Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.
2016-01-01
The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042
Cacciapaglia, Fabio; Wightman, R. Mark; Carelli, Regina M.
2015-01-01
Mesolimbic dopamine (DA) is phasically released during appetitive behaviors, though there is substantive disagreement about the specific purpose of these DA signals. For example, prediction error (PE) models suggest a role of learning, while incentive salience (IS) models argue that the DA signal imbues stimuli with value and thereby stimulates motivated behavior. However, within the nucleus accumbens (NAc) patterns of DA release can strikingly differ between subregions, and as such, it is possible that these patterns differentially contribute to aspects of PE and IS. To assess this, we measured DA release in subregions of the NAc during a behavioral task that spatiotemporally separated sequential goal-directed stimuli. Electrochemical methods were used to measure subsecond NAc dopamine release in the core and shell during a well learned instrumental chain schedule in which rats were trained to press one lever (seeking; SL) to gain access to a second lever (taking; TL) linked with food delivery, and again during extinction. In the core, phasic DA release was greatest following initial SL presentation, but minimal for the subsequent TL and reward events. In contrast, phasic shell DA showed robust release at all task events. Signaling decreased between the beginning and end of sessions in the shell, but not core. During extinction, peak DA release in the core showed a graded decrease for the SL and pauses in release during omitted expected rewards, whereas shell DA release decreased predominantly during the TL. These release dynamics suggest parallel DA signals capable of supporting distinct theories of appetitive behavior. SIGNIFICANCE STATEMENT Dopamine signaling in the brain is important for a variety of cognitive functions, such as learning and motivation. Typically, it is assumed that a single dopamine signal is sufficient to support these cognitive functions, though competing theories disagree on how dopamine contributes to reward-based behaviors. Here, we have found that real-time dopamine release within the nucleus accumbens (a primary target of midbrain dopamine neurons) strikingly varies between core and shell subregions. In the core, dopamine dynamics are consistent with learning-based theories (such as reward prediction error) whereas in the shell, dopamine is consistent with motivation-based theories (e.g., incentive salience). These findings demonstrate that dopamine plays multiple and complementary roles based on discrete circuits that help animals optimize rewarding behaviors. PMID:26290234
Fuqua, Joshua L; Littrell, Ofelia M; Lundblad, Martin; Turchan-Cholewo, Jadwiga; Abdelmoti, Lina G; Galperin, Emilia; Bradley, Luke H; Cass, Wayne A; Gash, Don M; Gerhardt, Greg A
2014-04-01
Glial cell-line derived neurotrophic factor (GDNF) has demonstrated robust effects on dopamine (DA) neuron function and survival. A post-translational processing model of the human GDNF proprotein theorizes the formation of smaller, amidated peptide(s) from the proregion that exhibit neurobiological function, including an 11-amino-acid peptide named dopamine neuron stimulating peptide-11 (DNSP-11). A single treatment of DNSP-11 was delivered to the substantia nigra in the rat to investigate effects on DA-neuron function. Four weeks after treatment, potassium (K+) and D-amphetamine evoked DA release were studied in the striatum using microdialysis. There were no significant changes in DA-release after DNSP-11 treatment determined by microdialysis. Dopamine release was further examined in discrete regions of the striatum using high-speed chronoamperometry at 1-, 2-, and 4-weeks after DNSP-11 treatment. Two weeks after DNSP-11 treatment, potassium-evoked DA release was increased in specific subregions of the striatum. However, spontaneous locomotor activity was unchanged by DNSP-11 treatment. In addition, we show that a single treatment of DNSP-11 in the MN9D dopaminergic neuronal cell line results in phosphorylation of ERK1/2, which suggests a novel cellular mechanism responsible for increases in DA function. Copyright © 2014 Elsevier Inc. All rights reserved.
Cardinal, R. N.; Rygula, R.; Hong, Y. T.; Fryer, T. D.; Sawiak, S. J.; Ferrari, V.; Cockcroft, G.; Aigbirhio, F. I.; Robbins, T. W.; Roberts, A. C.
2014-01-01
Schizophrenia is associated with upregulation of dopamine (DA) release in the caudate nucleus. The caudate has dense connections with the orbitofrontal cortex (OFC) via the frontostriatal loops, and both areas exhibit pathophysiological change in schizophrenia. Despite evidence that abnormalities in dopaminergic neurotransmission and prefrontal cortex function co-occur in schizophrenia, the influence of OFC DA on caudate DA and reinforcement processing is poorly understood. To test the hypothesis that OFC dopaminergic dysfunction disrupts caudate dopamine function, we selectively depleted dopamine from the OFC of marmoset monkeys and measured striatal extracellular dopamine levels (using microdialysis) and dopamine D2/D3 receptor binding (using positron emission tomography), while modeling reinforcement-related behavior in a discrimination learning paradigm. OFC dopamine depletion caused an increase in tonic dopamine levels in the caudate nucleus and a corresponding reduction in D2/D3 receptor binding. Computational modeling of behavior showed that the lesion increased response exploration, reducing the tendency to persist with a recently chosen response side. This effect is akin to increased response switching previously seen in schizophrenia and was correlated with striatal but not OFC D2/D3 receptor binding. These results demonstrate that OFC dopamine depletion is sufficient to induce striatal hyperdopaminergia and changes in reinforcement learning relevant to schizophrenia. PMID:24872570
Electrochemical detection of dopamine using porphyrin-functionalized graphene.
Wu, Li; Feng, Lingyan; Ren, Jinsong; Qu, Xiaogang
2012-04-15
A new type of porphyrin-functionalized graphene was synthesized and used for highly selective and sensitive detection of dopamine (DA). The aromatic π-π stacking and electrostatic attraction between positively-charged dopamine and negatively-charged porphyrin-modified graphene can accelerate the electron transfer whereas weakening ascorbic acid (AA) and uric acid (UA) oxidation on the porphyrin-functionalized graphene-modified electrode. Differential pulse voltammetry was used for electrochemical detection, the separation of the oxidation peak potentials for AA-DA, DA-UA and UA-AA is about 188 mV, 144 mV and 332 mV, which allows selectively determining DA. The detection limit of DA can be as low as 0.01 μM. More importantly, the sensor we presented can detect DA in the presence of large excess of ascorbic acid and uric acid. With good sensitivity and selectivity, the present method was applied to the determination of DA in real hydrochloride injection sample, human urine and serum samples, respectively, and the results was satisfactory. Copyright © 2012 Elsevier B.V. All rights reserved.
Saddoris, Michael P; Cacciapaglia, Fabio; Wightman, R Mark; Carelli, Regina M
2015-08-19
Mesolimbic dopamine (DA) is phasically released during appetitive behaviors, though there is substantive disagreement about the specific purpose of these DA signals. For example, prediction error (PE) models suggest a role of learning, while incentive salience (IS) models argue that the DA signal imbues stimuli with value and thereby stimulates motivated behavior. However, within the nucleus accumbens (NAc) patterns of DA release can strikingly differ between subregions, and as such, it is possible that these patterns differentially contribute to aspects of PE and IS. To assess this, we measured DA release in subregions of the NAc during a behavioral task that spatiotemporally separated sequential goal-directed stimuli. Electrochemical methods were used to measure subsecond NAc dopamine release in the core and shell during a well learned instrumental chain schedule in which rats were trained to press one lever (seeking; SL) to gain access to a second lever (taking; TL) linked with food delivery, and again during extinction. In the core, phasic DA release was greatest following initial SL presentation, but minimal for the subsequent TL and reward events. In contrast, phasic shell DA showed robust release at all task events. Signaling decreased between the beginning and end of sessions in the shell, but not core. During extinction, peak DA release in the core showed a graded decrease for the SL and pauses in release during omitted expected rewards, whereas shell DA release decreased predominantly during the TL. These release dynamics suggest parallel DA signals capable of supporting distinct theories of appetitive behavior. Dopamine signaling in the brain is important for a variety of cognitive functions, such as learning and motivation. Typically, it is assumed that a single dopamine signal is sufficient to support these cognitive functions, though competing theories disagree on how dopamine contributes to reward-based behaviors. Here, we have found that real-time dopamine release within the nucleus accumbens (a primary target of midbrain dopamine neurons) strikingly varies between core and shell subregions. In the core, dopamine dynamics are consistent with learning-based theories (such as reward prediction error) whereas in the shell, dopamine is consistent with motivation-based theories (e.g., incentive salience). These findings demonstrate that dopamine plays multiple and complementary roles based on discrete circuits that help animals optimize rewarding behaviors. Copyright © 2015 the authors 0270-6474/15/3511572-11$15.00/0.
Hamilton, P J; Campbell, N G; Sharma, S; Erreger, K; Herborg Hansen, F; Saunders, C; Belovich, A N; Sahai, M A; Cook, E H; Gether, U; McHaourab, H S; Matthies, H J G; Sutcliffe, J S; Galli, A
2013-12-01
De novo genetic variation is an important class of risk factors for autism spectrum disorder (ASD). Recently, whole-exome sequencing of ASD families has identified a novel de novo missense mutation in the human dopamine (DA) transporter (hDAT) gene, which results in a Thr to Met substitution at site 356 (hDAT T356M). The dopamine transporter (DAT) is a presynaptic membrane protein that regulates dopaminergic tone in the central nervous system by mediating the high-affinity reuptake of synaptically released DA, making it a crucial regulator of DA homeostasis. Here, we report the first functional, structural and behavioral characterization of an ASD-associated de novo mutation in the hDAT. We demonstrate that the hDAT T356M displays anomalous function, characterized as a persistent reverse transport of DA (substrate efflux). Importantly, in the bacterial homolog leucine transporter, substitution of A289 (the homologous site to T356) with a Met promotes an outward-facing conformation upon substrate binding. In the substrate-bound state, an outward-facing transporter conformation is required for substrate efflux. In Drosophila melanogaster, the expression of hDAT T356M in DA neurons-lacking Drosophila DAT leads to hyperlocomotion, a trait associated with DA dysfunction and ASD. Taken together, our findings demonstrate that alterations in DA homeostasis, mediated by aberrant DAT function, may confer risk for ASD and related neuropsychiatric conditions.
Pahuja, Richa; Seth, Kavita; Shukla, Anshi; Shukla, Rajendra Kumar; Bhatnagar, Priyanka; Chauhan, Lalit Kumar Singh; Saxena, Prem Narain; Arun, Jharna; Chaudhari, Bhushan Pradosh; Patel, Devendra Kumar; Singh, Sheelendra Pratap; Shukla, Rakesh; Khanna, Vinay Kumar; Kumar, Pradeep; Chaturvedi, Rajnish Kumar; Gupta, Kailash Chand
2015-05-26
Sustained and safe delivery of dopamine across the blood brain barrier (BBB) is a major hurdle for successful therapy in Parkinson's disease (PD), a neurodegenerative disorder. Therefore, in the present study we designed neurotransmitter dopamine-loaded PLGA nanoparticles (DA NPs) to deliver dopamine to the brain. These nanoparticles slowly and constantly released dopamine, showed reduced clearance of dopamine in plasma, reduced quinone adduct formation, and decreased dopamine autoxidation. DA NPs were internalized in dopaminergic SH-SY5Y cells and dopaminergic neurons in the substantia nigra and striatum, regions affected in PD. Treatment with DA NPs did not cause reduction in cell viability and morphological deterioration in SH-SY5Y, as compared to bulk dopamine-treated cells, which showed reduced viability. Herein, we report that these NPs were able to cross the BBB and capillary endothelium in the striatum and substantia nigra in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Systemic intravenous administration of DA NPs caused significantly increased levels of dopamine and its metabolites and reduced dopamine-D2 receptor supersensitivity in the striatum of parkinsonian rats. Further, DA NPs significantly recovered neurobehavioral abnormalities in 6-OHDA-induced parkinsonian rats. Dopamine delivered through NPs did not cause additional generation of ROS, dopaminergic neuron degeneration, and ultrastructural changes in the striatum and substantia nigra as compared to 6-OHDA-lesioned rats. Interestingly, dopamine delivery through nanoformulation neither caused alterations in the heart rate and blood pressure nor showed any abrupt pathological change in the brain and other peripheral organs. These results suggest that NPs delivered dopamine into the brain, reduced dopamine autoxidation-mediated toxicity, and ultimately reversed neurochemical and neurobehavioral deficits in parkinsonian rats.
McRae, A; Hjorth, S; Mason, D; Dillon, L; Tice, T
1990-01-01
Biodegradable controlled-release microcapsule systems made with the biocompatible biodegradable polyester excipient poly [DL-lactide-co-gly-colide] constitute an exciting new technology for drug delivery to the central nervous system (CNS). The present study describes functional observations indicating that implantation of dopamine (DA) microcapsules encapsulated within two different polymer excipients into denervated striatal tissue assures a prolonged release of the transmitter in vivo. This technology has a considerable potential for basic and possibly clinical research.
Dodds, Chris M; Clark, Luke; Dove, Anja; Regenthal, Ralf; Baumann, Frank; Bullmore, Ed; Robbins, Trevor W; Müller, Ulrich
2009-11-01
Dopamine (DA) plays an important role in working memory. However, the precise functions supported by different DA receptor subtypes in different neural regions remain unclear. The present study used pharmacological, event-related fMRI to test the hypothesis that striatal dopamine is important for the manipulation of information in working memory. Twenty healthy human subjects were scanned twice, once after placebo and once after sulpiride 400 mg, a selective DA D2 receptor antagonist, while performing a verbal working memory task requiring different levels of manipulation. Whilst there was no overall effect of sulpiride on task-dependent activation, individual variation in sulpiride plasma levels predicted the effect of working memory manipulation on activation in the putamen, suggesting a dose-dependent effect of DA antagonism on a striatally based manipulation process. These effects occurred in the context of a drug-induced improvement in performance on trials requiring the manipulation of information in working memory but not on simple retrieval trials. No significant drug effects were observed in the prefrontal cortex. These results support models of dopamine function that posit a 'gating' function for dopamine D2 receptors in the striatum, which enables the flexible updating and manipulation of information in working memory.
Novick, Andrew M; Forster, Gina L; Hassell, James E; Davies, Daniel R; Scholl, Jamie L; Renner, Kenneth J; Watt, Michael J
2015-10-01
Being bullied during adolescence is associated with later mental illnesses characterized by deficits in cognitive tasks mediated by prefrontal cortex (PFC) dopamine (DA). Social defeat of adolescent male rats, as a model of teenage bullying victimization, results in medial PFC (mPFC) dopamine (DA) hypofunction in adulthood that is associated with increased drug seeking and working memory deficits. Increased expression of the DA transporter (DAT) is also seen in the adult infralimbic mPFC following adolescent defeat. We propose the functional consequence of this increased DAT expression is enhanced DA clearance and subsequently decreased infralimbic mPFC DA availability. To test this, in vivo chronoamperometry was used to measure changes in accumulation of the DA signal following DAT blockade, with increased DAT-mediated clearance being reflected by lower DA signal accumulation. Previously defeated rats and controls were pre-treated with the norepinephrine transporter (NET) inhibitor desipramine (20 mg/kg, ip.) to isolate infralimbic mPFC DA clearance to DAT, then administered the selective DAT inhibitor GBR-12909 (20 or 40 mg/kg, sc.). Sole NET inhibition with desipramine produced no differences in DA signal accumulation between defeated rats and controls. However, rats exposed to adolescent social defeat demonstrated decreased DA signal accumulation compared to controls in response to both doses of GBR-12909, indicating greater DAT-mediated clearance of infralimbic mPFC DA. These results suggest that protracted increases in infralimbic mPFC DAT function represent a mechanism by which adolescent social defeat stress produces deficits in adult mPFC DA activity and corresponding behavioral and cognitive dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pathomechanisms of Dopamine Dysregulation in DYT1 Dystonia: Targets for Therapeutics
2016-10-01
DA release in DYT1(ΔE) knockin mice by assessing VMAT2 function, vesicle utilization, the ultrastructure of DA terminals, and D2 DA...in slice, the ultrastructure of DA terminals, D2 DA autoreceptor function nicotinic AChR (nAChR) heteroreceptors function. 2) To determine the
Pharmacological action of DA-9701 on the motility of feline stomach circular smooth muscle.
Nguyen, Thanh Thao; Song, Hyun Ju; Ko, Sung Kwon; Sohn, Uy Dong
2015-03-01
DA-9701, a new prokinetic agent for the treatment of functional dyspepsia, is formulated with Pharbitis semen and Corydalis tuber. This study wasconducted to determine the pharmacological action of DA-9701 and to identify the receptors involved in DA-9701 -induced contractile responsesin the feline gastric corporal, fundic and antral circular smooth muscle. Concentration-response curve to DA-9701 was established. The tissue trips were exposed to methylsergide, ketanserin, ondansetron, GR 113808, atropine and dopamine before administration of DA-9701. The contractile force was determined before and after administration of drugs by a polygraph.DA-9701 enhanced the spontaneous contractile amplitude of antrum, corpus and fundus. However, it did not change the spontaneous contractile frequency of antrum and corpus, but concentration-dependently reduced that of fundus. In the fundus, DA-9701 -induced tonic contractions were inhibited by dopamine, methylsergide, ketanserine, ondansetron or GR 113808 respectively, but not by atropine, indicating that the contractile responses are mediated by multiple receptors: 5-HT2, 5-HT3, 5-HT4, and dopamine receptors. In the corpus, DA-9701-induced contractions were blocked by atropine, dopamine or GR 113808, but not by methysergide, ketanserin or ondansetron, indicating that they are involved in receptors on both, smooth muscles and neurons: 5-HT4 and dopamine receptors. However, contractile responses to DA-9701 are mainly mediated by dopamine receptors in the antrum. These results suggest that DA-9701 has important roles in gastric accommodation by enhancing tonic activity of fundus, and in gastric emptying and gastrointestinal transit by phasic contractions of corpus and antrum mediated by multiple receptors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa
Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [ 11C]cocaine to measure DAT, and with [ 11C]raclopride to measure dopamine release (assessed as changes in specific binding of [ 11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when comparedmore » to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less
Volkow, Nora D; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S; Telang, Frank; Logan, Jean; Tomasi, Dardo
2015-11-01
Methamphetamine's widepread abuse and concerns that it might increase Parkinson's disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [(11)C]cocaine to measure DAT, and with [(11)C]raclopride to measure dopamine release (assessed as changes in specific binding of [(11)C]raclopride between placebo and methylphenidate), which was used as a marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals. Published by Elsevier Inc.
Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa; ...
2015-07-21
Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [ 11C]cocaine to measure DAT, and with [ 11C]raclopride to measure dopamine release (assessed as changes in specific binding of [ 11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when comparedmore » to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less
The Behavioral Pharmacology of Effort-Related Choice Behavior: Dopamine, Adenosine and beyond
ERIC Educational Resources Information Center
Salamone, John D.; Correa, Merce; Nunes, Eric J.; Randall, Patrick A.; Pardo, Marta
2012-01-01
For many years, it has been suggested that drugs that interfere with dopamine (DA) transmission alter the "rewarding" impact of primary reinforcers such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding…
Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons
Dragicevic, Elena; Poetschke, Christina; Duda, Johanna; Schlaudraff, Falk; Lammel, Stephan; Schiemann, Julia; Fauler, Michael; Hetzel, Andrea; Watanabe, Masahiko; Lujan, Rafael; Malenka, Robert C.; Striessnig, Joerg
2014-01-01
Dopamine midbrain neurons within the substantia nigra are particularly prone to degeneration in Parkinson’s disease. Their selective loss causes the major motor symptoms of Parkinson’s disease, but the causes for the high vulnerability of SN DA neurons, compared to neighbouring, more resistant ventral tegmental area dopamine neurons, are still unclear. Consequently, there is still no cure available for Parkinson’s disease. Current therapies compensate the progressive loss of dopamine by administering its precursor l-DOPA and/or dopamine D2-receptor agonists. D2-autoreceptors and Cav1.3-containing L-type Ca2+ channels both contribute to Parkinson’s disease pathology. L-type Ca2+ channel blockers protect SN DA neurons from degeneration in Parkinson’s disease and its mouse models, and they are in clinical trials for neuroprotective Parkinson’s disease therapy. However, their physiological functions in SN DA neurons remain unclear. D2-autoreceptors tune firing rates and dopamine release of SN DA neurons in a negative feedback loop through activation of G-protein coupled potassium channels (GIRK2, or KCNJ6). Mature SN DA neurons display prominent, non-desensitizing somatodendritic D2-autoreceptor responses that show pronounced desensitization in PARK-gene Parkinson’s disease mouse models. We analysed surviving human SN DA neurons from patients with Parkinson’s disease and from controls, and detected elevated messenger RNA levels of D2-autoreceptors and GIRK2 in Parkinson’s disease. By electrophysiological analysis of postnatal juvenile and adult mouse SN DA neurons in in vitro brain-slices, we observed that D2-autoreceptor desensitization is reduced with postnatal maturation. Furthermore, a transient high-dopamine state in vivo, caused by one injection of either l-DOPA or cocaine, induced adult-like, non-desensitizing D2-autoreceptor responses, selectively in juvenile SN DA neurons, but not ventral tegmental area dopamine neurons. With pharmacological and genetic tools, we identified that the expression of this sensitized D2-autoreceptor phenotype required Cav1.3 L-type Ca2+ channel activity, internal Ca2+, and the interaction of the neuronal calcium sensor NCS-1 with D2-autoreceptors. Thus, we identified a first physiological function of Cav1.3 L-type Ca2+ channels in SN DA neurons for homeostatic modulation of their D2-autoreceptor responses. L-type Ca2+ channel activity however, was not important for pacemaker activity of mouse SN DA neurons. Furthermore, we detected elevated substantia nigra dopamine messenger RNA levels of NCS-1 (but not Cav1.2 or Cav1.3) after cocaine in mice, as well as in remaining human SN DA neurons in Parkinson’s disease. Thus, our findings provide a novel homeostatic functional link in SN DA neurons between Cav1.3- L-type-Ca2+ channels and D2-autoreceptor activity, controlled by NCS-1, and indicate that this adaptive signalling network (Cav1.3/NCS-1/D2/GIRK2) is also active in human SN DA neurons, and contributes to Parkinson’s disease pathology. As it is accessible to pharmacological modulation, it provides a novel promising target for tuning substantia nigra dopamine neuron activity, and their vulnerability to degeneration. PMID:24934288
Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons.
Dragicevic, Elena; Poetschke, Christina; Duda, Johanna; Schlaudraff, Falk; Lammel, Stephan; Schiemann, Julia; Fauler, Michael; Hetzel, Andrea; Watanabe, Masahiko; Lujan, Rafael; Malenka, Robert C; Striessnig, Joerg; Liss, Birgit
2014-08-01
Dopamine midbrain neurons within the substantia nigra are particularly prone to degeneration in Parkinson's disease. Their selective loss causes the major motor symptoms of Parkinson's disease, but the causes for the high vulnerability of SN DA neurons, compared to neighbouring, more resistant ventral tegmental area dopamine neurons, are still unclear. Consequently, there is still no cure available for Parkinson's disease. Current therapies compensate the progressive loss of dopamine by administering its precursor l-DOPA and/or dopamine D2-receptor agonists. D2-autoreceptors and Cav1.3-containing L-type Ca(2+) channels both contribute to Parkinson's disease pathology. L-type Ca(2+) channel blockers protect SN DA neurons from degeneration in Parkinson's disease and its mouse models, and they are in clinical trials for neuroprotective Parkinson's disease therapy. However, their physiological functions in SN DA neurons remain unclear. D2-autoreceptors tune firing rates and dopamine release of SN DA neurons in a negative feedback loop through activation of G-protein coupled potassium channels (GIRK2, or KCNJ6). Mature SN DA neurons display prominent, non-desensitizing somatodendritic D2-autoreceptor responses that show pronounced desensitization in PARK-gene Parkinson's disease mouse models. We analysed surviving human SN DA neurons from patients with Parkinson's disease and from controls, and detected elevated messenger RNA levels of D2-autoreceptors and GIRK2 in Parkinson's disease. By electrophysiological analysis of postnatal juvenile and adult mouse SN DA neurons in in vitro brain-slices, we observed that D2-autoreceptor desensitization is reduced with postnatal maturation. Furthermore, a transient high-dopamine state in vivo, caused by one injection of either l-DOPA or cocaine, induced adult-like, non-desensitizing D2-autoreceptor responses, selectively in juvenile SN DA neurons, but not ventral tegmental area dopamine neurons. With pharmacological and genetic tools, we identified that the expression of this sensitized D2-autoreceptor phenotype required Cav1.3 L-type Ca(2+) channel activity, internal Ca(2+), and the interaction of the neuronal calcium sensor NCS-1 with D2-autoreceptors. Thus, we identified a first physiological function of Cav1.3 L-type Ca(2+) channels in SN DA neurons for homeostatic modulation of their D2-autoreceptor responses. L-type Ca(2+) channel activity however, was not important for pacemaker activity of mouse SN DA neurons. Furthermore, we detected elevated substantia nigra dopamine messenger RNA levels of NCS-1 (but not Cav1.2 or Cav1.3) after cocaine in mice, as well as in remaining human SN DA neurons in Parkinson's disease. Thus, our findings provide a novel homeostatic functional link in SN DA neurons between Cav1.3- L-type-Ca(2+) channels and D2-autoreceptor activity, controlled by NCS-1, and indicate that this adaptive signalling network (Cav1.3/NCS-1/D2/GIRK2) is also active in human SN DA neurons, and contributes to Parkinson's disease pathology. As it is accessible to pharmacological modulation, it provides a novel promising target for tuning substantia nigra dopamine neuron activity, and their vulnerability to degeneration. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.
Positron emission tomography molecular imaging of dopaminergic system in drug addiction.
Hou, Haifeng; Tian, Mei; Zhang, Hong
2012-05-01
Dopamine (DA) is involved in drug reinforcement, but its role in drug addiction remains unclear. Positron emission tomography (PET) is the first technology used for the direct measurement of components of the dopaminergic system in the living human brain. In this article, we reviewed the major findings of PET imaging studies on the involvement of DA in drug addiction, especially in heroin addiction. Furthermore, we summarized PET radiotracers that have been used to study the role of DA in drug addiction. To investigate presynaptic function in drug addiction, PET tracers have been developed to measure DA synthesis and transport. For the investigation of postsynaptic function, several radioligands targeting dopamine one (D1) receptor and dopamine two (D2) receptor are extensively used in PET imaging studies. Moreover, we also summarized the PET imaging findings of heroin addiction studies, including heroin-induced DA increases and the reinforcement, role of DA in the long-term effects of heroin abuse, DA and vulnerability to heroin abuse and the treatment implications. PET imaging studies have corroborated the role of DA in drug addiction and increase our understanding the mechanism of drug addiction. Copyright © 2012 Wiley Periodicals, Inc.
Poetschke, Christina; Dragicevic, Elena; Duda, Johanna; Benkert, Julia; Dougalis, Antonios; DeZio, Roberta; Snutch, Terrance P; Striessnig, Joerg; Liss, Birgit
2015-09-18
The preferential degeneration of Substantia nigra dopamine midbrain neurons (SN DA) causes the motor-symptoms of Parkinson's disease (PD). Voltage-gated L-type calcium channels (LTCCs), especially the Cav1.3-subtype, generate an activity-related oscillatory Ca(2+) burden in SN DA neurons, contributing to their degeneration and PD. While LTCC-blockers are already in clinical trials as PD-therapy, age-dependent functional roles of Cav1.3 LTCCs in SN DA neurons remain unclear. Thus, we analysed juvenile and adult Cav1.3-deficient mice with electrophysiological and molecular techniques. To unmask compensatory effects, we compared Cav1.3 KO mice with pharmacological LTCC-inhibition. LTCC-function was not necessary for SN DA pacemaker-activity at either age, but rather contributed to their pacemaker-precision. Moreover, juvenile Cav1.3 KO but not WT mice displayed adult wildtype-like, sensitised inhibitory dopamine-D2-autoreceptor (D2-AR) responses that depended upon both, interaction of the neuronal calcium sensor NCS-1 with D2-ARs, and on voltage-gated T-type calcium channel (TTCC) activity. This functional KO-phenotype was accompanied by cell-specific up-regulation of NCS-1 and Cav3.1-TTCC mRNA. Furthermore, in wildtype we identified an age-dependent switch of TTCC-function from contributing to SN DA pacemaker-precision in juveniles to pacemaker-frequency in adults. This novel interplay of Cav1.3 L-type and Cav3.1 T-type channels, and their modulation of SN DA activity-pattern and D2-AR-sensitisation, provide new insights into flexible age- and calcium-dependent activity-control of SN DA neurons and its pharmacological modulation.
A targeted drug delivery system based on dopamine functionalized nano graphene oxide
NASA Astrophysics Data System (ADS)
Masoudipour, Elham; Kashanian, Soheila; Maleki, Nasim
2017-01-01
The cellular targeting property of a biocompatible drug delivery system can widely increase the therapeutic effect against various diseases. Here, we report a dopamine conjugated nano graphene oxide (DA-nGO) carrier for cellular delivery of the anticancer drug, Methotrexate (MTX) into DA receptor positive human breast adenocarcinoma cell line. The material was characterized using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. Furthermore, the antineoplastic action of MTX loaded DA-nGO against DA receptor positive and negative cell lines were explored. The results presented in this article demonstrated that the application of DA functionalized GO as a targeting drug carrier can improve the drug delivery efficacy for DA receptor positive cancer cell lines and promise future designing of carrier conjugates based on it.
Neuroimaging of the Dopamine/Reward System in Adolescent Drug Use
Ernst, Monique; Luciana, Monica
2015-01-01
Adolescence is characterized by heightened risk-taking, including substance misuse. These behavioral patterns are influenced by ontogenic changes in neurotransmitter systems, particularly the dopamine system, which is fundamentally involved in the neural coding of reward and motivated approach behavior. During adolescence, this system evidences a peak in activity. At the same time, the dopamine system is neuroplastically altered by substance abuse, impacting subsequent function. Here, we describe properties of the dopamine system that change with typical adolescent development and that are altered with substance abuse. Much of this work has been gleaned from animal models due to limitations in measuring dopamine in pediatric samples. Structural and functional neuroimaging techniques have been used to examine structures that are heavily DA-innervated; they measure morphological and functional changes with age and with drug exposure. Presenting marijuana abuse as an exemplar, we consider recent findings that support an adolescent peak in DA-driven reward-seeking behavior and related deviations in motivational systems that are associated with marijuana abuse/dependence. Clinicians are advised that (1) chronic adolescent marijuana use may lead to deficiencies in incentive motivation, (2) that this state is due to marijuana’s interactions with the developing DA system, and (3) that treatment strategies should be directed to remediating resultant deficiencies in goal-directed activity. PMID:26095977
Andrews, Zane B.; Erion, Derek; Beiler, Rudolph; Liu, Zhong-Wu; Abizaid, Alfonso; Zigman, Jeffrey; Elsworth, John D.; Savitt, Joseph M.; DiMarchi, Richard; Tschoep, Matthias; Roth, Robert H.; Gao, Xiao-Bing; Horvath, Tamas L.
2010-01-01
Ghrelin targets the hypothalamus to regulate food intake and adiposity. Endogenous ghrelin receptors (growth hormone secretagogue receptor, GHSR) are also present in extrahypothalamic sites where they promote circuit activity associated with learning and memory, and reward seeking behavior. Here, we show that the substantia nigra pars compacta (SNpc), a brain region where dopamine (DA) cell degeneration leads to Parkinson’s disease (PD), expresses GHSR. Ghrelin binds to SNpc cells, electrically activates SNpc DA neurons, increases tyrosine hydroxylase mRNA and increases DA concentration in the dorsal striatum. Exogenous ghrelin administration decreased SNpc DA cell loss and restricted striatal dopamine loss after 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine (MPTP) treatment. Genetic ablation of ghrelin or the ghrelin receptor (GHSR) increased SNpc DA cell loss and lowered striatal dopamine levels after MPTP treatment, an effect that was reversed by selective reactivation of GHSR in catecholaminergic neurons. Ghrelin-induced neuroprotection was dependent on the mitochondrial redox state via uncoupling protein 2 (UCP2)-dependent alterations in mitochondrial respiration, ROS production and biogenesis. Taken together, our data reveals that peripheral ghrelin plays an important role in the maintenance and protection of normal nigrostriatal dopamine function by activating UCP2-dependent mitochondrial mechanisms. These studies support ghrelin as a novel therapeutic strategy to combat neurodegeneration, loss of appetite and body weight associated with PD. Finally, we discuss the potential implications of these studies on the link between obesity and neurodegeneration. PMID:19906954
N-octanoyl-dopamine is a potent inhibitor of platelet function.
Ait-Hsiko, Lamia; Kraaij, Tineke; Wedel, Johannes; Theisinger, Bastian; Theisinger, Sonja; Yard, Benito; Bugert, Peter; Schedel, Angelika
2013-01-01
Dopamine (DA) is a co-agonist for platelet activation; yet, donor DA treatment is associated with improved transplantation outcome in renal and heart recipients. Recently, N-octanoyl-dopamine (NOD) was developed which displays superior effects compared to DA in terms of graft protecting properties. Whereas DA is a known platelet co-agonist, the effect of NOD on platelet function is unknown. This is a hypothesis generating study with the aim to assess the effects and molecular mechanisms of NOD and NOD-like compounds on platelet function. The influence of DA, NOD, and NOD-like compounds on platelet responses to classical agonists (adenosine 5'-diphosphate (ADP), U46619) was investigated in six healthy donors by applying whole blood aggregometry (Multiplate®) and flow cytometry for Pac-1, CD62P, and CD63 expression. Changes in platelet cAMP concentrations were assessed by ELISA. While DA showed synergy in platelet activation by ADP and U46619, NOD caused significant inhibition of platelet function both in whole blood aggregometry and flow cytometry. The inhibitory effect of NOD was not mediated via cAMP levels. The nonredox-active NOD-analog N-octanoyl-tyramine had no effects on platelet function. Acetylated NOD conferred to NOD by intracellular esterases showed similar inhibitory effects as NOD. In contrast to DA, NOD is a potent inhibitor of platelet function most likely through intracellular redox-active processes. This adds to the overall protective effect of NOD on pre-transplantation injury and makes NOD an attractive candidate compound for donor or organ conditioning prior to transplantation.
Maouche, Naima; Ktari, Nadia; Bakas, Idriss; Fourati, Najla; Zerrouki, Chouki; Seydou, Mahamadou; Maurel, François; Chehimi, Mohammed Mehdi
2015-11-01
A surface acoustic wave sensor operating at 104 MHz and functionalized with a polypyrrole molecularly imprinted polymer has been designed for selective detection of dopamine (DA). Optimization of pyrrole/DA ratio, polymerization and immersion times permitted to obtain a highly selective sensor, which has a sensitivity of 0.55°/mM (≈ 550 Hz/mM) and a detection limit of ≈ 10 nM. Morphology and related roughness parameters of molecularly imprinted polymer surfaces, before and after extraction of DA, as well as that of the non imprinted polymer were characterized by atomic force microscopy. The developed chemosensor selectively recognized dopamine over the structurally similar compound 4-hydroxyphenethylamine (referred as tyramine), or ascorbic acid,which co-exists with DA in body fluids at a much higher concentration. Selectivity tests were also carried out with dihydroxybenzene, for which an unexpected phase variation of order of 75% of the DA one was observed. Quantum chemical calculations, based on the density functional theory, were carried out to determine the nature of interactions between each analyte and the PPy matrix and the DA imprinted PPy polypyrrole sensing layer in order to account for the important phase variation observed during dihydroxybenzene injection. Copyright © 2015 John Wiley & Sons, Ltd.
Dopamine in Drosophila: setting arousal thresholds in a miniature brain
Van Swinderen, Bruno; Andretic, Rozi
2011-01-01
In mammals, the neurotransmitter dopamine (DA) modulates a variety of behaviours, although DA function is mostly associated with motor control and reward. In insects such as the fruitfly, Drosophila melanogaster, DA also modulates a wide array of behaviours, ranging from sleep and locomotion to courtship and learning. How can a single molecule play so many different roles? Adaptive changes within the DA system, anatomical specificity of action and effects on a variety of behaviours highlight the remarkable versatility of this neurotransmitter. Recent genetic and pharmacological manipulations of DA signalling in Drosophila have launched a surfeit of stories—each arguing for modulation of some aspect of the fly's waking (and sleeping) life. Although these stories often seem distinct and unrelated, there are some unifying themes underlying DA function and arousal states in this insect model. One of the central roles played by DA may involve perceptual suppression, a necessary component of both sleep and selective attention. PMID:21208962
Cartier, Etienne; Hamilton, Peter J; Belovich, Andrea N; Shekar, Aparna; Campbell, Nicholas G; Saunders, Christine; Andreassen, Thorvald F; Gether, Ulrik; Veenstra-Vanderweele, Jeremy; Sutcliffe, James S; Ulery-Reynolds, Paula G; Erreger, Kevin; Matthies, Heinrich J G; Galli, Aurelio
2015-02-01
Syntaxin 1 (STX1) is a presynaptic plasma membrane protein that coordinates synaptic vesicle fusion. STX1 also regulates the function of neurotransmitter transporters, including the dopamine (DA) transporter (DAT). The DAT is a membrane protein that controls DA homeostasis through the high-affinity re-uptake of synaptically released DA. We adopt newly developed animal models and state-of-the-art biophysical techniques to determine the contribution of the identified gene variants to impairments in DA neurotransmission observed in autism spectrum disorder (ASD). Here, we characterize two independent autism-associated variants in the genes that encode STX1 and the DAT. We demonstrate that each variant dramatically alters DAT function. We identify molecular mechanisms that converge to inhibit reverse transport of DA and DA-associated behaviors. These mechanisms involve decreased phosphorylation of STX1 at Ser14 mediated by casein kinase 2 as well as a reduction in STX1/DAT interaction. These findings point to STX1/DAT interactions and STX1 phosphorylation as key regulators of DA homeostasis. We determine the molecular identity and the impact of these variants with the intent of defining DA dysfunction and associated behaviors as possible complications of ASD.
Cartier, Etienne; Hamilton, Peter J.; Belovich, Andrea N.; Shekar, Aparna; Campbell, Nicholas G.; Saunders, Christine; Andreassen, Thorvald F.; Gether, Ulrik; Veenstra-Vanderweele, Jeremy; Sutcliffe, James S.; Ulery-Reynolds, Paula G.; Erreger, Kevin; Matthies, Heinrich J.G.; Galli, Aurelio
2015-01-01
Background Syntaxin 1 (STX1) is a presynaptic plasma membrane protein that coordinates synaptic vesicle fusion. STX1 also regulates the function of neurotransmitter transporters, including the dopamine (DA) transporter (DAT). The DAT is a membrane protein that controls DA homeostasis through the high-affinity re-uptake of synaptically released DA. Methods We adopt newly developed animal models and state-of-the-art biophysical techniques to determine the contribution of the identified gene variants to impairments in DA neurotransmission observed in autism spectrum disorder (ASD). Outcomes Here, we characterize two independent autism-associated variants in the genes that encode STX1 and the DAT. We demonstrate that each variant dramatically alters DAT function. We identify molecular mechanisms that converge to inhibit reverse transport of DA and DA-associated behaviors. These mechanisms involve decreased phosphorylation of STX1 at Ser14 mediated by casein kinase 2 as well as a reduction in STX1/DAT interaction. These findings point to STX1/DAT interactions and STX1 phosphorylation as key regulators of DA homeostasis. Interpretation We determine the molecular identity and the impact of these variants with the intent of defining DA dysfunction and associated behaviors as possible complications of ASD. PMID:25774383
Ankireddy, Seshadri Reddy; Kim, Jongsung
2015-01-01
Microbeads are frequently used as solid supports for biomolecules such as proteins and nucleic acids in heterogeneous microfluidic assays. Chip-based, quantum dot (QD)-bead-biomolecule probes have been used for the detection of various types of DNA. In this study, we developed dopamine (DA)-functionalized InP/ZnS QDs (QDs-DA) as fluorescence probes for the detection of adenosine in microfluidic chips. The photoluminescence (PL) intensity of the QDs-DA is quenched by Zn(2+) because of the strong coordination interactions. In the presence of adenosine, Zn(2+) cations preferentially bind to adenosine, and the PL intensity of the QDs-DA is recovered. A polydimethylsiloxane-based microfluidic chip was fabricated, and adenosine detection was confirmed using QDs-DA probes.
Ankireddy, Seshadri Reddy; Kim, Jongsung
2015-01-01
Microbeads are frequently used as solid supports for biomolecules such as proteins and nucleic acids in heterogeneous microfluidic assays. Chip-based, quantum dot (QD)-bead-biomolecule probes have been used for the detection of various types of DNA. In this study, we developed dopamine (DA)-functionalized InP/ZnS QDs (QDs-DA) as fluorescence probes for the detection of adenosine in microfluidic chips. The photoluminescence (PL) intensity of the QDs-DA is quenched by Zn2+ because of the strong coordination interactions. In the presence of adenosine, Zn2+ cations preferentially bind to adenosine, and the PL intensity of the QDs-DA is recovered. A polydimethylsiloxane-based microfluidic chip was fabricated, and adenosine detection was confirmed using QDs-DA probes. PMID:26347351
Reward and aversion in a heterogeneous midbrain dopamine system.
Lammel, Stephan; Lim, Byung Kook; Malenka, Robert C
2014-01-01
The ventral tegmental area (VTA) is a heterogeneous brain structure that serves a central role in motivation and reward processing. Abnormalities in the function of VTA dopamine (DA) neurons and the targets they influence are implicated in several prominent neuropsychiatric disorders including addiction and depression. Recent studies suggest that the midbrain DA system is composed of anatomically and functionally heterogeneous DA subpopulations with different axonal projections. These findings may explain a number of previously confusing observations that suggested a role for DA in processing both rewarding as well as aversive events. Here we will focus on recent advances in understanding the neural circuits mediating reward and aversion in the VTA and how stress as well as drugs of abuse, in particular cocaine, alter circuit function within a heterogeneous midbrain DA system. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'. Copyright © 2013 Elsevier Ltd. All rights reserved.
Silwal, Achut P; Yadav, Rajeev; Sprague, Jon E; Lu, H Peter
2017-07-19
Dopamine (DA) controls many psychological and behavioral activities in the central nervous system (CNS) through interactions with the human dopamine transporter (hDAT) and dopamine receptors. The roles of DA in the function of the CNS are affected by the targeted binding of drugs to hDAT; thus, hDAT plays a critical role in neurophysiology and neuropathophysiology. An effective experimental method is necessary to study the DA-hDAT interaction and effects of variety of drugs like psychostimulants and antidepressants that are dependent on this interaction. In searching for obtaining and identifying the Raman spectral signatures, we have used surface enhanced Raman scattering (SERS) spectroscopy to record SERS spectra from DA, human embryonic kidney 293 cells (HEK293), hDAT-HEK293, DA-HEK293, and DA-hDAT-HEK293. We have demonstrated a specific 2D-distribution SERS spectral analytical approach to analyze DA-hDAT interaction. Our study shows that the Raman modes at 807, 839, 1076, 1090, 1538, and 1665 cm -1 are related to DA-hDAT interaction, where Raman shifts at 807 and 1076 cm -1 are the signature markers for the bound state of DA to probe DA-hDAT interaction. On the basis of density function theory (DFT) calculation, Raman shift of the bound state of DA at 807 cm -1 is related to combination of bending modes α(C3-O10-H21), α(C2-O11-H22), α(C7-C8-H18), α(C6-C4-H13), α(C7-C8-H19), and α(C7-C8-N9), and Raman shift at 1076 cm -1 is related to combination of bending modes α(H19-N9-C8), γ(N9-H19), γ(C8-H19), γ(N9-H20), γ(C8-H18), and α(C7-C8-H18). These findings demonstrate that protein-ligand interactions can be confirmed by probing change in Raman shift of ligand molecules, which could be crucial to understanding molecular interactions between neurotransmitters and their receptors or transporters.
Dopamine prediction errors in reward learning and addiction: from theory to neural circuitry
Keiflin, Ronald; Janak, Patricia H.
2015-01-01
Summary Midbrain dopamine (DA) neurons are proposed to signal reward prediction error (RPE), a fundamental parameter in associative learning models. This RPE hypothesis provides a compelling theoretical framework for understanding DA function in reward learning and addiction. New studies support a causal role for DA-mediated RPE activity in promoting learning about natural reward; however, this question has not been explicitly tested in the context of drug addiction. In this review, we integrate theoretical models with experimental findings on the activity of DA systems, and on the causal role of specific neuronal projections and cell types, to provide a circuit-based framework for probing DA-RPE function in addiction. By examining error-encoding DA neurons in the neural network in which they are embedded, hypotheses regarding circuit-level adaptations that possibly contribute to pathological error-signaling and addiction can be formulated and tested. PMID:26494275
Presynaptic control of dopamine release by BETA-phenylethylamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zharikova, A.D.; Godukhin, O.V.
The authors study the effect of extracellular ions (Ca/sup 2 +/, Na/sup 2 +/) on the beta-phenylethylamine (beta-PEA) releasing effect, dependence of this effect on the membrane potential of dopaminergic endings, and the participation of dopamine presynaptic autoreceptors in the realization of the effects of beta-PEA on dopamine (DA) release. Experi ments were carried out on noninbred male albino rats. By means of a microsyringe, (/sup 3/H)-DA hydrochloride was injected. The significance of the difference in levels of (/sup 3/H)-DA release during analogous periods of perfusion in the groups of animals compared was estimated by Student's test. These experiments inmore » vivo thus demonstrated the ability of beta-PEA to regulate DA release in different directions depending on the functional state of the dopaminergic neuron.« less
Phosphorylation mechanisms in dopamine transporter regulation.
