell nuclear transfer (SCNT) technique has been widely applied to clone pigs or to produce genetically modified pigs. Currently, this technique relies mainly on using terminally differentiated fibroblasts as donor cells. To improve cloning efficiency, only partially differentiated multipotent mesenchymal stem cells (MSCs), thought to be more easily reprogrammed to a pluripotent state, have been used as nuclear donors in pig SCNT. Although in vitro-cultured embryos cloned from porcine MSCs (MSCs-embryos) were shown to have higher preimplantation developmental ability than cloned embryos reconstructed from fibroblasts (Fs-embryos), the difference in in vivo full-term developmental rate between porcine MSCs-embryos and Fs-embryos has not been investigated so far. In this study, we demonstrated that blastocyst total cell number and full-term survival abilities of MSCs-embryos were significantly higher than those of Fs-embryos cloned from the same donor pig. The enhanced developmental potential of MSCs-embryos may be associated with their nuclear donors' DNA methylation profile, because we found that the methylation level of imprinting genes and repeat sequences differed between MSCs and fibroblasts. In addition, we showed that use of transgenic porcine MSCs generated from transgene plasmid transfection as donor cells for SCNT can produce live transgenic cloned pigs. These results strongly suggest that porcine bone marrow MSCs are a desirable donor cell type for production of cloned pigs and genetically modified cloned pigs via SCNT.
Taylor, Patricia A; McElmurry, Ronald T; Lees, Christopher J; Harrison, David E; Blazar, Bruce R
2002-03-01
In utero transplantation (IUT) is becoming a viable option for the treatment of various immune and metabolic disorders diagnosed early in gestation. In this study, donor fetal liver cells had a 10-fold competitive engraftment advantage relative to adult bone marrow in allogeneic fetal severe combined immunodeficient (SCID) recipients compared with adult recipients. In contrast, adult bone marrow cells engrafted slightly better than fetal liver cells in allogeneic adult SCID transplant recipients. By using different ratios of fetal and adult cell mixtures, fetal liver cells repopulated 8.2 times better than adult bone marrow cells in fetal recipients, but only 0.8 times as well in adult recipients. Fetal SCID recipients were more permissive to an allogeneic donor graft than adult recipients. These data indicate that the recipient microenvironment may regulate the engraftment efficiency of a given stem cell source and suggest that the use of cord blood should be tested in clinical IUT.
Meyer, E G; Buckley, C T; Steward, A J; Kelly, D J
2011-10-01
Mechanical signals can play a key role in regulating the chondrogenic differentiation of mesenchymal stem cells (MSCs). The objective of this study was to determine if the long-term application of cyclic hydrostatic pressure could be used to improve the functional properties of cartilaginous tissues engineered using bone marrow derived MSCs. MSCs were isolated from the femora of two porcine donors, expanded separately under identical conditions, and then suspended in cylindrical agarose hydrogels. Constructs from both donors were maintained in a chemically defined media supplemented with TGF-β3 for 42 days. TGF-β3 was removed from a subset of constructs from day 21 to 42. Loaded groups were subjected to 10 MPa of cyclic hydrostatic pressurisation at 1 Hz for one hour/day, five days/week. Loading consisted either of continuous hydrostatic pressure (CHP) initiated at day 0, or delayed hydrostatic pressure (DHP) initiated at day 21. Free swelling (FS) constructs were cultured in parallel as controls. Constructs were assessed at days 0, 21 and 42. MSCs isolated from both donors were morphologically similar, demonstrated comparable colony forming unit-fibroblast (CFU-F) numbers, and accumulated near identical levels of collagen and GAG following 42 days of free swelling culture. Somewhat unexpectedly the two donors displayed a differential response to hydrostatic pressure. For one donor the application of CHP resulted in increased collagen and GAG accumulation by day 42, resulting in an increased dynamic modulus compared to FS controls. In contrast, CHP had no effect on matrix accumulation for the other donor. The application of DHP had no effect on either matrix accumulation or construct mechanical properties for both donors. Variability in the response to hydrostatic pressure was also observed for three further donors. In conclusion, this study demonstrates that the application of long-term hydrostatic pressure can be used to improve the functional properties of cartilaginous tissues engineered using bone marrow derived MSCs by enhancing collagen and GAG accumulation. The response to such loading however is donor dependent, which has implications for the clinical utilisation of such a stimulus when engineering cartilaginous grafts using autologous MSCs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ramalingam, Saravana; Mohd, Suhaili; Samsuddin, Sharifah Mazni; Min, N G Wuey; Yusof, Norimah; Mansor, Azura
2015-12-01
Bone allografts have been used widely to fill up essential void in orthopaedic surgeries. The benefit of using allografts to replace and reconstruct musculoskeletal injuries, fractures or disease has obtained overwhelming acceptance from orthopaedic surgeons worldwide. However, bacterial infection and disease transmission through bone allograft transplantation have always been a significant issue. Sterilization by radiation is an effective method to eliminate unwanted microorganisms thus assist in preventing life threatening allograft associated infections. Femoral heads procured from living donors and long bones (femur and tibia) procured from cadaveric donors were sterilized at 25 kGy in compliance with international standard ISO 11137. According to quality requirements, all records of bone banking were evaluated annually. This retrospective study was carried out on annual evaluation of radiation records from 1998 until 2012. The minimum doses absorbed by the bones were ranging from 25.3 to 38.2 kGy while the absorbed maximum doses were from 25.4 to 42.3 kGy. All the bones supplied by our UMMC Bone Bank were sterile at the required minimum dose of 25 kGy. Our analysis on dose variation showed that the dose uniformity ratios in 37 irradiated boxes of 31 radiation batches were in the range of 1.003-1.251, which indicated the doses were well distributed.
Direct comparison of regulators of calcification between bone and vessels in humans.
Schweighofer, N; Aigelsreiter, A; Trummer, O; Graf-Rechberger, M; Hacker, N; Kniepeiss, D; Wagner, D; Stiegler, P; Trummer, C; Pieber, T; Obermayer-Pietsch, B; Müller, H
2016-07-01
Calcification is not only physiologically present in bone but is a main pathophysiological process in vasculature, favouring cardiovascular diseases. Our aim was to investigate changes in the expression of calcification regulators during vascular calcification in bone and vasculature. Levels of gene expression of osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL), osteopontin (OPN), matrix gla protein (MGP), bone sialoprotein (BSP), SMAD6, and runt-related transcription factor 2 (RUNX2) were determined in bone, aorta, and external iliac artery tissue samples of transplant donors. Histological stages of atherosclerosis (AS) in vessels are defined as "no changes", "intima thickening", or "intima calcification". Patients' bone samples were subgrouped accordingly. We demonstrate that in vessels BSP and OPN expression significantly increased during intima thickening and decreased during intima calcification, whereas the expression of regulators of calcification did not significantly change in bone during intima thickening and intima calcification. At the stage of intima thickening, MGP, OPG, and SMAD6 expression and at stage of intima calcification only MGP expression was lower in bone than in vessel. The expression of BSP and RANKL was regulated in opposite ways in bone and vessels, whereas the expression of MGP, OC, RUNX2, and OPN was regulated in a tissue-specific manner. Our study is the first direct comparison of gene expression changes during AS progression in bone and vessels. Our results indicate that changes in the expression of regulators of calcification in the vessel wall as well as in bone occur early in the calcification process, even prior to deposition of calcium/phosphate precipitation. Copyright © 2016. Published by Elsevier Inc.
Single-Stranded γPNAs for In Vivo Site-Specific Genome Editing via Watson-Crick Recognition
Bahal, Raman; Quijano, Elias; McNeer, Nicole Ali; Liu, Yanfeng; Bhunia, Dinesh C.; López-Giráldez, Francesco; Fields, Rachel J.; Saltzman, W. Mark; Ly, Danith H.; Glazer, Peter M.
2014-01-01
Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction. PMID:25174576
Single-stranded γPNAs for in vivo site-specific genome editing via Watson-Crick recognition.
Bahal, Raman; Quijano, Elias; McNeer, Nicole A; Liu, Yanfeng; Bhunia, Dinesh C; Lopez-Giraldez, Francesco; Fields, Rachel J; Saltzman, William M; Ly, Danith H; Glazer, Peter M
2014-01-01
Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction.
Waller, Edmund K.; Logan, Brent R.; Harris, Wayne A.C.; Devine, Steven M.; Porter, David L.; Mineishi, Shin; McCarty, John M.; Gonzalez, Corina E.; Spitzer, Thomas R.; Krijanovski, Oleg I.; Linenberger, Michael L.; Woolfrey, Ann; Howard, Alan; Wu, Juan; Confer, Dennis L.; Anasetti, Claudio
2014-01-01
Purpose To characterize relationships between specific immune cell subsets in bone marrow (BM) or granulocyte colony-stimulating factor–mobilized peripheral blood (PB) stem cells collected from unrelated donors and clinical outcomes of patients undergoing transplantation in BMTCTN 0201. Patients and Methods Fresh aliquots of 161 BM and 147 PB stem-cell allografts from North American donors randomly assigned to donate BM or PB stem cells and numbers of transplanted cells were correlated with overall survival (OS), relapse, and graft-versus-host disease (GvHD). Results Patients with evaluable grafts were similar to all BMTCTN 0201 patients. The numbers of plasmacytoid dendritic cells (pDCs) and naïve T cells (Tns) in BM allografts were independently associated with OS in multivariable analyses including recipient and donor characteristics, such as human leukocyte antigen mismatch, age, and use of antithymocyte globulin. BM recipients of > median number of pDCs, naïve CD8+ T cells (CD8Tns), or naïve CD4+ T cells (CD4Tns) had better 3-year OS (pDCs, 56% v 35%; P = .025; CD8Tns, 56% v 37%; P = .012; CD4Tns, 55% v 37%; P = .009). Transplantation of more BM Tns was associated with less grade 3 to 4 acute GvHD but similar rates of relapse. Transplantation of more BM pDCs was associated with fewer deaths resulting from GvHD or from graft rejection. Analysis of PB grafts did not identify a donor cell subset significantly associated with OS, relapse, or GvHD. Conclusion Donor immune cells in BM but not PB stem-cell grafts were associated with survival after unrelated-donor allogeneic hematopoietic stem-cell transplantation. The biologic activity of donor immune cells in allogeneic transplantation varied between graft sources. Donor grafts with more BM-derived Tns and pDCs favorably regulated post-transplantation immunity in allogeneic hematopoietic stem-cell transplantation. PMID:24982459
Waller, Edmund K; Logan, Brent R; Harris, Wayne A C; Devine, Steven M; Porter, David L; Mineishi, Shin; McCarty, John M; Gonzalez, Corina E; Spitzer, Thomas R; Krijanovski, Oleg I; Linenberger, Michael L; Woolfrey, Ann; Howard, Alan; Wu, Juan; Confer, Dennis L; Anasetti, Claudio
2014-08-01
To characterize relationships between specific immune cell subsets in bone marrow (BM) or granulocyte colony-stimulating factor-mobilized peripheral blood (PB) stem cells collected from unrelated donors and clinical outcomes of patients undergoing transplantation in BMTCTN 0201. Fresh aliquots of 161 BM and 147 PB stem-cell allografts from North American donors randomly assigned to donate BM or PB stem cells and numbers of transplanted cells were correlated with overall survival (OS), relapse, and graft-versus-host disease (GvHD). Patients with evaluable grafts were similar to all BMTCTN 0201 patients. The numbers of plasmacytoid dendritic cells (pDCs) and naïve T cells (Tns) in BM allografts were independently associated with OS in multivariable analyses including recipient and donor characteristics, such as human leukocyte antigen mismatch, age, and use of antithymocyte globulin. BM recipients of > median number of pDCs, naïve CD8(+) T cells (CD8Tns), or naïve CD4(+) T cells (CD4Tns) had better 3-year OS (pDCs, 56% v 35%; P = .025; CD8Tns, 56% v 37%; P = .012; CD4Tns, 55% v 37%; P = .009). Transplantation of more BM Tns was associated with less grade 3 to 4 acute GvHD but similar rates of relapse. Transplantation of more BM pDCs was associated with fewer deaths resulting from GvHD or from graft rejection. Analysis of PB grafts did not identify a donor cell subset significantly associated with OS, relapse, or GvHD. Donor immune cells in BM but not PB stem-cell grafts were associated with survival after unrelated-donor allogeneic hematopoietic stem-cell transplantation. The biologic activity of donor immune cells in allogeneic transplantation varied between graft sources. Donor grafts with more BM-derived Tns and pDCs favorably regulated post-transplantation immunity in allogeneic hematopoietic stem-cell transplantation. © 2014 by American Society of Clinical Oncology.
Rodriguez-Menocal, Luis; Salgado, Marcela; Ford, Dwayne
2012-01-01
Chronic wounds continue to be a major cause of morbidity for patients and an economic burden on the health care system. Novel therapeutic approaches to improved wound healing will need, however, to address cellular changes induced by a number of systemic comorbidities seen in chronic wound patients, such as diabetes, chronic renal failure, and arterial or venous insufficiency. These effects likely include impaired inflammatory cell migration, reduced growth factor production, and poor tissue remodeling. The multifunctional properties of bone marrow-derived mesenchymal stem cells (MSCs), including their ability to differentiate into various cell types and capacity to secrete factors important in accelerating healing of cutaneous wounds, have made MSCs a promising agent for tissue repair and regeneration. In this study we have used an in vitro scratch assay procedure incorporating labeled MSCs and fibroblasts derived from normal donors and chronic wound patients in order to characterize the induction of mobilization when these cells are mixed. A modified Boyden chamber assay was also used to examine the effect of soluble factors on fibroblast migration. These studies suggest that MSCs play a role in skin wound closure by affecting dermal fibroblast migration in a dose-dependent manner. Deficiencies were noted, however, in chronic wound patient fibroblasts and MSCs as compared with those derived from normal donors. These findings provide a foundation to develop therapies targeted specifically to the use of bone marrow-derived MSCs in wound healing and may provide insight into why some wounds do not heal. PMID:23197781
Rodriguez-Menocal, Luis; Salgado, Marcela; Ford, Dwayne; Van Badiavas, Evangelos
2012-03-01
Chronic wounds continue to be a major cause of morbidity for patients and an economic burden on the health care system. Novel therapeutic approaches to improved wound healing will need, however, to address cellular changes induced by a number of systemic comorbidities seen in chronic wound patients, such as diabetes, chronic renal failure, and arterial or venous insufficiency. These effects likely include impaired inflammatory cell migration, reduced growth factor production, and poor tissue remodeling. The multifunctional properties of bone marrow-derived mesenchymal stem cells (MSCs), including their ability to differentiate into various cell types and capacity to secrete factors important in accelerating healing of cutaneous wounds, have made MSCs a promising agent for tissue repair and regeneration. In this study we have used an in vitro scratch assay procedure incorporating labeled MSCs and fibroblasts derived from normal donors and chronic wound patients in order to characterize the induction of mobilization when these cells are mixed. A modified Boyden chamber assay was also used to examine the effect of soluble factors on fibroblast migration. These studies suggest that MSCs play a role in skin wound closure by affecting dermal fibroblast migration in a dose-dependent manner. Deficiencies were noted, however, in chronic wound patient fibroblasts and MSCs as compared with those derived from normal donors. These findings provide a foundation to develop therapies targeted specifically to the use of bone marrow-derived MSCs in wound healing and may provide insight into why some wounds do not heal.
Carter-Arnold, J L; Neilsen, N L; Amelse, L L; Odoi, A; Dhar, M S
2014-09-01
Stem cell therapies are used routinely in equine practice. Most published reports characterise stem cells derived from younger horses; however, middle-aged horses are often in athletic performance, and experience degenerative medical conditions. Thus, mesenchymal stem cells (MSCs) from this group should be investigated. To describe differences in in vitro adherence, proliferation and potential for differentiation of equine bone marrow-derived MSCs (equine BMMSCs) harvested from middle-aged (10-13 years old) female donors. Descriptive study of stem cell characteristics. Equine BMMSCs from 6 horses were cultured in vitro and evaluated for viability, proliferation, osteogenesis, chondrogenesis, adipogenesis, cluster-of-differentiation markers and gene expression. Equine BMMSCs from all 6 donors demonstrated fibroblastic, cellular morphology, adherence to plastic and expression of cluster-of-differentiation markers. They varied in their rate of proliferation and trilineage differentiation. The equine BMMSCs of one of 6 donors demonstrated a higher rate of proliferation, enhanced ability for cell passaging and a more robust in vitro differentiation. Comparatively, equine BMMSCs from 2 donors demonstrated a lower rate of proliferation and lack of osteogenic and chondrogenic differentiation. The results of this study confirm that donor-to-donor variation in equine BMMSCs exists and this variation can be documented using in vitro assays. Subjective assessment suggests that the rate of proliferation tends to correlate with differentiation potential. © 2013 EVJ Ltd.
Peripheral-blood stem cells versus bone marrow from unrelated donors.
Anasetti, Claudio; Logan, Brent R; Lee, Stephanie J; Waller, Edmund K; Weisdorf, Daniel J; Wingard, John R; Cutler, Corey S; Westervelt, Peter; Woolfrey, Ann; Couban, Stephen; Ehninger, Gerhard; Johnston, Laura; Maziarz, Richard T; Pulsipher, Michael A; Porter, David L; Mineishi, Shin; McCarty, John M; Khan, Shakila P; Anderlini, Paolo; Bensinger, William I; Leitman, Susan F; Rowley, Scott D; Bredeson, Christopher; Carter, Shelly L; Horowitz, Mary M; Confer, Dennis L
2012-10-18
Randomized trials have shown that the transplantation of filgrastim-mobilized peripheral-blood stem cells from HLA-identical siblings accelerates engraftment but increases the risks of acute and chronic graft-versus-host disease (GVHD), as compared with the transplantation of bone marrow. Some studies have also shown that peripheral-blood stem cells are associated with a decreased rate of relapse and improved survival among recipients with high-risk leukemia. We conducted a phase 3, multicenter, randomized trial of transplantation of peripheral-blood stem cells versus bone marrow from unrelated donors to compare 2-year survival probabilities with the use of an intention-to-treat analysis. Between March 2004 and September 2009, we enrolled 551 patients at 48 centers. Patients were randomly assigned in a 1:1 ratio to peripheral-blood stem-cell or bone marrow transplantation, stratified according to transplantation center and disease risk. The median follow-up of surviving patients was 36 months (interquartile range, 30 to 37). The overall survival rate at 2 years in the peripheral-blood group was 51% (95% confidence interval [CI], 45 to 57), as compared with 46% (95% CI, 40 to 52) in the bone marrow group (P=0.29), with an absolute difference of 5 percentage points (95% CI, -3 to 14). The overall incidence of graft failure in the peripheral-blood group was 3% (95% CI, 1 to 5), versus 9% (95% CI, 6 to 13) in the bone marrow group (P=0.002). The incidence of chronic GVHD at 2 years in the peripheral-blood group was 53% (95% CI, 45 to 61), as compared with 41% (95% CI, 34 to 48) in the bone marrow group (P=0.01). There were no significant between-group differences in the incidence of acute GVHD or relapse. We did not detect significant survival differences between peripheral-blood stem-cell and bone marrow transplantation from unrelated donors. Exploratory analyses of secondary end points indicated that peripheral-blood stem cells may reduce the risk of graft failure, whereas bone marrow may reduce the risk of chronic GVHD. (Funded by the National Heart, Lung, and Blood Institute-National Cancer Institute and others; ClinicalTrials.gov number, NCT00075816.).
Successful human long-term application of in situ bone tissue engineering
Horch, Raymund E; Beier, Justus P; Kneser, Ulrich; Arkudas, Andreas
2014-01-01
Tissue Engineering (TE) and Regenerative Medicine (RM) have gained much popularity because of the tremendous prospects for the care of patients with tissue and organ defects. To overcome the common problem of donor-site morbidity of standard autologous bone grafts, we successfully combined tissue engineering techniques for the first time with the arteriovenous loop model to generate vascularized large bone grafts. We present two cases of large bone defects after debridement of an osteomyelitis. One of the defects was localized in the radius and one in the tibia. For osseus reconstruction, arteriovenous loops were created as vascular axis, which were placed in the bony defects. In case 1, the bone generation was achieved using cancellous bone from the iliac crest and fibrin glue and in case 2 using a clinically approved β-tricalciumphosphate/hydroxyapatite (HA), fibrin glue and directly auto-transplanted bone marrow aspirate from the iliac crest. The following post-operative courses were uneventful. The final examinations took place after 36 and 72 months after the initial operations. Computer tomogrphy (CT), membrane resonance imaging (MRI) and doppler ultrasound revealed patent arterio-venous (AV) loops in the bone grafts as well as completely healed bone defects. The patients were pain-free with normal ranges of motion. This is the first study demonstrating successfully axially vascularized in situ tissue engineered bone generation in large bone defects in a clinical scenario using the arteriovenous loop model without creation of a significant donor-site defect utilizing TE and RM techniques in human patients with long-term stability. PMID:24801710
Liu, J W; Chao, L H; Su, L H; Wang, J W; Wang, C J
2002-04-01
To assess the contamination rate of allograft bones at retrieval and the infection rate of the implanted allograft bone, we audited a bone bank retrospectively and reviewed the medical charts of allograft bone recipients between June 1999 and June 2000 at a medical centre in southern Taiwan. The bone bank did its utmost to minimize allograft contamination with hospital-acquired pathogens by adopting purposefully designed criteria for selection of donors. This protocol included sterilization with soaking of the retrieved allograft in a solution of a first-generation cephalosporin before storage and prophylaxis in recipients with first-generation cephalosporin. The contamination rates at allograft retrieval from living and cadaveric donors were 2.7% and 12.4%, respectively (P<0.001). Culture of 262 specimens taken at allograft implant revealed 12 (4.6%) positive for culture. Of the 12 patients implanted with allograft bones positive for culture, nine (75.0%) had allograft bone infection, while three (25.0%) did not. Among the 250 recipients with sterile allograft bones, four (1.6%) were found to have allograft infection. None of the cases of infection required removal of the allograft bones, and all cases were successfully treated with tailored antimicrobial therapy based on susceptibility tests on isolated bacteria. The overall infection rate was 5.0%, which compared favourably with those in other series. A prospective cohort study is needed to determine which of the varied sterilization methodologies gives the best and/or most cost-effective outcome. Copyright 2002 The Hospital Infection Society.
Dutra Roos, Bruno; Valdomiro Roos, Milton; Camisa Júnior, Antero; Moreno Ungaretti Lima, Ezequiel; Noshang Pereira, Rafael; Luciano Zangirolami, Maurício; Machado de Albuquerque, Gisela
2014-01-01
To conduct an epidemiological analysis on the main microbiological markers in bone tissue that was processed at the musculoskeletal tissue bank of Hospital São Vicente de Paulo, in Passo Fundo, between August 2007 and October 2011. Between August 2007 and October 2011, 202 musculoskeletal tissue samples were collected for the tissue bank. Among these, 159 samples were from living donor patients and 43 were from cadaver donors. The following serological tests were requested: hepatitis B, hepatitis C, syphilis, cytomegalovirus, Chagas disease, toxoplasmosis, HIV and HTLV. Among the 159 living donors, 103 (64.75%) were men and 56 (35.25%) were women. The patients' mean age was 59.35 ± 8.87 years. Out of this total, 76 tissue samples (47.8%) from donors were rejected. There was no difference in the number of rejections in relation to sex (p = 0.135) or age (p = 0.523). The main cause of rejection was serologically positive findings for the hepatitis B virus, which was responsible for 48 rejections (63.15%). Among the 43 cadaver donors, the mean age was 37.84 ± 10.32 years. Of these, 27 (62.8%) were men and 16 (37.2%) were women. Six of the samples collected from cadaver donors were rejected (13.9%), and the main cause of rejection was serologically positive findings for the hepatitis C virus, which was responsible for three cases (50%). There was no significant difference in the number of rejections in relation to sex (p = 0.21) or age (p = 0.252). There were a greater number of rejections of tissues from living donors (47.8%) than from cadaver donors (13.9%). Among the living donors, the main cause of rejection was the presence of serologically positive findings of the hepatitis B virus, while among the cadaver donors, it was due to the hepatitis C virus.
Three new HLA-C alleles (HLA-C*14:02:13, HLA-C*15:72 and HLA-C*15:74) in Saudi bone marrow donors.
Fakhoury, H A; Jawdat, D; Alaskar, A S; Al Jumah, M; Cereb, N; Hajeer, A H
2015-10-01
Three new HLA-C alleles were identified by sequence-based typing method (SBT) in donors for the Saudi Bone Marrow Donor Registry (SBMDR). HLA-C*14:02:13 differs from HLA-C*14:02:01 by a silent G to A substitution at nucleotide position 400 in exon 2, where lysine at position 66 remains unchanged. HLA-C*15:72 differs from HLA-C*15:22 by a nonsynonymous C to A substitution at nucleotide position 796 in exon 3, resulting in an amino acid change from phenylalanine to leucine at position 116. HLA-C*15:74 differs from HLA-C*15:08 by a nonsynonymous C to T substitution at nucleotide position 914 in exon 3, resulting in an amino acid change from arginine to tryptophan at position 156. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Florschutz, Anthony Vatroslav
Utilization of bone grafts for the treatment of skeletal pathology is a common practice in orthopaedic, craniomaxillofacial, dental, and plastic surgery. Autogenous bone graft is the established archetype but has disadvantages including donor site morbidity, limited supply, and prolonging operative time. In order to avoid these and other issues, bone graft substitute materials are becoming increasingly prevalent among surgeons for reconstructing skeletal defects and arthrodesis applications. Bone graft substitutes are biomaterials, biologics, and guided tissue/bone regenerative devices that can be used alone or in combinations as supplements or alternatives to autogenous bone graft. There is a growing interest and trend to specialize graft substitutes for specific indications and although there is good rationale for this indication-specific approach, the development and utility of a more universal bone graft substitute may provide a better answer for patients and surgeons. The aim of the present research focuses on the design, synthesis, and initial evaluation of D-glyceraldehyde crosslinked gelatin-hydroxyapatite composites for potential use as a bone graft substitutes. After initial establishment of rational material design, gelatinhydroxyapatite scaffolds were fabricated with different gelatin:hydroxyapatite ratios and crosslinking concentrations. The synthesized scaffolds were subsequently evaluated on the basis of their swelling behavior, porosity, density, percent composition, mechanical properties, and morphology and further assessed with respect to cell-biomaterial interaction and biomineralization in vitro. Although none of the materials achieved mechanical properties suitable for structural graft applications, a reproducible material design and synthesis was achieved with properties recognized to facilitate bone formation. Select scaffold formulations as well as a subset of scaffolds loaded with recombinant human bone morphogenetic protein-2 were implanted ectopically in a rodent animal model and histologically evaluated for biocompatibility, degradation, and bone formation in vivo. The gelatin-hydroxyapatite scaffolds retained dimensional structure over 28 days and did not elicit any undesirable systemic or local effects. Distinct areas of mineralization and osteoid/bone were noted in all the implanted scaffolds and quantitative differences were primarily dependent on the presence of hydroxyapatite.
Acquired Aplastic Anemia: What Have We Learned and What Is in the Horizon?
Savaşan, Süreyya
2018-06-01
Acquired aplastic anemia (aAA) characterized by peripheral pancytopenia and bone marrow aplasia is a rare and serious disorder. Differential diagnosis includes constitutional bone marrow failure syndromes and myelodysplastic disorders. Autoimmune reaction to altered hematopoietic stem cells highlights the underlying mechanism. Matched related donor allogeneic hematopoietic stem cell transplantation is the ideal pediatric treatment; alternative approaches include immunosuppressive therapy and use of eltrombopag. Progression to clonal disorders can occur. Recently, alternative donor hematopoietic stem cell transplantation outcomes have significantly improved. Despite advances, aAA continues to be a challenge for hematologists. Copyright © 2018 Elsevier Inc. All rights reserved.
Yamanaka, Nobuko; Wong, Christine J.; Gertsenstein, Marina; Casper, Robert F.; Nagy, Andras; Rogers, Ian M.
2009-01-01
Background Mouse models of human disease are invaluable for determining the differentiation ability and functional capacity of stem cells. The best example is bone marrow transplants for studies of hematopoietic stem cells. For organ studies, the interpretation of the data can be difficult as transdifferentiation, cell fusion or surface antigen transfer (trogocytosis) can be misinterpreted as differentiation. These events have not been investigated in hematopoietic stem cell transplant models. Methodology/Principal Findings In this study we investigated fusion and trogocytosis involving blood cells during bone marrow transplantation using a xenograft model. We report that using a standard SCID repopulating assay almost 100% of the human donor cells appear as hybrid blood cells containing both mouse and human surface antigens. Conclusion/Significance Hybrid cells are not the result of cell-cell fusion events but appear to be due to efficient surface antigen transfer, a process referred to as trogocytosis. Antigen transfer appears to be non-random and includes all donor cells regardless of sub-type. We also demonstrate that irradiation preconditioning enhances the frequency of hybrid cells and that trogocytosis is evident in non-blood cells in chimera mice. PMID:20046883
The meniscal ossicle revisited: etiology and an arthroscopic technique for treatment.
Raustol, Ole A; Poelstra, Kornelis A; Chhabra, Annikar; Diduch, David R
2006-06-01
We describe a new arthroscopic technique for repair of meniscal ossicles in support of the theory that meniscal ossicles are traumatic in nature. Using a standard inferolateral portal, the arthroscope is passed under the posterior cruciate ligament to permit visualization of the "root" of the medial meniscus with a matching donor lesion on the tibia. A limited debridement should be performed of the donor site as well as the posterior horn of the meniscus if it has healed over with fibrocartilage to allow bone-to-bone healing. A posteromedial working portal is made at an angle amenable to the repair and a 6-mm cannula is placed. A Beath passing pin commonly used for anterior cruciate ligament reconstruction is used to pass suture for the outside-inside-out repair. The pin is passed through the cannula in the posterior medial portal. The root of the medial meniscus and the avulsed ossicle are pierced with the Beath pin and tensioned, after which the pin is drilled into the matching donor site and out through the tibia. Two passes are used to create a mattress suture through the ossicle, and the suture is tied over a bone bridge on the anterolateral tibia.
Modalities and future prospects of gene therapy in heart transplantation.
Vassalli, Giuseppe; Roehrich, Marc-Estienne; Vogt, Pierre; Pedrazzini, Giovanni B; Siclari, Francesco; Moccetti, Tiziano; von Segesser, Ludwig K
2009-06-01
Heart transplantation is the treatment of choice for many patients with end-stage heart failure. Its success, however, is limited by organ shortage, side effects of immunosuppressive drugs, and chronic rejection. Gene therapy is conceptually appealing for applications in transplantation, as the donor organ is genetically manipulated ex vivo before transplantation. Localised expression of immunomodulatory genes aims to create a state of immune privilege within the graft, which could eliminate the need for systemic immunosuppression. In this review, recent advances in the development of gene therapy in heart transplantation are discussed. Studies in animal models have demonstrated that genetic modification of the donor heart with immunomodulatory genes attenuates ischaemia-reperfusion injury and rejection. Alternatively, bone marrow-derived cells genetically engineered with donor-type major histocompatibility complex (MHC) class I or II promote donor-specific hyporesponsiveness. Genetic engineering of naïve T cells or dendritic cells may induce regulatory T cells and regulatory dendritic cells. Despite encouraging results in animal models, however, clinical gene therapy trials in heart transplantation have not yet been started. The best vector and gene to be delivered remain to be identified. Pre-clinical studies in non-human primates are needed. Nonetheless, the potential of gene therapy as an adjunct therapy in transplantation is essentially intact.
Lee, Seung-Jong; Kim, Euiseong
2012-08-01
The maintenance of the healthy periodontal ligament cells of the root surface of donor tooth and intimate surface contact between the donor tooth and the recipient bone are the key factors for successful tooth transplantation. In order to achieve these purposes, a duplicated donor tooth model can be utilized to reduce the extra-oral time using the computer-aided rapid prototyping (CARP) technique. Briefly, a three-dimensional digital imaging and communication in medicine (DICOM) image with the real dimensions of the donor tooth was obtained from a computed tomography (CT), and a life-sized resin tooth model was fabricated. Dimensional errors between real tooth, 3D CT image model and CARP model were calculated. And extra-oral time was recorded during the autotransplantation of the teeth. The average extra-oral time was 7 min 25 sec with the range of immediate to 25 min in cases which extra-oral root canal treatments were not performed while it was 9 min 15 sec when extra-oral root canal treatments were performed. The average radiographic distance between the root surface and the alveolar bone was 1.17 mm and 1.35 mm at mesial cervix and apex; they were 0.98 mm and 1.26 mm at the distal cervix and apex. When the dimensional errors between real tooth, 3D CT image model and CARP model were measured in cadavers, the average of absolute error was 0.291 mm between real teeth and CARP model. These data indicate that CARP may be of value in minimizing the extra-oral time and the gap between the donor tooth and the recipient alveolar bone in tooth transplantation.
Analysis of the motivation for hematopoietic stem cell donation.
Aurelio, M T; Aniasi, A; Haworth, S E; Colombo, M B; Dimonopoli, T; Mocellin, M C; Poli, F; Torelli, R; Crespiatico, L; Serafini, M; Scalamogna, M
2011-05-01
The Italian Bone Marrow Donor Register is the institutional organization for management of unrelated hematopoietic stem cell donors. The law requires only a donor's clinical history, but not a psychosocial profile for registration. We have studied the donor's motivation for enlistment on the donor registry and the medical staff's need for this information to interact correctly with the donor. For this purpose we distributed a questionnaire to new donors at the 20 centers in the Lombardy Region over a period of 1 year. The analysis of the responses revealed a prevalence of extrinsic motivations that would not ensure continued registration for donation. Therefore, it is necessary that the donor be well informed and better educated about all aspects of donation, in order to produce a shift to an intrinsic motivation. This objective can be facilitated via professional training of health workers in communication. Copyright © 2011 Elsevier Inc. All rights reserved.
Roberts, Carla; Kean, Leslie; Archer, David; Balkan, Can; Hsu, Lewis L
2005-01-01
Stable mixed chimeric stem cell transplantation in hemoglobinopathies exploits shorter erythroid survival in hemolytic anemias, providing normal donor red blood cells with a competitive survival advantage. This study examined the level of stable mixed chimerism necessary for complete hematological cure of the thalassemic phenotype, using a nonmyeloablative busulfan chemotherapeutic preparation. Thalassemic mice transplanted from congenic wild-type donors developed partial mixed chimerism. Hematologic cure required >80% donor red blood cells and only >13% donor white blood cells. Murine and human transplant results were compared with a math model for survival advantage of donor peripheral blood cells produced by steady-state chimeric marrow.
Marks, D I; Gale, D J; Vedhara, K; Bird, J M
1999-07-01
There are few specific data available concerning quality of life (QOL) of survivors of unrelated donor bone marrow transplantation (UD-BMT). The procedure is expensive, difficult and is being employed increasingly yet we have little information concerning the QOL of survivors to justify this intervention. In this study, 20 long-term (>1 year post-BMT) survivors were studied with four self report questionnaires designed to assess quality of life, satisfaction with life, social support and employment status. Overall, satisfaction with life measures was above average but there was dissatisfaction with physical strength and appearance. The post-transplant employment data indicates that 60% of long-term survivors returned to full-time work and 15% to part-time work. Failure to return to work was not correlated with graft-versus-host disease (GVHD), relapse, age at or time since transplant. In general, there was a good correlation between the clinician's and patient's view of their health but the clinician's assessment of the patients mental health and energy was higher than the patients reported. Further research is required in the area of QOL post-UD-BMT. This will enable transplant physicians to counsel patients better pre-BMT and to evaluate fully the results achieved by different centres performing the procedure.
Mechanisms Inducing Low Bone Density in Duchenne Muscular Dystrophy in Mice and Humans
Rufo, Anna; Del Fattore, Andrea; Capulli, Mattia; Carvello, Francesco; De Pasquale, Loredana; Ferrari, Serge; Pierroz, Dominique; Morandi, Lucia; De Simone, Michele; Rucci, Nadia; Bertini, Enrico; Bianchi, Maria Luisa; De Benedetti, Fabrizio; Teti, Anna
2011-01-01
Patients affected by Duchenne muscular dystrophy (DMD) and dystrophic MDX mice were investigated in this study for their bone phenotype and systemic regulators of bone turnover. Micro–computed tomographic (µCT) and histomorphometric analyses showed reduced bone mass and higher osteoclast and bone resorption parameters in MDX mice compared with wild-type mice, whereas osteoblast parameters and mineral apposition rate were lower. In a panel of circulating pro-osteoclastogenic cytokines evaluated in the MDX sera, interleukin 6 (IL-6) was increased compared with wild-type mice. Likewise, DMD patients showed low bone mineral density (BMD) Z-scores and high bone-resorption marker and serum IL-6. Human primary osteoblasts from healthy donors incubated with 10% sera from DMD patients showed decreased nodule mineralization. Many osteogenic genes were downregulated in these cultures, including osterix and osteocalcin, by a mechanism blunted by an IL-6-neutralizing antibody. In contrast, the mRNAs of osteoclastogenic cytokines IL6, IL11, inhibin-βA, and TGFβ2 were increased, although only IL-6 was found to be high in the circulation. Consistently, enhancement of osteoclastogenesis was noted in cultures of circulating mononuclear precursors from DMD patients or from healthy donors cultured in the presence of DMD sera or IL-6. Circulating IL-6 also played a dominant role in osteoclast formation because ex vivo wild-type calvarial bones cultured with 10% sera of MDX mice showed increase osteoclast and bone-resorption parameters that were dampen by treatment with an IL-6 antibody. These results point to IL-6 as an important mediator of bone loss in DMD and suggest that targeted anti-IL-6 therapy may have a positive impact on the bone phenotype in these patients. © 2011 American Society for Bone and Mineral Research PMID:21509823
Hematopoietic stem cell transplantation for acquired aplastic anemia
Georges, George E.; Storb, Rainer
2016-01-01
Purpose of review There has been steady improvement in outcomes with allogeneic bone marrow transplantation (BMT) for severe aplastic anemia (SAA), due to progress in optimization of the conditioning regimens, donor hematopoietic cell source and supportive care. Here we review recently published data that highlight the improvements and current issues in the treatment of SAA. Recent findings Approximately one-third of AA patients treated with immune suppression therapy (IST) have acquired mutations in myeloid cancer candidate genes. Because of the greater probability for eventual failure of IST, human leukocyte antigen (HLA)-matched sibling donor BMT is the first-line of treatment for SAA. HLA-matched unrelated donor (URD) BMT is generally recommended for patients who have failed IST. However, in younger patients for whom a 10/10-HLA-allele matched URD can be rapidly identified, there is a strong rationale to proceed with URD BMT as first-line therapy. HLA-haploidentical BMT using post-transplant cyclophosphamide (PT-CY) conditioning regimens, is now a reasonable second-line treatment for patients who failed IST. Summary Improved outcomes have led to an increased first-line role of BMT for treatment of SAA. The optimal cell source from an HLA-matched donor is bone marrow. Additional studies are needed to determine the optimal conditioning regimen for HLA-haploidentical donors. PMID:27607445
Newman-Gage, H; Bravo, D; Holmberg, L; Mason, J; Eisenhower, M; Nekhani, N; Fantel, A
2000-01-01
We initiated this study to evaluate the suitability for therapeutic use in transplantation of tissues obtained from human abortuses. We have developed protocols for the collection, handling and preservation of hepatic stem cells from electively aborted embryos and have developed methods for assessment of the cells so derived and processed. In this paper we present our findings regarding screening of potential donors, acquisition of fetal tissues, and assessment of the tissues for potentially infectious contaminants. We assess the suitability of the tissue donors according to current standards used for donors of commonly transplanted tissues (e.g., bone grafts, skin grafts and heart valves) and present data regarding the real availability of tissues from elective abortion procedures that would meet those standard tissue banking criteria.We specifically evaluated the donor's willingness to provide a blood sample for testing, conducted a detailed interview similar to those used for typical organ and tissue donors, and assessed the type and incidence of contamination in collected tissues. We find that although many women are willing to consent to use of the tissues for transplantation, attrition from the study for various reasons results in few fetal organs ultimately realistically available for transplantation. Typical reasons for attrition include: unwillingness to have a blood sample drawn or tested, positive serology results, social/medical high risk factors for acquisition of transmissible disease, no identifiable organs available, and unacceptable microbial contamination. Thus, although it might seem that due to the numbers of abortions performed annually, that there would be substantial numbers of suitable tissues available, only a small proportion are truly suitable for transplantation.
Erickson, Isaac E; van Veen, Steven C; Sengupta, Swarnali; Kestle, Sydney R; Mauck, Robert L
2011-10-01
Cartilage degeneration is common in the aged, and aged chondrocytes are inferior to juvenile chondrocytes in producing cartilage-specific extracellular matrix. Mesenchymal stem cells (MSCs) are an alternative cell type that can differentiate toward the chondrocyte phenotype. Aging may influence MSC chondrogenesis but remains less well studied, particularly in the bovine system. The objectives of this study were (1) to confirm age-related changes in bovine articular cartilage, establish how age affects chondrogenesis in cultured pellets for (2) chondrocytes and (3) MSCs, and (4) determine age-related changes in the biochemical and biomechanical development of clinically relevant MSC-seeded hydrogels. Native bovine articular cartilage from fetal (n = 3 donors), juvenile (n = 3 donors), and adult (n = 3 donors) animals was analyzed for mechanical and biochemical properties (n = 3-5 per donor). Chondrocyte and MSC pellets (n = 3 donors per age) were cultured for 6 weeks before analysis of biochemical content (n = 3 per donor). Bone marrow-derived MSCs of each age were also cultured within hyaluronic acid hydrogels for 3 weeks and analyzed for matrix deposition and mechanical properties (n = 4 per age). Articular cartilage mechanical properties and collagen content increased with age. We observed robust matrix accumulation in three-dimensional pellet culture by fetal chondrocytes with diminished collagen-forming capacity in adult chondrocytes. Chondrogenic induction of MSCs was greater in fetal and juvenile cell pellets. Likewise, fetal and juvenile MSCs in hydrogels imparted greater matrix and mechanical properties. Donor age and biochemical microenvironment were major determinants of both bovine chondrocyte and MSC functional capacity. In vitro model systems should be evaluated in the context of age-related changes and should be benchmarked against human MSC data.
Walters, Brian L; Porter, David A; Hobart, Sarah J; Bedford, Benjamin B; Hogan, Daniel E; McHugh, Malachy M; Klein, Devon A; Harousseau, Kendall; Nicholas, Stephen J
2018-05-01
Donor site morbidity in the form of anterior knee pain is a frequent complication after bone-patellar tendon-bone (BPTB) autograft anterior cruciate ligament (ACL) reconstruction. Hypothesis/Purpose: The purpose was to examine the effect of the intraoperative administration of platelet-rich plasma (PRP) on postoperative kneeling pain. It was hypothesized that PRP treatment would reduce knee pain. Randomized controlled trial; Level of evidence, 2. Fifty patients (mean ± SD age, 30 ± 12 years) undergoing BPTB ACL autograft reconstruction were randomized to the PRP (n = 27) or sham (n = 23) treatment. In either case, 10 mL of venous blood was drawn before the induction of anesthesia and either discarded (sham) or processed (PRP) for preparation of a PRP gel to be later mixed with donor site bone chips and inserted into the patellar defect. At 12 weeks, 6 months, 1 year, and 2 years after surgery, patients completed International Knee Documentation Committee (IKDC) forms and visual analog scale pain scores for activities of daily living and kneeling. Healing indices at the donor site were assessed by routine noncontrast magnetic resonance imaging (MRI) at 6 months. Mixed-model analysis of variance was used to assess the effect of PRP on patient symptoms and MRI indices of donor site healing, as measured by the width of the donor site defect. Kneeling pain, pain with activities of daily living, and IKDC scores were not different between treatment groups at any of the time intervals ( P = .08-.83). Kneeling pain improved from 12 weeks to 6 months and from 1 to 2 years ( P < .05). IKDC scores improved substantially from 12 weeks to 6 months ( P < .001) and continued to improve to 2 years (PRP, 86 ± 19; sham, 89 ± 10). MRI indices of donor site healing were not different between treatment groups ( P = .53-.90). Whether randomized to receive PRP in their patellar defect or not, patients continued to have similar levels of kneeling pain and patellar defect sizes after autograft BPTB ACL reconstruction. Registration: NCT01765712 ( ClinicalTrials.gov identifier).
Kim, Il-Kyu; Cho, Hyun-Young; Pae, Sang-Pill; Jung, Bum-Sang; Cho, Hyun-Woo; Seo, Ji-Hoon
2013-12-01
Oral and maxillofacial defects often require bone grafts to restore missing tissues. Well-recognized donor sites include the anterior and posterior iliac crest, rib, and intercalvarial diploic bone. The proximal tibia has also been explored as an alternative donor site. The use of the tibia for bone graft has many benefits, such as procedural ease, adequate volume of cancellous and cortical bone, and minimal complications. Although patients rarely complain of pain, swelling, discomfort, or dysfunction, such as gait disturbance, both patients and surgeons should pay close attention to such after effects due to the possibility of tibial fracture. The purpose of this study is to analyze tibial fractures that occurring after osteotomy for a medioproximal tibial graft. An analysis was intended for patients who underwent medioproximal tibial graft between March 2004 and December 2011 in Inha University Hospital. A total of 105 subjects, 30 females and 75 males, ranged in age from 17 to 78 years. We investigated the age, weight, circumstance, and graft timing in relation to tibial fracture. Tibial fractures occurred in four of 105 patients. There were no significant differences in graft region, shape, or scale between the fractured and non-fractured patients. Patients who undergo tibial grafts must be careful of excessive external force after the operation.
Zhao, Yi; Zhan, Yuxia; Burke, Kathleen A; Anderson, W French
2005-04-01
Ionizing radiation-induced myeloablation can be rescued via bone marrow transplantation (BMT) or administration of cytokines if given within 2 hours after radiation exposure. There is no evidence for the existence of soluble factors that can rescue an animal after a lethal dose of radiation when administered several hours postradiation. We established a system that could test the possibility for the existence of soluble factors that could be used more than 2 hours postirradiation to rescue animals. Animals with an implanted TheraCyte immunoisolation device (TID) received lethal-dose radiation and then normal bone marrow Lin- cells were loaded into the device (thereby preventing direct interaction between donor and recipient cells). Animal survival was evaluated and stem cell activity was tested with secondary bone marrow transplantation and flow cytometry analysis. Donor cell gene expression of five antiapoptotic cytokines was examined. Bone marrow Lin- cells rescued lethally irradiated animals via soluble factor(s). Bone marrow cells from the rescued animals can rescue and repopulate secondary lethally irradiated animals. Within the first 6 hours post-lethal-dose radiation, there is no significant change of gene expression of the known radioprotective factors TPO, SCF, IL-3, Flt-3 ligand, and SDF-1. Hematopoietic stem cells can be protected in lethally irradiated animals by soluble factors produced by bone marrow Lin- cells.
