Sample records for dopamine agents

  1. Gastric mucosal lesions induced by complete dopamine system failure in rats. The effects of dopamine agents, ranitidine, atropine, omeprazole and pentadecapeptide BPC 157.

    PubMed

    Sikiric, P; Separovic, J; Buljat, G; Anic, T; Stancic-Rokotov, D; Mikus, D; Duplancic, B; Marovic, A; Zoricic, I; Prkacin, I; Lovric-Bencic, M; Aralica, G; Ziger, T; Perovic, D; Jelovac, N; Dodig, G; Rotkvic, I; Mise, S; Seiwerth, S; Turkovic, B; Grabarevic, Z; Petek, M; Rucman, R

    2000-01-01

    Up to now, for gastric lesions potentiation or induction, as well as determination of endogenous dopamine significance, dopamine antagonist or dopamine vesicle depletor were given separately. Therefore, without combination studies, the evidence for dopamine significance remains split on either blockade of dopamine post-synaptic receptor or inhibition of dopamine storage, essentially contrasting with endogenous circumstances, where both functions could be simultaneously disturbed. For this purpose, a co-administration of reserpine and haloperidol, a dopamine granule depletor combined with a dopamine antagonist with pronounced ulcerogenic effect, was tested, and the rats were sacrificed 24 h after injurious agent(s) administration. Haloperidol (5 mg x kg(-1) b.w. i.p.), given alone, produced the lesions in all rats. Reserpine (5 mg x kg(-1) b.w. i.p.), given separately, also produced lesions. When these agents were given together, the lesions were apparently larger than in the groups injured with separate administration of either haloperidol or reserpine alone. Along with our previous results, when beneficial agents were co-administered, all dopaminomimetics (bromocriptine 10 mg, apomophine 1 mg, amphetamine 20 mg x kg(-1) i.p.) apparently attenuated the otherwise consistent haloperidol-gastric lesions. Likewise, an apparent inhibition of the reserpine-lesions was noted as well. However, if they were given in rats injured with combination of haloperidol and reserpine, their otherwise prominent beneficial effects were absent. Ranitidine (10 mg), omeprazole (10 mg), atropine (10 mg), pentadecapeptide BPC 157 (Gly-Glu-Pro-Pro-Pro-Gly-Lys-Pro-Ala-Asp-Asp-Ala-Gly-Leu-Val) (10 microg or 10 ng x kg(-1) i.p.) evidently prevented both haloperidol-gastric lesions and reserpine-gastric lesions. Confronted with potentiated lesions following a combination of haloperidol and reserpine, these agents maintained their beneficial effects, noted in the rats treated with either haloperidol or reserpine alone. The failure of dopaminomimetics could be most likely due to more extensive inhibition of endogenous dopamine system activity, and need for remained endogenous dopamine for their salutary effect, whereas the beneficial activities of ranitidine, omeprazole, atropine, pentadecapeptide BPC 157 following dopamine system inhibition by haloperidol+reserpine suggest their corresponding systems parallel those of dopamine system, and they may function despite extensive inhibition of endogenous dopamine system activity.

  2. Tremor analysis separates Parkinson's disease and dopamine receptor blockers induced parkinsonism.

    PubMed

    Shaikh, Aasef G

    2017-05-01

    Parkinson's disease, the most common cause of parkinsonism is often difficult to distinguish from its second most common etiology due to exposure to dopamine receptor blocking agents such as antiemetics and neuroleptics. Dual axis accelerometry was used to quantify tremor in 158 patients with parkinsonism; 62 had Parkinson's disease and 96 were clinically diagnosed with dopamine receptor blocking agent-induced parkinsonism. Tremor was measured while subjects rested arms (resting tremor), outstretched arms in front (postural tremor), and reached a target (kinetic tremor). Cycle-by-cycle analysis was performed to measure cycle duration, oscillation amplitude, and inter-cycle variations in the frequency. Patients with dopamine receptor blocker induced parkinsonism had lower resting and postural tremor amplitude. There was a substantial increase of kinetic tremor amplitude in both disorders. Postural and resting tremor in subjects with dopamine receptor blocking agent-induced parkinsonism was prominent in the abduction-adduction plane. In contrast, the Parkinson's disease tremor had equal amplitude in all three planes of motion. Tremor frequency was comparable in both groups. Remarkable variability in the width of the oscillatory cycles suggested irregularity in the oscillatory waveforms in both subtypes of parkinsonism. Quantitative tremor analysis can distinguish Parkinson's disease from dopamine receptor blocking agent-induced parkinsonism.

  3. Fungal-derived semiochemical 1-octen-3-ol disrupts dopamine packaging and causes neurodegeneration

    PubMed Central

    Inamdar, Arati A.; Hossain, Muhammad M.; Bernstein, Alison I.; Miller, Gary W.; Richardson, Jason R.; Bennett, Joan Wennstrom

    2013-01-01

    Parkinson disease (PD) is the most common movement disorder and, although the exact causes are unknown, recent epidemiological and experimental studies indicate that several environmental agents may be significant risk factors. To date, these suspected environmental risk factors have been man-made chemicals. In this report, we demonstrate via genetic, biochemical, and immunological studies that the common volatile fungal semiochemical 1-octen-3-ol reduces dopamine levels and causes dopamine neuron degeneration in Drosophila melanogaster. Overexpression of the vesicular monoamine transporter (VMAT) rescued the dopamine toxicity and neurodegeneration, whereas mutations decreasing VMAT and tyrosine hydroxylase exacerbated toxicity. Furthermore, 1-octen-3-ol also inhibited uptake of dopamine in human cell lines expressing the human plasma membrane dopamine transporter (DAT) and human VMAT ortholog, VMAT2. These data demonstrate that 1-octen-3-ol exerts toxicity via disruption of dopamine homeostasis and may represent a naturally occurring environmental agent involved in parkinsonism. PMID:24218591

  4. Fluoralkenyl nortropanes

    DOEpatents

    Goodman, Mark M.; Chen, Ping

    2002-02-05

    Provided are compounds of the following formula: ##STR1## wherein R is C2-C6 mono- or multi-unsaturated hydrocarbon having one or more ethylene, acetylene or allene groups, A is 18 or 19, and X is H or halogen. The compounds of the invention bind to dopamine transporter with high affinity and selectivity and are thus useful as diagnostic and therapeutic agents for diseases associated with dopamine transporter dysfunction. The radiolabeled compounds are useful as imaging agents for visualizing the location and density of dopamine transporter by PET imaging.

  5. The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors.

    PubMed

    Fortin, Samantha M; Chartoff, Elena H; Roitman, Mitchell F

    2016-02-01

    Unconditioned rewarding stimuli evoke phasic increases in dopamine concentration in the nucleus accumbens (NAc) while discrete aversive stimuli elicit pauses in dopamine neuron firing and reductions in NAc dopamine concentration. The unconditioned effects of more prolonged aversive states on dopamine release dynamics are not well understood and are investigated here using the malaise-inducing agent lithium chloride (LiCl). We used fast-scan cyclic voltammetry to measure phasic increases in NAc dopamine resulting from electrical stimulation of dopamine cell bodies in the ventral tegmental area (VTA). Systemic LiCl injection reduced electrically evoked dopamine release in the NAc of both anesthetized and awake rats. As some behavioral effects of LiCl appear to be mediated through glucagon-like peptide-1 receptor (GLP-1R) activation, we hypothesized that the suppression of phasic dopamine by LiCl is GLP-1R dependent. Indeed, peripheral pretreatment with the GLP-1R antagonist exendin-9 (Ex-9) potently attenuated the LiCl-induced suppression of dopamine. Pretreatment with Ex-9 did not, however, affect the suppression of phasic dopamine release by the kappa-opioid receptor agonist, salvinorin A, supporting a selective effect of GLP-1R stimulation in LiCl-induced dopamine suppression. By delivering Ex-9 to either the lateral or fourth ventricle, we highlight a population of central GLP-1 receptors rostral to the hindbrain that are involved in the LiCl-mediated suppression of NAc dopamine release.

  6. Atypical Dopamine Uptake Inhibitors that Provide Clues About Cocaine's Mechanism at the Dopamine Transporter

    NASA Astrophysics Data System (ADS)

    Hauck Newman, Amy; Katz, Jonathan L.

    The dopamine transporter (DAT) has been a primary target for cocaine abuse/addiction medication discovery. However predicted addiction liability and limited clinical evaluation has provided a formidable challenge for development of these agents for human use. The unique and atypical pharmacological profile of the benztropine (BZT) class of dopamine uptake inhibitors, in preclinical models of cocaine effects and abuse, has encouraged further development of these agents. Moreover, in vivo studies have challenged the original DAT hypothesis and demonstrated that DAT occupancy and subsequent increases in dopamine produced by BZT analogues are significantly delayed and long lasting, as compared to cocaine. These important and distinctive elements are critical to the lack of abuse liability among BZT analogues, and improve their potential for development as treatments for cocaine abuse and possibly other neuropsychiatric disorders.

  7. Interactions between lysergic acid diethylamide and dopamine-sensitive adenylate cyclase systems in rat brain.

    PubMed

    Hungen, K V; Roberts, S; Hill, D F

    1975-08-22

    Investigations were carried out on the interactions of the hallucinogenic drug, D-lysergic acid diethylamide (D-LSD), and other serotonin antagonists with catecholamine-sensitive adenylate cyclase systems in cell-free preparations from different regions of rat brain. In equimolar concentration, D-LSD, 2-brono-D-lysergic acid diethylamide (BOL), or methysergide (UML) strongly blocked maximal stimulation of adenylate cyclase activity by either norepinephrine or dopamine in particulate preparations from cerebral cortices of young adult rats. D-LSD also eliminated the stimulation of adenylate cyclase activity of equimolar concentrations of norepinephrine or dopamine in particulate preparations from rat hippocampus. The effects of this hallucinogenic agent on adenylate cyclase activity were most striking in particulate preparations from corpus striatum. Thus, in 10 muM concentration, D-LSD not only completely eradicated the response to 10 muM dopamine in these preparations but also consistently stimulated adenylate cyclase activity. L-LSD (80 muM) was without effect. Significant activation of striatal adenylate cyclase was produced by 0.1 muM D-LSD. Activation of striatal adenylate cyclase of either D-LSD or dopamine was strongly blocked by the dopamine-blocking agents trifluoperazine, thioridazine, chlorpromazine, and haloperidol. The stimulatory effects of D-LSD and dopamine were also inhibited by the serotonin-blocking agents, BOL, 1-methyl-D-lysergic acid diethylamide (MLD), and cyproheptadine, but not by the beta-adrenergic-blocking agent, propranolol. However, these serotonin antagonists by themselves were incapable of stimulating adenylate cyclase activity in the striatal preparations. Several other hallucinogens, which were structurally related to serotonin, were also inactive in this regard, e.g., mescaline, N,N-dimethyltryptamine, psilocin and bufotenine. Serotonin itself produced a small stimulation of adenylate cyclase activity in striatal preparations and, in relatively high concentration (100 muM), partially blocked the activation by 10 muM dopamine, but was without effect on the stimulation by 10 muM D-LSD. The present results indicate that serotonin antagonists, in general, are potent inhibitors of catecholamine-induced stimulation of adenylate cyclase systems in brain cell-free preparations. In addition, these results, coupled with earlier findings on the capacity of D-LSD to interact with serotonin-sensitive adenylate cyclase systems from rat brain23,24 and other neural systems16, strongly suggest that this hallucinogenic agent is capable of acting as an agonist at central dopamine and serotonin receptors, as well as functioning as an antagonist at dopamine, norepinephrine, and serotonin receptors in the brain.

  8. Tardive dyskinesia successfully treated with alprazolam.

    PubMed Central

    Jordan, H. W.; Williams, B. C.

    1990-01-01

    Tardive dyskinesia is a disorder secondary to prolonged treatment (from 18 months to 3 years) with antipsychotic agents, affecting approximately 15% to 20% of patients. Tardive dyskinesia is characterized by difficulty controlling involuntary movements of the small muscle groups, producing tic-like reactions, muscle rigidity, and difficulty maintaining muscle tone. It is a chronic and unrelenting disorder which may be permanent if not successfully treated. The mechanism of action is thought to be secondary to dopamine hypersensitivity resulting from prolonged deprivation of dopamine on the part of dopamine-sensitive receptors. Theoretically, these receptors have been deprived of the neurotransmitter by chronic treatment with antipsychotic drugs, which are recognized as dopamine-blocking agents. We present a case in which alprazolam was successfully used in treating tardive dyskinesia. PMID:2213917

  9. Comparative safety and efficacy of vasopressors for mortality in septic shock: A network meta-analysis.

    PubMed

    Nagendran, Myura; Maruthappu, Mahiben; Gordon, Anthony C; Gurusamy, Kurinchi S

    2016-05-01

    Septic shock is a life-threatening condition requiring vasopressor agents to support the circulatory system. Several agents exist with choice typically guided by the specific clinical scenario. We used a network meta-analysis approach to rate the comparative efficacy and safety of vasopressors for mortality and arrhythmia incidence in septic shock patients. We performed a comprehensive electronic database search including Medline, Embase, Science Citation Index Expanded and the Cochrane database. Randomised trials investigating vasopressor agents in septic shock patients and specifically assessing 28-day mortality or arrhythmia incidence were included. A Bayesian network meta-analysis was performed using Markov chain Monte Carlo methods. Thirteen trials of low to moderate risk of bias in which 3146 patients were randomised were included. There was no pairwise evidence to suggest one agent was superior over another for mortality. In the network meta-analysis, vasopressin was significantly superior to dopamine (OR 0.68 (95% CI 0.5 to 0.94)) for mortality. For arrhythmia incidence, standard pairwise meta-analyses confirmed that dopamine led to a higher incidence of arrhythmias than norepinephrine (OR 2.69 (95% CI 2.08 to 3.47)). In the network meta-analysis, there was no evidence of superiority of one agent over another. In this network meta-analysis, vasopressin was superior to dopamine for 28-day mortality in septic shock. Existing pairwise information supports the use of norepinephrine over dopamine. Our findings suggest that dopamine should be avoided in patients with septic shock and that other vasopressor agents should continue to be based on existing guidelines and clinical judgement of the specific presentation of the patient.

  10. Mitochondrial uncoupling agents antagonize rotenone actions in rat substantia nigra dopamine neurons.

    PubMed

    Wu, Yan-Na; Munhall, Adam C; Johnson, Steven W

    2011-06-13

    Mild uncoupling of oxidative phosphorylation has been reported to reduce generation of reactive oxygen species (ROS) and therefore may be neuroprotective. We reported previously that the mitochondrial poison rotenone enhanced currents evoked by N-methyl-D-aspartate (NMDA) by a ROS-dependent mechanism in rat midbrain dopamine neurons. Thus, rotenone, which produces a model of Parkinson's disease in rodents, may increase the risk of dopamine neuron excitotoxicity. The purpose of this study was to test the hypothesis that oxidative phosphorylation uncoupling agents would antagonize the effect of rotenone on NMDA current. We used patch pipettes to record whole-cell currents under voltage-clamp (-60 mV) in substantia nigra dopamine neurons in slices of rat brain. Rotenone, NMDA and uncoupling agents were added to the brain slice superfusate. Inward currents evoked by NMDA (30 μM) more than doubled in amplitude after slices were superfused for 30 min with 100 nM rotenone. Continuous superfusion with the uncoupling agent carbonyl cyanide-p-trifluoromethoxy-phenylhydrazone (1-3 nM) or 2,4-dinitrophenol (100 nM) significantly antagonized and delayed the ability of rotenone to potentiate NMDA currents. Coenzyme Q₁₀ (1-10 nM), which has been reported to facilitate uncoupling protein activity, also antagonized this action of rotenone. These results suggest that mild uncoupling of oxidative phosphorylation may protect dopamine neurons against injury from mitochondrial poisons such as rotenone. Published by Elsevier B.V.

  11. Molindone hydrochloride: a review of laboratory and clinical findings.

    PubMed

    Owen, R R; Cole, J O

    1989-08-01

    Molindone hydrochloride, a dihydroindolone neuroleptic, is structurally distinct from other classes of neuroleptics. Molindone exhibits many similarities to other neuroleptics, including dopamine receptor blockade, antipsychotic efficacy, and extrapyramidal side effects. Despite these similarities, molindone also has atypical properties and inhibits the enzyme monoamine oxidase in vitro and in vivo. Several studies have shown that molindone causes less dopamine receptor supersensitivity than other neuroleptics and thus may be less likely to cause tardive dyskinesia. It also appears to have a greater effect on mesolimbic and mesocortical dopamine neurons than on those in the nigrostriatal dopamine system. Clinically, molindone has a tendency to cause weight loss and may have less effect on seizure threshold than conventional antipsychotic agents. The authors review the laboratory and clinical data on molindone and discuss the relevance of atypical research findings to the clinical characteristics of this antipsychotic agent.

  12. Aripiprazole.

    PubMed

    Prommer, Eric

    2017-03-01

    Delirium is a palliative care emergency where patients experience changes in perception, awareness, and behavior. Common features include changes in the sleep-wake cycle, emotional lability, delusional thinking, and language and thought disorders. Delirium results from neurotransmitter imbalances involving several neurotransmitters such as dopamine, glutamate, norepinephrine, acetylcholine, gamma-aminobutyric acid, and serotonin. Untreated delirium causes significant morbidity and mortality. Nonpharmacologic and pharmacologic approaches treat delirium. Current pharmacologic management of delirium involves using agents such as haloperidol or second-generation antipsychotics. Third-generation atypical antipsychotic drugs have emerged as a potential choice for delirium management. Aripiprazole is a third-generation antipsychotic with a dopamine receptor-binding profile distinct from other second-generation antipsychotics. Aripiprazole acts as partial agonist at dopamine D 2 and 5-hydroxytryptamine (5-HT) 1A receptors, stabilizing the dopamine receptor leading to improvement in symptoms. The article reviews the pharmacology, pharmacodynamics, metabolism, and evidence of clinical efficacy for this new antipsychotic agent. This article explores possible roles in palliative care.

  13. Acute dyskinetic reaction in a healthy toddler following methylphenidate ingestion.

    PubMed

    Waugh, Jeff L

    2013-07-01

    Acute dyskinetic or dystonic reactions are a long-recognized complication of medications that alter dopamine signaling. Most reactions occur following exposure to agents that block dopamine receptors (e.g., neuroleptics). However, agents that increase dopaminergic transmission (such as methylphenidate) can also trigger acute dyskinesias. This has been previously reported only in patients also taking dopamine antagonists or, less commonly, in children with developmental abnormalities. The present report describes a previously healthy toddler who developed transient torticollis and orolingual dyskinesias following accidental exposure to methylphenidate. He had no preexisting movement disorder, central nervous system injury, or developmental abnormalities--in short, none of the previously reported risk factors for this side effect. The unique features of this case led to the hypothesis that developmental shifts in dopamine signaling were the basis for his particular sensitivity to methylphenidate. If confirmed, this hypothesis has implications for the treatment of common childhood attentional and behavioral disorders. The article includes a literature review of dyskinetic/dystonic reactions in children and the developmental regulation of dopamine metabolism. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Gd-DTPA-Dopamine-Bisphytanyl Amphiphile: Synthesis, Characterisation and Relaxation Parameters of the Nanoassemblies and Their Potential as MRI Contrast Agents.

    PubMed

    Gupta, Abhishek; Willis, Scott A; Waddington, Lynne J; Stait-Gardner, Tim; de Campo, Liliana; Hwang, Dennis W; Kirby, Nigel; Price, William S; Moghaddam, Minoo J

    2015-09-28

    Here, a new amphiphilic magnetic resonance imaging (MRI) contrast agent, a Gd(III)-chelated diethylenetriaminepentaacetic acid conjugated to two branched alkyl chains via a dopamine spacer, Gd-DTPA-dopamine-bisphytanyl (Gd-DTPA-Dop-Phy), which is readily capable of self-assembling into liposomal nanoassemblies upon dispersion in an aqueous solution, is reported. In vitro relaxivities of the dispersions were found to be much higher than Magnevist, a commercially available contrast agent, at 0.47 T but comparable at 9.40 T. Analysis of variable temperature (17)O NMR transverse relaxation measurements revealed the water exchange of the nanoassemblies to be faster than that previously reported for paramagnetic liposomes. Molecular reorientation dynamics were probed by (1)H NMRD profiles using a classical inner and outer sphere relaxation model and a Lipari-Szabo "model-free" approach. High payloads of Gd(III) ions in the liposomal nanoassemblies made solely from the Gd-DTPA-Dop-Phy amphiphiles, in combination with slow molecular reorientation and fast water exchange makes this novel amphiphile a suitable candidate to be investigated as an advanced MRI contrast agent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. PCBs Alter Dopamine Mediated Function in Aging Workers

    DTIC Science & Technology

    2010-01-01

    sympathomimetic agents, beta-adrenergic blocking agents, angiotensin-converting enzyme inhibitors, COX-2 inhibitors, other non - steroidal anti - inflammatory ...other non - steroidal anti - inflammatory agents, opiate agonists, miscellaneous analgesics and antipyretics, thyroid agents and antithyroid agents. ⁎ p...fold from peak values during occupational PCB use but remain elevated (two-fold) compared to a similar-aged non -occupationally exposed population

  16. [Neurotensin-like oligopeptides as potential antipsychotics: effect on dopamine system].

    PubMed

    Kost, N V; Meshavkin, V K; Batishcheva, E Iu; Sokolov, O Iu; Andreeva, L A; Miasoedov, N F

    2011-01-01

    According to published data, peptide neurotensin is considered as endogenous antipsychotic agent. A series of oligopeptides have been synthesized based on the proposed active center of neurotensin. These oligopeptides (called neurotensin-like peptides, NLPs) have been studied on behavioral models, in which the functional state of the dopamine system of animals was modified by apomorphine injections. The results of verticalization, stereotypy, and yawning tests revealed NLPs that behave as antagonists of dopamine receptors. Radioligand analysis showed that these peptides compete for specific binding to these receptors with sulpiride, which is a D2-type selective antagonist of dopamine receptors. The high degree of NLPs efficiency manifested in the behavioral tests and radioligand analysis suggests that the their antipsychotic action can be mediated by dopamine receptors.

  17. Sonochemical synthesis of Ag nanoclusters: electrogenerated chemiluminescence determination of dopamine.

    PubMed

    Liu, Tao; Zhang, Lichun; Song, Hongjie; Wang, Zhonghui; Lv, Yi

    2013-01-01

    We report a facile one-pot sonochemical approach to preparing highly water-soluble Ag nanoclusters (NCs) using bovine serum albumin as a stabilizing agent and reducing agent in aqueous solution. Intensive electrogenerated chemiluminescence (ECL) was observed from the as-prepared Ag (NCs) and successfully applied for the ECL detection of dopamine with high sensitivity and a wide detection range. A possible ECL mechanism is proposed for the preparation of Ag NCs. With this method, the dopamine concentration was determined in the range of 8.3 × 10(-9) to 8.3 × 10(-7) mol/L without the obvious interference of uric acid, ascorbic acid and some other neurotransmitters, such as serotonin, epinephrine and norepinephrine, and the detection limit was 9.2 × 10(-10) mol/L at a signal/noise ratio of 3. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Schizophrenia: a review of neuropharmacology.

    PubMed

    Lyne, J; Kelly, B D; O'Connor, W T

    2004-01-01

    The last few decades have seen significant advances in our understanding of the neurochemical basis of schizophrenia. To describe the neurotransmitter systems and nerve circuits implicated in schizophrenia; to compare the neuropharmacology of typical and atypical anti-psychotic agents; and to describe recent developments in the pharmacological treatment of schizophrenia. Relevant pharmacological, neurophysiological and psychiatric literature was examined and reviewed. Schizophrenia is associated with abnormalities of multiple neurotransmitter systems, including dopamine, serotonin, gamma-aminobutyric acid and glutamate. Typical and atypical antipsychotic agents differ in their receptor-binding affinities, which are related to their differing side-effect profiles. Novel therapeutic strategies include normalisation of synaptic dopamine or serotonin levels, serotonin receptor antagonism and modulation of cerebral protein synthesis. The ideal treatment for schizophrenia may not be a single pharmacological agent but several agents that match the different expressions of the illness, in combination with psycho-social interventions.

  19. Renal dopaminergic system: Pathophysiological implications and clinical perspectives

    PubMed Central

    Choi, Marcelo Roberto; Kouyoumdzian, Nicolás Martín; Rukavina Mikusic, Natalia Lucía; Kravetz, María Cecilia; Rosón, María Inés; Rodríguez Fermepin, Martín; Fernández, Belisario Enrique

    2015-01-01

    Fluid homeostasis, blood pressure and redox balance in the kidney are regulated by an intricate interaction between local and systemic anti-natriuretic and natriuretic systems. Intrarenal dopamine plays a central role on this interactive network. By activating specific receptors, dopamine promotes sodium excretion and stimulates anti-oxidant and anti-inflammatory pathways. Different pathological scenarios where renal sodium excretion is dysregulated, as in nephrotic syndrome, hypertension and renal inflammation, can be associated with impaired action of renal dopamine including alteration in biosynthesis, dopamine receptor expression and signal transduction. Given its properties on the regulation of renal blood flow and sodium excretion, exogenous dopamine has been postulated as a potential therapeutic strategy to prevent renal failure in critically ill patients. The aim of this review is to update and discuss on the most recent findings about renal dopaminergic system and its role in several diseases involving the kidneys and the potential use of dopamine as a nephroprotective agent. PMID:25949933

  20. Dopaminergic Modulation of Sleep-Wake States.

    PubMed

    Herrera-Solis, Andrea; Herrera-Morales, Wendy; Nunez-Jaramillo, Luis; Arias-Carrion, Oscar

    2017-01-01

    The role of dopamine in sleep-wake regulation is considered as a wakefulness-promoting agent. For the clinical treatment of excessive daytime sleepiness, drugs have been commonly used to increase dopamine release. However, sleep disorders or lack of sleep are related to several dopaminerelated disorders. The effects of dopaminergic agents, nevertheless, are mediated by two families of dopamine receptors, D1 and D2-like receptors; the first family increases adenylyl cyclase activity and the second inhibits adenylyl cyclase. For this reason, the dopaminergic agonist effects on sleep-wake cycle are complex. Here, we review the state-of-the-art and discuss the different effects of dopaminergic agonists in sleep-wake states, and propose that these receptors account for the affinity, although not the specificity, of several effects on the sleep-wake cycle. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Neuroprotective Properties of Endocannabinoids N-Arachidonoyl Dopamine and N-Docosahexaenoyl Dopamine Examined in Neuronal Precursors Derived from Human Pluripotent Stem Cells.

    PubMed

    Novosadova, E V; Arsenyeva, E L; Manuilova, E S; Khaspekov, L G; Bobrov, M Yu; Bezuglov, V V; Illarioshkin, S N; Grivennikov, I A

    2017-11-01

    Neuroprotective properties of endocannabinoids N-arachidonoyl dopamine (NADA) and N-docosahexaenoyl dopamine (DHDA) were examined in neuronal precursor cells differentiated from human induced pluripotent stem cells and subjected to oxidative stress. Both compounds exerted neuroprotective activity, which was enhanced by elevating the concentration of the endocannabinoids within the 0.1-10 µM range. However, both agents at 10 µM concentration showed a marked toxic effect resulting in death of ~30% of the cells. Finally, antagonists of cannabinoid receptors as well as the receptor of the TRPV1 endovanilloid system did not hamper the neuroprotective effects of these endocannabinoids.

  2. Lack of dopamine supersensitivity in rats after chronic administration of blonanserin: Comparison with haloperidol.

    PubMed

    Hashimoto, Takashi; Baba, Satoko; Ikeda, Hiroko; Oda, Yasunori; Hashimoto, Kenji; Shimizu, Isao

    2018-07-05

    Long-term treatment with antipsychotic drugs in patients with schizophrenia can lead to dopamine supersensitivity psychosis. It is reported that repeated administration of haloperidol caused dopamine supersensitivity in rats. Blonanserin is an atypical antipsychotic drug with high affinity for dopamine D 2 , D 3 and serotonin 2A receptors. In this study, we investigated whether chronic administration of blonanserin leads to dopamine supersensitivity. Following oral treatment with blonanserin (0.78 mg/kg) or haloperidol (1.1 mg/kg) twice daily for 28 days, the dopamine D 2 agonist quinpirole-induced hyperlocomotion test and a dopamine D 2 receptor binding assay were conducted. We found that haloperidol significantly enhanced both quinpirole-induced hyperlocomotion and striatal dopamine D 2 receptor density in rats. On the other hand, repeated administration of blonanserin had no effect on either locomotor activity or striatal dopamine D 2 receptor density. Further, our results show that mRNA levels of dopamine D 2 and D 3 receptors in several brain regions were unaffected by repeated administration of both agents. In addition, we examined the effect of the dopamine D 3 receptor antagonist PG-01037 on development of dopamine supersensitivity induced by chronic haloperidol treatment and showed that PG-01037 prevents the development of supersensitivity to quinpirole in chronic haloperidol-treated rats. Given the higher affinity of blonanserin at dopamine D 3 receptors than haloperidol, antagonism of blonanserin at dopamine D 3 receptors may play a role in lack of dopamine supersensitivity after chronic administration. The present findings suggest long-term treatment with antipsychotic dose of blonanserin may be unlikely to lead to dopamine supersensitivity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Synthesis of hybrid cellulose nanocomposite bonded with dopamine SiO2/TiO2 and its antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ramesh, Sivalingam; Kim, Gwang-Hoon; Kim, Jaehwan; Kim, Joo-Hyung

    2015-04-01

    Organic-inorganic hybrid material based cellulose was synthesized by the sol-gel approach. The explosion of activity in this area in the past decade has made tremendous progress in industry or academic both fundamental understanding of sol-gel process and applications of new functionalized hybrid materials. In this present research work, we focused on cellulose-dopamine functionalized SiO2/TiO2 hybrid nanocomposite by sol-gel process. The cellulose-dopamine hybrid nanocomposite was synthesized via γ-aminopropyltriethoxysilane (γ-APTES) coupling agent by in-situ sol-gel process. The chemical structure of cellulose-amine functionalized dopamine bonding to cellulose structure with covalent cross linking hybrids was confirmed by FTIR spectral analysis. The morphological analysis of cellulose-dopamine nanoSiO2/TiO2 hybrid nanocomposite materials was characterized by XRD, SEM and TEM. From this different analysis results indicate that the optical transparency, thermal stability, control morphology of cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite. Furthermore cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite was tested against pathogenic bacteria for antimicrobial activity.

  4. Aripiprazole, an Antipsychotic and Partial Dopamine Agonist, Inhibits Cancer Stem Cells and Reverses Chemoresistance.

    PubMed

    Suzuki, Shuhei; Okada, Masashi; Kuramoto, Kenta; Takeda, Hiroyuki; Sakaki, Hirotsugu; Watarai, Hikaru; Sanomachi, Tomomi; Seino, Shizuka; Yoshioka, Takashi; Kitanaka, Chifumi

    2016-10-01

    There is a growing interest in repurposing antipsychotic dopamine antagonists for cancer treatment; however, antipsychotics are often associated with an increased risk of fatal events. The anticancer activities of aripiprazole, an antipsychotic drug with partial dopamine agonist activity and an excellent safety profile, remain unknown. The effects of aripiprazole alone or in combination with chemotherapeutic agents on the growth, sphere-forming ability and stem cell/differentiation/chemoresistance marker expression of cancer stem cells, serum-cultured cancer cells from which they were derived, and normal cells were examined. At concentrations non-toxic to normal cells, aripiprazole inhibited the growth of serum-cultured cancer cells and cancer stem cells. Furthermore, aripiprazole induced differentiation and inhibited sphere formation, as well as stem cell marker expression of cancer stem cells while inhibiting their survivin expression and sensitizing them to chemotherapeutic agents. Repurposing aripiprazole as an anticancer stem cell drug may merit further consideration. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. Haloperidol-stomach lesions attenuation by pentadecapeptide BPC 157, omeprazole, bromocriptine, but not atropine, lansoprazole, pantoprazole, ranitidine, cimetidine and misoprostol in mice.

    PubMed

    Bilic, I; Zoricic, I; Anic, T; Separovic, J; Stancic-Rokotov, D; Mikus, D; Buljat, G; Ivankovic, D; Aralica, G; Prkacin, I; Perovic, D; Mise, S; Rotkvic, I; Petek, M; Rucman, R; Seiwerth, S; Sikiric, P

    2001-03-09

    The focus was on haloperidol (central dopamine antagonist)-stomach lesion, a longly described suitable counterpart of dopamine blocker cysteamine-duodenal lesion. In this, the contribution of blockade of central/peripheral dopamine receptors and prostaglandins synthesis, along with influence of antiulcer agents was evaluated in mice. Male NMRI Hannnover mice were sacrificed 24 h after haloperidol (25 mg/kg b.w. i.p., given alone or with saline (haloperidol+saline) (i) or in combination (ii,iii)). Supporting central dopamine predominance for haloperidol stomach lesion induction, co-administration of peripheral dopamine receptor antagonist domperidone (5 mg/kg i.p.) (haloperidol+ domperidone) (ii), or prostaglandin synthesis inhibitor indomethacin (10 mg/kg s.c.) (haloperidol+ indomethacin) (iii) did not aggravate this lesion. (i) In haloperidol+saline challenged mice the lesions were inhibited by co-administration (/kg i.p.) of a gastric pentadecapeptide BPC 157, GlyGluProProProGlyLysProAlaAspAspAlaGlyLeuVal, M.W. 1419 (10 microg, 10 ng, 10 pg, but not 1 pg, 100 fg, 10 fg), bromocriptine (10 mg), omeprazole (10 mg, 100 mg, but not 1 mg). Atropine (10, 100, 200 mg), pirenzepine (10, 100, 200 mg), misoprostol (10, 100, 200 microg), pantoprazole (1, 10, 100 mg), lansoprazole (0.1, 1, 10 mg), cimetidine (10, 100, 200 mg) and ranitidine (10, 100, 200 mg) were not effective. (ii) Dopamine peripheral blockade influence: in haloperidol+domperidone mice, previously effective bromocriptine, pentadecapeptide BPC 157 (10 microg) or omeprazole (10 mg) did not attenuate stomach lesions. (iii) Prostaglandins synthesis blockade effect: in haloperidol+indomethacin mice, previously effective agents, bromocriptine or omeprazole were not active, while BPC 157 effect was only lessened.

  6. Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents.

    PubMed

    Albers, D S; Sonsalla, P K

    1995-12-01

    Neurotoxic doses of methamphetamine (METH) can cause hyperthermia in experimental animals. Damage sustained to dopaminergic nerve terminals by this stimulant can be reduced by environmental cooling or by pharmacological manipulation which attenuates the hyperthermia. Many pharmacological agents with very diverse actions protect against METH-induced neuropathology. Several of these compounds, as well as drugs which do not protect, were investigated to determine if there was a relationship between protection and METH-induced hyperthermia. Mice received METH with or without concurrent administration of other drugs and core (i.e., colonic) temperature was monitored during treatment. The animals were sacrificed > or = 5 days later and neostriatal tyrosine hydroxylase activity and dopamine were measured. Core temperature was significantly elevated (> or = 2 degrees C) in mice treated with doses of METH which produced > or = 90% losses in striatal dopamine but not in mice less severally affected (only 50% loss of dopamine). Concurrent treatment of mice with METH and pharmacological agents which protected partially or completely from METH-induced toxicity also prevented the hyperthermic response (i.e., dopamine receptor antagonists, fenfluramine, dizocilpine, alpha-methyl-p-tyrosine, phenytoin, aminooxyacetic acid and propranol). These findings are consistent with the hypothesis that the hyperthermia produced by METH contributes to its neuropathology. However, studies with reserpine, a compound which dramatically lowers core temperature, demonstrated that hyperthermia per se is not a requirement for METH-induced neurotoxicity. Although core temperature was elevated in reserpinized mice treated with METH as compared with reserpinized control mice, their temperatures remained significantly lower than in nonreserpinized control mice. However, the hypothermic state produced in the reserpinized mice did not provide protection from METH-induced toxicity. These data demonstrate that hyperthermia per se contributes to but is not solely responsible for the METH-induced neuropathology.

  7. Dopamine, Affordance and Active Inference

    PubMed Central

    Friston, Karl J.; Shiner, Tamara; FitzGerald, Thomas; Galea, Joseph M.; Adams, Rick; Brown, Harriet; Dolan, Raymond J.; Moran, Rosalyn; Stephan, Klaas Enno; Bestmann, Sven

    2012-01-01

    The role of dopamine in behaviour and decision-making is often cast in terms of reinforcement learning and optimal decision theory. Here, we present an alternative view that frames the physiology of dopamine in terms of Bayes-optimal behaviour. In this account, dopamine controls the precision or salience of (external or internal) cues that engender action. In other words, dopamine balances bottom-up sensory information and top-down prior beliefs when making hierarchical inferences (predictions) about cues that have affordance. In this paper, we focus on the consequences of changing tonic levels of dopamine firing using simulations of cued sequential movements. Crucially, the predictions driving movements are based upon a hierarchical generative model that infers the context in which movements are made. This means that we can confuse agents by changing the context (order) in which cues are presented. These simulations provide a (Bayes-optimal) model of contextual uncertainty and set switching that can be quantified in terms of behavioural and electrophysiological responses. Furthermore, one can simulate dopaminergic lesions (by changing the precision of prediction errors) to produce pathological behaviours that are reminiscent of those seen in neurological disorders such as Parkinson's disease. We use these simulations to demonstrate how a single functional role for dopamine at the synaptic level can manifest in different ways at the behavioural level. PMID:22241972

  8. GZ-793A, a lobelane analog, interacts with the vesicular monoamine transporter-2 to inhibit the effect of methamphetamine

    PubMed Central

    Horton, David B.; Nickell, Justin R.; Zheng, Guangrong; Crooks, Peter A.; Dwoskin, Linda P.

    2013-01-01

    GZ-793A inhibits methamphetamine-evoked dopamine release from striatal slices and methamphetamine self-administration in rats. GZ-793A potently and selectively inhibits dopamine uptake at the vesicular monoamine transporter-2 (VMAT2). The present study determined GZ-793A’s ability to evoke [3H]dopamine release and inhibit methamphetamine-evoked [3H]dopamine release from isolated striatal synaptic vesicles. Results show GZ-793A concentration-dependent [3H]dopamine release; nonlinear regression revealed a two-site model of interaction with VMAT2 (High- and Low-EC50 = 15.5 nM and 29.3 µM, respectively). Tetrabenazine and reserpine completely inhibited the GZ-793A-evoked [3H]dopamine release, however, only at the High-affinity site. Low concentrations of GZ-793A that interact with the extravesicular dopamine uptake site and the High-affinity intravesicular DA release site also inhibited methamphetamine-evoked [3H]dopamine release from synaptic vesicles. A rightward shift in the methamphetamine concentration-response was evident with increasing concentrations of GZ-793A, and the Schild regression slope was 0.49±0.08, consistent with surmountable allosteric inhibition. These results support a hypothetical model of GZ-793A interaction at more than one site on VMAT2 protein, which explains its potent inhibition of dopamine uptake, dopamine release via a High-affinity tetrabenazine- and reserpine-sensitive site, dopamine release via a Low-affinity tetrabenazine- and reserpine-insensitive site, and low-affinity interaction with the dihydrotetrabenazine binding site on VMAT2. GZ-793A-inhibition of the effects of methamphetamine supports its potential as a therapeutic agent for the treatment of methamphetamine abuse. PMID:23875622

  9. Is topical haloperidol a useful glaucoma treatment?

    PubMed Central

    Lavin, M. J.; Andrews, V.

    1986-01-01

    A randomised, double blind, single dose study of topical haloperidol, a dopamine receptor blocking drug, was performed on 20 healthy volunteers. After its administration a modest reduction in intraocular pressure was recorded over the six-hour study period, but the difference was not significant at the p less than 0.05 level. Although dopamine blocking agents are effective in reducing intraocular pressure in experimental animals, topical haloperidol appears unlikely to be clinically useful in the treatment of glaucoma. PMID:3718908

  10. A solid-phase combinatorial approach for indoloquinolizidine-peptides with high affinity at D(1) and D(2) dopamine receptors.

    PubMed

    Molero, Anabel; Vendrell, Marc; Bonaventura, Jordi; Zachmann, Julian; López, Laura; Pardo, Leonardo; Lluis, Carme; Cortés, Antoni; Albericio, Fernando; Casadó, Vicent; Royo, Miriam

    2015-06-05

    Ligands acting at multiple dopamine receptors hold potential as therapeutic agents for a number of neurodegenerative disorders. Specifically, compounds able to bind at D1R and D2R with high affinity could restore the effects of dopamine depletion and enhance motor activation on degenerated nigrostriatal dopaminergic systems. We have directed our research towards the synthesis and characterisation of heterocycle-peptide hybrids based on the indolo[2,3-a]quinolizidine core. This privileged structure is a water-soluble and synthetically accessible scaffold with affinity for diverse GPCRs. Herein we have prepared a solid-phase combinatorial library of 80 indoloquinolizidine-peptides to identify compounds with enhanced binding affinity at D2R, a receptor that is crucial to re-establish activity on dopamine-depleted degenerated GABAergic neurons. We applied computational tools and high-throughput screening assays to identify 9a{1,3,3} as a ligand for dopamine receptors with nanomolar affinity and agonist activity at D2R. Our results validate the application of indoloquinolizidine-peptide combinatorial libraries to fine-tune the pharmacological profiles of multiple ligands at D1 and D2 dopamine receptors. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Effects of the single and combined treatment with dopamine agonist, somatostatin analog and mTOR inhibitors in a human lung carcinoid cell line: an in vitro study.

    PubMed

    Pivonello, Claudia; Rousaki, Panagoula; Negri, Mariarosaria; Sarnataro, Maddalena; Napolitano, Maria; Marino, Federica Zito; Patalano, Roberta; De Martino, Maria Cristina; Sciammarella, Concetta; Faggiano, Antongiulio; Rocco, Gaetano; Franco, Renato; Kaltsas, Gregory A; Colao, Annamaria; Pivonello, Rosario

    2017-06-01

    Somatostatin analogues and mTOR inhibitors have been used as medical therapy in lung carcinoids with variable results. No data are available on dopamine agonists as treatment for lung carcinoids. The main aim of the current study was to evaluate the effect of the combined treatment of somatostatin analogue octreotide and the dopamine agonist cabergoline with mTOR inhibitors in an in vitro model of typical lung carcinoids: the NCI-H727 cell line. In NCI-H727 cell line, reverse transcriptase-quantitative polymerase chain reaction and immunofluorescence were assessed to characterize the expression of the somatostatin receptor 2 and 5, dopamine receptor 2 and mTOR pathway components. Fifteen typical lung carcinoids tissue samples have been used for somatostatin receptor 2, dopamine receptor 2, and the main mTOR pathway component p70S6K expression and localization by immunohistochemistry. Cell viability, fluorescence-activated cell sorting analysis and western blot have been assessed to test the pharmacological effects of octreotide, cabergoline and mTOR inhibitors, and to evaluate the activation of specific cell signaling pathways in NCI-H727 cell line. NCI-H727 cell line expressed somatostatin receptor 2, somatostatin receptor 5 and dopamine receptor 2 and all mTOR pathway components at messenger and protein levels. Somatostatin receptor 2, dopamine receptor 2, and p70S6K (non phosphorylated and phosphorylated) proteins were expressed in most typical lung carcinoids tissue samples. Octreotide and cabergoline did not reduce cell viability as single agents but, when combined with mTOR inhibitors, they potentiate mTOR inhibitors effect after long-term exposure, reducing Akt and ERK phosphorylation, mTOR escape mechanisms, and increasing the expression DNA-damage-inducible transcript 4, an mTOR suppressor. In conclusion, the single use of octreotide and cabergoline is not sufficient to block cell viability but the combined approach of these agents with mTOR inhibitors might reduce the mTOR inhibitors-induced escape mechanisms and/or activate the endogenous mTOR suppressor, potentiating the effect of the mTOR inhibitors in an in vitro model of typical lung carcinoids.

  12. Mesolimbic and Nigrostriatal Dopaminergic Systems: Behavioral Neuropharmacology.

    DTIC Science & Technology

    1985-08-01

    presented in Table Table III List of drugs D ru gVeh i c l e Intracerebral infusions Dopamine agonist~s Apomorphine hydrochloride 0.1% Na metabisulfite...saline GABA 0.9% saline Picrotoxin 0 .9%saline Systemic injections Dopamine agents d-Amphetamine sulfate 0.9% saline Aponiorphine hydrochloride 0.9...3H)methionine (15 Ci/mmole, lmCi/ml. 16 Amersham), 122 ul of freshly prepared pargyline hydrochloride (10.2 mM), 326 ul of I M Tris pH 10.8, 246 ul

  13. Pramipexole enhances disadvantageous decision-making: Lack of relation to changes in phasic dopamine release.

    PubMed

    Pes, Romina; Godar, Sean C; Fox, Andrew T; Burgeno, Lauren M; Strathman, Hunter J; Jarmolowicz, David P; Devoto, Paola; Levant, Beth; Phillips, Paul E; Fowler, Stephen C; Bortolato, Marco

    2017-03-01

    Pramipexole (PPX) is a high-affinity D 2 -like dopamine receptor agonist, used in the treatment of Parkinson's disease (PD) and restless leg syndrome. Recent evidence indicates that PPX increases the risk of problem gambling and impulse-control disorders in vulnerable patients. Although the molecular bases of these complications remain unclear, several authors have theorized that PPX may increase risk propensity by activating presynaptic dopamine receptors in the mesolimbic system, resulting in the reduction of dopamine release in the nucleus accumbens (NAcc). To test this possibility, we subjected rats to a probability-discounting task specifically designed to capture the response to disadvantageous options. PPX enhanced disadvantageous decision-making at a dose (0.3 mg/kg/day, SC) that reduced phasic dopamine release in the NAcc. To test whether these modifications in dopamine efflux were responsible for the observed neuroeconomic deficits, PPX was administered in combination with the monoamine-depleting agent reserpine (RES), at a low dose (1 mg/kg/day, SC) that did not affect baseline locomotor and operant responses. Contrary to our predictions, RES surprisingly exacerbated the effects of PPX on disadvantageous decision-making, even though it failed to augment PPX-induced decreases in phasic dopamine release. These results collectively suggest that PPX impairs the discounting of probabilistic losses and that the enhancement in risk-taking behaviors secondary to this drug may be dissociated from dynamic changes in mesolimbic dopamine release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Restless Legs Syndrome

    MedlinePlus

    ... most cases of RLS can be treated with non-drug therapies and if necessary, medications. top What ... drug pramipexole, suggesting this class of drug offers equivalent benefits. Dopaminergic agents . These drugs, which increase dopamine ...

  15. Tipepidine, a non-narcotic antitussive, exerts an antidepressant-like effect in the forced swimming test in adrenocorticotropic hormone-treated rats.

    PubMed

    Kawaura, Kazuaki; Ogata, Yukino; Honda, Sokichi; Soeda, Fumio; Shirasaki, Tetsuya; Takahama, Kazuo

    2016-04-01

    We investigated whether tipepidine exerts an antidepressant-like effect in the forced swimming test in adrenocorticotropic hormone (ACTH)-treated rats, which is known as a treatment-resistant depression model, and we studied the pharmacological mechanisms of the effects of tipepidine. Male Wistar rats (5-7 weeks old) were used in this study. Tipepidine (20 and 40 mg/kg, i.p.) decreased the immobility time in the forced swimming test in ACTH-treated rats. The anti-immobility effect of tipepidine was blocked by a catecholamine-depleting agent, alpha-methyl-p-tyrosine (300 mg/kg, s.c.), but not by a serotonin-depleting agent, p-chlorophenylalanine. The anti-immobility effect of tipepidine was also blocked by a dopamine D1 receptor antagonist, SCH23390 (0.02 mg/kg, s.c.) and an adrenaline α2 receptor antagonist, yohimbine (2 mg/kg, i.p.). In microdialysis technique, tipepidine (40 mg/kg, i.p.) increased the extracellular dopamine level of the nucleus accumbens (NAc) in ACTH-treated rats. These results suggest that tipepidine exerts an antidepressant-like effect in the forced swimming test in ACTH-treated rats, and that the effect of tipepidine is mediated by the stimulation of dopamine D1 receptors and adrenaline α2 receptors. The results also suggest that an increase in the extracellular dopamine level in the NAc may be involved in the antidepressant-like effect of tipepidine in ACTH-treated rats. Copyright © 2016. Published by Elsevier B.V.

  16. Serotonergic mechanisms responsible for levodopa-induced dyskinesias in Parkinson’s disease patients

    PubMed Central

    Politis, Marios; Wu, Kit; Loane, Clare; Brooks, David J.; Kiferle, Lorenzo; Turkheimer, Federico E.; Bain, Peter; Molloy, Sophie; Piccini, Paola

    2014-01-01

    Levodopa-induced dyskinesias (LIDs) are the most common and disabling adverse motor effect of therapy in Parkinson’s disease (PD) patients. In this study, we investigated serotonergic mechanisms in LIDs development in PD patients using 11C-DASB PET to evaluate serotonin terminal function and 11C-raclopride PET to evaluate dopamine release. PD patients with LIDs showed relative preservation of serotonergic terminals throughout their disease. Identical levodopa doses induced markedly higher striatal synaptic dopamine concentrations in PD patients with LIDs compared with PD patients with stable responses to levodopa. Oral administration of the serotonin receptor type 1A agonist buspirone prior to levodopa reduced levodopa-evoked striatal synaptic dopamine increases and attenuated LIDs. PD patients with LIDs that exhibited greater decreases in synaptic dopamine after buspirone pretreatment had higher levels of serotonergic terminal functional integrity. Buspirone-associated modulation of dopamine levels was greater in PD patients with mild LIDs compared with those with more severe LIDs. These findings indicate that striatal serotonergic terminals contribute to LIDs pathophysiology via aberrant processing of exogenous levodopa and release of dopamine as false neurotransmitter in the denervated striatum of PD patients with LIDs. Our results also support the development of selective serotonin receptor type 1A agonists for use as antidyskinetic agents in PD. PMID:24531549

  17. Dopamine is a key regulator in the signalling pathway underlying predator-induced defences in Daphnia

    PubMed Central

    Weiss, Linda C.; Leese, Florian; Laforsch, Christian; Tollrian, Ralph

    2015-01-01

    The waterflea Daphnia is a model to investigate the genetic basis of phenotypic plasticity resulting from one differentially expressed genome. Daphnia develops adaptive phenotypes (e.g. morphological defences) thwarting predators, based on chemical predator cue perception. To understand the genomic basis of phenotypic plasticity, the description of the precedent cellular and neuronal mechanisms is fundamental. However, key regulators remain unknown. All neuronal and endocrine stimulants were able to modulate but not induce defences, indicating a pathway of interlinked steps. A candidate able to link neuronal with endocrine responses is the multi-functional amine dopamine. We here tested its involvement in trait formation in Daphnia pulex and Daphnia longicephala using an induction assay composed of predator cues combined with dopaminergic and cholinergic stimulants. The mere application of both stimulants was sufficient to induce morphological defences. We determined dopamine localization in cells found in close association with the defensive trait. These cells serve as centres controlling divergent morphologies. As a mitogen and sclerotization agent, we anticipate that dopamine is involved in proliferation and structural formation of morphological defences. Furthermore, dopamine pathways appear to be interconnected with endocrine pathways, and control juvenile hormone and ecdysone levels. In conclusion, dopamine is suggested as a key regulator of phenotypic plasticity. PMID:26423840

  18. Thiol-yne click reactions on alkynyl-dopamine-modified reduced graphene oxide.

    PubMed

    Kaminska, Izabela; Qi, Wang; Barras, Alexandre; Sobczak, Janusz; Niedziolka-Jonsson, Joanna; Woisel, Patrice; Lyskawa, Joel; Laure, William; Opallo, Marcin; Li, Musen; Boukherroub, Rabah; Szunerits, Sabine

    2013-06-24

    The large-scale preparation of graphene is of great importance due to its potential applications in various fields. We report herein a simple method for the simultaneous exfoliation and reduction of graphene oxide (GO) to reduced GO (rGO) by using alkynyl-terminated dopamine as the reducing agent. The reaction was performed under mild conditions to yield rGO functionalized with the dopamine derivative. The chemical reactivity of the alkynyl function was demonstrated by post-functionalization with two thiolated precursors, namely 6-(ferrocenyl)hexanethiol and 1H,1H,2H,2H-perfluorodecanethiol. X-ray photoelectron spectroscopy, UV/Vis spectrophotometry, Raman spectroscopy, conductivity measurements, and cyclic voltammetry were used to characterize the resulting surfaces. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Glutamatergic modulation of hyperactivity in mice lacking the dopamine transporter

    PubMed Central

    Gainetdinov, Raul R.; Mohn, Amy R.; Bohn, Laura M.; Caron, Marc G.

    2001-01-01

    In the brain, dopamine exerts an important modulatory influence over behaviors such as emotion, cognition, and affect as well as mechanisms of reward and the control of locomotion. The dopamine transporter (DAT), which reuptakes the released neurotransmitter into presynaptic terminals, is a major determinant of the intensity and duration of the dopaminergic signal. Knockout mice lacking the dopamine transporter (DAT-KO mice) display marked changes in dopamine homeostasis that result in elevated dopaminergic tone and pronounced locomotor hyperactivity. A feature of DAT-KO mice is that their hyperactivity can be inhibited by psychostimulants and serotonergic drugs. The pharmacological effect of these drugs occurs without any observable changes in dopaminergic parameters, suggesting that other neurotransmitter systems in addition to dopamine might contribute to the control of locomotion in these mice. We report here that the hyperactivity of DAT-KO mice can be markedly further enhanced when N-methyl-d-aspartate receptor-mediated glutamatergic transmission is blocked. Conversely, drugs that enhance glutamatergic transmission, such as positive modulators of l-α-amino-3-hydroxy-5-methylisoxazole-4-propionate glutamate receptors, suppress the hyperactivity of DAT-KO mice. Interestingly, blockade of N- methyl-d-aspartate receptors prevented the inhibitory effects of both psychostimulant and serotonergic drugs on hyperactivity. These findings support the concept of a reciprocal functional interaction between dopamine and glutamate in the basal ganglia and suggest that agents modulating glutamatergic transmission may represent an approach to manage conditions associated with dopaminergic dysfunction. PMID:11572967

  20. Nanostructured multilayer thin films of multiwalled carbon nanotubes/gold nanoparticles/glutathione for the electrochemical detection of dopamine

    NASA Astrophysics Data System (ADS)

    Detsri, Ekarat; Rujipornsakul, Sirilak; Treetasayoot, Tanapong; Siriwattanamethanon, Pawarit

    2016-10-01

    In the present study, multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs), and glutathione (GSH) were used to fabricate multilayer nanoscale thin films. The composite thin films were fabricated by layer-by-layer technique as the films were constructed by the alternate deposition of cationic and anionic polyelectrolytes. The MWCNTs were modified via a noncovalent surface modification method using poly(diallydimethylammonium chloride) to form a cationic polyelectrolyte. An anionic polyelectrolyte was prepared by the chemical reduction of HAuCl4 using sodium citrate as both the stabilizing and reducing agent to form anionic AuNPs. GSH was used as an electrocatalyst toward the electro-oxidation of dopamine. The constructed composite electrode exhibits excellent electrocatalytic activity toward dopamine with a short response time and a wide linear range from 1 to 100 μmol/L. The limits of detection and quantitation of dopamine are (0.316 ± 0.081) μmol/L and (1.054 ± 0.081) μmol/L, respectively. The method is satisfactorily applied for the determination of dopamine in plasma and urine samples to obtain the recovery in the range from 97.90% to 105.00%.

  1. Renal blood flow measurement with contrast-enhanced harmonic ultrasonography: evaluation of dopamine-induced changes in renal cortical perfusion in humans.

    PubMed

    Kishimoto, N; Mori, Y; Nishiue, T; Shibasaki, Y; Iba, O; Nose, A; Uchiyama-Tanaka, Y; Masaki, H; Matsubara, H; Iwasaka, T

    2003-06-01

    An accessible non-invasive method for evaluating renal regional blood flow in real time is highly desirable in the clinical setting. Recent progress in ultrasonography with microbubble contrast has allowed quantification of regional blood flow in animal models. Goal ofthis study was to establish a convenient contrast--enhanced harmonic ultrasonography (CEHU) method for evaluating renal cortical blood flow in humans. We carried out intermittent second harmonic imaging in 9 healthy volunteers. Pulse interval was progressively decreased from 4 s - 0.2 s during continuous venous infusion of the microbubble contrast agent. Pulse interval versus CEHU-derived acoustic intensity plots provided microbubble velocity (MV) and fractional vascular volume (FVV) during renal cortical perfusion in humans. Low-dose dopamine infusion (2 microg/min/kg) resulted in a significant increase in MV which correlated well with the increase in total renal blood flow (RBF) determined by a conventional study of p-aminohippurate clearance (C(PAH)) (r = 0.956, p < 0.0001). Although FVV was not significantly increased, alterations in CEHU-derived renal cortical blood flow calculated by the products of MV and FVV were also correlated with alterations in total RBF (r = 0.969, p < 0.0001). Thus, low-dose dopamine infusion increases renal cortical blood flow observed in CEHU, mainly by increasing MV. The present study shows that renal cortical blood flow in humans can be measured non-invasively by CEHU and that CEHU can be used for quantitatively evaluating changes induced by a therapeutic agent such as dopamine in flow velocity and in FVV.

  2. Clinical Pharmacokinetics and Pharmacodynamics of Safinamide.

    PubMed

    Müller, Thomas; Foley, Paul

    2017-03-01

    The symptoms of Parkinson's disease (PD) reflect disruptions of a number of brain neurotransmitter systems of varying type and degree. Pharmacological agents with multiple neurochemical mechanisms of action are therefore promising candidates for countering these problems and providing comprehensive symptomatic relief for patients. The pharmacological profile of safinamide includes reversible monoamine oxidase B inhibition, blockage of voltage-dependent Na + channels, modulation of Ca 2+ channels, and inhibition of glutamate release. Safinamide is administered once daily at oral doses of 50-100 mg; it is well-tolerated and safe. Clinical trials have found that it ameliorates motor symptoms when added to established levodopa or single dopamine receptor agonist therapy. The future role of safinamide in PD may be that it enables a reduction in the dosage of dopamine replacement therapies, thereby reducing the adverse effects associated with these treatments. The clinical convenience (once-daily administration), safety, and tolerability of safinamide are better than those of dopamine receptor agonists. The introduction of safinamide reflects a change of approach to drug development for anti-parkinsonian agents in that its broad spectrum of action corresponds to the multiple heterogeneous alterations of brain neurochemistry in PD, rather than being targeted at a single receptor type or neurochemical process. Safinamide is a promising new instrument for the effective symptomatic therapy of PD.

  3. 18β-Glycyrrhetinic Acid, a Novel Naturally Derived Agent, Suppresses Prolactin Hyperactivity and Reduces Antipsychotic-Induced Hyperprolactinemia in In Vitro and In Vivo Models.

    PubMed

    Wang, Di; Zhang, Yongfeng; Wang, Chunyue; Jia, Dongxu; Cai, Guangsheng; Lu, Jiahui; Wang, Di; Zhang, Zhang-Jin

    2016-09-01

    The purpose of this study was to examine the effects of 18β-glycyrrhetinic acid (GA), a novel naturally derived agent, in suppressing prolactin (PRL) hyperactivity and reducing antipsychotic-induced hyperprolactinemia (hyperPRL) and the underlying mechanisms in in vitro and in vivo models. GA treatment for 24 h inhibited PRL synthesis and secretion in MMQ cells and cultured pituitary cells in a dose-dependent fashion; but this effect was not reproduced in GH3 cells that lack the expression of functional dopamine D2 receptors. GA suppressed elevated PRL level and growth hormone, and normalized several sex hormones in a rat model of hyperPRL, produced by repeated injection of the dopamine blocker metoclopramide. GA also modulated the expression 5-HT1A and 5-HT2A receptors in both in vivo and in vitro models. These results indicate that GA is effective in suppressing PRL hyperactivity caused by the blockade of dopamine D2 receptors. This suppressive effect of GA may be related to its modulation of the serotonergic system. This study provides additional evidence in support of GA as an adjunct for the treatment of hyperPRL.

  4. Electrochemical selective detection of dopamine on microbial carbohydrate-doped multiwall carbon nanotube-modified electrodes.

    PubMed

    Jin, Joon-Hyung; Cho, Eunae; Jung, Seunho

    2010-03-01

    Microbial carbohydrate-doped multiwall carbon nanotube (MWNT)-modified electrodes were prepared for the purpose of determining if 4-(2-aminoethyl)benzene-1,2-diol (3,4-dihydroxyphenylalanine; dopamine) exists in the presence of 0.5 mM ascorbic acid, a representative interfering agent in neurotransmitter detection. The microbial carbohydrate dopants were alpha-cyclosophorohexadecaose (alpha-C16) from Xanthomonas oryzae and cyclic-(1 --> 2)-beta-d-glucan (Cys) from Rhizobium meliloti. The cyclic voltammetric responses showed that the highest sensitivity (5.8 x 10(-3) mA cm(-2) microM(-1)) is attained with the Cys-doped MWNT-modified ultra-trace carbon electrode, and that the alpha-C16-doped MWNT-modified glassy carbon electrode displays the best selectivity to dopamine (the approximate peak potential separation is 310 mV).

  5. Medical management of levodopa-associated motor complications in patients with Parkinson's disease.

    PubMed

    Jankovic, Joseph; Stacy, Mark

    2007-01-01

    Parkinson's disease is a neurodegenerative disorder that affects approximately 1% of people over the age of 60 years. Levodopa is standard, and often initial, therapy for patients with this condition; however, with continued treatment and as the disease progresses, up to 80% of patients experience 'wearing-off' symptoms, dyskinesias and other motor complications. These levodopa-associated problems may become disabling and profoundly affect quality of life. Medications commonly used to manage these symptoms include monoamine oxidase type B (MAO-B) inhibitors, catechol-O-methyltransferase (COMT) inhibitors, the NMDA receptor antagonist amantadine and dopamine receptor agonists. Agents that block MAO-B, such as rasagiline and selegiline, are used as both initial and adjunctive therapy in patients with Parkinson's disease. These medications increase concentrations of dopamine in the brain by blocking its reuptake from the synaptic cleft, a mechanism that can slow motor decline, increase 'on' time and improve symptoms of Parkinson's disease. Adverse events with these agents can include confusion, hallucination and orthostatic hypotension. MAO-B inhibition may elicit drug-drug interactions if administered with TCAs, SSRIs or SNRIs. Conventional oral selegiline is associated with potentially harmful plasma concentrations of three major amphetamine metabolites, although metabolite concentrations are significantly lower with a new orally disintegrating tablet (ODT) selegiline formulation. Selegiline ODT is also absorbed more efficiently and shows less pharmacokinetic variability than conventional oral selegiline.COMT mediates peripheral catabolism of levodopa. Therefore, agents that block COMT, such as tolcapone and entacapone, increase the elimination half-life of levodopa. Given adjunctively with levodopa, COMT inhibitors can decrease 'off' time and increase 'on' time, as well as lower the daily levodopa dose. Although more potent than entacapone, tolcapone requires monitoring for hepatotoxicity. Amantadine is a noncompetitive NMDA receptor antagonist shown to lower dyskinesia scores and improve motor complications in patients with Parkinson's disease when given adjunctively with levodopa. Dopamine agonists, also used as initial and adjunctive therapy in Parkinson's disease, improve motor response and decrease 'off' time purportedly through direct stimulation of dopamine receptors. Current dopamine agonists include bromocriptine, pergolide, cabergoline, lisuride, apomorphine, pramipexole, ropinirole and rotigotine. Although effective, this class of medications can be associated with cardiovascular and psychiatric adverse effects that can limit their utility. All medications used to manage levodopa-associated motor complications in patients with Parkinson's disease have had differing degrees of success. Although head-to-head comparisons of drugs within classes are rare, some differences have emerged related to effects on motor fluctuations, dyskinesias and on/off times, as well as to adverse effects. When choosing a drug to treat levodopa-induced complications, it is important to consider the risks and benefits of the different classes and of the specific agents within each class, given the different efficacy and safety profiles of each.

  6. Genetic and pharmacological evidence that endogenous nociceptin/orphanin FQ contributes to dopamine cell loss in Parkinson's disease.

    PubMed

    Arcuri, Ludovico; Viaro, Riccardo; Bido, Simone; Longo, Francesco; Calcagno, Mariangela; Fernagut, Pierre-Olivier; Zaveri, Nurulain T; Calò, Girolamo; Bezard, Erwan; Morari, Michele

    2016-05-01

    To investigate whether the endogenous neuropeptide nociceptin/orphanin FQ (N/OFQ) contributes to the death of dopamine neurons in Parkinson's disease, we undertook a genetic and a pharmacological approach using NOP receptor knockout (NOP(-/-)) mice, and the selective and potent small molecule NOP receptor antagonist (-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol (SB-612111). Stereological unbiased methods were used to estimate the total number of dopamine neurons in the substantia nigra of i) NOP(-/-) mice acutely treated with the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP), ii) naïve mice subacutely treated with MPTP, alone or in combination with SB-612111, iii) rats injected with a recombinant adeno-associated viral (AAV) vector overexpressing human mutant p.A53T α-synuclein, treated with vehicle or SB-612111. NOP(-/-) mice showed a 50% greater amount of nigral dopamine neurons spared in response to acute MPTP compared to controls, which was associated with a milder motor impairment. SB-612111, given 4 days after MPTP treatment to mimic the clinical condition, prevented the loss of nigral dopamine neurons and striatal dopaminergic terminals caused by subacute MPTP. SB-612111, administered a week after the AAV injections in a clinically-driven protocol, also increased by 50% both the number of spared nigral dopamine neurons and striatal dopamine terminals, and prevented accompanying motor deficits induced by α-synuclein. We conclude that endogenous N/OFQ contributes to dopamine neuron loss in pathogenic and etiologic models of Parkinson's disease through NOP receptor-mediated mechanisms. NOP receptor antagonists might prove effective as disease-modifying agents in Parkinson's disease, through the rescue of degenerating nigral dopamine neurons and/or the protection of the healthy ones. Copyright © 2016. Published by Elsevier Inc.

  7. Effect of dopamine injection on the hemocyte count and prophenoloxidase system of the white shrimp Litopenaeus vannamei

    NASA Astrophysics Data System (ADS)

    Pan, Luqing; Hu, Fawen; Zheng, Debin

    2011-09-01

    Effects of dopamine injection on the hemocyte count, phenoloxidase activity, serine proteinase activity, proteinase inhibitor activity and α2-macroglobulin-like activity in L. vannamei were studied. Results showed that dopamine injection resulted in a significant effect on the parameters measured ( P < 0.05), while no significant difference was observed in the control group (0.85% NaCl). In the experimental groups, the hemocyte count reached the minimum in 3 h; granular and semi-granular cells became stable after 12 h and hyaline cells and the total hemocyte count became stable after 18 h. Phenoloxidase activity reached the minimum in 6 h, and then became stable after 9 h. Serine protease activity and proteinase inhibitor activity reached the minimum in 3 h, and α2-macroglobulin-like activity reached the maximum in 3 h, and all the three parameters became stable after 12 h. The results suggest that the activating mechanisms of the proPO system triggered by dopamine are different from those triggered by invasive agents or spontaneously activated under a normal physical condition.

  8. Mephedrone, an Abused Psychoactive Component of “Bath Salts” and Methamphetamine Congener, Does not Cause Neurotoxicity to Dopamine Nerve Endings of the Striatum

    PubMed Central

    Angoa-Pérez, Mariana; Kane, Michael J.; Francescutti, Dina M.; Sykes, Katherine E.; Shah, Mrudang M.; Mohammed, Abiy M.; Thomas, David M.; Kuhn, Donald M.

    2012-01-01

    Mephedrone (4-methylmethcathinone) is a β-ketoamphetamine with close structural analogy to substituted amphetamines and cathinone derivatives. Abuse of mephedrone has increased dramatically in recent years and has become a significant public health problem in the US and Europe. Unfortunately, very little information is available on the pharmacological and neurochemical actions of mephedrone. In light of the proven abuse potential of mephedrone and considering its similarity to methamphetamine and methcathinone, it is particularly important to know if mephedrone shares with these agents an ability to cause damage to dopamine nerve endings of the striatum. Accordingly, we treated mice with a binge-like regimen of mephedrone (4X 20 or 40 mg/kg) and examined the striatum for evidence of neurotoxicity 2 or 7 days after treatment. While mephedrone caused hyperthermia and locomotor stimulation, it did not lower striatal levels of dopamine, tyrosine hydroxylase or the dopamine transporter under any of the treatment conditions used presently. Furthermore, mephedrone did not cause microglial activation in striatum nor did it increase glial fibrillary acidic protein levels. Taken together, these surprising results suggest that mephedrone, despite its numerous mechanistic overlaps with methamphetamine and the cathinone derivatives, does not cause neurotoxicity to dopamine nerve endings of the striatum. PMID:22191803

  9. Ca2+ channel blockade prevents lysergic acid diethylamide-induced changes in dopamine and serotonin metabolism.

    PubMed

    Antkiewicz-Michaluk, L; Románska, I; Vetulani, J

    1997-07-30

    To investigate the effect of a single and multiple administration of lysergic acid diethylamide (LSD) on cerebral metabolism of dopamine and serotonin, male Wistar rats were treated with low and high doses (0.1 and 2.0 mg/kg i.p.) of LSD and the levels of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, 3-methoxytyramine, serotonin and 5-hydroxyindoleacetic acid were assayed by HPLC in the nucleus accumbens, striatum and frontal cortex. Some rats received nifedipine, 5 mg/kg i.p., before each injection of LSD to assess the effect of a Ca2+ channel blockade. High-dose LSD treatment (8 x 2 mg/kg per day) caused a strong stimulation of dopamine metabolism in the nucleus accumbens and striatum, and serotonin metabolism in the nucleus accumbens: the changes were observed 24 (but not 1 h) after the last dose. The changes induced by the low-dose treatment (8 x 0.1 mg/kg per day) had a different pattern, suggesting the release of dopamine from vesicles to cytoplasm. Co-administration of nifedipine completely prevented the LSD-induced biochemical changes. The results suggest that Ca2+ channel blocking agents may prevent development of some behavioral consequences of chronically used LSD.

  10. Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity.

    PubMed

    Monte-Silva, Katia; Liebetanz, David; Grundey, Jessica; Paulus, Walter; Nitsche, Michael A

    2010-09-15

    The neuromodulator dopamine affects learning and memory formation and their likely physiological correlates, long-term depression and potentiation, in animals and humans. It is known from animal experiments that dopamine exerts a dosage-dependent, inverted U-shaped effect on these functions. However, this has not been explored in humans so far. In order to reveal a non-linear dose-dependent effect of dopamine on cortical plasticity in humans, we explored the impact of 25, 100 and 200 mg of L-dopa on transcranial direct current (tDCS)-induced plasticity in twelve healthy human subjects. The primary motor cortex served as a model system, and plasticity was monitored by motor evoked potential amplitudes elicited by transcranial magnetic stimulation. As compared to placebo medication, low and high dosages of L-dopa abolished facilitatory as well as inhibitory plasticity, whereas the medium dosage prolonged inhibitory plasticity, and turned facilitatory plasticity into inhibition. Thus the results show clear non-linear, dosage-dependent effects of dopamine on both facilitatory and inhibitory plasticity, and support the assumption of the importance of a specific dosage of dopamine optimally suited to improve plasticity. This might be important for the therapeutic application of dopaminergic agents, especially for rehabilitative purposes, and explain some opposing results in former studies.

  11. Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study.

    PubMed

    Newman-Tancredi, A; Gavaudan, S; Conte, C; Chaput, C; Touzard, M; Verrièle, L; Audinot, V; Millan, M J

    1998-08-21

    Recombinant human (h) 5-HT1A receptor-mediated G-protein activation was characterised in membranes of transfected Chinese hamster ovary (CHO) cells by use of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS binding). The potency and efficacy of 21 5-HT receptor agonists and antagonists was determined. The agonists, 5-CT (carboxamidotryptamine) and flesinoxan displayed high affinity (subnanomolar Ki values) and high efficacy (Emax > 90%, relative to 5-HT = 100%). In contrast, ipsapirone, zalospirone and buspirone displayed partial agonist activity. EC50s for agonist stimulation of [35S]GTPgammaS binding correlated well with Ki values from competition binding (r = +0.99). Among the compounds tested for antagonist activity, methiothepin and (+)butaclamol exhibited 'inverse agonist' behaviour, inhibiting basal [35S]GTPgammaS binding. The actions of 17 antipsychotic agents were investigated. Clozapine and several putatively 'atypical' antipsychotic agents, including ziprasidone, quetiapine and tiospirone, exhibited partial agonist activity and marked affinity at h5-HT1A receptors, similar to their affinity at hD2 dopamine receptors. In contrast, risperidone and sertindole displayed low affinity at h5-HT1A receptors and behaved as 'neutral' antagonists, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Likewise the 'typical' neuroleptics, haloperidol, pimozide, raclopride and chlorpromazine exhibited relatively low affinity and 'neutral' antagonist activity at h5-HT1A receptors with Ki values which correlated with their respective Kb values. The present data show that (i) [35S]GTPgammaS binding is an effective method to evaluate the efficacy and potency of agonists and antagonists at recombinant human 5-HT1A receptors. (ii) Like clozapine, several putatively 'atypical' antipsychotic drugs display balanced serotonin h5-HT1A/dopamine hD2 receptor affinity and partial agonist activity at h5-HT1A receptors. (iii) Several 'typical' and some putatively 'atypical' antipsychotic agents displayed antagonist properties at h5-HT1A sites with generally much lower affinity than at hD2 dopamine receptors. It is suggested that agonist activity at 5-HT1A receptors may be of utility for certain antipsychotic agents.

  12. New tris(dopamine) derivative as an iron chelator. Synthesis, solution thermodynamic stability, and antioxidant research.

    PubMed

    Zhang, Qingchun; Jin, Bo; Shi, Zhaotao; Wang, Xiaofang; Lei, Shan; Tang, Xingyan; Liang, Hua; Liu, Qiangqiang; Gong, Mei; Peng, Rufang

    2017-06-01

    A new tris(dopamine) derivative, containing three dopamine chelate moieties which were attached to a trimesic acid molecular scaffold, has been prepared and fully characterized by NMR, FTIR and HRMS. The solution thermodynamic stability of the chelator with Fe(III), Mg(II), Zn(II) and Fe(II) ions was investigated. Results demonstrated that the chelator exhibited effective binding ability and improved selectivity to Fe(III) ion. The chelator possessed affinity similar to that of diethylenetriaminepentaacetic acid chelator for Fe(III) ion. The high affinity could be attributed to the favorable geometric arrangement between the chelator and Fe(III) ion coordination preference. The chelator also exhibited high antioxidant activity and nontoxicity to neuron-like rat pheochromocytoma cells. Hence, the chelator could be used as chelating agent for iron overload situations without depleting essential metal ions, such as Mg(II) and Zn(II) ions. Copyright © 2017. Published by Elsevier Inc.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, Ellen Y.T.; Liu, Wei; Zhao, Qiang

    Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein-coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differsmore » between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.« less

  14. Pharmacology of stimulants prohibited by the World Anti-Doping Agency (WADA)

    PubMed Central

    Docherty, J R

    2008-01-01

    This review examines the pharmacology of stimulants prohibited by the World Anti-Doping Agency (WADA). Stimulants that increase alertness/reduce fatigue or activate the cardiovascular system can include drugs like ephedrine available in many over-the-counter medicines. Others such as amphetamines, cocaine and hallucinogenic drugs, available on prescription or illegally, can modify mood. A total of 62 stimulants (61 chemical entities) are listed in the WADA List, prohibited in competition. Athletes may have stimulants in their body for one of three main reasons: inadvertent consumption in a propriety medicine; deliberate consumption for misuse as a recreational drug and deliberate consumption to enhance performance. The majority of stimulants on the list act on the monoaminergic systems: adrenergic (sympathetic, transmitter noradrenaline), dopaminergic (transmitter dopamine) and serotonergic (transmitter serotonin, 5-HT). Sympathomimetic describes agents, which mimic sympathetic responses, and dopaminomimetic and serotoninomimetic can be used to describe actions on the dopamine and serotonin systems. However, many agents act to mimic more than one of these monoamines, so that a collective term of monoaminomimetic may be useful. Monoaminomimietic actions of stimulants can include blockade of re-uptake of neurotransmitter, indirect release of neurotransmitter, direct activation of monoaminergic receptors. Many of the stimulants are amphetamines or amphetamine derivatives, including agents with abuse potential as recreational drugs. A number of agents are metabolized to amphetamine or metamphetamine. In addition to the monoaminomimetic agents, a small number of agents with different modes of action are on the list. A number of commonly used stimulants are not considered as Prohibited Substances. PMID:18500382

  15. Atypical dopamine transporter inhibitors R-modafinil and JHW 007 differentially affect D2 autoreceptor neurotransmission and the firing rate of midbrain dopamine neurons.

    PubMed

    Avelar, Alicia J; Cao, Jianjing; Newman, Amy Hauck; Beckstead, Michael J

    2017-09-01

    Abuse of psychostimulants like cocaine that inhibit dopamine (DA) reuptake through the dopamine transporter (DAT) represents a major public health issue, however FDA-approved pharmacotherapies have yet to be developed. Recently a class of ligands termed "atypical DAT inhibitors" has gained attention due to their range of effectiveness in increasing extracellular DA levels without demonstrating significant abuse liability. These compounds not only hold promise as therapeutic agents to treat stimulant use disorders but also as experimental tools to improve our understanding of DAT function. Here we used patch clamp electrophysiology in mouse brain slices to explore the effects of two atypical DAT inhibitors (R-modafinil and JHW 007) on the physiology of single DA neurons in the substantia nigra and ventral tegmental area. Despite their commonalities of being DAT inhibitors that lack cocaine-like behavioral profiles, these compounds exhibited surprisingly divergent cellular effects. Similar to cocaine, R-modafinil slowed DA neuron firing in a D2 receptor-dependent manner and rapidly enhanced the amplitude and duration of D2 receptor-mediated currents in the midbrain. In contrast, JHW 007 exhibited little effect on firing, slow DAT blockade, and an unexpected inhibition of D2 receptor-mediated currents that may be due to direct D2 receptor antagonism. Furthermore, pretreatment with JHW 007 blunted the cellular effects of cocaine, suggesting that it may be valuable to investigate similar DAT inhibitors as potential therapeutic agents. Further exploration of these and other atypical DAT inhibitors may reveal important cellular effects of compounds that will have potential as pharmacotherapies for treating cocaine use disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Vasoactive drugs and the gut: is there anything new?

    PubMed

    Woolsey, Cheryl A; Coopersmith, Craig M

    2006-04-01

    Systemic changes in blood pressure and cardiac output induced by pressors and inotropes do not always correlate to improvements in regional perfusion. Since the gut is often referred to as the 'motor' of the systemic inflammatory response syndrome, the impact of vasoactive agents on splanchnic perfusion has theoretical importance. This review will highlight recent studies examining secondary effects of vasoactive agents on intestinal perfusion, metabolism, and barrier function. Norepinephrine has minimal impact on mesenteric blood flow although the combination of norepinephrine and dobutamine increases splanchnic blood flow in sepsis. Dopamine also increases mesenteric blood flow although this may be associated with negative hepatic energy balance at high does. Vasopressin and epinephrine both have negative effects on splanchnic blood flow. Newer inodilators levosimendan and olprinone preferentially improve mesenteric perfusion in animal models. Secondary effects of norepinephrine and dopamine on splanchnic perfusion are minor compared with their systemic effects. While vasopressin usage is increasing in the intensive care unit, caution should be used because of its adverse effects on gut perfusion. Experimental agents for the treatment of heart failure have beneficial gut-specific effects although the clinical significance of this is currently limited by their availability.

  17. High-Fat-Diet-Induced Deficits in Dopamine Terminal Function Are Reversed by Restoring Insulin Signaling.

    PubMed

    Fordahl, Steve C; Jones, Sara R

    2017-02-15

    Systemically released insulin crosses the blood-brain barrier and binds to insulin receptors on several neural cell types, including dopaminergic neurons. Insulin has been shown to decrease dopamine neuron firing in the ventral tegmental area (VTA), but potentiate release and reuptake at dopamine terminals in the nucleus accumbens (NAc). Here we show that prolonged consumption of a high fat diet blocks insulin's effects in the NAc, but insulin's effects are restored by inhibiting protein tyrosine phosphatase 1B, which supports insulin receptor signaling. Mice fed a high fat diet (60% kcals from fat) displayed significantly higher fasting blood glucose 160 mg/dL, compared to 101 mg/dL for control-diet-fed mice, and high-fat-diet-fed mice showed reduced blood glucose clearance after an intraperitoneal glucose tolerance test. Using fast scan cyclic voltammetry to measure electrically evoked dopamine in brain slices containing the NAc core, high-fat-diet-fed mice exhibited slower dopamine reuptake compared to control-diet-fed mice (2.2 ± 0.1 and 2.67 ± 0.15 μM/s, respectively). Moreover, glucose clearance rate was negatively correlated with V max . Insulin (10 nM to 1 μM) dose dependently increased reuptake rates in control-diet-fed mice compared with in the high-fat-diet group; however, the small molecule insulin receptor sensitizing agent, TCS 401 (300 nM), restored reuptake in high-fat-diet-fed mice to control-diet levels, and a small molecule inhibitor of the insulin receptor, BMS 536924 (300 nM), attenuated reuptake, similar to high-fat-diet-fed mice. These data show that a high-fat diet impairs dopamine reuptake by attenuating insulin signaling at dopamine terminals.

  18. CHRONIC SCHIZOPHRENIA—A PSYCHOPHARMACOLOGICAL APROACH1

    PubMed Central

    Ban, Thomas A.; Guy, William; Prakash, Rudra

    1984-01-01

    SUMMARY Our work suggests that the Leonhard classification system holds much pron.ise as a framework for future neurological development. One might speculate along biochemical lines that the nonsystematic subpopulation of schizophrenics may suffer from altered dopamine β-hydroxylase activity which results in an excess of dopamine, This would eeplain why this class responds so well to dopamine receptor blocking agent when other patient do not. One might also speculate tint we are dealing with a number of diseases-each with different courses and progressing to different end states, but all with common pattern during the acute stage, e.g., increased dopamine levels or receptor sensitivity levels. This is probably why the acute stage can usually be controlled by the administration of a dopamine receptor blocking agent. A further speculation concerns the catatonic patient- who had begun to respond to psychosocial and milieu treatment prior to the introduction of neuroleptics. This particular group of patients do not seem to benefit from prophylactic treatment with neuroleptics. If, by activating a patient, catecholamines are released, it is hypothesized that the Catatonics are a completely separate subpopulation-not just clinically-but also biochemically. Completely different types of drugs may be helpful for the different schizophrenic subpopulations. Among the various substances, propranolol should be considered. Obviously, this drug will not be effective in all schizophrenics; but there arc certain types of patients who respond to β-blockers. There is also increasing evidence that clordine (which stimulates alpha-adrenergic receptors) may also have an effect on certain schizophrenics The most recent findings is that cholecystokinin-thought for Some time to be an exclusively peripheral substance-appears to be present in the brain and available in the form of ceulotide, a neuropeptide which is a dopamine agonist. This susbtance, also, seems to be effective in the treatment of certain schizophrenics. Chronic schizophrenia requires re-evaluation and it should be recognized that different drugs are effective in different types of patients. There is renewed interest in the various schizophrenic conditions and their end states. We must hope that the pharmacologists, provided with sufficient information, will search for new drugs with differentiated activities that will meaningfully influence the end states of schizophrenic disorders and/or prevent their development. PMID:21966007

  19. Rapid microwave assisted synthesis of graphene nanosheets/polyethyleneimine/gold nanoparticle composite and its application to the selective electrochemical determination of dopamine.

    PubMed

    Ponnusamy, Vinoth Kumar; Mani, Veerappan; Chen, Shen-Ming; Huang, Wan-Tran; Jen, Jen-Fon

    2014-03-01

    In this study, a simple and fast microwave assisted chemical reduction method for the preparation of graphene nanosheet/polyethyleneimine/gold nanoparticle (GNS/PEI/AuNP) composite was developed. PEI, a cationic polymer, was used both as a non-covalent functionalizing agent for the graphene oxide nanosheets (GONSs) through electrostatic interactions in the aqueous medium and also as a stabilizing agent for the formation of AuNPs on PEI wrapped GNSs. This preparation method involves a simple mixing step followed by a simultaneous microwave assisted chemical reduction of the GONSs and gold ions. The prepared composite exhibits the dispersion of high density AuNPs which were densely decorated on the large surface area of the PEI wrapped GNS. X-ray photoelectron spectroscopy, powder X-ray diffraction, high-resolution transmission electron microscopy, field-emission scanning electron microscopy with energy dispersive X-ray spectroscopy, and thermo-gravimetric analysis, were used to characterize the properties of the resultant composite. The prepared GNS/PEI/AuNP composite film exhibited excellent electrocatalytical activity towards the selective determination of dopamine in the presence of ascorbic acid, which showed potential application in electrochemical sensors. The applicability of the presented sensor was also demonstrated for the determination of dopamine in human urine samples. © 2013 Elsevier B.V. All rights reserved.

  20. The Promise of Neuroprotective Agents in Parkinson’s Disease

    PubMed Central

    Seidl, Stacey E.; Potashkin, Judith A.

    2011-01-01

    Parkinson’s disease (PD) is characterized by loss of dopamine neurons in the substantia nigra of the brain. Since there are limited treatment options for PD, neuroprotective agents are currently being tested as a means to slow disease progression. Agents targeting oxidative stress, mitochondrial dysfunction, and inflammation are prime candidates for neuroprotection. This review identifies Rasagiline, Minocycline, and creatine, as the most promising neuroprotective agents for PD, and they are all currently in phase III trials. Other agents possessing protective characteristics in delaying PD include stimulants, vitamins, supplements, and other drugs. Additionally, combination therapies also show benefits in slowing PD progression. The identification of neuroprotective agents for PD provides us with therapeutic opportunities for modifying the course of disease progression and, perhaps, reducing the risk of onset when preclinical biomarkers become available. PMID:22125548

  1. In Vitro and In Vivo Identification of Novel Positive Allosteric Modulators of the Human Dopamine D2 and D3 Receptor.

    PubMed

    Wood, Martyn; Ates, Ali; Andre, Veronique Marie; Michel, Anne; Barnaby, Robert; Gillard, Michel

    2016-02-01

    Agonists at dopamine D2 and D3 receptors are important therapeutic agents in the treatment of Parkinson's disease. Compared with the use of agonists, allosteric potentiators offer potential advantages such as temporal, regional, and phasic potentiation of natural signaling, and that of receptor subtype selectivity. We report the identification of a stereoselective interaction of a benzothiazol racemic compound that acts as a positive allosteric modulator (PAM) of the rat and human dopamine D2 and D3 receptors. The R isomer did not directly stimulate the dopamine D2 receptor but potentiated the effects of dopamine. In contrast the S isomer attenuated the effects of the PAM and the effects of dopamine. In radioligand binding studies, these compounds do not compete for binding of orthosteric ligands, but indeed the R isomer increased the number of high-affinity sites for [(3)H]-dopamine without affecting K(d). We went on to identify a more potent PAM for use in native receptor systems. This compound potentiated the effects of D2/D3 signaling in vitro in electrophysiologic studies on dissociated striatal neurons and in vivo on the effects of L-dopa in the 6OHDA (6-hydroxydopamine) contralateral turning model. These PAMs lacked activity at a wide variety of receptors, lacked PAM activity at related Gi-coupled G protein-coupled receptors, and lacked activity at D1 receptors. However, the PAMs did potentiate [(3)H]-dopamine binding at both D2 and D3 receptors. Together, these studies show that we have identified PAMs of the D2 and D3 receptors both in vitro and in vivo. Such compounds may have utility in the treatment of hypodopaminergic function. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  2. The serotonin-dopamine interaction measured with positron emission tomography (PET) and C-11 raclopride in normal human subjects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.S.; Dewey, S.L.; Logan, J.