Foster, James D; Vaughan, Roxanne A
2017-10-01
The dopamine transporter (DAT) is a plasma membrane phosphoprotein that actively translocates extracellular dopamine (DA) into presynaptic neurons. The transporter is the primary mechanism for control of DA levels and subsequent neurotransmission, and is the target for abused and therapeutic drugs that exert their effects by suppressing reuptake. The transport capacity of DAT is acutely regulated by signaling systems and drug exposure, providing neurons the ability to fine-tune DA clearance in response to specific conditions. Kinase pathways play major roles in these mechanisms, and this review summarizes the current status of DAT phosphorylation characteristics and the evidence linking transporter phosphorylation to control of reuptake and other functions. Greater understanding of these processes may aid in elucidation of their possible contributions to DA disease states and suggest specific phosphorylation sites as targets for therapeutic manipulation of reuptake. Copyright © 2016. Published by Elsevier B.V.
Hossain, Murad; Wickramasekara, Rochelle N; Carvelli, Lucia
2014-07-01
β-Phenylethylamine (βPEA) is an endogenous amine that has been shown to increase the synaptic levels of dopamine (DA). A number of in vitro and behavioral studies suggest the dopamine transporter (DAT) plays a role in the effects generated by βPEA, however the mechanism through which βPEA affects DAT has not yet been elucidated. Here, we used Caenorhabditis (C.) elegans DAT (DAT-1) expressing LLC-pk1 cells and neuronal cultures to investigate whether the βPEA-induced increase of extracellular DA required DAT-1. Our data show that βPEA increases extracellular dopamine both in DAT-1 transfected cells and cultures of differentiated neurons. RTI-55, a cocaine homologue and DAT inhibitor, completely blocked the βPEA-induced effect in transfected cells. However in neuronal cultures, RTI-55 only partly inhibited the increase of extracellular DA generated by βPEA. These results suggest that βPEA requires DAT-1 and other, not yet identified proteins, to increase extracellular DA when tested in a native system. Furthermore, our results suggest that βPEA-induced increase of extracellular DA does not require functional monoamine vesicles as genetic ablation of the C. elegans homologue vesicular monoamine transporter, cat-1, did not compromise the ability of βPEA to increase extracellular DA. Finally, our electrophysiology data show that βPEA caused fast-rising and self-inactivating amperometric currents in a subset of wild-type DA neurons but not in neurons isolated from dat-1 knockout animals. Taken together, these data demonstrate that in both DA neurons and heterogeneous cultures of differentiated C. elegans neurons, βPEA releases cytoplasmic DA through DAT-1 to ultimately increase the extracellular concentration of DA. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hossain, Murad; Wickramasekara, Rochelle N.; Carvelli, Lucia
2013-01-01
β-phenylethylamine (βPEA) is an endogenous amine that has been shown to increase the synaptic levels of dopamine (DA). A number of in vitro and behavioral studies suggest the dopamine transporter (DAT) plays a role in the effects generated by βPEA, however the mechanism through which βPEA affects DAT has not yet been elucidated. Here, we used Caenorhabditis (C.) elegans DAT (DAT-1) expressing LLC-pk1 cells and neuronal cultures to investigate whether the βPEA-induced increase of extracellular DA required DAT-1. Our data show that βPEA increases extracellular dopamine both in DAT-1 transfected cells and cultures of differentiated neurons. RTI-55, a cocaine homologue and DAT inhibitor, completely blocked the βPEA-induced effect in transfected cells. However in neuronal cultures, RTI-55 only partly inhibited the increase of extracellular DA generated by βPEA. These results suggest that βPEA requires DAT-1 and other, not yet identified proteins, to increase extracellular DA when tested in a native system. Furthermore, our results suggest that βPEA-induced increase of extracellular DA does not require functional monoamine vesicles as genetic ablation of the C. elegans homologue vesicular monoamine transporter, cat-1, did not compromise the ability of βPEA to increase extracellular DA. Finally, our electrophysiology data show that βPEA caused fast-rising and self-inactivating amperometric currents in a subset of wild-type DA neurons but not in neurons isolated from dat-1 knockout animals. Taken together, these data demonstrate that in both DA neurons and heterogeneous cultures of differentiated C. elegans neurons, βPEA releases cytoplasmic DA through DAT-1 to ultimately increase the extracellular concentration of DA. PMID:24161617
Cameron, Courtney M.; Wightman, R. Mark; Carelli, Regina M.
2014-01-01
Electrophysiological studies show that distinct subsets of nucleus accumbens (NAc) neurons differentially encode information about goal-directed behaviors for intravenous cocaine versus natural (food/water) rewards. Further, NAc rapid dopamine signaling occurs on a timescale similar to phasic cell firing during cocaine and natural reward-seeking behaviors. However, it is not known whether dopamine signaling is reinforcer specific (i.e., is released during responding for only one type of reinforcer) within discrete NAc locations, similar to neural firing dynamics. Here, fast-scan cyclic voltammetry (FSCV) was used to measure rapid dopamine release during multiple schedules involving sucrose reward and cocaine self-administration (n=8 rats) and, in a separate group of rats (n = 6), during a sucrose/food multiple schedule. During the sucrose/cocaine multiple schedule, dopamine increased within seconds of operant responding for both reinforcers. Although dopamine release was not reinforcer specific, more subtle differences were observed in peak dopamine concentration [DA] across reinforcer conditions. Specifically, peak [DA] was higher during the first phase of the multiple schedule, regardless of reinforcer type. Further, the time to reach peak [DA] was delayed during cocaine-responding compared to sucrose. During the sucrose/food multiple schedule, increases in dopamine release were also observed relative to operant responding for both natural rewards. However, peak [DA] was higher relative to responding for sucrose than food, regardless of reinforcer order. Overall, the results reveal the dynamics of rapid dopamine signaling in discrete locations in the NAc across reward conditions, and provide novel insight into the functional role of this system in reward-seeking behaviors. PMID:25174553
NASA Astrophysics Data System (ADS)
Zhou, Zhan; Wang, Qianming
2014-04-01
A novel organic-inorganic hybrid sensor based on diethylenetriaminepentaacetic acid (DTPA) modified reduced graphene oxide (RGO-DTPA) chelated with terbium ions allows detection of dopamine (DA) through an emission enhancement effect. Its luminescence, peaking at 545 nm, has been improved by a factor of 25 in the presence of DA (detection limit = 80 nM). In addition, this covalently bonded terbium complex functionalized reduced graphene oxide (RGO-DTPA-Tb) can be successfully assembled on a glassy carbon electrode. The assay performed through differential pulse voltammetry (DPV) yielded obvious peak separation between DA and excessive amounts of the interfering ascorbic acid (AA).A novel organic-inorganic hybrid sensor based on diethylenetriaminepentaacetic acid (DTPA) modified reduced graphene oxide (RGO-DTPA) chelated with terbium ions allows detection of dopamine (DA) through an emission enhancement effect. Its luminescence, peaking at 545 nm, has been improved by a factor of 25 in the presence of DA (detection limit = 80 nM). In addition, this covalently bonded terbium complex functionalized reduced graphene oxide (RGO-DTPA-Tb) can be successfully assembled on a glassy carbon electrode. The assay performed through differential pulse voltammetry (DPV) yielded obvious peak separation between DA and excessive amounts of the interfering ascorbic acid (AA). Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06156f
Behr, J; Gloveli, T; Schmitz, D; Heinemann, U
2000-07-01
Schizophrenia is considered to be associated with an abnormal functioning of the hippocampal output. The high clinical potency of antipsychotics that act as antagonists at dopamine (DA) receptors indicate a hyperfunction of the dopaminergic system. The subiculum obtains information from area CA1 and the entorhinal cortex and represents the major output region of the hippocampal complex. To clarify whether an enhanced dopaminergic activity alters the hippocampal output, the effect of DA on alveus- and perforant path-evoked excitatory postsynaptic currents (EPSCs) in subicular neurons was examined using conventional intracellular and whole cell voltage-clamp recordings. Dopamine (100 microM) depressed alveus-elicited (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated EPSCs to 56 +/- 8% of control while perforant path-evoked EPSCs were attenuated to only 76 +/- 7% of control. Dopamine had no effect on the EPSC kinetics. Dopamine reduced the frequency of spontaneous miniature EPSCs without affecting their amplitudes. The sensitivity of subicular neurons to the glutamate receptor agonist (S)-alpha-amino-3-hydoxy-5-methyl-4-isoxazolepropionic acid was unchanged by DA pretreatment, excluding a postsynaptic mechanism for the observed reduction of excitatory synaptic transmission. The effect of DA on evoked EPSCs was mimicked by the D1 receptor agonist SFK 38393 and partially antagonized by the D1 receptor antagonist SCH 23390. While the D2 receptor agonist quinelorane failed to reduce the EPSCs, the D2 receptor antagonist sulpiride did not block the action of DA. The results indicate that DA strongly depresses the hippocampal and the entorhinal excitatory input onto subicular neurons by decreasing the glutamate release following activation of presynaptic D1-like DA receptors.
Harun, Rashed; Grassi, Christine M; Munoz, Miranda J; Wagner, Amy K
2017-06-05
Central dopaminergic (DAergic) pathways have an important role in a wide range of functions, such as attention, motivation, and movement. Dopamine (DA) is implicated in diseases and disorders including attention deficit hyperactivity disorder, Parkinson's disease, and traumatic brain injury. Thus, DA neurotransmission and the methods to study it are of intense scientific interest. In vivo fast-scan cyclic voltammetry (FSCV) is a method that allows for selectively monitoring DA concentration changes with fine temporal and spatial resolution. This technique is commonly used in conjunction with electrical stimulations of ascending DAergic pathways to control the impulse flow of dopamine neurotransmission. Although the stimulated DA neurotransmission paradigm can produce robust DA responses with clear morphologies, making them amenable for kinetic analysis, there is still much debate on how to interpret the responses in terms of their DA release and clearance components. To address this concern, a quantitative neurobiological (QN) framework of stimulated DA neurotransmission was recently developed to realistically model the dynamics of DA release and reuptake over the course of a stimulated DA response. The foundations of this model are based on experimental data from stimulated DA neurotransmission and on principles of neurotransmission adopted from various lines of research. The QN model implements 12 parameters related to stimulated DA release and reuptake dynamics to model DA responses. This work describes how to simulate DA responses using QNsim1.0 and also details principles that have been implemented to systematically discern alterations in the stimulated dopamine release and reuptake dynamics.
Zhou, Zhan; Wang, Qianming
2014-05-07
A novel organic-inorganic hybrid sensor based on diethylenetriaminepentaacetic acid (DTPA) modified reduced graphene oxide (RGO-DTPA) chelated with terbium ions allows detection of dopamine (DA) through an emission enhancement effect. Its luminescence, peaking at 545 nm, has been improved by a factor of 25 in the presence of DA (detection limit = 80 nM). In addition, this covalently bonded terbium complex functionalized reduced graphene oxide (RGO-DTPA-Tb) can be successfully assembled on a glassy carbon electrode. The assay performed through differential pulse voltammetry (DPV) yielded obvious peak separation between DA and excessive amounts of the interfering ascorbic acid (AA).
Specificity and impact of adrenergic projections to the midbrain dopamine system
Mejias-Aponte, Carlos A.
2016-01-01
Dopamine (DA) is a neuromodulator that regulates different brain circuits involved in cognitive functions, motor coordination, and emotions. Dysregulation of DA is associated with many neurological and psychiatric disorders such as Parkinson’s disease and substance abuse. Several lines of research have shown that the midbrain DA system is regulated by the central adrenergic system. This review focuses on adrenergic interactions with midbrain DA neurons. It discusses the current neuroanatomy including source of adrenergic innervation, type of synapses, and adrenoceptors expression. It also discusses adrenergic regulation of DA cell activity and neurotransmitter release. Finally, it reviews several neurological and psychiatric disorders where changes in adrenergic system are associated with dysregulation of the midbrain DA system. PMID:26820641
Persistent cognitive dysfunction after traumatic brain injury: A dopamine hypothesis
Bales, James W.; Wagner, Amy K.; Kline, Anthony E.; Dixon, C. Edward
2010-01-01
Traumatic brain injury (TBI) represents a significant cause of death and disability in industrialized countries. Of particular importance to patients the chronic effect that TBI has on cognitive function. Therapeutic strategies have been difficult to evaluate because of the complexity of injuries and variety of patient presentations within a TBI population. However, pharmacotherapies targeting dopamine (DA) have consistently shown benefits in attention, behavioral outcome, executive function, and memory. Still it remains unclear what aspect of TBI pathology is targeted by DA therapies and what time-course of treatment is most beneficial for patient outcomes. Fortunately, ongoing research in animal models has begun to elucidate the pathophysiology of DA alterations after TBI. The purpose of this review is to discuss clinical and experimental research examining DAergic therapies after TBI, which will in turn elucidate the importance of DA for cognitive function/dysfunction after TBI as well as highlight the areas that require further study. PMID:19580914
Fiore, Vincenzo G.; Sperati, Valerio; Mannella, Francesco; Mirolli, Marco; Gurney, Kevin; Friston, Karl; Dolan, Raymond J.; Baldassarre, Gianluca
2014-01-01
The effects of striatal dopamine (DA) on behavior have been widely investigated over the past decades, with “phasic” burst firings considered as the key expression of a reward prediction error responsible for reinforcement learning. Less well studied is “tonic” DA, where putative functions include the idea that it is a regulator of vigor, incentive salience, disposition to exert an effort and a modulator of approach strategies. We present a model combining tonic and phasic DA to show how different outflows triggered by either intrinsically or extrinsically motivating stimuli dynamically affect the basal ganglia by impacting on a selection process this system performs on its cortical input. The model, which has been tested on the simulated humanoid robot iCub interacting with a mechatronic board, shows the putative functions ascribed to DA emerging from the combination of a standard computational mechanism coupled to a differential sensitivity to the presence of DA across the striatum. PMID:24600422
Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation
Matthews, Gillian A.; Nieh, Edward H.; Vander Weele, Caitlin M.; Halbert, Sarah A.; Pradhan, Roma V.; Yosafat, Ariella S.; Glober, Gordon F.; Izadmehr, Ehsan M.; Thomas, Rain E.; Lacy, Gabrielle D.; Wildes, Craig P.; Ungless, Mark A.; Tye, Kay M.
2016-01-01
Summary The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PaperClip PMID:26871628
Cameron, Courtney M; Wightman, R Mark; Carelli, Regina M
2014-11-01
Electrophysiological studies show that distinct subsets of nucleus accumbens (NAc) neurons differentially encode information about goal-directed behaviors for intravenous cocaine versus natural (food/water) rewards. Further, NAc rapid dopamine signaling occurs on a timescale similar to phasic cell firing during cocaine and natural reward-seeking behaviors. However, it is not known whether dopamine signaling is reinforcer specific (i.e., is released during responding for only one type of reinforcer) within discrete NAc locations, similar to neural firing dynamics. Here, fast-scan cyclic voltammetry (FSCV) was used to measure rapid dopamine release during multiple schedules involving sucrose reward and cocaine self-administration (n = 8 rats) and, in a separate group of rats (n = 6), during a sucrose/food multiple schedule. During the sucrose/cocaine multiple schedule, dopamine increased within seconds of operant responding for both reinforcers. Although dopamine release was not reinforcer specific, more subtle differences were observed in peak dopamine concentration [DA] across reinforcer conditions. Specifically, peak [DA] was higher during the first phase of the multiple schedule, regardless of reinforcer type. Further, the time to reach peak [DA] was delayed during cocaine-responding compared to sucrose. During the sucrose/food multiple schedule, increases in dopamine release were also observed relative to operant responding for both natural rewards. However, peak [DA] was higher relative to responding for sucrose than food, regardless of reinforcer order. Overall, the results reveal the dynamics of rapid dopamine signaling in discrete locations in the NAc across reward conditions, and provide novel insight into the functional role of this system in reward-seeking behaviors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Donglei; Xu, Fei; Hu, Jiajie; Lin, Meng
2017-02-01
An electrochemical sensor for determining dopamine was developed by modifying phytic acid/graphene oxide (PA/GO) nanocomposites onto a glassy carbon electrode (GCE). PA functionalized GO was prepared by an ultra-sonication method. Subsequently, the PA/GO nanocomposites were drop-casted on a glassy carbon substrate. The structural feature of the PA/GO modified GCE was confirmed by attenuated total reflection infrared (ATR-IR) spectroscopy. The proposed electrochemical sensor was applied to detect various concentrations of DA by differential pulse voltammetry (DPV). The PA/GO/GCE was considered to be highly sensitive to DA in the range of 0.05-10μM. In addition, the PA/GO/GCE demonstrated high electrochemical selectivity toward DA in the presence of ascorbic acid (AA) and uric acid (UA). The prepared electrochemical DA sensor was applied for detection of DA in dopamine hydrochloride injection and spiked samples of human urine with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.
Apomorphine and the dopamine hypothesis of schizophrenia: a dilemma?
Dépatie, L; Lal, S
2001-01-01
The dopamine (DA) hypothesis of schizophrenia implicates an enhancement of DA function in the pathophysiology of the disorder, at least in the genesis of positive symptoms. Accordingly, apomorphine, a directly acting DA receptor agonist, should display psychotomimetic properties. A review of the literature shows little or no evidence that apomorphine, in doses that stimulate postsynaptic DA receptors, induces psychosis in non-schizophrenic subjects or a relapse or exacerbation of psychotic symptoms in patients with schizophrenia. After a detailed review of the literature reporting psychotogenic effects of apomorphine in patients with Parkinson's disease, an interpretation of these data is difficult, in part because of several confounding factors, such as the concomitant use of drugs known to induce psychosis and the advanced state of the progressive neurological disorder. In the context of the DA hypothesis of schizophrenia, the limited ability of apomorphine to induce psychosis, in contrast to indirectly acting DA agonists that increase synaptic DA, may be explained by the relatively weak affinity of apomorphine for the D3 receptor compared with DA. Alternatively, enhancement of DA function, though necessary, may be insufficient by itself to induce psychosis. PMID:11394190
Methylphenidate and Cocaine Self-Administration Produce Distinct Dopamine Terminal Alterations
Calipari, Erin S.; Ferris, Mark J.; Melchior, James R.; Bermejo, Kristel; Salahpour, Ali; Roberts, David C. S.; Jones, Sara R.
2012-01-01
Methylphenidate (MPH) is a commonly abused psychostimulant prescribed for the treatment of attention deficit hyperactivity disorder. MPH has a mechanism of action similar to cocaine (COC) and is commonly characterized as a dopamine transporter (DAT) blocker. While there has been extensive work aimed at understanding dopamine (DA) nerve terminal changes following COC self-administration, very little is known about the effects of MPH self-administration on the DA system. We used fast scan cyclic voltammetry in nucleus accumbens core slices from animals with a five-day self-administration history of 40 injections/day of either MPH (0.56 mg/kg) or COC (1.5 mg/kg) to explore alterations in baseline DA release and uptake kinetics as well as alterations in the interaction of each compound with the DAT. Although MPH and COC have similar behavioral effects, the consequences of self-administration on DA system parameters were found to be divergent. We show that COC self-administration reduced DAT levels and maximal rates of DA uptake, as well as reducing electrically stimulated release, suggesting decreased DA terminal function. In contrast, MPH self-administration increased DAT levels, DA uptake rates, and DA release, suggesting enhanced terminal function, which was supported by findings of increased metabolite/DA tissue content ratios. Tyrosine hydroxylase mRNA, protein and phosphorylation levels were also assessed in both groups. Additionally, COC self-administration reduced COC-induced DAT inhibition, while MPH self-administration increased MPH-induced DAT inhibition, suggesting opposite pharmacodynamic effects of these two drugs. These findings suggest that the factors governing DA system adaptations are more complicated than simple DA uptake blockade. PMID:22458761
Xing, Bo; Li, Yan-Chun; Gao, Wen-Jun
2016-01-01
Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. PMID:26790349
Spontaneous eye blink rate as predictor of dopamine-related cognitive function-A review.
Jongkees, Bryant J; Colzato, Lorenza S
2016-12-01
An extensive body of research suggests the spontaneous eye blink rate (EBR) is a non-invasive indirect marker of central dopamine (DA) function, with higher EBR predicting higher DA function. In the present review we provide a comprehensive overview of this literature. We broadly divide the available research in studies that aim to disentangle the dopaminergic underpinnings of EBR, investigate its utility in diagnosis of DA-related disorders and responsivity to drug treatment, and, lastly, investigate EBR as predictor of individual differences in DA-related cognitive performance. We conclude (i) EBR can reflect both DA receptor subtype D1 and D2 activity, although baseline EBR might be most strongly related to the latter, (ii) EBR can predict hypo- and hyperdopaminergic activity as well as normalization of this activity following treatment, and (iii) EBR can reliably predict individual differences in performance on many cognitive tasks, in particular those related to reward-driven behavior and cognitive flexibility. In sum, this review establishes EBR as a useful predictor of DA in a wide variety of contexts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Boger, Heather A.; Mannangatti, Padmanabhan; Samuvel, Devadoss J.; Saylor, Alicia J.; Bender, Tara S.; McGinty, Jacqueline F.; Fortress, Ashley M.; Zaman, Vandana; Huang, Peng; Middaugh, Lawrence D.; Randall, Patrick K.; Jayanthi, Lankupalle D.; Rohrer, Baerbel; Helke, Kristi L.; Granholm, Ann-Charlotte; Ramamoorthy, Sammanda
2010-01-01
Brain-derived neurotrophic factor (BDNF) is critical in synaptic plasticity and in the survival and function of midbrain dopamine neurons. In the present study, we assessed the effects of a partial genetic deletion of BDNF on motor function and dopamine (DA) neurotransmitter measures by comparing (Bdnf+/−) with wildtype mice (WT) at different ages. Bdnf+/ and WT mice had similar body weights until 12 months of age; however, at 21 months, Bdnf+/− mice were significantly heavier than WT mice. Horizontal and vertical motor activity was reduced for Bdnf+/− compared to WT mice; but was not influenced by Age. Performance on an accelerating rotarod declined with age for both genotypes and was exacerbated for Bdnf+/− mice. Body weight did not correlate with any of the three behavioral measures studied. DA neurotransmitter markers indicated no genotypic difference in striatal tyrosine hydroxylase (TH), dopamine transporter (DAT), or vesicular monoamine transporter 2 (VMAT2) immunoreactivity at any age. However, DA transport via DAT (starting at 12 months) and VMAT2 (starting at 3 months) as well as KCl-stimulated DA release were reduced in Bdnf+/− mice and declined with age suggesting an increasingly important role for BDNF in the release and uptake of DA with the aging process. These findings suggest that a BDNF expression deficit becomes more critical to dopaminergic dynamics and related behavioral activities with increasing age. PMID:20860702
DRD2: Bridging the genome and ingestive behavior
Sun, Xue; Luquet, Serge; Small, Dana M
2017-01-01
Recent work highlights the importance of genetic variants that influence brain structure and function in conferring risk for polygenic obesity. The neurotransmitter dopamine (DA) plays a pivotal role in energy balance by integrating metabolic signals with circuits supporting cognitive, perceptual and appetitive functions that guide feeding. It has also been established that diet and obesity alter DA signaling leading to compulsive-like feeding and neurocognitive impairments. This raises the possibility that genetic variants that influence DA signaling and adaptation confer risk for overeating and cognitive decline. We consider the role of two common gene variants, FTO and TaqIA rs1800497 in driving gene * environment interactions promoting obesity, metabolic dysfunction, and cognitive change via their influence on dopamine receptor subtype 2 signaling. PMID:28372879
Bermingham, Daniel P.; Snider, Sam L.; Miller, David M.
2017-01-01
The neurotransmitter dopamine (DA) regulates multiple behaviors across phylogeny, with disrupted DA signaling in humans associated with addiction, attention-deficit/ hyperactivity disorder, schizophrenia, and Parkinson's disease. The DA transporter (DAT) imposes spatial and temporal limits on DA action, and provides for presynaptic DA recycling to replenish neurotransmitter pools. Molecular mechanisms that regulate DAT expression, trafficking, and function, particularly in vivo, remain poorly understood, though recent studies have implicated rho-linked pathways in psychostimulant action. To identify genes that dictate the ability of DAT to sustain normal levels of DA clearance, we pursued a forward genetic screen in Caenorhabditis elegans based on the phenotype swimming-induced paralysis (Swip), a paralytic behavior observed in hermaphrodite worms with loss-of-function dat-1 mutations. Here, we report the identity of swip-13, which encodes a highly conserved ortholog of the human atypical MAP kinase ERK8. We present evidence that SWIP-13 acts presynaptically to insure adequate levels of surface DAT expression and DA clearance. Moreover, we provide in vitro and in vivo evidence supporting a conserved pathway involving SWIP-13/ERK8 activation of Rho GTPases that dictates DAT surface expression and function. SIGNIFICANCE STATEMENT Signaling by the neurotransmitter dopamine (DA) is tightly regulated by the DA transporter (DAT), insuring efficient DA clearance after release. Molecular networks that regulate DAT are poorly understood, particularly in vivo. Using a forward genetic screen in the nematode Caenorhabditis elegans, we implicate the atypical mitogen activated protein kinase, SWIP-13, in DAT regulation. Moreover, we provide in vitro and in vivo evidence that SWIP-13, as well as its human counterpart ERK8, regulate DAT surface availability via the activation of Rho proteins. Our findings implicate a novel pathway that regulates DA synaptic availability and that may contribute to risk for disorders linked to perturbed DA signaling. Targeting this pathway may be of value in the development of therapeutics in such disorders. PMID:28842414
Liu, Mengmeng; Kou, Lu; Bin, Yannan; Wan, Liping; Xiang, Juan
2016-11-01
With the capability to inhibit the formation of amyloid β peptides (Aβ) fibril, dopamine (DA) and other catechol derivatives have been considered for the potential treatment of Alzheimer's disease (AD). Such treatment, however, remains debatable because of the diverse functions of Aβ and DA in AD pathology. Moreover, the complicated oxidation accompanying DA has caused the majority of the previous research to focus on the binding of DA oxides onto Aβ. The molecular mechanism by which Aβ interacts with the reduction state of DA, which is correlative with the brain function, should be urgently explored. By controlling rigorous anaerobic experimental conditions, this work investigated the molecular mechanism of the Aβ/DA interaction, and two binding sites were revealed. For the binding of DA, Tyrosine (Tyr 10 ) was identified as the strong binding site, and serine-asparagine-lysing (SNK(26-28)) segment was the weak binding segment. Furthermore, the Thioflavin T (THT) fluorescence confirmed DA's positive function of inhibiting Aβ aggregation through its weakly binding with SNK(26-28) segment. Meanwhile, 7-OHCCA fluorescence exhibited DA's negative function of enhancing OH generation through inhibiting the Aβ/Cu 2+ coordination. The viability tests of the neuroblastoma SH-SY5Y cells displayed that the coexistence of DA, Cu 2+ , and Aβ induced lower cell viability than free Cu 2+ , indicating the significant negative effect of excessive DA on AD progression. This research revealed the potential DA-induced damage in AD brain, which is significant for understanding the function of DA in AD neuropathology and for designing a DA-related therapeutic strategy for AD. Copyright © 2016 Elsevier Inc. All rights reserved.
Gβγ subunit activation promotes dopamine efflux through the dopamine transporter
Garcia-Olivares, J; Baust, T; Harris, S; Hamilton, P; Galli, A; Amara, SG; Torres, GE
2018-01-01
The dopamine transporter (DAT) is an important regulator of brain dopamine (DA) homeostasis, controlling the intensity and duration of DA signaling. DAT is the target for psychostimulants—like cocaine and amphetamine—and plays an important role in neuropsychiatric disorders, including attention-deficit hyperactivity disorder and drug addiction. Thus, a thorough understanding of the mechanisms that regulate DAT function is necessary for the development of clinical interventions to treat DA-related brain disorders. Previous studies have revealed a plethora of protein–protein interactions influencing DAT cellular localization and activity, suggesting that the fine-tuning of DA homeostasis involves multiple mechanisms. We recently reported that G-protein beta-gamma (Gβγ) subunits bind directly to DAT and decrease DA clearance. Here we show that Gβγ induces the release of DA through DAT. Specifically, a Gβγ-binding/activating peptide, mSIRK, increases DA efflux through DAT in heterologous cells and primary dopaminergic neurons in culture. Addition of the Gβγ inhibitor gallein or DAT inhibitors prevents this effect. Residues 582 to 596 in the DAT carboxy terminus were identified as the primary binding site of Gβγ. A TAT peptide containing the Gβγ-interacting domain of DAT blocked the ability of mSIRK to induce DA efflux, consistent with a direct interaction of Gβγ with the transporter. Finally, activation of a G-protein-coupled receptor, the muscarinic M5R, results in DAT-mediated DA efflux through a Gβγ-dependent mechanism. Collectively, our data show that Gβγ interacts with DAT to promote DA efflux. This novel mechanism may have important implications in the regulation of brain DA homeostasis. PMID:28894302
Kivell, Bronwyn; Uzelac, Zeljko; Sundaramurthy, Santhanalakshmi; Rajamanickam, Jeyaganesh; Ewald, Amy; Chefer, Vladimir; Jaligam, Vanaja; Bolan, Elizabeth; Simonson, Bridget; Annamalai, Balasubramaniam; Mannangatti, Padmanabhan; Prisinzano, Thomas E; Gomes, Ivone; Devi, Lakshmi A; Jayanthi, Lankupalle D; Sitte, Harald H; Ramamoorthy, Sammanda; Shippenberg, Toni S
2014-11-01
Salvinorin A (SalA), a selective κ-opioid receptor (KOR) agonist, produces dysphoria and pro-depressant like effects. These actions have been attributed to inhibition of striatal dopamine release. The dopamine transporter (DAT) regulates dopamine transmission via uptake of released neurotransmitter. KORs are apposed to DAT in dopamine nerve terminals suggesting an additional target by which SalA modulates dopamine transmission. SalA produced a concentration-dependent, nor-binaltorphimine (BNI)- and pertussis toxin-sensitive increase of ASP(+) accumulation in EM4 cells coexpressing myc-KOR and YFP-DAT, using live cell imaging and the fluorescent monoamine transporter substrate, trans 4-(4-(dimethylamino)-styryl)-N-methylpyridinium) (ASP(+)). Other KOR agonists also increased DAT activity that was abolished by BNI pretreatment. While SalA increased DAT activity, SalA treatment decreased serotonin transporter (SERT) activity and had no effect on norepinephrine transporter (NET) activity. In striatum, SalA increased the Vmax for DAT mediated DA transport and DAT surface expression. SalA up-regulation of DAT function is mediated by KOR activation and the KOR-linked extracellular signal regulated kinase-½ (ERK1/2) pathway. Co-immunoprecipitation and BRET studies revealed that DAT and KOR exist in a complex. In live cells, DAT and KOR exhibited robust FRET signals under basal conditions. SalA exposure caused a rapid and significant increase of the FRET signal. This suggests that the formation of KOR and DAT complexes is promoted in response to KOR activation. Together, these data suggest that enhanced DA transport and decreased DA release resulting in decreased dopamine signalling may contribute to the dysphoric and pro-depressant like effects of SalA and other KOR agonists. Copyright © 2014 Elsevier Ltd. All rights reserved.
Impact of disruption of secondary binding site S2 on dopamine transporter function.
Zhen, Juan; Reith, Maarten E A
2016-09-01
The structures of the leucine transporter, drosophila dopamine transporter, and human serotonin transporter show a secondary binding site (designated S2 ) for drugs and substrate in the extracellular vestibule toward the membrane exterior in relation to the primary substrate recognition site (S1 ). The present experiments are aimed at disrupting S2 by mutating Asp476 and Ile159 to Ala. Both mutants displayed a profound decrease in [(3) H]DA uptake compared with wild-type associated with a reduced turnover rate kcat . This was not caused by a conformational bias as the mutants responded to Zn(2+) (10 μM) similarly as WT. The dopamine transporters with either the D476A or I159A mutation both displayed a higher Ki for dopamine for the inhibition of [3H](-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane binding than did the WT transporter, in accordance with an allosteric interaction between the S1 and S2 sites. The results provide evidence in favor of a general applicability of the two-site allosteric model of the Javitch/Weinstein group from LeuT to dopamine transporter and possibly other monoamine transporters. X-ray structures of transporters closely related to the dopamine (DA) transporter show a secondary binding site S2 in the extracellular vestibule proximal to the primary binding site S1 which is closely linked to one of the Na(+) binding sites. This work examines the relationship between S2 and S1 sites. We found that S2 site impairment severely reduced DA transport and allosterically reduced S1 site affinity for the cocaine analog [(3) H]CFT. Our results are the first to lend direct support for the application of the two-site allosteric model, advanced for bacterial LeuT, to the human DA transporter. The model states that, after binding of the first DA molecule (DA1 ) to the primary S1 site (along with Na(+) ), binding of a second DA (DA2 ) to the S2 site triggers, through an allosteric interaction, the release of DA1 and Na(+) into the cytoplasm. © 2016 International Society for Neurochemistry.
Tyrosinase-Based Biosensors for Selective Dopamine Detection
Florescu, Monica; David, Melinda
2017-01-01
A novel tyrosinase-based biosensor was developed for the detection of dopamine (DA). For increased selectivity, gold electrodes were previously modified with cobalt (II)-porphyrin (CoP) film with electrocatalytic activity, to act both as an electrochemical mediator and an enzyme support, upon which the enzyme tyrosinase (Tyr) was cross-linked. Differential pulse voltammetry was used for electrochemical detection and the reduction current of dopamine-quinone was measured as a function of dopamine concentration. Our experiments demonstrated that the presence of CoP improves the selectivity of the electrode towards dopamine in the presence of ascorbic acid (AA), with a linear trend of concentration dependence in the range of 2–30 µM. By optimizing the conditioning parameters, a separation of 130 mV between the peak potentials for ascorbic acid AA and DA was obtained, allowing the selective detection of DA. The biosensor had a sensitivity of 1.22 ± 0.02 µA·cm−2·µM−1 and a detection limit of 0.43 µM. Biosensor performances were tested in the presence of dopamine medication, with satisfactory results in terms of recovery (96%), and relative standard deviation values below 5%. These results confirmed the applicability of the biosensors in real samples such as human urine and blood serum. PMID:28590453
Wyman-Chick, Kathryn A; Martin, Phillip K; Minár, Michal; Schroeder, Ryan W
2016-12-01
More than 10% of patients clinically diagnosed with Parkinson disease demonstrate normal dopamine uptake on dopamine transporter single-photon emission computed tomography (DaTscan), but little is known about how cognitive function differs between patients with dopamine deficiency on DaTscan and patients with scans without evidence of dopaminergic deficit (SWEDD). We compared the cognitive function of these two groups of patients over 2 years. We retrospectively analyzed data obtained from the Parkinson's Progression Markers Initiative on 309 participants clinically diagnosed with idiopathic Parkinson disease who had scored in the normal range on the Montreal Cognitive Assessment at baseline and had completed 1- and 2-year follow-up visits. We compared the Montreal Cognitive Assessment scores at 1 and 2 years between the 42 participants with SWEDD and the 267 with dopamine deficiency. Mean cognitive scores did not differ significantly between groups at 1 year, but at 2 years the participants with SWEDD performed more poorly. At 2 years, 31% of the participants with SWEDD versus 15% of those with dopamine deficiency had statistically reliable cognitive impairment. This study provides evidence that some individuals clinically diagnosed with idiopathic Parkinson disease but with SWEDD demonstrate early cognitive decline. The results also suggest that recently diagnosed patients with SWEDD may be at even greater risk for cognitive decline than patients with DaTscan-confirmed early-stage Parkinson disease. While patients with SWEDD likely represent a heterogeneous group of etiologies, our results highlight the need to monitor these patients' cognitive function over time.
Xing, Bo; Li, Yan-Chun; Gao, Wen-Jun
2016-06-15
Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. This article is part of a Special Issue entitled SI: Noradrenergic System. Copyright © 2016 Elsevier B.V. All rights reserved.
McRae, Amanda; Hjorth, Stephan; Mason, David W.; Dillon, Lynn; Tice, Thomas R.
1991-01-01
Biodegradable controlled-release microsphere systems made with the biocompatible biodegradable polyester excipient poly [DL lactide-co-glycolide] constitute an exciting new technology for drug delivery to the central nervous system (CNS). The present study describes functional observations indicating that implantation of dopamine (DA) microspheres encapsulated within two different polymer excipients into denervated- striatal tissue assures a prolonged release of the transmitter in vivo. Moreover, in this regard, the results show that there were clear cut temporal differences in the effect of the two DA microsphere formulations compared in this study, probably reflecting variations in the actual composition (i.e., lactide to glycolide ratio) of the two copolymer excipients examined. This technology has considerable potential for basic research with possible clinical application. PMID:1782252
Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation.
Matthews, Gillian A; Nieh, Edward H; Vander Weele, Caitlin M; Halbert, Sarah A; Pradhan, Roma V; Yosafat, Ariella S; Glober, Gordon F; Izadmehr, Ehsan M; Thomas, Rain E; Lacy, Gabrielle D; Wildes, Craig P; Ungless, Mark A; Tye, Kay M
2016-02-11
The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PAPERCLIP. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
A computational model of Dopamine and Acetylcholine aberrant learning in Basal Ganglia.
Baston, Chiara; Ursino, Mauro
2015-01-01
Basal Ganglia (BG) are implied in many motor and cognitive tasks, such as action selection, and have a central role in many pathologies, primarily Parkinson Disease. In the present work, we use a recently developed biologically inspired BG model to analyze how the dopamine (DA) level can affect the temporal response during action selection, and the capacity to learn new actions following rewards and punishments. The model incorporates the 3 main pathways (direct, indirect and hyperdirect) working in BG functioning. The behavior of 2 alternative networks (the first with normal DA levels, the second with reduced DA) is analyzed both in untrained conditions, and during training performed in different epochs. The results show that reduced DA causes delayed temporal responses in the untrained network, and difficult of learning during training, characterized by the necessity of much more epochs. The results provide interesting hints to understand the behavior of healthy and dopamine depleted subjects, such as parkinsonian patients.
Lv, Can; Mo, Chunheng; Liu, Haikun; Wu, Chao; Li, Zhengyang; Li, Juan; Wang, Yajun
2018-04-20
Dopamine (DA) D2-like (and D1-like) receptors are suggested to mediate the dopamine actions in the anterior pituitary and/or CNS of birds. However, the information regarding the structure, functionality, and expression of avian D2-like receptors have not been fully characterized. In this study, we cloned two D2-like receptors (cDRD2, cDRD4) from chicken brain using RACE PCR. The cloned cDRD4 is a 378-amino acid receptor, which shows 57% amino acid (a.a.) identity with mouse DRD4. As in mammals, two cDRD2 isoforms, cDRD2L (long isoform, 437 a.a.) and cDRD2S (short isoform, 408 a.a.), which differ in their third intracellular loop, were identified in chickens. Using cell-based luciferase reporter assays or Western blot, we demonstrated that cDRD4, cDRD2L and cDRD2S could be activated by dopamine and quinpirole (a D2-like receptor agonist) dose-dependently, and their activation inhibits cAMP signaling pathway and stimulates MAPK/ERK signaling cascade, indicating that they are functional receptors capable of mediating dopamine actions. Quantitative real-time PCR revealed that cDRD2 and cDRD4 are widely expressed in chicken tissues with abundant expression noted in anterior pituitary, and their expressions are likely controlled by their promoters near exon 1, as demonstrated by dual-luciferase reporter assays in DF-1 cells. In accordance with cDRD2/cDRD4 expression in the pituitary, DA or quinpirole could partially inhibit vasoactive intestinal peptide-induced prolactin expression in cultured chick pituitary cells. Together, our data proves the functionality of DRD2 and DRD4 in birds and aids to uncover the conserved roles of DA/D2-like receptor system in vertebrates, such as its action on the pituitary. Copyright © 2018. Published by Elsevier B.V.
Selective Deletion of GRK2 Alters Psychostimulant-Induced Behaviors and Dopamine Neurotransmission
Daigle, Tanya L; Ferris, Mark J; Gainetdinov, Raul R; Sotnikova, Tatyana D; Urs, Nikhil M; Jones, Sara R; Caron, Marc G
2014-01-01
GRK2 is a G protein-coupled receptor kinase (GRK) that is broadly expressed and is known to regulate diverse types of receptors. GRK2 null animals exhibit embryonic lethality due to a severe developmental heart defect, which has precluded the study of this kinase in the adult brain. To elucidate the specific role of GRK2 in the brain dopamine (DA) system, we used a conditional gene knockout approach to selectively delete GRK2 in DA D1 receptor (D1R)-, DA D2 receptor (D2R)-, adenosine 2A receptor (A2AR)-, or DA transporter (DAT)-expressing neurons. Here we show that select GRK2-deficient mice display hyperactivity, hyposensitivity, or hypersensitivity to the psychomotor effects of cocaine, altered striatal signaling, and DA release and uptake. Mice with GRK2 deficiency in D2R-expressing neurons also exhibited increased D2 autoreceptor activity. These findings reveal a cell-type-specific role for GRK2 in the regulation of normal motor behavior, sensitivity to psychostimulants, dopamine neurotransmission, and D2 autoreceptor function. PMID:24776686
Dopamine signaling and myopia development: What are the key challenges.
Zhou, Xiangtian; Pardue, Machelle T; Iuvone, P Michael; Qu, Jia
2017-11-01
In the face of an "epidemic" increase in myopia over the last decades and myopia prevalence predicted to reach 2.5 billion people by the end of this decade, there is an urgent need to develop effective and safe therapeutic interventions to slow down this "myopia booming" and prevent myopia-related complications and vision loss. Dopamine (DA) is an important neurotransmitter in the retina and mediates diverse functions including retina development, visual signaling, and refractive development. Inspired by the convergence of epidemiological and animal studies in support of the inverse relationship between outdoor activity and risk of developing myopia and by the close biological relationship between light exposure and dopamine release/signaling, we felt it is timely and important to critically review the role of DA in myopia development. This review will revisit several key points of evidence for and against DA mediating light control of myopia: 1) the causal role of extracellular retinal DA levels, 2) the mechanism and action of dopamine D1 and D2 receptors and 3) the roles of cellular/circuit retinal pathways. We examine the experiments that show causation by altering DA, DA receptors and visual pathways using pharmacological, transgenic, or visual environment approaches. Furthermore, we critically evaluate the safety issues of a DA-based treatment strategy and some approaches to address these issues. The review identifies the key questions and challenges in translating basic knowledge on DA signaling and myopia from animal studies into effective pharmacological treatments for myopia in children. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Parillo, Francesco; Maranesi, Margherita; Mignini, Fiorenzo; Marinelli, Lisa; Di Stefano, Antonio; Boiti, Cristiano; Zerani, Massimo
2014-01-01
Dopamine (DA) receptor (DR) type 1 (D1R) has been found to be expressed in luteal cells of various species, but the intrinsic role of the DA/DRs system on corpora lutea (CL) function is still unclear. Experiments were devised to characterize the expression of DR types and the presence of DA, as well as the in vitro effects of DA on hormone productions by CL in pseudopregnant rabbits. Immunoreactivity and gene expression for D1R decreased while that for D3R increased in luteal and blood vessel cells from early to late pseudopregnant stages. DA immunopositivity was evidenced only in luteal cells. The DA and D1R agonist increased in vitro release of progesterone and prostaglandin E2 (PGE2) by early CL, whereas the DA and D3R agonist decreased progesterone and increased PGF2α in vitro release by mid- and late CL. These results provide evidence that the DA/DR system exerts a dual modulatory function in the lifespan of CL: the DA/D1R is luteotropic while the DA/D3R is luteolytic. The present data shed new light on the physiological mechanisms regulating luteal activity that might improve our ability to optimize reproductive efficiency in mammal species, including humans.
Midde, Narasimha M.; Yuan, Yaxia; Quizon, Pamela M.; Sun, Wei-Lun; Huang, Xiaoqin; Zhan, Chang-Guo; Zhu, Jun
2015-01-01
HIV-1 transactivator of transcription (Tat) protein disrupts the dopamine (DA) neurotransmission by inhibiting DA transporter (DAT) function, leading to increased neurocognitive impairment in HIV-1 infected individuals. Through integrated computational modeling and pharmacological studies, we have demonstrated that mutation of tyrosine470 (Y470H) of human DAT (hDAT) attenuates Tat-induced inhibition of DA uptake by changing the transporter conformational transitions. The present study examined the functional influences of other substitutions at tyrosine470 (Y470F and Y470A) and tyrosine88 (Y88F) and lysine92 (K92M), two other relevant residues for Tat binding to hDAT, in Tat-induced inhibitory effects on DA transport. Y88F, K92M and Y470A attenuated Tat-induced inhibition of DA transport, implicating the functional relevance of these residues for Tat binding to hDAT. Compared to wild type hDAT, Y470A and K92M but not Y88F reduced the maximal velocity of [3H]DA uptake without changes in the Km. Y88F and K92M enhanced IC50 values for DA inhibition of [3H]DA uptake and [3H]WIN35,428 binding but decreased IC50 for cocaine and GBR12909 inhibition of [3H]DA uptake, suggesting that these residues are critical for substrate and these inhibitors. Y470F, Y470A, Y88F and K92M attenuated zinc-induced increase of [3H]WIN35,428 binding. Moreover, only Y470A and K92M enhanced DA efflux relative to wild type hDAT, suggesting mutations of these residues differentially modulate transporter conformational transitions. These results demonstrate Tyr88 and Lys92 along with Tyr470 as functional recognition residues in hDAT for Tat-induced inhibition of DA transport and provide mechanistic insights into identifying target residues on the DAT for Tat binding. PMID:25604666
Combined effects of dopants and electric field on interactions of dopamine with graphene
NASA Astrophysics Data System (ADS)
Wang, Qun; Wang, Meng-hao; Lu, Xiong; Wang, Ke-feng; Fang, Li-ming
2017-10-01
We utilized the density functional theory to study interactions in dopamine (DA)-graphene (G) systems. Graphene was modified with boron (B), nitrogen (N), calcium (Ca), and iron (Fe) atoms. Furthermore, an external electric field (E-field) between 0.005 and 0.020 au was applied between the DA and (Ca, Fe)-doped G. The study revealed that interactions can be modulated between the DA and doped G (especially the Ca- and Fe-doped G) due to the formation of metalsbnd O and Osbnd metalsbnd O covalent interactions. In addition, interactions are sensitive to the E-field applied to DA-Ca/Fe-G-lying models, there are the strongest interactions with the 0.015 au E-field.