González-Sánchez, M Isabel; Perni, Stefano; Tommasi, Giacomo; Morris, Nathanael Glyn; Hawkins, Karl; López-Cabarcos, Enrique; Prokopovich, Polina
2015-05-01
Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods: entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2 days. Copyright © 2015. Published by Elsevier B.V.
Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications
González-Sánchez, M. Isabel; Perni, Stefano; Tommasi, Giacomo; Morris, Nathanael Glyn; Hawkins, Karl; López-Cabarcos, Enrique; Prokopovich, Polina
2015-01-01
Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods: entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2 days. PMID:25746278
Li, Zicong; He, Xiaoyan; Chen, Liwen; Shi, Junsong; Zhou, Rong; Xu, Weihua
2013-01-01
Abstract The somatic cell nuclear transfer (SCNT) technique has been widely applied to clone pigs or to produce genetically modified pigs. Currently, this technique relies mainly on using terminally differentiated fibroblasts as donor cells. To improve cloning efficiency, only partially differentiated multipotent mesenchymal stem cells (MSCs), thought to be more easily reprogrammed to a pluripotent state, have been used as nuclear donors in pig SCNT. Although in vitro–cultured embryos cloned from porcine MSCs (MSCs-embryos) were shown to have higher preimplantation developmental ability than cloned embryos reconstructed from fibroblasts (Fs-embryos), the difference in in vivo full-term developmental rate between porcine MSCs-embryos and Fs-embryos has not been investigated so far. In this study, we demonstrated that blastocyst total cell number and full-term survival abilities of MSCs-embryos were significantly higher than those of Fs-embryos cloned from the same donor pig. The enhanced developmental potential of MSCs-embryos may be associated with their nuclear donors' DNA methylation profile, because we found that the methylation level of imprinting genes and repeat sequences differed between MSCs and fibroblasts. In addition, we showed that use of transgenic porcine MSCs generated from transgene plasmid transfection as donor cells for SCNT can produce live transgenic cloned pigs. These results strongly suggest that porcine bone marrow MSCs are a desirable donor cell type for production of cloned pigs and genetically modified cloned pigs via SCNT. PMID:24033142
Smythe, Claire; White, Nicola; Winter, Joyleen; Cowie, Anne
2015-06-01
Femoral head donation at the time of hip replacement surgery provides a much needed resource of bone allograft to orthopaedic surgeons. Prior to 2005, potential femoral head donors were identified and consented in the hospital setting on the day of surgery. This resulted in over 40 % of donations failing post operatively suggesting that more effort could be given to pre-operative screening resulting in substantial savings in the cost associated with collection and testing of donors who were subsequently failed. The Donor Liaison role was implemented in 2005 to coordinate a Femoral Head Donation program maximising the number of successful donations through pre-operative screening. This study reviews the effectiveness of pre-operative screening of potential femoral head donors at PlusLife from 2002-2012. A retrospective audit of the database was undertaken 2002-2012 and medical/social reasons for pre-operative and postoperative failures were collated into 4 main categories to enable comparison: malignancy, autoimmune conditions, variant Creutzfeldt Jakob disease risk and general medical/social reasons. The number of femoral heads failed post operatively has decreased significantly from 26 % in 2003 to 6 % in 2012. A cost of $121,000 was expended on femoral heads failed post operatively in 2004, as compared to $20,350 in 2012. Donors excluded due to the 4 main categories (medical/social history) were identified pre-operatively in over 80 % of all cases. Preoperative screening of femoral head donors through a coordinated Femoral Head Donation Program is a safe and cost effective method.
Hanser, Thomas; Doliveux, Romain
The aim of this randomized prospective split-mouth clinical trial was to evaluate the outcome of bone block harvesting from the retromolar region using the MicroSaw and Piezosurgery. Fifty-three patients for extensive bilateral bone grafting procedures with or without concomitant implant placement in the maxilla and/or mandible were scheduled. In each patient, bone blocks were harvested in the retromolar area within the external oblique ridge of the mandible. Using a randomized protocol, bone blocks were harvested with the MicroSaw and Piezosurgery either from the right or the left side. Clinical outcome parameters were the comparison of osteotomy time; volume of block graft; and clinical determination of intraoperative complications such as hemorrhage, nerve injury, pain, swelling, and healing of the donor site. The mean osteotomy time for harvesting including luxating a bone block was 5.63 (± 1.37) minutes using the MicroSaw and 16.47 (± 2.74) minutes using Piezosurgery (P < .05). A mean graft volume of 1.62 (± 0.27) cm 3 was measured with the MicroSaw and 1.26 (± 0.27) cm 3 with the piezoelectric surgical device (P < .05). No heavy bleeding at the donor site occurred in any of the cases. Complications due to injury of adjacent teeth or nerve lesion of the mandibular nerve were not observed in any cases. According to a scale, there was little postoperative pain with both instruments, and it decreased within 14 days postoperatively (P > .05). Swelling did not appear significantly different either (P > .05), and none of the donor sites showed primary healing complications. The data described in this randomized prospective split-mouth clinical trial indicate that the MicroSaw and Piezosurgery allowed efficient and safe bone block harvesting from the external oblique ridge. Clinically, concerning harvesting time and volume of the grafts, the MicroSaw performed significantly better, whereas pain, swelling, and healing did not appear to be considerably different. Given the improved visibility, precise cut geometries, and the margin of safety afforded by the MicroSaw and Piezosurgery, they are both instruments of choice when harvesting bone from the retromolar area.
Avery, C M E; Best, A; Patterson, P; Rolton, J; Ponter, A R S
2007-09-01
This study investigated the strengthening effect of different types of plate and position after osteotomy of the sheep tibia, which is a model for the radial osteocutaneous donor site. Fifty matched pairs of adult sheep tibias were tested in torsion and four-point bending. Firstly, the weakening effect of an osteotomy was compared with the intact bone. Then pairs of bones with an osteotomy were compared with and without reinforcement with different types of 3.5mm plate. The plate was placed in either the anterior (over the defect) or posterior (on the intact cortex) position. In torsion the mean strength of the intact bone was 45% greater than after osteotomy (P=0.02). The reinforced bone was on average 61% stronger than the unreinforced bone (P<0.001). In bending the mean strength of the intact bone was 188% greater than after osteotomy (P=0.02). The reinforced bone was on average 184% stronger then the unreinforced bone (P<0.001). The tibia was able to withstand much greater loads in bending. The dynamic compression plate was the strongest reinforcement in both torsion and bending. The position of the plate did not alter the strengthening effect in torsion but the posterior position resisted greater bending loads (P=0.01). This may not be relevant in clinical practice as the radius is likely to fracture first as a result of lower torsional forces.
Kuang, Guan-Ming; Yau, W P; Lu, William W; Chiu, K Y
2010-08-01
Anterior cruciate ligament reconstruction with a soft tissue autograft (hamstring autograft) has grown in popularity in the last 10 years. However, the issues of a relatively long healing time and an inferior histological healing result in terms of Sharpey-like fibers connection in soft tissue grafts are still unsolved. To obtain a promising outcome in the long run, prompt osteointegration of the tendon graft within the bone tunnel is essential. In recent decades, numerous methods have been reported to enhance osteointegration of soft tissue graft in the bone tunnel. In this article, we review the current literature in this research area, mainly focusing on strategies applied to the local bone tunnel environment. Biological strategies such as stem cell and gene transfer technology, as well as the local application of specific growth factors have been reported to yield exciting results. The use of biological bone substitute and physical stimulation also obtained promising results. Artificially engineered tissue has promise as a solution to the problem of donor site morbidity. Despite these encouraging results, the current available evidence is still experimental. Further clinical studies in terms of randomized control trial in the future should be conducted to extrapolate these basic science study findings into clinical practice.
Successful human long-term application of in situ bone tissue engineering.
Horch, Raymund E; Beier, Justus P; Kneser, Ulrich; Arkudas, Andreas
2014-07-01
Tissue Engineering (TE) and Regenerative Medicine (RM) have gained much popularity because of the tremendous prospects for the care of patients with tissue and organ defects. To overcome the common problem of donor-site morbidity of standard autologous bone grafts, we successfully combined tissue engineering techniques for the first time with the arteriovenous loop model to generate vascularized large bone grafts. We present two cases of large bone defects after debridement of an osteomyelitis. One of the defects was localized in the radius and one in the tibia. For osseus reconstruction, arteriovenous loops were created as vascular axis, which were placed in the bony defects. In case 1, the bone generation was achieved using cancellous bone from the iliac crest and fibrin glue and in case 2 using a clinically approved β-tricalciumphosphate/hydroxyapatite (HA), fibrin glue and directly auto-transplanted bone marrow aspirate from the iliac crest. The following post-operative courses were uneventful. The final examinations took place after 36 and 72 months after the initial operations. Computer tomogrphy (CT), membrane resonance imaging (MRI) and doppler ultrasound revealed patent arterio-venous (AV) loops in the bone grafts as well as completely healed bone defects. The patients were pain-free with normal ranges of motion. This is the first study demonstrating successfully axially vascularized in situ tissue engineered bone generation in large bone defects in a clinical scenario using the arteriovenous loop model without creation of a significant donor-site defect utilizing TE and RM techniques in human patients with long-term stability. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Todor, Adrian; Caterev, Sergiu; Nistor, Dan Viorel; Khallouki, Youssef
2016-06-01
The most commonly used autografts for anterior cruciate ligament reconstruction are the bone-patellar tendon-bone and hamstring tendons. Each has its advantages and limitations. The bone-patellar tendon-bone autograft can lead to more donor-site morbidity, and the hamstring autograft can be unpredictable in size. The quadriceps tendon, with or without a bone block, has been described as an alternative graft source and has been used especially in revision cases, but in recent years, it has attracted attention even for primary cases. We report a technique for harvesting a free bone quadriceps tendon graft and attaching an extracortical button for femoral fixation for anterior cruciate ligament reconstruction.
Mauriello, Alessandro; Giacobbi, Erica; Saggini, Andrea; Isgrò, Antonella; Facchetti, Simone; Anemona, Lucia
2017-04-01
Bone marrow histological features of sickle cell anaemia (SCA) patients during early stages and in the asymptomatic phase of the disease appear an interesting area of study, representing early-stage consequences of SCA with a close relation to its pathophysiology. Unfortunately, this field of research has never been specifically addressed before. Bone marrow biopsies from 26 consecutive Black African SCA patients (M:F=1.6:1; age 2-17 years), free of clinical signs of chronic bone marrow damage, with no recent history of symptomatic vaso-occlusive episodes, and waiting for haematopoietic stem cell transplantation (HSCT), underwent morphological, immunohistochemical and electron microscopy evaluation. Additional comparison with three bone marrow specimens from post-HSCT SCA patients and 10 bone marrow specimens from AS healthy carriers was performed. Bone marrow of SCA patients was normocellular or slighly hypercellular in all cases. Erythroid hyperplasia was a common feature. Myeloid lineage was slightly decreased with normal to slightly diminished neutrophilic granulocytes; CD68 positive monocytic-macrophagic cells appeared slightly increased, with a predominant CD163 positive M2/M(Hb) phenotype. A positive correlation was found between haemoglobin values and number of bone marrow erythroid cells (R 2 =0.15, p=0.05). Intravascular and interstitial clusters of erythroid sickle cells were found in bone marrow of pre-HSCT homozygous SS SCA patients, as well as heterozygous AS healthy carriers, and the single post-HSCT patient matched to an AS health carrier donor. Copyright © 2017 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.
Im, Owen; Li, Jian; Wang, Mian; Zhang, Lijie Grace; Keidar, Michael
2012-01-01
Background Many shortcomings exist in the traditional methods of treating bone defects, such as donor tissue shortages for autografts and disease transmission for allografts. The objective of this study was to design a novel three-dimensional nanostructured bone substitute based on magnetically synthesized single-walled carbon nanotubes (SWCNT), biomimetic hydrothermally treated nanocrystalline hydroxyapatite, and a biocompatible hydrogel (chitosan). Both nanocrystalline hydroxyapatite and SWCNT have a biomimetic nanostructure, excellent osteoconductivity, and high potential to improve the load-bearing capacity of hydrogels. Methods Specifically, three-dimensional porous chitosan scaffolds with different concentrations of nanocrystalline hydroxyapatite and SWCNT were created to support the growth of human osteoblasts (bone-forming cells) using a lyophilization procedure. Two types of SWCNT were synthesized in an arc discharge with a magnetic field (B-SWCNT) and without a magnetic field (N-SWCNT) for improving bone regeneration. Results Nanocomposites containing magnetically synthesized B-SWCNT had superior cytocompatibility properties when compared with nonmagnetically synthesized N-SWCNT. B-SWCNT have much smaller diameters and are twice as long as their nonmagnetically prepared counterparts, indicating that the dimensions of carbon nanotubes can have a substantial effect on osteoblast attachment. Conclusion This study demonstrated that a chitosan nanocomposite with both B-SWCNT and 20% nanocrystalline hydroxyapatite could achieve a higher osteoblast density when compared with the other experimental groups, thus making this nanocomposite promising for further exploration for bone regeneration. PMID:22619545
Kaludjerovic, Jovana; Ward, Wendy E
2015-10-01
Female mice exposed to soy isoflavones (ISO) during early postnatal life have improved bone outcomes at adulthood. Since long-lasting effects may be mediated by DNA methylation, we hypothesized that providing supplemental folic acid (FA), a methyl donor, during early life, would enhance the positive effect of ISO to bone health. Bone-specific gene expression patterns were studied to understand potential mechanisms. CD-1 dams (n=36) were randomized to adequate or supplemental levels of FA (2 or 8 mg/kg diet) during pregnancy and lactation, and offspring received corn oil or ISO (7 mg/kg body weight/d) from postnatal day 1 to 10. From weaning, pups were fed an adequate FA diet and were studied to 4 months of age. Female offspring exposed to supplemental FA+ISO had higher bone mineral density (BMD), trabecular connectivity and peak load at the lumbar spine compared to females exposed to adequate FA. Female offspring exposed to adequate FA+ISO or supplemental FA had higher (P<.05) BMD and greater resistance to fracture at the lumbar spine and the femur; higher trabecular connectivity at the lumbar spine; and lower expression of DNA methyltransferase 3a (Dnmt3a) and neuropeptide Y (NPY) in the femur compared to mice exposed to adequate FA. In addition, only mice exposed to adequate FA+ISO had microstructural improvements at the femur neck and higher serum osteoprotegrin (OPG) and insulin growth factor-I (IGF-I). In summary, exposure to supplemental FA did not enhance the positive effect of ISO in bone. However, exposure to adequate FA+ISO or supplemental FA improved bone at least in part by suppressing Dnmt3a and NPY. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Cellular bone matrices: viable stem cell-containing bone graft substitutes
Skovrlj, Branko; Guzman, Javier Z.; Al Maaieh, Motasem; Cho, Samuel K.; Iatridis, James C.; Qureshi, Sheeraz A.
2015-01-01
BACKGROUND CONTEXT Advances in the field of stem cell technology have stimulated the development and increased use of allogenic bone grafts containing live mesenchymal stem cells (MSCs), also known as cellular bone matrices (CBMs). It is estimated that CBMs comprise greater than 17% of all bone grafts and bone graft substitutes used. PURPOSE To critically evaluate CBMs, specifically their technical specifications, existing published data supporting their use, US Food and Drug Administration (FDA) regulation, cost, potential pitfalls, and other aspects pertaining to their use. STUDY DESIGN Areview of literature. METHODS A series of Ovid, Medline, and Pubmed-National Library of Medicine/National Institutes of Health (www.ncbi.nlm.nih.gov) searches were performed. Only articles in English journals or published with English language translations were included. Level of evidence of the selected articles was assessed. Specific technical information on each CBM was obtained by direct communication from the companies marketing the individual products. RESULTS Five different CBMs are currently available for use in spinal fusion surgery. There is a wide variation between the products with regard to the average donor age at harvest, total cellular concentration, percentage of MSCs, shelf life, and cell viability after defrosting. Three retrospective studies evaluating CBMs and fusion have shown fusion rates ranging from 90.2% to 92.3%, and multiple industry-sponsored trials are underway. No independent studies evaluating spinal fusion rates with the use of CBMs exist. All the commercially available CBMs claim to meet the FDA criteria under Section 361, 21 CFR Part 1271, and are not undergoing FDA premarket review. The CBMs claim to provide viable MSCs and are offered at a premium cost. Numerous challenges exist in regard to MSCs’ survival, function, osteoblastic potential, and cytokine production once implanted into the intended host. CONCLUSIONS Cellular bone matrices may be a promising bone augmentation technology in spinal fusion surgery. Although CBMs appear to be safe for use as bone graft substitutes, their efficacy in spinal fusion surgery remains highly inconclusive. Large, nonindustry sponsored studies evaluating the efficacy of CBMs are required. Without results from such studies, surgeons must be made aware of the potential pitfalls of CBMs in spinal fusion surgery. With the currently available data, there is insufficient evidence to support the use of CBMs as bone graft substitutes in spinal fusion surgery. PMID:24929059
Cellular bone matrices: viable stem cell-containing bone graft substitutes.
Skovrlj, Branko; Guzman, Javier Z; Al Maaieh, Motasem; Cho, Samuel K; Iatridis, James C; Qureshi, Sheeraz A
2014-11-01
Advances in the field of stem cell technology have stimulated the development and increased use of allogenic bone grafts containing live mesenchymal stem cells (MSCs), also known as cellular bone matrices (CBMs). It is estimated that CBMs comprise greater than 17% of all bone grafts and bone graft substitutes used. To critically evaluate CBMs, specifically their technical specifications, existing published data supporting their use, US Food and Drug Administration (FDA) regulation, cost, potential pitfalls, and other aspects pertaining to their use. Areview of literature. A series of Ovid, Medline, and Pubmed-National Library of Medicine/National Institutes of Health (www.ncbi.nlm.nih.gov) searches were performed. Only articles in English journals or published with English language translations were included. Level of evidence of the selected articles was assessed. Specific technical information on each CBM was obtained by direct communication from the companies marketing the individual products. Five different CBMs are currently available for use in spinal fusion surgery. There is a wide variation between the products with regard to the average donor age at harvest, total cellular concentration, percentage of MSCs, shelf life, and cell viability after defrosting. Three retrospective studies evaluating CBMs and fusion have shown fusion rates ranging from 90.2% to 92.3%, and multiple industry-sponsored trials are underway. No independent studies evaluating spinal fusion rates with the use of CBMs exist. All the commercially available CBMs claim to meet the FDA criteria under Section 361, 21 CFR Part 1271, and are not undergoing FDA premarket review. The CBMs claim to provide viable MSCs and are offered at a premium cost. Numerous challenges exist in regard to MSCs' survival, function, osteoblastic potential, and cytokine production once implanted into the intended host. Cellular bone matrices may be a promising bone augmentation technology in spinal fusion surgery. Although CBMs appear to be safe for use as bone graft substitutes, their efficacy in spinal fusion surgery remains highly inconclusive. Large, nonindustry sponsored studies evaluating the efficacy of CBMs are required. Without results from such studies, surgeons must be made aware of the potential pitfalls of CBMs in spinal fusion surgery. With the currently available data, there is insufficient evidence to support the use of CBMs as bone graft substitutes in spinal fusion surgery. Copyright © 2014 Elsevier Inc. All rights reserved.
Miceli, Ana Lucia Carpi; Pereira, Livia Costa; Torres, Thiago da Silva; Calasans-Maia, Mônica Diuana; Louro, Rafael Seabra
2017-12-01
Autogenous bone grafts are the gold standard for reconstruction of atrophic jaws, pseudoarthroses, alveolar clefts, orthognathic surgery, mandibular discontinuity, and augmentation of sinus maxillary. Bone graft can be harvested from iliac bone, calvarium, tibial bone, rib, and intraoral bone. Proximal tibia is a common donor site with few reported problems compared with other sites. The aim of this study was to evaluate the use of proximal tibia as a donor area for maxillofacial reconstructions, focusing on quantifying the volume of cancellous graft harvested by a lateral approach and to assess the complications of this technique. In a retrospective study, we collected data from 31 patients, 18 women and 13 men (mean age: 36 years, range: 19-64), who were referred to the Department of Oral and Maxillofacial Surgery at the Servidores do Estado Federal Hospital. Patients were treated for sequelae of orthognathic surgery, jaw fracture, nonunion, malunion, pathology, and augmentation of bone volume to oral implant. The technique of choice was lateral access of proximal tibia metaphysis for graft removal from Gerdy tubercle under general anesthesia. The mean volume of bone harvested was 13.0 ± 3.7 mL (ranged: 8-23 mL). Only five patients (16%) had minor complications, which included superficial infection, pain, suture dehiscence, and unwanted scar. However, none of these complications decreases the result and resolved completely. We conclude that proximal tibia metaphysis for harvesting cancellous bone graft provides sufficient volume for procedures in oral and maxillofacial surgery with minimal postoperative morbidity.
Ismail, Tarek; Osinga, Rik; Todorov, Atanas; Haumer, Alexander; Tchang, Laurent A; Epple, Christian; Allafi, Nima; Menzi, Nadia; Largo, René D; Kaempfen, Alexandre; Martin, Ivan; Schaefer, Dirk J; Scherberich, Arnaud
2017-11-01
Avascular necrosis of bone (AVN) leads to sclerosis and collapse of bone and joints. The standard of care, vascularized bone grafts, is limited by donor site morbidity and restricted availability. The aim of this study was to generate and test engineered, axially vascularized SVF cells-based bone substitutes in a rat model of AVN. SVF cells were isolated from lipoaspirates and cultured onto porous hydroxyapatite scaffolds within a perfusion-based bioreactor system for 5days. The resulting constructs were inserted into devitalized bone cylinders mimicking AVN-affected bone. A ligated vascular bundle was inserted upon subcutaneous implantation of constructs in nude rats. After 1 and 8weeks in vivo, bone formation and vascularization were analyzed. Newly-formed bone was found in 80% of SVF-seeded scaffolds after 8weeks but not in unseeded controls. Human ALU+cells in the bone structures evidenced a direct contribution of SVF cells to bone formation. A higher density of regenerative, M2 macrophages was observed in SVF-seeded constructs. In both experimental groups, devitalized bone was revitalized by vascularized tissue after 8 weeks. SVF cells-based osteogenic constructs revitalized fully necrotic bone in a challenging AVN rat model of clinically-relevant size. SVF cells contributed to accelerated initial vascularization, to bone formation and to recruitment of pro-regenerative endogenous cells. Avascular necrosis (AVN) of bone often requires surgical treatment with autologous bone grafts, which is surgically demanding and restricted by significant donor site morbidity and limited availability. This paper describes a de novo engineered axially-vascularized bone graft substitute and tests the potential to revitalize dead bone and provide efficient new bone formation in a rat model. The engineering of an osteogenic/vasculogenic construct of clinically-relevant size with stromal vascular fraction of human adipose, combined to an arteriovenous bundle is described. This construct revitalized and generated new bone tissue. This successful approach proposes a novel paradigm in the treatment of AVN, in which an engineered, vascularized osteogenic graft would be used as a germ to revitalize large volumes of necrotic bone. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Škerl, Petra; Krajc, Mateja; Blatnik, Ana; Novaković, Srdjan
2017-07-01
Allogenic bone marrow transplant recipients represent a unique challenge, when they are referred for genetic testing and counseling. When performing genetic testing, it is extremely important to ensure that the detected DNA mutations originate from the patients own DNA, and therefore the most appropriate and reliable biological sample for DNA isolation must be obtained. The aim of the present study was to present the germline testing and counseling approach utilized in a rare case of a chimeric woman who received an allogenic bone marrow transplant from a sibling with a germline BRCA1 pathogenic mutation. According to our results, hairs with follicles are a reliable and ready source of DNA in a patient whose blood is of allogenic bone marrow transplant donor origin. Compared with a fibroblast culture, which is more difficult to obtain, the hair follicles are much more accessible and hair sampling is less invasive for the patient. Genetic testing based on the other sources of DNA, such as buccal swabs, is questionable due to the known risk of donor DNA contamination.
Successful liver allografts in mice by combination with allogeneic bone marrow transplantation.
Nakamura, T; Good, R A; Yasumizu, R; Inoue, S; Oo, M M; Hamashima, Y; Ikehara, S
1986-01-01
Successful liver allografts were established by combination with allogeneic bone marrow transplantation. When liver tissue of BALB/c (H-2d) or C57BL/6J (H-2b) mice was minced and grafted under the kidney capsules of C3H/HeN (H-2k) mice, it was rejected. However, when C3H/HeN mice were irradiated and reconstituted with T-cell-depleted BALB/c or BALB/c nu/nu bone marrow cells, or with fetal liver cells of BALB/c mice, they accepted both donor (stem-cell)-type (BALB/c) and host (thymus)-type (C3H/HeN) liver tissue. Assays for both mixed-lymphocyte reaction and induction of cytotoxic T lymphocytes revealed that the newly developed T cells were tolerant of both donor (stem-cell)-type and host (thymus)-type major histocompatibility complex determinants. We propose that liver allografts combined with bone marrow transplantation should be considered as a viable therapy for patients with liver disease such as liver cirrhosis and hepatoma. Images PMID:3520575
The influence of the donor-recipient relationship on related donor reactions to stem cell donation.
Labott, S; Pfammatter, A
2014-06-01
Previous research has begun to delineate the complicated reactions experienced by bone marrow and stem cell donors. The purpose of this study was to examine the influence of the donor-recipient relationship on the related donor's emotional reactions. Twenty-eight adult stem cell donors completed questionnaires before donation, 30 days post stem cell infusion, and 1 year after infusion. Questionnaires addressed the donor-recipient relationship, depression, mood, guilt and responsibility, self-esteem, ambivalence about donation and reactions to the donation itself. Results indicated that most donors reported little ambivalence about donation, and their reactions to the donation itself were generally positive. Closer and more positive donor-recipient relationships were associated with less anticipated guilt and responsibility if the transplant did not work. The relationships between the donor and the recipient did not change over time. Mood disturbance and depression were low overall, not related to the donor-recipient relationship, and did not significantly change over time. These results indicate that related stem cell donors are generally without significant emotional distress, and are comfortable with the donation process. Further, a more positive relationship with the recipient may help donors to avoid feeling guilty and responsible if the transplant does not work.
NASA Astrophysics Data System (ADS)
Hilmy, N.; Febrida, A.; Basril, A.
2007-11-01
Problems of tissue allografts in using International Standard (ISO) 11137 for validation of radiation sterilization dose (RSD) are limited and low numbers of uniform samples per production batch, those are products obtained from one donor. Allograft is a graft transplanted between two different individuals of the same species. The minimum number of uniform samples needed for verification dose (VD) experiment at the selected sterility assurance level (SAL) per production batch according to the IAEA Code is 20, i.e., 10 for bio-burden determination and the remaining 10 for sterilization test. Three methods of the IAEA Code have been used for validation of RSD, i.e., method A1 that is a modification of method 1 of ISO 11137:1995, method B (ISO 13409:1996), and method C (AAMI TIR 27:2001). This paper describes VD experiments using uniform products obtained from one cadaver donor, i.e., cancellous bones, demineralized bone powders and amnion grafts from one life donor. Results of the verification dose experiments show that RSD is 15.4 kGy for cancellous and demineralized bone grafts and 19.2 kGy for amnion grafts according to method A1 and 25 kGy according to methods B and C.
Villa, Max M; Wang, Liping; Rowe, David W; Wei, Mei
2014-01-01
Cell-based tissue engineering can be used to replace missing or damaged bone, but the optimal methods for delivering therapeutic cells to a bony defect have not yet been established. Using transgenic reporter cells as a donor source, two different collagen-hydroxyapatite (HA) scaffolds, and a critical-size calvarial defect model, we investigated the effect of a cell-attachment period prior to implantation, with or without an extracellular matrix-based seeding suspension, on cell engraftment and osteogenesis. When quantitatively compared, the in-house scaffold implanted immediately had a higher mean radiopacity than in-house scaffolds incubated overnight. Both scaffold types implanted immediately had significantly higher area fractions of donor cells, while the in-house collagen-HA scaffolds implanted immediately had higher area fractions of the mineralization label compared with groups incubated overnight. When the cell loading was compared in vitro for each delivery method using the in-house scaffold, immediate loading led to higher numbers of delivered cells. Immediate loading may be preferable in order to ensure robust bone formation in vivo. The use of a secondary ECM carrier improved the distribution of donor cells only when a pre-attachment period was applied. These results have improved our understanding of cell delivery to bony defects in the context of in vivo outcomes.
Peripheral-Blood Stem Cells versus Bone Marrow from Unrelated Donors
Anasetti, Claudio; Logan, Brent R.; Lee, Stephanie J.; Waller, Edmund K.; Weisdorf, Daniel J.; Wingard, John R.; Cutler, Corey S.; Westervelt, Peter; Woolfrey, Ann; Couban, Stephen; Ehninger, Gerhard; Johnston, Laura; Maziarz, Richard T.; Pulsipher, Michael A.; Porter, David L.; Mineishi, Shin; McCarty, John M.; Khan, Shakila P.; Anderlini, Paolo; Bensinger, William I.; Leitman, Susan F.; Rowley, Scott D.; Bredeson, Christopher; Carter, Shelly L.; Horowitz, Mary M.; Confer, Dennis L.
2012-01-01
BACKGROUND Randomized trials have shown that the transplantation of filgrastim-mobilized peripheral-blood stem cells from HLA-identical siblings accelerates engraftment but increases the risks of acute and chronic graft-versus-host disease (GVHD), as compared with the transplantation of bone marrow. Some studies have also shown that peripheral-blood stem cells are associated with a decreased rate of relapse and improved survival among recipients with high-risk leukemia. METHODS We conducted a phase 3, multicenter, randomized trial of transplantation of peripheral-blood stem cells versus bone marrow from unrelated donors to compare 2-year survival probabilities with the use of an intention-to-treat analysis. Between March 2004 and September 2009, we enrolled 551 patients at 48 centers. Patients were randomly assigned in a 1:1 ratio to peripheral-blood stem-cell or bone marrow transplantation, stratified according to transplantation center and disease risk. The median follow-up of surviving patients was 36 months (interquartile range, 30 to 37). RESULTS The overall survival rate at 2 years in the peripheral-blood group was 51% (95% confidence interval [CI], 45 to 57), as compared with 46% (95% CI, 40 to 52) in the bone marrow group (P = 0.29), with an absolute difference of 5 percentage points (95% CI, −3 to 14). The overall incidence of graft failure in the peripheral-blood group was 3% (95% CI, 1 to 5), versus 9% (95% CI, 6 to 13) in the bone marrow group (P = 0.002). The incidence of chronic GVHD at 2 years in the peripheral-blood group was 53% (95% CI, 45 to 61), as compared with 41% (95% CI, 34 to 48) in the bone marrow group (P = 0.01). There were no significant between-group differences in the incidence of acute GVHD or relapse. CONCLUSIONS We did not detect significant survival differences between peripheral-blood stem-cell and bone marrow transplantation from unrelated donors. Exploratory analyses of secondary end points indicated that peripheral-blood stem cells may reduce the risk of graft failure, whereas bone marrow may reduce the risk of chronic GVHD. (Funded by the National Heart, Lung, and Blood Institute–National Cancer Institute and others; ClinicalTrials.gov number, NCT00075816.) PMID:23075175
Computer applications in the search for unrelated stem cell donors.
Müller, Carlheinz R
2002-08-01
The majority of patients which are eligible for a blood stem cell transplantation from an allogeneic donor do not have a suitable related donor so that an efficient unrelated donor search is a prerequisite for this treatment. Currently, there are over 7 million volunteer donors in the files of 50 registries in the world and in most countries the majority of transplants are performed from a foreign donor. Evidently, computer and communication technology must play a crucial role in the complex donor search process on the national and international level. This article describes the structural elements of the donor search process and discusses major systematic and technical issues to be addressed in the development and evolution of the supporting telematic systems. The theoretical considerations are complemented by a concise overview over the current state of the art which is given by describing the scope, relevance, interconnection and technical background of three major national and international computer appliances: The German Marrow Donor Information System (GERMIS) and the European Marrow Donor Information System (EMDIS) are interoperable business-to-business e-commerce systems and Bone Marrow Donors World Wide (BMDW) is the basic international donor information desk on the web.
Kaufman, C L; Li, H; Ildstad, S T
1997-03-01
Complete replacement of the immune system via allogeneic bone marrow transplantation is sufficient to prevent diabetes in the nonobese diabetic (NOD) mouse model. In the present study we examined whether mixed allogeneic reconstitution would be sufficient to interrupt the autoimmune process with respect to occurrence of overt diabetes, as well as preexisting autoimmune insulitis. NOD mice were lethally irradiated and reconstituted with a mixture of NOD and B10.BR marrow. A relative resistance to allogeneic bone marrow engraftment was noted in NOD recipients of the mixed bone marrow inoculum, compared with disease-resistant controls. Moreover, unlike disease-resistant controls, all animals that initially repopulated as mixed donor/host chimeras became predominantly allogeneic by 4 mo, suggesting a competitive advantage for long term engraftment for disease-resistant marrow. All but one mouse in the group that engrafted with allogeneic marrow remained free of diabetes for the entire follow-up period (n = 22). Moreover, in all animals examined, virtually all islets were free of insulitis. In contrast, 74% of NOD mice that received similar conditioning and failed to engraft with donor marrow developed acute diabetes and intra-islet insulitis was present in all animals examined. These data suggest that NOD mice exhibit a relative resistance to engraftment compared with disease-resistant recipients. Conversely, animals that initially repopulated as a mixture of syngeneic and donor marrow become converted to virtually all donor by 4 mo. These data provide additional support that a defective stem cell is responsible for autoimmune diabetes in this experimental model.
Large-scale progenitor cell expansion for multiple donors in a monitored hollow fibre bioreactor.
Lambrechts, Toon; Papantoniou, Ioannis; Rice, Brent; Schrooten, Jan; Luyten, Frank P; Aerts, Jean-Marie
2016-09-01
With the increasing scale in stem cell production, a robust and controlled cell expansion process becomes essential for the clinical application of cell-based therapies. The objective of this work was the assessment of a hollow fiber bioreactor (Quantum Cell Expansion System from Terumo BCT) as a cell production unit for the clinical-scale production of human periosteum derived stem cells (hPDCs). We aimed to demonstrate comparability of bioreactor production to standard culture flask production based on a product characterization in line with the International Society of Cell Therapy in vitro benchmarks and supplemented with a compelling quantitative in vivo bone-forming potency assay. Multiple process read-outs were implemented to track process performance and deal with donor-to-donor-related variation in nutrient needs and harvest timing. The data show that the hollow fiber bioreactor is capable of robustly expanding autologous hPDCs on a clinical scale (yield between 316 million and 444 million cells starting from 20 million after ± 8 days of culture) while maintaining their in vitro quality attributes compared with the standard flask-based culture. The in vivo bone-forming assay on average resulted in 10.3 ± 3.7% and 11.0 ± 3.8% newly formed bone for the bioreactor and standard culture flask respectively. The analysis showed that the Quantum system provides a reproducible cell expansion process in terms of yields and culture conditions for multiple donors. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Lapidos, Karen A; Chen, Yiyin E; Earley, Judy U; Heydemann, Ahlke; Huber, Jill M; Chien, Marcia; Ma, Averil; McNally, Elizabeth M
2004-12-01
Pluripotent bone marrow-derived side population (BM-SP) stem cells have been shown to repopulate the hematopoietic system and to contribute to skeletal and cardiac muscle regeneration after transplantation. We tested BM-SP cells for their ability to regenerate heart and skeletal muscle using a model of cardiomyopathy and muscular dystrophy that lacks delta-sarcoglycan. The absence of delta-sarcoglycan produces microinfarcts in heart and skeletal muscle that should recruit regenerative stem cells. Additionally, sarcoglycan expression after transplantation should mark successful stem cell maturation into cardiac and skeletal muscle lineages. BM-SP cells from normal male mice were transplanted into female delta-sarcoglycan-null mice. We detected engraftment of donor-derived stem cells into skeletal muscle, with the majority of donor-derived cells incorporated within myofibers. In the heart, donor-derived nuclei were detected inside cardiomyocytes. Skeletal muscle myofibers containing donor-derived nuclei generally failed to express sarcoglycan, with only 2 sarcoglycan-positive fibers detected in the quadriceps muscle from all 14 mice analyzed. Moreover, all cardiomyocytes with donor-derived nuclei were sarcoglycan-negative. The absence of sarcoglycan expression in cardiomyocytes and skeletal myofibers after transplantation indicates impaired differentiation and/or maturation of bone marrow-derived stem cells. The inability of BM-SP cells to express this protein severely limits their utility for cardiac and skeletal muscle regeneration.
Leveque-El mouttie, Lucie; Koyama, Motoko; Le Texier, Laetitia; Markey, Kate A.; Cheong, Melody; Kuns, Rachel D.; Lineburg, Katie E.; Teal, Bianca E.; Alexander, Kylie A.; Clouston, Andrew D.; Blazar, Bruce R.; Hill, Geoffrey R.
2016-01-01
Chronic graft-versus-host disease (cGVHD) is a major cause of late mortality following allogeneic bone marrow transplantation (BMT) and is characterized by tissue fibrosis manifesting as scleroderma and bronchiolitis obliterans. The development of acute GVHD (aGVHD) is a powerful clinical predictor of subsequent cGVHD, suggesting that aGVHD may invoke the immunologic pathways responsible for cGVHD. In preclinical models in which sclerodermatous cGVHD develops after a preceding period of mild aGVHD, we show that antigen presentation within major histocompatibility complex (MHC) class II of donor dendritic cells (DCs) is markedly impaired early after BMT. This is associated with a failure of regulatory T-cell (Treg) homeostasis and cGVHD. Donor DC-restricted deletion of MHC class II phenocopied this Treg deficiency and cGVHD. Moreover, specific depletion of donor Tregs after BMT also induced cGVHD, whereas adoptive transfer of Tregs ameliorated it. These data demonstrate that the defect in Treg homeostasis seen in cGVHD is a causative lesion and is downstream of defective antigen presentation within MHC class II that is induced by aGVHD. PMID:27338097
Leveque-El Mouttie, Lucie; Koyama, Motoko; Le Texier, Laetitia; Markey, Kate A; Cheong, Melody; Kuns, Rachel D; Lineburg, Katie E; Teal, Bianca E; Alexander, Kylie A; Clouston, Andrew D; Blazar, Bruce R; Hill, Geoffrey R; MacDonald, Kelli P A
2016-08-11
Chronic graft-versus-host disease (cGVHD) is a major cause of late mortality following allogeneic bone marrow transplantation (BMT) and is characterized by tissue fibrosis manifesting as scleroderma and bronchiolitis obliterans. The development of acute GVHD (aGVHD) is a powerful clinical predictor of subsequent cGVHD, suggesting that aGVHD may invoke the immunologic pathways responsible for cGVHD. In preclinical models in which sclerodermatous cGVHD develops after a preceding period of mild aGVHD, we show that antigen presentation within major histocompatibility complex (MHC) class II of donor dendritic cells (DCs) is markedly impaired early after BMT. This is associated with a failure of regulatory T-cell (Treg) homeostasis and cGVHD. Donor DC-restricted deletion of MHC class II phenocopied this Treg deficiency and cGVHD. Moreover, specific depletion of donor Tregs after BMT also induced cGVHD, whereas adoptive transfer of Tregs ameliorated it. These data demonstrate that the defect in Treg homeostasis seen in cGVHD is a causative lesion and is downstream of defective antigen presentation within MHC class II that is induced by aGVHD. © 2016 by The American Society of Hematology.
Collin-Osdoby, P; Rothe, L; Bekker, S; Anderson, F; Osdoby, P
2000-03-01
High nitric oxide (NO) levels inhibit osteoclast (OC)-mediated bone resorption in vivo and in vitro, and nitrate donors protect against estrogen-deficient bone loss in postmenopausal women. Conversely, decreased NO production potentiates OC bone resorption in vitro and is associated with in vivo bone loss in rats and humans. Previously, we reported that bone sections from rats administered aminoguanidine (AG), a selective inhibitor of NO production via inducible NO synthase, exhibited both increased OC resorptive activity as well as greater numbers of OC. Here, we investigated further whether AG promoted osteoclastogenesis, in addition to stimulating mature OC function, using a modified in vivo chick chorioallantoic membrane (CAM) system and an in vitro chick bone marrow OC-like cell developmental model. AG, focally administered in small agarose plugs placed directly adjacent to a bone chip implanted on the CAM, dose-dependently elicited neoangiogenesis while stimulating the number, size, and bone pit resorptive activity of individual OC ectopically formed in vivo. In addition to enhancing OC precursor recruitment via neoangiogenesis, AG also exerted other vascular-independent effects on osteoclastogenesis. Thus, AG promoted the in vitro fusion and formation from bone marrow precursor cells of larger OC-like cells that contained more nuclei per cell and exhibited multiple OC differentiation markers. AG stimulated development was inversely correlated with declining medium nitrite levels. In contrast, three different NO donors each dose-dependently inhibited in vitro OC-like cell development while raising medium nitrite levels. Therefore, NO sensitively regulates OC-mediated bone resorption through affecting OC recruitment (angiogenesis), formation (fusion and differentiation), and bone resorptive activity in vitro and in vivo. Possibly, the stimulation of neoangiogenesis and OC-mediated bone remodeling via AG or other pro-angiogenic agents may find clinical applications in reconstructive surgery, fracture repair, or the treatment of avascular necrosis.
Cryptic B cell response to renal transplantation.
Lynch, R J; Silva, I A; Chen, B J; Punch, J D; Cascalho, M; Platt, J L
2013-07-01
Transplantation reliably evokes allo-specific B cell and T cell responses in mice. Yet, human recipients of kidney transplants with normal function usually exhibit little or no antibody specific for the transplant donor during the early weeks and months after transplantation. Indeed, the absence of antidonor antibodies is taken to reflect effective immunosuppressive therapy and to predict a favorable outcome. Whether the absence of donor-specific antibodies reflects absence of a B cell response to the donor, tolerance to the donor or immunity masked by binding of donor-specific antibodies to the graft is not known. To distinguish between these possibilities, we devised a novel ELISPOT, using cultured donor, recipient and third-party fibroblasts as targets. We enumerated donor-specific antibody-secreting cells in the blood of nine renal allograft recipients with normal kidney function before and after transplantation. Although none of the nine subjects had detectable donor-specific antibodies before or after transplantation, all exhibited increases in the frequency of donor-specific antibody-secreting cells eight weeks after transplantation. The responses were directed against the donor HLA-class I antigens. The increase in frequency of donor-specific antibody-secreting cells after renal transplantation indicates that B cells respond specifically to the transplant donor more often than previously thought. © 2013 The Authors. American Journal of Transplantation Published by Wiley Periodicals Inc.
Stem cells--clinical application and perspectives.
Brehm, Michael; Zeus, Tobias; Strauer, Bodo Eckehard
2002-11-01
Augmentation of myocardial performance in experimental models of therapeutic infarction and heart failure has been achieved by transplantation of exogenous cells into damaged myocardium. The quest for suitable donor cells has prompted research into the use of both embryonic stem cells and adult somatic stem cells. Recently, there has been a growing body of evidence that multipotent somatic stem cells in adult bone marrow exhibit tremendous functional plasticity and can reprogram in a new environmental tissue niche to give rise to cell lineages specific for new organ site. This phenomenon has made huge impact on myocardial biology, while multipotent adult bone marrow hematopoeitic stem cells and mesechymal stem cells can repopulate infarcted rodent myocardium and differentiate into both cardiomyocytes and new blood vessels. These data, coupled with the identification of a putative primitive cardiac stem cell population in the adult human heart, may open the way for novel therapeutic modalities for enhancing myocardial performance and treating heart failure.
Lung transplant of extrahospitalary donor after cardiac death.
Mateos Rodríguez, Alonso A; Navalpotro Pascual, José Maria; del Río Gallegos, Francisco
2013-04-01
Non-heart-beating donors (NHBDs) have to meet the predefined criteria for organ donation including death from irreversible cessation of the beating heart. The Maastricht conference defined 4 NHBD categories to differentiate their viability and ethical-legal support. In Spain, NHBDs who originate from an out-of-hospital setting correspond to type II donors. These are patients who have had a cardiac arrest outside hospital and, after failed CPR attempts, are transferred with hemodynamic support measures to the hospital for organ donation. The Hospital Clínico San Carlos also has a lung donation program in collaboration with the Hospital Puerta de Hierro in Madrid and the Hospital Marques de Valdecilla in Santander. The objective of this study is to describe the results of lung transplantation of after cardiac death program, specifically the section regarding lung extraction donation. Twenty potential lung donors were obtained during the study. Most patients were male (19 cases), with a mean age of 42 years (36.5-49.5 years). A total of 33 lungs were donated (18 right and 15 left lungs). Most extractions were multiorganic (19 cases). One liver, 19 kidneys, 2 pancreas, and 19 corneas were obtained from these donors; bone tissue was obtained from all donors. The transplantation was bipulmonary in 13 cases and unipulmonary in 7. Thirty days after transplantation, 2 recipients died, 1 died of stroke associated with bilateral pneumonia and 1 died of hypovolemic shock resulting from hemothorax. The remaining 18 patients were progressing well at 30 days. Our data suggest that lung transplantation from patients after extrahospitalary cardiac death is feasible. Copyright © 2013 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Packman, Wendy L.; Beck, Vanessa L.; VanZutphen, Kelly H.; Long, Janet K.; Spengler, Gisele
2003-01-01
There is little research on the psychological impact of bone marrow transplantation (BMT) on family members. This study uses the Human Figure Drawing (HFD) to measure siblings' emotional distress toward BMT. Among the siblings, feelings of isolation, anger, depression, anxiety, and low self-esteem emerged as major themes. Findings indicate the…
Khan, Wasim S; Rayan, Faizal; Dhinsa, Baljinder S; Marsh, David
2012-01-01
The management of large bone defects due to trauma, degenerative disease, congenital deformities, and tumor resection remains a complex issue for the orthopaedic reconstructive surgeons. The requirement is for an ideal bone replacement which is osteoconductive, osteoinductive, and osteogenic. Autologous bone grafts are still considered the gold standard for reconstruction of bone defects, but donor site morbidity and size limitations are major concern. The use of bioartificial bone tissues may help to overcome these problems. The reconstruction of large volume defects remains a challenge despite the success of reconstruction of small-to-moderate-sized bone defects using engineered bone tissues. The aim of this paper is to understand the principles of tissue engineering of bone and its clinical applications in reconstructive surgery.
Khan, Wasim S.; Rayan, Faizal; Dhinsa, Baljinder S.; Marsh, David
2012-01-01
The management of large bone defects due to trauma, degenerative disease, congenital deformities, and tumor resection remains a complex issue for the orthopaedic reconstructive surgeons. The requirement is for an ideal bone replacement which is osteoconductive, osteoinductive, and osteogenic. Autologous bone grafts are still considered the gold standard for reconstruction of bone defects, but donor site morbidity and size limitations are major concern. The use of bioartificial bone tissues may help to overcome these problems. The reconstruction of large volume defects remains a challenge despite the success of reconstruction of small-to-moderate-sized bone defects using engineered bone tissues. The aim of this paper is to understand the principles of tissue engineering of bone and its clinical applications in reconstructive surgery. PMID:25098363
Parameters affecting mechanical and thermal responses in bone drilling: A review.