    1994-05-01

    Our previous studies have shown that the interaction between serotonin and dopamine can be measured with C-11 raclopride and PET in the baboon brain. A series of studies was undertaken to extend dim findings to the normal human brain. PET studies were conducted in male control subjects (n=8) using the CTI 931 tomograph. Two C-11 raclopride scans were performed, prior to and 180 minutes following administration of the selective serotonin releasing agent, fenfluramine (60mg/PO). The neuroendocrine response to fenfluramine challenge is commonly used in psychiatric research as an index of serotonin activity. The C-11 raclopride data were analyzed with themore » distribution volume method. For the group of subjects, an increase was observed in the striatum to cerebellum ratio (specific to non-specific binding ratio), in excess of the test-retest variability of the ligand. Variability in response was observed across subjects. These results are consistent with our previous findings in the baboon that citalopram administration increased C-11 raclopride binding, consistent with a decrease in endogenous dopamine. In vivo microdialysis studies in freely moving rats confirmed that citalopram produces a time-dependent decrease in extracellular dopamine levels, consistent with the PET results. In vivo PET studies of the serotonin-dopamine interaction are relevant to the evaluation of etiologic and therapeutic mechanisms in schizophrenia and affective disorder.« less

  3. Mephedrone, an abused psychoactive component of 'bath salts' and methamphetamine congener, does not cause neurotoxicity to dopamine nerve endings of the striatum.

    PubMed

    Angoa-Pérez, Mariana; Kane, Michael J; Francescutti, Dina M; Sykes, Katherine E; Shah, Mrudang M; Mohammed, Abiy M; Thomas, David M; Kuhn, Donald M

    2012-03-01

    Mephedrone (4-methylmethcathinone) is a β-ketoamphetamine with close structural analogy to substituted amphetamines and cathinone derivatives. Abuse of mephedrone has increased dramatically in recent years and has become a significant public health problem in the United States and Europe. Unfortunately, very little information is available on the pharmacological and neurochemical actions of mephedrone. In light of the proven abuse potential of mephedrone and considering its similarity to methamphetamine and methcathinone, it is particularly important to know if mephedrone shares with these agents an ability to cause damage to dopamine nerve endings of the striatum. Accordingly, we treated mice with a binge-like regimen of mephedrone (4 × 20 or 40 mg/kg) and examined the striatum for evidence of neurotoxicity 2 or 7 days after treatment. While mephedrone caused hyperthermia and locomotor stimulation, it did not lower striatal levels of dopamine, tyrosine hydroxylase or the dopamine transporter under any of the treatment conditions used presently. Furthermore, mephedrone did not cause microglial activation in striatum nor did it increase glial fibrillary acidic protein levels. Taken together, these surprising results suggest that mephedrone, despite its numerous mechanistic overlaps with methamphetamine and the cathinone derivatives, does not cause neurotoxicity to dopamine nerve endings of the striatum. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  4. Cross-talk between an activator of nuclear receptors-mediated transcription and the D1 dopamine receptor signaling pathway.

    PubMed

    Schmidt, Azriel; Vogel, Robert; Rutledge, Su Jane; Opas, Evan E; Rodan, Gideon A; Friedman, Eitan

    2005-03-01

    Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta). TOFA and hydroxycholesterols also modulate transcription from NF-kappaB- and AP-1-controlled reporter genes and induce neurite differentiation in PC12 cells. In CV-1 cells that express D(1) dopamine receptors, D(1) dopamine receptor stimulation was found to inhibit TOFA-stimulated transcription from the MMTV promoter that is under the control of chimeric GR/PPARbeta and GR/LXRbeta receptors. Treatment with the D(1) dopamine receptor antagonist, SCH23390, prevented dopamine-mediated suppression of transcription, and by itself increased transcription controlled by GR/LXRbeta. Furthermore, combined treatment of CV-1 cells with TOFA and SCH23390 increased transcription controlled by the GR/LXRbeta chimeric receptor synergistically. The significance of this in vitro synergy was demonstrated in vivo, by the observation that SCH23390 (but not haloperidol)-mediated catalepsy in rats was potentiated by TOFA, thus showing that an agent that mimics the in vitro activities of compounds that activate members of the LXR and PPAR receptor families can influence D1 dopamine receptor elicited responses.

  5. Pharmacological action of DA-9701 on the motility of feline stomach circular smooth muscle.

    PubMed

    Nguyen, Thanh Thao; Song, Hyun Ju; Ko, Sung Kwon; Sohn, Uy Dong

    2015-03-01

    DA-9701, a new prokinetic agent for the treatment of functional dyspepsia, is formulated with Pharbitis semen and Corydalis tuber. This study wasconducted to determine the pharmacological action of DA-9701 and to identify the receptors involved in DA-9701 -induced contractile responsesin the feline gastric corporal, fundic and antral circular smooth muscle. Concentration-response curve to DA-9701 was established. The tissue trips were exposed to methylsergide, ketanserin, ondansetron, GR 113808, atropine and dopamine before administration of DA-9701. The contractile force was determined before and after administration of drugs by a polygraph.DA-9701 enhanced the spontaneous contractile amplitude of antrum, corpus and fundus. However, it did not change the spontaneous contractile frequency of antrum and corpus, but concentration-dependently reduced that of fundus. In the fundus, DA-9701 -induced tonic contractions were inhibited by dopamine, methylsergide, ketanserine, ondansetron or GR 113808 respectively, but not by atropine, indicating that the contractile responses are mediated by multiple receptors: 5-HT2, 5-HT3, 5-HT4, and dopamine receptors. In the corpus, DA-9701-induced contractions were blocked by atropine, dopamine or GR 113808, but not by methysergide, ketanserin or ondansetron, indicating that they are involved in receptors on both, smooth muscles and neurons: 5-HT4 and dopamine receptors. However, contractile responses to DA-9701 are mainly mediated by dopamine receptors in the antrum. These results suggest that DA-9701 has important roles in gastric accommodation by enhancing tonic activity of fundus, and in gastric emptying and gastrointestinal transit by phasic contractions of corpus and antrum mediated by multiple receptors.

  6. Effects of dopaminergic modulation on electrophysiological brain response to affective stimuli.

    PubMed

    Franken, Ingmar H A; Nijs, Ilse; Pepplinkhuizen, Lolke

    2008-01-01

    Several theoretical accounts of the role of dopamine suggest that dopamine has an influence on the processing of affective stimuli. There is some indirect evidence for this from studies showing an association between the treatment with dopaminergic agents and self-reported affect. We addressed this issue directly by examining the electrophysiological correlates of affective picture processing during a single-dose treatment with a dopamine D2 agonist (bromocriptine), a dopamine D2 antagonist (haloperidol), and a placebo. We compared early and late event-related brain potentials (ERPs) that have been associated with affective processing in the three medication treatment conditions in a randomized double-blind crossover design amongst healthy males. In each treatment condition, subjects attentively watched neutral, pleasant, and unpleasant pictures while ERPs were recorded. Results indicate that neither bromocriptine nor haloperidol has a selective effect on electrophysiological indices of affective processing. In concordance with this, no effects of dopaminergic modulation on self-reported positive or negative affect was observed. In contrast, bromocriptine decreased overall processing of all stimulus categories regardless of their affective content. The results indicate that dopaminergic D2 receptors do not seem to play a crucial role in the selective processing of affective visual stimuli.

  7. The medical treatment of Parkinson disease from James Parkinson to George Cotzias.

    PubMed

    Fahn, Stanley

    2015-01-01

    It took exactly 150 years since James Parkinson's description in 1817 of the illness bearing his name until the development of effective therapy for this disorder, namely, the introduction of high-dosage levodopa by George Cotzias in 1967. During the first 50 years, no effective therapy was available, but neurologists reported using different agents, including metals. Then, around 1867, Charcot found solanaceous alkaloids to be somewhat helpful, and these became the accepted and popular therapy for the next 75 years. When basic scientists discovered that these alkaloids had central antimuscarinic activity, pharmaceutical chemists developed synthetic chemical agents that were equally effective, with possibly less adverse effects, and around 1950 these synthetic drugs became the standard medical therapy for Parkinson's disease (PD). The link between dopamine and PD did not take place until 1957, 140 years after Parkinson's Essay. The clue came from research on reserpine, a drug derived from the Rauwolfia plant that caused a sedative effect, now recognized as a drug-induced parkinsonian state. Initial investigations revealed that reserpine caused the release and depletion of serotonin stores in the brain. With that knowledge, Arvid Carlsson, a young pharmacologist in Sweden, decided to explore the possibility that reserpine might also affect brain catecholamines. In his now famous, elegant, and simple experiment, he showed that injecting l-dopa, the precursor of catecholamines, alleviated the reserpine-induced parkinsonian state in animals, whereas the precursor of serotonin failed to do so. Carlsson then developed a highly sensitive assay to measure dopamine, and his lab found that dopamine is selectively present in high concentrations in the striatum and that administered l-dopa could restore the dopamine depleted by reserpine. Carlsson postulated that all these findings implicate dopamine in motor disorders. Oleh Hornykiewicz, a young pharmacologist in Vienna, on being aware of the regional localization of brain dopamine, decided to measure it in the brains of people who had PD and postencephalitic parkinsonism. In 1960, he reported finding markedly depleted dopamine in the striatum in these conditions. Immediately after, Hornykiewicz teamed up with the geriatrician, Walther Birkmayer, to inject small doses of l-dopa intravenously (IV) into PD patients. They found benefit and pursued this treatment, but the gastrointestinal side effects limited the dosage, and many neurologists were doubtful that the effects from l-dopa were any better than those with antimuscarinic agents. A number of neurologists tested such low doses of IV l-dopa and even higher oral dosages, but without showing any dramatic benefit, not better than the antimuscarinics. Some of these studies were small, controlled trials. This general lack of efficacy with l-dopa prevailed, and neurologists were discouraged about l-dopa until 1967, when George C. Cotzias, a neuropharmacologist in New York, reported his results. He thought that PD may be result from the loss of neuromelanin in the substantia nigra, and he decided to try to replenish the depleted neuromelanin. Among the agents he tried was dl-dopa. He wisely began with low oral doses and increased the dosage slowly and steadily, thereby limiting the gastrointestinal complication. He also treated his patients for a long duration, months in a government-supported hospital. In the accompanying videotape of an interview Cotzias gave in 1970, he describes much of his success to be able to observe his patients over months while building up the dosage very slowly and observe for signs of toxicity. When higher doses, usually over 12 g/day, were reached, dramatic antiparkinsonian effects were observed, and a revolutionary new treatment for PD was established. © 2014 International Parkinson and Movement Disorder Society.

  8. Whole organic electronic synapses for dopamine detection

    NASA Astrophysics Data System (ADS)

    Giordani, Martina; Di Lauro, Michele; Berto, Marcello; Bortolotti, Carlo A.; Vuillaume, Dominique; Gomes, Henrique L.; Zoli, Michele; Biscarini, Fabio

    2016-09-01

    A whole organic artificial synapse has been fabricated by patterning PEDOT:PSS electrodes on PDMS that are biased in frequency to yield a STP response. The timescale of the STP response is shown to be sensitive to the concentration of dopamine, DA, a neurotransmitter relevant for monitoring the development of Parkinson's disease and potential locoregional therapies. The sensitivity of the sensor towards DA has been validated comparing signal variation in the presence of DA and its principal interfering agent, ascorbic acid, AA. The whole organic synapse is biocompatible, soft and flexible, and is attractive for implantable devices aimed to real-time monitoring of DA concentration in bodily fluids. This may open applications in chronic neurodegenerative diseases such as Parkinson's disease.

  9. PINK1 heterozygous mutations induce subtle alterations in dopamine-dependent synaptic plasticity

    PubMed Central

    Madeo, G.; Schirinzi, T.; Martella, G.; Latagliata, E.C.; Puglisi, F.; Shen, J.; Valente, E.M.; Federici, M.; Mercuri, N.B.; Puglisi-Allegra, S.; Bonsi, P.; Pisani, A.

    2014-01-01

    Background Homozygous or compound heterozygous mutations in the PTEN-induced kinase 1 (PINK1) gene are causative of autosomal recessive, early onset PD. Single heterozygous mutations have been repeatedly detected in a subset of patients as well as in non-affected subjects, and their significance has long been debated. Several neurophysiological studies from non-manifesting PINK1 heterozygotes have shown the existence of neural plasticity abnormalities, indicating the presence of specific endophenotypic traits in the heterozygous state. Methods In the present study, we performed a functional analysis of corticostriatal synaptic plasticity in heterozygous PINK1 knock-out (PINK1+/−) mice by a multidisciplinary approach. Results We found that, despite a normal motor behavior, repetitive activation of cortical inputs to striatal neurons failed to induce long-term potentiation (LTP), whereas long-term depression (LTD) was normal. Although nigral dopaminergic neurons exhibited normal morphological and electrophysiological properties with normal responses to dopamine receptor activation, we measured a significantly lower dopamine release in the striatum of PINK1+/−, compared to control mice, suggesting that a decrease in stimulus-evoked dopamine overflow acts as a major determinant for the LTP deficit. Accordingly, pharmacological agents capable of increasing the availability of dopamine in the synaptic cleft restored a normal LTP in heterozygous mice. Moreover, MAO-B inhibitors rescued a physiological LTP and a normal dopamine release. Conclusions Our results provide novel evidence for striatal plasticity abnormalities even in the heterozygous disease state. These alterations might be considered an endophenotype to this monogenic form of PD, and a valid tool to characterize early disease stage and design possible disease-modifying therapies. PMID:24167038

  10. Investigation of the antibiofilm capacity of peptide-modified stainless steel

    PubMed Central

    Cao, Pan; Li, Wen-Wu; Morris, Andrew R.; Horrocks, Paul D.; Yuan, Cheng-Qing

    2018-01-01

    Biofilm formation on surfaces is an important research topic in ship tribology and medical implants. In this study, dopamine and two types of synthetic peptides were designed and attached to 304 stainless steel surfaces, aiming to inhibit the formation of biofilms. A combinatory surface modification procedure was applied in which dopamine was used as a coupling agent, allowing a strong binding ability with the two peptides. X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurement and surface roughness test were used to evaluate the efficiency of the peptide modification. An antibiofilm assay against Staphylococcus aureus was conducted to validate the antibiofilm capacity of the peptide-modified stainless steel samples. XPS analysis confirmed that the optimal dopamine concentration was 40 µg ml−1 in the coupling reaction. Element analysis showed that dopamine and the peptides had bound to the steel surfaces. The robustness assay of the modified surface demonstrated that most peptide molecules had bound on the surface of the stainless steel firmly. The contact angle of the modified surfaces was significantly changed. Modified steel samples exhibited improved antibiofilm properties in comparison to untreated and dopamine-only counterpart, with the peptide 1 modification displaying the best antibiofilm effect. The modified surfaces showed antibacterial capacity. The antibiofilm capacity of the modified surfaces was also surface topography sensitive. The steel sample surfaces polished with 600# sandpaper exhibited stronger antibiofilm capacity than those polished with other types of sandpapers after peptide modification. These findings present valuable information for future antifouling material research. PMID:29657809

  11. Investigation of the antibiofilm capacity of peptide-modified stainless steel.

    PubMed

    Cao, Pan; Li, Wen-Wu; Morris, Andrew R; Horrocks, Paul D; Yuan, Cheng-Qing; Yang, Ying

    2018-03-01

    Biofilm formation on surfaces is an important research topic in ship tribology and medical implants. In this study, dopamine and two types of synthetic peptides were designed and attached to 304 stainless steel surfaces, aiming to inhibit the formation of biofilms. A combinatory surface modification procedure was applied in which dopamine was used as a coupling agent, allowing a strong binding ability with the two peptides. X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurement and surface roughness test were used to evaluate the efficiency of the peptide modification. An antibiofilm assay against Staphylococcus aureus was conducted to validate the antibiofilm capacity of the peptide-modified stainless steel samples. XPS analysis confirmed that the optimal dopamine concentration was 40 µg ml -1 in the coupling reaction. Element analysis showed that dopamine and the peptides had bound to the steel surfaces. The robustness assay of the modified surface demonstrated that most peptide molecules had bound on the surface of the stainless steel firmly. The contact angle of the modified surfaces was significantly changed. Modified steel samples exhibited improved antibiofilm properties in comparison to untreated and dopamine-only counterpart, with the peptide 1 modification displaying the best antibiofilm effect. The modified surfaces showed antibacterial capacity. The antibiofilm capacity of the modified surfaces was also surface topography sensitive. The steel sample surfaces polished with 600# sandpaper exhibited stronger antibiofilm capacity than those polished with other types of sandpapers after peptide modification. These findings present valuable information for future antifouling material research.

  12. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing themore » coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor microenvironment.« less

  13. Imaging agents for monitoring changes of dopamine receptors and methods of using thereof

    DOEpatents

    Mukherjee, Jogeshwar; Chandy, George; Milne, Norah; Wang, Ping H.; Easwaramoorthy, Balu; Mantil, Joseph; Garcia, Adriana

    2017-05-30

    The present invention is related generally to a method for screening subjects to determine those subjects more likely to develop diabetes by quantization of insulin producing cells. The present invention is also related to the diagnosis of diabetes and related to monitor disease progression or treatment efficacy of candidate drugs.

  14. Methamphetamine and dopamine neurotoxicity: differential effects of agents interfering with glutamatergic transmission.

    PubMed

    Boireau, A; Bordier, F; Dubédat, P; Doble, A

    1995-07-28

    The effects of riluzole and lamotrigine, two agents which interfere with the release of glutamate (GLU), and MK-801, a blocker of N-methyl-D-aspartate (NMDA) receptors, were compared in the model of methamphetamine-induced depletion of dopamine (DA) levels in mice. Repeated injections with methamphetamine (4 x 5 mg/kg i.p.) markedly decreased levels of DA, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels. When mice were treated with riluzole (2 x 10 mg/kg p.o.), no protection was observed against the decrease in DA and the two metabolites. Lamotrigine (2 x 10 mg/kg p.o.) was also inactive. Treatment with MK-801 (2 x 2.5 mg/kg i.p.) antagonized the decrease in DA, DOPAC and HVA levels induced by the neurotoxin. Thus, unlike an NMDA blocker, drugs that interfere with GLU release did not antagonize the methamphetamine-induced DA neurotoxicity in mice. The consequences of this inactivity are discussed in terms of the reliability of this model to test new drugs with putative efficacy in the treatment of Parkinson's disease.

  15. Nitrogen-based drugs are not essential for blockade of monoamine transporters.

    PubMed

    Madras, B K; Pristupa, Z B; Niznik, H B; Liang, A Y; Blundell, P; Gonzalez, M D; Meltzer, P C

    1996-12-01

    In brain, monoamine transporters are principal targets of widely used therapeutic drugs including antidepressants, methylphenidate (Ritalin), and the addictive drug cocaine. Without exception, these transport blocking agents contain an amine nitrogen. A prevalent view and untested premise is that an amine nitrogen is needed to bind to the same counterion on the transporter as does the amine nitrogen of the monoamine neurotransmitter. We report that several compounds without nitrogen (8-oxa-bicyclo-3-aryl-[3.2.1] octanes, or aryloxatropanes) are active at monoamine transporters. One of these, tropoxane (0-914), bound with high affinity to the dopamine (IC50: 3.35 +/- 0.39 nM), serotonin (IC50: 6.52 +/- 2.05 nM), and norepinephrine (IC50: 20.0 +/- 0.3 nM) transporters in monkey brain, the human striatal dopamine transporter (IC50: 5.01 +/- 1.74 nM), and blocked dopamine transport (IC50: 7.2 +/- 3.0 nM) in COS-7 cells transfected with the human dopamine transporter. These unique compounds require a revision of current concepts of the drug binding domains on monoamine transporters, open avenues for discovery of a new generation of drugs and raise the issue of whether mammalian transporters and receptors may respond to, as yet, undiscovered non-amine bearing neurotransmitters or drugs.

  16. Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs.

    PubMed

    Moore, Thomas J; Glenmullen, Joseph; Mattison, Donald R

    2014-12-01

    Severe impulse control disorders involving pathological gambling, hypersexuality, and compulsive shopping have been reported in association with the use of dopamine receptor agonist drugs in case series and retrospective patient surveys. These agents are used to treat Parkinson disease, restless leg syndrome, and hyperprolactinemia. To analyze serious adverse drug event reports about these impulse control disorders received by the US Food and Drug Administration (FDA) and to assess the relationship of these case reports with the 6 FDA-approved dopamine receptor agonist drugs. We conducted a retrospective disproportionality analysis based on the 2.7 million serious domestic and foreign adverse drug event reports from 2003 to 2012 extracted from the FDA Adverse Event Reporting System. Cases were selected if they contained any of 10 preferred terms in the Medical Dictionary for Regulatory Activities (MedDRA) that described the abnormal behaviors. We used the proportional reporting ratio (PRR) to compare the proportion of target events to all serious events for the study drugs with a similar proportion for all other drugs. We identified 1580 events indicating impulse control disorders from the United States and 21 other countries:710 fordopamine receptor agonist drugs and 870 for other drugs. The dopamine receptor agonist drugs had a strong signal associated with these impulse control disorders (n = 710; PRR = 277.6, P < .001). The association was strongest for the dopamine agonists pramipexole (n = 410; PRR = 455.9, P < .001) and ropinirole (n = 188; PRR = 152.5, P < .001), with preferential affinity for the dopamine D3 receptor. A signal was also seen for aripiprazole, an antipsychotic classified as a partial agonist of the D3 receptor (n = 37; PRR = 8.6, P < .001). Our findings confirm and extend the evidence that dopamine receptor agonist drugs are associated with these specific impulse control disorders. At present, none of the dopamine receptor agonist drugs approved by the FDA have boxed warnings as part of their prescribing information. Our data, and data from prior studies, show the need for more prominent warnings.

  17. Delta 9 -tetrahydrocannabinol and ethanol: differential effects on sympathetic activity in differing environmental setting.

    PubMed

    Ng, L K; Lamprecht, F; Williams, R B; Kopin, I J

    1973-06-29

    Serum dopamine beta-hydroxylase activity, a useful biochemical index of peripheral sympathetic nervous activity, was measured in rats treated with Delta(9)-tetrahydrocannabinol or ethanol or both substances. After 7 days of treatment with either substance, serum dopamine beta-hydroxylase activity decreased significantly. Combined treatment with both agents enhanced the effects of each given alone. In rats subjected to immobilization stress, treatment with Delta(9)- tetrahydrocannabinol appeared to potentiate the stress-induced increase in serum enzyme activity. Treatment with ethanol, with or without Delta(9)-tetrahydrocannabinol, effectively blocked this increase in enzyme activity. These results show that both substances have significant effects on the sympathetic nervous system which are critically influenced by environmental setting.

  18. Valbenazine as the first and only approved treatment for adults with tardive dyskinesia.

    PubMed

    Sarva, Harini; Henchcliffe, Claire

    2018-03-01

    Valbenazine is a selective VMAT2 inhibitor that the FDA approved in April 2017 for the specific treatment of tardive dyskinesia (TD), a movement disorder commonly caused by dopamine blocking agents. Valbenazine acts to decrease dopamine release, reducing excessive movement found in TD. Areas covered: This drug profile reviews the development of valbenazine and the clinical trials that led to its approval as the first treatment specific to TD. The literature search was performed with the PubMed online database. Expert commentary: Two clinical trials assessing the efficacy of valbenazine have shown the reduction of antipsychotic-induced involuntary movement. No life threatening adverse effects were found. Data from a 42-week extension study demonstrated sustained response.

  19. Dopaminergic tone does not influence pain levels during placebo interventions in patients with chronic neuropathic pain.

    PubMed

    Skyt, Ina; Moslemi, Kurosh; Baastrup, Cathrine; Grosen, Kasper; Benedetti, Fabrizio; Petersen, Gitte L; Price, Donald D; Hall, Kathryn T; Kaptchuk, Ted J; Svensson, Peter; Jensen, Troels S; Vase, Lene

    2017-10-23

    Placebo effects have been reported in patients with chronic neuropathic pain. Expected pain levels and positive emotions are involved in the observed pain relief, but the underlying neurobiology is largely unknown. Patients with neuropathic pain are highly motivated for pain relief, and as motivational factors such as expectations of reward, as well as pain processing in itself, are related to the dopaminergic system, it can be speculated that dopamine release contributes to placebo effects in neuropathic pain. Nineteen patients with neuropathic pain after thoracic surgery were tested during a placebo intervention consisting of open and hidden applications of the pain-relieving agent lidocaine (2 mL) and no treatment. The dopamine antagonist haloperidol (2 mg) and the agonist levodopa/carbidopa (100/25 mg) were administered to test the involvement of dopamine. Expected pain levels, desire for pain relief, and ongoing and evoked pain were assessed on mechanical visual analog scales (0-10). Significant placebo effects on ongoing (P ≤ 0.003) and evoked (P ≤ 0.002) pain were observed. Expectancy and desire accounted for up to 41.2% and 71.5% of the variance in ongoing and evoked pain, respectively, after the open application of lidocaine. We found no evidence for an effect of haloperidol and levodopa/carbidopa on neuropathic pain levels (P = 0.071-0.963). Dopamine seemed to influence the levels of expectancy and desire, yet there was no evidence for indirect or interaction effects on the placebo effect. This is the first study to suggest that dopamine does not contribute to placebo effects in chronic neuropathic pain.

  20. Graphene sheets modified with polyindole for electro-chemical detection of dopamine.

    PubMed

    Kumar, Ashish; Prakash, Rajiv

    2014-03-01

    Oxidized polyindole is coated over graphene surface by in-situ chemical oxidation method in dilute hydrochloric acid solution. Morphology of graphene modified with oxidized polyindole is investigated by scanning electron microscope. The interaction of graphene to polyindole is observed by Raman spectroscopy. The introduction of carboxylate functionality is observed in graphene due to pyrolysis. The association of this functionality with indole monomer and their interactive behaviour led to formation of uniform polyindole over graphene surface in presence of oxidizing agent. Our chemical synthesis results not only formation of uniform polymer thin layer over the graphene sheets but also enhances various properties and processibility of the graphene. Negative surface charge on the composite material is observed at acidic pH, which shows potential for accumulation of positively charged species in the solution. Further it is explored for electro-catalytic and sensing applications and shows cation permselective behavior of dopamine hydrochloride. It is demonstrated by differential pulse voltammetric technique in dopamine concentration range from 10 microM to 1 mM (in presence of 1 mM ascorbic acid).

  1. Dyskinesias subside off all medication in a boy with autistic disorder and severe mental retardation.

    PubMed

    Brasić, J R; Barnett, J Y; Aisemberg, P; Ahn, S C; Nadrich, R H; Kaplan, D; Ahmad, R; Mendonça, M de F

    1997-12-01

    A boy with autistic disorder and severe mental retardation developed severe dyskinesias, including objective akathisia (probable) and tics, a month after discontinuation of at least two years of treatment with drugs block dopamine receptors. These dyskinesias greatly subsided during a 17-wk. open-label nonblind clinical trial of clomipramine, and returned transiently when the parents abruptly discontinued clomipramine. However, the dyskinesias gradually subsided during two and a half years of follow-up with the boy being off all medication. A few stereotypies remain. We believe this suggests the hypothesis that movement disorders, such as withdrawal and tardive akathisia and tics, occurring in boys with autistic disorder treated with dopamine receptor-blocking drugs may subside months or years after discontinuation of the agents and that clomipramine may facilitate this process. We also hypothesize that some boys with autistic disorder and mental retardation exhibit fewer movement disorders, fewer psychiatric symptoms, and better over-all functioning after they have received no dopamine receptor-blocking drugs for several months, and this improvement continues years after the medication has ceased.

  2. MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity.

    PubMed

    Thomas, David M; Kuhn, Donald M

    2005-07-19

    Methamphetamine causes long-term toxicity to dopamine nerve endings of the striatum. Evidence is emerging that microglia can contribute to the neuronal damage associated with disease, injury, or inflammation, but their role in methamphetamine-induced neurotoxicity has received relatively little attention. Lipopolysaccharide (LPS) and the neurotoxic HIV Tat protein, which cause dopamine neuronal toxicity after direct infusion into brain, cause activation of cultured mouse microglial cells as evidenced by increased expression of intracellular cyclooxygenase-2 and elevated secretion of tumor necrosis factor-alpha. MK-801, a non-competitive NMDA receptor antagonist that is known to protect against methamphetamine neurotoxicity, prevents microglial activation by LPS and HIV Tat. Dextromethorphan, an antitussive agent with NMDA receptor blocking properties, also prevents microglial activation. In vivo, MK-801 and dextromethorphan reduce methamphetamine-induced activation of microglia in striatum and they protect dopamine nerve endings against drug-induced nerve terminal damage. The present results indicate that the ability of MK-801 and dextromethorphan to protect against methamphetamine neurotoxicity is related to their common property as blockers of microglial activation.

  3. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease.

    PubMed

    Xie, Hong-rong; Hu, Lin-sen; Li, Guo-yi

    2010-04-20

    To evaluate the human neuroblastoma SH-SY5Y cell line as an in vitro model of dopaminergic (DAergic) neurons for Parkinson's disease (PD) research and to determine the effect of differentiation on this cell model. The data of this review were selected from the original reports and reviews related to SH-SY5Y cells published in Chinese and foreign journals (Pubmed 1973 to 2009). After searching the literature, 60 articles were selected to address this review. The SH-SY5Y cell line has become a popular cell model for PD research because this cell line posses many characteristics of DAergic neurons. For example, these cells express tyrosine hydroxylase and dopamine-beta-hydroxylase, as well as the dopamine transporter. Moreover, this cell line can be differentiated into a functionally mature neuronal phenotype in the presence of various agents. Upon differentiation, SH-SY5Y cells stop proliferating and a constant cell number is subsequently maintained. However, different differentiating agents induce different neuronal phenotypes and biochemical changes. For example, retinoic acid induces differentiation toward a cholinergic neuronal phenotype and increases the susceptibility of SH-SY5Y cells to neurotoxins and neuroprotective agents, whereas treatment with retinoic acid followed by phorbol ester 12-O-tetradecanoylphorbol-13-acetate results in a DAergic neuronal phenotype and decreases the susceptibility of cells to neurotoxins and neuroprotective agents. Some differentiating agents also alter kinetics of 1-methyl-4-phenyl-pyridinium (MPP(+)) uptake, making SH-SY5Y cells more similar to primary mesencephalic neurons. Differentiated and undifferentiated SH-SY5Y cells have been widely used as a cell model of DAergic neurons for PD research. Some differentiating agents afford SH-SY5Y cells with more potential for studying neurotoxicity and neuroprotection and are thus more relevant to experimental PD research.

  4. Effect of 7-nitroindazole on body temperature and methamphetamine-induced dopamine toxicity.

    PubMed

    Callahan, B T; Ricaurte, G A

    1998-08-24

    The present study was undertaken to examine the role of temperature on the ability of 7-nitroindazole (7-NI) to prevent methamphetamine-induced dopamine (DA) neurotoxicity. Male Swiss-Webster mice received methamphetamine alone or in combination with 7-NI at either room temperature (20+/-1 degrees C) or at 28+/-1 degrees C. At 20+/-1 degrees C, 7-NI produced hypothermic effects and afforded total protection against methamphetamine-induced DA depletions in the striatum. At 28+/-1 degrees C, 7-NI produced minimal effects on body temperature and failed to prevent methamphetamine-induced DA reductions. These findings indicate that the neuroprotection afforded by 7-NI is likely related to its ability to produce hypothermia because agents that produce hypothermia and/or prevent hyperthermia are known to attenuate methamphetamine-induced neurotoxicity.

  5. The neuropharmacology of L-theanine(N-ethyl-L-glutamine): a possible neuroprotective and cognitive enhancing agent.

    PubMed

    Nathan, Pradeep J; Lu, Kristy; Gray, M; Oliver, C

    2006-01-01

    L-theanine (N-ethyl-L-glutamine) or theanine is a major amino acid uniquely found in green tea. L-theanine has been historically reported as a relaxing agent, prompting scientific research on its pharmacology. Animal neurochemistry studies suggest that L-theanine increases brain serotonin, dopamine, GABA levels and has micromolar affinities for AMPA, Kainate and NMDA receptors. In addition has been shown to exert neuroprotective effects in animal models possibly through its antagonistic effects on group 1 metabotrophic glutamate receptors. Behavioural studies in animals suggest improvement in learning and memory. Overall, L-theanine displays a neuropharmacology suggestive of a possible neuroprotective and cognitive enhancing agent and warrants further investigation in animals and humans.

  6. Valbenazine for the treatment of tardive dyskinesia.

    PubMed

    Seeberger, Lauren C; Hauser, Robert A

    2017-08-01

    Tardive dyskinesia (TD) is a hyperkinetic movement disorder that may result from treatment with antipsychotics or other dopamine receptor blocking agents. Underlying pathophysiology is incompletely understood but since the 1970s dopamine depleting agents have been used to reduce involuntary movements. The search for safe, effective treatments for TD is ongoing. Valbenazine, a novel VMAT2 inhibitor, has recently been FDA approved for treatment of TD. Areas covered: An overview of TD, unmet medical needs and current treatment guidelines are presented. The background, chemistry and clinical development of valbenazine to treat TD is detailed. A competitive market is developing as the treatment gap is identified and potential therapies are discussed in context of a broader market overview. Expert opinion: Antipsychotic use is growing among adults and children in the U.S. Consequently, prevalence of TD is expected to rise. Cessation of antipsychotics is often not possible as the psychiatric condition may deteriorate. Increasing doses of an antipsychotic to suppress involuntary movements is not sustainable long term as underlying TD worsens and movements typically recur. There were no FDA approved treatments for TD. The approval of valbenazine to treat TD is a critical step in addressing this gap in neurologic care.

  7. Dopamine Modulates the Functional Organization of the Orbitofrontal Cortex.

    PubMed

    Kahnt, Thorsten; Tobler, Philippe N

    2017-02-08

    Neuromodulators such as dopamine can alter the intrinsic firing properties of neurons and may thereby change the configuration of larger functional circuits. The primate orbitofrontal cortex (OFC) receives dopaminergic input from midbrain nuclei, but the role of dopamine in the OFC is still unclear. Here we tested the idea that dopaminergic activity changes the pattern of connectivity between the OFC and the rest of the brain and thereby reconfigures functional networks in the OFC. To this end, we combined double-blind, placebo-controlled pharmacology [D 2 receptor (D2R) antagonist amisulpride] in humans with resting-state functional magnetic resonance imaging and clustering methods. In the placebo group, we replicated previously observed parcellations of the OFC into two and six subregions based on connectivity patterns with the rest of the brain. Most importantly, while the twofold clustering did not differ significantly between groups, blocking D2Rs significantly changed the composition of the sixfold parcellation, suggesting a dopamine-dependent reconfiguration of functional OFC subregions. Moreover, multivariate decoding analyses revealed that amisulpride changed the whole-brain connectivity patterns of individual OFC subregions. In particular, D2R blockade shifted the balance of OFC connectivity from associative areas in the temporal and parietal lobe toward functional connectivity with the frontal cortex. In summary, our results suggest that dopamine alters the composition of functional OFC circuits, possibly indicating a broader role for neuromodulators in the dynamic reconfiguration of functional brain networks. SIGNIFICANCE STATEMENT A key role of any neuromodulator may be the reconfiguration of functional brain circuits. Here we test this idea with regard to dopamine and the organization of functional networks in the orbitofrontal cortex (OFC). We show that blockade of dopamine D 2 receptors has profound effects on the functional connectivity patterns of the OFC, yielding altered connectivity-based subdivisions of this region. Our results suggest that dopamine changes the connectional configuration of the OFC, possibly leading to transitions between different operating modes that favor either sensory input or recurrent processing in the prefrontal cortex. More generally, our findings support a broader role for neuromodulators in the dynamic reconfiguration of functional brain networks and may have clinical implications for understanding the actions of antipsychotic agents. Copyright © 2017 the authors 0270-6474/17/371493-12$15.00/0.

  8. Dopamine Modulates Adaptive Prediction Error Coding in the Human Midbrain and Striatum.

    PubMed

    Diederen, Kelly M J; Ziauddeen, Hisham; Vestergaard, Martin D; Spencer, Tom; Schultz, Wolfram; Fletcher, Paul C

    2017-02-15

    Learning to optimally predict rewards requires agents to account for fluctuations in reward value. Recent work suggests that individuals can efficiently learn about variable rewards through adaptation of the learning rate, and coding of prediction errors relative to reward variability. Such adaptive coding has been linked to midbrain dopamine neurons in nonhuman primates, and evidence in support for a similar role of the dopaminergic system in humans is emerging from fMRI data. Here, we sought to investigate the effect of dopaminergic perturbations on adaptive prediction error coding in humans, using a between-subject, placebo-controlled pharmacological fMRI study with a dopaminergic agonist (bromocriptine) and antagonist (sulpiride). Participants performed a previously validated task in which they predicted the magnitude of upcoming rewards drawn from distributions with varying SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. Under placebo, we replicated previous observations of adaptive coding in the midbrain and ventral striatum. Treatment with sulpiride attenuated adaptive coding in both midbrain and ventral striatum, and was associated with a decrease in performance, whereas bromocriptine did not have a significant impact. Although we observed no differential effect of SD on performance between the groups, computational modeling suggested decreased behavioral adaptation in the sulpiride group. These results suggest that normal dopaminergic function is critical for adaptive prediction error coding, a key property of the brain thought to facilitate efficient learning in variable environments. Crucially, these results also offer potential insights for understanding the impact of disrupted dopamine function in mental illness. SIGNIFICANCE STATEMENT To choose optimally, we have to learn what to expect. Humans dampen learning when there is a great deal of variability in reward outcome, and two brain regions that are modulated by the brain chemical dopamine are sensitive to reward variability. Here, we aimed to directly relate dopamine to learning about variable rewards, and the neural encoding of associated teaching signals. We perturbed dopamine in healthy individuals using dopaminergic medication and asked them to predict variable rewards while we made brain scans. Dopamine perturbations impaired learning and the neural encoding of reward variability, thus establishing a direct link between dopamine and adaptation to reward variability. These results aid our understanding of clinical conditions associated with dopaminergic dysfunction, such as psychosis. Copyright © 2017 Diederen et al.

  9. Dopaminergic Balance between Reward Maximization and Policy Complexity

    PubMed Central

    Parush, Naama; Tishby, Naftali; Bergman, Hagai

    2011-01-01

    Previous reinforcement-learning models of the basal ganglia network have highlighted the role of dopamine in encoding the mismatch between prediction and reality. Far less attention has been paid to the computational goals and algorithms of the main-axis (actor). Here, we construct a top-down model of the basal ganglia with emphasis on the role of dopamine as both a reinforcement learning signal and as a pseudo-temperature signal controlling the general level of basal ganglia excitability and motor vigilance of the acting agent. We argue that the basal ganglia endow the thalamic-cortical networks with the optimal dynamic tradeoff between two constraints: minimizing the policy complexity (cost) and maximizing the expected future reward (gain). We show that this multi-dimensional optimization processes results in an experience-modulated version of the softmax behavioral policy. Thus, as in classical softmax behavioral policies, probability of actions are selected according to their estimated values and the pseudo-temperature, but in addition also vary according to the frequency of previous choices of these actions. We conclude that the computational goal of the basal ganglia is not to maximize cumulative (positive and negative) reward. Rather, the basal ganglia aim at optimization of independent gain and cost functions. Unlike previously suggested single-variable maximization processes, this multi-dimensional optimization process leads naturally to a softmax-like behavioral policy. We suggest that beyond its role in the modulation of the efficacy of the cortico-striatal synapses, dopamine directly affects striatal excitability and thus provides a pseudo-temperature signal that modulates the tradeoff between gain and cost. The resulting experience and dopamine modulated softmax policy can then serve as a theoretical framework to account for the broad range of behaviors and clinical states governed by the basal ganglia and dopamine systems. PMID:21603228

  10. Preparation and characterization of reduced graphene oxide supported nickel oxide nanoparticle-based platform for sensor applications

    NASA Astrophysics Data System (ADS)

    Roychoudhury, Appan; Prateek, Arneish; Basu, Suddhasatwa; Jha, Sandeep Kumar

    2018-03-01

    A nanostructured composite film comprising reduced graphene oxide (rGO) and nickel oxide (NiO) nanoparticles (NPs) has been prepared and utilized for development of a simple yet efficient sensor for detection of dopamine and epinephrine in a single run. The hybrid material rGO-NiO nanocomposite was synthesized chemically, and the formation of nanocomposite was confirmed via X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman, UV-Vis, and Fourier transform infrared (FTIR) spectroscopic techniques. The incorporation of NiO NPs on rGO support was found to provide improved sensing characteristics at electrode interface due to enhanced electron mobility on rGO sheet and high catalytic activity of NiO NPs. Subsequently, the synthesized rGO-NiO nanocomposite was deposited onto indium tin oxide (ITO)-coated glass substrate by simple drop-casting method, and the electrode was characterized through atomic force microscopy (AFM) and scanning electron microscopic (SEM) studies. After optimization of experimental conditions electrochemically for its high sensitivity, the fabricated rGO-NiO/ITO electrode was used for simultaneous detection of dopamine and epinephrine by square wave voltammetry (SWV) method. The results showed high sensitivity of 0.545 and 0.638 μA/μM for dopamine and epinephrine respectively in a broad linear range of 0.5-50 μM. Moreover, remarkable detection limits of 0.495 and 0.423 μM were found for dopamine and epinephrine, and the developed sensor exhibited a wide separation of 380 mV between the respective detection peaks of dopamine and epinephrine. Beside this, the proposed sensor was successfully applied in presence of high concentration of interfering agents, ascorbic acid and uric acid, and validated with real serum samples.

  11. Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO₂/graphene oxide decorated with Ag nanoparticles.

    PubMed

    Cincotto, Fernando H; Canevari, Thiago C; Campos, Anderson M; Landers, Richard; Machado, Sérgio A S

    2014-09-21

    This paper describes the synthesis, characterization and applications of a new hybrid material composed of mesoporous silica (SiO2) modified with graphene oxide (GO), SiO2/GO, obtained by the sol-gel process using HF as the catalyst. The hybrid material, SiO2/GO, was decorated with silver nanoparticles (AgNPs) with a size of less than 20 nanometres, prepared directly on the surface of the material using N,N-dimethylformamide (DMF) as the reducing agent. The resulting material was designated as AgNP/SiO2/GO. The Ag/SiO2/GO material was characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and high-resolution transmission electron microscopy (HR-TEM). A glassy carbon electrode modified with AgNP/SiO2/GO was used in the development of a sensitive electrochemical sensor for the simultaneous determination of epinephrine and dopamine employing electrocatalytic reduction using squarewave voltammetry. Well-defined and separate reduction peaks were observed in PBS buffer at pH 7. No significant interference was seen for primarily biological interferents such as uric acid and ascorbic acid in the detection of dopamine and epinephrine. Our study demonstrated that the resultant AgNP/SiO2/GO-modified electrode is highly sensitive for the simultaneous determination of dopamine and epinephrine, with the limits of detection being 0.26 and 0.27 μmol L(-1), respectively. The AgNP/SiO2/GO-modified electrode is highly selective and can be used to detect dopamine and epinephrine in a human urine sample.

  12. Ghrelin receptor (GHS-R1A) agonists show potential as interventive agents during aging.

    PubMed

    Smith, Roy G; Sun, Yuxiang; Jiang, Hong; Albarran-Zeckler, Rosie; Timchenko, Nikolai

    2007-11-01

    Administration of an orally active agonist (MK-0677) of the growth hormone secretagogue receptor (GHS-R1a) to elderly subjects restored the amplitude of endogenous episodic growth hormone (GH) release to that of young adults. Functional benefits include increased lean mass and bone density and modest improvements in strength. In old mice, a similar agonist partially restored function to the thymus and reduced tumor cell growth and metastasis. Treatment of old mice with the endogenous GHS-R1a agonist ghrelin restored a young liver phenotype. The mechanism involves inhibition of cyclin D3:cdk4/cdk6 activity and increased protein phosphatase-2A (PP2A) activity in liver nuclei, which stabilizes the dephosphorylated form of the transcription factor C/EBPalpha preventing the age-dependent formation of the C/EBPalpha-Rb-E2F4-Brm nuclear complex. By inhibiting formation of this complex, repression of E2F target genes is de-repressed and C/EBPalpha regulated expression of Pepck, a regulator of gluconeogenesis, is normalized, thereby restoring a young liver phenotype. In the brain, aging is associated with decline in dopamine function. We investigated the potential neuromodulatory role of GHS-R1a on dopamine action. Neurons were identified in the hippocampus, cortex, substantia nigra, and ventral tegmental areas that coexpressed GHS-R1a and dopamine receptor subtype-1 (D1R). Cell culture studies showed that, in the presence of ghrelin and dopamine, GHS-R and D1R form heterodimers, which modified G-protein signal transduction resulting in amplification of dopamine signaling. We speculate that aging is associated with deficient endogenous ghrelin signaling that can be rescued by intervention with GHS-R1a agonists to improve quality of life and maintain independence.

  13. The neurotoxic effects of methamphetamine on 5-hydroxytryptamine and dopamine in brain: evidence for the protective effect of chlormethiazole.

    PubMed

    Green, A R; De Souza, R J; Williams, J L; Murray, T K; Cross, A J

    1992-04-01

    Studies were undertaken in mice and rats on the neurotoxic effects of methamphetamine on dopaminergic and 5-hydroxytryptaminergic neurones in the brain and the neuroprotective action of chlormethiazole. In initial studies, mice were injected with methamphetamine (5 mg/kg, i.p.) at 2 hr intervals, to a total of 4 times. This procedure produced a 66% loss of striatal dopamine and a 50% loss of tyrosine hydroxylase activity 3 days later. Chlormethiazole (50 mg/kg, i.p.), given 15 min before each dose of methamphetamine, totally prevented the methamphetamine-induced loss of tyrosine hydroxylase activity and partly prevented the loss of dopamine. Phencyclidine (20 mg/kg, i.p.), given in place of chlormethiazole, also prevented the loss of tyrosine hydroxylase. Administration to rats of 4 doses of methamphetamine (15 mg/kg, i.p.) at 3 hr intervals resulted in a 75% loss of striatal dopamine 3 days later and a similar loss of 5-HT and 5-HIAA in cortex and hippocampus. Chlormethiazole (50 mg/kg, i.p.), given 15 min before each injection of methamphetamine, protected against the loss of dopamine and indoleamine content, in the respective regions. Pentobarbital (25 mg/kg, i.p.) also provided substantial protection but diazepam (2.5 mg/kg, i.p.) was without effect. Confirming earlier studies, dizocilpine (1 mg/kg) also provided substantial protection against the methamphetamine-induced neurotoxicity. Preliminary data indicated that chlormethiazole was not neuroprotective because of a hypothermic action. These data therefore demonstrate that chlormethiazole is an effective neuroprotective agent against methamphetamine-induced neurotoxicity and extend the evidence for the possible value of this drug in preventing neurodegeneration.

  14. Primate Phencyclidine Model of Schizophrenia: Sex-Specific Effects on Cognition, Brain Derived Neurotrophic Factor, Spine Synapses, and Dopamine Turnover in Prefrontal Cortex

    PubMed Central

    Groman, Stephanie M.; Jentsch, James D.; Leranth, Csaba; Redmond, D. Eugene; Kim, Jung D.; Diano, Sabrina; Roth, Robert H.

    2015-01-01

    Background: Cognitive deficits are a core symptom of schizophrenia, yet they remain particularly resistant to treatment. The model provided by repeatedly exposing adult nonhuman primates to phencyclidine has generated important insights into the neurobiology of these deficits, but it remains possible that administration of this psychotomimetic agent during the pre-adult period, when the dorsolateral prefrontal cortex in human and nonhuman primates is still undergoing significant maturation, may provide a greater understanding of schizophrenia-related cognitive deficits. Methods: The effects of repeated phencyclidine treatment on spine synapse number, dopamine turnover and BDNF expression in dorsolateral prefrontal cortex, and working memory accuracy were examined in pre-adult monkeys. Results: One week following phencyclidine treatment, juvenile and adolescent male monkeys demonstrated a greater loss of spine synapses in dorsolateral prefrontal cortex than adult male monkeys. Further studies indicated that in juvenile males, a cognitive deficit existed at 4 weeks following phencyclidine treatment, and this impairment was associated with decreased dopamine turnover, decreased brain derived neurotrophic factor messenger RNA, and a loss of dendritic spine synapses in dorsolateral prefrontal cortex. In contrast, female juvenile monkeys displayed no cognitive deficit at 4 weeks after phencyclidine treatment and no alteration in dopamine turnover or brain derived neurotrophic factor messenger RNA or spine synapse number in dorsolateral prefrontal cortex. In the combined group of male and female juvenile monkeys, significant linear correlations were detected between dopamine turnover, spine synapse number, and cognitive performance. Conclusions: As the incidence of schizophrenia is greater in males than females, these findings support the validity of the juvenile primate phencyclidine model and highlight its potential usefulness in understanding the deficits in dorsolateral prefrontal cortex in schizophrenia and developing novel treatments for the cognitive deficits associated with schizophrenia. PMID:25522392

  15. Effects of some dopamine antagonists on spatial memory performance in rats--experimental research.

    PubMed

    Rusu, Gabriela; Popa, Gratiela; Ochiuz, Lacramioara; Nechifor, M; Tartau, Liliana

    2014-01-01

    Dopamine is a neurotransmitter with an important role in forming long-lasting memories for some time, especially in episodic memory. Literature data show that dopamine receptor stimulation may be detrimental to spatial working memory functions in lab animals. (R)-(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride derivative--SCH-23390 is a synthetic compound that acts as a selective, high-affinity antagonist of D1 receptors. Experimental studies suggest that SCH 23390 may prevent the spatial working memory disturbances induced by the active substances of marijuana. Melperone is an atypic antipsychotic drug presenting also dopaminergic D2 and 5-HT2A receptor antagonistic activity. This neuroleptic agent is used in the treatment of some types of schizophrenia. Experimental research on the effects of two dopamine receptor antagonists on spatial memory performance in rats. The experiment was carried out in white Wistar rats (200-250g), divided into 3 groups of 7 animals each, treated intraperitoneally with the same volume of solution for 14 days, as follows: Group I (Control): saline solution 0.1 ml/10g kbw; Group II (coded SCH): SCH-23390 0.3 mg/kbw; Group III (coded MLP): melperone 2 mg/kbw. The dopaminergic agent spatial memory performance was assessed by recording spontaneous alternation behavior in a single session in Y-maze. Each animal was placed at the end of one arm and allowed to move freely through the maze during an 8 min session. Alternation was defined as a consecutive entry in three different arms. The alternation percentage was computed with the following formula: number of alternations divided by total number of arm visits minus 2. Data were presented as +/- standard deviation and significance was tested by SPSS Statistics for Windows version 13.0 and ANOVA method. P-values less than 0.05 were considered statistically significant compared to those in the control group. Experimental researches were carried out in compliance with the regulations of our University Committee for Research and Ethical Issues. SCH-23390 (0.3 mg/kbw) and melperone (2 mg/kbw) intraperitoneal injection for 14 days determined a statistically significant (p < 0.05 and p < 0.01, respectively) increase in spontaneous alternation rate (compared to controls in Y-maze test). Our research revealed that the 14 consecutive days administration of these two dopamine receptor antagonists was associated with the improvement of short-term memory in rats, more intense for SCH-23390 compound.

  16. Carbon-Fiber Microelectrodes for In Vivo Applications

    PubMed Central

    Huffman, Megan L.; Venton, B. Jill

    2009-01-01

    Carbon-fiber microelectrodes (CFMEs) have been a useful tool for measuring rapid changes in neurotransmitters because of their small size, sensitivity, and good electrochemical properties. In this article, we highlight recent advances using CFMEs for measuring neurotransmitters in vivo. Dopamine has been a primary neurotransmitter of interest but direct electrochemical detection of other neurochemicals including nitric oxide and adenosine has also been investigated. Surface treatments have been studied to enhance electrode sensitivity, such as covalent modification or the addition of a layer of carbon nanotubes. Enzyme-modified microelectrodes that detect non-electroactive compounds further extend the usefulness of CFMEs beyond the traditional monoamines. CFMEs continue to be used in vivo to understand basic neurobiological mechanisms and the actions of pharmacological agents, including drugs of abuse. Advances in sensitivity and instrumentation now allow CFMEs to be used for measurements of natural dopamine release that occur during behavioral experiments. A new technique combining electrochemistry with electrophysiology at a single microelectrode facilitates a better understanding of neurotransmitter concentrations and their effects on cell firing. Future research in this field will likely concentrate on fabricating smaller electrodes and electrode arrays, as well as expanding the use of CFMEs in neuroscience beyond dopamine. PMID:19082168

  17. PCBs Alter Dopamine Mediated Function in Aging Workers

    DTIC Science & Technology

    2011-01-01

    inhibitors, COX-2 inhibi- tors, other non - steroidal anti - inflammatory agents, opiate agonists, miscellaneous analgesics and antipyretics, thyroid...DA) similar to changes previously seen in PCB exposed adult non -human primates. To test that hypothesis we used [123I]β-CIT SPECT imaging to...adult non -human primates (Seegal et al., 1994a), also occur in occupationally exposed humans. In this study, we used in vivo molecular imaging of the

  18. Medication Discovery for Addiction: Translating the Dopamine D3 Receptor Hypothesis

    PubMed Central

    Newman, Amy Hauck; Blaylock, Brandi L.; Nader, Michael A.; Bergman, Jack; Sibley, David R.; Skolnick, Phil

    2013-01-01

    The dopamine D3 receptor (D3R) has been investigated as a potential target for medication development to treat substance use disorders (SUDs) with a particular focus on cocaine and methamphetamine. Currently, there are no approved medications to treat cocaine and methamphetamine addiction and thus developing pharmacotherapeutics to compliment existing behavioral strategies is a fundamental goal. Novel compounds with high affinity and D3R selectivity have been evaluated in numerous animal models of drug abuse and favorable outcomes in nonhuman primate models of self-administration and relapse have provided compelling evidence to advance these agents into the clinic. One approach is to repurpose drugs that share the D3R mechanism and already have clinical utility, and to this end buspirone has been identified as a viable candidate for clinical trials. A second, but substantially more resource intensive and risky approach involves the development of compounds that exclusively target D3R, such as GSK598809 and PG 619. Clinical investigation of these drugs or other novel D3R-selective agents will provide a better understanding of the role D3R plays in addiction and whether or not antagonists or partial agonists that are D3R selective are effective in achieving abstinence in this patient population. PMID:22781742

  19. Cell-Permeable Parkin Proteins Suppress Parkinson Disease-Associated Phenotypes in Cultured Cells and Animals

    PubMed Central

    Duong, Tam; Kim, Jaetaek; Ruley, H. Earl; Jo, Daewoong

    2014-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder of complex etiology characterized by the selective loss of dopaminergic neurons, particularly in the substantia nigra. Parkin, a tightly regulated E3 ubiquitin ligase, promotes the survival of dopaminergic neurons in both PD and Parkinsonian syndromes induced by acute exposures to neurotoxic agents. The present study assessed the potential of cell-permeable parkin (CP-Parkin) as a neuroprotective agent. Cellular uptake and tissue penetration of recombinant, enzymatically active parkin was markedly enhanced by the addition of a hydrophobic macromolecule transduction domain (MTD). The resulting CP-Parkin proteins (HPM13 and PM10) suppressed dopaminergic neuronal toxicity in cells and mice exposed to 6-hydroxydopamine (6-OHDH) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). These included enhanced survival and dopamine expression in cultured CATH.a and SH-SY5Y neuronal cells; and protection against MPTP-induced damage in mice, notably preservation of tyrosine hydroxylase-positive cells with enhanced dopamine expression in the striatum and midbrain, and preservation of gross motor function. These results demonstrate that CP-Parkin proteins can compensate for intrinsic limitations in the parkin response and provide a therapeutic strategy to augment parkin activity in vivo. PMID:25019626

  20. Structure-activity relationships for serotonin transporter and dopamine receptor selectivity.

    PubMed

    Agatonovic-Kustrin, Snezana; Davies, Paul; Turner, Joseph V

    2009-05-01

    Antipsychotic medications have a diverse pharmacology with affinity for serotonergic, dopaminergic, adrenergic, histaminergic and cholinergic receptors. Their clinical use now also includes the treatment of mood disorders, thought to be mediated by serotonergic receptor activity. The aim of our study was to characterise the molecular properties of antipsychotic agents, and to develop a model that would indicate molecular specificity for the dopamine (D(2)) receptor and the serotonin (5-HT) transporter. Back-propagation artificial neural networks (ANNs) were trained on a dataset of 47 ligands categorically assigned antidepressant or antipsychotic utility. The structure of each compound was encoded with 63 calculated molecular descriptors. ANN parameters including hidden neurons and input descriptors were optimised based on sensitivity analyses, with optimum models containing between four and 14 descriptors. Predicted binding preferences were in excellent agreement with clinical antipsychotic or antidepressant utility. Validated models were further tested by use of an external prediction set of five drugs with unknown mechanism of action. The SAR models developed revealed the importance of simple molecular characteristics for differential binding to the D(2) receptor and the 5-HT transporter. These included molecular size and shape, solubility parameters, hydrogen donating potential, electrostatic parameters, stereochemistry and presence of nitrogen. The developed models and techniques employed are expected to be useful in the rational design of future therapeutic agents.

  1. Brexpiprazole: A Partial Dopamine Agonist for the Treatment of Schizophrenia.

    PubMed

    Ekinci, Asli; Ekinci, Okan

    2018-01-31

    Schizophrenia is a chronic and debilitating mental disorder that affects the patient's and their family's life. The disease remains a complicated disorder that is challenging to treat, despite there being a large antipsychotic armamentarium. Brexpiprazole acts both as a partial agonist at the serotonin 5-HT1A and dopamine D2 receptors and as an antagonist at the serotonin 5- HT2A and noradrenaline alpha1B and alpha2C receptors, all with similar potency. This balanced receptor profile may produce promising antipsychotic effects on positive, negative and cognitive symptoms in schizophrenia with minimal adverse effects. This review summarizes the pharmacodynamics and pharmacokinetic profile of brexpiprazole and the clinical trial information pertaining to its effectiveness and safety and tolerability, discusses its best clinical use, and compares its clinical profile to those of other widely used antipsychotic agents. Brexpiprazole demonstrated significant clinical efficacy and had good safety and tolerability in well-designed trials with patients with schizophrenia. This agent may be a useful treatment alternative. However, it will be valuable to consider a long-term observational study that includes an active comparator, especially other second-generation antipsychotics (SGAs), to further evaluate the efficacy and safety of brexpiprazole in the treatment of schizophrenia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Monoamine Reuptake Inhibitors in Parkinson's Disease

    PubMed Central

    Huot, Philippe; Fox, Susan H.; Brotchie, Jonathan M.

    2015-01-01

    The motor manifestations of Parkinson's disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters. Despite wide discrepancy in the methodology of the studies reviewed, the following conclusions can be drawn: (1) selective serotonin transporter (SERT), selective noradrenaline transporter (NET), and dual SERT/NET inhibitors are effective against PD depression; (2) selective dopamine transporter (DAT) and dual DAT/NET inhibitors exert an anti-Parkinsonian effect when administered as monotherapy but do not enhance the anti-Parkinsonian actions of L-3,4-dihydroxyphenylalanine (L-DOPA); (3) dual DAT/SERT inhibitors might enhance the anti-Parkinsonian actions of L-DOPA without worsening dyskinesia; (4) triple DAT/NET/SERT inhibitors might exert an anti-Parkinsonian action as monotherapy and might enhance the anti-Parkinsonian effects of L-DOPA, though at the expense of worsening dyskinesia. PMID:25810948

  3. Pentadecapeptide BPC 157 interactions with adrenergic and dopaminergic systems in mucosal protection in stress.

    PubMed

    Sikirić, P; Mazul, B; Seiwerth, S; Grabarević, Z; Rucman, R; Petek, M; Jagić, V; Turković, B; Rotkvić, I; Mise, S; Zoricić, I; Jurina, L; Konjevoda, P; Hanzevacki, M; Gjurasin, M; Separović, J; Ljubanović, D; Artuković, B; Bratulić, M; Tisljar, M; Miklić, P; Sumajstorcić, J

    1997-03-01

    Since superior protection against different gastrointestinal and liver lesions and antiinflammatory and analgesic activities were noted for pentadecapeptide BPC (an essential fragment of an organoprotective gastric juice protein named BPC), the beneficial mechanism of BPC 157 and its likely interactions with other systems were studied. Hence its beneficial effects would be abolished by adrenal gland medullectomy, the influence of different agents affecting alpha, beta, and dopamine receptors on BPC 157 gastroprotection in 48 h restraint stress was further investigated. Animals were pretreated (1 hr before stress) with saline (controls) or BPC 157 (dissolved in saline) (10 microg or 10 ng/kg body wt intraperitoneally or intragastrically) applied either alone to establish basal conditions or, when manipulating the adrenergic or dopaminergic system, a simultaneous administration was carried out with various agents with specific effects on adrenergic or dopaminergic receptors [given in milligrams per kilogram intraperitoneally except for atenolol, which was given subcutaneously] phentolamine (10.0), prazosin (0.5), yohimbine (5.0), clonidine (0.1) (alpha-adrenergic domain), propranolol (1.0), atenolol (20.0) (beta-adrenergic domain), domperidone (5.0), and haloperidol (5.0) (peripheral/central dopamine system). Alternatively, agents stimulating adrenergic or dopaminergic systems--adrenaline (5.0) or bromocriptine (10.0)--were applied. A strong protection, noted following intragastric or intraperitoneal administration of BPC 157, was fully abolished by coadministration of phentolamine, clonidine, and haloperidol, and consistently not affected by prazosin, yohimbine, or domperidone. Atenolol abolished only intraperitoneal BPC 157 protection, whereas propranolol affected specifically intragastric BPC 157 protection. Interestingly, the severe course of lesion development obtained in basal conditions, unlike BPC 157 gastroprotection, was not influenced by the application of these agents. In other experiments, when adrenaline and bromocriptine were given simultaneously, a strong reduction of lesion development was noted. However, when applied separately, only adrenaline, not bromocriptine, has a protective effect. Thus, a complex protective interaction with both alpha-adrenergic (eg, catecholamine release) and dopaminergic (central) systems could be suggested for both intragastric and intraperitoneal BPC 157 administration. The involvement of beta-receptor stimulation in BPC 157 gastroprotection appears to be related to the route of BPC 157 administration. The demonstration that a combined stimulation of adrenergic and dopaminergic systems by simultaneous prophylactic application of adrenaline (alpha- and beta-receptor stimulant) and bromocriptine (dopamine receptor agonist) may significantly reduce restraint stress lesions development provides insight for further research on the beneficial mechanism of BPC 157.

  4. GBR-12909 and fluspirilene potently inhibited binding of ( sup 3 H) (+) 3-PPP to sigma receptors in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contreras, P.C.; Bremer, M.E.; Rao, T.S.

    1990-01-01

    Fluspirilene and GBR-12909, two compounds structurally similar to BMY-14802 and haloperidol, were assessed for their ability to interact with sigma receptors. Fluspirilene, an antipsychotic agent that interacts potently with dopamine receptors, inhibited the binding of ({sup 3}H)-(+)3-PPP (IC{sub 50} = 380 nM) more potently than rimcazole, a putative sigma antagonist that was tested clinically for antipsychotic activity. GBR-12909, a potent dopamine uptake blocker, also inhibited the binding of ({sup 3}H)-(+)3-PPP with an IC{sub 50} of 48 nM. However, other compounds that block the re-uptake of catecholamines, such as nomifensine, desipramine, imipramine, xylamine, benztropine and cocaine, were much weaker than GBR-12909asmore » sigma ligands. Thus, GBR-12909 and fluspirilene, compounds structurally similar to BMY-14802, are potent sigma ligands.« less

  5. Current and experimental treatments of Parkinson disease: A guide for neuroscientists.

    PubMed

    Oertel, Wolfgang; Schulz, Jörg B

    2016-10-01

    Over a period of more than 50 years, the symptomatic treatment of the motor symptoms of Parkinson disease (PD) has been optimized using pharmacotherapy, deep brain stimulation, and physiotherapy. The arsenal of pharmacotherapies includes L-Dopa, several dopamine agonists, inhibitors of monoamine oxidase (MAO)-B and catechol-o-methyltransferase (COMT), and amantadine. In the later course of the disease, motor complications occur, at which stage different oral formulations of L-Dopa or dopamine agonists with long half-life, a transdermal application or parenteral pumps for continuous drug supply can be subscribed. Alternatively, the patient is offered deep brain stimulation of the subthalamic nucleus (STN) or the internal part of the globus pallidus (GPi). For a more efficacious treatment of motor complications, new formulations of L-Dopa, dopamine agonists, and amantadine as well as new MAO-B and COMT inhibitors are currently tested in clinical trials, and some of them already yielding positive results in phase 3 trials. In addition, non-dopaminergic agents have been tested in the early clinical phase for the treatment of motor fluctuations and dyskinesia, including adenosine A2A antagonists (istradefylline, preladenant, and tozadenant) and modulators of the metabolic glutamate receptor 5 (mGluR5 - mavoglurant) and serotonin (eltoprazine) receptors. Recent clinical trials testing coenzyme Q10, the dopamine agonist pramipexole, creatine monohydrate, pioglitazone, or AAV-mediated gene therapy aimed at increasing expression of neurturin, did not prove efficacious. Treatment with nicotine, caffeine, inosine (a precursor of urate), and isradipine (a dihydropyridine calcium channel blocker), as well as active and passive immunization against α-synuclein and inhibitors or modulators of α-synuclein-aggregation are currently studied in clinical trials. However, to date, no disease-modifying treatment is available. We here review the current status of treatment options for motor and non-motor symptoms, and discuss current investigative strategies for disease modification. This review provides basic insights, mainly addressing basic scientists and non-specialists. It stresses the need to intensify therapeutic PD research and points out reasons why the translation of basic research to disease-modifying therapies has been unsuccessful so far. The symptomatic treatment of the motor symptoms of Parkinson disease (PD) has been constantly optimized using pharmacotherapy (L-Dopa, several dopamine agonists, inhibitors of monoamine oxidase (MAO)-B and catechol-o-methyltransferase (COMT), and amantadine), deep brain stimulation, and physiotherapy. For a more efficacious treatment of motor complications, new formulations of L-Dopa, dopamine agonists, and amantadine as well as new MAO-B and COMT inhibitors are currently tested in clinical trials. Non-dopaminergic agents have been tested in the early clinical phase for the treatment of motor fluctuations and dyskinesia. Recent clinical trials testing coenzyme Q10, the dopamine agonist pramipexole, creatine monohydrate, pioglitazone, or AAV-mediated gene therapy aimed at increasing expression of neurturin, did not prove efficacious. Treatment with nicotine, caffeine, and isradipine - a dihydropyridine calcium channel blocker - as well as active and passive immunization against α-synuclein and inhibitors of α-synuclein-aggregation are currently studied in clinical trials. However, to date, no disease-modifying treatment is available for PD. We here review the current status of treatment options and investigative strategies for both motor and non-motor symptoms. This review stresses the need to intensify therapeutic PD research and points out reasons why the translation of basic research to disease-modifying therapies has been unsuccessful so far. This article is part of a special issue on Parkinson disease. © 2016 International Society for Neurochemistry.

  6. Use of the new levodopa agent Stalevo (levodopa/carbidopa/entacapone) in the treatment of Parkinson's disease in out-patient clinical practice (the START-M open trial).

    PubMed

    Boiko, A N; Batysheva, T T; Minaeva, N G; Babina, L A; Vdovichenko, T V; Zhuravleva, E Yu; Shikhkerimov, R K; Malykhina, E A; Khozova, A A; Zaitsev, K A; Kostenko, E V

    2008-11-01

    Despite the significant symptomatic effects of levodopa, stable 24-h treatment responses are in the vast majority of patients replaced 2-3 years from the start of treatment by oscillations in motor symptoms (fluctuation, dyskinesia), amelioration of which requires addition of constant (physiological) stimulation of postsynaptic dopamine receptors. To some extent this is provided by Stalevo, which contains levodopa and two enzyme inhibitors: the DDC inhibitor carbidopa and the COMT inhibitor entacapone. The results obtained in the present study demonstrated the advantages of Stalevo over traditional agents in patients with the "wearing off" and "on-off" phenomena.

  7. Investigational agents in the treatment of Parkinson's disease: focus on safinamide.

    PubMed

    Malek, Naveed M; Grosset, Donald G

    2012-01-01

    The authors review management issues in Parkinson's disease (PD) and provide an overview of the current pharmacological management strategies, with a specific focus on safinamide. Current therapeutic management of PD largely involves strategies to optimize the replacement of deficient dopamine, using levodopa, dopamine agonists, and inhibitors of dopamine-metabolizing enzymes. Currently under investigation for use in the treatment of PD, safinamide has multiple modes of action including monoamine oxidase B inhibition. It is well absorbed orally, has a long plasma half-life, and does not have liver enzyme-inducing or liver enzyme-inhibiting activity. Peak plasma concentration occurs 2-4 hours after single oral doses. Safinamide as monotherapy and as an adjunct to dopamine agonists improves Unified Parkinson's Disease Rating Scale motor scores. One randomized, placebo-controlled trial involving 168 patients given a median safinamide dose of 70 mg/day (range 40-90 mg/day) significantly increased the proportion of responders - defined as patients improving their Unified Parkinson's Disease Rating Scale motor scores by 30% or more from baseline - after 3 months (37.5% for safinamide versus 21.4% for placebo; P < 0.05). Safinamide increased "on" time with no or minor dyskinesia compared with the placebo in another trial, but dyskinesia severity was not reduced. Safinamide was well tolerated, with an adverse effect profile similar to that of the placebo. Further Phase III trial data for safinamide efficacy is awaited, and will be of interest in a comparison with other developments in PD therapeutics: modified formulations of available compounds, new drug classes such as adenosine receptor antagonists, and gene-based therapies.

  8. {sup 18}F-desmethoxyfallypride: A fluorine-18 labeled radiotracer with properties similar to carbon-11 raclopride for PET imaging studies of dopamine D{sub 2} receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, J.; Yang, Z.Y.; Brown, T.

    1996-07-19

    We have developed (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-{sup 18}F-fluoropropyl)-2-methoxybenzamide ({sup 18}F-desmethoxyfallypride) as a fluorine-18 radiotracer with properties analogous to that of {sup 11}C-raclopride. In vitro experiments in rat brain homogenates showed an association rate constant of 2.1X10{sup 8} M{sup -1} min{sup -1} and a dissociation rate constant of 0.073 min{sup -1}. High striatal uptake (up to 0.08% injected dose/cc) of {sup 18}F-desmethoxyfallypride in rhesus monkeys was observed in PET experiments. The radiotracer cleared from the striata with a dissociation rate of 1.80X10{sup -2} min{sup -1}. Striatum to cerebellum ratios peaked at 3.0 in 30 min after which they decreased steadily. Intravenously administered haloperidol displacedmore » specifically bound {sup 18}F-desmethoxyfallypride with a k{sub off} of 0.058 min{sup -1}. Synaptic dopamine released by the treatment of the monkeys with a d-amphetamine increased the dissociation rate of {sup 18}F-desmethoxyfallypride to 0.83 min{sup -1} thus reducing specifically bound {sup 18}F-desmethoxyfallypride by 56% over a period of 42 mins compared to a reduction of only 20% in controls during this time period. The sensitivity of {sup 18}F-desmethoxyfallypride towards competition with dopamine should make this radiotracer useful in PET studies to evaluate in vivo pharmacological effects of various agents that alter levels of endogenous dopamine. 27 refs., 8 figs.« less

  9. Injectable dopamine-modified poly(α,β-aspartic acid) nanocomposite hydrogel as bioadhesive drug delivery system.

    PubMed

    Gong, Chu; Lu, Caicai; Li, Bingqiang; Shan, Meng; Wu, Guolin

    2017-04-01

    Hydrogel systems based on cross-linked polymeric materials with adhesive properties in wet environments have been considered as promising candidates for tissue adhesives. The 3,4-dihydroxyphenylalanine (DOPA) is believed to be responsible for the water-resistant adhesive characteristics of mussel adhesive proteins. Under the inspiration of DOPA containing adhesive proteins, a dopamine-modified poly(α,β-aspartic acid) derivative (PDAEA) was successfully synthesized by successive ring-opening reactions of polysuccinimide (PSI) with dopamine and ethanolamine, and an injectable bioadhesive hydrogel was prepared via simply mixing PDAEA and FeCl 3 solutions. The formation mechanism of the hydrogel was investigated by ultraviolet-visible (UV-vis) spectroscopic, Fourier transformation infrared (FT-IR) spectroscopic, visual colorimetric measurements and EDTA immersion methods. The study demonstrated that the PDAEA-Fe 3+ hydrogel is a dual cross-linking system composed of covalent and coordination crosslinks. The PDAEA-Fe 3+ hydrogel is suitable to serve as a bioadhesive agent according to the rheological behaviors and the observed significant shear adhesive strength. The slow and sustained release of the model drug curcumin from the hydrogel in vitro demonstrated the hydrogel could also be potentially used for drug delivery. Moreover, the cytotoxicity tests in vitro suggested the prepared polymer and hydrogel possessed excellent cytocompatibility. All the results indicated that the dopamine modified poly(α,β-aspartic acid) derivative based hydrogel was a promising candidate for bioadhesive drug delivery system. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1000-1008, 2017. © 2017 Wiley Periodicals, Inc.

  10. Effect of Itopride Hydrochloride on the Ileal and Colonic Motility in Guinea Pig In Vitro

    PubMed Central

    Lim, Hyun Chul; Kim, Young Gyun; Lim, Jung Hyun; Kim, Hee Sun

    2008-01-01

    Purpose Itopride hydrochloride (itopride) inhibits acetylcholinesterase (AChE) and antagonizes dopamine D2 receptor, and has been used as a gastroprokinetic agent. However, its prokinetic effect on the small bowel or colon has not yet been thoroughly investigated. The aim of this study was to investigate the effects of itopride on motor functions of the ileum and colon in guinea pigs. Materials and Methods The distal ileum was excised and the activity of peristaltic contraction was determined by measuring the amplitude and propagation velocity of peristaltic contraction. The distal colon was removed and connected to the chamber containing Krebs-Henseleit solution (K-H solution). Artificial fecal matter was inserted into the oral side of the lumen, and moved toward the anal side by intraluminal perfusion via peristaltic pump. Colonic transit times were measured by the time required for the artificial feces to move a total length of 10 cm with 2-cm intervals. Results In the ileum, itopride accelerated peristaltic velocity at higher dosage (10-10-10-6 M) whereas neostigmine accelerated it only with a lower dosage (10-10-10-9 M). Dopamine (10-8 M) decelerated the velocity that was recovered by itopride infusion. Itopride and neostigmine significantly shortened colonic transit at a higher dosage (10-10-10-6 M). Dopamine (10-8 M) delayed colonic transit time that was also recovered after infusion of itopride. Conclusion Itopride has prokinetic effects on both the ileum and colon, which are regulated through inhibitory effects on AChE and antagonistic effects on dopamine D2 receptor. PMID:18581598

  11. Effect of itopride hydrochloride on the ileal and colonic motility in guinea pig in vitro.

    PubMed

    Lim, Hyun Chul; Kim, Young Gyun; Lim, Jung Hyun; Kim, Hee Sun; Park, Hyojin

    2008-06-30

    Itopride hydrochloride (itopride) inhibits acetylcholinesterase (AChE) and antagonizes dopamine D(2) receptor, and has been used as a gastroprokinetic agent. However, its prokinetic effect on the small bowel or colon has not yet been thoroughly investigated. The aim of this study was to investigate the effects of itopride on motor functions of the ileum and colon in guinea pigs. The distal ileum was excised and the activity of peristaltic contraction was determined by measuring the amplitude and propagation velocity of peristaltic contraction. The distal colon was removed and connected to the chamber containing Krebs-Henseleit solution (K-H solution). Artificial fecal matter was inserted into the oral side of the lumen, and moved toward the anal side by intraluminal perfusion via peristaltic pump. Colonic transit times were measured by the time required for the artificial feces to move a total length of 10 cm with 2-cm intervals. In the ileum, itopride accelerated peristaltic velocity at higher dosage (10(-10)-10(-6) M) whereas neostigmine accelerated it only with a lower dosage (10(-10)-10(-9) M). Dopamine (10(-8) M) decelerated the velocity that was recovered by itopride infusion. Itopride and neostigmine significantly shortened colonic transit at a higher dosage (10(-10)-10(-6) M). Dopamine (10(-8) M) delayed colonic transit time that was also recovered after infusion of itopride. Itopride has prokinetic effects on both the ileum and colon, which are regulated through inhibitory effects on AChE and antagonistic effects on dopamine D(2) receptor.

  12. 1,2,3,4-Tetrahydroisoquinoline protects terminals of dopaminergic neurons in the striatum against the malonate-induced neurotoxicity.

    PubMed

    Lorenc-Koci, Elzbieta; Gołembiowska, Krystyna; Wardas, Jadwiga

    2005-07-27

    Malonate, a reversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, is frequently used as a model neurotoxin to produce lesion of the nigrostriatal dopaminergic system in animals due to particular sensitivity of dopamine neurons to mild energy impairment. This model of neurotoxicity was applied in our study to explore neuroprotective potential of 1,2,3,4-tetrahydroisoquinoline (TIQ), an endo- and exogenous substance whose function in the mammalian brain, despite extensive studies, has not been elucidated so far. Injection of malonate at a dose of 3 mumol unilaterally into the rat left medial forebrain bundle resulted in the 54% decrease in dopamine (DA) concentration in the ipsilateral striatum and, depending on the examined striatum regions, caused 24-44% reduction in [3H]GBR12,935 binding to the dopamine transporter (DAT). TIQ (50 mg/kg i.p.) administered 4 h before malonate infusion and next once daily for successive 7 days prevented both these effects of malonate. Such TIQ treatment restored DA content and DAT binding almost to the control level. The results of the present study indicate that TIQ may act as a neuroprotective agent in the rat brain. An inhibition of the enzymatic activities of monoamine oxidase and gamma-glutamyl transpeptidase as well as an increase in the striatal levels of glutathione and nitric oxide found after TIQ administration and reported in our earlier studies are considered to be potential factors that may be involved in the TIQ-mediated protection of dopamine terminals from malonate toxicity.

  13. Pharmacological modulation of abnormal involuntary DOI-induced head twitch response in male DBA/2J mice: I. Effects of D2/D3 and D2 dopamine receptor selective compounds.

    PubMed

    Rangel-Barajas, Claudia; Malik, Maninder; Vangveravong, Suwanna; Mach, Robert H; Luedtke, Robert R

    2014-08-01

    Because of the complexity and heterogeneity of human neuropsychiatric disorders, it has been difficult to identify animal models that mimic the symptoms of these neuropathologies and can be used to screen for antipsychotic agents. For this study we selected the murine 5HT2A/2C receptor agonist-induced head twitch response (HTR) induced by the administration of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), which has been proposed as an animal model of symptoms associated with a variety of behavioral and psychiatric conditions. We investigated the DOI-induced HTR in male DBA/2J mice using a panel of D2-like (D2, D3 and D4) and D2 dopamine receptor selective compounds. When DBA/2J mice were administered a daily dose of DOI (5 mg/kg), tolerance to the DOI occurs. However, administrations of the same dose of DOI every other day (48 h) or on a weekly basis did not lead to tolerance and the ability to induce tolerance after daily administration of DOI remains intact after repeated weekly administration of DOI. Subsequently, a panel of D2-like dopamine receptor antagonists was found to effectively inhibit the DOI-induced HTR in DBA/2J mice. However, the benzamide eticlopride, which is a high affinity D2-like antagonist, was a notable exception. SV 293, SV-III-130s and N-methylbenperidol, which exhibit a high affinity for D2 versus the D3 dopamine receptor subtypes (60- to 100-fold binding selectivity), were also found to inhibit the HTR in DBA/2J mice. This observation suggests a functional interaction between dopaminergic and serotonergic systems through D2 dopamine receptors and the 5-HT2A serotonin receptors in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Synthesis and dopamine transporter imaging in rhesus monkeys with fluorine-18 labeled FECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keil, R.; Hoffman, J.M.; Eschima, D.

    1996-05-01

    Parkinson`s patients have been shown to suffer a 60-80% loss of dopamine transporters in the substantia nigra and striatum. Dopamine transporter ligands labeled with fluorine-18 (t {1/2}=110 min) are attractive probes for measuring the density of dopamine transporter sites n the striatum for the diagnosis and evaluation of Parkinson`s patients by PET. We have synthesized (Ki = 32 nM vs RTI-55), fluorine-18 labeled 2{beta}-carbomethoxy-3{beta}(4-chlorophenyl)-8-(3-fluoropropyl)nortropane (FECT), with favorable kinetics as a potential dopamine transporter PET imaging agent. Treatment of 2{beta}-carbomethoxy-3{beta}-(4-chlorophenyl)nortropane (1) with 1-bromo-2-fluoroethane (2) in CH3CN at 80{degrees}C gave FECT (3). [F-18]FECT (3) was prepared by treating 1,2-ditosyloxyethane (4) with NCAmore » K[F-18]/K222 (365 mCi) for 5 min in CH3CN at 85{degrees}C to give [F-18] 1-fluoro-2-tosyloxyethane (5) (175 mCi)in 59% E.O.B. yield. Coupling of [F-18] 5 with 1 in DMF at 135 {degrees}C for 45 min gave [F-18]FECT (41 mCi) in 25% yield E.O.B. following HPLC purification in a total synthesis time of 122 min. [F-18] 5 was >99% radiochemically pure with a specific activity of 5 Ci/{mu}mole. Following intravenous administration to a rhesus monkey [F-18]FECT (8.13 mCi) showed a peak uptake at 30 min in the striatum (S) followed by a slow clearance and a rapid washout from the cerebellum to afford a high S/C ratio = 11.0 at 125 min. Radio-HPLC analysis of the ether extracts form plasma samples for radioactive metabolites detected only the presence of [F-18]FECT. These results suggest that FECT is an Research supported by DOE.« less

  15. The many worlds hypothesis of dopamine prediction error: implications of a parallel circuit architecture in the basal ganglia.

    PubMed

    Lau, Brian; Monteiro, Tiago; Paton, Joseph J

    2017-10-01

    Computational models of reinforcement learning (RL) strive to produce behavior that maximises reward, and thus allow software or robots to behave adaptively [1]. At the core of RL models is a learned mapping between 'states'-situations or contexts that an agent might encounter in the world-and actions. A wealth of physiological and anatomical data suggests that the basal ganglia (BG) is important for learning these mappings [2,3]. However, the computations performed by specific circuits are unclear. In this brief review, we highlight recent work concerning the anatomy and physiology of BG circuits that suggest refinements in our understanding of computations performed by the basal ganglia. We focus on one important component of basal ganglia circuitry, midbrain dopamine neurons, drawing attention to data that has been cast as supporting or departing from the RL framework that has inspired experiments in basal ganglia research over the past two decades. We suggest that the parallel circuit architecture of the BG might be expected to produce variability in the response properties of different dopamine neurons, and that variability in response profile may not reflect variable functions, but rather different arguments that serve as inputs to a common function: the computation of prediction error. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A Novel Animal Model for Panic Disorder: Attempted Reproduction of the Fear of Fear

    DTIC Science & Technology

    1999-11-04

    and haloperidol . Buspirone, ipsapirone, flesi noxin, and 8- O H-DPAT (aI1 5HT IA agoni sts) strongly reduced USV in treated animals. T he 5HT 1A...Robinson & Shrol, 1989). Alprazolam (an effective anti-panic agent) and haloperidol (3 dopamine antagonist), produced similar profiles. Both drugs...identical to a drug serving as a negative control ( haloperidol ) suggests this model has poor predictive validity. Furthermore, the benzodiazepine

  17. The outcome of hypophysectomy for prolactinomas in the era of dopamine agonist therapy.

    PubMed

    Soule, S G; Farhi, J; Conway, G S; Jacobs, H S; Powell, M

    1996-06-01

    Dopamine agonists are the primary therapeutic modality for the majority of patients with prolactinomas, with pituitary surgery reserved for those patients intolerant of or resistant to these agents. Most published surgical series, however, contain patients treated by surgery as the primary therapeutic modality. Previous exposure to dopamine agonists or the selection of patients with prolactinomas resistant to conventional therapy may potentially compromise the surgical success rate. The purpose of this study was to evaluate the efficacy and safety of pituitary surgery for prolactinomas in a tertiary referral centre where the majority of patients were operated on after treatment with dopamine agonists. A retrospective review of the outcome of pituitary surgery for prolactinomas performed at a tertiary neurosurgical centre by a single neurosurgeon. Twenty-three patients underwent excision of a macro and 11 excision of a micro-prolactinoma. Pituitary tumour diameter was determined by CT or MRI imaging. Pre and post-operative measurements were made of serum PRL concentration (off dopamine agonist therapy), free T4, free T3, LH and testosterone (males). Post-operative restoration of a menstrual cycle was taken to indicate resolution of hypogonadism in female patients. The majority (73.9%) of the patients with macro and all with micro-prolactinomas had received dopamine agonists preoperatively. Of the 23 patients with macroprolactinomas, in whom the median preoperative PRL concentration was 13255 mU/l, 17 (73.9%) had radiological evidence of suprasellar extension and 5 (21.7%) cavernous sinus invasion. Only 4 (17.4%) of the patients with macroprolactinomas had a normal serum PRL post-operatively, although there was an improvement in visual fields in 66% of those with preoperative defects. The median preoperative PRL concentration was 4309 mU/l in the patients with microprolactinomas, significantly lower than in the macroprolactinoma group (P = 0.02). Despite a significant fall in serum PRL postoperatively (median PRL 860 mU/l, P = 0.0001), only 45.5% of patients had a normal serum PRL concentration after surgery. The cure rate following pituitary surgery for prolactinomas in a tertiary referral centre was low when compared with previous series in which surgery was used as the primary therapeutic modality. We suggest this may result both from dopamine agonist pretreatment and the referral of prolactinomas resistant to conventional therapy. The outcome is probably a more realistic reflection of the results of pituitary surgery for prolactinomas as currently practised in the majority of neuroendocrine centres.