Sex-related differences in striatal dopaminergic system after traumatic brain injury.
Xu, Xiupeng; Cao, Shengwu; Chao, Honglu; Liu, Yinlong; Ji, Jing
2016-06-01
Several studies have demonstrated alterations in the dopamine (DA) system after traumatic brain injury (TBI). Additionally, the existence of significant sex-related differences in the dopaminergic system has long been recognized. Accordingly, the purpose of the present study was to investigate whether TBI would differentially alter, in female and male mice, the expression and the function of the striatal vesicular monoamine transporter-2 (VMAT-2), an important DA transporter. After controlled cortical impact (CCI) injury, female mice showed significantly lower striatal DA concentrations and K(+)-evoked DA output. By contrast, no significant sex-related differences were observed in the mRNA and protein levels of striatal dopamine transporter (DAT) and VMAT-2 and the methamphetamine (MA)-evoked DA output. These results demonstrated clear sex-related differences in striatal VMAT-2 function in response to TBI and suggested that female mice may be more sensitive to the TBI-induced inhibition of the VMAT-2 function, as indicated by the greater degree of deficits observed when the VMAT-2 DA-storage function was inhibited by TBI. Moreover, the TBI-induced suppression of locomotion was more pronounced than female mice. Such findings highlight the need for sex-specific considerations when examining differences among brain injury conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
An updated view on the role of dopamine in myopia.
Feldkaemper, Marita; Schaeffel, Frank
2013-09-01
A large body of data is available to support the hypothesis that dopamine (DA) is one of the retinal neurotransmitters involved in the signaling cascade that controls eye growth by vision. Initially, reduced retinal DA levels were observed in eyes deprived of sharp vision by either diffusers ("deprivation myopia", DM) or negative lenses ("lens induced myopia", LIM). Simulating high retinal DA levels by intravitreal application of a DA agonist can suppress the development of both DM and LIM. Also more recent studies using knock-out mouse models of DA receptors support the idea of an association between decreased DA levels and DM. There seem to be differences in the magnitude of the effects of DA on DM and LIM, with larger changes in DM but the degrees of image degradation by both treatments need to be matched to support this conclusion. Although a number of studies have shown that the inhibitory effects of dopamine agonists on DM and LIM are mediated through stimulation of the D2-receptor, there is also recent evidence that the balance of D2- and D1-receptor activation is important. Inhibition of D2-receptors can also slow the development of spontaneous myopia in albino guinea pigs. Retinal DA content displays a distinct endogenous diurnal, and partially circadian rhythm. In addition, retinal DA is regulated by a number of visual stimuli like retinal illuminance, spatial frequency content of the image, temporal contrast and, in chicks, by the light input from the pineal organ. A close interaction was found between muscarinergic and dopaminergic systems, and between nitric oxide and dopaminergic pathways, and there is evidence for crosstalk between the different pathways, perhaps multiple binding of the ligands to different receptors. It was shown that DA agonists interact with the immediate early signaling molecule ZENK which triggers the first steps in eye growth regulation. However, since long treatment periods were often needed to induce significant changes in retinal dopamine synthesis and release, the role of dopamine in the early steps is unclear. The wide spatial distribution of dopaminergic amacrine cells in the retina and the observation that changes in dopamine levels can be locally induced by local retinal deprivation is in line with the assumption that dopaminergic mechanisms control both central and peripheral eye growth. The protective effect of outdoor activity on myopia development in children seems to be partly mediated by the stimulatory effect of light on retinal dopamine production and release. However, the dose-response function linking light exposure to dopamine and to the suppression of myopia is not known and requires further studies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Vergara-Aragón, Patricia; Domínguez-Marrufo, Leonardo Eduardo; Ibarra-Guerrero, Patricia; Hernandez-Ramírez, Heidi; Hernández-Téllez, Beatriz; López-Martínez, Irma Elena; Sánchez-Cervantes, Ivonne; Santiago-Jacinto, Patricia; García-Macedo, Jorge Alberto; Valverde-Aguilar, Guadalupe; Santiago, Julio
2011-01-01
Parkinson's disease (PD) is characterized by malfunction of dopaminergic systems, and the current symptomatic treatment is to replace lost dopamine. For investigating mechanisms of pathogenesis and alternative treatments to compensate lack of dopamine (DA) activity in PD, the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD has been useful, these animals display apomorphine-induced contralateral rotational behavior, when they are examined after lesion. The purpose of this study was to assess Titania-dopamine (TiO2-DA) complexes implanted on the caudate nucleus for diminishing motor behavior alterations of the 6-OHDA rat model. Rats with 6-OHDA unilateral lesions received TiO2 alone or TiO2-DA implants, and were tested for open field (OF) gross motor crossing and rearing behaviors, and apomorphine-induced rotation (G) behavior. TiO2 complex have no effects on rearing OF and G behaviors, and a significant reducing effect on crossing motor behavior of normal rats compared to control non-treated rats throughout 56 days of observation. Interestingly, TiO2-DA treatment significant recovered motor crossing and rearing behaviors in 6-OHDA-lesioned rats, and diminished the G behaviors during 56 days of examination. Additionally, in the 6-OHDA-lesioned rats TiO2 treatment had a moderate recovering effect only on crossing behavior compared to lesioned non treated rats. Our results suggest that continuous release of dopamine in the caudate nucleus from TiO2-DA complex is capable of reversing gross motor deficits observed in the 6-OHDA-lesioned rat model of PD. Thistype of delivery system of DA represents a promising therapy for PD in humans.
Suda, Yukari; Kuzumaki, Naoko; Narita, Michiko; Hamada, Yusuke; Shibasaki, Masahiro; Tanaka, Kenichi; Tamura, Hideki; Kawamura, Takashi; Kondo, Takashige; Yamanaka, Akihiro; Narita, Minoru
2018-02-19
Ghrelin plays roles in a wide range of central functions by activating the growth hormone secretagogue receptor (GHSR). This receptor has recently been found in the substantia nigra (SN) to control dopamine (DA)-related physiological functions. The dysregulation of DA neurons in the SN pars compacta (SNc) and the consequent depletion of striatal DA are known to underlie the motor deficits observed in Parkinson's disease (PD). In the present study, we further investigated the role of the SN-ghrelin system in motor function under the stereotaxic injection of AAV-CMV-FLEX-diphtheria toxin A (DTA) into the SN of dopamine transporter (DAT)-Cre (DAT SN ::DTA) mice to expunge DA neurons of the SNc. First, we confirmed the dominant expression of GHSR1a, which is a functional GHSR, in tyrosine hydroxylase (TH)-positive DA neurons in the SNc of control mice. In DAT SN ::DTA mice, we clearly observed motor dysfunction using several behavioral tests. An immunohistochemical study revealed a dramatic loss of TH-positive DA neurons in the SNc and DAT-labeled axon terminals in the striatum, and an absence of mRNAs for TH and DAT in the SN of DAT SN ::DTA mice. The mRNA level of GHSR1a was drastically decreased in the SN of these mice. In normal mice, we also found the mRNA expression of GHSR1a within GABAergic neurons in the SN pars reticulata (SNr). Under these conditions, a single injection of ghrelin into the SN failed to improve the motor deficits caused by ablation of the nigrostriatal DA network using DAT SN ::DTA mice, whereas intra-SN injection of ghrelin suppressed the motor dysfunction caused by the administration of haloperidol, which is associated with the transient inhibition of DA transmission. These findings suggest that phasic activation of the SNc-ghrelin system could improve the dysregulation of nigrostriatal DA transmission related to the initial stage of PD, but not the motor deficits under the depletion of nigrostriatal DA. Although GHSRs are found in non-DA cells of the SNr, GHSRs on DA neurons in the SNc may play a crucial role in motor function. Copyright © 2018. Published by Elsevier Inc.
Reward system and addiction: what dopamine does and doesn't do.
Di Chiara, Gaetano; Bassareo, Valentina
2007-02-01
Addictive drugs share with palatable food the property of increasing extracellular dopamine (DA), preferentially in the nucleus accumbens shell rather than in the core. However, by acting directly on the brain, drugs bypass the adaptive mechanisms (habituation) that constrain the responsiveness of accumbens shell DA to food reward, abnormally facilitating Pavlovian incentive learning and promoting the acquisition of abnormal DA-releasing properties by drug conditioned stimuli. Thus, whereas Pavlovian food conditioned stimuli release core but not shell DA, drug conditioned stimuli do the opposite, releasing shell but not core DA. This process, which results in the acquisition of excessive incentive-motivational properties by drug conditioned stimuli, initiates the drug addiction process. Neuroadaptive processes related to the chronic influence of drugs on subcortical DA might secondarily impair the function of prefronto-striatal loops, resulting in impairments in impulse control and decision making that form the basis for the compulsive feature of drug seeking and its relapsing character.
NASA Astrophysics Data System (ADS)
Zhou, Xi; Gao, Xuexia; Song, Fengyan; Wang, Chunpeng; Chu, Fuxiang; Wu, Shishan
2017-11-01
A novel fluorescence sensor was developed for dopamine (DA) determination based on molecularly imprinted graphene quantum dots and poly(indolylboronic acid) composite (MIPs@ PIn-BAc/GQDs). When the DA is added to the system, it leads to an aggregation and fluorescence quenching of the MIPs@ PIn-BAc/GQDs because of the covalent binding between the catechol group of DA and boronic acid. Such fluorescence behaviors are used for well testing DA in a range from 5 × 10-9 to 1.2 × 10-6 M with the detection limit of 2.5 × 10-9 M. Furthermore, the prepared sensors could well against the interferences from various biomolecules and be successfully used for the assay of DA in human biological samples, exhibiting excellent specificity. It is believed that the prepared MIPs@ PIn-BAc/GQDs hold great promise as a practical platform that can monitor DA level change.
Mallesha, Malledevaru; Manjunatha, Revanasiddappa; Nethravathi, C; Suresh, Gurukar Shivappa; Rajamathi, Michael; Melo, Jose Savio; Venkatesha, Thimmappa Venkatarangaiah
2011-06-01
Graphene is chemically synthesized by solvothermal reduction of colloidal dispersions of graphite oxide. Graphite electrode is modified with functionalized-graphene for electrochemical applications. Electrochemical characterization of functionalized-graphene modified graphite electrode (FGGE) is carried out by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The behavior of FGGE towards ascorbic acid (AA), dopamine (DA) and uric acid (UA) has been investigated by CV, differential pulse voltammetry (DPV) and chronoamperommetry (CA). The FGGE showed excellent catalytic activity towards electrochemical oxidation of AA, DA and UA compared to that of the bare graphite electrode. The electrochemical oxidation signals of AA, DA and UA are well separated into three distinct peaks with peak potential separation of 193mv, 172mv and 264mV between AA-DA, DA-UA and AA-UA respectively in CV studies and the corresponding peak potential separations in DPV mode are 204mv, 141mv and 345mv. The FGGE is successfully used for the simultaneous detection of AA, DA and UA in their ternary mixture and DA in serum and pharmaceutical samples. The excellent electrocatalytic behavior of FGGE may lead to new applications in electrochemical analysis. Copyright © 2011 Elsevier B.V. All rights reserved.
Daemi, Sahar; Ashkarran, Ali Akbar; Bahari, Ali; Ghasemi, Shahram
2017-05-15
Nanocomposite of gold nanocages and chemically modified graphene oxide (GNCs/CMG) was synthesized in N,N-dimethylformamide (DMF) for sensitive detection of dopamine (DA). DA is widely spread in central nervous system which can regulates essential body functions like movement and emotional behaviour. In this regard sensitive and fast detection of DA level in human body is still challenging considering its interference with other biomolecules in biological samples. CMG was synthesized through amine modification of graphene oxide (GO) with DMF at relatively high temperature followed by attachment of GNCs, fabricated using a galvanic replacement between silver nanocubes and HAuCl 4 solution in the DMF. X-ray diffraction (XRD) pattern of GNCs/CMG nanocomposite revealed high crystallization of GNCs attached to the graphene nanosheets and microscopic images revealed relatively uniform decoration of GNCs on the surface of CMG. Nanocomposite modified glassy carbon electrode (GNCs/CMG/GCE) was used to investigate the electrochemical behaviour of DA with cyclic voltammetry and amperometry techniques. The linear range for dopamine was between 0.1 and 80μM with a low detection limit of 0.02μM. Furthermore, GNCs/CMG/GCE exhibited satisfying reproducibility, long-term stability and high selectivity for DA detection in large amount of ascorbic acid with good results for determination in human serum samples. Copyright © 2017 Elsevier Inc. All rights reserved.
Dopamine enhances duodenal epithelial permeability via the dopamine D5 receptor in rodent.
Feng, X-Y; Zhang, D-N; Wang, Y-A; Fan, R-F; Hong, F; Zhang, Y; Li, Y; Zhu, J-X
2017-05-01
The intestinal barrier is made up of epithelial cells and intercellular junctional complexes to regulate epithelial ion transport and permeability. Dopamine (DA) is able to promote duodenal epithelial ion transport through D1-like receptors, which includes subtypes of D 1 (D 1 R) and D 5 (D 5 R), but whether D1-like receptors influence the duodenal permeability is unclear. FITC-dextran permeability, short-circuit current (I SC ), Western blot, immunohistochemistry and ELISA were used in human D 5 R transgenic mice and hyperendogenous enteric DA (HEnD) rats in this study. Dopamine induced a downward deflection in I SC and an increase in FITC-dextran permeability of control rat duodenum, which were inhibited by the D1-like receptor antagonist, SCH-23390. However, DA decreased duodenal transepithelial resistance (TER), an effect also reversed by SCH-23390. A strong immunofluorescence signal for D 5 R, but not D 1 R, was observed in the duodenum of control rat. In human D 5 R knock-in transgenic mice, duodenal mucosa displayed an increased basal I SC with high FITC-dextran permeability and decreased TER with a lowered expression of tight junction proteins, suggesting attenuated duodenal barrier function in these transgenic mice. D 5 R knock-down transgenic mice manifested a decreased basal I SC with lowered FITC-dextran permeability. Moreover, an increased FITC-dextran permeability combined with decreased TER and tight junction protein expression in duodenal mucosa were also observed in HEnD rats. This study demonstrates, for the first time, that DA enhances duodenal permeability of control rat via D 5 R, which provides new experimental and theoretical evidence for the influence of DA on duodenal epithelial barrier function. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Vagally mediated effects of brain stem dopamine on gastric tone and phasic contractions of the rat.
Anselmi, L; Toti, L; Bove, C; Travagli, R A
2017-11-01
Dopamine (DA)-containing fibers and neurons are embedded within the brain stem dorsal vagal complex (DVC); we have shown previously that DA modulates the membrane properties of neurons of the dorsal motor nucleus of the vagus (DMV) via DA1 and DA2 receptors. The vagally dependent modulation of gastric tone and phasic contractions, i.e., motility, by DA, however, has not been characterized. With the use of microinjections of DA in the DVC while recording gastric tone and motility, the aims of the present study were 1 ) assess the gastric effects of brain stem DA application, 2 ) identify the DA receptor subtype, and, 3 ) identify the postganglionic pathway(s) activated. Dopamine microinjection in the DVC decreased gastric tone and motility in both corpus and antrum in 29 of 34 rats, and the effects were abolished by ipsilateral vagotomy and fourth ventricular treatment with the selective DA2 receptor antagonist L741,626 but not by application of the selective DA1 receptor antagonist SCH 23390. Systemic administration of the cholinergic antagonist atropine attenuated the inhibition of corpus and antrum tone in response to DA microinjection in the DVC. Conversely, systemic administration of the nitric oxide synthase inhibitor nitro-l-arginine methyl ester did not alter the DA-induced decrease in gastric tone and motility. Our data provide evidence of a dopaminergic modulation of a brain stem vagal neurocircuit that controls gastric tone and motility. NEW & NOTEWORTHY Dopamine administration in the brain stem decreases gastric tone and phasic contractions. The gastric effects of dopamine are mediated via dopamine 2 receptors on neurons of the dorsal motor nucleus of the vagus. The inhibitory effects of dopamine are mediated via inhibition of the postganglionic cholinergic pathway. Copyright © 2017 the American Physiological Society.
Behavioral consequences of dopamine deficiency in the Drosophila central nervous system
Riemensperger, Thomas; Isabel, Guillaume; Coulom, Hélène; Neuser, Kirsa; Seugnet, Laurent; Kume, Kazuhiko; Iché-Torres, Magali; Cassar, Marlène; Strauss, Roland; Preat, Thomas; Hirsh, Jay; Birman, Serge
2011-01-01
The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently “masochistic” tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor l-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator. PMID:21187381
Sillivan, Stephanie E.; Konradi, Christine
2011-01-01
The timeline of dopamine (DA) system maturation and the signaling properties of dopamine receptors (DRs) during rat brain development are not fully characterized. We used in situ hybridization and quantitative PCR to map DR mRNA transcripts in the medial frontal cortex (mFC) and striatum (STR) of the rat from embryonic day (E) 15 to E21. The developmental trajectory of DR mRNAs revealed distinct patterns of DA receptors 1 and 2 (DRD1, DRD2) in these brain regions. Whereas the mFC had a steeper increase in DRD1 mRNA, the STR had a steeper increase in DRD2 mRNA. Both DR mRNAs were expressed at a higher level in the STR compared to the mFC. To identify the functional properties of DRs during embryonic development, the phosphorylation states of cyclic AMP response element binding protein (CREB), extracellular signal-regulated kinase 1/2 (ERK1/2), and glycogen synthase kinase 3 beta (GSK3β) were examined after DR stimulation in primary neuronal cultures obtained from E15 and E18 embryos and cultured for 3 days to ensure a stable baseline level. DR-mediated signaling cascades were functional in E15 cultures in both brain regions. Because DA fibers do not reach the mFC by E15, and DA was not present in cultures, these data indicate that DRs can become functional in the absence of DA innervation. Since activation of DR signal transduction pathways can affect network organization of the developing brain, maternal exposure to drugs that affect DR activity may be liable to interfere with fetal brain development. PMID:22015925
The Rat With Oxygen-Induced Retinopathy Is Myopic With Low Retinal Dopamine
Zhang, Nan; Favazza, Tara L.; Baglieri, Anna Maria; Benador, Ilan Y.; Noonan, Emily R.; Fulton, Anne B.; Hansen, Ronald M.; Iuvone, P. Michael; Akula, James D.
2013-01-01
Purpose. Dopamine (DA) is a neurotransmitter implicated both in modulating neural retinal signals and in eye growth. Therefore, it may participate in the pathogenesis of the most common clinical sequelae of retinopathy of prematurity (ROP), visual dysfunction and myopia. Paradoxically, in ROP myopia the eye is usually small. The eye of the rat with oxygen-induced retinopathy (OIR) is characterized by retinal dysfunction and short axial length. There have been several investigations of the early maturation of DA in rat retina, but little at older ages, and not in the OIR rat. Therefore, DA, retinal function, and refractive state were investigated in the OIR rat. Methods. In one set of rats, the development of dopaminergic (DAergic) networks was evaluated in retinal cross-sections from rats aged 14 to 120 days using antibodies against tyrosine hydroxylase (TH, the rate-limiting enzyme in the biosynthesis of DA). In another set of rats, retinoscopy was used to evaluate spherical equivalent (SE), electoretinography (ERG) was used to evaluate retinal function, and high-pressure liquid chromatography (HPLC) was used to evaluate retinal contents of DA, its precursor levodopamine (DOPA), and its primary metabolite 3,4-dihydroxyphenylacetic acid (DOPAC). Results. The normally rapid postnatal ramification of DAergic neurons was disrupted in OIR rats. Retinoscopy revealed that OIR rats were relatively myopic. In the same eyes, ERG confirmed retinal dysfunction in OIR. HPLC of those eyes' retinae confirmed low DA. Regression analysis indicated that DA metabolism (evaluated by the ratio of DOPAC to DA) was an important additional predictor of myopia beyond OIR. Conclusions. The OIR rat is the first known animal model of myopia in which the eye is smaller than normal. Dopamine may modulate, or fail to modulate, neural activity in the OIR eye, and thus contribute to this peculiar myopia. PMID:24168993
The rat with oxygen-induced retinopathy is myopic with low retinal dopamine.
Zhang, Nan; Favazza, Tara L; Baglieri, Anna Maria; Benador, Ilan Y; Noonan, Emily R; Fulton, Anne B; Hansen, Ronald M; Iuvone, P Michael; Akula, James D
2013-12-19
Dopamine (DA) is a neurotransmitter implicated both in modulating neural retinal signals and in eye growth. Therefore, it may participate in the pathogenesis of the most common clinical sequelae of retinopathy of prematurity (ROP), visual dysfunction and myopia. Paradoxically, in ROP myopia the eye is usually small. The eye of the rat with oxygen-induced retinopathy (OIR) is characterized by retinal dysfunction and short axial length. There have been several investigations of the early maturation of DA in rat retina, but little at older ages, and not in the OIR rat. Therefore, DA, retinal function, and refractive state were investigated in the OIR rat. In one set of rats, the development of dopaminergic (DAergic) networks was evaluated in retinal cross-sections from rats aged 14 to 120 days using antibodies against tyrosine hydroxylase (TH, the rate-limiting enzyme in the biosynthesis of DA). In another set of rats, retinoscopy was used to evaluate spherical equivalent (SE), electoretinography (ERG) was used to evaluate retinal function, and high-pressure liquid chromatography (HPLC) was used to evaluate retinal contents of DA, its precursor levodopamine (DOPA), and its primary metabolite 3,4-dihydroxyphenylacetic acid (DOPAC). The normally rapid postnatal ramification of DAergic neurons was disrupted in OIR rats. Retinoscopy revealed that OIR rats were relatively myopic. In the same eyes, ERG confirmed retinal dysfunction in OIR. HPLC of those eyes' retinae confirmed low DA. Regression analysis indicated that DA metabolism (evaluated by the ratio of DOPAC to DA) was an important additional predictor of myopia beyond OIR. The OIR rat is the first known animal model of myopia in which the eye is smaller than normal. Dopamine may modulate, or fail to modulate, neural activity in the OIR eye, and thus contribute to this peculiar myopia.
Mao, Hui; Liang, Jiachen; Zhang, Haifeng; Pei, Qi; Liu, Daliang; Wu, Shuyao; Zhang, Yu; Song, Xi-Ming
2015-08-15
Novel poly(ionic liquids) functionalized polypyrrole/graphene oxide nanosheets (PILs/PPy/GO) were prepared by the polymerization of 1-vinyl-3-ethylimidazole bromide (VEIB) on the surface of N-vinyl imidazolium modified PPy/GO nanosheets. Due to the synergistic effects of GO with well-defined lamellar structures, conductive PPy and biocompatible PILs, PILs/PPy/GO modified glassy carbon electrode (GCE) presented the excellent electrochemical catalytic activity towards dopamine (DA) with good stability, high sensitivity and wide linear range in the present of ascorbic acid (AA) with high concentration. PILs played an essential role for the simultaneous determination of DA and AA in a mixture, whose existence effectively improved the transmission mode of electrons and resulted in the different electrocatalytic performance towards the oxidation of DA and AA. It is indicated that PILs/PPy/GO nanosheets can act as a good steady and sensitive electrode material for the development of improved DA sensors. Copyright © 2015 Elsevier B.V. All rights reserved.
Hsieh, Wen-Ting; Chiang, Been-Huang
2014-07-09
Stimulation of endogenous neurogenesis is a potential approach to compensate for loss of dopaminergic neurons of substantia nigra compacta nigra (SNpc) in patients with Parkinson's disease (PD). This objective was to establish an in vitro model by differentiating pluripotent human embryonic stem cells (hESCs) into midbrain dopaminergic (mDA) neurons for screening phytochemicals with mDA neurogenesis-boosting potentials. Consequently, a five-stage differentiation process was developed. The derived cells expressed many mDA markers including tyrosine hydroxylase (TH), β-III tubulin, and dopamine transporter (DAT). The voltage-gated ion channels and dopamine release were also examined for verifying neuron function, and the dopamine receptor agonists bromocriptine and 7-hydroxy-2-(dipropylamino)tetralin (7-OH-DPAT) were used to validate our model. Then, several potential phytochemicals including green tea catechins and ginsenosides were tested using the model. Finally, ginsenoside Rb1 was identified as the most potent phytochemical which is capable of upregulating neurotrophin expression and inducing mDA differentiation.
Dual-Functionalization Device for Therapy through Dopamine Release and Monitoring.
Fabregat, Georgina; Giménez, Alessia; Díaz, Angélica; Puiggalí, Jordi; Alemán, Carlos
2018-05-01
A dual-functional device is fabricated to release progressively dopamine (DA) from a biohydrogel under real-time monitoring via electrochemical detection. For this purpose, a poly-γ-glutamic acid biohydrogel is assembled with a poly(3,4-ethylenedioxythiophene) (PEDOT) layer, previously deposited onto a screen printed electrode. The biohydrogel is formulated to achieve dimensional stability and maximum DA-loading capacity. Conditions for DA-loading are influenced by the oxidation of the neurotransmitter in acid environments and the poor resistance of PEDOT to the lyophilization. The performance of the device is proved in a medium with the physiological pH of blood and the cerebrospinal fluid. The progressive release of DA is successfully monitored by the device, the limit of detection and sensitivity of the integrated sensor being 450 × 10 -9 m and 8 × 10 -5 mA µm -1 , respectively. The effect of electrochemical stimulation in the kinetics of the DA release is also investigated applying potential ramps in cyclic phase to alter the biohydrogel morphology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Taylor, I Mitch; Robbins, Elaine M; Catt, Kasey A; Cody, Patrick A; Happe, Cassandra L; Cui, Xinyan Tracy
2017-03-15
Dopamine (DA) is a monoamine neurotransmitter responsible for regulating a variety of vital life functions. In vivo detection of DA poses a challenge due to the low concentration and high speed of physiological signaling. Fast scan cyclic voltammetry at carbon fiber microelectrodes (CFEs) is an effective method to monitor real-time in vivo DA signaling, however the sensitivity is somewhat limited. Electrodeposition of poly(3,4-ethylene dioxythiophene) (PEDOT)/graphene oxide (GO) onto the CFE surface is shown to increase the sensitivity and lower the limit of detection for DA compared to bare CFEs. Thicker PEDOT/GO coatings demonstrate higher sensitivities for DA, but display the negative drawback of slow adsorption and electron transfer kinetics. The moderate thickness resulting from 25 s electrodeposition of PEDOT/GO produces the optimal electrode, exhibiting an 880% increase in sensitivity, a 50% decrease in limit of detection and minimally altered electrode kinetics. PEDOT/GO coated electrodes rapidly and robustly detect DA, both in solution and in the rat dorsal striatum. This increase in DA sensitivity is likely due to increasing the electrode surface area with a PEDOT/GO coating and improved adsorption of DA's oxidation product (DA-o-quinone). Increasing DA sensitivity without compromising electrode kinetics is expected to significantly improve our understanding of the DA function in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
Raman Computational and Experimental Studies of Dopamine Detection
Ciubuc, John D.; Bennet, Kevin E.; Qiu, Chao; Alonzo, Matthew; Durrer, William G.; Manciu, Felicia S.
2017-01-01
A combined theoretical and experimental analysis of dopamine (DA) is presented in this work with the objective of achieving more accurate detection and monitoring of this neurotransmitter at very low concentrations, specific to physiological levels. Surface-enhanced Raman spectroscopy on silver nanoparticles was employed for recording DA concentrations as low as 10−11 molar. Quantum chemical density functional calculations were carried out using Gaussian-09 analytical suite software. Relatively good agreement between the simulated and experimentally determined results indicates the presence of different DA molecular forms, such as uncharged DA±, anionic DA−, and dopaminequinone. Disappearance of the strongest bands of dopamine around 750 cm−1 and 790 cm−1, which suggests its adsorption onto the metallic surface, is not only consistent with all of these DA configurations, but also provides additional information about the analyte’s redox process and voltammetric detection. On the other hand, occurrence of the abovementioned Raman lines could indicate the formation of multilayers of DA or its presence in a cationic DA+ form. Thus, through coordinated experiment and theory, valuable insights into changes observed in the vibrational signatures of this important neurotransmitter can be achieved for a better understanding of its detection at physiological levels, which is crucial if further optovoltammetric medical device development is envisioned. PMID:28956820
Riddle, M A; Leckman, J F; Cohen, D J; Anderson, M; Ort, S I; Caruso, K A; Shaywitz, B A
1986-01-01
Central dopaminergic (DA) function in children and adults was assessed by monitoring plasma-free levels of the dopamine metabolite homovanillic acid (pHVA) before and after a single oral dose and chronic oral administration of debrisoquin. Debrisoquin inhibits peripheral metabolism of dopamine to HVA and does not cross the blood-brain barrier. By reducing peripheral formation of HVA through the use of debrisoquin, the remaining HVA in plasma more accurately reflects central DA activity. Debrisoquin administration resulted in marked reductions of pHVA in each of 12 patients studied. Eleven of the 12 subjects tolerated debrisoquin without physical or behavioral side effects. The debrisoquin administration method appears to be a safe and potentially valid technique for evaluating aspects of central dopaminergic function in children and adults.
Quizon, Pamela M.; Sun, Wei-Lun; Yuan, Yaxia; Midde, Narasimha M.; Zhan, Chang-Guo; Zhu, Jun
2016-01-01
Abnormal dopaminergic transmission has been implicated as a risk determinant of HIV-1-associated neurocognitive disorders. HIV-1 Tat protein increases synaptic dopamine (DA) levels by directly inhibiting DA transporter (DAT) activity, ultimately leading to dopaminergic neuron damage. Through integrated computational modeling prediction and experimental validation, we identified that histidine547 on human DAT (hDAT) is critical for regulation of basal DA uptake and Tat-induced inhibition of DA transport. Compared to wild type hDAT (WT hDAT), mutation of histidine547 (H547A) displayed a 196% increase in DA uptake. Other substitutions of histidine547 showed that DA uptake was not altered in H547R but decreased by 99% in H547P and 60% in H547D, respectively. These mutants did not alter DAT surface expression or surface DAT binding sites. H547 mutants attenuated Tat-induced inhibition of DA transport observed in WT hDAT. H547A displays a differential sensitivity to PMA- or BIM-induced activation or inhibition of DAT function relative to WT hDAT, indicating a change in basal PKC activity in H547A. These findings demonstrate that histidine547 on hDAT plays a crucial role in stabilizing basal DA transport and Tat-DAT interaction. This study provides mechanistic insights into identifying targets on DAT for Tat binding and improving DAT-mediated dysfunction of DA transmission. PMID:27966610
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Tian; Wang, Chenlong; Chen, Xuewei
Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing themore » coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor microenvironment.« less
Hara, Susumu; Arawaka, Shigeki; Sato, Hiroyasu; Machiya, Youhei; Cui, Can; Sasaki, Asuka; Koyama, Shingo; Kato, Takeo
2013-01-01
Most α-synuclein (α-syn) deposited in Lewy bodies, the pathological hallmark of Parkinson disease (PD), is phosphorylated at Ser-129. However, the physiological and pathological roles of this modification are unclear. Here we investigate the effects of Ser-129 phosphorylation on dopamine (DA) uptake in dopaminergic SH-SY5Y cells expressing α-syn. Subcellular fractionation of small interfering RNA (siRNA)–treated cells shows that G protein–coupled receptor kinase 3 (GRK3), GRK5, GRK6, and casein kinase 2 (CK2) contribute to Ser-129 phosphorylation of membrane-associated α-syn, whereas cytosolic α-syn is phosphorylated exclusively by CK2. Expression of wild-type α-syn increases DA uptake, and this effect is diminished by introducing the S129A mutation into α-syn. However, wild-type and S129A α-syn equally increase the cell surface expression of dopamine transporter (DAT) in SH-SY5Y cells and nonneuronal HEK293 cells. In addition, siRNA-mediated knockdown of GRK5 or GRK6 significantly attenuates DA uptake without altering DAT cell surface expression, whereas knockdown of CK2 has no effect on uptake. Taken together, our results demonstrate that membrane-associated α-syn enhances DA uptake capacity of DAT by GRKs-mediated Ser-129 phosphorylation, suggesting that α-syn modulates intracellular DA levels with no functional redundancy in Ser-129 phosphorylation between GRKs and CK2. PMID:23576548
Taylor, I. Mitch; Robbins, Elaine M.; Catt, Kasey A.; Cody, Patrick A.; Weaver, Cassandra L.; Cui, Xinyan Tracy
2016-01-01
Dopamine (DA) is a monoamine neurotransmitter responsible for regulating a variety of vital life functions. In vivo detection of DA poses a challenge due to the low concentration and high speed of physiological signaling. Fast scan cyclic voltammetry at carbon fiber microelectrodes (CFEs) is an effective method to monitor real-time in vivo DA signaling, however the sensitivity is somewhat limited. Electrodeposition of poly(3,4-ethylene dioxythiophene) (PEDOT)/graphene oxide (GO) onto the CFE surface is shown to increase the sensitivity and lower the limit of detection for DA compared to bare CFEs. Thicker PEDOT/GO coatings demonstrate higher sensitivities for DA, but display the negative drawback of slow adsorption and electron transfer kinetics. The moderate thickness resulting from 25 s electrodeposition of PEDOT/GO produces the optimal electrode, exhibiting an 880% increase in sensitivity, a 50% decrease in limit of detection and minimally altered electrode kinetics. PEDOT/GO coated electrodes rapidly and robustly detect DA, both in solution and in the rat dorsal striatum. This increase in DA sensitivity is likely due to increasing the electrode surface area with a PEDOT/GO coating and improved adsorption of DA’s oxidation product (DA-o-quinone). Increasing DA sensitivity without compromising electrode kinetics is expected to significantly improve our understanding of the DA function in vivo. PMID:27268013
Gołembiowska, Krystyna; Dziubina, Anna
2012-08-01
It has been shown that a decreased vesicular monoamine transporter (VMAT2) function and the disruption of dopamine (DA) storage is an early contributor to oxidative damage of dopamine neurons in Parkinson's disease (PD). In our previous study, we demonstrated that adenosine A(2A) receptor antagonists suppressed oxidative stress in 6-hydroxydopamine-treated rats suggesting that this effect may account for neuroprotective properties of drugs. In the present study, rats were injected with reserpine (10 mg/kg sc) and 18 h later the effect of the adenosine A(2A) receptor antagonists 8-(3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on extracellular DA, glutamate and hydroxyl radical formation was studied in the rat striatum using in vivo microdialysis. By disrupting VMAT2 function, reserpine depleted DA stores, and increased glutamate and hydroxyl radical levels in the rat striatum. CSC (1 mg/kg) but not ZM 241385 (3 mg/kg) increased extracellular DA level and production of hydroxyl radical in reserpinised rats. Both antagonists decreased the reserpine-induced increase in extracellular glutamate. L-3,4-Dihydroxyphenylalanine (L-DOPA) (25 mg/kg) significantly enhanced extracellular DA, had no effect on reserpine-induced hydroxyl radical production and decreased extracellular glutamate concentration. CSC but not ZM 241385 given jointly with L-DOPA increased the effect of L-DOPA on extracellular DA and augmented the reserpine-induced hydroxyl radical production. CSC and ZM 241385 did not influence extracellular glutamate level, which was decreased by L-DOPA. It seems that by decreasing the MAO-dependent DA metabolism rate, CSC raised cytosolic DA and by DA autoxidation, it induced hydroxyl radical overproduction. Thus, the methylxanthine A(2A) receptor antagonists bearing properties of MAO-B inhibitor, like CSC, may cause a risk of oxidative stress resulting from dysfunctional DA storage mechanism in early PD.
Amphetamine Self-Administration Attenuates Dopamine D2 Autoreceptor Function
Calipari, Erin S; Sun, Haiguo; Eldeeb, Khalil; Luessen, Deborah J; Feng, Xin; Howlett, Allyn C; Jones, Sara R; Chen, Rong
2014-01-01
Dopamine D2 autoreceptors located on the midbrain dopaminergic neurons modulate dopamine (DA) neuron firing, DA release, and DA synthesis through a negative-feedback mechanism. Dysfunctional D2 autoreceptors following repeated drug exposure could lead to aberrant DA activity in the ventral tegmental area (VTA) and projection areas such as nucleus accumbens (NAcc), promoting drug-seeking and -taking behavior. Therefore, it is important to understand molecular mechanisms underlying drug-induced changes in D2 autoreceptors. Here, we reported that 5 days of amphetamine (AMPH) self-administration reduced the ability of D2 autoreceptors to inhibit DA release in the NAcc as determined by voltammetry. Using the antibody-capture [35S]GTPγS scintillation proximity assay, we demonstrated for the first time that midbrain D2/D3 receptors were preferentially coupled to Gαi2, whereas striatal D2/D3 receptors were coupled equally to Gαi2 and Gαo for signaling. Importantly, AMPH abolished the interaction between Gαi2 and D2/D3 receptors in the midbrain while leaving striatal D2/D3 receptors unchanged. The disruption of the coupling between D2/D3 receptors and Gαi2 by AMPH is at least partially explained by the enhanced RGS2 (regulator of G-protein signaling 2) activity resulting from an increased RGS2 trafficking to the membrane. AMPH had no effects on the midbrain expression and trafficking of other RGS proteins such as RGS4 and RGS8. Our data suggest that midbrain D2/D3 receptors are more susceptible to AMPH-induced alterations. Reduced D2 autoreceptor function could lead to enhanced DA signaling and ultimately addiction-related behavior. RGS2 may be a potential non-dopaminergic target for pharmacological intervention of dysfunctional DA transmission and drug addiction. PMID:24513972
Amphetamine self-administration attenuates dopamine D2 autoreceptor function.
Calipari, Erin S; Sun, Haiguo; Eldeeb, Khalil; Luessen, Deborah J; Feng, Xin; Howlett, Allyn C; Jones, Sara R; Chen, Rong
2014-07-01
Dopamine D2 autoreceptors located on the midbrain dopaminergic neurons modulate dopamine (DA) neuron firing, DA release, and DA synthesis through a negative-feedback mechanism. Dysfunctional D2 autoreceptors following repeated drug exposure could lead to aberrant DA activity in the ventral tegmental area (VTA) and projection areas such as nucleus accumbens (NAcc), promoting drug-seeking and -taking behavior. Therefore, it is important to understand molecular mechanisms underlying drug-induced changes in D2 autoreceptors. Here, we reported that 5 days of amphetamine (AMPH) self-administration reduced the ability of D2 autoreceptors to inhibit DA release in the NAcc as determined by voltammetry. Using the antibody-capture [(35)S]GTPγS scintillation proximity assay, we demonstrated for the first time that midbrain D2/D3 receptors were preferentially coupled to Gαi2, whereas striatal D2/D3 receptors were coupled equally to Gαi2 and Gαo for signaling. Importantly, AMPH abolished the interaction between Gαi2 and D2/D3 receptors in the midbrain while leaving striatal D2/D3 receptors unchanged. The disruption of the coupling between D2/D3 receptors and Gαi2 by AMPH is at least partially explained by the enhanced RGS2 (regulator of G-protein signaling 2) activity resulting from an increased RGS2 trafficking to the membrane. AMPH had no effects on the midbrain expression and trafficking of other RGS proteins such as RGS4 and RGS8. Our data suggest that midbrain D2/D3 receptors are more susceptible to AMPH-induced alterations. Reduced D2 autoreceptor function could lead to enhanced DA signaling and ultimately addiction-related behavior. RGS2 may be a potential non-dopaminergic target for pharmacological intervention of dysfunctional DA transmission and drug addiction.
Role of Dopamine Signaling in Drug Addiction.
Chen, Wan; Nong, Zhihuan; Li, Yaoxuan; Huang, Jianping; Chen, Chunxia; Huang, Luying
2017-01-01
Addiction is a chronic, relapsing disease of the brain that includes drug-induced compulsive seeking behavior and consumption of drugs. Dopamine (DA) is considered to be critical in drug addiction due to reward mechanisms in the midbrain. In this article, we review the major animal models in addictive drug experiments in vivo and in vitro. We discuss the relevance of the structure and pharmacological function of DA receptors. To improve the understanding of the role of DA receptors in reward pathways, specific brain regions, including the Ventral tegmental area, Nucleus accumbens, Prefrontal cortex, and Habenula, are highlighted. These factors contribute to the development of novel therapeutic targets that act at DA receptors. In addiction, the development of neuroimaging method will increase our understanding of the mechanisms underlying drug addiction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Liu, Shaolin; Plachez, Celine; Shao, Zuoyi; Puche, Adam; Shipley, Michael T.
2013-01-01
Evidence for co-expression of two or more classic neurotransmitters in neurons has increased but less is known about co-transmission. Ventral tegmental area (VTA) neurons, co-release dopamine (DA), the excitatory transmitter glutamate and the inhibitory transmitter GABA onto target cells in the striatum. Olfactory bulb (OB) short axon cells (SACs) form interglomerular connections and co-express markers for dopamine (DA) and GABA. Using an optogenetic approach we provide evidence that mouse OB SACs release both GABA and DA onto external tufted cells (ETCs) in other glomeruli. Optical activation of channelrhodopsin specifically expressed in DAergic SACs produced a GABAA receptor-mediated monosynaptic inhibitory response followed by DA-D1-like receptor-mediated excitatory response in ETCs. The GABAA receptor-mediated hyperpolarization activates Ih current in ETCs; synaptically released DA increases Ih, which enhances post-inhibitory rebound spiking. Thus, the opposing actions of synaptically released GABA and DA are functionally integrated by Ih to generate an inhibition-to-excitation “switch” in ETCs. Consistent with the established role of Ih in ETC burst firing, we show that endogenous DA release increases ETC spontaneous bursting frequency. ETCs transmit sensory signals to mitral/tufted output neurons and drive intraglomerular inhibition to shape glomerulus output to downstream olfactory networks. GABA and DA co-transmission from SACs to ETCs may play a key role in regulating output coding across the glomerular array. PMID:23407950
Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits.
Salamone, J D; Correa, M; Farrar, A; Mingote, S M
2007-04-01
Over the last several years, it has become apparent that there are critical problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Hypotheses related to DA function are undergoing a substantial restructuring, such that the classic emphasis on hedonia and primary reward is giving way to diverse lines of research that focus on aspects of instrumental learning, reward prediction, incentive motivation, and behavioral activation. The present review discusses dopaminergic involvement in behavioral activation and, in particular, emphasizes the effort-related functions of nucleus accumbens DA and associated forebrain circuitry. The effects of accumbens DA depletions on food-seeking behavior are critically dependent upon the work requirements of the task. Lever pressing schedules that have minimal work requirements are largely unaffected by accumbens DA depletions, whereas reinforcement schedules that have high work (e.g., ratio) requirements are substantially impaired by accumbens DA depletions. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related decision making. Rats with accumbens DA depletions reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead, these rats select a less-effortful type of food-seeking behavior. Along with prefrontal cortex and the amygdala, nucleus accumbens is a component of the brain circuitry regulating effort-related functions. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue, or anergia in depression.
German, Christopher L; Baladi, Michelle G; McFadden, Lisa M; Hanson, Glen R; Fleckenstein, Annette E
2015-10-01
Dopamine (DA) plays a well recognized role in a variety of physiologic functions such as movement, cognition, mood, and reward. Consequently, many human disorders are due, in part, to dysfunctional dopaminergic systems, including Parkinson's disease, attention deficit hyperactivity disorder, and substance abuse. Drugs that modify the DA system are clinically effective in treating symptoms of these diseases or are involved in their manifestation, implicating DA in their etiology. DA signaling and distribution are primarily modulated by the DA transporter (DAT) and by vesicular monoamine transporter (VMAT)-2, which transport DA into presynaptic terminals and synaptic vesicles, respectively. These transporters are regulated by complex processes such as phosphorylation, protein-protein interactions, and changes in intracellular localization. This review provides an overview of 1) the current understanding of DAT and VMAT2 neurobiology, including discussion of studies ranging from those conducted in vitro to those involving human subjects; 2) the role of these transporters in disease and how these transporters are affected by disease; and 3) and how selected drugs alter the function and expression of these transporters. Understanding the regulatory processes and the pathologic consequences of DAT and VMAT2 dysfunction underlies the evolution of therapeutic development for the treatment of DA-related disorders. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
German, Christopher L.; Baladi, Michelle G.; McFadden, Lisa M.; Hanson, Glen R.