Lee, JuEun; Chavez, Craig L; Park, Joorok
2018-04-11
Surgical bone drilling is performed variously to correct bone fractures, install prosthetics, or for therapeutic treatment. The primary concern in bone drilling is to extract donor bone sections and create receiving holes without damaging the bone tissue either mechanically or thermally. We review current results from experimental and theoretical studies to investigate the parameters related to such effects. This leads to a comprehensive understanding of the mechanical and thermal aspects of bone drilling to reduce their unwanted complications. This review examines the important bone-drilling parameters of bone structure, drill-bit geometry, operating conditions, and material evacuation, and considers the current techniques used in bone drilling. We then analyze the associated mechanical and thermal effects and their contributions to bone-drilling performance. In this review, we identify a favorable range for each parameter to reduce unwanted complications due to mechanical or thermal effects. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hoelsch, K; Lenggeler, I; Pfannes, W; Knabe, H; Klein, H-G; Woelpl, A
2005-05-01
A new human leukocyte antigen (HLA)-B allele was found during routine typing of samples for a German unrelated bone marrow donor registry, the "Aktion Knochenmarkspende Bayern". After first interpretation of data of two independent low-resolution sequence-specific oligonucleotide typing tests, a B*51 variant was suggested. Further analysis via sequence-based typing identified the sequence as new B*52 allele. This new allele officially assigned as B*5206 differs from HLA-B*520102 by one nucleotide exchange in exon 2. The mutation is located at nucleotide position 274, at which a cytosine is substituted by a thymine leading to an amino acid change at protein position 67 from serine (TCC) to phenylalanine (TTC).
HLA Typing for Bone Marrow Transplantation
2011-07-21
Confirmatory Testing DC Donor Center DIY Do it yourself DNA Deoxyribonucleic Acid DOD Department of Defense D/R Donor/Recipient EBMT European...testing information is complete, thus allowing for report card analysis earlier in the process. • Deployed functionality to allow cord banks the ability...inventory was labeled with a new Report Card Status: “PreOrder Condition”). • Developed features to support Local IDs and International Society Blood
Xu, Hong; Ramsey, Deborah M.; Wu, Shengli; Bozulic, Larry D.; Ildstad, Suzanne T.
2012-01-01
Background Approaches to safely induce tolerance in vascularized composite allotransplantation (VCA) with chimerism through bone marrow transplantation (BMT) are currently being pursued. However, the VCA were historically performed sequentially after donor chimerism was established. Delayed VCA is not clinically applicable due to the time constraints associated with procurement from deceased donors. A more clinically relevant approach to perform both the BMT and VCA simultaneously was evaluated. Methods WF (RT1Au) rats were treated with a short course of immunosuppressive therapy (anti-αβ-TCR mAb, FK-506, and anti-lymphocyte serum). One day prior to BMT, rats were treated with varying doses of total body irradiation (TBI) followed by transplantation of heterotopic osteomyocutaneous flaps from hind limbs of ACI (RT1Aabl) rats. Results 80% of rats conditioned with 300 cGy TBI and 40% of rats receiving 400 cGy TBI accepted the VCA. Mixed chimerism was detected in peripheral blood at one month post-VCA, but chimerism was lost in all transplant recipients by 4 months. The majority of peripheral donor cells originated from the BMT and not the VCA. Acceptors of VCA were tolerant of a donor skin graft challenge and no anti-donor antibodies were detectable, suggesting a central deletional mechanism for tolerance. Regulatory T cells (Treg) from spleens of acceptors more potently suppressed lymphocyte proliferation than Treg from rejectors in the presence of donor stimulator cells. Conclusions These studies suggest that simultaneous BMT and VCA may establish indefinite allograft survival in rats through Treg-mediated suppression and thymic deletion of alloreactive T cells. PMID:23250336
Lee-Won, Roselyn J; Abo, Melissa M; Na, Kilhoe; White, Tiffany N
2016-06-01
A bone marrow transplant is often the only key to recovery and survival for patients suffering from blood cancers. Social media platforms have allowed nonprofit organizations as well as family members and friends of patients in need of a matching donor to make their solicitation messages go viral and reach out to the broadest possible audience to increase the likelihood of finding a matching donor. Noting that social media audiences are exposed not only to the content of a social media message but also to the metrics representing the virality of the message (i.e., how many times the content has been shared), we conducted an online experiment to investigate the effects of virality metrics on perceived social norms and behavioral intention to join a bone marrow registry. In doing so, we considered the potential moderating role of perceived threat posed by blood cancers. The experiment was conducted with 152 participants who met the general eligibility guidelines set by the National Marrow Donor Program (NMDP). The results of the experiment showed that exposure to high virality metrics led to greater perceived injunctive norms. The results also revealed that the effect of virality metrics on perceived injunctive norms was significant among those perceiving low levels of blood cancer threat. Furthermore, the results demonstrated that high virality metrics led to greater intention to join a bone marrow registry through perceived injunctive norms only when perceived threat of blood cancers was low. Theoretical and practical implications of these findings are discussed.
Nishi, N; Osawa, M; Ishikawa, R; Nishikawa, M; Tsumura, H; Inoue, H; Sudo, T
1995-09-01
It is known that treatment of mice with 5-fluorouracil (5-FU, 150 mg/kg) confers radioprotection. To investigate this effect, we performed bone marrow transplantation (BMT) using C57BL/6-Ly5 congenic mice treated with 5-FU five days prior to experiments. The mononuclear cells (MNC) in 5-FU-treated bone marrow (BM) were 10 times more radioprotective than those in untreated BM. Moreover, the number of BM MNC expressing c-kit on their surface from 5-FU-treated mice was markedly decreased relative to those from untreated controls. These results showed that the surface characteristics of cells that contributed to this radio-protective effect differ from those of stem cells as reported recently. BM MNC of mice treated with 5-FU were separated on the basis of expression of the lineage-specific antigens (Lin), c-kit, and Ly6A/E. When injected into lethally irradiated mice, 1,000 Lin+ and Lin-c-kit+Ly6A/E+ cells showed radioprotective effects such that 100% and 60% survived, respectively. Flow cytometric analysis 165 days after BMT showed that 88.8% and 65.1% of peripheral blood (PB) in mice transplanted with Lin+ and Lin-c-kit+Ly6A/E+ was derived from donor mice, respectively. After six months, donor-derived Lin-c-kit+Ly6A/E+ cells which showed radioprotective effects on a secondary irradiated host were detected from mice transplanted with Lin+ cells from 5-FU-treated mice. Taken together, these findings demonstrated that stem cells expressing Lin+ present in the BM of mice treated with 5-FU other than Lin-c-kit+Ly6A/E+ cells and these Lin+ cells play an important role in the recovery of myeloablative mice.
Posnick, Jeffrey C; Gray, James A
2015-12-01
Re-harvesting the anterior iliac crest to obtain autogenous bone grafts is a controversial practice. The purpose of this study was to assess the feasibility and associated disability of re-harvesting the anterior iliac crest. To address the research purpose, the authors executed a retrospective case series study. The sample consisted of young adult patients with cleft (<26 yr old) with prior harvesting of the anterior iliac crest during mixed dentition for management of an alveolar cleft(s) and then re-harvesting of the same donor site for management of interpositional defects after Le Fort I advancement. Wound-healing parameters were reviewed at the donor and recipient sites. A survey questionnaire was provided after completion of treatment to document patient perception of early and any long-term donor-site disability. Descriptive statistics were computed for the variables. The sample was composed of 27 patients with a mean age at re-harvesting of 17 years (range, 14 to 25 yr). Patients underwent on average 7.4-mm horizontal advancement, 2.4-mm lengthening, and 2.6-mm transverse expansion of the maxilla. Adequate bone graft was re-harvested to accomplish objectives in all cases. There were no perioperative complications at the donor or recipient sites. Twenty-six of the 27 patients (97%) had fewer donor-site recovery difficulties at the time of re-harvesting compared with the first time graft was taken. There were no cases of lateral femoral cutaneous nerve injury and no long-term discomfort with walking, running, or other activities. The study confirms the safety and efficacy of re-harvesting corticocancellous bone from the anterior iliac crest for management of interpositional defects associated with Le Fort I advancement in young adults with a repaired cleft. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Shipounova, I N; Petinati, N A; Bigildeev, A E; Zezina, E A; Drize, N I; Kuzmina, L A; Parovichnikova, E N; Savchenko, V G
2014-12-01
Allogeneic bone marrow transplantation (allo-BMT) is currently the only way to cure many hematoproliferative disorders. However, allo-BMT use is limited by severe complications, the foremost being graft-versus-host disease (GVHD). Due to the lack of efficiency of the existing methods of GVHD prophylaxis, new methods are being actively explored, including the use of donors' multipotent mesenchymal stromal cells (MMSC). In this work, we analyzed the results of acute GVHD (aGVHD) prophylaxis by means of MMSC injections after allo-BMT in patients with hematological malignancies. The study included 77 patients. They were randomized into two groups - those receiving standard prophylaxis of aGVHD and those who were additionally infused with MMSC derived from the bone marrow of hematopoietic stem cell donors. We found that the infusion of MMSC halves the incidence of aGVHD and increases the overall survival of patients. Four of 39 MMSC samples were ineffective for preventing aGVHD. Analysis of individual donor characteristics (gender, age, body mass index) and the MMSC properties of these donors (growth parameters, level of expression of 30 genes involved in proliferation, differentiation, and immunomodulation) revealed no significant difference between the MMSC that were effective or ineffective for preventing aGVHD. We used multiple logistic regression to establish a combination of features that characterize the most suitable MMSC samples for the prevention of aGVHD. A model predicting MMSC sample success for aGVHD prophylaxis was constructed. Significant model parameters were increased relative expression of the FGFR1 gene in combination with reduced expression levels of the PPARG and IGF1 genes. Depending on the chosen margin for probability of successful application of MMSC, this model correctly predicts the outcome of the use of MMSC in 82-94% of cases. The proposed model of prospective evaluation of the effectiveness of MMSC samples will enable prevention of the development of aGVHD in the maximal number of patients.
Nickerson, Meghan M; Burke, Caitlin W; Meisner, Joshua K; Shuptrine, Casey W; Song, Ji; Price, Richard J
2009-01-01
Chemokine (C-C motif) receptor-2 (CCR2) regulates arteriogenesis and angiogenesis, facilitating the MCP-1-dependent recruitment of growth factor-secreting bone marrow-derived cells (BMCs). Here, we tested the hypothesis that the BMC-specific expression of CCR2 is also required for new arteriole formation via capillary arterialization. Following non-ischemic saphenous artery occlusion, we measured the following in gracilis muscles: monocyte chemotactic protein-1 (MCP-1) in wild-type (WT) C57Bl/6J mice by ELISA, and capillary arterialization in WT-WT and CCR2(-/-)-WT (donor-host) bone marrow chimeric mice, as well as BMC transdifferentiation in EGFP(+)-WT mice, by smooth muscle (SM) alpha-actin immunochemistry. MCP-1 levels were significantly elevated 1 day after occlusion in WT mice. In WT-WT mice at day 7, compared to sham controls, arterial occlusion induced a 34% increase in arteriole length density, a 46% increase in SM alpha-actin(+) vessels, and a 45% increase in the fraction of vessels coated with SM alpha-actin, indicating significant capillary arterialization. However, in CCR2(-/-)-WT mice, no differences were observed between arterial occlusion and sham surgery. In EGFP(+)-WT mice, EGFP and SM alpha-actin never colocalized. We conclude that BMC-specific CCR2 expression is required for skeletal muscle capillary arterialization following arterial occlusion; however, BMCs do not transdifferentiate into smooth muscle.
Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective
Henkel, Jan; Woodruff, Maria A.; Epari, Devakara R.; Steck, Roland; Glatt, Vaida; Dickinson, Ian C.; Choong, Peter F. M.; Schuetz, Michael A.; Hutmacher, Dietmar W.
2013-01-01
The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteoconductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineering and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental “origin” require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts. PMID:26273505
Large Animal Models of an In Vivo Bioreactor for Engineering Vascularized Bone.
Akar, Banu; Tatara, Alexander M; Sutradhar, Alok; Hsiao, Hui-Yi; Miller, Michael; Cheng, Ming-Huei; Mikos, Antonios G; Brey, Eric M
2018-04-12
Reconstruction of large skeletal defects is challenging due to the requirement for large volumes of donor tissue and the often complex surgical procedures. Tissue engineering has the potential to serve as a new source of tissue for bone reconstruction, but current techniques are often limited in regards to the size and complexity of tissue that can be formed. Building tissue using an in vivo bioreactor approach may enable the production of appropriate amounts of specialized tissue, while reducing issues of donor site morbidity and infection. Large animals are required to screen and optimize new strategies for growing clinically appropriate volumes of tissues in vivo. In this article, we review both ovine and porcine models that serve as models of the technique proposed for clinical engineering of bone tissue in vivo. Recent findings are discussed with these systems, as well as description of next steps required for using these models, to develop clinically applicable tissue engineering applications.
Seroprevalence of human T lymphtropic virus (HTLV) among tissue donors in Iranian tissue bank.
Arjmand, Babak; Aghayan, Seyed Hamidreza; Goodarzi, Parisa; Farzanehkhah, Mohammad; Mortazavi, Seyed Mohamadjavad; Niknam, Mohamad Hossein; Jafarian, Ali; Arjmand, Farzin; Jebelly far, Soheyla
2009-08-01
Iranian Tissue Bank prepares a wide range of human tissue homografts such as; heart valve, bone, skin, amniotic membrane and other tissues for different clinical applications. The purpose of this study was to determine the seroprevalence of HTLV in tissue donors. About 1,548 tissue donors were studied during a 5-years period by ELISA assays. HTLV(1,2)-antibodies were tested for all of donors with other tests upon American Association of Tissue Banks (AATB) standards. About 25 (1.61%) out of 1,548 tissue donors were HTLV positive that 17 donors were male and 8 were female (female/male ratio was approximately 47%). Regarding to the prevalence of HTLV among tissue donors and importance of cell and tissue safety and quality assurance, we recommend that all blood, cell and tissue banks should be involved both routine serological methods and other complementary tests such as polymerase chain reaction (PCR) for diagnosis of HTLV.
Chen, Shu-Huey; Yang, Shang-Hsien; Chu, Sung-Chao; Su, Yu-Chieh; Chang, Chu-Yu; Chiu, Ya-Wen; Kao, Ruey-Ho; Li, Dian-Kun; Yang, Kuo-Liang; Wang, Tso-Fu
2011-05-01
Granulocyte colony-stimulating factor (G-CSF) is now widely used for stem cell mobilization. We evaluated the role of post-G-CSF white blood cell (WBC) counts and donor factors in predicting adverse events and yields associated with mobilization. WBC counts were determined at baseline, after the third and the fifth dose of G-CSF in 476 healthy donors. Donors with WBC ≥ 50 × 10(3)/μL post the third dose of G-CSF experienced more fatigue, myalgia/arthralgia, and chills, but final post-G-CSF CD34(+) cell counts were similar. Although the final CD34(+) cell count was higher in donors with WBC ≥ 50 × 10(3)/μL post the fifth G-CSF, the incidence of side effects was similar. Females more frequently experienced headache, nausea/anorexia, vomiting, fever, and lower final CD34(+) cell count than did males. Donors with body mass index (BMI) ≥ 25 showed higher incidences of sweat and insomnia as well as higher final CD34(+) cell counts. Donor receiving G-CSF ≥ 10 μg/kg tended to experience bone pain, headache and chills more frequently. Multivariate analysis indicated that female gender is an independent factor predictive of the occurrence of most side effects, except for ECOG > 1 and chills. Higher BMI was also an independent predictor for fatigue, myalgia/arthralgia, and sweat. Higher G-CSF dose was associated with bone pain, while the WBC count post the third G-CSF was associated with fatigue only. In addition, one donor in the study period did not complete the mobilization due to suspected anaphylactoid reaction. Observation for 1 h after the first injection of G-CSF is required to prevent complications from unpredictable side effects.
Harnessing extracellular vesicles to direct endochondral repair of large bone defects
Ferreira, E.
2018-01-01
Large bone defects remain a tremendous clinical challenge. There is growing evidence in support of treatment strategies that direct defect repair through an endochondral route, involving a cartilage intermediate. While culture-expanded stem/progenitor cells are being evaluated for this purpose, these cells would compete with endogenous repair cells for limited oxygen and nutrients within ischaemic defects. Alternatively, it may be possible to employ extracellular vesicles (EVs) secreted by culture-expanded cells for overcoming key bottlenecks to endochondral repair, such as defect vascularization, chondrogenesis, and osseous remodelling. While mesenchymal stromal/stem cells are a promising source of therapeutic EVs, other donor cells should also be considered. The efficacy of an EV-based therapeutic will likely depend on the design of companion scaffolds for controlled delivery to specific target cells. Ultimately, the knowledge gained from studies of EVs could one day inform the long-term development of synthetic, engineered nanovesicles. In the meantime, EVs harnessed from in vitro cell culture have near-term promise for use in bone regenerative medicine. This narrative review presents a rationale for using EVs to improve the repair of large bone defects, highlights promising cell sources and likely therapeutic targets for directing repair through an endochondral pathway, and discusses current barriers to clinical translation. Cite this article: E. Ferreira, R. M. Porter. Harnessing extracellular vesicles to direct endochondral repair of large bone defects. Bone Joint Res 2018;7:263–273. DOI: 10.1302/2046-3758.74.BJR-2018-0006. PMID:29922444
GVHD prevents NK-cell-dependent leukemia and virus-specific innate immunity.
Bunting, Mark D; Varelias, Antiopi; Souza-Fonseca-Guimaraes, Fernando; Schuster, Iona S; Lineburg, Katie E; Kuns, Rachel D; Fleming, Peter; Locke, Kelly R; Huntington, Nicholas D; Blazar, Bruce R; Lane, Steven W; Tey, Siok-Keen; MacDonald, Kelli P A; Smyth, Mark J; Degli-Esposti, Mariapia A; Hill, Geoffrey R
2017-02-02
Allogeneic bone marrow transplantation (allo-BMT) is a curative therapy for hematological malignancies, but is associated with significant complications, principally graft-versus-host disease (GVHD) and opportunistic infections. Natural killer (NK) cells mediate important innate immunity that provides a temporal bridge until the reconstruction of adaptive immunity. Here, we show that the development of GVHD after allo-BMT prevented NK-cell reconstitution, particularly within the maturing M1 and M2 NK-cell subsets in association with exaggerated activation, apoptosis, and autophagy. Donor T cells were critical in this process by limiting the availability of interleukin 15 (IL-15), and administration of IL-15/IL-15Rα or immune suppression with rapamycin could restore NK-cell reconstitution. Importantly, the NK-cell defect induced by GVHD resulted in the failure of NK-cell-dependent in vivo cytotoxicity and graft-versus-leukemia effects. Control of cytomegalovirus infection after allo-BMT was also impaired during GVHD. Thus, during GVHD, donor T cells compete with NK cells for IL-15 thereby inducing profound defects in NK-cell reconstitution that compromise both leukemia and pathogen-specific immunity. © 2017 by The American Society of Hematology.
G-CSF-Treated Donor Bone Marrow Transplant in Treating Patients With Hematologic Disorders
2012-05-24
Chronic Myeloproliferative Disorders; Graft Versus Host Disease; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Diseases; Sarcoma
Pascale, Natascha; La Russa, Raffaele; Liso, Arcangelo; Salerno, Monica
2017-01-01
Allogenic hematopoietic progenitor cell transplantation (allo-HSCT) is an established treatment for many diseases. Stem cells may be obtained from different sources: mobilized peripheral blood stem cells, bone marrow, and umbilical cord blood. The progress in transplantation procedures, the establishment of experienced transplant centres, and the creation of unrelated adult donor registries and cord blood banks gave those without an human leucocyte antigen- (HLA-) identical sibling donor the opportunity to find a donor and cord blood units worldwide. HSCT imposes operative cautions so that the entire donation/transplantation procedure is safe for both donors and recipients; it carries with it significant clinical, moral, and ethical concerns, mostly when donors are minors. The following points have been stressed: the donation should be excluded when excessive risks for the donor are reasonable, donors must receive an accurate information regarding eventual adverse events and health burden for the donors themselves, a valid consent is required, and the recipient's risks must be outweighed by the expected benefits. The issue of conflict of interest, when the same physician has the responsibility for both donor selection and recipient care, is highlighted as well as the need of an adequate insurance protection for all the parties involved. PMID:28680446
ERIC Educational Resources Information Center
Packman, Wendy L.; Crittenden, Mary R.; Fischer, Jodie B. Rieger; Cowan, Morton J.; Long, Janet K.; Gruenert, Carol; Schaeffer, Evonne; Bongar, Bruce
1998-01-01
Utilizes the Kinetic Family Drawings-Revised (KFD-R) to measure siblings' (N=44) feelings and attitudes toward bone marrow transplants. Data from drawings and discussions with siblings underscore that not all children are affected by stress in the same way. How a particular child responds depends on factors such as life history, personality,…
Cellular Sites of Immunologic Unresponsiveness*
Chiller, Jacques M.; Habicht, Gail S.; Weigle, William O.
1970-01-01
The reconstitution of the immune response of lethally irradiated mice to human γ-globulin is dependent on the synergistic action of bone marrow with thymus cells. Immunologic unresponsiveness appears to involve a functional defect at each of these cellular levels, inasmuch as neither bone marrow nor thymus cells from unresponsive donors are capable of demonstrating synergism in combination with their normal counterpart. PMID:4192271
Establishment of donor Chimerism Using Allogeneic Bone Marrow with AMP Cell Co-infusion
2017-09-01
the ideal solution. Combined mixed allogeneic chimerism induction and kidney transplantation has been shown to induce robust tolerance to the kidney ...induction to kidney allografts in non-human primates and humans despite the transience of donor chimerism. However, evidence indicates that durable mixed...chimerism may be required for tolerance induction to tissues or organs other than kidney . Amnion-derived multipotent progenitor (AMP) cells possess
Selective Laser Sintering of Polycaprolactone Bone Tissue Engineering Scaffolds
2005-01-01
of patients in need of organ transplants die while waiting for a suitable donor [I] and over 1.3 million surgical procedures are conducted every year...donor organs , risk of rejection, and potential disease transmission have led to the investigation for alternative methods of treatment. Tissue...CAPA 6501 (Solvay Caprolactones, Warrington, UK) was used in this study. It is a semicrystalline (56%) aliphatic thermoplastic having a melting point
Role of bone marrow transplantation for correcting hemophilia A in mice
Follenzi, Antonia; Raut, Sanj; Merlin, Simone; Sarkar, Rita
2012-01-01
To better understand cellular basis of hemophilia, cell types capable of producing FVIII need to be identified. We determined whether bone marrow (BM)–derived cells would produce cells capable of synthesizing and releasing FVIII by transplanting healthy mouse BM into hemophilia A mice. To track donor-derived cells, we used genetic reporters. Use of multiple coagulation assays demonstrated whether FVIII produced by discrete cell populations would correct hemophilia A. We found that animals receiving healthy BM cells survived bleeding challenge with correction of hemophilia, although donor BM-derived hepatocytes or endothelial cells were extremely rare, and these cells did not account for therapeutic benefits. By contrast, donor BM-derived mononuclear and mesenchymal stromal cells were more abundant and expressed FVIII mRNA as well as FVIII protein. Moreover, injection of healthy mouse Kupffer cells (liver macrophage/mononuclear cells), which predominantly originate from BM, or of healthy BM-derived mesenchymal stromal cells, protected hemophilia A mice from bleeding challenge with appearance of FVIII in blood. Therefore, BM transplantation corrected hemophilia A through donor-derived mononuclear cells and mesenchymal stromal cells. These insights into FVIII synthesis and production in alternative cell types will advance studies of pathophysiological mechanisms and therapeutic development in hemophilia A. PMID:22368271
Identification of suitable reference genes in bone marrow stromal cells from osteoarthritic donors.
Schildberg, Theresa; Rauh, Juliane; Bretschneider, Henriette; Stiehler, Maik
2013-11-01
Bone marrow stromal cells (BMSCs) are key cellular components for musculoskeletal tissue engineering strategies. Furthermore, recent data suggest that BMSCs are involved in the development of Osteoarthritis (OA) being a frequently occurring degenerative joint disease. Reliable reference genes for the molecular evaluation of BMSCs derived from donors exhibiting OA as a primary co-morbidity have not been reported on yet. Hence, the aim of the study was to identify reference genes suitable for comparative gene expression analyses using OA-BMSCs. Passage 1 bone marrow derived BMSCs were isolated from n=13 patients with advanced stage idiopathic hip osteoarthritis and n=15 age-matched healthy donors. The expression of 31 putative reference genes was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) using a commercially available TaqMan(®) assay. Calculating the coefficient of variation (CV), mRNA expression stability was determined and afterwards validated using geNorm and NormFinder algorithms. Importin 8 (IPO8), TATA box binding protein (TBP), and cancer susceptibility candidate 3 (CASC3) were identified as the most stable reference genes. Notably, commonly used reference genes, e.g. beta-actin (ACTB) and beta-2-microglobulin (B2M) were among the most unstable genes. For normalization of gene expression data of OA-BMSCs the combined use of IPO8, TBP, and CASC3 gene is recommended. © 2013.
Kekre, Natasha; Zhang, Ying; Zhang, Mei-Jie; Carreras, Jeanette; Ahmed, Parvez; Anderlini, Paolo; Atta, Elias Hallack; Ayas, Mouhab; Boelens, Jaap Jan; Bonfim, Carmem; Deeg, H Joachim; Kapoor, Neena; Lee, Jong-Wook; Nakamura, Ryotaro; Pulsipher, Michael A; Eapen, Mary; Antin, Joseph H
2017-07-01
For treatment of severe aplastic anemia, immunosuppressive therapy with horse antithymocyte globulin results in superior response and survival compared with rabbit antithymocyte globulin. This relative benefit may be different in the setting of transplantation as rabbit antithymocyte globulin results in more profound immunosuppression. We analyzed 833 severe aplastic anemia transplants between 2008 and 2013 using human leukocyte antigen (HLA)-matched siblings (n=546) or unrelated donors (n=287) who received antithymocyte globulin as part of their conditioning regimen and bone marrow graft. There were no differences in hematopoietic recovery by type of antithymocyte globulin. Among recipients of HLA-matched sibling transplants, day 100 incidence of acute (17% versus 6%, P <0.001) and chronic (20% versus 9%, P <0.001) graft- versus -host disease were higher with horse compared to rabbit antithymocyte globulin. There were no differences in 3-year overall survival, 87% and 92%, P =0.76, respectively. Among recipients of unrelated donor transplants, acute graft- versus -host disease was also higher with horse compared to rabbit antithymocyte globulin (42% versus 23%, P <0.001) but not chronic graft- versus -host disease (38% versus 32%, P =0.35). Survival was lower with horse antithymocyte globulin after unrelated donor transplantation, 75% versus 83%, P =0.02. These data support the use of rabbit antithymocyte globulin for bone marrow transplant conditioning for severe aplastic anemia. Copyright© 2017 Ferrata Storti Foundation.
Both rejection and tolerance of allografts can occur in the absence of secondary lymphoid tissues
Kant, Cavit D.; Akiyama, Yoshinobu; Tanaka, Katsunori; Shea, Susan; Yamada, Yohei; Connolly, Sarah E; Marino, Jose; Tocco, Georges; Benichou, Gilles
2014-01-01
In this study, we show that aly/aly mice, which are devoid of lymph nodes and Peyer’s patches, rejected acutely fully allogeneic skin and heart grafts. They mounted potent inflammatory direct alloresponses but failed to develop indirect alloreactivity after transplantation. Remarkably, skin allografts were also rejected acutely by splenectomized aly/aly mice (aly/aly-spl−) devoid of all secondary lymphoid organs. In these recipients, the rejection was mediated by alloreactive CD8+ T cells presumably primed in the bone marrow. In contrast, cardiac transplants were not rejected in aly/aly-spl− mice. Actually, aly/aly-spl− mice having spontaneously accepted a heart allotransplant displayed donor-specific tolerance also accepted skin grafts from the same but not a third-party donor via a mechanism involving CD4+ regulatory T cells producing IL-10 cytokine. Therefore, direct priming of alloreactive T cells, as well as rejection and regulatory tolerance of allogeneic transplants, can occur in recipient mice lacking secondary lymphoid organs. PMID:25535285
[Study of migration and distribution of bone marrow cells transplanted animals with B16 melanoma ].
Poveshchenko, A F; Solovieva, A O; Zubareva, K E; Strunkin, D N; Gricyk, O B; Poveshchenko, O V; Shurlygina, A V; Konenkov, V I
2017-01-01
Purpose. Reveal features migration and distribution of syngeneic bone marrow cells (BMC) and subpopulations (MSC) after transplantation into the recipient carrier B16 melanoma bodies. Methods. We used mouse male and female C57BL/6 mice. Induction of Tumor Growth: B16 melanoma cells implanted subcutaneously into right hind paw of female C57BL/6 mice at a dose of 2.5 x 105 cells / mouse. migration study in vivo distribution and BMC and MSC was performed using genetic markers - Y-chromosome specific sequence line male C57Bl/6 syngeneic intravenous transplantation in females using the polymerase chain reaction (PCR) in real time on Authorized Termal Cycler - Light Cycler 480 II / 96 (Roche). Introduction suspension of unseparated bone marrow cells, mesenchymal stem cells from donor to recipient male mice (syngeneic recipient female C57BL/6), followed by isolation of recipients of organs was performed at regular intervals, then of organ recipients isolated DNA. Results. It was shown that bone marrow cells positive for Y-chromosome in migrate lymphoid (lymph nodes, spleen, bone marrow) or in non-lymphoid organs (liver, heart, brain, skin) syngeneic recipients. In addition to the migration of cells from the bone marrow to other organs, there is a way back migration of cells from the circulation to the bone marrow. B16 melanoma stimulates the migration of transplanted MSCs and BMC in bone marrow. It is found that tumor growth enhanced migration of transplanted bone marrow cells, including populations of MSCs in the bone marrow. In the early stages of tumor formation MSC migration activity higher than the BMC. In the later stages of tumor formation undivided population of bone marrow cells migrate to the intense swelling compared with a population of MSCs. Conclusion. The possibility of using bone marrow MSCs for targeted therapy of tumor diseases, because migration of MSCs in tumor tissue can be used to effectively deliver anticancer drugs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yixian; Zhang, Lanfang; Wan, Suigui
Highlights: • Injection of UVB-irradiated iDCs induces alloantigen tolerance. • This alloantigen tolerance may be associated regulatory T cell induction. • Tolerant mice serve as bone marrow donors reduces GVHD to their F1 recipients in allo-HSCT. • Tolerance is maintained in F1 recipients for long time post HSCT. - Abstract: Haploidentical hematopoietic stem cell transplantation (Haplo-HSCT) has been employed worldwide in recent years and led to favorable outcome in a group of patients who do not have human leukocyte antigen (HLA)-matched donors. However, the high incidence of severe graft-versus-host disease (GVHD) is a major problem for Haplo-HSCT. In the currentmore » study, we performed a proof of concept mouse study to test whether induction of allogeneic tolerance between two different parental strains was able to attenuate GVHD in Haplo-HSCT to the F1 mice. We induced alloantigen tolerance in C3H mice (H-2k) using ultraviolet B (UVB) irradiated immature dendritic cells (iDCs) derived from the cultures of Balb/c bone marrow cells. Then, we performed Haplo-HSCT using tolerant C3H mice as donors to F1 mice (C3H × Balb/c). The results demonstrated that this approach markedly reduced GVHD-associated death and significantly prolonged the survival of recipient mice in contrast to the groups with donors (C3H mice) that received infusion of non-UVB-irradiated DCs. Further studies showed that there were enhanced Tregs in the tolerant mice and alloantigen-specific T cell response was skewed to more IL-10-producing T cells, suggesting that these regulatory T cells might have contributed to the attenuation of GVHD. This study suggests that it is a feasible approach to preventing GVHD in Haplo-HSCT in children by pre-induction of alloantigen tolerance between the two parents. This concept may also lead to more opportunities in cell-based immunotherapy for GVHD post Haplo-HSCT.« less
Bone Marrow Transplantation of Patients in Remission Using Partially Matched Relative Donor
2016-10-19
Acute Myeloid Leukemia; Myelodysplastic Syndromes; Biphenotypic Leukemia; Acute Lymphocytic Leukemia; Chronic Myeloid Leukemia; Chronic Lymphocytic Leukemia; Plasma Cell Neoplasms; Lymphoma; Hodgkin's Disease; Aplastic Anemia
Li, Yue; Chen, Hung-lin; Bannick, Nadine; Henry, Michael; Holm, Adrian N.; Metwali, Ahmed; Urban, Joseph F.; Rothman, Paul B.; Weiner, George J.; Blazar, Bruce R.; Elliott, David E.; Ince, M. Nedim
2014-01-01
Donor T lymphocyte transfer with hematopoietic stem cells suppresses residual tumor growth (graft-versus-tumor; GVT) in cancer patients undergoing bone marrow transplantation (BMT). However, donor T cell reactivity to host organs causes severe and potentially lethal inflammation, called graft-versus-host disease (GVHD). High dose steroids or other immune suppressives are used to treat GVHD that have limited ability to control the inflammation while incurring long-term toxicity. Novel strategies are needed to modulate GVHD, preserve GVT and improve the outcome of BMT. Regulatory T cells (Tregs) control alloantigen-sensitized inflammation of GVHD, sustain GVT and prevent mortality in bone marrow transplantation. Helminths colonizing the alimentary tract dramatically increase the Treg activity, thereby modulating intestinal or systemic inflammatory responses. These observations led us to hypothesize that helminths can regulate GVHD and maintain GVT in mice. Acute GVHD was induced in helminth (Heligmosomoides polygyrus)-infected or uninfected Balb/C recipients of C57BL/6 donor grafts. Helminth infection suppressed donor T cell inflammatory cytokine generation along with reduction in GVHD lethality and maintenance of GVT. H. polygyrus colonization promoted the survival of TGFβ generating recipient Tregs after a conditioning regimen with total body irradiation and led to a TGFβ-dependent in vivo expansion/maturation of donor Tregs after BMT. Helminths did not control GVHD, when T cells unresponsive to TGFβ-mediated immune regulation were used as donor T lymphocytes. These results suggest that helminths suppress acute GVHD, employing regulatory T cells and TGFβ-dependent pathways in mice. Helminthic regulation of GVHD and GVT through intestinal immune conditioning may improve the outcome of BMT. PMID:25527786
Pezzi, Annelise; Amorin, Bruna; Laureano, Álvaro; Valim, Vanessa; Dahmer, Alice; Zambonato, Bruna; Sehn, Filipe; Wilke, Ianaê; Bruschi, Lia; Silva, Maria Aparecida Lima da; Filippi-Chiela, Eduardo; Silla, Lucia
2017-10-01
Mesenchymal stem cells (MSC) are considered multipotent stromal, non-hematopoietic cells with properties of self-renovation and differentiation. Optimal conditions for culture of MSC have been under investigation. The oxygen tension used for cultivation has been studied and appears to play an important role in biological behavior of mesenchymal cells. The aim is characterize MSC in hypoxia and normoxia conditions comparing their morphological and functional characteristics. Bone marrow-derived mesenchymal stem cells obtained from 15 healthy donors and cultured. MSC obtained from each donor were separated into two cultivation conditions normoxia (21% O 2 ) and hypoxia (three donors at 1%, three donors at 2%, five donors at 3%, and four donors at 4% O 2 ) up to second passage. MSC were evaluated for proliferation, differentiation, immunophenotyping, size and cell complexity, oxidative stress, mitochondrial activity, and autophagy. Culture conditions applied did not seem to affect immunophenotypic features and cellular plasticity. However, cells subjected to hypoxia showed smaller size and greater cellular complexity, besides lower proliferation (P < 0.002). Furthermore, cells cultured in low O 2 tension had lower mitochondrial activity (P < 0.03) and a reduced tendency to autophagy, although oxidative stress did not vary among groups (P < 0.39). Oxygen tension seems to be a key regulator of cellular adaptation in vitro, and metabolic effects underlying this variable remain undescribed. Heterogeneity or even lack of results on the impact of oxygen concentration used for expanding MSC highlights the need for further research, in order to optimize conditions of cultivation and expansion and achieve greater safety and therapeutic efficacy. J. Cell. Biochem. 118: 3072-3079, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Yoshimatsu, Hidehiko; Iida, Takuya; Yamamoto, Takumi; Hayashi, Akitatsu
2018-05-12
The superficial circumflex iliac artery (SCIA)-based iliac bone flap has yet to be widely used. The purpose of this article is to validate the feasibility of SCIA-based iliac bone flap transfers for reconstruction of small to moderate-sized bony defects. Retrospective outcome comparisons between SCIA-based iliac bone flaps and fibula flaps were made. Twenty-six patients with bony tissue defects underwent reconstructions using either free SCIA-based iliac bone flaps (13) or fibula flaps (13). Outcomes were evaluated 9 months after the reconstruction on the following basis: bone length, pedicle length, skin paddle area, bone union, donor-site complications, skin paddle survival, and complications at the reconstructed site. There was no statistically significant difference in pedicle length (iliac bone vs. fibula; 5.5 ± 1.8 vs. 4.1 ± 1.5 cm; p = 0.181), in bone union rate (iliac bone vs. fibula; 100 vs 92.3%; p = 0.308), in donor-site complication rate (iliac bone vs. fibula; 0 vs. 7.7%; p = 0.308), or in skin paddle complete survival rate (iliac bone vs. fibula; 100 vs. 83.3%; p = 0.125). Statistically significant differences were observed in bone flap length (iliac bone vs. fibula; 4.8 ± 2.2 vs. 11.1 ± 4.8 cm; p = 0.0005), in skin paddle area (superficial circumflex iliac artery perforator flap vs. peroneal artery perforator flap; 58.8 ± 35.6 vs. 27.7 ± 17.5 cm 2 ; p = 0.0343), and in reconstructed site complication rate (iliac bone vs. fibula; 0 vs. 30.8%; p = 0.030). In our series of SCIA-based iliac bone flap transfers, up to 8 × 3 cm could be procured along the iliac crest. When compared with fibula flap transfers, there were no significant statistical differences in pedicle length or in bone union rate; the SCIA-based iliac bone flap may be a feasible option for bony defects of small to moderate size. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Boquett, J A; Nunes, J M; Buhler, S; de Oliveira, M Z; Jobim, L F; Jobim, M; Fagundes, N J R; Schüler-Faccini, L; Sanchez-Mazas, A
2017-01-01
Human leukocyte antigen (HLA) genes are very informative in population genetics studies and their variability has been widely used to reconstruct the history of geographic and/or demographic expansions of human populations. The characterization of HLA diversity at the population level is also fundamental in clinical studies, particularly for bone marrow transplantation programs. In this study, we investigated the HLA molecular variation in Rio Grande do Sul, South Brazil, in order to identify possible regional differences across this state. More than 97,000 bone marrow donors were typed at the HLA- A, -B and -DRB1 loci and analyzed by considering two kinds of subdivisions based on both self-identified ethnicity and place of residence: (a) the official geographic subdivision defined by the Brazilian Institute of Geography and Statistics and (b) known information about the colonization history of the state. HLA allele and haplotype frequencies were estimated and compared among the defined subgroups. The results indicate a lack of correlation between genetic variation and geography and thus no clear HLA genetic structure based on geographic criteria. On the other hand, major differences were observed regarding ethnicity. In addition, local populations from Rio Grande do Sul were found to be genetically similar to their corresponding parental European populations from Germany, Italy and Portugal, as documented by historical data. Overall, this study provides a thorough characterization of the HLA genetic variation in Rio Grande do Sul and a better understanding of its demographic history, being most useful for the development of more efficient strategies in bone marrow donors' recruitment. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bone healing and bone substitutes.
Costantino, Peter D; Hiltzik, David; Govindaraj, Satish; Moche, Jason
2002-02-01
With the advent of new biomaterials and surgical techniques, the reconstructive surgeon has a wider range of treatment modalities for the rehabilitation and reconstruction of craniofacial skeletal deformities than ever before. These innovative substances act as true bone graft substitutes, thereby allowing the surgeon to avoid the use of autogenous bone grafts and their associated donor site morbidity. Surgeons have long been interested in producing a composite graft that can heal faster by induction, incorporate with surrounding tissues, and be remodeled to resemble native bone. Currently, there are a host of bone graft substitutes available that vary in both their composition and properties. Craniomaxillofacial surgeons must therefore become comfortable with numerous biomaterials to best tailor the treatment for each patient individually. Ongoing investigations into the next phase of tissue engineering will continue to bring us closer to the ability to regenerate or replace bone.
Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair
Agarwal, Rachit; García, Andrés J.
2015-01-01
Bone tissue has a remarkable ability to regenerate and heal itself. However, large bone defects and complex fractures still present a significant challenge to the medical community. Current treatments center on metal implants for structural and mechanical support and auto- or allo-grafts to substitute long bone defects. Metal implants are associated with several complications such as implant loosening and infections. Bone grafts suffer from donor site morbidity, reduced bioactivity, and risk of pathogen transmission. Surgical implants can be modified to provide vital biological cues, growth factors and cells in order to improve osseointegration and repair of bone defects. Here we review strategies and technologies to engineer metal surfaces to promote osseointegration with the host tissue. We also discuss strategies for modifying implants for cell adhesion and bone growth via integrin signaling and growth factor and cytokine delivery for bone defect repair. PMID:25861724
Tissue procurement and transplantation: a Tuscany perspective.
Filipponi, F; De Simone, P; Saviozzi, A; Bozzi, G
2008-01-01
Tissue procurement and transplantation are rarely taken into account as indicators of the efficiency of a regional donor procurement network. We present herein a retrospective review on Tuscany tissue procurement activities from 2004 until 2006. In 2003 the Tuscan Regional Government appointed a transplantation service authority to reorganize all regional donation and transplantation activities: the Organizzazione Toscana Trapianti (OTT). The regional tissue procurement network was based on either brain death (BD) and cardiac death (CD) donors under the responsibility of in-hospital transplantation coordinators (IHTCs). From 2004 to 2006, a total of 397 tissue donors were procured in Tuscany, and 4151 tissue transplantations were performed: 2909 skin grafts, 1209 bone grafts, and 33 heart valves. Over the same period, a total of 2116 cornea donors were procured; 4117 corneas were retrieved; 1779 were fit for transplantation, and 1418 were transplanted. Based on our experience, implementation of tissue procurement requires use of BD donors and paramount organizational efforts from IHTCs.
Caregiver Support in the Coping of Patients Who Are Undergoing a Donor Bone Marrow Transplant
2018-01-25
Chronic Myeloproliferative Disorders; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Diseases; Psychosocial Effects of Cancer and Its Treatment
Organ donation takes healthy organs and tissues from one person for transplantation into another. Experts say that the organs ... and bone marrow Cornea Most organ and tissue donations occur after the donor has died. But some ...
Kuçi, Zyrafete; Bönig, Halvard; Kreyenberg, Hermann; Bunos, Milica; Jauch, Anna; Janssen, Johannes W.G.; Škifić, Marijana; Michel, Kristina; Eising, Ben; Lucchini, Giovanna; Bakhtiar, Shahrzad; Greil, Johann; Lang, Peter; Basu, Oliver; von Luettichau, Irene; Schulz, Ansgar; Sykora, Karl-Walter; Jarisch, Andrea; Soerensen, Jan; Salzmann-Manrique, Emilia; Seifried, Erhard; Klingebiel, Thomas; Bader, Peter; Kuçi, Selim
2016-01-01
To circumvent donor-to-donor heterogeneity which may lead to inconsistent results after treatment of acute graft-versus-host disease with mesenchymal stromal cells generated from single donors we developed a novel approach by generating these cells from pooled bone marrow mononuclear cells of 8 healthy “3rd-party” donors. Generated cells were frozen in 209 vials and designated as mesenchymal stromal cell bank. These vials served as a source for generation of clinical grade mesenchymal stromal cell end-products, which exhibited typical mesenchymal stromal cell phenotype, trilineage differentiation potential and at later passages expressed replicative senescence-related markers (p21 and p16). Genetic analysis demonstrated their genomic stability (normal karyotype and a diploid pattern). Importantly, clinical end-products exerted a significantly higher allosuppressive potential than the mean allosuppressive potential of mesenchymal stromal cells generated from the same donors individually. Administration of 81 mesenchymal stromal cell end-products to 26 patients with severe steroid-resistant acute graft-versus-host disease in 7 stem cell transplant centers who were refractory to many lines of treatment, induced a 77% overall response at the primary end point (day 28). Remarkably, although the cohort of patients was highly challenging (96% grade III/IV and only 4% grade II graft-versus-host disease), after treatment with mesenchymal stromal cell end-products the overall survival rate at two years follow up was 71±11% for the entire patient cohort, compared to 51.4±9.0% in graft-versus-host disease clinical studies, in which mesenchymal stromal cells were derived from single donors. Mesenchymal stromal cell end-products may, therefore, provide a novel therapeutic tool for the effective treatment of severe acute graft-versus-host disease. PMID:27175026
Tawara, Isao; Shlomchik, Warren D.; Jones, Angela; Zou, Weiping; Nieves, Evelyn; Liu, Chen; Toubai, Tomomi; Duran-Struuck, Raimon; Sun, Yaping; Clouthier, Shawn G.; Evers, Rebecca; Lowler, Kathleen P.; Levy, Robert B.; Reddy, Pavan
2010-01-01
Allogeneic bone marrow transplantation is an effective treatment for a number of malignant and nonmalignant diseases (Applebaum. 2001. Nature. 411: 385–389 and Copelan. 2006. N Engl J Med. 354: 1813–1826). However, the application of this therapeutic modality has been impeded by a number of confounding side effects, the most frequent and severe of which is the development of graft-versus-host disease (GVHD) (Copelan. 2006. N Engl J Med. 354: 1813–1826 and Blazar and Murphy. 2005. Philos Trans R Soc Lond B Biol Sci. 360: 1747–1767). Alloreactive donor T cells are critical for causing GVHD (Fowler. 2006. Crit Rev Oncol Hematol. 57: 225–244 and Ferrara and Reddy. 2006. Semin Hematol. 43: 3–10), whereas recent data demonstrated a significant role for the naturally occurring thymic-derived donor CD4+CD25+Foxp3+ regulatory T cells (Tregs) (Bluestone and Abbas. 2003. Nat Rev Immunol. 3: 253–257 and Shevach. 2006. Immunity. 25: 195–201) in suppressing experimental GVHD after bone marrow transplantation (Blazar and Taylor. 2005. Biol Blood Marrow Transpl. 11: 46–49 and Joffe and van Meerwijk. 2006. Semin Immunol. 18: 128–135). Host APCs are required for induction of GVHD by the conventional donor T cells. However, it is not known whether they are also obligatory for donor Treg-mediated suppression of GVHD. Using multiple clinically relevant MHC-matched and -mismatched murine models of GVHD, we investigated the role of host APCs in the suppression of GVHD by donor Tregs. We found that alloantigen expression by the host APCs is necessary and sufficient for induction of GVHD protection by donor Tregs. This requirement was independent of their effect on the maintenance of Treg numbers and the production of IL-10 or IDO by the host APCs. PMID:20810991
One Chance in a Million: Altruism and the Bone Marrow Registry.