  18. [Female sexual dysfunction: Drug treatment options].

    PubMed

    Alcántara Montero, A; Sánchez Carnerero, C I

    2016-01-01

    Many women will likely experience a sexual problem in their lifetime. Female sexual dysfunction is a broad term used to describe 3 categories of disorders of a multifactorial nature. Effective, but limited pharmacotherapeutic options exist to address female sexual dysfunction. The FDA recently approved the first agent for treatment of hypoactive sexual desire disorder in pre-menopausal women. Off-label use of hormonal therapies, particularly oestrogen and testosterone, are the most widely employed for female sexual dysfunction, particularly in post-menopausal women. Other drugs currently under investigation include phosphodiesterase inhibitors and agents that modulate dopamine or melanocortin receptors. Copyright © 2016 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Investigational agents in the treatment of Parkinson’s disease: focus on safinamide

    PubMed Central

    Malek, Naveed M; Grosset, Donald G

    2012-01-01

    The authors review management issues in Parkinson’s disease (PD) and provide an overview of the current pharmacological management strategies, with a specific focus on safinamide. Current therapeutic management of PD largely involves strategies to optimize the replacement of deficient dopamine, using levodopa, dopamine agonists, and inhibitors of dopamine-metabolizing enzymes. Currently under investigation for use in the treatment of PD, safinamide has multiple modes of action including monoamine oxidase B inhibition. It is well absorbed orally, has a long plasma half-life, and does not have liver enzyme-inducing or liver enzyme-inhibiting activity. Peak plasma concentration occurs 2–4 hours after single oral doses. Safinamide as monotherapy and as an adjunct to dopamine agonists improves Unified Parkinson’s Disease Rating Scale motor scores. One randomized, placebo-controlled trial involving 168 patients given a median safinamide dose of 70 mg/day (range 40–90 mg/day) significantly increased the proportion of responders – defined as patients improving their Unified Parkinson’s Disease Rating Scale motor scores by 30% or more from baseline – after 3 months (37.5% for safinamide versus 21.4% for placebo; P < 0.05). Safinamide increased “on” time with no or minor dyskinesia compared with the placebo in another trial, but dyskinesia severity was not reduced. Safinamide was well tolerated, with an adverse effect profile similar to that of the placebo. Further Phase III trial data for safinamide efficacy is awaited, and will be of interest in a comparison with other developments in PD therapeutics: modified formulations of available compounds, new drug classes such as adenosine receptor antagonists, and gene-based therapies. PMID:27186120

  20. Treatment of ballism and pseudobulbar affect with sertraline.

    PubMed

    Okun, M S; Riestra, A R; Nadeau, S E

    2001-10-01

    The pathogenesis of ballism is uncertain and may involve more than one mechanism; treatment is not always efficacious. To provide evidence of a nondopaminergic mechanism and the potential for a prompt and nearly complete response to a serotonergic agent. Report of 2 separate trials of sertraline hydrochloride in a single patient. Complete remission of symptoms within 48 hours of each drug trial. Sertraline may offer an alternative with a better adverse effect profile than dopamine receptor blockers in the treatment of patients with ballism.

  1. Age-Related Decrements in the Muscarinic Enhancement of K(+)-Evoked Release of Endogenous Striatal Dopamine: An Indicator of Altered Cholinergic-Dopaminergic Reciprocal Inhibitory Control in Senescence

    DTIC Science & Technology

    1988-01-01

    oxotremorine , pilocarpine, carbachol or bethanecol) or nicotinic (nicotine) agonistt In some experiments DA autoreceptor function was assessed...muscarinic (e.g. oxotremorine , carbachol, be- studies using the ligand, [3H](-)-quinuclidinyl benzi- thanecol) or nicotinic (e.g. nicotine) agonists can... oxotremorine MATERIALS AND METHODS r or carbachol in striatal broken cell preparations pre- pared from young rats (6 months), these agents were Procedure

  2. Effects of long-term administration of a cocoa polyphenolic extract (Acticoa powder) on cognitive performances in aged rats.

    PubMed

    Bisson, Jean-François; Nejdi, Amine; Rozan, Pascale; Hidalgo, Sophie; Lalonde, Robert; Messaoudi, Michaël

    2008-07-01

    Numerous studies have indicated that increased vulnerability to oxidative stress may be the main factor involved in functional declines during normal and pathological ageing, and that antioxidant agents, such as polyphenols, may improve or prevent these deficits. We examined whether 1-year administration of a cocoa polyphenolic extract (Acticoa powder), orally delivered at the dose of 24 mg/kg per d between 15 and 27 months of age, affects the onset of age-related cognitive deficits, urinary free dopamine levels and lifespan in old Wistar-Unilever rats. Acticoa powder improved cognitive performances in light extinction and water maze paradigms, increased lifespan and preserved high urinary free dopamine levels. These results suggest that Acticoa powder may be beneficial in retarding age-related brain impairments, including cognitive deficits in normal ageing and perhaps neurodegenerative diseases. Further studies are required to elucidate the mechanisms of cocoa polyphenols in neuroprotection and to explore their effects in man.

  3. Neuroprotective effects of phytochemicals on dopaminergic neuron cultures.

    PubMed

    Sandoval-Avila, S; Diaz, N F; Gómez-Pinedo, U; Canales-Aguirre, A A; Gutiérrez-Mercado, Y K; Padilla-Camberos, E; Marquez-Aguirre, A L; Díaz-Martínez, N E

    2016-06-21

    Parkinson's disease is a progressive neurodegenerative disorder characterised by a loss of dopaminergic neurons in the substantia nigra pars compacta, which results in a significant decrease in dopamine levels and consequent functional motor impairment. Although its aetiology is not fully understood, several pathogenic mechanisms, including oxidative stress, have been proposed. Current therapeutic approaches are based on dopamine replacement drugs; these agents, however, are not able to stop or even slow disease progression. Novel therapeutic approaches aimed at acting on the pathways leading to neuronal dysfunction and death are under investigation. In recent years, such natural molecules as polyphenols, alkaloids, and saponins have been shown to have a neuroprotective effect due to their antioxidant and anti-inflammatory properties. The aim of our review is to analyse the most relevant studies worldwide addressing the benefits of some phytochemicals used in in vitro models of Parkinson's disease. Copyright © 2016 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  4. alpha-Phenyl-N-tert-butyl nitrone attenuates methamphetamine-induced depletion of striatal dopamine without altering hyperthermia.

    PubMed

    Cappon, G D; Broening, H W; Pu, C; Morford, L; Vorhees, C V

    1996-10-01

    Methamphetamine (MA) administration to adult rats (4 x 10 mg/kg s.c.) induces neurotoxicity predominately characterized by a persistent reduction of neostriatal dopamine (DA) content. Hyperthermia following MA administration potentiates the resulting DA depletion. DA-derived free radicals are postulated to be a mechanism through which MA-induced neurotoxicity is produced. The spin trapping agent PBN reacts with free radicals to form nitroxyl adducts, thereby preventing damaging free radical reactions with cellular substrates. MA with saline pretreatment (Sal-MA) reduced neostriatal DA by 55% (P < 0.01 vs. Sal-Sal). MA with PBN pretreatment (PBN-MA) at 36 or 60 mg/kg reduced neostriatal DA by 36 and 22%, respectively (P < 0.05 and P < 0.01 vs Sal-MA) indicating partial protection. PBN pretreatment did not alter MA-induced hyperthermia. Thus, PBN does not attenuate MA-induced neurotoxicity by reducing MA-induced hyperthermia. These results support a role for free radicals in the generation of MA-induced dopaminergic neurotoxicity.

  5. Mussel-inspired hyperbranched poly(amino ester) polymer as strong wet tissue adhesive.

    PubMed

    Zhang, Hong; Bré, Lígia P; Zhao, Tianyu; Zheng, Yu; Newland, Ben; Wang, Wenxin

    2014-01-01

    Current medical adhesives based on cyanoacrylates typically exhibit cellular toxicity. In contrast, fibrin adhesives are non-toxic but have poor adhesive properties. To overcome these drawbacks we designed a simple and scalable adhesive precursor inspired by marine mussel adhesion that functioned with strong adhesion in wet conditions and with low cytotoxicity. Dopamine, an-amine derivative of an amino acid abundantly present in mussel adhesive proteins, was co-polymerised with a tri-functional vinyl monomer, to form a hyperbranched poly(β-amino ester) polymer termed poly(dopamine-co-acrylate) (PDA). A variety of molecular weights and crosslinking methods were analysed using an ex vivo porcine skin model and an almost 4 fold increase in wet adhesion strength was observed compared to TISSEEL(®) fibrin sealant. With a fast curing time, degradable properties and low cytotoxicity, PDA is highly attractive for medical purposes and could have a broad impact on surgeries where surgical tissue adhesives, sealants, and haemostatic agents are used. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Carvacrol: from ancient flavoring to neuromodulatory agent.

    PubMed

    Zotti, Margherita; Colaianna, Marilena; Morgese, Maria Grazia; Tucci, Paolo; Schiavone, Stefania; Avato, Pinarosa; Trabace, Luigia

    2013-05-24

    Oregano and thyme essential oils are used for therapeutic, aromatic and gastronomic purposes due to their richness in active substances, like carvacrol; however, the effects of the latter on the central nervous system have been poorly investigated. The aim of our study was to define the effects of carvacrol on brain neurochemistry and behavioural outcome in rats. Biogenic amine content in the prefrontal cortex and hippocampus after chronic or acute oral carvacrol administration was measured. Animals were assessed by a forced swimming test. Carvacrol, administered for seven consecutive days (12.5 mg/kg p.o.), was able to increase dopamine and serotonin levels in the prefrontal cortex and hippocampus. When single doses were used (150 and 450 mg/kg p.o.), dopamine content was increased in the prefrontal cortex at both dose levels. On the contrary, a significant dopamine reduction in hippocampus of animals treated with 450 mg/kg of carvacrol was found. Acute carvacrol administration only significantly reduced serotonin content in either the prefrontal cortex or in the hippocampus at the highest dose. Moreover, acute carvacrol was ineffective in producing changes in the forced swimming test. Our data suggest that carvacrol is a brain-active molecule that clearly influences neuronal activity through modulation of neurotransmitters. If regularly ingested in low concentrations, it might determine feelings of well-being and could possibly have positive reinforcer effects.

  7. Hypothesizing dopaminergic genetic antecedents in schizophrenia and substance seeking behavior.

    PubMed

    Blum, Kenneth; Oscar-Berman, Marlene; Badgaiyan, Rajendra D; Palomo, Tomas; Gold, Mark S

    2014-05-01

    The dopamine system has been implicated in both substance use disorder (SUD) and schizophrenia. A recent meta-analysis suggests that A1 allele of the DRD2 gene imposes genetic risk for SUD, especially alcoholism and has been implicated in Reward Deficiency Syndrome (RDS). We hypothesize that dopamine D2 receptor (DRD2) gene Taq1 A2 allele is associated with a subtype of non-SUD schizophrenics and as such may act as a putative protective agent against the development of addiction to alcohol or other drugs of abuse. Schizophrenics with SUD may be carriers of the DRD2 Taq1 A1 allele, and/or other RDS reward polymorphisms and have hypodopaminergic reward function. One plausible mechanism for alcohol seeking in schizophrenics with SUD, based on previous research, may be a deficiency of gamma type endorphins that has been linked to schizophrenic type psychosis. We also propose that alcohol seeking behavior in schizophrenics, may serve as a physiological self-healing process linked to the increased function of the gamma endorphins, thereby reducing abnormal dopaminergic activity at the nucleus accumbens (NAc). These hypotheses warrant further investigation and cautious interpretation. We, therefore, encourage research involving neuroimaging, genome wide association studies (GWAS), and epigenetic investigation into the relationship between neurogenetics and systems biology to unravel the role of dopamine in psychiatric illness and SUD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Hypothesizing Dopaminergic Genetic Antecedents in Schizophrenia and Substance Seeking Behavior

    PubMed Central

    Blum, Kenneth; Oscar-Berman, Marlene; Badgaiyan, Rajendra; Palomo, Tomas; Gold, Mark S.

    2014-01-01

    The dopamine system has been implicated in both substance use disorder (SUD) and schizophrenia. A recent meta- analysis suggests that A1 allele of the DRD2 gene imposes genetic risk for SUD, especially alcoholism and has been implicated in Reward Deficiency Syndrome (RDS). We hypothesize that dopamine D2 receptor (DRD2) gene Taq1 A2 allele is associated with a subtype of non- SUD schizophrenics and as such may act as a putative protective agent against the development of addiction to alcohol or other drugs of abuse. Schizophrenics with SUD may be carriers of the DRD2 Taq1 A1 allele, and/or other RDS reward polymorphisms and have hypodopaminergic reward function. One plausible mechanism for alcohol seeking in schizophrenics with SUD, based on previous research, may be a deficiency of gamma type endorphins that has been linked to schizophrenic type psychosis.. We also propose that alcohol seeking behavior in schizophrenics, may serve as a physiological self-healing process linked to the increased function of the gamma endorphins, thereby reducing abnormal dopaminergic activity at the nucleus accumbens (NAc). These hypotheses warrant further investigation and cautious interpretation. We, therefore, encourage research involving neuroimaging, genome wide association studies (GWAS), and epigenetic investigation into the relationship between neurogenetics and systems biology to unravel the role of dopamine in psychiatric illness and SUD. PMID:24636783

  9. A Selective Role for Dopamine in Learning to Maximize Reward But Not to Minimize Effort: Evidence from Patients with Parkinson's Disease.

    PubMed

    Skvortsova, Vasilisa; Degos, Bertrand; Welter, Marie-Laure; Vidailhet, Marie; Pessiglione, Mathias

    2017-06-21

    Instrumental learning is a fundamental process through which agents optimize their choices, taking into account various dimensions of available options such as the possible reward or punishment outcomes and the costs associated with potential actions. Although the implication of dopamine in learning from choice outcomes is well established, less is known about its role in learning the action costs such as effort. Here, we tested the ability of patients with Parkinson's disease (PD) to maximize monetary rewards and minimize physical efforts in a probabilistic instrumental learning task. The implication of dopamine was assessed by comparing performance ON and OFF prodopaminergic medication. In a first sample of PD patients ( n = 15), we observed that reward learning, but not effort learning, was selectively impaired in the absence of treatment, with a significant interaction between learning condition (reward vs effort) and medication status (OFF vs ON). These results were replicated in a second, independent sample of PD patients ( n = 20) using a simplified version of the task. According to Bayesian model selection, the best account for medication effects in both studies was a specific amplification of reward magnitude in a Q-learning algorithm. These results suggest that learning to avoid physical effort is independent from dopaminergic circuits and strengthen the general idea that dopaminergic signaling amplifies the effects of reward expectation or obtainment on instrumental behavior. SIGNIFICANCE STATEMENT Theoretically, maximizing reward and minimizing effort could involve the same computations and therefore rely on the same brain circuits. Here, we tested whether dopamine, a key component of reward-related circuitry, is also implicated in effort learning. We found that patients suffering from dopamine depletion due to Parkinson's disease were selectively impaired in reward learning, but not effort learning. Moreover, anti-parkinsonian medication restored the ability to maximize reward, but had no effect on effort minimization. This dissociation suggests that the brain has evolved separate, domain-specific systems for instrumental learning. These results help to disambiguate the motivational role of prodopaminergic medications: they amplify the impact of reward without affecting the integration of effort cost. Copyright © 2017 the authors 0270-6474/17/376087-11$15.00/0.

  10. [Efficacy of Topical Agents for Symptomatic Treatment of Rotigotine Patch-Induced Skin Disorders].

    PubMed

    Yasutaka, Yuki; Fujioka, Shinsuke; Shibaguchi, Hirotomo; Kiyomi, Fumiaki; Hara, Koyomi; Ogata, Kentaro; Tsuboi, Yoshio; Kamimura, Hidetoshi

    2017-09-01

    Since the effect of a percutaneous absorption-type dopamine agonist (DA) preparation, rotigotine patch, stably persists by once-a-day application, this dosage form is appropriate for Parkinson's disease patients showing levodopa induced wearing off phenomenon. On the other hand, skin disorders, mainly application site reaction, are characteristic problems associated with use of the patch. In this study, to clarify the influence of a topical agent used to prevent or treat rotigotine patch-induced skin disorder on continuation of the patch application, patients who started rotigotine patch application at our hospital were retrospectively surveyed. The one-year continuation rate of rotigotine patch application was 37.3% (53 of 142 cases). It was insufficient to prevent skin disorders, only by the pre-treatment of a moisturizing agent alone. Regarding the effective rate of topical agents used to treat skin disorders, that of very strong-class steroids was 89.5%, being significantly higher than those of weak steroids, moisturizing agents, and antihistamines. It was suggested that for countermeasures against rotigotine patch-induced skin disorders, treatment with very strong-class steroids for external use early after development of skin disorders is more effective than preventive treatment with topical agents regardless of the type. (Received March 30, 2017; Accepted May 16, 2017; Published September 1, 2017).

  11. Renal Failure in Dementia with Lewy Bodies Presenting as Catatonia

    PubMed Central

    Fekete, Robert

    2013-01-01

    Catatonia, originally described by Karl Kahlbaum in 1874, may be regarded as a set of clinical features found in a subtype of schizophrenia, but the syndrome may also stem from organic causes including vascular parkinsonism, brain masses, globus pallidus lesions, metabolic derangements, and pharmacologic agents, especially first generation antipsychotics. Catatonia may include paratonia, waxy flexibility (cerea flexibilitas), stupor, mutism, echolalia, and catalepsy (abnormal posturing). A case of catatonia as a result of acute renal failure in a patient with dementia with Lewy bodies is described. This patient recovered after intravenous fluid administration and reinstitution of the atypical dopamine receptor blocking agent quetiapine, but benzodiazepines and amantadine are additional possible treatments. Recognition of organic causes of catatonia leads to timely treatment and resolution of the syndrome. PMID:23466522

  12. For whom will the Bayesian agents vote?

    NASA Astrophysics Data System (ADS)

    Caticha, Nestor; Cesar, Jonatas; Vicente, Renato

    2015-04-01

    Within an agent-based model where moral classifications are socially learned, we ask if a population of agents behaves in a way that may be compared with conservative or liberal positions in the real political spectrum. We assume that agents first experience a formative period, in which they adjust their learning style acting as supervised Bayesian adaptive learners. The formative phase is followed by a period of social influence by reinforcement learning. By comparing data generated by the agents with data from a sample of 15000 Moral Foundation questionnaires we found the following. 1. The number of information exchanges in the formative phase correlates positively with statistics identifying liberals in the social influence phase. This is consistent with recent evidence that connects the dopamine receptor D4-7R gene, political orientation and early age social clique size. 2. The learning algorithms that result from the formative phase vary in the way they treat novelty and corroborative information with more conservative-like agents treating it more equally than liberal-like agents. This is consistent with the correlation between political affiliation and the Openness personality trait reported in the literature. 3. Under the increase of a model parameter interpreted as an external pressure, the statistics of liberal agents resemble more those of conservative agents, consistent with reports on the consequences of external threats on measures of conservatism. We also show that in the social influence phase liberal-like agents readapt much faster than conservative-like agents when subjected to changes on the relevant set of moral issues. This suggests a verifiable dynamical criterium for attaching liberal or conservative labels to groups.

  13. Reinforcement learning or active inference?

    PubMed

    Friston, Karl J; Daunizeau, Jean; Kiebel, Stefan J

    2009-07-29

    This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain.

  14. The 2014 Philip S. Portoghese Medicinal Chemistry Lectureship: The "Phenylalkylaminome" with a Focus on Selected Drugs of Abuse.

    PubMed

    Glennon, Richard A

    2017-04-13

    The phenylalkylamine, particularly the phenylethylamine, moiety is a common structural feature found embedded in many clinically approved agents. Greater still is its occurrence in drugs of abuse. The simplest phenylethylamine, 2-phenylethylamine itself, is without significant central action when administered at moderate doses, but fairly simple structural modifications profoundly impact its pharmacology and result in large numbers of useful pharmacological tools, agents with therapeutic potential, and in drugs of abuse (e.g., hallucinogens, central stimulants, empathogens), the latter of which are the primary focus here. In vivo drug discrimination techniques and in vitro receptor/transporter methods have been applied to understand the actions of these phenylalkylamines and their mechanisms of action. Thus far, depending upon pendent substituents, certain receptors (e.g., serotonin receptors) and monoamine transporters (i.e., serotonin, dopamine, and norepinephrine transporters) have been implicated as playing major roles in the actions of these abused agents in a complex and, at times, interwoven manner.

  15. Dopamine synapse is a neuroligin-2–mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures

    PubMed Central

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-01-01

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  16. Dopamine-Independent Locomotor Actions of Amphetamines in a Novel Acute Mouse Model of Parkinson Disease

    PubMed Central

    Sotnikova, Tatyana D; Beaulieu, Jean-Martin; Barak, Larry S; Wetsel, William C; Gainetdinov, Raul R

    2005-01-01

    Brain dopamine is critically involved in movement control, and its deficiency is the primary cause of motor symptoms in Parkinson disease. Here we report development of an animal model of acute severe dopamine deficiency by using mice lacking the dopamine transporter. In the absence of transporter-mediated recycling mechanisms, dopamine levels become entirely dependent on de novo synthesis. Acute pharmacological inhibition of dopamine synthesis in these mice induces transient elimination of striatal dopamine accompanied by the development of a striking behavioral phenotype manifested as severe akinesia, rigidity, tremor, and ptosis. This phenotype can be reversed by administration of the dopamine precursor, L-DOPA, or by nonselective dopamine agonists. Surprisingly, several amphetamine derivatives were also effective in reversing these behavioral abnormalities in a dopamine-independent manner. Identification of dopamine transporter- and dopamine-independent locomotor actions of amphetamines suggests a novel paradigm in the search for prospective anti-Parkinsonian drugs. PMID:16050778

  17. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms

    PubMed Central

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-01-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  18. Compulsive behaviors in patients with Parkinson's disease.

    PubMed

    Kenangil, Gülay; Ozekmekçi, Sibel; Sohtaoglu, Melis; Erginöz, Ethem

    2010-05-01

    Several impulse control disorders (ICDs) may develop in patients with Parkinson's disease (PD). We aimed to identify the frequency and phenomenology of ICDs in our PD population. Among 554 PD patients examined in a 3-year period, we identified 33 patients with ICDs. Disease duration, gender, and age-matched 65 PD patients without ICDs were selected as controls. We noted age-at-onset, duration, and severity of PD, dose and types of dopaminergic treatment, as well as presence of motor complications in both groups. Of 554 patients, 33 (5.9%) had ICDs, of whom, 27 were men (81%), mean age-at onset of PD was 48 and disease duration 8 years. While all patients with ICDs were on dopamine agonist drugs (+/- an adjuvant), all but 2 of controls were on dopamine agonists. Punding was the most frequent behavioral problem (57%), 42% exhibited aggressive hypersexuality, 27% compulsive eating, 24% pathologic shopping, and 21% compulsive medication. Severity of PD, presence of l-Dopa-induced motor complications, l-Dopa equivalent doses of dopamine agonists administered were not statistically different between 2 groups. In this study performed in a tertiary clinic for movement disorders in Turkey, several ICDs occurred in a small group of PD patients, mostly in men with young-onset disease, similar to the previous reported series. However, in contrast to the Western series, the number of gamblers was quite low because gambling is illegal in our country. We did not find any association between ICDs and severity of PD as well as doses of dopaminergic agents.

  19. Paraquat exposure-induced Parkinson's disease-like symptoms and oxidative stress in Drosophila melanogaster: Neuroprotective effect of Bougainvillea glabra Choisy.

    PubMed

    Soares, Jefferson J; Rodrigues, Daniela T; Gonçalves, Mayara B; Lemos, Maurício C; Gallarreta, Mariana S; Bianchini, Matheus C; Gayer, Mateus C; Puntel, Robson L; Roehrs, Rafael; Denardin, Elton L G

    2017-11-01

    Extracts from the leaves of Bougainvillea glabra Choisy are used in traditional medicines, but their actions on the central nervous system have not been studied. In the present study, we investigated the potential neuroprotective effects of Bougainvillea glabra Choisy leaf extract (BG extract) against paraquat (PQ)-induced neurotoxicity. Male adult wild-type flies (1- 4days old) were exposed to PQ (3.5mM) and/or BG extract (120μg/mL) through food for 4days. PQ-fed flies had decreased locomotor capacity in negative geotaxis and crossing number assays and had a higher incidence of mortality than the control group. PQ neurotoxicity was also associated with a marked decrease in dopamine levels and increase in acetylcholinesterase (AChE) activity, reactive oxygen species (ROS) production and lipid peroxidation. Co-exposure to BG extract prevented mortality, and dopamine depletion, improved locomotor performance and decreased AChE activity, ROS production and lipid peroxidation. GC-MS and HPLC analyses of BG extract revealed the presence of many antioxidant compounds such as phytol, α,γ-tocopherol, squalene, stigmasterol, geranylgeraniol, quercetin, and caffeic, vanillic, coumaric, ferulic acids. Our results showed neuroprotective effects of BG extract, reflecting the presence of antioxidant compounds. Thus, we suggested that B. glabra leaves could be considered an effective agent in the prevention of neurological disorders, where dopamine depletion and/or oxidative stress are involved, as in Parkinson's disease (PD). Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Piracetam and vinpocetine ameliorate rotenone-induced Parkinsonism in rats.

    PubMed

    Zaitone, Sawsan A; Abo-Elmatty, Dina M; Elshazly, Shimaa M

    2012-01-01

    To evaluate the neuroprotective effect of the nootropic drugs, piracetam (PIR) and vinpocetine (VIN), in rotenone-induced Parkinsonism in rats. Sixty male rats were divided into 6 groups of 10 rats each. The groups were administered vehicle, control (rotenone, 1.5 mg/kg/48 h/6 doses, s.c.), PIR (100 and 200 mg/kg/day, p.o.) and VIN (3 and 6 mg/kg/day, p.o.). The motor performance of the rats was evaluated by the open field and pole test. Striatal dopamine level, malondialdehyde (MDA), reduced glutathione (GSH) and tumor necrosis factor-α (TNF-α) were assayed. Histopathological study of the substantia nigra was also done. Results showed that rotenone-treated rats exhibited bradykinesia and motor impairment in the open-field test. In addition, GSH level was decreased whereas MDA and TNF-α increased in striata of rotenone-treated rats as compared to vehicle-treated rats. Marked degeneration of the substantia nigra pars compacta (SNpc) neurons and depletion of striatal dopamine was also observed in the rotenone-treated rats. Treatment with PIR or VIN significantly reversed the locomotor deficits and increased striatal dopamine level. Treatment with VIN significantly (P<0.05) reduced the striatal level of MDA and GSH in comparison to rotenone group whereas TNF-α production was found to be significantly decreased in PIR group (P<0.05). VIN and PIR exhibit neuroprotective activity in rotenone-induced Parkinsonism. Hence, these nootropic agents may be considered as possible candidates in the treatment of Parkinson's disease.

  1. The latest development of antihypertensive medication

    NASA Astrophysics Data System (ADS)

    Nasution, S.; Rey, I.; Effendi-YS, R.

    2018-03-01

    Hypertension is the most common risk factor for cardiovascular disease, stroke, renal failure, and death. Recent drug monitoring studies found non-adherence to BP lowering therapy in 25% to 65% of patients with apparent treatment-resistant hypertension (TRH). This review focuses on the latest development of antihypertensive medication, such as vasopeptidase inhibitors, aldosterone synthase inhibitors, Soluble Epoxide Hydrolase Inhibitors, agonists of natriuretic peptide receptor, Vasoactive Intestinal Peptide Receptor Agonist, a novel mineralocorticoid receptor antagonist, inhibitors of aminopeptidase A, dopamine β-hydroxylase inhibitor, intestinal Na+/H+ exchanger 3 inhibitor and other agents.

  2. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids

    PubMed Central

    Covey, Dan P.; Bunner, Kendra D.; Schuweiler, Douglas R.; Cheer, Joseph F.; Garris, Paul A.

    2018-01-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement. PMID:27038339

  3. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    PubMed

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Adrenergic support in septic shock: a critical review.

    PubMed

    Póvoa, Pedro; Carneiro, António H

    2010-02-01

    The definition of septic shock includes sepsis-induced hypotension despite adequate fluid resuscitation, along with the presence of organ perfusion abnormalities, and ultimately cell dysfunction. To restore adequate organ perfusion and cell homeostasis, cardiac output should be restored with volume infusion plus vasopressor agents as indicated. Appropriate arterial pressure for each individual patient and proper arterial oxygen content are key elements to restoring perfusion. Tissue perfusion can be monitored by markers of organ and mitochondrial function, namely urine output, level of consciousness, peripheral skin perfusion, central or mixed venous oxygen saturation, and lactate. The hemodynamic effects of the different vasopressor agents depend on the relative affinity to adrenergic receptors. Those with predominant alpha-agonist activity produce more vasoconstriction (inoconstrictors) while those with predominant beta-agonist stimulation increase cardiac performance (inodilators). The debate about whether one vasopressor agent is superior to another is still ongoing. The Surviving Sepsis Campaign guidelines refer to either norepinephrine or dopamine as the first-choice vasopressor agent to correct hypotension in septic shock. However, recent data from observational and controlled trials have challenged these recommendations concerning different adrenergic agents. As a result, our view on the prescription of vasopressors has changed from a probably oversimplified "one-size-fits-all" approach to a multimodal approach in vasopressor selection.

  5. VMAT2 inhibitors for the treatment of tardive dyskinesia.

    PubMed

    Scorr, Laura M; Factor, Stewart A

    2018-06-15

    Tardive dyskinesia (TD) is an often disabling hyperkinetic movement disorder caused by exposure to dopamine receptor blocking agents. Although initially thought to most commonly occur with typical antipsychotics, the incidence is likely similar with atypical antipsychotics and antiemetics such as metoclopramide. Increased prescribing of these agents as well as low rates of remission have contributed to a rising prevalence of TD. Although this condition was described nearly 60 years ago, it is only within the past year that two novel therapeutic agents were FDA approved. Characterization of the VMAT2 inhibitor tetrabenazine, which was identified as a therapeutic agent for TD in older clinical trials, has yielded two distinct pharmacologic strategies to optimize response. The first strategy, used to create deutetrabenazine, employed deuterization of tetrabenazine to stabilize the pharmacokinetics and eliminate high peak plasma levels. The second strategy was the creation of a prodrug, valbenazine, for the two most active isoforms of tetrabenazine that also resulted in more stable pharmacokinetics and eliminated peak plasma levels. Both agents have been demonstrated to be effective and safe for the treatment of TD in multicenter, controlled trials and their development has led to a resurgence of interest in the characterization and treatment of this movement disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Inhibition of dengue virus replication by a class of small-molecule compounds that antagonize dopamine receptor d4 and downstream mitogen-activated protein kinase signaling.

    PubMed

    Smith, Jessica L; Stein, David A; Shum, David; Fischer, Matthew A; Radu, Constantin; Bhinder, Bhavneet; Djaballah, Hakim; Nelson, Jay A; Früh, Klaus; Hirsch, Alec J

    2014-05-01

    Dengue viruses (DENV) are endemic pathogens of tropical and subtropical regions that cause significant morbidity and mortality worldwide. To date, no vaccines or antiviral therapeutics have been approved for combating DENV-associated disease. In this paper, we describe a class of tricyclic small-molecule compounds-dihydrodibenzothiepines (DHBTs), identified through high-throughput screening-with potent inhibitory activity against DENV serotype 2. SKI-417616, a highly active representative of this class, displayed activity against all four serotypes of DENV, as well as against a related flavivirus, West Nile virus (WNV), and an alphavirus, Sindbis virus (SINV). This compound was characterized to determine its mechanism of antiviral activity. Investigation of the stage of the viral life cycle affected revealed that an early event in the life cycle is inhibited. Due to the structural similarity of the DHBTs to known antagonists of the dopamine and serotonin receptors, we explored the roles of two of these receptors, serotonin receptor 2A (5HTR2A) and the D4 dopamine receptor (DRD4), in DENV infection. Antagonism of DRD4 and subsequent downstream phosphorylation of epidermal growth factor receptor (EGFR)-related kinase (ERK) were found to impact DENV infection negatively, and blockade of signaling through this network was confirmed as the mechanism of anti-DENV activity for this class of compounds. The dengue viruses are mosquito-borne, reemerging human pathogens that are the etiological agents of a spectrum of febrile diseases. Currently, there are no approved therapeutic treatments for dengue-associated disease, nor is there a vaccine. This study identifies a small molecule, SKI-417616, with potent anti-dengue virus activity. Further analysis revealed that SKI-417616 acts through antagonism of the host cell dopamine D4 receptor and subsequent repression of the ERK phosphorylation pathway. These results suggest that SKI-417616, or other compounds targeting the same cellular pathways, may have therapeutic potential for the treatment of dengue virus infections.

  7. Pharmacological Investigations of the Dissociative ‘Legal Highs’ Diphenidine, Methoxphenidine and Analogues

    PubMed Central

    Colestock, Tristan; Morris, Hamilton; Bortolotto, Zuner A.; Lodge, David; Halberstadt, Adam L.; Brandt, Simon D.

    2016-01-01

    1,2-Diarylethylamines including lanicemine, lefetamine, and remacemide have clinical relevance in a range of therapeutic areas including pain management, epilepsy, neurodegenerative disease and depression. More recently 1,2-diarylethylamines have been sold as ‘legal highs’ in a number of different forms including powders and tablets. These compounds are sold to circumvent governmental legislation regulating psychoactive drugs. Examples include the opioid MT-45 and the dissociative agents diphenidine (DPH) and 2-methoxy-diphenidine (2-MXP). A number of fatal and non-fatal overdoses have been linked to abuse of these compounds. As with many ‘legal highs’, little is known about their pharmacology. To obtain a better understanding, the effects of DPH, 2-MXP and its 3- and 4-MeO- isomers, and 2-Cl-diphenidine (2-Cl-DPH) were investigated using binding studies at 46 central nervous system receptors including the N-methyl-D-aspartate receptor (NMDAR), serotonin, dopamine, norepinephrine, histamine, and sigma receptors as well as the reuptake transporters for serotonin, dopamine and norepinephrine. Reuptake inhibition potencies were measured at serotonin, norepinephrine and dopamine transporters. NMDAR antagonism was established in vitro using NMDAR-induced field excitatory postsynaptic potential (fEPSP) experiments. Finally, DPH and 2-MXP were investigated using tests of pre-pulse inhibition of startle (PPI) in rats to determine whether they reduce sensorimotor gating, an effect observed with known dissociative drugs such as phencyclidine (PCP) and ketamine. The results suggest that these 1,2-diarylethylamines are relatively selective NMDAR antagonists with weak off-target inhibitory effects on dopamine and norepinephrine reuptake. DPH and 2-MXP significantly inhibited PPI. DPH showed greater potency than 2-MXP, acting with a median effective dose (ED50) of 9.5 mg/kg, which is less potent than values reported for other commonly abused dissociative drugs such as PCP and ketamine. PMID:27314670

  8. Is there room for new non-dopaminergic treatments in Parkinson's disease?

    PubMed

    Pilleri, Manuela; Koutsikos, Konstantinos; Antonini, Angelo

    2013-02-01

    The contribution of non-dopaminergic degeneration to disability in Parkinson's disease (PD) is still debated. It has been argued that no additional advance can be expected in the management of PD by the development of new dopaminergic agents and suggested that future research should mainly focus on therapies targeting the non-dopaminergic systems involved in the pathogenesis of levodopa resistant motor and non-motor symptoms. We believe this is only partially true and the achievement of a stable dopaminergic restoration and modulation of the dopaminergic system is still an important, unmet need of current pharmacological therapies in PD. Currently available oral levodopa and dopamine agonist medications provide insufficient benefit, as the therapeutic window progressively narrows and motor fluctuations eventually develop in most patients. Conversely, the application of infusion and surgical therapies is limited by selective indications and possible irreversible adverse events and device-related problems. Research of new, safer and less invasive strategies, able to modulate the dopaminergic circuits, would certainly improve the management of motor complications, and most importantly such treatments would be also beneficial to axial and non-motor symptoms, which are universally regarded as the major cause of PD functional disability. Indeed, gait and balance problems may improve with dopaminergic treatment in most patients and they become unresponsive only at the very late stages of the disease. Moreover, several non-motor disturbances, including cognition and depression are often linked to oscillation of dopamine concentrations, and are frequently relieved by treatments providing continuous dopaminergic delivery. Finally, drug trials testing non-dopaminergic treatments for motor and non-motor symptoms of PD provided so far disappointing results. Despite the impressive advances of PD therapeutic strategy, we think there is still need for safe, non-invasive and easily manageable dopaminergic treatments able to provide constant dopamine receptor stimulation and ensure a more stable control of dopamine responsive motor and non-motor symptoms at any stage of the disease.

  9. The neurosteroid 3 alpha-hydroxy-5 alpha-pregnan-20-one affects dopamine-mediated behavior in rodents.

    PubMed

    Khisti, Rahul T; Deshpande, Laxmikant S; Chopde, Chandrabhan T

    2002-05-01

    The neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THP) has been previously shown to induce catalepsy in mice that is modified by GABAergic, dopaminergic, adenosinergic and serotonergic agents. In light of the interaction of this endogenous neurosteroid with GABAergic and dopaminergic transmission, there is potential interest in the possible role of 3alpha,5alpha-THP in psychotic disorders. This study assessed the effect of 3alpha,5alpha-THP in certain dopamine-mediated behavioral paradigms that are widely used to predict antipsychotic-like activity. 3alpha,5alpha-THP (1-8 microg per animal, i.c.v.), the classic neuroleptic (dopamine receptor antagonist) haloperidol (0.25 mg/kg, i.p.), and the benzodiazepine diazepam (7 mg/kg, i.p.) were injected into different groups of animals, and their behavior was screened using the following animal tests: conditioned avoidance response, apomorphine-induced climbing, and amphetamine-induced motor hyperactivity. Separate groups of mice that received 3alpha,5alpha-THP (1-8 microg per animal, i.c.v.) were screened for catalepsy. Furthermore, the effect of a sub-cataleptic dose (0.1 microg per mouse, i.c.v.) of 3alpha,5alpha-THP, either alone or in combination with the GABA(A) receptor antagonist picrotoxin (0.8 mg/kg, i.p.) was measured on haloperidol-induced catalepsy. 3alpha,5alpha-THP like haloperidol reduced conditioned avoidance, apomorphine-induced cage climbing and amphetamine-induced motor hyperactivity. Diazepam only affected conditioned avoidance. 3alpha,5alpha-THP also induced dose-dependent catalepsy. Furthermore, sub-cataleptic doses of 3alpha,5alpha-THP potentiated haloperidol-induced catalepsy. This potentiation was blocked by prior treatment with the GABA(A) receptor antagonist picrotoxin. These findings suggest that 3alpha,5alpha-THP, by its action at the GABA(A) receptors, increases GABAergic tone leading to a behavioral profile similar to that of dopamine receptor antagonists.

  10. CNS dopamine oxidation and catechol-O-methyltransferase: importance in the etiology, pharmacotherapy, and dietary prevention of Parkinson's disease.

    PubMed

    Zhu, Bao Ting

    2004-03-01

    In this article, a particular emphasis has been placed on the conceptual development and understanding of the unique pathogenic changes that are indigenous to the striatal dopaminergic neurons as an important etiological factor in human Parkinson's disease (PD) as well as on the understanding of their clinical implications. Specifically, I have discussed the etiological roles of central nervous system dopamine oxidation in PD, along with a critical review of the available evidence in support of the proposed hypotheses. The chemically-reactive dopamine quinone/semiquinone intermediates are known to be highly neurotoxic and potentially genotoxic. There is considerable evidence for the suggestion that the long-term use of levodopa accelerates the progression of PD. In comparison, centrally-acting non-catechol dopamine receptor agonists would be an excellent alternative to levodopa for the treatment of PD (particularly for late-stage PD) because these agents would not undergo redox cycling to cause oxidative neuronal damage. Catechol-O-methyltransferase (COMT)-mediated methylation metabolism of catecholamine neurotransmitters is a crucial first-line detoxification pathway, and its role in the causation and prevention of PD is also discussed. On the basis of the modulation of COMT-mediated methylation of catecholamines, it is mechanistically explained that hyperhomocysteinemia would be a pathogenic factor in PD whereas vitamins B6, B12, and folate would be a protective factor. Lastly, according to the mechanistic understanding developed here, a novel dietary strategy is proposed that is specifically tailored toward lowering the risk of human PD, which includes eating a nutritionally-balanced diet that contains adequate (but not excessive) amounts of fruits and vegetables, along with adequate dietary supplementation of S-adenosyl-L-methionine, vitamins C, B6, B12, and folate. It is believed that these conceptual developments would also aid in our better understanding of other age-related neurodegenerative disorders, such as Alzheimer's and Huntington's diseases.

  11. The use of monoamine pharmacological agents in the treatment of sexual dysfunction: evidence in the literature.

    PubMed

    Moll, Jennifer L; Brown, Candace S

    2011-04-01

    The monoamine neurotransmitters serotonin, dopamine, and norepinephrine play an important role in many medical and psychological conditions, including sexual responsiveness and behavior. Pharmacological agents that modulate monoamines may help alleviate sexual dysfunction. To provide an overview of pharmacological agents that modulate monoamines and their use in the treatment of sexual dysfunction. EMBASE and PubMed search for articles published between 1950 and 2010 using key words "sexual dysfunction,"monoamines,"monoaminergic receptors," and "generic names for pharmacological agents." To assess the literature evaluating the efficacy of monoamine pharmacologic agents used in the treatment of sexual dysfunction. The literature primarily cites the use of monoaminergic agents to treat sexual side effects from serotonergic reuptake inhibitors (SSRIs), with bupropion, buspirone and ropinirole providing the most convincing evidence. Controlled trials have shown that bupropion improves overall sexual dysfunction, but not frequency of sexual activity in depressed and nondepressed patients. Nefazodone and apomorphine have been used to treat sexual dysfunction, but their use is limited by significant side effect and safety profiles. New research on pharmacologic agents with subtype selectivity at dopaminergic and serotonergic receptors and those that possess dual mechanisms of action are being investigated. There has been tremendous progress over the past 50 years in understanding the role of monoamines in sexual function and the effect of pharmacologic agents which stimulate or antagonize monoaminergic receptors on sexual dysfunction. Nevertheless, large, double-blind, placebo-controlled studies evaluating the efficacy of currently available agents in populations without comorbid disorders are limited, preventing adequate interpretation of data. Continued research on sexual function and specific receptor subtypes will result in the development of more selective pharmacologic agents with the goal of increasing efficacy without the dose-limiting side effects of nonselective agents. © 2011 International Society for Sexual Medicine.

  12. Curcumin: a potential neuroprotective agent in Parkinson's disease.

    PubMed

    Mythri, R B; Bharath, M M Srinivas

    2012-01-01

    Parkinson's disease (PD) is an age-associated neurodegenerative disease clinically characterized as a movement disorder. The motor symptoms in PD arise due to selective degeneration of dopaminergic neurons in the substantia nigra of the ventral midbrain thereby depleting the dopamine levels in the striatum. Most of the current pharmacotherapeutic approaches in PD are aimed at replenishing the striatal dopamine. Although these drugs provide symptomatic relief during early PD, many patients develop motor complications with long-term treatment. Further, PD medications do not effectively tackle tremor, postural instability and cognitive deficits. Most importantly, most of these drugs do not exhibit neuroprotective effects in patients. Consequently, novel therapies involving natural antioxidants and plant products/molecules with neuroprotective properties are being exploited for adjunctive therapy. Curcumin is a polyphenol and an active component of turmeric (Curcuma longa), a dietary spice used in Indian cuisine and medicine. Curcumin exhibits antioxidant, anti-inflammatory and anti-cancer properties, crosses the blood-brain barrier and is neuroprotective in neurological disorders. Several studies in different experimental models of PD strongly support the clinical application of curcumin in PD. The current review explores the therapeutic potential of curcumin in PD.

  13. Mussel inspired green synthesis of silver nanoparticles-decorated halloysite nanotube using dopamine: characterization and evaluation of its catalytic activity

    NASA Astrophysics Data System (ADS)

    Das, Tushar Kanti; Ganguly, Sayan; Bhawal, Poushali; Remanan, Sanjay; Mondal, Subhadip; Das, N. C.

    2018-02-01

    Naturally occurring ceramic tubular clay, Halloysite nanotubes (HNTs), having a significant amount of surface hydroxyls has been coated by self-polymerized dopamine in this work. The polydopamine-coated HNTs acts as a self-reducing agent for Ag+ ion to Ag0 in nanometer abundance. Herein, nano size Ag0 deposited on solid support catalyst has been used to mitigate water pollution within 10 min. To establish the versatility of the catalyst, nitroaryl (4-nitrophenol) and synthetic dye (methylene blue) have been chosen as model pollutant. The degradation/reduction of the aforementioned pollutants was confirmed after taking UV-visible spectra of the respective compounds. All the study can make sure that the catalyst is green and the rate constant value for catalytic reduction of 4-nitrophenol and methylene blue was calculated to be 4.45 × 10-3 and 1.13 × 10-3 s-1, respectively, which is found to be more efficient in comparison to other nanostructure and commercial Pt/C nanocatalyst (1.00 × 10-3 s-1).

  14. Detection of neurotransmitters by a light scattering technique based on seed-mediated growth of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Shang, Li; Dong, Shaojun

    2008-03-01

    A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer. In particular, Au-nanoparticle seeds were added to facilitate the growth of nanoparticles, which was found to enhance the sensing performance greatly. Using this light scattering technique based on the seed-mediated growth of gold nanoparticles, detection limits of 4.4 × 10-7 M, 3.5 × 10-7 M, 4.1 × 10-7 M, and 7.7 × 10-7 M were achieved for dopamine, L-dopa, noradrenaline and adrenaline, respectively. The present strategy can be extended to detect other biologically important molecules in a very fast, simple and sensitive way, and may have potential applications in a wide range of fields.

  15. Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals

    PubMed Central

    Daberkow, DP; Brown, HD; Bunner, KD; Kraniotis, SA; Doellman, MA; Ragozzino, ME; Garris, PA; Roitman, MF

    2013-01-01

    Drugs of abuse hijack brain reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting non-exocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties - which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to two hours. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration and frequency of spontaneous dopamine transients, the naturally occurring, non-electrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sucrose reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sucrose-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify up-regulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  16. Acute fasting increases somatodendritic dopamine release in the ventral tegmental area

    PubMed Central

    2015-01-01

    Fasting and food restriction alter the activity of the mesolimbic dopamine system to affect multiple reward-related behaviors. Food restriction decreases baseline dopamine levels in efferent target sites and enhances dopamine release in response to rewards such as food and drugs. In addition to releasing dopamine from axon terminals, dopamine neurons in the ventral tegmental area (VTA) also release dopamine from their soma and dendrites, and this somatodendritic dopamine release acts as an autoinhibitory signal to inhibit neighboring VTA dopamine neurons. It is unknown whether acute fasting also affects dopamine release, including the local inhibitory somatodendritic dopamine release in the VTA. In these studies, I have tested whether fasting affects the inhibitory somatodendritic dopamine release within the VTA by examining whether an acute 24-h fast affects the inhibitory postsynaptic current mediated by evoked somatodendritic dopamine release (D2R IPSC). Fasting increased the contribution of the first action potential to the overall D2R IPSC and increased the ratio of repeated D2R IPSCs evoked at short intervals. Fasting also reduced the effect of forskolin on the D2R IPSC and led to a significantly bigger decrease in the D2R IPSC in low extracellular calcium. Finally, fasting resulted in an increase in the D2R IPSCs when a more physiologically relevant train of D2R IPSCs was used. Taken together, these results indicate that fasting caused a change in the properties of somatodendritic dopamine release, possibly by increasing dopamine release, and that this increased release can be sustained under conditions where dopamine neurons are highly active. PMID:26084913

  17. Decoding the Dopamine Signal in Macaque Prefrontal Cortex: A Simulation Study Using the Cx3Dp Simulator

    PubMed Central

    Spühler, Isabelle Ayumi; Hauri, Andreas

    2013-01-01

    Dopamine transmission in the prefrontal cortex plays an important role in reward based learning, working memory and attention. Dopamine is thought to be released non-synaptically into the extracellular space and to reach distant receptors through diffusion. This simulation study examines how the dopamine signal might be decoded by the recipient neuron. The simulation was based on parameters from the literature and on our own quantified, structural data from macaque prefrontal area 10. The change in extracellular dopamine concentration was estimated at different distances from release sites and related to the affinity of the dopamine receptors. Due to the sparse and random distribution of release sites, a transient heterogeneous pattern of dopamine concentration emerges. Our simulation predicts, however, that at any point in the simulation volume there is sufficient dopamine to bind and activate high-affinity dopamine receptors. We propose that dopamine is broadcast to its distant receptors and any change from the local baseline concentration might be decoded by a transient change in the binding probability of dopamine receptors. Dopamine could thus provide a graduated ‘teaching’ signal to reinforce concurrently active synapses and cell assemblies. In conditions of highly reduced or highly elevated dopamine levels the simulations predict that relative changes in the dopamine signal can no longer be decoded, which might explain why cognitive deficits are observed in patients with Parkinson’s disease, or induced through drugs blocking dopamine reuptake. PMID:23951205

  18. Dopamine D1 and D2 Receptor Immunoreactivities in the Arcuate-Median Eminence Complex and their Link to the Tubero-Infundibular Dopamine Neurons

    PubMed Central

    Romero-Fernandez, W.; Borroto-Escuela, D.O.; Vargas-Barroso, V.; Narváez, M.; Di Palma, M.; Agnati, L.F.; Sahd, J. Larriva

    2014-01-01

    Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tuberoinfundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region. Dopamine D1 and D2 receptors may therefore directly and differentially modulate the activity and/or Dopamine synthesis of substantial numbers of tubero-infundibular dopamine neurons at the somatic and terminal level. The immunohistochemical work also gives support to the view that dopamine D1 receptors and/or dopamine D2 receptors in the lateral palisade zone by mediating dopamine volume transmission may contribute to the inhibition of luteinizing hormone releasing hormone release from nerve terminals in this region. PMID:25308843

  19. Dopamine D1 and D2 receptor immunoreactivities in the arcuate-median eminence complex and their link to the tubero-infundibular dopamine neurons.

    PubMed

    Romero-Fernandez, W; Borroto-Escuela, D O; Vargas-Barroso, V; Narváez, M; Di Palma, M; Agnati, L F; Larriva Sahd, J; Fuxe, K

    2014-07-18

    Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tubero-infundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region.  Dopamine D1 and D2 receptors may therefore directly and differentially modulate the activity and /or Dopamine synthesis of substantial numbers of tubero-infundibular dopamine neurons at the somatic and terminal level. The immunohistochemical work also gives support to the view that dopamine D1 receptors and/or dopamine D2 receptors in the lateral palisade zone by mediating dopamine volume transmission may contribute to the inhibition of luteinizing hormone releasing hormone release from nerve terminals in this region.

  20. Cholinergic Interneurons Underlie Spontaneous Dopamine Release in Nucleus Accumbens

    PubMed Central

    2017-01-01

    The release of dopamine from terminals in the NAc is regulated by a number of factors, including voltage-gated ion channels, D2-autoreceptors, and nAChRs. Cholinergic interneurons (CINs) drive dopamine release through activation of nAChRs on dopamine terminals. Using cyclic voltammetry in mouse brain slices, nAChR-dependent spontaneous dopamine transients and the mechanisms underlying the origin were examined in the NAc. Spontaneous events were infrequent (0.3 per minute), but the rate and amplitude were increased after blocking Kv channels with 4-aminopyridine. Although the firing frequency of CINs was increased by blocking glutamate reuptake with TBOA and the Sk blocker apamin, only 4-aminopyridine increased the frequency of dopamine transients. In contrast, inhibition of CIN firing with the μ/δ selective opioid [Met5]enkephalin (1 μm) decreased spontaneous dopamine transients. Cocaine increased the rate and amplitude of dopamine transients, suggesting that the activity of the dopamine transporter limits the detection of these events. In the presence of cocaine, the rate of spontaneous dopamine transients was further increased after blocking D2-autoreceptors. Blockade of muscarinic receptors had no effect on evoked dopamine release, suggesting that feedback inhibition of acetylcholine release was not involved. Thus, although spontaneous dopamine transients are reliant on nAChRs, the frequency was not strictly governed by the activity of CINs. The increase in frequency of spontaneous dopamine transients induced by cocaine was not due to an increase in cholinergic tone and is likely a product of an increase in detection resulting from decreased dopamine reuptake. SIGNIFICANCE STATEMENT The actions of dopamine in the NAc are thought to be responsible for endogenous reward and the reinforcing properties of drugs of abuse, such as psychostimulants. The present work examines the mechanisms underlying nAChR-induced spontaneous dopamine release. This study demonstrates that spontaneous dopamine release is (1) dependent of the activation of nicotinic receptors, (2) independent on the spontaneous activity of cholinergic interneurons, and (3) that cocaine increased the detection of dopamine transients by prolonging the presence and increasing the diffusion of dopamine in the extracellular space. The release of acetylcholine is therefore responsible for spontaneous dopamine transients, and cocaine augments dopamine tone without altering activity of cholinergic interneurons. PMID:28115487

  1. Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice

    PubMed Central

    Menegas, William; Babayan, Benedicte M; Uchida, Naoshige; Watabe-Uchida, Mitsuko

    2017-01-01

    Dopamine neurons are thought to encode novelty in addition to reward prediction error (the discrepancy between actual and predicted values). In this study, we compared dopamine activity across the striatum using fiber fluorometry in mice. During classical conditioning, we observed opposite dynamics in dopamine axon signals in the ventral striatum (‘VS dopamine’) and the posterior tail of the striatum (‘TS dopamine’). TS dopamine showed strong excitation to novel cues, whereas VS dopamine showed no responses to novel cues until they had been paired with a reward. TS dopamine cue responses decreased over time, depending on what the cue predicted. Additionally, TS dopamine showed excitation to several types of stimuli including rewarding, aversive, and neutral stimuli whereas VS dopamine showed excitation only to reward or reward-predicting cues. Together, these results demonstrate that dopamine novelty signals are localized in TS along with general salience signals, while VS dopamine reliably encodes reward prediction error. DOI: http://dx.doi.org/10.7554/eLife.21886.001 PMID:28054919

  2. Dopamine physiology in the basal ganglia of male zebra finches during social stimulation.

    PubMed

    Ihle, Eva C; van der Hart, Marieke; Jongsma, Minke; Tecott, Larry H; Doupe, Allison J

    2015-06-01

    Accumulating evidence suggests that dopamine (DA) is involved in altering neural activity and gene expression in a zebra finch cortical-basal ganglia circuit specialized for singing, upon the shift between solitary singing and singing as a part of courtship. Our objective here was to sample changes in the extracellular concentrations of DA in Area X of adult and juvenile birds, to test the hypothesis that DA levels would change similarly during presentation of a socially salient stimulus in both age groups. We used microdialysis to sample the extracellular milieu of Area X in awake, behaving adult and juvenile male zebra finches, and analysed the dialysate using high-performance liquid chromatography coupled with electrochemical detection. The extracellular levels of DA in Area X increased significantly during both female presentation to adult males and tutor presentation to juvenile males. DA levels were not correlated with the time spent singing. We also reverse-dialysed Area X with pharmacologic agents that act either on DA systems directly or on norepinephrine, and found that all of these agents significantly increased DA levels (3- to 10-fold) in Area X. These findings suggest that changes in extracellular DA levels can be stimulated similarly by very different social contexts (courtship and interaction with tutor), and influenced potently by dopaminergic and noradrenergic drugs. These results raise the possibility that the arousal level or attentional state of the subject (rather than singing behavior) is the common feature eliciting changes in extracellular DA concentration. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Ventral tegmental ionotropic glutamate receptor stimulation of nucleus accumbens tonic dopamine efflux blunts hindbrain-evoked phasic neurotransmission: implications for dopamine dysregulation disorders.

    PubMed

    Tye, S J; Miller, A D; Blaha, C D

    2013-11-12

    Activation of glutamate receptors within the ventral tegmental area (VTA) stimulates extrasynaptic (basal) dopamine release in terminal regions, including the nucleus accumbens (NAc). Hindbrain inputs from the laterodorsal tegmental nucleus (LDT) are critical for elicitation of phasic VTA dopamine cell activity and consequent transient dopamine release. This study investigated the role of VTA ionotropic glutamate receptor (iGluR) stimulation on both basal and LDT electrical stimulation-evoked dopamine efflux in the NAc using in vivo chronoamperometry and fixed potential amperometry in combination with stearate-graphite paste and carbon fiber electrodes, respectively. Intra-VTA infusion of the iGluR agonists (±)-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA; 1 μg/μl) or N-methyl-d-aspartic acid (NMDA; 2 μg/μl) enhanced basal NAc dopamine efflux. This iGluR-mediated potentiation of basal dopamine efflux was paralleled by an attenuation of LDT-evoked transient NAc dopamine efflux, suggesting that excitation of basal activity effectively inhibited the capacity of hindbrain afferents to elicit transient dopamine efflux. In line with this, post-NMDA infusion of the dopamine D2 autoreceptor (D2R) agonist quinpirole (1 μg/μl; intra-VTA) partially recovered NMDA-mediated attenuation of LDT-evoked NAc dopamine, while concurrently attenuating NMDA-mediated potentiation of basal dopamine efflux. Post-NMDA infusion of quinpirole (1 μg/μl) alone attenuated basal and LDT-evoked dopamine efflux. Taken together, these data reveal that hyperstimulation of basal dopamine transmission can stunt hindbrain burst-like stimulation-evoked dopamine efflux. Inhibitory autoreceptor mechanisms within the VTA help to partially recover the magnitude of phasic dopamine efflux, highlighting the importance of both iGluRs and D2 autoreceptors in maintaining the functional balance of tonic and phasic dopamine neurotransmission. Dysregulation of this balance may have important implications for disorders of dopamine dysregulation such as attention deficit hyperactivity disorder. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. PET evaluation of the dopamine system of the human brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, N.D.; Fowler, J.S.; Gatley, S.

    1996-07-01

    Dopamine plays a pivotal role in the regulation and control of movement, motivation and cognition. It also is closely linked to reward, reinforcement and addiction. Abnormalities in brain dopamine are associated with many neurological and psychiatric disorders including Parkinson`s disease, schizophrenia and substance abuse. This close association between dopamine and neurological and psychiatric diseases and with substance abuse make it an important topic in research in the neurosciences and an important molecular target in drug development. PET enables the direct measurement of components of the dopamine system in the living human brain. It relies on radiotracers which label dopamine receptors,more » dopamine transporters, precursors of dopamine or compounds which have specificity for the enzymes which degrade dopamine. Additionally, by using tracers that provide information on regional brain metabolism or blood flow as well as neurochemically specific pharmacological interventions, PET can be used to assess the functional consequences of change in brain dopamine activity. PET dopamine measurements have been used to investigate the normal human brain and its involvement in psychiatric and neurological diseases. It has also been used in psychopharmacological research to investigate dopamine drugs used in the treatment of Parkinson`s disease and of schizophrenia as well as to investigate the effects of drugs of abuse on the dopamine system. Since various functional and neurochemical parameters can be studied in the same subject, PET enables investigation of the functional integrity of the dopamine system in the human brain and investigation of the interactions of dopamine with other neurotransmitters. This paper summarizes the different tracers and experimental strategies developed to evaluate the various elements of the dopamine system in the human brain with PET and their applications to clinical research. 254 refs., 7 figs., 3 tabs.« less

  5. Adenosine transiently modulates stimulated dopamine release in the caudate putamen via A1 receptors

    PubMed Central

    Ross, Ashley E.; Venton, B. Jill

    2014-01-01

    Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate putamen brain slices. Exogenous adenosine was applied and dopamine concentration monitored. Adenosine only modulated dopamine when it was applied 2 or 5 s before stimulation. Longer time intervals and bath application of 5 µM adenosine did not decrease dopamine release. Mechanical stimulation of endogenous adenosine 2s before dopamine stimulation also decreased stimulated dopamine release by 41 ± 7 %, similar to the 54 ± 6 % decrease in dopamine after exogenous adenosine application. Dopamine inhibition by transient adenosine was recovered within 10 minutes. The A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) blocked the dopamine modulation, whereas dopamine modulation was unaffected by the A2A receptor antagonist SCH 442416. Thus, transient adenosine changes can transiently modulate phasic dopamine release via A1 receptors. These data demonstrate that adenosine has a rapid, but transient, modulatory role in the brain. PMID:25219576

  6. The Role of D2-Autoreceptors in Regulating Dopamine Neuron Activity and Transmission

    PubMed Central

    Ford, Christopher P

    2014-01-01

    Dopamine D2-autoreceptors play a key role in regulating the activity of dopamine neurons and control the synthesis, release and uptake of dopamine. These Gi/o-coupled inhibitory receptors play a major part in shaping dopamine transmission. Found at both somatodendritic and axonal sites, autoreceptors regulate the firing patterns of dopamine neurons and control the timing and amount of dopamine released from their terminals in target regions. Alterations in the expression and activity of autoreceptors are thought to contribute to Parkinson’s disease as well as schizophrenia, drug addiction and attention deficit hyperactivity disorder (ADHD), which emphasizes the importance of D2-autoreceptors in regulating the dopamine system. This review will summarize the cellular actions of dopamine autoreceptors and discuss recent advances that have furthered our understanding of the mechanisms by which D2-receptors control dopamine transmission. PMID:24463000

  7. Dynamic nigrostriatal dopamine biases action selection

    PubMed Central

    Howard, Christopher D.; Li, Hao; Geddes, Claire E.; Jin, Xin

    2017-01-01

    Summary Dopamine is thought to play a critical role in reinforcement learning and goal-directed behavior, but its function in action selection remains largely unknown. Here, we demonstrate that nigrostriatal dopamine biases ongoing action selection. When mice were trained to dynamically switch the action selected at different time points, changes in firing rate of nigrostriatal dopamine neurons, as well as dopamine signaling in the dorsal striatum, were found to be associated with action selection. This dopamine profile is specific to behavioral choice, scalable with interval duration, and doesn’t reflect reward prediction error, timing, or value as single factors alone. Genetic deletion of NMDA receptors on dopamine or striatal neurons, or optogenetic manipulation of dopamine concentration, alters dopamine signaling and biases action selection. These results unveil a crucial role of nigrostriatal dopamine in integrating diverse information for regulating upcoming actions and have important implications for neurological disorders including Parkinson’s disease and substance dependence. PMID:28285820

  8. Dynamic Nigrostriatal Dopamine Biases Action Selection.

    PubMed

    Howard, Christopher D; Li, Hao; Geddes, Claire E; Jin, Xin

    2017-03-22

    Dopamine is thought to play a critical role in reinforcement learning and goal-directed behavior, but its function in action selection remains largely unknown. Here we demonstrate that nigrostriatal dopamine biases ongoing action selection. When mice were trained to dynamically switch the action selected at different time points, changes in firing rate of nigrostriatal dopamine neurons, as well as dopamine signaling in the dorsal striatum, were found to be associated with action selection. This dopamine profile is specific to behavioral choice, scalable with interval duration, and doesn't reflect reward prediction error, timing, or value as single factors alone. Genetic deletion of NMDA receptors on dopamine or striatal neurons or optogenetic manipulation of dopamine concentration alters dopamine signaling and biases action selection. These results unveil a crucial role of nigrostriatal dopamine in integrating diverse information for regulating upcoming actions, and they have important implications for neurological disorders, including Parkinson's disease and substance dependence. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Class side effects: decreased pressure in the lower oesophageal and the pyloric sphincters after the administration of dopamine antagonists, neuroleptics, anti-emetics, L-NAME, pentadecapeptide BPC 157 and L-arginine.

    PubMed

    Belosic Halle, Zeljka; Vlainic, Josipa; Drmic, Domagoj; Strinic, Dean; Luetic, Kresimir; Sucic, Mario; Medvidovic-Grubisic, Maria; Pavelic Turudic, Tatjana; Petrovic, Igor; Seiwerth, Sven; Sikiric, Predrag

    2017-05-17

    The ulcerogenic potential of dopamine antagonists and L-NAME in rats provides unresolved issues of anti-emetic neuroleptic application in both patients and experimental studies. Therefore, in a 1-week study, we examined the pressures within the lower oesophageal and the pyloric sphincters in rats [assessed manometrically (cm H 2 O)] after dopamine neuroleptics/prokinetics, L-NAME, L-arginine and stable gastric pentadecapeptide BPC 157 were administered alone and/or in combination. Medication (/kg) was given once daily intraperitoneally throughout the 7 days, with the last dose at 24 h before pressure assessment. Given as individual agents to healthy rats, all dopamine antagonists (central [haloperidol (6.25 mg, 16 mg, 25 mg), fluphenazine (5 mg), levomepromazine (50 mg), chlorpromazine (10 mg), quetiapine (10 mg), olanzapine (5 mg), clozapine (100 mg), sulpiride (160 mg), metoclopramide (25 mg)) and peripheral(domperidone (10 mg)], L-NAME (5 mg) and L-arginine (100 mg) decreased the pressure within both sphincters. As a common effect, this decreased pressure was rescued, dose-dependently, by BPC 157 (10 µg, 10 ng) (also note that L-arginine and L-NAME given together antagonized each other's responses). With haloperidol, L-NAME worsened both the lower oesophageal and the pyloric sphincter pressure, while L-arginine ameliorated lower oesophageal sphincter but not pyloric sphincter pressure, and antagonized L-NAME effect. With domperidone, L-arginine originally had no effect, while L-NAME worsened pyloric sphincter pressure. This effect was opposed by L-arginine. All these effects were further reversed towards a stronger beneficial effect, close to normal pressure values, by the addition of BPC 157. In addition, NO level was determined in plasma, sphincters and brain tissue. Thiobarbituric acid reactive substances (TBARS) were also assessed. Haloperidol increased NO levels (in both sphincters, the plasma and brain), consistently producing increased TBARS levels in the plasma, sphincters and brain tissues. These effects were all counteracted by BPC 157 administration. In conclusion, we revealed that BPC 157 counteracts the anti-emetic neuroleptic class side effect of decreased pressure in sphincters and the dopamine/NO-system/BPC 157 relationship.

  10. Putting desire on a budget: dopamine and energy expenditure, reconciling reward and resources

    PubMed Central

    Beeler, Jeff A.; Frazier, Cristianne R. M.; Zhuang, Xiaoxi

    2012-01-01

    Accumulating evidence indicates integration of dopamine function with metabolic signals, highlighting a potential role for dopamine in energy balance, frequently construed as modulating reward in response to homeostatic state. Though its precise role remains controversial, the reward perspective of dopamine has dominated investigation of motivational disorders, including obesity. In the hypothesis outlined here, we suggest instead that the primary role of dopamine in behavior is to modulate activity to adapt behavioral energy expenditure to the prevailing environmental energy conditions, with the role of dopamine in reward and motivated behaviors derived from its primary role in energy balance. Dopamine has long been known to modulate activity, exemplified by psychostimulants that act via dopamine. More recently, there has been nascent investigation into the role of dopamine in modulating voluntary activity, with some investigators suggesting that dopamine may serve as a final common pathway that couples energy sensing to regulated voluntary energy expenditure. We suggest that interposed between input from both the internal and external world, dopamine modulates behavioral energy expenditure along two axes: a conserve-expend axis that regulates generalized activity and an explore-exploit axes that regulates the degree to which reward value biases the distribution of activity. In this view, increased dopamine does not promote consumption of tasty food. Instead increased dopamine promotes energy expenditure and exploration while decreased dopamine favors energy conservation and exploitation. This hypothesis provides a mechanistic interpretation to an apparent paradox: the well-established role of dopamine in food seeking and the findings that low dopaminergic functions are associated with obesity. Our hypothesis provides an alternative perspective on the role of dopamine in obesity and reinterprets the “reward deficiency hypothesis” as a perceived energy deficit. We propose that dopamine, by facilitating energy expenditure, should be protective against obesity. We suggest the apparent failure of this protective mechanism in Western societies with high prevalence of obesity arises as a consequence of sedentary lifestyles that thwart energy expenditure. PMID:22833718

  11. Control of extracellular dopamine at dendrite and axon terminals

    PubMed Central

    Ford, Christopher P.; Gantz, Stephanie C.; Phillips, Paul E. M.; Williams, John T.

    2010-01-01

    Midbrain dopamine neurons release dopamine from both axons and dendrites. The mechanism underlying release at these different sites has been proposed to differ. This study used electrochemical and electrophysiological methods to compare the time course and calcium-dependence of somatodendritc dopamine release in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) to that of axonal dopamine release in the dorsal striatum. The amount of dopamine released in the striatum was ~20 fold greater than in cell body regions of the VTA or SNc. However the calcium dependence and time to peak of the dopamine transients were similar. These results illustrate an unexpected overall similarity in the mechanisms of dopamine release in the striatum and cell body regions. To examine how diffusion regulates the time course of dopamine following release, dextran was added to the extracellular solution to slow diffusion. In the VTA, dextran slowed the rate of rise and fall of the extracellular dopamine transient as measured by fast-scan cyclic voltammetry (FSCV) yet did not alter the kinetics of the dopamine dependent inhibitory post-synaptic current (IPSC). Dextran failed to significantly alter the time course of the rise and fall of the dopamine transient in the striatum suggesting a more influential role for reuptake in the striatum. The conclusion is that the time course of dopamine within the extracellular space of the VTA is dependent on both diffusion and reuptake, whereas the activation of D2-receptors on dopamine neurons is primarily limited by reuptake. PMID:20484639

  12. Initial elevations in glutamate and dopamine neurotransmission decline with age, as does exploratory behavior, in LRRK2 G2019S knock-in mice

    PubMed Central

    Kuhlmann, Naila; Kadgien, Chelsie A; Tatarnikov, Igor; Fox, Jesse; Khinda, Jaskaran; Mitchell, Emma; Bergeron, Sabrina; Melrose, Heather

    2017-01-01

    LRRK2 mutations produce end-stage Parkinson’s disease (PD) with reduced nigrostriatal dopamine, whereas, asymptomatic carriers have increased dopamine turnover and altered brain connectivity. LRRK2 pathophysiology remains unclear, but reduced dopamine and mitochondrial abnormalities occur in aged G2019S mutant knock-in (GKI) mice. Conversely, cultured GKI neurons exhibit increased synaptic transmission. We assessed behavior and synaptic glutamate and dopamine function across a range of ages. Young GKI mice exhibit more vertical exploration, elevated glutamate and dopamine transmission, and aberrant D2-receptor responses. These phenomena decline with age, but are stable in littermates. In young GKI mice, dopamine transients are slower, independent of dopamine transporter (DAT), increasing the lifetime of extracellular dopamine. Slowing of dopamine transients is observed with age in littermates, suggesting premature ageing of dopamine synapses in GKI mice. Thus, GKI mice exhibit early, but declining, synaptic and behavioral phenotypes, making them amenable to investigation of early pathophysiological, and later parkinsonian-like, alterations. This model will prove valuable in efforts to develop neuroprotection for PD. PMID:28930069

  13. The impact of a parkinsonian lesion on dynamic striatal dopamine transmission depends on nicotinic receptor activation

    PubMed Central

    Jennings, Katie A.; Platt, Nicola J.; Cragg, Stephanie J.

    2015-01-01

    Dopamine function is disturbed in Parkinson's disease (PD), but whether and how release of dopamine from surviving neurons is altered has long been debated. Nicotinic acetylcholine receptors (nAChRs) on dopamine axons powerfully govern dopamine release and could be critical contributing factors. We revisited whether fundamental properties of dopamine transmission are changed in a parkinsonian brain and tested the potentially profound masking effects of nAChRs. Using real-time detection of dopamine in mouse striatum after a partial 6-hydroxydopamine lesion and under nAChR inhibition, we reveal that dopamine signals show diminished sensitivity to presynaptic activity. This effect manifested as diminished contrast between DA release evoked by the lowest versus highest frequencies. This reduced activity-dependence was underpinned by loss of short-term facilitation of dopamine release, consistent with an increase in release probability (Pr). With nAChRs active, the reduced activity-dependence of dopamine release after a parkinsonian lesion was masked. Consequently, moment-by-moment variation in activity of nAChRs may lead to dynamic co-variation in dopamine signal impairments in PD. PMID:26117304

  14. Initial elevations in glutamate and dopamine neurotransmission decline with age, as does exploratory behavior, in LRRK2 G2019S knock-in mice.

    PubMed

    Volta, Mattia; Beccano-Kelly, Dayne A; Paschall, Sarah A; Cataldi, Stefano; MacIsaac, Sarah E; Kuhlmann, Naila; Kadgien, Chelsie A; Tatarnikov, Igor; Fox, Jesse; Khinda, Jaskaran; Mitchell, Emma; Bergeron, Sabrina; Melrose, Heather; Farrer, Matthew J; Milnerwood, Austen J

    2017-09-20

    LRRK2 mutations produce end-stage Parkinson's disease (PD) with reduced nigrostriatal dopamine, whereas, asymptomatic carriers have increased dopamine turnover and altered brain connectivity. LRRK2 pathophysiology remains unclear, but reduced dopamine and mitochondrial abnormalities occur in aged G2019S mutant knock-in (GKI) mice. Conversely, cultured GKI neurons exhibit increased synaptic transmission. We assessed behavior and synaptic glutamate and dopamine function across a range of ages. Young GKI mice exhibit more vertical exploration, elevated glutamate and dopamine transmission, and aberrant D2-receptor responses. These phenomena decline with age, but are stable in littermates. In young GKI mice, dopamine transients are slower, independent of dopamine transporter (DAT), increasing the lifetime of extracellular dopamine. Slowing of dopamine transients is observed with age in littermates, suggesting premature ageing of dopamine synapses in GKI mice. Thus, GKI mice exhibit early, but declining, synaptic and behavioral phenotypes, making them amenable to investigation of early pathophysiological, and later parkinsonian-like, alterations. This model will prove valuable in efforts to develop neuroprotection for PD.

  15. In vitro and in vivo evaluation of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate)/dopamine-coated electrodes for dopamine delivery.

    PubMed

    Sui, L; Song, X J; Ren, J; Cai, W J; Ju, L H; Wang, Y; Wang, L Y; Chen, M

    2014-06-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrene sulfonate) (PSS) has a variety of chemical and biomedical applications. The application of PEDOT/PSS polymers in drug delivery has attracted attention. However, whether conducting polymers of PEDOT/PSS could be used for dopamine delivery has not clear. In the present study, the PEDOT/PSS coatings incorporated with dopamine were fabricated on 0.5 mm diameter platinum electrodes, electrochemical properties, and dopamine delivery capacities of these electrodes were evaluated in vitro and in vivo through implanting these electrodes into brain striatum area. The findings demonstrated that the PEDOT/PSS/dopamine coatings on platinum electrodes could reduce electrodes impedances, increase charge storage capacities, and release significant levels of dopamine upon electrical stimulation of these electrodes. These results indicated that polymers of PEDOT/PSS/dopamine could be used for dopamine delivery, implicating potential application of PEDOT/PSS/dopamine-coated implantable electrodes in the treatment of some diseases associated with dopamine deficits, such as, electrodes for the treatment of Parkinson's disease during deep brain stimulation. Copyright © 2013 Wiley Periodicals, Inc.

  16. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats.

    PubMed

    Pahuja, Richa; Seth, Kavita; Shukla, Anshi; Shukla, Rajendra Kumar; Bhatnagar, Priyanka; Chauhan, Lalit Kumar Singh; Saxena, Prem Narain; Arun, Jharna; Chaudhari, Bhushan Pradosh; Patel, Devendra Kumar; Singh, Sheelendra Pratap; Shukla, Rakesh; Khanna, Vinay Kumar; Kumar, Pradeep; Chaturvedi, Rajnish Kumar; Gupta, Kailash Chand

    2015-05-26

    Sustained and safe delivery of dopamine across the blood brain barrier (BBB) is a major hurdle for successful therapy in Parkinson's disease (PD), a neurodegenerative disorder. Therefore, in the present study we designed neurotransmitter dopamine-loaded PLGA nanoparticles (DA NPs) to deliver dopamine to the brain. These nanoparticles slowly and constantly released dopamine, showed reduced clearance of dopamine in plasma, reduced quinone adduct formation, and decreased dopamine autoxidation. DA NPs were internalized in dopaminergic SH-SY5Y cells and dopaminergic neurons in the substantia nigra and striatum, regions affected in PD. Treatment with DA NPs did not cause reduction in cell viability and morphological deterioration in SH-SY5Y, as compared to bulk dopamine-treated cells, which showed reduced viability. Herein, we report that these NPs were able to cross the BBB and capillary endothelium in the striatum and substantia nigra in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Systemic intravenous administration of DA NPs caused significantly increased levels of dopamine and its metabolites and reduced dopamine-D2 receptor supersensitivity in the striatum of parkinsonian rats. Further, DA NPs significantly recovered neurobehavioral abnormalities in 6-OHDA-induced parkinsonian rats. Dopamine delivered through NPs did not cause additional generation of ROS, dopaminergic neuron degeneration, and ultrastructural changes in the striatum and substantia nigra as compared to 6-OHDA-lesioned rats. Interestingly, dopamine delivery through nanoformulation neither caused alterations in the heart rate and blood pressure nor showed any abrupt pathological change in the brain and other peripheral organs. These results suggest that NPs delivered dopamine into the brain, reduced dopamine autoxidation-mediated toxicity, and ultimately reversed neurochemical and neurobehavioral deficits in parkinsonian rats.

  17. Effect of beta-phenylethylamine on extracellular concentrations of dopamine in the nucleus accumbens and prefrontal cortex.

    PubMed

    Murata, Mikio; Katagiri, Nobuyuki; Ishida, Kota; Abe, Kenji; Ishikawa, Masago; Utsunomiya, Iku; Hoshi, Keiko; Miyamoto, Ken-ichi; Taguchi, Kyoji

    2009-05-07

    It is known that psychostimulants stimulate dopamine transmission in the nucleus accumbens. In the present study, we examined the effects of systemically administered beta-phenylethylamine (beta-PEA), a psychomotor-stimulating trace amine, on dopamine concentrations in the nucleus accumbens and prefrontal cortex in freely moving rats, using an in vivo microdialysis technique. Intraperitoneal administration of beta-PEA (12.5 and 25 mg/kg) significantly increased extracellular dopamine levels in the nucleus accumbens shell. The observed increase in the dopamine concentration in nucleus accumbens shell dialysate after intraperitoneal administration of 25 mg/kg beta-PEA was inhibited by pre-treatment with a dopamine uptake inhibitor, GBR12909 (10 mg/kg, i.p.). In contrast, beta-PEA (25 mg/kg, i.p.) did not affect dopamine release in the nucleus accumbens core. Although a high dose of beta-PEA (50 mg/kg) significantly increased dopamine levels in the nucleus accumbens core, the dopamine increasing effect of beta-PEA was more potent in the nucleus accumbens shell. Systemic administration of 12.5 and 25 mg/kg beta-PEA also increased extracellular dopamine levels in the prefrontal cortex of rats. However, systemic 25 mg/kg beta-PEA-induced increases in extracellular dopamine levels were not blocked by GBR12909 within the prefrontal cortex. These results suggest that beta-PEA has a greater effect in the shell than in the core and low-dose beta-PEA stimulates dopamine release in the nucleus accumbens shell through uptake by a dopamine transporter. Similarly, beta-PEA increased extracellular dopamine levels in the prefrontal cortex. Thus, beta-PEA may increase extracellular dopamine concentrations in the mesocorticolimbic pathway.

  18. Putative presynaptic dopamine dysregulation in schizophrenia is supported by molecular evidence from post-mortem human midbrain

    PubMed Central

    Purves-Tyson, T D; Owens, S J; Rothmond, D A; Halliday, G M; Double, K L; Stevens, J; McCrossin, T; Shannon Weickert, C

    2017-01-01

    The dopamine hypothesis of schizophrenia posits that increased subcortical dopamine underpins psychosis. In vivo imaging studies indicate an increased presynaptic dopamine synthesis capacity in striatal terminals and cell bodies in the midbrain in schizophrenia; however, measures of the dopamine-synthesising enzyme, tyrosine hydroxylase (TH), have not identified consistent changes. We hypothesise that dopamine dysregulation in schizophrenia could result from changes in expression of dopamine synthesis enzymes, receptors, transporters or catabolic enzymes. Gene expression of 12 dopamine-related molecules was examined in post-mortem midbrain (28 antipsychotic-treated schizophrenia cases/29 controls) using quantitative PCR. TH and the synaptic dopamine transporter (DAT) proteins were examined in post-mortem midbrain (26 antipsychotic-treated schizophrenia cases per 27 controls) using immunoblotting. TH and aromatic acid decarboxylase (AADC) mRNA and TH protein were unchanged in the midbrain in schizophrenia compared with controls. Dopamine receptor D2 short, vesicular monoamine transporter (VMAT2) and DAT mRNAs were significantly decreased in schizophrenia, with no change in DRD3 mRNA, DRD3nf mRNA and DAT protein between diagnostic groups. However, DAT protein was significantly increased in putatively treatment-resistant cases of schizophrenia compared to putatively treatment-responsive cases. Midbrain monoamine oxidase A (MAOA) mRNA was increased, whereas MAOB and catechol-O-methyl transferase mRNAs were unchanged in schizophrenia. We conclude that, whereas some mRNA changes are consistent with increased dopamine action (decreased DAT mRNA), others suggest reduced dopamine action (increased MAOA mRNA) in the midbrain in schizophrenia. Here, we identify a molecular signature of dopamine dysregulation in the midbrain in schizophrenia that mainly includes gene expression changes of molecules involved in dopamine synthesis and in regulating the time course of dopamine action. PMID:28094812

  19. Treatment of Parkinson’s disease: nanostructured sol–gel silica–dopamine reservoirs for controlled drug release in the central nervous system

    PubMed Central

    López, Tessy; Bata-García, José L; Esquivel, Dulce; Ortiz-Islas, Emma; Gonzalez, Richard; Ascencio, Jorge; Quintana, Patricia; Oskam, Gerko; Álvarez-Cervera, Fernando J; Heredia-López, Francisco J; Góngora-Alfaro, José L

    2011-01-01

    Introduction We have evaluated the use of silica–dopamine reservoirs synthesized by the sol–gel approach with the aim of using them in the treatment of Parkinson’s disease, specifically as a device for the controlled release of dopamine in the striatum. Theoretical calculations illustrate that dopamine is expected to assume a planar structure and exhibit weak interactions with the silica surface. Methods Several samples were prepared by varying the wt% of dopamine added during the hydrolysis of tetraethyl orthosilicate. The silica–dopamine reservoirs were characterized by N2 adsorption, scanning and transmission electron microscopy, and Fourier transform infrared spectroscopy. The in vitro release profiles were determined using ultraviolet visible absorbance spectroscopy. The textural analyses showed a maximum value for the surface area of 620 m2/g nanostructured silica materials. The stability of dopamine in the silica network was confirmed by infrared and 13C-nuclear magnetic resonance spectroscopy. The reservoirs were evaluated by means of apomorphine-induced rotation behavior in hemiparkisonian rats. Results The in vitro dopamine delivery profiles indicate two regimes of release, a fast and sustained dopamine delivery was observed up to 24 hours, and after this time the rate of delivery became constant. Histologic analysis of formalin-fixed brains performed 24–32 weeks after reservoir implantation revealed that silica–dopamine implants had a reddish-brown color, suggesting the presence of oxidized dopamine, likely caused by the fixation procedure, while implants without dopamine were always translucent. Conclusion The major finding of the study was that intrastriatal silica–dopamine implants reversed the rotational asymmetry induced by apomorphine, a dopamine agonist, in hemiparkinsonian rats. No dyskinesias or other motor abnormalities were observed in animals implanted with silica or silica–dopamine. PMID:21289978

  20. Midbrain dopamine neurons signal aversion in a reward-context-dependent manner

    PubMed Central

    Matsumoto, Hideyuki; Tian, Ju; Uchida, Naoshige; Watabe-Uchida, Mitsuko

    2016-01-01

    Dopamine is thought to regulate learning from appetitive and aversive events. Here we examined how optogenetically-identified dopamine neurons in the lateral ventral tegmental area of mice respond to aversive events in different conditions. In low reward contexts, most dopamine neurons were exclusively inhibited by aversive events, and expectation reduced dopamine neurons’ responses to reward and punishment. When a single odor predicted both reward and punishment, dopamine neurons’ responses to that odor reflected the integrated value of both outcomes. Thus, in low reward contexts, dopamine neurons signal value prediction errors (VPEs) integrating information about both reward and aversion in a common currency. In contrast, in high reward contexts, dopamine neurons acquired a short-latency excitation to aversive events that masked their VPE signaling. Our results demonstrate the importance of considering the contexts to examine the representation in dopamine neurons and uncover different modes of dopamine signaling, each of which may be adaptive for different environments. DOI: http://dx.doi.org/10.7554/eLife.17328.001 PMID:27760002

  1. Cross-hemispheric dopamine projections have functional significance

    PubMed Central

    Fox, Megan E.; Mikhailova, Maria A.; Bass, Caroline E.; Takmakov, Pavel; Gainetdinov, Raul R.; Budygin, Evgeny A.; Wightman, R. Mark

    2016-01-01

    Dopamine signaling occurs on a subsecond timescale, and its dysregulation is implicated in pathologies ranging from drug addiction to Parkinson’s disease. Anatomic evidence suggests that some dopamine neurons have cross-hemispheric projections, but the significance of these projections is unknown. Here we report unprecedented interhemispheric communication in the midbrain dopamine system of awake and anesthetized rats. In the anesthetized rats, optogenetic and electrical stimulation of dopamine cells elicited physiologically relevant dopamine release in the contralateral striatum. Contralateral release differed between the dorsal and ventral striatum owing to differential regulation by D2-like receptors. In the freely moving animals, simultaneous bilateral measurements revealed that dopamine release synchronizes between hemispheres and intact, contralateral projections can release dopamine in the midbrain of 6-hydroxydopamine–lesioned rats. These experiments are the first, to our knowledge, to show cross-hemispheric synchronicity in dopamine signaling and support a functional role for contralateral projections. In addition, our data reveal that psychostimulants, such as amphetamine, promote the coupling of dopamine transients between hemispheres. PMID:27298371

  2. Mesolimbic Dopamine Signals the Value of Work

    PubMed Central

    Hamid, Arif A.; Pettibone, Jeffrey R.; Mabrouk, Omar S.; Hetrick, Vaughn L.; Schmidt, Robert; Vander Weele, Caitlin M.; Kennedy, Robert T.; Aragona, Brandon J.; Berke, Joshua D.