2015-01-01
Dopamine (DA) plays a well recognized role in a variety of physiologic functions such as movement, cognition, mood, and reward. Consequently, many human disorders are due, in part, to dysfunctional dopaminergic systems, including Parkinson’s disease, attention deficit hyperactivity disorder, and substance abuse. Drugs that modify the DA system are clinically effective in treating symptoms of these diseases or are involved in their manifestation, implicating DA in their etiology. DA signaling and distribution are primarily modulated by the DA transporter (DAT) and by vesicular monoamine transporter (VMAT)-2, which transport DA into presynaptic terminals and synaptic vesicles, respectively. These transporters are regulated by complex processes such as phosphorylation, protein–protein interactions, and changes in intracellular localization. This review provides an overview of 1) the current understanding of DAT and VMAT2 neurobiology, including discussion of studies ranging from those conducted in vitro to those involving human subjects; 2) the role of these transporters in disease and how these transporters are affected by disease; and 3) and how selected drugs alter the function and expression of these transporters. Understanding the regulatory processes and the pathologic consequences of DAT and VMAT2 dysfunction underlies the evolution of therapeutic development for the treatment of DA-related disorders. PMID:26408528
Ramsson, Eric S.; Howard, Christopher D.; Covey, Dan P.; Garris, Paul A.
2011-01-01
High doses of amphetamine (AMPH) are thought to disrupt normal patterns of action potential-dependent dopaminergic neurotransmission by depleting vesicular stores of dopamine (DA) and inducing robust non-exocytotic DA release or efflux via dopamine transporter (DAT) reversal. However, these cardinal AMPH actions have been difficult to establish definitively in vivo. Here, we use fast-scan cyclic voltammetry (FSCV) in the urethane-anesthetized rat to evaluate the effects of 10 and 20 mg/kg AMPH on vesicular DA release and DAT function in dorsal and ventral striata. An equivalent high dose of cocaine (40 mg/kg) was also examined for comparison to psychostimulants acting preferentially by DAT inhibition. Parameters describing exocytotic DA release and neuronal DA uptake were determined from dynamic DA signals evoked by mild electrical stimulation previously established to be reinforcing. High-sensitivity FSCV with nanomolar detection was used to monitor changes in the background voltammetric signal as an index of DA efflux. Both doses of AMPH and cocaine markedly elevated evoked DA levels over the entire 2-h time course in the dorsal and ventral striatum. These increases were mediated by augmented vesicular DA release and diminished DA uptake typically acting concurrently. AMPH, but not cocaine, induced a slow, DA-like rise in some baseline recordings. However, this effect was highly variable in amplitude and duration, modest, and generally not present at all. These data thus describe a mechanistically similar activation of action potential-dependent dopaminergic neurotransmission by AMPH and cocaine in vivo. Moreover, DA efflux appears to be a unique, but secondary, AMPH action. PMID:21806614
Laplante, François; Zhang, Zi-Wei; Huppé-Gourgues, Frédéric; Dufresne, Marc M; Vaucher, Elvire; Sullivan, Ron M
2012-11-01
In rats, selective depletion of the cholinergic interneurons in the ventral striatum (nucleus accumbens or N.Acc.) results in heightened behavioural sensitivity to amphetamine and impaired sensorimotor gating processes, suggesting a hyper-responsiveness to dopamine (DA) activity in the N.Acc. We hypothesized that local cholinergic depletion may also trigger distal functional alterations, particularly in prefrontal cortex (PFC). Adult male Sprague-Dawley rats were injected bilaterally in the N.Acc. with an immunotoxin targeting choline acetyltransferase. Two weeks later, cognitive function was assessed using the delayed alternation paradigm in the T-maze. The rats were then implanted with voltammetric recording electrodes in the ventromedial PFC to measure in vivo extracellular DA release in response to mild tail pinch stress. The PFC was also examined for density of tyrosine hydroxylase (TH)-labelled varicosities. In another cohort of control and lesioned rats, we measured post mortem tissue content of DA. Depletion of cholinergic neurons (restricted to N.Acc.) significantly impaired delayed alternation performance across delay intervals. While (basal) post mortem indices of PFC DA function were unaffected by N.Acc. lesions, in vivo mesocortical DA activation was markedly reduced; this deficit correlated significantly with cognitive impairments. TH-labelled varicosities however, were unaffected in cortical layer V relative to controls. These data suggest that selective depletion of cholinergic interneurons in N.Acc. triggers widespread functional impairments in mesocorticolimbic DA function and cognition. The possible relevance of these findings is also discussed in relation to schizophrenia, where reduced density of cholinergic neurons in ventral striatum has been reported. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bergamini, Giorgio; Sigrist, Hannes; Ferger, Boris; Singewald, Nicolas; Seifritz, Erich; Pryce, Christopher R
2016-10-01
Dopamine (DA) neurotransmission, particularly the ventral tegmental area-nucleus accumbens (VTA-NAcc) projection, underlies reward and aversion processing, and deficient DA function could underlie motivational impairments in psychiatric disorders. 6-hydroxydopamine (6-OHDA) injection is an established method for chronic DA depletion, principally applied in rat to study NAcc DA regulation of reward motivation. Given the increasing focus on studying environmental and genetic regulation of DA function in mouse models, it is important to establish the effects of 6-OHDA DA depletion in mice, in terms of reward and aversion processing. This mouse study investigated effects of 6-OHDA-induced NAcc DA depletion using the operant behavioural test battery of progressive ratio schedule (PRS), learned non-reward (LNR), learned helplessness (LH), treadmill, and in addition Pavlovian fear conditioning. 6-OHDA NAcc DA depletion, confirmed by ex vivo HPLC-ED, reduced operant responding: for gustatory reward under effortful conditions in the PRS test; to a stimulus recently associated with gustatory non-reward in the LNR test; to escape footshock recently experienced as uncontrollable in the LH test; and to avoid footshock by physical effort in the treadmill test. Evidence for specificity of effects to NAcc DA was provided by lack of effect of medial prefrontal cortex DA depletion in the LNR and LH tests. These findings add significantly to the evidence that NAcc DA is a major regulator of behavioural responding, particularly at the motivational level, to both reward and aversion. They demonstrate the suitability of mouse models for translational study of causation and reversal of pathophysiological DA function underlying motivation psychopathologies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Ya-Li; Wang, Jian-Gang; Guo, Fang-Li; Gao, Xia-Huan; Zhao, Dan-Dan; Zhang, Lin; Wang, Jian-Zhi; Lu, Cheng-Biao
2017-09-01
Intracellular calcium is a key factor in most cellular processes, including cell growth, differentiation, proliferation and neurotransmitter release. Dopamine (DA) mediates synaptic transmission by regulating the intracellular calcium content. It is not clear, however, which specific subunit of the DA receptor contributes to DA modulation of intracellular calcium content changes. Through the traditional technique of Fura-2 calcium imaging, this study demonstrated that the DA can induce transient calcium in cultured hippocampal neurons and that this response can be mimicked by a selective dopamine receptor 4 (DR4) agonist PD168077 (PD). PD-induced calcium transience can be blocked by a calcium chelator, such as BAPTA-AM, or by pre-treatment of neurons with thapsigargin, a IP 3 receptor antagonist, or a micromolar concentration of ryanodine, a ryanodine receptor (RyR) antagonist. However PD-induced calcium transience cannot be blocked by pre-treatment of neurons with a free-calcium medium or a cocktail of NMDA receptor, L-type calcium channel and alpha7 nicotinic acetylcholine receptor blockers. These results indicate that the calcium response induced by DR4 activation is mainly through activation of IP 3 receptor in internal stores, which is likely to contribute to the DA modulation of synaptic transmission and cognitive function. Copyright © 2017. Published by Elsevier B.V.
Volkow, N D; Wang, G; Fowler, J S; Logan, J; Gerasimov, M; Maynard, L; Ding, Y; Gatley, S J; Gifford, A; Franceschi, D
2001-01-15
Methylphenidate (Ritalin) is the most commonly prescribed psychoactive drug in children for the treatment of attention deficit hyperactivity disorder (ADHD), yet the mechanisms responsible for its therapeutic effects are poorly understood. Whereas methylphenidate blocks the dopamine transporter (main mechanism for removal of extracellular dopamine), it is unclear whether at doses used therapeutically it significantly changes extracellular dopamine (DA) concentration. Here we used positron emission tomography and [(11)C]raclopride (D2 receptor radioligand that competes with endogenous DA for binding to the receptor) to evaluate whether oral methylphenidate changes extracellular DA in the human brain in 11 healthy controls. We showed that oral methylphenidate (average dose 0.8 +/- 0.11 mg/kg) significantly increased extracellular DA in brain, as evidenced by a significant reduction in B(max)/K(d) (measure of D2 receptor availability) in striatum (20 +/- 12%; p < 0.0005). These results provide direct evidence that oral methylphenidate at doses within the therapeutic range significantly increases extracellular DA in human brain. This result coupled with recent findings of increased dopamine transporters in ADHD patients (which is expected to result in reductions in extracellular DA) provides a mechanistic framework for the therapeutic efficacy of methylphenidate. The increase in DA caused by the blockade of dopamine transporters by methylphenidate predominantly reflects an amplification of spontaneously released DA, which in turn is responsive to environmental stimulation. Because DA decreases background firing rates and increases signal-to-noise in target neurons, we postulate that the amplification of weak DA signals in subjects with ADHD by methylphenidate would enhance task-specific signaling, improving attention and decreasing distractibility. Alternatively methylphenidate-induced increases in DA, a neurotransmitter involved with motivation and reward, could enhance the salience of the task facilitating the "interest that it elicits" and thus improving performance.
Li, Li; Qiu, Guozhen; Ding, Shengyuan; Zhou, Fu-Ming
2013-01-23
The striatum receives serotonin (5-hydroxytryptamine, 5-HT) innervation and expresses 5-HT2A receptors (5-HT2ARs) and other 5-HT receptors, raising the possibility that the striatal 5-HT system may undergo adaptive changes after chronic severe dopamine (DA) loss and contribute to the function and dysfunction of the striatum. Here we show that in transcription factor Pitx3 gene mutant mice with a selective, severe DA loss in the dorsal striatum mimicking the DA denervation in late Parkinson's disease (PD), both the 5-HT innervation and the 5-HT2AR mRNA expression were increased in the dorsal striatum. Functionally, while having no detectable motor effect in wild type mice, the 5-HT2R agonist 2,5-dimethoxy-4-iodoamphetamine increased both the baseline and l-dopa-induced normal ambulatory and dyskinetic movements in Pitx3 mutant mice, whereas the selective 5-HT2AR blocker volinanserin had the opposite effects. These results demonstrate that Pitx3 mutant mice are a convenient and valid mouse model to study the compensatory 5-HT upregulation following the loss of the nigrostriatal DA projection and that the upregulated 5-HT2AR function in the DA deficient dorsal striatum may enhance both normal and dyskinetic movements. Copyright © 2012 Elsevier B.V. All rights reserved.
Sport physiology, dopamine and nitric oxide - Some speculations and hypothesis generation.
Landers, J G; Esch, Tobias
2015-12-01
Elite Spanish professional soccer players surprisingly showed a preponderance of an allele coding for nitric oxide synthase (NOS) that resulted in lower nitric oxide (NO) compared with Spanish endurance and power athletes and sedentary men. The present paper attempts a speculative explanation. Soccer is an "externally-paced" (EP) sport and team work dependent, requiring "executive function skills". We accept that time interval estimation skill is, in part, also an executive skill. Dopamine (DA) is prominent among the neurotransmitters with a role in such skills. Polymorphisms affecting dopamine (especially DRD2/ANKK1-Taq1a which leads to lower density of dopamine D2 receptors in the striatum, leading to increased striatal dopamine synthesis) and COMT val 158 met (which prolongs the action of dopamine in the cortex) feature both in the time interval estimation and the executive skills literatures. Our paper may be a pioneering attempt to stimulate empirical efforts to show how genotypes among soccer players may be connected via neurotransmitters to certain cognitive abilities that predict sporting success, perhaps also in some other externally-paced team sports. Graphing DA levels against time interval estimation accuracy and also against certain executive skills reveals an inverted-U relationship. A pathway from DA, via endogenous morphine and mu3 receptors on endothelia, to the generation of NO in tiny quantities has been demonstrated. Exercise up-regulates DA and this pathway. With somewhat excessive exercise, negative feedback from NO down-regulates DA, hypothetically keeping it near the peak of the inverted-U. Other research, not yet done on higher animals or humans, shows NO "fine-tuning" movement. We speculate that Caucasian men, playing soccer recreationally, would exemplify the above pattern and their nitric oxide synthase (NOS) would reflect the norm of their community, whereas professional players of soccer and perhaps other EP sports, with DA boosted by very frequent and intense practice and extra stress from public scrutiny, would potentially have their negative feedback system overwhelmed, were it not that many of them carry the C allele of the NOS3-786T/C polymorphism. Then, even very high DA would not result in so much NO as to shut the system down. We add some evolutionary speculations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Norepinephrine Activates Dopamine D4 Receptors in the Rat Lateral Habenula
Root, David H.; Hoffman, Alexander F.; Good, Cameron H.; Zhang, Shiliang; Gigante, Eduardo
2015-01-01
The lateral habenula (LHb) is involved in reward and aversion and is reciprocally connected with dopamine (DA)-containing brain regions, including the ventral tegmental area (VTA). We used a multidisciplinary approach to examine the properties of DA afferents to the LHb in the rat. We find that >90% of VTA tyrosine hydroxylase (TH) neurons projecting to the LHb lack vesicular monoamine transporter 2 (VMAT2) mRNA, and there is little coexpression of TH and VMAT2 protein in this mesohabenular pathway. Consistent with this, electrical stimulation of LHb did not evoke DA-like signals, assessed with fast-scan cyclic voltammetry. However, electrophysiological currents that were inhibited by L741,742, a DA-D4-receptor antagonist, were observed in LHb neurons when DA uptake or degradation was blocked. To prevent DA activation of D4 receptors, we repeated this experiment in LHb slices from DA-depleted rats. However, this did not disrupt D4 receptor activation initiated by the dopamine transporter inhibitor, GBR12935. As the LHb is also targeted by noradrenergic afferents, we examined whether GBR12935 activation of DA-D4 receptors occurred in slices depleted of norepinephrine (NE). Unlike DA, NE depletion prevented the activation of DA-D4 receptors. Moreover, direct application of NE elicited currents in LHb neurons that were blocked by L741,742, and GBR12935 was found to be a more effective blocker of NE uptake than the NE-selective transport inhibitor nisoxetine. These findings demonstrate that NE is released in the rat LHb under basal conditions and that it activates DA-D4 receptors. Therefore, NE may be an important regulator of LHb function. PMID:25716845
Sambataro, Fabio; Fazio, Leonardo; Taurisano, Paolo; Gelao, Barbara; Porcelli, Annamaria; Mancini, Marina; Sinibaldi, Lorenzo; Ursini, Gianluca; Masellis, Rita; Caforio, Grazia; Di Giorgio, Annabella; Niccoli-Asabella, Artor; Popolizio, Teresa; Blasi, Giuseppe; Bertolino, Alessandro
2013-01-01
The default mode network (DMN) comprises a set of brain regions with "increased" activity during rest relative to cognitive processing. Activity in the DMN is associated with functional connections with the striatum and dopamine (DA) levels in this brain region. A functional single-nucleotide polymorphism within the dopamine D2 receptor gene (DRD2, rs1076560 G > T) shifts splicing of the 2 D2 isoforms, D2 short and D2 long, and has been associated with striatal DA signaling as well as with cognitive processing. However, the effects of this polymorphism on DMN have not been explored. The aim of this study was to evaluate the effects of rs1076560 on DMN and striatal connectivity and on their relationship with striatal DA signaling. Twenty-eight subjects genotyped for rs1076560 underwent functional magnetic resonance imaging during a working memory task and 123 55 I-Fluoropropyl-2-beta-carbomethoxy-3-beta(4-iodophenyl) nortropan Single Photon Emission Computed Tomography ([(123)I]-FP-CIT SPECT) imaging (a measure of dopamine transporter [DAT] binding). Spatial group-independent component (IC) analysis was used to identify DMN and striatal ICs. Within the anterior DMN IC, GG subjects had relatively greater connectivity in medial prefrontal cortex (MPFC), which was directly correlated with striatal DAT binding. Within the posterior DMN IC, GG subjects had reduced connectivity in posterior cingulate relative to T carriers. Additionally, rs1076560 genotype predicted connectivity differences within a striatal network, and these changes were correlated with connectivity in MPFC and posterior cingulate within the DMN. These results suggest that genetically determined D2 receptor signaling is associated with DMN connectivity and that these changes are correlated with striatal function and presynaptic DA signaling.
Sambataro, Fabio; Fazio, Leonardo; Taurisano, Paolo; Gelao, Barbara; Porcelli, Annamaria; Mancini, Marina; Sinibaldi, Lorenzo; Ursini, Gianluca; Masellis, Rita; Caforio, Grazia; Di Giorgio, Annabella; Niccoli-Asabella, Artor; Popolizio, Teresa; Blasi, Giuseppe; Bertolino, Alessandro
2013-01-01
The default mode network (DMN) comprises a set of brain regions with “increased” activity during rest relative to cognitive processing. Activity in the DMN is associated with functional connections with the striatum and dopamine (DA) levels in this brain region. A functional single-nucleotide polymorphism within the dopamine D2 receptor gene (DRD2, rs1076560 G > T) shifts splicing of the 2 D2 isoforms, D2 short and D2 long, and has been associated with striatal DA signaling as well as with cognitive processing. However, the effects of this polymorphism on DMN have not been explored. The aim of this study was to evaluate the effects of rs1076560 on DMN and striatal connectivity and on their relationship with striatal DA signaling. Twenty-eight subjects genotyped for rs1076560 underwent functional magnetic resonance imaging during a working memory task and 123 55 I-Fluoropropyl-2-beta-carbomethoxy-3-beta(4-iodophenyl) nortropan Single Photon Emission Computed Tomography ([123I]-FP-CIT SPECT) imaging (a measure of dopamine transporter [DAT] binding). Spatial group-independent component (IC) analysis was used to identify DMN and striatal ICs. Within the anterior DMN IC, GG subjects had relatively greater connectivity in medial prefrontal cortex (MPFC), which was directly correlated with striatal DAT binding. Within the posterior DMN IC, GG subjects had reduced connectivity in posterior cingulate relative to T carriers. Additionally, rs1076560 genotype predicted connectivity differences within a striatal network, and these changes were correlated with connectivity in MPFC and posterior cingulate within the DMN. These results suggest that genetically determined D2 receptor signaling is associated with DMN connectivity and that these changes are correlated with striatal function and presynaptic DA signaling. PMID:21976709
The Behavioral Pharmacology of Effort-related Choice Behavior: Dopamine, Adenosine and Beyond
Salamone, John D; Correa, Merce; Nunes, Eric J; Randall, Patrick A; Pardo, Marta
2012-01-01
For many years, it has been suggested that drugs that interfere with dopamine (DA) transmission alter the “rewarding” impact of primary reinforcers such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in effort-related choice behavior. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA-depleted rats show a heightened sensitivity to response costs, especially ratio requirements. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and show increased selection of low reinforcement/low cost options. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum) also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as symptoms such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders. PMID:22287808
The behavioral pharmacology of effort-related choice behavior: dopamine, adenosine and beyond.
Salamone, John D; Correa, Merce; Nunes, Eric J; Randall, Patrick A; Pardo, Marta
2012-01-01
For many years, it has been suggested that drugs that interfere with dopamine (DA) transmission alter the "rewarding" impact of primary reinforcers such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in effort-related choice behavior. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA-depleted rats show a heightened sensitivity to response costs, especially ratio requirements. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and show increased selection of low reinforcement/low cost options. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum) also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as symptoms such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders.
Reduced striatal dopamine DA D2 receptor function in dominant-negative GSK-3 transgenic mice.
Gomez-Sintes, Raquel; Bortolozzi, Analia; Artigas, Francesc; Lucas, José J
2014-09-01
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase with constitutive activity involved in cellular architecture, gene expression, cell proliferation, fate decision and apoptosis, among others. GSK-3 expression is particularly high in brain where it may be involved in neurological and psychiatric disorders such as Alzheimer׳s disease, bipolar disorder and major depression. A link with schizophrenia is suggested by the antipsychotic drug-induced GSK-3 regulation and by the involvement of the Akt/GSK-3 pathway in dopaminergic neurotransmission. Taking advantage of the previous development of dominant negative GSK-3 transgenic mice (Tg) showing a selective reduction of GSK-3 activity in forebrain neurons but not in dopaminergic neurons, we explored the relationship between GSK-3 and dopaminergic neurotransmission in vivo. In microdialysis experiments, local quinpirole (DA D2-R agonist) in dorsal striatum reduced dopamine (DA) release significantly less in Tg mice than in wild-type (WT) mice. However, local SKF-81297 (selective DA D1-R agonist) in dorsal striatum reduced DA release equally in both control and Tg mice indicating a comparable function of DA D1-R in the direct striato-nigral pathway. Likewise, systemic quinpirole administration - acting preferentially on presynaptic DA D2- autoreceptors to modulate DA release-reduced striatal DA release similarly in both control and Tg mice. Quinpirole reduced locomotor activity and induced c-fos expression in globus pallidus (both striatal DA D2-R-mediated effects) significantly more in WT than in Tg mice. Taking together, the present results show that dominant negative GSK-3 transgenic mice show reduced DA D2-R-mediated function in striatum and further support a link between dopaminergic neurotransmission and GSK-3 activity. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.
Dopamine-induced changes in neural network patterns supporting aversive conditioning.
Diaconescu, Andreea Oliviana; Menon, Mahesh; Jensen, Jimmy; Kapur, Shitij; McIntosh, Anthony Randal
2010-02-08
The aim of the present paper is to assess the effects of altered dopamine (DA) transmission on the functional connectivity among brain regions mediating aversive conditioning in humans. To this aim, we analyzed a previous published data set from a double-blind design combined with functional magnetic resonance imaging (fMRI) recordings in which healthy volunteers were randomly assigned to one of three drug groups: amphetamine (an indirect DA agonist), haloperidol (DA D2 receptor antagonist), and placebo. Participants were exposed to an aversive classical conditioning paradigm using cutaneous electrical stimulation as the unconditioned stimulus (US), and visual cues as the conditioned stimuli (CS) where one colour (CS+) was followed by the US in 33% of the trials and another colour (CS-) had no consequences. All participants reported awareness of stimulus contingencies. Group analysis of fMRI data revealed that the left ventral striatum (VS) and amygdala activated in response to the CS+ in all the three groups. Because of their activation patterns and documented involvement in aversive conditioning, both regions were used as seeds in the functional connectivity analysis. To constrain the functional networks obtained to relate to the conditioned response, we also correlated seed activity with the Galvanic Skin Response (GSR). In the placebo group, the right ventral tegmental area/substantia nigra (VTA/SN), bilateral caudate, right parahippocampal gyrus, left inferior parietal lobule (IPL), bilateral postcentral gyrus, bilateral middle frontal (BA 46), orbitofrontal, and ventromedial prefrontal cortices (PFC, BA 10/11) correlated with the VS and amygdala seeds in response to the CS+ compared to the CS-. Enhancing dopamine transmission via amphetamine was associated with reduced task differences and significant functional connectivity for both CS+ and CS- conditions between the left VS seed and regions modulated by DA, such as the left VTA/SN, right caudate, left amygdala, left middle frontal gyrus (BA 46), and bilateral ventromedial PFC (BA 10). Blocking dopamine transmission via haloperidol was associated with significant functional connectivity across an alternate network of regions including the left amygdala seed and the right insula, the left ACC (BA 24/32), bilateral IPL (BA 40), precuneus (BA 7), post-central gyrus, middle frontal gyrus (BA 46), and supplementary motor area (SMA, BA 6) to the CS+ versus the CS-. These data provide insight into the distinct effects of DA agents on the functional connectivity between striatal, limbic, and prefrontal areas. Copyright 2009 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Diaz-Ruiz, Oscar; Zhang, YaJun; Shan, Lufei; Malik, Nasir; Hoffman, Alexander F.; Ladenheim, Bruce; Cadet, Jean Lud; Lupica, Carl R.; Tagliaferro, Adriana; Brusco, Alicia; Backman, Cristina M.
2012-01-01
In the present study, we analyzed mice with a targeted deletion of [beta]-catenin in DA neurons (DA-[beta]cat KO mice) to address the functional significance of this molecule in the shaping of synaptic responses associated with motor learning and following exposure to drugs of abuse. Relative to controls, DA-[beta]cat KO mice showed significant…
He, Ping; Wang, Wei; Du, Licheng; Dong, Faqin; Deng, Yuequan; Zhang, Tinghong
2012-08-20
A novel Cu-zeolite A/graphene modified glassy carbon electrode for the simultaneous electrochemical determination of dopamine (DA) and ascorbic acid (AA) has been described. The Cu-zeolite A/graphene composites were prepared using Cu(2+) functionalized zeolite A and graphene oxide as the precursor, and subsequently reduced by chemical agents. The composites were characterized by X-ray diffraction, Fourier transform infrared spectra and scanning electron microscopy. Based on the Cu-zeolite A/graphene-modified electrode, the potential difference between the oxidation peaks of DA and AA was over 200mV, which was adequate for the simultaneous electrochemical determination of DA and AA. Also the proposed Cu-zeolite/graphene-modified electrode showed higher electrocatalytic performance than zeolite/graphene electrode or graphene-modified electrode. The electrocatalytic oxidation currents of DA and AA were linearly related to the corresponding concentration in the range of 1.0×10(-7)-1.9×10(-5)M for DA and 2.0×10(-5)-2.0×10(-4)M for AA. Detection limits (S/N=3) were estimated to be 4.1×10(-8)M for DA and 1.1×10(-5)M for AA, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Dopamine (DA) is a signal moiety bridging the nervous and immune systems. DA dysregulation is linked to serious human diseases, including addiction, schizophrenia, and Parkinson's disease. However, DA actions in the immune system remain incompletely understood. In this study, we found that DA modula...
Striatal dopamine transmission in healthy humans during a passive monetary reward task.
Hakyemez, Hélène S; Dagher, Alain; Smith, Stephen D; Zald, David H
2008-02-15
Research on dopamine (DA) transmission has emphasized the importance of increased phasic DA cell firing in the presence of unpredictable rewards. Using [(11)C]raclopride PET, we previously reported that DA transmission was both suppressed and enhanced in different regions of the striatum during an unpredictable reward task [Zald, D.H., Boileau, I., El Dearedy, W., Gunn, R., McGlone, F., Dichter, G.S. et al. (2004). Dopamine transmission in the human striatum during monetary reward tasks. J. Neurosci. 24, 4105-4112]. However, it was unclear if reductions in DA release during this task reflected a response to the high proportion of nonrewarding trials, and whether the behavioral demands of the task influenced the observed response. To test these issues, we presented 10 healthy subjects with an automated (passive) roulette wheel game in which the amount of reward and its timing were unpredictable and the rewarding trials greatly outnumbered the nonrewarding ones. As in the previous study, DA transmission in the putamen was significantly suppressed relative to a predictable control condition. A similar suppression occurred when subjects were presented with temporally unpredictable novel pictures and sounds. At present, models of DA functioning during reward do not account for this suppression, but given that it has been observed in two different studies using different reward paradigms, this phenomenon warrants attention. Neither the unpredictable reward nor the novelty conditions produced consistent increases in striatal DA transmission. These data suggest that active behavioral engagement may be necessary to observe robust statewise increases in DA release in the striatum.
Shin, Jung Hoon; Adrover, Martin F; Alvarez, Veronica A
2017-11-15
Nucleus accumbens (NAc) shell shows unique dopamine (DA) signals in vivo and plays a unique role in DA-dependent behaviors such as reward-motivated learning and the response to drugs of abuse. A disynaptic mechanism for DA release was reported and shown to require synchronized firing of cholinergic interneurons (CINs) and activation of nicotinic acetylcholine (ACh) receptors (nAChRs) in DA neuron (DAN) axons. The properties of this disynaptic mechanism of DA transmission are not well understood in the NAc shell. In this study, in vitro fast-scan cyclic voltammetry was used to examine the modulation of DA transmission evoked by CINs firing in the shell of mice and compared with other striatal regions. We found that DA signals in the shell displayed significant degree of summation in response to train stimulation of CINs, contrary to core and dorsal striatum. The summation was amplified by a D2-like receptor antagonist and experiments with mice with targeted deletion of D2 receptors to DANs or CINs revealed that D2 receptors in CINs mediate a fast inhibition observed within 100 ms of the first pulse, whereas D2 autoreceptors in DAN terminals are engaged in a slower inhibition that peaks at ∼500 ms. ACh also contributes to the use-dependent inhibition of DA release through muscarinic receptors only in the shell, where higher activity of acetylcholinesterase minimizes nAChR desensitization and promotes summation. These findings show that DA signals are modulated differentially by endogenous DA and ACh in the shell, which may underlie the unique features of shell DA signals in vivo SIGNIFICANCE STATEMENT The present study reports that dopamine (DA) release evoked by activation of cholinergic interneurons displays a high degree of summation in the shell and shows unique modulation by endogenous DA and acetylcholine. Desensitization of nicotinic receptors, which is a prevailing mechanism for use-dependent inhibition in the nucleus accumbens core and dorsal striatum, is also minimal in the shell in part due to elevated acetylcholinesterase activity. This distinctive modulation of DA transmission in the shell may have functional implications in the acquisition of reward-motivated behaviors and reward seeking. Copyright © 2017 the authors 0270-6474/17/3711166-15$15.00/0.
Decreased dopamine activity predicts relapse in methamphetamine abusers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang G. J.; Wang, G.-J.; Smith, L.
2011-01-20
Studies in methamphetamine (METH) abusers showed that the decreases in brain dopamine (DA) function might recover with protracted detoxification. However, the extent to which striatal DA function in METH predicts recovery has not been evaluated. Here we assessed whether striatal DA activity in METH abusers is associated with clinical outcomes. Brain DA D2 receptor (D2R) availability was measured with positron emission tomography and [{sup 11}C]raclopride in 16 METH abusers, both after placebo and after challenge with 60 mg oral methylphenidate (MPH) (to measure DA release) to assess whether it predicted clinical outcomes. For this purpose, METH abusers were tested withinmore » 6 months of last METH use and then followed up for 9 months of abstinence. In parallel, 15 healthy controls were tested. METH abusers had lower D2R availability in caudate than in controls. Both METH abusers and controls showed decreased striatal D2R availability after MPH and these decreases were smaller in METH than in controls in left putamen. The six METH abusers who relapsed during the follow-up period had lower D2R availability in dorsal striatum than in controls, and had no D2R changes after MPH challenge. The 10 METH abusers who completed detoxification did not differ from controls neither in striatal D2R availability nor in MPH-induced striatal DA changes. These results provide preliminary evidence that low striatal DA function in METH abusers is associated with a greater likelihood of relapse during treatment. Detection of the extent of DA dysfunction may be helpful in predicting therapeutic outcomes.« less
Decreased dopamine activity predicts relapse in methamphetamine abusers.
Wang, G J; Smith, L; Volkow, N D; Telang, F; Logan, J; Tomasi, D; Wong, C T; Hoffman, W; Jayne, M; Alia-Klein, N; Thanos, P; Fowler, J S
2012-09-01
Studies in methamphetamine (METH) abusers showed that the decreases in brain dopamine (DA) function might recover with protracted detoxification. However, the extent to which striatal DA function in METH predicts recovery has not been evaluated. Here we assessed whether striatal DA activity in METH abusers is associated with clinical outcomes. Brain DA D2 receptor (D2R) availability was measured with positron emission tomography and [(11)C]raclopride in 16 METH abusers, both after placebo and after challenge with 60 mg oral methylphenidate (MPH) (to measure DA release) to assess whether it predicted clinical outcomes. For this purpose, METH abusers were tested within 6 months of last METH use and then followed up for 9 months of abstinence. In parallel, 15 healthy controls were tested. METH abusers had lower D2R availability in caudate than in controls. Both METH abusers and controls showed decreased striatal D2R availability after MPH and these decreases were smaller in METH than in controls in left putamen. The six METH abusers who relapsed during the follow-up period had lower D2R availability in dorsal striatum than in controls, and had no D2R changes after MPH challenge. The 10 METH abusers who completed detoxification did not differ from controls neither in striatal D2R availability nor in MPH-induced striatal DA changes. These results provide preliminary evidence that low striatal DA function in METH abusers is associated with a greater likelihood of relapse during treatment. Detection of the extent of DA dysfunction may be helpful in predicting therapeutic outcomes.
Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations
Holca-Lamarre, Raphaël; Lücke, Jörg; Obermayer, Klaus
2017-01-01
Biological and artificial neural networks (ANNs) represent input signals as patterns of neural activity. In biology, neuromodulators can trigger important reorganizations of these neural representations. For instance, pairing a stimulus with the release of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the responses of neurons to the paired stimulus. The functional roles of ACh and DA in rearranging representations remain largely unknown. Here, we address this question using a Hebbian-learning neural network model. Our aim is both to gain a functional understanding of ACh and DA transmission in shaping biological representations and to explore neuromodulator-inspired learning rules for ANNs. We model the effects of ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater neuromodulator activation are over represented in the network. We then simulate the physiological release schedules of ACh and DA. We measure the impact of neuromodulator release on the network's representation and on its performance on a classification task. We find that ACh and DA trigger distinct changes in neural representations that both improve performance. The putative ACh signal redistributes neural preferences so that more neurons encode stimulus classes that are challenging for the network. The putative DA signal adapts synaptic weights so that they better match the classes of the task at hand. Our model thus offers a functional explanation for the effects of ACh and DA on cortical representations. Additionally, our learning algorithm yields performances comparable to those of state-of-the-art optimisation methods in multi-layer perceptrons while requiring weaker supervision signals and interacting with synaptically-local weight updates. PMID:28690509
Singer, Bryan F.; Guptaroy, Bipasha; Austin, Curtis J.; Wohl, Isabella; Lovic, Vedran; Seiler, Jillian L; Vaughan, Roxanne A.; Gnegy, Margaret E.; Robinson, Terry E.; Aragona, Brandon J.
2015-01-01
Cues (conditioned stimuli; CSs) associated with rewards can come to motivate behavior, but there is considerable individual variation in their ability to do so. For example, a lever-CS that predicts food reward becomes attractive, wanted, and elicits reward-seeking behavior to a greater extent in some rats (“sign-trackers”; STs), than others (“goal-trackers”; GTs). Variation in dopamine (DA) neurotransmission in the nucleus accumbens (NAc) core is thought to contribute to such individual variation. Given that the DA transporter (DAT) exerts powerful regulation over DA signaling, we characterized the expression and function of the DAT in the accumbens of STs and GTs. STs showed greater DAT surface expression in ventral striatal synaptosomes than GTs, and ex vivo fast-scan cyclic voltammetry recordings of electrically-evoked DA release confirmed enhanced DAT function in STs, as indicated by faster DA uptake, specifically in the NAc core. Consistent with this, systemic amphetamine (AMPH) produced greater inhibition of DA uptake in STs than in GTs. Furthermore, injection of AMPH directly into the NAc core enhanced lever-directed approach in STs, presumably by amplifying the incentive value of the CS, but had no effect on goal tracking behavior. On the other hand, there were no differences between STs and GTs in electrically-evoked DA release in slices, or in total ventral striatal DA content. We conclude that greater DAT surface expression may facilitate the attribution of incentive salience to discrete reward cues. Investigating this variability in animal sub-populations may help explain why some people abuse drugs, while others do not. PMID:26613374
Dahal, Rejwi Acharya; Pramod, Akula Bala; Sharma, Babita; Krout, Danielle; Foster, James D.; Cha, Joo Hwan; Cao, Jianjing; Newman, Amy Hauck; Lever, John R.; Vaughan, Roxanne A.; Henry, L. Keith
2014-01-01
The dopamine transporter (DAT) functions as a key regulator of dopaminergic neurotransmission via re-uptake of synaptic dopamine (DA). Cocaine binding to DAT blocks this activity and elevates extracellular DA, leading to psychomotor stimulation and addiction, but the mechanisms by which cocaine interacts with DAT and inhibits transport remain incompletely understood. Here, we addressed these questions using computational and biochemical methodologies to localize the binding and adduction sites of the photoactivatable irreversible cocaine analog 3β-(p-chlorophenyl)tropane-2β-carboxylic acid, 4′-azido-3′-iodophenylethyl ester ([125I]RTI 82). Comparative modeling and small molecule docking indicated that the tropane pharmacophore of RTI 82 was positioned in the central DA active site with an orientation that juxtaposed the aryliodoazide group for cross-linking to rat DAT Phe-319. This prediction was verified by focused methionine substitution of residues flanking this site followed by cyanogen bromide mapping of the [125I]RTI 82-labeled mutants and by the substituted cysteine accessibility method protection analyses. These findings provide positive functional evidence linking tropane pharmacophore interaction with the core substrate-binding site and support a competitive mechanism for transport inhibition. This synergistic application of computational and biochemical methodologies overcomes many uncertainties inherent in other approaches and furnishes a schematic framework for elucidating the ligand-protein interactions of other classes of DA transport inhibitors. PMID:25179220
[Scans without Evidence of Dopamine Deficit (SWEDDs)].
Mukai, Yohei; Murata, Miho
2016-01-01
Dopamine transporter (DaT) single-photon emission computed tomography (SPECT) and [18F]fluoro-L-DOPA ([18F]DOPA) positron emission tomography (PET) facilitate the investigation of dopaminergic hypofunction in neurodegenerative diseases. DaT SPECT and [18F]DOPA PET have been adopted as survey tools in clinical trials. In a large study on Parkinson's disease, 4-15% of subjects clinically diagnosed with early-stage Parkinson's disease had normal dopaminergic functional imaging scans. These are called Scans without Evidence of Dopamine Deficit (SWEDDs), and are considered to represent a state different from Parkinson's disease. Neurological diseases that exhibit parkinsonism and have normal dopaminergic cells in the nigrostriatal system (e.g., essential tremor, psychogenic parkinsonism, DOPA-responsive dystonia, vascular parkinsonism, drug-induced parkinsonism, manganism, brain tumor, myoclonus-dystonia (DYT11), and fragile X syndrome) might be diagnosed with SWEDDs. True bradykinesia with fatigue or decrement may be useful for distinguishing between Parkinson's disease and SWEDDs. However, because SWEDDs encompass many diseases, their properties may not be uniform. In this review, we discuss DaT SPECT, the concept of SWEDDs, and differential diagnosis.
Karrer, Teresa M; Josef, Anika K; Mata, Rui; Morris, Evan D; Samanez-Larkin, Gregory R
2017-09-01
Many theories of cognitive aging are based on evidence that dopamine (DA) declines with age. Here, we performed a systematic meta-analysis of cross-sectional positron emission tomography and single-photon emission-computed tomography studies on the average effects of age on distinct DA targets (receptors, transporters, or relevant enzymes) in healthy adults (N = 95 studies including 2611 participants). Results revealed significant moderate to large, negative effects of age on DA transporters and receptors. Age had a significantly larger effect on D1- than D2-like receptors. In contrast, there was no significant effect of age on DA synthesis capacity. The average age reductions across the DA system were 3.7%-14.0% per decade. A meta-regression found only DA target as a significant moderator of the age effect. This study precisely quantifies prior claims of reduced DA functionality with age. It also identifies presynaptic mechanisms (spared synthesis capacity and reduced DA transporters) that may partially account for previously unexplained phenomena whereby older adults appear to use dopaminergic resources effectively. Recommendations for future studies including minimum required samples sizes are provided. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Naneix, Fabien; Marchand, Alain R; Pichon, Anaïs; Pape, Jean- Rémi; Coutureau, Etienne
2013-01-01
Adolescence is a period of high sensitivity to drugs and rewards, characterized by the immaturity of decision-making abilities. A chronic stimulation of reward systems during this period might constitute a factor of vulnerability to the development of psychiatric disorders. However, the long-term consequences of such an exposure have seldom been explored. Here, we investigate at the adult age the effects of chronic dopamine (DA) stimulation during adolescence on both the maturation of DA systems and the cognitive processes underlying goal-directed actions. We first demonstrate that chronic stimulation of D2 receptors by quinpirole during adolescence alters the development of DA systems. This treatment has particularly prominent effects on the mesocortical DA pathway where it decreases DA fibers density, DA concentration, and DA receptors expression. Furthermore, we show that quinpirole-treated rats exhibit specific impairments in instrumental goal-directed behavior, as they fail to adapt their action when action–outcome relationships change in a contingency degradation procedure. These results therefore highlight the vulnerability of DA system and prefrontal areas to prolonged stimulation during adolescence, and its potential long-term impact on cognitive functions. PMID:23443719
Owens, W Anthony; Williams, Jason M; Saunders, Christine; Avison, Malcolm J; Galli, Aurelio; Daws, Lynette C
2012-02-22
The dopamine (DA) transporter (DAT) is a major target for abused drugs and a key regulator of extracellular DA. A rapidly growing literature implicates insulin as an important regulator of DAT function. We showed previously that amphetamine (AMPH)-evoked DA release is markedly impaired in rats depleted of insulin with the diabetogenic agent streptozotocin (STZ). Similarly, functional magnetic resonance imaging experiments revealed that the blood oxygenation level-dependent signal following acute AMPH administration in STZ-treated rats is reduced. Here, we report that these deficits are restored by repeated, systemic administration of AMPH (1.78 mg/kg, every other day for 8 d). AMPH stimulates DA D(2) receptors indirectly by increasing extracellular DA. Supporting a role for D(2) receptors in mediating this "rescue," the effect was completely blocked by pre-treatment of STZ-treated rats with the D(2) receptor antagonist raclopride before systemic AMPH. D(2) receptors regulate DAT cell surface expression through ERK1/2 signaling. In ex vivo striatal preparations, repeated AMPH injections increased immunoreactivity of phosphorylated ERK1/2 (p-ERK1/2) in STZ-treated but not control rats. These data suggest that repeated exposure to AMPH can rescue, by activating D(2) receptors and p-ERK signaling, deficits in DAT function that result from hypoinsulinemia. Our data confirm the idea that disorders influencing insulin levels and/or signaling, such as diabetes and anorexia, can degrade DAT function and that insulin-independent pathways are present that may be exploited as potential therapeutic targets to restore normal DAT function.
Jennings, Katie A.; Platt, Nicola J.; Cragg, Stephanie J.
2015-01-01
Dopamine function is disturbed in Parkinson's disease (PD), but whether and how release of dopamine from surviving neurons is altered has long been debated. Nicotinic acetylcholine receptors (nAChRs) on dopamine axons powerfully govern dopamine release and could be critical contributing factors. We revisited whether fundamental properties of dopamine transmission are changed in a parkinsonian brain and tested the potentially profound masking effects of nAChRs. Using real-time detection of dopamine in mouse striatum after a partial 6-hydroxydopamine lesion and under nAChR inhibition, we reveal that dopamine signals show diminished sensitivity to presynaptic activity. This effect manifested as diminished contrast between DA release evoked by the lowest versus highest frequencies. This reduced activity-dependence was underpinned by loss of short-term facilitation of dopamine release, consistent with an increase in release probability (Pr). With nAChRs active, the reduced activity-dependence of dopamine release after a parkinsonian lesion was masked. Consequently, moment-by-moment variation in activity of nAChRs may lead to dynamic co-variation in dopamine signal impairments in PD. PMID:26117304
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walters, Jennifer L., E-mail: Jennifer.l.walters@wmich.edu; Lansdell, Theresa A., E-mail: lansdel1@msu.edu; Lookingland, Keith J., E-mail: lookingl@msu.edu
This study sought to investigate the effects of environmentally relevant gestational followed by continued chronic exposure to the herbicide, atrazine, on motor function, cognition, and neurochemical indices of nigrostriatal dopamine (DA) activity in male rats. Dams were treated with 100 μg/kg atrazine, 10 mg/kg atrazine, or vehicle on gestational day 1 through postnatal day 21. Upon weaning, male offspring continued daily vehicle or atrazine gavage treatments for an additional six months. Subjects were tested in a series of behavioral assays, and 24 h after the last treatment, tissue samples from the striatum were analyzed for DA and 3,4-dihydroxyphenylacetic acid (DOPAC).more » At 10 mg/kg, this herbicide was found to produce modest disruptions in motor functioning, and at both dose levels it significantly lowered striatal DA and DOPAC concentrations. These results suggest that exposures to atrazine have the potential to disrupt nigrostriatal DA neurons and behaviors associated with motor functioning. - Highlights: • Male rats received gestational and chronic exposure to ATZ (10 mg/kg and 100 μg/kg). • ATZ altered locomotor activity and impaired motor coordination. • ATZ lowered striatal DA and DOPAC concentrations. • ATZ produced a potential anxiogenic effect. • ATZ did not impair performance in learning and memory assessments.« less
Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs.