Bergstrom, Theodore C; Garratt, Rodney J; Sheehan-Connor, Damien
2009-09-01
Stem cell transplants save lives of many patients with blood diseases. Donation is painful, but rarely has lasting adverse effects. Patients can accept transplants only from donors with compatible immune systems. Those lacking a sibling match must seek donations from the general population. The probability that two unrelated persons are compatible is less than 1/10,000. Health authorities maintain a registry of several million genetically tested potential donors who agree to donate if asked. We find that the benefits of adding registrants of every race exceed costs. We also explore the peculiar structure of voluntary public good provision that faces potential donors.
Heterogeneity of antibody response to human platelet transfusion.
Wu, K K; Thompson, J S; Koepke, J A; Hoak, J C; Flink, R
1976-01-01
To study the antibody response to human platelet transfusions, nine thrombocytopenia patients with bone marrow failure were given 6 U (3X10(11)) of random platelet concentrates twice a week. Before transfusion, none of the patients had preexisting antibodies detectable with lymphocytotoxicity, platelet aggregation, or capillary leukoagglutination techniques. After receiving 18-78 U of platelets, they became refractory to further transfusions of random platelets and alloantibodies were detectable. Two patterns of antibody response could be identified. In three patients, the sera were not lymphocytotoxic with a panel of standard cells in which all the known HLA antigens in the first and second series were represented at least once. Yet, they caused platelet aggregation with 30, 24, and 60%, respectively, of a donor population studied. The aggregating activities were inhibited by antihuman IgG but not by antihuman IgA or antihuman IgM antiserum. The aggregating antibodies could be absorbed out with donor platelets but not lymphocytes or granulocytes. Antibodies from two of these patients aggregated platelets of their respective siblings matched for both HLA haplotypes. Transfusion of platelets from these two siblings did not increase the platelet count while platelets obtained from aggregation-negative donors did. The sera from the remaining six patients were lymphocytotoxic with 15-100% of the panel of standard cells. They also had aggregating antibodies, which could be absorbed out by both platelets and lymphocytes, suggesting that they were HLA antibodies. These data suggest that the development of platelet-specific antibodies may play an important role in the immunological rejection of isologous platelets, and should be considered in the selection of donors for patients who are refractory to platelets from random donors. PMID:956376
Chen, Jeng-Chang; Chang, Ming-Ling; Huang, Shiu-Feng; Chang, Pei-Yeh; Muench, Marcus O; Fu, Ren-Huei; Ou, Liang-Shiou; Kuo, Ming-Ling
2008-01-01
It was reported that the dose of self-antigens can determine the consequence of deletional tolerance and donor T cells are critical for tolerance induction in mixed chimeras. This study aimed at assessing the effect of cell doses and marrow T cells on engraftment and tolerance induction after prenatal bone marrow transplantation. Intraperitoneal cell transplantation was performed in FVB/N (H-2K(q)) mice at gestational day 14 with escalating doses of adult C57BL/6 (H-2K(b)) marrows. Peripheral chimerism was examined postnatally by flow cytometry and tolerance was tested by skin transplantation. Transplantation of light-density marrow cells showed a dose response. High-level chimerism emerged with a threshold dose of 5.0 x 10(6) and host leukocytes could be nearly replaced at a dose of 7.5-10.0 x 10(6). High-dose transplants conferred a steady long-lasting donor-specific tolerance but were accompanied by >50% incidence of graft-versus-host disease. Depletion of marrow T cells lessened graft-versus-host disease to the detriment of engraftment. With low-level chimerism, tolerance was a graded phenomenon dependent upon the level of chimerism. Durable chimerism within 6 months required a threshold of > or = 2% chimerism at 1 month of age and predicted a 50% chance of long-term tolerance, whereas transient chimerism (<2%) only caused hyporesponsiveness to the donor. Tolerance induction did not succeed without peripheral chimerism even if a large amount of injected donor cells persisted in the peritoneum. Neither did an increase in cell doses or donor T-cell contents benefit skin graft survivals unless it had substantially improved peripheral chimerism. Thus, peripheral chimerism level can be a simple and straightforward test to predict the degree of prenatal immune tolerance.
2012-03-13
Chronic Myeloproliferative Disorders; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Diseases; Psychosocial Effects of Cancer and Its Treatment
Drela, Katarzyna; Lech, Wioletta; Figiel-Dabrowska, Anna; Zychowicz, Marzena; Mikula, Michał; Sarnowska, Anna; Domanska-Janik, Krystyna
2016-04-01
Substantial inconsistencies in mesenchymal stem (stromal) cell (MSC) therapy reported in early translational and clinical studies may indicate need for selection of the proper cell population for any particular therapeutic purpose. In the present study we have examined stromal stem cells derived either from umbilical cord Wharton's Jelly (WJ-MSC) or bone marrow (BM-MSC) of adult, healthy donors. The cells characterized in accordance with the International Society for Cellular Therapy (ISCT) indications as well as other phenotypic and functional parameters have been compared under strictly controlled culture conditions. WJ-MSC, in comparison with BM-MSC, exhibited a higher proliferation rate, a greater expansion capability being additionally stimulated under low-oxygen atmosphere, enhanced neurotrophic factors gene expression and spontaneous tendency toward a neural lineage differentiation commitment confirmed by protein and gene marker induction. Our data suggest that WJ-MSC may represent an example of immature-type "pre-MSC," where a substantial cellular component is embryonic-like, pluripotent derivatives with the default neural-like differentiation. These cells may contribute in different extents to nearly all classical MSC populations adversely correlated with the age of cell donors. Our data suggest that neuro-epithelial markers, like nestin, stage specific embryonic antigens-4 or α-smooth muscle actin expressions, may serve as useful indicators of MSC culture neuro-regeneration-associated potency. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Cohen, Michael M; Kazak, Marat
2015-01-01
Global avascular necrosis of the talus is a devastating complication that usually occurs as a result of a post-traumatic or metabolic etiology. When conservative options fail, tibiocalcaneal arthrodesis is generally indicated in conjunction with massive bone grafting to maintain the functional length of the extremity. Several bone grafting options are available, including the use of a freeze-dried or fresh-frozen femoral head allograft or autograft obtained from the iliac crest or fibula, all of which pose their own inherent risks. The noted complications with massive bone grafting techniques have included graft collapse, infection, immune response, donor site morbidity, and nonunion. In an effort to avoid many of these complications, we present a case report involving post-traumatic talar avascular necrosis in a 59-year-old male who was successfully treated with the use of a porous tantalum spacer, an autogenic morselized fibular bone graft, and 30 mL of bone marrow aspirate in conjunction with a retrograde tibiocalcaneal nail. Porous tantalum is an attractive substitute for bone grafting because of its structural integrity, biocompatibility, avoidance of donor site complications, and lack of an immune response. The successful use of porous tantalum has been well-documented in hip and knee surgery. We present a practical surgical approach to tibiotalocalcaneal arthrodesis with a large segmental deficit. To our knowledge, this is the first published report describing an alternative surgical technique to address global avascular necrosis of the talus that could have additional applications in salvaging the ankle with a large bone deficiency. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Biobanking of blood and bone marrow: emerging challenges for custodians of public resources.
Aparicio, Lorena; Lipworth, Wendy; Then, Shih-Ning; Stewart, Cameron; Coghlan, Patrick; Kerridge, Ian; Fleming, Jennifer
2013-12-01
The Australian Bone Marrow Donor Registry (ABMDR) is a publicly funded company that is part of an international network that facilitates unrelated bone marrow transplantation. This role means that the ABMDR has access to a large biospecimen repository therefore making it a highly valuable research resource. Recognising the potential value of these biospecimens for research purposes, the ABMDR is in the process of determining whether, and how, to share its biospecimens with other biobanks. While this would undoubtedly be of value to the scientific community, and ultimately to the wider community, it would also inevitably transform the role of an institution whose primary role is therapeutic, and would compromise the degree of control that a custodian has over donated material. This article describe the challenges confronting the ABMDR, and organisations like it, in balancing their duties to donors, patients, researchers and the general public. These problems have led inevitably to the use of "property" rights language in the discussion of these issues but notions of gift, ownership, trusteeship and transfer might also be considered.
Mohd Ali, Norlaily; Boo, Lily; Yeap, Swee Keong; Ky, Huynh; Satharasinghe, Dilan A.; Liew, Woan Charn; Cheong, Soon Keng; Kamarul, Tunku
2016-01-01
Decline in the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSC) is often seen with older donors as compared to young. Although hypoxia is known as an approach to improve the therapeutic potential of MSC in term of cell proliferation and differentiation capacity, its effects on MSC from aged donors have not been well studied. To evaluate the influence of hypoxia on different age groups, MSC from young (<30 years) and aged (>60 years) donors were expanded under hypoxic (5% O2) and normal (20% O2) culture conditions. MSC from old donors exhibited a reduction in proliferation rate and differentiation potential together with the accumulation of senescence features compared to that of young donors. However, MSC cultured under hypoxic condition showed enhanced self-renewing and proliferation capacity in both age groups as compared to normal condition. Bioinformatic analysis of the gene ontology (GO) and KEGG pathway under hypoxic culture condition identified hypoxia-inducible miRNAs that were found to target transcriptional activity leading to enhanced cell proliferation, migration as well as decrease in growth arrest and apoptosis through the activation of multiple signaling pathways. Overall, differentially expressed miRNA provided additional information to describe the biological changes of young and aged MSCs expansion under hypoxic culture condition at the molecular level. Based on our findings, the therapeutic potential hierarchy of MSC according to donor’s age group and culture conditions can be categorized in the following order: young (hypoxia) > young (normoxia) > old aged (hypoxia) > old aged (normoxia). PMID:26788424
Baron, Frédéric; Mohty, Mohamad; Blaise, Didier; Socié, Gérard; Labopin, Myriam; Esteve, Jordi; Ciceri, Fabio; Giebel, Sebastian; Gorin, Norbert Claude; Savani, Bipin N; Schmid, Christoph; Nagler, Arnon
2017-01-01
Allogeneic hematopoietic stem cell transplantation is increasingly used as treatment for patients with life-threatening blood diseases. Its curative potential is largely based on immune-mediated graft-versus-leukemia effects caused by donor T cells contained in the graft. Unfortunately, donor T cells are also the cause of graft-versus-host disease. The vast majority of human leukocyte antigen-matched allogeneic hematopoietic stem cell transplants are nowadays carried out with peripheral blood stem cells as the stem cell source. In comparison with bone marrows, peripheral blood stem cells contain more hematopoietic stem/progenitor cells but also one log more T cells. Consequently, the use of peripheral blood stem cells instead of bone marrow has been associated with faster hematologic recovery and a lower risk of relapse in patients with advanced disease, but also with a higher incidence of chronic graft-versus-host disease. These observations have been the basis for several studies aimed at assessing the impact of immunoregulation with anti-thymocyte globulin on transplantation outcomes in patients given human leukocyte antigen-matched peripheral blood stem cells from related or unrelated donors. After a brief introduction on anti-thymocyte globulin, this article reviews recent studies assessing the impact of anti-thymocyte globulin on transplantation outcomes in patients given peripheral blood stem cells from human leukocyte antigen-matched related or unrelated donors as well as in recipients of grafts from human leukocyte antigen haploidentical donors. PMID:27927772
2018-04-18
Myelodysplastic Syndrome (MDS); Chronic Lymphocytic Leukemia (CLL); Chemotherapy-sensitive Lymphoma; Acute Lymphoblastic Leukemia (ALL)/T Lymphoblastic Lymphoma; Acute Myelogenous Leukemia (AML); Acute Biphenotypic Leukemia (ABL); Acute Undifferentiated Leukemia (AUL)
Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation.
Taya, Yuki; Ota, Yasunori; Wilkinson, Adam C; Kanazawa, Ayano; Watarai, Hiroshi; Kasai, Masataka; Nakauchi, Hiromitsu; Yamazaki, Satoshi
2016-12-02
A specialized bone marrow microenvironment (niche) regulates hematopoietic stem cell (HSC) self-renewal and commitment. For successful donor-HSC engraftment, the niche must be emptied via myeloablative irradiation or chemotherapy. However, myeloablation can cause severe complications and even mortality. Here we report that the essential amino acid valine is indispensable for the proliferation and maintenance of HSCs. Both mouse and human HSCs failed to proliferate when cultured in valine-depleted conditions. In mice fed a valine-restricted diet, HSC frequency fell dramatically within 1 week. Furthermore, dietary valine restriction emptied the mouse bone marrow niche and afforded donor-HSC engraftment without chemoirradiative myeloablation. These findings indicate a critical role for valine in HSC maintenance and suggest that dietary valine restriction may reduce iatrogenic complications in HSC transplantation. Copyright © 2016, American Association for the Advancement of Science.
Güven, Melih; Tokyay, Abbas; Akman, Budak; Encan, Mehmet E; Altintaş, Faik
2016-03-01
The aim of this study was to report the experience with the use of a modified Grice-Green technique, which was performed using a partial subperiosteal fibular bone graft because of valgus unstable foot in children with cerebral palsy. Fifteen feet of 11 patients were evaluated on the basis of the appearance of the feet, clinical symptoms, and radiographic measurements. After an average follow-up duration of 24 (9-39) months, all feet showed satisfactory clinical and radiological results. Solid fusion and sustained correction took place in all feet. The gap at the donor site was bridged with new bone in all cases. No donor-site morbidity was detected. This modification of the Grice-Green technique can be used effectively in the correction of planovalgus foot in cerebral palsy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoloff, I.L.; Weiss, A.J.
1963-07-01
Female mice of inbred strains (101 x C3H, BDF, C57B1, Balb/C, C3H, CBA, and LAF) were immunized with 0.2 ml of alum-precipitated tetanus toxoid subcutaneously, followed in 3 weeks by 0.2 ml of fluid toxoid intravenously. Four days after the last injection the marrow was mechanically dispersed and 10- 20 million marrow cells were inoculated intravenously into mice that had received on the previous day a lethal dose of whole-body x irradiation. The LD/sub 96/ for 30 days of each host strain was: BDF, 950 r; LAF, 950 r; 101 x C3H, 900 r; Balb/C, 800 r; C3H, 800 r;more » C57B1, 800 r; and CBA, 700 r. Mice in which isologous bone marrow cells from hyperimmunized donors were transferred to irradiated hosts showed a high degree of protection against irradiation in all strains studied. The percentage of 30-day irradiation survivors follows: C3H, 100%; 101 x C3H, 100%; CBA, 90%; BDF, 90%; Balb/C, 60%; and C57B1, 70%. There were no survivors among groups irradiated but not protected with bone marrow. The percentage of 7- day survivors after toxin challenge for each of 4 different strains receiving isologous cells from hyperimmunized donors ranged between 87 and 100%. Normal mice, similar in weight to the experimental groups (called toxin controls) all died of tetanus within 48 hr of challenge with toxin. Other results showed that homologous disease does not interfere significantly with the in vivo neutralization of tetanus toxin by antitoxin. It was concluded that homologous disease is a clinical entity which, in some donor-host combinations, is associated with a host-vs-graft reaction and, in one strain combination so far tested, is associated with a graft-vshost reaction. The experiments showed that the genetic relation between donor and host is a factor in determining which type of immunologic reaction may occur. (TCO)« less
Decreased heterotopic osteogenesis in vitamin-D-deficient, but normocalcemic guinea pigs
NASA Technical Reports Server (NTRS)
Dziedzic-Goclawska, A.; Toverud, S. U.; Kaminski, A.; Boass, A.; Yamauchi, M.
1992-01-01
The effect of vitamin D deficiency unhampered by hypocalcemia on de novo bone formation was studied in guinea pigs. Heterotopic induction of osteogenesis was evaluated 4 weeks after intramuscular transplantation of allogenic urinary bladder transitional epithelium from vitamin-D-repleted (+D) donors into +D and -D recipients. In -D recipients the frequency of osteogenesis and the amount of induced bone were significantly diminished; induced bone was less mature, scantly cellular woven bone poorly repopulated with bone marrow. No effect of vitamin D deficiency on orthotopic bone growth and on mineralization of orthotopic and heterotopically induced bone was observed. It is proposed that in addition to inducing factors (BMPs, growth factors) which may be responsible for transformation of mesenchymal cells to osteoprogenitor cells, normal concentrations of 1,25-(OH)2D3 may be required for proliferation and further differentiation of these cells into osteoblasts and for expression of genes engaged in extracellular matrix formation and maturation.
Cheng, Christina W.; Solorio, Loran D.; Alsberg, Eben
2014-01-01
The reconstruction of musculoskeletal defects is a constant challenge for orthopaedic surgeons. Musculoskeletal injuries such as fractures, chondral lesions, infections and tumor debulking can often lead to large tissue voids requiring reconstruction with tissue grafts. Autografts are currently the gold standard in orthopaedic tissue reconstruction; however, there is a limit to the amount of tissue that can be harvested before compromising the donor site. Tissue engineering strategies using allogeneic or xenogeneic decellularized bone, cartilage, skeletal muscle, tendon and ligament have emerged as promising potential alternative treatment. The extracellular matrix provides a natural scaffold for cell attachment, proliferation and differentiation. Decellularization of in vitro cell-derived matrices can also enable the generation of autologous constructs from tissue specific cells or progenitor cells. Although decellularized bone tissue is widely used clinically in orthopaedic applications, the exciting potential of decellularized cartilage, skeletal muscle, tendon and ligament cell-derived matrices has only recently begun to be explored for ultimate translation to the orthopaedic clinic. PMID:24417915
Qin, Xiao-ying; Li, Guo-xuan; Qin, Ya-zhen; Wang, Yu; Wang, Feng-rong; Liu, Dai-hong; Xu, Lan-ping; Chen, Huan; Han, Wei; Wang, Jing-zhi; Zhang, Xiao-hui; Li, Jin-lan; Li, Ling-di; Liu, Kai-yan; Huang, Xiao-jun
2011-08-01
Analysis of changes in recipient and donor hematopoietic cell origin is extremely useful to monitor the effect of hematopoietic stem cell transplantation (HSCT) and sequential adoptive immunotherapy by donor lymphocyte infusions. We developed a sensitive, reliable and rapid real-time PCR method based on sequence polymorphism systems to quantitatively assess the hematopoietic chimerism after HSCT. A panel of 29 selected sequence polymorphism (SP) markers was screened by real-time PCR in 101 HSCT patients with leukemia and other hematological diseases. The chimerism kinetics of bone marrow samples of 8 HSCT patients in remission and relapse situations were followed longitudinally. Recipient genotype discrimination was possible in 97.0% (98 of 101) with a mean number of 2.5 (1-7) informative markers per recipient/donor pair. Using serial dilutions of plasmids containing specific SP markers, the linear correlation (r) of 0.99, the slope between -3.2 and -3.7 and the sensitivity of 0.1% were proved reproducible. By this method, it was possible to very accurately detect autologous signals in the range from 0.1% to 30%. The accuracy of the method in the very important range of autologous signals below 5% was extraordinarily high (standard deviation <1.85%), which might significantly improve detection accuracy of changes in autologous signals early in the post-transplantation course of follow-up. The main advantage of the real-time PCR method over short tandem repeat PCR chimerism assays is the absence of PCR competition and plateau biases, with demonstrated greater sensitivity and linearity. Finally, we prospectively analyzed bone marrow samples of 8 patients who received allografts and presented the chimerism kinetics of remission and relapse situations that illustrated the sensitivity level and the promising clinical application of this method. This SP-based real-time PCR assay provides a rapid, sensitive, and accurate quantitative assessment of mixed chimerism that can be useful in predicting graft rejection and early relapse.
Boraldi, Federica; Burns, Jorge S; Bartolomeo, Angelica; Dominici, Massimo; Quaglino, Daniela
2018-03-01
Numerous cellular models have been developed to investigate calcification for regenerative medicine applications and for the identification of therapeutic targets in various complications associated with age-related diseases. However, results have often been contradictory due to specific culture conditions, cell type ontogeny and aging status. Human platelet lysate (hPL) has been recently investigated as valuable alternative to fetal bovine serum (FBS) in cell culture and bone regeneration. A parallel comparison of how all these multiple factors may converge to influence mineralization has yet to be reported. To compare mineralization of human mesenchymal cell types known to differ in extracellular matrix calcification potency, bone marrow-derived mesenchymal stromal cells and dermal fibroblasts from neonatal and adult donors, at both low and high passages, were investigated in an ex vivo experimental model by supplementing the osteogenic induction medium with FBS or with hPL. Four commercial hPL preparations were profiled by liquid chromatography/electrospray ionization quadrupole time-of-flight spectrometry, and mineralization was visualized by von Kossa staining and quantified by morphometric evaluations after 9, 14 and 21 days of culture. Data demonstrate that (i) commercial hPL preparations differ according to mass spectra profiles, (ii) hPL variously influences mineral deposition depending on cell line and possibly on platelet product preparation methods, (iii) donor age modifies mineral deposition in the presence of the same hPL and (iv) reduced in vitro proliferative capacity affects osteogenic induction and response to hPL. Despite the standardized procedures applied to obtain commercial hPL, this study highlights the divergent effects of different preparations and emphasizes the importance of cellular ontology, donor age and cell proliferative capacity to optimize the osteogenic induction capabilities of mesenchymal stromal cells and design more effective cell-based therapeutic protocols. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Clinical-scale expansion of mesenchymal stromal cells: a large banking experience.
Lechanteur, Chantal; Briquet, Alexandra; Giet, Olivier; Delloye, Olivier; Baudoux, Etienne; Beguin, Yves
2016-05-20
Mesenchymal stromal cells (MSC) are largely investigated in clinical trials aiming to control inappropriate immune reactions (GVHD, Crohn's disease, solid organ transplantation). As the percentage of MSC precursors in bone marrow is very low, these must be expanded in vitro to obtain therapeutic cell doses. We describe here the constitution of an allogeneic human third-party MSC bank from screened healthy volunteer donors in compliance with quality specifications and ISCT-release criteria and report follow-up of different aspects of this activity since 2007. 68 clinical-grade large-scale MSC cultures were completed and analyzed. The whole process was described, including volunteer donor screening, bone marrow collection, mononuclear cell isolation and expansion over 4 weeks, harvesting, cryopreservation, release, administration and quality controls of the cells (including microbiology, phenotype, and potency assays). From 59 validated donors, 68 cultures were completed (mean of final yields: 886 × 10(6) cells/culture) and a total of 464 MSC aliquots have been produced and stored in liquid nitrogen (mean of 132.8 × 10(6) cells/bag). Each MSC batch underwent extensive testing to verify its conformity with EBMT and ISCT release criteria and was individually validated. As of June 1 2015, 314 bags have been released and infused to patients included in 6 different clinical protocols. All thawed MSC units satisfied to release criteria and no infusion-related toxicity was reported. In conclusion, despite low passage cultures, we have been able to create an allogeneic "off-the-shelf" MSC bank with a large number of frozen aliquots and report here an efficient clinical-grade MSC banking activity in place for more than 7 years. Our challenge now is to produce MSC in compliance with good manufacturing practices (GMP) as, in the meantime, MSC have become considered as advanced therapy medicinal products (ATMP). Another significant challenge remains the development of relevant potency assay.
2017-01-01
Hematopoietic stem cells (HSCs) are the therapeutic component of bone marrow transplants, but finding immune-compatible donors limits treatment availability and efficacy. Recapitulation of endogenous specification during development is a promising approach to directing HSC specification in vitro, but current protocols are not capable of generating authentic HSCs with high efficiency. Across phyla, HSCs arise from hemogenic endothelium in the ventral floor of the dorsal aorta concurrent with arteriovenous specification and intersegmental vessel (ISV) sprouting, processes regulated by Notch and Wnt. We hypothesized that coordination of HSC specification with vessel patterning might involve modulatory regulatory factors such as R-spondin 1 (Rspo1), an extracellular protein that enhances β-catenin-dependent Wnt signaling and has previously been shown to regulate ISV patterning. We find that Rspo1 is required for HSC specification through control of parallel signaling pathways controlling HSC specification: Wnt16/DeltaC/DeltaD and Vegfa/Tgfβ1. Our results define Rspo1 as a key upstream regulator of two crucial pathways necessary for HSC specification. PMID:28087636
Wang, Zhifa; Weng, Yanming; Lu, Shengjun; Zong, Chunlin; Qiu, Jianyong; Liu, Yanpu; Liu, Bin
2015-08-01
To analyze the effects of platelet-rich fibrin (PRF) on mesenchymal stem cells (MSCs) in vitro and investigate in vivo bone formation by MSC sheets with PRF. Cell proliferation and expression of osteogenesis-related genes within MSC sheets were assessed upon exposure to PRF from the same donors. We then injected MSC sheet fragments with or without PRF subcutaneously in nude mice and assessed bone formation by micro-computed tomography and histological analyses. PRF significantly stimulated MSC proliferation and osteogenesis in vitro. MSC sheets injected with or without PRF formed new bone, but those with PRF produced significantly more and denser bone. MSC sheets can be used to generate tissue engineered bone upon injection, and PRF increases the osteogenic capacity of MSC sheets in vitro and in vivo. © 2014 Wiley Periodicals, Inc.
Zeltner, Marco; Flückiger, Laura B; Hämmerle, Christoph H F; Hüsler, Jürg; Benic, Goran I
2016-08-01
To test whether the mandibular retromolar region renders different results from the chin region with respect to the amount of bone available for the harvesting of block grafts. Sixty cone beam computed tomography (CBCT) scans of mandibles of adult patients without pathologic findings in the chin and retromolar region were included. According to the number of mandibular teeth, 20 CBCT data sets were allocated to each of the following groups: group M1: dentition 36-46; group M2: dentition 37-47; and group M3: dentition 38-48. For the potential donor sites in the chin and the retromolar regions, the volume (VChin , VRetro ), the length (LChin , LRetro ), the height (HChin , HRetro ) and the width (HChin , HRetro ) were assessed using a computer software. Moreover, the chin was examined for the presence and the localization of the mandibular incisive canal. To compare the donor sites in the chin and in the retromolar regions, the quotients VRetro /VChin , LRetro /LChin , HRetro /HChin and WRetro /WChin were calculated and tested using the Wilcoxon signed-rank test or the sign test. The mean bone volume VChin measured 3.5 ± 1.3 cm(3) (SD), whereas the overall VRetro amounted to 1.8 ± 1.1 cm(3) (SD). VRetro amounted to 2.6 ± 1.4 cm(3) (SD) in the group M1, 1.8 ± 0.5 cm(3) in the group M2 and 1.0 ± 0.4 cm(3) in the group M3. For the group M1, VRetro /VChin measured 82 ± 39% (P = 0.036). VRetro /VChin reached 57 ± 20% in the group M2 and 32 ± 12% in the group M3 (P < 0.001). The mandibular incisive canal was detected in 97% of the CBCT scans. The distance between the mandibular incisive canal and the apices of the central incisors measured 10.5 ± 3.5 mm. The amount of bone available for the harvesting of cortico-cancellous blocks in the chin region was superior in comparison with the mandibular retromolar region. In the absence of the second and the third molars, the amount of bone harvestable in the retromolar region reached approximately 80% of the bone volume available in the chin region. In the majority of the cases, the mandibular incisive canal was detected within the donor site in the chin region. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ruggeri, Annalisa; Rocha, Vanderson; Masson, Emeline; Labopin, Myriam; Cunha, Renato; Absi, Lena; Boudifa, Ali; Coeffic, Brigitte; Devys, Anne; De Matteis, Muriel; Dubois, Valérie; Hanau, Daniel; Hau, Françoise; Jollet, Isabelle; Masson, Dominique; Pedron, Beatrice; Perrier, Pascale; Picard, Christophe; Ramouneau-Pigot, Annie; Volt, Fernanda; Charron, Dominique; Gluckman, Eliane; Loiseau, Pascale
2013-07-01
Graft failure is a major complication after unrelated cord blood transplantation. Presence of HLA-antibodies before cord blood transplantation may impact graft failure. To analyze the effect of anti-HLA antibodies on unrelated cord blood transplantation outcomes, we analyzed 294 unrelated cord blood transplant recipients after reduced intensity conditioning regimen. The majority of the patients (82%) were transplanted for malignancies, 60% with double-unrelated cord blood transplant, 63% were HLA mismatched. Retrospectively, pre-unrelated cord blood transplant serum was tested for HLA-Ab using Luminex™ platform. Results were interpreted as mean fluorescence intensity (MFI) against donor-specific mismatch. Among 62 recipients (23%) who had anti-HLA antibodies before unrelated cord blood transplant, 14 patients had donor specific anti-HLA antibodies (DSA) (7 were donor-specific anti-HLA antibodies for single unrelated cord blood transplant and 7 for double unrelated cord blood transplant). Donor specific anti-HLA antibodies threshold ranged from 1620-17629 of mean fluorescence intensity (MFI). Cumulative incidence of Day-60 neutrophil engraftment was 76%: 44% for recipients with donor specific anti-HLA antibodies and 81% in those without donor specific anti-HLA antibodies (P=0.006). The cumulative incidence of 1-year transplant related mortality was 46% in patients with donor specific anti-HLA antibodies and 32% in those without antibodies (P=0.06). The presence of donor specific anti-HLA antibodies was associated with a trend for decreased survival rate (42% vs. 29%; P=0.07). Donor specific anti-HLA antibody in recipients of unrelated cord blood transplant is associated with graft failure and decreased survival. Patient's screening for donor specific anti-HLA antibodies before unrelated cord blood transplantation is recommended before choosing an HLA mismatched cord blood unit. Whenever possible it is important to avoid selecting a unit for which the patient has donor specific anti-HLA antibodies.
Zhou, Xiao-Yang; Zhu, Fa-Ming; Li, Jian-Ping; Mao, Wei; Zhang, De-Mei; Liu, Meng-Li; Hei, Ai-Lian; Dai, Da-Peng; Jiang, Ping; Shan, Xiao-Yan; Zhang, Bo-Wei; Zhu, Chuan-Fu; Shen, Jie; Deng, Zhi-Hui; Wang, Zheng-Lei; Yu, Wei-Jian; Chen, Qiang; Qiao, Yan-Hui; Zhu, Xiang-Ming; Lv, Rong; Li, Guo-Ying; Li, Guo-Liang; Li, Heng-Cong; Zhang, Xu; Pei, Bin; Jiao, Li-Xin; Shen, Gang; Liu, Ying; Feng, Zhi-Hui; Su, Yu-Ping; Xu, Zhao-Xia; Di, Wen-Ying; Jiang, Yao-Qin; Fu, Hong-Lei; Liu, Xiang-Jun; Liu, Xiang; Zhou, Mei-Zhen; Du, Dan; Liu, Qi; Han, Ying; Zhang, Zhi-Xin; Cai, Jian-Ping
2015-01-01
Allogeneic hematopoietic stem cell transplantation is a widely used and effective therapy for hematopoietic malignant diseases and numerous other disorders. High-resolution human leukocyte antigen (HLA) haplotype frequency distributions not only facilitate individual donor searches but also determine the probability with which a particular patient can find HLA-matched donors in a registry. The frequencies of the HLA-A, -B, -C, -DRB1, and -DQB1 alleles and haplotypes were estimated among 169,995 Chinese volunteers using the sequencing-based typing (SBT) method. Totals of 191 HLA-A, 244 HLA-B, 146 HLA-C, 143 HLA-DRB1 and 47 HLA-DQB1 alleles were observed, which accounted for 6.98%, 7.06%, 6.46%, 9.11% and 7.91%, respectively, of the alleles in each locus in the world (IMGT 3.16 Release, Apr. 2014). Among the 100 most common haplotypes from the 169,995 individuals, nine distinct haplotypes displayed significant regionally specific distributions. Among these, three were predominant in the South China region (i.e., the 20th, 31st, and 81sthaplotypes), another three were predominant in the Southwest China region (i.e., the 68th, 79th, and 95th haplotypes), one was predominant in the South and Southwest China regions (the 18th haplotype), one was relatively common in the Northeast and North China regions (the 94th haplotype), and one was common in the Northeast, North and Northwest China (the 40th haplotype). In conclusion, this is the first to analyze high-resolution HLA diversities across the entire country of China, based on a detailed and complete data set that covered 31 provinces, autonomous regions, and municipalities. Specifically, we also evaluated the HLA matching probabilities within and between geographic regions and analyzed the regional differences in the HLA diversities in China. We believe that the data presented in this study might be useful for unrelated HLA-matched donor searches, donor registry planning, population genetic studies, and anthropogenesis studies. PMID:26421847
Bestard, Oriol; Cruzado, Josep M; Mestre, Mariona; Caldés, Anna; Bas, Jordi; Carrera, Marta; Torras, Joan; Rama, Inés; Moreso, Francesc; Serón, Daniel; Grinyó, Josep M
2007-10-01
Exploring new immunosuppressive strategies inducing donor-specific hyporesponsiveness is an important challenge in transplantation. For this purpose, a careful immune monitoring and graft histology assessment is mandatory. Here, we report the results of a pilot study conducted in twenty renal transplant recipients, analyzing the immunomodulatory effects of a protocol based on induction therapy with rabbit anti-thymocyte globulin low doses, sirolimus, and mofetil mycophenolate. Evolution of donor-specific cellular and humoral alloimmune response, peripheral blood lymphocyte subsets and apoptosis was evaluated. Six-month protocol biopsies were performed to assess histological lesions and presence of FOXP3+ regulatory T cells (Tregs) in interstitial infiltrates. After transplantation, there was an early and transient apoptotic effect, mainly within the CD8+ HLADR+ T cells, combined with a sustained enhancement of CD4+ CD25(+high) lymphocytes in peripheral blood. The incidence of acute rejection was 35%, all steroid sensitive. Importantly, only pretransplant donor-specific cellular alloreactivity could discriminate patients at risk to develop acute rejection. Two thirds of the patients became donor-specific hyporesponders at 6 and 24 mo, and the achievement of this immunologic state was not abrogated by prior acute rejection episodes. Remarkably, donor-specific hyporesponders had the better renal function and less chronic renal damage. Donor-specific hyporesponsiveness was inhibited by depleting CD4+ CD25(+high) T cells, which showed donor-Ag specificity. FOXP3+ CD4+ CD25(+high) Tregs both in peripheral blood and in renal infiltrates were higher in donor-specific hyporesponders than in nonhyporesponders, suggesting that the recruitment of Tregs in the allograft plays an important role for renal acceptance. In conclusion, reaching donor-specific hyporesponsiveness is feasible after renal transplantation and associated with Treg recruitment in the graft.
How to deal with bone exposure and osteomyelitis: an overview.
Verhelle, Nicolas; Van Zele, Dirk; Liboutton, Laurent; Heymans, Olivier
2003-12-01
The authors present an overview of the various techniques which can be used to achieve coverage of exposed bone, particularly in cases of bone exposure associated with an underlying fracture or osteomyelitis. Adequate debridement, possibly in several stages, is necessary in all cases to prepare the receptor site for the next step which is soft tissue coverage, achieved using various types of surgical procedures. Adequate reconstruction can be achieved with pedicled flaps in some cases but in cases with exposure of bone, free flaps usually represent a better option in cases where the condition of the patient is not a limiting factor. Thin fascio-cutaneous free flaps may be used in some cases with small and simple soft tissue loss, so as to minimise donor site mobidity. Free muscle flaps, such as from the latissimus dorsi, are preferable in cases with bone loss in order to fill any dead space; in cases with major bone loss, a free vascularised bone graft can be used, or composite grafts including bone, muscle and/or skin (fibula or crista iliaca flaps). Some reconstructions require a functional approach, such as over an exposed joint, or for the weight-bearing area of the foot or the soft tissues over the Achilles tendon. Survival of a free flap requires perfect, permeable microsutures; thrombosis of the anastomosis is a major complication which jeopardizes flap survival; close surveillance of the flap is required during the first few days, with hourly Doppler monitoring of the pedicle on the first day. The success rate can be as high as 90 to 100% in simple cases; failures may be related to surgical technique, inadequate choice of the flap, or specific features of the patient. In cases with an underlying bone infection, recurrence of infection occurs in 5 to 20% of cases; this requires additional treatment, possibly with repeat debridement, prolonged antibiotic therapy and sometimes a second free flap.
Bone marrow transplantation in a patient with drug-induced aplastic anemia.
Banerjee, T K; Band, P R; Pabst, H; Goldsand, G; Armstrong, W D; Brown, J; Hill, J R; Dossetor, J B
1972-09-09
A 23-year-old woman gravely ill with Pseudomonas septicemia secondary to presumed drug-induced bone marrow aplasia received marrow transplantation from two male HL-A identical sibling donors. She had a successful engraftment with excellent but temporary clinical improvement. Subsequently she succumbed to graft-versus-host disease manifested by Pseudomonas and Candida albicans septicemia, cytomegalovirus pneumonitis, three phases of dermatitis, nausea, vomiting, dysphagia, diarrhea, fever, edema and bone pain, with gradual but complete graft suppression by the 74th day after the transplantation. A second marrow transplant on the 70th day was unsuccessful.
Raman spectroscopy of the organic and mineral structure of bone grafts
NASA Astrophysics Data System (ADS)
Timchenko, E. V.; Timchenko, P. E.; Volova, L. T.; Ponomareva, Yu V.; Taskina, L. A.
2014-07-01
We report the results of experimental Raman spectroscopy of donor bone samples (rat, rabbit and human) with varying degrees of mineralisation. Raman spectra are obtained for the Raman bands of 950 - 962 cm-1 (PO4)3-, 1065 - 1070 cm-1 (CO3)2- and 1665 cm-1 (amide I). In demineralised bone, a sharp (98%) decrease in the intensities of 950 - 962 and 1065 - 1070 cm-1 bands is observed, which is accompanied by the emergence of the 1079 - 1090 cm-1 band corresponding to the hydrated amorphous state CO3-3.
Raman spectroscopy for monitoring of organic and mineral structure of bone grafts
NASA Astrophysics Data System (ADS)
Timchenko, Elena V.; Timchenko, Pavel E.; Volova, Larisa T.; Ponomareva, Julia V.; Taskina, Larisa A.; Pershutkina, Svetlana V.
2014-09-01
The results of experimental studies of donor bone samples (rat, rabbit and human) with varying degrees of mineralisation by Raman spectroscopy were presented. Raman spectra were obtained for the Raman bands 950-962 (РО4)3-, 1065-1070 (СО3)2- and 1665 cm-1 (Amide I). In demineralized bone a sharp decline (to 98 %) in the range of 950-962 cm-1 (РО4)3- and 1065 - 1070 cm-1 was observed. This decrease was accompanied by the emergence of the 1079-1090 cm-1 band corresponding to the hydrated state СО3 2-.
Question of bone marrow stromal fibroblast traffic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloney, M.A.; Lamela, R.A.; Patt, H.M.
Bone marrow stromal fibroblasts (CFU-F) normally do not exchange bone marrow sites in vivo. Restitution of the CFU-F after radiation damage is primarily recovery by the local fibroblasts from potentially lethal damage. Migration of stromal fibroblasts from shielded sites to an irradiated site makes a minimal contribution, if any, to CFU-F recovery. Determination of the relative contribution of donor stromal cells in bone marrow transplants by karyotyping the proliferating bone marrow stromal cells in vitro may not reflect the relative distribution of fibroblasts in the marrow. If there is residual damage to the host stromal fibroblasts from treatment before transplantation,more » these cells may not be able to proliferate in vitro. Therefore, an occasional transplanted fibroblast may contribute most of the metaphase figures scored for karyotype.« less
Pourmollaabbassi, Babak; Karbasi, Saeed; Hashemibeni, Batool
2016-01-01
Background: The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. Materials and Methods: In this paper, hydroxyapatite (HA) powder was made out of bovine bone by thermal analysis at 900°C and first, and then, porous HA (50 weight percentage) was produced by polyurethane sponge replication method. In order to improve the scaffold mechanical properties, they have been coated with poly hydroxybutyrate. In terms of phase studies, morphology, and specifying agent groups, the specific characterization devices such as X-ray diffraction and Fourier transform infrared, were employed. To compare the behavior of cellular scaffolds, they were divided into four groups of scaffolds. The osteoblast cells were cultured. To perform phase studies, analysis of Methylthiazole tetrazolium (MTT) and Trypan blue were carried out for the viability and attachment on the surface of the scaffold, and the specification of Scanning electron microscopy was employed for the morphology of the cells. Results: The results of MTT analysis performed on four groups of scaffolds have shown that Titanium oxide (Tio2) had no effect on cell growth alone and HA was the main factor of growth and cell osteoblast adhesion on the scaffold. Moreover, the results showed that the use of coating with poly-3-hydroxybutyrate saved the factors and placed the osteoblasts within the pore. Since the main part of bone consists of HA, the TiO2 accelerates the formation of apatite crystals at the scaffold surface which is the evidence for bone tissue regeneration. Conclusions: It is likely that the relation between HA and TiO2 leads to an increase in osteoblast adhesion and growth of cells on the scaffold surface. PMID:27761431
Pourmollaabbassi, Babak; Karbasi, Saeed; Hashemibeni, Batool
2016-01-01
The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. In this paper, hydroxyapatite (HA) powder was made out of bovine bone by thermal analysis at 900°C and first, and then, porous HA (50 weight percentage) was produced by polyurethane sponge replication method. In order to improve the scaffold mechanical properties, they have been coated with poly hydroxybutyrate. In terms of phase studies, morphology, and specifying agent groups, the specific characterization devices such as X-ray diffraction and Fourier transform infrared, were employed. To compare the behavior of cellular scaffolds, they were divided into four groups of scaffolds. The osteoblast cells were cultured. To perform phase studies, analysis of Methylthiazole tetrazolium (MTT) and Trypan blue were carried out for the viability and attachment on the surface of the scaffold, and the specification of Scanning electron microscopy was employed for the morphology of the cells. The results of MTT analysis performed on four groups of scaffolds have shown that Titanium oxide (Tio 2 ) had no effect on cell growth alone and HA was the main factor of growth and cell osteoblast adhesion on the scaffold. Moreover, the results showed that the use of coating with poly-3-hydroxybutyrate saved the factors and placed the osteoblasts within the pore. Since the main part of bone consists of HA, the TiO 2 accelerates the formation of apatite crystals at the scaffold surface which is the evidence for bone tissue regeneration. It is likely that the relation between HA and TiO 2 leads to an increase in osteoblast adhesion and growth of cells on the scaffold surface.
Matsumoto, Tomoyuki; Mifune, Yutaka; Kawamoto, Atsuhiko; Kuroda, Ryosuke; Shoji, Taro; Iwasaki, Hiroto; Suzuki, Takahiro; Oyamada, Akira; Horii, Miki; Yokoyama, Ayumi; Nishimura, Hiromi; Lee, Sang Yang; Miwa, Masahiko; Doita, Minoru; Kurosaka, Masahiro; Asahara, Takayuki
2008-04-01
We recently reported that systemic administration of peripheral blood (PB) CD34+ cells, an endothelial progenitor cell (EPC)-enriched population, contributed to fracture healing via vasculogenesis/angiogenesis. However, pathophysiological role of EPCs in fracture healing process has not been fully clarified. Therefore, we investigated the hypothesis whether mobilization and incorporation of bone marrow (BM)-derived EPCs may play a pivotal role in appropriate fracture healing. Serial examinations of Laser doppler perfusion imaging and histological capillary density revealed that neovascularization activity at the fracture site peaked at day 7 post-fracture, the early phase of endochondral ossifification. Fluorescence-activated cell sorting (FACS) analysis demonstrated that the frequency of BM cKit+Sca1+Lineage- (Lin-) cells and PB Sca1+Lin- cells, which are EPC-enriched fractions, significantly increased post-fracture. The Sca1+ EPC-derived vasuculogenesis at the fracture site was confirmed by double immunohistochemistry for CD31 and Sca1. BM transplantation from transgenic donors expressing LacZ transcriptionally regulated by endothelial cell-specific Tie-2 promoter into wild type also provided direct evidence that EPCs contributing to enhanced neovascularization at the fracture site were specifically derived from BM. Animal model of systemic administration of PB Sca1+Lin- Green Fluorescent Protein (GFP)+ cells further confirmed incorporation of the mobilized EPCs into the fracture site for fracture healing. These findings indicate that fracture may induce mobilization of EPCs from BM to PB and recruitment of the mobilized EPCs into fracture sites, thereby augment neovascularization during the process of bone healing. EPCs may play an essential role in fracture healing by promoting a favorable environment through neovascularization in damaged skeletal tissue. (c) 2008 Wiley-Liss, Inc.
2017-11-08
Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Aggressive Non-Hodgkin Lymphoma; Diffuse Large B-Cell Lymphoma; Previously Treated Myelodysplastic Syndrome; Recurrent Chronic Lymphocytic Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Recurrent Indolent Adult Non-Hodgkin Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Plasma Cell Myeloma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hodgkin Lymphoma; Refractory Plasma Cell Myeloma; Refractory Small Lymphocytic Lymphoma; Waldenstrom Macroglobulinemia
Matsunaga, Takayuki; Kurosawa, Hidemitsu; Okuya, Mayuko; Nakajima, Daisuke; Hagisawa, Susumu; Sato, Yuya; Fukushima, Keitaro; Sugita, Kenichi; Arisaka, Osamu
2009-03-01
EBV-infected T-/NK cells play an important role in the pathogenesis of mosquito allergy, and the prognosis of most patients with mosquito allergy is poor without proper treatment. We describe a 13-yr-old boy who had CAEBV with mosquito allergy and was successfully treated with BMT from an unrelated donor after reduced-intensity preconditioning. Because combination chemotherapy failed to achieve CR, we performed unrelated BMT to reconstitute normal immunity and eradicate any residual EBV-infected cells. To reduce complications after BMT, we selected a reduced-intensity preconditioning regimen consisting of fludarabine, l-phenylalanine mustard, and antithymocyte Ig instead of a conventional myeloablative preconditioning. Although grade II acute GVHD developed, it was successfully controlled with immunosuppressive therapy. After 27 months, the patient has been well without any signs of CAEBV, and the EBV DNA has been undetectable with real-time PCR analysis. We conclude that RIST from the bone marrow of an unrelated donor is indicated for some patients who have CAEBV that is refractory to chemotherapy and who have no HLA-matched related donors or cord blood as a source of stem cells.