    2015-01-01

    Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (“phasic”) dopamine fluctuations support learning, while much slower (“tonic”) dopamine changes are involved in motivation. We examined dopamine release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods during adaptive decision-making. We first show that minute-by-minute dopamine levels covary with reward rate and motivational vigor. We then show that second-by-second dopamine release encodes an estimate of temporally-discounted future reward (a value function). We demonstrate that changing dopamine immediately alters willingness to work, and reinforces preceding action choices by encoding temporal-difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly-evolving decision variable, the available reward for investment of effort, that is employed for both learning and motivational functions. PMID:26595651

  3. A peptide disrupting the D2R-DAT interaction protects against dopamine neurotoxicity.

    PubMed

    Su, Ping; Liu, Fang

    2017-09-01

    Dopamine reuptake from extracellular space to cytosol leads to accumulation of dopamine, which triggers neurotoxicity in dopaminergic neurons. Previous studies have shown that both dopamine D2 receptor (D2R) and dopamine transporter (DAT) are involved in dopamine neurotoxicity. However, blockade of either D2R or DAT causes side effects due to antagonism of other physiological functions of these two proteins. We previously found that DAT can form a protein complex with D2R and its cell surface expression is facilitated via D2R-DAT interaction, which regulates dopamine reuptake and intracellular dopamine levels. Here we found that an interfering peptide (DAT-S1) disrupting the D2R-DAT interaction protects neurons against dopamine neurotoxicity, and this effect is mediated by inhibiting DAT cell surface expression and inhibiting both caspase-3 and PARP-1 cleavage. This study demonstrates the role of the D2R-DAT complex in dopamine neurotoxicity and investigated the potential mechanisms, which might help better understand the mechanisms of dopamine neurotoxicity. The peptide may provide some insights to improve treatments for dopamine neurotoxicity and related diseases, such as Parkinson's disease, as well as methamphetamine- and 3,4-methsylenedioxy methamphetamine-induced neurotoxicity. Copyright © 2017. Published by Elsevier Inc.

  4. Adding Dopamine to Proxymetacaine or Oxybuprocaine Solutions Potentiates and Prolongs the Cutaneous Antinociception in Rats.

    PubMed

    Chen, Yu-Wen; Chiu, Chong-Chi; Lin, Heng-Teng; Wang, Jhi-Joung; Hung, Ching-Hsia

    2018-05-01

    We evaluated the interaction of dopamine-proxymetacaine and dopamine- oxybuprocaine antinociception using isobolograms. This experiment uses subcutaneous drug (proxymetacaine, oxybuprocaine, and dopamine) injections under the skin of the rat's back, thus simulating infiltration blocks. The dose-related antinociceptive curves of proxymetacaine and oxybuprocaine alone and in combination with dopamine were constructed, and then the antinociceptive interactions between the local anesthetic and dopamine were analyzed using isobolograms. Subcutaneous proxymetacaine, oxybuprocaine, and dopamine produced a sensory block to local skin pinpricks in a dose-dependent fashion. The rank order of potency was proxymetacaine (0.57 [0.52-0.63] μmol/kg) > oxybuprocaine (1.05 [0.96-1.15] μmol/kg) > dopamine (165 [154-177] μmol/kg; P < .01 for each comparison) based on the 50% effective dose values. On the equianesthetic basis (25% effective dose, 50% effective dose, and 75% effective dose), the nociceptive block duration of proxymetacaine or oxybuprocaine was shorter than that of dopamine (P < .01). Oxybuprocaine or proxymetacaine coinjected with dopamine elicited a synergistic antinociceptive effect and extended the duration of action. Oxybuprocaine and proxymetacaine had a higher potency and provoked a shorter duration of sensory block compared with dopamine. The use of dopamine increased the quality and duration of skin antinociception caused by oxybuprocaine and proxymetacaine.

  5. Use of fast-scan cyclic voltammetry to assess phasic dopamine release in rat models of early postpartum maternal behavior and neglect.

    PubMed

    Shnitko, Tatiana A; Mace, Kyla D; Sullivan, Kaitlin M; Martin, W Kyle; Andersen, Elizabeth H; Williams Avram, Sarah K; Johns, Josephine M; Robinson, Donita L

    2017-12-01

    Maternal behavior (MB) is a complex response to infant cues, orchestrated by postpartum neurophysiology. Although mesolimbic dopamine contributes toward MB, little is known about real-time dopamine fluctuations during the postpartum period. Thus, we used fast-scan cyclic voltammetry to measure individual dopamine transients in the nucleus accumbens of early postpartum rats and compared them with dopamine transients in virgins and in postpartum females exposed to cocaine during pregnancy, which is known to disrupt MB. We hypothesized that dopamine transients are normally enhanced postpartum and support MB. In anesthetized rats, electrically evoked dopamine release was larger and clearance was faster in postpartum females than in virgins and gestational cocaine exposure blocked the change in clearance. In awake rats, control mothers showed more dopamine transients than cocaine-exposed mothers during MB. Salient pup-produced stimuli may contribute toward differences in maternal phasic dopamine by evoking dopamine transients; supporting the feasibility of this hypothesis, urine composition (glucose, ketones, and leukocytes) differed between unexposed and cocaine-exposed infants. These data, resulting from the novel application of fast-scan cyclic voltammetry to models of MB, support the hypothesis that phasic dopamine signaling is enhanced postpartum. Future studies with additional controls can delineate which aspects of gestational cocaine reduce dopamine clearance and transient frequency.

  6. Pharmacological approaches to methamphetamine dependence: a focused review.

    PubMed

    Karila, Laurent; Weinstein, Aviv; Aubin, Henri-Jean; Benyamina, Amine; Reynaud, Michel; Batki, Steven L

    2010-06-01

    Methamphetamine dependence is a serious worldwide public health problem with major medical, psychiatric, socioeconomic and legal consequences. Various neuronal mechanisms implicated in methamphetamine dependence have suggested several pharmacological approaches. A literature search from a range of electronic databases (PubMed, EMBASE, PsycInfo, the NIDA research monograph index and the reference list of clinicaltrials.gov) was conducted for the period from January 1985 to October 2009. There were no restrictions on the identification or inclusion of studies in terms of publication status, language and design type. A variety of medications have failed to show efficacy in clinical trials, including a dopamine partial agonist (aripiprazole), GABAergic agents (gabapentin) and serotonergic agents (SSRI, ondansetron, mirtazapine). Three double-blind placebo-controlled trials using modafinil, bupropion and naltrexone have shown positive results in reducing amphetamine or methamphetamine use. Two studies employing agonist replacement medications, one with d-amphetamine and the other with methylphenidate, have also shown promise. Despite the lack of success in most studies to date, increasing efforts are being made to develop medications for the treatment of methamphetamine dependence and several promising agents are targets of further research.

  7. Acute phenylalanine/tyrosine depletion of phasic dopamine in the rat brain.

    PubMed

    Shnitko, Tatiana A; Taylor, Sarah C; Stringfield, Sierra J; Zandy, Shannon L; Cofresí, Roberto U; Doherty, James M; Lynch, William B; Boettiger, Charlotte A; Gonzales, Rueben A; Robinson, Donita L

    2016-06-01

    Dopamine plays a critical role in striatal and cortical function, and depletion of the dopamine precursors phenylalanine and tyrosine is used in humans to temporarily reduce dopamine and probe the role of dopamine in behavior. This method has been shown to alter addiction-related behaviors and cognitive functioning presumably by reducing dopamine transmission, but it is unclear what specific aspects of dopamine transmission are altered. We performed this study to confirm that administration of an amino acid mixture omitting phenylalanine and tyrosine (Phe/Tyr[-]) reduces tyrosine tissue content in the prefrontal cortex (PFC) and nucleus accumbens (NAc), and to test the hypothesis that Phe/Tyr[-] administration reduces phasic dopamine release in the NAc. Rats were injected with a Phe/Tyr[-] amino acid mixture, a control amino acid mixture, or saline. High-performance liquid chromatography was used to determine the concentration of tyrosine, dopamine, or norepinephrine in tissue punches from the PFC and ventral striatum. In a separate group of rats, phasic dopamine release was measured with fast-scan cyclic voltammetry in the NAc core after injection with either the Phe/Tyr[-] mixture or the control amino acid solution. Phe/Tyr[-] reduced tyrosine content in the PFC and NAc, but dopamine and norepinephrine tissue content were not reduced. Moreover, Phe/Tyr[-] decreased the frequency of dopamine transients, but not their amplitude, in freely moving rats. These results indicate that depletion of tyrosine via Phe/Tyr[-] decreases phasic dopamine transmission, providing insight into the mechanism by which this method modifies dopamine-dependent behaviors in human imaging studies.

  8. Systemic effects of low-dose dopamine during administration of cytarabine.

    PubMed

    Connelly, James; Benani, Dina J; Newman, Matthew; Burton, Bradley; Crow, Jessica; Levis, Mark

    2017-09-01

    Purpose Low-dose dopamine has been utilized to improve renal blood flow, urine output, and reduce drug-induced nephrotoxicity. The purpose of this study was to assess changes in renal function, cardiovascular adverse events, and neurologic toxicity in patients receiving cytarabine with or without low-dose dopamine. Methods A retrospective, single-center, cohort study of patients receiving cytarabine at 667 mg/m 2 /dose or greater, with or without dopamine at ≤5 mcg/kg/min. Cohorts were based upon initiation or absence of low-dose dopamine; cytarabine only, cytarabine + pre- and day of low-dose dopamine, and cytarabine + post-low-dose dopamine. Renal outcomes (urine output, serum creatinine, and creatinine clearance) were compared with baseline and between cohorts. Safety endpoints (arrhythmias, tachycardia, and neurotoxicity) were compared between cohorts based on low-dose dopamine exposure. Results There was no difference in urine output from baseline in all cohorts. Comparing cytarabine only and pre- and day of low-dose dopamine cohorts, there was no difference in urine output. In those receiving low-dose dopamine, there was no difference in serum creatinine and creatinine clearance from baseline. No arrhythmias were documented during the study period, and there was no difference in the incidence of tachycardia between groups (P = 0.66). Neurotoxicity was reported in three patients who were on low-dose dopamine. Conclusion Though variation existed in individual patients administered low-dose dopamine, the use of low-dose dopamine did not significantly impact renal function in this small sample at a single institution. In addition, low-dose dopamine did not negatively impact cardiovascular function.

  9. Brain dopamine neurone 'damage': methamphetamine users vs. Parkinson's disease - a critical assessment of the evidence.

    PubMed

    Kish, Stephen J; Boileau, Isabelle; Callaghan, Russell C; Tong, Junchao

    2017-01-01

    The objective of this review is to evaluate the evidence that recreational methamphetamine exposure might damage dopamine neurones in human brain, as predicted by experimental animal findings. Brain dopamine marker data in methamphetamine users can now be compared with those in Parkinson's disease, for which the Oleh Hornykiewicz discovery in Vienna of a brain dopamine deficiency is established. Whereas all examined striatal (caudate and putamen) dopamine neuronal markers are decreased in Parkinson's disease, levels of only some (dopamine, dopamine transporter) but not others (dopamine metabolites, synthetic enzymes, vesicular monoamine transporter 2) are below normal in methamphetamine users. This suggests that loss of dopamine neurones might not be characteristic of methamphetamine exposure in at least some human drug users. In methamphetamine users, dopamine loss was more marked in caudate than in putamen, whereas in Parkinson's disease, the putamen is distinctly more affected. Substantia nigra loss of dopamine-containing cell bodies is characteristic of Parkinson's disease, but similar neuropathological studies have yet to be conducted in methamphetamine users. Similarly, it is uncertain whether brain gliosis, a common feature of brain damage, occurs after methamphetamine exposure in humans. Preliminary epidemiological findings suggest that methamphetamine use might increase risk of subsequent development of Parkinson's disease. We conclude that the available literature is insufficient to indicate that recreational methamphetamine exposure likely causes loss of dopamine neurones in humans but does suggest presence of a striatal dopamine deficiency that, in principle, could be corrected by dopamine substitution medication if safety and subject selection considerations can be resolved. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Sex differences in Parkinson's disease.

    PubMed

    Gillies, Glenda E; Pienaar, Ilse S; Vohra, Shiv; Qamhawi, Zahi

    2014-08-01

    Parkinson's disease (PD) displays a greater prevalence and earlier age at onset in men. This review addresses the concept that sex differences in PD are determined, largely, by biological sex differences in the NSDA system which, in turn, arise from hormonal, genetic and environmental influences. Current therapies for PD rely on dopamine replacement strategies to treat symptoms, and there is an urgent, unmet need for disease modifying agents. As a significant degree of neuroprotection against the early stages of clinical or experimental PD is seen, respectively, in human and rodent females compared with males, a better understanding of brain sex dimorphisms in the intact and injured NSDA system will shed light on mechanisms which have the potential to delay, or even halt, the progression of PD. Available evidence suggests that sex-specific, hormone-based therapeutic agents hold particular promise for developing treatments with optimal efficacy in men and women. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Piracetam and vinpocetine ameliorate rotenone-induced Parkinsonism in rats

    PubMed Central

    Zaitone, Sawsan A.; Abo-Elmatty, Dina M.; Elshazly, Shimaa M.

    2012-01-01

    Objective: To evaluate the neuroprotective effect of the nootropic drugs, piracetam (PIR) and vinpocetine (VIN), in rotenone-induced Parkinsonism in rats. Materials and Methods: Sixty male rats were divided into 6 groups of 10 rats each. The groups were administered vehicle, control (rotenone, 1.5 mg/kg/48 h/6 doses, s.c.), PIR (100 and 200 mg/kg/day, p.o.) and VIN (3 and 6 mg/kg/day, p.o.). The motor performance of the rats was evaluated by the open field and pole test. Striatal dopamine level, malondialdehyde (MDA), reduced glutathione (GSH) and tumor necrosis factor-α (TNF-α) were assayed. Histopathological study of the substantia nigra was also done. Results: Results showed that rotenone-treated rats exhibited bradykinesia and motor impairment in the open-field test. In addition, GSH level was decreased whereas MDA and TNF-α increased in striata of rotenone-treated rats as compared to vehicle-treated rats. Marked degeneration of the substantia nigra pars compacta (SNpc) neurons and depletion of striatal dopamine was also observed in the rotenone-treated rats. Treatment with PIR or VIN significantly reversed the locomotor deficits and increased striatal dopamine level. Treatment with VIN significantly (P < 0.05) reduced the striatal level of MDA and GSH in comparison to rotenone group whereas TNF-α production was found to be significantly decreased in PIR group (P < 0.05). Conclusion: VIN and PIR exhibit neuroprotective activity in rotenone-induced Parkinsonism. Hence, these nootropic agents may be considered as possible candidates in the treatment of Parkinson's disease. PMID:23248410

  12. Pharmacological examination of trifluoromethyl ring-substituted methcathinone analogs.

    PubMed

    Cozzi, Nicholas V; Brandt, Simon D; Daley, Paul F; Partilla, John S; Rothman, Richard B; Tulzer, Andreas; Sitte, Harald H; Baumann, Michael H

    2013-01-15

    Cathinones are a class of drugs used to treat various medical conditions including depression, obesity, substance abuse, and muscle spasms. Some "designer" cathinones, such as methcathinone, mephedrone, and methylone, are used nonclinically for their stimulant or entactogenic properties. Given the recent rise in nonmedical use of designer cathinones, we aimed to improve understanding of cathinone pharmacology by investigating analogs of methcathinone with a CF(3) substituent at the 2-, 3-, or 4-position of the phenyl ring (TFMAPs). We compared the TFMAPs with methcathinone for effects on monoamine uptake transporter function in vitro and in vivo, and for effects on locomotor activity in rats. At the serotonin transporter (SERT), 3-TFMAP and 4-TFMAP were 10-fold more potent than methcathinone as uptake inhibitors and as releasing agents, but 2-TFMAP was both a weak uptake inhibitor and releaser. At the norepinephrine and dopamine transporters (NET and DAT), all TFMAP isomers were less potent than methcathinone as uptake inhibitors and releasers. In vivo, 4-TFMAP released 5-HT, but not dopamine, in rat nucleus accumbens and did not affect locomotor activity, whereas methcathinone increased both 5-HT and dopamine and produced locomotor stimulation. These experiments reveal that TFMAPs are substrates for the monoamine transporters and that phenyl ring substitution at the 3- or 4-position increases potency at SERT but decreases potency at NET and DAT, resulting in selectivity for SERT. The TFMAPs might have a therapeutic value for a variety of medical and psychiatric conditions and may have lower abuse liability compared to methcathinone due to their decreased DAT activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Prefrontal and Striatal Glutamate Differently Relate to Striatal Dopamine: Potential Regulatory Mechanisms of Striatal Presynaptic Dopamine Function?

    PubMed

    Gleich, Tobias; Deserno, Lorenz; Lorenz, Robert Christian; Boehme, Rebecca; Pankow, Anne; Buchert, Ralph; Kühn, Simone; Heinz, Andreas; Schlagenhauf, Florian; Gallinat, Jürgen

    2015-07-01

    Theoretical and animal work has proposed that prefrontal cortex (PFC) glutamate inhibits dopaminergic inputs to the ventral striatum (VS) indirectly, whereas direct VS glutamatergic afferents have been suggested to enhance dopaminergic inputs to the VS. In the present study, we aimed to investigate relationships of glutamate and dopamine measures in prefrontostriatal circuitries of healthy humans. We hypothesized that PFC and VS glutamate, as well as their balance, are differently associated with VS dopamine. Glutamate concentrations in the left lateral PFC and left striatum were assessed using 3-Tesla proton magnetic resonance spectroscopy. Striatal presynaptic dopamine synthesis capacity was measured by fluorine-18-l-dihydroxyphenylalanine (F-18-FDOPA) positron emission tomography. First, a negative relationship was observed between glutamate concentrations in lateral PFC and VS dopamine synthesis capacity (n = 28). Second, a positive relationship was revealed between striatal glutamate and VS dopamine synthesis capacity (n = 26). Additionally, the intraindividual difference between PFC and striatal glutamate concentrations correlated negatively with VS dopamine synthesis capacity (n = 24). The present results indicate an involvement of a balance in PFC and striatal glutamate in the regulation of VS dopamine synthesis capacity. This notion points toward a potential mechanism how VS presynaptic dopamine levels are kept in a fine-tuned range. A disruption of this mechanism may account for alterations in striatal dopamine turnover as observed in mental diseases (e.g., in schizophrenia). The present work demonstrates complementary relationships between prefrontal and striatal glutamate and ventral striatal presynaptic dopamine using human imaging measures: a negative correlation between prefrontal glutamate and presynaptic dopamine and a positive relationship between striatal glutamate and presynaptic dopamine are revealed. The results may reflect a regulatory role of prefrontal and striatal glutamate for ventral striatal presynaptic dopamine levels. Such glutamate-dopamine relationships improve our understanding of neurochemical interactions in prefrontostriatal circuits and have implications for the neurobiology of mental disease. Copyright © 2015 the authors 0270-6474/15/359615-07$15.00/0.

  14. Stimulus-Dependent Dopamine Release in Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Sikstrom, Sverker; Soderlund, Goran

    2007-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is related to an attenuated and dysfunctional dopamine system. Normally, a high extracellular dopamine level yields a tonic dopaminergic input that down-regulates stimuli-evoked phasic dopamine responses through autoreceptors. Abnormally low tonic extracellular dopamine in ADHD up-regulates the…

  15. [Noradrenaline and the enzymes of its synthesis and breakdown in the rat hypothalamus after a flight on the Kosmos-936 biosatellite].

    PubMed

    Torda, T; Kvetnansky, R; Tigranian, R A; Chulman, J; Genin, A M

    1981-01-01

    In the hypothalamus of the weightless and centrifuged rats flown for 18.5 days on board the biosatellite Cosmos-936 the noradrenaline concentration and activity of the enzymes involved in the catecholamine synthesis and degradation were measured. It was found that under the space flight influence the noradrenaline concentration and tyrosine hydroxylase, dopamine-beta-hydroxylase and monoamine oxidase activities remained unaltered. These findings indicate that a prolonged exposure to weightlessness was not a stressogenic agent that could activate the adrenergic system in the rat hypothalamus.

  16. [Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2014-01-01

    Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms.

  17. Dopamine, reward learning, and active inference

    PubMed Central

    FitzGerald, Thomas H. B.; Dolan, Raymond J.; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings. PMID:26581305

  18. Dopamine, reward learning, and active inference.

    PubMed

    FitzGerald, Thomas H B; Dolan, Raymond J; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  19. The role of dopamine in human addiction: from reward to motivated attention.

    PubMed

    Franken, Ingmar H A; Booij, Jan; van den Brink, Wim

    2005-12-05

    There is general consensus among preclinical researchers that dopamine plays an important role in the development and persistence of addiction. However, the precise role of dopamine in addictive behaviors is far from clear and only a few clinical studies on the role of dopamine in human addiction have been conducted so far. The present paper reviews studies addressing the role of dopamine in humans. There is substantial and consistent evidence that dopamine is involved in the experience of drug reward in humans. Dopamine may also be involved in motivational processes such as drug craving. However, given the inconsistent findings of studies using dopamine receptor (ant)agonists, the role of dopamine in the experience of craving is far from resolved. Recent theories claiming that dopamine signals salience and makes the brain paying attention to biological relevant stimuli may provide an interesting framework for explaining addictive behaviors. There is accumulating evidence that patients with drug and alcohol addiction have an aberrant focus on drug-related stimuli. Although there is some preliminary support for the role of dopamine in these attention processes, more studies have to be carried out in order to test the validity of these theories in human subjects.

  20. Dopamine and extinction: a convergence of theory with fear and reward circuitry.

    PubMed

    Abraham, Antony D; Neve, Kim A; Lattal, K Matthew

    2014-02-01

    Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum.

    PubMed

    Goutier, W; Lowry, J P; McCreary, A C; O'Connor, J J

    2016-05-01

    Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.

  2. Greater Ethanol Inhibition of Presynaptic Dopamine Release in C57BL/6J than DBA/2J Mice: Role of Nicotinic Acetylcholine Receptors

    PubMed Central

    Yorgason, Jordan T.; Rose, Jamie H.; McIntosh, J. Michael; Ferris, Mark J.; Jones, Sara R.

    2014-01-01

    The mesolimbic dopamine system, originating in the ventral tegmental area (VTA) and projecting to the nucleus accumbens (NAc), has been heavily implicated in the reinforcing effects of ethanol. Recent slice voltammetry studies have shown that ethanol inhibits dopamine release selectively during highfrequency activity that elicits phasic dopamine release shown to be important for learning and reinforcement. Presently, we examined ethanol inhibition of electrically evoked NAc dopamine in two mouse strains with divergent dopamine responses to ethanol, C57BL/6 (C57) and DBA/2J (DBA) mice. Previous electrophysiology and microdialysis studies have demonstrated greater ethanol induced VTA dopaminergic firing and NAc dopamine elevations in DBA compared to C57 mice. Additionally, DBA mice have greater ethanol responses in dopamine-related behaviors, including hyperlocomotion and conditioned place preference. Currently, we demonstrate greater sensitivity of ethanol inhibition of NAc dopamine signaling in C57 compared to DBA mice. The reduced sensitivity to ethanol inhibition in DBA mice may contribute to the overall greater ethanol-induced dopamine signaling and related behaviors observed in this strain. NAc cholinergic activity is known to potently modulate terminal dopamine release. Additionally, ethanol is known to interact with multiple aspects of nicotinic acetylcholine receptor activity. Therefore, we examined ethanol-mediated inhibition of dopamine release at two ethanol concentrations (80 and 160mM) during bath application of the non-selective nicotinic receptor antagonist mecamylamine, as well as compounds selective for the β2- (DhβE) and α6- (α-conotoxin MII [H9A; L15A]) subunit-containing receptors. Mecamylamine and DhβE decreased dopamine release and reduced ethanol's inhibitory effects on dopamine in both DBA and C57 mice. Further, α-conotoxin also reduced the dopamine release and the dopamine-inhibiting effects of ethanol at the 80mM, but not 160mM, concentration. These data suggest that ethanol is acting in part through nicotinic acetylcholine receptors, or downstream effectors, to reduce dopamine release during high-frequency activity. PMID:25451295

  3. Effects of Modafinil on Dopamine and Dopamine Transporters in the Male Human Brain: Clinical Implications

    PubMed Central

    Volkow, Nora D.; Fowler, Joanna S.; Logan, Jean; Alexoff, David; Zhu, Wei; Telang, Frank; Wang, Gene-Jack; Jayne, Millard; Hooker, Jacob M.; Wong, Christopher; Hubbard, Barbara; Carter, Pauline; Warner, Donald; King, Payton; Shea, Colleen; Xu, Youwen; Muench, Lisa; Apelskog-Torres, Karen

    2009-01-01

    Context Modafinil, a wake-promoting drug used to treat narcolepsy, is increasingly being used as a cognitive enhancer. Although initially launched as distinct from stimulants that increase extracellular dopamine by targeting dopamine transporters, recent preclinical studies suggest otherwise. Objective To measure the acute effects of modafinil at doses used therapeutically (200 mg and 400 mg given orally) on extracellular dopamine and on dopamine transporters in the male human brain. Design, Setting, and Participants Positron emission tomography with [11C]raclopride (D2/D3 radioligand sensitive to changes in endogenous dopamine) and [11C]cocaine (dopamine transporter radioligand) was used to measure the effects of modafinil on extracellular dopamine and on dopamine transporters in 10 healthy male participants. The study took place over an 8-month period (2007–2008) at Brookhaven National Laboratory. Main Outcome Measures Primary outcomes were changes in dopamine D2/D3 receptor and dopamine transporter availability (measured by changes in binding potential) after modafinil when compared with after placebo. Results Modafinil decreased mean (SD) [11C]raclopride binding potential in caudate (6.1% [6.5%]; 95% confidence interval [CI], 1.5% to 10.8%; P=.02), putamen (6.7% [4.9%]; 95% CI, 3.2% to 10.3%; P=.002), and nucleus accumbens (19.4% [20%]; 95% CI, 5% to 35%; P=.02), reflecting increases in extracellular dopamine. Modafinil also decreased [11C]cocaine binding potential in caudate (53.8% [13.8%]; 95% CI, 43.9% to 63.6%; P<.001), putamen (47.2% [11.4%]; 95% CI, 39.1% to 55.4%; P<.001), and nucleus accumbens (39.3% [10%]; 95% CI, 30% to 49%; P=.001), reflecting occupancy of dopamine transporters. Conclusions In this pilot study, modafinil blocked dopamine transporters and increased dopamine in the human brain (including the nucleus accumbens). Because drugs that increase dopamine in the nucleus accumbens have the potential for abuse, and considering the increasing use of modafinil, these results highlight the need for heightened awareness for potential abuse of and dependence on modafinil in vulnerable populations. PMID:19293415

  4. Presence and function of dopamine transporter (DAT) in stallion sperm: dopamine modulates sperm motility and acrosomal integrity.

    PubMed

    Urra, Javier A; Villaroel-Espíndola, Franz; Covarrubias, Alejandra A; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I

    2014-01-01

    Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP(+)), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility.

  5. Presence and Function of Dopamine Transporter (DAT) in Stallion Sperm: Dopamine Modulates Sperm Motility and Acrosomal Integrity

    PubMed Central

    Covarrubias, Alejandra A.; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I.

    2014-01-01

    Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP+), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility. PMID:25402186

  6. Enhanced dopamine D2 autoreceptor function in the adult prefrontal cortex contributes to dopamine hypoactivity following adolescent social stress.

    PubMed

    Weber, Matthew A; Graack, Eric T; Scholl, Jamie L; Renner, Kenneth J; Forster, Gina L; Watt, Michael J

    2018-06-14

    Adult psychiatric disorders characterized by cognitive deficits reliant on prefrontal cortex (PFC) dopamine are promoted by teenage bullying. Similarly, male Sprague-Dawley rats exposed to social defeat in mid-adolescence (P35-39) show impaired working memory in adulthood (P56-70), along with decreased medial PFC (mPFC) dopamine activity that results in part from increased dopamine transporter-mediated clearance. Here, we determined if dopamine synthesis and D2 autoreceptor-mediated inhibition of dopamine release in the adult mPFC are also enhanced by adolescent defeat to contribute to later dopamine hypofunction. Control and previously defeated rats did not differ in either DOPA accumulation following amino acid decarboxylase inhibition (NSD-1015 100 mg/kg ip.) or total/phosphorylated tyrosine hydroxylase protein expression, suggesting dopamine synthesis in the adult mPFC is not altered by adolescent defeat. However, exposure to adolescent defeat caused greater decreases in extracellular dopamine release (measured using in vivo chronoamperometry) in the adult mPFC upon local infusion of the D2 receptor agonist quinpirole (3 nM), implying greater D2 autoreceptor function. Equally enhanced D2 autoreceptor-mediated inhibition of dopamine release is seen in the adolescent (P40 or P49) mPFC, which declines in control rats by adulthood. However, this developmental decrease in autoreceptor function is absent following adolescent defeat, suggesting retention of an adolescent-like phenotype into adulthood. Current and previous findings indicate adolescent defeat decreases extracellular dopamine availability in the adult mPFC via both enhanced inhibition of dopamine release and increased dopamine clearance, which may be viable targets for improving treatment of cognitive deficits seen in neuropsychiatric disorders promoted by adolescent stress. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Blockade of dopamine D1-family receptors attenuates the mania-like hyperactive, risk-preferring, and high motivation behavioral profile of mice with low dopamine transporter levels.

    PubMed

    Milienne-Petiot, Morgane; Groenink, Lucianne; Minassian, Arpi; Young, Jared W

    2017-10-01

    Patients with bipolar disorder mania exhibit poor cognition, impulsivity, risk-taking, and goal-directed activity that negatively impact their quality of life. To date, existing treatments for bipolar disorder do not adequately remediate cognitive dysfunction. Reducing dopamine transporter expression recreates many bipolar disorder mania-relevant behaviors (i.e. hyperactivity and risk-taking). The current study investigated whether dopamine D 1 -family receptor blockade would attenuate the risk-taking, hypermotivation, and hyperactivity of dopamine transporter knockdown mice. Dopamine transporter knockdown and wild-type littermate mice were tested in mouse versions of the Iowa Gambling Task (risk-taking), Progressive Ratio Breakpoint Test (effortful motivation), and Behavioral Pattern Monitor (activity). Prior to testing, the mice were treated with the dopamine D 1 -family receptor antagonist SCH 23390 hydrochloride (0.03, 0.1, or 0.3 mg/kg), or vehicle. Dopamine transporter knockdown mice exhibited hyperactivity and hyperexploration, hypermotivation, and risk-taking preference compared with wild-type littermates. SCH 23390 hydrochloride treatment decreased premature responding in dopamine transporter knockdown mice and attenuated their hypermotivation. SCH 23390 hydrochloride flattened the safe/risk preference, while reducing activity and exploratory levels of both genotypes similarly. Dopamine transporter knockdown mice exhibited mania-relevant behavior compared to wild-type mice. Systemic dopamine D 1 -family receptor antagonism attenuated these behaviors in dopamine transporter knockdown, but not all effects were specific to only the knockdown mice. The normalization of behavior via blockade of dopamine D 1 -family receptors supports the hypothesis that D 1 and/or D 5 receptors could contribute to the mania-relevant behaviors of dopamine transporter knockdown mice.

  8. Enhanced Striatal Dopamine Release During Food Stimulation in Binge Eating Disorder

    PubMed Central

    Wang, Gene-Jack; Geliebter, Allan; Volkow, Nora D.; Telang, Frank W.; Logan, Jean; Jayne, Millard C.; Galanti, Kochavi; Selig, Peter A.; Han, Hao; Zhu, Wei; Wong, Christopher T.; Fowler, Joanna S.

    2011-01-01

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [11C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating. PMID:21350434

  9. Microencapsulation of dopamine neurons derived from human induced pluripotent stem cells.

    PubMed

    Konagaya, Shuhei; Iwata, Hiroo

    2015-01-01

    Dopamine neurons derived from induced pluripotent stem cells have been widely studied for the treatment of Parkinson's disease. However, various difficulties remain to be overcome, such as tumor formation, fragility of dopamine neurons, difficulty in handling large numbers of dopamine neurons, and immune reactions. In this study, human induced pluripotent stem cell-derived precursors of dopamine neurons were encapsulated in agarose microbeads. Dopamine neurons in microbeads could be handled without specific protocols, because the microbeads protected the fragile dopamine neurons from mechanical stress. hiPS cells were seeded on a Matrigel-coated dish and cultured to induce differentiation into a dopamine neuronal linage. On day 18 of culture, cells were collected from the culture dishes and seeded into U-bottom 96-well plates to induce cell aggregate formation. After 5 days, cell aggregates were collected from the plates and microencapsulated in agarose microbeads. The microencapsulated aggregates were cultured for an additional 45 days to induce maturation of dopamine neurons. Approximately 60% of all cells differentiated into tyrosine hydroxylase-positive neurons in agarose microbeads. The cells released dopamine for more than 40 days. In addition, microbeads containing cells could be cryopreserved. hiPS cells were successfully differentiated into dopamine neurons in agarose microbeads. Agarose microencapsulation provides a good supporting environment for the preparation and storage of dopamine neurons. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Dopamine receptors – IUPHAR Review 13

    PubMed Central

    Beaulieu, Jean-Martin; Espinoza, Stefano; Gainetdinov, Raul R

    2015-01-01

    The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors. PMID:25671228

  11. Renal dopamine containing nerves. What is their functional significance?

    PubMed

    DiBona, G F

    1990-06-01

    Biochemical and morphological studies indicate that there are nerves within the kidney that contain dopamine and that various structures within the kidney contain dopamine receptors. However, the functional significance of these renal dopamine containing nerves in relation to renal dopamine receptors is unknown. The functional significance could be defined by demonstrating that an alteration in one or more renal functions occurring in response to reflex or electrical activation of efferent renal nerves is dependent on release of dopamine as the neurotransmitter from the renal nerve terminals acting on renal dopamine receptors. Thus, the hypothesis becomes: reflex or electrical activation of efferent renal nerves causes alterations in renal function (eg, renal blood flow, water and solute handling) that are inhibited by specific and selective dopamine receptor antagonists. As reviewed herein, the published experimental data do not support the hypothesis. Therefore, the view that alterations in one or more renal functions occurring in response to reflex or electrical activation of efferent renal nerves are dependent on release of dopamine as the neurotransmitter from the renal nerve terminals acting on renal dopamine receptors remains unproven.

  12. Central α- and β-adrenoceptors modifying arterial blood pressure and heart rate in conscious cats

    PubMed Central

    Day, M.D.; Roach, A.G.

    1974-01-01

    1 In conscious unrestrained cats noradrenaline, α-methylnoradrenaline and clonidine, infused into the lateral cerebral ventricles (i.c.v.) caused dose-related falls in blood pressure and heart rate; both effects were abolished after i.c.v. phentolamine. 2 In 12 out of 20 cats, i.c.v. isoprenaline and salbutamol when given caused dose-related pressor responses and tachycardias. These effects were abolished after i.c.v. β-adrenoceptor blocking drugs but were unaffected by α-adrenoceptor blocking agents. 3 In 5 out of 20 cats, i.c.v. isoprenaline regularly produced dose-related falls in blood pressure with associated tachycardias; both effects were abolished after i.c.v. β-adrenoceptor blocking agents. 4 Intracerebroventricular dopamine produced cardiovascular responses which were qualitatively similar to those produced by i.c.v. isoprenaline. 5 Intracerebroventricular adrenaline produced complex responses in untreated animals but typical α-effects were obtained after prior i.c.v. treatment with a β-adrenoceptor blocking agent and typical β-effects after i.c.v. pretreatment with an α-adrenoceptor blocking agent. 6 The cardiovascular changes produced by i.c.v. β-adrenoceptor agonists were abolished after systemic administration of hexamethonium or bethanidine. 7 The results are discussed in the light of the mode of action of β-adrenoceptor stimulants and β-adrenoceptor blocking agents in the treatment of hypertension. PMID:4451747

  13. Sub-second changes in accumbal dopamine during sexual behavior in male rats.

    PubMed

    Robinson, D L; Phillips, P E; Budygin, E A; Trafton, B J; Garris, P A; Wightman, R M

    2001-08-08

    Transient (200--900 ms), high concentrations (200--500 nM) of dopamine, measured using fast-scan cyclic voltammetry, occurred in the nucleus accumbens core of male rats at the presentation of a receptive female. Additional dopamine signals were observed during subsequent approach behavior. Background-subtracted cyclic voltammograms of the naturally-evoked signals matched those of electrically-evoked dopamine measured at the same recording sites. Administration of nomifensine amplified natural and evoked dopamine release, and increased the frequency of detectable signals. While gradual changes in dopamine concentration during sexual behavior have been well established, these findings dramatically improve the time resolution. The observed dopamine transients, probably resulting from neuronal burst firing, represent the first direct correlation of dopamine with sexual behavior on a sub-second time scale.

  14. Distribution of messenger RNAs for D1 dopamine receptors and DARPP-32 in striatum and cerebral cortex of the cynomolgus monkey: relationship to D1 dopamine receptors.

    PubMed

    Brené, S; Hall, H; Lindefors, N; Karlsson, P; Halldin, C; Sedvall, G

    1995-07-01

    Messenger RNAs for the D1 dopamine receptor and dopamine- and cyclic AMP-regulated phosphoprotein of relative mass 32,000 (DARPP-32) were examined by in situ hybridization in the cynomolgus monkey brain. The messenger RNA distribution was compared to the distribution of D1 dopamine receptors using [3H]SCH 23390 autoradiography. In the caudate nucleus and putamen, D1 dopamine receptor messenger RNA-positive cells were unevenly distributed. Clusters of cells with an approximately three-fold higher intensity of labeling, as compared to surrounding regions, were found. Some of these D1 dopamine receptor messenger RNA intensive cell clusters in the caudate nucleus appeared to some extent to be matched to regions of higher intensity of [3H]SCH 23390 binding. The distribution of cells expressing DARPP-32 messenger RNA in the caudate nucleus and putamen was found to be non-clustered. In neocortical regions, cells of different sizes expressing D1 dopamine receptor messenger RNA were present in layers II-VI. D1 dopamine receptor messenger RNA-positive cells were most abundant in layer V. Unexpectedly, no DARPP-32 messenger RNA signal was detected in neocortex. Chronic SCH 23390 administration did not change the relative levels of messenger RNAs for the D1 dopamine receptor and DARPP-32 or [3H]SCH 23390 binding as measured by quantitative image analysis. The clustered distribution of D1 dopamine receptor messenger RNA is in contrast to that of DARPP-32 messenger RNA. This suggests that D1 dopamine receptors may play a more significant role in regulating DARPP-32 function in patch regions as compared to matrix regions. D1 dopamine receptor messenger RNA-expressing cells could also be visualized in several layers of the primate neocortex, implying that dopamine acts through D1 dopamine receptors within functionally different neuronal circuits of the neocortex.

  15. Elevated Striatal Dopamine Function in Immigrants and Their Children: A Risk Mechanism for Psychosis.

    PubMed

    Egerton, Alice; Howes, Oliver D; Houle, Sylvain; McKenzie, Kwame; Valmaggia, Lucia R; Bagby, Michael R; Tseng, Huai-Hsuan; Bloomfield, Michael A P; Kenk, Miran; Bhattacharyya, Sagnik; Suridjan, Ivonne; Chaddock, Chistopher A; Winton-Brown, Toby T; Allen, Paul; Rusjan, Pablo; Remington, Gary; Meyer-Lindenberg, Andreas; McGuire, Philip K; Mizrahi, Romina

    2017-03-01

    Migration is a major risk factor for schizophrenia but the neurochemical processes involved are unknown. One candidate mechanism is through elevations in striatal dopamine synthesis and release. The objective of this research was to determine whether striatal dopamine function is elevated in immigrants compared to nonimmigrants and the relationship with psychosis. Two complementary case-control studies of in vivo dopamine function (stress-induced dopamine release and dopamine synthesis capacity) in immigrants compared to nonimmigrants were performed in Canada and the United Kingdom. The Canadian dopamine release study included 25 immigrant and 31 nonmigrant Canadians. These groups included 23 clinical high risk (CHR) subjects, 9 antipsychotic naïve patients with schizophrenia, and 24 healthy volunteers. The UK dopamine synthesis study included 32 immigrants and 44 nonimmigrant British. These groups included 50 CHR subjects and 26 healthy volunteers. Both striatal stress-induced dopamine release and dopamine synthesis capacity were significantly elevated in immigrants compared to nonimmigrants, independent of clinical status. These data provide the first evidence that the effect of migration on the risk of developing psychosis may be mediated by an elevation in brain dopamine function. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  16. Consequences of peripheral chemoreflex inhibition with low-dose dopamine in humans

    PubMed Central

    Niewinski, Piotr; Tubek, Stanislaw; Banasiak, Waldemar; Paton, Julian F R; Ponikowski, Piotr

    2014-01-01

    Low-dose dopamine inhibits peripheral chemoreceptors and attenuates the hypoxic ventilatory response (HVR) in humans. However, it is unknown: (1) whether it also modulates the haemodynamic reactions to acute hypoxia, (2) whether it also modulates cardiac baroreflex sensitivity (BRS) and (3) if there is any effect of dopamine withdrawal. We performed a double-blind, placebo-controlled study on 11 healthy male volunteers. At sea level over 2 days every subject was administered low-dose dopamine (2 μg kg–1 min–1) or saline infusion, during which we assessed both ventilatory and haemodynamic responses to acute hypoxia. Separately, we evaluated effects of initiation and withdrawal of each infusion and BRS. The initiation of dopamine infusion did not affect minute ventilation (MV) or mean blood pressure (MAP), but increased both heart rate (HR) and cardiac output. Concomitantly, it decreased systemic vascular resistance. Dopamine blunted the ventilatory, MAP and HR reactions (hypertension, tachycardia) to acute hypoxia. Dopamine attenuated cardiac BRS to falling blood pressure. Dopamine withdrawal evoked an increase in MV. The magnitude of the increment in MV due to dopamine withdrawal correlated with the size of the HVR and depended on the duration of dopamine administration. The ventilatory reaction to dopamine withdrawal constitutes a novel index of peripheral chemoreceptor function. PMID:24396060

  17. Excessive D1 Dopamine Receptor Activation in the Dorsal Striatum Promotes Autistic-Like Behaviors.

    PubMed

    Lee, Yunjin; Kim, Hannah; Kim, Ji-Eun; Park, Jin-Young; Choi, Juli; Lee, Jung-Eun; Lee, Eun-Hwa; Han, Pyung-Lim

    2018-07-01

    The dopamine system has been characterized in motor function, goal-directed behaviors, and rewards. Recent studies recognize various dopamine system genes as being associated with autism spectrum disorder (ASD). However, how dopamine system dysfunction induces ASD pathophysiology remains unknown. In the present study, we demonstrated that mice with increased dopamine functions in the dorsal striatum via the suppression of dopamine transporter expression in substantia nigra neurons or the optogenetic stimulation of the nigro-striatal circuitry exhibited sociability deficits and repetitive behaviors relevant to ASD pathology in animal models, while these behavioral changes were blocked by a D1 receptor antagonist. Pharmacological activation of D1 dopamine receptors in normal mice or the genetic knockout (KO) of D2 dopamine receptors also produced typical autistic-like behaviors. Moreover, the siRNA-mediated inhibition of D2 dopamine receptors in the dorsal striatum was sufficient to replicate autistic-like phenotypes in D2 KO mice. Intervention of D1 dopamine receptor functions or the signaling pathways-related D1 receptors in D2 KO mice produced anti-autistic effects. Together, our results indicate that increased dopamine function in the dorsal striatum promotes autistic-like behaviors and that the dorsal striatum is the neural correlate of ASD core symptoms.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, g.j.; Wang, G.-J.; Geliebter, A.

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [{sup 11}C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocksmore » the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.« less

  19. Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.

    PubMed

    Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V; Field, Bianca; Deutch, Ariel Y; Rayport, Stephen

    2015-12-09

    In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are capable of glutamate cotransmission. With conditional expression of channelrhodopsin in dopamine neurons, we systematically explored dopamine neuron connections in the forebrain and identified regionally specific dopamine neuron excitatory connections. Establishing that only a subset of forebrain regions receive excitatory connections from dopamine neurons will help to determine the function of dopamine neuron glutamate cotransmission, which likely involves transmission of precise temporal signals and enhancement of the dynamic range of dopamine neuron signals. Copyright © 2015 the authors 0270-6474/15/3516259-13$15.00/0.

  20. Dopamine-dependent effects on basal and glutamate stimulated network dynamics in cultured hippocampal neurons.

    PubMed

    Li, Yan; Chen, Xin; Dzakpasu, Rhonda; Conant, Katherine

    2017-02-01

    Oscillatory activity occurs in cortical and hippocampal networks with specific frequency ranges thought to be critical to working memory, attention, differentiation of neuronal precursors, and memory trace replay. Synchronized activity within relatively large neuronal populations is influenced by firing and bursting frequency within individual cells, and the latter is modulated by changes in intrinsic membrane excitability and synaptic transmission. Published work suggests that dopamine, a potent modulator of learning and memory, acts on dopamine receptor 1-like dopamine receptors to influence the phosphorylation and trafficking of glutamate receptor subunits, along with long-term potentiation of excitatory synaptic transmission in striatum and prefrontal cortex. Prior studies also suggest that dopamine can influence voltage gated ion channel function and membrane excitability in these regions. Fewer studies have examined dopamine's effect on related endpoints in hippocampus, or potential consequences in terms of network burst dynamics. In this study, we record action potential activity using a microelectrode array system to examine the ability of dopamine to modulate baseline and glutamate-stimulated bursting activity in an in vitro network of cultured murine hippocampal neurons. We show that dopamine stimulates a dopamine type-1 receptor-dependent increase in number of overall bursts within minutes of its application. Notably, however, at the concentration used herein, dopamine did not increase the overall synchrony of bursts between electrodes. Although the number of bursts normalizes by 40 min, bursting in response to a subsequent glutamate challenge is enhanced by dopamine pretreatment. Dopamine-dependent potentiation of glutamate-stimulated bursting was not observed when the two modulators were administered concurrently. In parallel, pretreatment of murine hippocampal cultures with dopamine stimulated lasting increases in the phosphorylation of the glutamate receptor subunit GluA1 at serine 845. This effect is consistent with the possibility that enhanced membrane insertion of GluAs may contribute to a more slowly evolving dopamine-dependent potentiation of glutamate-stimulated bursting. Together, these results are consistent with the possibility that dopamine can influence hippocampal bursting by at least two temporally distinct mechanisms, contributing to an emerging appreciation of dopamine-dependent effects on network activity in the hippocampus. © 2016 International Society for Neurochemistry.

  1. The Transfection of BDNF to Dopamine Neurons Potentiates the Effect of Dopamine D3 Receptor Agonist Recovering the Striatal Innervation, Dendritic Spines and Motor Behavior in an Aged Rat Model of Parkinson’s Disease

    PubMed Central

    Razgado-Hernandez, Luis F.; Espadas-Alvarez, Armando J.; Reyna-Velazquez, Patricia; Sierra-Sanchez, Arturo; Anaya-Martinez, Veronica; Jimenez-Estrada, Ismael; Bannon, Michael J.; Martinez-Fong, Daniel; Aceves-Ruiz, Jorge

    2015-01-01

    The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson’s disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF) and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT) administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection) that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old), immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy for restoring dopamine neurons in Parkinson’s disease. PMID:25693197

  2. Phasic dopamine release drives rapid activation of striatal D2-receptors

    PubMed Central

    Marcott, Pamela F; Mamaligas, Aphroditi A; Ford, Christopher P

    2014-01-01

    Summary Striatal dopamine transmission underlies numerous goal-directed behaviors. Medium spiny neurons (MSNs) are a major target of dopamine in the striatum. However, as dopamine does not directly evoke a synaptic event in MSNs, the time course of dopamine signaling in these cells remains unclear. To examine how dopamine release activates D2-receptors on MSNs, G-protein activated inwardly rectifying potassium (GIRK2; Kir 3.2) channels were virally overexpressed in the striatum and the resulting outward currents were used as a sensor of D2-receptor activation. Electrical and optogenetic stimulation of dopamine terminals evoked robust D2-receptor inhibitory post-synaptic currents (IPSCs) in GIRK2-expressing MSNs that occurred in under a second. Evoked D2-IPSCs could be driven by repetitive stimulation and were not occluded by background dopamine tone. Together, the results indicate that D2-receptors on MSNs exhibit functional low affinity and suggest that striatal D2-receptors can encode both tonic and phasic dopamine signals. PMID:25242218

  3. Effects of dopaminergic agents on progression of naturally occurring myopia in albino guinea pigs (Cavia porcellus).

    PubMed

    Jiang, Liqin; Long, Keli; Schaeffel, Frank; Zhou, Xiangtian; Zheng, Yibo; Ying, Huangfang; Lu, Fan; Stell, William K; Qu, Jia

    2014-09-30

    Disruption of dopaminergic signaling has been implicated in the abnormalities of ocular development in albinism, and many experiments have shown that retinal dopamine is a major regulator of postnatal eye growth and myopia in animal models. Therefore, in the present study we investigated whether progressive myopia, which can occur in albino guinea pigs without experimental manipulation of visual conditions, is affected by dopaminergic agents. Two-week-old albino guinea pigs, selected for being myopic (range refractive error [RE], -2 to -10 diopters [D]), received unilateral peribulbar injections of apomorphine (nonselective dopamine receptor agonist; 0, 7.5, 25, 75, 250, 750, and 2500 ng; n = 112), SKF38393 (D1-like agonist; 0, 10, 100, 1000 ng; n = 63), SCH23390 (D1-like antagonist; 0, 2500 ng; n = 27), quinpirole (D2-like agonist; 0, 10, 100, 1000 ng; n = 58), or sulpiride (D2-like antagonist; 0, 2500 ng; n = 24) once a day for four weeks. One noninjected group (n = 19) served as untreated control. Refractive states and axial dimensions of the eyes were measured without cycloplegia or general anesthetic, using eccentric infrared photoretinoscopy and A-scan ultrasonography, respectively, before treatment, and after 2 and 4 weeks of treatment. The main drug effects were analyzed by paired t-test or 2-way repeated measures ANOVA, as required. The naturally occurring progression of myopic RE was inhibited by apomorphine at relatively high doses (250 and 750 ng), SKF38393 at 100 ng (D1-like agonist), and sulpiride at 2500 ng (D2-like antagonist), but promoted by apomorphine at a lower dose (25 ng), quinpirole at 100 ng (D2-like agonist), and SCH23390 at 2500 ng (D1-like antagonist). All drugs affected primarily vitreous chamber depth, rather than anterior segment dimensions. Our data suggest that the activation of D1-like receptors inhibits, whereas activation of D2-like receptors promotes, progressive myopia in this animal model. The robust effects of antagonists suggest that ocular dopamine receptors in these albinos may be in a chronic state of partial excitation. The precise location and identity of the receptors responsible for these effects remain to be determined. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  4. Epothilone D prevents binge methamphetamine-mediated loss of striatal dopaminergic markers.

    PubMed

    Killinger, Bryan A; Moszczynska, Anna

    2016-02-01

    Exposure to binge methamphetamine (METH) can result in a permanent or transient loss of dopaminergic (DAergic) markers such as dopamine (DA), dopamine transporter, and tyrosine hydroxylase (TH) in the striatum. We hypothesized that the METH-induced loss of striatal DAergic markers was, in part, due to a destabilization of microtubules (MTs) in the nigrostriatal DA pathway that ultimately impedes anterograde axonal transport of these markers. To test this hypothesis, adult male Sprague-Dawley rats were treated with binge METH or saline in the presence or absence of epothilone D (EpoD), a MT-stabilizing compound, and assessed 3 days after the treatments for the levels of several DAergic markers as well as for the levels of tubulins and their post-translational modifications (PMTs). Binge METH induced a loss of stable long-lived MTs within the striatum but not within the substantia nigra pars compacta (SNpc). Treatment with a low dose of EpoD increased the levels of markers of stable MTs and prevented METH-mediated deficits in several DAergic markers in the striatum. In contrast, administration of a high dose of EpoD appeared to destabilize MTs and potentiated the METH-induced deficits in several DAergic markers. The low-dose EpoD also prevented the METH-induced increase in striatal DA turnover and increased behavioral stereotypy during METH treatment. Together, these results demonstrate that MT dynamics plays a role in the development of METH-induced losses of several DAergic markers in the striatum and may mediate METH-induced degeneration of terminals in the nigrostriatal DA pathway. Our study also demonstrates that MT-stabilizing drugs such as EpoD have a potential to serve as useful therapeutic agents to restore function of DAergic nerve terminals following METH exposure when administered at low doses. Administration of binge methamphetamine (METH) negatively impacts neurotransmission in the nigrostriatal dopamine (DA) system. The effects of METH include decreasing the levels of DAergic markers in the striatum. We have determined that high-dose METH destabilizes microtubules in this pathway, which is manifested by decreased levels of acetylated (Acetyl) and detyrosinated (Detyr) α-tubulin (I). A microtubule stabilizing agent epothilone D protects striatal microtubules form the METH-induced loss of DAergic markers (II). These findings provide a new strategy for protection form METH - restoration of proper axonal transport. © 2015 International Society for Neurochemistry.

  5. Methamphetamine Regulation of Firing Activity of Dopamine Neurons

    PubMed Central

    Lin, Min; Sambo, Danielle

    2016-01-01

    Methamphetamine (METH) is a substrate for the dopamine transporter that increases extracellular dopamine levels by competing with dopamine uptake and increasing reverse transport of dopamine via the transporter. METH has also been shown to alter the excitability of dopamine neurons. The mechanism of METH regulation of the intrinsic firing behaviors of dopamine neurons is less understood. Here we identified an unexpected and unique property of METH on the regulation of firing activity of mouse dopamine neurons. METH produced a transient augmentation of spontaneous spike activity of midbrain dopamine neurons that was followed by a progressive reduction of spontaneous spike activity. Inspection of action potential morphology revealed that METH increased the half-width and produced larger coefficients of variation of the interspike interval, suggesting that METH exposure affected the activity of voltage-dependent potassium channels in these neurons. Since METH has been shown to affect Ca2+ homeostasis, the unexpected findings that METH broadened the action potential and decreased the amplitude of afterhyperpolarization led us to ask whether METH alters the activity of Ca2+-activated potassium (BK) channels. First, we identified BK channels in dopamine neurons by their voltage dependence and their response to a BK channel blocker or opener. While METH suppressed the amplitude of BK channel-mediated unitary currents, the BK channel opener NS1619 attenuated the effects of METH on action potential broadening, afterhyperpolarization repression, and spontaneous spike activity reduction. Live-cell total internal reflection fluorescence microscopy, electrophysiology, and biochemical analysis suggest METH exposure decreased the activity of BK channels by decreasing BK-α subunit levels at the plasma membrane. SIGNIFICANCE STATEMENT Methamphetamine (METH) competes with dopamine uptake, increases dopamine efflux via the dopamine transporter, and affects the excitability of dopamine neurons. Here, we identified an unexpected property of METH on dopamine neuron firing activity. METH transiently increased the spontaneous spike activity of dopamine neurons followed by a progressive reduction of the spontaneous spike activity. METH broadened the action potentials, increased coefficients of variation of the interspike interval, and decreased the amplitude of afterhyperpolarization, which are consistent with changes in the activity of Ca2+-activated potassium (BK) channels. We found that METH decreased the activity of BK channels by stimulating BK-α subunit trafficking. Thus, METH modulation of dopamine neurotransmission and resulting behavioral responses is, in part, due to METH regulation of BK channel activity. PMID:27707972

  6. Differential degradation of motor deficits during gradual dopamine depletion with 6-hydroxydopamine in mice

    PubMed Central

    Willard, Amanda M.; Bouchard, Rachel S.; Gittis, Aryn H.

    2015-01-01

    Parkinson’s disease (PD) is a movement disorder whose cardinal motor symptoms arise due to the progressive loss of dopamine. Although this dopamine loss typically progresses slowly over time, currently there are very few animal models that enable incremental dopamine depletion over time within the same animal. This type of gradual dopamine depletion model would be useful in studies aimed at the prodromal phase of PD, when dopamine levels are pathologically low but motor symptoms have not yet presented. Utilizing the highly characterized neurotoxin 6-hydroxydopamine (6-OHDA), we have developed a paradigm to gradually deplete dopamine levels in the striatum over a user-defined time course – spanning weeks to months – in C57BL/6 mice. Dopamine depletions were achieved by administration of five low dose injections (0.75 µg) of 6-OHDA through an implanted intracranial bilateral cannula targeting the medial forebrain bundle. Levels of dopamine within the striatum declined linearly with successive injections, quantified using tyrosine hydroxylase immunostaining and high-performance liquid chromatography. Behavioral testing was carried out at each time point to study the onset and progression of motor impairments as a function of dopamine loss over time. We found that spontaneous locomotion, measured in an open field, was robust to loss of dopamine until ~70% of striatal dopamine was lost. Beyond this point, additional dopamine loss caused a sharp decline in motor performance, reaching a final level comparable to that of acutely depleted mice. Similarly, although rearing behavior was more sensitive to dopamine loss and declined linearly as a function of dopamine levels, it eventually declined to levels similar to that seen in acutely depleted mice. In contrast, motor coordination, measured on a vertical pole task, was only moderately impaired in gradually depleted mice, despite severe impairments observed in acutely depleted mice. These results demonstrate the importance of the temporal profile of dopamine loss on the magnitude and progression of behavioral impairments. Our gradual depletion model thus establishes a new paradigm with which to study how circuits respond and adapt to dopamine loss over time, information which could uncover important cellular events during the prodromal phase of PD that ultimately impact the presentation or treatability of behavioral symptoms. PMID:26067595

  7. Functional Fast Scan Cyclic Voltammetry Assay to Characterize Dopamine D2 and D3 Autoreceptors in the Mouse Striatum

    PubMed Central

    2010-01-01

    Dopamine D2 and D3 autoreceptors are located on presynaptic terminals and are known to control the release and synthesis of dopamine. Dopamine D3 receptors have a fairly restricted pattern of expression in the mammalian brain. Their localization in the nucleus accumbens core and shell is of particular interest because of their association with the rewarding properties of drugs of abuse. Using background subtracted fast scan cyclic voltammetry, we investigated the effects of dopamine D2 and D3 agonists on electrically stimulated dopamine release and uptake rates in the mouse caudate putamen and nucleus accumbens core and shell. The dopamine D2 agonists (−)-quinpirole hydrochloride and 5,6,7,8-tetrahydro-6-(2-propen-1-yl)-4H-thiazolo[4,5-d]azepin-2-amine dihydrochloride (B-HT 920) had the same dopamine release inhibition effects on caudate putamen and nucleus accumbens (core and shell) on the basis of their EC50 values and efficacies. This suggests that the dopamine D2 autoreceptor functionality is comparable in all three striatal regions investigated. The dopamine D3 agonists (4aR,10bR)-3,4a,4,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin-9-ol hydrochloride ((+)-PD 128907) and (±)-7-Hydroxy-2-dipropylaminotetralin hydrobromide (7-OH-DPAT) had a significantly greater effect on dopamine release inhibition in the nucleus accumbens shell than in the caudate putamen. This study confirms that, the dopamine D3 autoreceptor functionality is greater in the nucleus accumbens shell followed by the nucleus accumbens core, with the caudate putamen having the least. Neither dopamine D2 nor D3 agonists affected the uptake rates in nucleus accumbens but concentrations greater than 0.1 μM lowered the uptake rate in caudate putamen. To validate our method of evaluating dopamine D2 and D3 autoreceptors, sulpiride (D2 antagonist) and nafadotride (D3 antagonist) were used to reverse the effects of the dopamine agonists to approximately 100% of the preagonist dopamine release concentration. Finally, these results demonstrate a functional voltammetric assay that characterizes dopamine D2-like agonists as either D2- or D3-preferring agonists by taking advantage of the unique receptor density within the striatum. PMID:20567609

  8. Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatorysystems

    PubMed Central

    Ogawa, Sachie K.; Cohen, Jeremiah Y.; Hwang, Dabin; Uchida, Naoshige; Watabe-Uchida, Mitsuko

    2014-01-01

    SUMMARY Serotonin and dopamine are major neuromodulators. Here we used a modified rabies virus to identify monosynaptic inputs to serotonin neurons in the dorsal and median raphe (DR and MR). We found that inputs to DR and MR serotonin neurons are spatially shiftedin the forebrain, with MRserotonin neurons receiving inputs from more medial structures. We then compared these data with inputs to dopamine neurons in the ventral tegmental area (VTA) and substantianigra pars compacta (SNc). We found that DR serotonin neurons receive inputs from a remarkably similar set of areas as VTA dopamine neurons, apart from the striatum, which preferentially targets dopamine neurons. Ourresults suggest three majorinput streams: amedial stream regulates MR serotonin neurons, anintermediate stream regulatesDR serotonin and VTA dopamine neurons, and alateral stream regulatesSNc dopamine neurons. These results providefundamental organizational principlesofafferent control forserotonin and dopamine. PMID:25108805

  9. The dopamine theory of addiction: 40 years of highs and lows.

    PubMed

    Nutt, David J; Lingford-Hughes, Anne; Erritzoe, David; Stokes, Paul R A

    2015-05-01

    For several decades, addiction has come to be viewed as a disorder of the dopamine neurotransmitter system; however, this view has not led to new treatments. In this Opinion article, we review the origins of the dopamine theory of addiction and discuss the ability of addictive drugs to elicit the release of dopamine in the human striatum. There is robust evidence that stimulants increase striatal dopamine levels and some evidence that alcohol may have such an effect, but little evidence, if any, that cannabis and opiates increase dopamine levels. Moreover, there is good evidence that striatal dopamine receptor availability and dopamine release are diminished in individuals with stimulant or alcohol dependence but not in individuals with opiate, nicotine or cannabis dependence. These observations have implications for understanding reward and treatment responses in various addictions.

  10. Selective detection of dopamine in the presence of ascorbic acid via fluorescence quenching of InP/ZnS quantum dots.

    PubMed

    Ankireddy, Seshadri Reddy; Kim, Jongsung

    2015-01-01

    Dopamine is a neurotransmitter of the catecholamine family and has many important roles, especially in human brain. Several diseases of the nervous system, such as Parkinson's disease, attention deficit hyperactivity disorder, restless legs syndrome, are believed to be related to deficiency of dopamine. Several studies have been performed to detect dopamine by using electrochemical analysis. In this study, quantum dots (QDs) were used as sensing media for the detection of dopamine. The surface of the QDs was modified with l-cysteine by coupling reaction to increase the selectivity of dopamine. The fluorescence of cysteine-capped indium phosphide/zinc sulfide QDs was quenched by dopamine with various concentrations in the presence of ascorbic acid. This method shows good selectivity for dopamine detection, and the detection limit was 5 nM.

  11. Dopamine dependency for acquisition and performance of Pavlovian conditioned response

    PubMed Central

    Darvas, Martin; Wunsch, Amanda M.; Gibbs, Jeffrey T.; Palmiter, Richard D.

    2014-01-01

    During Pavlovian conditioning, pairing of a neutral conditioned stimulus (CS) with a reward leads to conditioned reward-approach responses (CRs) that are elicited by presentation of the CS. CR behaviors can be sign tracking, in which animals engage the CS, or goal tracking, in which animals go to the reward location. We investigated CR behaviors in mice with only ∼5% of normal dopamine in the striatum using a Pavlovian conditioning paradigm. These mice had severely impaired acquisition of the CR, which was ameliorated by pharmacological restoration of dopamine synthesis with l-dopa. Surprisingly, after they had learned the CR, its expression decayed only gradually in following sessions that were conducted without l-dopa treatment. To assess specific contributions of dopamine signaling in the dorsal or ventral striatum, we performed virus-mediated restoration of dopamine synthesis in completely dopamine-deficient (DD) mice. Mice with dopamine signaling only in the dorsal striatum did not acquire a CR, whereas mice with dopamine signaling only in in the ventral striatum acquired a CR. The CR in mice with dopamine signaling only in the dorsal striatum was restored by subjecting the mice to instrumental training in which they had to interact with the CS to obtain rewards. We conclude that dopamine is essential for learning and performance of CR behavior that is predominantly goal tracking. Furthermore, although dopamine signaling in the ventral striatum is sufficient to support a CR, dopamine signaling only in the dorsal striatum can also support a CR under certain circumstances. PMID:24550305

  12. Involvement of Infralimbic Prefrontal Cortex but not Lateral Habenula in Dopamine Attenuation After Chronic Mild Stress.

    PubMed

    Moreines, Jared L; Owrutsky, Zoe L; Grace, Anthony A

    2017-03-01

    Emerging evidence supports a role for dopamine in major depressive disorder (MDD). We recently reported fewer spontaneously active ventral tegmental area (VTA) dopamine neurons (ie, reduced dopamine neuron population activity) in the chronic mild stress (CMS) rodent model of MDD. In this study, we examined the role of two brain regions that have been implicated in MDD in humans, the infralimbic prefrontal cortex (ILPFC)-that is, rodent homolog of Brodmann area 25 (BA25), and the lateral habenula (LHb) in the CMS-induced attenuation of dopamine neuron activity. The impact of activating the ILPFC or LHb was evaluated using single-unit extracellular recordings of identified VTA dopamine neurons. The involvement of each region in dopamine neuron attenuation following 5-7 weeks of CMS was then evaluated by selective inactivation. Activation of either ILPFC or LHb in normal rats potently suppressed dopamine neuron population activity, but in unique patterns. ILPFC activation selectively inhibited dopamine neurons in medial VTA, which were most impacted by CMS. Conversely, LHb activation selectively inhibited dopamine neurons in lateral VTA, which were unaffected by CMS. Moreover, only ILPFC inactivation restored dopamine neuron population activity to normal levels following CMS; LHb inactivation had no restorative effect. These data suggest that, in the CMS model of MDD, the ILPFC is the primary driver of diminished dopamine neuron responses. These findings support a neural substrate for ILPFC/BA25 linking affective and motivational circuitry dysfunction in MDD.

  13. The dopamine D1 receptor is expressed and facilitates relaxation in airway smooth muscle.

    PubMed

    Mizuta, Kentaro; Zhang, Yi; Xu, Dingbang; Mizuta, Fumiko; D'Ovidio, Frank; Masaki, Eiji; Emala, Charles W

    2013-09-02

    Dopamine signaling is mediated by Gs protein-coupled "D1-like" receptors (D1 and D5) and Gi-coupled "D2-like" receptors (D2-4). In asthmatic patients, inhaled dopamine induces bronchodilation. Although the Gi-coupled dopamine D2 receptor is expressed and sensitizes adenylyl cyclase activity in airway smooth muscle (ASM) cells, the Gs-coupled dopamine D1-like receptor subtypes have never been identified on these cells. Activation of Gs-coupled receptors stimulates cyclic AMP (cAMP) production through the stimulation of adenylyl cyclase, which promotes ASM relaxation. We questioned whether the dopamine D1-like receptor is expressed on ASM, and modulates its function through Gs-coupling. The mRNA and protein expression of dopamine D1-like receptor subtypes in both native human and guinea pig ASM tissue and cultured human ASM (HASM) cells was measured. To characterize the stimulation of cAMP through the dopamine D1 receptor, HASM cells were treated with dopamine or the dopamine D1-like receptor agonists (A68930 or SKF38393) before cAMP measurements. To evaluate whether the activation of dopamine D1 receptor induces ASM relaxation, guinea pig tracheal rings suspended under isometric tension in organ baths were treated with cumulatively increasing concentrations of dopamine or A68930, following an acetylcholine-induced contraction with or without the cAMP-dependent protein kinase (PKA) inhibitor Rp-cAMPS, the large-conductance calcium-activated potassium (BKCa) channel blocker iberiotoxin, or the exchange proteins directly activated by cAMP (Epac) antagonist NSC45576. Messenger RNA encoding the dopamine D1 and D5 receptors were detected in native human ASM tissue and cultured HASM cells. Immunoblots confirmed the protein expression of the dopamine D1 receptor in both native human and guinea pig ASM tissue and cultured HASM cells. The dopamine D1 receptor was also immunohistochemically localized to both human and guinea pig ASM. The dopamine D1-like receptor agonists stimulated cAMP production in HASM cells, which was reversed by the selective dopamine D1-like receptor antagonists SCH23390 or SCH39166. A68930 relaxed acetylcholine-contracted guinea pig tracheal rings, which was attenuated by Rp-cAMPS but not by iberiotoxin or NSC45576. These results demonstrate that the dopamine D1 receptors are expressed on ASM and regulate smooth muscle force via cAMP activation of PKA, and offer a novel target for therapeutic relaxation of ASM.

  14. The dopamine D1 receptor is expressed and facilitates relaxation in airway smooth muscle

    PubMed Central

    2013-01-01

    Background Dopamine signaling is mediated by Gs protein-coupled “D1-like” receptors (D1 and D5) and Gi-coupled “D2-like” receptors (D2-4). In asthmatic patients, inhaled dopamine induces bronchodilation. Although the Gi-coupled dopamine D2 receptor is expressed and sensitizes adenylyl cyclase activity in airway smooth muscle (ASM) cells, the Gs-coupled dopamine D1-like receptor subtypes have never been identified on these cells. Activation of Gs-coupled receptors stimulates cyclic AMP (cAMP) production through the stimulation of adenylyl cyclase, which promotes ASM relaxation. We questioned whether the dopamine D1-like receptor is expressed on ASM, and modulates its function through Gs-coupling. Methods The mRNA and protein expression of dopamine D1-like receptor subtypes in both native human and guinea pig ASM tissue and cultured human ASM (HASM) cells was measured. To characterize the stimulation of cAMP through the dopamine D1 receptor, HASM cells were treated with dopamine or the dopamine D1-like receptor agonists (A68930 or SKF38393) before cAMP measurements. To evaluate whether the activation of dopamine D1 receptor induces ASM relaxation, guinea pig tracheal rings suspended under isometric tension in organ baths were treated with cumulatively increasing concentrations of dopamine or A68930, following an acetylcholine-induced contraction with or without the cAMP-dependent protein kinase (PKA) inhibitor Rp-cAMPS, the large-conductance calcium-activated potassium (BKCa) channel blocker iberiotoxin, or the exchange proteins directly activated by cAMP (Epac) antagonist NSC45576. Results Messenger RNA encoding the dopamine D1 and D5 receptors were detected in native human ASM tissue and cultured HASM cells. Immunoblots confirmed the protein expression of the dopamine D1 receptor in both native human and guinea pig ASM tissue and cultured HASM cells. The dopamine D1 receptor was also immunohistochemically localized to both human and guinea pig ASM. The dopamine D1-like receptor agonists stimulated cAMP production in HASM cells, which was reversed by the selective dopamine D1-like receptor antagonists SCH23390 or SCH39166. A68930 relaxed acetylcholine-contracted guinea pig tracheal rings, which was attenuated by Rp-cAMPS but not by iberiotoxin or NSC45576. Conclusions These results demonstrate that the dopamine D1 receptors are expressed on ASM and regulate smooth muscle force via cAMP activation of PKA, and offer a novel target for therapeutic relaxation of ASM. PMID:24004608

  15. Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration

    NASA Astrophysics Data System (ADS)

    Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei

    2013-06-01

    Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33632h

  16. Evaluation of dimethoxydop-NU as a novel anti-tumor agent.

    PubMed

    Mukherjee, A; Dutta, S; Sanyal, U

    2007-12-01

    Dimethoxydop-NU, 1-[2-{3-(2-Chloroethyl)-3-nitrosoureido}ethyl]-3,4-dimethoxy-benzene (Compound 1), was synthesized from 3,4-dimethoxy-phenethylamine as a novel anti-tumor agent based on the structures of the clinical drug CCNU and dopamine, an important endogenous biological amine having anti-angiogenesis property. In vitro screening in two human tumor cell lines, namely promyelocytic leukemia HL-60 and histiocytic lymphoma U-937, revealed its cytotoxicity greater than that of hydroxyurea and comparable to BCNU used as standards. Its in vivo anti-tumoral potency was assessed in the murine ascites tumors Sarcoma-180 (S-180) and Ehrlich ascites carcinoma (EAC) by measuring the increase in median survival times of drug treated (T) over untreated control (C) mice. Results revealed significant tumor regression effects in these tumors. The survival time of treated mice was markedly increased by combination of the compound 1 with dopamine hydrochloride. Its toxicity was assessed in vivo in normal and EAC bearing mice by measuring drug-induced changes in hematological parameters, femoral bone marrow and splenic cellularities as well as biochemical parameters sequentially on days 9, 14 and 19 following drug treatment at the optimum dose of 30 mg/kg from day 1 to 7. Results indicated that initial suppression in the femoral bone marrow cellularity seen on day 9 reached normalcy by day 19. Other parameters were within normal limit. Histopathological studies of liver revealed mild hepatotoxicity on day 9 in treated groups that substantially recovered on day 19. Similar studies with heart and kidney revealed no cardio toxicity or nephrotoxicity. Compound 1 comparable to standards inhibited the synthesis of DNA and RNA in S-180 tumor cells.

  17. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Seung Taek; Kim, Dae Hong; Lee, Min Bum

    2013-07-19

    Highlights: •CopA3 peptide isolated from the Korean dung beetle has antimicrobial activity. •Our study reported that CopA3 has anticancer and immunosuppressive effects. •We here demonstrated that CopA3 has neurotropic and neuroprotective effects. •CopA3 degrades p27Kip1 protein and this mediates effects of CopA3 on neuronal cells. -- Abstract: We recently demonstrated that the antibacterial peptide, CopA3 (a D-type disulfide dimer peptide, LLCIALRKK), inhibits LPS-induced macrophage activation and also has anticancer activity in leukemia cells. Here, we examined whether CopA3 could affect neuronal cell proliferation. We found that CopA3 time-dependently increased cell proliferation by up to 31 ± 2% in human neuroblastomamore » SH-SY5Y cells, and up to 29 ± 2% in neural stem cells isolated from neonatal mouse brains. In both cell types, CopA3 also significantly inhibited the apoptosis and viability losses caused by 6-hydroxy dopamine (a Parkinson disease-mimicking agent) and okadaic acid (an Alzheimer’s disease-mimicking agent). Immunoblotting revealed that the p27Kip1 protein (a negative regulator of cell cycle progression) was markedly degraded in CopA3-treated SH-SY5Y cells. Conversely, an adenovirus expressing p27Kip1 significantly inhibited the antiapoptotic effects of CopA3 against 6-hydroxy dopamine- and okadaic acid-induced apoptosis, and decreased the neurotropic effects of CopA3. These results collectively suggest that CopA3-mediated protein degradation of p27Kip1 may be the main mechanism through which CopA3 exerts neuroprotective and neurotropic effects.« less

  18. New frontiers in the pharmacological management of Parkinson's disease.

    PubMed

    Gottwald, Mildred D; Aminoff, Michael J

    2008-07-01

    Rasagiline, a selective COMT inhibitor, and rotigotine, a transdermal dopamine (D2) agonist, are two new agents that have been approved in the U.S. and Europe for the treatment of Parkinson's disease. Rasagiline is approved in the U.S. for both monotherapy and as an adjunct to levodopa. Its role in preventing disease progression has yet to be proven, but a large-scale study (ADAGIO) is under way. Rotigotine is approved for early-stage disease in Europe and the U.S. but is only approved in Europe for late-stage disease. It has recently been recalled due to the formation of insoluble crystals that interfere with absorption and may reduce its efficacy. Measures are being taken by the manufacturer to solve this problem. Istradefylline, and adenosine receptor antagonist, showed early promise but efficacy has not been demonstrated consistently, possibly due to higher than expected placebo effect. This has resulted in a nonapprovable letter from the FDA. With regard to perampanel, additional studies are needed to demonstrate safety and efficacy. Sanifamide and pardoprunox are agents that target multiple receptors that may modulate dyskinesia and other nonmotor symptoms in addition to motor symptoms, but phase III data are not yet available. Lusuride is an older dopamine agonist that has been reformulated as a transdermal patch and as a subcutaneous injection and may offer advantages in refractory patients with motor fluctuations. Sphermaine is a novel cell therapy designed to provide a localized source of levodopa directly to the brain. Gene therapies including AAV-GAD, AAV-AADC and AAV2-neurturin are in early stages of development in patients with advanced-stage disease but early safety data are promising. Copyright 2008 Prous Science, S.A.U. or its licensors. All rights reserved.

  19. Pharmacokinetics and brain distribution of tetrahydropalmatine and tetrahydroberberine after oral administration of DA-9701, a new botanical gastroprokinetic agent, in rats.

    PubMed

    Jung, Ji Won; Kwon, Yong Sam; Jeong, Jin Seok; Son, Miwon; Kang, Hee Eun

    2015-01-01

    DA-9701, a new botanical gastroprokinetic agent, has potential for the management of delayed gastric emptying in Parkinson's disease if it has no central anti-dopaminergic activity. Therefore, we examined the pharmacokinetics of DA-9701 components having dopamine D2 receptor antagonizing activity, tetrahydropalmatine (THP) and tetrahydroberberine (THB), following various oral doses (80-328 mg/kg) of DA-9701. The distribution of THP and THB to the brain and/or other tissues was also evaluated after single or multiple oral administrations of DA-9701. Oral administration of DA-9701 yielded dose-proportional area under the plasma concentration-time curve (AUC0-8 h) and maximum plasma concentration (Cmax) values for THP and THB, indicating linear pharmacokinetics (except for THB at the lowest dose). THP and THB's large tissue-to-plasma concentration ratios indicated considerable tissue distribution. High concentrations of THP and THB in the stomach and small intestine suggest an explanation for DA-9701's potent gastroprokinetic activity. The maximum concentrations of THP and THB in brain following multiple oral DA-9701 for 7 d (150 mg/kg/d) was observed at 30 min after the last oral DA-9701 treatment: 131±67.7 ng/g for THP and 6.97±4.03 ng/g for THB. Although both THP and THB pass through the blood-brain barrier, as indicated by brain-to-plasma concentration ratios greater than unity (approximately 2-4), oral administration of DA-9701 at the effective dose in humans is not expected to lead to sufficient brain concentrations to exert central dopamine D2 receptor antagonism.

  20. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory

    PubMed Central

    Kempadoo, Kimberly A.; Mosharov, Eugene V.; Choi, Se Joon; Sulzer, David; Kandel, Eric R.

    2016-01-01

    Dopamine neurotransmission in the dorsal hippocampus is critical for a range of functions from spatial learning and synaptic plasticity to the deficits underlying psychiatric disorders such as attention-deficit hyperactivity disorder. The ventral tegmental area (VTA) is the presumed source of dopamine in the dorsal hippocampus. However, there is a surprising scarcity of VTA dopamine axons in the dorsal hippocampus despite the dense network of dopamine receptors. We have explored this apparent paradox using optogenetic, biochemical, and behavioral approaches and found that dopaminergic axons and subsequent dopamine release in the dorsal hippocampus originate from neurons of the locus coeruleus (LC). Photostimulation of LC axons produced an increase in dopamine release in the dorsal hippocampus as revealed by high-performance liquid chromatography. Furthermore, optogenetically induced release of dopamine from the LC into the dorsal hippocampus enhanced selective attention and spatial object recognition via the dopamine D1/D5 receptor. These results suggest that spatial learning and memory are energized by the release of dopamine in the dorsal hippocampus from noradrenergic neurons of the LC. The present findings are critical for identifying the neural circuits that enable proper attention selection and successful learning and memory. PMID:27930324

  1. Dopamine and extinction: A convergence of theory with fear and reward circuitry

    PubMed Central

    Abraham, Antony D.; Neve, Kim A.; Lattal, K. Matthew

    2014-01-01

    Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine’s function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes. PMID:24269353

  2. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory.

    PubMed

    Kempadoo, Kimberly A; Mosharov, Eugene V; Choi, Se Joon; Sulzer, David; Kandel, Eric R

    2016-12-20

    Dopamine neurotransmission in the dorsal hippocampus is critical for a range of functions from spatial learning and synaptic plasticity to the deficits underlying psychiatric disorders such as attention-deficit hyperactivity disorder. The ventral tegmental area (VTA) is the presumed source of dopamine in the dorsal hippocampus. However, there is a surprising scarcity of VTA dopamine axons in the dorsal hippocampus despite the dense network of dopamine receptors. We have explored this apparent paradox using optogenetic, biochemical, and behavioral approaches and found that dopaminergic axons and subsequent dopamine release in the dorsal hippocampus originate from neurons of the locus coeruleus (LC). Photostimulation of LC axons produced an increase in dopamine release in the dorsal hippocampus as revealed by high-performance liquid chromatography. Furthermore, optogenetically induced release of dopamine from the LC into the dorsal hippocampus enhanced selective attention and spatial object recognition via the dopamine D1/D5 receptor. These results suggest that spatial learning and memory are energized by the release of dopamine in the dorsal hippocampus from noradrenergic neurons of the LC. The present findings are critical for identifying the neural circuits that enable proper attention selection and successful learning and memory.

  3. Cutaneous synergistic analgesia of bupivacaine in combination with dopamine in rats.

    PubMed

    Tzeng, Jann-Inn; Wang, Jieh-Neng; Wang, Jhi-Joung; Chen, Yu-Wen; Hung, Ching-Hsia

    2016-05-04

    The main goal of the study was to investigate the interaction between bupivacaine and dopamine on local analgesia. After the blockade of the cutaneous trunci muscle reflex (CTMR) responses, which occurred following the drugs were subcutaneously injected in rats, the cutaneous analgesic effect of dopamine in a dosage-dependent fashion was compared to that of bupivacaine. Drug-drug interactions were evaluated by isobolographic methods. We showed the dose-dependent effects of dopamine on infiltrative cutaneous analgesia. On the 50% effective dose (ED50) basis, the rank of drug potency was bupivacaine (1.99 [1.92-2.09] μmol/kg) greater than dopamine (190 [181-203] μmol/kg) (P<0.01). At the equianalgesic doses (ED25, ED50, and ED75), dopamine elicited a similar duration of cutaneous analgesia compared with bupivacaine. The addition of dopamine to the bupivacaine solution exhibited a synergistic effect. Our pre-clinical data showed that dopamine produced a dose-dependent effect in producing cutaneous analgesia. When compared with bupivacaine, dopamine produced a lesser potency with a similar duration of cutaneous analgesia. Dopamine added to the bupivacaine preparation resulted in a synergistic analgesic effect. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. An electrochemical dopamine sensor based on the ZnO/CuO nanohybrid structures.

    PubMed

    Khun, K; Ibupoto, Z H; Liu, X; Mansor, N A; Turner, A P F; Beni, V; Willander, M

    2014-09-01

    The selective detection of dopamine (DA) is of great importance in the modern medicine because dopamine is one of the main regulators in human behaviour. In this study, ZnO/CuO nanohybrid structures, grown on the gold coated glass substrate, have been investigated as a novel electrode material for the electrochemical detection of dopamine. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques were used for the material characterization and the obtained results are in good agreement. The selective determination of dopamine was demonstrated by cyclic voltammetry (CV) and amperometric experiments. The amperometric response was linear for dopamine concentrations between 1.0 x 10(-3) and 8.0 mM with a sensitivity of 90.9 μA mM(-1) cm(-2). The proposed dopamine biosensor is very stable, selective over common interferents as glucose, uric acid and ascorbic acid, and also good reproducibility was observed for seven electrodes. Moreover, the dopamine sensor exhibited a fast response time of less than 10 s. The wide range and acceptable sensitivity of the presented dopamine sensor provide the possible application in analysing the dopamine from the real samples.

  5. Attenuating GABAA Receptor Signaling in Dopamine Neurons Selectively Enhances Reward Learning and Alters Risk Preference in Mice

    PubMed Central

    Parker, Jones G.; Wanat, Matthew J.; Soden, Marta E.; Ahmad, Kinza; Zweifel, Larry S.; Bamford, Nigel S.; Palmiter, Richard D.

    2011-01-01

    Phasic dopamine transmission encodes the value of reward-predictive stimuli and influences both learning and decision-making. Altered dopamine signaling is associated with psychiatric conditions characterized by risky choices such as pathological gambling. These observations highlight the importance of understanding how dopamine neuron activity is modulated. While excitatory drive onto dopamine neurons is critical for generating phasic dopamine responses, emerging evidence suggests that inhibitory signaling also modulates these responses. To address the functional importance of inhibitory signaling in dopamine neurons, we generated mice lacking the β3 subunit of the GABAA receptor specifically in dopamine neurons (β3-KO mice) and examined their behavior in tasks that assessed appetitive learning, aversive learning, and risk preference. Dopamine neurons in midbrain slices from β3-KO mice exhibited attenuated GABA-evoked inhibitory post-synaptic currents. Furthermore, electrical stimulation of excitatory afferents to dopamine neurons elicited more dopamine release in the nucleus accumbens of β3-KO mice as measured by fast-scan cyclic voltammetry. β3-KO mice were more active than controls when given morphine, which correlated with potential compensatory upregulation of GABAergic tone onto dopamine neurons. β3-KO mice learned faster in two food-reinforced learning paradigms, but extinguished their learned behavior normally. Enhanced learning was specific for appetitive tasks, as aversive learning was unaffected in β3-KO mice. Finally, we found that β3-KO mice had enhanced risk preference in a probabilistic selection task that required mice to choose between a small certain reward and a larger uncertain reward. Collectively, these findings identify a selective role for GABAA signaling in dopamine neurons in appetitive learning and decision-making. PMID:22114279

  6. Interaction of childhood urbanicity and variation in dopamine genes alters adult prefrontal function as measured by functional magnetic resonance imaging (fMRI).

    PubMed

    Reed, Jessica L; D'Ambrosio, Enrico; Marenco, Stefano; Ursini, Gianluca; Zheutlin, Amanda B; Blasi, Giuseppe; Spencer, Barbara E; Romano, Raffaella; Hochheiser, Jesse; Reifman, Ann; Sturm, Justin; Berman, Karen F; Bertolino, Alessandro; Weinberger, Daniel R; Callicott, Joseph H

    2018-01-01

    Brain phenotypes showing environmental influence may help clarify unexplained associations between urban exposure and psychiatric risk. Heritable prefrontal fMRI activation during working memory (WM) is such a phenotype. We hypothesized that urban upbringing (childhood urbanicity) would alter this phenotype and interact with dopamine genes that regulate prefrontal function during WM. Further, dopamine has been hypothesized to mediate urban-associated factors like social stress. WM-related prefrontal function was tested for main effects of urbanicity, main effects of three dopamine genes-catechol-O-methyltransferase (COMT), dopamine receptor D1 (DRD1), and dopamine receptor D2 (DRD2)-and, importantly, dopamine gene-by-urbanicity interactions. For COMT, three independent human samples were recruited (total n = 487). We also studied 253 subjects genotyped for DRD1 and DRD2. 3T fMRI activation during the N-back WM task was the dependent variable, while childhood urbanicity, dopamine genotype, and urbanicity-dopamine interactions were independent variables. Main effects of dopamine genes and of urbanicity were found. Individuals raised in an urban environment showed altered prefrontal activation relative to those raised in rural or town settings. For each gene, dopamine genotype-by-urbanicity interactions were shown in prefrontal cortex-COMT replicated twice in two independent samples. An urban childhood upbringing altered prefrontal function and interacted with each gene to alter genotype-phenotype relationships. Gene-environment interactions between multiple dopamine genes and urban upbringing suggest that neural effects of developmental environmental exposure could mediate, at least partially, increased risk for psychiatric illness in urban environments via dopamine genes expressed into adulthood.