Wang, Yuexiang; Lee, Jang-Won; Oh, Gyeon; Grady, Sharon R; McIntosh, J Michael; Brunzell, Darlene H; Cannon, Jason R; Drenan, Ryan M
2014-04-01
α6β2* nicotinic acetylcholine receptors (nAChRs)s in the ventral tegmental area to nucleus accumbens (NAc) pathway are implicated in the response to nicotine, and recent work suggests these receptors play a role in the rewarding action of ethanol. Here, we studied mice expressing gain-of-function α6β2* nAChRs (α6L9'S mice) that are hypersensitive to nicotine and endogenous acetylcholine. Evoked extracellular dopamine (DA) levels were enhanced in α6L9'S NAc slices compared to control, non-transgenic (non-Tg) slices. Extracellular DA levels in both non-Tg and α6L9'S slices were further enhanced in the presence of GBR12909, suggesting intact DA transporter function in both mouse strains. Ongoing α6β2* nAChR activation by acetylcholine plays a role in enhancing DA levels, as α-conotoxin MII completely abolished evoked DA release in α6L9'S slices and decreased spontaneous DA release from striatal synaptosomes. In HPLC experiments, α6L9'S NAc tissue contained significantly more DA, 3,4-dihydroxyphenylacetic acid, and homovanillic acid compared to non-Tg NAc tissue. Serotonin (5-HT), 5-hydroxyindoleacetic acid, and norepinephrine (NE) were unchanged in α6L9'S compared to non-Tg tissue. Western blot analysis revealed increased tyrosine hydroxylase expression in α6L9'S NAc. Overall, these results show that enhanced α6β2* nAChR activity in NAc can stimulate DA production and lead to increased extracellular DA levels. © 2013 International Society for Neurochemistry.
Erdozain, Amaia M; De Gois, Stéphanie; Bernard, Véronique; Gorgievski, Victor; Pietrancosta, Nicolas; Dumas, Sylvie; Macedo, Carlos E; Vanhoutte, Peter; Ortega, Jorge E; Meana, J Javier; Tzavara, Eleni T; Vialou, Vincent; Giros, Bruno
2018-04-01
The importance of dopamine (DA) neurotransmission is emphasized by its direct implication in several neurological and psychiatric disorders. The DA transporter (DAT), target of psychostimulant drugs, is the key protein that regulates spatial and temporal activity of DA in the synaptic cleft via the rapid reuptake of DA into the presynaptic terminal. There is strong evidence suggesting that DAT-interacting proteins may have a role in its function and regulation. Performing a two-hybrid screening, we identified snapin, a SNARE-associated protein implicated in synaptic transmission, as a new binding partner of the carboxyl terminal of DAT. Our data show that snapin is a direct partner and regulator of DAT. First, we determined the domains required for this interaction in both proteins and characterized the DAT-snapin interface by generating a 3D model. Using different approaches, we demonstrated that (i) snapin is expressed in vivo in dopaminergic neurons along with DAT; (ii) both proteins colocalize in cultured cells and brain and, (iii) DAT and snapin are present in the same protein complex. Moreover, by functional studies we showed that snapin produces a significant decrease in DAT uptake activity. Finally, snapin downregulation in mice produces an increase in DAT levels and transport activity, hence increasing DA concentration and locomotor response to amphetamine. In conclusion, snapin/DAT interaction represents a direct link between exocytotic and reuptake mechanisms and is a potential target for DA transmission modulation.
Inflammation Effects on Motivation and Motor Activity: Role of Dopamine
Felger, Jennifer C; Treadway, Michael T
2017-01-01
Motivational and motor deficits are common in patients with depression and other psychiatric disorders, and are related to symptoms of anhedonia and motor retardation. These deficits in motivation and motor function are associated with alterations in corticostriatal neurocircuitry, which may reflect abnormalities in mesolimbic and mesostriatal dopamine (DA). One pathophysiologic pathway that may drive changes in DAergic corticostriatal circuitry is inflammation. Biomarkers of inflammation such as inflammatory cytokines and acute-phase proteins are reliably elevated in a significant proportion of psychiatric patients. A variety of inflammatory stimuli have been found to preferentially target basal ganglia function to lead to impaired motivation and motor activity. Findings have included inflammation-associated reductions in ventral striatal neural responses to reward anticipation, decreased DA and DA metabolites in cerebrospinal fluid, and decreased availability, and release of striatal DA, all of which correlated with symptoms of reduced motivation and/or motor retardation. Importantly, inflammation-associated symptoms are often difficult to treat, and evidence suggests that inflammation may decrease DA synthesis and availability, thus circumventing the efficacy of standard pharmacotherapies. This review will highlight the impact of administration of inflammatory stimuli on the brain in relation to motivation and motor function. Recent data demonstrating similar relationships between increased inflammation and altered DAergic corticostriatal circuitry and behavior in patients with major depressive disorder will also be presented. Finally, we will discuss the mechanisms by which inflammation affects DA neurotransmission and relevance to novel therapeutic strategies to treat reduced motivation and motor symptoms in patients with high inflammation. PMID:27480574
de Souza Silva, Maria A; Mattern, Claudia; Decheva, Cvetana; Huston, Joseph P; Sadile, Adolfo G; Beu, Markus; Müller, H-W; Nikolaus, Susanne
2016-01-01
Dopamine (DA), which does not cross the blood-brain barrier, has central and behavioral effects when administered via the nasal route. Neither the mechanisms of central action of intranasal dopamine (IN-DA), nor its mechanisms of diffusion and transport into the brain are well understood. We here examined whether IN-DA application influences dopamine transporter (DAT) binding in the dorsal striatum and assessed the extent of binding in relation to motor and exploratory behaviors. We hypothesized that, based on the finding of increased extracellular DA in the striatum induced by application of IN-DA, binding of [(123)I]FP-CIT to the DAT should be decreased due to competition at the receptor. Rats were administered 3 mg/kg IN-DA and vehicle (VEH), with IN-DA injection either preceding or following VEH. Then motor and exploratory behaviors (traveled distance, velocity, center time, sitting, rearing, head-shoulder motility, grooming) were assessed for 30 min in an open field prior to administration of [(123)I]FP-CIT. DAT binding after IN-DA and VEH was measured with small animal SPECT 2 h following administration of the radioligand. (1) After IN-DA application, striatal DAT binding was significantly lower as compared to VEH, indicating that the nasally delivered DA had central action and increased DA levels comparable to that found previously with L-DOPA administration; and (2) DAT binding in response to intranasal VEH was lower when IN-DA application preceded VEH treatment. This finding is suggestive of Pavlovian conditioning of DA at the level of the DAT, since the DA treatment modified (decreased) the binding in response to the subsequent VEH treatment. VEH treatment also reduced motor and exploratory behaviors more when applied before, as compared to when it followed IN-DA application, also indicative of behavioral Pavlovian conditioning akin to that found upon application of various psychostimulant drugs. (a) demonstrate a direct central action of intranasally applied DA on the DAT in the dorsal striatum, indicating enhanced DA availability; and (b) provide first evidence of a Pavlovian conditioned DA response at the DAT. The latter results have relevance to understanding neurochemical mechanisms that underlie placebo action in the treatment of Parkinsonian patients.
Eyles, D; Feldon, J; Meyer, U
2012-01-01
The idea that there is some sort of abnormality in dopamine (DA) signalling is one of the more enduring hypotheses in schizophrenia research. Opinion leaders have published recent perspectives on the aetiology of this disorder with provocative titles such as ‘Risk factors for schizophrenia—all roads lead to dopamine' or ‘The dopamine hypothesis of schizophrenia—the final common pathway'. Perhaps, the other most enduring idea about schizophrenia is that it is a neurodevelopmental disorder. Those of us that model schizophrenia developmental risk-factor epidemiology in animals in an attempt to understand how this may translate to abnormal brain function have consistently shown that as adults these animals display behavioural, cognitive and pharmacological abnormalities consistent with aberrant DA signalling. The burning question remains how can in utero exposure to specific (environmental) insults induce persistent abnormalities in DA signalling in the adult? In this review, we summarize convergent evidence from two well-described developmental animal models, namely maternal immune activation and developmental vitamin D deficiency that begin to address this question. The adult offspring resulting from these two models consistently reveal locomotor abnormalities in response to DA-releasing or -blocking drugs. Additionally, as adults these animals have DA-related attentional and/or sensorimotor gating deficits. These findings are consistent with many other developmental animal models. However, the authors of this perspective have recently refocused their attention on very early aspects of DA ontogeny and describe reductions in genes that induce or specify dopaminergic phenotype in the embryonic brain and early changes in DA turnover suggesting that the origins of these behavioural abnormalities in adults may be traced to early alterations in DA ontogeny. Whether the convergent findings from these two models can be extended to other developmental animal models for this disease is at present unknown as such early brain alterations are rarely examined. Although it is premature to conclude that such mechanisms could be operating in other developmental animal models for schizophrenia, our convergent data have led us to propose that rather than all roads leading to DA, perhaps, this may be where they start. PMID:22832818
CIN85 regulates dopamine receptor endocytosis and governs behaviour in mice
Shimokawa, Noriaki; Haglund, Kaisa; Hölter, Sabine M; Grabbe, Caroline; Kirkin, Vladimir; Koibuchi, Noriyuki; Schultz, Christian; Rozman, Jan; Hoeller, Daniela; Qiu, Chun-Hong; Londoño, Marina B; Ikezawa, Jun; Jedlicka, Peter; Stein, Birgit; Schwarzacher, Stephan W; Wolfer, David P; Ehrhardt, Nicole; Heuchel, Rainer; Nezis, Ioannis; Brech, Andreas; Schmidt, Mirko H H; Fuchs, Helmut; Gailus-Durner, Valerie; Klingenspor, Martin; Bogler, Oliver; Wurst, Wolfgang; Deller, Thomas; de Angelis, Martin Hrabé; Dikic, Ivan
2010-01-01
Despite extensive investigations of Cbl-interacting protein of 85 kDa (CIN85) in receptor trafficking and cytoskeletal dynamics, little is known about its functions in vivo. Here, we report the study of a mouse deficient of the two CIN85 isoforms expressed in the central nervous system, exposing a function of CIN85 in dopamine receptor endocytosis. Mice lacking CIN85 exon 2 (CIN85Δex2) show hyperactivity phenotypes, characterized by increased physical activity and exploratory behaviour. Interestingly, CIN85Δex2 animals display abnormally high levels of dopamine and D2 dopamine receptors (D2DRs) in the striatum, an important centre for the coordination of animal behaviour. Importantly, CIN85 localizes to the post-synaptic compartment of striatal neurons in which it co-clusters with D2DRs. Moreover, it interacts with endocytic regulators such as dynamin and endophilins in the striatum. Absence of striatal CIN85 causes insufficient complex formation of endophilins with D2DRs in the striatum and ultimately decreased D2DR endocytosis in striatal neurons in response to dopamine stimulation. These findings indicate an important function of CIN85 in the regulation of dopamine receptor functions and provide a molecular explanation for the hyperactive behaviour of CIN85Δex2 mice. PMID:20551902
Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users.
McCann, Una D; Kuwabara, Hiroto; Kumar, Anil; Palermo, Michael; Abbey, Rubyna; Brasic, James; Ye, Weiguo; Alexander, Mohab; Dannals, Robert F; Wong, Dean F; Ricaurte, George A
2008-02-01
Studies in abstinent methamphetamine (METH) users have demonstrated reductions in brain dopamine transporter (DAT) binding potential (BP), as well as cognitive and motor deficits, but it is not yet clear whether cognitive deficits and brain DAT reductions fully reverse with sustained abstinence, or whether behavioral deficits in METH users are related to dopamine (DA) deficits. This study was conducted to further investigate potential persistent psychomotor deficits secondary to METH abuse, and their relationship to brain DAT availability, as measured using quantitative PET methods with [(11)C]WIN 35428. Twenty-two abstinent METH users and 17 healthy non-METH using controls underwent psychometric testing to test the hypothesis that METH users would demonstrate selective deficits in neuropsychiatric domains known to involve DA neurons (e.g., working memory, executive function, motor function). A subset of subjects also underwent PET scanning with [(11)C]WIN 35428. METH users were found to have modest deficits in short-term memory, executive function, and manual dexterity. Exploratory correlational analyses revealed that deficits in memory, but not those in executive or motor function, were associated with decreases in striatal DAT BP. These results suggest a possible relationship between DAT BP and memory deficits in abstinent METH users, and lend support to the notion that METH produces lasting effects on central DA neurons in humans. As METH can also produce toxic effects on serotonin (5-HT) neurons, further study is needed to address the potential role of brain 5-HT depletion in cognitive deficits in abstinent METH users. (c) 2007 Wiley-Liss, Inc.
Rhee, Yong-Hee; Ko, Ji-Yun; Chang, Mi-Yoon; Yi, Sang-Hoon; Kim, Dohoon; Kim, Chun-Hyung; Shim, Jae-Won; Jo, A-Young; Kim, Byung-Woo; Lee, Hyunsu; Lee, Suk-Ho; Suh, Wonhee; Park, Chang-Hwan; Koh, Hyun-Chul; Lee, Yong-Sung; Lanza, Robert; Kim, Kwang-Soo; Lee, Sang-Hun
2011-06-01
Parkinson disease (PD) involves the selective loss of midbrain dopamine (mDA) neurons and is a possible target disease for stem cell-based therapy. Human induced pluripotent stem cells (hiPSCs) are a potentially unlimited source of patient-specific cells for transplantation. However, it is critical to evaluate the safety of hiPSCs generated by different reprogramming methods. Here, we compared multiple hiPSC lines derived by virus- and protein-based reprogramming to human ES cells (hESCs). Neuronal precursor cells (NPCs) and dopamine (DA) neurons delivered from lentivirus-based hiPSCs exhibited residual expression of exogenous reprogramming genes, but those cells derived from retrovirus- and protein-based hiPSCs did not. Furthermore, NPCs derived from virus-based hiPSCs exhibited early senescence and apoptotic cell death during passaging, which was preceded by abrupt induction of p53. In contrast, NPCs derived from hESCs and protein-based hiPSCs were highly expandable without senescence. DA neurons derived from protein-based hiPSCs exhibited gene expression, physiological, and electrophysiological properties similar to those of mDA neurons. Transplantation of these cells into rats with striatal lesions, a model of PD, significantly rescued motor deficits. These data support the clinical potential of protein-based hiPSCs for personalized cell therapy of PD.
DA1 receptors modulation in rat isolated trachea.
Cabezas, Gloria A; Velasco, Manuel
2010-01-01
We have previously demonstrated that low dose of inhaled dopamine (0.5-2 microg kg(-1) min(-1)) induces broncodilatacion in patients with acute asthma attack, suggesting that this dopamine effect is mediated by dopaminergic rather than by adrenergic receptors. To understand better these dopamine effect, rat tracheal smooth muscle was used as a model to evaluate the responses of beta2-, alpha1-, alpha2-adrenergic and DA1 and DA2 dopaminergic antagonists. Tracheal rings from male Sprague-Dawley rats (n = 90) were excised and placed in an organ bath containing modified Krebs-Ringer bicarbonate buffer at 37 degrees C, and gassed with O2 (95%) and CO2 (5%). Contractile responses were recorded with an isometric transducer in a polygraph (Letica, Spain). Contraction was induced by accumulative doses of acetylcholine (0.1, 0.3, 1, 3, 10 mM) or by electric field stimulation (10 Hz at 2 milliseconds), and accumulative doses of dopamine were added to the bath. Low concentration (0.1-0.3 mM) elicited a small initial contraction, followed by a marked relaxation. Cholinergic contraction was completely reversed at 6 mM of dopamine. This biphasic dopaminergic response was not blocked by incubation with beta2-adrenergic antagonist propranolol (0.1 microM), alpha1-antagonist, terazosin (0.1 mM), alpha2-antagonist, yohimbine (0.1 mM), or by DA2 antagonist metoclopramide (1-8 mM); DA1 antagonist SCH23390 (0.1 microM) produced a sustained increase of basal tone but did not block initial dopaminergic contraction and partially inhibited bronchodilator effect of dopamine. Dopaminergic relaxation in rat trachea is mediated by DA1 rather than by DA2 receptors; and adrenergic receptors are not involved in such dopamine-induced response. Finally, DA1 antagonist SCH23390 exerts intrinsic contractile activity on airway smooth muscle that deserves further research.
Cheng, Mary Hongying; Block, Ethan; Hu, Feizhuo; Cobanoglu, Murat Can; Sorkin, Alexander; Bahar, Ivet
2015-01-01
Human dopamine (DA) transporter (hDAT) regulates dopaminergic signaling in the central nervous system by maintaining the synaptic concentration of DA at physiological levels, upon reuptake of DA into presynaptic terminals. DA translocation involves the co-transport of two sodium ions and the channeling of a chloride ion, and it is achieved via alternating access between outward-facing (OF) and inward-facing states of DAT. hDAT is a target for addictive drugs, such as cocaine, amphetamine (AMPH), and therapeutic antidepressants. Our recent quantitative systems pharmacology study suggested that orphenadrine (ORPH), an anticholinergic agent and anti-Parkinson drug, might be repurposable as a DAT drug. Previous studies have shown that DAT-substrates like AMPH or -blockers like cocaine modulate the function of DAT in different ways. However, the molecular mechanisms of modulation remained elusive due to the lack of structural data on DAT. The newly resolved DAT structure from Drosophila melanogaster opens the way to a deeper understanding of the mechanism and time evolution of DAT–drug/ligand interactions. Using a combination of homology modeling, docking analysis, molecular dynamics simulations, and molecular biology experiments, we performed a comparative study of the binding properties of DA, AMPH, ORPH, and cocaine and their modulation of hDAT function. Simulations demonstrate that binding DA or AMPH drives a structural transition toward a functional form predisposed to translocate the ligand. In contrast, ORPH appears to inhibit DAT function by arresting it in the OF open conformation. The analysis shows that cocaine and ORPH competitively bind DAT, with the binding pose and affinity dependent on the conformational state of DAT. Further assays show that the effect of ORPH on DAT uptake and endocytosis is comparable to that of cocaine. PMID:26106364
Li, Xianting; Patel, Jyoti C; Wang, Jing; Avshalumov, Marat V; Nicholson, Charles; Buxbaum, Joseph D; Elder, Gregory A; Rice, Margaret E; Yue, Zhenyu
2010-02-03
PARK8/LRRK2 (leucine-rich repeat kinase 2) was recently identified as a causative gene for autosomal dominant Parkinson's disease (PD), with LRRK2 mutation G2019S linked to the most frequent familial form of PD. Emerging in vitro evidence indicates that aberrant enzymatic activity of LRRK2 protein carrying this mutation can cause neurotoxicity. However, the physiological and pathophysiological functions of LRRK2 in vivo remain elusive. Here we characterize two bacterial artificial chromosome (BAC) transgenic mouse strains overexpressing LRRK2 wild-type (Wt) or mutant G2019S. Transgenic LRRK2-Wt mice had elevated striatal dopamine (DA) release with unaltered DA uptake or tissue content. Consistent with this result, LRRK2-Wt mice were hyperactive and showed enhanced performance in motor function tests. These results suggest a role for LRRK2 in striatal DA transmission and the consequent motor function. In contrast, LRRK2-G2019S mice showed an age-dependent decrease in striatal DA content, as well as decreased striatal DA release and uptake. Despite increased brain kinase activity, LRRK2-G2019S overexpression was not associated with loss of DAergic neurons in substantia nigra or degeneration of nigrostriatal terminals at 12 months. Our results thus reveal a pivotal role for LRRK2 in regulating striatal DA transmission and consequent control of motor function. The PD-associated mutation G2019S may exert pathogenic effects by impairing these functions of LRRK2. Our LRRK2 BAC transgenic mice, therefore, could provide a useful model for understanding early PD pathological events.
Immunomodulatory Effects Mediated by Dopamine
Alvarez-Herrera, Samantha; Pérez-Sánchez, Gilberto; Becerril-Villanueva, Enrique; Cruz-Fuentes, Carlos; Flores-Gutierrez, Enrique Octavio; Quintero-Fabián, Saray
2016-01-01
Dopamine (DA), a neurotransmitter in the central nervous system (CNS), has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS) that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R) and D2-like receptors (D2R, D3R, and D4R). The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS), there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers. PMID:27795960
Jothi, Lavanya; Neogi, Sudarsan; Jaganathan, Saravana Kumar; Nageswaran, Gomathi
2018-05-15
A novel nitrogen/argon (N 2 /Ar) radio frequency (RF) plasma functionalized graphene nanosheet/graphene nanoribbon (GS/GNR) hybrid material (N 2 /Ar/GS/GNR) was developed for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Various nitrogen mites introduced into GS/GNR hybrid structure was evidenced by a detailed microscopic, spectroscopic and surface area analysis. Owing to the unique structure and properties originating from the enhanced surface area, nitrogen functional groups and defects introduced on both the basal and edges, N 2 /Ar/GS/GNR/GCE showed high electrocatalytic activity for the electrochemical oxidations of AA, DA, and UA with the respective lowest detection limits of 5.3, 2.5 and 5.7 nM and peak-to-peak separation potential (ΔE P ) (vs Ag/AgCl) in DPV of 220, 152 and 372 mV for AA/DA, DA/UA and AA/UA respectively. Moreover, the selectivity, stability, repeatability and excellent performance in real time application of the fabricated N 2 /Ar/GS/GNR/GCE electrode suggests that it can be considered as a potential electrode material for simultaneous detection of AA, DA, and UA. Copyright © 2018 Elsevier B.V. All rights reserved.
Dopamine Receptors and Neurodegeneration
Rangel-Barajas, Claudia; Coronel, Israel; Florán, Benjamín
2015-01-01
Dopamine (DA) is one of the major neurotransmitters and participates in a number of functions such as motor coordination, emotions, memory, reward mechanism, neuroendocrine regulation etc. DA exerts its effects through five DA receptors that are subdivided in 2 families: D1-like DA receptors (D1 and D5) and the D2-like (D2, D3 and D4). All DA receptors are widely expressed in the central nervous system (CNS) and play an important role in not only in physiological conditions but also pathological scenarios. Abnormalities in the DAergic system and its receptors in the basal ganglia structures are the basis Parkinson’s disease (PD), however DA also participates in other neurodegenerative disorders such as Huntington disease (HD) and multiple sclerosis (MS). Under pathological conditions reorganization of DAergic system has been observed and most of the times, those changes occur as a mechanism of compensation, but in some cases contributes to worsening the alterations. Here we review the changes that occur on DA transmission and DA receptors (DARs) at both levels expression and signals transduction pathways as a result of neurotoxicity, inflammation and in neurodegenerative processes. The better understanding of the role of DA receptors in neuropathological conditions is crucial for development of novel therapeutic approaches to treat alterations related to neurodegenerative diseases. PMID:26425390
Jiang, Quan; Lian, Anji; He, Qi
2016-07-01
Dopamine (DA) is an important neurotransmitter in the central nervous system of vertebrates and possesses key hypophysiotropic functions. Early studies have shown that DA has a potent inhibitory effect on somatolactin (SL) release in fish. However, the mechanisms responsible for DA inhibition of SL gene expression are largely unknown. To this end, tilapia DA type-1 (D1) and type-2 (D2) receptor transcripts were examined in the neurointermediate lobe (NIL) of the tilapia pituitary by real-time PCR. In tilapia, DA not only was effective in inhibiting SL mRNA levels in vivo and in vitro, but also could abolish pituitary adenylate cyclase-activating polypeptide (PACAP)- and salmon gonadotropin-releasing hormone (sGnRH)-stimulated SL gene expression at the pituitary level. In parallel studies, the specific D2 receptor agonists quinpirole and bromocriptine could mimic the DA-inhibited SL gene expression. Furthermore, the D2 receptor antagonists domperidone and (-)-sulpiride could abolish the SL response to DA or the D2 agonist quinpirole, whereas D1 receptor antagonists SCH23390 and SKF83566 were not effective in this respect. In primary cultures of tilapia NIL cells, D2 agonist quinpirole-inhibited cAMP production could be blocked by co-treatment with the D2 antagonist domperidone and the ability of forskolin to increase cAMP production was also inhibited by quinpirole. Using a pharmacological approach, the AC/cAMP pathway was shown to be involved in quinpirole-inhibited SL mRNA expression. These results provide evidence that DA can directly inhibit SL gene expression at the tilapia pituitary level via D2 receptor through the AC/cAMP-dependent mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.
Lian, Qianwen; He, Zhifang; He, Qian; Luo, Ai; Yan, Kaiwang; Zhang, Dongxia; Lu, Xiaoquan; Zhou, Xibin
2014-05-01
A new type of tryptophan-functionalized graphene nanocomposite (Trp-GR) was synthesized by utilizing a facile ultrasonic method via π-π conjugate action between graphene (GR) and tryptophan (Trp) molecule. The material as prepared had well dispersivity in water and better conductivity than pure GR. The surface morphology of Trp-GR was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The electrochemical behaviors of ascorbic acid (AA), dopamine (DA), and uric acid (UA) were investigated by cyclic voltammetry (CV) on the surface of Trp-GR. The separation of the oxidation peak potentials for AA-DA, DA-UA and UA-AA was about 182 mV, 125 mV and 307 mV, which allowed simultaneously determining AA, DA, and UA. Differential pulse voltammetery (DPV) was used for the determination of AA, DA, and UA in their mixture. Under optimum conditions, the linear response ranges for the determination of AA, DA, and UA were 0.2-12.9 mM, 0.5-110 μM, and 10-1000 μM, with the detection limits (S/N=3) of 10.09 μM, 0.29 μM and 1.24 μM, respectively. Furthermore, the modified electrode was investigated for real sample analysis. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Zhang, Kun; Liu, Yu; Wang, Yuning; Zhang, Ren; Liu, Jiangang; Wei, Jia; Qian, Hufei; Qian, Kun; Chen, Ruoping; Liu, Baohong
2018-05-09
Reliable profiling of the extracellular dopamine (DA) concentration in the central nervous system is essential for a deep understanding of its biological and pathological functions. However, quantitative determination of this neurotransmitter remains a challenge because of the extremely low concentration of DA in the cerebrospinal fluid (CSF) of patients. Herein, on the basis of the specific recognition of boronate toward diol and N-hydroxysuccinimide ester toward the amine group, a simple and highly sensitive strategy was presented for DA detection by using surface-enhanced Raman scattering (SERS) spectroscopy as a signal readout. This was realized by first immobilizing 3,3'-dithiodipropionic acid di( N-hydroxysuccinimide ester) on gold thin film surfaces to capture DA, followed by introducing 3-mercaptophenylboronic acid (3-MPBA)-functionalized silver nanoparticles to generate numerous plasmonic "hot spots" with the nanoparticle-on-mirror geometry. Such a dual-recognition mechanism not only avoids complicated bioelement-based manipulations but also efficiently decreases the background signal. With the direct use of the recognition probe 3-MPBA as a Raman reporter, the "signal-on" SERS method was employed to quantify the concentration of DA from 1 pM to 1 μM with a detection limit of 0.3 pM. Moreover, our dual-recognition-directed SERS assay exhibited a high resistance to cerebral interference and was successfully applied to monitoring of DA in CSF samples of patients.
Singer, Bryan F; Guptaroy, Bipasha; Austin, Curtis J; Wohl, Isabella; Lovic, Vedran; Seiler, Jillian L; Vaughan, Roxanne A; Gnegy, Margaret E; Robinson, Terry E; Aragona, Brandon J
2016-03-01
Cues (conditioned stimuli; CSs) associated with rewards can come to motivate behavior, but there is considerable individual variation in their ability to do so. For example, a lever-CS that predicts food reward becomes attractive and wanted, and elicits reward-seeking behavior, to a greater extent in some rats ('sign-trackers'; STs) than others ('goal-trackers'; GTs). Variation in dopamine (DA) neurotransmission in the nucleus accumbens (NAc) core is thought to contribute to such individual variation. Given that the DA transporter (DAT) exerts powerful regulation over DA signaling, we characterized the expression and function of the DAT in the accumbens of STs and GTs. STs showed greater DAT surface expression in ventral striatal synaptosomes than GTs, and ex vivo fast-scan cyclic voltammetry recordings of electrically evoked DA release confirmed enhanced DAT function in STs, as indicated by faster DA uptake, specifically in the NAc core. Consistent with this, systemic amphetamine (AMPH) produced greater inhibition of DA uptake in STs than in GTs. Furthermore, injection of AMPH directly into the NAc core enhanced lever-directed approach in STs, presumably by amplifying the incentive value of the CS, but had no effect on goal-tracking behavior. On the other hand, there were no differences between STs and GTs in electrically-evoked DA release in slices, or in total ventral striatal DA content. We conclude that greater DAT surface expression may facilitate the attribution of incentive salience to discrete reward cues. Investigating this variability in animal sub-populations may help explain why some people abuse drugs while others do not. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Job, Martin O.; Perry, JoAnna; Shen, Li L.; Kuhar, Michael J.
2014-01-01
Cocaine-and-Amphetamine Regulated Transcript peptide (CART peptide) is known for having an inhibitory effect on dopamine (DA)- and cocaine-mediated actions and is postulated to be a homeostatic, regulatory factor in the nucleus accumbens (NAc). Some sex differences in cocaine-mediated LMA and in the expression and function of CART peptide have been reported. However, it is not known if the inhibitory effect of CART peptide on cocaine-mediated locomotor activity (LMA) is sexually dimorphic. In this study, the effect of CART 55-102 on LMA due to intra-NAc DA and i.p. cocaine were determined in male and female Sprague-Dawley rats. The results show that CART 55-102 blunted or reduced both the DA- and cocaine-induced LMA in both males and females. In conclusion, CART peptide is effective in blunting DA- and cocaine-mediated LMA in both males and females. PMID:24630272
Robinson, John D.; Howard, Christopher D.; Pastuzyn, Elissa D.; Byers, Diane L.; Keefe, Kristen A.; Garris, Paul A.
2014-01-01
Phasic dopamine (DA) signaling, during which burst firing by dopamine neurons generates short-lived elevations in extracellular DA in terminal fields called DA transients, is implicated in reinforcement learning. Disrupted phasic DA signaling is proposed to link DA depletions and cognitive-behavioral impairment in methamphetamine (METH)-induced neurotoxicity. Here we further investigated this disruption by assessing effects of METH pretreatment on DA transients elicited by a drug cocktail of raclopride, a D2 DA receptor antagonist, and nomifensine, an inhibitor of the dopamine transporter (DAT). One advantage of this approach is that pharmacological activation provides a large, high-quality data set of transients elicited by endogenous burst firing of DA neurons for analysis of regional differences and neurotoxicity. These pharmacologically evoked DA transients were measured in the dorsomedial (DM) and dorsolateral (DL) striatum of urethane-anesthetized rats by fast-scan cyclic voltammetry. Electrically evoked DA levels were also recorded to quantify DA release and uptake, and DAT binding was determined by autoradiography to index DA denervation. Pharmacologically evoked DA transients in intact animals exhibited a greater amplitude and frequency and shorter duration in the DM compared to the DL striatum, despite similar pre- and post-drug assessments of DA release and uptake in both sub-regions as determined from the electrically evoked DA signals. METH pretreatment reduced transient activity. The most prominent effect of METH pretreatment on transients across striatal sub-region was decreased amplitude, which mirrored decreased DAT binding and was accompanied by decreased DA release. Overall, these results identify marked intrastriatal differences in the activity of DA transients that appear independent of presynaptic mechanisms for DA release and uptake and further support disrupted phasic DA signaling mediated by decreased DA release in rats with METH-induced neurotoxicity. PMID:24562969
Activation of serotonin 2C receptors in dopamine neurons inhibits binge-like eating in mice
Xu, Pingwen; He, Yanlin; Cao, Xuehong; Valencia-Torres, Lourdes; Yan, Xiaofeng; Saito, Kenji; Wang, Chunmei; Yang, Yongjie; Hinton, Antentor; Zhu, Liangru; Shu, Gang; Myers, Martin G.; Wu, Qi; Tong, Qingchun; Heisler, Lora K.; Xu, Yong
2016-01-01
Background Neural networks that regulate binge eating remain to be identified, and effective treatments for binge eating are limited. Methods We combined neuroanatomical, pharmacological, electrophysiological, Cre-lox, and chemogenetic approaches to investigate the functions of 5-HT 2C receptor (5-HT2CR) expressed by dopamine (DA) neurons in the regulation of binge-like eating behavior in mice. Results We showed that 5-HT stimulates DA neural activity through a 5-HT2CR-mediated mechansim, and activation of this midbrain 5-HT-DA neural circuit effectively inhibits binge-like eating behavior in mice. Notably, 5-HT medications, including fluoxetine, d-Fenfluramine, and lorcaserin (a selective 5-HT2CR agonist), act upon 5-HT2CRs expressed by DA neurons to inhibit binge-like eating in mice. Conclusions We identified the 5-HT2CR population in DA neurons as one potential target for anti-binge therapies, and provided pre-clinical evidence that 5-HT2CR agonists could be used to treat binge eating. PMID:27516377
Loss of Mitochondrial Fission Depletes Axonal Mitochondria in Midbrain Dopamine Neurons
Berthet, Amandine; Margolis, Elyssa B.; Zhang, Jue; Hsieh, Ivy; Zhang, Jiasheng; Hnasko, Thomas S.; Ahmad, Jawad; Edwards, Robert H.; Sesaki, Hiromi; Huang, Eric J.
2014-01-01
Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinson's disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics—mitochondrial fission—in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate–putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons. PMID:25339743
Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons.
Berthet, Amandine; Margolis, Elyssa B; Zhang, Jue; Hsieh, Ivy; Zhang, Jiasheng; Hnasko, Thomas S; Ahmad, Jawad; Edwards, Robert H; Sesaki, Hiromi; Huang, Eric J; Nakamura, Ken
2014-10-22
Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinson's disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics-mitochondrial fission-in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate-putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons. Copyright © 2014 the authors 0270-6474/14/3414304-14$15.00/0.
ERIC Educational Resources Information Center
Darvas, Martin; Fadok, Jonathan P.; Palmiter, Richard D.
2011-01-01
Two-way active avoidance (2WAA) involves learning Pavlovian (association of a sound cue with a foot shock) and instrumental (shock avoidance) contingencies. To identify regions where dopamine (DA) is involved in mediating 2WAA, we restored DA signaling in specific brain areas of dopamine-deficient (DD) mice by local reactivation of conditionally…
He, Quanguo; Liu, Jun; Liu, Xiaopeng; Li, Guangli; Deng, Peihong; Liang, Jing
2018-01-12
Cu₂O-reduced graphene oxide nanocomposite (Cu₂O-RGO) was used to modify glassy carbon electrodes (GCE), and applied for the determination of dopamine (DA). The microstructure of Cu₂O-RGO nanocomposite material was characterized by scanning electron microscope. Then the electrochemical reduction condition for preparing Cu₂O-RGO/GCE and experimental conditions for determining DA were further optimized. The electrochemical behaviors of DA on the bare electrode, RGO- and Cu₂O-RGO-modified electrodes were also investigated using cyclic voltammetry in phosphate-buffered saline solution (PBS, pH 3.5). The results show that the oxidation peaks of ascorbic acid (AA), dopamine (DA), and uric acid (UA) could be well separated and the peak-to-peak separations are 204 mV (AA-DA) and 144 mV (DA-UA), respectively. Moreover, the linear response ranges for the determination of 1 × 10 -8 mol/L~1 × 10 -6 mol/L and 1 × 10 -6 mol/L~8 × 10 -5 mol/L with the detection limit 6.0 × 10 -9 mol/L (S/N = 3). The proposed Cu₂O-RGO/GCE was further applied to the determination of DA in dopamine hydrochloride injections with satisfactory results.
An Update on the Role of Serotonin and its Interplay with Dopamine for Reward.
Fischer, Adrian G; Ullsperger, Markus
2017-01-01
The specific role of serotonin and its interplay with dopamine (DA) in adaptive, reward guided behavior as well as drug dependance, still remains elusive. Recently, novel methods allowed cell type specific anatomical, functional and interventional analyses of serotonergic and dopaminergic circuits, promising significant advancement in understanding their functional roles. Furthermore, it is increasingly recognized that co-release of neurotransmitters is functionally relevant, understanding of which is required in order to interpret results of pharmacological studies and their relationship to neural recordings. Here, we review recent animal studies employing such techniques with the aim to connect their results to effects observed in human pharmacological studies and subjective effects of drugs. It appears that the additive effect of serotonin and DA conveys significant reward related information and is subjectively highly euphorizing. Neither DA nor serotonin alone have such an effect. This coincides with optogenetically targeted recordings in mice, where the dopaminergic system codes reward prediction errors (PE), and the serotonergic system mainly unsigned PE. Overall, this pattern of results indicates that joint activity between both systems carries essential reward information and invites parallel investigation of both neurotransmitter systems.
Vingerhoets, Claudia; Bloemen, Oswald J N; Boot, Erik; Bakker, Geor; de Koning, Mariken B; da Silva Alves, Fabiana; Booij, Jan; van Amelsvoort, Thérèse A M J
2018-02-28
Striatal dopamine (DA) dysfunction has been consistently reported in psychotic disorders. Differences and similarities in the pathogenesis between populations at clinical and genetic risk for developing psychosis are yet to be established. Here we explored markers of dopamine (DA) function in subjects meeting clinically ultra-high risk criteria for psychosis (UHR) and in subjects with 22q11.2 deletion syndrome (22q11DS), a genetic condition associated with significant risk for developing psychotic disorders. Single Photon Emission Computed Tomography (SPECT) with 123 I-labelled iodobenzamide ([ 123 I]IBZM) was used to measure striatal DA D 2/3 receptor binding potential (D 2 R BP ND ). Also, peripheral DAergic markers were assessed in serum and urine (plasma prolactin (pPRL), plasma homovanillic acid (pHVA) and urine DA(uDA)). No significant difference in striatal D 2 R BP ND was found between UHR and 22q11DS subjects. Compared to UHR subjects, pPRL and pHVA were lower and uDA levels were higher in the 22q11DS subjects. However, after correcting for age and gender, only pPRL as significantly lower in the 22q11DS patients. These results may suggest that there are differences in DAergic markers between subjects with UHR and with 22q11DS that may reflect differences in the pathways to psychosis. However, bigger samples are needed to replicate these findings. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Xuefei; Sugam, Jonathan A.; Carelli, Regina M.
2016-01-01
Chronic exposure to drugs of abuse is linked to long-lasting alterations in the function of limbic system structures, including the nucleus accumbens (NAc). Although cocaine acts via dopaminergic mechanisms within the NAc, less is known about whether phasic dopamine (DA) signaling in the NAc is altered in animals with cocaine self-administration experience or if these animals learn and interact normally with stimuli in their environment. Here, separate groups of rats self-administered either intravenous cocaine or water to a receptacle (controls), followed by 30 d of enforced abstinence. Next, all rats learned an appetitive Pavlovian discrimination and voltammetric recordings of real-time DA release were taken in either the NAc core or shell of cocaine and control subjects. Cocaine experience differentially impaired DA signaling in the core and shell relative to controls. Although phasic DA signals in the shell were essentially abolished for all stimuli, in the core, DA did not distinguish between cues and was abnormally biased toward reward delivery. Further, cocaine rats were unable to learn higher-order associations and even altered simple conditioned approach behaviors, displaying enhanced preoccupation with cue-associated stimuli (sign-tracking; ST) but diminished time at the food cup awaiting reward delivery (goal-tracking). Critically, whereas control DA signaling correlated with ST behaviors, cocaine experience abolished this relationship. These findings show that cocaine has persistent, differential, and pathological effects on both DA signaling and DA-dependent behaviors and suggest that psychostimulant experience may remodel the very circuits that bias organisms toward repeated relapse. SIGNIFICANCE STATEMENT Relapsing to drug abuse despite periods of abstinence and sincere attempts to quit is one of the most pernicious facets of addiction. Unfortunately, little is known about how the dopamine (DA) system functions after periods of drug abstinence, particularly its role in behavior in nondrug situations. Here, rats learned about food-paired stimuli after prolonged abstinence from cocaine self-administration. Using voltammetry, we found that real-time DA signals in cocaine-experienced rats were strikingly altered relative to controls. Further, cocaine-experienced animals found reward-predictive stimuli abnormally salient and spent more time interacting with cues. Therefore, cocaine induces neuroplastic changes in the DA system that biases animals toward salient stimuli (including reward-associated cues), putting addicts at increasing risk to relapse as addiction increases in severity. PMID:26740664
NASA Astrophysics Data System (ADS)
Chen, Huide; Liu, Chunxiu; Xia, Yunsheng
2017-03-01
This study is the first to report one-step synthesis of boronic acid functionalized gold nanoclusters (AuNCs) using mixed ligands of 4-mercaptophenylboronic acid (MPBA) and glutathione. Furthermore, the emission color of the products can be fancily tuned from green to near-infrared by simply changing the proportion of the two stabilizers. In basic media, dopamine (DA) molecules themselves polymerize each other and form polydopamine with large amounts of cis-diol groups, which then react with boronic acid groups on the AuNC’s surface based on the formation of boronate esters. As a result, the photoluminescence of the AuNCs is well quenched by the electron transfer effect. Accordingly, DA molecules are assayed from 0.5 to 9 μM, and the detection limit is as low as 0.1 μM. The as-prepared AuNCs exhibit high selectivity; the existing biomolecules including various amino acids, ascorbic acid, uric acid, glucose, etc, do not interfere with the assay. The proposed method is successfully applied to the assay of DA in human serum, indicating its practical potential.
Briggs, Christine E; Wang, Yulei; Kong, Benjamin; Woo, Tsung-Ung W; Iyer, Lakshmanan K; Sonntag, Kai C
2015-08-27
The degeneration of substantia nigra (SN) dopamine (DA) neurons in sporadic Parkinson׳s disease (PD) is characterized by disturbed gene expression networks. Micro(mi)RNAs are post-transcriptional regulators of gene expression and we recently provided evidence that these molecules may play a functional role in the pathogenesis of PD. Here, we document a comprehensive analysis of miRNAs in SN DA neurons and PD, including sex differences. Our data show that miRNAs are dysregulated in disease-affected neurons and differentially expressed between male and female samples with a trend of more up-regulated miRNAs in males and more down-regulated miRNAs in females. Unbiased Ingenuity Pathway Analysis (IPA) revealed a network of miRNA/target-gene associations that is consistent with dysfunctional gene and signaling pathways in PD pathology. Our study provides evidence for a general association of miRNAs with the cellular function and identity of SN DA neurons, and with deregulated gene expression networks and signaling pathways related to PD pathogenesis that may be sex-specific. Copyright © 2015 Elsevier B.V. All rights reserved.
Yang, Yu Jun; Li, Weikun
2014-06-15
We have developed hexadecyl trimethyl ammonium bromide (CTAB) functionalized graphene oxide (GO)/multiwalled carbon nanotubes (MWNTs) modified glassy carbon electrode (CTAB-GO/MWNT) as a novel system for the simultaneous determination of dopamine (DA), ascorbic acid (AA), uric acid (UA) and nitrite (NO2(-)). The combination of graphene oxide and MWNTs endow the biosensor with large surface area, good biological compatibility, electricity and stability, high selectivity and sensitivity. In the fourfold co-existence system, the linear calibration plots for AA, DA, UA and NO2(-) were obtained over the range of 5.0-300 μM, 5.0-500 μM, 3.0-60 μM and 5.0-800 μM with detection limits of 1.0 μM, 1.5 μM, 1.0 μM and 1.5 μM, respectively. In addition, the modified biosensor was applied to the determination of AA, DA, UA and NO2(-) in urine samples by using standard adding method with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhao-Shea, Rubing; Cohen, Bruce N.; Just, Herwig; McClure-Begley, Tristan; Whiteaker, Paul; Grady, Sharon R.; Salminen, Outi; Gardner, Paul D.; Lester, Henry A.; Tapper, Andrew R.
2010-01-01
Recent studies suggest that high-affinity neuronal nicotinic acetylcholine receptors (nAChRs) containing α4 and β2 subunits (α4β2*) functionally interact with G-protein-coupled dopamine (DA) D2 receptors in basal ganglia. We hypothesized that if a functional interaction between these receptors exists, then mice expressing an M2 point mutation (Leu9′Ala) rendering α4 nAChRs hypersensitive to ACh may exhibit altered sensitivity to a D2-receptor agonist. When challenged with the D2R agonist, quinpirole (0.5–10 mg/kg), Leu9′Ala mice, but not wild-type (WT) littermates, developed severe, reversible motor impairment characterized by rigidity, catalepsy, akinesia, and tremor. While striatal DA tissue content, baseline release, and quinpirole-induced DA depletion did not differ between Leu9′Ala and WT mice, quinpirole dramatically increased activity of cholinergic striatal interneurons only in mutant animals, as measured by increased c-Fos expression in choline acetyltransferase (ChAT)-positive interneurons. Highlighting the importance of the cholinergic system in this mouse model, inhibiting the effects of ACh by blocking muscarinic receptors, or by selectively activating hypersensitive nAChRs with nicotine, rescued motor symptoms. This novel mouse model mimics the imbalance between striatal DA/ACh function associated with severe motor impairment in disorders such as Parkinson’s disease, and the data suggest that a D2R–α4*-nAChR functional interaction regulates cholinergic interneuron activity.—Zhao-Shea, R., Cohen, B. N., Just, H., McClure-Begley, T., Whiteaker, P., Grady, S. R., Salminen, O., Gardner, P. D., Lester, H. A., Tapper, A. R. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism. PMID:19720621
Effects of dopamine D2/D3 receptor antagonism on human planning and spatial working memory.