Caocci, G; Pisu, S; Argiolu, F; Giardini, C; Locatelli, F; Vacca, A; Orofino, M G; Piras, E; De Stefano, P; Addari, M C; Ledda, A; La Nasa, G
2006-01-01
Bone marrow transplantation (BMT) represents a potentially curative treatment of thalassemia. For patients without an HLA-identical sibling donor, recourse to an unrelated donor is a practicable option but the candidates and their families are faced with a difficult decision. They can either choose to continue the supportive therapy, with no chance of definitive cure, or they accept the mortality risk of BMT in the hope of obtaining a definitive resolution of the disease. We investigated the communication strategies and the post transplantation quality of life (QoL) in 19 adult thalassemia patients surviving after an unrelated donor BMT. The patients were given two questionnaires: a questionnaire to evaluate pre-transplantation communication factors and the EORTC QLQ-C30 questionnaire to assess global QoL. All patients were satisfied with the communication modalities employed by the physicians. The global post transplantation QoL in our patient cohort was found to be good. The approach used in this study may offer a contribution to understanding the decision-making process leading to the choice of a treatment with a high mortality risk for a chronic, non-malignant disease. Finally, some ethical issues of this therapeutic approach are briefly addressed.
Ulum, Baris; Teker, Hikmet Taner; Sarikaya, Aysun; Balta, Gunay; Kuskonmaz, Baris; Uckan-Cetinkaya, Duygu; Aerts-Kaya, Fatima
2018-05-24
Bone marrow mesenchymal stem cells (BM-MSCs) are promising candidates for regenerative medicine purposes. The effect of obesity on the function of BM-MSCs is currently unknown. Here, we assessed how obesity affects the function of BM-MSCs and the role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) therein. BM-MSCs were obtained from healthy donors with a normal (<25) or high (>30) body mass index (BMI). High-BMI BM-MSCs displayed severely impaired osteogenic and diminished adipogenic differentiation, decreased proliferation rates, increased senescence, and elevated expression of ER stress-related genes ATF4 and CHOP. Suppression of ER stress using tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyrate (4-PBA) resulted in partial recovery of osteogenic differentiation capacity, with a significant increase in the expression of ALPL and improvement in the UPR. These data indicate that BMI is important during the selection of BM-MSC donors for regenerative medicine purposes and that application of high-BMI BM-MSCs with TUDCA or 4-PBA may improve stem cell function. However, whether this improvement can be translated into an in vivo clinical advantage remains to be assessed. © 2018 Wiley Periodicals, Inc.
Brown, Desmond A; Mallory, Grant W; Higgins, Dominique M; Abdulaziz, Mohammed; Huddleston, Paul M; Nassr, Ahmad; Fogelson, Jeremy L; Clarke, Michelle J
2014-07-01
A cost-effective procurement process for harvesting, storing, and using femoral head allografts is described. A brief review of the literature on the use of these allografts and a discussion of costs are provided. To describe a cost-effective method for the harvesting, storage, and use of femoral heads from patients undergoing total hip arthroplasty at our institution as a source of allograft bone. Spine fusion surgery uses a large proportion of commercially available bone grafts and bone substitutes. As the number of such surgical procedures performed in the United States continues to rise, these materials are at a historically high level of demand, which is projected to continue. Iliac crest bone autograft has historically been the standard of care, although this may be losing favor due to potential donor site morbidity. Although many substitutes are effective in promoting arthrodesis, their use is limited because of cost. Femoral heads are harvested under sterile conditions during total hip arthroplasty. The patient is tested per Food and Drug Administration regulations, and the tissue sample is cultured. The tissue is frozen and quarantined for a 6-month minimum pending repeat testing of donors and subsequently released for use. The relative cost-effectiveness of this tissue as a source of allograft bone is discussed. The average femoral head allograft is 54 to 56 mm in diameter and yields 50 cm of bone graft, with an average cost of US $435 for processing of the tissue resulting in a cost of US $8.70 per cm of allograft produced. Average production costs are significantly lower than those for other commonly available commercial bone grafts and substitutes. Femoral head allograft is a cost-effective alternative to commercially available allografts and bone substitutes. The method of procurement, storage, and use described could be adopted by other institutions in an effort to mitigate cost and increase supply. N/A.
Biomimetic materials for controlling bone cell responses.
Drevelle, Olivier; Faucheux, Nathalie
2013-01-01
Bone defects that cannot "heal spontaneously during life" will become an ever greater health problem as populations age. Harvesting autografts has several drawbacks, such as pain and morbidity at both donor and acceptor sites, the limited quantity of material available, and frequently its inappropriate shape. Researchers have therefore developed alternative strategies that involve biomaterials to fill bone defects. These biomaterials must be biocompatible and interact with the surrounding bone tissue to allow their colonization by bone cells and blood vessels. The latest generation biomaterials are not inert; they control cell responses like adhesion, proliferation and differentiation. These biomaterials are called biomimetic materials. This review focuses on the development of third generation materials. We first briefly describe the bone tissue with its cells and matrix, and then how bone cells interact with the extracellular matrix. The next section covers the materials currently used to repair bone defects. Finally, we describe the strategies employed to modify the surface of materials, such as coating with hydroxyapatite and grafting biomolecules.
Islamoglu, Kemal; Dikici, Mustafa Bahadir; Ozgentas, Halil Ege
2006-09-01
Bone dust and diced cartilage are used for contour restoration because their minimal donor site morbidity. The purpose of this study is to investigate permanence of bone dust, diced cartilage and bone dust/diced cartilage mixture in rabbits over 12 weeks. New Zealand white rabbits were used for this study. There were three groups in the study: Group I: 1 mL bone dust. Group II: 1 mL diced cartilage. Group III: 0.5 mL bone dust + 0.5 mL diced cartilage mixture. They were placed into subcutaneous tissue of rabbits and removed 12 weeks later. The mean volumes of groups were 0.23 +/- 0.08 mL in group I, 0.60 +/- 0.12 mL in group II and 0.36 +/- 0.10 mL in group III. The differences between groups were found statistically significant. In conclusion, diced cartilage was found more reliable than bone dust aspect of preserving its volume for a long period in this study.
Mathes, David W.; Chang, Jeff; Hwang, Billanna; Graves, Scott S.; Storer, Barry E.; Butts-Miwongtum, Tiffany; Sale, George E.; Storb, Rainer
2014-01-01
Background We have previously demonstrated that tolerance to a vascularized composite allograft (VCA) can be achieved after the establishment of mixed chimerism. Here, we test the hypothesis that tolerance to a VCA in our dog leukocyte antigen (DLA)-matched canine model is not dependent on the previous establishment of mixed chimerism and can be induced coincident with hematopoietic cell transplantation (HCT). Methods Eight DLA-matched, minor antigen mismatched dogs received 200 cGy of radiation and a VCA transplant. Four dogs received donor bone marrow at the time of VCA transplantation (group 1) while a second group of 4 dogs did not (group 2). All recipients received a limited course of post-grafting immunosuppression. All dogs that received HCT and VCA were given donor, third party and autologous skin grafts. Results All group 1 recipients were tolerant to their VCA (> 62 weeks). Three of the four dogs in group 2 rejected their VCA transplants after the cessation of immunosuppression. Biopsies obtained from muscle and skin of VCA from group 1 showed few infiltrating cells compared to extensive infiltrates in biopsies of VCA from group 2. Compared to autologous skin and muscle, elevated levels of CD3+ FoxP3+ T-regulatory cells were found in skin and muscle obtained from VCA of HCT recipients. All group 1 animals were tolerant to their donor skin graft and promptly rejected the third-part skin grafts. Conclusion These data demonstrated donor specific tolerance to all components of the VCA can be established through simultaneous nonmyeloablative allogeneic HCT and VCA transplant protocol. PMID:24918616
2016-05-18
Acute Leukemia; Acute Myeloid Leukemia; Acute Lymphoblastic Leukemia; Biphenotypic Leukemia; Pre-leukemic Syndromes; Monosomy 7; Bone Marrow Clonal Malformations; Juvenile Myelomonocytic Leukemia; Myelodysplastic Syndromes; Chronic Myelogenous Leukemia
2017-11-22
Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Chronic Myeloid Leukemia; Myelodysplastic Syndrome; Lymphomas; Bone Marrow Failure; Hemoglobinopathy; Immune Deficiency; Osteopetrosis; Cytopenias; Leukocyte Disorders; Anemia Due to Intrinsic Red Cell Abnormality
Autologous bone graft versus demineralized bone matrix in internal fixation of ununited long bones.
Pieske, Oliver; Wittmann, Alexandra; Zaspel, Johannes; Löffler, Thomas; Rubenbauer, Bianka; Trentzsch, Heiko; Piltz, Stefan
2009-12-15
Non-unions are severe complications in orthopaedic trauma care and occur in 10% of all fractures. The golden standard for the treatment of ununited fractures includes open reduction and internal fixation (ORIF) as well as augmentation with autologous-bone-grafting. However, there is morbidity associated with the bone-graft donor site and some patients offer limited quantity or quality of autologous-bone graft material. Since allogene bone-grafts are introduced on the market, this comparative study aims to evaluate healing characteristics of ununited bones treated with ORIF combined with either iliac-crest-autologous-bone-grafting (ICABG) or demineralized-bone-matrix (DBM). From 2000 to 2006 out of sixty-two consecutive patients with non-unions presenting at our Level I Trauma Center, twenty patients had ununited diaphyseal fractures of long bones and were treated by ORIF combined either by ICABG- (n = 10) or DBM-augmentation (n = 10). At the time of index-operation, patients of the DBM-group had a higher level of comorbidity (ASA-value: p = 0.014). Mean duration of follow-up was 56.6 months (ICABG-group) and 41.2 months (DBM-group). All patients were clinically and radiographically assessed and adverse effects related to bone grafting were documented. The results showed that two non-unions augmented with ICABG failed osseous healing (20%) whereas all non-unions grafted by DBM showed successful consolidation during the first year after the index operation (p = 0.146). No early complications were documented in both groups but two patients of the ICABG-group suffered long-term problems at the donor site (20%) (p = 0.146). Pain intensity were comparable in both groups (p = 0.326). However, patients treated with DBM were more satisfied with the surgical procedure (p = 0.031). With the use of DBM, the costs for augmentation of the non-union-site are more expensive compared to ICABG (calculated difference: 160 euro/case). Nevertheless, this study demonstrated that the application of DBM compared to ICABG led to an advanced outcome in the treatment of non-unions and simultaneously to a decreased quantity of adverse effects. Therefore we conclude that DBM should be offered as an alternative to ICABG, in particular to patients with elevated comorbidity and those with limited availability or reduced quality of autologous-bone graft material.
Gallez-Hawkins, Ghislaine M.; Franck, Anne E.; Li, Xiuli; Thao, Lia; Oki, Arisa; Gendzekhadze, Ketevan; Dagis, Andrew; Palmer, Joycelynne; Nakamura, Ryotaro; Forman, Stephen J.; Senitzer, David; Zaia, John A.
2011-01-01
The important role of activating Killer Immunoglobulin-like Receptors (aKIR) in protecting against cytomegalovirus (CMV) reactivation has been described previously in hematopoietic cell transplantation (HCT). More specifically, the presence of multiple aKIR and the presence of at least KIR2DS2 and KIR2DS4 in the donor genotype identified a group of HCT patients that were at low risk for CMV reactivation. However, CMV infection still occurs in patients with KIR protective genotype and the question was raised as to whether this was due to the lack of KIR expression. In this report, the expression of KIR2DS2 and 2DS4 gene, as measured by mRNA-based Q-PCR both in the donor cells and in the HCT recipient cells was studied relative to CMV reactivation. In the control samples from healthy HCT donors, the median range of for KIR2DS2 and KIR2DS4 expression was low with 35% considered null-expressers. Interestingly, KIR2DS2 and KIR2DS4 expression was elevated after HCT when compared to donor expression prior to transplant, and significantly elevated in the CMV viremic (V) compared to non-viremic (NV) HCT recipients. CMV seropositivity of donors was not associated with aKIR expression, and donor null-expression in those with KIR2DS2 or KIR2DS4 genotype did not predict for CMV reactivation in the recipient. After controlling for other transplant factors that included donor type (sibling or unrelated), transplant source -bone marrow (BM) or peripheral blood stem cells (PB) and acute GVHD grade, the result of the regression analysis of elevated KIR gene expression was found to be associated for both KIR2DS2 and KIR2DS4, with seven fold increase in risk for CMV reactivation. We speculate that the elevated aKIR expression in CMV viremic HCT recipients is either coincidental with factors that activate CMV or is initiated by CMV or cellular processes responsive to such CMV infection reactivation. PMID:21596150
Pingel, Julia; Solloch, Ute V; Hofmann, Jan A; Lange, Vinzenz; Ehninger, Gerhard; Schmidt, Alexander H
2013-03-01
In hematopoietic stem cell transplantation, human leukocyte antigens (HLA), usually HLA loci A, B, C, DRB1 and DQB1, are required to check histocompatibility between a potential donor and the recipient suffering from a malignant or non-malignant blood disease. As databases of potential unrelated donors are very heterogeneous with respect to typing resolution and number of typed loci, donor registries make use of haplotype frequency-based algorithms to provide matching probabilities for each potentially matching recipient/donor pair. However, it is well known that HLA allele and haplotype frequencies differ significantly between populations. We estimated high-resolution HLA-A, -B, -C, -DRB1 haplotype and allele frequencies of donors within DKMS German Bone Marrow Donor Center with parentage from 17 different countries: Turkey, Poland, Italy, Russian Federation, Croatia, Greece, Austria, Kazakhstan, France, The Netherlands, Republic of China, Romania, Portugal, USA, Spain, United Kingdom and Bosnia and Herzegovina. 5-locus haplotypes including HLA-DQB1 are presented for Turkey, Poland, Italy and Russian Federation. We calculated linkage disequilibria for each sample. Genetic distances between included countries could be shown to reflect geography. We further demonstrate how genetic differences between populations are reflected in matching probabilities of recipient/donor pairs and how they influence the search for unrelated donors as well as strategic donor center typings. Copyright © 2012 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Scaffold Design for Bone Regeneration
Polo-Corrales, Liliana; Latorre-Esteves, Magda; Ramirez-Vick, Jaime E.
2014-01-01
The use of bone grafts is the standard to treat skeletal fractures, or to replace and regenerate lost bone, as demonstrated by the large number of bone graft procedures performed worldwide. The most common of these is the autograft, however, its use can lead to complications such as pain, infection, scarring, blood loss, and donor-site morbidity. The alternative is allografts, but they lack the osteoactive capacity of autografts and carry the risk of carrying infectious agents or immune rejection. Other approaches, such as the bone graft substitutes, have focused on improving the efficacy of bone grafts or other scaffolds by incorporating bone progenitor cells and growth factors to stimulate cells. An ideal bone graft or scaffold should be made of biomaterials that imitate the structure and properties of natural bone ECM, include osteoprogenitor cells and provide all the necessary environmental cues found in natural bone. However, creating living tissue constructs that are structurally, functionally and mechanically comparable to the natural bone has been a challenge so far. This focus of this review is on the evolution of these scaffolds as bone graft substitutes in the process of recreating the bone tissue microenvironment, including biochemical and biophysical cues. PMID:24730250
Tuchman, Alexander; Brodke, Darrel S; Youssef, Jim A; Meisel, Hans-Jörg; Dettori, Joseph R; Park, Jong-Beom; Yoon, S Tim; Wang, Jeffrey C
2016-09-01
Systematic review. To compare the effectiveness and safety between iliac crest bone graft (ICBG) and local autologous bone and allograft in the lumbar spine. A systematic search of multiple major medical reference databases identified studies evaluating spinal fusion in patients with degenerative joint disease using ICBG, local autograft, or allograft in the thoracolumbar spine. Six comparative studies met our inclusion criteria. A "low" strength of the overall body of evidence suggested no difference in fusion percentages in the lumbar spine between local autograft and ICBG. We found no difference in fusion percentages based on low evidence comparing allograft with ICBG autograft. There were no differences in pain or functional results comparing local autograft or allograft with ICBG autograft. Donor site pain and hematoma/seroma occurred more frequently in ICBG autograft group for lumbar fusion procedures. There was low evidence around the estimate of patients with donor site pain following ICBG harvesting, ranging from 16.7 to 20%. With respect to revision, low evidence demonstrated no difference between allograft and ICBG autograft. There was no evidence comparing patients receiving allograft with local autograft for fusion, pain, functional, and safety outcomes. In the lumbar spine, ICBG, local autograft, and allograft have similar effectiveness in terms of fusion rates, pain scores, and functional outcomes. However, ICBG is associated with an increased risk for donor site-related complications. Significant limitations exist in the available literature when comparing ICBG, local autograft, and allograft for lumbar fusion, and thus ICBG versus other fusion methods necessitates further investigation.
Rico, Laura; Herrera, Concha
2012-01-01
In November of 2011, the Committee for Advanced Therapies (CAT) of the European Medicines Agency (EMA) published two scientific recommendations regarding the classification of autologous bone marrow-derived mononuclear cells (BM-MNCs) and autologous bone marrow-derived CD133+ cells as advanced therapy medicinal products (ATMPs), specifically tissue-engineered products, when intended for regeneration in ischemic heart tissue on the basis that they are not used for the same essential function (hematological restoration) that they fulfill in the donor. In vitro and in vivo evidence demonstrates that bone marrow cells are physiologically involved in adult neovascularization and tissue repair, making their therapeutic use for these purposes a simple exploitation of their own essential functions. Therefore, from a scientific/legal point of view, nonsubstantially manipulated BM-MNCs and CD133+ cells are not an ATMP, because they have a physiological role in the processes of postnatal neovascularization and, when used therapeutically for vascular restoration in ischemic tissues, they are carrying out one of their essential physiological functions (the legal definition recognizes that cells can have several essential functions). The consequences of classifying BM-MNCs and CD133+ cells as medicinal products instead of cellular transplantation, like bone marrow transplantation, in terms of costs and time for these products to be introduced into clinical practice, make this an issue of crucial importance. Therefore, the recommendations of EMA/CAT could be reviewed in collaboration with scientific societies, in light of organizational and economic consequences as well as scientific knowledge recently acquired about the mechanisms of postnatal neovascularization and the function of bone marrow in the regeneration of remote tissues. PMID:23197819
Neri, Simona; Vannini, Francesca; Desando, Giovanna; Grigolo, Brunella; Ruffilli, Alberto; Buda, Roberto; Facchini, Andrea; Giannini, Sandro
2013-10-16
Fresh osteochondral allografts represent a treatment option for early ankle posttraumatic arthritis. Transplanted cartilage survivorship, integration, and colonization by recipient cells have not been fully investigated. The aim of this study was to evaluate the ability of recipient cells to colonize the allograft cartilage and to assess allograft cell phenotype. Seventeen ankle allograft samples were studied. Retrieved allograft cartilage DNA from fifteen cases was compared with recipient and donor constitutional DNA by genotyping. In addition, gene expression was evaluated on six allograft cartilage samples by means of real-time reverse transcription-polymerase chain reaction. Histology and immunohistochemistry were performed to support molecular observations. Of fifteen genotyped allografts, ten completely matched to the host, three matched to the donor, and two showed a mixed profile. Gene expression analysis showed that grafted cartilage expressed cartilage-specific markers. The rare persistence of donor cells and the prevailing presence of host DNA in retrieved ankle allografts suggest the ingrowth of recipient cells into the allograft cartilage, presumably migrating from the subchondral bone, in accordance with morphological findings. The expression of chondrogenic markers in some of the samples argues for the acquisition of a chondrocyte-like phenotype by these cells. To our knowledge, this is the first report describing the colonization of ankle allograft cartilage by host cells showing the acquisition of a chondrocyte-like phenotype.
Iida, Shoichi; Tsuda, Hidetoshi; Tanaka, Toshiaki; Kish, Danielle D.; Abe, Toyofumi; Su, Charles A.; Abe, Ryo; Tanabe, Kazunari; Valujskikh, Anna; Baldwin, William M.; Fairchild, Robert L.
2016-01-01
Reperfusion of organ allografts induces a potent inflammatory response that directs rapid memory T cell, neutrophil and macrophage graft infiltration and their activation to express functions mediating graft tissue injury. The role of cardiac allograft IL-1 receptor signaling in this early inflammation and the downstream primary alloimmune response was investigated. When compared to complete MHC-mismatched wild type cardiac allografts, IL-1R−/− allografts had marked decreases in endogenous memory CD8 T cell and neutrophil infiltration and expression of proinflammatory mediators at early times after transplant whereas endogenous memory CD4 T cell and macrophage infiltration was not decreased. IL-1R−/− allograft recipients also had marked decreases in de novo donor-reactive CD8, but not CD4, T cell development to IFN-γ-producing cells. CD8 T cell-mediated rejection of IL-1R−/− cardiac allografts took 3 weeks longer than wild type allografts. Cardiac allografts from reciprocal bone marrow reconstituted IL-1R−/−/wild type chimeric donors indicated that IL-1R signaling on graft non-hematopoietic-derived, but not bone marrow-derived, cells is required for the potent donor-reactive memory and primary CD8 T cell alloimmune responses observed in response to wild type allografts. These studies implicate IL-1R-mediated signals by allograft parenchymal cells in generating the stimuli provoking development and elicitation of optimal alloimmune responses to the grafts. PMID:26856697
Quality Evaluation of Human Bone Marrow Mesenchymal Stem Cells for Cartilage Repair
Shiraishi, Katsunori; Takeuchi, Shunsuke; Yanada, Shinobu; Mera, Hisashi; Wakitani, Shigeyuki; Adachi, Nobuo
2017-01-01
Quality evaluation of mesenchymal stem cells (MSCs) based on efficacy would be helpful for their clinical application. In this study, we aimed to find the factors of human bone marrow MSCs relating to cartilage repair. The expression profiles of humoral factors, messenger RNAs (mRNAs), and microRNAs (miRNAs) were analyzed in human bone marrow MSCs from five different donors. We investigated the correlations of these expression profiles with the capacity of the MSCs for proliferation, chondrogenic differentiation, and cartilage repair in vivo. The mRNA expression of MYBL1 was positively correlated with proliferation and cartilage differentiation. By contrast, the mRNA expression of RCAN2 and the protein expression of TIMP-1 and VEGF were negatively correlated with proliferation and cartilage differentiation. However, MSCs from all five donors had the capacity to promote cartilage repair in vivo regardless of their capacity for proliferation and cartilage differentiation. The mRNA expression of HLA-DRB1 was positively correlated with cartilage repair in vivo. Meanwhile, the mRNA expression of TMEM155 and expression of miR-486-3p, miR-148b, miR-93, and miR-320B were negatively correlated with cartilage repair. The expression analysis of these factors might help to predict the ability of bone marrow MSCs to promote cartilage repair. PMID:28835756
[Establishing bone bank at Varazdin General Hospital].
Jaklin, Gordana; Cesarec, Marijan; Grgurović, Denis; Mlakar, Stanislav
2007-12-01
Bone bank has to supply patients of our Department of Orthopedics and patients from Department of Traumatology with necessary bone grafts. The paper describes in detail the establishment of Bone bank at Varazdin General Hospital. At Varazdin General Hospital, Department of Transfusion Medicine, in cooperation with Department of Surgery and Department of Orthopedics has been working on developing tissue banking for already 10 years. Primarily, surgical bone remnants and femoral bone heads are collected from live donors and then transplanted. Since 2004, bone tissue has also been collected by means of explantation and then transplanted. In 2004 and 2005, as many as 170 packages of bone tissue were collected at our institution, 40 of which were with spongiosa collected through explantation, and 130 bone remnants. As many as 61 bone remnants and 21 spongiosa were transplanted. Contamination rate of bone grafts was 15.8%. All contamination allografts were destroyed. Bone grafts were used for revision hip arthroplasty, corrective osteotomy and spondylodesis. In the last two years, we have developed a computer program for Bone Bank managing, and have improved our Quality Management System. Bone Bank is a service that retrieves, tests, stores and distributes bone grafts and allows a secure system for supplying surgeons and their patients with necessary bone grafts.
Fresh osteochondral allografts-procurement and tissue donation in Europe.
Schmidt, S; Schulte, A; Schwarz, S; Hofmann, N; Tietz, S; Boergel, M; Sixt, S U
2017-07-01
Fresh osteochondral allografts are a well-established treatment for large, full-thickness cartilage defects. The clinical outcome for carefully selected patients is very favorable, especially for the young and active and graft survival up to 25 years has been described in the literature. Furthermore, a high patient satisfaction rate has been reported, but the biggest obstacle to overcome is the availability of tissue for transplantation. Large fresh bone allografts for cartilage damage repair only can be harvested from organ donors following organ removal or cadaveric donors, preferably in the setting of an operation room to minimize possible contamination of the tissue. Apart from the logistic challenges this entails, an experienced recovery team is needed. Furthermore, the public as well as medical staff is much less aware of the possibility and requirements of tissue donation than organ donation and families of deceased are rarely approached for bone and cartilage donation. This review aims to highlight the current situation of organ and tissue donation in Europe with special focus on the processing of bones and possible safety and quality concerns. We analyze what may prevent consent and what might be done to improve the situation of tissue donation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Composite three-layer closure of oral antral communication with 10 months follow-up-a case study.
Weinstock, Robert J; Nikoyan, Levon; Dym, Harry
2014-02-01
We propose a 3-layer composite closure technique for an oral antral communication (OAC) while avoiding secondary donor site morbidity. A patient had developed a 1-cm OAC after extraction of right maxillary first molar. The patient subsequently developed acute maxillary sinusitis. The patient was taken to the operating room, and a Caldwell-Luc procedure was performed. The bony window from the Caldwell-Luc was "press fit" over the bony OAC defect. Soft tissue closure was then achieved with a buccal fat pad flap and a buccal mucosal advancement flap. The patient was examined on postoperative day 5 and 1, 2, 3, 6, and 10 months postoperatively. The acute sinusitis had resolved. The soft tissue closure was successful. The bone graft remained intact, prevented sinus pneumatization, and restored continuity to the floor of the maxillary sinus. The presented technique for 3-layer closure of OACs allows for the stability of a double-layer closure of OAC with the added benefit of bone grafting from single operative site, achieving stable oral antral closure, bone grafting, and the avoidance of secondary donor site morbidity. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Osteoprotegerin autoantibodies do not predict low bone mineral density in middle-aged women.
Vaziri-Sani, Fariba; Brundin, Charlotte; Agardh, Daniel
2017-12-01
Autoantibodies against osteoprotegerin (OPG) have been associated with osteoporosis. The aim was to develop an immunoassay for OPG autoantibodies and test their diagnostic usefulness of identifying women general population with low bone mineral density. Included were 698 women at mean age 55.1 years (range 50.4-60.6) randomly selected from the general population. Measurement of wrist bone mineral density (g/cm 2 ) was performed of the non-dominant wrist by dual-energy X-ray absorptiometry (DXA). A T-score < - 2.5 was defined as having a low bone mineral density. Measurements of OPG autoantibodies were carried by radiobinding assays. Cut-off levels for a positive value were determined from the deviation from normality in the distribution of 398 healthy blood donors representing the 99.7th percentile. Forty-five of the 698 (6.6%) women were IgG-OPG positive compared with 2 of 398 (0.5%) controls ( p < 0.0001) and 35 of the 698 (5.0%) women had a T-score < - 2.5. There was no difference in bone mineral density between IgG-OPG positive (median 0.439 (range 0.315-0.547) g/cm 2 ) women and IgG-OPG negative (median 0.435 (range 0.176-0.652) g/cm 2 ) women ( p = 0.3956). Furthermore, there was neither a correlation between IgG-OPG levels and bone mineral density (r s = 0.1896; p = 0.2068) nor T-score (r s = 0.1889; p = 0.2086). Diagnostic sensitivity and specificity of IgG-OPG for low bone mineral density were 5.7% and 92.9%, and positive and negative predictive values were 7.4% and 90.8%, respectively. Elevated OPG autoantibody levels do not predict low bone mineral density in middle-aged women selected from the general population.
Kinoshita, Yukihiko; Maeda, Hatsuhiko
2013-01-01
Autogenous bone grafting remains a gold standard for the reconstruction critical-sized bone defects in the craniomaxillofacial region. Nevertheless, this graft procedure has several disadvantages such as restricted availability, donor-site morbidity, and limitations in regard to fully restoring the complicated three-dimensional structures in the craniomaxillofacial bone. The ultimate goal of craniomaxillofacial bone reconstruction is the regeneration of the physiological bone that simultaneously fulfills both morphological and functional restorations. Developments of tissue engineering in the last two decades have brought such a goal closer to reality. In bone tissue engineering, the scaffolds are fundamental, elemental and mesenchymal stem cells/osteoprogenitor cells and bioactive factors. A variety of scaffolds have been developed and used as spacemakers, biodegradable bone substitutes for transplanting to the new bone, matrices of drug delivery system, or supporting structures enhancing adhesion, proliferation, and matrix production of seeded cells according to the circumstances of the bone defects. However, scaffolds to be clinically completely satisfied have not been developed yet. Development of more functional scaffolds is required to be applied widely to cranio-maxillofacial bone defects. This paper reviews recent trends of scaffolds for crania-maxillofacial bone tissue engineering, including our studies. PMID:24163634
Stress fracture as a complication of autogenous bone graft harvest from the distal tibia.
Chou, Loretta B; Mann, Roger A; Coughlin, Michael J; McPeake, William T; Mizel, Mark S
2007-02-01
Autogenous bone graft from the distal tibia provides cancellous bone graft for foot and ankle operations, and it has osteogenic and osteoconductive properties. The site is in close proximity to the foot and ankle, and published retrospective studies show low morbidity from the procedure. One-hundred autografts were obtained from the distal tibia between 2000 and 2003. In four cases the distal tibial bone graft harvest resulted in a stress fracture. There were three women and one man. The average time of diagnosis of the stress fracture from the operation was 1.8 months. All stress fractures healed with a short course (average 2.4 months) of cast immobilization. This study demonstrated that a stress fracture from the donor site of autogenous bone graft of the distal tibia occurs and can be successfully treated nonoperatively.
Gilmore, Jordon; Burg, Timothy; Groff, Richard E; Burg, Karen J L
2017-08-01
Bone graft procedures are currently among the most common surgical procedures performed worldwide, but due to high risk of complication and lack of viable donor tissue, there exists a need to develop alternatives for bone defect healing. Tissue engineering, for example, combining biocompatible scaffolds with mesenchymal stem cells to achieve new bone growth, is a possible solution. Recent work has highlighted the potential for woven polymer meshes to serve as bone tissue engineering scaffolds; since, scaffolds can be iteratively designed by adjusting weave settings, material types, and mesh parameters. However, there are a number of material and system challenges preventing the implementation of such a tissue engineering strategy. Fiber compliance, tensile strength, brittleness, cross-sectional geometry, and size present specific challenges for using traditional textile weaving methods. In the current work, two potential scaffold materials, melt-spun poly-l-lactide, and poly-l-lactide-co-ε-caprolactone, were investigated. An automated bio-loom was engineered and built to weave these materials. The bio-loom was used to successfully demonstrate the weaving of these difficult-to-handle fiber types into various mesh configurations and material combinations. The dobby-loom design, adapted with an air jet weft placement system, warp tension control system, and automated collection spool, provides minimal damage to the polymer fibers while overcoming the physical constraints presented by the inherent material structure. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1342-1351, 2017. © 2016 Wiley Periodicals, Inc.
Winkler, Ingrid G; Wiercinska, Eliza; Barbier, Valerie; Nowlan, Bianca; Bonig, Halvard; Levesque, Jean-Pierre
2016-04-01
Harvest of granulocyte colony-stimulating factor (G-CSF)-mobilized hematopoietic stem cells (HSCs) begins at day 5 of G-CSF administration, when most donors have achieved maximal mobilization. This is based on surrogate markers for HSC mobilization, such as CD34(+) cells and colony-forming activity in blood. However, CD34(+) cells or colony-forming units in culture (CFU-C) are heterogeneous cell populations with hugely divergent long-term repopulation potential on transplantation. HSC behavior is influenced by the vascular bed in the vicinity of which they reside. We hypothesized that G-CSF may mobilize sequentially cells proximal and more distal to bone marrow venous sinuses where HSCs enter the blood. We addressed this question with functional serial transplantation assays using blood and bone marrow after specific time points of G-CSF treatment in mice. We found that in mice, blood collected after only 48 hours of G-CSF administration was as enriched in serially reconstituting HSCs as blood collected at 5 days of G-CSF treatment. Similarly, mobilized Lin(-)CD34(+) cells were relatively enriched in more primitive Lin(-)CD34(+)CD38(-) cells at day 2 of G-CSF treatment compared with later points in half of human donors tested (n = 6). This suggests that in both humans and mice, hematopoietic progenitor and stem cells do not mobilize uniformly according to their maturation stage, with most potent HSCs mobilizing as early as day 2 of G-CSF. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Clinical Operational Tolerance After Renal Transplantation
Orlando, Giuseppe; Hematti, Peiman; Stratta, Robert J.; Burke, George W.; Di Cocco, Pierpaolo; Pisani, Francesco; Soker, Shay; Wood, Kathryn
2015-01-01
In solid organ transplantation, the achievement of an immunosuppression (IS)-free state [also referred to as clinical operational tolerance (COT)] represents the ultimate goal. Although COT is feasible and safe in selected cases after liver transplantation, it is an exceptional finding after other types of solid organ transplantation. In the field of renal transplantation (RT), approximately 100 cases of COT have been reported to date, mainly in patients who were not compliant with their immunosuppressive regimens or in individuals who had previously received a bone marrow transplant for hematological disorders. On the basis of promising results obtained in animal models, several tolerogenic protocols have been attempted in humans, but most have failed to achieve robust and stable COT after RT. Molecule-based regimens have been largely ineffective, whereas cell-based regimens have provided some encouraging results. In these latter regimens, apart from standard IS, patients usually receive perioperative infusion of donor bone marrow–derived stem cells, which are able to interact with the immune cells of the host and mitigate their response to engraftment. Unfortunately, most renal transplant patients who developed acute rejection—occurring either during the weaning protocol or after complete withdrawal of IS—eventually lost their grafts. Currently, the immune monitoring necessary for predicting the presence and persistence of donor-specific unresponsiveness is not available. Overall, the present review will provide a conceptual framework for COT and conclude that stable and robust COT after RT remains an elusive goal and that the different strategies attempted to date are not yet reproducibly safe or effective. PMID:21107102
Supply of human allograft tissue in Canada.
Lakey, Jonathan R T; Mirbolooki, Mohammadreza; Rogers, Christina; Mohr, Jim
2007-01-01
There is relatively little known about the supply for allograft tissues in Canada. The major aim of this study is to quantify the current or "Known Supply" of human allograft tissue (bone, tendons, soft tissue, cardiovascular, ocular and skin) from known tissue banks in Canada, to estimate the "Unknown Supply" of human allograft tissue available to Canadian users from other sources, and to investigate the nature and source of these tissue products. Two surveys were developed; one for tissue banks processing one or more tissue types and the other specific to eye banks. Thirty nine sites were initially identified as potential tissue bank respondent sites. Of the 39 sites, 29 sites indicated that they were interested in participating or would consider completing the survey. A survey package and a self-addressed courier envelope were couriered to each of 29 sites. A three week response time was indicated. The project consultants conducted telephone and email follow-up for incomplete data. Unknown supply was estimated by 5 methods. Twenty-eight of 29 sites (97%) completed and returned surveys. Over the past year, respondents reported a total of 5,691 donors (1,550 living and 4,141 cadaveric donors). Including cancellous ground bone, there were 10,729 tissue products produced by the respondent banks. Of these, 71% were produced by accredited banks and 32% were ocular tissues. Total predicted shortfall of allograft tissues was 31,860-66,481 grafts. Through estimating Current supply, and compiling additional qualitative information, this study has provided a snapshot of the current Canadian supply and shortfall of allograft tissue grafts.
Juckett, D A
1987-03-01
A model is presented which proposes a specific cause-and-effect relationship between a limited cell division potential and the maximum lifespan of humans and other mammals. It is based on the clonal succession hypothesis of Kay which states that continually replicating cell beds (e.g. bone marrow, intestinal crypts, epidermis) could be composed of cells with short, well-defined division potentials. In this model, the cells of these beds are proposed to exist in an ordered hierarchy which establishes a specific sequence for cell divisions throughout the organism's lifespan. The depletion of division potential at all hierarchical levels leads to a loss of bed function and sets an intrinsic limit to species longevity. A specific hierarchy for cell proliferation is defined which allows the calculation of time to bed depletion and, ultimately, to organism mortality. The model allows the existence of a small number (n) of critical cell beds within the organism and defines organism death as the inability of any one of these beds to produce cells. The model is consistent with all major observations related to cellular and organismic aging. In particular, it links the PDLs (population doubling limit) observed for various species to their mean lifespan; it explains the slow decline in PDL as a function of age of the donor; it establishes a thermodynamically stable maximum lifespan for a disease-free population; and it can explain why tissue transplants outlive donors or hosts.
Effect of risedronate on bone in renal transplant recipients.
Coco, Maria; Pullman, James; Cohen, Hillel W; Lee, Sally; Shapiro, Craig; Solorzano, Clemencia; Greenstein, Stuart; Glicklich, Daniel
2012-08-01
Bisphosphonates may prevent or treat the bone loss promoted by the immunosuppressive regimens used in renal transplantation. Risedronate is a commonly used third-generation amino-bisphosphonate, but little is known about its effects on the bone health of renal transplant recipients. We randomly assigned 42 new living-donor kidney recipients to either 35 mg of risedronate weekly or placebo for 12 months. We obtained bone biopsies at the time of renal transplant and after 12 months of protocol treatment. Treatment with risedronate did not affect bone mineral density (BMD) in the overall cohort. In subgroup analyses, it tended to preserve BMD in female participants but did not significantly affect the BMD of male participants. Risedronate did associate with increased osteoid volume and trabecular thickness in male participants, however. There was no evidence for the development of adynamic bone disease. In summary, further study is needed before the use of prophylactic bisphosphonates to attenuate bone loss can be recommended in renal transplant recipients.
Interactions between bone cells and biomaterials: An update.
Beauvais, Sabrina; Drevelle, Olivier; Jann, Jessica; Lauzon, Marc-Antoine; Foruzanmehr, Mohammadreza; Grenier, Guillaume; Roux, Sophie; Faucheux, Nathalie
2016-06-01
As the populations of the Western world become older, they will suffer more and more from bone defects related to osteoporosis (non-union fractures, vertebral damages), cancers (malignant osteolysis) and infections (osteomyelitis). Autografts are usually used to fill these defects, but they have several drawbacks such as morbidity at the donor site and the amount and quality of bone that can be harvested. Recent scientific milestones made in biomaterials development were shown to be promising to overcome these limitations. Cell interactions with biomaterials can be improved by adding at their surface functional groups such as adhesive peptides and/or growth factors. The development of such biomimetic materials able to control bone cell responses can only proceed if it is based on a sound understanding of bone cell behavior and regulation. This review focuses on bone physiology and the regulation of bone cell differentiation and function, and how the latest advances in biomimetic materials can be translated within promising clinical outcomes.
Neuenhahn, M; Albrecht, J; Odendahl, M; Schlott, F; Dössinger, G; Schiemann, M; Lakshmipathi, S; Martin, K; Bunjes, D; Harsdorf, S; Weissinger, E M; Menzel, H; Verbeek, M; Uharek, L; Kröger, N; Wagner, E; Kobbe, G; Schroeder, T; Schmitt, M; Held, G; Herr, W; Germeroth, L; Bonig, H; Tonn, T; Einsele, H; Busch, D H; Grigoleit, G U
2017-10-01
Cytomegalovirus (CMV) infection is a common, potentially life-threatening complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT). We assessed prospectively the safety and efficacy of stem cell-donor- or third-party-donor-derived CMV-specific T cells for the treatment of persistent CMV infections after allo-HSCT in a phase I/IIa trial. Allo-HSCT patients with drug-refractory CMV infection and lacking virus-specific T cells were treated with a single dose of ex vivo major histocompatibility complex-Streptamer-isolated CMV epitope-specific donor T cells. Forty-four allo-HSCT patients receiving a T-cell-replete (D + repl; n=28) or T-cell-depleted (D + depl; n=16) graft from a CMV-seropositive donor were screened for CMV-specific T-cell immunity. Eight D + depl recipients received adoptive T-cell therapy from their stem cell donor. CMV epitope-specific T cells were well supported and became detectable in all treated patients. Complete and partial virological response rates were 62.5% and 25%, respectively. Owing to longsome third-party donor (TPD) identification, only 8 of the 57 CMV patients transplanted from CMV-seronegative donors (D - ) received antigen-specific T cells from partially human leukocyte antigen (HLA)-matched TPDs. In all but one, TPD-derived CMV-specific T cells remained undetectable. In summary, adoptive transfer correlated with functional virus-specific T-cell reconstitution in D + depl patients. Suboptimal HLA match may counteract expansion of TPD-derived virus-specific T cells in D - patients.
Hypoxia-Activated Prodrug TH-302 Targets Hypoxic Bone Marrow Niches in Preclinical Leukemia Models.
Benito, Juliana; Ramirez, Marc S; Millward, Niki Zacharias; Velez, Juliana; Harutyunyan, Karine G; Lu, Hongbo; Shi, Yue-Xi; Matre, Polina; Jacamo, Rodrigo; Ma, Helen; Konoplev, Sergej; McQueen, Teresa; Volgin, Andrei; Protopopova, Marina; Mu, Hong; Lee, Jaehyuk; Bhattacharya, Pratip K; Marszalek, Joseph R; Davis, R Eric; Bankson, James A; Cortes, Jorge E; Hart, Charles P; Andreeff, Michael; Konopleva, Marina
2016-04-01
To characterize the prevalence of hypoxia in the leukemic bone marrow, its association with metabolic and transcriptional changes in the leukemic blasts and the utility of hypoxia-activated prodrug TH-302 in leukemia models. Hyperpolarized magnetic resonance spectroscopy was utilized to interrogate the pyruvate metabolism of the bone marrow in the murine acute myeloid leukemia (AML) model. Nanostring technology was used to evaluate a gene set defining a hypoxia signature in leukemic blasts and normal donors. The efficacy of the hypoxia-activated prodrug TH-302 was examined in the in vitro and in vivo leukemia models. Metabolic imaging has demonstrated increased glycolysis in the femur of leukemic mice compared with healthy control mice, suggesting metabolic reprogramming of hypoxic bone marrow niches. Primary leukemic blasts in samples from AML patients overexpressed genes defining a "hypoxia index" compared with samples from normal donors. TH-302 depleted hypoxic cells, prolonged survival of xenograft leukemia models, and reduced the leukemia stem cell pool in vivo In the aggressive FLT3/ITD MOLM-13 model, combination of TH-302 with tyrosine kinase inhibitor sorafenib had greater antileukemia effects than either drug alone. Importantly, residual leukemic bone marrow cells in a syngeneic AML model remain hypoxic after chemotherapy. In turn, administration of TH-302 following chemotherapy treatment to mice with residual disease prolonged survival, suggesting that this approach may be suitable for eliminating chemotherapy-resistant leukemia cells. These findings implicate a pathogenic role of hypoxia in leukemia maintenance and chemoresistance and demonstrate the feasibility of targeting hypoxic cells by hypoxia cytotoxins. ©2015 American Association for Cancer Research.
Surprising origin of two carved bones donated to the Buchenwald Memorial Museum.
Gapert, René
2018-03-28
Unidentified bones were donated to the Buchenwald Memorial Museum in Weimar, Germany. The donor thought the bones may have belonged to internees of the concentration camp and had been decoratively carved by camp personnel. Non-destructive forensic anthropological examination was carried out on the bones to identify their possible origin. Comparative human and non-human bones samples were used to determine the provenance of the bones and the anatomical region they may have come from. Literature and internet searches were conducted to trace the origin of the carved motifs on the bones. The bones were determined to belong to the lower limb region of bovids. The carvings were found to correspond with those of existing bone examples found in some museums in the UK. They were traced to German prisoners of war dating to the First World War. An in-depth examination of the donated bones revealed their non-human provenance. It further showed that no link existed between the bones, internees of the concentration camp, and the time of the camp's existence. It was discovered that they belonged to the period 1914-1918 and form an important part of German prisoner of war history in the UK.
The use of cytokine-stimulated healthy donors in allogeneic stem cell transplantation.
Cesaro, Simone; Marson, Piero; Gazzola, Maria Vittoria; De Silvestro, Giustina; Destro, Roberta; Pillon, Marta; Calore, Elisabetta; Messina, Chiara; Zanesco, Luigi
2002-08-01
Treatment of healthy donors with recombinant human granulocyte colony-stimulating factor (rhG-CSF) allows the mobilization and peripheralization into circulating blood of an adequate number of CD34+ cells that can then be collected by leukapheresis (PBSC). This procedure avoids the invasiveness of bone marrow harvest and the risks related to general anesthesia. The main adverse effects of rhG-CSF are: bone pain, 84%, headache, 54%, fatigue, 31%, and nausea, 13%, which are usually scored by the donors as moderate to severe, resolving within 2-3 days after discontinuation of the cytokine. Analgesics, mainly acetaminophen, are sufficient to control the pain. Less than 5% of the donors experience non-cardiac chest pain, a local reaction at the injection site, insomnia, dizziness or a low-grade fever. Discontinuation of the PBSC procedure because of adverse effects of rhG-CSF or leukapheresis is rarely necessary (0.5%) but this good tolerability can be hampered by the need, in 5-20% of cases, for an adequate venous access that requires insertion of a central or venous catheter. There are no absolute contraindications to the stimulation of healthy donors with rhG-CSF but the description of cases of non-traumatic splenic rupture, iritis, cardiac ischemia, and gouty arthritis suggests that further precautionary restrictions are advisable when deciding eligibility for PBSC collection. The main advantages for patients receiving an allogeneic PBSC transplant are the faster hematologic and immunologic recovery and the potential for a greater efficacy in advanced disease by lowering the transplant-related mortality. One of the major concerns regarding the use of rhG-CSF in unrelated healthy donors is the uncertainty about its possible role in triggering malignancy, in particular myelodysplastic syndrome and acute myeloid leukemia. There are no studies with an adequate sample size and follow-up that can answer this question but two recent retrospective studies reported that in the medium term rhG-CSF is not associated with an excess of lymphoproliferative disorders. Currently, caution on the long-term safety of the use of rhG-CSF in healthy donor is still warranted but the data so far accumulated on allogeneic PBSC transplants are encouraging both as far as concerns the good short-medium tolerability profile of G-CSF-stimulation of the donor and the potential major efficacy in leukemia patients.
Megges, Matthias; Geissler, Sven; Duda, Georg N; Adjaye, James
2015-11-01
An induced pluripotent stem cell line was generated from primary human bone marrow derived mesenchymal stromal cells of a 74 year old donor using retroviruses harboring OCT4, SOX2, KLF4 and c-MYC in combination with the following inhibitors TGFβ receptor-SB 431542, MEK-PD325901, and p53-Pifithrin α. Pluripotency was confirmed both in vitro and in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.
Vestibular evoked myogenic potentials (VEMP) can detect asymptomatic saccular hydrops.