  7. Increased presynaptic regulation of dopamine neurotransmission in the nucleus accumbens core following chronic ethanol self-administration in female macaques

    PubMed Central

    Siciliano, Cody A.; Calipari, Erin S.; Yorgason, Jordan T.; Lovinger, David M.; Mateo, Yolanda; Jimenez, Vanessa A.; Helms, Christa M.; Grant, Kathleen A.; Jones, Sara R.

    2016-01-01

    Rationale Hypofunction of striatal dopamine neurotransmission, or hypodopaminergia, is a consequence of excessive ethanol use, and is hypothesized to be a critical component of alcoholism, driving alcohol intake in an attempt to restore dopamine levels; however, the neurochemical mechanisms involved in these dopaminergic deficiencies are unknown. Objective Here we examined the specific dopaminergic adaptations that produce hypodopaminergia and contribute to alcohol use disorders using direct, sub-second measurements of dopamine signaling in nonhuman primates following chronic ethanol self-administration. Methods Female rhesus macaques completed one year of daily (22 hr/day) ethanol self-administration. Subsequently, fast-scan cyclic voltammetry was used in nucleus accumbens core brain slices to determine alterations in dopamine terminal function, including release and uptake kinetics, and sensitivity to quinpirole (D2/D3 dopamine receptor agonist) and U50,488 (kappa-opioid receptor agonist) induced inhibition of dopamine release. Results Ethanol drinking greatly increased uptake rates, which were positively correlated with lifetime ethanol intake. Furthermore, the sensitivity of dopamine D2/D3 autoreceptors and kappa-opioid receptors, which both act as negative regulators of presynaptic dopamine release, were moderately and robustly enhanced in ethanol drinkers. Conclusions Greater uptake rates and sensitivity to D2-type autoreceptor and kappa-opioid receptor agonists could converge to drive a hypodopaminergic state, characterized by reduced basal dopamine and an inability to mount appropriate dopaminergic responses to salient stimuli. Together, we outline the specific alterations to dopamine signaling that may drive ethanol-induced hypofunction of the dopamine system, and suggest that the dopamine and dynorphin/kappa-opioid receptor systems may be efficacious pharmcotherapeutic targets in the treatment of alcohol use disorders. PMID:26892380

  8. Single cocaine exposure does not alter striatal pre-synaptic dopamine function in mice: an [18 F]-FDOPA PET study.

    PubMed

    Bonsall, David R; Kokkinou, Michelle; Veronese, Mattia; Coello, Christopher; Wells, Lisa A; Howes, Oliver D

    2017-12-01

    Cocaine is a recreational drug of abuse that binds to the dopamine transporter, preventing reuptake of dopamine into pre-synaptic terminals. The increased presence of synaptic dopamine results in stimulation of both pre- and post-synaptic dopamine receptors, considered an important mechanism by which cocaine elicits its reinforcing properties. However, the effects of acute cocaine administration on pre-synaptic dopamine function remain unclear. Non-invasive imaging techniques such as positron emission tomography have revealed impaired pre-synaptic dopamine function in chronic cocaine users. Similar impairments have been seen in animal studies, with microdialysis experiments indicating decreased basal dopamine release. Here we use micro positron emission tomography imaging techniques in mice to measure dopamine synthesis capacity and determine the effect of acute cocaine administration of pre-synaptic dopamine function. We show that a dose of 20 mg/kg cocaine is sufficient to elicit hyperlocomotor activity, peaking 15-20 min post treatment (p < 0.001). However, dopamine synthesis capacity in the striatum was not significantly altered by acute cocaine treatment (KiCer: 0.0097 per min vs. 0.0112 per min in vehicle controls, p > 0.05). Furthermore, expression levels of two key enzymes related to dopamine synthesis, tyrosine hydroxylase and aromatic l-amino acid decarboxylase, within the striatum of scanned mice were not significantly affected by acute cocaine pre-treatment (p > 0.05). Our findings suggest that while the regulation of dopamine synthesis and release in the striatum have been shown to change with chronic cocaine use, leading to a reduced basal tone, these adaptations to pre-synaptic dopaminergic neurons are not initiated following a single exposure to the drug. © 2017 International Society for Neurochemistry.

  9. Continuous cerebroventricular administration of dopamine: A new treatment for severe dyskinesia in Parkinson's disease?

    PubMed

    Laloux, C; Gouel, F; Lachaud, C; Timmerman, K; Do Van, B; Jonneaux, A; Petrault, M; Garcon, G; Rouaix, N; Moreau, C; Bordet, R; Duce, J A; Devedjian, J C; Devos, D

    2017-07-01

    In Parkinson's disease (PD) depletion of dopamine in the nigro-striatal pathway is a main pathological hallmark that requires continuous and focal restoration. Current predominant treatment with intermittent oral administration of its precursor, Levodopa (l-dopa), remains the gold standard but pharmacological drawbacks trigger motor fluctuations and dyskinesia. Continuous intracerebroventricular (i.c.v.) administration of dopamine previously failed as a therapy because of an inability to resolve the accelerated dopamine oxidation and tachyphylaxia. We aim to overcome prior challenges by demonstrating treatment feasibility and efficacy of continuous i.c.v. of dopamine close to the striatum. Dopamine prepared either anaerobically (A-dopamine) or aerobically (O-dopamine) in the presence or absence of a conservator (sodium metabisulfite, SMBS) was assessed upon acute MPTP and chronic 6-OHDA lesioning and compared to peripheral l-dopa treatment. A-dopamine restored motor function and induced a dose dependent increase of nigro-striatal tyrosine hydroxylase positive neurons in mice after 7days of MPTP insult that was not evident with either O-dopamine or l-dopa. In the 6-OHDA rat model, continuous circadian i.c.v. injection of A-dopamine over 30days also improved motor activity without occurrence of tachyphylaxia. This safety profile was highly favorable as A-dopamine did not induce dyskinesia or behavioral sensitization as observed with peripheral l-dopa treatment. Indicative of a new therapeutic strategy for patients suffering from l-dopa related complications with dyskinesia, continuous i.c.v. of A-dopamine has greater efficacy in mediating motor impairment over a large therapeutic index without inducing dyskinesia and tachyphylaxia. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Sleep Deprivation Decreases [11C]Raclopride’s Binding to Dopamine D2/D3 Receptors in the Human Brain

    PubMed Central

    Volkow, Nora D.; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S.; Logan, Jean; Wong, Christopher; Ma, Jim; Pradhan, Kith; Tomasi, Dardo; Thanos, Peter K.; Ferré, Sergi; Jayne, Millard

    2009-01-01

    Sleep deprivation can markedly impair human performance contributing to accidents and poor productivity. The mechanisms underlying this impairment are not well understood but brain dopamine systems have been implicated. Here we test whether one night of sleep deprivation changes dopamine brain activity. We studied fifteen healthy subjects using positron emission tomography and [11C]raclopride (dopamine D2/3 receptor radioligand) and [11C]cocaine (dopamine transporter radioligand). Subjects were tested twice; after one night of rested sleep and after on night of sleep deprivation. [11C]Raclopride’s specific binding in striatum and thalamus were significantly reduced after sleep deprivation and the magnitude of this reduction correlated with increases in fatigue (tiredness and sleepiness) and with deterioration in cognitive performance (visual attention and working memory). In contrast sleep deprivation did not affect the specific binding of [11C]cocaine in striatum. Since [11C]raclopride competes with endogenous dopamine for binding to D2/D3 receptors, we interpret the decreases in binding to reflect dopamine increases with sleep deprivation. However, we can not rule out the possibility that decreased [11C]raclopride binding reflects decreases in receptor levels or affinity. Sleep deprivation did not affect dopamine transporters (target for most wake-promoting medications) and thus dopamine increases are likely to reflect increases in dopamine cell firing and/or release rather than decreases in dopamine reuptake. Inasmuch as dopamine-enhancing drugs increase wakefulness we postulate that dopamine increases after sleep deprivation is a mechanism by which the brain maintains arousal as the drive to sleep increases but one that is insufficient to counteract behavioral and cognitive impairment. PMID:18716203

  11. Increased presynaptic regulation of dopamine neurotransmission in the nucleus accumbens core following chronic ethanol self-administration in female macaques.

    PubMed

    Siciliano, Cody A; Calipari, Erin S; Yorgason, Jordan T; Lovinger, David M; Mateo, Yolanda; Jimenez, Vanessa A; Helms, Christa M; Grant, Kathleen A; Jones, Sara R

    2016-04-01

    Hypofunction of striatal dopamine neurotransmission, or hypodopaminergia, is a consequence of excessive ethanol use and is hypothesized to be a critical component of alcoholism, driving alcohol intake in an attempt to restore dopamine levels; however, the neurochemical mechanisms involved in these dopaminergic deficiencies are not fully understood. Here we examined the specific dopaminergic adaptations that produce hypodopaminergia and contribute to alcohol use disorders using direct, sub-second measurements of dopamine signaling in nonhuman primates following chronic ethanol self-administration. Female rhesus macaques completed 1 year of daily (22 h/day) ethanol self-administration. Subsequently, fast-scan cyclic voltammetry was used in nucleus accumbens core brain slices to determine alterations in dopamine terminal function, including release and uptake kinetics, and sensitivity to quinpirole (D2/D3 dopamine receptor agonist) and U50,488 (kappa opioid receptor agonist) induced inhibition of dopamine release. Ethanol drinking greatly increased uptake rates, which were positively correlated with lifetime ethanol intake. Furthermore, the sensitivity of dopamine D2/D3 autoreceptors and kappa opioid receptors, which both act as negative regulators of presynaptic dopamine release, was moderately and robustly enhanced in ethanol drinkers. Greater uptake rates and sensitivity to D2-type autoreceptor and kappa opioid receptor agonists could converge to drive a hypodopaminergic state, characterized by reduced basal dopamine and an inability to mount appropriate dopaminergic responses to salient stimuli. Together, we outline the specific alterations to dopamine signaling that may drive ethanol-induced hypofunction of the dopamine system and suggest that the dopamine and dynorphin/kappa opioid receptor systems may be efficacious pharmacotherapeutic targets in the treatment of alcohol use disorders.

  12. Adolescent binge-like alcohol alters sensitivity to acute alcohol effects on dopamine release in the nucleus accumbens of adult rats

    PubMed Central

    Shnitko, Tatiana A.; Spear, Linda P.; Robinson, Donita L.

    2015-01-01

    Rationale Early onset of alcohol drinking has been associated with alcohol abuse in adulthood. The neurobiology of this phenomenon is unclear, but mesolimbic dopamine pathways, which are dynamic during adolescence, may play a role. Objectives We investigated the impact of adolescent binge-like alcohol on phasic dopaminergic neurotransmission during adulthood. Methods Rats received intermittent intragastric ethanol, water or nothing during adolescence. In adulthood, electrically-evoked dopamine release and subsequent uptake were measured in the nucleus accumbens core at baseline and after acute challenge of ethanol or saline. Results Adolescent ethanol exposure did not alter basal measures of evoked dopamine release or uptake. Ethanol challenge dose-dependently decreased the amplitude of evoked dopamine release in rats by 30–50% in control groups, as previously reported, but did not alter evoked release in ethanol-exposed animals. To address the mechanism by which ethanol altered dopamine signaling, the evoked signals were modeled to estimate dopamine efflux per impulse and the velocity of the dopamine transporter. Dopamine uptake was slower in all exposure groups after ethanol challenge compared to saline, while dopamine efflux per pulse of electrical stimulation was reduced by ethanol only in ethanol-naive rats. Conclusions The results demonstrate that exposure to binge levels of ethanol during adolescence blunts the effect of ethanol challenge to reduce the amplitude of phasic dopamine release in adulthood. Large dopamine transients may result in more extracellular dopamine after alcohol challenge in adolescent-exposed rats, and may be one mechanism by which alcohol is more reinforcing in people who initiated drinking at an early age. PMID:26487039

  13. Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors.

    PubMed

    Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel

    2015-02-01

    Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [(3)H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. [(3)H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. © 2014 The British Pharmacological Society.

  14. Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors

    PubMed Central

    Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel

    2015-01-01

    Background and Purpose Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). Experimental Approach The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [3H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. Key Results [3H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Conclusions and Implications Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. PMID:25339241

  15. Ionization pattern obtained in electrospray ionization or atmospheric pressure chemical ionization interfaces for authorized antidepressants in Romania

    NASA Astrophysics Data System (ADS)

    Grecu, Iulia; Ionicǎ, Mihai; Vlǎdescu, Marian; Truţǎ, Elena; Sultan, Carmen; Viscol, Oana; Horhotǎ, Luminiţa; Radu, Simona

    2016-12-01

    Antidepressants were found in 1950. In the 1990s there was a new generation of antidepressants. They act on the level of certain neurotransmitters extrasinpatic by its growth. After their mode of action antidepressants may be: SSRIs (Selective Serotonin Reuptake Inhibitors); (Serotonin-Norepinephrine Reuptake Inhibitors); SARIs (Serotonin Antagonist Reuptake Inhibitors); NRIs (Norepinephrine Reuptake Inhibitors); NDRIs (Norepinephrine-Dopamine Reuptake Inhibitors) NDRAs (Norepinephrine-Dopamine Releasing Agents); TCAs (Tricyclic Antidepressants); TeCAs (Tetracyclic Antidepressants); MAOIs (Monoamine Oxidase Inhibitors); agonist receptor 5-HT1A (5- hydroxytryptamine); antagonist receptor 5-HT2; SSREs (Selective Serotonin Reuptake Enhancers) and Sigma agonist receptor. To determine the presence of antidepressants in biological products, it has been used a system HPLC-MS (High Performance Liquid Chromatography - Mass Spectrometry) Varian 12001. The system is equipped with APCI (Atmospheric Pressure Chemical Ionization) or ESI (ElectroSpray Ionization) interface. To find antidepressants in unknown samples is necessary to recognize them after mass spectrum. Because the mass spectrum it is dependent on obtaining private parameters work of HPLC-MS system, and control interfaces, the mass spectra library was filled with the mass spectra of all approved antidepressants in Romania. The paper shows the mass spectra obtained in the HPLCMS system.

  16. Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson's disease.

    PubMed

    Datla, K P; Christidou, M; Widmer, W W; Rooprai, H K; Dexter, D T

    2001-12-04

    Neuroprotective effects of a natural antioxidant tangeretin, a citrus flavonoid, were elucidated in the 6-hydroxydopamine (6-OHDA) lesion rat model of Parkinson's disease (PD), after bioavailability studies. Following the chronic oral administration (10 mg/kg/day for 28 days), significant levels of tangeretin were detected in the hypothalamus, striatum and hippocampus (3.88, 2.36 and 2.00 ng/mg, respectively). The levels in the liver and plasma were 0.59 ng/mg and 0.11 ng/ml respectively. Unilateral infusion of the dopaminergic neurotoxin, 6-hydroxydopamine (6-OHDA; 8 microg), onto medial forebrain bundle significantly reduced the number of tyrosine hydroxylase positive (TH+) cells in the substantia nigra and decreased striatal dopamine content in the vehicle treated rats. Sub-chronic treatment of the rats with high doses of tangeretin (20 mg/kg/day for 4 days; p.o.) before 6-OHDA lesioning markedly reduced the loss of both TH+ cells and striatal dopamine content. These studies, for the first time, give evidence that tangeretin crosses the blood-brain barrier. The significant protection of striato-nigral integrity and functionality by tangeretin suggests its potential use as a neuroprotective agent.

  17. Novel codrugs with GABAergic activity for dopamine delivery in the brain.

    PubMed

    Denora, Nunzio; Cassano, Tommaso; Laquintana, Valentino; Lopalco, Antonio; Trapani, Adriana; Cimmino, Concetta Stefania; Laconca, Leonardo; Giuffrida, Andrea; Trapani, Giuseppe

    2012-11-01

    This study investigates the use of codrugs of the GABAergic agent 2-phenyl-imidazo[1,2-a]pyridinacetamide and dopamine (DA) or ethyl ester L-Dopa (LD) as a strategy to deliver DA and simultaneously activate GABA-receptors in the brain. For this purpose, both DA and LD ethyl ester were linked by carbamate bond to imidazo[1,2-a]pyridine acetamide moieties to yield two DA- and two LD-imidazopyridine derivatives. These compounds were evaluated in vitro to assess their stability, binding affinities and cell membrane transport, and in vivo to assess their bio-availability via microdialysis studies. The two DA derivatives were adequately stable in buffered solution, but underwent cleavage in diluted human serum. By contrast, the LD derivatives were unstable in buffered solution. Receptor binding studies showed that the DA-imidazopyridine carbamates had binding affinity for benzodiazepine receptors in the nanomolar range. Brain microdialysis experiments indicated that intraperitoneal administration of the DA derivatives sustained DA levels in rat striatum over a 4-h period. These results suggest that DA-imidazopyridine carbamates are new DA codrugs with potential application for DA replacement therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Pharmacological Fingerprints of Contextual Uncertainty

    PubMed Central

    Ruge, Diane; Stephan, Klaas E.

    2016-01-01

    Successful interaction with the environment requires flexible updating of our beliefs about the world. By estimating the likelihood of future events, it is possible to prepare appropriate actions in advance and execute fast, accurate motor responses. According to theoretical proposals, agents track the variability arising from changing environments by computing various forms of uncertainty. Several neuromodulators have been linked to uncertainty signalling, but comprehensive empirical characterisation of their relative contributions to perceptual belief updating, and to the selection of motor responses, is lacking. Here we assess the roles of noradrenaline, acetylcholine, and dopamine within a single, unified computational framework of uncertainty. Using pharmacological interventions in a sample of 128 healthy human volunteers and a hierarchical Bayesian learning model, we characterise the influences of noradrenergic, cholinergic, and dopaminergic receptor antagonism on individual computations of uncertainty during a probabilistic serial reaction time task. We propose that noradrenaline influences learning of uncertain events arising from unexpected changes in the environment. In contrast, acetylcholine balances attribution of uncertainty to chance fluctuations within an environmental context, defined by a stable set of probabilistic associations, or to gross environmental violations following a contextual switch. Dopamine supports the use of uncertainty representations to engender fast, adaptive responses. PMID:27846219

  19. Protective effects of minocycline on the reduction of dopamine transporters in the striatum after administration of methamphetamine: a positron emission tomography study in conscious monkeys.

    PubMed

    Hashimoto, Kenji; Tsukada, Hideo; Nishiyama, Shingo; Fukumoto, Dai; Kakiuchi, Takeharu; Iyo, Masaomi

    2007-03-01

    Positron emission tomography (PET) studies of methamphetamine (METH) abusers suggest that psychotic symptoms of METH abusers may be attributable to the reduction of dopamine transporters (DAT) in the human brain. However, there are currently no particular pharmacological treatments for the wide range of symptoms associated with METH abuse. Using a PET study in conscious monkeys, we investigated whether the second generation antibiotic minocycline could protect against the reduction of DAT in monkeys treated with METH (2 mg/kg x 3, 3-hour intervals). Pretreatment and subsequent administration of minocycline significantly attenuated the reduction of DAT in the striatum of monkeys treated with METH. Furthermore, posttreatment and subsequent administration of minocycline also significantly attenuated the reduction of DAT. In contrast, repeated administration of minocycline alone did not alter the density of DAT in the striatum of monkeys treated with METH. Our findings suggest that minocycline protects against METH-induced neurotoxicity in the monkey brain. Therefore, minocycline is likely to be a promising therapeutic agent for the treatment of several symptoms associated with METH use in humans.

  20. Reductions of {sup 56}Fe heavy-particle irradiation-induced deficits in striatal muscarinic receptor sensitivity by selective cross-activation/inhibition of second-messenger systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, J.A.; Villalobos-Molina, R.; Rabin, B.M.

    Recent experiments have revealed radiation-induced losses of sensitivity of rodent neostriatal muscarinic receptors to stimulation by cholinergic agonists that appears as reduction in oxotremorine enhancement of K{sup +}-evoked dopamine release. These losses were postulated to be the result of radiation-induced alterations early in phosphoinositide-mediated signal transduction. Additional findings indicated that if the ligand-receptor-G protein interface was bypassed no radiation deficits were seen. In the present study, radiation-induced deficits in K{sup +}-evoked dopamine release were examined in perifused striatal tissue obtained from rats exposed to 0,0.1 or 1.0 Gy of {sup 56}Fe particles. Results showed that these deficits could be reducedmore » by co-applying combinations of various pharmacological agents that were known to have differential effects on various second messengers such as 1,4,5-inositoltrisphosphate (IP{sub 3}). Combinations included oxotremorine-carbachol, and either oxotremorine or carbachol with arginine vasopressin or arachidonic acid. These results are discussed in terms of putative radiation-induced changes in receptor-containing membranes which alter receptor-G protein coupling/uncoupling. 49 refs., 4 figs.« less

  1. Blonanserin Ameliorates Phencyclidine-Induced Visual-Recognition Memory Deficits: the Complex Mechanism of Blonanserin Action Involving D3-5-HT2A and D1-NMDA Receptors in the mPFC

    PubMed Central

    Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2015-01-01

    Blonanserin differs from currently used serotonin 5-HT2A/dopamine-D2 receptor antagonists in that it exhibits higher affinity for dopamine-D2/3 receptors than for serotonin 5-HT2A receptors. We investigated the involvement of dopamine-D3 receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT2A receptor agonist) and 7-OH-DPAT (a dopamine-D3 receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D1 receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr197 and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser897 by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser896 by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D1-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D3 and serotonin 5-HT2A receptors in the mPFC. PMID:25120077

  2. Selective effects of buspirone and molindone on dopamine metabolism and function in the striatum and frontal cortex of the rat.

    PubMed

    McMillen, B A; McDonald, C C

    1983-03-01

    The hypothesis that the nerve endings of the dopamine projection of the frontal cortex lack autoreceptors for regulation of tyrosine hydroxylase was tested by using the preferential inhibitors of dopamine autoreceptors, molindole and buspirone. In contrast to haloperidol, which elevates dopamine metabolism in the striatum and frontal cortex, both molindone and buspirone elicited little change in dopamine metabolism in the frontal cortex at doses up to 3.0 mg/kg, which cause the same maximal response in the corpus striatum as does haloperidol. Thus, the lack of autoreceptors in the frontal cortex is of pharmacological importance. That preferential inhibition of striatal dopamine autoreceptors may reverse catalepsy by enhancing synthesis and release of dopamine was tested by first inducing catalepsy with different drugs and then administering molindone or buspirone. Only buspirone (1.0 mg/kg) reversed catalepsy. This effect does not require presynaptic dopamine as catalepsy was reversed by buspirone in the dopamine-depleted rat (with 2.0 mg/kg R04-1284) as well as after postsynaptic dopamine receptor blockade by haloperidol of cis-flupenthixol. Thus, the mechanism for the reversal of catalepsy appears to be located efferent from the dopamine neuron. Buspirone, a non-benzodiazepine anti-anxiety drug, may prove useful for treatment of extrapyramidal motor disorders of either iatrogenic or idiosyncratic origin.

  3. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors

    PubMed Central

    Mikhailova, Maria A.; Bass, Caroline E.; Grinevich, Valentina P.; Chappell, Ann M.; Deal, Alex L.; Bonin, Keith D.; Weiner, Jeff L.; Gainetdinov, Raul R.; Budygin, Evgeny A.

    2016-01-01

    Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. We used optical activation of this dopamine circuit to mimic tonic dopamine release in the nucleus accumbens and to explore the causal relationship between this form of dopamine signaling within the ventral tegmental area (VTA)-nucleus accumbens projection and consumption of a natural reward. Using a two bottle choice paradigm (sucrose vs. water), the experiments revealed that tonic optogenetic stimulation of mesolimbic dopamine transmission significantly decreased reward consummatory behaviors. Specifically, there was a significant decrease in the number of bouts, licks and amount of sucrose obtained during the drinking session. Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in the water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors. PMID:27421228

  4. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    PubMed Central

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  5. Tyrosine - Effects on catecholamine release

    NASA Technical Reports Server (NTRS)

    Acworth, Ian N.; During, Matthew J.; Wurtman, Richard J.

    1988-01-01

    Tyrosine administration elevates striatal levels of dopamine metabolites in animals given treatments that accelerate nigrostriatal firing, but not in untreated rats. We examined the possibility that the amino acid might actually enhance dopamine release in untreated animals, but that the technique of measuring striatal dopamine metabolism was too insensitive to demonstrate such an effect. Dopamine release was assessed directly, using brain microdialysis of striatal extracellular fluid. Tyrosine administration (50-200 mg/kg IP) did indeed cause a dose related increase in extracellular fluid dopamine levels with minor elevations in levels of DOPAC and HVA, its major metabolites, which were not dose-related. The rise in dopamine was short-lived, suggesting that receptor-mediated feedback mechanisms responded to the increased dopamine release by diminishing neuronal firing or sensitivity to tyrosine. These observations indicate that measurement of changes in striatal DOPAC and HVA, if negative, need not rule out increases in nigrostriatal dopamine release.

  6. Selective detection of dopamine in the presence of ascorbic acid via fluorescence quenching of InP/ZnS quantum dots

    PubMed Central

    Ankireddy, Seshadri Reddy; Kim, Jongsung

    2015-01-01

    Dopamine is a neurotransmitter of the catecholamine family and has many important roles, especially in human brain. Several diseases of the nervous system, such as Parkinson’s disease, attention deficit hyperactivity disorder, restless legs syndrome, are believed to be related to deficiency of dopamine. Several studies have been performed to detect dopamine by using electrochemical analysis. In this study, quantum dots (QDs) were used as sensing media for the detection of dopamine. The surface of the QDs was modified with l-cysteine by coupling reaction to increase the selectivity of dopamine. The fluorescence of cysteine-capped indium phosphide/zinc sulfide QDs was quenched by dopamine with various concentrations in the presence of ascorbic acid. This method shows good selectivity for dopamine detection, and the detection limit was 5 nM. PMID:26347250

  7. Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons.

    PubMed

    Yapo, Cedric; Nair, Anu G; Clement, Lorna; Castro, Liliana R; Hellgren Kotaleski, Jeanette; Vincent, Pierre

    2017-12-15

    Brief dopamine events are critical actors of reward-mediated learning in the striatum; the intracellular cAMP-protein kinase A (PKA) response of striatal medium spiny neurons to such events was studied dynamically using a combination of biosensor imaging in mouse brain slices and in silico simulations. Both D1 and D2 medium spiny neurons can sense brief dopamine transients in the sub-micromolar range. While dopamine transients profoundly change cAMP levels in both types of medium spiny neurons, the PKA-dependent phosphorylation level remains unaffected in D2 neurons. At the level of PKA-dependent phosphorylation, D2 unresponsiveness depends on protein phosphatase-1 (PP1) inhibition by DARPP-32. Simulations suggest that D2 medium spiny neurons could detect transient dips in dopamine level. The phasic release of dopamine in the striatum determines various aspects of reward and action selection, but the dynamics of the dopamine effect on intracellular signalling remains poorly understood. We used genetically encoded FRET biosensors in striatal brain slices to quantify the effect of transient dopamine on cAMP or PKA-dependent phosphorylation levels, and computational modelling to further explore the dynamics of this signalling pathway. Medium-sized spiny neurons (MSNs), which express either D 1 or D 2 dopamine receptors, responded to dopamine by an increase or a decrease in cAMP, respectively. Transient dopamine showed similar sub-micromolar efficacies on cAMP in both D1 and D2 MSNs, thus challenging the commonly accepted notion that dopamine efficacy is much higher on D 2 than on D 1 receptors. However, in D2 MSNs, the large decrease in cAMP level triggered by transient dopamine did not translate to a decrease in PKA-dependent phosphorylation level, owing to the efficient inhibition of protein phosphatase 1 by DARPP-32. Simulations further suggested that D2 MSNs can also operate in a 'tone-sensing' mode, allowing them to detect transient dips in basal dopamine. Overall, our results show that D2 MSNs may sense much more complex patterns of dopamine than previously thought. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  8. Oral Administration of Methylphenidate Blocks the Effect of Cocaine on Uptake at the Drosophila Dopamine Transporter

    PubMed Central

    2013-01-01

    Although our understanding of the actions of cocaine in the brain has improved, an effective drug treatment for cocaine addiction has yet to be found. Methylphenidate binds the dopamine transporter and increases extracellular dopamine levels in mammalian central nervous systems similar to cocaine, but it is thought to elicit fewer addictive and reinforcing effects owing to slower pharmacokinetics for different routes of administration between the drugs. This study utilizes the fruit fly model system to quantify the effects of oral methylphenidate on dopamine uptake during direct cocaine exposure to the fly CNS. The effect of methylphenidate on the dopamine transporter has been explored by measuring the uptake of exogenously applied dopamine. The data suggest that oral consumption of methylphenidate inhibits the Drosophila dopamine transporter and the inhibition is concentration dependent. The peak height increased to 150% of control when cocaine was used to block the dopamine transporter for untreated flies but only to 110% for methylphenidate-treated flies. Thus, the dopamine transporter is mostly inhibited for the methylphenidate-fed flies before the addition of cocaine. The same is true for the rate of the clearance of dopamine measured by amperometry. For untreated flies the rate of clearance changes 40% when the dopamine transporter is inhibited with cocaine, and for treated flies the rate changes only 10%. The results were correlated to the in vivo concentration of methylphenidate determined by CE-MS. Our data suggest that oral consumption of methylphenidate inhibits the Drosophila dopamine transporter for cocaine uptake, and the inhibition is concentration dependent. PMID:23402315

  9. Long-Term Stimulant Treatment Affects Brain Dopamine Transporter Level in Patients with Attention Deficit Hyperactive Disorder

    PubMed Central

    Wang, Gene-Jack; Volkow, Nora D.; Wigal, Timothy; Kollins, Scott H.; Newcorn, Jeffrey H.; Telang, Frank; Logan, Jean; Jayne, Millard; Wong, Christopher T.; Han, Hao; Fowler, Joanna S.; Zhu, Wei; Swanson, James M.

    2013-01-01

    Objective Brain dopamine dysfunction in attention deficit/hyperactivity disorder (ADHD) could explain why stimulant medications, which increase dopamine signaling, are therapeutically beneficial. However while the acute increases in dopamine induced by stimulant medications have been associated with symptom improvement in ADHD the chronic effects have not been investigated. Method We used positron emission tomography and [11C]cocaine (dopamine transporter radioligand) to measure dopamine transporter availability in the brains of 18 never-medicated adult ADHD subjects prior to and after 12 months of treatment with methylphenidate and in 11 controls who were also scanned twice at 12 months interval but without stimulant medication. Dopamine transporter availability was quantified as non-displaceable binding potential using a kinetic model for reversible ligands. Results Twelve months of methylphenidate treatment increased striatal dopamine transporter availability in ADHD (caudate, putamen and ventral striatum: +24%, p<0.01); whereas there were no changes in control subjects retested at 12-month interval. Comparisons between controls and ADHD participants revealed no significant difference in dopamine transporter availability prior to treatment but showed higher dopamine transporter availability in ADHD participants than control after long-term treatment (caudate: p<0.007; putamen: p<0.005). Conclusion Upregulation of dopamine transporter availability during long-term treatment with methylphenidate may decrease treatment efficacy and exacerbate symptoms while not under the effects of the medication. Our findings also suggest that the discrepancies in the literature regarding dopamine transporter availability in ADHD participants (some studies reporting increases, other no changes and other decreases) may reflect, in part, differences in treatment histories. PMID:23696790

  10. A transient dopamine signal encodes subjective value and causally influences demand in an economic context

    PubMed Central

    Schelp, Scott A.; Pultorak, Katherine J.; Rakowski, Dylan R.; Gomez, Devan M.; Krzystyniak, Gregory; Das, Raibatak; Oleson, Erik B.

    2017-01-01

    The mesolimbic dopamine system is strongly implicated in motivational processes. Currently accepted theories suggest that transient mesolimbic dopamine release events energize reward seeking and encode reward value. During the pursuit of reward, critical associations are formed between the reward and cues that predict its availability. Conditioned by these experiences, dopamine neurons begin to fire upon the earliest presentation of a cue, and again at the receipt of reward. The resulting dopamine concentration scales proportionally to the value of the reward. In this study, we used a behavioral economics approach to quantify how transient dopamine release events scale with price and causally alter price sensitivity. We presented sucrose to rats across a range of prices and modeled the resulting demand curves to estimate price sensitivity. Using fast-scan cyclic voltammetry, we determined that the concentration of accumbal dopamine time-locked to cue presentation decreased with price. These data confirm and extend the notion that dopamine release events originating in the ventral tegmental area encode subjective value. Using optogenetics to augment dopamine concentration, we found that enhancing dopamine release at cue made demand more sensitive to price and decreased dopamine concentration at reward delivery. From these observations, we infer that value is decreased because of a negative reward prediction error (i.e., the animal receives less than expected). Conversely, enhancing dopamine at reward made demand less sensitive to price. We attribute this finding to a positive reward prediction error, whereby the animal perceives they received a better value than anticipated. PMID:29109253

  11. Long-term stimulant treatment affects brain dopamine transporter level in patients with attention deficit hyperactive disorder.

    PubMed

    Wang, Gene-Jack; Volkow, Nora D; Wigal, Timothy; Kollins, Scott H; Newcorn, Jeffrey H; Telang, Frank; Logan, Jean; Jayne, Millard; Wong, Christopher T; Han, Hao; Fowler, Joanna S; Zhu, Wei; Swanson, James M

    2013-01-01

    Brain dopamine dysfunction in attention deficit/hyperactivity disorder (ADHD) could explain why stimulant medications, which increase dopamine signaling, are therapeutically beneficial. However while the acute increases in dopamine induced by stimulant medications have been associated with symptom improvement in ADHD the chronic effects have not been investigated. We used positron emission tomography and [(11)C]cocaine (dopamine transporter radioligand) to measure dopamine transporter availability in the brains of 18 never-medicated adult ADHD subjects prior to and after 12 months of treatment with methylphenidate and in 11 controls who were also scanned twice at 12 months interval but without stimulant medication. Dopamine transporter availability was quantified as non-displaceable binding potential using a kinetic model for reversible ligands. Twelve months of methylphenidate treatment increased striatal dopamine transporter availability in ADHD (caudate, putamen and ventral striatum: +24%, p<0.01); whereas there were no changes in control subjects retested at 12-month interval. Comparisons between controls and ADHD participants revealed no significant difference in dopamine transporter availability prior to treatment but showed higher dopamine transporter availability in ADHD participants than control after long-term treatment (caudate: p<0.007; putamen: p<0.005). Upregulation of dopamine transporter availability during long-term treatment with methylphenidate may decrease treatment efficacy and exacerbate symptoms while not under the effects of the medication. Our findings also suggest that the discrepancies in the literature regarding dopamine transporter availability in ADHD participants (some studies reporting increases, other no changes and other decreases) may reflect, in part, differences in treatment histories.

  12. Dopamine Signaling Regulates Fat Content through β-Oxidation in Caenorhabditis elegans

    PubMed Central

    Barros, Alexandre Guimarães de Almeida; Bridi, Jessika Cristina; de Souza, Bruno Rezende; de Castro Júnior, Célio; de Lima Torres, Karen Cecília; Malard, Leandro; Jorio, Ado; de Miranda, Débora Marques; Ashrafi, Kaveh; Romano-Silva, Marco Aurélio

    2014-01-01

    The regulation of energy balance involves an intricate interplay between neural mechanisms that respond to internal and external cues of energy demand and food availability. Compelling data have implicated the neurotransmitter dopamine as an important part of body weight regulation. However, the precise mechanisms through which dopamine regulates energy homeostasis remain poorly understood. Here, we investigate mechanisms through which dopamine modulates energy storage. We showed that dopamine signaling regulates fat reservoirs in Caenorhabditis elegans. We found that the fat reducing effects of dopamine were dependent on dopaminergic receptors and a set of fat oxidation enzymes. Our findings reveal an ancient role for dopaminergic regulation of fat and suggest that dopamine signaling elicits this outcome through cascades that ultimately mobilize peripheral fat depots. PMID:24465759

  13. Dopamine D2 receptors photolabeled by iodo-azido-clebopride.

    PubMed

    Niznik, H B; Dumbrille-Ross, A; Guan, J H; Neumeyer, J L; Seeman, P

    1985-04-19

    Iodo-azido-clebopride, a photoaffinity compound for dopamine D2 receptors, had high affinity for canine brain striatal dopamine D2 receptors with a dissociation constant (Kd) of 14 nM. Irradiation of striatal homogenate with iodo-azido-clebopride irreversibly inactivated 50% of dopamine D2 receptors at 20 nM (as indicated by subsequent [3H]spiperone binding). Dopamine agonists and antagonists prevented this photo-inactivation with the appropriate rank-order of potency. Striatal dopamine D1, serotonin (S2), alpha 1- and beta-adrenoceptors were not significantly inactivated following irradiation with iodo-azido-clebopride. Thus, iodo-azido-clebopride is a selective photoaffinity probe for dopamine D2 receptors, the radiolabelled form of which may aid in the molecular characterization of these proteins.

  14. Antagonistic effects of beta-phenylethylamine on quinpirole- and (-)-sulpiride-induced changes in evoked dopamine release from rat striatal slices.

    PubMed

    Yamada, S; Harano, M; Tanaka, M

    1998-02-19

    To assess the role of beta-phenylethylamine in aspects of dopamine release, we measured the level of beta-phenylethylamine in the rat striatum after killing the rats by microwave irradiation. We then investigated the effect of beta-phenylethylamine on electrically evoked dopamine release from rat striatal slices in vitro. The striatal beta-phenylethylamine level was 46.5 +/- 3.5 ng/g wet tissue, equivalent to 0.3 micromol/l. Superfusion with low concentrations of beta-phenylethylamine up to 1 micromol/l had no effect on spontaneous or electrically evoked dopamine release from striatal slices. Quinpirole reduced the evoked dopamine release from slices in a concentration-dependent manner. The quinpirole-induced reduction of evoked dopamine release was attenuated 30% by superfusion with 0.3 micromol/l beta-phenylethylamine. Moreover, the (-)-sulpiride (0.1 micromol/l)-induced increase in evoked dopamine release was also attenuated by superfusion with 0.3 micromol/l beta-phenylethylamine. These data indicate that submicromolar levels of beta-phenylethylamine could modify the dopamine autoreceptor mediated changes in evoked dopamine release from rat striatal slices.

  15. The protective effect of dopamine on ventilator-induced lung injury via the inhibition of NLRP3 inflammasome.

    PubMed

    Yang, Xiaomei; Sun, Xiaotong; Chen, Hongli; Xi, Guangmin; Hou, Yonghao; Wu, Jianbo; Liu, Dejie; Wang, Huanliang; Hou, Yuedong; Yu, Jingui

    2017-04-01

    Dopamine (DA), a neurotransmitter, was previously shown to have anti-inflammatory effects. However, its role in ventilator-induced lung injury (VILI) has not been explicitly demonstrated. This study aimed to investigate the therapeutic efficacy and molecular mechanisms of dopamine in VILI. Rats were treated with dopamine during mechanical ventilation. Afterwards, the influence of dopamine on histological changes, pulmonary edema, the lung wet/dry (W/D) ratio, myeloperoxidase (MPO) activity, polymorphonuclear(PMN)counts, inflammatory cytokine levels, and NLRP3 inflammasome protein expression were examined. Our results showed that dopamine significantly attenuated lung tissue injury, the lung W/D ratio, MPO activity and neutrophil infiltration. Moreover, it inhibited inflammatory cytokine levels in the Bronchoalveolar lavage fluid (BAL). In addition, dopamine significantly inhibited ventilation-induced NLRP3 activation. Our experimental findings demonstrate that dopamine exerted protective effects in VILI by alleviating the inflammatory response through inhibition of NLRP3 signaling pathways. The present study indicated that dopamine could be a potential effective therapeutic strategy for the treatment of VILI. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Understanding the Role of Serotonin in Female Hypoactive Sexual Desire Disorder and Treatment Options.

    PubMed

    Croft, Harry A

    2017-12-01

    The neurobiology of sexual response is driven in part by dopamine and serotonin-the former modulating excitatory pathways and the latter regulating inhibitory pathways. Neurobiological underpinnings of hypoactive sexual desire disorder (HSDD) are seemingly related to overactive serotonin activity that results in underactive dopamine activity. As such, pharmacologic agents that decrease serotonin, increase dopamine, or some combination thereof, have therapeutic potential for HSDD. To review the role of serotonin in female sexual function and the effects of pharmacologic interventions that target the serotonin system in the treatment of HSDD. Searches of the Medline database for articles on serotonin and female sexual function. Relevant articles from the peer-reviewed literature were included. Female sexual response is regulated not only by the sex hormones but also by several neurotransmitters. It is postulated that dopamine, norepinephrine, oxytocin, and melanocortins serve as key neuromodulators for the excitatory pathways, whereas serotonin, opioids, and endocannabinoids serve as key neuromodulators for the inhibitory pathways. Serotonin appears to be a key inhibitory modulator of sexual desire, because it decreases the ability of excitatory systems to be activated by sexual cues. Centrally acting drugs that modulate the excitatory and inhibitory pathways involved in sexual desire (eg, bremelanotide, bupropion, buspirone, flibanserin) have been investigated as treatment options for HSDD. However, only flibanserin, a multifunctional serotonin agonist and antagonist (5-hydroxytryptamine [5-HT] 1A receptor agonist and 5-HT 2A receptor antagonist), is currently approved for the treatment of HSDD. The central serotonin system is 1 biochemical target for medications intended to treat HSDD. This narrative review integrates findings from preclinical studies and clinical trials to elucidate neurobiological underpinnings of HSDD but is limited to 1 neurotransmitter system (serotonin). Serotonin overactivity is a putative cause of sexual dysfunction in patients with HSDD. The unique pharmacologic profile of flibanserin tones down inhibitory serotonergic function and restores dopaminergic and noradrenergic function. Croft HA. Understanding the Role of Serotonin in Female Hypoactive Sexual Desire Disorder and Treatment Options. J Sex Med 2017;14:1575-1584. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  17. Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists reduce form-deprivation myopia in tree shrews.

    PubMed

    Ward, Alexander H; Siegwart, John T; Frost, Michael R; Norton, Thomas T

    2017-01-01

    We examined the effect of intravitreal injections of D1-like and D2-like dopamine receptor agonists and antagonists and D4 receptor drugs on form-deprivation myopia (FDM) in tree shrews, mammals closely related to primates. In eleven groups (n = 7 per group), we measured the amount of FDM produced by monocular form deprivation (FD) over an 11-day treatment period. The untreated fellow eye served as a control. Animals also received daily 5 µL intravitreal injections in the FD eye. The reference group received 0.85% NaCl vehicle. Four groups received a higher, or lower, dose of a D1-like receptor agonist (SKF38393) or antagonist (SCH23390). Four groups received a higher, or lower, dose of a D2-like receptor agonist (quinpirole) or antagonist (spiperone). Two groups received the D4 receptor agonist (PD168077) or antagonist (PD168568). Refractions were measured daily; axial component dimensions were measured on day 1 (before treatment) and day 12. We found that in groups receiving the D1-like receptor agonist or antagonist, the development of FDM and altered ocular component dimensions did not differ from the NaCl group. Groups receiving the D2-like receptor agonist or antagonist at the higher dose developed significantly less FDM and had shorter vitreous chambers than the NaCl group. The D4 receptor agonist, but not the antagonist, was nearly as effective as the D2-like agonist in reducing FDM. Thus, using intravitreally-administered agents, we did not find evidence supporting a role for the D1-like receptor pathway in reducing FDM in tree shrews. The reduction of FDM by the dopamine D2-like agonist supported a role for the D2-like receptor pathway in the control of FDM. The reduction of FDM by the D4 receptor agonist, but not the D4 antagonist, suggests an important role for activation of the dopamine D4 receptor in the control of axial elongation and refractive development.

  18. Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists reduce form-deprivation myopia in tree shrews

    PubMed Central

    Ward, Alexander H.; Siegwart, John T.; Frost, Michael R.; Norton, Thomas T.

    2017-01-01

    We examined the effect of intravitreal injections of D1-like and D2-like dopamine receptor agonists and antagonists and D4 receptor drugs on form-deprivation myopia (FDM) in tree shrews, mammals closely related to primates. In eleven groups (n = 7 per group), we measured the amount of FDM produced by monocular form deprivation (FD) over an 11-day treatment period. The untreated fellow eye served as a control. Animals also received daily 5 μL intravitreal injections in the FD eye. The reference group received 0.85% NaCl vehicle. Four groups received a higher, or lower, dose of a D1-like receptor agonist (SKF38393) or antagonist (SCH23390). Four groups received a higher, or lower, dose of a D2-like receptor agonist (quinpirole) or antagonist (spiperone). Two groups received the D4 receptor agonist (PD168077) or antagonist (PD168568). Refractions were measured daily; axial component dimensions were measured on day 1 (before treatment) and day 12. We found that in groups receiving the D1-like receptor agonist or antagonist, the development of FDM and altered ocular component dimensions did not differ from the NaCl group. Groups receiving the D2-like receptor agonist or antagonist at the higher dose developed significantly less FDM and had shorter vitreous chambers than the NaCl group. The D4 receptor agonist, but not the antagonist, was nearly as effective as the D2-like agonist in reducing FDM. Thus, using intravitreally-administered agents, we did not find evidence supporting a role for the D1-like receptor pathway in reducing FDM in tree shrews. The reduction of FDM by the dopamine D2-like agonist supported a role for the D2-like receptor pathway in the control of FDM. The reduction of FDM by the D4 receptor agonist, but not the D4 antagonist, suggests an important role for activation of the dopamine D4 receptor in the control of axial elongation and refractive development. PMID:28304244

  19. Effect of melatonin on methamphetamine- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity and methamphetamine-induced behavioral sensitization.

    PubMed

    Itzhak, Y; Martin, J L; Black, M D; Ali, S F

    1998-06-01

    Methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity is thought to be associated with the formation of free radicals. Since evidence suggests that melatonin may act as a free radical scavenger and antioxidant, the present study was undertaken to investigate the effect of melatonin on METH- and MPTP-induced neurotoxicity. In addition, the effect of melatonin on METH-induced locomotor sensitization was investigated. The administration of METH (5 mg kg(-1) x 3) or MPTP (20 mg kg(-1) x 3) to Swiss Webster mice resulted in 45-57% depletion in the content of striatal dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 57-59% depletion in dopamine transporter binding sites. The administration of melatonin (10 mg kg(-1)) before each of the three injections of the neurotoxic agents (on day 1), and thereafter for two additional days, afforded a full protection against METH-induced depletion of dopamine and its metabolites and dopamine transporter binding sites. In addition, melatonin significantly diminished METH-induced hyperthermia. However, the treatment with melatonin had no significant effect on MPTP-induced depletion of the dopaminergic markers tested. In the set of behavioral experiments, we found that the administration of 1 mg kg(-1) METH to Swiss Webster mice for 5 days resulted in marked locomotor sensitization to a subsequent challenge injection of METH, as well as context-dependent sensitization (conditioning). The pretreatment with melatonin (10 mg kg(-1)) prevented neither the sensitized response to METH nor the development of conditioned locomotion. Results of the present study indicate that melatonin has a differential effect on the dopaminergic neurotoxicity produced by METH and MPTP. Since it is postulated that METH-induced hyperthermia is related to its neurotoxic effect, while regulation of body temperature is unrelated to MPTP-induced neurotoxicity or METH-induced locomotor sensitization, the protective effect of melatonin observed in the present study may be due primarily to diminishing METH-induced hyperthermia.

  20. Genetics Home Reference: dopa-responsive dystonia

    MedlinePlus

    ... neurotransmitters called dopamine and serotonin. Among their many functions, dopamine transmits signals within the brain to produce smooth ... production of a tyrosine hydroxylase enzyme with reduced function, which leads to a decrease in dopamine production. A reduction in the amount of dopamine ...

  1. Mutation of Drosophila dopamine receptor DopR leads to male-male courtship behavior.

    PubMed

    Chen, Bin; Liu, He; Ren, Jing; Guo, Aike

    2012-07-06

    In Drosophila, dopamine plays important roles in many biological processes as a neuromodulator. Previous studies showed that dopamine level could affect fly courtship behaviors. Disturbed dopamine level leads to abnormal courtship behavior in two different ways. Dopamine up-regulation induces male-male courtship behavior, while down-regulation of dopamine level results in increased sexual attractiveness of males towards other male flies. Until now, the identity of the dopamine receptor involved in this abnormal male-male courtship behavior remains unknown. Here we used genetic approaches to investigate the role of dopamine receptors in fly courtship behavior. We found that a dopamine D1-like receptor, DopR, was involved in fly courtship behavior. DopR mutant male flies display male-male courtship behavior. This behavior is mainly due to the male's increased propensity to court other males. Expression of functional DopR successfully rescued this mutant phenotype. Knock-down of D2-like receptor D2R and another D1-like receptor, DAMB, did not induce male-male courtship behavior, indicating the receptor-type specificity of this phenomenon. Our findings provide insight into a possible link between dopamine level disturbance and the induced male-male courtship behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Development and function of the midbrain dopamine system: what we know and what we need to.

    PubMed

    Bissonette, G B; Roesch, M R

    2016-01-01

    The past two decades have seen an explosion in our understanding of the origin and development of the midbrain dopamine system. Much of this work has been focused on the aspects of dopamine neuron development related to the onset of movement disorders such as Parkinson's disease, with the intent of hopefully delaying, preventing or fixing symptoms. While midbrain dopamine degeneration is a major focus for treatment and research, many other human disorders are impacted by abnormal dopamine, including drug addiction, autism and schizophrenia. Understanding dopamine neuron ontogeny and how dopamine connections and circuitry develops may provide us with key insights into potentially important avenues of research for other dopamine-related disorders. This review will provide a brief overview of the major molecular and genetic players throughout the development of midbrain dopamine neurons and what we know about the behavioral- and disease-related implications associated with perturbations to midbrain dopamine neuron development. We intend to combine the knowledge of two broad fields of neuroscience, both developmental and behavioral, with the intent on fostering greater discussion between branches of neuroscience in the service of addressing complex cognitive questions from a developmental perspective and identifying important gaps in our knowledge for future study. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  3. Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease

    PubMed Central

    Lohr, Kelly M.; Masoud, Shababa T.; Salahpour, Ali; Miller, Gary W.

    2016-01-01

    Dopamine was first identified as a neurotransmitter localized to the midbrain over 50 years ago. The dopamine transporter (DAT; SLC6A3) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2) are two regulators of dopamine homeostasis in the presynaptic neuron. DAT transports dopamine from the extracellular space into the cytosol of the presynaptic terminal. VMAT2 then packages this cytosolic dopamine into vesicular compartments for subsequent release upon neurotransmission. Thus, DAT and VMAT2 act in concert to move transmitter efficiently throughout the neuron. The accumulation of dopamine in the neuronal cytosol can trigger oxidative stress and neurotoxicity, suggesting that the proper compartmentalization of dopamine is critical for neuron function and risk of disease. For decades, studies have examined the effects of reduced transporter function in mice (e.g. DAT-KO, VMAT2-KO, VMAT2-deficient). However, we have only recently been able to assess the effects of elevated transporter expression using BAC transgenic methods (DAT-tg, VMAT2-HI mice). Complemented with in vitro work and neurochemical techniques to assess dopamine compartmentalization, a new focus on the importance of transporter proteins as both models of human disease and potential drug targets has emerged. Here we review the importance of DAT and VMAT2 function in the delicate balance of neuronal dopamine. PMID:27520881

  4. Dopamine dynamics and cocaine sensitivity differ between striosome and matrix compartments of the striatum

    PubMed Central

    Salinas, Armando G.; Davis, Margaret I.; Lovinger, David M.; Mateo, Yolanda

    2016-01-01

    The striatum is typically classified according to its major output pathways, which consist of dopamine D1 and D2 receptor-expressing neurons. The striatum is also divided into striosome and matrix compartments, based on the differential expression of a number of proteins, including the mu opioid receptor, dopamine transporter (DAT), and Nr4a1 (nuclear receptor subfamily 4, group A, member 1). Numerous functional differences between the striosome and matrix compartments are implicated in dopamine-related neurological disorders including Parkinson’s disease and addiction. Using Nr4a1-eGFP mice, we provide evidence that electrically evoked dopamine release differs between the striosome and matrix compartments in a regionally-distinct manner. We further demonstrate that this difference is not due to differences in inhibition of dopamine release by dopamine autoreceptors or nicotinic acetylcholine receptors. Furthermore, cocaine enhanced extracellular dopamine in striosomes to a greater degree than in the matrix and concomitantly inhibited dopamine uptake in the matrix to a greater degree than in striosomes. Importantly, these compartment differences in cocaine sensitivity were limited to the dorsal striatum. These findings demonstrate a level of exquisite microanatomical regulation of dopamine by the DAT in striosomes relative to the matrix. PMID:27036891

  5. Orbitofrontal Dopamine Depletion Upregulates Caudate Dopamine and Alters Behavior via Changes in Reinforcement Sensitivity

    PubMed Central

    Cardinal, R. N.; Rygula, R.; Hong, Y. T.; Fryer, T. D.; Sawiak, S. J.; Ferrari, V.; Cockcroft, G.; Aigbirhio, F. I.; Robbins, T. W.; Roberts, A. C.

    2014-01-01

    Schizophrenia is associated with upregulation of dopamine (DA) release in the caudate nucleus. The caudate has dense connections with the orbitofrontal cortex (OFC) via the frontostriatal loops, and both areas exhibit pathophysiological change in schizophrenia. Despite evidence that abnormalities in dopaminergic neurotransmission and prefrontal cortex function co-occur in schizophrenia, the influence of OFC DA on caudate DA and reinforcement processing is poorly understood. To test the hypothesis that OFC dopaminergic dysfunction disrupts caudate dopamine function, we selectively depleted dopamine from the OFC of marmoset monkeys and measured striatal extracellular dopamine levels (using microdialysis) and dopamine D2/D3 receptor binding (using positron emission tomography), while modeling reinforcement-related behavior in a discrimination learning paradigm. OFC dopamine depletion caused an increase in tonic dopamine levels in the caudate nucleus and a corresponding reduction in D2/D3 receptor binding. Computational modeling of behavior showed that the lesion increased response exploration, reducing the tendency to persist with a recently chosen response side. This effect is akin to increased response switching previously seen in schizophrenia and was correlated with striatal but not OFC D2/D3 receptor binding. These results demonstrate that OFC dopamine depletion is sufficient to induce striatal hyperdopaminergia and changes in reinforcement learning relevant to schizophrenia. PMID:24872570

  6. Modulation of motor behavior by dopamine and the D1-like dopamine receptor AmDOP2 in the honey bee

    PubMed Central

    Mustard, Julie A.; Pham, Priscilla M.; Smith, Brian H.

    2009-01-01

    Determining the specific molecular pathways through which dopamine affects behavior has been complicated by the presence of multiple dopamine receptor subtypes that couple to different second messenger pathways. The observation of freely moving adult bees in an arena was used to investigate the role of dopamine signaling in regulating the behavior of the honey bee. Dopamine or the dopamine receptor antagonist flupenthixol was injected into the hemolymph of worker honey bees. Significant differences between treated and control bees were seen for all behaviors (walking, stopped, upside down, grooming, flying and fanning), and behavioral shifts were dependent on drug dosage and time after injection. To examine the role of dopamine signaling through a specific dopamine receptor in the brain, RNA interference was used to reduce expression levels of a D1-like receptor, AmDOP2. Injection of Amdop2 dsRNA into the mushroom bodies reduced the levels of Amdop2 mRNA and produced significant changes in the amount of time honey bees spent performing specific behaviors with reductions in time spent walking offset by increases in grooming or time spent stopped. Taken together these results establish that dopamine plays an important role in regulating motor behavior of the honey bee. PMID:19945462

  7. Modulation of motor behavior by dopamine and the D1-like dopamine receptor AmDOP2 in the honey bee.

    PubMed

    Mustard, Julie A; Pham, Priscilla M; Smith, Brian H

    2010-04-01

    Determining the specific molecular pathways through which dopamine affects behavior has been complicated by the presence of multiple dopamine receptor subtypes that couple to different second messenger pathways. The observation of freely moving adult bees in an arena was used to investigate the role of dopamine signaling in regulating the behavior of the honey bee. Dopamine or the dopamine receptor antagonist flupenthixol was injected into the hemolymph of worker honey bees. Significant differences between treated and control bees were seen for all behaviors (walking, stopped, upside down, grooming, flying and fanning), and behavioral shifts were dependent on drug dosage and time after injection. To examine the role of dopamine signaling through a specific dopamine receptor in the brain, RNA interference was used to reduce expression levels of a D1-like receptor, AmDOP2. Injection of Amdop2 dsRNA into the mushroom bodies reduced the levels of Amdop2 mRNA and produced significant changes in the amount of time honey bees spent performing specific behaviors with reductions in time spent walking offset by increases in grooming or time spent stopped. Taken together these results establish that dopamine plays an important role in regulating motor behavior of the honey bee. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  8. Targeting the Progression of Parkinson’s Disease

    PubMed Central

    George, J.L; Mok, S; Moses, D; Wilkins, S; Bush, A.I; Cherny, R.A; Finkelstein, D.I

    2009-01-01

    By the time a patient first presents with symptoms of Parkinson’s disease at the clinic, a significant proportion (50-70%) of the cells in the substantia nigra (SN) has already been destroyed. This degeneration progresses until, within a few years, most of the cells have died. Except for rare cases of familial PD, the initial trigger for cell loss is unknown. However, we do have some clues as to why the damage, once initiated, progresses unabated. It would represent a major advance in therapy to arrest cell loss at the stage when the patient first presents at the clinic. Current therapies for Parkinson’s disease focus on relieving the motor symptoms of the disease, these unfortunately lose their effectiveness as the neurodegeneration and symptoms progress. Many experimental approaches are currently being investigated attempting to alter the progression of the disease. These range from replacement of the lost neurons to neuroprotective therapies; each of these will be briefly discussed in this review. The main thrust of this review is to explore the interactions between dopamine, alpha synuclein and redox-active metals. There is abundant evidence suggesting that destruction of SN cells occurs as a result of a self-propagating series of reactions involving dopamine, alpha synuclein and redox-active metals. A potent reducing agent, the neurotransmitter dopamine has a central role in this scheme, acting through redox metallo-chemistry to catalyze the formation of toxic oligomers of alpha-synuclein and neurotoxic metabolites including 6-hydroxydopamine. It has been hypothesized that these feed the cycle of neurodegeneration by generating further oxidative stress. The goal of dissecting and understanding the observed pathological changes is to identify therapeutic targets to mitigate the progression of this debilitating disease. PMID:19721815

  9. Putative dopamine agonist (KB220Z) attenuates lucid nightmares in PTSD patients: role of enhanced brain reward functional connectivity and homeostasis redeeming joy.

    PubMed

    McLaughlin, Thomas; Blum, Kenneth; Oscar-Berman, Marlene; Febo, Marcelo; Agan, Gozde; Fratantonio, James L; Simpatico, Thomas; Gold, Mark S

    2015-06-01

    Lucid dreams are frequently pleasant and training techniques have been developed to teach dreamers to induce them. In addition, the induction of lucid dreams has also been used as a way to ameliorate nightmares. On the other hand, lucid dreams may be associated with psychiatric conditions, including Post-Traumatic Stress Disorder (PTSD) and Reward Deficiency Syndrome-associated diagnoses. In the latter conditions, lucid dreams can assume an unpleasant and frequently terrifying character. We present two cases of dramatic alleviation of terrifying lucid dreams in patients with PTSD. In the first case study, a 51-year-old, obese woman, diagnosed with PTSD and depression, had attempted suicide and experienced terrifying lucid nightmares linked to sexual/physical abuse from early childhood by family members including her alcoholic father. Her vivid "bad dreams" remained refractory in spite of 6 months of treatment with Dialectical Behavioral Therapy (DBT) and standard pharmaceutical agents which included prazosin, clonidie and Adderall. The second 39-year-old PTSD woman patient had also suffered from lucid nightmares. The medication visit notes reveal changes in the frequency, intensity and nature of these dreams after the complex putative dopamine agonist KB220Z was added to the first patient's regimen. The patient reported her first experience of an extended period of happy dreams. The second PTSD patient, who had suffered from lucid nightmares, was administered KB220Z to attenuate methadone withdrawal symptoms and incidentally reported dreams full of happiness and laughter. These cases are discussed with reference to the known effects of KB220Z including enhanced dopamine homeostasis and functional connectivity of brain reward circuitry in rodents and humans. Their understanding awaits intensive investigation involving large-population, double-blinded studies.

  10. Tributyltin induces premature hatching and reduces locomotor activity in zebrafish (Danio rerio) embryos/larvae at environmentally relevant levels.

    PubMed

    Liang, Xuefang; Souders, Christopher L; Zhang, Jiliang; Martyniuk, Christopher J

    2017-12-01

    Tributyltin (TBT) is an organotin compound that is the active ingredient of many biocides and antifouling agents. In addition to its well established role as an endocrine disruptor, TBT is also associated with adverse effects on the nervous system and behavior. In this study, zebrafish (Danio rerio) embryos were exposed to environmentally relevant concentrations of TBT (0.01, 0.1, 1 nM) to determine how low levels affected development and behavior. Fish exposed to 1 nM TBT hatched earlier when compared to controls. Following a 96-h exposure, total swimming distance, velocity, and activity of zebrafish larvae were reduced compared to controls. To identify putative mechanisms for these altered endpoints, we assessed embryo bioenergetics and gene expression. We reasoned that the accelerated hatch time could be related to ATP production and energy, thus embryos were exposed to TBT for 24 and 48-h exposure prior to hatch. There were no differences among groups for endpoints related to bioenergetics (i.e. basal, ATP-dependent, and maximal respiration). To address mechanisms related to changes in behavioral activity, we measured transcripts associated with muscle function (myf6, myoD, and myoG) and dopamine signaling (th, dat, dopamine receptors) as dopamine regulates behavior. No transcript was altered in expression by TBT in larvae, suggesting that other mechanisms exist that may explain changes in higher level endpoints. These results suggest that endpoints related to the whole animal (i.e. timing of hatch and locomotor behavior) are more sensitive to environmentally-relevant concentrations of TBT compared to the molecular and metabolic endpoints examined here. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Histamine H3 receptor antagonists display antischizophrenic activities in rats treated with MK-801.

    PubMed

    Mahmood, Danish; Akhtar, Mohd; Jahan, Kausar; Goswami, Dipanjan

    2016-09-01

    Animal models based on N-methyl-d-aspartate receptor blockade have been extensively used for schizophrenia. Ketamine and MK-801 produce behaviors related to schizophrenia and exacerbated symptoms in patients with schizophrenia, which led to the use of PCP (phencyclidine)- and MK-801 (dizocilpine)-treated animals as models for schizophrenia. The study investigated the effect of subchronic dosing (once daily, 7 days) of histamine H3 receptor (H3R) antagonists, ciproxifan (CPX) (3 mg/kg, i.p.), and clobenpropit (CBP) (15 mg/kg, i.p.) on MK-801 (0.2 mg/kg, i.p.)-induced locomotor activity and also measured dopamine and histamine levels in rat's brain homogenates. The study also included clozapine (CLZ) (3.0 mg/kg, i.p.) and chlorpromazine (CPZ) (3.0 mg/kg, i.p.), the atypical and typical antipsychotic, respectively. Atypical and typical antipsychotic was used to serve as clinically relevant reference agents to compare the effects of the H3R antagonists. MK-801 significantly increased horizontal locomotor activity, which was reduced with CPX and CBP. MK-801-induced locomotor hyperactivity attenuated by CPX and CBP was comparable to CLZ and CPZ. MK-801 raised striatal dopamine level, which was reduced in rats pretreated with CPX and CBP. CPZ also significantly lowered striatal dopamine levels, although the decrease was less robust compared to CLZ, CPX, and CBP. MK-801 increased histamine content although to a lesser degree. Subchronic treatment with CPX and CBP exhibited further increased histamine levels in the hypothalamus compared to MK-801 treatment alone. Histamine H3 receptor agonist, R-α methylhistamine (10 mg/kg, i.p.), counteracted the effect of CPX and CBP. The present study shows the positive effects of CPX and CBP on MK-801-induced schizophrenia-like behaviors in rodents.

  12. [C-11]{beta}CNT: A new monoamine uptake ligand for studying serotonin and dopamine transporter sites in the living brain with PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulholland, G.K.; Zheng, Q.H.; Zhou, F.C.

    1996-05-01

    There is considerable interest in measuring serotonin (5HT) and dopamine (DA) function in the human brain. Altered levels of 5HT and DA are recognized in drug abuse, neurotoxicities, psychiatric disorders, and neurodegenerative conditions including Alzheimer`s and Parkinson`s disease. Several phenyltropane analogs of cocaine bind tightly to both DA and 5HT uptake proteins. We have made a new agent from this class called {beta}CNT, 2{beta}-carboxymethyl-3{beta}-(2-naphthyl)-tropane, the isosteric O-for-CH{sub 2} analog of a compound reported to have among the highest measured affinities for DA and 5HT transporters and studied its in vivo brain distributions in animals for the first time. Optically puremore » {beta}CNT was made from cocaine, and labeled at the O-methyl position by esterification of {beta}CNT-acid with [C-11]CH{sub 3}OTfl under conditions similar to Wilson`s. HPLC-purified (99+%) final products (15-50% eob yield from CO{sub 2}, 40 min synth) had specific activities 0.1-1.2 Ci/{mu}mol at the time of injection. Preliminary [C-11]{beta}{beta}CNT rodent distribution showed very high brain uptake (3% ID at 60 min) and localization (striat: fr cort: hypo: cer: blood, 11: 5: 4: 1: 06). {beta}CNT-PET studies in juvenile pigs (5-20 mCi, 20-35 kg) found rapid brain uptake, and prominent retention (85 min) in midbrain, anterior brainstem and striatum, followed by cortex and olfactory bulb. Paroxetine pretreatment (5HT uptake blocker, 2mg/kg), diminished retention in most brain areas; nomifensine (DA/NE uptake blocker, 6 mg/kg) reduced striatum selectively. Direct comparisons of [C-11]{beta}CNT with other PET transporter radioligands {beta}CFT, {beta}CIT, and {beta}CTT (RTI-32) in the same pig found {beta}CNT had highest overall brain uptake among the agents. These initial results suggest {beta}CNT has favorable properties for imaging both 5HT and DA transporters in vivo, and further evaluation of its potential as a human PET agent is warranted.« less

  13. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward

    PubMed Central

    Kishida, Kenneth T.; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R.; Laxton, Adrian W.; Tatter, Stephen B.; White, Jason P.; Ellis, Thomas L.; Phillips, Paul E. M.; Montague, P. Read

    2016-01-01

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson’s disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson’s disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons. PMID:26598677

  14. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward.

    PubMed

    Kishida, Kenneth T; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R; Laxton, Adrian W; Tatter, Stephen B; White, Jason P; Ellis, Thomas L; Phillips, Paul E M; Montague, P Read

    2016-01-05

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson's disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson's disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons.

  15. Dopamine Dynamics during Continuous Intracranial Self-Stimulation: Effect of Waveform on Fast-Scan Cyclic Voltammetry Data

    PubMed Central

    2016-01-01

    The neurotransmitter dopamine is heavily implicated in intracranial self-stimulation (ICSS). Many drugs of abuse that affect ICSS behavior target the dopaminergic system, and optogenetic activation of dopamine neurons is sufficient to support self-stimulation. However, the patterns of phasic dopamine release during ICSS remain unclear. Early ICSS studies using fast-scan cyclic voltammetry (FSCV) rarely observed phasic dopamine release, which led to the surprising conclusion that it is dissociated from ICSS. However, several advances in the sensitivity (i.e., the use of waveforms with extended anodic limits) and analysis (i.e., principal component regression) of FSCV measurements have made it possible to detect smaller, yet physiologically relevant, dopamine release events. Therefore, this study revisits phasic dopamine release during ICSS using these tools. It was found that the anodic limit of the voltammetric waveform has a substantial effect on the patterns of dopamine release observed during continuous ICSS. While data collected with low anodic limits (i.e., +1.0 V) support the disappearance of phasic dopamine release observed in previous investigation, the use of high anodic limits (+1.3 V, +1.4 V) allows for continual detection of dopamine release throughout ICSS. However, the +1.4 V waveform lacks the ability to resolve narrowly spaced events, with the best balance of temporal resolution and sensitivity provided by the +1.3 V waveform. Ultimately, it is revealed that the amplitude of phasic dopamine release decays but does not fully disappear during continuous ICSS. PMID:27548680

  16. Dopamine Dynamics during Continuous Intracranial Self-Stimulation: Effect of Waveform on Fast-Scan Cyclic Voltammetry Data.

    PubMed

    Rodeberg, Nathan T; Johnson, Justin A; Bucher, Elizabeth S; Wightman, R Mark

    2016-11-16

    The neurotransmitter dopamine is heavily implicated in intracranial self-stimulation (ICSS). Many drugs of abuse that affect ICSS behavior target the dopaminergic system, and optogenetic activation of dopamine neurons is sufficient to support self-stimulation. However, the patterns of phasic dopamine release during ICSS remain unclear. Early ICSS studies using fast-scan cyclic voltammetry (FSCV) rarely observed phasic dopamine release, which led to the surprising conclusion that it is dissociated from ICSS. However, several advances in the sensitivity (i.e., the use of waveforms with extended anodic limits) and analysis (i.e., principal component regression) of FSCV measurements have made it possible to detect smaller, yet physiologically relevant, dopamine release events. Therefore, this study revisits phasic dopamine release during ICSS using these tools. It was found that the anodic limit of the voltammetric waveform has a substantial effect on the patterns of dopamine release observed during continuous ICSS. While data collected with low anodic limits (i.e., +1.0 V) support the disappearance of phasic dopamine release observed in previous investigation, the use of high anodic limits (+1.3 V, +1.4 V) allows for continual detection of dopamine release throughout ICSS. However, the +1.4 V waveform lacks the ability to resolve narrowly spaced events, with the best balance of temporal resolution and sensitivity provided by the +1.3 V waveform. Ultimately, it is revealed that the amplitude of phasic dopamine release decays but does not fully disappear during continuous ICSS.

  17. Dopamine sensing and measurement using threshold and spectral measurements in random lasers.

    PubMed

    Wan Ismail, Wan Zakiah; Liu, Guozhen; Zhang, Kai; Goldys, Ewa M; Dawes, Judith M

    2016-01-25

    We developed a novel dopamine sensing and measurement technique based on aggregation of gold nanoparticles in random lasers. Dopamine combined with copper ions triggers the aggregation of gold nanoparticles and thus affects the performance of random lasers. Dopamine sensing can be achieved using four parameters which are sensitive to the presence of dopamine, that is emission peak shift, emission linewidth, signal-to-noise ratio (peak emission intensity / noise) and random lasing threshold. The dopamine is most sensitively detected by a change in the emission linewidth with a limit of detection of 1 × 10(-7) M, as well as by an increase in the lasing threshold. The dopamine concentration from 1 × 10(-7) M to 1 × 10(-2) M can be determined by calibrating with the laser threshold.

  18. PRESYNAPTIC DOPAMINE MODULATION BY STIMULANT SELF ADMINISTRATION

    PubMed Central

    España, Rodrigo A.; Jones, Sara R.

    2013-01-01

    The mesolimbic dopamine system is an essential participant in the initiation and modulation of various forms of goal-directed behavior, including drug reinforcement and addiction processes. Dopamine neurotransmission is increased by acute administration of all drugs of abuse, including the stimulants cocaine and amphetamine. Chronic exposure to these drugs via voluntary self-administration provides a model of stimulant abuse that is useful in evaluating potential behavioral and neurochemical adaptations that occur during addiction. This review describes commonly used methodologies to measure dopamine and baseline parameters of presynaptic dopamine regulation, including exocytotic release and reuptake through the dopamine transporter in the nucleus accumbens core, as well as dramatic adaptations in dopamine neurotransmission and drug sensitivity that occur with acute non-contingent and chronic, contingent self-administration of cocaine and amphetamine. PMID:23277050

  19. Poly(dopamine) coating to biodegradable polymers for bone tissue engineering.

    PubMed

    Tsai, Wei-Bor; Chen, Wen-Tung; Chien, Hsiu-Wen; Kuo, Wei-Hsuan; Wang, Meng-Jiy

    2014-02-01

    In this study, a technique based on poly(dopamine) deposition to promote cell adhesion was investigated for the application in bone tissue engineering. The adhesion and proliferation of rat osteoblasts were evaluated on poly(dopamine)-coated biodegradable polymer films, such as polycaprolactone, poly(l-lactide) and poly(lactic-co-glycolic acid), which are commonly used biodegradable polymers in tissue engineering. Cell adhesion was significantly increased to a plateau by merely 15 s of dopamine incubation, 2.2-4.0-folds of increase compared to the corresponding untreated substrates. Cell proliferation was also greatly enhanced by poly(dopamine) deposition, indicated by shortened cell doubling time. Mineralization was also increased on the poly(dopamine)-deposited surfaces. The potential of poly(dopamine) deposition in bone tissue engineering is demonstrated in this study.

  20. Research review: dopamine transfer deficit: a neurobiological theory of altered reinforcement mechanisms in ADHD.

    PubMed

    Tripp, Gail; Wickens, Jeff R

    2008-07-01

    This review considers the hypothesis that changes in dopamine signalling might account for altered sensitivity to positive reinforcement in children with ADHD. The existing evidence regarding dopamine cell activity in relation to positive reinforcement is reviewed. We focus on the anticipatory firing of dopamine cells brought about by a transfer of dopamine cell responses to cues that precede reinforcers. It is proposed that in children with ADHD there is diminished anticipatory dopamine cell firing, which we call the dopamine transfer deficit (DTD). The DTD theory leads to specific and testable predictions for human and animal research. The extent to which DTD explains symptoms of ADHD and effects of pharmacological interventions is discussed. We conclude by considering the neural changes underlying the etiology of DTD.

  1. Increase of dopamine D2(High) receptors in the striatum of rats sensitized to caffeine motor effects.

    PubMed

    Simola, Nicola; Morelli, Micaela; Seeman, Philip

    2008-05-01

    It has been previously demonstrated how rats can develop behavioral dopamine supersensitivity after long-term administration of caffeine. Since behavioral dopamine supersensitivity in rats is usually accompanied by an elevation in striatal dopamine D2(High) receptors, we examined whether alterations in D2(High) receptors occurred in the striatum of rats administered caffeine according to a regimen capable of eliciting behavioral dopamine supersensitivity (15 mg/kg i.p. every other day for 14 days). An increase of 126% in striatal D2(High) receptors was found in caffeine-sensitized rats. This marked elevation in D2(High) receptors may account for the caffeine-induced behavioral dopamine supersensitivity and may help elucidate the interactions between caffeine and dopamine neurotransmission. (c) 2008 Wiley-Liss, Inc.

  2. METHAMPHETAMINE-INDUCED DOPAMINE TERMINAL DEFICITS IN THE NUCLEUS ACCUMBENS ARE EXACERBATED BY REWARD-ASSOCIATED CUES AND ATTENUATED BY CB1 RECEPTOR ANTAGONISM

    PubMed Central

    Loewinger, Gabriel C.; Beckert, Michael V.; Tejeda, Hugo A.; Cheer, Joseph F.

    2012-01-01

    Methamphetamine (METH) exposure is primarily associated with deleterious effects to dopaminergic neurons. While several studies have implicated the endocannabinoid system in METH’s locomotor, rewarding and neurochemical effects, a role for this signaling system in METH’s effects on dopamine terminal dynamics has not been elucidated. Given that CB1 receptor blockade reduces the acute potentiation of phasic extracellular dopamine release from other psychomotor stimulant drugs and that the degree of acute METH-induced increases in extracellular dopamine levels is related to the severity of dopamine depletion, we predicted that pretreatment with the CB1 receptor antagonist rimonabant would reduce METH-induced alterations at dopamine terminals. Furthermore, we hypothesized that administration of METH in environments where reward associated-cues were present would potentiate METH’s acute effects on dopamine release in the nucleus accumbens and exacerbate changes in dopamine terminal activity. Fast-scan cyclic voltammetry was used to measure electrically-evoked dopamine release in the nucleus accumbens and revealed markers of compromised dopamine terminal integrity nine days after a single dose of METH. These were exacerbated in animals that received METH in the presence of reward-associated cues, and attenuated in rimonabant-pretreated animals. While these deficits in dopamine dynamics were associated with reduced operant responding on days following METH administration in animals treated with only METH, rimonabant-pretreated animals exhibited levels of operant responding comparable to control. Moreover, dopamine release correlated significantly with changes in lever pressing behavior that occurred on days following METH administration. Together these data suggest that the endocannabinoid system is involved in the subsecond dopaminergic response to METH. PMID:22306525

  3. Methylphenidate-Elicited Dopamine Increases in Ventral Striatum Are Associated with Long-Term Symptom Improvement in Adults with Attention Deficit Hyperactivity Disorder

    PubMed Central

    Volkow, Nora D.; Wang, Gene-Jack; Tomasi, Dardo; Kollins, Scott H.; Wigal, Tim L.; Newcorn, Jeffrey H.; Telang, Frank W.; Fowler, Joanna S.; Logan, Jean; Wong, Christopher T.; Swanson, James M.

    2012-01-01

    Stimulant medications, such as methylphenidate, which are effective treatments for attention deficit hyperactivity disorder (ADHD), enhance brain dopamine signaling. However, the relationship between regional brain dopamine enhancement and treatment response has not been evaluated. Here, we assessed whether the dopamine increases elicited by methylphenidate are associated with long-term clinical response. We used a prospective design to study 20 treatment-naive adults with ADHD who were evaluated before treatment initiation and after 12 months of clinical treatment with a titrated regimen of oral methylphenidate. Methylphenidate-induced dopamine changes were evaluated with positron emission tomography and [11C]raclopride (D2/D3 receptor radioligand sensitive to competition with endogenous dopamine). Clinical responses were assessed using the Conners' Adult ADHD Rating Scale and revealed a significant reduction in symptoms of inattention and hyperactivity with long-term methylphenidate treatment. A challenge dose of 0.5 mg/kg intravenous methylphenidate significantly increased dopamine in striatum (assessed as decreases in D2/D3 receptor availability). In the ventral striatum, these dopamine increases were associated with the reductions in ratings of symptoms of inattention with clinical treatment. Statistical parametric mapping additionally showed dopamine increases in prefrontal and temporal cortices with intravenous methylphenidate that were also associated with decreases in symptoms of inattention. Our findings indicate that dopamine enhancement in ventral striatum (the brain region involved with reward and motivation) was associated with therapeutic response to methylphenidate, further corroborating the relevance of the dopamine reward/motivation circuitry in ADHD. It also provides preliminary evidence that methylphenidate-elicited dopamine increases in prefrontal and temporal cortices may also contribute to the clinical response. PMID:22262882

  4. Dopamine Release and Uptake Impairments and Behavioral Alterations Observed in Mice that Model Fragile X Mental Retardation Syndrome.

    PubMed

    Fulks, Jenny L; O'Bryhim, Bliss E; Wenzel, Sara K; Fowler, Stephen C; Vorontsova, Elena; Pinkston, Jonathan W; Ortiz, Andrea N; Johnson, Michael A

    2010-10-20

    In this study we evaluated the relationship between amphetamine-induced behavioral alterations and dopamine release and uptake characteristics in Fmr1 knockout (Fmr1 KO) mice, which model fragile X syndrome. The behavioral analyses, obtained at millisecond temporal resolution and 2 mm spatial resolution using a force-plate actometer, revealed that Fmr1 KO mice express a lower degree of focused stereotypy compared to wild type (WT) control mice after injection with 10 mg/kg (ip) amphetamine. To identify potentially related neurochemical mechanisms underlying this phenomenon, we measured electrically-evoked dopamine release and uptake using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal brain slices. At 10 weeks of age, dopamine release per pulse, which is dopamine release corrected for differences in uptake, was unchanged. However, at 15 (the age of behavioral testing) and 20 weeks of age, dopamine per pulse and the maximum rate of dopamine uptake was diminished in Fmr1 KO mice compared to WT mice. Dopamine uptake measurements, obtained at different amphetamine concentrations, indicated that dopamine transporters in both genotypes have equal affinities for amphetamine. Moreover, dopamine release measurements from slices treated with quinpirole, a D2-family receptor agonist, rule out enhanced D2 autoreceptor sensitivity as a mechanism of release inhibition. However, dopamine release, uncorrected for uptake and normalized against the corresponding pre-drug release peaks, increased in Fmr1 KO mice, but not in WT mice. Collectively, these data are consistent with a scenario in which a decrease in extracellular dopamine levels in the striatum result in diminished expression of focused stereotypy in Fmr1 KO mice.

  5. Dopamine dynamics during emotional cognitive processing: Implications of the specific actions of clozapine compared with haloperidol.

    PubMed

    Kawano, Masahiko; Oshibuchi, Hidehiro; Kawano, Takaaki; Muraoka, Hiroyuki; Tsutsumi, Takahiro; Yamada, Makiko; Inada, Ken; Ishigooka, Jun

    2016-06-15

    Clozapine has improved efficacy relative to typical antipsychotics in schizophrenia treatment, particularly regarding emotional symptoms. However, the mechanisms underlying its therapeutic benefits remain unclear. Using a methamphetamine-sensitised rat model, we measured changes in dopamine levels in the amygdalae in response to a fear-conditioned cue, serving as a biochemical marker of emotional cognitive processing disruption in psychosis, for analysing the biochemical mechanisms associated with the clinical benefits of clozapine. We also compared how clozapine and haloperidol affected basal dopamine levels and phasic dopamine release in response to the fear-conditioned cue. Extracellular dopamine was collected from the amygdalae of freely moving rats via microdialysis and was analysed by high-performance liquid chromatography. Clozapine or haloperidol was injected during microdialysis, followed by exposure to the fear-conditioned cue. We analysed the ratio of change in dopamine levels from baseline. Haloperidol treatment increased the baseline dopamine levels in both non-sensitised and sensitised rats. Conversely, clozapine only increased the basal dopamine levels in the non-sensitised rats, but not in the sensitised rats. Although both antipsychotics attenuated phasic dopamine release in both the non-sensitised and sensitised rats, the attenuation extent was greater for clozapine than for haloperidol under both dopaminergic conditions. Our findings indicate that stabilized dopamine release in the amygdalae is a common therapeutic mechanism of antipsychotic action during emotional processing. However, the specific dopaminergic state-dependent action of clozapine on both basal dopamine levels and stress-induced dopamine release may be the underlying mechanism for its superior clinical effect on emotional cognitive processing in patients with schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Neurotrophic actions of dopamine on the development of a serotonergic feeding circuit in Drosophila melanogaster

    PubMed Central

    2012-01-01

    Background In the fruit fly, Drosophila melanogaster, serotonin functions both as a neurotransmitter to regulate larval feeding, and in the development of the stomatogastric feeding circuit. There is an inverse relationship between neuronal serotonin levels during late embryogenesis and the complexity of the serotonergic fibers projecting from the larval brain to the foregut, which correlate with perturbations in feeding, the functional output of the circuit. Dopamine does not modulate larval feeding, and dopaminergic fibers do not innervate the larval foregut. Since dopamine can function in central nervous system development, separate from its role as a neurotransmitter, the role of neuronal dopamine was assessed on the development, and mature function, of the 5-HT larval feeding circuit. Results Both decreased and increased neuronal dopamine levels in late embryogenesis during development of this circuit result in depressed levels of larval feeding. Perturbations in neuronal dopamine during this developmental period also result in greater branch complexity of the serotonergic fibers innervating the gut, as well as increased size and number of the serotonin-containing vesicles along the neurite length. This neurotrophic action for dopamine is modulated by the D2 dopamine receptor expressed during late embryogenesis in central 5-HT neurons. Animals carrying transgenic RNAi constructs to knock down both dopamine and serotonin synthesis in the central nervous system display normal feeding and fiber architecture. However, disparate levels of neuronal dopamine and serotonin during development of the circuit result in abnormal gut fiber architecture and feeding behavior. Conclusions These results suggest that dopamine can exert a direct trophic influence on the development of a specific neural circuit, and that dopamine and serotonin may interact with each other to generate the neural architecture necessary for normal function of the circuit. PMID:22413901

  7. Reduced dopamine transporter binding predates impulse control disorders in Parkinson's disease.

    PubMed

    Vriend, Chris; Nordbeck, Anna H; Booij, Jan; van der Werf, Ysbrand D; Pattij, Tommy; Voorn, Pieter; Raijmakers, Pieter; Foncke, Elisabeth M J; van de Giessen, Elsmarieke; Berendse, Henk W; van den Heuvel, Odile A

    2014-06-01

    Impulse control disorders (ICD) are relatively common in Parkinson's disease (PD) and generally are regarded as adverse effects of dopamine replacement therapy, although certain demographic and clinical risk factors are also involved. Previous single-photon emission computed tomography (SPECT) studies showed reduced ventral striatal dopamine transporter binding in Parkinson patients with ICD compared with patients without. Nevertheless, these studies were performed in patients with preexisting impulse control impairments, which impedes clear-cut interpretation of these findings. We retrospectively procured follow-up data from 31 medication-naïve PD patients who underwent dopamine transporter SPECT imaging at baseline and were subsequently treated with dopamine replacement therapy. We used questionnaires and a telephone interview to assess medication status and ICD symptom development during the follow-up period (31.5 ± 12.0 months). Eleven patients developed ICD symptoms during the follow-up period, eight of which were taking dopamine agonists. The PD patients with ICD symptoms at follow-up had higher baseline depressive scores and lower baseline dopamine transporter availability in the right ventral striatum, anterior-dorsal striatum, and posterior putamen compared with PD patients without ICD symptoms. No baseline between-group differences in age and disease stage or duration were found. The ICD symptom severity correlated negatively with baseline dopamine transporter availability in the right ventral and anterior-dorsal striatum. The results of this preliminary study show that reduced striatal dopamine transporter availability predates the development of ICD symptoms after dopamine replacement therapy and may constitute a neurobiological risk factor related to a lower premorbid dopamine transporter availability or a more pronounced dopamine denervation in PD patients susceptible to ICD. © 2014 International Parkinson and Movement Disorder Society.

  8. Methylphenidate-Elicited Dopamine Increases in Ventral Striatum Are Associated with Long-Term Symptom Improvement in Adults with Attention Deficit Hyperactivity Disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow N. D.; Wang G.; Volkow, N.D.