Naef, M; Müller, U; Linssen, A; Clark, L; Robbins, T W; Eisenegger, C
2017-04-25
Psychopharmacological studies in humans suggest important roles for dopamine (DA) D2 receptors in human executive functions, such as cognitive planning and spatial working memory (SWM). However, studies that investigate an impairment of such functions using the selective DA D2/3 receptor antagonist sulpiride have yielded inconsistent results, perhaps because relatively low doses were used. We believe we report for the first time, the effects of a higher (800 mg p.o.) single dose of sulpiride as well as of genetic variation in the DA receptor D2 gene (DA receptor D2 Taq1A polymorphism), on planning and working memory. With 78 healthy male volunteers, we apply a between-groups, placebo-controlled design. We measure outcomes in the difficult versions of the Cambridge Neuropsychological Test Automated Battery One-Touch Stockings of Cambridge and the self-ordered SWM task. Volunteers in the sulpiride group showed significant impairments in planning accuracy and, for the more difficult problems, in SWM. Sulpiride administration speeded response latencies in the planning task on the most difficult problems. Volunteers with at least one copy of the minor allele (A1+) of the DA receptor D2 Taq1A polymorphism showed better SWM capacity, regardless of whether they received sulpiride or placebo. There were no effects on blood pressure, heart rate or subjective sedation. In sum, a higher single dose of sulpiride impairs SWM and executive planning functions, in a manner independent of the DA receptor D2 Taq1A polymorphism.
Savitz, Jonathan; Hodgkinson, Colin A.; Martin-Soelch, Chantal; Shen, Pei-Hong; Szczepanik, Joanna; Nugent, Allison; Herscovitch, Peter; Grace, Anthony A.; Goldman, David; Drevets, Wayne C.
2013-01-01
Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis. PMID:23365649
van Duin, Esther D A; Kasanova, Zuzana; Hernaus, Dennis; Ceccarini, Jenny; Heinzel, Alexander; Mottaghy, Felix; Mohammadkhani-Shali, Siamak; Winz, Oliver; Frank, Michael; Beck, Merrit C H; Booij, Jan; Myin-Germeys, Inez; van Amelsvoort, Thérèse
2018-06-01
22q11.2 deletion syndrome (22q11DS) is a genetic disorder caused by a microdeletion on chromosome 22q11.2 and associated with an increased risk for developing psychosis. The catechol-O-methyltransferase (COMT) gene is located in the deleted region and involved in dopamine (DA) breakdown. Impaired reinforcement learning (RL) is a recurrent feature in psychosis and thought to be related to abnormal striatal DA function. This study aims to examine RL and the potential association with striatal DA-ergic neuromodulation in 22q11DS. Twelve non-psychotic adults with 22q11DS and 16 healthy controls (HC) were included. A dopamine D 2/3 receptor [ 18 F]fallypride positron emission tomography (PET) scan was acquired while participants performed a modified version of the probabilistic stimulus selection task. RL-task performance was significantly worse in 22q11DS compared to HC. There were no group difference in striatal nondisplaceable binding potential (BP ND ) and task-induced DA release. In HC, striatal task-induced DA release was positively associated with task performance, but no such relation was found in 22q11DS subjects. Moreover, higher caudate nucleus task-induced DA release was found in COMT Met hemizygotes relative to Val hemizygotes. This study is the first to show impairments in RL in 22q11DS. It suggests that potentially motivational impairments are not only present in psychosis, but also in this genetic high risk group. These deficits may be underlain by abnormal striatal task-induced DA release, perhaps as a consequence of COMT haplo-insufficiency. Copyright © 2018 Elsevier B.V. and ECNP. All rights reserved.
Thomas, David M.; Angoa-Pérez, Mariana; Francescutti-Verbeem, Dina M.; Shah, Mrudang M.; Kuhn, Donald M.
2010-01-01
Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the striatum where long-term DA depletion and microglial activation are maximal. Endogenous DA has been implicated as a critical participant in METH-induced neurotoxicity, most likely as a substrate for non-enzymatic oxidation by METH-generated reactive oxygen species (ROS). The striatum is also extensively innervated by serotonin (5HT) nerve endings and this neurochemical system is modified by METH in much the same manner as seen in DA nerve endings (i.e., increased release of 5HT, loss of function in tryptophan hydroxylase and the serotonin transporter, long-term depletion of 5HT stores). 5HT can also be modified by ROS to form highly reactive species that damage neurons but its role in METH neurotoxicity has not been assessed. Increases in 5HT levels with 5HTP do not change METH-induced neurotoxicity to the DA nerve endings as revealed by reductions in DA, tyrosine hydroxylase and dopamine transporter levels. Partial reductions in 5HT with p-chlorophenylalanine (PCPA) are without effect on METH toxicity, despite the fact that PCPA largely prevents METH-induced hyperthermia. Mice lacking the gene for brain tryptophan hydroxylase 2 are devoid of brain 5HT and respond to METH in the same manner as wild-type controls, despite showing enhanced drug-induced hyperthermia. Taken together, the present results indicate that endogenous 5HT does not appear to play a role in METH-induced damage to DA nerve endings of the striatum. PMID:20722968
Thomas, David M; Angoa Pérez, Mariana; Francescutti-Verbeem, Dina M; Shah, Mrudang M; Kuhn, Donald M
2010-11-01
Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the striatum where long-term DA depletion and microglial activation are maximal. Endogenous DA has been implicated as a critical participant in METH-induced neurotoxicity, most likely as a substrate for non-enzymatic oxidation by METH-generated reactive oxygen species. The striatum is also extensively innervated by serotonin (5HT) nerve endings and this neurochemical system is modified by METH in much the same manner as seen in DA nerve endings (i.e., increased release of 5HT, loss of function in tryptophan hydroxylase and the serotonin transporter, long-term depletion of 5HT stores). 5HT can also be modified by reactive oxygen species to form highly reactive species that damage neurons but its role in METH neurotoxicity has not been assessed. Increases in 5HT levels with 5-hydroxytryptophan do not change METH-induced neurotoxicity to the DA nerve endings as revealed by reductions in DA, tyrosine hydroxylase and dopamine transporter levels. Partial reductions in 5HT with p-chlorophenylalanine are without effect on METH toxicity, despite the fact that p-chlorophenylalanine largely prevents METH-induced hyperthermia. Mice lacking the gene for brain tryptophan hydroxylase 2 are devoid of brain 5HT and respond to METH in the same manner as wild-type controls, despite showing enhanced drug-induced hyperthermia. Taken together, the present results indicate that endogenous 5HT does not appear to play a role in METH-induced damage to DA nerve endings of the striatum. © 2010 The Authors. Journal Compilation © 2010 International Society for Neurochemistry.
Laviolette, S R; Grace, A A
2006-07-01
Cannabinoids represent one of the most widely used hallucinogenic drugs and induce profound alterations in sensory perception and emotional processing. Similarly, the dopamine (DA) neurotransmitter system is critical for the central processing of emotion and motivation. Functional disturbances in either of these neurotransmitter systems are well-established correlates of the psychopathological symptoms and behavioral manifestations observed in addiction and schizophrenia. Increasing evidence from the anatomical, pharmacological and behavioral neuroscience fields points to complex functional interactions between these receptor systems at the anatomical, pharmacological and neural systems levels. An important question relates to whether these systems act in an orchestrated manner to produce the emotional processing and sensory perception deficits underlying addiction and schizophrenia. This review describes evidence for functional neural interactions between cannabinoid and DA receptor systems and how disturbances in this neural circuitry may underlie the aberrant emotional learning and processing observed in disorders such as addiction and schizophrenia.
METHAMPHETAMINE-INDUCED NEUROTOXICITY DISRUPTS NATURALLY OCCURRING PHASIC DOPAMINE SIGNALING
Howard, Christopher D.; Daberkow, David P.; Ramsson, Eric S.; Keefe, Kristen A.; Garris, Paul A.
2013-01-01
Methamphetamine (METH) is a highly addictive drug that is also neurotoxic to central dopamine (DA) systems. Although striatal DA depletions induced by METH are associated with behavioral and cognitive impairments, the link between these phenomena remains poorly understood. Previous work in both METH-pretreated animals and the 6-hydroxydopamine model of Parkinson’s disease suggests that a disruption of phasic DA signaling, which is important for learning and goal-directed behavior, may be such a link. However, prior studies used electrical stimulation to elicit phasic-like DA responses and were also performed under anesthesia, which alters DA neuron activity and presynaptic function. Here we investigated the consequences of METH-induced DA terminal loss on both electrically evoked phasic-like DA signals and so-called “spontaneous” phasic DA transients measured by voltammetry in awake rats. Not ostensibly attributable to discrete stimuli, these sub-second DA changes may play a role in enhancing reward-cue associations. METH-pretreatment reduced tissue DA content in the dorsomedial striatum and nucleus accumbens by ~55%. Analysis of phasic-like DA responses elicited by reinforcing stimulation revealed that METH pretreatment decreased their amplitude and underlying mechanisms for release and uptake to a similar degree as DA content in both striatal subregions. Most importantly, characteristics of DA transients were altered by METH-induced DA terminal loss, with amplitude and frequency decreased and duration increased. These results demonstrate for the first time that denervation of DA neurons alters naturally occurring DA transients and are consistent with diminished phasic DA signaling as a plausible mechanism linking METH-induced striatal DA depletions and cognitive deficits. PMID:23574406
Horn, Anne; Scheller, C; du Plessis, S; Burger, R; Arendt, G; Joska, J; Sopper, S; Maschke, C M; Obermann, M; Husstedt, I W; Hain, J; Riederer, P; Koutsilieri, E
2017-04-01
We showed previously that higher levels in CSF dopamine in HIV patients are associated with the presence of the dopamine transporter (DAT) 10/10-repeat allele which was also detected more frequently in HIV-infected individuals compared to uninfected subjects. In the current study, we investigated further whether other genetic dopamine (DA)-related polymorphisms may be related with changes in CSF DA levels and frequency of HIV infection in HIV-infected subjects. Specifically, we studied genetic polymorphisms of brain-derived neurotrophic factor, catechol-O-methyltransferase, and dopamine receptors DRD2, DRD3, and DRD4 genetic polymorphisms in uninfected and HIV-infected people in two different ethnical groups, a German cohort (Caucasian, 72 individuals with HIV infection and 22 individuals without HIV infection) and a South African cohort (Xhosan, 54 individuals with HIV infection and 19 individuals without HIV infection). We correlated the polymorphisms with CSF DA levels, HIV dementia score, CD4 + T cell counts, and HIV viral load. None of the investigated DA-related polymorphisms was associated with altered CSF DA levels, CD4 + T cell count, viral load, and HIV dementia score. The respective allele frequencies were equally distributed between HIV-infected patients and controls. Our findings do not show any influence of the studied genetic polymorphisms on CSF DA levels and HIV infection. This is in contrast to what we found previously for the DAT 3'UTR VNTR and highlights the specific role of the DAT VNTR in HIV infection and disease.
On the Origin of Cortical Dopamine: Is it a Co-Transmitter in Noradrenergic Neurons?
Devoto, Paola; Flore, Giovanna
2006-01-01
Dopamine (DA) and noradrenaline (NA) in the prefrontal cortex (PFC) modulate superior cognitive functions, and are involved in the aetiology of depressive and psychotic symptoms. Moreover, microdialysis studies in rats have shown how pharmacological treatments that induce modifications of extracellular NA in the medial PFC (mPFC), also produce parallel changes in extracellular DA. To explain the coupling of NA and DA changes, this article reviews the evidence supporting the hypothesis that extracellular DA in the cerebral cortex originates not only from dopaminergic terminals but also from noradrenergic ones, where it acts both as precursor for NA and as a co-transmitter. Accordingly, extracellular DA concentration in the occipital, parietal and cerebellar cortex was found to be much higher than expected in view of the scarce dopaminergic innervation in these areas. Systemic administration or intra-cortical perfusion of α2-adrenoceptor agonists and antagonists, consistent with their action on noradrenergic neuronal activity, produced concomitant changes not only in extracellular NA but also in DA in the mPFC, occipital and parietal cortex. Chemical modulation of the locus coeruleus by locally applied carbachol, kainate, NMDA or clonidine modified both NA and DA in the mPFC. Electrical stimulation of the locus coeruleus led to an increased efflux of both NA and DA in mPFC, parietal and occipital cortex, while in the striatum, NA efflux alone was enhanced. Atypical antipsychotics, such as clozapine and olanzapine, or antidepressants, including mirtazapine and mianserine, have been found to increase both NA and DA throughout the cerebral cortex, likely through blockade of α2-adrenoceptors. On the other hand, drugs selectively acting on dopaminergic transmission produced modest changes in extracellular DA in mPFC, and had no effect on the occipital or parietal cortex. Acute administration of morphine did not increase DA levels in the PFC (where NA is diminished), in contrast with augmented dopaminergic neuronal activity; moreover, during morphine withdrawal both DA and NA levels increased, in spite of a diminished dopaminergic activity, both increases being antagonised by clonidine but not quinpirole administration. Extensive 6-hydroxy dopamine lesion of the ventral tegmental area (VTA) decreases below 95% of control both intra- and extracellular DA and DOPAC in the nucleus accumbens, but only partially or not significantly in the mPFC and parietal cortex. The above evidence points to a common origin for NA and DA in the cerebral cortex and suggests the possible utility of noradrenergic system modulation as a target for drugs with potential clinical efficacy on cognitive functions. PMID:18615131
On the origin of cortical dopamine: is it a co-transmitter in noradrenergic neurons?
Devoto, Paola; Flore, Giovanna
2006-04-01
Dopamine (DA) and noradrenaline (NA) in the prefrontal cortex (PFC) modulate superior cognitive functions, and are involved in the aetiology of depressive and psychotic symptoms. Moreover, microdialysis studies in rats have shown how pharmacological treatments that induce modifications of extracellular NA in the medial PFC (mPFC), also produce parallel changes in extracellular DA.To explain the coupling of NA and DA changes, this article reviews the evidence supporting the hypothesis that extracellular DA in the cerebral cortex originates not only from dopaminergic terminals but also from noradrenergic ones, where it acts both as precursor for NA and as a co-transmitter.Accordingly, extracellular DA concentration in the occipital, parietal and cerebellar cortex was found to be much higher than expected in view of the scarce dopaminergic innervation in these areas.Systemic administration or intra-cortical perfusion of alpha(2)-adrenoceptor agonists and antagonists, consistent with their action on noradrenergic neuronal activity, produced concomitant changes not only in extracellular NA but also in DA in the mPFC, occipital and parietal cortex.Chemical modulation of the locus coeruleus by locally applied carbachol, kainate, NMDA or clonidine modified both NA and DA in the mPFC.Electrical stimulation of the locus coeruleus led to an increased efflux of both NA and DA in mPFC, parietal and occipital cortex, while in the striatum, NA efflux alone was enhanced.Atypical antipsychotics, such as clozapine and olanzapine, or antidepressants, including mirtazapine and mianserine, have been found to increase both NA and DA throughout the cerebral cortex, likely through blockade of alpha(2)-adrenoceptors. On the other hand, drugs selectively acting on dopaminergic transmission produced modest changes in extracellular DA in mPFC, and had no effect on the occipital or parietal cortex.Acute administration of morphine did not increase DA levels in the PFC (where NA is diminished), in contrast with augmented dopaminergic neuronal activity; moreover, during morphine withdrawal both DA and NA levels increased, in spite of a diminished dopaminergic activity, both increases being antagonised by clonidine but not quinpirole administration.Extensive 6-hydroxy dopamine lesion of the ventral tegmental area (VTA) decreases below 95% of control both intra- and extracellular DA and DOPAC in the nucleus accumbens, but only partially or not significantly in the mPFC and parietal cortex.The above evidence points to a common origin for NA and DA in the cerebral cortex and suggests the possible utility of noradrenergic system modulation as a target for drugs with potential clinical efficacy on cognitive functions.
Zhu, Wencai; Chen, Ting; Ma, Xuemei; Ma, Houyi; Chen, Shenhao
2013-11-01
Highly dispersed hollow gold-graphene (HAu-G) nanocomposites were synthesized by a two-step method. The immobilization of hollow gold nanoparticles (HAu NPs) onto the surface of graphene sheets was achieved by mixing an aqueous solution of HAu NPs with a poly(N-vinylpyrrolidone)-functionalized graphene dispersion at room temperature. A glassy carbon electrode (GCE) was modified with the nanocomposites, and the as-prepared modified electrode displayed high electrocatalytic activity and extraordinary electronic transport properties. Amperometric detection of dopamine (DA) performed with the HAu-G modified electrode exhibits a good linearity between 0.08 and 600 μM with a low detection limit of 0.05 μM (S/N=3) and also possesses good reproducibility and operational stability. The interference of ascorbic acid (AA) and uric acid (UA) can be excluded when using differential pulse voltammetric technique. In addition, this type of modified electrode can also be applied to the determination of DA content in dopamine hydrochloride injection. It is obvious that the HAu-G modified electrode provides a new way to detect dopamine sensitively and selectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Using iPSC-derived human DA neurons from opioid-dependent subjects to study dopamine dynamics.
Sheng, Yang; Filichia, Emily; Shick, Elizabeth; Preston, Kenzie L; Phillips, Karran A; Cooperman, Leslie; Lin, Zhicheng; Tesar, Paul; Hoffer, Barry; Luo, Yu
2016-08-01
The dopaminergic (DA) system plays important roles in addiction. However, human DA neurons from drug-dependent subjects were not available for study until recent development in inducible pluripotent stem cells (iPSCs) technology. In this study, we produced DA neurons differentiated using iPSCs derived from opioid-dependent and control subjects carrying different 3' VNTR (variable number tandem repeat) polymorphism in the human dopamine transporter (DAT or SLC6A3). In addition, the effects of valproic acid (VPA) exposures on iPSC-derived human DA neurons are also examined. We present the first evidence suggesting that the 3' VNTR polymorphism in the hDAT gene affects DAT expression level in iPSC-derived human DA neurons. In human DA neurons, which provide an appropriate cellular milieu, VPA treatment alters the expression of several genes important for dopaminergic neuron function including DAT, Nurr1, and TH; this might partly explain its action in regulating addictive behaviors. VPA treatment also significantly increased DA D2 receptor (Drd2) expression, especially in the opioid-dependent iPSC cell lines. Our data suggest that human iPSC-derived DA neurons may be useful in in vitro experimental model to examine the effects of genetic variation in gene regulation, to examine the underlying mechanisms in neurological disorders including drug addiction, and to serve as a platform for therapeutic development.
Reinforcing Doses of Intravenous Cocaine Produce Only Modest Dopamine Uptake Inhibition.
Brodnik, Zachary D; Ferris, Mark J; Jones, Sara R; España, Rodrigo A
2017-02-15
The reinforcing efficacy of cocaine is thought to stem from inhibition of the dopamine transporter (DAT) and subsequent increases in extracellular dopamine concentrations in the brain. In humans, this hypothesis has generally been supported by positron emission tomography imaging studies where the percent of DATs occupied by cocaine is used as a measure of cocaine activity in the brain. Interpretation of these studies, however, often relies on the assumption that measures of DAT occupancy directly correspond with functional DAT blockade. In the current studies, we used in vivo and in vitro fast scan cyclic voltammetry in mice to measure dopamine uptake inhibition following varying doses of cocaine as well as two high affinity DAT inhibitors. We then compared dopamine clearance rates following these drug treatments to dopamine clearance obtained from DAT knockout mice as a proxy for complete DAT blockade. We found that administration of abused doses of cocaine resulted in approximately 2% of maximal DAT blockade. Overall, our data indicate that abused doses of cocaine produce a relatively modest degree of DA uptake inhibition, and suggest that the relationship between DAT occupancy and functional blockade of the DAT is more complex than originally posited.
Xu, Min-jie; Zhang, Cong; Yang, Zhigang
2018-01-01
Dopamine (DA) plays a modulatory role in numerous physiological processes such as light adaptation and food intake, and exerts these functions through DA receptors (DARs). This study presents, for the first time, isolation and characterization of the dopamine receptor 2(DA2 receptor) cDNA from the intestinal tissue of Eriocheir sinensis, an economically important freshwater aquaculture species in China. The DA2 receptor cDNA sequence, which was obtained by rapid amplification of cDNA ends, is 2369bp long, encode peptide of 589 amino acid, and is highly homologous to related sequences in crustaceans. Analysis of the deduced amino acid sequence and the structure of the DA2 indicated that this receptor is a member of the family of G protein-coupled receptors (GPCRs), as it contains seven transmembrane domains and other common signatures of GPCRs. RT-PCR showed that the expression of the DA2 receptor gene was distributed in various tissues, and high expression levels were observed in the cranial ganglia and the thoracic ganglia. Further study of the effect of photoperiod on DA2 expression showed that constant darkness induced a significant increase in DA2 expression in the cranial ganglia. Finally, analysis of DA2 receptor expression under different feeding statuses showed that there was significantly greater expression in the hepatopancreas and intestines after feeding than before feeding, but there were no differences in expression between the before feeding and during feeding periods in either tissue. Our results indicate that the DA2 receptor structurally belongs to the family of G protein-coupled receptors, and that the cranial ganglia are the main tissues in which the DA2 receptor participates in light adaptation during dark hours. In addition, the DA2 receptor in E. sinensis may be involved in the physiological regulation of the hepatopancreas and digestive tract after the ingestion of food. This study provides a foundation for further exploration of the light adaptation and digestive functions of the DA2 receptor in decapods. PMID:29554147
A top-down perspective on dopamine, motivation and memory.
Phillips, Anthony G; Vacca, Giada; Ahn, Soyon
2008-08-01
Dopamine (DA) activity, in the form of increased neural firing or enhanced release of transmitter from nerve terminals and varicosities, is linked to a number of important psychological processes including: movement; hedonic reactions to positive reward; provision of an error detection signal during the acquisition of new learning; response to novel stimuli; provision of reinforcement signals essential for acquisition of new action patterns; and incentive motivation. This review focuses primarily on our research linking dynamic changes in DA efflux on the timescale of minutes, with incentive motivation, as revealed by brain dialysis experiments in behaving animals. Recent experiments on sensory-specific satiety and successive positive and negative contrast are discussed along with the distinction between preparatory behaviors that precede contact with biologically significant stimuli and subsequent consummatory behaviors. The relationship between DA efflux in the medial prefrontal cortex (mPFC) and foraging for food based on working memory is also discussed in support of the conjecture that DA may serve as a link between motivation and memory functions. Evidence in support of 'top-down' regulation of dopaminergic activity in the mesocorticolimbic DA pathways is reviewed briefly to introduce a mechanism by which activation of ascending DA projections in this manner might optimize dopaminergic modulation of executive function within regions such as the mPFC. Collectively, these processes could ensure coordination between cognitive processes that assess current opportunities and the motivational systems that select and engage patterns of approach behavior that bring organisms into contact with the essentials for survival.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asensio, S.; Goldstein, R.; Asensio, S.
Low levels of dopamine (DA) D2 receptor availability at a resting baseline have been previously reported in drug addicted individuals and have been associated with reduced ventral and dorsal prefrontal metabolism. The reduction in DA D2 receptor availability along with the reduced ventral frontal metabolism is thought to underlie compromised sensitivity to nondrug reward, a core characteristic of drug addiction. We therefore hypothesized that variability in DA D2 receptor availability at baseline will covary with dynamic responses to monetary reward in addicted individuals. Striatal DA D2 receptor availability was measured with [{sup 11}C]raclopride and positron emission tomography and response tomore » monetary reward was measured (an average of three years later) with functional magnetic resonance imaging in seven cocaine-addicted individuals. Results show that low DA D2 receptor availability in the dorsal striatum was associated with decreased thalamic response to monetary reward; while low availability in ventral striatum was associated with increased medial prefrontal (Brodmann Area 6/8/32) response to monetary reward. These preliminary results, that need to be replicated in larger sample sizes and validated with healthy controls, suggest that resting striatal DA D2 receptor availability predicts variability in functional responses to a nondrug reinforcer (money) in prefrontal cortex, implicated in behavioral monitoring, and in thalamus, implicated in conditioned responses and expectation, in cocaine-addicted individuals.« less
Asensio, Samuel; Romero, Maria J.; Romero, Francisco J.; Wong, Christopher; Alia-Klein, Nelly; Tomasi, Dardo; Wang, Gene-Jack; Telang, Frank; Volkow, Nora D.; Goldstein, Rita Z.
2009-01-01
Low levels of dopamine (DA) D2 receptor availability at a resting baseline have been previously reported in drug addicted individuals and have been associated with reduced ventral and dorsal prefrontal metabolism. The reduction in DA D2 receptor availability along with the reduced ventral frontal metabolism is thought to underlie compromised sensitivity to non-drug reward, a core characteristic of drug addiction. We therefore hypothesized that variability in DA D2 receptor availability at baseline will covary with dynamic responses to monetary reward in addicted individuals. Striatal DA D2 receptor availability was measured with [11C]raclopride and positron emission tomography and response to monetary reward was measured (an average of 3 years later) with functional magnetic resonance imaging in seven cocaine addicted individuals. Results show that low DA D2 receptor availability in the dorsal striatum was associated with decreased thalamic response to monetary reward; while low availability in ventral striatum was associated with increased medial prefrontal (Brodmann Area 6/8/32) response to monetary reward. These preliminary results, that need to be replicated in larger sample sizes and validated with healthy controls, suggest that resting striatal DA D2 receptor availability predicts variability in functional responses to a non-drug reinforcer (money) in prefrontal cortex, implicated in behavioral monitoring, and in thalamus, implicated in conditioned responses and expectation, in cocaine addicted individuals. PMID:20034014
Rodgers, Edmund W; Fu, Jing Jing; Krenz, Wulf-Dieter C; Baro, Deborah J
2011-11-09
The phases at which network neurons fire in rhythmic motor outputs are critically important for the proper generation of motor behaviors. The pyloric network in the crustacean stomatogastric ganglion generates a rhythmic motor output wherein neuronal phase relationships are remarkably invariant across individuals and throughout lifetimes. The mechanisms for maintaining these robust phase relationships over the long-term are not well described. Here we show that tonic nanomolar dopamine (DA) acts at type 1 DA receptors (D1Rs) to enable an activity-dependent mechanism that can contribute to phase maintenance in the lateral pyloric (LP) neuron. The LP displays continuous rhythmic bursting. The activity-dependent mechanism was triggered by a prolonged decrease in LP burst duration, and it generated a persistent increase in the maximal conductance (G(max)) of the LP hyperpolarization-activated current (I(h)), but only in the presence of steady-state DA. Interestingly, micromolar DA produces an LP phase advance accompanied by a decrease in LP burst duration that abolishes normal LP network function. During a 1 h application of micromolar DA, LP phase recovered over tens of minutes because, the activity-dependent mechanism enabled by steady-state DA was triggered by the micromolar DA-induced decrease in LP burst duration. Presumably, this mechanism restored normal LP network function. These data suggest steady-state DA may enable homeostatic mechanisms that maintain motor network output during protracted neuromodulation. This DA-enabled, activity-dependent mechanism to preserve phase may be broadly relevant, as diminished dopaminergic tone has recently been shown to reduce I(h) in rhythmically active neurons in the mammalian brain.
He, Quanguo; Liu, Jun; Liu, Xiaopeng; Li, Guangli; Deng, Peihong; Liang, Jing
2018-01-01
Cu2O-reduced graphene oxide nanocomposite (Cu2O-RGO) was used to modify glassy carbon electrodes (GCE), and applied for the determination of dopamine (DA). The microstructure of Cu2O-RGO nanocomposite material was characterized by scanning electron microscope. Then the electrochemical reduction condition for preparing Cu2O-RGO/GCE and experimental conditions for determining DA were further optimized. The electrochemical behaviors of DA on the bare electrode, RGO- and Cu2O-RGO-modified electrodes were also investigated using cyclic voltammetry in phosphate-buffered saline solution (PBS, pH 3.5). The results show that the oxidation peaks of ascorbic acid (AA), dopamine (DA), and uric acid (UA) could be well separated and the peak-to-peak separations are 204 mV (AA-DA) and 144 mV (DA-UA), respectively. Moreover, the linear response ranges for the determination of 1 × 10−8 mol/L~1 × 10−6 mol/L and 1 × 10−6 mol/L~8 × 10−5 mol/L with the detection limit 6.0 × 10−9 mol/L (S/N = 3). The proposed Cu2O-RGO/GCE was further applied to the determination of DA in dopamine hydrochloride injections with satisfactory results. PMID:29329206
Bimpisidis, Zisis; De Luca, Maria Antonietta; Pisanu, Augusta; Di Chiara, Gaetano
2013-02-01
Taste stimuli increase extracellular dopamine (DA) in the nucleus accumbens (NAc) and in the medial prefrontal cortex (mPFC). This effect shows single-trial habituation in NAc shell but not in core or in mPFC. Morphine sensitization abolishes habituation of DA responsiveness in NAc shell but induces it in mPFC. These observations support the hypothesis of an inhibitory influence of mPFC DA on NAc DA. To test this hypothesis, we used in vivo microdialysis to investigate the effect of mPFC 6-hydroxy-dopamine (6-OHDA) lesions on the NAc DA responsiveness to taste stimuli. 6-OHDA was infused bilaterally in the mPFC of rats implanted with guide cannulae. After 1 week, rats were implanted with an intraoral catheter, microdialysis probes were inserted into the guide cannulae, and dialysate DA was monitored in NAc shell/core after intraoral chocolate. 6-OHDA infusion reduced tissue DA in the mPFC by 75%. Tyrosine hydroxylase immunohistochemistry showed that lesions were confined to the mPFC. mPFC 6-OHDA lesion did not affect the NAc shell DA responsiveness to chocolate in naive rats but abolished habituation in rats pre-exposed to the taste. In the NAc core, mPFC lesion potentiated, delayed and prolonged the stimulatory DA response to taste but failed to affect DA in pre-exposed rats. Behavioural taste reactions and motor activity were not affected. The results indicate a top-down control of NAc DA by mPFC and a reciprocal relationship between DA transmission in these two areas. Moreover, habituation of DA responsiveness in the NAc shell is dependent upon an intact DA input to the mPFC. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Talbot, Teddy; Mattern, Claudia; de Souza Silva, Maria Angelica; Brandão, Marcus Lira
2017-06-01
Although substantial evidence suggests that dopamine (DA) enhances conditioned fear responses, few studies have examined the role of DA in unconditioned fear states. Whereas DA does not cross the blood-brain barrier, intranasally-applied dopamine reaches the brain directly via the nose-brain pathways in rodents, providing an alternative means of targeting DA receptors. Intranasal dopamine (IN-DA) has been demonstrated to bind to DA transporters and to increase extracellular DA in the striatum as well as having memory-promoting effects in rats. The purpose of this study was to examine the influence of IN-DA in three tests of fear/anxiety. The three doses of DA hydrochloride (0.03, 0.3, or 1 mg/kg) were applied in a viscous castor oil gel in a volume of 5 µl to each of both nostrils of adult Wistar rats prior to testing of (a) escape from a bright light, using a two-chamber procedure, (b) restraint-induced 22 kHz ultrasound vocalizations (USVs), and (c) exploratory behavior in the elevated plus-maze (EPM). IN-DA dose-dependently reduced escape from bright light and the number of USV responses to restraint. It had no influence on the exploratory behavior in the EPM. IN-DA application reduced escape behavior in two tests of unconditioned fear (escape from bright light and USV response to immobilization). These findings may be interpreted in light of the known antidepressant action of IN-DA and DA reuptake blockers. The results also confirm the promise of the nasal route as an alternative means for targeting the brain's dopaminergic receptors with DA.
Avelar, Alicia J; Cao, Jianjing; Newman, Amy Hauck; Beckstead, Michael J
2017-09-01
Abuse of psychostimulants like cocaine that inhibit dopamine (DA) reuptake through the dopamine transporter (DAT) represents a major public health issue, however FDA-approved pharmacotherapies have yet to be developed. Recently a class of ligands termed "atypical DAT inhibitors" has gained attention due to their range of effectiveness in increasing extracellular DA levels without demonstrating significant abuse liability. These compounds not only hold promise as therapeutic agents to treat stimulant use disorders but also as experimental tools to improve our understanding of DAT function. Here we used patch clamp electrophysiology in mouse brain slices to explore the effects of two atypical DAT inhibitors (R-modafinil and JHW 007) on the physiology of single DA neurons in the substantia nigra and ventral tegmental area. Despite their commonalities of being DAT inhibitors that lack cocaine-like behavioral profiles, these compounds exhibited surprisingly divergent cellular effects. Similar to cocaine, R-modafinil slowed DA neuron firing in a D2 receptor-dependent manner and rapidly enhanced the amplitude and duration of D2 receptor-mediated currents in the midbrain. In contrast, JHW 007 exhibited little effect on firing, slow DAT blockade, and an unexpected inhibition of D2 receptor-mediated currents that may be due to direct D2 receptor antagonism. Furthermore, pretreatment with JHW 007 blunted the cellular effects of cocaine, suggesting that it may be valuable to investigate similar DAT inhibitors as potential therapeutic agents. Further exploration of these and other atypical DAT inhibitors may reveal important cellular effects of compounds that will have potential as pharmacotherapies for treating cocaine use disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Ming; Zhao, Yanfang; Yang, Hualan; Luan, Wenjie; Song, Jiaojiao; Cui, Dongyang; Dong, Yi; Lai, Bin; Ma, Lan; Zheng, Ping
2015-07-24
One reported mechanism for morphine activation of dopamine (DA) neurons of the ventral tegmental area (VTA) is the disinhibition model of VTA-DA neurons. Morphine inhibits GABA inhibitory neurons, which shifts the balance between inhibitory and excitatory input to VTA-DA neurons in favor of excitation and then leads to VTA-DA neuron excitation. However, it is not known whether morphine has an additional strengthening effect on excitatory input. Our results suggest that glutamatergic input to VTA-DA neurons is inhibited by GABAergic interneurons via GABAB receptors and that morphine promotes presynaptic glutamate release by removing this inhibition. We also studied the contribution of the morphine-induced disinhibitory effect on the presynaptic glutamate release to the overall excitatory effect of morphine on VTA-DA neurons and related behavior. Our results suggest that the disinhibitory action of morphine on presynaptic glutamate release might be the main mechanism for morphine-induced increase in VTA-DA neuron firing and related behaviors.
Sensitive detection of dopamine via leucodopaminechrome on polyacrylic acid-coated ceria nanorods
NASA Astrophysics Data System (ADS)
Sheng, Weiqin; Zheng, Liang; Liu, Yan; Zhao, Xueqin; Weng, Jian; Zhang, Yang
2017-09-01
The major hurdle in detection of dopamine (DA) by electro-analysis is the presence of physiological interferents with a similar oxidation potential of DA. The conventional method is to enlarge the difference of their oxidation potentials. Here, we report an unconventional method to detect DA via leucodopaminechrome on CeO2 nanorods. Leucodopaminechrome is produced from the cyclization of dopamine-quinone, a product of two-electron oxidation of DA. Thus, its concentration is proportional to the DA concentration. Determining DA is demonstrated by measuring the reduction current of leucodopaminechrome on CeO2 nanorods. CeO2 nanorods demonstrate high electrocatalytic activity for reduction of leucodopaminechrome with a low potential at -0.27 V. The low detection potential of leucodopaminechrome can avoid the interference from ascorbic acid (AA) and uric acid (UA). Therefore, detecting DA via leucodopaminechrome is an effective method to avoid interference from AA and UA, and the suggested biosensor also displays good reproducibility and stability.
A novel quantum dot-laccase hybrid nanobiosensor for low level determination of dopamine.
Shamsipur, Mojtaba; Shanehasz, Maryam; Khajeh, Khosro; Mollania, Nasrin; Kazemi, Sayyed Habib
2012-12-07
This work reports a novel nanobiosensor based on a thioglycolic acid (TGA)-capped CdTe quantum dot-laccase (Lac) enzyme system for sensitive detection of dopamine (DA). The enzyme used catalyzes the oxidation of DA to dopamine-o-quinone (DOQ), which can selectively quench the strong luminescence of CdTe nanocrystals at neutral pH. The relationship between luminescence intensity of CdTe nanocrystals and DA concentration is nicely described by the Stern-Volmer equation. At an optimum pH of 7.4, the proposed sensor gives a linear calibration over a DA concentration range of 0.3 to 100 μM, with a limit of detection of 0.16 μM and a response time of 2 min. The relative standard deviation for seven replicate determinations of 6.0 μM of DA was found to be 3.7%. The sensor was successfully applied to the determination of DA in a blood plasma sample and in a DA injection formulation.
Klejbor, Ilona; Myers, Jason M; Hausknecht, Kathy; Corso, Thomas D; Gambino, Angelo S; Morys, Janusz; Maher, Pamela A; Hard, Robert; Richards, Jerry; Stachowiak, Ewa K; Stachowiak, Michal K
2006-06-01
Developing and mature midbrain dopamine (DA) neurons express fibroblast growth factor (FGF) receptor-1 (FGFR1). To determine the role of FGFR1 signaling in the development of DA neurons, we generated transgenic mice expressing a dominant negative mutant [FGFR1(TK-)] from the catecholaminergic, neuron-specific tyrosine hydroxylase (TH) gene promoter. In homozygous th(tk-)/th(tk-) mice, significant reductions in the size of TH-immunoreactive neurons were found in the substantia nigra compacta (SNc) and the ventral tegmental area (VTA) at postnatal days 0 and 360. Newborn th(tk-)/th(tk-) mice had a reduced density of DA neurons in both SNc and VTA, and the changes in SNc were maintained into adulthood. The reduced density of DA transporter in the striatum further demonstrated an impaired development of the nigro-striatal DA system. Paradoxically, the th(tk-)/th(tk-) mice had increased levels of DA, homovanilic acid and 3-methoxytyramine in the striatum, indicative of excessive DA transmission. These structural and biochemical changes in DA neurons are similar to those reported in human patients with schizophrenia and, furthermore, these th(tk-)/th(tk-) mice displayed an impaired prepulse inhibition that was reversed by a DA receptor antagonist. Thus, this study establishes a new developmental model for a schizophrenia-like disorder in which the inhibition of FGF signaling leads to alterations in DA neurons and DA-mediated behavior.
Yates, J R; Darna, M; Beckmann, J S; Dwoskin, L P; Bardo, M T
2016-01-28
Impulsivity, which can be subdivided into impulsive action and impulsive choice, is implicated as a factor underlying drug abuse vulnerability. Although previous research has shown that dopamine (DA) systems in prefrontal cortex are involved in impulsivity and substance abuse, it is not known if inherent variation in DA transporter (DAT) function contributes to impulsivity. The current study determined if individual differences in either impulsive action or impulsive choice are related to DAT function in orbitofrontal (OFC) and/or medial prefrontal cortex (mPFC). Rats were first tested both for impulsive action in a cued go/no-go task and for impulsive choice in a delay-discounting task. Following behavioral evaluation, in vitro [(3)H]DA uptake assays were performed in OFC and mPFC isolated from individual rats. Vmax in OFC, but not mPFC, was correlated with performance in the cued go/no-go task, with decreased OFC DAT function being associated with high impulsive action. In contrast, Vmax in OFC and mPFC was not correlated with performance in the delay-discounting task. The current results demonstrate that impulsive behavior in cued go/no-go performance is associated with decreased DAT function in OFC, suggesting that hyperdopaminergic tone in this prefrontal subregion mediates, at least in part, increased impulsive action. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Beggiato, Sarah; Borelli, Andrea Celeste; Borroto-Escuela, Dasiel; Corbucci, Ilaria; Tomasini, Maria Cristina; Marti, Matteo; Antonelli, Tiziana; Tanganelli, Sergio; Fuxe, Kjell; Ferraro, Luca
2017-12-01
The effects of nanomolar cocaine concentrations, possibly not blocking the dopamine transporter activity, on striatal D 2 -σ 1 heteroreceptor complexes and their inhibitory signaling over Gi/o, have been tested in rat striatal synaptosomes and HEK293T cells. Furthermore, the possible role of σ 1 receptors (σ 1 Rs) in the cocaine-provoked amplification of D 2 receptor (D 2 R)-induced reduction of K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes, has also been investigated. The dopamine D 2 -likeR agonist quinpirole (10nM-1μM), concentration-dependently reduced K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes. The σ 1 R antagonist BD1063 (100nM), amplified the effects of quinpirole (10 and 100nM) on K + -evoked [ 3 H]-DA, but not glutamate, release. Nanomolar cocaine concentrations significantly enhanced the quinpirole (100nM)-induced decrease of K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes. In the presence of BD1063 (10nM), cocaine failed to amplify the quinpirole (100nM)-induced effects. In cotransfected σ 1 R and D 2L R HEK293T cells, quinpirole had a reduced potency to inhibit the CREB signal versus D 2L R singly transfected cells. In the presence of cocaine (100nM), the potency of quinpirole to inhibit the CREB signal was restored. In D 2L singly transfected cells cocaine (100nM and 10μM) exerted no modulatory effects on the inhibitory potency of quinpirole to bring down the CREB signal. These results led us to hypothesize the existence of functional D 2 -σ 1 R complexes on the rat striatal DA and glutamate nerve terminals and functional D 2 -σ 1 R-DA transporter complexes on the striatal DA terminals. Nanomolar cocaine concentrations appear to alter the allosteric receptor-receptor interactions in such complexes leading to enhancement of Gi/o mediated D 2 R signaling. Copyright © 2017 Elsevier Inc. All rights reserved.
Dopamine D(1) receptor deletion strongly reduces neurotoxic effects of methamphetamine.
Ares-Santos, S; Granado, N; Oliva, I; O'Shea, E; Martin, E D; Colado, M I; Moratalla, R
2012-02-01
Methamphetamine (METH) is a potent, highly addictive psychostimulant consumed worldwide. In humans and experimental animals, repeated exposure to this drug induces persistent neurodegenerative changes. Damage occurs primarily to dopaminergic neurons, accompanied by gliosis. The toxic effects of METH involve excessive dopamine (DA) release, thus DA receptors are highly likely to play a role in this process. To define the role of D(1) receptors in the neurotoxic effects of METH we used D(1) receptor knock-out mice (D(1)R(-/-)) and their WT littermates. Inactivation of D(1)R prevented METH-induced dopamine fibre loss and hyperthermia, and increases in gliosis and pro-inflammatory molecules such as iNOS in the striatum. In addition, D(1)R inactivation prevented METH-induced loss of dopaminergic neurons in the substantia nigra. To explore the relationship between hyperthermia and neurotoxicity, METH was given at high ambient temperature (29 °C). In this condition, D(1)R(-/-) mice developed hyperthermia following drug delivery and the neuroprotection provided by D(1)R inactivation at 23 °C was no longer observed. However, reserpine, which empties vesicular dopamine stores, blocked hyperthermia and strongly potentiated dopamine toxicity in D(1)R(-/-) mice, suggesting that the protection afforded by D(1)R inactivation is due to both hypothermia and higher stored vesicular dopamine. Moreover, electrical stimulation evoked higher DA overflow in D(1)R(-/-) mice as demonstrated by fast scan cyclic voltammetry despite their lower basal DA content, suggesting higher vesicular DA content in D(1)R(-/-) than in WT mice. Altogether, these results indicate that the D(1)R plays a significant role in METH-induced neurotoxicity by mediating drug-induced hyperthermia and increasing the releasable cytosolic DA pool. Copyright © 2011. Published by Elsevier Inc.
Goldstein, David S.; Jinsmaa, Yunden; Sullivan, Patti; Holmes, Courtney; Kopin, Irwin J.; Sharabi, Yehonatan
2016-01-01
The catecholaldehyde hypothesis predicts that monoamine oxidase (MAO) inhibition should slow the progression of Parkinson’s disease, by decreasing production of the autotoxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL). Inhibiting MAO, however, diverts the fate of cytoplasmic dopamine toward potentially harmful spontaneous oxidation products, indicated by increased 5-S-cysteinyl-dopamine (Cys-DA) levels. 3,4-Dihydroxyphenylethanol (hydroxytyrosol) is an abundant anti-oxidant phenol in constituents of the Mediterranean diet. Whether hydroxytyrosol alters enzymatic or spontaneous oxidation of dopamine has been unknown. Rat pheochromocytoma PC12 cells were incubated with hydroxytyrosol (10 μM, 180 minutes) alone or with the MAO-A inhibitor clorgyline (1 nM) or the MAO-B inhibitors rasagiline or selegiline (0.5 μM). Hydroxytyrosol decreased levels of DOPAL by 30% and Cys-DA by 49% (p<0.0001 each). Co-incubation with hydroxytyrosol prevented the increases in Cys-DA seen with all 3 MAO inhibitors. Hydroxytyrosol therefore inhibits both enzymatic and spontaneous oxidation of endogenous dopamine and mitigates the increase in spontaneous oxidation during MAO inhibition. PMID:27220335
Mergy, Marc A.; Gowrishankar, Raajaram; Davis, Gwynne L.; Jessen, Tammy N.; Wright, Jane; Stanwood, Gregg D.; Hahn, Maureen K.; Blakely, Randy D.
2014-01-01
Alterations in dopamine (DA) signaling underlie the most widely held theories of molecular and circuit level perturbations that lead to risk for attention-deficit hyperactivity disorder (ADHD). The DA transporter (DAT), a presynaptic reuptake protein whose activity provides critical support for DA signaling by limiting DA action at pre- and postsynaptic receptors, has been consistently associated with ADHD through pharmacological, behavioral, brain imaging and genetic studies. Currently, the animal models of ADHD exhibit significant limitations, stemming in large part from their lack of construct validity. To remedy this situation, we have pursued the creation of a mouse model derived from a functional nonsynonymous variant in the DAT gene (SLC6A3) of ADHD probands. We trace our path from the identification of these variants to in vitro biochemical and physiological studies to the production of the DAT Val559 mouse model. We discuss our initial findings with these animals and their promise in the context of existing rodent models of ADHD. PMID:24332984
Zhang, Xiaodong; Chen, Xiaokai; Kai, Siqi; Wang, Hong-Yin; Yang, Jingjing; Wu, Fu-Gen; Chen, Zhan
2015-03-17
A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications.