Lin, Ming-Yee; Timmer, Ferdinand C A; Oriel, Brad S; Zhou, Guangwei; Guinan, John J; Kujawa, Sharon G; Herrmann, Barbara S; Merchant, Saumil N; Rauch, Steven D
2006-06-01
The objective of this study was to explore the useful of vestibular evoked myogenic potential (VEMP) testing for detecting endolymphatic hydrops, especially in the second ear of patients with unilateral Ménière disease (MD). This study was performed at a tertiary care academic medical center. Part I consisted of postmortem temporal bone specimens from the temporal bone collection of the Massachusetts Eye & Ear Infirmary; part II consisted of consecutive consenting adult patients (n = 82) with unilateral MD by American Academy of Otolaryngology-Head and Neck Surgery criteria case histories. Outcome measures consisted of VEMP thresholds in patients and histologic saccular endolymphatic hydrops in postmortem temporal bones. Saccular hydrops was observed in the asymptomatic ear in six of 17 (35%) of temporal bones from donors with unilateral MD. Clinic patients with unilateral MD showed elevated mean VEMP thresholds and altered VEMP tuning in their symptomatic ears and, to a lesser degree, in their asymptomatic ears. Specific VEMP frequency and tuning criteria were used to define a "Ménière-like" response. This "Ménière-like" response was seen in 27% of asymptomatic ears of our patients with unilateral MD. Bilateral involvement is seen in approximately one third of MD cases. Saccular hydrops appears to precede symptoms in bilateral MD. Changes in VEMP threshold and tuning appear to be sensitive to these structural changes in the saccule. If so, then VEMP may be useful as a detector of asymptomatic saccular hydrops and as a predictor of evolving bilateral MD.
Mannheimer, Elida Gripp; Quintanilha, Luiz Fernando; Carvalho, Adriana Bastos; Paredes, Bruno Diaz; Gonçalves de Carvalho, Felipe; Takyia, Cristina Maeda; Resende, Célia Maria Coelho; Ferreira da Motta Rezende, Guilherme; Campos de Carvalho, Antonio Carlos; Schanaider, Alberto; dos Santos Goldenberg, Regina Coeli
2011-01-01
The objective of this study was to evaluate the therapeutic potential of bone marrow cells (BMCs) obtained from cirrhotic donors in a model of chronic liver disease. Chronic liver injury was induced in female Wistar rats by the association of an alcoholic diet with intraperitoneal injections of carbon tetrachloride. BMCs obtained from cirrhotic donors or placebo were injected through the portal vein. Blood analysis of alanine aminotransferase (ALT) and albumin levels, ultrasound assessment including the measurement of the portal vein diameter (PVD) and liver echogenicity, histologic evaluation with hematoxylin and eosin and Sirius red staining, and quantification of collagen deposition were performed. ALT and albumin blood levels showed no significant differences between the experimental groups two months after injection. Additionally, no significant variation in PVD and liver echogenicity was found. Histological analysis also showed no significant variation in collagen deposition two months after placebo or BMC injection. This study suggests that, even though BMC therapy using cells from healthy donors has previously shown to be effective, this is not the case when BMCs are obtained from cirrhotic animals. This result has major clinical implications when considering the use of autologous BMCs from patients with chronic liver diseases. © 2009 John Wiley & Sons A/S.
Lower risk for serious adverse events and no increased risk for cancer after PBSC vs BM donation
Pulsipher, Michael A.; Chitphakdithai, Pintip; Logan, Brent R.; Navarro, Willis H.; Levine, John E.; Miller, John P.; Shaw, Bronwen E.; O’Donnell, Paul V.; Majhail, Navneet S.; Confer, Dennis L.
2014-01-01
We compared serious early and late events experienced by 2726 bone marrow (BM) and 6768 peripheral blood stem cell (PBSC) donors who underwent collection of PBSC or BM between 2004 and 2009 as part of a prospective study through the National Marrow Donor Program. Standardized FDA definitions for serious adverse events (SAEs) were used, and all events were reviewed by an independent physician panel. BM donors had an increased risk for SAEs (2.38% for BM vs 0.56% for PBSC; odds ratio [OR], 4.13; P < .001), and women were twice as likely to experience an SAE (OR for men, 0.50; P = .005). Restricting the analysis to life-threatening, unexpected, or chronic/disabling events, BM donors maintained an increased risk for SAEs (0.99% for BM vs 0.31% for PBSC; OR, 3.20; P < .001). Notably, the incidence of cancer, autoimmune illness, and thrombosis after donation was similar in BM vs PBSC donors. In addition, cancer incidence in PBSC donors was less than that reported in the general population (Surveillance, Epidemiology, and End Results Program database). In conclusion, SAEs after donation are rare but more often occurred in BM donors and women. In addition, there was no evidence of increased risk for cancer, autoimmune illness, and stroke in donors receiving granulocyte colony-stimulating factor during this period of observation. PMID:24735965
Kim, Byung-Su; Nishikii, Hidekazu; Baker, Jeanette; Pierini, Antonio; Schneidawind, Dominik; Pan, Yuqiong; Beilhack, Andreas; Park, Chung-Gyu
2015-01-01
The paucity of regulatory T cells (Tregs) limits clinical translation to control aberrant immune reactions including graft-versus-host disease (GVHD). Recent studies showed that the agonistic antibody to DR3 (αDR3) expanded CD4+FoxP3+ Tregs in vivo. We investigated whether treating donor mice with a single dose of αDR3 could alleviate acute GVHD in a MHC-mismatched bone marrow transplantation model. αDR3 induced selective proliferation of functional Tregs. CD4+ T cells isolated from αDR3-treated mice contained higher numbers of Tregs and were less proliferative to allogeneic stimuli. In vivo GVHD studies confirmed that Tregs from αDR3-treated donors expanded robustly and higher frequencies of Tregs within donor CD4+ T cells were maintained, resulting in improved survival. Conventional T cells derived from αDR3-treated donors showed reduced activation and proliferation. Serum levels of proinflammatory cytokines (IFNγ, IL-1β, and TNFα) and infiltration of donor T cells into GVHD target tissues (gastrointestinal tract and liver) were decreased. T cells from αDR3-treated donors retained graft-vs-tumor (GVT) effects. In conclusion, a single dose of αDR3 alleviates acute GVHD while preserving GVT effects by selectively expanding and maintaining donor Tregs. This novel strategy will facilitate the clinical application of Treg-based therapies. PMID:26063163
Use of Pig as a Model for Mesenchymal Stem Cell Therapies for Bone Regeneration.
Rubessa, Marcello; Polkoff, Kathryn; Bionaz, Massimo; Monaco, Elisa; Milner, Derek J; Holllister, Scott J; Goldwasser, Michael S; Wheeler, Matthew B
2017-10-02
Bone is a plastic tissue with a large healing capability. However, extensive bone loss due to disease or trauma requires extreme therapy such as bone grafting or tissue-engineering applications. Presently, bone grafting is the gold standard for bone repair, but presents serious limitations including donor site morbidity, rejection, and limited tissue regeneration. The use of stem cells appears to be a means to overcome such limitations. Bone marrow mesenchymal stem cells (BMSC) have been the choice thus far for stem cell therapy for bone regeneration. However, adipose-derived stem cells (ASC) have similar immunophenotype, morphology, multilineage potential, and transcriptome compared to BMSC, and both types have demonstrated extensive osteogenic capacity both in vitro and in vivo in several species. The use of scaffolds in combination with stem cells and growth factors provides a valuable tool for guided bone regeneration, especially for complex anatomic defects. Before translation to human medicine, regenerative strategies must be developed in animal models to improve effectiveness and efficiency. The pig presents as a useful model due to similar macro- and microanatomy and favorable logistics of use. This review examines data that provides strong support for the clinical translation of the pig model for bone regeneration.
Catena, Raúl; Bhattacharya, Nandita; Rayes, Tina El; Wang, Suming; Choi, Hyejin; Gao, Dingcheng; Ryu, Seongho; Joshi, Natasha; Bielenberg, Diane; Lee, Sharrell B.; Haukaas, Svein A.; Gravdal, Karsten; Halvorsen, Ole J.; Akslen, Lars A.; Watnick, Randolph S.; Mittal, Vivek
2013-01-01
Metastatic tumors have been shown to establish permissive microenvironments for metastases via recruitment of bone marrow (BM)- derived cells. Here, we show that metastasis-incompetent tumors are also capable of generating such microenvironments. However, in these situations the otherwise pro-metastatic Gr1+ myeloid cells create a metastasis-refractory microenvironment via the induction of thrombospondin-1 (Tsp-1) by tumor-secreted prosaposin. (BM)-specific genetic deletion of Tsp-1 abolished the inhibition of metastasis, which was restored by BM transplant from Tsp-1+ donors. We also developed a 5-amino acid peptide from prosaposin as a pharmacological inducer of Tsp-1 in Gr1+ BM cells, which dramatically suppresses metastasis. These results provide mechanistic insights into why certain tumors are deficient in metastatic potential and implicate recruited Gr1+ myeloid cells as the main source of Tsp-1. The results underscore the plasticity of Gr1+ cells, which, depending on the context, promote or inhibit metastasis, and suggest that the peptide could be a potential therapeutic agent against metastatic cancer. PMID:23633432
NASA Astrophysics Data System (ADS)
Frampton, John P.; White, Joshua B.; Simon, Arlyne B.; Tsuei, Michael; Paczesny, Sophie; Takayama, Shuichi
2014-05-01
Accurate disease diagnosis, patient stratification and biomarker validation require the analysis of multiple biomarkers. This paper describes cross-reactivity-free multiplexing of enzyme-linked immunosorbent assays (ELISAs) using aqueous two-phase systems (ATPSs) to confine detection antibodies at specific locations in fully aqueous environments. Antibody cross-reactions are eliminated because the detection antibody solutions are co-localized only to corresponding surface-immobilized capture antibody spots. This multiplexing technique is validated using plasma samples from allogeneic bone marrow recipients. Patients with acute graft versus host disease (GVHD), a common and serious condition associated with allogeneic bone marrow transplantation, display higher mean concentrations for four multiplexed biomarkers (HGF, elafin, ST2 and TNFR1) relative to healthy donors and transplant patients without GVHD. The antibody co-localization capability of this technology is particularly useful when using inherently cross-reactive reagents such as polyclonal antibodies, although monoclonal antibody cross-reactivity can also be reduced. Because ATPS-ELISA adapts readily available antibody reagents, plate materials and detection instruments, it should be easily transferable into other research and clinical settings.
Frampton, John P.; White, Joshua B.; Simon, Arlyne B.; Tsuei, Michael; Paczesny, Sophie; Takayama, Shuichi
2014-01-01
Accurate disease diagnosis, patient stratification and biomarker validation require the analysis of multiple biomarkers. This paper describes cross-reactivity-free multiplexing of enzyme-linked immunosorbent assays (ELISAs) using aqueous two-phase systems (ATPSs) to confine detection antibodies at specific locations in fully aqueous environments. Antibody cross-reactions are eliminated because the detection antibody solutions are co-localized only to corresponding surface-immobilized capture antibody spots. This multiplexing technique is validated using plasma samples from allogeneic bone marrow recipients. Patients with acute graft versus host disease (GVHD), a common and serious condition associated with allogeneic bone marrow transplantation, display higher mean concentrations for four multiplexed biomarkers (HGF, elafin, ST2 and TNFR1) relative to healthy donors and transplant patients without GVHD. The antibody co-localization capability of this technology is particularly useful when using inherently cross-reactive reagents such as polyclonal antibodies, although monoclonal antibody cross-reactivity can also be reduced. Because ATPS-ELISA adapts readily available antibody reagents, plate materials and detection instruments, it should be easily transferable into other research and clinical settings. PMID:24786974
Ohman, Caroline; Zwierzak, Iwona; Baleani, Massimiliano; Viceconti, Marco
2013-02-01
It has been hypothesised that among different human subjects, the bone tissue quality varies as a function of the bone segment morphology. The aim of this study was to assess and compare the quality, evaluated in terms of hardness of packages of lamellae, of cortical and trabecular bones, at different anatomical sites within the human skeleton. The contralateral six long bones of an old human subject were indented at different levels along the diaphysis and at both epiphyses of each bone. Hardness value, which is correlated to the degree of mineralisation, of both cortical and trabecular bone tissues was calculated for each indentation location. It was found that the cortical bone tissue was harder (+18%) than the trabecular one. In general, the bone hardness was found to be locally highly heterogeneous. In fact, considering one single slice obtained for a bone segment, the coefficient of variation of the hardness values was up to 12% for cortical bone and up to 17% for trabecular bone. However, the tissue hardness was on average quite homogeneous within and among the long bones of the studied donor, although differences up to 9% among levels and up to 7% among bone segments were found. These findings seem not to support the mentioned hypothesis, at least not for the long bones of an old subject.
Anti-bacterial immunity to Listeria monocytogenes in allogeneic bone marrow chimera in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onoe, K.; Good, R.A.; Yamamoto, K.
1986-06-01
Protection and delayed-type hypersensitivity (DTH) to the facultative intracellular bacterium Listeria monocytogenes (L.m.) were studied in allogeneic and syngeneic bone marrow chimeras. Lethally irradiated AKR (H-2k) mice were successfully reconstituted with marrow cells from C57BL/10 (B10) (H-2b), B10 H-2-recombinant strains or syngeneic mice. Irradiated AKR mice reconstituted with marrow cells from H-2-compatible B10.BR mice, (BR----AKR), as well as syngeneic marrow cells, (AKR----AKR), showed a normal level of responsiveness to the challenge stimulation with the listeria antigens when DTH was evaluated by footpad reactions. These mice also showed vigorous activities in acquired resistance to the L.m. By contrast, chimeric mice thatmore » had total or partial histoincompatibility at the H-2 determinants between donor and recipient, (B10----AKR), (B10.AQR----AKR), (B10.A(4R)----AKR), or (B10.A(5R)----AKR), were almost completely unresponsive in DTH and antibacterial immunity. However, when (B10----AKR) H-2-incompatible chimeras had been immunized with killed L.m. before challenge with live L.m., these mice manifested considerable DTH and resistance to L.m. These observations suggest that compatibility at the entire MHC between donor and recipient is required for bone marrow chimeras to be able to manifest DTH and protection against L.m. after a short-term immunization schedule. However, this requirement is overcome by a preceding or more prolonged period of immunization with L.m. antigens. These antigens, together with marrow-derived antigen-presenting cells, can then stimulate and expand cell populations that are restricted to the MHC (H-2) products of the donor type.« less
Tuchman, Alexander; Brodke, Darrel S.; Youssef, Jim A.; Meisel, Hans-Jörg; Dettori, Joseph R.; Park, Jong-Beom; Yoon, S. Tim; Wang, Jeffrey C.
2016-01-01
Study Design Systematic review. Objective To compare the effectiveness and safety between iliac crest bone graft (ICBG) and local autologous bone and allograft in the lumbar spine. Methods A systematic search of multiple major medical reference databases identified studies evaluating spinal fusion in patients with degenerative joint disease using ICBG, local autograft, or allograft in the thoracolumbar spine. Results Six comparative studies met our inclusion criteria. A “low” strength of the overall body of evidence suggested no difference in fusion percentages in the lumbar spine between local autograft and ICBG. We found no difference in fusion percentages based on low evidence comparing allograft with ICBG autograft. There were no differences in pain or functional results comparing local autograft or allograft with ICBG autograft. Donor site pain and hematoma/seroma occurred more frequently in ICBG autograft group for lumbar fusion procedures. There was low evidence around the estimate of patients with donor site pain following ICBG harvesting, ranging from 16.7 to 20%. With respect to revision, low evidence demonstrated no difference between allograft and ICBG autograft. There was no evidence comparing patients receiving allograft with local autograft for fusion, pain, functional, and safety outcomes. Conclusion In the lumbar spine, ICBG, local autograft, and allograft have similar effectiveness in terms of fusion rates, pain scores, and functional outcomes. However, ICBG is associated with an increased risk for donor site-related complications. Significant limitations exist in the available literature when comparing ICBG, local autograft, and allograft for lumbar fusion, and thus ICBG versus other fusion methods necessitates further investigation. PMID:27556001
Iida, Shoichi; Tsuda, Hidetoshi; Tanaka, Toshiaki; Kish, Danielle D; Abe, Toyofumi; Su, Charles A; Abe, Ryo; Tanabe, Kazunari; Valujskikh, Anna; Baldwin, William M; Fairchild, Robert L
2016-03-15
Reperfusion of organ allografts induces a potent inflammatory response that directs rapid memory T cell, neutrophil, and macrophage graft infiltration and their activation to express functions mediating graft tissue injury. The role of cardiac allograft IL-1 receptor (IL-1R) signaling in this early inflammation and the downstream primary alloimmune response was investigated. When compared with complete MHC-mismatched wild-type cardiac allografts, IL-1R(-/-) allografts had marked decreases in endogenous memory CD8 T cell and neutrophil infiltration and expression of proinflammatory mediators at early times after transplant, whereas endogenous memory CD4 T cell and macrophage infiltration was not decreased. IL-1R(-/-) allograft recipients also had marked decreases in de novo donor-reactive CD8, but not CD4, T cell development to IFN-γ-producing cells. CD8 T cell-mediated rejection of IL-1R(-/-) cardiac allografts took 3 wk longer than wild-type allografts. Cardiac allografts from reciprocal bone marrow reconstituted IL-1R(-/-)/wild-type chimeric donors indicated that IL-1R signaling on graft nonhematopoietic-derived, but not bone marrow-derived, cells is required for the potent donor-reactive memory and primary CD8 T cell alloimmune responses observed in response to wild-type allografts. These studies implicate IL-1R-mediated signals by allograft parenchymal cells in generating the stimuli-provoking development and elicitation of optimal alloimmune responses to the grafts. Copyright © 2016 by The American Association of Immunologists, Inc.
Tucunduva, Luciana; Volt, Fernanda; Cunha, Renato; Locatelli, Franco; Zecca, Marco; Yesilipek, Akif; Caniglia, Maurizio; Güngör, Tayfun; Aksoylar, Serap; Fagioli, Franca; Bertrand, Yves; Addari, Maria Carmen; de la Fuente, Josu; Winiarski, Jacek; Biondi, Andrea; Sengeloev, Henrik; Badell, Isabel; Mellgren, Karin; de Heredia, Cristina Díaz; Sedlacek, Petr; Vora, Ajay; Rocha, Vanderson; Ruggeri, Annalisa; Gluckman, Eliane
2015-04-01
Umbilical cord blood (UCB) from an human leucocyte antigen (HLA)-identical sibling can be used for transplantation of patients with malignant and non-malignant diseases. However, the low cellular content of most UCB units represents a limitation to this approach. An option to increase cell dose is to harvest bone marrow (BM) cells from the same donor and infuse them along with the UCB. We studied 156 children who received such a combined graft between 1992 and 2011. Median age was 7 years and 78% of patients (n = 122) were transplanted for non-malignant diseases, mainly haemoglobinopathies. Acute leukaemia (n = 26) was the most frequent malignant diagnosis. Most patients (91%) received myeloablative conditioning. Median donor age was 1·7 years, median infused nucleated cell dose was 24·4 × 10(7) /kg and median follow-up was 41 months. Sixty-days neutrophil recovery occurred in 96% of patients at a median of 17 d. The probabilities of grade-II-IV acute and chronic graft-versus-host disease (GVHD) were 19% and 10%, respectively. Four-year overall survival was 90% (68% malignant; 97% non-malignant diseases) with 3% probability of death. In conclusion, combined UCB and BM transplantation from an HLA-identical sibling donor is an effective treatment for children with malignant and non-malignant disorders with high overall survival and low incidence of GVHD. © 2014 John Wiley & Sons Ltd.
Establishing criteria for human mesenchymal stem cell potency.
Samsonraj, Rebekah M; Rai, Bina; Sathiyanathan, Padmapriya; Puan, Kia Joo; Rötzschke, Olaf; Hui, James H; Raghunath, Michael; Stanton, Lawrence W; Nurcombe, Victor; Cool, Simon M
2015-06-01
This study sought to identify critical determinants of mesenchymal stem cell (MSC) potency using in vitro and in vivo attributes of cells isolated from the bone marrow of age- and sex-matched donors. Adherence to plastic was not indicative of potency, yet capacity for long-term expansion in vitro varied considerably between donors, allowing the grouping of MSCs from the donors into either those with high-growth capacity or low-growth capacity. Using this grouping strategy, high-growth capacity MSCs were smaller in size, had greater colony-forming efficiency, and had longer telomeres. Cell-surface biomarker analysis revealed that the International Society for Cellular Therapy (ISCT) criteria did not distinguish between high-growth capacity and low-growth capacity MSCs, whereas STRO-1 and platelet-derived growth factor receptor alpha were preferentially expressed on high-growth capacity MSCs. These cells also had the highest mean expression of the mRNA transcripts TWIST-1 and DERMO-1. Irrespective of these differences, both groups of donor MSCs produced similar levels of key growth factors and cytokines involved in tissue regeneration and were capable of multilineage differentiation. However, high-growth capacity MSCs produced approximately double the volume of mineralized tissue compared to low-growth capacity MSCs when assessed for ectopic bone-forming ability. The additional phenotypic criteria presented in this study when combined with the existing ISCT minimum criteria and working proposal will permit an improved assessment of MSC potency and provide a basis for establishing the quality of MSCs prior to their therapeutic application. © 2015 AlphaMed Press.
Rauh, Juliane; Jacobi, Angela; Stiehler, Maik
2015-02-01
The principles of tissue engineering (TE) are widely used for bone regeneration concepts. Three-dimensional (3D) cultivation of autologous human mesenchymal stromal cells (MSCs) on porous scaffolds is the basic prerequisite to generate newly formed bone tissue. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a specific and sensitive analytical tool for the measurement of mRNA-levels in cells or tissues. For an accurate quantification of gene expression levels, stably expressed reference genes (RGs) are essential to obtain reliable results. Since the 3D environment can affect a cell's morphology, proliferation, and gene expression profile compared with two-dimensional (2D) cultivation, there is a need to identify robust RGs for the quantification of gene expression. So far, this issue has not been adequately investigated. The aim of this study was to identify the most stably expressed RGs for gene expression analysis of 3D-cultivated human bone marrow-derived MSCs (BM-MSCs). For this, we analyzed the gene expression levels of n=31 RGs in 3D-cultivated human BM-MSCs from six different donors compared with conventional 2D cultivation using qRT-PCR. MSCs isolated from bone marrow aspirates were cultivated on human cancellous bone cube scaffolds for 14 days. Osteogenic differentiation was assessed by cell-specific alkaline phosphatase (ALP) activity and expression of osteogenic marker genes. Expression levels of potential reference and target genes were quantified using commercially available TaqMan(®) assays. mRNA expression stability of RGs was determined by calculating the coefficient of variation (CV) and using the algorithms of geNorm and NormFinder. Using both algorithms, we identified TATA box binding protein (TBP), transferrin receptor (p90, CD71) (TFRC), and hypoxanthine phosphoribosyltransferase 1 (HPRT1) as the most stably expressed RGs in 3D-cultivated BM-MSCs. Notably, genes that are routinely used as RGs, for example, beta actin (ACTB) and ribosomal protein L37a (RPL37A), were among the least stable genes. We recommend the combined use of TBP, TFRC, and HPRT1 for the accurate and robust normalization of qRT-PCR data of 3D-cultivated human BM-MSCs.
Rauh, Juliane; Jacobi, Angela
2015-01-01
The principles of tissue engineering (TE) are widely used for bone regeneration concepts. Three-dimensional (3D) cultivation of autologous human mesenchymal stromal cells (MSCs) on porous scaffolds is the basic prerequisite to generate newly formed bone tissue. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a specific and sensitive analytical tool for the measurement of mRNA-levels in cells or tissues. For an accurate quantification of gene expression levels, stably expressed reference genes (RGs) are essential to obtain reliable results. Since the 3D environment can affect a cell's morphology, proliferation, and gene expression profile compared with two-dimensional (2D) cultivation, there is a need to identify robust RGs for the quantification of gene expression. So far, this issue has not been adequately investigated. The aim of this study was to identify the most stably expressed RGs for gene expression analysis of 3D-cultivated human bone marrow-derived MSCs (BM-MSCs). For this, we analyzed the gene expression levels of n=31 RGs in 3D-cultivated human BM-MSCs from six different donors compared with conventional 2D cultivation using qRT-PCR. MSCs isolated from bone marrow aspirates were cultivated on human cancellous bone cube scaffolds for 14 days. Osteogenic differentiation was assessed by cell-specific alkaline phosphatase (ALP) activity and expression of osteogenic marker genes. Expression levels of potential reference and target genes were quantified using commercially available TaqMan® assays. mRNA expression stability of RGs was determined by calculating the coefficient of variation (CV) and using the algorithms of geNorm and NormFinder. Using both algorithms, we identified TATA box binding protein (TBP), transferrin receptor (p90, CD71) (TFRC), and hypoxanthine phosphoribosyltransferase 1 (HPRT1) as the most stably expressed RGs in 3D-cultivated BM-MSCs. Notably, genes that are routinely used as RGs, for example, beta actin (ACTB) and ribosomal protein L37a (RPL37A), were among the least stable genes. We recommend the combined use of TBP, TFRC, and HPRT1 for the accurate and robust normalization of qRT-PCR data of 3D-cultivated human BM-MSCs. PMID:25000821
Kim, Hyoungmin; Lee, Choon-Ki; Yeom, Jin-Sup; Lee, Jae-Hyup; Lee, Ki-Ho; Chang, Bong-Soon
2012-07-01
To evaluate whether a synthetic bone chip made of porous hydroxyapatite can effectively extend local decompressed bone graft in instrumented posterior lumbar interbody fusion (PLIF). 130 patients, 165 segments, who had undergone PLIF with cages and instrumentation for single or double level due to degenerative conditions, were investigated retrospectively by independent blinded observer. According to the material of graft, patients were divided into three groups. HA group (19 patients, 25 segments): with hydroxyapatite bone chip in addition to autologous local decompressed bone, IBG group (25 patients, 28 segments): with autologous iliac crest bone graft in addition to local decompressed bone and LB group (86 patients, 112 segments): with local decompressed bone only. Radiologic and clinical outcome were compared among groups and postoperative complications, transfusion, time and cost of operation and duration of hospitalization were also investigated. Radiologic fusion rate and clinical outcome were not different. Economic cost, transfusion and hospital stay were also similar. But operation time was significantly longer in IBG group than in other groups. There were no lasting complications associated with HA and LB group with contrast to five cases with persisting donor site pain in IBG group. Porous hydroxyapatite bone chip is a useful bone graft extender in PLIF when used in conjunction with local decompressed bone.
Ye, YongBin; Wang, Jing; Huang, YuXian; Weng, GuangYang; Zhang, MingWan
2016-01-01
Acute graft-versus-host disease (aGVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT) and a major cause of nonrelapse mortality after allo-HSCT. A conditioning regimen plays a pivotal role in the development of aGVHD. To provide a platform for studying aGVHD and evaluating the impact of different conditioning regimens, we established a murine aGVHD model that simulates the clinical situation and can be conditioned with Busulfan-Cyclophosphamide (Bu-Cy) and Fludarabine-Busulfan (Flu-Bu). In our study, BALB/c mice were conditioned with Bu-Cy or Flu-Bu and transplanted with 2 × 107 bone marrow cells and 2 × 107 splenocytes from either allogeneic (C57BL/6) or syngeneic (BALB/c) donors. The allogeneic recipients conditioned with Bu-Cy had shorter survivals (P < 0.05), more severe clinical manifestations, and higher hepatic and intestinal pathology scores, associated with increased INF-γ expression and diminished IL-4 expression in serum, compared to allogeneic recipients conditioned with Flu-Bu. Moreover, higher donor-derived T-cell infiltration and severely impaired B-cell development were seen in the bone marrow of mice, exhibiting aGVHD and conditioned with Flu-Bu. Our study showed that the conditioning regimen with Bu-Cy resulted in more severe aGVHD while the Flu-Bu regimen was associated with more extensive and long standing bone marrow damage. PMID:27843940
Aging and loading rate effects on the mechanical behavior of equine bone
NASA Astrophysics Data System (ADS)
Kulin, Robb M.; Jiang, Fengchun; Vecchio, Kenneth S.
2008-06-01
Whether due to a sporting accident, high-speed impact, fall, or other catastrophic event, the majority of clinical bone fractures occur under dynamic loading conditions. However, although extensive research has been performed on the quasi-static fracture and mechanical behavior of bone to date, few high-quality studies on the fracture behavior of bone at high strain rates have been performed. Therefore, many questions remain regarding the material behavior, including not only the loading-rate-dependent response of bone, but also how this response varies with age. In this study, tests were performed on equine femoral bone taken post-mortem from donors 6 months to 28 years of age. Quasi-static and dynamic tests were performed to determine the fracture toughness and compressive mechanical behavior as a function of age at varying loading rates. Fracture paths were then analyzed using scanning confocal and scanning-electron microscopy techniques to assess the role of various microstructural features on toughening mechanisms.
Gaihre, Bipin; Uswatta, Suren; Jayasuriya, Ambalangodage C.
2017-01-01
Engineering craniofacial bone tissues is challenging due to their complex structures. Current standard autografts and allografts have many drawbacks for craniofacial bone tissue reconstruction; including donor site morbidity and the ability to reinstate the aesthetic characteristics of the host tissue. To overcome these problems; tissue engineering and regenerative medicine strategies have been developed as a potential way to reconstruct damaged bone tissue. Different types of new biomaterials; including natural polymers; synthetic polymers and bioceramics; have emerged to treat these damaged craniofacial bone tissues in the form of injectable and non-injectable scaffolds; which are examined in this review. Injectable scaffolds can be considered a better approach to craniofacial tissue engineering as they can be inserted with minimally invasive surgery; thus protecting the aesthetic characteristics. In this review; we also focus on recent research innovations with different types of stem-cell sources harvested from oral tissue and growth factors used to develop craniofacial bone tissue-engineering strategies. PMID:29156629
Bone Replacement Materials and Techniques Used for Achieving Vertical Alveolar Bone Augmentation
Sheikh, Zeeshan; Sima, Corneliu; Glogauer, Michael
2015-01-01
Alveolar bone augmentation in vertical dimension remains the holy grail of periodontal tissue engineering. Successful dental implant placement for restoration of edentulous sites depends on the quality and quantity of alveolar bone available in all spatial dimensions. There are several surgical techniques used alone or in combination with natural or synthetic graft materials to achieve vertical alveolar bone augmentation. While continuously improving surgical techniques combined with the use of auto- or allografts provide the most predictable clinical outcomes, their success often depends on the status of recipient tissues. The morbidity associated with donor sites for auto-grafts makes these techniques less appealing to both patients and clinicians. New developments in material sciences offer a range of synthetic replacements for natural grafts to address the shortcoming of a second surgical site and relatively high resorption rates. This narrative review focuses on existing techniques, natural tissues and synthetic biomaterials commonly used to achieve vertical bone height gain in order to successfully restore edentulous ridges with implant-supported prostheses.
CELLS INVOLVED IN THE IMMUNE RESPONSE
Abdou, Nabih I.; Richter, Maxwell
1969-01-01
Rabbits were made immunologically tolerant to either human serum albumin or bovine gamma globulin by the neonatal administration of antigen. At 10 wk of age, they were challenged with the tolerogenic antigen and found to be non-responsive. However, these tolerant rabbits could respond with humoral antibody formation directed toward the tolerogenic antigen if they were treated with normal, allogeneic bone marrow or bone marrow obtained from a rabbit made tolerant toward a different antigen. They were incapable of responding if they were given bone marrow obtained from a rabbit previously made tolerant to the tolerogenic antigen. Irradiated rabbits were unable to respond if treated with tolerant bone marrow, but could respond well if given normal bone marrow. Since it has previously been demonstrated that the antibody-forming cell, in an irradiated recipient of allogeneic bone marrow, is of recipient and not donor origin, the data presented strongly indicate that the unresponsive cell in the immunologically tolerant rabbit is the antigen-reactive cell. PMID:4183777
Sequence of a new DR12 allele with two silent mutations that affect PCR-SSP typing.
Zanone, R; Bettens, F; Tiercy, J-M
2002-02-01
A new HLA-DR12 allele has been identified in a European Caucasoid bone marrow donor. The DRB1*12012 allele differs from DRB1*12011 by two silent substitutions at codons 72 and 78, two polymorphic positions used for DNA subtyping of the DR12 serotype. The co-occurence of the two nucleotide changes is unique to the DR12 group and results in a new PCR-SSP typing pattern. The complete HLA type of the donor is A24, A68; B55, B61; Cw*01, Cw*0304; DRB1*12012, DRB1*1402; DRB3*0101, DRB3*0202; DQB1*0301. HLA-DRB1*12012 is a rare allele as it occurs in < 0.2% of DR12 donors.
Tsujigiwa, Hidetsugu; Hirata, Yasuhisa; Katase, Naoki; Buery, Rosario Rivera; Tamamura, Ryo; Ito, Satoshi; Takagi, Shin; Iida, Seiji; Nagatsuka, Hitoshi
2013-03-01
Bone healing is a complex and multistep process in which the origin of the cells participating in bone repair is still unknown. The involvement of bone marrow-derived cells in tissue repair has been the subject of recent studies. In the present study, bone marrow-derived cells in bone healing were traced using the GFP bone marrow transplantation model. Bone marrow cells from C57BL/6-Tg (CAG-EGFP) were transplanted into C57BL/6 J wild mice. After transplantation, bone injury was created using a 1.0-mm drill. Bone healing was histologically assessed at 3, 7, 14, and 28 postoperative days. Immunohistochemistry for GFP; double-fluorescent immunohistochemistry for GFP-F4/80, GFP-CD34, and GFP-osteocalcin; and double-staining for GFP and tartrate-resistant acid phosphatase were performed. Bone marrow transplantation successfully replaced the hematopoietic cells into GFP-positive donor cells. Immunohistochemical analyses revealed that osteoblasts or osteocytes in the repair stage were GFP-negative, whereas osteoclasts in the repair and remodeling stages and hematopoietic cells were GFP-positive. The results indicated that bone marrow-derived cells might not differentiate into osteoblasts. The role of bone marrow-derived cells might be limited to adjustment of the microenvironment by differentiating into inflammatory cells, osteoclasts, or endothelial cells in immature blood vessels.
2017-07-12
Adenosine Deaminase Deficiency; Autosomal Recessive Disorder; Immune System Disorder; Purine-Nucleoside Phosphorylase Deficiency; Severe Combined Immunodeficiency; Severe Combined Immunodeficiency With Absence of T and B Cells; X-Linked Severe Combined Immunodeficiency
Vdovin, A S; Filkin, S Y; Yefimova, P R; Sheetikov, S A; Kapranov, N M; Davydova, Y O; Egorov, E S; Khamaganova, E G; Drokov, M Y; Kuzmina, L A; Parovichnikova, E N; Efimov, G A; Savchenko, V G
2016-11-01
Patients undergoing allogeneic hematopoietic stem cell transplantation have a high risk of cytomegalovirus reactivation, which in the absence of T-cell immunity can result in the development of an acute inflammatory reaction and damage of internal organs. Transfusion of the virus-specific donor T-lymphocytes represents an alternative to a highly toxic and often ineffective antiviral therapy. Potentially promising cell therapy approach comprises transfusion of cytotoxic T-lymphocytes, specific to the viral antigens, immediately after their isolation from the donor's blood circulation without any in vitro expansion. Specific T-cells could be separated from potentially alloreactive lymphocytes using recombinant major histocompatibility complex (MHC) multimers, carrying synthetic viral peptides. Rapid transfusion of virus-specific T-cells to patients has several crucial advantages in comparison with methods based on the in vitro expansion of the cells. About 30% of hematopoietic stem cell donors and 46% of transplant recipients at the National Research Center for Hematology were carriers of the HLA-A*02 allele. Moreover, 94% of Russian donors have an immune response against the cytomegalovirus (CMV). Using recombinant HLA-A*02 multimers carrying an immunodominant cytomegalovirus peptide (NLV), we have shown that the majority of healthy donors have pronounced T-cell immunity against this antigen, whereas shortly after the transplantation the patients do not have specific T-lymphocytes. The donor cells have the immune phenotype of memory cells and can be activated and proliferate after stimulation with the specific antigen. Donor lymphocytes can be substantially enriched to significant purity by magnetic separation with recombinant MHC multimers and are not activated upon cocultivation with the antigen-presenting cells from HLA-incompatible donors without addition of the specific antigen. This study demonstrated that strong immune response to CMV of healthy donors and prevalence of HLA-A*02 allele in the Russian population make it possible to isolate a significant number of virus-specific cells using HLA-A*02-NLV multimers. After the transfusion, these cells should protect patients from CMV without development of allogeneic immune response.
Nagori, Shakil Ahmed; Jose, Anson; Bhutia, Ongkila; Roychoudhury, Ajoy
2014-11-01
To evaluate the success of autogenous transplantation of embedded/impacted third molars harvested using piezosurgery. This prospective pilot study enrolled 20 healthy patients with non-restorable first/second molars and a caries-free retrievable embedded/impacted third molar. Piezosurgery was used for removing inter-radicular bone at the recipient socket as well as for bone removal around the donor teeth. After an average follow-up of 16.4 months (SD = 1.9), 18 cases were successful with formation of periodontal ligament around the teeth. One tooth was lost due to infection at 1 month. One patient was lost to follow-up. There was no root resorption or ankylosis in any of the cases. In six donor teeth with complete root formation, root canal treatment was carried out. All the remaining teeth responded positively with vitality testing. Piezosurgery is an effective device if embedded/impacted third molars are to be harvested for successful autogenous transplantation.
Inotai, D; Szilvasi, A; Benko, S; Boros-Major, A; Illes, Z; Bors, A; Kiss, K P; Rajczy, K; Gelle-Hossó, A; Buhler, S; Nunes, J M; Sanchez-Mazas, A; Tordai, A
2015-08-01
Systematic analyses of human leukocyte antigen (HLA) profiles in different populations may increase the efficiency of bone marrow donor selection and help reconstructing human peopling history. We typed HLA-A, -B, and -DRB1 allele groups in two bone marrow donor cohorts of 2402 Hungarians and 186 Hungarian Gypsies and compared them with several Central-European, Spanish Gypsy, and Indian populations. Our results indicate that different European Gypsy populations share a common origin but diverged genetically as a consequence of founder effect and rapid genetic drift, whereas other European populations are related genetically in relation to geography. This study also suggests that while HLA-A accurately depicts the effects of genetic drift, HLA-B, and -DRB1 conserve more signatures of ancient population relationships, as a result of balancing selection. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Surgical harvesting of bone graft from the ilium: point of view.
Russell, J L; Block, J E
2000-12-01
Autologous bone harvested from the ilium is commonly used as a grafting material in surgical reconstructive and arthrodesis procedures to ensure a satisfactory postoperative outcome. However, operative removal of bone from the iliac crest requires an additional surgical procedure with a distinct set of postoperative complications. We provide a comprehensive literature synthesis of the incidence and severity of complications reported to be associated with this commonly practiced procedure. Most severe complications are rare, but chronic pain at the donor site exceeding three months in duration occurs frequently and can be particularly bothersome to patients. Alternative grafting materials that are safe and effective are sorely needed. Copyright 2000 Harcourt Publishers Ltd.
Sonomoto, Koshiro; Yamaoka, Kunihiro; Kaneko, Hiroaki; Yamagata, Kaoru; Sakata, Kei; Zhang, Xiangmei; Kondo, Masahiro; Zenke, Yukichi; Sabanai, Ken; Nakayamada, Shingo; Sakai, Akinori; Tanaka, Yoshiya
2016-01-01
Mesenchymal stem cells (MSCs) have immunosuppressive activity and can differentiate into bone and cartilage; and thus seem ideal for treatment of rheumatoid arthritis (RA). Here, we investigated the osteogenesis and chondrogenesis potentials of MSCs seeded onto nano-fiber scaffolds (NFs) in vitro and possible use for the repair of RA-affected joints. MSCs derived from healthy donors and patients with RA or osteoarthritis (OA) were seeded on poly-lactic-glycolic acid (PLGA) electrospun NFs and cultured in vitro. Healthy donor-derived MSCs seeded onto NFs stained positive with von Kossa at Day 14 post-stimulation for osteoblast differentiation. Similarly, MSCs stained positive with Safranin O at Day 14 post-stimulation for chondrocyte differentiation. Surprisingly, even cultured without any stimulation, MSCs expressed RUNX2 and SOX9 (master regulators of bone and cartilage differentiation) at Day 7. Moreover, MSCs stained positive for osteocalcin, a bone marker, and simultaneously also with Safranin O at Day 14. On Day 28, the cell morphology changed from a spindle-like to an osteocyte-like appearance with processes, along with the expression of dentin matrix protein-1 (DMP-1) and matrix extracellular phosphoglycoprotein (MEPE), suggesting possible differentiation of MSCs into osteocytes. Calcification was observed on Day 56. Expression of osteoblast and chondrocyte differentiation markers was also noted in MSCs derived from RA or OA patients seeded on NFs. Lactic acid present in NFs potentially induced MSC differentiation into osteoblasts. Our PLGA scaffold NFs induced MSC differentiation into bone and cartilage. NFs induction process resembled the procedure of endochondral ossification. This finding indicates that the combination of MSCs and NFs is a promising therapeutic technique for the repair of RA or OA joints affected by bone and cartilage destruction.
Prevention of crescentic glomerulonephritis in SCG/Kj mice by bone marrow transplantation.
Cherry; Engelman, R W; Wang, B Y; Kinjoh, K; El-Badri, N S; Good, R A
1998-07-01
Transplantation of MHC-compatible, T-cell-depleted, bone marrow cells has successfully treated autoimmunities, immunodeficiencies, malignancies, and developmental deficiencies of the hematopoietic system. Recombinant inbred SCG/Kj mice develop spontaneous crescentic glomerulonephritis, systemic vasculitis, and a lymphoproliferative disorder early in life. To determine whether the precipitous autoimmune disease of SCG/Kj mice could be treated by bone marrow transplantation, 30 SCG/Kj mice were engrafted with T-cell-depleted, bone marrow (TCDM) from allogeneic, MHC-compatible, autoimmune-resistant C3H/He donors, and 30 SCG/Kj mice served as controls and received TCDM from syngeneic, SCG/Kj donors. A significant survival advantage was evident from SCG/Kj mice engrafted with C3H/He TCDM (p < 0.005), and an 89% extension of median survival compared to recipients of SCG/Kj TCDM. Within 28 weeks post-transplantation, 62% of mice engrafted with SCG/Kj TCDM had died with clinical signs of fatal crescentic glomerulonephritis. This result compared with only 10% of mice engrafted with C3H/He TCDM. Mice engrafted with SCG/Kj TCDM developed significantly greater titers of autoantibodies to ss-DNA, ds-DNA, and myeloperoxidase (ANCA) (p < 0.001), had shorter latencies to the development of, and a greater incidence of proteinuria, hematuria, and peripheral lymphadenopathy, and a greater mean grade of glomerular lesion (p < 0.001), than mice engrafted with C3H/He TCDM. These findings indicate that the genetic defect of the SCG/Kj strain of mice resides within the hematopoietic stem cells and provokes the speculation that bone marrow transplantation might be a useful means of treating progressive crescentic glomerulonephritis in humans.
Kitazawa, Yusuke; Sawanobori, Yasushi; Ueno, Takamasa; Ueha, Satoshi; Matsushima, Kouji; Matsuno, Kenjiro
2018-01-01
Abstract Donor-specific blood transfusion is known to induce alloresponses and lead to immunosuppression. We examined their underlying mechanisms by employing fully allogeneic rat combinations. Transfused recipients efficiently produced alloantibodies of the IgM and IgG subclasses directed against donor class I MHC. The recipients exhibited active expansion of CD4+ T cells and CD4+FOXP3+ regulatory T cells (Treg cells), followed by CD45R+ B cells and IgM+ or IgG subclass+ antibody-forming cells mainly in the spleen. From 1.5 days, the resident MHCII+CD103+ dendritic cells (DCs) in the splenic T-cell area, periarterial lymphocyte sheath, formed clusters with recipient BrdU+ or 5-ethynyl-2′-deoxyuridine+ cells, from which the proliferative response of CD4+ T cells originated peaking at 3–4 days. Transfusion-induced antibodies had donor passenger cell-depleting activity in vitro and in vivo and could suppress acute GvH disease caused by donor T cells. Furthermore, Treg cells significantly suppressed mixed leukocyte reactions in a donor-specific manner. In conclusion, single blood transfusion efficiently induced a helper T-cell-dependent anti-donor class I MHC antibody-forming cell response with immunoglobulin class switching, and a donor-specific Treg cell response mainly in the spleen, probably by way of the indirect allorecognition via resident DCs. These antibodies and Treg cells may be involved, at least partly, in the donor-specific transfusion-induced suppression of allograft rejection. PMID:29361165
Fagioli, Franca; Quarello, Paola; Pollichieni, Simona; Lamparelli, Teresa; Berger, Massimo; Benedetti, Fabio; Barat, Veronica; Marciano, Renato; Rambaldi, Alessandro; Bacigalupo, Andrea; Sacchi, Nicoletta
2014-01-01
In this study, we investigated the factors affecting cell dose harvest and the role of cell dose on outcome. We analysed data from a cohort of 703 patients who underwent unrelated bone marrow transplantation facilitated by IBMDR in GITMO centers between 2002 and 2008. The median-infused cell doses is 3.7 × 10(8)/kg, the correlation between the nucleated cells requested from transplant centers and those harvested by collection centers was adequate. A harvested/requested cells ratio lower than 0.5 was observed only in 3% of harvests. A volume of harvested marrow higher than the median value of 1270 ml was related to a significant lower infused cell dose (χ(2): 44.4; P < 0.001). No patient- or donor-related variables significantly influenced the cell dose except for the recipient younger age (χ(2): 95.7; P < 0.001) and non-malignant diseases (χ(2): 33.8; P < 0.001). The cell dose resulted an independent predictor factor for a better outcome in patients affected by non-malignant disease (P = 0.05) while early disease malignant patients receiving a lower cell dose showed a higher risk of relapse (P = 0.05).
Sokolic, Robert A.; Bauer, Thomas R.; Gu, Yu-Chen; Hai, Mehreen; Tuschong, Laura M.; Burkholder, Tanya; Colenda, Lyn; Bacher, John; Starost, Matthew F.; Hickstein, Dennis D.