    Stimulant medications, such as methylphenidate, which are effective treatments for attention deficit hyperactivity disorder (ADHD), enhance brain dopamine signaling. However, the relationship between regional brain dopamine enhancement and treatment response has not been evaluated. Here, we assessed whether the dopamine increases elicited by methylphenidate are associated with long-term clinical response. We used a prospective design to study 20 treatment-naive adults with ADHD who were evaluated before treatment initiation and after 12 months of clinical treatment with a titrated regimen of oral methylphenidate. Methylphenidate-induced dopamine changes were evaluated with positron emission tomography and [{sup 11}C]raclopride (D{sub 2}/D{sub 3} receptor radioligand sensitivemore » to competition with endogenous dopamine). Clinical responses were assessed using the Conners Adult ADHD Rating Scale and revealed a significant reduction in symptoms of inattention and hyperactivity with long-term methylphenidate treatment. A challenge dose of 0.5 mg/kg intravenous methylphenidate significantly increased dopamine in striatum (assessed as decreases in D{sub 2}/D{sub 3} receptor availability). In the ventral striatum, these dopamine increases were associated with the reductions in ratings of symptoms of inattention with clinical treatment. Statistical parametric mapping additionally showed dopamine increases in prefrontal and temporal cortices with intravenous methylphenidate that were also associated with decreases in symptoms of inattention. Our findings indicate that dopamine enhancement in ventral striatum (the brain region involved with reward and motivation) was associated with therapeutic response to methylphenidate, further corroborating the relevance of the dopamine reward/motivation circuitry in ADHD. It also provides preliminary evidence that methylphenidate-elicited dopamine increases in prefrontal and temporal cortices may also contribute to the clinical response.« less

  9. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    PubMed

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.

  10. Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core.

    PubMed

    Fortin, Samantha M; Roitman, Mitchell F

    2017-07-01

    Drugs of abuse increase the frequency and magnitude of brief (1-3s), high concentration (phasic) dopamine release events in terminal regions. These are thought to be a critical part of drug reinforcement and ultimately the development of addiction. Recently, metabolic regulatory peptides, including the satiety signal glucagon-like peptide-1 (GLP-1), have been shown to modulate cocaine reward-driven behavior and sustained dopamine levels after cocaine administration. Here, we use fast-scan cyclic voltammetry (FSCV) to explore GLP-1 receptor (GLP-1R) modulation of dynamic dopamine release in the nucleus accumbens (NAc) during cocaine administration. We analyzed dopamine release events in both the NAc shell and core, as these two subregions are differentially affected by cocaine and uniquely contribute to motivated behavior. We found that central delivery of the GLP-1R agonist Exendin-4 suppressed the induction of phasic dopamine release events by intravenous cocaine. This effect was selective for dopamine signaling in the NAc core. Suppression of phasic signaling in the core by Exendin-4 could not be attributed to interference with cocaine binding to one of its major substrates, the dopamine transporter, as cocaine-induced increases in reuptake were unaffected. The results suggest that GLP-1R activation, instead, exerts its suppressive effects by altering dopamine release - possibly by suppressing the excitability of dopamine neurons. Given the role of NAc core dopamine in the generation of conditioned responses based on associative learning, suppression of cocaine-induced dopamine signaling in this subregion by GLP-1R agonism may decrease the reinforcing properties of cocaine. Thus, GLP-1Rs remain viable targets for the treatment and prevention of cocaine seeking, taking and relapse. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. [Rapid and prolonged facilitation of stereotyped motor behavior (verticalization) induced by apomorphine in mice previously submitted to stimulation of dopaminergic receptors].

    PubMed

    Costentin, J; Marçais, H; Protais, P; Schwartz, J C

    1976-03-01

    The climbing behaviour, a stereotyped motor behaviour, is elicited in mice by stimulation of striatal dopamine receptor by low doses of apomorphine. The action of apomorphine is unexpectedly enhanced in animals pretreated with a single dose of this agent (5 mg/kg). This enhancement occurs as early as 2 h following the first administration and persists for at least 3 days. It is also observed after pretreatments with a combination of L-DOPA and dexamphetamine. This effect seems independent from the desensitization of the dopaminergic receptors involved in thermoregulation that we have previously reported.

  12. Facile Coating Strategy to Functionalize Inorganic Nanoparticles for Biosensing.

    PubMed

    Park, Yong Il; Kim, Eunha; Huang, Chen-Han; Park, Ki Soo; Castro, Cesar M; Lee, Hakho; Weissleder, Ralph

    2017-01-18

    The use of inorganic nanoparticles (NPs) for biosensing requires that they exhibit high colloidal stability under various physiological conditions. Here, we report on a general approach to render hydrophobic NPs into hydrophilic ones that are ready for bioconjugation. The method uses peglyated polymers conjugated with multiple dopamines, which results in multidentate coordination. As proof-of-concept, we applied the coating to stabilize ferrite and lanthanide NPs synthesized by thermal decomposition. Both polymer-coated NPs showed excellent water solubility and were stable at high salt concentrations under physiological conditions. We used these NPs as molecular-sensing agents to detect exosomes and bacterial nucleic acids.

  13. Blockade of the dopamine depressor response by molindone, a newly introduced neuroleptic.

    PubMed

    Nandal, N V; Mane, V R; Balsara, J J; Chandorkar, A G

    1980-01-01

    Pretreatment with the neuroleptics, haloperidol and molindone, significantly antagonized the dopamine-induced depressor response in the anaesthetized dogs. The depressor response to dopamine was however, not significantly affected by propranolol, atropine or antazoline pretreatment. The results suggest that molindone like haloperidol, is capable of blocking the vascular dopamine receptors responsible for mediating dopamine-induced vasodilatation in the coeliac, mesenteric and renal vascular bed and fall in blood pressure.

  14. The Role of Dopamine in Reinforcement: Changes in Reinforcement Sensitivity Induced by D[subscript 1]-Type, D[subscript 2]-Type, and Nonselective Dopamine Receptor Agonists

    ERIC Educational Resources Information Center

    Bratcher, Natalie A.; Farmer-Dougan, Valeri; Dougan, James D.; Heidenreich, Byron A.; Garris, Paul A.

    2005-01-01

    Dose-dependent changes in sensitivity to reinforcement were found when rats were treated with low, moderate, and high doses of the partial dopamine D[subscript 1]-type receptor agonist SKF38393 and with the nonselective dopamine agonist apomorphine, but did not change when rats were treated with similar doses of the selective dopamine D[subscript…

  15. beta-Alanine elevates dopamine levels in the rat nucleus accumbens: antagonism by strychnine.

    PubMed

    Ericson, Mia; Clarke, Rhona B C; Chau, PeiPei; Adermark, Louise; Söderpalm, Bo

    2010-04-01

    Glycine receptors (GlyRs) in the nucleus accumbens (nAc) have recently been suggested to be involved in the reinforcing and dopamine-elevating properties of ethanol via a neuronal circuitry involving the VTA. Apart from ethanol, both glycine and taurine have the ability to modulate dopamine output via GlyRs in the same brain region. In the present study, we wanted to explore whether yet another endogenous ligand for the GlyR, beta-alanine, had similar effects. To this end, we monitored dopamine in the nAc by means of in vivo microdialysis and found that local perfusion of beta-alanine increased dopamine output. In line with previous observations investigating ethanol, glycine and taurine, the competitive GlyR antagonist strychnine completely blocked the dopamine elevation. The present results suggest that beta-alanine has the ability to modulate dopamine levels in the nAc via strychnine-sensitive GlyRs, and are consistent with previous studies suggesting the importance of this receptor for modulating dopamine output.

  16. Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise.

    PubMed

    Felger, Jennifer C; Miller, Andrew H

    2012-08-01

    Data suggest that cytokines released during the inflammatory response target subcortical structures including the basal ganglia as well as dopamine function to acutely induce behavioral changes that support fighting infection and wound healing. However, chronic inflammation and exposure to inflammatory cytokines appears to lead to persisting alterations in the basal ganglia and dopamine function reflected by anhedonia, fatigue, and psychomotor slowing. Moreover, reduced neural responses to hedonic reward, decreased dopamine metabolites in the cerebrospinal fluid and increased presynaptic dopamine uptake and decreased turnover have been described. This multiplicity of changes in the basal ganglia and dopamine function suggest fundamental effects of inflammatory cytokines on dopamine synthesis, packaging, release and/or reuptake, which may sabotage and circumvent the efficacy of current treatment approaches. Thus, examination of the mechanisms by which cytokines alter the basal ganglia and dopamine function will yield novel insights into the treatment of cytokine-induced behavioral changes and inflammatory malaise. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. The medial prefrontal and orbitofrontal cortices differentially regulate dopamine system function.

    PubMed

    Lodge, Daniel J

    2011-05-01

    The prefrontal cortex (PFC) is essential for top-down control over higher-order executive function. In this study we demonstrate that the medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC) differentially regulate VTA dopamine neuron activity, and furthermore, the pattern of activity in the PFC drastically alters the dopamine neuron response. Thus, although single-pulse activation of the mPFC either excites or inhibits equivalent numbers of dopamine neurons, activation of the OFC induces a primarily inhibitory response. Moreover, activation of the PFC with a pattern that mimics spontaneous burst firing of pyramidal neurons produces a strikingly different response. Specifically, burst-like activation of the mPFC induces a massive increase in dopamine neuron firing, whereas a similar pattern of OFC activation largely inhibits dopamine activity. Taken together, these data demonstrate that the mPFC and OFC differentially regulate dopamine neuron activity, and that the pattern of cortical activation is critical for determining dopamine system output.

  18. Dopamine agonist 3-PPP fails to protect against MPTP-induced toxicity.

    PubMed

    Muralikrishnan, Dhanasekaran; Ebadi, Manuchair; Brown-Borg, Holly M

    2004-02-01

    We investigated the neuroprotective effect of the dopamine agonist, 3-PPP [3-(3-hydroxyphenyl)-N-propylpiperidine] against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. MPTP (30 mg/kg, i.p., twice, 16 h apart) causes significant dopamine depletion in nucleus caudatus putamen (NCP) by 1 week. 3-PPP had no effect on the monoamine oxidase-B activity (MAO-B) activity in NCP. 3-PPP did not affect dopamine uptake, whereas mazindol significantly blocked the uptake of dopamine dose dependently. MPTP-induced behavioral changes in mice were not reduced by pretreatment with 3-PPP. This dopamine agonist did not prevent dopamine depletion caused by MPTP. MPP+ (20 microM) significantly inhibited the cell proliferation of SH-SY5Y dopaminergic neuronal cells. 3-PPP had no effect on the SH-SY5Y neuronal cell growth in culture and did not block the MPP(+)-induced cytotoxicity. This study shows that the dopamine agonist 3-PPP failed to protect against MPTP-induced dopaminergic neurotoxicity.

  19. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration

    PubMed Central

    Mor, Danielle E.; Tsika, Elpida; Mazzulli, Joseph R.; Gould, Neal S.; Kim, Hanna; Daniels, Malcolm J.; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L.; Tan, Victor X.; Kalb, Robert G.; Caldwell, Kim A.; Caldwell, Guy A.; Wolfe, John H.; Ischiropoulos, Harry

    2018-01-01

    Parkinson’s disease is defined by the loss of dopaminergic neurons in the substantia nigra and formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated dopamine levels in addition to α-synuclein expression. Nigra-targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine without damaging neurons in non-transgenic mice. In contrast, raising dopamine in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable C. elegans models expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. The data suggest a unique mechanism linking two cardinal features of Parkinson’s disease, dopaminergic cell death and α-synuclein aggregation. PMID:28920936

  20. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration.

    PubMed

    Mor, Danielle E; Tsika, Elpida; Mazzulli, Joseph R; Gould, Neal S; Kim, Hanna; Daniels, Malcolm J; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L; Tan, Victor X; Kalb, Robert G; Caldwell, Kim A; Caldwell, Guy A; Wolfe, John H; Ischiropoulos, Harry

    2017-11-01

    Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.

  1. Determination of dopamine in pharmaceutical formulation using enhanced luminescence from europium complex

    NASA Astrophysics Data System (ADS)

    Wabaidur, Saikh Mohammad; ALOthman, Zeid Abdullah; Naushad, Mu.

    Biologically important compound dopamine plays an important role in the central and peripheral nervous systems. Insufficient dopamine level due to the loss of dopamine producing cells may lead to disease called Schizophrenia and Parkinson's disease. Hence, a simple and fast detection of dopamine is necessary to study in the fields of neurophysiology and clinical medicine. An enhanced fluorimetric determination of dopamine in the presence of ascorbic acid is achieved using photoluminescence of europium complex, Eu(III)-dipicolinic acid. In order to obtain better responses, several operational parameters have been investigated. Under the optimum conditions, the method showed good stability and reproducibility. The application of this method for the determination of dopamine neurotransmitters was satisfactory. Linear response was found down to 3.0 × 10-7 M with limit of detection 1.0 × 10-8 M. The relative standard deviation was found to be 3.33% from 20 independent measurements for 1.0 × 10-5 M of dopamine.

  2. Long-term dopamine transporter expression and normal cellular distribution of mitochondria in dopaminergic neuron transplants in Parkinson’s disease patients

    PubMed Central

    Hallett, Penelope J; Cooper, Oliver; Sadi, Damaso; Robertson, Harold; Mendez, Ivar; Isacson, Ole

    2014-01-01

    Summary To determine the long-term health and function of transplanted dopamine neurons in Parkinson’s disease (PD) patients, the expression of dopamine transporters (DAT) and mitochondrial morphology was examined in human fetal midbrain cellular transplants. DAT was robustly expressed in transplanted dopamine neuron terminals in the reinnervated host putamen and caudate, for at least 14 years after transplantation. The transplanted dopamine neurons showed a healthy and non-atrophied morphology at all time points. Labeling of the mitochondrial outer membrane protein Tom20 and alpha-synuclein showed typical cellular pathology in the patients’ own substantia nigra, which was not observed in transplanted dopamine neurons. These results show that the vast majority of transplanted neurons remain healthy long-term in PD patients, consistent with the clinically maintained function of fetal dopamine neuron transplants for up to 15–18 years in patients. These findings are critically important for the rational development of stem cell-based dopamine neuronal replacement therapies for PD. PMID:24910427

  3. Dopamine-imprinted monolithic column for capillary electrochromatography.

    PubMed

    Aşır, Süleyman; Sarı, Duygu; Derazshamshir, Ali; Yılmaz, Fatma; Şarkaya, Koray; Denizli, Adil

    2017-11-01

    A dopamine-imprinted monolithic column was prepared and used in capillary electrochromatography as stationary phase for the first time. Dopamine was selectively separated from aqueous solution containing the competitor molecule norepinephrine, which is similar in size and shape to the template molecule. Morphology of the dopamine-imprinted column was observed by scanning electron microscopy. The influence of the organic solvent content of mobile phase, applied pressure and pH of the mobile phase on the recognition of dopamine by the imprinted monolithic column has been evaluated, and the imprinting effect in the dopamine-imprinted monolithic polymer was verified. Developed dopamine-imprinted monolithic column resulted in excellent separation of dopamine from structurally related competitor molecule, norepinephrine. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 5.81 × 10 -5  m 2 V -1 s -1 at pH 5.0 and 500 mbar pressure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine.

    PubMed

    Dal Bo, Gregory; St-Gelais, Fannie; Danik, Marc; Williams, Sylvain; Cotton, Mathieu; Trudeau, Louis-Eric

    2004-03-01

    Dopamine neurons have been suggested to use glutamate as a cotransmitter. To identify the basis of such a phenotype, we have examined the expression of the three recently identified vesicular glutamate transporters (VGLUT1-3) in postnatal rat dopamine neurons in culture. We found that the majority of isolated dopamine neurons express VGLUT2, but not VGLUT1 or 3. In comparison, serotonin neurons express only VGLUT3. Single-cell RT-PCR experiments confirmed the presence of VGLUT2 mRNA in dopamine neurons. Arguing for phenotypic heterogeneity among axon terminals, we find that only a proportion of terminals established by dopamine neurons are VGLUT2-positive. Taken together, our results provide a basis for the ability of dopamine neurons to release glutamate as a cotransmitter. A detailed analysis of the conditions under which DA neurons gain or loose a glutamatergic phenotype may provide novel insight into pathophysiological processes that underlie diseases such as schizophrenia, Parkinson's disease and drug dependence.

  5. Striatal dopamine in Parkinson disease: A meta-analysis of imaging studies.

    PubMed

    Kaasinen, Valtteri; Vahlberg, Tero

    2017-12-01

    A meta-analysis of 142 positron emission tomography and single photon emission computed tomography studies that have investigated striatal presynaptic dopamine function in Parkinson disease (PD) was performed. Subregional estimates of striatal dopamine metabolism are presented. The aromatic L-amino-acid decarboxylase (AADC) defect appears to be consistently smaller than the dopamine transporter and vesicular monoamine transporter 2 defects, suggesting upregulation of AADC function in PD. The correlation between disease severity and dopamine loss appears linear, but the majority of longitudinal studies point to a negative exponential progression pattern of dopamine loss in PD. Ann Neurol 2017;82:873-882. © 2017 American Neurological Association.

  6. Olfactory discrimination deficits in mice lacking the dopamine transporter or the D2 dopamine receptor.

    PubMed

    Tillerson, Jennifer L; Caudle, W Michael; Parent, Jack M; Gong, C; Schallert, Timothy; Miller, Gary W

    2006-09-15

    Previous pharmacological studies have implicated dopamine as a modulator of olfactory bulb processing. Several disorders characterized by altered dopamine homeostasis in olfaction-related brain regions display olfactory deficits. To further characterize the role of dopamine in olfactory processing, we subjected dopamine transporter knockout mice (DAT -/-) and dopamine receptor 2 knockout mice (D2 -/-) to a battery of olfactory tests. In addition to behavioral characterization, several neurochemical markers of olfactory bulb integrity and function were examined. DAT -/- mice displayed an olfactory discrimination deficit, but did not differ detectably from DAT wildtype (DAT +/+) mice in odor habituation, olfactory sensitivity, or odor recognition memory. Neurochemically, DAT -/- mice have decreased D2 receptor staining in the periglomerular layer of the olfactory bulb and increased tyrosine hydroxylase immunoreactivity compared to DAT +/+ controls. D2 -/- mice exhibited the same olfactory deficit as the DAT -/- mice, further supporting the role of dopamine at the D2 synapse in olfactory discrimination processing. The findings presented in this paper reinforce the functional significance of dopamine and more specifically the D2 receptor in olfactory discrimination and may help explain the behavioral phenotype in the DAT and D2 knockout mice.

  7. A comparison of the effects of the dopamine partial agonists aripiprazole and (-)-3-PPP with quinpirole on stimulated dopamine release in the rat striatum: Studies using fast cyclic voltammetry in vitro.

    PubMed

    O'Connor, John J; Lowry, John P

    2012-07-05

    The effects of aripiprazole, (-)-(3-hydroxyphenyl)-N-n-propylpiperidine ((-)-3-PPP) and quinpirole on single and multiple pulse stimulated dopamine release were investigated using the technique of fast cyclic voltammetry (FCV) in isolated rat striatal slices. Aripiprazole and (-)-3-PPP had no significant effect on single pulse dopamine release at concentrations from 10nM to 10μM indicating low agonist activity. The compounds failed to potentiate 5 pulse stimulated release of dopamine although inhibitory effects were seen at 10μM for aripiprazole. Both compounds were tested against the concentration-response curve for quinpirole's inhibition of stimulated single pulse dopamine release. Aripiprazole and (-)-3-PPP shifted the concentration-response curve for quinpirole to the right. In each case this was greater than a 100-fold shift for the 10μM test compound. Whilst these results indicate that both compounds show little agonist activity on dopamine release and significant antagonism of the inhibitory effect of quinpirole on dopamine release, whether they are functionally selective dopamine D(2) ligands remains controversial. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Computational Systems Analysis of Dopamine Metabolism

    PubMed Central

    Qi, Zhen; Miller, Gary W.; Voit, Eberhard O.

    2008-01-01

    A prominent feature of Parkinson's disease (PD) is the loss of dopamine in the striatum, and many therapeutic interventions for the disease are aimed at restoring dopamine signaling. Dopamine signaling includes the synthesis, storage, release, and recycling of dopamine in the presynaptic terminal and activation of pre- and post-synaptic receptors and various downstream signaling cascades. As an aid that might facilitate our understanding of dopamine dynamics in the pathogenesis and treatment in PD, we have begun to merge currently available information and expert knowledge regarding presynaptic dopamine homeostasis into a computational model, following the guidelines of biochemical systems theory. After subjecting our model to mathematical diagnosis and analysis, we made direct comparisons between model predictions and experimental observations and found that the model exhibited a high degree of predictive capacity with respect to genetic and pharmacological changes in gene expression or function. Our results suggest potential approaches to restoring the dopamine imbalance and the associated generation of oxidative stress. While the proposed model of dopamine metabolism is preliminary, future extensions and refinements may eventually serve as an in silico platform for prescreening potential therapeutics, identifying immediate side effects, screening for biomarkers, and assessing the impact of risk factors of the disease. PMID:18568086

  9. Juvenile hormone-dopamine systems for the promotion of flight activity in males of the large carpenter bee Xylocopa appendiculata.

    PubMed

    Sasaki, Ken; Nagao, Takashi

    2013-12-01

    The reproductive roles of dopamine and dopamine regulation systems are known in social hymenopterans, but the knowledge on the regulation systems in solitary species is still needed. To test the possibility that juvenile hormone (JH) and brain dopamine interact to trigger territorial flight behavior in males of a solitary bee species, the effects on biogenic amines of JH analog treatments and behavioral assays with dopamine injections in males of the large carpenter bee Xylocopa appendiculata were quantified. Brain dopamine levels were significantly higher in methoprene-treated males than in control males 4 days after treatment, but were not significantly different after 7 days. Brain octopamine and serotonin levels did not differ between methoprene-treated and control males at 4 and 7 days after treatment. Injection of dopamine caused significantly higher locomotor activities and a shorter duration for flight initiation in experimental versus control males. These results suggest that brain dopamine can be regulated by JH and enhances flight activities in males. The JH-dopamine system in males of this solitary bee species is similar to that of males of the highly eusocial honeybee Apis mellifera.

  10. Adolescent social defeat alters markers of adult dopaminergic function.

    PubMed

    Novick, Andrew M; Forster, Gina L; Tejani-Butt, Shanaz M; Watt, Michael J

    2011-08-10

    Stressful experiences during adolescence can alter the trajectory of neural development and contribute to psychiatric disorders in adulthood. We previously demonstrated that adolescent male rats exposed to repeated social defeat stress show changes in mesocorticolimbic dopamine content both at baseline and in response to amphetamine when tested in adulthood. In the present study we examined whether markers of adult dopamine function are also compromised by adolescent experience of social defeat. Given that the dopamine transporter as well as dopamine D1 receptors act as regulators of psychostimulant action, are stress sensitive and undergo changes during adolescence, quantitative autoradiography was used to measure [(3)H]-GBR12935 binding to the dopamine transporter and [(3)H]-SCH23390 binding to dopamine D1 receptors, respectively. Our results indicate that social defeat during adolescence led to higher dopamine transporter binding in the infralimbic region of the medial prefrontal cortex and higher dopamine D1 receptor binding in the caudate putamen, while other brain regions analyzed were comparable to controls. Thus it appears that social defeat during adolescence causes specific changes to the adult dopamine system, which may contribute to behavioral alterations and increased drug seeking. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Dopamine Modulation of Avoidance Behavior in Caenorhabditis elegans Requires the NMDA Receptor NMR-1

    PubMed Central

    Baidya, Melvin; Genovez, Marx; Torres, Marissa; Chao, Michael Y.

    2014-01-01

    The nematode C. elegans utilizes a relatively simple neural circuit to mediate avoidance responses to noxious stimuli such as the volatile odorant octanol. This avoidance behavior is modulated by dopamine. cat-2 mutant animals that are deficient in dopamine biosynthesis have an increased response latency to octanol compared to wild type animals, and this defect can be fully restored with the application of exogenous dopamine. Because this avoidance behavior is mediated by glutamatergic signaling between sensory neurons and premotor interneurons, we investigated the genetic interactions between dopaminergic signaling and ionotropic glutamate receptors. cat-2 mutant animals lacking either the GLR-1 or GLR-2 AMPA/kainate receptors displayed an increased response latency to octanol, which could be restored via exogenous dopamine. However, whereas cat-2 mutant animals lacking the NMR-1 NMDA receptor had increased response latency to octanol they were insensitive to exogenous dopamine. Mutants that lacked both AMPA/kainate and NMDA receptors were also insensitive to exogenous dopamine. Our results indicate that dopamine modulation of octanol avoidance requires NMR-1, consistent with NMR-1 as a potential downstream signaling target for dopamine. PMID:25089710

  12. Layered reward signalling through octopamine and dopamine in Drosophila.

    PubMed

    Burke, Christopher J; Huetteroth, Wolf; Owald, David; Perisse, Emmanuel; Krashes, Michael J; Das, Gaurav; Gohl, Daryl; Silies, Marion; Certel, Sarah; Waddell, Scott

    2012-12-20

    Dopamine is synonymous with reward and motivation in mammals. However, only recently has dopamine been linked to motivated behaviour and rewarding reinforcement in fruitflies. Instead, octopamine has historically been considered to be the signal for reward in insects. Here we show, using temporal control of neural function in Drosophila, that only short-term appetitive memory is reinforced by octopamine. Moreover, octopamine-dependent memory formation requires signalling through dopamine neurons. Part of the octopamine signal requires the α-adrenergic-like OAMB receptor in an identified subset of mushroom-body-targeted dopamine neurons. Octopamine triggers an increase in intracellular calcium in these dopamine neurons, and their direct activation can substitute for sugar to form appetitive memory, even in flies lacking octopamine. Analysis of the β-adrenergic-like OCTβ2R receptor reveals that octopamine-dependent reinforcement also requires an interaction with dopamine neurons that control appetitive motivation. These data indicate that sweet taste engages a distributed octopamine signal that reinforces memory through discrete subsets of mushroom-body-targeted dopamine neurons. In addition, they reconcile previous findings with octopamine and dopamine and suggest that reinforcement systems in flies are more similar to mammals than previously thought.

  13. Juvenile hormone-dopamine systems for the promotion of flight activity in males of the large carpenter bee Xylocopa appendiculata

    NASA Astrophysics Data System (ADS)

    Sasaki, Ken; Nagao, Takashi

    2013-12-01

    The reproductive roles of dopamine and dopamine regulation systems are known in social hymenopterans, but the knowledge on the regulation systems in solitary species is still needed. To test the possibility that juvenile hormone (JH) and brain dopamine interact to trigger territorial flight behavior in males of a solitary bee species, the effects on biogenic amines of JH analog treatments and behavioral assays with dopamine injections in males of the large carpenter bee Xylocopa appendiculata were quantified. Brain dopamine levels were significantly higher in methoprene-treated males than in control males 4 days after treatment, but were not significantly different after 7 days. Brain octopamine and serotonin levels did not differ between methoprene-treated and control males at 4 and 7 days after treatment. Injection of dopamine caused significantly higher locomotor activities and a shorter duration for flight initiation in experimental versus control males. These results suggest that brain dopamine can be regulated by JH and enhances flight activities in males. The JH-dopamine system in males of this solitary bee species is similar to that of males of the highly eusocial honeybee Apis mellifera.

  14. Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease.

    PubMed

    Lohr, Kelly M; Masoud, Shababa T; Salahpour, Ali; Miller, Gary W

    2017-01-01

    Dopamine was first identified as a neurotransmitter localized to the midbrain over 50 years ago. The dopamine transporter (DAT; SLC6A3) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2) are regulators of dopamine homeostasis in the presynaptic neuron. DAT transports dopamine from the extracellular space into the cytosol of the presynaptic terminal. VMAT2 then packages this cytosolic dopamine into vesicular compartments for subsequent release upon neurotransmission. Thus, DAT and VMAT2 act in concert to move the transmitter efficiently throughout the neuron. Accumulation of dopamine in the neuronal cytosol can trigger oxidative stress and neurotoxicity, suggesting that the proper compartmentalization of dopamine is critical for neuron function and risk of disease. For decades, studies have examined the effects of reduced transporter function in mice (e.g. DAT-KO, VMAT2-KO, VMAT2-deficient). However, we have only recently been able to assess the effects of elevated transporter expression using BAC transgenic methods (DAT-tg, VMAT2-HI mice). Complemented with in vitro work and neurochemical techniques to assess dopamine compartmentalization, a new focus on the importance of transporter proteins as both models of human disease and potential drug targets has emerged. Here, we review the importance of DAT and VMAT2 function in the delicate balance of neuronal dopamine. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. The dopamine beta-hydroxylase inhibitor nepicastat increases dopamine release and potentiates psychostimulant-induced dopamine release in the prefrontal cortex.

    PubMed

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Bini, Valentina; Gessa, Gian Luigi

    2014-07-01

    The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  16. Qualitative changes in ultrasonic vocalization in rats after unilateral dopamine depletion or haloperidol: A preliminary study

    PubMed Central

    Ciucci, Michelle; Ma, Teh-Sheng; Fox, Cynthia; Kane, Jacqueline; Ramig, Lorraine; Schallert, Timothy

    2007-01-01

    The sensorimotor speech/voice deficits associated with Parkinson Disease have been well-documented in humans. They are largely resistant to pharmacological and surgical treatment, but respond to intensive speech treatment. The mechanisms underlying this phenomenon are not well understood and are difficult to systematically test in humans. Thus we turn to the rat as a model. The purpose of this study is to compare the ultrasonic vocalization (USV) of rats in three conditions: control, haloperidol-induced transient dopamine depletion, and unilateral 6-hydroxydopamine (6-OHDA) induced moderately-severe degeneration of dopamine neurons. It was hypothesized that both dopamine-altered conditions would lead to a change in the features of the USV acoustic signal. Results demonstrated that bandwidth decreased in the dopamine-altered rats. This is the first study to document a degradation of the acoustic signal of frequency-modulated 50-kHz calls as a result of interfering with dopamine synaptic transmission in rats. The data suggest that mild transient dopamine depletion with haloperidol or even unilateral degeneration of dopamine neurons is associated with changes in the USV acoustic signal. Thus, dopaminergic dysfunction appears to influence USV production. This study provides a foundation to examine the role of dopamine in sensorimotor processes underlying USV production and potentially to explore treatments for dopamine deficiency-related impaired vocal outcome. PMID:17397940

  17. Studies on striatal neurotoxicity caused by the 3,4-methylenedioxymethamphetamine/ malonate combination: implications for serotonin/dopamine interactions.

    PubMed

    Goñi-Allo, Beatriz; Ramos, Mar'a; Herv'as, Isabel; Lasheras, Berta; Aguirre, Norberto

    2006-03-01

    The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA) produces long-term toxicity to serotonin (5-HT) neurones in rats, which is exacerbated when combined with the mitochondrial inhibitor malonate. Moreover, MDMA, which does not produce dopamine depletion in the rat, potentiates malonate-induced striatal dopamine toxicity. Because the malonate/MDMA combination acutely causes a synergistic increase of 5-HT and dopamine release, in this study we sought to determine whether pharmacological blockade of MDMA- and/or malonate-induced dopamine release prevents neurotoxicity. Fluoxetine, given 30 min prior to the malonate/MDMA combination, afforded complete protection against 5-HT depletion and reversed MDMA-induced exacerbation of dopamine toxicity found in the malonate/MDMA treated rats. Protection afforded by fluoxetine was not related to changes in MDMA-induced hyperthermia. Similarly, potentiation of malonate-induced dopamine toxicity caused by MDMA was not observed in p-chlorophenylalanine-5-HT depleted rats. Finally, the dopamine transporter inhibitor GBR 12909 completely prevented dopamine neurotoxicity caused by the malonate/MDMA combination and reversed the exacerbating toxic effects of malonate on MDMA-induced 5-HT depletion without significantly altering the hyperthermic response. Overall, these results suggest that the synergic release of dopamine caused by the malonate/MDMA combination plays an important role in the long-term toxic effects. A possible mechanism of neurotoxicity and protection is proposed.

  18. Inverted-U-shaped correlation between dopamine receptor availability in striatum and sensation seeking

    PubMed Central

    Gjedde, Albert; Kumakura, Yoshitaka; Cumming, Paul; Linnet, Jakob; Møller, Arne

    2010-01-01

    Sensation seeking is a core personality trait that declines with age in both men and women, as do also both density and availability of the dopamine D2/3 receptors in striatum and cortical regions. In contrast, novelty seeking at a given age relates inversely to dopamine receptor availability. The simplest explanation of these findings is an inverted-U-shaped correlation between ratings of sensation seeking on the Zuckerman scale and dopamine D2/3 receptor availability. To test the claim of an inverted-U-shaped relation between ratings of the sensation-seeking personality and measures of dopamine receptor availability, we used PET to record [11C]raclopride binding in striatum of 18 healthy men. Here we report that an inverted-U shape significantly matched the receptor availability as a function of the Zuckerman score, with maximum binding potentials observed in the midrange of the scale. The inverted-U shape is consistent with a negative correlation between sensation seeking and the reactivity (“gain”) of dopaminergic neurotransmission to dopamine. The correlation reflects Zuckerman scores that are linearly linked to dopamine receptor densities in the striatum but nonlinearly linked to dopamine concentrations. Higher dopamine occupancy and dopamine concentrations explain the motivation that drives afflicted individuals to seek sensations, in agreement with reduced protection against addictive behavior that is characteristic of individuals with low binding potentials. PMID:20133675

  19. New Repeat Polymorphism in the AKT1 Gene Predicts Striatal Dopamine D2/D3 Receptor Availability and Stimulant-Induced Dopamine Release in the Healthy Human Brain.

    PubMed

    Shumay, Elena; Wiers, Corinde E; Shokri-Kojori, Ehsan; Kim, Sung Won; Hodgkinson, Colin A; Sun, Hui; Tomasi, Dardo; Wong, Christopher T; Weinberger, Daniel R; Wang, Gene-Jack; Fowler, Joanna S; Volkow, Nora D

    2017-05-10

    The role of the protein kinase Akt1 in dopamine neurotransmission is well recognized and has been implicated in schizophrenia and psychosis. However, the extent to which variants in the AKT1 gene influence dopamine neurotransmission is not well understood. Here we investigated the effect of a newly characterized variant number tandem repeat (VNTR) polymorphism in AKT1 [major alleles: L- (eight repeats) and H- (nine repeats)] on striatal dopamine D2/D3 receptor (DRD2) availability and on dopamine release in healthy volunteers. We used PET and [ 11 C]raclopride to assess baseline DRD2 availability in 91 participants. In 54 of these participants, we also measured intravenous methylphenidate-induced dopamine release to measure dopamine release. Dopamine release was quantified as the difference in specific binding of [ 11 C]raclopride (nondisplaceable binding potential) between baseline values and values following methylphenidate injection. There was an effect of AKT1 genotype on DRD2 availability at baseline for the caudate ( F (2,90) = 8.2, p = 0.001) and putamen ( F (2,90) = 6.6, p = 0.002), but not the ventral striatum ( p = 0.3). For the caudate and putamen, LL showed higher DRD2 availability than HH; HL were in between. There was also a significant effect of AKT1 genotype on dopamine increases in the ventral striatum ( F (2,53) = 5.3, p = 0.009), with increases being stronger in HH > HL > LL. However, no dopamine increases were observed in the caudate ( p = 0.1) or putamen ( p = 0.8) following methylphenidate injection. Our results provide evidence that the AKT1 gene modulates both striatal DRD2 availability and dopamine release in the human brain, which could account for its association with schizophrenia and psychosis. The clinical relevance of the newly characterized AKT1 VNTR merits investigation. SIGNIFICANCE STATEMENT The AKT1 gene has been implicated in schizophrenia and psychosis. This association is likely to reflect modulation of dopamine signaling by Akt1 kinase since striatal dopamine hyperstimulation is associated with psychosis and schizophrenia. Here, using PET with [ 11 C]raclopride, we identified in the AKT1 gene a new variable number tandem repeat (VNTR) marker associated with baseline striatal dopamine D2/D3 receptor availability and with methylphenidate-induced striatal dopamine increases in healthy volunteers. Our results confirm the involvement of the AKT1 gene in modulating striatal dopamine signaling in the human brain. Future studies are needed to assess the association of this new VNTR AKT1 variant in schizophrenia and drug-induced psychoses. Copyright © 2017 the authors 0270-6474/17/374983-10$15.00/0.

  20. Neuroteratology and Animal Modeling of Brain Disorders.

    PubMed

    Archer, Trevor; Kostrzewa, Richard M

    Over the past 60 years, a large number of selective neurotoxins were discovered and developed, making it possible to animal-model a broad range of human neuropsychiatric and neurodevelopmental disorders. In this paper, we highlight those neurotoxins that are most commonly used as neuroteratologic agents, to either produce lifelong destruction of neurons of a particular phenotype, or a group of neurons linked by a specific class of transporter proteins (i.e., dopamine transporter) or body of receptors for a specific neurotransmitter (i.e., NMDA class of glutamate receptors). Actions of a range of neurotoxins are described: 6-hydroxydopamine (6-OHDA), 6-hydroxydopa, DSP-4, MPTP, methamphetamine, IgG-saporin, domoate, NMDA receptor antagonists, and valproate. Their neuroteratologic features are outlined, as well as those of nerve growth factor, epidermal growth factor, and that of stress. The value of each of these neurotoxins in animal modeling of human neurologic, neurodegenerative, and neuropsychiatric disorders is discussed in terms of the respective value as well as limitations of the derived animal model. Neuroteratologic agents have proven to be of immense importance for understanding how associated neural systems in human neural disorders may be better targeted by new therapeutic agents.

  1. Low dose morphine adjuvant therapy for enhanced efficacy of antipsychotic drug action: potential involvement of endogenous morphine in the pathophysiology of schizophrenia.

    PubMed

    Stefano, George B; Králíčková, Milena; Ptacek, Radek; Kuzelova, Hana; Esch, Tobias; Kream, Richard M

    2012-07-01

    Major thematic threads linking extensive preclinical and clinical efforts have established a working mechanistic scheme whereby atypical antipsychotic drugs ameliorate negative DSM IV diagnostic criteria by effecting relatively potent blockade of serotonin (5-HT)(2A) receptors coupled with weaker antagonism of dopamine D(2) receptors in frontal cortical areas. These contentions are more or less supported by in vitro binding experiments employing cloned receptors on cultured cells, although significant functional involvement of 5-HT(2C) receptors has also been proposed. It is interesting that a key statistical analysis indicates a major shift in usage back to typical antipsychotic agents for management of schizophrenia from 1995-2008, whereas off-label usage of atypical antipsychotic agents was markedly increased or expanded for bipolar affective disorder. Importantly, meta-analyses generally did not support efficacy differences between the other atypical antipsychotics compared with the older typical agents. A critical examination of putative functional linkages of morphine and its type-selective mu opioid receptor to higher order cortical regulation of cognitive processes may provide novel insights into human behavioral processes that are severely impaired in schizophrenia spectrum disorders.

  2. Pharmacological action of Panax ginseng on the behavioral toxicities induced by psychotropic agents.

    PubMed

    Kim, Hyoung-Chun; Shin, Eun-Joo; Jang, Choon-Gon; Lee, Myung-Koo; Eun, Jae-Soon; Hong, Jin-Tae; Oh, Ki-Wan

    2005-09-01

    Morphine-induced analgesia has been shown to be antagonized by ginseng total saponins (GTS), which also inhibit the development of analgesic tolerance to and physical dependence on morphine. GTS is involved in both of these processes by inhibiting morphine-6-dehydrogenase, which catalyzes the synthesis of morphinone from morphine, and by increasing the level of hepatic glutathione, which participates in the toxicity response. Thus, the dual actions of ginseng are associated with the detoxification of morphine. In addition, the inhibitory or facilitated effects of GTS on electrically evoked contractions in guinea pig ileum (mu-receptors) and mouse vas deferens (delta-receptors) are not mediated through opioid receptors, suggesting the involvement of non-opioid mechanisms. GTS also attenuates hyperactivity, reverse tolerance (behavioral sensitization), and conditioned place preference induced by psychotropic agents, such as methamphetamine, cocaine, and morphine. These effects of GTS may be attributed to complex pharmacological actions between dopamine receptors and a serotonergic/adenosine A2A/ delta-opioid receptor complex. Ginsenosides also attenuate the morphine-induced cAMP signaling pathway. Together, the results suggest that GTS may be useful in the prevention and therapy of the behavioral side effects induced by psychotropic agents.

  3. Extravasation of Noncytotoxic Drugs: A Review of the Literature.

    PubMed

    Le, Ann; Patel, Samit

    2014-07-01

    Extravasation is a potential complication associated with intravenous therapy administration. Inadvertent leakage of medications with vesicant properties can cause severe tissue necrosis, which can lead to devastating long-term consequences. Recognizing potential agents is an essential step in mitigating the risk of extravasation. A literature search was carried out using PubMed with the following key words: extravasation, soft tissue injury, phlebitis, and infiltration, from January 1961 through January 2014. The publications were screened manually and reviewed to identify reports for medications that included synonyms of the International Nonproprietary Name, while excluding antineoplastic agents, radiographic contrast material, investigational or nonmarketed drugs, and animal data, to yield 70 articles. Furthermore, reference citations from publications were also reviewed for relevance and yielded 4 articles. We discovered 232 cases of extravasation involving 37 agents (in order of frequency): phenytoin, parenteral nutrition, calcium gluconate, potassium chloride, calcium chloride, dopamine, dextrose solutions, epinephrine, sodium bicarbonate, nafcillin, propofol, norepinephrine, mannitol, arginine, promethazine, vancomycin, tetracycline, dobutamine, vasopressin, sodium thiopental, acyclovir, amphotericin, ampicillin, cloxacillin, gentamicin, metronidazole, oxacillin, penicillin, amiodarone, albumin, furosemide, lipids, lorazepam, immunoglobulin, morphine, and sodium valproate. Potential properties contributing to extravasation include the following: pH, osmolarity, diluent, vasoactive properties, and inactive ingredients. Antidotes and supportive care agents used in the management of these cases of extravasation include hyaluronidase, phentolamine, terbutaline, topical anesthetics (such as lidocaine and prilocaine cream), topical antimicrobials (such as silver sulfadiazine and chlorhexidine), topical debridement agents (collagenase ointment), topical steroids, and topical vasodilators (nitroglycerin). Data on the management of noncytotoxic extravasations is sparse, consisting primarily of case reports and anecdotal evidence. Fortunately, this adverse outcome is preventable and identification of vesicant agents plays a pivotal role. The intent of this review is to provide a reference identifying noncytotoxic vesicants and the management of extravasations associated with specific agents. © The Author(s) 2014.

  4. Temporal Profiles Dissociate Regional Extracellular Ethanol versus Dopamine Concentrations

    PubMed Central

    2015-01-01

    In vivo monitoring of dopamine via microdialysis has demonstrated that acute, systemic ethanol increases extracellular dopamine in regions innervated by dopaminergic neurons originating in the ventral tegmental area and substantia nigra. Simultaneous measurement of dialysate dopamine and ethanol allows comparison of the time courses of their extracellular concentrations. Early studies demonstrated dissociations between the time courses of brain ethanol concentrations and dopaminergic responses in the nucleus accumbens (NAc) elicited by acute ethanol administration. Both brain ethanol and extracellular dopamine levels peak during the first 5 min following systemic ethanol administration, but the dopamine response returns to baseline while brain ethanol concentrations remain elevated. Post hoc analyses examined ratios of the dopamine response (represented as a percent above baseline) to tissue concentrations of ethanol at different time points within the first 25–30 min in the prefrontal cortex, NAc core and shell, and dorsomedial striatum following a single intravenous infusion of ethanol (1 g/kg). The temporal patterns of these “response ratios” differed across brain regions, possibly due to regional differences in the mechanisms underlying the decline of the dopamine signal associated with acute intravenous ethanol administration and/or to the differential effects of acute ethanol on the properties of subpopulations of midbrain dopamine neurons. This Review draws on neurochemical, physiological, and molecular studies to summarize the effects of acute ethanol administration on dopamine activity in the prefrontal cortex and striatal regions, to explore the potential reasons for the regional differences observed in the decline of ethanol-induced dopamine signals, and to suggest directions for future research. PMID:25537116

  5. Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement.

    PubMed

    Kim, Kyung Man; Baratta, Michael V; Yang, Aimei; Lee, Doheon; Boyden, Edward S; Fiorillo, Christopher D

    2012-01-01

    Activation of dopamine receptors in forebrain regions, for minutes or longer, is known to be sufficient for positive reinforcement of stimuli and actions. However, the firing rate of dopamine neurons is increased for only about 200 milliseconds following natural reward events that are better than expected, a response which has been described as a "reward prediction error" (RPE). Although RPE drives reinforcement learning (RL) in computational models, it has not been possible to directly test whether the transient dopamine signal actually drives RL. Here we have performed optical stimulation of genetically targeted ventral tegmental area (VTA) dopamine neurons expressing Channelrhodopsin-2 (ChR2) in mice. We mimicked the transient activation of dopamine neurons that occurs in response to natural reward by applying a light pulse of 200 ms in VTA. When a single light pulse followed each self-initiated nose poke, it was sufficient in itself to cause operant reinforcement. Furthermore, when optical stimulation was delivered in separate sessions according to a predetermined pattern, it increased locomotion and contralateral rotations, behaviors that are known to result from activation of dopamine neurons. All three of the optically induced operant and locomotor behaviors were tightly correlated with the number of VTA dopamine neurons that expressed ChR2, providing additional evidence that the behavioral responses were caused by activation of dopamine neurons. These results provide strong evidence that the transient activation of dopamine neurons provides a functional reward signal that drives learning, in support of RL theories of dopamine function.

  6. Regional influence of cocaine on evoked dopamine release in the nucleus accumbens core: A role for the caudal brainstem.

    PubMed

    Gerth, Ashlynn I; Alhadeff, Amber L; Grill, Harvey J; Roitman, Mitchell F

    2017-01-15

    Cocaine increases dopamine concentration in the nucleus accumbens through competitive binding to the dopamine transporter (DAT). However, it also increases the frequency of dopamine release events, a finding that cannot be explained by action at the DAT alone. Rather, this effect may be mediated by cocaine-induced modulation of brain regions that project to dopamine neurons. To explore regional contributions of cocaine to dopamine signaling, we administered cocaine to the lateral or fourth ventricles and compared the effects on dopamine release in the nucleus accumbens evoked by electrical stimulation of the ventral tegmental area to that of systemically-delivered cocaine. Stimulation trains caused a sharp rise in dopamine followed by a slower return to baseline. The magnitude of dopamine release ([DA]max) as well as the latency to decay to fifty percent of the maximum (t(1/2); index of DAT activity) by each stimulation train were recorded. All routes of cocaine delivery caused an increase in [DA]max; only systemic cocaine caused an increase in t(1/2). Importantly, these data are the first to show that hindbrain (fourth ventricle)-delivered cocaine modulates phasic dopamine signaling. Fourth ventricular cocaine robustly increased cFos immunoreactivity in the nucleus of the solitary tract (NTS), suggesting a neural substrate for hindbrain cocaine-mediated effects on [DA]max. Together, the data demonstrate that cocaine-induced effects on phasic dopamine signaling are mediated via actions throughout the brain including the hindbrain. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Physician response to a medication alert system in inpatients with levodopa-treated diseases

    PubMed Central

    Morris, Marie; Willis, Allison W.; Searles Nielsen, Susan; McCann, Franklin; Birke, Angela

    2015-01-01

    Objective: To evaluate the appropriateness of dopamine receptor antagonist prescriptions in hospitalized patients with dopamine-requiring diseases after implementation of an automated prescription alert system. Methods: We examined dopamine receptor antagonist prescriptions in hospitalized patients with dopamine-requiring diseases and physician response to an automated drug contraindication alert system at Barnes-Jewish Hospital from 2009 to 2013. A detailed review of patient medical records was performed for all alert events generated when a physician prescribed a dopamine receptor antagonist concurrently with a dopamine receptor agonist in hospitalized patients. Two movement disorders neurologists determined the appropriateness of each prescription, based on patient medical history, through consensus. Physician response to alert was compared by indication for the prescription and physician specialty. Results: Of 237 orders, 197 (83.1%) prescriptions for dopamine receptor antagonists were considered inappropriate. The prevalence of inappropriate dopamine receptor antagonist prescriptions per levodopa prescriptions was 16.10% (95% confidence interval 9.47, 22.73) in psychiatry, 7.51% (6.16, 8.86) in general medicine, 6.14% (4.49, 7.79) in the surgical specialties, and 0.85% (0.46, 1.25) in the neurologic/neurosurgical specialties. Of the inappropriate prescriptions, 146 (74.1%) were continued despite the alert. The strongest predictor of discontinuation of dopamine receptor antagonist medications was use of the medication to treat nausea or emesis (p < 0.001). Conclusions: Despite successfully identifying instances when dopamine antagonists were prescribed to patients with dopamine-requiring diseases, the alert system modestly affected physician prescribing behavior, highlighting the need for improved education of health care providers. PMID:26092916

  8. Exposure to the Polybrominated Diphenyl Ether Mixture DE-71 Damages the Nigrostriatal Dopamine System: Role of Dopamine Handling in Neurotoxicity

    PubMed Central

    Bradner, Joshua M.; Suragh, Tiffany A.; Wilson, W. Wyatt; Lazo, Carlos R.; Stout, Kristen A.; Kim, Hye Mi; Wang, Min Z.; Walker, Douglas I.; Pennell, Kurt D.; Richardson, Jason R.; Miller, Gary W.; Caudle, W. Michael

    2013-01-01

    In the last several decades polybrominated diphenyl ethers (PBDEs) have replaced the previously banned polychlorinated biphenyls (PCBs) in multiple flame retardant utilities. As epidemiological and laboratory studies have suggested PCBs as a risk factor for Parkinson’s disease (PD), the similarities between PBDEs and PCBs suggest that PBDEs have the potential to be neurotoxic to the dopamine system. The purpose of this study was to evaluate the neurotoxic effects of the PBDE mixture, DE-71, on the nigrostriatal dopamine system and address the role of altered dopamine handling in mediating this neurotoxicity. Using an in vitro model system we found DE-71 effectively caused cell death in a dopaminergic cell line as well as reducing the number of TH+ neurons isolated from VMAT2 WT and LO animals. Assessment of DE-71 neurotoxicity in vivo demonstrated significant deposition of PBDE congeners in the brains of mice, leading to reductions in striatal dopamine and dopamine handling, as well as reductions in the striatal dopamine transporter (DAT) and VMAT2. Additionally, DE-71 elicited a significant locomotor deficit in the VMAT2 WT and LO mice. However, no change was seen in TH expression in dopamine terminal or in the number of dopamine neurons in the substantia nigra pars compacta (SNpc). To date, these are the first data to demonstrate that exposure to PBDEs disrupts the nigrostriatal dopamine system. Given their similarities to PCBs, additional laboratory and epidemiological research should be considered to assess PBDEs as a potential risk factor for PD and other neurological disorders. PMID:23287494

  9. Model-based predictions for dopamine.

    PubMed

    Langdon, Angela J; Sharpe, Melissa J; Schoenbaum, Geoffrey; Niv, Yael

    2018-04-01

    Phasic dopamine responses are thought to encode a prediction-error signal consistent with model-free reinforcement learning theories. However, a number of recent findings highlight the influence of model-based computations on dopamine responses, and suggest that dopamine prediction errors reflect more dimensions of an expected outcome than scalar reward value. Here, we review a selection of these recent results and discuss the implications and complications of model-based predictions for computational theories of dopamine and learning. Copyright © 2017. Published by Elsevier Ltd.

  10. Impact of newer pharmacological treatments on quality of life in patients with Parkinson's disease.

    PubMed

    Gallagher, David A; Schrag, Anette

    2008-01-01

    Parkinson's disease is a common progressive neurodegenerative condition with multiple motor and nonmotor features contributing to impairment of health-related quality of life (HR-QOL). Pharmacological treatments have been directed primarily at dopamine replacement with levodopa and agents to improve its bioavailability, including DOPA decarboxylase inhibitors, catechol-O-methyltransferase (COMT) inhibitors and monoamine oxidase B (MAO-B) inhibitors, as well as synthetic dopamine agonists. These treatments to restore motor function are often very successful in early Parkinson's disease, with objective improvement and concomitant improvement in subjective HR-QOL scores. However, as the disease progresses, motor complications and nonmotor symptoms predominate and are often refractory to therapeutic interventions. Antiparkinsonian medications have been shown to improve motor severity and motor complications of advancing disease, and there is increasing evidence that this can be translated into subjective improvement of HR-QOL from a patient's point of view. However, the degree of improvement is less marked on HR-QOL scores than on motor scores, and some studies do not show improvement of HR-QOL in parallel to motor improvements. A number of explanations are possible, including limitations of the scales used, trial designs and lack of clinical improvement from the patients' point of view. This review concentrates on clinical trials with an index of HR-QOL as an outcome measure, with particular emphasis on well designed, randomized, double-blind, placebo-controlled or active comparator-controlled methodology. Drugs that have been more recently added to the armamentarium of Parkinson's disease, including the oral (pramipexole, ropinirole and piribedil) and transdermal (rotigotine) non-ergotamine-derived dopamine agonists, the novel MAO-B inhibitor rasagiline and the COMT inhibitors tolcapone and entacapone, were included. The effect of each of these agents on overall HR-QOL and depression, a factor that has been shown to significantly contribute to HR-QOL in several multivariate analyses, is discussed.Overall, the literature search revealed 14 double-blind, placebo- or active comparator-controlled trials with an index of HR-QOL as an outcome measure. Entacapone resulted in HR-QOL improvement in nonfluctuating patients (one study) but not clearly in those with motor fluctuations (two studies). Tolcapone was only tested in patients with motor fluctuations and resulted in significant improvement in two of four studies using HR-QOL as an outcome measure. Rasagiline improved HR-QOL as monotherapy in early Parkinson's disease (one study), but not clearly in more advanced disease (one study). Rotigotine improved HR-QOL in both early Parkinson's disease (one study) and more advanced disease with motor fluctuations (one study). The impact of ropinirole and pramipexole on HR-QOL as monotherapy in early Parkinson's disease versus placebo has not been assessed, but both agents have resulted in improved HR-QOL in patients with motor fluctuations (ropinirole one study, pramipexole one study). The evidence for antidepressant efficacy of antiparkinsonian medications is limited.

  11. Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior.

    PubMed

    Hutchison, M A; Gu, X; Adrover, M F; Lee, M R; Hnasko, T S; Alvarez, V A; Lu, W

    2018-05-01

    Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.

  12. Reciprocal synapses between mushroom body and dopamine neurons form a positive feedback loop required for learning.

    PubMed

    Cervantes-Sandoval, Isaac; Phan, Anna; Chakraborty, Molee; Davis, Ronald L

    2017-05-10

    Current thought envisions dopamine neurons conveying the reinforcing effect of the unconditioned stimulus during associative learning to the axons of Drosophila mushroom body Kenyon cells for normal olfactory learning. Here, we show using functional GFP reconstitution experiments that Kenyon cells and dopamine neurons from axoaxonic reciprocal synapses. The dopamine neurons receive cholinergic input via nicotinic acetylcholine receptors from the Kenyon cells; knocking down these receptors impairs olfactory learning revealing the importance of these receptors at the synapse. Blocking the synaptic output of Kenyon cells during olfactory conditioning reduces presynaptic calcium transients in dopamine neurons, a finding consistent with reciprocal communication. Moreover, silencing Kenyon cells decreases the normal chronic activity of the dopamine neurons. Our results reveal a new and critical role for positive feedback onto dopamine neurons through reciprocal connections with Kenyon cells for normal olfactory learning.

  13. A fluorescent sensor based on thioglycolic acid capped cadmium sulfide quantum dots for the determination of dopamine

    NASA Astrophysics Data System (ADS)

    Kulchat, Sirinan; Boonta, Wissuta; Todee, Apinya; Sianglam, Pradthana; Ngeontae, Wittaya

    2018-05-01

    A fluorescent sensor based on thioglycolic acid-capped cadmium sulfide quantum dots (TGA-CdS QDs) has been designed for the sensitive and selective detection of dopamine (DA). In the presence of dopamine (DA), the addition of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) activates the reaction between the carboxylic group of the TGA and the amino group of dopamine to form an amide bond, quenching the fluorescence of the QDs. The fluorescence intensity of TGA-CdS QDs can be used to sense the presence of dopamine with a limit of detection of 0.68 μM and a working linear range of 1.0-17.5 μM. This sensor system shows great potential application for dopamine detection in dopamine drug samples and for future easy-to-make analytical devices.

  14. Infantile parkinsonism-dystonia: a dopamine "transportopathy".

    PubMed

    Blackstone, Craig

    2009-06-01

    The dopamine transporter (DAT) retrieves the neurotransmitter dopamine from the synaptic cleft at dopaminergic synapses. Variations in solute carrier family 6A, member 3 (SLC6A3/DAT1), the human gene encoding DAT, have been implicated in attention deficit hyperactivity and bipolar disorders, and DAT is a prominent site of action for drugs such as amphetamines and cocaine. In this issue of the JCI, Kurian et al. report that an autosomal recessive infantile parkinsonism-dystonia is caused by loss-of-function mutations in DAT that impair dopamine reuptake (see the related article beginning on page 1595). Though this might be predicted to result in dopamine excess in the synaptic cleft, it likely also causes depletion of presynaptic dopamine stores and possibly downregulation of postsynaptic dopamine receptor function, resulting in impairments in dopaminergic neurotransmission consistent with the clinical presentation. This is the first report of a genetic alteration in DAT function underlying a parkinsonian disorder.

  15. Infantile parkinsonism-dystonia: a dopamine “transportopathy”

    PubMed Central

    Blackstone, Craig

    2009-01-01

    The dopamine transporter (DAT) retrieves the neurotransmitter dopamine from the synaptic cleft at dopaminergic synapses. Variations in solute carrier family 6A, member 3 (SLC6A3/DAT1), the human gene encoding DAT, have been implicated in attention deficit hyperactivity and bipolar disorders, and DAT is a prominent site of action for drugs such as amphetamines and cocaine. In this issue of the JCI, Kurian et al. report that an autosomal recessive infantile parkinsonism-dystonia is caused by loss-of-function mutations in DAT that impair dopamine reuptake (see the related article beginning on page 1595). Though this might be predicted to result in dopamine excess in the synaptic cleft, it likely also causes depletion of presynaptic dopamine stores and possibly downregulation of postsynaptic dopamine receptor function, resulting in impairments in dopaminergic neurotransmission consistent with the clinical presentation. This is the first report of a genetic alteration in DAT function underlying a parkinsonian disorder. PMID:19504720

  16. Dopamine neurons share common response function for reward prediction error

    PubMed Central

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-01-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically-identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found striking homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we could describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803

  17. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    PubMed

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT

    PubMed Central

    Aguilar, Jenny I.; Dunn, Matthew; Mingote, Susana; Karam, Caline S.; Farino, Zachary J.; Sonders, Mark S.; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J.; McCabe, Brian D.; Mosharov, Eugene V.; Krantz, David E.; Javitch, Jonathan A.; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-01-01

    SUMMARY The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. PMID:28823729

  19. Dopamine in motivational control: rewarding, aversive, and alerting

    PubMed Central

    Bromberg-Martin, Ethan S.; Matsumoto, Masayuki; Hikosaka, Okihide

    2010-01-01

    SUMMARY Midbrain dopamine neurons are well known for their strong responses to rewards and their critical role in positive motivation. It has become increasingly clear, however, that dopamine neurons also transmit signals related to salient but non-rewarding experiences such as aversive and alerting events. Here we review recent advances in understanding the reward and non-reward functions of dopamine. Based on this data, we propose that dopamine neurons come in multiple types that are connected with distinct brain networks and have distinct roles in motivational control. Some dopamine neurons encode motivational value, supporting brain networks for seeking, evaluation, and value learning. Others encode motivational salience, supporting brain networks for orienting, cognition, and general motivation. Both types of dopamine neurons are augmented by an alerting signal involved in rapid detection of potentially important sensory cues. We hypothesize that these dopaminergic pathways for value, salience, and alerting cooperate to support adaptive behavior. PMID:21144997

  20. Pharmacological treatments for cocaine dependence: is there something new?

    PubMed

    Karila, Laurent; Reynaud, Michel; Aubin, Henri-Jean; Rolland, Benjamin; Guardia, Dewi; Cottencin, Olivier; Benyamina, Amine

    2011-01-01

    There is no specific and approved treatment, by regulatory authorities, for cocaine dependence. Therefore, developing new medications for the treatment of this disease continues to be a research priority. Recent advances in neurobiology and brain imaging studies have suggested several promising pharmacological approaches. Literature searches were conducted for the period from January 1990 to February 2011 using PubMed, EMBASE, PsycInfo, the NIDA research monograph index and the reference list of clinicaltrials.gov, which are the main electronic sources of ongoing trials. Recent controlled clinical studies have highlighted some very promising medications, especially glutamatergic (N-Acetylcysteine, modafinil, topiramate) and GABAergic (vigabatrin) agents, agonist replacement therapy (sustained-release methylphenidate, d-amphetamine) and dopamine agents (disulfiram). Additionally, immunotherapy is a new and promising pharmacological approach. Promising pharmacological approaches have emerged for the treatment of cocaine dependence, but larger, randomized, placebo-controlled studies are needed for some medications. Preclinical studies suggest new targets of interest in cocaine dependence. The optimal therapeutic platform is the combination of pharmacotherapies with behavioral therapies.

  1. Peptide-induced emesis in dogs: possible relevance to radiation-induced emesis. Final report Oct 80-Sep 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, D.O.

    1982-09-01

    Results of earlier investigators indicate that radioemesis is mediated by some humoral agent(s). Peptides are likely candiates since they exert a number of biological effects and are released from storage sites by various stimuli, including radiation. Peptides at various concentrations were injected singly intravenously into conscious dogs, and the dog's emetic response was observed. Of the peptides tested, neurotensin, angiotensin II, vasopressin, oxytocin, and TRH produced consistent emetic responses. Inhibition of drug-induced emesis was studied both centrally (chlorpromazine) and peripherally (domperidone) acting dopamine antagonists. Results indicate inhibition by chlorpromazine, which crosses the blood brain barrier, but only partial blockade bymore » domperidone, which does not cross the blood brain barrier. Preliminary studies were conducted attempting to characterize types of receptors on area postrema neurons. Single-cell recordings from these neurons, challenged by iontophoretic administration of various neurotransmitters, show stimulation by glutamic acid and serotonin and inhibiiton by norepinephrine.« less

  2. Epidemiology, Prevention, and Assessment of Tardive Dyskinesia and Advances in Treatment.

    PubMed

    Correll, Christoph U; Kane, John M; Citrome, Leslie L

    ​​ Tardive dyskinesia (TD) is a disorder characterized by involuntary movements, typically of the orofacial muscles and also of the extremities and other muscle groups. The condition is associated with exposure to dopamine receptor blocking agents, including antipsychotics. Because the indications and off-label uses for these agents have expanded over the last 2 decades, a larger number of patients are receiving antipsychotic medications than in the past. While evidence suggests that patients being treated with second-generation antipsychotics have less risk for developing TD than those treated with first-generation antipsychotics, the decreased risk is not as great as was originally expected. In addition, patients with chronic psychiatric conditions often require long-term use of antipsychotics, putting them at risk for TD. This article addresses the prevalence, risk factors, and prevention of TD; assessment strategies including diagnostic criteria and rating scales; and evidence for TD treatments, including 2 newly approved medications: deutetrabenazine and valbenazine. ​​​. © Copyright 2017 Physicians Postgraduate Press, Inc.

  3. Reprint of: Clinical management of tardive dyskinesia: Five steps to success.

    PubMed

    Citrome, Leslie

    2018-06-15

    Tardive dyskinesia (TD) has long been thought to be a generally irreversible consequence of the use of dopamine receptor blocking agents. There is now an opportunity to successfully manage this condition with agents approved by the US Food and Drug Administration. This is important because TD has not been eliminated with the use of second-generation antipsychotics, and the expansion of antipsychotics to treat conditions other than schizophrenia has resulted in millions of additional individuals at risk for developing TD. Recognition of TD requires careful observation; a structured approach using the Abnormal Involuntary Movement Scale is encouraged. Harm reduction can be achieved by using antipsychotics judiciously when possible and by paying attention to other modifiable risk factors such as drug-induced parkinsonian symptoms and the use of anticholinergic medication. Once TD has emerged and is associated with dysfunction or distress, treatment with a VMAT2 inhibitor such as deutetrabenazine or valbenazine is well supported by several controlled clinical trials. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. VMAT2 Inhibitors for Tardive Dyskinesia-Practice Implications.

    PubMed

    Peckham, Alyssa M; Nicewonder, Jessica A

    2018-01-01

    Tardive dyskinesia is a potentially irreversible, debilitating, hyperkinetic movement disorder that can result from dopamine receptor antagonists. Prompt recognition and resolution of symptoms are instrumental in preventing disease irreversibility, though current treatment options have fallen short of robust, effective, and long-term symptom control. In April 2017, the Food and Drug Administration (FDA) approved 2 new vesicular monoamine transporter 2 (VMAT2) inhibitors, deutetrabenazine and valbenazine, for chorea related to Huntington's disease and tardive dyskinesia, respectively. These agents were pharmacologically modified from tetrabenazine, a VMAT2 inhibitor used off-label in the treatment of tardive dyskinesia. Despite FDA-labeled indications of deutetrabenazine and valbenazine, each agent was explored as a treatment option for those with tardive dyskinesia. In this study, the pharmacologic modifications of the 2 new VMAT2 inhibitors are described, with detailed explanation as to how these may impact clinical practice. The associated case series, observational studies, and clinical trials exploring their use in the treatment of tardive dyskinesia are reported with expert opinion on practice implication.

  5. Clinical management of tardive dyskinesia: Five steps to success.

    PubMed

    Citrome, Leslie

    2017-12-15

    Tardive dyskinesia (TD) has long been thought to be a generally irreversible consequence of the use of dopamine receptor blocking agents. There is now an opportunity to successfully manage this condition with agents approved by the US Food and Drug Administration. This is important because TD has not been eliminated with the use of second-generation antipsychotics, and the expansion of antipsychotics to treat conditions other than schizophrenia has resulted in millions of additional individuals at risk for developing TD. Recognition of TD requires careful observation; a structured approach using the Abnormal Involuntary Movement Scale is encouraged. Harm reduction can be achieved by using antipsychotics judiciously when possible and by paying attention to other modifiable risk factors such as drug-induced parkinsonian symptoms and the use of anticholinergic medication. Once TD has emerged and is associated with dysfunction or distress, treatment with a VMAT2 inhibitor such as deutetrabenazine or valbenazine is well supported by several controlled clinical trials. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Reduction of dopamine level enhances the attractiveness of male Drosophila to other males.

    PubMed

    Liu, Tong; Dartevelle, Laurence; Yuan, Chunyan; Wei, Hongping; Wang, Ying; Ferveur, Jean-François; Guo, Aike

    2009-01-01

    Dopamine is an important neuromodulator in animals and its roles in mammalian sexual behavior are extensively studied. Drosophila as a useful model system is widely used in many fields of biological studies. It has been reported that dopamine reduction can affect female receptivity in Drosophila and leave male-female courtship behavior unaffected. Here, we used genetic and pharmacological approaches to decrease the dopamine level in dopaminergic cells in Drosophila, and investigated the consequence of this manipulation on male homosexual courtship behavior. We find that reduction of dopamine level can induce Drosophila male-male courtship behavior, and that this behavior is mainly due to the increased male attractiveness or decreased aversiveness towards other males, but not to their enhanced propensity to court other males. Chemical signal input probably plays a crucial role in the male-male courtship induced by the courtees with reduction of dopamine. Our finding provides insight into the relationship between the dopamine reduction and male-male courtship behavior, and hints dopamine level is important for controlling Drosophila courtship behavior.

  7. Reduction of Dopamine Level Enhances the Attractiveness of Male Drosophila to Other Males

    PubMed Central

    Liu, Tong; Dartevelle, Laurence; Yuan, Chunyan; Wei, Hongping; Wang, Ying; Ferveur, Jean-François; Guo, Aike

    2009-01-01

    Dopamine is an important neuromodulator in animals and its roles in mammalian sexual behavior are extensively studied. Drosophila as a useful model system is widely used in many fields of biological studies. It has been reported that dopamine reduction can affect female receptivity in Drosophila and leave male-female courtship behavior unaffected. Here, we used genetic and pharmacological approaches to decrease the dopamine level in dopaminergic cells in Drosophila, and investigated the consequence of this manipulation on male homosexual courtship behavior. We find that reduction of dopamine level can induce Drosophila male-male courtship behavior, and that this behavior is mainly due to the increased male attractiveness or decreased aversiveness towards other males, but not to their enhanced propensity to court other males. Chemical signal input probably plays a crucial role in the male-male courtship induced by the courtees with reduction of dopamine. Our finding provides insight into the relationship between the dopamine reduction and male-male courtship behavior, and hints dopamine level is important for controlling Drosophila courtship behavior. PMID:19238209

  8. Cigarette Use and Striatal Dopamine D2/3 Receptors: Possible Role in the Link between Smoking and Nicotine Dependence.

    PubMed

    Okita, Kyoji; Mandelkern, Mark A; London, Edythe D

    2016-11-01

    Cigarette smoking induces dopamine release in the striatum, and smoking- or nicotine-induced ventral striatal dopamine release is correlated with nicotine dependence. Smokers also exhibit lower dopamine D2/3 receptor availability in the dorsal striatum than nonsmokers. Negative correlations of striatal dopamine D2/3 receptor availability with smoking exposure and nicotine dependence, therefore, might be expected but have not been tested. Twenty smokers had positron emission tomography scans with [ 18 F]fallypride to measure dopamine D2/3 receptor availability in ventral and dorsal regions of the striatum and provided self-report measures of recent and lifetime smoking and of nicotine dependence. As reported before, lifetime smoking was correlated with nicotine dependence. New findings were that ventral striatal dopamine D2/3 receptor availability was negatively correlated with recent and lifetime smoking and also with nicotine dependence. The results suggest an effect of smoking on ventral striatal D2/3 dopamine receptors that may contribute to nicotine dependence. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  9. Noncovalent Interactions between Dopamine and Regular and Defective Graphene.

    PubMed

    Fernández, Ana C Rossi; Castellani, Norberto J

    2017-08-05

    The role of noncovalent interactions in the adsorption of biological molecules on graphene is a subject of fundamental interest regarding the use of graphene as a material for sensing and drug delivery. The adsorption of dopamine on regular graphene and graphene with monovacancies (GV) is theoretically studied within the framework of density functional theory. Several adsorption modes are considered, and notably those in which the dopamine molecule is oriented parallel or quasi-parallel to the surface are the more stable. The adsorption of dopamine on graphene implies an attractive interaction of a dispersive nature that competes with Pauli repulsion between the occupied π orbitals of the dopamine ring and the π orbitals of graphene. If dopamine adsorbs at the monovacancy in the A-B stacking mode, a hydrogen bond is produced between one of the dopamine hydroxy groups and one carbon atom around the vacancy. The electronic charge redistribution due to adsorption is consistent with an electronic drift from the graphene or GV surface to the dopamine molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Blunted Dopamine Transmission in Addiction: Potential Mechanisms and Implications for Behavior.

    PubMed

    Trifilieff, Pierre; Ducrocq, Fabien; van der Veldt, Suzanne; Martinez, Diana

    2017-01-01

    Positron emission tomography (PET) imaging consistently shows blunted striatal dopamine release and decreased dopamine D2 receptor availability in addiction. Here, we review the preclinical and clinical studies indicating that this neurobiological phenotype is likely to be both a consequence of chronic drug consumption and a vulnerability factor in the development of addiction. We propose that, behaviorally, blunted striatal dopamine transmission could reflect the increased impulsivity and altered cost/benefit computations that are associated with addiction. The factors that influence blunted striatal dopamine transmission in addiction are unknown. Herein, we give an overview of various factors, genetic, environmental, and social, that are known to affect dopamine transmission and that have been associated with the vulnerability to develop addiction. Altogether, these data suggest that blunted dopamine transmission and decreased D2 receptor availability are biomarkers both for the development of addiction and resistance to treatment. These findings support the view that blunted dopamine reflects impulsive behavior and deficits in motivation, which lead to the escalation of drug use. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Dopamine-Secreting Paraganglioma in the Retroperitoneum.

    PubMed

    Matsuda, Yusuke; Kimura, Noriko; Yoshimoto, Takanobu; Sekiguchi, Yoshihiro; Tomoishi, Junzo; Kasahara, Ichiro; Hara, Yoshihito; Ogawa, Yoshihiro

    2017-03-01

    Pheochromocytomas and paragangliomas, which exclusively produce dopamine, are very rare. Herein, we report for the first time a Japanese case of an exclusively dopamine-producing paraganglioma accompanied by detailed immunohistochemical analyses. A 70-year-old Japanese woman was referred to our hospital for functional examination of her left retroperitoneal mass. Her adrenal functions were normal, except for excessive dopamine secretion. After the tumorectomy, her dopamine level normalized. The histopathological diagnosis of the tumor was paraganglioma; this was confirmed by positive immunostaining of chromogranin A (CgA), tyrosine hydroxylase (TH), dopamine β-hydroxylase (DBH), and succinate dehydrogenase gene subunit B (SDHB). However, the immunostaining of CgA in the tumor cells showed peculiar dot-like staining located corresponding to Golgi complex in the perinuclear area, rather than the diffuse cytoplasmic staining usually observed in epinephrine- or norepinephrine-producing functional pheochromocytomas and paragangliomas. The immunohistochemical results suggested that the tumor cells had sparse neuroendocrine granules in the cytoplasm, resulting in inhibition of catecholamine synthesis from dopamine to norepinephrine in neurosecretory granules. This may be the mechanism responsible for exclusive dopamine secretion in the present case.

  12. Dopamine Modulates Delta-Gamma Phase-Amplitude Coupling in the Prefrontal Cortex of Behaving Rats.

    PubMed

    Andino-Pavlovsky, Victoria; Souza, Annie C; Scheffer-Teixeira, Robson; Tort, Adriano B L; Etchenique, Roberto; Ribeiro, Sidarta

    2017-01-01

    Dopamine release and phase-amplitude cross-frequency coupling (CFC) have independently been implicated in prefrontal cortex (PFC) functioning. To causally investigate whether dopamine release affects phase-amplitude comodulation between different frequencies in local field potentials (LFP) recorded from the medial PFC (mPFC) of behaving rats, we used RuBiDopa, a light-sensitive caged compound that releases the neurotransmitter dopamine when irradiated with visible light. LFP power did not change in any frequency band after the application of light-uncaged dopamine, but significantly strengthened phase-amplitude comodulation between delta and gamma oscillations. Saline did not exert significant changes, while injections of dopamine and RuBiDopa produced a slow increase in comodulation for several minutes after the injection. The results show that dopamine release in the medial PFC shifts phase-amplitude comodulation from theta-gamma to delta-gamma. Although being preliminary results due to the limitation of the low number of animals present in this study, our findings suggest that dopamine-mediated modification of the frequencies involved in comodulation could be a mechanism by which this neurotransmitter regulates functioning in mPFC.

  13. The role of dopamine receptors in the neurotoxicity of methamphetamine.

    PubMed

    Ares-Santos, S; Granado, N; Moratalla, R

    2013-05-01

    Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  14. Dopamine Modulates Delta-Gamma Phase-Amplitude Coupling in the Prefrontal Cortex of Behaving Rats

    PubMed Central

    Andino-Pavlovsky, Victoria; Souza, Annie C.; Scheffer-Teixeira, Robson; Tort, Adriano B. L.; Etchenique, Roberto; Ribeiro, Sidarta

    2017-01-01

    Dopamine release and phase-amplitude cross-frequency coupling (CFC) have independently been implicated in prefrontal cortex (PFC) functioning. To causally investigate whether dopamine release affects phase-amplitude comodulation between different frequencies in local field potentials (LFP) recorded from the medial PFC (mPFC) of behaving rats, we used RuBiDopa, a light-sensitive caged compound that releases the neurotransmitter dopamine when irradiated with visible light. LFP power did not change in any frequency band after the application of light-uncaged dopamine, but significantly strengthened phase-amplitude comodulation between delta and gamma oscillations. Saline did not exert significant changes, while injections of dopamine and RuBiDopa produced a slow increase in comodulation for several minutes after the injection. The results show that dopamine release in the medial PFC shifts phase-amplitude comodulation from theta-gamma to delta-gamma. Although being preliminary results due to the limitation of the low number of animals present in this study, our findings suggest that dopamine-mediated modification of the frequencies involved in comodulation could be a mechanism by which this neurotransmitter regulates functioning in mPFC. PMID:28536507

  15. Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making.

    PubMed

    Deserno, Lorenz; Huys, Quentin J M; Boehme, Rebecca; Buchert, Ralph; Heinze, Hans-Jochen; Grace, Anthony A; Dolan, Raymond J; Heinz, Andreas; Schlagenhauf, Florian

    2015-02-03

    Dual system theories suggest that behavioral control is parsed between a deliberative "model-based" and a more reflexive "model-free" system. A balance of control exerted by these systems is thought to be related to dopamine neurotransmission. However, in the absence of direct measures of human dopamine, it remains unknown whether this reflects a quantitative relation with dopamine either in the striatum or other brain areas. Using a sequential decision task performed during functional magnetic resonance imaging, combined with striatal measures of dopamine using [(18)F]DOPA positron emission tomography, we show that higher presynaptic ventral striatal dopamine levels were associated with a behavioral bias toward more model-based control. Higher presynaptic dopamine in ventral striatum was associated with greater coding of model-based signatures in lateral prefrontal cortex and diminished coding of model-free prediction errors in ventral striatum. Thus, interindividual variability in ventral striatal presynaptic dopamine reflects a balance in the behavioral expression and the neural signatures of model-free and model-based control. Our data provide a novel perspective on how alterations in presynaptic dopamine levels might be accompanied by a disruption of behavioral control as observed in aging or neuropsychiatric diseases such as schizophrenia and addiction.

  16. Using gold nanostars modified pencil graphite electrode as a novel substrate for design a sensitive and selective Dopamine aptasensor.

    PubMed

    Talemi, Rasoul Pourtaghavi; Mousavi, Seyed Mehdi; Afruzi, Hossein

    2017-04-01

    For the first time, gold nanostars (GNS) were applied for electrostatic and covalent immobilizing a thiol modified Dopamine aptamer on the pencil graphite electrode and signal amplification. Dopamine aptamer was immobilized on the gold nanostars through electrostatic interaction between negatively charged phosphate groups of aptamer and positively charged gold nanostars and AuS well known covalent interaction. In the presence of Dopamine in the test solution, the charge transfer resistance (R CT ) on the electrode surface increased with the increase of the Dopamine concentration due to specific interaction between Dopamine aptamer and Dopamine molecules, which made a barrier for electrons and inhibited the electron-transfer. So, the proposed approach showed a high sensitivity and a wide linearity to Dopamine in the range from 1.0 (±0.1) to 100.0 (±0.3) ngL -1 (ppt) with detection and quantification limits of 0.29 (±0.10) and 0.90 (±0.08) ngL -1 (ppt), respectively. Finally, the sensor was successfully used for determination of Dopamine in biological (human blood plasma and urine) samples. The results open up the path for manufacturing cost effective aptasensors for other biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Characterization of dopamine releasable and reserve pools in Drosophila larvae using ATP/P2X2-mediated stimulation

    PubMed Central

    Xiao, Ning; Venton, B. Jill

    2015-01-01

    Dopaminergic signaling pathways are conserved between mammals and Drosophila, but the factors important for maintaining the functional pool of synaptic dopamine are not fully understood in Drosophila. In this study, we characterized the releasable and reserve dopamine pools in Drosophila larvae using ATP/ P2X2-mediated stimulation. Dopamine release was stable with stimulations performed at least every 5 min but decayed with stimulations performed 2 min apart or less, indicating the replenishment of the releasable pool occurred on a time scale between 2 and 5 min. Dopamine synthesis or uptake were pharmacologically inhibited with 3-iodotyrosine and cocaine, respectively, to evaluate their contributions to maintaining the releasable dopamine pool. We found that both synthesis and uptake were needed to maintain the releasable dopamine pool, with synthesis playing a major part in long-term replenishment and uptake being more important for short-term replenishment. These effects of synthesis and uptake on different time scales in Drosophila are analogous to mammals. However, unlike in mammals, cocaine did not activate a reserve pool of dopamine in Drosophila when using P2X2 stimulations. Our study shows that both synthesis and uptake replenish the releasable pool, providing a better understanding of dopamine regulation in Drosophila. PMID:25951875

  18. Dopamine function in cigarette smokers: an [¹⁸F]-DOPA PET study.

    PubMed

    Bloomfield, Michael A P; Pepper, Fiona; Egerton, Alice; Demjaha, Arsime; Tomasi, Gianpaolo; Mouchlianitis, Elias; Maximen, Levi; Veronese, Mattia; Turkheimer, Federico; Selvaraj, Sudhakar; Howes, Oliver D

    2014-09-01

    Tobacco addiction is a global public health problem. Addiction to tobacco is thought to involve the effects of nicotine on the dopaminergic system. Only one study has previously investigated dopamine synthesis capacity in cigarette smokers. This study, exclusively in male volunteers, reported increased dopamine synthesis capacity in heavy smokers compared with non-smokers. We sought to determine whether dopamine synthesis capacity was elevated in a larger sample of cigarette smokers that included females. Dopamine synthesis capacity was measured in 15 daily moderate smokers with 15 sex- and age-matched control subjects who had never smoked tobacco. Dopamine synthesis capacity (indexed as the influx rate constant K(i)(cer)) was measured with positron emission tomography and 3,4-dihydroxy-6-[(18)F]-fluoro-l-phenylalanine. There was no significant group difference in dopamine synthesis capacity between smokers and non-smoker controls in the whole striatum (t28=0.64, p=0.53) or any of its functional subdivisions. In smokers, there were no significant relationships between the number of cigarettes smoked per day and dopamine synthesis capacity in the whole striatum (r=-0.23, p=0.41) or any striatal subdivision. These findings indicate that moderate smoking is not associated with altered striatal dopamine synthesis capacity.

  19. Scalable Nanostructured Carbon Electrode Arrays for Enhanced Dopamine Detection.

    PubMed

    Demuru, Silvia; Nela, Luca; Marchack, Nathan; Holmes, Steven J; Farmer, Damon B; Tulevski, George S; Lin, Qinghuang; Deligianni, Hariklia

    2018-04-27

    Dopamine is a neurotransmitter that modulates arousal and motivation in humans and animals. It plays a central role in the brain "reward" system. Its dysregulation is involved in several debilitating disorders such as addiction, depression, Parkinson's disease, and schizophrenia. Dopamine neurotransmission and its reuptake in extracellular space takes place with millisecond temporal and nanometer spatial resolution. Novel nanoscale electrodes are needed with superior sensitivity and improved spatial resolution to gain an improved understanding of dopamine dysregulation. We report on a scalable fabrication of dopamine neurochemical probes of a nanostructured glassy carbon that is smaller than any existing dopamine sensor and arrays of more than 6000 nanorod probes. We also report on the electrochemical dopamine sensing of the glassy carbon nanorod electrode. Compared with a carbon fiber, the nanostructured glassy carbon nanorods provide about 2× higher sensitivity per unit area for dopamine sensing and more than 5× higher signal per unit area at low concentration of dopamine, with comparable LOD and time response. These glassy carbon nanorods were fabricated by pyrolysis of a lithographically defined polymeric nanostructure with an industry standard semiconductor fabrication infrastructure. The scalable fabrication strategy offers the potential to integrate these nanoscale carbon rods with an integrated circuit control system and with other complementary metal oxide semiconductor (CMOS) compatible sensors.

  20. Spontaneous eye blink rate and dopamine synthesis capacity: preliminary evidence for an absence of positive correlation.

    PubMed

    Sescousse, Guillaume; Ligneul, Romain; van Holst, Ruth J; Janssen, Lieneke K; de Boer, Femke; Janssen, Marcel; Berry, Anne S; Jagust, William J; Cools, Roshan

    2018-05-01

    Dopamine is central to a number of cognitive functions and brain disorders. Given the cost of neurochemical imaging in humans, behavioural proxy measures of dopamine have gained in popularity in the past decade, such as spontaneous eye blink rate (sEBR). Increased sEBR is commonly associated with increased dopamine function based on pharmacological evidence and patient studies. Yet, this hypothesis has not been validated using in vivo measures of dopamine function in humans. To fill this gap, we measured sEBR and striatal dopamine synthesis capacity using [ 18 F]DOPA PET in 20 participants (nine healthy individuals and 11 pathological gamblers). Our results, based on frequentist and Bayesian statistics, as well as region-of-interest and voxel-wise analyses, argue against a positive relationship between sEBR and striatal dopamine synthesis capacity. They show that, if anything, the evidence is in favour of a negative relationship. These results, which complement findings from a recent study that failed to observe a relationship between sEBR and dopamine D2 receptor availability, suggest that caution and nuance are warranted when interpreting sEBR in terms of a proxy measure of striatal dopamine. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Dopamine D3 receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: Role of hyperthermia

    PubMed Central

    Baladi, Michelle G.; Newman, Amy H.; Nielsen, Shannon M.; Hanson, Glen R.; Fleckenstein, Annette E.

    2014-01-01

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. PMID:24685638

  2. Systemic blockade of dopamine D2-like receptors increases high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    PubMed

    Yang, Chen; Ge, Shun-Nan; Zhang, Jia-Rui; Chen, Lei; Yan, Zhi-Qiang; Heng, Li-Jun; Zhao, Tian-Zhi; Li, Wei-Xin; Jia, Dong; Zhu, Jun-Ling; Gao, Guo-Dong

    2013-01-01

    High-voltage spindles (HVSs) have been reported to appear spontaneously and widely in the cortical-basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP) and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D₁-like receptors or D₂-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1) in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D₂-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D₂-like receptor antagonists. On the contrary, the selective dopamine D₁-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D₂-like receptors, but not D₁-like receptors, were involved in HVS regulation. This supports the important role of dopamine D₂-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.

  3. Relationship between cocaine-induced subjective effects and dopamine transporter occupancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, N.D.; Fischman, M.; Wang, G.J.