NASA Astrophysics Data System (ADS)
Khalafallah, Diab; Akhtar, Naeem; Alothman, Othman Y.; Fouad, H.; Abdelrazek khalil, Khalil
2017-09-01
Oxygen reduction reaction (ORR) catalysts are the heart of eco-friendly energy resources particularly low temperature fuel cells. Although valuable efforts have been devoted to synthesize high performance catalysts for ORR, considerable challenges are extremely desirable in the development of energy technologies. Herein, we report a simple self-polymerization method to build a thin film of dopamine along the tubular nanostructures of multi-walled carbon nanotubes (CNT) in a weak alkaline solution. The dopamine@CNT hybrid (denoted as DA@CNT) reveals an enhanced electrocatalytic activity towards ORR with highly positive onset potential and cathodic current as a result of their outstanding features of longitudinal mesoporous structure, high surface area, and ornamentation of DA layers with nitrogen moieties, which enable fast electron transport and fully exposed electroactive sites. Impressively, the as-obtained hybrid afford remarkable electrochemical durability for prolonged test time of 60,000 s compared to benchmark Pt/C (20 wt%) catalyst. Furthermore, the developed DA@CNT electrode was successfully applied to access the quality of antiviral drug named Valacyclovir (VCR). The DA@CNT electrode shows enhanced sensing performance in terms of large linear range (3-75 nM), low limit of detection (2.55 nM) than CNT based electrode, indicating the effectiveness of the DA coating. Interestingly, the synergetic effect of nanostructured DA and CNT can significantly boost the electronic configuration and exposure level of active species for ORR and biomolecule recognition. Therefore, the existing carbon-based porous electrocatalyst may find numerous translational applications as attractive alternative to noble metals in polymer electrolyte membrane fuel cells and quality control assessment of pharmaceutical and therapeutic drugs.
Sakthinathan, Subramanian; Lee, Hsin Fang; Chen, Shen-Ming; Tamizhdurai, P
2016-04-15
In the present work, a reduced graphene oxide (RGO) supported manganese tetraphenylporphyrin (Mn-TPP) nanocomposite was electrochemically synthesized and used for the highly selective and sensitive detection of dopamine (DA). The nuclear magnetic resonance, scanning electron microscopy and elemental analysis were confirmed the successful formation of RGO/Mn-TPP nanocomposite. The prepared RGO/Mn-TPP nanocomposite modified electrode exhibited an enhanced electrochemical response to DA with less oxidation potential and enhanced response current. The electrochemical studies revealed that the oxidation of the DA at the composite electrode is a surface controlled process. The cyclic voltammetry, differential pulse voltammetry and amperometry methods were enable to detect DA. The working linear range of the electrode was observed from 0.3 to 188.8 μM, limit of detection was 8 nM and the sensitivity was 2.606 μA μM(-1) cm(-2). Here, the positively charged DA and negatively charged porphyrin modified RGO can accelerate the electrocatalysis of DA via electrostatic attraction, while the negatively charged ascorbic acid (AA) repulsed by the negatively charged electrode surface which supported for good selectivity. The good recovery results obtained for the determination of DA present in DA injection samples and human pathological sample further revealed the good practicality of RGO/Mn-TPP nanocomposite film modified electrode. Copyright © 2016 Elsevier Inc. All rights reserved.
Liu, Shaolin; Plachez, Celine; Shao, Zuoyi; Puche, Adam; Shipley, Michael T
2013-02-13
Evidence for coexpression of two or more classic neurotransmitters in neurons has increased, but less is known about cotransmission. Ventral tegmental area (VTA) neurons corelease dopamine (DA), the excitatory transmitter glutamate, and the inhibitory transmitter GABA onto target cells in the striatum. Olfactory bulb (OB) short axon cells (SACs) form interglomerular connections and coexpress markers for DA and GABA. Using an optogenetic approach, we provide evidence that mouse OB SACs release both GABA and DA onto external tufted cells (ETCs) in other glomeruli. Optical activation of channelrhodopsin specifically expressed in DAergic SACs produced a GABA(A) receptor-mediated monosynaptic inhibitory response, followed by DA-D(1)-like receptor-mediated excitatory response in ETCs. The GABA(A) receptor-mediated hyperpolarization activates I(h) current in ETCs; synaptically released DA increases I(h), which enhances postinhibitory rebound spiking. Thus, the opposing actions of synaptically released GABA and DA are functionally integrated by I(h) to generate an inhibition-to-excitation "switch" in ETCs. Consistent with the established role of I(h) in ETC burst firing, we show that endogenous DA release increases ETC spontaneous bursting frequency. ETCs transmit sensory signals to mitral/tufted output neurons and drive intraglomerular inhibition to shape glomerulus output to downstream olfactory networks. GABA and DA cotransmission from SACs to ETCs may play a key role in regulating output coding across the glomerular array.
Gerth, Ashlynn I; Alhadeff, Amber L; Grill, Harvey J; Roitman, Mitchell F
2017-01-15
Cocaine increases dopamine concentration in the nucleus accumbens through competitive binding to the dopamine transporter (DAT). However, it also increases the frequency of dopamine release events, a finding that cannot be explained by action at the DAT alone. Rather, this effect may be mediated by cocaine-induced modulation of brain regions that project to dopamine neurons. To explore regional contributions of cocaine to dopamine signaling, we administered cocaine to the lateral or fourth ventricles and compared the effects on dopamine release in the nucleus accumbens evoked by electrical stimulation of the ventral tegmental area to that of systemically-delivered cocaine. Stimulation trains caused a sharp rise in dopamine followed by a slower return to baseline. The magnitude of dopamine release ([DA]max) as well as the latency to decay to fifty percent of the maximum (t(1/2); index of DAT activity) by each stimulation train were recorded. All routes of cocaine delivery caused an increase in [DA]max; only systemic cocaine caused an increase in t(1/2). Importantly, these data are the first to show that hindbrain (fourth ventricle)-delivered cocaine modulates phasic dopamine signaling. Fourth ventricular cocaine robustly increased cFos immunoreactivity in the nucleus of the solitary tract (NTS), suggesting a neural substrate for hindbrain cocaine-mediated effects on [DA]max. Together, the data demonstrate that cocaine-induced effects on phasic dopamine signaling are mediated via actions throughout the brain including the hindbrain. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Toward development of an in vitro model of methamphetamine-induced dopamine nerve terminal toxicity.
Kim, S; Westphalen, R; Callahan, B; Hatzidimitriou, G; Yuan, J; Ricaurte, G A
2000-05-01
To develop an in vitro model of methamphetamine (METH)-induced dopamine (DA) neurotoxicity, striatal synaptosomes were incubated at 37 degrees C with METH for different periods of time (10-80 min), washed once, then tested for DA transporter function at 37 degrees C. METH produced time- and dose-dependent reductions in the V(max) of DA uptake, without producing any change in K(m). Incubation of synaptosomes with the DA neurotoxins 1-methyl-4-phenyl-pyridinium ion, 6-hydroxydopamine, and amphetamine under similar conditions produced comparable effects. In contrast, incubation with fenfluramine, a serotonin neurotoxin, did not. METH-induced decreases in DA uptake were selective, insofar as striatal glutamate uptake was unaffected. Various DA transporter blockers (cocaine, methylphenidate, and bupropion) afforded complete protection against METH-induced decreases in DA uptake, without producing any effect themselves. METH's effects were also temperature dependent, with greater decreases in DA uptake occurring at higher temperatures. Tests for residual drug revealed small amounts (0.1-0.2 microM) of remaining METH, but kinetic studies indicated that decreases in DA uptake were not likely to be due to METH acting as a competitive inhibitor of DA uptake. Decreases in the V(max) of DA uptake were not accompanied by decreases in B(max) of [(3)H]WIN 35,428 binding, possibly because there is no mechanism for removing damaged DA nerve endings from the in vitro preparation Collectively, these results give good support to the development of a valid in vitro model that may prove helpful for elucidating the mechanisms underlying METH-induced DA neurotoxicity.
NASA Astrophysics Data System (ADS)
Kulchat, Sirinan; Boonta, Wissuta; Todee, Apinya; Sianglam, Pradthana; Ngeontae, Wittaya
2018-05-01
A fluorescent sensor based on thioglycolic acid-capped cadmium sulfide quantum dots (TGA-CdS QDs) has been designed for the sensitive and selective detection of dopamine (DA). In the presence of dopamine (DA), the addition of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) activates the reaction between the carboxylic group of the TGA and the amino group of dopamine to form an amide bond, quenching the fluorescence of the QDs. The fluorescence intensity of TGA-CdS QDs can be used to sense the presence of dopamine with a limit of detection of 0.68 μM and a working linear range of 1.0-17.5 μM. This sensor system shows great potential application for dopamine detection in dopamine drug samples and for future easy-to-make analytical devices.
Brief exposure to obesogenic diet disrupts brain dopamine networks
Williams, Jason M.; Siuta, Michael A.; Tantawy, Mohammed N.; Speed, Nicole K.; Saunders, Christine; Galli, Aurelio; Niswender, Kevin D.; Avison, Malcolm J.
2018-01-01
Objective We have previously demonstrated that insulin signaling, through the downstream signaling kinase Akt, is a potent modulator of dopamine transporter (DAT) activity, which fine-tunes dopamine (DA) signaling at the synapse. This suggests a mechanism by which impaired neuronal insulin receptor signaling, a hallmark of diet-induced obesity, may contribute to impaired DA transmission. We tested whether a short-term (two-week) obesogenic high-fat (HF) diet could reduce striatal Akt activity, a marker of central insulin, receptor signaling and blunt striatal and dopaminergic network responsiveness to amphetamine (AMPH). Methods We examined the effects of a two-week HF diet on striatal DAT activity in rats, using AMPH as a probe in a functional magnetic resonance imaging (fMRI) assay, and mapped the disruption in AMPH-evoked functional connectivity between key dopaminergic targets and their projection areas using correlation and permutation analyses. We used phosphorylation of the Akt substrate GSK3α in striatal extracts as a measure of insulin receptor signaling. Finally, we confirmed the impact of HF diet on striatal DA D2 receptor (D2R) availability using [18F]fallypride positron emission tomography (PET). Results We found that rats fed a HF diet for only two weeks have reductions in striatal Akt activity, a marker of decreased striatal insulin receptor signaling and blunted striatal responsiveness to AMPH. HF feeding also reduced interactions between elements of the mesolimbic (nucleus accumbens–anterior cingulate) and sensorimotor circuits (caudate/putamen–thalamus–sensorimotor cortex) implicated in hedonic feeding. D2R availability was reduced in HF-fed animals. Conclusion These studies support the hypothesis that central insulin signaling and dopaminergic neurotransmission are already altered after short-term HF feeding. Because AMPH induces DA efflux and brain activation, in large part via DAT, these findings suggest that blunted central nervous system insulin receptor signaling through a HF diet can impair DA homeostasis, thereby disrupting cognitive and reward circuitry involved in the regulation of hedonic feeding. PMID:29698491
Hryhorczuk, Cecile; Florea, Marc; Rodaros, Demetra; Poirier, Isabelle; Daneault, Caroline; Des Rosiers, Christine; Arvanitogiannis, Andreas; Alquier, Thierry; Fulton, Stephanie
2016-02-01
Overconsumption of dietary fat is increasingly linked with motivational and emotional impairments. Human and animal studies demonstrate associations between obesity and blunted reward function at the behavioral and neural level, but it is unclear to what degree such changes are a consequence of an obese state and whether they are contingent on dietary lipid class. We sought to determine the impact of prolonged ad libitum intake of diets rich in saturated or monounsaturated fat, separate from metabolic signals associated with increased adiposity, on dopamine (DA)-dependent behaviors and to identify pertinent signaling changes in the nucleus accumbens (NAc). Male rats fed a saturated (palm oil), but not an isocaloric monounsaturated (olive oil), high-fat diet exhibited decreased sensitivity to the rewarding (place preference) and locomotor-sensitizing effects of amphetamine as compared with low-fat diet controls. Blunted amphetamine action by saturated high-fat feeding was entirely independent of caloric intake, weight gain, and plasma levels of leptin, insulin, and glucose and was accompanied by biochemical and behavioral evidence of reduced D1R signaling in the NAc. Saturated high-fat feeding was also tied to protein markers of increased AMPA receptor-mediated plasticity and decreased DA transporter expression in the NAc but not to alterations in DA turnover and biosynthesis. Collectively, the results suggest that intake of saturated lipids can suppress DA signaling apart from increases in body weight and adiposity-related signals known to affect mesolimbic DA function, in part by diminishing D1 receptor signaling, and that equivalent intake of monounsaturated dietary fat protects against such changes.
Nelson, A J D; Thur, K E; Horsley, R R; Spicer, C; Marsden, C A; Cassaday, H J
2011-03-01
Latent inhibition (LI) manifests as poorer conditioning to a CS that has previously been presented without consequence. There is some evidence that LI can be potentiated by reduced mesoaccumbal dopamine (DA) function but the locus within the nucleus accumbens of this effect is as yet not firmly established. Experiment 1 tested whether 6-hydroxydopamine (6-OHDA)-induced lesions of DA terminals within the core and medial shell subregions of the nucleus accumbens (NAc) would enhance LI under conditions that normally disrupt LI in controls (weak pre-exposure). LI was measured in a thirst motivated conditioned emotional response procedure with 10 pre-exposures (to a noise CS) and 2 conditioning trials. The vehicle-injected and core-lesioned animals did not show LI and conditioned to the pre-exposed CS at comparable levels to the non-pre-exposed controls. 6-OHDA lesions to the medial shell, however, produced potentiation of LI, demonstrated across two extinction tests. In a subsequent experiment, haloperidol microinjected into the medial shell prior to conditioning similarly enhanced LI. These results underscore the dissociable roles of core and shell subregions of the NAc in mediating the expression of LI and indicate that reduced DA function within the medial shell leads to enhanced LI. Copyright © 2010 Elsevier Inc. All rights reserved.
Hou, Shaoping; Carson, David M.; Wu, Di; Klaw, Michelle C.; Houlé, John D.; Tom, Veronica J.
2016-01-01
Dopamine (DA) neurons in the mammalian central nervous system are thought to be restricted to the brain. DA-mediated regulation of urinary activity is considered to occur through an interaction between midbrain DA neurons and the pontine micturition center. Here we show that DA is produced in the rat spinal cord and modulates the bladder reflex. We observed numerous tyrosine hydroxylase (TH)+ neurons in the autonomic nuclei and superficial dorsal horn in L6–S3 spinal segments. These neurons are dopamine-β-hydroxylase (DBH)− and some contain detectable dopamine decarboxylase (DDC), suggesting their capacity to produce DA. Interestingly, following a complete thoracic spinal cord injury (SCI) to interrupt supraspinal projections, more TH+ neurons emerged in the lumbosacral spinal cord, coincident with a sustained, low level of DA expression there and a partially recovered micturition reflex. Non-selective blockade of spinal DA receptors reduced bladder activity whereas activation of spinal D2-like receptors increased bladder activity and facilitated voiding. Additionally, depletion of lumbosacral TH+ neurons with 6-hydroxydopamine (6-OHDA) decreased bladder non-voiding contractions and voiding efficiency. Furthermore, injecting the transsynaptic neuronal tracer pseudorabies virus (PRV) into the bladder detrusor labeled TH+ cells in the lumbosacral cord, confirming their involvement in spinal micturition reflex circuits. These results illustrate that DA is synthesized in the rat spinal cord; plasticity of lumbosacral TH+ neurons following SCI may contribute to DA expression and modulate the spinal bladder reflex. Thus, spinally-derived DA and receptors could be a novel therapeutic target to improve micturition recovery after SCI. PMID:26655672
Hou, Shaoping; Carson, David M; Wu, Di; Klaw, Michelle C; Houlé, John D; Tom, Veronica J
2016-11-01
Dopamine (DA) neurons in the mammalian central nervous system are thought to be restricted to the brain. DA-mediated regulation of urinary activity is considered to occur through an interaction between midbrain DA neurons and the pontine micturition center. Here we show that DA is produced in the rat spinal cord and modulates the bladder reflex. We observed numerous tyrosine hydroxylase (TH) + neurons in the autonomic nuclei and superficial dorsal horn in L6-S3 spinal segments. These neurons are dopamine-β-hydroxylase (DBH) - and some contain detectable dopamine decarboxylase (DDC), suggesting their capacity to produce DA. Interestingly, following a complete thoracic spinal cord injury (SCI) to interrupt supraspinal projections, more TH + neurons emerged in the lumbosacral spinal cord, coincident with a sustained, low level of DA expression there and a partially recovered micturition reflex. Non-selective blockade of spinal DA receptors reduced bladder activity whereas activation of spinal D 2 -like receptors increased bladder activity and facilitated voiding. Additionally, depletion of lumbosacral TH + neurons with 6-hydroxydopamine (6-OHDA) decreased bladder non-voiding contractions and voiding efficiency. Furthermore, injecting the transsynaptic neuronal tracer pseudorabies virus (PRV) into the bladder detrusor labeled TH + cells in the lumbosacral cord, confirming their involvement in spinal micturition reflex circuits. These results illustrate that DA is synthesized in the rat spinal cord; plasticity of lumbosacral TH + neurons following SCI may contribute to DA expression and modulate the spinal bladder reflex. Thus, spinally-derived DA and receptors could be a novel therapeutic target to improve micturition recovery after SCI. Published by Elsevier Inc.
Linehan, Victoria; Trask, Robert B.; Briggs, Chantalle; Rowe, Todd M.; Hirasawa, Michiru
2017-01-01
Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups, where orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying DA action on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using whole cell patch clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration dependent, bidirectional manner. Low (1 μM) and high concentrations (100 μM) of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors, whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. PMID:26036709
Trantham-Davidson, Heather; Burnett, Elizabeth J; Gass, Justin T; Lopez, Marcelo F; Mulholland, Patrick J; Centanni, Samuel W; Floresco, Stan B; Chandler, L Judson
2014-03-05
Dopamine (DA) receptors in the medial prefrontal cortex (mPFC) exert powerful effects on cognition by modulating the balance between excitatory and inhibitory neurotransmission. The present study examined the impact of chronic intermittent ethanol (CIE) exposure on cognitive function and DA receptor-mediated neurotransmission in the rat mPFC. Consistent with alterations in executive function in alcoholics, CIE-exposed rats exhibited deficits in behavioral flexibility in an operant set-shifting task. Since alterations in dopaminergic neurotransmission in the mPFC have been implicated in a number of behavioral disorders including addiction, studies were then performed in the adult acute slice preparation to examine changes in DA receptor function in the mPFC following CIE exposure. In slices obtained from control rats, DA receptor stimulation was observed to exert complex actions on neuronal firing and synaptic neurotransmission that were not only dependent upon the particular receptor subtype but also whether it was a pyramidal cell or a fast-spiking interneuron. In contrast to slices from control rats, there was a near complete loss of the modulatory actions of D2/D4 receptors on cell firing and neurotransmission in slices obtained immediately, 1 and 4 weeks after the last day of CIE exposure. This loss did not appear to be associated with changes in receptor expression. In contrast, CIE exposure did not alter D1 receptor function or mGluR1 modulation of firing. These studies are consistent with the suggestion that chronic alcohol exposure disrupts cognitive function at least in part through disruption of D2 and D4 receptor signaling in mPFC.
Saddoris, Michael P; Wang, Xuefei; Sugam, Jonathan A; Carelli, Regina M
2016-01-06
Chronic exposure to drugs of abuse is linked to long-lasting alterations in the function of limbic system structures, including the nucleus accumbens (NAc). Although cocaine acts via dopaminergic mechanisms within the NAc, less is known about whether phasic dopamine (DA) signaling in the NAc is altered in animals with cocaine self-administration experience or if these animals learn and interact normally with stimuli in their environment. Here, separate groups of rats self-administered either intravenous cocaine or water to a receptacle (controls), followed by 30 d of enforced abstinence. Next, all rats learned an appetitive Pavlovian discrimination and voltammetric recordings of real-time DA release were taken in either the NAc core or shell of cocaine and control subjects. Cocaine experience differentially impaired DA signaling in the core and shell relative to controls. Although phasic DA signals in the shell were essentially abolished for all stimuli, in the core, DA did not distinguish between cues and was abnormally biased toward reward delivery. Further, cocaine rats were unable to learn higher-order associations and even altered simple conditioned approach behaviors, displaying enhanced preoccupation with cue-associated stimuli (sign-tracking; ST) but diminished time at the food cup awaiting reward delivery (goal-tracking). Critically, whereas control DA signaling correlated with ST behaviors, cocaine experience abolished this relationship. These findings show that cocaine has persistent, differential, and pathological effects on both DA signaling and DA-dependent behaviors and suggest that psychostimulant experience may remodel the very circuits that bias organisms toward repeated relapse. Relapsing to drug abuse despite periods of abstinence and sincere attempts to quit is one of the most pernicious facets of addiction. Unfortunately, little is known about how the dopamine (DA) system functions after periods of drug abstinence, particularly its role in behavior in nondrug situations. Here, rats learned about food-paired stimuli after prolonged abstinence from cocaine self-administration. Using voltammetry, we found that real-time DA signals in cocaine-experienced rats were strikingly altered relative to controls. Further, cocaine-experienced animals found reward-predictive stimuli abnormally salient and spent more time interacting with cues. Therefore, cocaine induces neuroplastic changes in the DA system that biases animals toward salient stimuli (including reward-associated cues), putting addicts at increasing risk to relapse as addiction increases in severity. Copyright © 2016 the authors 0270-6474/16/360235-16$15.00/0.
An Exploratory Study on DRD2 and Creative Potential
ERIC Educational Resources Information Center
Zhang, Shun; Zhang, Muzi; Zhang, Jinghuan
2014-01-01
One critical step toward to a better understanding of creativity is to unveil its underlying genetic architectures. Recently, several studies have been conducted to investigate the effects of dopamine (DA) and 5-hydroxytryptamine (5-HT) related genetic polymorphisms on creativity. Among DA related genes, dopamine D2 receptor gene…
Maternal Atrazine (ATR) alters hypothalamic dopamine (HYP-DA) and serum prolactin (sPRL) in male pups. 1Christopher Langdale, 2Tammy Stoker and 2Ralph Cooper. 1 Dept. of Cell Biology, North Carolina State University College of Veterinary Medicine, Raleigh, NC. 2 Endocrinology ...
NASA Astrophysics Data System (ADS)
Kumar, Mohan; Swamy, B. E. Kumara; Asif, M. H. Mohammed; Viswanath, C. C.
2017-03-01
Herein, established the synthesis of graphene oxide (GO) by Hummers Method with addition of KMnO4 followed by thermal heating at 80 °C. The obtained GO was further functionalized by alanine and tyrosine. The prepared GO, alanine functionalized GO nanoflakes (AGONF) and tyrosine functionalized GO nanoflakes (TGONF) were characterized by spectroscopic technique using energy-dispersive spectroscopy (EDS), quantitatively by scanning electron microscopy (SEM) and structural studies along with interlayer distance verified through X-ray diffraction technique. Afterwards, the prepared AGONF and TGONF were used as the modifier for the carbon paste electrode (CPE). The electrochemical behavior of the AGONF and TGONF modified carbon paste electrodes (MCPEs) towards dopamine (DA) in phosphate buffer solution (PBS) were examined by cyclic voltammetric (CV) technique and the obtained consequences showed good electrocatalytic activity of MCPEs by increasing the redox peak current with a lower potential difference compared to the bare CPE (BCPE). The AGONF and TGONF MCPEs were further used for the optimization studies. From the pH studies, it was found that the equal number of proton and electron transfer reaction involved in both the modified electrodes. The scan rate studies demonstrate the adsorption controlled electrode process at AGONF MCPE and diffusion controlled at TGONF MCPE. The oxidation peak current increased linearly with two concentration interval of DA at a range of 2-7 μM and 10-30 μM in presence of PBS (pH 7.4) at MCPEs and the limit of detection (LOD) were found to be 0.84 μM and 0.96 μM for first interval DA concentration range (2-7 μM) at AGONF and TGONF MCPE. The stability, repeatability and reproducibility of functionalized GO nanoflakes MCPEs at DA were studied and established excellent characteristics. The newly developed functionalized GO nanoflake electrodes were successfully tested in DA injection sample. Furthermore the functionalized GO and surfactant (Sodium Alpha Olefin Sulphonate (SAOS)) immobilized functionalized GO MCPEs were examined for simultaneous determination of DA and ascorbic acid (AA) by differential pulse voltammetric technique.
Apomorphine effects on frog locomotor behavior.
Chu, Joanne; Wilczynski, Walter
2007-05-16
The neuroanatomical pathways of the DA systems have been shown to be largely conserved across many vertebrate taxa. It is less certain whether the structural similarities seen between mammals and amphibians reflect a similar functional homology. DA is well known for its role in facilitating motor behaviors in mammals. We examined whether a similar role for DA exists in amphibians using the Northern Leopard Frog (Rana pipiens). We investigated the effects of the nonspecific DA agonist, apomorphine (APO) on a complex motor task that included two distinct components known to be differentially modulated by DA in mammals: swimming and climbing. We demonstrated that a high single dose of APO (20 mg/kg, body weight) strongly increased the amount of time spent completing the motor task. Furthermore, we showed that although APO did not significantly alter several aspects of swimming behavior, two aspects of climbing behavior were disrupted. Both climbing speed and climbing ability were impaired by APO treatment. These results increase our understanding of DA function in amphibians and add to our understanding of structure-function homologies of dopamine function across vertebrate taxa.
Molecular imaging of the dopaminergic system and its association with human cognitive function.
Cropley, Vanessa L; Fujita, Masahiro; Innis, Robert B; Nathan, Pradeep J
2006-05-15
Molecular imaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) has recently been used to examine dopamine (DA) function and its relationship with cognition in human subjects. This article will review PET and SPECT studies that have explored the relationship between cognitive processes and components of the DA system (pre-, intra-, and postsynaptic) in healthy and patient populations such as Parkinson's disease (PD), schizophrenia, Huntington's disease, and aging. It is demonstrated that DA activity modulates a range of frontal executive-type cognitive processes such as working memory, attentional functioning, and sequential organization, and alterations of DA within the fronto-striato-thalamic circuits might contribute to the cognitive impairments observed in PD, schizophrenia, and normal aging. Although associations between DA and cognitive measures need to be considered within the context of fronto-striato-thalamic circuitry, it is suggested that striatal (especially caudate) DA activity, particularly via D2 receptors, might be important for response inhibition, temporal organization of material, and motor performance, whereas cortical DA transmission via D1 receptors might be important for maintaining and representing on-going behavior.
Reduced levels of Cacna1c attenuate mesolimbic dopamine system function.
Terrillion, C E; Dao, D T; Cachope, R; Lobo, M K; Puche, A C; Cheer, J F; Gould, T D
2017-06-01
Genetic variation in CACNA1C, which codes for the L-type calcium channel (LTCC) Ca v 1.2, is associated with clinical diagnoses of bipolar disorder, depression and schizophrenia. Dysregulation of the mesolimbic-dopamine (ML-DA) system is linked to these syndromes and LTCCs are required for normal DAergic neurotransmission between the ventral tegmental area (VTA) and nucleus accumbens (NAc). It is unclear, however, how variations in CACNA1C genotype, and potential subsequent changes in expression levels in these regions, modify risk. Using constitutive and conditional knockout mice, and treatment with the LTCC antagonist nimodipine, we examined the role of Cacna1c in DA-mediated behaviors elicited by psychomotor stimulants. Using fast-scan cyclic voltammetry, DA release and reuptake in the NAc were measured. We find that subsecond DA release in Cacna1c haploinsufficient mice lacks normal sensitivity to inhibition of the DA transporter (DAT). Constitutive haploinsufficiency of Cacna1c led to attenuation of hyperlocomotion following acute administration of stimulants specific to DAT, and locomotor sensitization of these mice to the DAT antagonist GBR12909 did not reach the same level as wild-type mice. The maintenance of sensitization to GBR12909 was attenuated by administration of nimodipine. Sensitization to GBR12909 was attenuated in mice with reduced Cacna1c selectively in the VTA but not in the NAc. Our findings show that Cacna1c is crucial for normal behavioral responses to DA stimulants and that its activity in the VTA is required for behavioral sensitization. Cacna1c likely exerts these effects through modifications to presynaptic ML-DA system function. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Striatal dopamine neurotransmission: regulation of release and uptake
Sulzer, David; Cragg, Stephanie J.; Rice, Margaret E.
2016-01-01
Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients. PMID:27141430
Lippert, Rachel N; Ellacott, Kate L J; Cone, Roger D
2014-05-01
The melanocortin-3 receptor (MC3R) and MC4R are known to play critical roles in energy homeostasis. However, the physiological functions of the MC3R remain poorly understood. Earlier reports indicated that the ventral tegmental area (VTA) is one of the highest sites of MC3R expression, and we sought to determine the function of the receptor in this brain region. A MC3R-green-fluorescent protein transgenic mouse and a MC3R knockout mouse strain were used to characterize the neurochemical identity of the MC3R neurons in the VTA and to determine the effects of global MC3R deletion on VTA dopamine (DA) homeostasis. We demonstrate that the MC3R, but not MC4R, is expressed in up to a third of dopaminergic neurons of the VTA. Global deletion of the MC3R increases total dopamine by 42% in the VTA and decreases sucrose intake and preference in female but not male mice. Ovariectomy restores dopamine levels to normal, but aberrant decreased VTA dopamine levels are also observed in prepubertal female mice. Because arcuate Agouti-related peptide/neuropeptide Y neurons are known to innervate and regulate VTA signaling, the MC3R in dopaminergic neurons provides a specific input for communication of nutritional state within the mesolimbic dopamine system. Data provided here suggest that this input may be highly sexually dimorphic, functioning as a specific circuit regulating effects of estrogen on VTA dopamine levels and on sucrose preference. Overall, this data support a sexually dimorphic function of MC3R in regulation of the mesolimbic dopaminergic system and reward.
Slagter, H A; van Wouwe, N C; Kanoff, K; Grasman, R P P P; Claassen, D O; van den Wildenberg, W P M; Wylie, S A
2016-10-01
The current study aimed to shed more light on the role of dopamine in temporal attention. To this end, we pharmacologically manipulated dopamine levels in a large sample of Parkinson's disease patients (n=63) while they performed an attentional blink (AB) task in which they had to identify two targets (T1 and T2) presented in close temporal proximity among distractors. We specifically examined 1) differences in the magnitude of the AB between unmedicated Parkinson patients, who have depleted levels of striatal dopamine, and healthy controls, and 2) effects of two dopaminergic medications (l-DOPA and dopamine agonists) on the AB in the Parkinson patients at the group level and as a function of individual baseline performance. In line with the notion that relatively low levels of striatal dopamine may impair target detection in general, Parkinson patients OFF medications displayed overall poor target perception compared to healthy controls. Moreover, as predicted, effects of dopaminergic medication on AB performance critically depended on individual baseline AB size, although this effect was only observed for l-DOPA. l-DOPA generally decreased the size of the AB in patients with a large baseline AB (i.e., OFF medications), while l-DOPA generally increased the AB in patients with a small baseline AB. These findings may support a role for dopamine in the AB and temporal attention, more generally and corroborate the notion that there is an optimum dopamine level for cognitive function. They also emphasize the need for more studies that examine the separate effects of DA agonists and l-DOPA on cognitive functioning. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guerreiro, Serge; Florence, Clélia; Rousseau, Erwann; Hamadat, Sabah; Hirsch, Etienne C; Michel, Patrick P
2015-01-01
To determine whether orexinergic hypothalamic peptides can influence the survival of brainstem dopamine (DA) neurons, we used a model system of rat midbrain cultures in which DA neurons degenerate spontaneously and progressively as they mature. We established that orexin (OX)-B provides partial but significant protection to spontaneously dying DA neurons, whereas the homologous peptide OXA has only marginal effects. Importantly, DA neurons rescued by OXB accumulated DA efficiently by active transport, suggesting that they were functional. G-protein-coupled OX1 and OX2 receptors were both present on DA neurons, but the protective effect of OXB was attributable solely to OX2 receptors; a selective inhibitor of this receptor subtype, N-ethyl-2-[(6-methoxy-3-pyridinyl)[(2-methylphenyl)sulfonyl]amino]-N-(3-pyridinylmethyl)-acetamide (EMPA), suppressed this effect, whereas a selective agonist, [Ala(11), d-Leu(15)]OXB, reproduced it. Survival promotion by OXB required intracellular calcium mobilization via inositol-1,4,5-triphosphate and ryanodine receptors. Nicotine, a well known neuroprotective molecule for DA neurons, improved OXB-mediated rescue through the activation of α-bungarotoxin-sensitive (presumably α7) nicotinic receptors, although nicotine had no effect on its own. Altogether, our data suggest that the loss of hypothalamic orexinergic neurons that occurs in Parkinson's disease might confer an increased vulnerability to midbrain DA neurons in this disorder. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
NASA Astrophysics Data System (ADS)
Sherlin, Y. Sheeba; Vijayakumar, T.; Roy, S. D. D.; Jayakumar, V. S.
2018-05-01
Molecular geometry of Parkinson's drug 2-(3,4-Dihydroxyphenyl)ethylamine hydrochloride (Dopamine, DA) has been evaluated and compared with experimental XRD data. Molecular docking and vibrational spectral analysis of DA have been carried out using FT-Raman and FT-IR spectra aided by Density Functional Theory at B3LYP/6-311++G(d,p). The present investigation deals with the analysis of structural and spectral features responsible for drug activities, nature of hydrogen bonding interactions of the molecule and the correlation of Parkinson's nature with its molecular structural features.
Dominguez, J M; Hull, E M
2001-11-02
Increased dopamine (DA) in the medial preoptic area (MPOA) facilitates male sexual behavior. A major source of innervation to the MPOA is the medial amygdala (MeA). We now report that chemical stimulation of the MeA enhanced levels of extracellular MPOA DA in anesthetized male rats. These results suggest that DA activity in the MPOA can be regulated by input from the MeA to the MPOA.
Ethanol and Mesolimbic Serotonin/Dopamine Interactions via 5HT-1B Receptors
2007-03-01
of [3H]DA in the presence of the monoamine oxidase inhibitor pargyline to minimize the formation of DA metabolites. Under these experimental... human genetics and in animal models, and to play a role in regulating alcohol voluntary intakes. 15. SUBJECT TERMS Ethanol, Dopamine, Serotonin...ip to the KO and WT mice, respectively. Twenty minutes later, each mouse received an ethanol injection (1 or 2 g/kg, ip) and extracellular DA in the
De Gois, Stéphanie; Slama, Patrick; Pietrancosta, Nicolas; Erdozain, Amaia M; Louis, Franck; Bouvrais-Veret, Caroline; Daviet, Laurent; Giros, Bruno
2015-07-17
Dopamine (DA) is a major regulator of sensorimotor and cognitive functions. The DA transporter (DAT) is the key protein that regulates the spatial and temporal activity of DA release into the synaptic cleft via the rapid reuptake of DA into presynaptic termini. Several lines of evidence have suggested that transporter-interacting proteins may play a role in DAT function and regulation. Here, we identified the tetratricopeptide repeat domain-containing protein Ctr9 as a novel DAT binding partner using a yeast two-hybrid system. We showed that Ctr9 is expressed in dopaminergic neurons and forms a stable complex with DAT in vivo via GST pulldown and co-immunoprecipitation assays. In mammalian cells co-expressing both proteins, Ctr9 partially colocalizes with DAT at the plasma membrane. This interaction between DAT and Ctr9 results in a dramatic enhancement of DAT-mediated DA uptake due to an increased number of DAT transporters at the plasma membrane. We determined that the binding of Ctr9 to DAT requires residues YKF in the first half of the DAT C terminus. In addition, we characterized Ctr9, providing new insight into this protein. Using three-dimensional modeling, we identified three novel tetratricopeptide repeat domains in the Ctr9 sequence, and based on deletion mutation experiments, we demonstrated the role of the SH2 domain of Ctr9 in nuclear localization. Our results demonstrate that Ctr9 localization is not restricted to the nucleus, as previously described for the transcription complex Paf1. Taken together, our data provide evidence that Ctr9 modulates DAT function by regulating its trafficking. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Bi, Changfen; Zhao, Yingran; Shen, Lijin; Zhang, Kai; He, Xiwen; Chen, Langxing; Zhang, Yukui
2015-11-11
The development of methods to isolate and enrich low-abundance glycopeptides from biological samples is crucial to glycoproteomics. Herein, we present an easy and one-step surface modification strategy to prepare hydrophilic maltose functionalized Fe3O4 nanoparticles (NPs). First, based on the chelation of the catechol ligand with iron atoms, azido-terminated dopamine (DA) derivative was assembled on the surface of magnetic Fe3O4 nanoparticles by sonication. Second, the hydrophilic maltose-functionalized Fe3O4 (Fe3O4-DA-Maltose) NPs were obtained via copper(I)-catalyzed azide-alkyne cycloaddition (click chemistry). The morphology, structure, and composition of Fe3O4-DA-Maltose NPs were investigated by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), X-ray photoelectron spectrometer (XPS), and vibrating sample magnetometer (VSM). Meanwhile, hydrophilicity of the obtained NPs was evaluated by water contact angle measurement. The hydrophilic Fe3O4-DA-Maltose NPs were applied in isolation and enrichment of glycopeptides from horseradish peroxidase (HRP), immunoglobulin (IgG) digests. The MALDI-TOF mass spectrometric analysis indicated that the novel NPs exhibited high detection sensitivity in enrichment from HRP digests at concentration as low as 0.05 ng μL(-1), a large binding capacity up to 43 mg g(-1), and good recovery for glycopeptides enrichment (85-110%). Moreover, the Fe3O4-DA-Maltose NPs were applied to enrich glycopeptides from human renal mesangial cells (HRMC) for identification of N-glycosylation sites. Finally, we identified 115 different N-linked glycopeptides, representing 93 gene products and 124 glycosylation sites in HRMC.
Prosser, E S; Pruthi, R; Csernansky, J G
1989-01-01
The onset and persistence of changes in 3H-spiroperidol binding to dopamine (DA) D2 receptors were examined in rat mesolimbic and striatal brain regions following daily administration of haloperidol, molindone, or sulpiride for 3, 7, 14, or 28 days. Neuroleptic dose equivalencies were determined by inhibition of 3H-spiroperidol in vivo binding in several rat brain regions. Changes in locomotor and stereotyped responses to the specific DA D2 agonist quinpirole were examined 3 days after the last treatment dose. Haloperidol or molindone administration increased mean stereotypy scores and striatal DA D2 receptor densities throughout the 28-day treatment period. In contrast, mesolimbic DA D2 receptor densities were transiently increased and returned to control values, after 28 days of haloperidol or molindone treatment. Sulpiride treatment increased mean stereotypy scores and striatal Bmax values, but had no effect on locomotion or mesolimbic dopamine receptor density. Additionally, the magnitude of change in the various measures of brain DA function varied among the three neuroleptic treatment groups. Results from this study suggest that mesolimbic and striatal brain regions differ in their response to long-term neuroleptic administration and that drug choice may influence the magnitude of neuroleptic-induced dopaminergic supersensitivity.
Development of a Dual Tracer PET Method for Imaging Dopaminergic Neuromodulation
NASA Astrophysics Data System (ADS)
Converse, Alexander K.; Dejesus, Onofre T.; Flores, Leo G.; Holden, James E.; Kelley, Ann E.; Moirano, Jeffrey M.; Nickles, Robert J.; Oakes, Terrence R.; Roberts, Andrew D.; Ruth, Thomas J.; Vandehey, Nicholas T.; Davidson, Richard J.
2006-04-01
The modulatory neurotransmittor dopamine (DA) is involved in movement and reward behaviors, and malfunctions in the dopamine system are implicated in a variety of prevalent and debilitating pathologies including Parkinson's disease, attention deficit/hyperactivity disorder, schizophrenia, and addiction. Positron emission tomography (PET) has been used to separately measure changes in DA receptor occupancy and blood flow in response to various interventions. Here we describe a dual tracer PET method to simultaneously measure both responses with the aim of comparing DA release in particular areas of the brain and associated alterations in neural activity throughout the brain. Significant correlations between reductions in DA receptor occupancy and blood flow alterations would be potential signs of dopaminergic modulation, i.e. modifications in signal processing due to increased levels of extracellular DA. Methodological development has begun with rats undergoing an amphetamine challenge while being scanned with the blood flow tracer [17F]fluoromethane and the dopamine D2 receptor tracer [18F]desmethoxyfallypride.
Direct Midbrain Dopamine Input to the Suprachiasmatic Nucleus Accelerates Circadian Entrainment.
Grippo, Ryan M; Purohit, Aarti M; Zhang, Qi; Zweifel, Larry S; Güler, Ali D
2017-08-21
Dopamine (DA) neurotransmission controls behaviors important for survival, including voluntary movement, reward processing, and detection of salient events, such as food or mate availability. Dopaminergic tone also influences circadian physiology and behavior. Although the evolutionary significance of this input is appreciated, its precise neurophysiological architecture remains unknown. Here, we identify a novel, direct connection between the DA neurons of the ventral tegmental area (VTA) and the suprachiasmatic nucleus (SCN). We demonstrate that D1 dopamine receptor (Drd1) signaling within the SCN is necessary for properly timed resynchronization of activity rhythms to phase-shifted light:dark cycles and that elevation of DA tone through selective activation of VTA DA neurons accelerates photoentrainment. Our findings demonstrate a previously unappreciated role for direct DA input to the master circadian clock and highlight the importance of an evolutionarily significant relationship between the circadian system and the neuromodulatory circuits that govern motivational behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Linehan, Victoria; Trask, Robert B; Briggs, Chantalle; Rowe, Todd M; Hirasawa, Michiru
2015-08-01
Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups: orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying the action of DA on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using the whole-cell patch-clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration-dependent bidirectional manner. Low (1 μM) and high (100 μM) concentrations of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G-protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Pro-oxidant effects of Ecstasy and its metabolites in mouse brain synaptosomes
Barbosa, Daniel José; Capela, João Paulo; Oliveira, Jorge MA; Silva, Renata; Ferreira, Luísa Maria; Siopa, Filipa; Branco, Paula Sério; Fernandes, Eduarda; Duarte, José Alberto; de Lourdes Bastos, Maria; Carvalho, Félix
2012-01-01
BACKGROUND AND PURPOSE 3,4-Methylenedioxymethamphetamine (MDMA or ‘Ecstasy’) is a worldwide major drug of abuse known to elicit neurotoxic effects. The mechanisms underlying the neurotoxic effects of MDMA are not clear at present, but the metabolism of dopamine and 5-HT by monoamine oxidase (MAO), as well as the hepatic biotransformation of MDMA into pro-oxidant reactive metabolites is thought to contribute to its adverse effects. EXPERIMENTAL APPROACH Using mouse brain synaptosomes, we evaluated the pro-oxidant effects of MDMA and its metabolites, α-methyldopamine (α-MeDA), N-methyl-α-methyldopamine (N-Me-α-MeDA) and 5-(glutathion-S-yl)-α-methyldopamine [5-(GSH)-α-MeDA], as well as those of 5-HT, dopamine, l-DOPA and 3,4-dihydroxyphenylacetic acid (DOPAC). KEY RESULTS 5-HT, dopamine, l-DOPA, DOPAC and MDMA metabolites α-MeDA, N-Me-α-MeDA and 5-(GSH)-α-MeDA, concentration- and time-dependently increased H2O2 production, which was significantly reduced by the antioxidants N-acetyl-l-cysteine (NAC), ascorbic acid and melatonin. From experiments with MAO inhibitors, it was observed that H2O2 generation induced by 5-HT was totally dependent on MAO-related metabolism, while for dopamine, it was a minor pathway. The MDMA metabolites, dopamine, l-DOPA and DOPAC concentration-dependently increased quinoproteins formation and, like 5-HT, altered the synaptosomal glutathione status. Finally, none of the compounds modified the number of polarized mitochondria in the synaptosomal preparations, and the compounds’ pro-oxidant effects were unaffected by prior mitochondrial depolarization, excluding a significant role for mitochondrial-dependent mechanisms of toxicity in this experimental model. CONCLUSIONS AND IMPLICATIONS MDMA metabolites along with high levels of monoamine neurotransmitters can be major effectors of neurotoxicity induced by Ecstasy. PMID:21506960
Laviolette, Steven R
2007-07-01
The neural regulation of emotional perception, learning, and memory is essential for normal behavioral and cognitive functioning. Many of the symptoms displayed by individuals with schizophrenia may arise from fundamental disturbances in the ability to accurately process emotionally salient sensory information. The neurotransmitter dopamine (DA) and its ability to modulate neural regions involved in emotional learning, perception, and memory formation has received considerable research attention as a potential final common pathway to account for the aberrant emotional regulation and psychosis present in the schizophrenic syndrome. Evidence from both human neuroimaging studies and animal-based research using neurodevelopmental, behavioral, and electrophysiological techniques have implicated the mesocorticolimbic DA circuit as a crucial system for the encoding and expression of emotionally salient learning and memory formation. While many theories have examined the cortical-subcortical interactions between prefrontal cortical regions and subcortical DA substrates, many questions remain as to how DA may control emotional perception and learning and how disturbances linked to DA abnormalities may underlie the disturbed emotional processing in schizophrenia. Beyond the mesolimbic DA system, increasing evidence points to the amygdala-prefrontal cortical circuit as an important processor of emotionally salient information and how neurodevelopmental perturbances within this circuitry may lead to dysregulation of DAergic modulation of emotional processing and learning along this cortical-subcortical emotional processing circuit.