2005-01-01
Leukocyte adhesion deficiency (LAD)–1, a primary immunodeficiency disease caused by molecular defects in the leukocyte integrin CD18 molecule, is characterized by recurrent, life-threatening bacterial infections. Myeloablative hematopoietic stem cell transplantation is the only curative treatment for LAD-1. Recently, canine LAD (CLAD) has been shown to be a valuable animal model for the preclinical testing of nonmyeloablative transplantation regimens for the treatment of children with LAD-1. To develop new allogeneic transplantation approaches for LAD-1, we assessed a nonmyeloablative conditioning regimen consisting of busulfan as a single agent before matched littermate allogeneic bone marrow transplantation in CLAD. Three CLAD dogs received busulfan 10 mg/kg intravenously before infusion of matched littermate bone marrow, and all dogs received posttransplantation immunosuppression with cyclosporin A and mycophenolate mofetil. Initially, all 3 dogs became mixed chimeras, and levels of donor chimerism sufficient to reverse the CLAD phenotype persisted in 2 animals. The third dog maintained donor microchimerism with an attenuated CLAD phenotype. These 3 dogs have all been followed up for at least 1 year after transplantation. These results indicate that a nonmyeloablative conditioning regimen with chemotherapy alone is capable of generating stable mixed chimerism and reversal of the disease phenotype in CLAD. PMID:16182176
Monsanto, Rafael da Costa; Schachern, Patricia; Paparella, Michael M; Cureoglu, Sebahattin; Penido, Norma de Oliveira
2017-08-01
Our study aimed to evaluate pathologic changes in the cochlear (inner and outer hair cells and stria vascularis) and vestibular (vestibular hair cells, dark, and transitional cells) sensorial elements in temporal bones from donors who had otitis media. We studied 40 temporal bones from such donors, which were categorized in serous otitis media (SOM), serous-purulent otitis media (SPOM), mucoid/mucoid-purulent otitis media (MOM/MPOM), and chronic otitis media (COM); control group comprised 10 nondiseased temporal bones. We found significant loss of inner and outer cochlear hair cells in the basal turn of the SPOM, MOM/MPOM and COM groups; significant loss of vestibular hair cells was observed in the MOM/MPOM and COM groups. All otitis media groups had smaller mean area of the stria vascularis in the basal turn of the cochlea when compared to controls. In conclusion, our study demonstrated more severe pathologic changes in the later stages of the continuum of otitis media (MOM/MPOM and COM). Those changes seem to progress from the basal turn of the cochlea (stria vascularis, then inner and outer hair cells) to the middle turn of the cochlea and to the saccule and utricle in the MOM/MPOM and COM stages. Copyright © 2017 Elsevier B.V. All rights reserved.
Baxter, M A; Wynn, R F; Schyma, L; Holmes, D K; Wraith, J E; Fairbairn, L J; Bellantuono, I
2005-01-01
Bone marrow transplantation is the therapy of choice in patients affected by MPS I (Hurler syndrome), but a high incidence of rejection limits the success of this treatment. The deficiency of alpha-L-iduronidase (EC 1.2.3.76), one of the enzymes responsible for the degradation of glycosaminoglycans, results in accumulation of heparan and dermatan sulphate in these patients. Heparan sulphate and dermatan sulphate are known to be important components of the bone marrow microenvironment and critical for haematopoietic cell development. In this study we compared the ability of marrow stromal cells from MPS I patients and healthy donors to support normal haematopoiesis in Dexter-type long term culture. We found an inverse stroma/supernatant ratio in the number of clonogenic progenitors, particularly the colony-forming unit granulocyte-machrophage in MPS I cultures when compared to normal controls. No alteration in the adhesion of haematopoietic cells to the stroma of MPS I patients was found, suggesting that the altered distribution in the number of clonogenic progenitors is probably the result of an accelerated process of differentiation and maturation. The use of alpha-L-iduronidase gene-corrected marrow stromal cells re-established normal haematopoiesis in culture, suggesting that correction of the bone marrow microenvironment with competent enzyme prior to transplantation might help establishment of donor haematopoiesis.
Tissue banking in India: gamma-irradiated allografts.
Lobo Gajiwala, A
2003-01-01
In India, the procurement of tissues for transplantation is governed by the Transplantation of Human Organs Act, 1994. Although this law exists, it is primarily applied to organ transplantation and rules and regulations that are specific to tissue banking which have yet to be developed. The Tata Memorial Hospital (TMH) Tissue Bank was started in 1988 as part of an International Atomic Energy Agency (IAEA) programme to promote the use of ionising radiation for the sterilisation of biological tissues. It represents the Government of India within this project and was the first facility in the country to use radiation for the sterilisation of allografts. It is registered with the Health Services Maharashtra State and provides freeze-dried, gamma irradiated amnion, dura mater, skin and bone. The tissues are obtained either from cadavers or live donors. To date the TMH Tissue Bank has provided 6328 allografts which have found use as biological dressings and in various reconstructive procedures. The TMH Tissue Bank has helped initiate a Tissue Bank at the Defence Laboratory (DL), Jodhpur. At present these are the only two Banks in the country using radiation for the terminal sterilisation of preserved tissues. The availability of safe, clinically useful and cost effective grafts has stimulated innovative approaches to surgery. There is an increased demand for banked tissues and a heightened interest in the development of tissue banks. Inadequate infrastructure for donor referral programmes and the lack of support for tissue transplant co-ordinators however, continue to limit the availability of donor tissue.
Hematopoietic Stem Cells in Neural-crest Derived Bone Marrow.
Jiang, Nan; Chen, Mo; Yang, Guodong; Xiang, Lusai; He, Ling; Hei, Thomas K; Chotkowski, Gregory; Tarnow, Dennis P; Finkel, Myron; Ding, Lei; Zhou, Yanheng; Mao, Jeremy J
2016-12-21
Hematopoietic stem cells (HSCs) in the endosteum of mesoderm-derived appendicular bones have been extensively studied. Neural crest-derived bones differ from appendicular bones in developmental origin, mode of bone formation and pathological bone resorption. Whether neural crest-derived bones harbor HSCs is elusive. Here, we discovered HSC-like cells in postnatal murine mandible, and benchmarked them with donor-matched, mesoderm-derived femur/tibia HSCs, including clonogenic assay and long-term culture. Mandibular CD34 negative, LSK cells proliferated similarly to appendicular HSCs, and differentiated into all hematopoietic lineages. Mandibular HSCs showed a consistent deficiency in lymphoid differentiation, including significantly fewer CD229 + fractions, PreProB, ProB, PreB and B220 + slgM cells. Remarkably, mandibular HSCs reconstituted irradiated hematopoietic bone marrow in vivo, just as appendicular HSCs. Genomic profiling of osteoblasts from mandibular and femur/tibia bone marrow revealed deficiencies in several HSC niche regulators among mandibular osteoblasts including Cxcl12. Neural crest derived bone harbors HSCs that function similarly to appendicular HSCs but are deficient in the lymphoid lineage. Thus, lymphoid deficiency of mandibular HSCs may be accounted by putative niche regulating genes. HSCs in craniofacial bones have functional implications in homeostasis, osteoclastogenesis, immune functions, tumor metastasis and infections such as osteonecrosis of the jaw.
The safety of bone allografts used in dentistry: a review.
Holtzclaw, Dan; Toscano, Nicholas; Eisenlohr, Lisa; Callan, Don
2008-09-01
Recent media reports concerning "stolen body parts" have shaken the public's trust in the safety of and the use of ethical practices involving human allografts. The authors provide a comprehensive review of the safety aspects of human bone allografts. The authors reviewed U.S. government regulations, industry standards, independent industry association guidelines, company guidelines and scientific articles related to the use of human bone allografts in the practice of dentistry published in the English language. The use of human bone allografts in the practice of dentistry involves the steps of procurement, processing, use and tracking. Rigorous donor screening and aseptic proprietary processing programs have rendered the use of human bone allografts safe and effective as a treatment option. When purchasing human bone allografts for the practice of dentistry, one should choose products accredited by the American Association of Tissue Banks for meeting uniformly high safety and quality control measures. Knowledge of human bone allograft procurement, processing, use and tracking procedures may allow dental clinicians to better educate their patients and address concerns about this valuable treatment option.
Imamura, Aya; Ogawa, Miho; Yasukawa, Masato; Yamazaki, Hiromichi; Morita, Ritsuko; Ikeda, Etsuko; Nakao, Kazuhisa; Takano-Yamamoto, Teruko; Kasugai, Shohei; Saito, Masahiro; Tsuji, Takashi
2011-01-01
Donor organ transplantation is currently an essential therapeutic approach to the replacement of a dysfunctional organ as a result of disease, injury or aging in vivo. Recent progress in the area of regenerative therapy has the potential to lead to bioengineered mature organ replacement in the future. In this proof of concept study, we here report a further development in this regard in which a bioengineered tooth unit comprising mature tooth, periodontal ligament and alveolar bone, was successfully transplanted into a properly-sized bony hole in the alveolar bone through bone integration by recipient bone remodeling in a murine transplantation model system. The bioengineered tooth unit restored enough the alveolar bone in a vertical direction into an extensive bone defect of murine lower jaw. Engrafted bioengineered tooth displayed physiological tooth functions such as mastication, periodontal ligament function for bone remodeling and responsiveness to noxious stimulations. This study thus represents a substantial advance and demonstrates the real potential for bioengineered mature organ replacement as a next generation regenerative therapy. PMID:21765896
Wu, Qiang-Ju; Liu, Meng-Li; Qi, Jun; Liu, Sheng; Zhang, Yan; Wei, Xiao-Qian
2007-04-01
The study was aimed to investigate the human leukocyte antigen (HLA)-A, B, DRB1 alleles and haplotype frequencies and the characteristics of linkage disequilibrium in north Chinese Han bone marrow donors. HLA phenotype data of 11 755 north Chinese Han bone marrow donors were identified by PCR-SSP and PCR-SSO. HLA-A, B, DRB1 allele and haplotype frequencies were calculated by computer software named Arleguin which was based on Expectation-Maximization (EM) algorithms. The results showed that the population of 11755 unrelated-donors was tested by Hardy-Weinberg equilibrium, and 18,42 and 15 specificities of HLA alleles were identified on the HLA-A, B, DRB1 locus respectively, including HLA-A25, B42, B53, B73 and DR3 which were rarely reported in Han population. HLA-A36, A43, A80, B78, B82 and DR18 were not detected in this study. The most frequent alleles with a frequency of over 0.05 were HLA-A*02, A*11, A*24, A*33, A*30, A*01, A*03, A*13, B62, B*51, B*46, B60, B61, B*35, B*44, DRB1*15, DRB1*09, DRB1*04, DRB1*07, DRB1*12, DRB1*11, DRB1*14, DRB1*08, DRB1*13. There were a total of 2 026 kinds of HLA-A-B-DR haplotypes (with a frequency of over 10(-6)) to be obtained. The each frequency of 26 kinds of three-locus haplotypes including HLA-A30-B13-DR7, A2-B46-DR9, A33-B58-DR17 etc was higher than 0.005. A30-B13-DR7 was the most frequent haplotype in north Chinese Han population. There were a total of 538 kinds of haplotypes for HLA-A-B, 227 kinds for A-DR and 522 kinds for B-DR to be obtained, and there were 409, 195, 423 kinds of haplotypes respectively with a frequency higher than 10 - 6. There were 28 kinds of HLA-A-B haplotypes including A30-B13, A2-B46, A33-B58 etc, 26 kinds of HLA-A-DR haplotypes including A2-DR9, A2-DR15, A30-DR7 etc, and 24 kinds of HLA-B-DR haplotypes including B13-DR7, B46-DR9, B13-DR12 etc with a frequency higher than 0.01. 296 (72%) kinds of HLA-A-B, 130 (67%) kinds of A-DR and 308 (73%) kinds of B-DR haplotypes were statistical linkage disequilibrium. HLA-A30-B13, A33-B58, A1-B37, A30-DR7, A33-DR13, A1-DR10, B37-DR10, B8-DR17, B13-DR7, B58-DR17 were significant positive linkage disequilibrium. It is concluded that this HLA-A, B, DRB1 gene and haplotype frequencies and linkage disequilibrium data with the largest sample size up to now is unique in north Chinese Han population. The study will be helpful to find matched donors for patients and establish the important foundation for further studying of transplantation immunity, HLA-related diseases and population genetics of this area.
Tasaki, M; Saito, K; Nakagawa, Y; Imai, N; Ito, Y; Aoki, T; Kamimura, M; Narita, I; Tomita, Y; Takahashi, K
2017-01-01
The mechanism of long-term B cell immunity against donor blood group antigens in recipients who undergo ABO-incompatible (ABOi) living-donor kidney transplantation (LKTx) is unknown. To address this question, we evaluated serial anti-A and anti-B antibody titers in 50 adult recipients. Donor-specific antibody titers remained low (≤1:4) in 42 recipients (84%). However, antibodies against nondonor blood group antigens were continuously produced in recipients with blood type O. We stimulated recipients' peripheral blood mononuclear cells in vitro to investigate whether B cells produced antibodies against donor blood group antigens in the absence of graft adsorption in vivo. Antibodies in cell culture supernatant were measured using specific enzyme-linked immunosorbent assays (ELISAs). Thirty-five healthy volunteers and 57 recipients who underwent ABO-compatible LKTx served as controls. Antibody production in vitro against donor blood group antigens by cells from ABOi LKTx patients was lower than in the control groups. Immunoglobulin deposits were undetectable in biopsies of grafts of eight recipients with low antibody titers (≤1:4) after ABOi LKTx. One patient with blood type A1 who received a second ABOi LKTx from a type B donor did not produce B-specific antibodies. These findings suggest diminished donor-specific antibody production function in the setting of adult ABOi LKTx. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.
Kim, Sang-Gyung; Bae, Sung Hwa; Kim, Seong-Mo; Lee, Ji-Hye; Kim, Min Ji; Jang, Hae-Bong
2014-01-01
Background The number of CD34+ cells in a peripheral blood stem cell collection is the key factor in predicting successful treatment of hematologic malignancies. Korean Red Ginseng (KRG) (Panax ginseng C.A. Meyer) is the most popular medicinal herb in Korea. The objective of this study was to determine the effect of KRG on hematopoietic colony formation. Methods Bone marrow (BM) samples were obtained from 8 human donors after acquiring informed consent. BM mononuclear cells (MNCs) were isolated, and CD34+ cells were sorted using magnetic beads. The sorted CD34+ cells were incubated with or without total extract of KRG (50 µg/mL, 100 µg/mL) or Ginsenoside Rg1 (100 µg/mL), and the hematopoietic colony assay was performed using methylcellulose semisolid medium. The CD34+ cell counts were measured by a single platform assay using flow cytometry. Results The numbers of human BM-MNCs and CD34+ cells obtained after purification were variable among donors (5.6×107 and 1.3-48×107 and 8.9×104 and 1.8-80×104, respectively). The cells expanded 1,944 times after incubation for 12 d. Total extract of KRG added to the hematopoietic stem cell (HSC)-specific medium increased CD34+ cell counts 3.6 times compared to 2.6 times when using HSC medium alone. Total numbers of hematopoietic colonies in KRG medium were more than those observed in conventional medium, especially that of erythroid colonies such as burst forming unit-erythroid. Conclusion Total extract of KRG facilitated CD34+ cell expansion and hematopoietic colony formation, especially of the erythroid lineage. PMID:25325037
CMV antigenemia following bone marrow transplantation: risk factors and outcomes.
Osarogiagbon, R U; Defor, T E; Weisdorf, M A; Erice, A; Weisdorf, D J
2000-01-01
Cytomegalovirus (CMV) infection remains a major problem in blood and bone marrow transplant (BMT) recipients. Recent efforts have been directed at prevention, early diagnosis, and treatment of CMV disease following BMT. Assay for CMV early antigen pp65 on circulating leukocytes has been shown to be sensitive, and specific in detecting early CMV infection. We examined the frequency, risk factors, and outcomes of a positive CMV antigen assay in 118 consecutive BMT patients. Forty-three (36%) of the 118 patients developed CMV antigenemia a median of 26 days post-BMT (range, -6 to 209 days). The incidence of antigenemia in autologous, related donor, and unrelated donor BMT recipients was 15%, 50%, and 48%, respectively (P < .01) and was lower in CMV-seronegative patients (19% versus 51% in seropositive patients; P < .01). Patients with grade II to IV acute graft-versus-host disease (GVHD) had 2.2 times the risk of antigenemia of patients with no or only limited GVHD (P = .03). Age at transplantation, underlying disease, CMV prophylaxis regimen, and GVHD prophylaxis regimen did not affect the risk of CMV antigenemia. Ten of the 43 antigenemic patients, all CMV-seropositive allogeneic BMT (alloBMT) recipients, developed CMV organ disease a median of 101 days (range, 28-283 daya) post-BMT. These data suggest that CMV-seropositive alloBMT patients are at highest risk for CMV antigenemia and for organ disease as well. CMV disease may occur before antigenemia is detectable in leukopenic patients and may also develop late post-BMT, even in patients still receiving antiviral prophylaxis. In high-risk groups, intensive surveillance continuing for more than 6 months after BMT may be indicated.
Marvel, Skylar; Okrasinski, Stan; Bernacki, Susan H; Loboa, Elizabeth; Dayton, Paul A
2010-09-01
To study the potential effects of low-intensity pulsed ultrasound (LIPUS) on cell response in vitro, the ability to alter LIPUS parameters is required. However, commercial LIPUS systems have very little control over parameter selection. In this study, a custom LIPUS system was designed and validated by exploring the effects of using different pulse repetition frequency (PRF) parameters on human adipose derived adult stem cells (hASCs) and bone marrow derived mesenchymal stem cells (hMSCs), two common stem cell sources for creating bone constructs in vitro. Changing the PRF was found to affect cellular response to LIPUS stimulation for both cell types. Proliferation of LIPUS-stimulated cells was found to decrease for hASCs by d 7 for all three groups compared with unstimulated control cells (P = 0.008, 0.011, 0.014 for 1 Hz, 100 Hz and 1 kHz PRF, respectively) and for hMSCs by d 14 (donor 1: P = 0.0005, 0.0002, 0.0003; donor 2: P = 0.0003, 0.0002, 0.0001; for PRFs of 1 Hz, 100 Hz, and 1 kHz, respectively). Additionally, LIPUS was shown to strongly accelerate osteogenic differentiation of hASCs based on amount of calcium accretion normalized by total DNA (P = 0.003, 0.001, 0.003, and 0.032 between control/100 Hz, control/1 kHz, 1 Hz/1 kHz, and 100 Hz/1 kHz pulse repetition frequencies, respectively). These findings promote the study of using LIPUS to induce osteogenic differentiation and further encourage the exploration of LIPUS parameter optimization. The custom LIPUS system was successfully designed to allow extreme parameter variation, specifically PRF, and encourages further studies.
van der Heiden, P L J; van Egmond, H M; Veld, S A J; van de Meent, M; Eefting, M; de Wreede, L C; Halkes, C J M; Falkenburg, J H F; Marijt, W A F; Jedema, I
2018-04-18
Cytomegalovirus (CMV)-specific T-cells are crucial to prevent CMV disease. CMV seropositive recipients transplanted with stem cells from a CMV seronegative allogeneic donor (R + D - ) may be at risk for CMV disease due to absence of donor CMV-specific memory T-cells in the graft. We analyzed the duration of CMV reactivations and the incidence of CMV disease in R + D - and R + D + patients after alemtuzumab-based T-cell depleted allogeneic stem cell transplantation (TCD alloSCT). To determine the presence of donor-derived primary CMV-specific T-cell responses we analyzed the origin of CMV-specific T-cells in R + D - patients. The duration of CMV reactivations (54 versus 38 days, respectively, p = 0.048) and the incidence of CMV disease (0.14 versus 0.02, p = 0.003 at 1 year after alloSCT) were higher in R + D - patients compared to R + D + patients. In R + D - patients, CMV-specific CD4 + and CD8 + T-cells were mainly of recipient origin. However, in 53% of R + D - patients donor-derived CMV-specific T-cells were detected within the first year. In R + D - patients, immunity against CMV was predominantly mediated by recipient T-cells. Nevertheless, donor CMV serostatus significantly influenced the clinical severity of CMV reactivations indicating the role of CMV-specific memory T-cells transferred with the graft, despite the ultimate formation of primary donor-derived CMV-specific T-cell responses in R + D - patients. Copyright © 2018 Elsevier B.V. All rights reserved.
Donation FAQs (Bone and Tissue Allografts)
... about organ, tissue and eye donation in your state, visit www.donatelife.net . Is there a difference between tissue and organ donation? In order for a person to become an organ donor (kidney, heart, liver, lung), blood and oxygen must flow through the organs until the time of recovery ...
2018-03-05
Acute Biphenotypic Leukemia; Acute Erythroid Leukemia; Acute Lymphoblastic Leukemia in Remission; Acute Megakaryoblastic Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Blasts Under 10 Percent of Bone Marrow Nucleated Cells; Blasts Under 5 Percent of Bone Marrow Nucleated Cells; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Mixed Phenotype Acute Leukemia; Myelodysplastic Syndrome; Myelodysplastic Syndrome With Excess Blasts; Pancytopenia; Refractory Anemia; Secondary Acute Myeloid Leukemia
Li, Ka; Yan, Jun; Yang, Qiang; Li, Zhenfeng; Li, Jianmin
2015-01-28
For osteoporosis or spinal metastases, percutaneous vertebroplasty is effective in pain relief and improvement of mobility. However, the complication rate (cement extravasation and fat embolisms) is relatively higher in the treatment of spinal metastases. The presence of tumor tissue plays a significant role in intravertebral pressure and cement distribution and thereby affects the occurrence of complications. We investigated the effect of void creation prior to vertebroplasty on intravertebral pressure and cement distribution in spinal metastases. Eighteen vertebrae (T8-L4) from five cadaveric spines were randomly allocated for two groups (group with and without void) of nine vertebrae each. Defect was created by removing a central core of cancellous bone in the vertebral body and then filling it with 30% or 100% fresh muscle paste by volume to simulate void creation or no void creation, respectively. Then, 20% bone cement by volume of the vertebral body was injected into each specimen through a unipedicular approach at a rate of 3 mL/min. The gender of the donor, vertebral body size, bone density, cement volume, and intravertebral pressure were recorded. Then, computed tomography scans and cross sections were taken to evaluate the cement distribution in vertebral bodies. No significant difference was found between the two groups in terms of the gender of the donor, vertebral body size, bone density, or bone cement volume. The average maximum intravertebral pressure in the group with void creation was significantly lower than that in the group without void creation (1.20 versus 5.09 kPa, P = 0.001). Especially during the filling of void, the difference was more pronounced. Void creation prior to vertebroplasty allowed the bone cement to infiltrate into the lytic defect. In vertebroplasty for spinal metastases, void creation produced lower intravertebral pressure and facilitated cement filling. To reduce the occurrence of complication, it may be an alternative to eliminate the tumor tissue to create a void prior to cement injection.
Itonaga, Hidehiro; Aoki, Kazunari; Aoki, Jun; Ishikawa, Takayuki; Ishiyama, Ken; Uchida, Naoyuki; Sakura, Toru; Ohashi, Kazuteru; Kurokawa, Mineo; Ozawa, Yukiyasu; Matsuoka, Ken-Ichi; Nakamura, Yukinori; Kimura, Fumihiko; Iwato, Koji; Nawa, Yuichiro; Hirokawa, Makoto; Kato, Koji; Ichinohe, Tatsuo; Atsuta, Yoshiko; Miyazaki, Yasushi
2018-04-01
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapeutic option for patients with chronic myelomonocytic leukemia (CMML). We retrospectively compared the post-transplantation outcomes of 159 patients with CMML who underwent allo-HSCT using 4 types of donor sources: HLA-matched related donor graft, unrelated bone marrow (U-BM), unrelated cord blood (U-CB), and HLA-mismatched related donor graft. The median patient age at allo-HSCT was 54 years (range, 16 to 75 years). In multivariate analyses, the use of HLA-matched related donor grafts correlated with better overall survival than U-BM (hazard ratio [HR], 2.05; 95% confidence interval [CI], 1.21 to 3.48; P = .008), U-CB (HR, 3.80; 95% CI, 2.07 to 6.95; P < .001), or HLA-mismatched related donor grafts (HR, 6.18; 95% CI, 2.70 to 14.15; P < .001). Mortality after the relapse or progression of CMML did not significantly differ among the 4 types of donor source. Transplantation-related mortality was highest in recipients of U-CB (HR, 3.32; 95% CI, 1.33 to 8.26; P = .010). In patients with CMML, allo-HSCT using an alternative donor may contribute to durable remission; however, further improvements in transplantation-related mortality are required for this type of transplantation. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
McGregor, D K; Keever-Taylor, C A; Bredeson, C; Schur, B; Vesole, D H; Logan, B; Chang, C-C
2005-06-01
We performed real-time quantitative polymerase chain reaction (RQ-PCR) in peripheral blood (PB) and/or bone marrow (BM) samples collected pre- and post transplant from 23 recipient-donor pairs receiving allogeneic stem cell transplantation (allo-SCT) for follicular lymphoma (FL). Of 23 donors, 11 had a PB and/or BM sample positive for t(14;18) (BCL2/IGH fusion) at low levels (
McDermott, David H.; Conway, Susan E.; Wang, Tao; Ricklefs, Stacy M.; Agovi, Manza A.; Porcella, Stephen F.; Tran, Huong Thi Bich; Milford, Edgar; Spellman, Stephen
2010-01-01
Despite continual improvement, morbidity and mortality after hematopoietic stem cell transplantation (HSCT) remain high. The importance of chemokines in HSCT lies in their regulation of immune responses that determine transplantation outcomes. We investigated the role of recipient and donor chemokine system gene polymorphisms by using a candidate gene approach on the incidence of graft-versus-host disease and posttransplantation outcomes in 1370 extensively human leukocyte antigen–matched, unrelated donor-recipient pairs by using multivariate Cox regression models. Our analysis identified that recipients homozygous for a common CCR5 haplotype (H1/H1) had better disease-free survival (DFS; P = .005) and overall survival (P = .021). When the same genotype of both the donor and recipient were considered in the models, a highly significant association with DFS and overall survival was noted (P < .001 and P = .007, respectively) with absolute differences in survival of up to 20% seen between the groups at 3 years after transplantation (50% DFS for pairs with recipient CCR5 H1/H1 vs 30% for pairs with donor CCR5 H1/H1). This finding suggests that donor and/or recipient CCR5 genotypes may be associated with HSCT outcome and suggests new diagnostic and therapeutic strategies for optimizing therapy. PMID:20068218
Effects of granulocyte-colony-stimulating factor on potential normal granulocyte donors.
McCullough, J; Clay, M; Herr, G; Smith, J; Stroncek, D
1999-10-01
The use of granulocyte-colony-stimulating factor (G-CSF) to increase the granulocyte count and the yield from leukapheresis in normal donors is leading to renewed interest in granulocyte transfusion. Therefore, it is important to understand the side effects of G-CSF. We studied the effect of G-CSF on peripheral blood counts and recorded the side effects experienced 24 hours after an injection of G-CSF in normal subjects donating peripheral blood progenitor cells for research. Following administration of G-CSF to 261 donors, the neutrophil count increased to 20.6 to 24.5 x 10(9) per microL depending on the dose of G-CSF. This represented a 6.2 to 7.4-fold increase over the neutrophil count before G-CSF administration. Of all donors, 69 percent experienced one or more side effects. The most common effects were: muscle and bone pain, headache, fatigue, and nausea. There was a relationship between the dose of G-CSF and the likelihood of experiencing a side effect. Most side effects were mild, but about 75 percent of donors took analgesics because of them. In a granulocyte donation program involving G-CSF stimulation, about two-thirds of donors would experience one or more side effects, but these would usually be mild and well tolerated.
Remberger, Mats; Mattsson, Jonas; Hausenberger, Dan; Schaffer, Marie; Svahn, Britt-Marie; Ringdén, Olle
2008-05-01
Sixty-one leukaemia patients treated with haematopoietic stem cell transplantation (HSCT) from a genomic human leucocyte antigen (HLA)-A, -B and -DRbeta1 matched unrelated donor (MUD) were compared with 121 patients with an HLA-identical sibling donor. All patients received conventional conditioning. We selected all patients with unrelated donors who received optimal antithymocyte globuline (ATG) dose, 6 mg/kg. One hundred and seven patients received stem cells from peripheral blood and 75 patients received bone marrow (BM) cells. The incidences of acute graft-versus-host disease (GVHD) grades II-IV were 33.4% and 34.7% in the MUD and sibling group, respectively. After year 2001, the incidence of chronic GVHD was similar in the two groups (27.8% vs. 25.8%). There was no difference in overall survival (60% vs. 60%), transplant-related mortality (18.6% vs. 16.6%) and relapse (23% vs. 26.4%) between the two groups. Haematopoietic stem cell transplantation with unrelated donors results in similar GVHD, relapse and survival as compared to using sibling donors. Reasons for this may be improved tissue-typing techniques and supportive care and optimisation of the ATG dose.
Alonso, Nivaldo; Tanikawa, Daniela Yukie Sakai; Freitas, Renato da Silva; Canan, Lady; Ozawa, Terumi Okada; Rocha, Diógenes Laércio
2010-10-01
A resorbable collagen matrix with recombinant human bone morphogenetic protein (rhBMP-2) was compared with traditional iliac crest bone graft for the closure of alveolar defects during secondary dental eruption. Sixteen patients with unilateral cleft lip and palate, aged 8 to 12 years, were selected and randomly assigned to group 1 (rhBMP-2) or group 2 (iliac crest bone graft). Computed tomography was performed to assess both groups preoperatively and at months 6 and 12 postoperatively. Bone height and defect volume were calculated through Osirix Dicom Viewer (Pixmeo, Apple Inc.). Overall morbidity was recorded. Preoperative and follow-up examinations revealed progressive alveolar bone union in all patients. For group 1, final completion of the defect with a 65.0% mean bone height was detected 12 months postoperatively. For group 2, final completion of the defect with an 83.8% mean bone height was detected 6 months postoperatively. Dental eruption routinely occurred in both groups. Clinical complications included significant swelling in three group 1 patients (37.5%) and significant donor-site pain in seven group 2 patients (87.5%). For this select group of patients with immature skeleton, rhBMP-2 therapy resulted in satisfactory bone healing and reduced morbidity compared with traditional iliac crest bone grafting.
Revascularization of diaphyseal bone segments by vascular bundle implantation.
Nagi, O N
2005-11-01
Vascularized bone transfer is an effective, established treatment for avascular necrosis and atrophic or infected nonunions. However, limited donor sites and technical difficulty limit its application. Vascular bundle transplantation may provide an alternative. However, even if vascular ingrowth is presumed to occur in such situations, its extent in aiding revascularization for ultimate graft incorporation is not well understood. A rabbit tibia model was used to study and compare vascularized, segmental, diaphyseal, nonvascularized conventional, and vascular bundle-implanted grafts with a combination of angiographic, radiographic, histopathologic, and bone scanning techniques. Complete graft incorporation in conventional grafts was observed at 6 months, whereas it was 8 to 12 weeks with either of the vascularized grafts. The pattern of radionuclide uptake and the duration of graft incorporation between vascular segmental bone grafts (with intact endosteal blood supply) and vascular bundle-implanted segmental grafts were similar. A vascular bundle implanted in the recipient bone was found to anastomose extensively with the intraosseous circulation at 6 weeks. Effective revascularization of bone could be seen when a simple vascular bundle was introduced into a segment of bone deprived of its normal blood supply. This simple technique offers promise for improvement of bone graft survival in clinical circumstances.
Micro-Nanostructures of Cellulose-Collagen for Critical Sized Bone Defect Healing.
Aravamudhan, Aja; Ramos, Daisy M; Nip, Jonathan; Kalajzic, Ivo; Kumbar, Sangamesh G
2018-02-01
Bone tissue engineering strategies utilize biodegradable polymeric matrices alone or in combination with cells and factors to provide mechanical support to bone, while promoting cell proliferation, differentiation, and tissue ingrowth. The performance of mechanically competent, micro-nanostructured polymeric matrices, in combination with bone marrow stromal cells (BMSCs), is evaluated in a critical sized bone defect. Cellulose acetate (CA) is used to fabricate a porous microstructured matrix. Type I collagen is then allowed to self-assemble on these microstructures to create a natural polymer-based, micro-nanostructured matrix (CAc). Poly (lactic-co-glycolic acid) matrices with identical microstructures serve as controls. Significantly higher number of implanted host cells are distributed in the natural polymer based micro-nanostructures with greater bone density and more uniform cell distribution. Additionally, a twofold increase in collagen content is observed with natural polymer based scaffolds. This study establishes the benefits of natural polymer derived micro-nanostructures in combination with donor derived BMSCs to repair and regenerate critical sized bone defects. Natural polymer based materials with mechanically competent micro-nanostructures may serve as an alternative material platform for bone regeneration. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of Organ-Specific Donor Risk Indices
Akkina, Sanjeev K.; Asrani, Sumeet K.; Peng, Yi; Stock, Peter; Kim, Ray; Israni, Ajay K.
2012-01-01
Due to the shortage of deceased donor organs, transplant centers accept organs from marginal deceased donors, including older donors. Organ-specific donor risk indices have been developed to predict graft survival using various combinations of donor and recipient characteristics. We will review the kidney donor risk index (KDRI) and liver donor risk index (LDRI) and compare and contrast their strengths, limitations, and potential uses. The Kidney Donor Risk Index has a potential role in developing new kidney allocation algorithms. The Liver Donor Risk Index allows for greater appreciation of the importance of donor factors, particularly for hepatitis C-positive recipients; as the donor risk index increases, rates of allograft and patient survival among these recipients decrease disproportionately. Use of livers with high donor risk index is associated with increased hospital costs independent of recipient risk factors, and transplanting livers with high donor risk index into patients with Model for End-Stage Liver Disease scores < 15 is associated with lower allograft survival; use of the Liver Donor Risk Index has limited this practice. Significant regional variation in donor quality, as measured by the Liver Donor Risk Index, remains in the United States. We also review other potential indices for liver transplant, including donor-recipient matching and the retransplant donor risk index. While substantial progress has been made in developing donor risk indices to objectively assess donor variables that affect transplant outcomes, continued efforts are warranted to improve these indices to enhance organ allocation policies and optimize allograft survival. PMID:22287036
Kelly, Anne M; Garner, Stephen F; Foukaneli, Theodora; Godec, Thomas R; Herbert, Nina; Kahan, Brennan C; Deary, Alison; Bakrania, Lekha; Llewelyn, Charlotte; Ouwehand, Willem H; Williamson, Lorna M; Cardigan, Rebecca A
2017-07-13
The effect of variation in platelet function in platelet donors on patient outcome following platelet transfusion is unknown. This trial assessed the hypothesis that platelets collected from donors with highly responsive platelets to agonists in vitro assessed by flow cytometry (high-responder donors) are cleared more quickly from the circulation than those from low-responder donors, resulting in lower platelet count increments following transfusion. This parallel group, semirandomized double-blinded trial was conducted in a single center in the United Kingdom. Eligible patients were those 16 or older with thrombocytopenia secondary to bone marrow failure, requiring prophylactic platelet transfusion. Patients were randomly assigned to receive a platelet donation from a high- or low-responder donor when both were available, or when only 1 type of platelet was available, patients received that. Participants, investigators, and those assessing outcomes were masked to group assignment. The primary end point was the platelet count increment 10 to 90 minutes following transfusion. Analysis was by intention to treat. Fifty-one patients were assigned to receive platelets from low-responder donors, and 49 from high-responder donors (47 of which were randomized and 53 nonrandomized). There was no significant difference in platelet count increment 10 to 90 minutes following transfusion in patients receiving platelets from high-responder (mean, 21.0 × 10 9 /L; 95% confidence interval [CI], 4.9-37.2) or low-responder (mean, 23.3 × 10 9 /L; 95% CI, 7.8-38.9) donors (mean difference, 2.3; 95% CI, -1.1 to 5.7; P = .18). These results support the current policy of not selecting platelet donors on the basis of platelet function for prophylactic platelet transfusion. © 2017 by The American Society of Hematology.
Vestibular Evoked Myogenic Potentials (VEMP) Can Detect Asymptomatic Saccular Hydrops
Lin, Ming-Yee; Timmer, Ferdinand C. A.; Oriel, Brad S.; Zhou, Guangwei; Guinan, John J.; Kujawa, Sharon G.; Herrmann, Barbara S.; Merchant, Saumil N.; Rauch, Steven D.
2009-01-01
Objective The objective of this study was to explore the useful of vestibular evoked myogenic potential (VEMP) testing for detecting endolymphatic hydrops, especially in the second ear of patients with unilateral Ménière disease (MD). Methods This study was performed at a tertiary care academic medical center. Part I consisted of postmortem temporal bone specimens from the temporal bone collection of the Massachusetts Eye & Ear Infirmary; part II consisted of consecutive consenting adult patients (n = 82) with unilateral MD by American Academy of Otolaryngology–Head and Neck Surgery criteria case histories. Out-come measures consisted of VEMP thresholds in patients and histologic saccular endolymphatic hydrops in postmortem temporal bones. Results Saccular hydrops was observed in the asymptomatic ear in six of 17 (35%) of temporal bones from donors with unilateral MD. Clinic patients with unilateral MD showed elevated mean VEMP thresholds and altered VEMP tuning in their symptomatic ears and, to a lesser degree, in their asymptomatic ears. Specific VEMP frequency and tuning criteria were used to define a “Ménière-like” response. This “Ménière-like” response was seen in 27% of asymptomatic ears of our patients with unilateral MD. Conclusions Bilateral involvement is seen in approximately one third of MD cases. Saccular hydrops appears to precede symptoms in bilateral MD. Changes in VEMP threshold and tuning appear to be sensitive to these structural changes in the saccule. If so, then VEMP may be useful as a detector of asymptomatic saccular hydrops and as a predictor of evolving bilateral MD. PMID:16735912
Mixed Donor Chimerism Following Simultaneous Pancreas-Kidney Transplant.
Rashidi, Armin; Brennan, Daniel C; Amarillo, Ina E; Wellen, Jason R; Cashen, Amanda
2018-06-01
Graft-versus-host disease after solid-organ transplant is exceedingly rare. Although the precise pathogenetic mechanisms are unknown, a progressive increase in donor chimerism is a requirement for its development. The incidence of mixed donor chimerism and its timeline after simultaneous pancreas-kidney transplant is unknown. After encountering 2 cases of graft-versus-host disease after simultaneous pancreas-kidney transplant at our institution over a period of < 2 years, a collaborative pilot study was conducted by the bone marrow transplant, nephrology, and abdominal transplant surgery teams. We enrolled all consecutive patients undergoing sex-mismatched simultaneous pancreas-kidney transplant over 1 year and longitudinally monitored donor chimerism using fluorescence in situ hybridization for sex chromosomes. We found no evidence for chimerism in our 7 patients. In a comprehensive literature review, we found a total of 25 previously reported cases of graft-versus-host disease after kidney, pancreas, and simultaneous pancreas-kidney transplants. The median onset of graft-versus-host disease was approximately 5 weeks after transplant, with a median of about 2 weeks of delay between first presentation and diagnosis. Skin, gut, and bone marrow were almost equally affected at initial presentation, and fever of unknown origin occurred in more than half of patients. The median survival measured from the first manifestation of graft-versus-host disease was only 48 days. Within the limitations related to small sample size, our results argue against an unusually high risk of graft-versus-host disease after simultaneous pancreas-kidney transplant. Collaboration between solid-organ and stem cell transplant investigators can be fruitful and can improve our understanding of the complications that are shared between the 2 fields.
Chang, Jeff; Graves, Scott S.; Butts-Miwongtum, Tiffany; Sale, George E.; Storb, Rainer; Mathes, David W.
2017-01-01
Background The development of safe and reliable protocols for the transplantation of the face and hands may be accomplished with animal modeling of transplantation of vascularized composite allografts (VCA). Previously, we demonstrated that tolerance to a VCA could be achieved after canine recipients were simultaneously given marrow from a dog leukocyte antigen (DLA) identical donor. In the present study, we extend those findings across a DLA mismatched barrier. Methods Eight Recipient dogs received total body irradiation (4.5 cGy), hematopoietic cell transplantation (HCT), either marrow (n=4) or granulocyte-colony stimulating factor (G-CSF) mobilized peripheral blood stem cells (n=4), and a VCA transplant from the HCT donor. Post grafting immunosuppression consisted of mycophenolate mofetil (28 days) and cyclosporine (35 days). Results In 4 dogs receiving bone marrow, 1 accepted both its marrow transplant and demonstrated long-term tolerance to the donor VCA (>52 weeks). Three dogs rejected both their marrow transplants and VCA at 5–7 weeks posttransplant. Dogs receiving mobilized stem cells all accepted their stem cell transplant and became tolerant to the VCA. However, 3 dogs developed graft-versus-host disease (GVHD) while 1 dog rejected its stem cell graft by week 15 but exhibited long-term tolerance towards its VCA (>90 weeks). Conclusion The data suggest that simultaneous transplantation of mobilized stem cells and a VCA is feasible and leads to tolerance towards the VCA in a haploidentical setting. However, there is a higher rate of donor stem cell engraftment compared to marrow HCT and an increase in the incidence of GVHD. PMID:27861292
Devillier, Raynier; Dalle, Jean-Hugues; Kulasekararaj, Austin; D'aveni, Maud; Clément, Laurence; Chybicka, Alicja; Vigouroux, Stéphane; Chevallier, Patrice; Koh, Mickey; Bertrand, Yves; Michallet, Mauricette; Zecca, Marco; Yakoub-Agha, Ibrahim; Cahn, Jean-Yves; Ljungman, Per; Bernard, Marc; Loiseau, Pascale; Dubois, Valérie; Maury, Sébastien; Socié, Gérard; Dufour, Carlo; Peffault de Latour, Regis
2016-07-01
Unrelated allogeneic transplantation for severe aplastic anemia is a treatment option after immunosuppressive treatment failure in the absence of a matched sibling donor. Age, delay between disease diagnosis and transplantation, and HLA matching are the key factors in transplantation decisions, but their combined impact on patient outcomes remains unclear. Using the French Society of Bone Marrow Transplantation and Cell Therapies registry, we analyzed all consecutive patients (n=139) who underwent a first allogeneic transplantation for idiopathic severe aplastic anemia from an unrelated donor between 2000 and 2012. In an adjusted multivariate model, age over 30 years (Hazard Ratio=2.39; P=0.011), time from diagnosis to transplantation over 12 months (Hazard Ratio=2.18; P=0.027) and the use of a 9/10 mismatched unrelated donor (Hazard Ratio=2.14; P=0.036) were independent risk factors that significantly worsened overall survival. Accordingly, we built a predictive score using these three parameters, considering patients at low (zero or one risk factors, n=94) or high (two or three risk factors, n=45) risk. High-risk patients had significantly shorter survival (Hazard Ratio=3.04; P<0.001). The score was then confirmed on an independent cohort from the European Group for Blood and Marrow Transplantation database of 296 patients, with shorter survival in patients with at least 2 risk factors (Hazard Ratio=2.13; P=0.005) In conclusion, a simple score using age, transplantation timing and HLA matching would appear useful to help physicians in the daily care of patients with severe aplastic anemia. Copyright© Ferrata Storti Foundation.
Moore, Andrew S; Shaw, Peter J; Hallahan, Andrew R; Carter, Tina L; Kilo, Tatjana; Nivison-Smith, Ian; O'Brien, Tracey A; Tapp, Heather; Teague, Lochie; Wilson, Shaun R; Tiedemann, Karin
2009-02-02
To document haemopoietic stem cell transplantation (HSCT) activity and trends among paediatric patients in Australia and New Zealand. A retrospective analysis of data reported to the Australasian Bone Marrow Transplant Recipient Registry by the seven paediatric HSCT institutions in Australia and New Zealand over the 9-year period 1998-2006, with particular focus on the most recent years (2002-2006). Types of HSCT performed; transplant-related mortality (TRM); stem cell sources; indications for HSCT; causes of death after HSCT. Over the period 1998-2006, 522 autologous HSCT procedures (41%) and 737 allogeneic procedures (59%) were performed. About 60% of allogeneic transplants involved alternative donors (donors other than a human leukocyte antigen-matched sibling). The use of umbilical cord blood as a source of haemopoietic stem cells has doubled since 1998, with 34% of allogeneic transplants in 2006 using cord blood. Over the period 2002-2006, the median age of patients receiving transplants was 7 years (range, 0-19 years). The most common indications for allogeneic HSCT were acute lymphoblastic leukaemia (33%) and acute myeloid leukaemia (24%). The most common indications for autologous HSCT were neuroblastoma (23%), medulloblastoma (21%) and Ewing sarcoma (10%). TRM at 1 year after transplant was 22% for alternative donor transplants, 7% for matched-sibling transplants and 5% for autologous transplants. Relapse or persistence of a child's underlying condition accounted for 54% of all deaths within 1 year after transplant. HSCT is an important procedure for children with a range of life-threatening illnesses. Local trends in the indications for HSCT, donor selection and TRM reflect contemporary international practice.
Paciaroni, Katia; Gallucci, Cristiano; De Angelis, Gioia; Alfieri, Cecilia; Roveda, Andrea; Lucarelli, Guido
2009-06-01
An adult patient affected by beta(0)-thalassemia major underwent allogeneic bone marrow transplant (BMT) from a matched related donor. Forty days after transplant, allogeneic engraftment failure and autologous beta(0)-thalassemic bone marrow recovery were documented. Red blood cell transfusions were required until 118 days post-transplant. Thereafter, the haemoglobin (Hb) levels stabilized over 11.8 gr/dl throughout the ongoing 34-month follow-up, abolishing the need for transfusion support. The Hb electrophoresis showed 100% Hb Fetal (HbF). This unexplained case suggests full HbF production may occur in an adult patient with beta(0)-thalassemia major.
Intra-femoral injection of human mesenchymal stem cells.
Mohanty, Sindhu T; Bellantuono, Ilaria
2013-01-01
In vivo transplantation of putative populations of hematopoietic stem cells (HSC) and assessment of their engraftment is considered the golden standard to assess their quality and degree of stemness. Transplantation is usually carried out by intravenous injection in murine models and assessment of engraftment is performed by monitoring the number and type of mature blood cells produced by the donor cells in time. In contrast intravenous injection of mesenchymal stem cells (MSC), the multipotent stem cells present in bone marrow and capable of differentiating to osteoblasts, chondrocytes and adipocytes, has not been successful. This is due to limited or absent engraftment levels. Here, we describe the use of intra-femoral injection as an improved method to assess MSC engraftment to bone and bone marrow and their quality.
Medda, Rebecca; Helth, Arne; Herre, Patrick; Pohl, Darius; Rellinghaus, Bernd; Perschmann, Nadine; Neubauer, Stefanie; Kessler, Horst; Oswald, Steffen; Eckert, Jürgen; Spatz, Joachim P.; Gebert, Annett; Cavalcanti-Adam, Elisabetta A.
2014-01-01
Multi-potent adult mesenchymal stem cells (MSCs) derived from bone marrow have therapeutic potential for bone diseases and regenerative medicine. However, an intrinsic heterogeneity in their phenotype, which in turn results in various differentiation potentials, makes it difficult to predict the response of these cells. The aim of this study is to investigate initial cell–surface interactions of human MSCs on modified titanium alloys. Gold nanoparticles deposited on β-type Ti–40Nb alloys by block copolymer micelle nanolithography served as nanotopographical cues as well as specific binding sites for the immobilization of thiolated peptides present in several extracellular matrix proteins. MSC heterogeneity persists on polished and nanopatterned Ti–40Nb samples. However, cell heterogeneity and donor variability decreased upon functionalization of the gold nanoparticles with cyclic RGD peptides. In particular, the number of large cells significantly decreased after 24 h owing to the arrangement of cell anchorage sites, rather than peptide specificity. However, the size and number of integrin-mediated adhesion clusters increased in the presence of the integrin-binding peptide (cRGDfK) compared with the control peptide (cRADfK). These results suggest that the use of integrin ligands in defined patterns could improve MSC-material interactions, not only by regulating cell adhesion locally, but also by reducing population heterogeneity. PMID:24501674
The role of 3D printing in treating craniomaxillofacial congenital anomalies.