    The ability of cocaine to occupy the dopamine transporter has been linked to its reinforcing properties. However, such a relationship has not been demonstrated in humans. Methods: Positron Emission Tomography and [C-11]cocaine were used to estimate dopamine transporter occupancies after different doses of cocaine in 18 active cocaine abusers. The ratio of the distribution volume of [C-11]cocaine in striatum to that in cerebellum, which corresponds to Bmax/Kd +1 and is insensitive to changes in cerebral blood flow, was our measure of dopamine transporter availability. In parallel subjective effects were measured to assess the relationship between dopamine transporter occupancy and cocainesmore » behavioral effects. Intravenous cocaine produced a significant dose,-dependent blockade of dopamine transporters: 73 % for 0.6 mg/kg; 601/6 for 0.3 mg/kg; 48 % for 0.1 mg/kg iv and 40 % for 0.05 mg/kg. In addition, dopamine transporter occupancies were significantly correlated with cocaine plasma concentration (r = 0.55 p < 0.001). Cocaine also produced dose-dependent increases in self-reported ratings of {open_quotes}high{close_quotes} which were significantly correlated with the levels of dopamine transporter blockade. Discussion: These results provide the first documentation in humans that dopamine transporter occupancy is associated with cocaine induced subjective effects. They also suggest that dopamine transporter occupancies equal to or greater than 60% are required to produce significant effects on ratings of {open_quotes}high{close_quotes}.« less

  4. Prefrontal Markers and Cognitive Performance Are Dissociated during Progressive Dopamine Lesion

    PubMed Central

    Wilson, Charles R. E.; Vezoli, Julien; Faraut, Maïlys C. M.; Leviel, Vincent; Knoblauch, Kenneth; Procyk, Emmanuel

    2016-01-01

    Dopamine is thought to directly influence the neurophysiological mechanisms of both performance monitoring and cognitive control—two processes that are critically linked in the production of adapted behaviour. Changing dopamine levels are also thought to induce cognitive changes in several neurological and psychiatric conditions. But the working model of this system as a whole remains untested. Specifically, although many researchers assume that changing dopamine levels modify neurophysiological mechanisms and their markers in frontal cortex, and that this in turn leads to cognitive changes, this causal chain needs to be verified. Using longitudinal recordings of frontal neurophysiological markers over many months during progressive dopaminergic lesion in non-human primates, we provide data that fail to support a simple interaction between dopamine, frontal function, and cognition. Feedback potentials, which are performance-monitoring signals sometimes thought to drive successful control, ceased to differentiate feedback valence at the end of the lesion, just before clinical motor threshold. In contrast, cognitive control performance and beta oscillatory markers of cognitive control were unimpaired by the lesion. The differing dynamics of these measures throughout a dopamine lesion suggests they are not all driven by dopamine in the same way. These dynamics also demonstrate that a complex non-linear set of mechanisms is engaged in the brain in response to a progressive dopamine lesion. These results question the direct causal chain from dopamine to frontal physiology and on to cognition. They imply that biomarkers of cognitive functions are not directly predictive of dopamine loss. PMID:27824858

  5. Dopamine D(3) receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: role of hyperthermia.

    PubMed

    Baladi, Michelle G; Newman, Amy H; Nielsen, Shannon M; Hanson, Glen R; Fleckenstein, Annette E

    2014-06-05

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Amphetamine Elicits Opposing Actions on Readily Releasable and Reserve Pools for Dopamine

    PubMed Central

    Covey, Dan P.; Juliano, Steven A.; Garris, Paul A.

    2013-01-01

    Amphetamine, a highly addictive drug with therapeutic efficacy, exerts paradoxical effects on the fundamental communication modes employed by dopamine neurons in modulating behavior. While amphetamine elevates tonic dopamine signaling by depleting vesicular stores and driving non-exocytotic release through reverse transport, this psychostimulant also activates phasic dopamine signaling by up-regulating vesicular dopamine release. We hypothesized that these seemingly incongruent effects arise from amphetamine depleting the reserve pool and enhancing the readily releasable pool. This novel hypothesis was tested using in vivo voltammetry and stimulus trains of varying duration to access different vesicular stores. We show that amphetamine actions are stimulus dependent in the dorsal striatum. Specifically, amphetamine up-regulated vesicular dopamine release elicited by a short-duration train, which interrogates the readily releasable pool, but depleted release elicited by a long-duration train, which interrogates the reserve pool. These opposing actions of vesicular dopamine release were associated with concurrent increases in tonic and phasic dopamine responses. A link between vesicular depletion and tonic signaling was supported by results obtained for amphetamine in the ventral striatum and cocaine in both striatal sub-regions, which demonstrated augmented vesicular release and phasic signals only. We submit that amphetamine differentially targeting dopamine stores reconciles the paradoxical activation of tonic and phasic dopamine signaling. Overall, these results further highlight the unique and region-distinct cellular mechanisms of amphetamine and may have important implications for its addictive and therapeutic properties. PMID:23671560

  7. Effects of a combination of 3,4-methylenedioxymeth amphetamine and caffeine on real time stimulated dopamine release in the rat striatum: Studies using fast cyclic voltammetry.

    PubMed

    O'Connor, J J; O'Boyle, K M; Lowry, J P

    2018-04-15

    It is well documented that caffeine exacerbates the hyperthermia associated with acute exposure to 3,4-methylenedioxymethamphetamine (MDMA) in rats. Previous reports have also indicated that MDMA-related enhancement of dopamine release is exacerbated in the presence of caffeine. In the present study we have examined whether the effects of MDMA on real-time stimulated dopamine release, in the absence of uptake inhibition, are accentuated in the presence of caffeine. Isolated striatal slices from adult male Wistar rats were treated acutely with MDMA, caffeine, or a combination, and their effects on single and 5pulse stimulated dopamine release monitored using the technique of fast cyclic voltammetry. Caffeine at 10 or 100μM had no significant effect on single pulse stimulated dopamine release. However 100μM caffeine caused a significant peak increase in 5pulse stimulated dopamine release. Both 1 and 30μM MDMA gave rise to a significant increase in both single and 5-pulse dopamine release and reuptake. A combination of 100μM caffeine and 1 or 30μM MDMA did not significantly enhance the effects of MDMA on single or 5pulse dopamine release and reuptake when compared to that applied alone. Utilizing single action potential dependent dopamine release, these results do not demonstrate a caffeine-enhanced MDMA-induced dopamine release. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effect of raclopride on dopamine D2 receptor mRNA expression in rat brain.

    PubMed

    Kopp, J; Lindefors, N; Brené, S; Hall, H; Persson, H; Sedvall, G

    1992-01-01

    Prolonged treatment with dopamine D2 receptor antagonists is known to elevate the density of dopamine D2 receptor binding sites in caudate-putamen and nucleus accumbens in rat and human brain. In this study we used the dopamine D2 receptor antagonist raclopride (3 mumol/kg, s.c.) to determine if a single injection or daily administration of this drug for up to 18 days changed the expression of dopamine D2 receptor mRNA in rat caudate-putamen and accumbens as measured by in situ hybridization. A single injection of raclopride did not significantly change the numerical density of dopamine D2 receptor mRNA-expressing neurons in any of the regions examined. A daily administration of raclopride for 18 days resulted in a 31% increase in the number of cells expressing detectable amounts of dopamine D2 receptor mRNA in dorsolateral caudate-putamen and in a 20% increase in the area of silver grains over individual hybridization-positive neurons in this brain region measured on emulsion-dipped slides. The region-specific increase in the D2 receptor mRNA level in dorsolateral caudate-putamen was confirmed by measurement of the hybridization signal on X-ray film autoradiograms. The levels of D2 receptor mRNA remained unchanged in medial caudate-putamen and accumbens after 18 days' treatment. The region-selective increase in dopamine D2 receptor mRNA expression in dorsolateral caudate-putamen indicates a differential regulation of dopamine D2 receptor mRNA expression in a subpopulation of caudate-putamen neurons by this neuroleptic. We suggest that the increase in dopamine D2 receptor density in caudate-putamen known to follow prolonged dopamine D2 receptor blockade to some extent is regulated at the level of gene expression.

  9. Dopamine and oxytocin interactions underlying behaviors: potential contributions to behavioral disorders.

    PubMed

    Baskerville, Tracey A; Douglas, Alison J

    2010-06-01

    Dopamine is an important neuromodulator that exerts widespread effects on the central nervous system (CNS) function. Disruption in dopaminergic neurotransmission can have profound effects on mood and behavior and as such is known to be implicated in various neuropsychiatric behavioral disorders including autism and depression. The subsequent effects on other neurocircuitries due to dysregulated dopamine function have yet to be fully explored. Due to the marked social deficits observed in psychiatric patients, the neuropeptide, oxytocin is emerging as one particular neural substrate that may be influenced by the altered dopamine levels subserving neuropathologic-related behavioral diseases. Oxytocin has a substantial role in social attachment, affiliation and sexual behavior. More recently, it has emerged that disturbances in peripheral and central oxytocin levels have been detected in some patients with dopamine-dependent disorders. Thus, oxytocin is proposed to be a key neural substrate that interacts with central dopamine systems. In addition to psychosocial improvement, oxytocin has recently been implicated in mediating mesolimbic dopamine pathways during drug addiction and withdrawal. This bi-directional role of dopamine has also been implicated during some components of sexual behavior. This review will discuss evidence for the existence dopamine/oxytocin positive interaction in social behavioral paradigms and associated disorders such as sexual dysfunction, autism, addiction, anorexia/bulimia, and depression. Preliminary findings suggest that whilst further rigorous testing has to be conducted to establish a dopamine/oxytocin link in human disorders, animal models seem to indicate the existence of broad and integrated brain circuits where dopamine and oxytocin interactions at least in part mediate socio-affiliative behaviors. A profound disruption to these pathways is likely to underpin associated behavioral disorders. Central oxytocin pathways may serve as a potential therapeutic target to improve mood and socio-affiliative behaviors in patients with profound social deficits and/or drug addiction.

  10. Developmental Vitamin D (DVD) Deficiency Reduces Nurr1 and TH Expression in Post-mitotic Dopamine Neurons in Rat Mesencephalon.

    PubMed

    Luan, Wei; Hammond, Luke Alexander; Cotter, Edmund; Osborne, Geoffrey William; Alexander, Suzanne Adele; Nink, Virginia; Cui, Xiaoying; Eyles, Darryl Walter

    2018-03-01

    Developmental vitamin D (DVD) deficiency has been proposed as an important risk factor for schizophrenia. Our previous study using Sprague Dawley rats found that DVD deficiency disrupted the ontogeny of mesencephalic dopamine neurons by decreasing the mRNA level of a crucial differentiation factor of dopamine cells, the nuclear receptor related 1 protein (Nurr1). However, it remains unknown whether this reflects a reduction in dopamine cell number or in Nurr1 expression. It is also unclear if any particular subset of developing dopamine neurons in the mesencephalon is selectively affected. In this study, we employed state-of-the-art spinning disk confocal microscopy optimized for the imaging of tissue sections and 3D segmentation to assess post-mitotic dopamine cells on a single-cell basis in the rat mesencephalon at embryonic day 15. Our results showed that DVD deficiency did not alter the number, morphology, or positioning of post-mitotic dopamine cells. However, the ratio of Nurr1+TH+ cells in the substantia nigra pars compacta (SNc) compared with the ventral tegmental area (VTA) was increased in DVD-deficient embryos. In addition, the expression of Nurr1 in immature dopamine cells and mature dopamine neurons in the VTA was decreased in DVD-deficient group. Tyrosine hydroxylase was selectively reduced in SNc of DVD-deficient mesencephalon. We conclude that DVD deficiency induced early alterations in mesencephalic dopamine development may in part explain the abnormal dopamine-related behaviors found in this model. Our findings may have broader implications for how certain environmental risk factors for schizophrenia may shape the ontogeny of dopaminergic systems and by inference increase the risk of schizophrenia.

  11. The Iowa Gambling Task and the three fallacies of dopamine in gambling disorder

    PubMed Central

    Linnet, Jakob

    2013-01-01

    Gambling disorder sufferers prefer immediately larger rewards despite long term losses on the Iowa Gambling Task (IGT), and these impairments are associated with dopamine dysfunctions. Dopamine is a neurotransmitter linked with temporal and structural dysfunctions in substance use disorder, which has supported the idea of impaired decision-making and dopamine dysfunctions in gambling disorder. However, evidence from substance use disorders cannot be directly transferred to gambling disorder. This article focuses on three hypotheses of dopamine dysfunctions in gambling disorder, which appear to be “fallacies,” i.e., have not been supported in a series of positron emission tomography (PET) studies. The first “fallacy” suggests that gambling disorder sufferers have lower dopamine receptor availability, as seen in substance use disorders. However, no evidence supported this hypothesis. The second “fallacy” suggests that maladaptive decision-making in gambling disorder is associated with higher dopamine release during gambling. No evidence supported the hypothesis, and the literature on substance use disorders offers limited support for this hypothesis. The third “fallacy” suggests that maladaptive decision-making in gambling disorder is associated with higher dopamine release during winning. The evidence did not support this hypothesis either. Instead, dopaminergic coding of reward prediction and uncertainty might better account for dopamine dysfunctions in gambling disorder. Studies of reward prediction and reward uncertainty show a sustained dopamine response toward stimuli with maximum uncertainty, which may explain the continued dopamine release and gambling despite losses in gambling disorder. The findings from the studies presented here are consistent with the notion of dopaminergic dysfunctions of reward prediction and reward uncertainty signals in gambling disorder. PMID:24115941

  12. Enhanced peripheral dopamine impairs post-ischemic healing by suppressing angiotensin receptor type 1 expression in endothelial cells and inhibiting angiogenesis.

    PubMed

    Sarkar, Chandrani; Ganju, Ramesh K; Pompili, Vincent J; Chakroborty, Debanjan

    2017-02-01

    Increased circulating catecholamines have been linked with cardiovascular anomalies as well as with peripheral vascular diseases. Although the roles of epinephrine and norepinephrine have received considerable attention, the role of the other catecholamine, dopamine, has been less studied. Since dopamine is a potent endogenous inhibitor of angiogenesis and as angiogenesis is essential for ischemic healing, we therefore studied the role played by dopamine during ischemic healing using dopamine D 2 receptor knockout (KOD2) mice. Although concentration of dopamine and its rate-limiting enzyme, tyrosine hydroxylase, was considerably high in the muscle tissues of wild-type and KOD2 mice with unilateral hind limb ischemia (HLI), recovery was significantly faster in the KOD2 mice compared to the wild-type controls, thereby indicating that peripheral dopamine might have a role in this healing process. In addition, we observed significant differences in post-ischemic angiogenesis between these two groups. Our study further revealed that elevated dopamine independently suppressed activation of local tissue-based renin-angiotensin system (RAS), a critical growth factor system stimulating angiogenesis in ischemia. Angiotensin II (ATII) and its receptor, angiotensin receptor type 1 (AT1R), are the key players in RAS-mediated angiogenesis. Dopamine acting through its D 2 receptors in endothelial cells inhibited ATII-mediated angiogenesis by suppressing the expression of AT1R in these cells. This study thus for the first time demonstrates the role played by dopamine in prolonging post-ischemic recovery. Therefore, pharmacological intervention inhibiting the action of dopamine holds promise as future therapeutic strategy for the treatment of HLI and other peripheral arterial diseases.

  13. Different roles of retinal dopamine in albino Guinea pig myopia.

    PubMed

    Mao, Junfeng; Liu, Shuangzhen

    2017-02-03

    To investigate whether the different role of ocular dopamine was involved in the myopic development between spontaneous myopia (SM) and form deprivation myopia (FDM) in albino guinea pigs. 55 myopic animals were randomly divided into SM, Levodapa (L-DOPA), L-DOPA+carbidopa and vehicle. 70 non-myopic animals were randomly divided into normal control, FDM, L-DOPA+FDM, L-DOPA+carbidopa+FDM and vehicle. Once per day, for 14days, L-DOPA (10mg/kg) was injected intraperitoneally, and carbidopa (1μg) was injected at the same time into the peribulbar space of the right eye. Refractive parameters and dopamine content in neural retina and RPE/choroid complex were measured. In SM animals, high myopia was formed at 5 week of ages. L-DOPA treatment could reduce its myopic degree, and inhibit the increase of axial length and vitreous chamber depth with the increase of retinal dopamine in both eyes. Administration of carbidopa could prevent the increase of retinal dopamine induced by L-DOPA, but no influenced on its refractive state in the injected eyes. In non-SM animals, intraperitoneal L-DOPA could inhibit FDM, accompanied by the increase of retinal dopamine. Carbidopa treatment diminished the inhibition of FDM and prevented the increase in retinal dopamine by L-Dopa. Retinal dopamine was highly correlated with ocular refraction in FDM, but not in SM. There was no significant difference in dopamine content of RPE/choroid complex among all groups. The role of retinal dopamine was different between SM and FDM in albino guinea pigs. Although systemic L-DOPA could inhibit the development of SM and FDM, retinal dopamine was only involved in the L-DOPA inhibition on FDM, but not on SM. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Dopamine elevates intracellular zinc concentration in cultured rat embryonic cortical neurons through the cAMP-nitric oxide signaling cascade.

    PubMed

    Hung, Hui-Hsing; Kao, Lung-Sen; Liu, Pei-Shan; Huang, Chien-Chang; Yang, De-Ming; Pan, Chien-Yuan

    2017-07-01

    Zinc ion (Zn 2+ ), the second most abundant transition metal after iron in the body, is essential for neuronal activity and also induces toxicity if the concentration is abnormally high. Our previous results show that exposure of cultured cortical neurons to dopamine elevates intracellular Zn 2+ concentrations ([Zn 2+ ] i ) and induces autophagosome formation but the mechanism is not clear. In this study, we characterized the signaling pathway responsible for the dopamine-induced elevation of [Zn 2+ ] i and the effect of [Zn 2+ ] i in modulating the autophagy in cultured rat embryonic cortical neurons. N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a membrane-permeable Zn 2+ chelator, could rescue the cell death and suppress the autophagosome puncta number induced by dopamine. Dopamine treatment increased the lipidation level of the endogenous microtubule-associated protein 1A/1B-light chain 3 (LC3 II), an autophagosome marker. TPEN added 1h before, but not after, dopamine treatment suppressed the dopamine-induced elevation of LC3 II level. Inhibitors of the dopamine D1-like receptor, protein kinase A (PKA), and NOS suppressed the dopamine-induced elevation of [Zn 2+ ] i . PKA activators and NO generators directly increased [Zn 2+ ] i in cultured neurons. Through cell fractionation, proteins with m.w. values between 5 and 10kD were found to release Zn 2+ following NO stimulation. In addition, TPEN pretreatment and an inhibitor against PKA could suppress the LC3 II level increased by NO and dopamine, respectively. Therefore, our results demonstrate that dopamine-induced elevation of [Zn 2+ ] i is mediated by the D1-like receptor-PKA-NO pathway and is important in modulating the cell death and autophagy. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Dopamine- and Tyrosine Hydroxylase-Immunoreactive Neurons in the Brain of the American Cockroach, Periplaneta americana

    PubMed Central

    Hamanaka, Yoshitaka; Minoura, Run; Nishino, Hiroshi; Miura, Toru; Mizunami, Makoto

    2016-01-01

    The catecholamine dopamine plays several vital roles in the central nervous system of many species, but its neural mechanisms remain elusive. Detailed neuroanatomical characterization of dopamine neurons is a prerequisite for elucidating dopamine’s actions in the brain. In the present study, we investigated the distribution of dopaminergic neurons in the brain of the American cockroach, Periplaneta americana, using two antisera: 1) an antiserum against dopamine, and 2) an antiserum against tyrosine hydroxylase (TH, an enzyme required for dopamine synthesis), and identified about 250 putatively dopaminergic neurons. The patterns of dopamine- and TH-immunoreactive neurons were strikingly similar, suggesting that both antisera recognize the same sets of “dopaminergic” neurons. The dopamine and TH antibodies intensively or moderately immunolabeled prominent brain neuropils, e.g. the mushroom body (memory center), antennal lobe (first-order olfactory center) and central complex (motor coordination center). All subdivisions of the mushroom body exhibit both dopamine and TH immunoreactivity. Comparison of immunolabeled neurons with those filled by dye injection revealed that a group of immunolabeled neurons with cell bodies near the calyx projects into a distal region of the vertical lobe, which is a plausible site for olfactory memory formation in insects. In the antennal lobe, ordinary glomeruli as well as macroglomeruli exhibit both dopamine and TH immunoreactivity. It is noteworthy that the dopamine antiserum labeled tiny granular structures inside the glomeruli whereas the TH antiserum labeled processes in the marginal regions of the glomeruli, suggesting a different origin. In the central complex, all subdivisions excluding part of the noduli and protocerebral bridge exhibit both dopamine and TH immunoreactivity. These anatomical findings will accelerate our understanding of dopaminergic systems, specifically in neural circuits underlying aversive memory formation and arousal, in insects. PMID:27494326

  16. A photoaffinity ligand for dopamine D2 receptors: azidoclebopride.

    PubMed

    Niznik, H B; Guan, J H; Neumeyer, J L; Seeman, P

    1985-02-01

    In order to label D2 dopamine receptors selectively and covalently by means of a photosensitive compound, azidoclebopride was synthesized directly from clebopride. The dissociation constant (KD) of clebopride for the D2 dopamine receptor (canine brain striatum) was 1.5 nM, while that for azidoclebopride was 21 nM. The affinities of both clebopride and azidoclebopride were markedly reduced in the absence of sodium chloride. In the presence of ultraviolet light, azidoclebopride inactivated D2 dopamine receptors irreversibly, as indicated by the inability of the receptors to bind [3H]spiperone. Maximal photoinactivation of about 60% of the D2 dopamine receptors occurred at 1 microM azidoclebopride; 30% of the receptors were inactivated at 80 nM azidoclebopride (pseudo-IC50). Dopamine agonists selectively protected the D2 receptors from being inactivated by azidoclebopride, the order of potency being (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than noradrenaline greater than serotonin. Similarly, dopaminergic antagonists prevented the photoinactivation of D2 receptors by azidoclebopride with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than (-)-butaclamol. The degree of D2 dopamine receptor photoinduced inactivation by azidoclebopride was not significantly affected by scavengers such as p-aminobenzoic acid and dithiothreitol. Furthermore, irradiation of striatal membranes with a concentration of azidoclebopride sufficient to inactivate dopamine D2 receptors by 60% did not significantly reduce dopamine D1, serotonin (S2), benzodiazepine, alpha 1- or beta-noradrenergic receptors. This study describes the use of a novel and selective photoaffinity ligand for brain dopamine D2 receptors. The molecule, in radiolabeled form, may aid in the molecular characterization of these receptors.

  17. Distinct Roles of Opioid and Dopamine Systems in Lateral Hypothalamic Intracranial Self-Stimulation.

    PubMed

    Ide, Soichiro; Takahashi, Takehiro; Takamatsu, Yukio; Uhl, George R; Niki, Hiroaki; Sora, Ichiro; Ikeda, Kazutaka

    2017-05-01

    Opioid and dopamine systems play crucial roles in reward. Similarities and differences in the neural mechanisms of reward that are mediated by these 2 systems have remained largely unknown. Thus, in the present study, we investigated the differences in reward function in both µ-opioid receptor knockout mice and dopamine transporter knockout mice, important molecules in the opioid and dopamine systems. Mice were implanted with electrodes into the right lateral hypothalamus (l hour). Mice were then trained to put their muzzle into the hole in the head-dipping chamber for intracranial electrical stimulation, and the influences of gene knockout were assessed. Significant differences are observed between opioid and dopamine systems in reward function. µ-Opioid receptor knockout mice exhibited enhanced intracranial electrical stimulation, which induced dopamine release. They also exhibited greater motility under conditions of "despair" in both the tail suspension test and water wheel test. In contrast, dopamine transporter knockout mice maintained intracranial electrical stimulation responding even when more active efforts were required to obtain the reward. The absence of µ-opioid receptor or dopamine transporter did not lead to the absence of intracranial electrical stimulation responsiveness but rather differentially altered it. The present results in µ-opioid receptor knockout mice are consistent with the suppressive involvement of µ-opioid receptors in both positive incentive motivation associated with intracranial electrical stimulation and negative incentive motivation associated with depressive states. In contrast, the results in dopamine transporter knockout mice are consistent with the involvement of dopamine transporters in positive incentive motivation, especially its persistence. Differences in intracranial electrical stimulation in µ-opioid receptor and dopamine transporter knockout mice underscore the multidimensional nature of reward. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  18. Action of novel antipsychotics at human dopamine D3 receptors coupled to G protein and ERK1/2 activation.

    PubMed

    Bruins Slot, Liesbeth A; Palmier, Christiane; Tardif, Stéphanie; Cussac, Didier

    2007-08-01

    The effects of new generation antipsychotic drugs (APDs) targeting dopamine D(2) and serotonin 5-HT(1A) receptors were compared with typical and atypical APDs on phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2) and measures of G protein activation in CHO cell lines stably expressing the human dopamine D(3) receptor. The preferential dopamine D(3) agonists (+)-7-OH-DPAT and PD128907, like dopamine and quinelorane, efficaciously stimulated ERK 1/2 phosphorylation at dopamine D(3) receptors. In contrast, in [(35)S]GTPgammaS binding experiments, (+)-7-OH-DPAT exhibited partial agonist properties, while PD128907 and quinelorane maintained full agonist properties. The preferential dopamine D(3) ligand BP 897 and the antidyskinetic sarizotan partially activated ERK 1/2 phosphorylation while exerting no agonist activity on GTPgammaS binding, suggesting signal amplification at the MAP kinase level. Antipsychotics differed in their ability to inhibit both agonist-stimulated GTPgammaS binding and ERK 1/2 phosphorylation, but all typical and atypical compounds tested acted as dopamine D(3) receptor antagonists with the exception of n-desmethylclozapine, the active metabolite of clozapine, which partially activated dopamine D(3) receptor-mediated ERK 1/2 phosphorylation. Among the new generation dopamine D(2)/serotonin 5-HT(1A) antipsychotics, only F 15063 and SLV313 acted as pure dopamine D(3) receptor antagonists, bifeprunox was highly efficacious whereas SSR181507 and aripiprazole showed marked partial agonist properties for ERK 1/2 phosphorylation. In contrast, in the GTPgammaS binding study, aripiprazole was devoid of agonist properties and bifeprunox, and to an even lesser extent SSR181507, only weakly stimulated GTPgammaS binding. In summary, these findings underline the differences of dopamine D(3) properties of new generation antipsychotics which may need to be considered in understanding their diverse therapeutic actions.

  19. Long-Term Citalopram Treatment Alters the Stress Responses of the Cortical Dopamine and Noradrenaline Systems: the Role of Cortical 5-HT1A Receptors

    PubMed Central

    Kaneko, Fumi; Kishikawa, Yuki; Hanada, Yuuki; Yamada, Makiko; Kakuma, Tatsuyuki; Kawahara, Hiroshi; Nishi, Akinori

    2016-01-01

    Background: Cortical dopamine and noradrenaline are involved in the stress response. Citalopram, a selective serotonin reuptake inhibitor, has direct and indirect effects on the serotonergic system. Furthermore, long-term treatment with citalopram affects the dopamine and noradrenaline systems, which could contribute to the therapeutic action of antidepressants. Methods: The effects of long-term treatment with citalopram on the responses of the dopamine and noradrenaline systems in the rat prefrontal cortex to acute handling stress were evaluated using in vivo microdialysis. Results: Acute handling stress increased dopamine and noradrenaline levels in the prefrontal cortex. The dopamine and noradrenaline responses were suppressed by local infusion of a 5-HT1A receptor agonist, 7-(Dipropylamino)-5,6,7,8-tetrahydronaphthalen-1-ol;hydrobromide, into the prefrontal cortex. The dopamine response was abolished by long-term treatment with citalopram, and the abolished dopamine response was reversed by local infusion of a 5-HT1A receptor antagonist, (Z)-but-2-enedioic acid;N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-ylcyclohexanecarboxamide into the prefrontal cortex. On the other hand, long-term treatment with citalopram reduced the basal noradrenaline levels (approximately 40% of the controls), but not the basal dopamine levels. The noradrenaline response was maintained despite the low basal noradrenaline levels. Signaling from the 5-HT1A receptors and α2-adrenoceptors was not involved in the decrease in the basal noradrenaline levels but partially affected the noradrenaline response. Conclusions: Chronic citalopram treatment differentially suppresses the dopamine and noradrenaline systems in the prefrontal cortex, and the dopamine stress response was preferentially controlled by upregulating 5-HT1A receptor signaling. Our findings provide insight into how antidepressants modulate the dopamine and noradrenaline systems to overcome acute stress. PMID:27029212

  20. Dampened Amphetamine-Stimulated Behavior and Altered Dopamine Transporter Function in the Absence of Brain GDNF.

    PubMed

    Kopra, Jaakko J; Panhelainen, Anne; Af Bjerkén, Sara; Porokuokka, Lauriina L; Varendi, Kärt; Olfat, Soophie; Montonen, Heidi; Piepponen, T Petteri; Saarma, Mart; Andressoo, Jaan-Olle

    2017-02-08

    Midbrain dopamine neuron dysfunction contributes to various psychiatric and neurological diseases, including drug addiction and Parkinson's disease. Because of its well established dopaminotrophic effects, the therapeutic potential of glial cell line-derived neurotrophic factor (GDNF) has been studied extensively in various disorders with disturbed dopamine homeostasis. However, the outcomes from preclinical and clinical studies vary, highlighting a need for a better understanding of the physiological role of GDNF on striatal dopaminergic function. Nevertheless, the current lack of appropriate animal models has limited this understanding. Therefore, we have generated novel mouse models to study conditional Gdnf deletion in the CNS during embryonic development and reduction of striatal GDNF levels in adult mice via AAV-Cre delivery. We found that both of these mice have reduced amphetamine-induced locomotor response and striatal dopamine efflux. Embryonic GDNF deletion in the CNS did not affect striatal dopamine levels or dopamine release, but dopamine reuptake was increased due to increased levels of both total and synaptic membrane-associated dopamine transporters. Collectively, these results suggest that endogenous GDNF plays an important role in regulating the function of dopamine transporters in the striatum. SIGNIFICANCE STATEMENT Delivery of ectopic glial cell line-derived neurotrophic factor (GDNF) promotes the function, plasticity, and survival of midbrain dopaminergic neurons, the dysfunction of which contributes to various neurological and psychiatric diseases. However, how the deletion or reduction of GDNF in the CNS affects the function of dopaminergic neurons has remained unknown. Using conditional Gdnf knock-out mice, we found that endogenous GDNF affects striatal dopamine homeostasis and regulates amphetamine-induced behaviors by regulating the level and function of dopamine transporters. These data regarding the physiological role of GDNF are relevant in the context of neurological and neurodegenerative diseases that involve changes in dopamine transporter function. Copyright © 2017 the authors 0270-6474/17/371581-10$15.00/0.

  1. Organization of dopamine and serotonin system: Anatomical and functional mapping of monosynaptic inputs using rabies virus.

    PubMed

    Ogawa, Sachie K; Watabe-Uchida, Mitsuko

    2017-05-02

    Dopamine and serotonin play critical roles in flexible behaviors and are related to various psychiatric and motor disorders. This paper reviews the global organization of dopamine and serotonin systems through recent findings using a modified rabies virus. We first introduce methods for comprehensive mapping of monosynaptic inputs. We then describe quantitative comparisons across the data regarding monosynaptic inputs to dopamine neurons versus serotonin neurons. There is surprising similarity between the input to dopamine neurons in the ventral tegmental area (VTA) and the input to serotonin neurons in the dorsal raphe (DR), suggesting functional interactions between these systems. We next introduce studies of mapping monosynaptic inputs to subpopulations of dopamine neurons specified by their projection targets. It was found that the population of dopamine neurons that project to the tail of the striatum (TS) forms an anatomically distinct outlier, suggesting a unique function. From these series of anatomical studies, we propose that there are three information flows that regulate these neuromodulatory systems: the midline stream to serotonin neurons in median raphe (MR) and B6, the central stream to value-coding dopamine neurons and serotonin neurons in rostral DR, and the lateral stream to TS-projecting dopamine neurons. Finally we introduce a new approach to investigate firing patterns of monosynaptic inputs to dopamine neurons in behaving animals. Combining anatomical and physiological findings, we propose that within the central stream, dopamine neurons broadcast a central teaching signal rather than personal teaching signals to multiple brain areas, which are computed in a redundant way in multi-layered neural circuits. Examination of global organization of the dopamine and serotonin circuits not only revealed the complexity of the systems but also revealed some principles of their organization. We will also discuss limitations, practical issues and the possibility of future improvements of the rabies virus-mediated tracing system. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. α2A- and α2C-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands.

    PubMed

    Sánchez-Soto, Marta; Casadó-Anguera, Verònica; Yano, Hideaki; Bender, Brian Joseph; Cai, Ning-Sheng; Moreno, Estefanía; Canela, Enric I; Cortés, Antoni; Meiler, Jens; Casadó, Vicent; Ferré, Sergi

    2018-03-18

    The poor norepinephrine innervation and high density of Gi/o-coupled α 2A - and α 2C -adrenoceptors in the striatum and the dense striatal dopamine innervation have prompted the possibility that dopamine could be an effective adrenoceptor ligand. Nevertheless, the reported adrenoceptor agonistic properties of dopamine are still inconclusive. In this study, we analyzed the binding of norepinephrine, dopamine, and several compounds reported as selective dopamine D 2 -like receptor ligands, such as the D 3 receptor agonist 7-OH-PIPAT and the D 4 receptor agonist RO-105824, to α 2 -adrenoceptors in cortical and striatal tissue, which express α 2A -adrenoceptors and both α 2A - and α 2C -adrenoceptors, respectively. The affinity of dopamine for α 2 -adrenoceptors was found to be similar to that for D 1 -like and D 2 -like receptors. Moreover, the exogenous dopamine receptor ligands also showed high affinity for α 2A - and α 2C -adrenoceptors. Their ability to activate Gi/o proteins through α 2A - and α 2C -adrenoceptors was also analyzed in transfected cells with bioluminescent resonance energy transfer techniques. The relative ligand potencies and efficacies were dependent on the Gi/o protein subtype. Furthermore, dopamine binding to α 2 -adrenoceptors was functional, inducing changes in dynamic mass redistribution, adenylyl cyclase activity, and ERK1/2 phosphorylation. Binding events were further studied with computer modeling of ligand docking. Docking of dopamine at α 2A - and α 2C -adrenoceptors was nearly identical to its binding to the crystallized D 3 receptor. Therefore, we provide conclusive evidence that α 2A - and α 2C -adrenoceptors are functional receptors for norepinephrine, dopamine, and other previously assumed selective D 2 -like receptor ligands, which calls for revisiting previous studies with those ligands.

  3. alpha7 and non-alpha7 nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex.

    PubMed

    Livingstone, Phil D; Srinivasan, Jayaraman; Kew, James N C; Dawson, Lee A; Gotti, Cecilia; Moretti, Milena; Shoaib, Mohammed; Wonnacott, Susan

    2009-02-01

    Nicotine enhances attentional and working memory aspects of executive function in the prefrontal cortex (PFC) where dopamine plays a major role. Here, we have determined the nicotinic acetylcholine receptor (nAChR) subtypes that can modulate dopamine release in rat PFC using subtype-selective drugs. Nicotine and 5-Iodo-A-85380 (beta2* selective) elicited [(3)H]dopamine release from both PFC and striatal prisms in vitro and dopamine overflow from medial PFC in vivo. Blockade by dihydro-beta-erythroidine supports the participation of beta2* nAChRs. However, insensitivity of nicotine-evoked [(3)H]dopamine release to alpha-conotoxin-MII in PFC prisms suggests no involvement of alpha6beta2* nAChRs, in contrast to the striatum, and this distinction is supported by immunoprecipitation of nAChR subunits from these tissues. The alpha7 nAChR-selective agonists choline and Compound A also promoted dopamine release from PFC in vitro and in vivo, and their effects were enhanced by the alpha7 nAChR-selective allosteric potentiator PNU-120596 and blocked by specific antagonists. DNQX and MK801 inhibited [(3)H]dopamine release evoked by choline and PNU-120596, suggesting crosstalk between alpha7 nAChRs, glutamate and dopamine in the PFC. In vivo, systemic (but not local) administration of PNU-120596, in the absence of agonist, facilitated dopamine overflow in the medial PFC, consistent with the activation of extracortical alpha7 nAChRs by endogenous acetylcholine or choline. These data establish that both beta2* and alpha7 nAChRs can modulate dopamine release in the PFC in vitro and in vivo. Through their distinct actions on dopamine release, these nAChR subtypes could contribute to executive function, making them specific therapeutic targets for conditions such as schizophrenia and attention deficit hyperactivity disorder.

  4. In vitro pharmacology of aripiprazole, its metabolite and experimental dopamine partial agonists at human dopamine D2 and D3 receptors.

    PubMed

    Tadori, Yoshihiro; Forbes, Robert A; McQuade, Robert D; Kikuchi, Tetsuro

    2011-10-15

    Aripiprazole is the first dopamine D(2)/D(3) receptor partial agonist successfully developed and ultimately approved for treatment of a broad spectrum of psychiatric and neurological disorders. Aripiprazole's dopamine D(2) and serotonin 5-HT(1A) receptor partial agonist activities have been postulated to confer clinical efficacy without marked sedation, and a relatively favorable overall side-effect profile. Using aripiprazole's unique profile as a benchmark for new dopamine partial agonist development may facilitate discovery of new antipsychotics. We conducted an in vitro comparative analysis between aripiprazole, and its human metabolite OPC-14857 (7-(4-[4-(2,3-dichlorophenyl)-1-piperazinyl)butoxy)-2(1H)-quinolinone)); RGH-188 (trans-1-[4-[2-[4-(2,3-dichlorophenyl)piperazine-1-yl]ethyl]cyclohexyl]-3,3-dimethylurea), and its metabolite didesmethyl-RGH-188 (DDM-RGH-188); as well as bifeprunox, sarizotan, N-desmethylclozapine (NDMC; clozapine metabolite), and SDZ 208-912 (N-[(8α)-2-chloro-6-methylergolin-8-yl]-2,2-dimethylpropanamide). In vitro pharmacological assessment included inhibition of forskolin-stimulated cAMP accumulation and the reversal of dopamine-induced inhibition in clonal Chinese hamster ovary cell lines expressing D(2S), D(2L), D(3) Ser-9 and D(3) Gly-9 for human dopamine receptors. All test compounds behaved as dopamine D(2)/D(3) receptor partial agonists. Aripiprazole's intrinsic activity at dopamine D(2S) and D(2L) receptors was similar to that of OPC-14857 and RGH-188; lower than that of dopamine and bifeprunox; and higher than that of DDM-RGH-188, SDZ 208-912, sarizotan, and NDMC. Aripiprazole's intrinsic activity at dopamine D(3) Ser-9 and D(3) Gly-9 receptors was similar to that of OPC-14857 and sarizotan; lower than that of dopamine, bifeprunox, RGH-188 and DDM-RGH-188; and higher than that of SDZ 208-912 and NDMC. A consolidated assessment of these findings may help defining the most appropriate magnitude of intrinsic activity at dopamine D(2)/D(3) receptors for clinical efficacy and safety. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Induction of dopamine biosynthesis by l-DOPA in PC12 cells: implications of L-DOPA influx and cyclic AMP.

    PubMed

    Jin, Chun Mei; Yang, Yoo Jung; Huang, Hai Shan; Lim, Sung Cil; Kai, Masaaki; Lee, Myung Koo

    2008-09-04

    The effects of 3,4-dihydroxyphenylalanine (l-DOPA) on dopamine biosynthesis and cytotoxicity were investigated in PC12 cells. l-DOPA treatment (20-200 microM) increased the levels of dopamine by 226%-504% after 3-6 h of treatment and enhanced the activities of tyrosine hydroxylase (TH) and aromatic l-amino acid decarboxylase (AADC). l-DOPA (20-200 muM) treatment led to a 562%-937% increase in l-DOPA influx at 1 h, which inhibited the activity of TH, but not AADC, during the same period. The extracellular releases of dopamine were also increased by 231%-570% after treatment with 20 and 200 microM l-DOPA for 0.5-3 h. l-DOPA at a concentration of 100-200 microM, but not 20 microM, exerted apoptotic cytotoxicity towards PC12 cells for 24-48 h. l-DOPA (20-200 microM) increased the intracellular cyclic AMP levels by 318%-557% after 0.5-1 h in a concentration-dependent manner. However, the elevated cyclic AMP levels by l-DOPA could not protect against l-DOPA (100-200 microM)-induced cytotoxicity after 24-48 h. In addition, l-DOPA (20-200 microM)-induced increases in cyclic AMP and dopamine were significantly reduced by treatment with SCH23390 (dopamine D(1) receptor antagonist). The increased levels of dopamine by l-DOPA were also reduced by H89 (protein kinase A, PKA, inhibitor) and GF109203X (protein kinase C inhibitor); however, the reduction by GF109203X was not significant. l-DOPA at 20-200 microM stimulated the phosphorylation of PKA and cyclic AMP-response element binding protein and induced the biosynthesis of the TH protein. These results indicate that 20-200 microM l-DOPA induces dopamine biosynthesis by two pathways. One pathway involves l-DOPA directly entering the cells to convert dopamine through AADC activity (l-DOPA decarboxylation). The other pathway involves l-DOPA and/or released dopamine activating TH to enhance dopamine biosynthesis by the dopamine D(1) receptor-cyclic AMP-PKA signaling system (dopamine biosynthesis by TH).

  6. Dopamine Increases CD14+CD16+ Monocyte Migration and Adhesion in the Context of Substance Abuse and HIV Neuropathogenesis

    PubMed Central

    Coley, Jacqueline S.; Calderon, Tina M.; Gaskill, Peter J.; Eugenin, Eliseo A.; Berman, Joan W.

    2015-01-01

    Drug abuse is a major comorbidity of HIV infection and cognitive disorders are often more severe in the drug abusing HIV infected population. CD14+CD16+ monocytes, a mature subpopulation of peripheral blood monocytes, are key mediators of HIV neuropathogenesis. Infected CD14+CD16+ monocyte transmigration across the blood brain barrier mediates HIV entry into the brain and establishes a viral reservoir within the CNS. Despite successful antiretroviral therapy, continued influx of CD14+CD16+ monocytes, both infected and uninfected, contributes to chronic neuroinflammation and the development of HIV associated neurocognitive disorders (HAND). Drug abuse increases extracellular dopamine in the CNS. Once in the brain, CD14+CD16+ monocytes can be exposed to extracellular dopamine due to drug abuse. The direct effects of dopamine on CD14+CD16+ monocytes and their contribution to HIV neuropathogenesis are not known. In this study, we showed that CD14+CD16+ monocytes express mRNA for all five dopamine receptors by qRT-PCR and D1R, D5R and D4R surface protein by flow cytometry. Dopamine and the D1-like dopamine receptor agonist, SKF38393, increased CD14+CD16+ monocyte migration that was characterized as chemokinesis. To determine whether dopamine affected cell motility and adhesion, live cell imaging was used to monitor the accumulation of CD14+CD16+ monocytes on the surface of a tissue culture dish. Dopamine increased the number and the rate at which CD14+CD16+ monocytes in suspension settled to the dish surface. In a spreading assay, dopamine increased the area of CD14+CD16+ monocytes during the early stages of cell adhesion. In addition, adhesion assays showed that the overall total number of adherent CD14+CD16+ monocytes increased in the presence of dopamine. These data suggest that elevated extracellular dopamine in the CNS of HIV infected drug abusers contributes to HIV neuropathogenesis by increasing the accumulation of CD14+CD16+ monocytes in dopamine rich brain regions. PMID:25647501

  7. Aging Affects Dopaminergic Neural Mechanisms of Cognitive Flexibility.

    PubMed

    Berry, Anne S; Shah, Vyoma D; Baker, Suzanne L; Vogel, Jacob W; O'Neil, James P; Janabi, Mustafa; Schwimmer, Henry D; Marks, Shawn M; Jagust, William J

    2016-12-14

    Aging is accompanied by profound changes in the brain's dopamine system that affect cognitive function. Evidence of powerful individual differences in cognitive aging has sharpened focus on identifying biological factors underlying relative preservation versus vulnerability to decline. Dopamine represents a key target in these efforts. Alterations of dopamine receptors and dopamine synthesis are seen in aging, with receptors generally showing reduction and synthesis demonstrating increases. Using the PET tracer 6-[ 18 F]fluoro-l-m-tyrosine, we found strong support for upregulated striatal dopamine synthesis capacity in healthy older adult humans free of amyloid pathology, relative to young people. We next used fMRI to define the functional impact of elevated synthesis capacity on cognitive flexibility, a core component of executive function. We found clear evidence in young adults that low levels of synthesis capacity were suboptimal, associated with diminished cognitive flexibility and altered frontoparietal activation relative to young adults with highest synthesis values. Critically, these relationships between dopamine, performance, and activation were transformed in older adults with higher synthesis capacity. Variability in synthesis capacity was related to intrinsic frontoparietal functional connectivity across groups, suggesting that striatal dopamine synthesis influences the tuning of networks underlying cognitive flexibility. Together, these findings define striatal dopamine's association with cognitive flexibility and its neural underpinnings in young adults, and reveal the alteration in dopamine-related neural processes in aging. Few studies have combined measurement of brain dopamine with examination of the neural basis of cognition in youth and aging to delineate the underlying mechanisms of these associations. Combining in vivo PET imaging of dopamine synthesis capacity, fMRI, and a sensitive measure of cognitive flexibility, we reveal three core findings. First, we find evidence supporting older adults' capacity to upregulate dopamine synthesis. Second, we define relationships between dopamine, cognition, and frontoparietal activity in young adults indicating high levels of synthesis capacity are optimal. Third, we demonstrate alteration of these relationships in older adults, suggesting neurochemical modulation of cognitive flexibility changes with age. Copyright © 2016 the authors 0270-6474/16/3612559-11$15.00/0.

  8. Inhibition of tetrodotoxin-resistant sodium current in dorsal root ganglia neurons mediated by D1/D5 dopamine receptors

    PubMed Central

    2013-01-01

    Background Dopaminergic fibers originating from area A11 of the hypothalamus project to different levels of the spinal cord and represent the major source of dopamine. In addition, tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines, is expressed in 8-10% of dorsal root ganglia (DRG) neurons, suggesting that dopamine may be released in the dorsal root ganglia. Dopamine has been shown to modulate calcium current in DRG neurons, but the effects of dopamine on sodium current and on the firing properties of small DRG neurons are poorly understood. Results The effects of dopamine and dopamine receptor agonists were tested on the tetrodotoxin-resistant (TTX-R) sodium current recorded from acutely dissociated small (diameter ≤ 25 μm) DRG neurons. Dopamine (20 μM) and SKF 81297 (10 μM) caused inhibition of TTX-R sodium current in small DRG neurons by 23% and 37%, respectively. In contrast, quinpirole (20 μM) had no effects on the TTX-R sodium current. Inhibition by SKF 81297 of the TTX-R sodium current was not affected when the protein kinase A (PKA) activity was blocked with the PKA inhibitory peptide (6–22), but was greatly reduced when the protein kinase C (PKC) activity was blocked with the PKC inhibitory peptide (19–36), suggesting that activation of D1/D5 dopamine receptors is linked to PKC activity. Expression of D1and D5 dopamine receptors in small DRG neurons, but not D2 dopamine receptors, was confirmed by Western blotting and immunofluorescence analysis. In current clamp experiments, the number of action potentials elicited in small DRG neurons by current injection was reduced by ~ 30% by SKF 81297. Conclusions We conclude that activation of D1/D5 dopamine receptors inhibits TTX-R sodium current in unmyelinated nociceptive neurons and dampens their intrinsic excitability by reducing the number of action potentials in response to stimulus. Increasing or decreasing levels of dopamine in the dorsal root ganglia may serve to adjust the sensitivity of nociceptors to noxious stimuli. PMID:24283218

  9. Serotonin 2B Receptors in Mesoaccumbens Dopamine Pathway Regulate Cocaine Responses.

    PubMed

    Doly, Stéphane; Quentin, Emily; Eddine, Raphaël; Tolu, Stefania; Fernandez, Sebastian P; Bertran-Gonzalez, Jesus; Valjent, Emmanuel; Belmer, Arnauld; Viñals, Xavier; Callebert, Jacques; Faure, Philippe; Meye, Frank J; Hervé, Denis; Robledo, Patricia; Mameli, Manuel; Launay, Jean-Marie; Maldonado, Rafael; Maroteaux, Luc

    2017-10-25

    Addiction is a maladaptive pattern of behavior following repeated use of reinforcing drugs in predisposed individuals, leading to lifelong changes. Common among these changes are alterations of neurons releasing dopamine in the ventral and dorsal territories of the striatum. The serotonin 5-HT 2B receptor has been involved in various behaviors, including impulsivity, response to antidepressants, and response to psychostimulants, pointing toward putative interactions with the dopamine system. Despite these findings, it remains unknown whether 5-HT 2B receptors directly modulate dopaminergic activity and the possible mechanisms involved. To answer these questions, we investigated the contribution of 5-HT 2B receptors to cocaine-dependent behavioral responses. Male mice permanently lacking 5-HT 2B receptors, even restricted to dopamine neurons, developed heightened cocaine-induced locomotor responses. Retrograde tracing combined with single-cell mRNA amplification indicated that 5-HT 2B receptors are expressed by mesolimbic dopamine neurons. In vivo and ex vivo electrophysiological recordings showed that 5-HT 2B -receptor inactivation in dopamine neurons affects their neuronal activity and increases AMPA-mediated over NMDA-mediated excitatory synaptic currents. These changes are associated with lower ventral striatum dopamine activity and blunted cocaine self-administration. These data identify the 5-HT 2B receptor as a pharmacological intermediate and provide mechanistic insight into attenuated dopamine tone following exposure to drugs of abuse. SIGNIFICANCE STATEMENT Here we report that mice lacking 5-HT 2B receptors totally or exclusively in dopamine neurons exhibit heightened cocaine-induced locomotor responses. Despite the sensitized state of these mice, we found that associated changes include lower ventral striatum dopamine activity and lower cocaine operant self-administration. We described the selective expression of 5-HT 2B receptors in a subpopulation of dopamine neurons sending axons to the ventral striatum. Increased bursting in vivo properties of these dopamine neurons and a concomitant increase in AMPA synaptic transmission to ex vivo dopamine neurons were found in mice lacking 5-HT 2B receptors. These data support the idea that the chronic 5-HT 2B -receptor inhibition makes mice behave like animals already exposed to cocaine with higher cocaine-induced locomotion associated with changes in dopamine neuron reactivity. Copyright © 2017 the authors 0270-6474/17/3710373-17$15.00/0.

  10. Variability in Dopamine Genes Dissociates Model-Based and Model-Free Reinforcement Learning

    PubMed Central

    Bath, Kevin G.; Daw, Nathaniel D.; Frank, Michael J.

    2016-01-01

    Considerable evidence suggests that multiple learning systems can drive behavior. Choice can proceed reflexively from previous actions and their associated outcomes, as captured by “model-free” learning algorithms, or flexibly from prospective consideration of outcomes that might occur, as captured by “model-based” learning algorithms. However, differential contributions of dopamine to these systems are poorly understood. Dopamine is widely thought to support model-free learning by modulating plasticity in striatum. Model-based learning may also be affected by these striatal effects, or by other dopaminergic effects elsewhere, notably on prefrontal working memory function. Indeed, prominent demonstrations linking striatal dopamine to putatively model-free learning did not rule out model-based effects, whereas other studies have reported dopaminergic modulation of verifiably model-based learning, but without distinguishing a prefrontal versus striatal locus. To clarify the relationships between dopamine, neural systems, and learning strategies, we combine a genetic association approach in humans with two well-studied reinforcement learning tasks: one isolating model-based from model-free behavior and the other sensitive to key aspects of striatal plasticity. Prefrontal function was indexed by a polymorphism in the COMT gene, differences of which reflect dopamine levels in the prefrontal cortex. This polymorphism has been associated with differences in prefrontal activity and working memory. Striatal function was indexed by a gene coding for DARPP-32, which is densely expressed in the striatum where it is necessary for synaptic plasticity. We found evidence for our hypothesis that variations in prefrontal dopamine relate to model-based learning, whereas variations in striatal dopamine function relate to model-free learning. SIGNIFICANCE STATEMENT Decisions can stem reflexively from their previously associated outcomes or flexibly from deliberative consideration of potential choice outcomes. Research implicates a dopamine-dependent striatal learning mechanism in the former type of choice. Although recent work has indicated that dopamine is also involved in flexible, goal-directed decision-making, it remains unclear whether it also contributes via striatum or via the dopamine-dependent working memory function of prefrontal cortex. We examined genetic indices of dopamine function in these regions and their relation to the two choice strategies. We found that striatal dopamine function related most clearly to the reflexive strategy, as previously shown, and that prefrontal dopamine related most clearly to the flexible strategy. These findings suggest that dissociable brain regions support dissociable choice strategies. PMID:26818509

  11. Research Review: Dopamine Transfer Deficit: A Neurobiological Theory of Altered Reinforcement Mechanisms in ADHD

    ERIC Educational Resources Information Center

    Tripp, Gail; Wickens, Jeff R.

    2008-01-01

    This review considers the hypothesis that changes in dopamine signalling might account for altered sensitivity to positive reinforcement in children with ADHD. The existing evidence regarding dopamine cell activity in relation to positive reinforcement is reviewed. We focus on the anticipatory firing of dopamine cells brought about by a transfer…

  12. A Neurocomputational Model of Dopamine and Prefrontal-Striatal Interactions during Multicue Category Learning by Parkinson Patients

    ERIC Educational Resources Information Center

    Moustafa, Ahmed A.; Gluck, Mark A.

    2011-01-01

    Most existing models of dopamine and learning in Parkinson disease (PD) focus on simulating the role of basal ganglia dopamine in reinforcement learning. Much data argue, however, for a critical role for prefrontal cortex (PFC) dopamine in stimulus selection in attentional learning. Here, we present a new computational model that simulates…

  13. Dopamine release in rat striatum - Physiological coupling to tyrosine supply

    NASA Technical Reports Server (NTRS)

    During, Matthew J.; Acworth, Ian N.; Wurtman, Richard J.

    1989-01-01

    Intracerebral microdialysis was used to monitor dopamine release in rat striatal extracellular fluid following the intraperitoneal administration of dopamine's precursor amino acid, L-tyrosine. Dopamine concentrations in dialysates increased transiently after tyrosine (50-100 mg/kg) administration. Pretreatment with haloperidol or the partial lesioning of nigrostriatal neurons enhanced the effect of tyrosine on dopamine release, and haloperidol also prolonged this effect. These data suggest that nigrostriatal dopaminergic neurons are responsive to changes in precursor availability under basal conditions, but that receptor-mediated feedback mechanisms limit the magnitude and duration of this effect.

  14. ILLICIT DOPAMINE TRANSIENTS: RECONCILING ACTIONS OF ABUSED DRUGS

    PubMed Central

    Covey, Dan P.; Roitman, Mitchell F.; Garris, Paul A.

    2014-01-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. While compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyper-activating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyper-activation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural reward and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. PMID:24656971

  15. THE MYSTERIOUS MOTIVATIONAL FUNCTIONS OF MESOLIMBIC DOPAMINE

    PubMed Central

    Salamone, John D.; Correa, Mercè

    2012-01-01

    Summary Nucleus accumbens dopamine is known to play a role in motivational processes, and dysfunctions of mesolimbic dopamine may contribute to motivational symptoms of depression and other disorders, as well as features of substance abuse. Although it has become traditional to label dopamine neurons as “reward” neurons, this is an over-generalization, and it is important to distinguish between aspects of motivation that are differentially affected by dopaminergic manipulations. For example, accumbens dopamine does not mediate primary food motivation or appetite, but is involved in appetitive and aversive motivational processes including behavioral activation, exertion of effort, approach behavior, sustained task engagement, Pavlovian processes and instrumental learning. In this review, we discuss the complex roles of dopamine in behavioral functions related to motivation. PMID:23141060

  16. Safinamide: an add-on treatment for managing Parkinson’s disease

    PubMed Central

    Müller, Thomas

    2018-01-01

    Heterogeneous expression of neurotransmitter deficits results from onset and progression of Parkinson’s disease. Intervals, characterized by reappearance of motor and associated certain nonmotor symptoms, determine the end of good tolerability and efficacy of oral levodopa therapy. These “OFF” states result from levodopa pharmacokinetics and disease progression-related deterioration of the central buffering capacity for fluctuations of dopamine levels. This review discusses safinamide as an add-on therapeutic agent in orally levodopa-treated patients with “OFF” phenomena. Safinamide provided beneficial effects on “OFF” symptoms in pivotal trials with doses of 50 or 100 mg once daily. Safinamide reversibly inhibits mono-amine oxidase B and declines abnormal glutamate release by modulation of potassium- and sodium ion channels. An ideal candidate for combination with safinamide is opicapone. This inhibitor of peripheral catechol-O-methyltransferase supports continuous brain delivery of levodopa and, thus, the continuous dopaminergic stimulation concept. Both compounds with their once-daily application and good tolerability may complement each other by reduction of necessary oral levodopa intakes and “OFF” times. Thus, a promising, future option will be combination of safinamide and opicapone in one formulation. It will reduce adherence issues and may complement levodopa treatment. It will probably cause less nausea and edema than a dopamine agonist/levodopa regimen. PMID:29670409

  17. Noradrenaline transporter blockade increases fronto-parietal functional connectivity relevant for working memory.

    PubMed

    Hernaus, Dennis; Casales Santa, Marta Ma; Offermann, Jan Stefan; Van Amelsvoort, Thérèse

    2017-04-01

    Experimental animal work has demonstrated that dopamine and noradrenaline play an essential role in modulating prefrontal cortex-mediated networks underlying working memory performance. Studies of functional connectivity have been instrumental in extending such notions to humans but, so far, have almost exclusively focussed on pharmacological agents with a predominant dopaminergic mechanism of action. Here, we investigate the effect of a single dose of atomoxetine 60mg, a noradrenaline transporter inhibitor, on working memory performance and associated functional connectivity during an n-back task in 19 healthy male volunteers. Atomoxetine increased functional connectivity between right anterior insula and dorsolateral prefrontal cortex, precentral gyrus, posterior parietal cortex and precuneus during the high-working memory load condition of the n-back task. Increased atomoxetine-induced insula-dorsolateral prefrontal cortex functional connectivity during this condition correlated with decreased reaction time variability and was furthermore predicted by working memory capacity. These results show for the first time that noradrenaline transporter blockade-induced increases in cortical catecholamines accentuate fronto-parietal working memory-related network integrity. The observation of significant inter-subject variability in response to atomoxetine has implications for inverted-U frameworks of dopamine and noradrenaline function, which could be useful to predict drug effects in clinical disorders with variable treatment response. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  18. Safinamide: an add-on treatment for managing Parkinson's disease.

    PubMed

    Müller, Thomas

    2018-01-01

    Heterogeneous expression of neurotransmitter deficits results from onset and progression of Parkinson's disease. Intervals, characterized by reappearance of motor and associated certain nonmotor symptoms, determine the end of good tolerability and efficacy of oral levodopa therapy. These "OFF" states result from levodopa pharmacokinetics and disease progression-related deterioration of the central buffering capacity for fluctuations of dopamine levels. This review discusses safinamide as an add-on therapeutic agent in orally levodopa-treated patients with "OFF" phenomena. Safinamide provided beneficial effects on "OFF" symptoms in pivotal trials with doses of 50 or 100 mg once daily. Safinamide reversibly inhibits mono-amine oxidase B and declines abnormal glutamate release by modulation of potassium- and sodium ion channels. An ideal candidate for combination with safinamide is opicapone. This inhibitor of peripheral catechol-O-methyltransferase supports continuous brain delivery of levodopa and, thus, the continuous dopaminergic stimulation concept. Both compounds with their once-daily application and good tolerability may complement each other by reduction of necessary oral levodopa intakes and "OFF" times. Thus, a promising, future option will be combination of safinamide and opicapone in one formulation. It will reduce adherence issues and may complement levodopa treatment. It will probably cause less nausea and edema than a dopamine agonist/levodopa regimen.

  19. Ultrasensitive and Selective Organic FET-type Nonenzymatic Dopamine Sensor Based on Platinum Nanoparticles-Decorated Reduced Graphene Oxide.

    PubMed

    Oh, Jungkyun; Lee, Jun Seop; Jun, Jaemoon; Kim, Sung Gun; Jang, Jyongsik

    2017-11-15

    Dopamine (DA), a catecholamine hormone, is an important neurotransmitter that controls renal and cardiovascular organizations and regulates physiological activities. Abnormal concentrations of DA cause unfavorable neuronal illnesses such as Parkinson's disease, schizophrenia, and attention deficit hyperactivity disorder/attention deficit disorder. However, the DA concentration is exceedingly low in patients and difficult to detect with existing biosensors. In this study, we developed an organic field-effect-transistor-type (OFET) nonenzyme biosensor using platinum nanoparticle-decorated reduced graphene oxide (Pt_rGO) for ultrasensitive and selective DA detection. The Pt_rGOs were fabricated by reducing GO aqueous solution-containing Pt precursors (PtCl 4 ) with a chemical reducing agent. The Pt_rGOs were immobilized on a graphene substrate by π-π interactions and a conducting-polymer source-drain electrode was patterned on the substrate to form the DA sensor. The resulting OFET sensor showed a high sensitivity to remarkably low DA concentrations (100 × 10 -18 M) and selectivity among interfering molecules. Good stability was expected for the OFET sensor because it was fabricated without an enzymatic receptor, and π-π conjugation is a part of the immobilization process. Furthermore, the OFET sensors are flexible and offer the possibility of wide application as wearable and portable sensors.

  20. Zeolite A functionalized with copper nanoparticles and graphene oxide for simultaneous electrochemical determination of dopamine and ascorbic acid.

    PubMed

    He, Ping; Wang, Wei; Du, Licheng; Dong, Faqin; Deng, Yuequan; Zhang, Tinghong

    2012-08-20

    A novel Cu-zeolite A/graphene modified glassy carbon electrode for the simultaneous electrochemical determination of dopamine (DA) and ascorbic acid (AA) has been described. The Cu-zeolite A/graphene composites were prepared using Cu(2+) functionalized zeolite A and graphene oxide as the precursor, and subsequently reduced by chemical agents. The composites were characterized by X-ray diffraction, Fourier transform infrared spectra and scanning electron microscopy. Based on the Cu-zeolite A/graphene-modified electrode, the potential difference between the oxidation peaks of DA and AA was over 200mV, which was adequate for the simultaneous electrochemical determination of DA and AA. Also the proposed Cu-zeolite/graphene-modified electrode showed higher electrocatalytic performance than zeolite/graphene electrode or graphene-modified electrode. The electrocatalytic oxidation currents of DA and AA were linearly related to the corresponding concentration in the range of 1.0×10(-7)-1.9×10(-5)M for DA and 2.0×10(-5)-2.0×10(-4)M for AA. Detection limits (S/N=3) were estimated to be 4.1×10(-8)M for DA and 1.1×10(-5)M for AA, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. GDNF-expressing macrophages mitigate loss of dopamine neurons and improve Parkinsonian symptoms in MitoPark mice.

    PubMed

    Chen, Cang; Li, Xiuhua; Ge, Guo; Liu, Jingwei; Biju, K C; Laing, Suzette D; Qian, Yusheng; Ballard, Cori; He, Zhixu; Masliah, Eliezer; Clark, Robert A; O'Connor, Jason C; Li, Senlin

    2018-04-03

    Glial cell line-derived neurotrophic factor (GDNF) is the most potent neuroprotective agent tested in cellular and animal models of Parkinson's disease (PD). However, CNS delivery of GDNF is restricted by the blood-brain barrier (BBB). Using total body irradiation as transplant preconditioning, we previously reported that hematopoietic stem cell (HSC) transplantation (HSCT)-based macrophage-mediated gene therapy could deliver GDNF to the brain to prevent degeneration of nigrostriatal dopamine (DA) neurons in an acute murine neurotoxicity model. Here, we validate this therapeutic approach in a chronic progressive PD model - the MitoPark mouse, with head shielding to avoid inducing neuroinflammation and compromising BBB integrity. Bone marrow HSCs were transduced ex vivo with a lentiviral vector expressing macrophage promoter-driven GDNF and transplanted into MitoPark mice exhibiting well developed PD-like impairments. Transgene-expressing macrophages infiltrated the midbrains of MitoPark mice, but not normal littermates, and delivered GDNF locally. Macrophage GDNF delivery markedly improved both motor and non-motor symptoms, and dramatically mitigated the loss of both DA neurons in the substantia nigra and tyrosine hydroxylase-positive axonal terminals in the striatum. Our data support further development of this HSCT-based macrophage-mediated GDNF delivery approach in order to address the unmet need for a disease-modifying therapy for PD.

  2. Recovery From Experimental Parkinsonism by Semaphorin-guided Axonal Growth of Grafted Dopamine Neurons

    PubMed Central

    Díaz-Martínez, N Emmanuel; Tamariz, Elisa; Díaz, N Fabián; García-Peña, Claudia M; Varela-Echavarría, Alfredo; Velasco, Iván

    2013-01-01

    Cell therapy in animal models of Parkinson's disease (PD) is effective after intrastriatal grafting of dopamine (DA) neurons, whereas intranigral transplantation of dopaminergic cells does not cause consistent behavioral recovery. One strategy to promote axonal growth of dopaminergic neurons from the substantia nigra (SN) to the striatum is degradation of inhibitory components such as chondroitin sulphate proteoglycans (CSPG). An alternative is the guidance of DA axons by chemotropic agents. Semaphorins 3A and 3C enhance axonal growth of embryonic stem (ES) cell–derived dopaminergic neurons in vitro, while Semaphorin 3C also attracts them. We asked whether intranigral transplantation of DA neurons, combined with either degradation of CSPG or with grafts of Semaphorin 3–expressing cells, towards the striatum, is effective in establishing a new nigrostriatal dopaminergic pathway in rats with unilateral depletion of DA neurons. We found depolarization-induced DA release in dorsal striatum, DA axonal projections from SN to striatum, and concomitant behavioral improvement in Semaphorin 3–treated animals. These effects were absent in animals that received intranigral transplants combined with Chondroitinase ABC treatment, although partial degradation of CSPG was observed. These results are evidence that Semaphorin 3–directed long-distance axonal growth of dopaminergic neurons, resulting in behavioral improvement, is possible in adult diseased brains. PMID:23732989

  3. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells.

    PubMed

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-05

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.

  4. Spiroperidol, but not eticlopride or aripiprazole, produces gradual increases in descent latencies in the bar test in rats.

    PubMed

    Rocca, Jeffery F; Lister, Joshua G; Beninger, Richard J

    2017-02-01

    Rats repeatedly exposed to the bar test following injections with a dopamine D2-like receptor antagonist such as haloperidol show increased descent latencies, suggesting that contextual stimuli may lose their ability to elicit approach and other responses. Here, we showed that rats took progressively longer to initiate descent from a horizontal bar across sessions following daily intraperitoneal treatment (paired group) with the D2-like receptor antagonist, spiroperidol (0.125 and 0.25 mg/kg), but not in the control group that received 0.25 mg/kg in their home cage and testing following saline. When both groups were tested following an injection of spiroperidol or following saline, a sensitized and a conditioned increase in descent latency, respectively, were observed in the paired but not in the unpaired group. No evidence of sensitization or conditioning was found with the substituted benzamide compound, eticlopride (0.15-0.5 mg/kg), or the D2-like receptor partial agonist, aripiprazole (0.25-0.5 mg/kg). The different effects of these agents on learning may be related to different region-specific affinities for dopamine receptors or differences in receptor dissociation profiles. We suggest that the behavioural changes observed in spiroperidol-treated rats may reflect inverse incentive learning.

  5. Haloperidol Suppresses NF-kappaB to Inhibit Lipopolysaccharide-Induced Pro-Inflammatory Response in RAW 264 Cells

    PubMed Central

    Yamamoto, Shunsuke; Ohta, Noriyuki; Matsumoto, Atsuhiro; Horiguchi, Yu; Koide, Moe; Fujino, Yuji

    2016-01-01

    Background Haloperidol, a tranquilizing agent, is administered both to treat symptoms of psychotic disorders and to sedate agitated and delirious patients. Notably, haloperidol has been suggested to inhibit the immune response through unknown mechanisms. We hypothesized that the sedative modulates the immune response via NF-κB. Material/Methods Using flow cytometry, we analyzed the effects of haloperidol on expression CD80 and CD86 in RAW 264 cells and in primary macrophages derived from bone marrow. Secretion of interleukin (IL)-1β, IL-6, and IL-12 p40 was measured by enzyme-linked immunosorbent assay. In addition, NF-κB activation was evaluated using a reporter assay based on secretory embryonic alkaline phosphatase. Finally, synthetic antagonists were used to identify the dopamine receptor that mediates the effects of haloperidol. Results Haloperidol inhibited NF-κB activation, and thereby suppressed expression of CD80, as well as secretion of IL-1β, IL-6, and IL-12 p40. CD80 and IL-6 levels were similarly attenuated by a D2-like receptor antagonist, but not by a D1-like receptor antagonist. Conclusions The data strongly suggest that haloperidol inhibits the immune response by suppressing NF-κB signaling via the dopamine D2 receptor. PMID:26842661

  6. Haloperidol Suppresses NF-kappaB to Inhibit Lipopolysaccharide-Induced Pro-Inflammatory Response in RAW 264 Cells.

    PubMed

    Yamamoto, Shunsuke; Ohta, Noriyuki; Matsumoto, Atsuhiro; Horiguchi, Yu; Koide, Moe; Fujino, Yuji

    2016-02-04

    BACKGROUND Haloperidol, a tranquilizing agent, is administered both to treat symptoms of psychotic disorders and to sedate agitated and delirious patients. Notably, haloperidol has been suggested to inhibit the immune response through unknown mechanisms. We hypothesized that the sedative modulates the immune response via NF-κB. MATERIAL AND METHODS Using flow cytometry, we analyzed the effects of haloperidol on expression CD80 and CD86 in RAW 264 cells and in primary macrophages derived from bone marrow. Secretion of interleukin (IL)-1β, IL-6, and IL-12 p40 was measured by enzyme-linked immunosorbent assay. In addition, NF-κB activation was evaluated using a reporter assay based on secretory embryonic alkaline phosphatase. Finally, synthetic antagonists were used to identify the dopamine receptor that mediates the effects of haloperidol. RESULTS Haloperidol inhibited NF-κB activation, and thereby suppressed expression of CD80, as well as secretion of IL-1β, IL-6, and IL-12 p40. CD80 and IL-6 levels were similarly attenuated by a D2-like receptor antagonist, but not by a D1-like receptor antagonist. CONCLUSIONS The data strongly suggest that haloperidol inhibits the immune response by suppressing NF-kB signaling via the dopamine D2 receptor.

  7. Bladder, bowel, and sexual dysfunction in Parkinson's disease.

    PubMed

    Sakakibara, Ryuji; Kishi, Masahiko; Ogawa, Emina; Tateno, Fuyuki; Uchiyama, Tomoyuki; Yamamoto, Tatsuya; Yamanishi, Tomonori

    2011-01-01

    Bladder dysfunction (urinary urgency/frequency), bowel dysfunction (constipation), and sexual dysfunction (erectile dysfunction) (also called "pelvic organ" dysfunctions) are common nonmotor disorders in Parkinson's disease (PD). In contrast to motor disorders, pelvic organ autonomic dysfunctions are often nonresponsive to levodopa treatment. The brain pathology causing the bladder dysfunction (appearance of overactivity) involves an altered dopamine-basal ganglia circuit, which normally suppresses the micturition reflex. By contrast, peripheral myenteric pathology causing slowed colonic transit (loss of rectal contractions) and central pathology causing weak strain and paradoxical anal sphincter contraction on defecation (PSD, also called as anismus) are responsible for the bowel dysfunction. In addition, hypothalamic dysfunction is mostly responsible for the sexual dysfunction (decrease in libido and erection) in PD, via altered dopamine-oxytocin pathways, which normally promote libido and erection. The pathophysiology of the pelvic organ dysfunction in PD differs from that in multiple system atrophy; therefore, it might aid in differential diagnosis. Anticholinergic agents are used to treat bladder dysfunction in PD, although these drugs should be used with caution particularly in elderly patients who have cognitive decline. Dietary fibers, laxatives, and "prokinetic" drugs such as serotonergic agonists are used to treat bowel dysfunction in PD. Phosphodiesterase inhibitors are used to treat sexual dysfunction in PD. These treatments might be beneficial in maximizing the patients' quality of life.

  8. Bladder, Bowel, and Sexual Dysfunction in Parkinson's Disease

    PubMed Central

    Sakakibara, Ryuji; Kishi, Masahiko; Ogawa, Emina; Tateno, Fuyuki; Uchiyama, Tomoyuki; Yamamoto, Tatsuya; Yamanishi, Tomonori

    2011-01-01

    Bladder dysfunction (urinary urgency/frequency), bowel dysfunction (constipation), and sexual dysfunction (erectile dysfunction) (also called “pelvic organ” dysfunctions) are common nonmotor disorders in Parkinson's disease (PD). In contrast to motor disorders, pelvic organ autonomic dysfunctions are often nonresponsive to levodopa treatment. The brain pathology causing the bladder dysfunction (appearance of overactivity) involves an altered dopamine-basal ganglia circuit, which normally suppresses the micturition reflex. By contrast, peripheral myenteric pathology causing slowed colonic transit (loss of rectal contractions) and central pathology causing weak strain and paradoxical anal sphincter contraction on defecation (PSD, also called as anismus) are responsible for the bowel dysfunction. In addition, hypothalamic dysfunction is mostly responsible for the sexual dysfunction (decrease in libido and erection) in PD, via altered dopamine-oxytocin pathways, which normally promote libido and erection. The pathophysiology of the pelvic organ dysfunction in PD differs from that in multiple system atrophy; therefore, it might aid in differential diagnosis. Anticholinergic agents are used to treat bladder dysfunction in PD, although these drugs should be used with caution particularly in elderly patients who have cognitive decline. Dietary fibers, laxatives, and “prokinetic” drugs such as serotonergic agonists are used to treat bowel dysfunction in PD. Phosphodiesterase inhibitors are used to treat sexual dysfunction in PD. These treatments might be beneficial in maximizing the patients' quality of life. PMID:21918729

  9. Tardive dyskinesia: Out of the shadows.

    PubMed

    Hauser, Robert A; Truong, Daniel

    2018-06-15

    The approvals of the first two medications, valbenazine and deutetrabenazine, to treat tardive dyskinesia have ushered in a new era in neuropsychiatric care. Tardive syndromes are defined as delayed onset, persistent movement disorders or sensory phenomena that occur in association with exposure to dopamine receptor blocking agents (DRBAs). Their underlying pathophysiology remains to be fully elucidated, but clinicians can conceptualize tardive syndromes as persistent dopamine supersensitivity states. Tardive syndromes can potentially cause distress, disfigurement, embarrassment, and dysfunction, and are often permanent. Therefore, practitioners who prescribe DRBAs should be aware of this potential, carefully assess the risk/benefit ratio when considering the use of these medications, and be sure that patients are appropriately informed. Patients on DRBAs should be monitored for the development of tardive syndromes, including through the use of regularly scheduled Abnormal Involuntary Movement Scale (AIMS) (or similar) examinations. Clinicians prescribing DRBAs should be familiar with the diagnosis and management of tardive syndromes, and be able to institute treatment or refer patients when treatment is appropriate. Future research may focus on the potential benefit of earlier introduction of VMAT2 inhibitors to delay onset or progression of tardive syndromes. More effective treatments are still needed, as are effective, well-tolerated antipsychotics that do not cause tardive syndromes. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells

    NASA Astrophysics Data System (ADS)

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.

  11. Correlation of individual differences in schizotypal personality traits with amphetamine-induced dopamine release in striatal and extrastriatal brain regions.

    PubMed

    Woodward, Neil D; Cowan, Ronald L; Park, Sohee; Ansari, M Sib; Baldwin, Ronald M; Li, Rui; Doop, Mikisha; Kessler, Robert M; Zald, David H

    2011-04-01

    Schizotypal personality traits are associated with schizophrenia spectrum disorders, and individuals with schizophrenia spectrum disorders demonstrate increased dopamine transmission in the striatum. The authors sought to determine whether individual differences in normal variation in schizotypal traits are correlated with dopamine transmission in the striatum and in extrastriatal brain regions. Sixty-three healthy volunteers with no history of psychiatric illness completed the Schizotypal Personality Questionnaire and underwent positron emission tomography imaging with [(18)F]fallypride at baseline and after administration of oral d-amphetamine (0.43 mg/kg). Dopamine release, quantified by subtracting each participant's d-amphetamine scan from his or her baseline scan, was correlated with Schizotypal Personality Questionnaire total and factor scores using region-of-interest and voxel-wise analyses. Dopamine release in the striatum was positively correlated with overall schizotypal traits. The association was especially robust in the associative subdivision of the striatum. Voxel-wise analyses identified additional correlations between dopamine release and schizotypal traits in the left middle frontal gyrus and left supramarginal gyrus. Exploratory analyses of Schizotypal Personality Questionnaire factor scores revealed correlations between dopamine release and disorganized schizotypal traits in the striatum, thalamus, medial prefrontal cortex, temporal lobe, insula, and inferior frontal cortex. The association between dopamine signaling and psychosis phenotypes extends to individual differences in normal variation in schizotypal traits and involves dopamine transmission in both striatal and extrastriatal brain regions. Amphetamine-induced dopamine release may be a useful endophenotype for investigating the genetic basis of schizophrenia spectrum disorders.

  12. Naltrexone modulates dopamine release following chronic, but not acute amphetamine administration: a translational study

    PubMed Central

    Jayaram-Lindström, N; Guterstam, J; Häggkvist, J; Ericson, M; Malmlöf, T; Schilström, B; Halldin, C; Cervenka, S; Saijo, T; Nordström, A-L; Franck, J

    2017-01-01

    The opioid antagonist naltrexone has been shown to attenuate the subjective effects of amphetamine. However, the mechanisms behind this modulatory effect are currently unknown. We hypothesized that naltrexone would diminish the striatal dopamine release induced by amphetamine, which is considered an important mechanism behind many of its stimulant properties. We used positron emission tomography and the dopamine D2-receptor radioligand [11C]raclopride in healthy subjects to study the dopaminergic effects of an amphetamine injection after pretreatment with naltrexone or placebo. In a rat model, we used microdialysis to study the modulatory effects of naltrexone on dopamine levels after acute and chronic amphetamine exposure. In healthy humans, naltrexone attenuated the subjective effects of amphetamine, confirming our previous results. Amphetamine produced a significant reduction in striatal radioligand binding, indicating increased levels of endogenous dopamine. However, there was no statistically significant effect of naltrexone on dopamine release. The same pattern was observed in rats, where an acute injection of amphetamine caused a significant rise in striatal dopamine levels, with no effect of naltrexone pretreatment. However, in a chronic model, naltrexone significantly attenuated the dopamine release caused by reinstatement of amphetamine. Collectively, these data suggest that the opioid system becomes engaged during the more chronic phase of drug use, evidenced by the modulatory effect of naltrexone on dopamine release following chronic amphetamine administration. The importance of opioid-dopamine interactions in the reinforcing and addictive effects of amphetamine is highlighted by the present findings and may help to facilitate medication development in the field of stimulant dependence. PMID:28440810

  13. Neuropeptide gene expression in brain is differentially regulated by midbrain dopamine neurons.

    PubMed

    Lindefors, N; Brené, S; Herrera-Marschitz, M; Persson, H

    1990-01-01

    In situ hybridization was used to study the expression of prepro-neuropeptide Y (NPY), preprosomatostatin (SOM), preprotachykinin (PPT) and preprocholecystokinin (CCK) mRNA in caudate-putamen and frontoparietal cortex of rat brain with unilateral lesion of midbrain dopamine neurons. Neurons expressing NPY and SOM mRNA showed a similar distribution and the expression of both NPY and SOM appears to be regulated by dopamine in a similar fashion. Following a dopamine deafferentation, the numerical density of both NPY and SOM mRNA producing neurons almost doubled in the lesioned caudate-putamen with no change in the average grain density over positive neurons. Hence, in the intact caudate-putamen dopamine appears to suppress expression of these two neuropeptide genes leading to an activation of both NPY and SOM mRNA expression in many non- or low-expressing neurons when the level of dopamine is decreased. In the fronto-parietal cortex, on the other hand, dopamine appears to stimulate NPY and SOM gene expression. Thus, in the absence of dopamine about half of the NPY positive neurons disappeared. However, for SOM the number of positive neurons did not change, but rather most positive neurons appeared to have down-regulated their SOM mRNA expression. No evidence was found for a change in CCK mRNA expression by the dopamine deafferentation, while PPT mRNA expression decreased in the deafferented caudate-putamen. Consequently, dopamine exerts dissimilar effects on the expression of different neuropeptide genes, that in turn do not respond in the same way in different brain regions.

  14. The role of dopamine in the nucleus accumbens and striatum during sexual behavior in the female rat.

    PubMed

    Becker, J B; Rudick, C N; Jenkins, W J

    2001-05-01

    Dopamine in dialysate from the nucleus accumbens (NAcc) increases during sexual and feeding behavior and after administration of drugs of abuse, even those that do not directly activate dopaminergic systems (e.g., morphine or nicotine). These findings and others have led to hypotheses that propose that dopamine is rewarding, predicts that reinforcement will occur, or attributes incentive salience. Examining increases in dopamine in NAcc or striatum during sexual behavior in female rats provides a unique situation to study these relations. This is because, for the female rat, sexual behavior is associated with an increase in NAcc dopamine and conditioned place preference only under certain testing conditions. This experiment was conducted to determine what factors are important for the increase in dopamine in dialysate from NAcc and striatum during sexual behavior in female rats. The factors considered were the number of contacts by the male, the timing of contacts by the male, or the ability of the female to control contacts by the male. The results indicate that increased NAcc dopamine is dependent on the timing of copulatory stimuli, independent of whether the female rat is actively engaged in regulating this timing. For the striatum, the timing of copulatory behavior influences the magnitude of the increase in dopamine in dialysate, but other factors are also involved. We conclude that increased extracellular dopamine in the NAcc and striatum conveys qualitative or interpretive information about the rewarding value of stimuli. Sexual behavior in the female rat is proposed as a model to determine the role of dopamine in motivated behavior.

  15. The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia.

    PubMed

    Howes, Oliver D; McCutcheon, Robert; Owen, Michael J; Murray, Robin M

    2017-01-01

    The dopamine hypothesis is the longest standing pathoetiologic theory of schizophrenia. Because it was initially based on indirect evidence and findings in patients with established schizophrenia, it was unclear what role dopamine played in the onset of the disorder. However, recent studies in people at risk of schizophrenia have found elevated striatal dopamine synthesis capacity and increased dopamine release to stress. Furthermore, striatal dopamine changes have been linked to altered cortical function during cognitive tasks, in line with preclinical evidence that a circuit involving cortical projections to the striatum and midbrain may underlie the striatal dopamine changes. Other studies have shown that a number of environmental risk factors for schizophrenia, such as social isolation and childhood trauma, also affect presynaptic dopaminergic function. Advances in preclinical work and genetics have begun to unravel the molecular architecture linking dopamine, psychosis, and psychosocial stress. Included among the many genes associated with risk of schizophrenia are the gene encoding the dopamine D 2 receptor and those involved in the upstream regulation of dopaminergic synthesis, through glutamatergic and gamma-aminobutyric acidergic pathways. A number of these pathways are also linked to the stress response. We review these new lines of evidence and present a model of how genes and environmental factors may sensitize the dopamine system so that it is vulnerable to acute stress, leading to progressive dysregulation and the onset of psychosis. Finally, we consider the implications for rational drug development, in particular regionally selective dopaminergic modulation, and the potential of genetic factors to stratify patients. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Demon voltammetry and analysis software: Analysis of cocaine-induced alterations in dopamine signaling using multiple kinetic measures

    PubMed Central

    Yorgason, Jordan T.; España, Rodrigo A.; Jones, Sara R.

    2011-01-01

    The fast sampling rates of fast scan cyclic voltammetry make it a favorable method for measuring changes in brain monoamine release and uptake kinetics in slice, anesthetized, and freely moving preparations. The most common analysis technique for evaluating changes in dopamine signaling uses well-established Michaelis-Menten kinetic methods that can accurately model dopamine release and uptake parameters across multiple experimental conditions. Nevertheless, over the years, many researchers have turned to other measures to estimate changes in dopamine release and uptake, yet to our knowledge no systematic comparison amongst these measures has been conducted. To address this lack of uniformity in kinetic analyses, we have created the Demon Voltammetry and Analysis software suite, which is freely available to academic and non-profit institutions. Here we present an explanation of the Demon Acquisition and Analysis features, and demonstrate its utility for acquiring voltammetric data under in vitro, in vivo anesthetized, and freely moving conditions. Additionally, the software was used to compare the sensitivity of multiple kinetic measures of release and uptake to cocaine-induced changes in electrically evoked dopamine efflux in nucleus accumbens core slices. Specifically, we examined and compared tau, full width at half height, half-life, T20, T80, slope, peak height, calibrated peak dopamine concentration, and area under the curve to the well-characterized Michaelis-Menten parameters, dopamine per pulse, maximal uptake rate, and apparent affinity. Based on observed results we recommend tau for measuring dopamine uptake and calibrated peak dopamine concentration for measuring dopamine release. PMID:21392532

  17. Reward-based hypertension control by a synthetic brain-dopamine interface.

    PubMed

    Rössger, Katrin; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2013-11-05

    Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal's reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future.

  18. Synthesis of dopamine in E. coli using plasmid-based expression system and its marked effect on host growth profiles.

    PubMed

    Das, Arunangshu; Verma, Anita; Mukherjee, Krishna J

    2017-09-14

    L-Dopa and dopamine are important pathway intermediates toward the synthesis of catecholamine such as epinephrine and norepinephrine from amino acid L-tyrosine. Dopamine, secreted from dopaminergic nerve cells, serves as an important neurotransmitter. We report the synthesis of dopamine by extending the aromatic amino acid pathway of Escherichia coli DH5α by the expression of 4-hydroxyphenylacetate-3-hydrolase (HpaBC) from E. coli and an engineered dopa decarboxylase (DDC) from pig kidney cell. The activity of HpaBC and DDC require 200 µM iron supplementation and 50 µM vitamin B6, respectively as additives to the growth media. The maximum concentration of L-dopa and dopamine obtained from the broth was around 26 and 27 mg/L after 24 hr of separate shake flask studies. We observed that in the presence of dopamine synthesized in vivo host growth was remarkably enhanced. These observations lead us to an interesting finding about the role of these catecholamines on bacterial growth. It is clear that synthesis of dopamine in vivo actually promotes growth much efficiently as compared to when dopamine is added to the system from outside. From HPLC and GC-MS data it was further observed that L-dopa was stable within the observable time of experiments whereas dopamine actually was subjected to degradation via oxidation and host consumption.

  19. Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET.

    PubMed

    Sekine, Y; Iyo, M; Ouchi, Y; Matsunaga, T; Tsukada, H; Okada, H; Yoshikawa, E; Futatsubashi, M; Takei, N; Mori, N

    2001-08-01

    A positron emission tomography (PET) study has suggested that dopamine transporter density of the caudate/putamen is reduced in methamphetamine users. The authors measured nucleus accumbens and prefrontal cortex density, in addition to caudate/putamen density, in methamphetamine users and assessed the relation of these measures to the subjects' clinical characteristics. PET and 2-beta-carbomethoxy-3beta-(4-[(11)C] fluorophenyl)tropane, a dopamine transporter ligand, were used to measure dopamine transporter density in 11 male methamphetamine users and nine male comparison subjects who did not use methamphetamine. Psychiatric symptoms in methamphetamine users were evaluated by using the Brief Psychiatric Rating Scale and applying a craving score. The dopamine transporter density in all three of the regions observed was significantly lower in the methamphetamine users than the comparison subjects. The severity of psychiatric symptoms was significantly correlated with the duration of methamphetamine use. The dopamine transporter reduction in the caudate/putamen and nucleus accumbens was significantly associated with the duration of methamphetamine use and closely related to the severity of persistent psychiatric symptoms. These findings suggest that longer use of methamphetamine may cause more severe psychiatric symptoms and greater reduction of dopamine transporter density in the brain. They also show that the dopamine transporter reduction may be long-lasting, even if methamphetamine use ceases. Further, persistent psychiatric symptoms in methamphetamine users, including psychotic symptoms, may be attributable to the reduction of dopamine transporter density.