Lopez, Christopher D; Witek, Lukasz; Torroni, Andrea; Flores, Roberto L; Demissie, David B; Young, Simon; Cronstein, Bruce N; Coelho, Paulo G
2018-05-20
Craniomaxillofacial congenital anomalies comprise approximately one third of all congenital birth defects and include deformities such as alveolar clefts, craniosynostosis, and microtia. Current surgical treatments commonly require the use of autogenous graft material which are difficult to shape, limited in supply, associated with donor site morbidity and cannot grow with a maturing skeleton. Our group has demonstrated that 3D printed bio-ceramic scaffolds can generate vascularized bone within large, critical-sized defects (defects too large to heal spontaneously) of the craniomaxillofacial skeleton. Furthermore, these scaffolds are also able to function as a delivery vehicle for a new osteogenic agent with a well-established safety profile. The same 3D printers and imaging software platforms have been leveraged by our team to create sterilizable patient-specific intraoperative models for craniofacial reconstruction. For microtia repair, the current standard of care surgical guide is a two-dimensional drawing taken from the contralateral ear. Our laboratory has used 3D printers and open source software platforms to design personalized microtia surgical models. In this review, we report on the advancements in tissue engineering principles, digital imaging software platforms and 3D printing that have culminated in the application of this technology to repair large bone defects in skeletally immature transitional models and provide in-house manufactured, sterilizable patient-specific models for craniofacial reconstruction. © 2018 Wiley Periodicals, Inc.
Nayak, Bibhukalyan Prasad; Goh, James Cho Hong; Toh, Siew Lok; Satpathy, Gyan Ranjan
2010-03-01
Entheses are fibrocartilaginous organs that bridge ligament with bone at their interface and add significant insertional strength. To replace a severely damaged ligament, a tissue-engineered graft preinstalled with interfacial fibrocartilage, which is being regenerated from stem cells, appears to be more promising than ligament-alone graft. Such a concept can be realized by a biomimetic approach of establishing a dynamic communication of stem cells with bone cells and/or ligament fibroblasts in vitro. The current study has two objectives. The first objective is to demonstrate functional coculture of bone marrow-derived stem cells (BMSCs) with mature bone cells/ligament fibroblasts as evidenced by gap-junctional communication in vitro. The second objective is to investigate the role of BMSCs in the regeneration of fibrocartilage within the coculture. Rabbit bone/ligament fibroblasts were dual-stained with DiI-Red and calcein (gap-junction permeable dye), and cocultured with unlabeled BMSCs at fixed ratio (1:10). The functional gap junction was demonstrated by the transfer of calcein from donor to recipient cells that was confirmed and quantified by flow cytometry. Type 2 collagen (cartilage extracellular matrix-specific protein) expressed by the mixed cell lines in the cocultures were estimated by real-time reverse transcription PCR and compared with that of the ligament-bone coculture (control). Significant transfer of calcein into BMSCs was observed and flow cytometry analyses showed a gradual increase in the percentage of BMSCs acquiring calcein with time. Cocultures that included BMSCs expressed significantly more type 2 collagen compared with the control. The current study, for the first time, reported the expression of gap-junctional communication of BMSCs with two adherent cell lines of musculoskeletal system in vitro and also confirmed that incorporation of stem cells augments fibrocartilage regeneration. The results open up a path to envisage a composite graft preinstalled with enthesial fibrocartilage using a stem cell-based coculture system.
Matched unrelated donor transplants-State of the art in the 21st century.
Altaf, Syed Y; Apperley, Jane F; Olavarria, Eduardo
2016-10-01
Hematopoietic stem cell transplantation (HSCT) is the therapy of choice in many hematological malignant and non-malignant diseases by using human leukocyte antigen (HLA)-matched siblings as stem cell source but only one third of the patients will have HLA-matched siblings. Hence, physicians rely on the availability of matched unrelated donors (URD). The possibility of finding a matched URD is now more than 70% due to continuous expansion of URD registries around the world. The use of URD in adult patients is steadily increasing and in the last 8 years has superseded the numbers of matched sibling donor transplants and has become the most commonly used stem cell source. There is also an increasing trend to use peripheral blood (PB) stem cells rather than bone marrow (BM) stem cells. Outcomes following URD transplants depend mainly upon the indication and urgency of transplant, age and comorbidities of recipients, cytomegalovirus (CMV) matching/mismatching between donor and the recipient, and degree of HLA matching. In some studies outcome of unrelated stem cell transplants in terms of treatment-related mortality (TRM), disease-free survival (DFS), and overall survival (OS) is comparable to sibling donors. Copyright © 2016 Elsevier Inc. All rights reserved.
Maillard, Ivan; Schwarz, Benjamin A.; Sambandam, Arivazhagan; Fang, Terry; Shestova, Olga; Xu, Lanwei; Bhandoola, Avinash; Pear, Warren S.
2006-01-01
Early T-lineage progenitors (ETPs) arise after colonization of the thymus by multipotent bone marrow progenitors. ETPs likely serve as physiologic progenitors of T-cell development in adult mice, although alternative T-cell differentiation pathways may exist. While we were investigating mechanisms of T-cell reconstitution after bone marrow transplantation (BMT), we found that efficient donor-derived thymopoiesis occurred before the pool of ETPs had been replenished. Simultaneously, T lineage–restricted progenitors were generated at extrathymic sites, both in the spleen and in peripheral lymph nodes, but not in the bone marrow or liver. The generation of these T lineage–committed cells occurred through a Notch-dependent differentiation process. Multipotent bone marrow progenitors efficiently gave rise to extrathymic T lineage–committed cells, whereas common lymphoid progenitors did not. Our data show plasticity of T-lineage commitment sites in the post-BMT environment and indicate that Notch-driven extrathymic Tlineage commitment from multipotent progenitors may contribute to early T-lineage reconstitution after BMT. PMID:16397133
[Psychological specificities of living donor kidney transplantation].
Papeloux-Heitzmann, Élodie
2016-12-01
For people with end-stage kidney disease, a transplant is the promise of a future without dialysis. Living donor kidney transplantation comprises many specificities and is distinct from cadaveric donor transplantation. Some psychological aspects explain these specificities. They may be subconscious and difficult to access, but it is essential to decipher them in order to adapt the support provided to these people. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Kowalski, John B; Merritt, Karen; Gocke, David; Osborne, Joel
2012-08-01
A quantitative method was developed and validated to assess bioburden on tissue from human donors and to compare bioburden determination results to swab culture results from the same donor. An initial study with allograft tissue from 101 donors showed a wide range of bioburden levels; values from no colony-forming units (CFU) detected to >28,000 CFU were observed. Tissues from donors that had swab cultures negative for objectionable microorganisms generally had lower bioburden than tissues from donors where objectionable microorganisms were recovered by swab culturing. In a follow-up study with 1,445 donors, a wide range of bioburden levels was again observed on tissues from donors that were swab culture negative for objectionable microorganisms. Tissues from 885 (61%) of these donors had no recoverable bioburden (<2 CFU). Importantly, tissues from 560 (39%) of the donors had recoverable bioburden which ranged from 1 to >24,000 CFU. Identification of bioburden isolates showed a diversity of genera and species. In compliance with the recent revision of the American Association of Tissue Banks K2.210 Standard, the quantitative bioburden determination method was validated with a composite tissue sample that contains bone and soft tissue sections tested together in one extraction vessel. A recovery efficiency of 68% was validated and the composite sample was shown to be representative of all of the tissues recovered from a donor. The use of the composite sample in conjunction with the quantitative bioburden determination method will facilitate an accurate assessment of the numbers and types of contaminating microorganisms on allografts prior to disinfection/sterilization. This information will ensure that disinfection/sterilization processes are properly validated and the capability of the overall allograft process is understood on a donor by donor basis.
Kiss, Joseph E.; Steele, Whitney R.; Wright, David J.; Mast, Alan E.; Carey, Patricia M.; Murphy, Edward L.; Gottschall, Jerry L.; Simon, Toby L.; Cable, Ritchard G.
2014-01-01
BACKGROUND Iron deficiency is common in regular blood donors. We evaluated the diagnostic sensitivity and specificity of red blood cell (RBC) hematology analyzer indices to assess iron status as a part of donor management. STUDY DESIGN AND METHODS A total of 1659 male and female donors from the Retrovirus Epidemiology Donor Study-II (REDS-II) Donor Iron Status Evaluation (RISE) study who were either first-time/reactivated (FT/ RA; no donations for 2 years) or frequent donors were recruited into a longitudinal study of regular donation of RBCs. Of these, 1002 donors returned 15 to 24 months later for a final assessment. Absent iron stores (AIS) was defined as plasma ferritin level of less than 12 µ.g/L. Logarithm of the ratio of soluble transferrin receptor to ferritin of at least 2.07 (≥97.5% in FT/RA males) was used to define iron-deficient erythropoiesis (IDE). Receiver operating characteristics analysis was performed to assess selected RBC indices (e.g., percentage of hypochromic mature RBCs, proportion of hypochromic mature RBCs [HYPOm], and hemoglobin [Hb] content of reticulocytes [CHr]) in identifying AIS and IDE. RESULTS HYPOm and CHr detected IDE with comparable sensitivity, 72% versus 69%, but differed in specificity: HYPOm 68% and CHr 53%. For detecting AIS, sensitivity was improved to 85% for HYPOm and 81% for CHr but specificity was reduced for both. Venous Hb had high specificity but poor sensitivity for IDE and AIS. A plasma ferritin level of less than 26.7 u.g/L was a good surrogate for assessing IDE. CONCLUSION RBC indices correlate with AIS and IDE and are more informative than Hb measurement, but lack sufficient sensitivity and specificity to be used as diagnostic tools in blood donors at risk for iron deficiency. PMID:23617531
Kiss, Joseph E; Steele, Whitney R; Wright, David J; Mast, Alan E; Carey, Patricia M; Murphy, Edward L; Gottschall, Jerry L; Simon, Toby L; Cable, Ritchard G
2013-11-01
Iron deficiency is common in regular blood donors. We evaluated the diagnostic sensitivity and specificity of red blood cell (RBC) hematology analyzer indices to assess iron status as a part of donor management. A total of 1659 male and female donors from the Retrovirus Epidemiology Donor Study-II (REDS-II) Donor Iron Status Evaluation (RISE) study who were either first-time/reactivated (FT/RA; no donations for 2 years) or frequent donors were recruited into a longitudinal study of regular donation of RBCs. Of these, 1002 donors returned 15 to 24 months later for a final assessment. Absent iron stores (AIS) was defined as plasma ferritin level of less than 12 μg/L. Logarithm of the ratio of soluble transferrin receptor to ferritin of at least 2.07 (≥97.5% in FT/RA males) was used to define iron-deficient erythropoiesis (IDE). Receiver operating characteristics analysis was performed to assess selected RBC indices (e.g., percentage of hypochromic mature RBCs, proportion of hypochromic mature RBCs [HYPOm], and hemoglobin [Hb] content of reticulocytes [CHr]) in identifying AIS and IDE. HYPOm and CHr detected IDE with comparable sensitivity, 72% versus 69%, but differed in specificity: HYPOm 68% and CHr 53%. For detecting AIS, sensitivity was improved to 85% for HYPOm and 81% for CHr but specificity was reduced for both. Venous Hb had high specificity but poor sensitivity for IDE and AIS. A plasma ferritin level of less than 26.7 μg/L was a good surrogate for assessing IDE. RBC indices correlate with AIS and IDE and are more informative than Hb measurement, but lack sufficient sensitivity and specificity to be used as diagnostic tools in blood donors at risk for iron deficiency. © 2013 American Association of Blood Banks.
Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs.
McCusker, Catherine D; Diaz-Castillo, Carlos; Sosnik, Julian; Q Phan, Anne; Gardiner, David M
2016-08-01
The Mexican Axolotl is one of the few tetrapod species that is capable of regenerating complete skeletal elements in injured adult limbs. Whether the skeleton (bone and cartilage) plays a role in the patterning and contribution to the skeletal regenerate is currently unresolved. We tested the induction of pattern formation, the effect on cell proliferation, and contributions of skeletal tissues (cartilage, bone, and periosteum) to the regenerating axolotl limb. We found that bone tissue grafts from transgenic donors expressing GFP fail to induce pattern formation and do not contribute to the newly regenerated skeleton. Periosteum tissue grafts, on the other hand, have both of these activities. These observations reveal that skeletal tissue does not contribute to the regeneration of skeletal elements; rather, these structures are patterned by and derived from cells of non-skeletal connective tissue origin. Copyright © 2016 Elsevier Inc. All rights reserved.
The effect of the EU tissues and cells directive on bone banking in Denmark: a case study.
Birk, Sofie Okkels; Hoeyer, Klaus
2010-08-01
As a result of the EU Tissues and Cells Directive (2004/23/EC), therapeutic tissue banking is currently being restructured throughout Europe. The stated objectives are to enhance a safe and stable supply of bone and tissue in Europe and to facilitate internal exchange. We conducted an interview study to explore the effect of the Directive on Danish bone banks in terms of (1) organizational restructuring, (2) supply and range of exchange, (3) economic costs. We found that the Directive stimulated extensive re-organization of bone banks with a substantial adjoining workload; that it is doubtful whether it will increase supply and range of exchange; and that the transposition of the Directive is associated with considerable extra cost. Additionally, we found that elements in the documentation of safety were fabricated by surgeons to avoid what was seen as unnecessary questioning of potential donors.
Chang, Ying-Jun; Huang, Xiao-Jun
2011-01-01
In recent years, several researchers have unraveled the previously unrecognized effects of granulocyte colony-stimulating factor (G-CSF) on hematopoiesis and the immune cell functions of bone marrow in healthy donors. In human leukocyte antigen-matched or haploidentical transplant settings, available data have established the safety of using G-CSF-stimulated bone marrow grafts, as well as the ability of this source to produce rapid and sustained engraftment. Interestingly, G-CSF-primed bone marrow transplants could capture the advantages of blood stem cell transplants, without the increased risk of chronic graft-versus-host disease that is associated with blood stem cell transplants. This review summarizes the growing body of evidence that supports the use of G-CSF-stimulated bone marrow grafts as an alternative stem cell source in allogeneic hematopoietic stem cell transplantation. © 2010 John Wiley & Sons A/S.
Effectiveness of Organ Donation Information Campaigns in Germany: A Facebook Based Online Survey.
Terbonssen, Tobias; Settmacher, Utz; Wurst, Christine; Dirsch, Olaf; Dahmen, Uta
2015-07-28
The German transplantation system is in a crisis due to a lack of donor organs. Information campaigns are one of the main approaches to increase organ donation rates. Since 2012, German health insurance funds are obliged by law to inform their members about organ donation. We raised the hypothesis: The willingness to sign a donor card rises due to the subsequent increase of specific knowledge by receiving the information material of the health insurance funds. The objective of the study was to assess the influence of information campaigns on the specific knowledge and the willingness to donate organs. We conducted an online survey based on recruitment via Facebook groups, advertisements using the snowball effect, and on mailing lists of medical faculties in Germany. Besides the demographic data, the willingness to hold an organ donor card was investigated. Specific knowledge regarding transplantation was explored using five factual questions resulting in a specific knowledge score. We recruited a total of 2484 participants, of which 32.7% (300/917) had received information material. Mean age was 29.9 (SD 11.0, median 26.0). There were 65.81% (1594/2422) of the participants that were female. The mean knowledge score was 3.28 of a possible 5.00 (SD 1.1, median 3.0). Holding a donor card was associated with specific knowledge (P<.001), but not with the general education level (P=.155). Receiving information material was related to holding a donor card (P<.001), but not to a relevant increase in specific knowledge (difference in mean knowledge score 3.20 to 3.48, P=.006). The specific knowledge score and the percentage of organ donor card holders showed a linear association (P<.001). The information campaign was not associated with a relevant increase in specific knowledge, but with an increased rate in organ donor card holders. This effect is most likely related to the feeling of being informed, together with an easy access to the organ donor card.
Pathologic mandibular fracture after biting crab shells following ramal bone graft.
Kwon, Ik Jae; Lee, Byung Ho; Eo, Mi Young; Kim, Soung Min; Lee, Jong Ho; Lee, Suk Keun
2016-10-01
The mandibular ramus is considered an appropriate choice for reconstruction of maxillofacial defects because of sufficient amounts of material and fewer donor site complications. Although bone harvesting from the mandibular ramus has many advantages, in rare cases it can result in pathologic fracture of the mandible. Here, we present a case of 59-year-old man who suffered a pathologic mandible fracture related to biting hard foods, such as crab shells, after a sinus bone lifting with ramal bone graft procedure performed 2 weeks prior. He underwent closed reduction by intermaxillary fixation with an arch bar over the course of 4 weeks. Three months later, the patients had a stable occlusion with normal mouth opening and sensation. To prevent this complication, the osteotomy should be performed in such a way that it is not too vertical during ramal bone harvesting. Furthermore, we wish to emphasize the importance of patients being instructed to avoid chewing hard foods for at least 4 weeks after ramal bone harvesting. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Quadriceps tendon autograft for arthroscopic knee ligament reconstruction: use it now, use it often.
Sheean, Andrew J; Musahl, Volker; Slone, Harris S; Xerogeanes, John W; Milinkovic, Danko; Fink, Christian; Hoser, Christian
2018-04-28
Traditional bone-patellar tendon-bone and hamstring tendon ACL grafts are not without limitations. A growing body of anatomic, biomechanical and clinical data has demonstrated the utility of quadriceps tendon autograft in arthroscopic knee ligament reconstruction. The quadriceps tendon autograft provides a robust volume of tissue that can be reliably harvested, mitigating the likelihood of variably sized grafts and obviating the necessity of allograft augmentation. Modern, minimally invasive harvest techniques offer the advantages of low rates of donor site morbidity and residual extensor mechanism strength deficits. New data suggest that quadriceps tendon autograft may possess superior biomechanical characteristics when compared with bone-patella tendon-bone (BPTB) autograft. However, there have been very few direct, prospective comparisons between the clinical outcomes associated with quadriceps tendon autograft and other autograft options (eg, hamstring tendon and bone-patellar tendon-bone). Nevertheless, quadriceps tendon autograft should be one of the primary options in any knee surgeon's armamentarium. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Reconstruction of mandibular defects with autogenous bone grafts: a review of 30 cases.
Sajid, Malik Ali Hassan; Warraich, Riaz Ahmed; Abid, Hina; Ehsan-ul-Haq, Muhammad; Shah, Khurram Latif; Khan, Zafar
2011-01-01
Multitudes of options are available for reconstruction of functional and cosmetic defects of the mandible, caused by various ailments. At the present time, autogenous bone grafting is the gold standard by which all other techniques of reconstruction of the mandible can be judged. The purpose of this study was to evaluate the outcome of different osseous reconstruction options using autogenous bone grafts for mandibular reconstruction. This Interventional study was conducted at Department of Oral and Maxillofacial Surgery, King Edward Medical University/Mayo Hospital Lahore, from January 2008 to July 2009 including one year follow-up. The study was carried out on thirty patients having bony mandibular defects. They were reconstructed with the autogenous bone grafts from different graft donor sites. On post-operative visits they were evaluated for outcome variables. Success rate of autogenous bone grafts in this study was 90%. Only 10% of the cases showed poor results regarding infection, resorption and graft failure. Autogenous bone grafts, non-vascularised or vascularised, are a reliable treatment modality for the reconstruction of the bony mandibular defects with predictable functional and aesthetic outcome.
Donor parity no longer a barrier for female-to-male hematopoietic stem cell transplantation.
van Halteren, Astrid G S; Dierselhuis, Miranda P; Netelenbos, Tanja; Fechter, Mirjam
2014-01-01
Allogeneic hematopoietic stem cell transplantation (HSCT) is a widely applied treatment for disorders mainly involving the hematopoietic system. The success of this treatment depends on many different patient- and donor-specific factors. Based on higher CD34+ yields and superior clinical outcomes associated with the use of male donors, males are generally seen as the preferred HSCT donor. In addition, female donors are notorious for bearing memory type lymphocytes induced by previous pregnancies; such alloimmune cells may provoke unwanted immune reactions such as graft-vs.-host disease in transplant recipients. Consequently, many transplant centers try to avoid parous donors, particularly when searching the best unrelated donor for a male patient. We recently showed that parous women with female offspring have an anti-male directed tolerogenic immune status comparable to that of nulliparous donors. As discussed in this article addendum, the sex of the donor's offspring combined with the presence of HY-specific T regulator cells are possibly better selection criteria than parity status per se.
42 CFR 486.346 - Condition: Organ preparation and transport.
Code of Federal Regulations, 2010 CFR
2010-10-01
... with the identification number, specific contents, and donor's blood type. ... complete documentation of donor information to the transplant center with the organ, including donor evaluation, the complete record of the donor's management, documentation of consent, documentation of the...
Dubois, Valérie; Detrait, Marie; Sobh, Mohamad; Morisset, Stéphane; Labussière, Hélène; Giannoli, Catherine; Nicolini, Franck; Moskovtchenko, Philippe; Mialou, Valérie; Ducastelle, Sophie; Rey, Sylvie; Thomas, Xavier; Barraco, Fiorenza; Tedone, Nathalie; Marry, Evelyne; Garnier, Federico; Bertrand, Yves; Michallet, Mauricette
2016-11-01
In the absence of an HLA matched familial donor, a search for an unrelated donor or cord blood unit is initiated through worldwide registries. Although a first look-up on available HLA information of donors in the "book" at BMDW (Bone Marrow Donor Worldwide) can provide a good estimation of the number of compatible donors, the variety of resolution typing levels requires confirmatory typing (CT) which are expensive and time consuming. In order to help recipient centers in their work. The French donor registry (France Greffe de Moelle/Agence de la Biomedecine) has recently developed a software program called "EasyMatch®" that uses haplotype frequencies to compute the likelihood of phenotypic match in donors according to various typing resolution levels. The goal of our study is to report a single monocentric user-experience with EasyMatch®, demonstrating that its routine use reduced the cost and the delay of the donor search in our center, allowing the definition of a new strategy to search compatible unrelated donors. The strategy was first established on a retrospective cohort of 217 recipients (185 adults and 32 children=before score) and then validated on a prospective cohort of 171 recipients (160 adults and 11 children=after score). For all patients, we calculated the delay between the registration day and the donor identification day, and the number of CT requested to the donor centre. Considering both groups, we could observe a significant decrease of the number of CT from 8 to 2 (p<0,001), and a significant decrease of the median delay to identify a suitable donor from 43 to 31days (p<0.0001). EasyMatch® estimates the number of potentially identical donors, but doesn't foresee availability of the donors. It provides us an easy tracking of mismatches, an estimation of the number of potential donors, the selection of population following ethnic origin of patients and a high prediction when probability is high or low. It affords a new approach of donor search in our daily work and improves the efficiency in the great challenge of the compatible donor identification. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
In Situ Splitting of a Rib Bone Graft for Reconstruction of Orbital Floor and Medial Wall.
Uemura, Tetsuji; Yanai, Tetsu; Yasuta, Masato; Harada, Yoshimi; Morikawa, Aya; Watanabe, Hidetaka; Kurokawa, Masato
2017-06-01
In situ splitting of rib bone graft was conducted in 22 patients for the repair of orbital fracture with no other complicating fractures. A bone graft was harvested from the sixth or seventh rib in the right side. The repair of the orbital floor and medial wall was successful in all the cases. Ten patients had bone grafting to the orbital floor, eight had it done onto medial wall, and 4 onto both floor and wall after reduction. The mean length of in situ rib bone graft was 40.9 mm (range, 20-70 mm), the mean width of these was 14.9 mm (range, 8-20 mm). The bone grafting was done by one leaf for 15 cases and two leafs for 7 cases in size of defects. The technique of in situ splitting of a rib bone graft for the repair of the orbital floor and medial wall is a simple and safe procedure, easily taking out the in situ splitting of a rib, and less pain in donor site. It has proved to be an optimal choice in craniofacial reconstruction, especially the defects of orbital floor and medial wall.
Development of organ-specific donor risk indices.
Akkina, Sanjeev K; Asrani, Sumeet K; Peng, Yi; Stock, Peter; Kim, W Ray; Israni, Ajay K
2012-04-01
Because of the shortage of deceased donor organs, transplant centers accept organs from marginal deceased donors, including older donors. Organ-specific donor risk indices have been developed to predict graft survival with various combinations of donor and recipient characteristics. Here we review the kidney donor risk index (KDRI) and the liver donor risk index (LDRI) and compare and contrast their strengths, limitations, and potential uses. The KDRI has a potential role in developing new kidney allocation algorithms. The LDRI allows a greater appreciation of the importance of donor factors, particularly for hepatitis C virus-positive recipients; as the donor risk index increases, the rates of allograft and patient survival among these recipients decrease disproportionately. The use of livers with high donor risk indices is associated with increased hospital costs that are independent of recipient risk factors, and the transplantation of livers with high donor risk indices into patients with Model for End-Stage Liver Disease scores < 15 is associated with lower allograft survival; the use of the LDRI has limited this practice. Significant regional variations in donor quality, as measured by the LDRI, remain in the United States. We also review other potential indices for liver transplantation, including donor-recipient matching and the retransplant donor risk index. Although substantial progress has been made in developing donor risk indices to objectively assess donor variables that affect transplant outcomes, continued efforts are warranted to improve these indices to enhance organ allocation policies and optimize allograft survival. Copyright © 2012 American Association for the Study of Liver Diseases.
Lynch, Patrick J; Thompson, Elaine E; McGinnis, Kathleen; Rovira Gonzalez, Yazmin I; Lo Surdo, Jessica; Bauer, Steven R; Hursh, Deborah A
2015-07-01
Bone marrow-derived multipotent stromal cells (BM-MSCs) display a broad range of therapeutically valuable properties, including the capacity to form skeletal tissues and dampen immune system responses. However, to use BM-MSCs in a clinical setting, amplification is required, which may introduce epigenetic changes that affect biological properties. Here we used chromatin immunoprecipitation to compare post-translationally modified histones at a subset of gene promoters associated with developmental and environmental plasticity in BM-MSCs from multiple donors following culture expansion. At many locations, we observed localization of both transcriptionally permissive (H3K4me3) and repressive (H3K27me3) histone modifications. These chromatin signatures were consistent among BM-MSCs from multiple donors. Since promoter activity depends on the relative levels of H3K4me3 and H3K27me3, we examined the ratio of H3K4me3 to H3K27me3 (K4/K27) at promoters during culture expansion. The H3K4me3 to H3K27me3 ratios were maintained at most assayed promoters over time. The exception was the adipose-tissue specific promoter for the PPAR-γ2 isoform of PPAR-γ, which is a critical positive regulator of adipogenesis. At PPAR-γ2, we observed a change in K4/K27 levels favoring the repressed chromatin state during culture. This change correlated with diminished promoter activity in late passage cells exposed to adipogenic stimuli. In contrast to BM-MSCs and osteoblasts, lineage-restricted preadipocytes exhibited levels of H3K4me3 and H3K27me3 that favored the permissive chromatin state at PPAR-γ2. These results demonstrate that locus-specific changes in H3K4me3 and H3K27me3 levels can occur during BM-MSC culture that may affect their properties. Stem Cells 2015;33:2169-2181. © 2015 AlphaMed Press.
2017-03-29
Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Juvenile Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndromes; Recurrent Childhood Acute Lymphoblastic Leukemia; Secondary Myelodysplastic Syndromes
Yang, K L; Lin, P Y
2018-05-20
One nucleotide substitution at residue 577 of HLA-B*27:04:01 results in a novel allele, HLA-B*27:120. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Gauthier, Jordan; Chantepie, Sylvain; Bouabdallah, Krimo; Jost, Edgar; Nguyen, Stéphanie; Gac, Anne-Claire; Damaj, Gandhi; Duléry, Rémy; Michallet, Mauricette; Delage, Jérémy; Lewalle, Philippe; Morschhauser, Franck; Salles, Gilles; Yakoub-Agha, Ibrahim; Cornillon, Jérôme
2017-12-01
Despite great improvements in the outcome of patients with lymphoma, some may still relapse or present with primary refractory disease. In these situations, allogeneic haematopoietic cell transplantation (allo-HCT) is a potentially curative option, in particular in the case of relapse after autologous stem cell transplantation. Recently, novel agents such as anti-PD1 and BTK inhibitors have started to challenge the use of allo-HCT for relapsed or refractory lymphoma. During the 2016 annual workshop of the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC), we performed a comprehensive review of the literature published in the last 10 years and established guidelines to clarify the indications and transplant modalities in this setting. This manuscript reports on general considerations regarding allo-HCT for lymphoma and elaborates on the use of alternative donors in this setting. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
HLA-F polymorphisms in a Euro-Brazilian population from Southern Brazil.
Manvailer, L F S; Wowk, P F; Mattar, S B; da Siva, J S; da Graça Bicalho, M; Roxo, V M M S
2014-12-01
HLA-F is a non-classical major histocompatibility complex (MHC) gene. It codes class Ib MHC molecules with restricted distribution and less nucleotide variations than MHC class Ia genes. Of the 22 alleles registered on the IMGT database only four alleles encode for proteins that differ in their primary structure. To estimate genotype and allele frequencies, this study targeted on known protein coding regions of the HLA-F gene. Genotyping was performed by Sequence Base Typing (SBT). The sample was composed by 199-unrelated bone marrow donors from the Brazilian Bone Marrow Donor Registry (REDOME), Euro-Brazilians, from Southern Brazil. About 1673 bp were analyzed. The most frequent allele was HLA-F*01:01 (87.19%), followed by HLA-F*01:03 (12.31%), HLA-F*01:02 (0.25%) and HLA-F*01:04 (0.25%). Significant linkage disequilibrium (LD) was verified between HLA-F and HLA classes I and II alleles. This is the first study regarding HLA-F polymorphisms in a Euro-Brazilian population contributing to the Southern Brazilian genetic characterization. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Return of results in translational iPS cell research: considerations for donor informed consent
2013-01-01
Efforts have emerged internationally to recruit donors with specific disease indications and to derive induced pluripotent cell lines. These disease-specific induced pluripotent stem cell lines have the potential to accelerate translational goals such as drug discovery and testing. One consideration for donor recruitment and informed consent is the possibility that research will result in findings that are clinically relevant to the cell donor. Management protocols for such findings should be developed a priori and disclosed during the informed consent process. The California Institute for Regenerative Medicine has developed recommendations for informing donors in sponsored research. These recommendations include obtaining consent to recontact tissue donors for a range of scientific, medical and ethical considerations. This article reviews the basis for these recommendations and suggests conditions that may be appropriate when reporting findings to donors. PMID:23336317
Palapattu, Ganesh S; Meeker, Alan; Harris, Timothy; Collector, Michael I; Sharkis, Saul J; DeMarzo, Angelo M; Warlick, Christopher; Drake, Charles G; Nelson, William G
2006-08-01
Using various nonphysiological tissue injury/repair models numerous studies have demonstrated the capacity of bone marrow derived cells to contribute to the repopulation of epithelial tissues following damage. To investigate whether this phenomenon might also occur during periods of physiological tissue degeneration/regeneration we compared the ability of bone marrow derived cells to rejuvenate the prostate gland in mice that were castrated and then later treated with dihydrotestosterone vs mice with prostate epithelium that had been damaged by lytic virus infection. Using allogenic bone marrow grafts from female donor transgenic mice expressing green fluorescent protein transplanted into lethally irradiated males we were able to assess the contributions of bone marrow derived cells to recovery of the prostatic epithelium in 2 distinct systems, including 1) surgical castration followed 1 week later by dihydrotestosterone replacement and 2) intraprostatic viral injection. Eight to 10-week-old male C57/Bl6 mice were distributed among bone marrow donor-->recipient/prostate injury groups, including 5 with C57/Bl6-->C57/Bl6/no injury, 3 with green fluorescent protein-->C57/Bl6/no injury, 3 with green fluorescent protein-->C57/Bl6/vehicle injection, 4 with green fluorescent protein-->C57/Bl6/virus injection and 3 each with green fluorescent protein-->C57/Bl6/castration without and with dihydrotestosterone, respectively. Prostate tissues were harvested 3 weeks after dihydrotestosterone replacement or 14 days following intraprostatic viral injection. Prostate tissue immunofluorescence was performed with antibodies against the epithelial marker cytokeratin 5/8, the hematopoietic marker CD45 and green fluorescent protein. Mice that sustained prostate injury from vaccinia virus infection with concomitant severe inflammation and glandular disruption showed evidence of bone marrow derived cell reconstitution of prostate epithelium, that is approximately 4% of all green fluorescent protein positive cells in the epithelial compartment 14 days after injury expressed cytokeratin 5/8, similar to the proportion of green fluorescent protein positive cells in the prostate that no longer expressed the hematopoietic marker CD45. When prostatic degeneration/regeneration was triggered by androgen deprivation and reintroduction, no green fluorescent protein positive prostate epithelial cells were detected. These findings are consistent with a requirement for inflammation associated architectural destruction for the bone marrow derived cell contribution to the regeneration of prostate epithelium.
Lamanna, C; Baroni, M; Bisin, S; Gianassi, S; Bambi, F; Caselli, D; Aricò, M
2010-01-01
Human resources represent at the moment the most critical factor in an hospital setting characterized by a high rate of staff turnover. It is important to ensure a consistent level of expertise and knowledge of professionals who work in health care facilities to provide quality services and simultaneously support the implementation of strategies for patient safety. Unfortunately, the development of effective interventions for training newly added staff and self-evaluation of skills possessed by trained staff are closely related to understanding critical aspects of the organization. At the new Center for Bone Marrow Transplantation and Blood Transfusion Service in Meyer Hospital, during the last year, a group of professional nurses and technicians completed a specific plan to train new staff and, at the same time, a program of self-assessment of skills for experienced staff. The main purpose of this project was to promote skills development by newly added as well as experienced staff, to identify areas of weaknesses, and to correct them with training (organized by the hospital, departmental, or individual) designed to improve performance. Copyright 2010 Elsevier Inc. All rights reserved.
Wang, X N; Yang, Q W; Du, Z W; Yu, T; Qin, Y G; Song, Y; Xu, M; Wang, J C
2016-05-25
This study aimed to evaluate 12 genes (18S, GAPDH, B2M, ACTB, ALAS1, GUSB, HPRT1, PBGD, PPIA, PUM1, RPL29, and TBP) for their reliability and stability as reference sequences for real-time quantitative PCR (RT-qPCR) in bone marrow-derived mesenchymal stem cells (BMSCs) isolated from patients with avascular necrosis of the femoral head (ANFH). BMSCs were isolated from 20 ANFH patients divided into four groups according to etiology, and four donors with femoral neck fractures. Total RNA was isolated from BMSCs and reverse transcribed into complementary DNA, which served as a template for RT-qPCR. Three commonly used programs were then used to analyze the results. Reference gene expression varied within each group, between specific groups, and among all five groups. Based on comparisons of all five groups, two of the programs used suggested that HPRT1 was the most stable reference gene, while 18S and ACTB were the most variable. Among the 12 candidate reference genes, HPRT1 exhibited the greatest reliability, followed by PPIA. Thus, these sequences could be used as references for the normalization of RT-qPCR results.
Tiwari, Aseem K; Bhati-Kushwaha, Himakshi; Kukreja, Pooja; Mishra, Vikash C; Tyagi, Neetu; Sharma, Ashish; Raina, Vimarsh
2015-06-01
With an increase in the number of transplants happening globally, hematopoietic stem cells (HSC) transplantation from matched unrelated donor (MUD) has begun. The increasing trend of MUD transplants across countries has been largely facilitated with the conspicuous growth of volunteer HSC donor noted in the last decade i.e. 8 million HSC donors in 2002 to more than 22 million in 2013 registered in 71 member registries of the Bone Marrow Donor Worldwide (BMDW). Some populations of the world are still very poorly represented in these registries. Since, the chances of successful engraftment and disease free survival are directly proportional to the HLA compatibility between the recipient and the prospective donor, the diversity of the HLA system at the antigenic and allelic level and the heterogeneity of HLA data of the registered donors has a bearing on the probability of finding a volunteer unrelated HSC donor for patients from such populations. In the present study 126 patients were identified suffering from hematological diseases requiring MUD transplant. Their HLA typing was performed and search was done using BMDW database. The search results for these Indian patients in the multinational registry as well as in the Indian Registries were analyzed using mean, range, standard deviation and finally evaluated in terms of probability for finding matched donor (MUD). Total Asian population is only 11 % in the BMDW making it difficult to find a MUD for an Asian patient. The current study supports this, experimentally; revealing that the probability of finding an allele match for an Indian patient in the multinational Human Leukocyte Antigen (HLA) registries is 16 % and a dismal 0.008 % in the Indian registries (donors in Indian registries is just 33,678 as compared to 22.5 million in BMDW). This greatly, emphasizes on enhancing the number of Indian donors in Indian and multi-national registries.
Evans, CE; Mylchreest, S; Andrew, JG
2006-01-01
Background Cyclic hydrostatic pressure within bone has been proposed both as a stimulus of aseptic implant loosening and associated bone resorption and of bone formation. We showed previously that cyclical hydrostatic pressure influenced macrophage synthesis of several factors linked to osteoclastogenesis. The osteoprotegerin/soluble receptor activator of NF-kappa β ligand /receptor activator of NF-kappa β (OPG/ RANKL/ RANK) triumvirate has been implicated in control of bone resorption under various circumstances. We studied whether cyclical pressure might affect bone turnover via effects on OPG/ sRANKL/ RANK. Methods In this study, cultures of human osteoblasts or macrophages (supplemented with osteoclastogenic factors) or co-cultures of macrophages and osteoblasts (from the same donor), were subjected to cyclic hydrostatic pressure. Secretion of OPG and sRANKL was assayed in the culture media and the cells were stained for RANK and osteoclast markers. Data were analysed by nonparametric statistics. Results In co-cultures of macrophages and osteoblasts, pressure modulated secretion of sRANKL or OPG in a variable manner. Examination of the OPG:sRANKL ratio in co cultures without pressurisation showed that the ratio was greater in donors <70 years at the time of operation (p < 0.05 Mann Whitney U) than it was in patients >70 years. However, with pressure the difference in the OPG:sRANKL ratios between young and old donors was not significant. It was striking that in some patients the OPG:sRANKL ratio increased with pressure whereas in some it decreased. The tendency was for the ratio to decrease with pressure in patients younger than 70 years, and increase in patients ≥ 70 years (Fishers exact p < 0.01). Cultures of osteoblasts alone showed a significant increase in both sRANKL and OPG with pressure, and again there was a decrease in the ratio of OPG:RANKL. Secretion of sRANKL by cultures of macrophages alone was not modulated by pressure. Only sRANKL was assayed in this study, but transmembrane RANKL may also be important in this system. Macrophages subjected to pressure (both alone and in co-culture) stained more strongly for RANK on immunohistochemstry than non-pressurized controls and 1,25-dihydroxyvitamin D3 (1,25 D3) further increased this. Immunocytochemical staining also demonstrated that more cells in pressurized co-cultures exhibited osteoclast markers (tartrate-resistant acid phosphatase, vitronectin receptor and multinuclearity) than did unpressurized controls. Conclusion These data show that in co-cultures of osteoblasts and macrophages the ratio of OPG : sRANKL was decreased by pressure in younger patients but increased in older patients. As falls in this ratio promote bone resorption, this finding may be important in explaining the relatively high incidence of osteolysis around orthopaedic implants in young patients. The finding that secretion of OPG and sRANKL by osteoblasts in monoculture was sensitive to hydrostatic pressure, and that hydrostatic pressure stimulated the differentiation of macrophages into cells exhibiting osteoclast markers indicates that both osteoblasts and preosteoclasts are sensitive to cyclic pressure. However, the effects of pressure on cocultures were not simply additive and coculture appears useful to examine the interaction of these cell types. These findings have implications for future therapies for aseptic loosening and for the development of tests to predict the development of this condition. PMID:16519799
Heim, Albert
2016-05-01
The performance of the multiplex Procleix Ultrio Elite assay as individual donor nucleic acid test (ID-NAT) for the detection of HIV-1, HIV-2, HCV, and HBV was evaluated in a retrospective, single center study. ID-NAT results of 21,181 blood donors, 984 tissue donors, 293 hematopoietic stem cell donors and 4 organ donors were reviewed in synopsis with results of serological screening and additional discriminatory and repetitive NAT in case of positive donors. Specificity of the initial Procleix Ultrio Elite assay was 99.98% and after discriminatory testing 100.00%. Initially invalid results were observed in 75 of 21,181 blood donors (0.35%) but 16 of 984 tissue donors (1.62%, p < 0.001) which included non-heart-beating ('cadaveric') donors. All these had valid negative ID-NAT results after repeated testing or testing of 1:5 diluted specimens in case of tissue donors. Occult hepatitis B (defined here as HBV DNAemia without HBsAg detection) was demonstrated by ID-NAT in two anti-HBc-positive tissue donors and suspected in two other tissue donors, where a definite diagnosis was not achieved due to the insufficient sample volumes available. The Procleix Ultrio Elite assay proved to be specific, robust and rapid. Therefore, routine ID-NAT may also be feasible for organ and granulocyte donors.
Maternal health development programs: comparing priorities of bilateral and private donors.
Deleye, Cécile; Lang, Achim
2014-11-19
The face of international aid for health and development is changing. Private donors such as foundations and corporations are playing an increasingly important role, working in international development as direct operators or in partnerships with governments. This study compares maternal health programs of new development actors to traditional governmental donors. It aims to investigate what maternal health programs large governmental donors, foundations and corporate donors are conducting, and how and why they differ. A total of 263 projects were identified and analyzed. We focus on nine categories of maternal health programs: family planning services, focus on specific diseases, focus on capacity building, use of information and communication technology (ICT), support of research initiatives, cooperation with local non-state or state partners and cooperation with non-local non-state or state partners. Data analysis was carried out using Generalized Linear Mixed-Effects Models (GLMER). Maternal health policies of public and private donors differ with regard to strategic approaches, as can be seen in their diverging positions regarding disease focus, family planning services, capacity building, and partner choice. Bilateral donors can be characterized as focusing on family planning services, specific diseases and capacity-building while disregarding research and ICT. Bilateral donors cooperate with local public authorities and with governments and NGOs from other developed countries. In contrast, corporations focus their donor activities on specific diseases, capacity-building and ICT while disregarding family planning services and research. Corporations cooperate with local and in particular with non-local non-state actors. Foundations can be characterized as focusing on family planning services and research, while disregarding specific diseases, capacity-building and ICT. Foundations cooperate less than other donors; but when they do, they cooperate in particular with non-state actors, local as well as non-local. These findings should help developing coordination mechanisms that embrace the differences and similarities of the different types of donors. As donor groups specialize in different contexts, NGOs and governments working on development and health aid may target donors groups that have specialized in certain issues.
Huang, Xiao-Jun; Liu, Dai-Hong; Liu, Kai-Yan; Xu, Lan-Ping; Chen, Huan; Han, Wei; Chen, Yu-Hong; Zhang, Xiao-Hui; Lu, Dao-Pei
2009-02-01
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains one of the best therapeutic options to cure acute leukemia (AL). However, many patients have no human leukocyte antigen (HLA)-matched donor. Recently, we developed a new method for HLA-mismatched/haploidentical transplantation without in vitro T cell depletion (TCD). This method combined granulocyte-colony stimulating factor (G-CSF)-primed bone marrow and peripheral blood with intensive immunosuppression. We analyzed the outcome of 250 consecutive patients with AL who underwent HLA-mismatched/haploidentical transplantation with 1-3 mismatched loci of HLA-A, B, and DR from family donors via our new transplant protocol. Two hundred forty-nine patients achieved sustained, full donor chimerism. The incidence of grade 2-4 acute graft-versus-host disease (aGVHD) was 45.8%, and that of grades 3 and 4 was 13.4%, which was not associated with the extent of HLA disparity. The cumulative incidence of total chronic GVHD (cGVHD) was 53.9% and that of extensive cGVHD was 22.6% in 217 evaluable patients. One hundred forty-one of the 250 patients survived free of disease recurrence at a median of 1092 days (range: 442-2437 days) of follow-up. Seventeen patients received DLI as a treatment for relapse after transplantation and 7 patients achieved leukemia-free survival (LFS). The 3-year probability of LFS for acute myelogenous leukemia (AML) was 70.7% and 55.9%, and for acute lymphoblastic leukemia (ALL) it was 59.7% and 24.8% in standard-risk and high-risk groups, respectively. Lower LFS were associated with diagnosis of acute leukemia in the high-risk group (P= .001, relative risk [RR], 95% confidence interval [CI]: 2.94[1.535-5.631]) and the occurrence of aGVHD of grades 3 and 4 (P= .004). HLA-mismatched/haploidentical HSCT was feasible with unmanipulated blood and bone marrow harvest.
Carriglio, Nicola; Klapwijk, Jan; Hernandez, Raisa Jofra; Vezzoli, Michela; Chanut, Franck; Lowe, Rhiannon; Draghici, Elena; Nord, Melanie; Albertini, Paola; Cristofori, Patrizia; Richards, Jane; Staton, Hazel; Appleby, Jonathan; Aiuti, Alessandro; Sauer, Aisha V
2017-03-01
GSK2696273 (autologous CD34+ cells transduced with retroviral vector that encodes for the human adenosine deaminase [ADA] enzyme) is a gamma-retroviral ex vivo gene therapy of bone marrow-derived CD34+ cells for the treatment of adenosine deaminase deficiency severe combined immunodeficiency (ADA-SCID). ADA-SCID is a severe monogenic disease characterized by immunologic and nonimmunologic symptoms. Bone-marrow transplant from a matched related donor is the treatment of choice, but it is available for only a small proportion of patients. Ex vivo gene therapy of patient bone-marrow CD34+ cells is an alternative treatment. In order to prepare for a marketing authorization application in the European Union, preclinical safety studies in mice were requested by the European Medicines Agency (EMA). A pilot study and a main biodistribution study were performed according to Good Laboratory Practice (GLP) at the San Raffaele Telethon Institute for Gene Therapy test facility. In the main study, human umbilical cord blood (UCB)-derived CD34+ cells were transduced with gamma-retroviral vector used in the production of GSK2696273. Groups of 10 male and 10 female NOD-SCID gamma (NSG) mice were injected intravenously with a single dose of transduced- or mock-transduced UCB CD34+ cells, and they were observed for 4 months. Engraftment and multilineage differentiation of blood cells was observed in the majority of animals in both groups. There was no significant difference in the level of chimerism between the two groups. In the gene therapy group, vector was detectable in lymphohemopoietic and nonlymphohemopoietic tissues, consistent with the presence of gene-modified human hematopoietic donor cells. Given the absence of relevant safety concerns in the data, the nonclinical studies and the clinical experience with GSK2696273 supported a successful application for market authorization in the European Union for the treatment of ADA-SCID patients, for whom no suitable human leukocyte antigen-matched related donor is available.