  20. Independent effects of age and levodopa on reversal learning in healthy volunteers.

    PubMed

    Vo, Andrew; Seergobin, Ken N; MacDonald, Penny A

    2018-05-18

    The dopamine overdose hypothesis has provided an important theoretical framework for understanding cognition in Parkinson's disease. It posits that effects of dopaminergic therapy on cognition in Parkinson's disease depend on baseline dopamine levels in brain regions that support different functions. Although functions performed by more severely dopamine-depleted brain regions improve with medication, those associated with less dopamine deficient areas are actually worsened. It is presumed that medication-related worsening of cognition owes to dopamine overdose. We investigated whether age-related changes in baseline dopamine levels would modulate effects of dopaminergic therapy on reward learning in healthy volunteers. In a double-blind, crossover design, healthy younger and older adults completed a probabilistic reversal learning task after treatment with 100/25 mg of levodopa/carbidopa versus placebo. Older adults learned more poorly than younger adults at baseline, being more likely to shift responses after misleading punishment. Levodopa worsened stimulus-reward learning relative to placebo to the same extent in both groups, irrespective of differences in baseline performance and expected dopamine levels. When order effects were eliminated, levodopa induced response shifts after reward more often than placebo. Our results reveal independent deleterious effects of age group and exogenous dopamine on reward learning, suggesting a more complex scenario than predicted by the dopamine overdose hypothesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Tamoxifen protects male mice nigrostriatal dopamine against methamphetamine-induced toxicity.

    PubMed

    Bourque, Mélanie; Liu, Bin; Dluzen, Dean E; Di Paolo, Thérèse

    2007-11-01

    The selective estrogen receptor modulator tamoxifen and estradiol were shown to protect nigrostriatal dopamine concentration loss by methamphetamine in female mice whereas male mice were protected only by tamoxifen. The present study examined the protective properties of tamoxifen in male mice on several nigrostriatal dopaminergic markers and body temperature. Intact male mice were administered 12.5 or 50 microg tamoxifen 24 h before methamphetamine treatment. Basal body temperatures of male mice remained unchanged by the tamoxifen treatment. Methamphetamine reduced striatal dopamine and its metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid concentrations, striatal and substantia nigra dopamine and vesicular monoamine transporter specific binding as well substantia nigra dopamine and vesicular monoamine transporter mRNA levels and increased striatal preproenkephalin mRNA levels. These methamphetamine effects were not altered by 12.5 microg tamoxifen except for increased striatal dopamine metabolites and turnover. Tamoxifen at 50 microg reduced the methamphetamine effect on striatal dopamine concentration, dopamine transporter specific binding and prevented the increase in preproenkephalin mRNA levels; in the substantia nigra tamoxifen prevented the decrease of dopamine transporter mRNA levels. The present results show a tamoxifen dose-dependent prevention of loss of various dopaminergic markers against methamphetamine-induced toxicity in male mice. Since this is the only known hormonal protection of male mice against methamphetamine toxicity, these findings provide important new information on specific parameters of nigrostriatal dopaminergic function preserved by tamoxifen.

  2. Ih current is necessary to maintain normal dopamine fluctuations and sleep consolidation in Drosophila.

    PubMed

    Gonzalo-Gomez, Alicia; Turiegano, Enrique; León, Yolanda; Molina, Isabel; Torroja, Laura; Canal, Inmaculada

    2012-01-01

    HCN channels are becoming pharmacological targets mainly in cardiac diseases. But apart from their well-known role in heart pacemaking, these channels are widely expressed in the nervous system where they contribute to the neuron firing pattern. Consequently, abolishing Ih current might have detrimental consequences in a big repertoire of behavioral traits. Several studies in mammals have identified the Ih current as an important determinant of the firing activity of dopaminergic neurons, and recent evidences link alterations in this current to various dopamine-related disorders. We used the model organism Drosophila melanogaster to investigate how lack of Ih current affects dopamine levels and the behavioral consequences in the sleep:activity pattern. Unlike mammals, in Drosophila there is only one gene encoding HCN channels. We generated a deficiency of the DmIh core gene region and measured, by HPLC, levels of dopamine. Our data demonstrate daily variations of dopamine in wild-type fly heads. Lack of Ih current dramatically alters dopamine pattern, but different mechanisms seem to operate during light and dark conditions. Behaviorally, DmIh mutant flies display alterations in the rest:activity pattern, and altered circadian rhythms. Our data strongly suggest that Ih current is necessary to prevent dopamine overproduction at dark, while light input allows cycling of dopamine in an Ih current dependent manner. Moreover, lack of Ih current results in behavioral defects that are consistent with altered dopamine levels.

  3. Increased Striatal Dopamine Synthesis Capacity in Gambling Addiction.

    PubMed

    van Holst, Ruth J; Sescousse, Guillaume; Janssen, Lieneke K; Janssen, Marcel; Berry, Anne S; Jagust, William J; Cools, Roshan

    2018-06-15

    The hypothesis that dopamine plays an important role in the pathophysiology of pathological gambling is pervasive. However, there is little to no direct evidence for a categorical difference between pathological gamblers and healthy control subjects in terms of dopamine transmission in a drug-free state. Here we provide evidence for this hypothesis by comparing dopamine synthesis capacity in the dorsal and ventral parts of the striatum in 13 pathological gamblers and 15 healthy control subjects. This was achieved using [ 18 F]fluoro-levo-dihydroxyphenylalanine dynamic positron emission tomography scans and striatal regions of interest that were hand-drawn based on visual inspection of individual structural magnetic resonance imaging scans. Our results show that dopamine synthesis capacity was increased in pathological gamblers compared with healthy control subjects. Dopamine synthesis was 16% higher in the caudate body, 17% higher in the dorsal putamen, and 17% higher in the ventral striatum in pathological gamblers compared with control subjects. Moreover, dopamine synthesis capacity in the dorsal putamen and caudate head was positively correlated with gambling distortions in pathological gamblers. Taken together, these results provide empirical evidence for increased striatal dopamine synthesis in pathological gambling. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Dopamine Synthesis and D3 Receptor Activation in Pancreatic β-Cells Regulates Insulin Secretion and Intracellular [Ca2+] Oscillations

    PubMed Central

    Ustione, Alessandro

    2012-01-01

    Pancreatic islets are critical for glucose homeostasis via the regulated secretion of insulin and other hormones. We propose a novel mechanism that regulates insulin secretion from β-cells within mouse pancreatic islets: a dopaminergic negative feedback acting on insulin secretion. We show that islets are a site of dopamine synthesis and accumulation outside the central nervous system. We show that both dopamine and its precursor l-dopa inhibit glucose-stimulated insulin secretion, and this inhibition correlates with a reduction in frequency of the intracellular [Ca2+] oscillations. We further show that the effects of dopamine are abolished by a specific antagonist of the dopamine receptor D3. Because the dopamine transporter and dopamine receptors are expressed in the islets, we propose that cosecretion of dopamine with insulin activates receptors on the β-cell surface. D3 receptor activation results in changes in intracellular [Ca2+] dynamics, which, in turn, lead to lowered insulin secretion. Because blocking dopaminergic negative feedback increases insulin secretion, expanding the knowledge of this pathway in β-cells might offer a potential new target for the treatment of type 2 diabetes. PMID:22918877

  5. The Role of Dopamine in Inflammation-Associated Depression: Mechanisms and Therapeutic Implications.

    PubMed

    Felger, Jennifer C

    Studies investigating the impact of a variety of inflammatory stimuli on the brain and behavior have consistently reported evidence that inflammatory cytokines affect the basal ganglia and dopamine to mediate depressive symptoms related to motivation and motor activity. Findings have included inflammation-associated reductions in ventral striatal responses to hedonic reward, decreased dopamine and dopamine metabolites in cerebrospinal fluid, and decreased availability of striatal dopamine, all of which correlate with symptoms of anhedonia, fatigue, and psychomotor retardation. Similar relationships between alterations in dopamine-relevant corticostriatal reward circuitry and symptoms of anhedonia and psychomotor slowing have also been observed in patients with major depression who exhibit increased peripheral cytokines and other inflammatory markers, such as C-reactive protein. Of note, these inflammation-associated depressive symptoms are often difficult to treat in patients with medical illnesses or major depression. Furthermore, a wealth of literature suggests that inflammation can decrease dopamine synthesis, packaging, and release, thus sabotaging or circumventing the efficacy of standard antidepressant treatments. Herein, the mechanisms by which inflammation and cytokines affect dopamine neurotransmission are discussed, which may provide novel insights into treatment of inflammation-related behavioral symptoms that contribute to an inflammatory malaise.

  6. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers.

    PubMed

    Volkow, N D; Chang, L; Wang, G J; Fowler, J S; Leonido-Yee, M; Franceschi, D; Sedler, M J; Gatley, S J; Hitzemann, R; Ding, Y S; Logan, J; Wong, C; Miller, E N

    2001-03-01

    Methamphetamine is a popular and highly addictive drug of abuse that has raised concerns because it has been shown in laboratory animals to be neurotoxic to dopamine terminals. The authors evaluated if similar changes occur in humans and assessed if they were functionally significant. Positron emission tomography scans following administration of [(11)C]d-threo-methylphenidate (a dopamine transporter ligand) measured dopamine transporter levels (a marker of dopamine cell terminals) in the brains of 15 detoxified methamphetamine abusers and 18 comparison subjects. Neuropsychological tests were also performed to assess motor and cognitive function. Methamphetamine abusers showed significant dopamine transporter reduction in the striatum (mean differences of 27.8% in the caudate and 21.1% in the putamen) relative to the comparison subjects; this reduction was evident even in abusers who had been detoxified for at least 11 months. Dopamine transporter reduction was associated with motor slowing and memory impairment. These results provide evidence that methamphetamine at dose levels taken by human abusers of the drug leads to dopamine transporter reduction that is associated with motor and cognitive impairment. These results emphasize the urgency of alerting clinicians and the public of the long-term changes that methamphetamine can induce in the human brain.

  7. Dynamic mesolimbic dopamine signaling during action sequence learning and expectation violation

    PubMed Central

    Collins, Anne L.; Greenfield, Venuz Y.; Bye, Jeffrey K.; Linker, Kay E.; Wang, Alice S.; Wassum, Kate M.

    2016-01-01

    Prolonged mesolimbic dopamine concentration changes have been detected during spatial navigation, but little is known about the conditions that engender this signaling profile or how it develops with learning. To address this, we monitored dopamine concentration changes in the nucleus accumbens core of rats throughout acquisition and performance of an instrumental action sequence task. Prolonged dopamine concentration changes were detected that ramped up as rats executed each action sequence and declined after earned reward collection. With learning, dopamine concentration began to rise increasingly earlier in the execution of the sequence and ultimately backpropagated away from stereotyped sequence actions, becoming only transiently elevated by the most distal and unexpected reward predictor. Action sequence-related dopamine signaling was reactivated in well-trained rats if they became disengaged in the task and in response to an unexpected change in the value, but not identity of the earned reward. Throughout training and test, dopamine signaling correlated with sequence performance. These results suggest that action sequences can engender a prolonged mode of dopamine signaling in the nucleus accumbens core and that such signaling relates to elements of the motivation underlying sequence execution and is dynamic with learning, overtraining and violations in reward expectation. PMID:26869075

  8. Flipped Phenyl Ring Orientations of Dopamine Binding with Human and Drosophila Dopamine Transporters: Remarkable Role of Three Nonconserved Residues.

    PubMed

    Yuan, Yaxia; Zhu, Jun; Zhan, Chang-Guo

    2018-03-09

    Molecular modeling and molecular dynamics simulations were performed in the present study to examine the modes of dopamine binding with human and Drosophila dopamine transporters (hDAT and dDAT). The computational data revealed flipped binding orientations of dopamine in hDAT and dDAT due to the major differences in three key residues (S149, G153, and A423 of hDAT vs A117, D121, and S422 of dDAT) in the binding pocket. These three residues dictate the binding orientation of dopamine in the binding pocket, as the aromatic ring of dopamine tends to take an orientation with both the para- and meta-hydroxyl groups being close to polar residues and away from nonpolar residues of the protein. The flipped binding orientations of dopamine in hDAT and dDAT clearly demonstrate a generally valuable insight concerning how the species difference could drastically affect the protein-ligand binding modes, demonstrating that the species difference, which is a factor rarely considered in early drug design stage, must be accounted for throughout the ligand/drug design and discovery processes in general.

  9. Striatal dopamine D2/D3 receptor binding in pathological gambling is correlated with mood-related impulsivity

    PubMed Central

    Clark, Luke; Stokes, Paul R.; Wu, Kit; Michalczuk, Rosanna; Benecke, Aaf; Watson, Ben J.; Egerton, Alice; Piccini, Paola; Nutt, David J.; Bowden-Jones, Henrietta; Lingford-Hughes, Anne R.

    2012-01-01

    Pathological gambling (PG) is a behavioural addiction associated with elevated impulsivity and suspected dopamine dysregulation. Reduced striatal dopamine D2/D3 receptor availability has been reported in drug addiction, and may constitute a premorbid vulnerability marker for addictive disorders. The aim of the present study was to assess striatal dopamine D2/D3 receptor availability in PG, and its association with trait impulsivity. Males with PG (n = 9) and male healthy controls (n = 9) underwent [11C]-raclopride positron emission tomography imaging and completed the UPPS-P impulsivity scale. There was no significant difference between groups in striatal dopamine D2/D3 receptor availability, in contrast to previous reports in drug addiction. However, mood-related impulsivity (‘Urgency’) was negatively correlated with [11C]-raclopride binding potentials in the PG group. The absence of a group difference in striatal dopamine binding implies a distinction between behavioural addictions and drug addictions. Nevertheless, our data indicate heterogeneity in dopamine receptor availability in disordered gambling, such that individuals with high mood-related impulsivity may show differential benefits from dopamine-based medications. PMID:22776462

  10. Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system

    PubMed Central

    Hatcher, Jaime M.; Richardson, Jason R.; Guillot, Thomas S.; McCormack, Alison L.; Di Monte, Donato A.; Jones, Dean P.; Pennell, Kurt D.; Miller, Gary W.

    2007-01-01

    Numerous epidemiological studies have shown an association between pesticide exposure and an increased risk of developing Parkinson’s disease (PD). Here, we provide evidence that the insecticide dieldrin causes specific oxidative damage in the nigrostriatal dopamine (DA) system. We report that exposure of mice to low levels of dieldrin for 30 days resulted in alterations in dopamine-handling as evidenced by a decrease in dopamine metabolites, DOPAC (31.7% decrease) and HVA (29.2% decrease) and significantly increased cysteinyl-catechol levels in the striatum. Furthermore, dieldrin resulted in a 53% decrease in total glutathione, an increase in the redox potential of glutathione, and a 90% increase in protein carbonyls. α-Synuclein protein expression was also significantly increased in the striatum (25% increase). Finally, dieldrin caused a significant decrease in striatal expression of the dopamine transporter as measured by 3H-WIN 35,428 binding and 3H-dopamine uptake. These alterations occurred in the absence of dopamine neuron loss in the substantia nigra pars compacta. These effects represent the ability of low doses of dieldrin to increase the vulnerability of nigrostriatal dopamine neurons by inducing oxidative stress and suggest that pesticide exposure may act as a promoter of PD. PMID:17291500

  11. Inverted-U shaped dopamine actions on human working memory and cognitive control

    PubMed Central

    Cools, R; D’Esposito, M

    2011-01-01

    Brain dopamine has long been implicated in cognitive control processes, including working memory. However, the precise role of dopamine in cognition is not well understood, partly because there is large variability in the response to dopaminergic drugs both across different behaviors and across different individuals. We review evidence from a series of studies with experimental animals, healthy humans and patients with Parkinson’s disease, which highlight two important factors that contribute to this large variability. First, the existence of an optimum dopamine level for cognitive function implicates the need to take into account baseline levels of dopamine when isolating dopamine’s effects. Second, cognitive control is a multi-factorial phenomenon, requiring a dynamic balance between cognitive stability and cognitive flexibility. These distinct components might implicate the prefrontal cortex and the striatum respectively. Manipulating dopamine will thus have paradoxical consequences for distinct cognitive control processes depending on distinct basal or optimal levels of dopamine in different brain regions. PMID:21531388

  12. Glucocorticoid receptors in the prefrontal cortex regulate stress-evoked dopamine efflux and aspects of executive function.

    PubMed

    Butts, Kelly A; Weinberg, Joanne; Young, Allan H; Phillips, Anthony G

    2011-11-08

    Enhanced dopamine efflux in the prefrontal cortex is a well-documented response to acute stress. However, the underlying mechanism(s) for this response is unknown. Using in vivo microdialysis, we demonstrate that blocking glucocorticoid receptors locally within the rat prefrontal cortex results in a reduction in stress-evoked dopamine efflux. In contrast, blocking glucocorticoid receptors in the ventral tegmental area did not affect stress-evoked dopamine efflux in the prefrontal cortex. Additionally, local administration of corticosterone into the prefrontal cortex increased prefrontal dopamine efflux. The functional impact of enhanced dopamine efflux evoked by acute stress was demonstrated using a cognitive task dependent on the prefrontal cortex and sensitive to impairment in working memory. Notably, stress-induced impairments in cognition were attenuated by blockade of glucocorticoid receptors in the prefrontal cortex. Taken together, these data demonstrate that glucocorticoids act locally within the prefrontal cortex to modulate mesocortical dopamine efflux leading to the cognitive impairments observed during acute stress.

  13. Ventral tegmental area dopamine revisited: effects of acute and repeated stress

    PubMed Central

    Holly, Elizabeth N.; Miczek, Klaus A.

    2015-01-01

    Aversive events rapidly and potently excite certain dopamine neurons in the ventral tegmental area (VTA), promoting phasic increases in the medial prefrontal cortex and nucleus accumbens. This is in apparent contradiction to a wealth of literature demonstrating that most VTA dopamine neurons are strongly activated by reward and reward-predictive cues while inhibited by aversive stimuli. How can these divergent processes both be mediated by VTA dopamine neurons? The answer may lie within the functional and anatomical heterogeneity of the VTA. We focus on VTA heterogeneity in anatomy, neurochemistry, electrophysiology, and afferent/efferent connectivity. Second, recent evidence for a critical role of VTA dopamine neurons in response to both acute and repeated stress will be discussed. Understanding which dopamine neurons are activated by stress, the neural mechanisms driving the activation, and where these neurons project will provide valuable insight into how stress can promote psychiatric disorders associated with the dopamine system, such as addiction and depression. PMID:26676983

  14. Basal ganglia circuit loops, dopamine and motivation: A review and enquiry

    PubMed Central

    Ikemoto, Satoshi; Yang, Chen; Tan, Aaron

    2015-01-01

    Dopamine neurons located in the midbrain play a role in motivation that regulates approach behavior (approach motivation). In addition, activation and inactivation of dopamine neurons regulate mood and induce reward and aversion, respectively. Accumulating evidence suggests that such motivational role of dopamine neurons is not limited to those located in the ventral tegmental area, but also in the substantia nigra. The present paper reviews previous rodent work concerning dopamine’s role in approach motivation and the connectivity of dopamine neurons, and proposes two working models: One concerns the relationship between extracellular dopamine concentration and approach motivation. High, moderate and low concentrations of extracellular dopamine induce euphoric, seeking and aversive states, respectively. The other concerns circuit loops involving the cerebral cortex, basal ganglia, thalamus, epithalamus, and midbrain through which dopaminergic activity alters approach motivation. These models should help to generate hypothesis-driven research and provide insights for understanding altered states associated with drugs of abuse and affective disorders. PMID:25907747

  15. Long-term health of dopaminergic neuron transplants in Parkinson's disease patients.

    PubMed

    Hallett, Penelope J; Cooper, Oliver; Sadi, Damaso; Robertson, Harold; Mendez, Ivar; Isacson, Ole

    2014-06-26

    To determine the long-term health and function of transplanted dopamine neurons in Parkinson's disease (PD) patients, the expression of dopamine transporters (DATs) and mitochondrial morphology were examined in human fetal midbrain cellular transplants. DAT was robustly expressed in transplanted dopamine neuron terminals in the reinnervated host putamen and caudate for at least 14 years after transplantation. The transplanted dopamine neurons showed a healthy and nonatrophied morphology at all time points. Labeling of the mitochondrial outer membrane protein Tom20 and α-synuclein showed a typical cellular pathology in the patients' own substantia nigra, which was not observed in transplanted dopamine neurons. These results show that the vast majority of transplanted neurons remain healthy for the long term in PD patients, consistent with clinical findings that fetal dopamine neuron transplants maintain function for up to 15-18 years in patients. These findings are critically important for the rational development of stem-cell-based dopamine neuronal replacement therapies for PD. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. A DNA sequence obtained by replacement of the dopamine RNA aptamer bases is not an aptamer.

    PubMed

    Álvarez-Martos, Isabel; Ferapontova, Elena E

    2017-08-05

    A unique specificity of the aptamer-ligand biorecognition and binding facilitates bioanalysis and biosensor development, contributing to discrimination of structurally related molecules, such as dopamine and other catecholamine neurotransmitters. The aptamer sequence capable of specific binding of dopamine is a 57 nucleotides long RNA sequence reported in 1997 (Biochemistry, 1997, 36, 9726). Later, it was suggested that the DNA homologue of the RNA aptamer retains the specificity of dopamine binding (Biochem. Biophys. Res. Commun., 2009, 388, 732). Here, we show that the DNA sequence obtained by the replacement of the RNA aptamer bases for their DNA analogues is not able of specific biorecognition of dopamine, in contrast to the original RNA aptamer sequence. This DNA sequence binds dopamine and structurally related catecholamine neurotransmitters non-specifically, as any DNA sequence, and, thus, is not an aptamer and cannot be used neither for in vivo nor in situ analysis of dopamine in the presence of structurally related neurotransmitters. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Phasic Stimulation of Midbrain Dopamine Neuron Activity Reduces Salt Consumption

    PubMed Central

    Sandhu, Eleanor C.; Fernando, Anushka B. P.; Tossell, Kyoko; Kokkinou, Michelle; Glegola, Justyna; Howes, Oliver D.

    2018-01-01

    Abstract Salt intake is an essential dietary requirement, but excessive consumption is implicated in hypertension and associated conditions. Little is known about the neural circuit mechanisms that control motivation to consume salt, although the midbrain dopamine system, which plays a key role in other reward-related behaviors, has been implicated. We, therefore, examined the effects on salt consumption of either optogenetic excitation or chemogenetic inhibition of ventral tegmental area (VTA) dopamine neurons in male mice. Strikingly, optogenetic excitation of dopamine neurons decreased salt intake in a rapid and reversible manner, despite a strong salt appetite. Importantly, optogenetic excitation was not aversive, did not induce hyperactivity, and did not alter salt concentration preferences in a need-free state. In addition, we found that chemogenetic inhibition of dopamine neurons had no effect on salt intake. Lastly, optogenetic excitation of dopamine neurons reduced consumption of sucrose following an overnight fast, suggesting a more general role of VTA dopamine neuron excitation in organizing motivated behaviors. PMID:29766048

  18. Illicit dopamine transients: reconciling actions of abused drugs.

    PubMed

    Covey, Dan P; Roitman, Mitchell F; Garris, Paul A

    2014-04-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. Although compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyperactivating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyperactivation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural rewards and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Neurotensin: A role in substance use disorder?

    PubMed

    Ferraro, Luca; Tiozzo Fasiolo, Laura; Beggiato, Sarah; Borelli, Andrea C; Pomierny-Chamiolo, Lucyna; Frankowska, Malgorzata; Antonelli, Tiziana; Tomasini, Maria C; Fuxe, Kjell; Filip, Malgorzata

    2016-02-01

    Neurotensin is a tridecapeptide originally identified in extracts of bovine hypothalamus. This peptide has a close anatomical and functional relationship with the mesocorticolimbic and nigrostriatal dopamine system. Neural circuits containing neurotensin were originally proposed to play a role in the mechanism of action of antipsychotic agents. Additionally, neurotensin-containing pathways were demonstrated to mediate some of the rewarding and/or sensitizing properties of drugs of abuse.This review attempts to contribute to the understanding of the role of neurotensin and its receptors in drug abuse. In particular, we will summarize the potential relevance of neurotensin, its related compounds and neurotensin receptors in substance use disorders, with a focus on the preclinical research. © The Author(s) 2016.

  20. Variability in Dopamine Genes Dissociates Model-Based and Model-Free Reinforcement Learning.

    PubMed

    Doll, Bradley B; Bath, Kevin G; Daw, Nathaniel D; Frank, Michael J

    2016-01-27

    Considerable evidence suggests that multiple learning systems can drive behavior. Choice can proceed reflexively from previous actions and their associated outcomes, as captured by "model-free" learning algorithms, or flexibly from prospective consideration of outcomes that might occur, as captured by "model-based" learning algorithms. However, differential contributions of dopamine to these systems are poorly understood. Dopamine is widely thought to support model-free learning by modulating plasticity in striatum. Model-based learning may also be affected by these striatal effects, or by other dopaminergic effects elsewhere, notably on prefrontal working memory function. Indeed, prominent demonstrations linking striatal dopamine to putatively model-free learning did not rule out model-based effects, whereas other studies have reported dopaminergic modulation of verifiably model-based learning, but without distinguishing a prefrontal versus striatal locus. To clarify the relationships between dopamine, neural systems, and learning strategies, we combine a genetic association approach in humans with two well-studied reinforcement learning tasks: one isolating model-based from model-free behavior and the other sensitive to key aspects of striatal plasticity. Prefrontal function was indexed by a polymorphism in the COMT gene, differences of which reflect dopamine levels in the prefrontal cortex. This polymorphism has been associated with differences in prefrontal activity and working memory. Striatal function was indexed by a gene coding for DARPP-32, which is densely expressed in the striatum where it is necessary for synaptic plasticity. We found evidence for our hypothesis that variations in prefrontal dopamine relate to model-based learning, whereas variations in striatal dopamine function relate to model-free learning. Decisions can stem reflexively from their previously associated outcomes or flexibly from deliberative consideration of potential choice outcomes. Research implicates a dopamine-dependent striatal learning mechanism in the former type of choice. Although recent work has indicated that dopamine is also involved in flexible, goal-directed decision-making, it remains unclear whether it also contributes via striatum or via the dopamine-dependent working memory function of prefrontal cortex. We examined genetic indices of dopamine function in these regions and their relation to the two choice strategies. We found that striatal dopamine function related most clearly to the reflexive strategy, as previously shown, and that prefrontal dopamine related most clearly to the flexible strategy. These findings suggest that dissociable brain regions support dissociable choice strategies. Copyright © 2016 the authors 0270-6474/16/361211-12$15.00/0.

  1. Dopamine Transporter Blockade Increases LTP in the CA1 Region of the Rat Hippocampus via Activation of the D3 Dopamine Receptor

    ERIC Educational Resources Information Center

    Swant, Jarod; Wagner, John J.

    2006-01-01

    Dopamine has been demonstrated to be involved in the modulation of long-term potentiation (LTP) in the CA1 region of the hippocampus. As monoamine transporter blockade will increase the actions of endogenous monoamine neurotransmitters, the effect of a dopamine transporter (DAT) antagonist on LTP was assessed using field excitatory postsynaptic…

  2. Dopamine Is Differentially Encoded by D2 Receptors in Striatal Subregions.

    PubMed

    Engeln, Michel; Fox, Megan E; Lobo, Mary Kay

    2018-05-02

    Striatal dopamine signaling is differentially regulated along the dorso-ventral axis, but how these differences are encoded by dopamine receptors is unknown. In this issue of Neuron, Marcott et al. (2018) show that dopamine activates D2 receptors in regionally distinct ways and dissect the underlying mechanisms behind striatal D2 heterogeneity. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. [Obesity: a review of currently used antiobesity drugs and new compounds in clinical development].

    PubMed

    Zieba, Remigiusz

    2007-10-19

    This review summarizes data on currently used antiobesity drugs and new compounds under clinical development. Three antiobesity drugs are currently accepted for long-term use. Sibutramine is a noradrenaline and serotonin reuptake inhibitor which reduces body weight by about 4-5 kg but increases heart rate and arterial blood pressure. Orlistat is a gastrointestinal lipase inhibitor which results in mean weight loss by about 3 kg and reduces the incidence of type 2 diabetes in patients with impaired glucose tolerance; however, adverse gastrointestinal effects have been observed. Rimonabant is an endocannabinoid CB1 receptor antagonist which induces a 4-5 kg mean weight loss and improves glycemic and lipid profiles, but it induces anxiety and depressive disorders. Unfortunately, there are no data on the chronic administration of these drugs. Other drugs can induce weight loss, e.g. some antidepressants, antiseizure agents, and antidiabetic drugs. The moderate efficacy of currently used antiobesity drugs has led to an intense effort to identify new, safe antiobesity drugs with better therapeutic profiles. The new antiobesity drugs under clinical development include: 1) agents that affect neurotransmitters in the central nervous system, including noradrenaline and dopamine reuptake inhibitors (bupropion, radafaxine), selective 5HT2C receptor agonists (lorcaserin), and selective 5HT6 receptor antagonists, 2) agents that modulate the activity of neuropeptides influencing food intake, including leptin analogues, human ciliary neurotrophic factor (Axokine), neuropeptide Y antagonists, and melanine-concentrating hormone antagonists, 3) agents that affect the peripheral satiety signals and brain-gut axis, e.g. selective cholecystokinin receptor A agonists, PYY3-36, agents decreasing ghrelin activity, 4) thermogenic agents, e.g. selective beta3 receptor agonists and selective thyroid hormone receptor beta agonists, and 5) others, e.g. human growth hormone fragment (AOD9604) and gastrointestinal lipase inhibitor (cetilistat).

  4. Bath salts, mephedrone, and methylenedioxypyrovalerone as emerging illicit drugs that will need targeted therapeutic intervention

    PubMed Central

    Glennon, Richard A.

    2015-01-01

    The term “synthetic cathinones” is fairly new; but, although the abuse of synthetic cathinones is a recent problem, research on cathinone analogs dates back >100 years. One structural element cathinone analogs have in common is an α-aminophenone moiety. Introduction of amine and/or aryl substituents affords a large number of agents. Today, >40 synthetic cathinones have been identified on the clandestine market and many have multiple “street names”. Many cathinone analogs, although not referred to as such until the late 1970s, were initially prepared as intermediates in the synthesis of ephedrine analogs. The cathinones do not represent a pharmacologically or mechanistically homogeneous class of agents. Currently abused synthetic cathinones are derived from earlier agents and seem to produce their actions primarily via the dopamine, norepinephrine, and/or serotonin transporter; that is, they either release and/or inhibit the reuptake of one or more of these neurotransmitters. The actions of these agents can resemble those of central stimulants such as methamphetamine, cocaine, and/or empathogens such as 1-(3,4-methylenedioxyphenyl)-2-aminopropane (MDMA; Ecstasy) and/or produce other effects. Side effects are primarily of a neurological and/or cardiovascular nature. The use of the “and/or” term is emphasized because synthetic cathinones represent a broad class of agents that produce a variety of actions; the agents cannot be viewed as being pharmacologically equivalent. Until valid structure-activity relationships are formulated for each behavioral/mechanistic action, individual synthetic cathinones remain to be evaluated on a case-by-case basis. Treatment of synthetic cathinone intoxication requires more “basic science” research. At this time, treatment is mostly palliative. PMID:24484988

  5. Dopamine synthesis in alcohol drinking-prone and -resistant mouse strains

    PubMed Central

    Siciliano, Cody A.; Locke, Jason L.; Mathews, Tiffany A.; Lopez, Marcelo F.; Becker, Howard C.; Jones, Sara R.

    2017-01-01

    Alcoholism is a prevalent and debilitating neuropsychiatric disease, and much effort has been aimed at elucidating the neurobiological mechanisms underlying maladaptive alcohol drinking in an effort to design rational treatment strategies. In preclinical literature, the use of inbred mouse lines has allowed for the examination of ethanol effects across vulnerable and resistant phenotypes. C57BL/6J mice consistently show higher rates of ethanol drinking compared to most mouse strains. Conversely, DBA/2J mice display low rates of ethanol consumption. Given that the reinforcing and rewarding effects of ethanol are thought to be in part mediated by its actions on dopamine neurotransmission, we hypothesized that alcohol-preferring C57BL/6J and alcohol-avoiding DBA/2J mice would display basal differences in dopamine system function. By administering an L-aromatic acid decarboxylase inhibitor and measuring L-Dopa accumulation via high-performance liquid chromatography as a measure of tyrosine hydroxylase activity, we found no difference in dopamine synthesis between mouse strains in the midbrain, dorsal striatum, or ventral striatum. However, we did find that quinpirole-induced inhibition of dopamine synthesis was greater in the ventral striatum of C57BL/6J mice, suggesting increased presynaptic D2-type dopamine autoreceptor sensitivity. To determine whether dopamine synthesis or autoreceptor sensitivity was altered by a history of ethanol, we exposed C57BL/6J mice to one or two weekly cycles of chronic intermittent ethanol (CIE) exposure and withdrawal. We found that there was an attenuation of baseline dopamine synthesis in the ventral striatum after two cycles of CIE. Finally, we examined tissue content of dopamine and dopamine metabolites across recombinant inbred mice bred from a C57BL/6J × DBA/2J cross (BXD). We found that low dopaminergic activity, as indicated by high dopamine/metabolite ratios, was positively correlated with drinking. Together, these findings show differential autoreceptor effects on dopamine synthesis between C57BL/6J and DBA/2J mice, and suggest that decreased dopaminergic activity is associated with excessive drinking. PMID:27425261

  6. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats

    NASA Astrophysics Data System (ADS)

    Li, Yu-Ting; Wickens, Jeffery R.; Huang, Yi-Ling; Pan, Wynn H. T.; Chen, Fu-Yu Beverly; Chen, Jia-Jin Jason

    2013-08-01

    Objective. Fast-scan cyclic voltammetry (FSCV) is commonly used to monitor phasic dopamine release, which is usually performed using tethered recording and for limited types of animal behavior. It is necessary to design a wireless dopamine sensing system for animal behavior experiments. Approach. This study integrates a wireless FSCV system for monitoring the dopamine signal in the ventral striatum with an electrical stimulator that induces biphasic current to excite dopaminergic neurons in awake freely moving rats. The measured dopamine signals are unidirectionally transmitted from the wireless FSCV module to the host unit. To reduce electrical artifacts, an optocoupler and a separate power are applied to isolate the FSCV system and electrical stimulator, which can be activated by an infrared controller. Main results. In the validation test, the wireless backpack system has similar performance in comparison with a conventional wired system and it does not significantly affect the locomotor activity of the rat. In the cocaine administration test, the maximum electrically elicited dopamine signals increased to around 230% of the initial value 20 min after the injection of 10 mg kg-1 cocaine. In a classical conditioning test, the dopamine signal in response to a cue increased to around 60 nM over 50 successive trials while the electrically evoked dopamine concentration decreased from about 90 to 50 nM in the maintenance phase. In contrast, the cue-evoked dopamine concentration progressively decreased and the electrically evoked dopamine was eliminated during the extinction phase. In the histological evaluation, there was little damage to brain tissue after five months chronic implantation of the stimulating electrode. Significance. We have developed an integrated wireless voltammetry system for measuring dopamine concentration and providing electrical stimulation. The developed wireless FSCV system is proven to be a useful experimental tool for the continuous monitoring of dopamine levels during animal learning behavior studies of freely moving rats.

  7. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa

    Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [ 11C]cocaine to measure DAT, and with [ 11C]raclopride to measure dopamine release (assessed as changes in specific binding of [ 11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when comparedmore » to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less

  8. Visualizing dopamine released from living cells using a nanoplasmonic probe

    NASA Astrophysics Data System (ADS)

    Qin, W. W.; Wang, S. P.; Li, J.; Peng, T. H.; Xu, Y.; Wang, K.; Shi, J. Y.; Fan, C. H.; Li, D.

    2015-09-01

    We report the development of an ultrasensitive nanoplasmonic probe for discriminative detection and imaging of dopamine released from living cells. The sensing mechanism is based on the dopamine-induced seeded-growth of Au nanoparticles (Au NPs) that leads to the shift of the plasmon band. This platform allows for the detection of dopamine with a detection limit down to 0.25 pM within 1 min. This nanoplasmonic assay is further applied to visualize the release of dopamine from living rat pheochromocytoma (PC12) cells under ATP-stimulation with dark-field microscopy (DFM). The DFM results together with real time fluorescence imaging of PC12 cells stained with the Fluo calcium indicator, suggested that ATP stimulated-release of dopamine is concomitant with the Ca2+ influx, and the influx of Ca2+ is through ATP-activated channels instead of the voltage-gated Ca2+ channel (VGC).We report the development of an ultrasensitive nanoplasmonic probe for discriminative detection and imaging of dopamine released from living cells. The sensing mechanism is based on the dopamine-induced seeded-growth of Au nanoparticles (Au NPs) that leads to the shift of the plasmon band. This platform allows for the detection of dopamine with a detection limit down to 0.25 pM within 1 min. This nanoplasmonic assay is further applied to visualize the release of dopamine from living rat pheochromocytoma (PC12) cells under ATP-stimulation with dark-field microscopy (DFM). The DFM results together with real time fluorescence imaging of PC12 cells stained with the Fluo calcium indicator, suggested that ATP stimulated-release of dopamine is concomitant with the Ca2+ influx, and the influx of Ca2+ is through ATP-activated channels instead of the voltage-gated Ca2+ channel (VGC). Electronic supplementary information (ESI) available: Fig. S1-S4 and Table S1. See DOI: 10.1039/c5nr04433b

  9. Switch from excitatory to inhibitory actions of ethanol on dopamine levels after chronic exposure: Role of kappa opioid receptors

    PubMed Central

    Karkhanis, Anushree N.; Huggins, Kimberly N.; Rose, Jamie H.; Jones, Sara R.

    2016-01-01

    Acute ethanol exposure is known to stimulate the dopamine system; however, chronic exposure has been shown to downregulate the dopamine system. In rodents, chronic intermittent exposure (CIE) to ethanol also increases negative affect during withdrawal, such as, increases in anxiety- and depressive-like behavior. Moreover, CIE exposure results in increased ethanol drinking and preference during withdrawal. Previous literature documents reductions in CIE-induced anxiety-, depressive-like behaviors and ethanol intake in response to kappa opioid receptor (KOR) blockade. KORs are located on presynaptic dopamine terminals in the nucleus accumbens (NAc) and inhibit release, an effect which has been linked to negative affective behaviors. Previous reports show an upregulation in KOR function following extended CIE exposure; however it is not clear whether there is a direct link between KOR upregulation and dopamine downregulation during withdrawal from CIE. This study aimed to examine the effects of KOR modulation on dopamine responses to ethanol of behaving mice exposed to air or ethanol vapor in a repeated intermittent pattern. First, we showed that KORs have a greater response to an agonist after moderate CIE compared to air exposed mice using ex vivo fast scan cyclic voltammetry. Second, using in vivo microdialysis, we showed that, in contrast to the expected increase in extracellular levels of dopamine following an acute ethanol challenge in air exposed mice, CIE exposed mice exhibited a robust decrease in dopamine levels. Third, we showed that blockade of KORs reversed the aberrant inhibitory dopamine response to ethanol in CIE exposed mice while not affecting the air exposed mice demonstrating that inhibition of KORs “rescued” dopamine responses in CIE exposed mice. Taken together, these findings indicate that augmentation of dynorphin/KOR system activity drives the reduction in stimulated (electrical and ethanol) dopamine release in the NAc. Thus, blockade of KORs is a promising avenue for developing pharmacotherapies for alcoholism. PMID:27450094

  10. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release.

    PubMed

    Volkow, Nora D; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S; Telang, Frank; Logan, Jean; Tomasi, Dardo

    2015-11-01

    Methamphetamine's widepread abuse and concerns that it might increase Parkinson's disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [(11)C]cocaine to measure DAT, and with [(11)C]raclopride to measure dopamine release (assessed as changes in specific binding of [(11)C]raclopride between placebo and methylphenidate), which was used as a marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals. Published by Elsevier Inc.

  11. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release

    DOE PAGES

    Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa; ...

    2015-07-21

    Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [ 11C]cocaine to measure DAT, and with [ 11C]raclopride to measure dopamine release (assessed as changes in specific binding of [ 11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when comparedmore » to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less

  12. Impact of methamphetamine on dopamine neurons in primates is dependent on age: implications for development of Parkinson's disease

    PubMed Central

    Morrow, Bret A.; Roth, Robert H.; Redmond, D. Eugene; Elsworth, John D.

    2011-01-01

    Methamphetamine is a CNS stimulant with limited therapeutic indications, but is widely abused. Short-term exposure to higher doses, or long-term exposure to lower doses, of methamphetamine induces lasting damage to nigrostriatal dopamine neurons in man and animals. Strong evidence indicates that the mechanism for this detrimental effect on dopamine neurons involves oxidative stress exerted by reactive oxygen species. This study investigates the relative susceptibility of dopamine neurons in mid-gestation, young, and adult (not aged) monkeys to 4 treatments with methamphetamine over 2 days. Primate dopamine neurons undergo natural cell death at mid-gestation, and we hypothesized that during this event they are particularly vulnerable to oxidative stress. The results indicated that at mid-gestation and in adults, dopamine neurons were susceptible to methamphetamine-induced damage, as indicated by loss of striatal TH immunoreactivity and dopamine concentration. However, dopamine neurons in young animals appeared totally resistant to the treatment, despite this group having higher brain levels of methamphetamine 3 hours after administration than the adults. As a possible explanation for the protection, striatal GDNF levels were elevated in young animals 1-week after treatment, but not in adults following methamphetamine treatment. Implications of these primate studies are: 1) the susceptibility of dopamine neurons at mid-gestation to methamphetamine warns against the risk of exposing pregnant women to the drug or oxidative stressors, and supports the hypothesis of Parkinson's disease being associated with oxidative stress during development, 2) elucidation of the mechanism of resistance of dopamine neurons in the young animals to methamphetamine-induced oxidative stress may provide targets for slowing or preventing age- or disease-related loss of adult nigrostriatal DA neurons, and 3) the increased striatal production of GDNF in young animals, but not in adults, in response to methamphetamine, suggests the possibility of an age-related change in the neurotrophic capacity of the striatal dopamine system. PMID:21640165

  13. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats.

    PubMed

    Li, Yu-Ting; Wickens, Jeffery R; Huang, Yi-Ling; Pan, Wynn H T; Chen, Fu-Yu Beverly; Chen, Jia-Jin Jason

    2013-08-01

    Fast-scan cyclic voltammetry (FSCV) is commonly used to monitor phasic dopamine release, which is usually performed using tethered recording and for limited types of animal behavior. It is necessary to design a wireless dopamine sensing system for animal behavior experiments. This study integrates a wireless FSCV system for monitoring the dopamine signal in the ventral striatum with an electrical stimulator that induces biphasic current to excite dopaminergic neurons in awake freely moving rats. The measured dopamine signals are unidirectionally transmitted from the wireless FSCV module to the host unit. To reduce electrical artifacts, an optocoupler and a separate power are applied to isolate the FSCV system and electrical stimulator, which can be activated by an infrared controller. In the validation test, the wireless backpack system has similar performance in comparison with a conventional wired system and it does not significantly affect the locomotor activity of the rat. In the cocaine administration test, the maximum electrically elicited dopamine signals increased to around 230% of the initial value 20 min after the injection of 10 mg kg(-1) cocaine. In a classical conditioning test, the dopamine signal in response to a cue increased to around 60 nM over 50 successive trials while the electrically evoked dopamine concentration decreased from about 90 to 50 nM in the maintenance phase. In contrast, the cue-evoked dopamine concentration progressively decreased and the electrically evoked dopamine was eliminated during the extinction phase. In the histological evaluation, there was little damage to brain tissue after five months chronic implantation of the stimulating electrode. We have developed an integrated wireless voltammetry system for measuring dopamine concentration and providing electrical stimulation. The developed wireless FSCV system is proven to be a useful experimental tool for the continuous monitoring of dopamine levels during animal learning behavior studies of freely moving rats.

  14. Regulation of bat echolocation pulse acoustics by striatal dopamine.

    PubMed

    Tressler, Jedediah; Schwartz, Christine; Wellman, Paul; Hughes, Samuel; Smotherman, Michael

    2011-10-01

    The ability to control the bandwidth, amplitude and duration of echolocation pulses is a crucial aspect of echolocation performance but few details are known about the neural mechanisms underlying the control of these voice parameters in any mammal. The basal ganglia (BG) are a suite of forebrain nuclei centrally involved in sensory-motor control and are characterized by their dependence on dopamine. We hypothesized that pharmacological manipulation of brain dopamine levels could reveal how BG circuits might influence the acoustic structure of bat echolocation pulses. A single intraperitoneal injection of a low dose (5 mg kg(-1)) of the neurotoxin 1-methyl-4-phenylpyridine (MPTP), which selectively targets dopamine-producing cells of the substantia nigra, produced a rapid degradation in pulse acoustic structure and eliminated the bat's ability to make compensatory changes in pulse amplitude in response to background noise, i.e. the Lombard response. However, high-performance liquid chromatography (HPLC) measurements of striatal dopamine concentrations revealed that the main effect of MPTP was a fourfold increase rather than the predicted decrease in striatal dopamine levels. After first using autoradiographic methods to confirm the presence and location of D(1)- and D(2)-type dopamine receptors in the bat striatum, systemic injections of receptor subtype-specific agonists showed that MPTP's effects on pulse acoustics were mimicked by a D(2)-type dopamine receptor agonist (Quinpirole) but not by a D(1)-type dopamine receptor agonist (SKF82958). The results suggest that BG circuits have the capacity to influence echolocation pulse acoustics, particularly via D(2)-type dopamine receptor-mediated pathways, and may therefore represent an important mechanism for vocal control in bats.

  15. Regulator of G protein signaling-12 modulates the dopamine transporter in ventral striatum and locomotor responses to psychostimulants.

    PubMed

    Gross, Joshua D; Kaski, Shane W; Schroer, Adam B; Wix, Kimberley A; Siderovski, David P; Setola, Vincent

    2018-02-01

    Regulators of G protein signaling are proteins that accelerate the termination of effector stimulation after G protein-coupled receptor activation. Many regulators of G protein signaling proteins are highly expressed in the brain and therefore considered potential drug discovery targets for central nervous system pathologies; for example, here we show that RGS12 is highly expressed in microdissected mouse ventral striatum. Given a role for the ventral striatum in psychostimulant-induced locomotor activity, we tested whether Rgs12 genetic ablation affected behavioral responses to amphetamine and cocaine. RGS12 loss significantly decreased hyperlocomotion to lower doses of both amphetamine and cocaine; however, other outcomes of administration (sensitization and conditioned place preference) were unaffected, suggesting that RGS12 does not function in support of the rewarding properties of these psychostimulants. To test whether observed response changes upon RGS12 loss were caused by changes to dopamine transporter expression and/or function, we prepared crude membranes from the brains of wild-type and RGS12-null mice and measured dopamine transporter-selective [ 3 H]WIN 35428 binding, revealing an increase in dopamine transporter levels in the ventral-but not dorsal-striatum of RGS12-null mice. To address dopamine transporter function, we prepared striatal synaptosomes and measured [ 3 H]dopamine uptake. Consistent with increased [ 3 H]WIN 35428 binding, dopamine transporter-specific [ 3 H]dopamine uptake in RGS12-null ventral striatal synaptosomes was found to be increased. Decreased amphetamine-induced locomotor activity and increased [ 3 H]WIN 35428 binding were recapitulated with an independent RGS12-null mouse strain. Thus, we propose that RGS12 regulates dopamine transporter expression and function in the ventral striatum, affecting amphetamine- and cocaine-induced increases in dopamine levels that specifically elicit acute hyperlocomotor responses.

  16. Occupancy of striatal and extrastriatal dopamine D2/D3 receptors by olanzapine and haloperidol.

    PubMed

    Kessler, Robert M; Ansari, Mohammad Sib; Riccardi, Patrizia; Li, Rui; Jayathilake, Karuna; Dawant, Benoit; Meltzer, Herbert Y

    2005-12-01

    There have been conflicting reports as to whether olanzapine produces lower occupancy of striatal dopamine D(2)/D(3) receptor than typical antipsychotic drugs and preferential occupancy of extrastriatal dopamine D(2)/D(3) receptors. We performed [(18)F] fallypride PET studies in six schizophrenic subjects treated with olanzapine and six schizophrenic subjects treated with haloperidol to examine the occupancy of striatal and extrastriatal dopamine receptors by these antipsychotic drugs. [(18)F] setoperone PET studies were performed in seven olanzapine-treated subjects to determine 5-HT(2A) receptor occupancy. Occupancy of dopamine D(2)/D(3) receptors by olanzapine was not significantly different from that seen with haloperidol in the putamen, ventral striatum, medial thalamus, amygdala, or temporal cortex, that is, 67.5-78.2% occupancy; olanzapine produced no preferential occupancy of dopamine D(2)/D(3) receptors in the ventral striatum, medial thalamus, amygdala, or temporal cortex. There was, however, significantly lower occupancy of substantia nigra/VTA dopamine D(2)/D(3) receptors in olanzapine-treated compared to haloperidol-treated subjects, that is, 40.2 vs 59.3% (p=0.0014, corrected for multiple comparisons); in olanzapine-treated subjects, the substantia nigra/VTA was the only region with significantly lower dopamine D(2)/D(3) receptor occupancy than the putamen, that is, 40.2 vs 69.2% (p<0.001, corrected for multiple comparison). Occupancy of 5-HT(2A) receptors was 85-93% in the olanzapine- treated subjects. The results of this study demonstrated that olanzapine does not produce preferential occupancy of extrastriatal dopamine D(2)/D(3) receptors but does spare substantia nigra/VTA receptors. Sparing of substantia nigra/VTA dopamine D(2)/D(3) receptor occupancy may contribute to the low incidence of extrapyramidal side effects in olanzapine-treated patients.

  17. Direct and Systemic Administration of a CNS-Permeant Tamoxifen Analog Reduces Amphetamine-Induced Dopamine Release and Reinforcing Effects.

    PubMed

    Carpenter, Colleen; Zestos, Alexander G; Altshuler, Rachel; Sorenson, Roderick J; Guptaroy, Bipasha; Showalter, Hollis D; Kennedy, Robert T; Jutkiewicz, Emily; Gnegy, Margaret E

    2017-09-01

    Amphetamines (AMPHs) are globally abused. With no effective treatment for AMPH addiction to date, there is urgent need for the identification of druggable targets that mediate the reinforcing action of this stimulant class. AMPH-stimulated dopamine efflux is modulated by protein kinase C (PKC) activation. Inhibition of PKC reduces AMPH-stimulated dopamine efflux and locomotor activity. The only known CNS-permeant PKC inhibitor is the selective estrogen receptor modulator tamoxifen. In this study, we demonstrate that a tamoxifen analog, 6c, which more potently inhibits PKC than tamoxifen but lacks affinity for the estrogen receptor, reduces AMPH-stimulated increases in extracellular dopamine and reinforcement-related behavior. In rat striatal synaptosomes, 6c was almost fivefold more potent at inhibiting AMPH-stimulated dopamine efflux than [ 3 H]dopamine uptake through the dopamine transporter (DAT). The compound did not compete with [ 3 H]WIN 35,428 binding or affect surface DAT levels. Using microdialysis, direct accumbal administration of 1 μM 6c reduced dopamine overflow in freely moving rats. Using LC-MS, we demonstrate that 6c is CNS-permeant. Systemic treatment of rats with 6 mg/kg 6c either simultaneously or 18 h prior to systemic AMPH administration reduced both AMPH-stimulated dopamine overflow and AMPH-induced locomotor effects. Finally, 18 h pretreatment of rats with 6 mg/kg 6c s.c. reduces AMPH-self administration but not food self-administration. These results demonstrate the utility of tamoxifen analogs in reducing AMPH effects on dopamine and reinforcement-related behaviors and suggest a new avenue of development for therapeutics to reduce AMPH abuse.

  18. Species differences in somatodendritic dopamine transmission determine D2-autoreceptor mediated inhibition of ventral tegmental area neuron firing

    PubMed Central

    Courtney, Nicholas A; Mamaligas, Aphroditi A; Ford, Christopher P

    2012-01-01

    The somatodendritic release of dopamine within the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) activates inhibitory post-synaptic D2-receptors on dopaminergic neurons. The proposed mechanisms that regulate this form of transmission differ between electrochemical studies using rats and guinea pigs and electrophysiological studies using mice. This study examines the release and resulting dopamine D2-autoreceptor mediated inhibitory post-synaptic currents (D2-IPSCs) in the VTA of mouse, rat and guinea pig. Robust D2-IPSCs were observed in all recordings from neurons in slices taken from mouse, whereas in rat and guinea pig D2-IPSCs were observed less frequently and were significantly smaller in amplitude. In slices taken from guinea pig, dopamine release was more persistent under conditions of reduced extracellular calcium. The decline in the concentration of dopamine was also prolonged and not as sensitive to inhibition of reuptake by cocaine. This resulted in an increased duration of D2-IPSCs in the guinea pig. Therefore, unlike the mouse or the rat, the time course of dopamine in the extracellular space of the guinea pig determined the duration the D2-IPSC. Functionally, differences in D2-IPSCs resulted in inhibition of dopamine neuron firing only in slices from mouse. The results suggest that the mechanisms and functional consequences of somatodendritic dopamine transmission in the VTA vary among species. This highlights the complexity that underlies dopamine dependent transmission in one brain area. Differences in somatodendritic transmission would be expected in vivo to affect the downstream activity of the mesocorticolimbic dopamine system and subsequent terminal release. PMID:23015441

  19. Dopamine agonist withdrawal syndrome: implications for patient care.

    PubMed

    Nirenberg, Melissa J

    2013-08-01

    Dopamine agonists are effective treatments for a variety of indications, including Parkinson's disease and restless legs syndrome, but may have serious side effects, such as orthostatic hypotension, hallucinations, and impulse control disorders (including pathological gambling, compulsive eating, compulsive shopping/buying, and hypersexuality). The most effective way to alleviate these side effects is to taper or discontinue dopamine agonist therapy. A subset of patients who taper a dopamine agonist, however, develop dopamine agonist withdrawal syndrome (DAWS), which has been defined as a severe, stereotyped cluster of physical and psychological symptoms that correlate with dopamine agonist withdrawal in a dose-dependent manner, cause clinically significant distress or social/occupational dysfunction, are refractory to levodopa and other dopaminergic medications, and cannot be accounted for by other clinical factors. The symptoms of DAWS include anxiety, panic attacks, dysphoria, depression, agitation, irritability, suicidal ideation, fatigue, orthostatic hypotension, nausea, vomiting, diaphoresis, generalized pain, and drug cravings. The severity and prognosis of DAWS is highly variable. While some patients have transient symptoms and make a full recovery, others have a protracted withdrawal syndrome lasting for months to years, and therefore may be unwilling or unable to discontinue DA therapy. Impulse control disorders appear to be a major risk factor for DAWS, and are present in virtually all affected patients. Thus, patients who are unable to discontinue dopamine agonist therapy may experience chronic impulse control disorders. At the current time, there are no known effective treatments for DAWS. For this reason, providers are urged to use dopamine agonists judiciously, warn patients about the risks of DAWS prior to the initiation of dopamine agonist therapy, and follow patients closely for withdrawal symptoms during dopamine agonist taper.

  20. Dopamine elevates and lowers astroglial Ca2+ through distinct pathways depending on local synaptic circuitry.

    PubMed

    Jennings, Alistair; Tyurikova, Olga; Bard, Lucie; Zheng, Kaiyu; Semyanov, Alexey; Henneberger, Christian; Rusakov, Dmitri A

    2017-03-01

    Whilst astrocytes in culture invariably respond to dopamine with cytosolic Ca 2+ rises, the dopamine sensitivity of astroglia in situ and its physiological roles remain unknown. To minimize effects of experimental manipulations on astroglial physiology, here we monitored Ca 2+ in cells connected via gap junctions to astrocytes loaded whole-cell with cytosolic indicators in area CA1 of acute hippocampal slices. Aiming at high sensitivity of [Ca 2+ ] measurements, we also employed life-time imaging of the Ca 2+ indicator Oregon Green BAPTA-1. We found that dopamine triggered a dose-dependent, bidirectional Ca 2+ response in stratum radiatum astroglia, a jagged elevation accompanied and followed by below-baseline decreases. The elevation depended on D1/D2 receptors and engaged intracellular Ca 2+ storage and removal whereas the dopamine-induced [Ca 2+ ] decrease involved D2 receptors only and was sensitive to Ca 2+ channel blockade. In contrast, the stratum lacunosum moleculare astroglia generated higher-threshold dopamine-induced Ca 2+ responses which did not depend on dopamine receptors and were uncoupled from the prominent inhibitory action of dopamine on local perforant path synapses. Our findings thus suggest that a single neurotransmitter-dopamine-could either elevate or decrease astrocyte [Ca 2+ ] depending on the receptors involved, that such actions are specific to the regional neural circuitry and that they may be causally uncoupled from dopamine actions on local synapses. The results also indicate that [Ca 2+ ] elevations commonly detected in astroglia can represent the variety of distinct mechanisms acting on the microscopic scale. GLIA 2017;65:447-459. © 2016 The Authors Glia Published by Wiley Periodicals, Inc.

  1. Evidence that Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human Brain

    PubMed Central

    Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S.; Logan, Jean; Benveniste, Helene; Kim, Ron; Thanos, Panayotis K.; Ferré, Sergi

    2012-01-01

    Dopamine D2 receptors are involved with wakefulness but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [11C]raclopride in controls) in striatum, but could not determine if this reflected dopamine increases ([11C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (drug that increases dopamine by blocking dopamine transporters), during sleep deprivation versus rested-sleep with the assumption that methylphenidate’s effects would be greater, if indeed, dopamine release was increased during sleep deprivation. We scanned 20 controls with [11C]raclopride after rested-sleep and after one night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared to rested-sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared to placebo) did not differ between rested-sleep and sleep deprivation and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to one night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans. PMID:22573693

  2. Regulation of bat echolocation pulse acoustics by striatal dopamine

    PubMed Central

    Tressler, Jedediah; Schwartz, Christine; Wellman, Paul; Hughes, Samuel; Smotherman, Michael

    2011-01-01

    SUMMARY The ability to control the bandwidth, amplitude and duration of echolocation pulses is a crucial aspect of echolocation performance but few details are known about the neural mechanisms underlying the control of these voice parameters in any mammal. The basal ganglia (BG) are a suite of forebrain nuclei centrally involved in sensory-motor control and are characterized by their dependence on dopamine. We hypothesized that pharmacological manipulation of brain dopamine levels could reveal how BG circuits might influence the acoustic structure of bat echolocation pulses. A single intraperitoneal injection of a low dose (5 mg kg–1) of the neurotoxin 1-methyl-4-phenylpyridine (MPTP), which selectively targets dopamine-producing cells of the substantia nigra, produced a rapid degradation in pulse acoustic structure and eliminated the bat's ability to make compensatory changes in pulse amplitude in response to background noise, i.e. the Lombard response. However, high-performance liquid chromatography (HPLC) measurements of striatal dopamine concentrations revealed that the main effect of MPTP was a fourfold increase rather than the predicted decrease in striatal dopamine levels. After first using autoradiographic methods to confirm the presence and location of D1- and D2-type dopamine receptors in the bat striatum, systemic injections of receptor subtype-specific agonists showed that MPTP's effects on pulse acoustics were mimicked by a D2-type dopamine receptor agonist (Quinpirole) but not by a D1-type dopamine receptor agonist (SKF82958). The results suggest that BG circuits have the capacity to influence echolocation pulse acoustics, particularly via D2-type dopamine receptor-mediated pathways, and may therefore represent an important mechanism for vocal control in bats. PMID:21900471

  3. Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus.

    PubMed

    Rocchetti, Jill; Isingrini, Elsa; Dal Bo, Gregory; Sagheby, Sara; Menegaux, Aurore; Tronche, François; Levesque, Daniel; Moquin, Luc; Gratton, Alain; Wong, Tak Pan; Rubinstein, Marcelo; Giros, Bruno

    2015-03-15

    Dysfunctional mesocorticolimbic dopamine signaling has been linked to alterations in motor and reward-based functions associated with psychiatric disorders. Converging evidence from patients with psychiatric disorders and use of antipsychotics suggests that imbalance of dopamine signaling deeply alters hippocampal functions. However, given the lack of full characterization of a functional mesohippocampal pathway, the precise role of dopamine transmission in memory deficits associated with these disorders and their dedicated therapies is unknown. In particular, the positive outcome of antipsychotic treatments, commonly antagonizing D2 dopamine receptors (D2Rs), on cognitive deficits and memory impairments remains questionable. Following pharmacologic and genetic manipulation of dopamine transmission, we performed anatomic, neurochemical, electrophysiologic, and behavioral investigations to uncover the role of D2Rs in hippocampal-dependent plasticity and learning. Naïve mice (n = 4-21) were used in the different procedures. Dopamine modulated both long-term potentiation and long-term depression in the temporal hippocampus as well as spatial and recognition learning and memory in mice through D2Rs. Although genetic deletion or pharmacologic blockade of D2Rs led to the loss of long-term potentiation expression, the specific genetic removal of presynaptic D2Rs impaired long-term depression and performances on spatial memory tasks. Presynaptic D2Rs in dopamine fibers of the temporal hippocampus tightly modulate long-term depression expression and play a major role in the regulation of hippocampal learning and memory. This direct role of mesohippocampal dopamine input as uncovered here adds a new dimension to dopamine involvement in the physiology underlying deficits associated with neuropsychiatric disorders. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. In Vivo Comparison of Norepinephrine and Dopamine Release in Rat Brain by Simultaneous Measurements with Fast-Scan Cyclic Voltammetry

    PubMed Central

    Park, Jinwoo; Takmakov, Pavel; Wightman, R. Mark

    2011-01-01

    Brain norepinephrine and dopamine regulate a variety of critical behaviors such as stress, learning, memory, and drug addiction. Here, we demonstrate differences in the regulation of in vivo neurotransmission for dopamine in the anterior nucleus accumbens (NAc) and norepinephrine in the ventral bed nucleus of the stria terminalis (vBNST) of the anesthetized rat. Release of the two catecholamines was measured simultaneously using fast-scan cyclic voltammetry (FSCV) at two different carbon-fiber microelectrodes, each implanted in the brain region of interest. Simultaneous dopamine and norepinephrine release was evoked by electrical stimulation of a region where the ventral noradrenergic bundle (VNB), the pathway of noradrenergic neurons, courses through the ventral tegmental area/substantia nigra (VTA/SN), the origin of dopaminergic cell bodies. The release and uptake of norepinephrine in the vBNST were both significantly slower than for dopamine in the NAc. Pharmacological manipulations in the same animal demonstrated that the two catecholamines are differently regulated. The combination of a dopamine autoreceptor antagonist and amphetamine significantly increased basal extracellular dopamine whereas a norepinephrine autoreceptor antagonist and amphetamine did not change basal norepinephrine concentration. α-Methyl-p-tyrosine, a tyrosine hydroxylase inhibitor, decreased electrically evoked dopamine release faster than norepinephrine. The dual-microelectrode FSCV technique along with anatomical and pharmacological evidence confirms that dopamine in the NAc and norepinephrine in the vBNST can be monitored selectively and simultaneously in the same animal. The high temporal and spatial resolution of the technique enabled us to examine differences in the dynamics of extracellular norepinephrine and dopamine concurrently in two different limbic structures. PMID:21933188

  5. Isolated Flinders Sensitive Line rats have decreased dopamine D2 receptor mRNA.

    PubMed

    Bjørnebekk, Astrid; Mathé, Aleksander A; Brené, Stefan

    2007-07-02

    Social isolation has profound effects on animal behavior and dopamine systems. We investigated the effect of social isolation on the dopamine receptor and neuropeptide mRNAs in the brain reward system in an animal model of depression, the Flinders Sensitive Line rats and Sprague-Dawley controls. We demonstrate that socially isolated but not group housed Flinders sensitive line rats had lower dopamine D2 receptor mRNA levels compared with Sprague-Dawley rats. Isolated and group housed Flinders Sensitive Line rats had higher levels of dopamine D1 receptor and substance P and enkephalin but not dynorphin mRNAs when compared with Sprague-Dawley rats. Our findings of decreased dopamine D2 receptor levels in socially isolated Flinders Sensitive Line rats suggest that low D2 receptor expression may play a role in pathophysiology of depression.

  6. Crosstalk between insulin and dopamine signaling: A basis for the metabolic effects of antipsychotic drugs.

    PubMed

    Nash, Abigail I

    2017-10-01

    In the setting of rising rates of obesity and metabolic syndrome, characterized in part by hyperinsulinemia, it is increasingly important to understand the mechanisms that contribute to insulin dysregulation. The higher risk for metabolic syndrome imparted by antipsychotic medication use highlights one such mechanism. Though there is great variation in the number and types of signaling pathways targeted by these medications, the one common mechanism of action is through dopamine. Dopamine's effects on insulin signaling begin at the level of insulin secretion from the pancreas and continue through the central nervous system. In a reciprocal fashion, insulin also affects dopamine signaling, with specific effects on dopamine reuptake from the synapse. This review probes the dopamine-insulin connection to provide a comprehensive examination of how antipsychotics may contribute towards insulin resistance. Published by Elsevier B.V.

  7. Ih Current Is Necessary to Maintain Normal Dopamine Fluctuations and Sleep Consolidation in Drosophila

    PubMed Central

    Gonzalo-Gomez, Alicia; Turiegano, Enrique; León, Yolanda; Molina, Isabel; Torroja, Laura; Canal, Inmaculada

    2012-01-01

    HCN channels are becoming pharmacological targets mainly in cardiac diseases. But apart from their well-known role in heart pacemaking, these channels are widely expressed in the nervous system where they contribute to the neuron firing pattern. Consequently, abolishing Ih current might have detrimental consequences in a big repertoire of behavioral traits. Several studies in mammals have identified the Ih current as an important determinant of the firing activity of dopaminergic neurons, and recent evidences link alterations in this current to various dopamine-related disorders. We used the model organism Drosophila melanogaster to investigate how lack of Ih current affects dopamine levels and the behavioral consequences in the sleep∶activity pattern. Unlike mammals, in Drosophila there is only one gene encoding HCN channels. We generated a deficiency of the DmIh core gene region and measured, by HPLC, levels of dopamine. Our data demonstrate daily variations of dopamine in wild-type fly heads. Lack of Ih current dramatically alters dopamine pattern, but different mechanisms seem to operate during light and dark conditions. Behaviorally, DmIh mutant flies display alterations in the rest∶activity pattern, and altered circadian rhythms. Our data strongly suggest that Ih current is necessary to prevent dopamine overproduction at dark, while light input allows cycling of dopamine in an Ih current dependent manner. Moreover, lack of Ih current results in behavioral defects that are consistent with altered dopamine levels. PMID:22574167

  8. Dopamine-Dependent Compensation Maintains Motor Behavior in Mice with Developmental Ablation of Dopaminergic Neurons

    PubMed Central

    DeMaro, Joseph A.; Knoten, Amanda; Hoshi, Masato; Pehek, Elizabeth; Johnson, Eugene M.; Gereau, Robert W.

    2013-01-01

    The loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and consequent depletion of striatal dopamine are known to underlie the motor deficits observed in Parkinson's disease (PD). Adaptive changes in dopaminergic terminals and in postsynaptic striatal neurons can compensate for significant losses of striatal dopamine, resulting in preservation of motor behavior. In addition, compensatory changes independent of striatal dopamine have been proposed based on PD therapies that modulate nondopaminergic circuits within the basal ganglia. We used a genetic strategy to selectively destroy dopaminergic neurons in mice during development to determine the necessity of these neurons for the maintenance of normal motor behavior in adult and aged mice. We find that loss of 90% of SNc dopaminergic neurons and consequent depletion of >95% of striatal dopamine does not result in changes in motor behavior in young-adult or aged mice as evaluated by an extensive array of motor behavior tests. Treatment of aged mutant mice with the dopamine receptor antagonist haloperidol precipitated motor behavior deficits in aged mutant mice, indicating that <5% of striatal dopamine is sufficient to maintain motor function in these mice. We also found that mutant mice exhibit an exaggerated response to l-DOPA compared with control mice, suggesting that preservation of motor function involves sensitization of striatal dopamine receptors. Our results indicate that congenital loss of dopaminergic neurons induces remarkable adaptions in the nigrostriatal system where limited amounts of dopamine in the dorsal striatum can maintain normal motor function. PMID:24155314

  9. Dopamine Gene Profiling to Predict Impulse Control and Effects of Dopamine Agonist Ropinirole.

    PubMed

    MacDonald, Hayley J; Stinear, Cathy M; Ren, April; Coxon, James P; Kao, Justin; Macdonald, Lorraine; Snow, Barry; Cramer, Steven C; Byblow, Winston D

    2016-07-01

    Dopamine agonists can impair inhibitory control and cause impulse control disorders for those with Parkinson disease (PD), although mechanistically this is not well understood. In this study, we hypothesized that the extent of such drug effects on impulse control is related to specific dopamine gene polymorphisms. This double-blind, placebo-controlled study aimed to examine the effect of single doses of 0.5 and 1.0 mg of the dopamine agonist ropinirole on impulse control in healthy adults of typical age for PD onset. Impulse control was measured by stop signal RT on a response inhibition task and by an index of impulsive decision-making on the Balloon Analogue Risk Task. A dopamine genetic risk score quantified basal dopamine neurotransmission from the influence of five genes: catechol-O-methyltransferase, dopamine transporter, and those encoding receptors D1, D2, and D3. With placebo, impulse control was better for the high versus low genetic risk score groups. Ropinirole modulated impulse control in a manner dependent on genetic risk score. For the lower score group, both doses improved response inhibition (decreased stop signal RT) whereas the lower dose reduced impulsiveness in decision-making. Conversely, the higher score group showed a trend for worsened response inhibition on the lower dose whereas both doses increased impulsiveness in decision-making. The implications of the present findings are that genotyping can be used to predict impulse control and whether it will improve or worsen with the administration of dopamine agonists.

  10. Effect of Gingerol on Cisplatin-Induced Pica Analogous to Emesis Via Modulating Expressions of Dopamine 2 Receptor, Dopamine Transporter and Tyrosine Hydroxylase in the Vomiting Model of Rats.

    PubMed

    Qian, Weibin; Cai, Xinrui; Wang, Yingying; Zhang, Xinying; Zhao, Hongmin; Qian, Qiuhai; Yang, Zhihong; Liu, Zhantao; Hasegawa, Junichi

    2016-06-01

    Gingerol, the generic term for pungent constituents in ginger, has been used for treating vomiting in China. We are going to investigate the mechanisms of inhibitive effect of gingerol on cisplatin-induced pica behaviour by studying on both peripheral and central levels, and the effects of gingerol on homeostasis of dopamine (DA) transmission: dopamine D2 receptor (D2R), dopamine transporter (DAT) and tyrosine hydroxylase (TH). The antiemetic effect of gingerol was investigated on a vomiting model in rats induced by cisplatin 3 mg·kg(-1) intraperitoneal injection (i.p.). Rats were randomly divided into the normal control group (C), simple gingerol control group (CG), cisplatin control group (V), cisplatin + metoclopramide group (M), cisplatin + low-dose gingerol group (GL), cisplatin + middle-dose gingerol group (GM) and cisplatin + high-dose gingerol group (GH). In observation period, rats in Groups C and V were pretreated with sterile saline 3 mL i.g.; rats in Group CG were pretreated with gingerol 40 mg·kg(-1) i.g.; rats in Group M were pretreated with metoclopramide 2.5 mg·kg(-1) i.g.; rats in Groups GL, GM and GH were pretreated with gingerol 10, 20 and 40 mg·kg(-1) i.g. for 3 days, respectively. Cisplatin (3 mg·kg(-1), i.p.) was administered one time after each treatment with the antiemetic agent or its vehicle except the Groups C and CG. The distribution of D2R, DAT and TH in the area postrema and ileum were measured by immunohistochemistry and quantitated based on the image analysis, and the expression of DAT and TH in the area postrema and ileum were measured by RT-PCR. The weights of kaolin eaten of the remaining rats were observed in every 6 h continuously for 72 h. The weight of kaolin eaten in rats induced by cisplatin was significantly reduced by pretreatment with gingerol in a dose-dependent manner during the 0-24 h and 24-72 h periods (P < 0.05). Gingerol markedly improved gastric emptying induced by cisplatin in a dose-dependent manner (P < 0.05), and exhibited effective dose-dependent inhibition on the increase of expression levels of D2R and TH and the decrease of expression levels of DAT in both the ileum and area postrema (P < 0.05). Gingerol is effective on cisplatin-induced emesis in rats possibly by inhibiting central or peripheral increase of DA by inhibiting D2R, TH and accelerating DAT.

  11. Noradrenergic modulation of neural erotic stimulus perception.

    PubMed

    Graf, Heiko; Wiegers, Maike; Metzger, Coraline Danielle; Walter, Martin; Grön, Georg; Abler, Birgit

    2017-09-01

    We recently investigated neuromodulatory effects of the noradrenergic agent reboxetine and the dopamine receptor affine amisulpride in healthy subjects on dynamic erotic stimulus processing. Whereas amisulpride left sexual functions and neural activations unimpaired, we observed detrimental activations under reboxetine within the caudate nucleus corresponding to motivational components of sexual behavior. However, broadly impaired subjective sexual functioning under reboxetine suggested effects on further neural components. We now investigated the same sample under these two agents with static erotic picture stimulation as alternative stimulus presentation mode to potentially observe further neural treatment effects of reboxetine. 19 healthy males were investigated under reboxetine, amisulpride and placebo for 7 days each within a double-blind cross-over design. During fMRI static erotic picture were presented with preceding anticipation periods. Subjective sexual functions were assessed by a self-reported questionnaire. Neural activations were attenuated within the caudate nucleus, putamen, ventral striatum, the pregenual and anterior midcingulate cortex and in the orbitofrontal cortex under reboxetine. Subjective diminished sexual arousal under reboxetine was correlated with attenuated neural reactivity within the posterior insula. Again, amisulpride left neural activations along with subjective sexual functioning unimpaired. Neither reboxetine nor amisulpride altered differential neural activations during anticipation of erotic stimuli. Our results verified detrimental effects of noradrenergic agents on neural motivational but also emotional and autonomic components of sexual behavior. Considering the overlap of neural network alterations with those evoked by serotonergic agents, our results suggest similar neuromodulatory effects of serotonergic and noradrenergic agents on common neural pathways relevant for sexual behavior. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  12. Phasic Dopaminergic Signaling and the Presymptomatic Phase of Parkinson’s Disease

    DTIC Science & Technology

    2005-07-01

    provides an ambient , steady- state level of extracellular dopamine, whereas phasic signaling results in a transient increase (i.e., a short-lived...certain ambient extracellular level of dopamine is essential for movement to occur [116]. Phasic signaling involves synchronized high frequency firing of...microdialysis. A measurement of the ambient level of dopamine by microdialysis in animal studies shows that extracellular dopamine levels are normal

  13. The Dopamine Imbalance Hypothesis of Fatigue in Multiple Sclerosis and Other Neurological Disorders

    PubMed Central

    Dobryakova, Ekaterina; Genova, Helen M.; DeLuca, John; Wylie, Glenn R.

    2015-01-01

    Fatigue is one of the most pervasive symptoms of multiple sclerosis (MS), and has engendered hundreds of investigations on the topic. While there is a growing literature using various methods to study fatigue, a unified theory of fatigue in MS is yet to emerge. In the current review, we synthesize findings from neuroimaging, pharmacological, neuropsychological, and immunological studies of fatigue in MS, which point to a specific hypothesis of fatigue in MS: the dopamine imbalance hypothesis. The communication between the striatum and prefrontal cortex is reliant on dopamine, a modulatory neurotransmitter. Neuroimaging findings suggest that fatigue results from the disruption of communication between these regions. Supporting the dopamine imbalance hypothesis, structural and functional neuroimaging studies show abnormalities in the frontal and striatal regions that are heavily innervated by dopamine neurons. Further, dopaminergic psychostimulant medication has been shown to alleviate fatigue in individuals with traumatic brain injury, chronic fatigue syndrome, and in cancer patients, also indicating that dopamine might play an important role in fatigue perception. This paper reviews the structural and functional neuroimaging evidence as well as pharmacological studies that suggest that dopamine plays a critical role in the phenomenon of fatigue. We conclude with how specific aspects of the dopamine imbalance hypothesis can be tested in future research. PMID:25814977

  14. Mode of action of dopamine in inducing hyperglycemia in the fresh water edible crab, Oziothelphusa senex senex.

    PubMed

    Swetha, Ch; Sainath, S B; Reddy, P Sreenivasula

    2014-11-01

    The objective of this study was to investigate the mode of action of dopamine in regulating hemolymph sugar level in the fresh water edible crab, Oziothelphusa senex senex. Injection of dopamine produced hyperglycemia in a dose-dependent manner in intact crabs but not in eyestalkless crabs. Administration of dopamine resulted in a significant decrease in total carbohydrates and glycogen levels with a significant increase in glycogen phosphorylase activity levels in hepatopancreas and muscle of intact crabs, indicating dopamine-induced glycogenolysis resulting in hyperglycemia. Bilateral eyestalk ablation resulted in significant increase in the total carbohydrates and glycogen levels with a significant decrease in the activity levels of phosphorylase in the hepatopancreas and muscle of the crabs. Eyestalk ablation resulted in significant decrease in hemolymph hyperglycemic hormone levels. The levels of hyperglycemic hormone in the hemolymph of dopamine injected crabs were significantly higher than in control crabs. However, no significant changes in the levels of hemolymph hyperglycemic hormone and sugar and tissue carbohydrate and phosphorylase activity were observed in dopamine injected eyestalk ablated crabs when compared with eyestalk ablated crabs. These results support an earlier hypothesis in crustaceans that dopamine acts as a neurotransmitter and induces hyperglycemia by triggering the release of hyperglycemic hormone in the crab, O. senex senex. © 2014 Wiley Periodicals, Inc.

  15. Cortical Regulation of Dopamine Depletion-Induced Dendritic Spine Loss in Striatal Medium Spiny Neurons

    PubMed Central

    Neely, M. Diana; Schmidt, Dennis E.; Deutch, Ariel Y.

    2007-01-01

    The proximate cause of Parkinson’s Disease is striatal dopamine depletion. Although no overt toxicity to striatal neurons has been reported in Parkinson’s Disease, one of the consequences of striatal dopamine loss is a decrease in the number of dendritic spines on striatal medium spiny neurons (MSNs). Dendrites of these neurons receive cortical glutamatergic inputs onto the dendritic spine head and dopaminergic inputs from the substantia nigra onto the spine neck. This synaptic arrangement suggests that dopamine gates corticostriatal glutamatergic drive onto spines. Using triple organotypic slice cultures comprised of ventral mesencephalon, striatum, and cortex, we examined the role of the cortex in dopamine depletion-induced dendritic spine loss in MSNs. The striatal dopamine innervation was lesioned by treatment of the cultures with the dopaminergic neurotoxin MPP+ or by removing the mesencephalon. Both MPP+ and mesencephalic ablation decreased MSN dendritic spine density. Analysis of spine morphology revealed that thin spines were preferentially lost after dopamine depletion. Removal of the cortex completely prevented dopamine depletion-induced spine loss. These data indicate that the dendritic remodeling of MSNs seen in parkinsonism occurs secondary to increases in corticostriatal glutamatergic drive, and suggest that modulation of cortical activity may be a useful therapeutic strategy in Parkinson’s Disease. PMID:17888581

  16. Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies

    PubMed Central

    Awata, Hiroko; Wakuda, Ryo; Ishimaru, Yoshiyasu; Matsuoka, Yuji; Terao, Kanta; Katata, Satomi; Matsumoto, Yukihisa; Hamanaka, Yoshitaka; Noji, Sumihare; Mito, Taro; Mizunami, Makoto

    2016-01-01

    Revealing reinforcing mechanisms in associative learning is important for elucidation of brain mechanisms of behavior. In mammals, dopamine neurons are thought to mediate both appetitive and aversive reinforcement signals. Studies using transgenic fruit-flies suggested that dopamine neurons mediate both appetitive and aversive reinforcements, through the Dop1 dopamine receptor, but our studies using octopamine and dopamine receptor antagonists and using Dop1 knockout crickets suggested that octopamine neurons mediate appetitive reinforcement and dopamine neurons mediate aversive reinforcement in associative learning in crickets. To fully resolve this issue, we examined the effects of silencing of expression of genes that code the OA1 octopamine receptor and Dop1 and Dop2 dopamine receptors by RNAi in crickets. OA1-silenced crickets exhibited impairment in appetitive learning with water but not in aversive learning with sodium chloride solution, while Dop1-silenced crickets exhibited impairment in aversive learning but not in appetitive learning. Dop2-silenced crickets showed normal scores in both appetitive learning and aversive learning. The results indicate that octopamine neurons mediate appetitive reinforcement via OA1 and that dopamine neurons mediate aversive reinforcement via Dop1 in crickets, providing decisive evidence that neurotransmitters and receptors that mediate appetitive reinforcement indeed differ among different species of insects. PMID:27412401

  17. Insulin resistance impairs nigrostriatal dopamine function.

    PubMed

    Morris, J K; Bomhoff, G L; Gorres, B K; Davis, V A; Kim, J; Lee, P-P; Brooks, W M; Gerhardt, G A; Geiger, P C; Stanford, J A

    2011-09-01

    Clinical studies have indicated a link between Parkinson's disease (PD) and Type 2 Diabetes. Although preclinical studies have examined the effect of high-fat feeding on dopamine function in brain reward pathways, the effect of diet on neurotransmission in the nigrostriatal pathway, which is affected in PD and parkinsonism, is less clear. We hypothesized that a high-fat diet, which models early-stage Type 2 Diabetes, would disrupt nigrostriatal dopamine function in young adult Fischer 344 rats. Rats were fed a high fat diet (60% calories from fat) or a normal chow diet for 12 weeks. High fat-fed animals were insulin resistant compared to chow-fed controls. Potassium-evoked dopamine release and dopamine clearance were measured in the striatum using in vivo electrochemistry. Dopamine release was attenuated and dopamine clearance was diminished in the high-fat diet group compared to chow-fed rats. Magnetic resonance imaging indicated increased iron deposition in the substantia nigra of the high fat group. This finding was supported by alterations in the expression of several proteins involved in iron metabolism in the substantia nigra in this group compared to chow-fed animals. The diet-induced systemic and basal ganglia-specific changes may play a role in the observed impairment of nigrostriatal dopamine function. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Static and Dynamic Measurement of Dopamine Adsorption in Carbon Fiber Microelectrodes Using Electrochemical Impedance Spectroscopy.

    PubMed

    Rivera-Serrano, Nilka; Pagan, Miraida; Colón-Rodríguez, Joanisse; Fuster, Christian; Vélez, Román; Almodovar-Faria, Jose; Jiménez-Rivera, Carlos; Cunci, Lisandro

    2018-02-06

    In this study, electrochemical impedance spectroscopy was used for the first time to study the adsorption of dopamine in carbon fiber microelectrodes. In order to show a proof-of-concept, static and dynamic measurements were taken at potentials ranging from -0.4 to 0.8 V versus Ag|AgCl to demonstrate the versatility of this technique to study dopamine without the need of its oxidation. We used electrochemical impedance spectroscopy and single frequency electrochemical impedance to measure different concentrations of dopamine as low as 1 nM. Moreover, the capacitance of the microelectrodes surface was found to decrease due to dopamine adsorption, which is dependent on its concentration. The effect of dissolved oxygen and electrochemical oxidation of the surface in the detection of dopamine was also studied. Nonoxidized and oxidized carbon fiber microelectrodes were prepared and characterized by optical microscopy, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Optimum working parameters of the electrodes, such as frequency and voltage, were obtained for better measurement. Electrochemical impedance of dopamine was determined at different concentration, voltages, and frequencies. Finally, dynamic experiments were conducted using a flow cell and single frequency impedance in order to study continuous and real-time measurements of dopamine.

  19. Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies.

    PubMed

    Awata, Hiroko; Wakuda, Ryo; Ishimaru, Yoshiyasu; Matsuoka, Yuji; Terao, Kanta; Katata, Satomi; Matsumoto, Yukihisa; Hamanaka, Yoshitaka; Noji, Sumihare; Mito, Taro; Mizunami, Makoto

    2016-07-14

    Revealing reinforcing mechanisms in associative learning is important for elucidation of brain mechanisms of behavior. In mammals, dopamine neurons are thought to mediate both appetitive and aversive reinforcement signals. Studies using transgenic fruit-flies suggested that dopamine neurons mediate both appetitive and aversive reinforcements, through the Dop1 dopamine receptor, but our studies using octopamine and dopamine receptor antagonists and using Dop1 knockout crickets suggested that octopamine neurons mediate appetitive reinforcement and dopamine neurons mediate aversive reinforcement in associative learning in crickets. To fully resolve this issue, we examined the effects of silencing of expression of genes that code the OA1 octopamine receptor and Dop1 and Dop2 dopamine receptors by RNAi in crickets. OA1-silenced crickets exhibited impairment in appetitive learning with water but not in aversive learning with sodium chloride solution, while Dop1-silenced crickets exhibited impairment in aversive learning but not in appetitive learning. Dop2-silenced crickets showed normal scores in both appetitive learning and aversive learning. The results indicate that octopamine neurons mediate appetitive reinforcement via OA1 and that dopamine neurons mediate aversive reinforcement via Dop1 in crickets, providing decisive evidence that neurotransmitters and receptors that mediate appetitive reinforcement indeed differ among different species of insects.

  20. Mechanism for optimization of signal-to-noise ratio of dopamine release based on short-term bidirectional plasticity.

    PubMed

    Da Cunha, Claudio; McKimm, Eric; Da Cunha, Rafael M; Boschen, Suelen L; Redgrave, Peter; Blaha, Charles D

    2017-07-15

    Repeated electrical stimulation of dopamine (dopamine) fibers can cause variable effects on further dopamine release; sometimes there are short-term decreases while in other cases short-term increases have been reported. Previous studies have failed to discover what factors determine in which way dopamine neurons will respond to repeated stimulation. The aim of the present study was therefore to investigate what determines the direction and magnitude of this particular form of short-term plasticity. Fixed potential amperometry was used to measure dopamine release in the nucleus accumbens in response to two trains of electrical pulses administered to the ventral tegmental area of anesthetized mice. When the pulse trains were of equal magnitude we found that low magnitude stimulation was associated with short-term suppression and high magnitude stimulation with short-term facilitation of dopamine release. Secondly, we found that the magnitude of the second pulse train was critical for determining the sign of the plasticity (suppression or facilitation), while the magnitude of the first pulse train determined the extent to which the response to the second train was suppressed or facilitated. This form of bidirectional plasticity might provide a mechanism to enhance signal-to-noise ratio of dopamine neurotransmission. Copyright © 2017 Elsevier B.V. All rights reserved.

Top