Meller, E; Friedman, E
1982-03-01
The effects of molindone (2.5, 10 and 40 mg/kg) on striatal tyrosine hydroxylase activity and dopamine (DA), 3,4-dihydroxyphenylacetic acid and homovanillic acid levels were measured as a function of time (0-72 hr). Whereas a dose of 2.5 mg/kg produced effects typical of DA receptor blockade (activation of synaptosomal tyrosine hydroxylase, increased DA metabolite levels and unchanged DA levels), a dose of 40 mg/kg produced opposite effects (decreased tyrosine hydroxylase activity and metabolite concentrations and elevated DA levels). A dose of 10 mg/kg elicited intermediate effects. The atypical effects of both higher doses were long-lasting (less than 72 hr). Molindone at doses of 10 or 40 mg/kg, but nor 2.5 mg/kg, selectively, irreversibly and dose-dependently inhibited type A monoamine oxidase. This inhibition appeared to be due to a metabolite, inasmuch as the drug itself inhibited monoamine oxidase (reversibly) only at high concentrations (less than or equal to 10(-4) M). The heretofore unsuspected inhibition of monoamine oxidase by molindone provided a consistent mechanistic interpretation of the differential dose- and time-dependent effects of the drug on dopaminergic neuronal activity. This mechanism may also serve to explain the reported efficacy of molindone in animal tests for antidepressant activity as well as its inability to produce increased DA receptor binding after chronic treatment.
Morrison, Thomas R.; Ricci, Lesley A.; Melloni, Richard H.
2015-01-01
In pubertal male Syrian hamsters, exposure to anabolic/androgenic steroids (AAS) during adolescence facilitates a high level of offensive aggression modulated by the enhanced development and activity of the vasopressin (AVP) and dopamine (DA) neural systems within the latero-anterior hypothalamus (LAH), i.e., a brain region implicated in the control of aggression. The present studies provide a detailed report of the pharmacologic interactions between AVP and DA D2 receptor signaling within the LAH in the control of adolescent AAS-induced offensive aggression. Male Syrian hamsters were treated with AAS throughout adolescence and tested for aggression after local infusion of the DA D2 receptor antagonist eticlopride (ETIC) alone, or in combination with AVP in the LAH in an effort to determine the influence of DA D2 receptors relative to AVP-receptor mediated aggression mechanisms. As previously shown, ETIC infusion into the LAH suppressed adolescent AAS-induced aggressive responding; however, the AAS-induced aggressive phenotype was rescued by the co-infusion of AVP into the LAH. These behavioral data indicate that interactions between AVP and DA neural systems within the LAH modulate the control of aggression following adolescent exposure to AAS and that DA D2 receptor signaling functions upstream of AVP in the LAH to control this behavioral response. PMID:25798632
Anastasaki, Corina; Woo, Albert S; Messiaen, Ludwine M; Gutmann, David H
2015-06-15
Neurofibromatosis type 1 (NF1) is a common autosomal dominant neurologic condition characterized by significant clinical heterogeneity, ranging from malignant cancers to cognitive deficits. Recent studies have begun to reveal rare genotype-phenotype correlations, suggesting that the specific germline NF1 gene mutation may be one factor underlying disease heterogeneity. The purpose of this study was to define the impact of the germline NF1 gene mutation on brain neurofibromin function relevant to learning. Herein, we employ human NF1-patient primary skin fibroblasts, induced pluripotent stem cells and derivative neural progenitor cells (NPCs) to demonstrate that NF1 germline mutations have dramatic effects on neurofibromin expression. Moreover, while all NF1-patient NPCs exhibit increased RAS activation and reduced cyclic AMP generation, there was a neurofibromin dose-dependent reduction in dopamine (DA) levels. Additionally, we leveraged two complementary Nf1 genetically-engineered mouse strains in which hippocampal-based learning and memory is DA-dependent to establish that neuronal DA levels and signaling as well as mouse spatial learning are controlled in an Nf1 gene dose-dependent manner. Collectively, this is the first demonstration that different germline NF1 gene mutations differentially dictate neurofibromin function in the brain. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2011-01-01
Background Dopamine-synthesizing (dopaminergic, DA) neurons in the ventral midbrain (VM) constitute a pivotal neuronal population controlling motor behaviors, cognitive and affective brain functions, which generation critically relies on the activation of Wingless-type MMTV integration site (Wnt)/β-catenin pathway in their progenitors. In Parkinson's disease, DA cell bodies within the substantia nigra pars compacta (SNpc) progressively degenerate, with causes and mechanisms poorly understood. Emerging evidence suggests that Wnt signaling via Frizzled (Fzd) receptors may play a role in different degenerative states, but little is known about Wnt signaling in the adult midbrain. Using in vitro and in vivo model systems of DA degeneration, along with functional studies in both intact and SN lesioned mice, we herein highlight an intrinsic Wnt1/Fzd-1/β-catenin tone critically contributing to the survival and protection of adult midbrain DA neurons. Results In vitro experiments identifie Fzd-1 receptor expression at a mRNA and protein levels in dopamine transporter (DAT) expressing neurons, and demonstrate the ability of exogenous Wnt1 to exert robust neuroprotective effects against Caspase-3 activation, the loss of tyrosine hydroxylase-positive (TH+) neurons and [3H] dopamine uptake induced by different DA-specific insults, including serum and growth factor deprivation, 6-hydroxydopamine and MPTP/MPP+. Co-culture of DA neurons with midbrain astrocytes phenocopies Wnt1 neuroprotective effects, whereas RNA interference-mediated knockdown of Wnt1 in midbrain astrocytes markedly reduces astrocyte-induced TH+ neuroprotection. Likewise, silencing β-catenin mRNA or knocking down Fzd-1 receptor expression in mesencephalic neurons counteract astrocyte-induced TH+ neuroprotection. In vivo experiments document Fzd-1 co-localization with TH+ neurons within the intact SNpc and blockade of Fzd/β-catenin signaling by unilateral infusion of a Fzd/β-catenin antagonist within the SN induces reactive astrocytosis and acutely inhibits TH+ neuron survival in ipsilateral SNpc, an effect efficiently prevented by pharmacological activation of β-catenin signaling within the SNpc. Conclusion These results defining a novel Wnt1/Fzd-1/β-catenin astrocyte-DA autoprotective loop provide a new mechanistic inside into the regulation of pro-survival processes, with potentially relevant consequences for drug design or drug action in Parkinson's disease. PMID:21752258
To Do or Not to Do: Dopamine, Affordability and the Economics of Opportunity.
Beeler, Jeff A; Mourra, Devry
2018-01-01
Five years ago, we introduced the thrift hypothesis of dopamine (DA), suggesting that the primary role of DA in adaptive behavior is regulating behavioral energy expenditure to match the prevailing economic conditions of the environment. Here we elaborate that hypothesis with several new ideas. First, we introduce the concept of affordability, suggesting that costs must necessarily be evaluated with respect to the availability of resources to the organism, which computes a value not only for the potential reward opportunity, but also the value of resources expended. Placing both costs and benefits within the context of the larger economy in which the animal is functioning requires consideration of the different timescales against which to compute resource availability, or average reward rate. Appropriate windows of computation for tracking resources requires corresponding neural substrates that operate on these different timescales. In discussing temporal patterns of DA signaling, we focus on a neglected form of DA plasticity and adaptation, changes in the physical substrate of the DA system itself, such as up- and down-regulation of receptors or release probability. We argue that changes in the DA substrate itself fundamentally alter its computational function, which we propose mediates adaptations to longer temporal horizons and economic conditions. In developing our hypothesis, we focus on DA D2 receptors (D2R), arguing that D2R implements a form of "cost control" in response to the environmental economy, serving as the "brain's comptroller". We propose that the balance between the direct and indirect pathway, regulated by relative expression of D1 and D2 DA receptors, implements affordability. Finally, as we review data, we discuss limitations in current approaches that impede fully investigating the proposed hypothesis and highlight alternative, more semi-naturalistic strategies more conducive to neuroeconomic investigations on the role of DA in adaptive behavior.
To Do or Not to Do: Dopamine, Affordability and the Economics of Opportunity
Beeler, Jeff A.; Mourra, Devry
2018-01-01
Five years ago, we introduced the thrift hypothesis of dopamine (DA), suggesting that the primary role of DA in adaptive behavior is regulating behavioral energy expenditure to match the prevailing economic conditions of the environment. Here we elaborate that hypothesis with several new ideas. First, we introduce the concept of affordability, suggesting that costs must necessarily be evaluated with respect to the availability of resources to the organism, which computes a value not only for the potential reward opportunity, but also the value of resources expended. Placing both costs and benefits within the context of the larger economy in which the animal is functioning requires consideration of the different timescales against which to compute resource availability, or average reward rate. Appropriate windows of computation for tracking resources requires corresponding neural substrates that operate on these different timescales. In discussing temporal patterns of DA signaling, we focus on a neglected form of DA plasticity and adaptation, changes in the physical substrate of the DA system itself, such as up- and down-regulation of receptors or release probability. We argue that changes in the DA substrate itself fundamentally alter its computational function, which we propose mediates adaptations to longer temporal horizons and economic conditions. In developing our hypothesis, we focus on DA D2 receptors (D2R), arguing that D2R implements a form of “cost control” in response to the environmental economy, serving as the “brain’s comptroller”. We propose that the balance between the direct and indirect pathway, regulated by relative expression of D1 and D2 DA receptors, implements affordability. Finally, as we review data, we discuss limitations in current approaches that impede fully investigating the proposed hypothesis and highlight alternative, more semi-naturalistic strategies more conducive to neuroeconomic investigations on the role of DA in adaptive behavior. PMID:29487508
Robinson, John D; Howard, Christopher D; Pastuzyn, Elissa D; Byers, Diane L; Keefe, Kristen A; Garris, Paul A
2014-08-01
Phasic dopamine (DA) signaling, during which burst firing by DA neurons generates short-lived elevations in extracellular DA in terminal fields called DA transients, is implicated in reinforcement learning. Disrupted phasic DA signaling is proposed to link DA depletions and cognitive-behavioral impairment in methamphetamine (METH)-induced neurotoxicity. Here, we further investigated this disruption by assessing effects of METH pretreatment on DA transients elicited by a drug cocktail of raclopride, a D2 DA receptor antagonist, and nomifensine, an inhibitor of the dopamine transporter (DAT). One advantage of this approach is that pharmacological activation provides a large, high-quality data set of transients elicited by endogenous burst firing of DA neurons for analysis of regional differences and neurotoxicity. These pharmacologically evoked DA transients were measured in the dorsomedial (DM) and dorsolateral (DL) striatum of urethane-anesthetized rats by fast-scan cyclic voltammetry. Electrically evoked DA levels were also recorded to quantify DA release and uptake, and DAT binding was determined by means of autoradiography to index DA denervation. Pharmacologically evoked DA transients in intact animals exhibited a greater amplitude and frequency and shorter duration in the DM compared to the DL striatum, despite similar pre- and post-drug assessments of DA release and uptake in both sub-regions as determined from the electrically evoked DA signals. METH pretreatment reduced transient activity. The most prominent effect of METH pretreatment on transients across striatal sub-region was decreased amplitude, which mirrored decreased DAT binding and was accompanied by decreased DA release. Overall, these results identify marked intrastriatal differences in the activity of DA transients that appear independent of presynaptic mechanisms for DA release and uptake and further support disrupted phasic DA signaling mediated by decreased DA release in rats with METH-induced neurotoxicity.
Lu, Yao; Driscoll, Nicolette; Ozden, Ilker; Yu, Zeyang; Nurmikko, Arto V.
2015-01-01
Abstract. Dopamine (DA) release and uptake dynamics in the nucleus accumbens (NAc) have important implications for neurological diseases and mammalian animal behaviors. We demonstrate here the use of cell-type-specific optogenetic targeting in conjunction with fast-scan cyclic voltammetry applied to brain slices prepared from specifically tailored transgenic mice, which conditionally express channelrhodopsin-2 (ChR2) through dopamine transporter (DAT)-Cre. Terminal dopaminergic dynamics and the direct manipulation of induced DA release level by controlling light intensity, pulse width, and the shape of stimulation waveforms were studied. Effective cell terminal-targeting optogenetic induction of DA release at physiological levels in NAc is demonstrated and discussed. It was found that delivering more light energy by increasing stimulation intensity and length is not the only way to control DA release; the temporal shape of the stimulus waveform at light onset is also critically related to induced DA concentrations. In addition, DA uptake dynamics as well as the recovery of the presynaptic releasable DA pool are studied and modeled. More broadly, our experimental findings provide important further evidence for effectively applying optogenetics to induce neurotransmitter release in the behaviorally relevant region of the brain in a highly cell-type selective context. PMID:26171413
Kahn, R S; Davidson, M; Kanof, P; McQueeney, R T; Singh, R R; Davis, K L
1991-01-01
In laboratory animals, prostaglandins have been shown to act as endogenous neuromodulators of central dopamine (DA) activity. To examine the interaction between prostaglandins and DA in man, the effect of a prostaglandin synthesis inhibitor, indomethacin, was studied on plasma concentrations of the DA metabolite, homovanillic acid (pHVA). Indomethacin (150 mg PO) as compared to placebo significantly elevated mean pHVA concentrations in eight normal subjects. Results of this study support the hypothesis that, as in animals, inhibition of prostaglandin synthesis increases central DA turnover in man.
Grant, R J; Clarke, P B S
2002-01-01
The aims of this study were to determine (1) whether mesolimbic and nigrostriatal DA cell bodies degenerate to different extents after 6-hydroxydopamine (6-OHDA) is administered into their respective terminal fields and (2) whether hypothermia, associated with sodium pentobarbital anesthesia, protects DA neurons from the toxic effects of 6-OHDA. To address these questions, 6-OHDA or vehicle was infused into either the ventral or dorsal striatum or into the medial forebrain bundle, under conditions of brain normothermia or hypothermia. Two weeks post-surgery, tyrosine hydroxylase-positive cell bodies were counted in the ventral tegmental area (VTA) and substantia nigra. In addition, autoradiographic labeling of tyrosine hydroxylase protein and dopamine transporter was quantified in dopamine terminal fields and cell body areas. Overall, DA cell bodies in the VTA were substantially less susceptible than those in the substantia nigra to depletion of dopaminergic markers. Hypothermia provided two types of neuroprotection. The first occurred when 6-OHDA was administered into the dorsal striatum, and was associated with a 30-50% increase in residual dopaminergic markers in the lateral portion of the VTA. The second neuroprotective effect of hypothermia occurred when 6-OHDA was given into the medial forebrain bundle. This was associated with a 200-300% increase in residual dopaminergic markers in the mesolimbic and nigrostriatal terminal fields; no significant protection occurred in the cell body regions.Collectively, these findings show that (1) the dopaminergic somata in the substantia nigra are more susceptible than those in the VTA to 6-OHDA-induced denervation, and (2) hypothermia can provide anatomically selective neuroprotection within the substantia nigra-VTA cell population. The continued survival of mesolimbic dopamine cell bodies after a 6-OHDA lesion may have functional implications relating to drugs of abuse, as somatodendritic release of dopamine in the VTA has been shown to play a role in the effectiveness of cocaine reward.
Differential dopamine function in fibromyalgia.
Albrecht, Daniel S; MacKie, Palmer J; Kareken, David A; Hutchins, Gary D; Chumin, Evgeny J; Christian, Bradley T; Yoder, Karmen K
2016-09-01
Approximately 30 % of Americans suffer from chronic pain disorders, such as fibromyalgia (FM), which can cause debilitating pain. Many pain-killing drugs prescribed for chronic pain disorders are highly addictive, have limited clinical efficacy, and do not treat the cognitive symptoms reported by many patients. The neurobiological substrates of chronic pain are largely unknown, but evidence points to altered dopaminergic transmission in aberrant pain perception. We sought to characterize the dopamine (DA) system in individuals with FM. Positron emission tomography (PET) with [(18)F]fallypride (FAL) was used to assess changes in DA during a working memory challenge relative to a baseline task, and to test for associations between baseline D2/D3 availability and experimental pain measures. Twelve female subjects with FM and 11 female controls completed study procedures. Subjects received one FAL PET scan while performing a "2-back" task, and one while performing a "0-back" (attentional control, "baseline") task. FM subjects had lower baseline FAL binding potential (BP) in several cortical regions relative to controls, including anterior cingulate cortex. In FM subjects, self-reported spontaneous pain negatively correlated with FAL BP in the left orbitofrontal cortex and parahippocampal gyrus. Baseline BP was significantly negatively correlated with experimental pain sensitivity and tolerance in both FM and CON subjects, although spatial patterns of these associations differed between groups. The data suggest that abnormal DA function may be associated with differential processing of pain perception in FM. Further studies are needed to explore the functional significance of DA in nociception and cognitive processing in chronic pain.
Byrnes, E M; Bruno, J P
1994-09-01
The D1- and D2-mediation of stimulated motor behavior was studied in pups (Days 10-11) and weanlings (Days 20-21) that had been depleted of dopamine (DA) on postnatal Day 3. Administration of the D1-like agonist SKF 38393 (30.0 mg/kg) or the D2-like agonist quinpirole (3.0 mg/kg) increased the incidence of sniffing and locomotion in intact and DA-depleted animals tested at either age. However, the ability of selective DA antagonists to reduce these stimulated responses interacted with both the depletion and the age at the time of testing. When tested as pups, both the D1 antagonist SCH 23390 (0.2 or 0.4 mg/kg) and the D2 antagonist clebopride (10.0 mg/kg) suppressed the behaviors induced by either class of DA agonist. When tested as weanlings, intact animals exhibited the profile of pups (i.e., either antagonist blocked each agonist). In DA-depleted weanlings, however, only the D1 antagonist blocked the D1 agonist-induced responses and only the D2 antagonist blocked the D2 agonist-induced responses. These data demonstrate that the interactions between D1 and D2 receptors in the expression of stimulated motor behaviors are altered following DA depletions in neonates. Moreover, this change in receptor function occurs sometime between 7 and 13 days after the DA depletion.
Mao, Hui; Liang, Jiachen; Ji, Chunguang; Zhang, Haifeng; Pei, Qi; Zhang, Yuyang; Zhang, Yu; Hisaeda, Yoshio; Song, Xi-Ming
2016-08-01
Poly(3-(1-vinylimidazolium-3-yl)propane-1-sulfonate) (PVIPS), a novel kind of poly(zwitterionic liquids) (PZILs) containing both imidazolium cation and sulfonate anion, was successfully modified on the surface of polypyrrole/graphene oxide nanosheets (PPy/GO) by covalent bonding. The obtained novel PZILs functionalized PPy/GO nanosheets (PVIPS/PPy/GO) modified glassy carbon electrode (GCE) presented the excellent electrochemical catalytic activity towards dopamine (DA) with high stability, sensitivity, selectivity and wide linear range (40-1220nM), especially having a lower detection limit (17.3nM). The excellent analytical performance is attributed to the strongly negative charges on the surface of modified GCE in aqueous solution, which is different from conventional poly(ionic liquids) modified GCE. DA cations could be quickly enriched on the electrode surface by electrostatic interaction in solution due to the existence of SO3(-) groups with negative charge at the end of pendant groups in zwitterionic PVIPS, resulting in a change of the electrons transmission mode in the oxidation of DA, that is, from a typical diffusion-controlled process at conventional poly(1-vinyl-3-ethylimidazole bromide) (PVEIB)/PPy/GO modified GCE to a typical surface-controlled process. Copyright © 2016 Elsevier B.V. All rights reserved.
Mapping Dopamine Function in Primates Using Pharmacologic Magnetic Resonance Imaging
Sanchez-Pernaute, Rosario; Brownell, Anna-Liisa; Chen, Yin-Ching Iris; Isacson, Ole
2008-01-01
Dopamine (DA) receptors play a central role in such diverse pathologies as Parkinson's disease, schizophrenia, and drug abuse. We used an amphetamine challenge combined with pharmacologic magnetic resonance imaging (phMRI) to map DA-associated circuitry in nonhuman primates with high sensitivity and spatial resolution. Seven control cynomolgous monkeys and 10 MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated parkinsonian primates were studied longitudinally using both positron emission tomography (PET) and phMRI. Amphetamine challenge (2.5 mg/kg, i.v.) in control monkeys increased relative cerebral blood volume (rCBV) in a number of brain regions not described previously, such as parafascicular thalamus, precentral gyrus, and dentate nucleus of the cerebellum. With the high spatial resolution, we were also able to readily identify changes in rCBV in the anterior cingulate, substantia nigra, ventral tegmental area, caudate (tail and head), putamen, and nucleus accumbens. Amphetamine induced decreases in rCBV in occipital and posterior parietal cortices. Parkinsonian primates had a prominent loss of response to amphetamine, with relative sparing of the nucleus accumbens and parafascicular thalamus. There was a significant correlation between rCBV loss in the substantia nigra and both PET imaging of dopamine transporters and behavioral measures. Monkeys with partial lesions as defined by 2β-carbomethoxy-3β-(4-fluorophenyl) tropane binding to dopamine transporters showed recruitment of premotor and motor cortex after amphetamine stimulus similar to what has been noted in Parkinson's patients during motor tasks. These data indicate that phMRI is a powerful tool for assessment of dynamic changes associated with normal and dysfunctional DA brain circuitry in primates. PMID:15509742
Kim, Sang Eun; Han, Seung-Moo
2009-07-01
The effect of substances which alter extracellular dopamine (DA) concentration has been studied by measuring changes in the binding of radiolabelled raclopride, a DA D2 receptor ligand that is sensitive to endogenous DA. To better characterize the relationship between extracellular DA concentration and DA D2 receptor binding of raclopride, we compared the changes of extracellular DA concentration (measured using in-vivo microdialysis) and in-vivo [3H]raclopride binding induced by different doses of methamphetamine (Meth) and nicotine, drugs that enhance DA release with and without blocking DA transporters (DATs), respectively, in rat striatum. Nicotine elicited a modest increase of striatal extrasynaptic extracellular DA, while Meth produced a marked increase of striatal extrasynaptic DA in a dose-dependent manner. There was a close correlation between the decrease in [3H]raclopride in-vivo binding and the increase in extrasynaptic DA concentration induced by both nicotine (r2=0.95, p<0.001) and Meth (r2=0.98, p=0.001), supporting the usefulness of the radiolabelled raclopride-binding measurement for the non-invasive assessment of DA release following interventions in the living brain. However, the linear regression analysis revealed that the ratio of percent DA increase to percent [3H]raclopride binding reduction was 25-fold higher for Meth (34.8:1) than for nicotine (1.4:1). The apparent discrepancy in the extrasynaptic DA-[3H]raclopride binding relationship between the DA-enhancing drugs with and without DAT-blocking property indicates that the competition between endogenous DA and radiolabelled raclopride takes place at the intrasynaptic rather than extrasynaptic DA D2 receptors and reflects synaptic concentration of DA.
ERIC Educational Resources Information Center
Reyes, Fredy D.; Mozzachiodi, Riccardo; Baxter, Douglas A.; Byrne, John H.
2005-01-01
In a recently developed in vitro analog of appetitive classical conditioning of feeding in "Aplysia," the unconditioned stimulus (US) was electrical stimulation of the esophageal nerve (En). This nerve is rich in dopamine (DA)-containing processes, which suggests that DA mediates reinforcement during appetitive conditioning. To test this…
Barros-Miñones, L; Goñi-Allo, B; Suquia, V; Beitia, G; Aguirre, N; Puerta, E
2015-06-01
Methylenedioxymethamphetamine (MDMA) causes a persistent loss of dopaminergic cell bodies in the substantia nigra of mice. Current evidence indicates that MDMA-induced neurotoxicity is mediated by oxidative stress probably due to the inhibition of mitochondrial complex I activity. In this study we investigated the contribution of dopamine (DA) to such effects. For this, we modulated the dopaminergic system of mice at the synthesis, uptake or metabolism levels. Striatal mitochondrial complex I activity was decreased 1 h after MDMA; an effect not observed in the striatum of DA depleted mice or in the hippocampus, a dopamine spare region. The DA precursor, L-dopa, caused a significant reduction of mitochondrial complex I activity by itself and exacerbated the dopaminergic deficits when combined with systemic MDMA. By contrast, no damage was observed when L-dopa was combined with intrastriatal injections of MDMA. On the other hand, dopamine uptake blockade using GBR 12909, inhibited both, the acute inhibition of complex I activity and the long-term dopaminergic toxicity caused by MDMA. Moreover, the inhibition of DA metabolism with the monoamine oxidase (MAO) inhibitor, pargyline, afforded a significant protection against MDMA-induced complex I inhibition and neurotoxicity. Taken together, these findings point to the formation of hydrogen peroxide subsequent to DA metabolism by MAO, rather than a direct DA-mediated mitochondrial complex I inhibition, and the contribution of a peripheral metabolite of MDMA, as the key steps in the chain of biochemical events leading to DA neurotoxicity caused by MDMA in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vandegrift, Bertha J; You, Chang; Satta, Rosalba; Brodie, Mark S; Lasek, Amy W
2017-01-01
Gender differences in psychiatric disorders such as addiction may be modulated by the steroid hormone estrogen. For instance, 17β-estradiol (E2), the predominant form of circulating estrogen in pre-menopausal females, increases ethanol consumption, suggesting that E2 may affect the rewarding properties of ethanol and thus the development of alcohol use disorder in females. The ventral tegmental area (VTA) is critically involved in the rewarding and reinforcing effects of ethanol. In order to determine the role of E2 in VTA physiology, gonadally intact female mice were sacrificed during diestrus II (high E2) or estrus (low E2) for electrophysiology recordings. We measured the excitation by ethanol and inhibition by dopamine (DA) of VTA DA neurons and found that both excitation by ethanol and inhibition by dopamine were greater in diestrus II compared with estrus. Treatment of VTA slices from mice in diestrus II with an estrogen receptor antagonist (ICI 182,780) reduced ethanol-stimulated neuronal firing, but had no effect on ethanol-stimulated firing of neurons in slices from mice in estrus. Surprisingly, ICI 182,780 did not affect the inhibition by DA, indicating different mechanisms of action of estrogen receptors in altering ethanol and DA responses. We also examined the responses of VTA DA neurons to ethanol and DA in ovariectomized mice treated with E2 and found that E2 treatment enhanced the responses to ethanol and DA in a manner similar to what we observed in mice in diestrus II. Our data indicate that E2 modulates VTA neuron physiology, which may contribute to both the enhanced reinforcing and rewarding effects of alcohol and the development of other psychiatric disorders in females that involve alterations in DA neurotransmission.
Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: mechanism and kinetics.
Pham, A Ninh; Waite, T David
2014-08-01
Spontaneous oxidation of dopamine (DA) and the resultant formation of free radical species within dopamine neurons of the substantia nigra (SN) is thought to bestow a considerable oxidative load upon these neurons and may contribute to their vulnerability to degeneration in Parkinson's disease (PD). An understanding of DA oxidation under physiological conditions is thus critical to understanding the relatively selective vulnerability of these dopaminergic neurons in PD and may support the development of novel neuro-protective approaches for this disorder. In this study, the oxidation of dopamine (0.2-10μM) was investigated both in the absence and the presence of copper (0.01-0.4μM), a redox active metal that is present at considerable concentrations in the SN, over a range of background chloride concentrations (0.01-0.7M), different oxygen concentrations and at physiological pH7.4. DA was observed to oxidize extremely slowly in the absence of copper and at moderate rates only in the presence of copper but without chloride. The oxidation of DA however was significantly enhanced in the presence of both copper and chloride with the rate of DA oxidation greatest at intermediate chloride concentrations (0.05-0.2M). The variability of the catalytic effect of Cu(II) on DA oxidation at different chloride concentrations can be explained and successfully modeled by appropriate consideration of the reaction of Cu(II) species with DA and the conversion of Cu(I) to Cu(II) through oxygenation. This model suggests that the speciation of Cu(II) and Cu(I) is critically important to the kinetics of DA oxidation and thus the vulnerability to degradation of dopaminergic neuron in the brain milieu. Copyright © 2014 Elsevier Inc. All rights reserved.
Vandegrift, Bertha J.; You, Chang; Satta, Rosalba; Brodie, Mark S.
2017-01-01
Gender differences in psychiatric disorders such as addiction may be modulated by the steroid hormone estrogen. For instance, 17β-estradiol (E2), the predominant form of circulating estrogen in pre-menopausal females, increases ethanol consumption, suggesting that E2 may affect the rewarding properties of ethanol and thus the development of alcohol use disorder in females. The ventral tegmental area (VTA) is critically involved in the rewarding and reinforcing effects of ethanol. In order to determine the role of E2 in VTA physiology, gonadally intact female mice were sacrificed during diestrus II (high E2) or estrus (low E2) for electrophysiology recordings. We measured the excitation by ethanol and inhibition by dopamine (DA) of VTA DA neurons and found that both excitation by ethanol and inhibition by dopamine were greater in diestrus II compared with estrus. Treatment of VTA slices from mice in diestrus II with an estrogen receptor antagonist (ICI 182,780) reduced ethanol-stimulated neuronal firing, but had no effect on ethanol-stimulated firing of neurons in slices from mice in estrus. Surprisingly, ICI 182,780 did not affect the inhibition by DA, indicating different mechanisms of action of estrogen receptors in altering ethanol and DA responses. We also examined the responses of VTA DA neurons to ethanol and DA in ovariectomized mice treated with E2 and found that E2 treatment enhanced the responses to ethanol and DA in a manner similar to what we observed in mice in diestrus II. Our data indicate that E2 modulates VTA neuron physiology, which may contribute to both the enhanced reinforcing and rewarding effects of alcohol and the development of other psychiatric disorders in females that involve alterations in DA neurotransmission. PMID:29107956
Aversa, Daniela; Martini, Alessandro; Guatteo, Ezia; Pisani, Antonio; Mercuri, Nicola Biagio; Berretta, Nicola
2018-06-22
One of the hallmarks of ventral midbrain dopamine (DA)-releasing neurons is membrane hyperpolarization in response to somato-dendritic D 2 receptors (D 2 Rs) stimulation. At early postnatal age, under sustained DA, this inhibitory response is followed by a slow recovery, resulting in dopamine inhibition reversal (DIR). In the present investigation we aimed to get a better insight onto the cellular mechanisms underlying DIR. We performed single unit extracellular recordings with a multi-electrode array (MEA) device and conventional patch-clamp recordings on midbrain mouse slices. While continuous DA (100 μM) perfusion gave rise to firing inhibition that recovered in 10 to 15 min, the same effect was not obtained with the D 2 R agonist quinpirole (100 nM). Moreover, firing inhibition caused by the GABA B receptor agonist baclofen (300 nM), was reverted by DA (100 μM), albeit D 2 Rs had been blocked by sulpiride (10 μM). Conversely, the block of the DA transporter (DAT) with cocaine (30 μM) prevented firing recovery by DA under GABA B receptor stimulation. Accordingly, in whole cell recordings from single cells the baclofen-induced outward current was counteracted by DA (100 μM) in the presence of sulpiride (10 μM), and this effect was prevented by the DAT antagonists cocaine (30 μM) and GBR12909 (2 μM). Our results indicate a major role played by DAT in causing DIR under conditions of sustained DA exposure and point to DAT as an important target for pharmacological therapies leading to prolonged enhancement of the DAergic signal. This article is protected by copyright. All rights reserved.
Duncan, M W; Smythe, G A; Clezy, P S
1985-03-01
Synthesis of deuterated (2H4)salsolinol from (2H4)dopamine via a Pictet-Spengler condensation is described. This (2H4)salsolinol is an ideal internal standard to determine picomole (ng) amounts of salsolinol (SAL) in a variety of sample types including urine, plasma, beverages and fruits. The deuterated standard is completely free of contamination by the non-deuterated species. The extraction procedure described is fast, highly efficient and does not lead to artifactual salsolinol formation even in the face of high dopamine concentrations. As well as SAL the method described allows simultaneous determination of norepinephrine (NE), dopamine (DA) and its two metabolites dihydroxyphenylacetic acid (DOPAC) and dihydroxyphenylethanol (DOPET). Each of the analytes is measured as its trifluoroacetyl derivative. Using trifluoroacetic anhydride in conjunction with trifluoroethanol allows simultaneous one-step derivatization of the acid function of DOPAC. All compounds were measured in the single ion monitoring (SIM) mode and quantified using appropriate deuterated internal standards. SAL, DA, DOPET, DOPAC and NE have been quantified in a variety of food and beverage sources. Soy sauce and dried banana have been identified as rich dietary sources of SAL. These data suggest diet should be considered a potentially important source of 'mammalian alkaloids' such as SAL, and the presence of SAL in mammalian systems is not necessarily evidence for an in vivo Pictet-Spengler condensation.
Weihmuller, F B; O'Dell, S J; Marshall, J F
1992-06-01
Repeated administrations of methamphetamine (m-AMPH) produce high extracellular levels of dopamine (DA) and subsequent striatal DA terminal damage. Pharmacological blockade of N-methyl-D-aspartate (NMDA) receptors has been shown previously to prevent m-AMPH-induced striatal DA terminal injury, but the mechanism for this protection is unclear. In the present study, in vivo microdialysis was used to determine the effects of blockade of NMDA receptors with the noncompetitive antagonist MK-801 on m-AMPH-induced striatal DA overflow. Four injections of MK-801 (0.5 mg/kg, ip) alone did not significantly change extracellular striatal DA concentrations from pretreatment values. Four treatments with m-AMPH (4.0 mg/kg, sc at 2-hr intervals) increased striatal DA overflow, and the overflow was particularly extensive following the fourth injection. This m-AMPH regimen produced a 40% reduction in striatal DA tissue content 1 week later. Treatment with MK-801 15 min before each of the four m-AMPH injections or prior to only the last two m-AMPH administrations attenuated the m-AMPH-induced increase in striatal DA overflow and protected completely against striatal DA depletions. Other MK-801 treatment regimens less effectively reduced the m-AMPH-induced striatal DA efflux and were ineffective in protecting against striatal DA depletions. Linear regression analysis indicated that cumulative DA overflow was strongly predictive (r = -.68) of striatal DA tissue levels measured one week later. These findings suggest that the extensive DA overflow seen during a neurotoxic regimen of m-AMPH is a crucial component of the subsequent neurotoxicity.(ABSTRACT TRUNCATED AT 250 WORDS)
Modafinil Activates Phasic Dopamine Signaling in Dorsal and Ventral Striata
Bobak, Martin J.; Weber, Matthew W.; Doellman, Melissa A.; Schuweiler, Douglas R.; Athens, Jeana M.; Juliano, Steven A.
2016-01-01
Modafinil (MOD) exhibits therapeutic efficacy for treating sleep and psychiatric disorders; however, its mechanism is not completely understood. Compared with other psychostimulants inhibiting dopamine (DA) uptake, MOD weakly interacts with the dopamine transporter (DAT) and modestly elevates striatal dialysate DA, suggesting additional targets besides DAT. However, the ability of MOD to induce wakefulness is abolished with DAT knockout, conversely suggesting that DAT is necessary for MOD action. Another psychostimulant target, but one not established for MOD, is activation of phasic DA signaling. This communication mode during which burst firing of DA neurons generates rapid changes in extracellular DA, the so-called DA transients, is critically implicated in reward learning. Here, we investigate MOD effects on phasic DA signaling in the striatum of urethane-anesthetized rats with fast-scan cyclic voltammetry. We found that MOD (30–300 mg/kg i.p.) robustly increases the amplitude of electrically evoked phasic-like DA signals in a time- and dose-dependent fashion, with greater effects in dorsal versus ventral striata. MOD-induced enhancement of these electrically evoked amplitudes was mediated preferentially by increased DA release compared with decreased DA uptake. Principal component regression of nonelectrically evoked recordings revealed negligible changes in basal DA with high-dose MOD (300 mg/kg i.p.). Finally, in the presence of the D2 DA antagonist, raclopride, low-dose MOD (30 mg/kg i.p.) robustly elicited DA transients in dorsal and ventral striata. Taken together, these results suggest that activation of phasic DA signaling is an important mechanism underlying the clinical efficacy of MOD. PMID:27733628
Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Frau, Roberto; Gessa, Gian L
2015-10-01
Disulfiram has been claimed to be useful in cocaine addiction therapy, its efficacy being attributed to dopamine-beta-hydroxylase (DBH) inhibition. Our previous results indicate that disulfiram and the selective DBH inhibitor nepicastat increase extracellular dopamine (DA) in the rat medial prefrontal cortex (mPFC), and markedly potentiated cocaine-induced increase. Concomitantly, in rats with cocaine self-administration history, cocaine-seeking behavior induced by drug priming was prevented, probably through overstimulation of D1 receptors due to the DA increase. The present research was aimed at studying the neurochemical mechanisms originating the enhanced DA release. Noradrenergic system ablation was attained by intracerebroventricular (i.c.v.) administration of the neurotoxin anti-DBH-saporin (aDBH-sap). DA, noradrenaline (NA), and DOPAC were assessed by HPLC after ex vivo tissue extraction or in vivo microdialysis. Control and denervated rats were subjected to microdialysis in the mPFC and caudate nucleus to evaluate the effect of nepicastat-cocaine combination on extracellular DA levels and their regulation by α2-adrenoceptors. Fifteen days after neurotoxin or its vehicle administration, tissue and extracellular NA were reduced to less than 2% the control value, while extracellular DA was increased by approximately 100%. In control rats, nepicastat given alone and in combination with cocaine increased extracellular DA by about 250% and 1100%, respectively. In denervated rats, nepicastat slightly affected extracellular DA, while in combination with cocaine increased extracellular DA by 250%. No differences were found in the caudate nucleus. Clonidine almost totally reversed the extracellular DA elevation produced by nepicastat-cocaine combination, while it was ineffective in denervated rats. This research shows that the increase of extracellular DA produced by nepicastat alone or in combination with cocaine was prevented by noradrenergic denervation. The results indicate that nepicastat enhances DA release from noradrenergic terminals supposedly by removing NA from α2-autoreceptors. In addition to the inhibition of DA uptake, the latter mechanism may explain the synergistic effect of cocaine on nepicastat-induced DA release.
Ilinoiu, Elida Cristina; Manea, Florica; Serra, Pier Andrea; Pode, Rodica
2013-01-01
The present paper aims to miniaturize a graphite-epoxy and synthetic zeolite-modified graphite-epoxy composite macroelectrode as a quasi-microelectrode aiming in vitro and also, envisaging in vivo simultaneous electrochemical detection of dopamine (DA) and ascorbic acid (AA) neurotransmitters, or DA detection in the presence of AA. The electrochemical behavior and the response of the designed materials to the presence of dopamine and ascorbic acid without any protective membranes were studied by cyclic voltammetry and constant-potential amperometry techniques. The catalytic effect towards dopamine detection was proved for the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode, allowing increasing the sensitivity and selectivity for this analyte detection, besides a possible electrostatic attraction between dopamine cation and the negative surface of the synthetic zeolite and electrostatic repulsion with ascorbic acid anion. Also, the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode gave the best electroanalytical parameters for dopamine detection using constant-potential amperometry, the most useful technique for practical applications. PMID:23736851
Ilinoiu, Elida Cristina; Manea, Florica; Serra, Pier Andrea; Pode, Rodica
2013-06-03
The present paper aims to miniaturize a graphite-epoxy and synthetic zeolite-modified graphite-epoxy composite macroelectrode as a quasi-microelectrode aiming in vitro and also, envisaging in vivo simultaneous electrochemical detection of dopamine (DA) and ascorbic acid (AA) neurotransmitters, or DA detection in the presence of AA. The electrochemical behavior and the response of the designed materials to the presence of dopamine and ascorbic acid without any protective membranes were studied by cyclic voltammetry and constant-potential amperometry techniques. The catalytic effect towards dopamine detection was proved for the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode, allowing increasing the sensitivity and selectivity for this analyte detection, besides a possible electrostatic attraction between dopamine cation and the negative surface of the synthetic zeolite and electrostatic repulsion with ascorbic acid anion. Also, the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode gave the best electroanalytical parameters for dopamine detection using constant-potential amperometry, the most useful technique for practical applications.
Beyond reward prediction errors: the role of dopamine in movement kinematics
Barter, Joseph W.; Li, Suellen; Lu, Dongye; Bartholomew, Ryan A.; Rossi, Mark A.; Shoemaker, Charles T.; Salas-Meza, Daniel; Gaidis, Erin; Yin, Henry H.
2015-01-01
We recorded activity of dopamine (DA) neurons in the substantia nigra pars compacta in unrestrained mice while monitoring their movements with video tracking. Our approach allows an unbiased examination of the continuous relationship between single unit activity and behavior. Although DA neurons show characteristic burst firing following cue or reward presentation, as previously reported, their activity can be explained by the representation of actual movement kinematics. Unlike neighboring pars reticulata GABAergic output neurons, which can represent vector components of position, DA neurons represent vector components of velocity or acceleration. We found neurons related to movements in four directions—up, down, left, right. For horizontal movements, there is significant lateralization of neurons: the left nigra contains more rightward neurons, whereas the right nigra contains more leftward neurons. The relationship between DA activity and movement kinematics was found on both appetitive trials using sucrose and aversive trials using air puff, showing that these neurons belong to a velocity control circuit that can be used for any number of purposes, whether to seek reward or to avoid harm. In support of this conclusion, mimicry of the phasic activation of DA neurons with selective optogenetic stimulation could also generate movements. Contrary to the popular hypothesis that DA neurons encode reward prediction errors, our results suggest that nigrostriatal DA plays an essential role in controlling the kinematics of voluntary movements. We hypothesize that DA signaling implements gain adjustment for adaptive transition control, and describe a new model of the basal ganglia (BG) in which DA functions to adjust the gain of the transition controller. This model has significant implications for our understanding of movement disorders implicating DA and the BG. PMID:26074791
Demontis, Francesca; Serra, Francesca; Serra, Gino
2017-01-01
Background: Mania seems to be associated with an increased dopamine (DA) transmission. Antidepressant treatments can induce mania in humans and potentiated DA transmission in animals, by sensitizing DA D2 receptors in the mesolimbic system. We have suggested that the sensitization of D2 receptors may be responsible of antidepressant-induced mania. This review aims to report the experimental evidence that led to the hypothesis that antidepressant-induced DA receptors dysregulation can be considered an animal model of bipolar disorder. Methods: We reviewed papers reporting preclinical and clinical studies on the role of DA in the mechanism of action of antidepressant treatments and in the patho-physiology of mood disorders. Results: A number of preclinical and clinical evidence suggests that mania could be associated with an increased DA activity, while a reduced function of this neurotransmission might underlie depression. Chronic treatment with imipramine induces a sensitization of DA D2 receptors in the mesolimbic system, followed, after drug discontinuation, by a reduced sensitivity associated with an increased immobility time in forced swimming test of depression (FST). Blockade of glutamate NMDA receptors by memantine administration prevents the imipramine effect on DA receptors sensitivity and on the FST. Conclusion: We suggest that chronic treatment with antidepressants induces a behavioural syndrome that mimics mania (the sensitization of DA receptors), followed by depression (desensitization of DA receptors and increased immobility time in the FST), i.e. an animal model of bipolar disorder. Moreover the observation that memantine prevents the “bipolar-like” behavior, suggests that the drug may have an antimanic and mood stabilizing effect. Preliminary clinical observations support this hypothesis. PMID:28503114
Oberlin, Brandon G; Dzemidzic, Mario; Tran, Stella M; Soeurt, Christina M; O'Connor, Sean J; Yoder, Karmen K; Kareken, David A
2015-03-01
Although striatal dopamine (DA) is important in alcohol abuse, the nature of DA release during actual alcohol drinking is unclear, since drinking includes self-administration of both conditioned flavor stimuli (CS) of the alcoholic beverage and subsequent intoxication, the unconditioned stimulus (US). Here, we used a novel self-administration analog to distinguish nucleus accumbens (NAcc) DA responses specific to the CS and US. Right-handed male heavy drinkers (n = 26) received three positron emission tomography (PET) scans with the D2/D3 radioligand [(11)C]raclopride (RAC) and performed a pseudo self-administration task that separately administered a flavor CS of either a habitually consumed beer or the appetitive control Gatorade®, concomitant with the US of ethanol intoxication (0.06 g/dL intravenous (IV) administration) or IV saline. Scan conditions were Gatorade flavor + saline (Gat&Sal), Gatorade flavor + ethanol (Gat&Eth), and beer flavor + ethanol (Beer&Eth). Ethanol (US) reduced RAC binding (inferring DA release) in the left (L) NAcc [Gat&Sal > Gat&Eth]. Beer flavor (CS) increased DA in the right (R) NAcc [Gat&Eth > Beer&Eth]. The combination of beer flavor and ethanol (CS + US), [Gat&Sal > Beer&Eth], induced DA release in bilateral NAcc. Self-reported intoxication during scanning correlated with L NAcc DA release. Relative to saline, infusion of ethanol increased alcoholic drink wanting. Our findings suggest lateralized DA function in the NAcc, with L NAcc DA release most reflecting intoxication, R NAcc DA release most reflecting the flavor CS, and the conjoint CS + US producing a bilateral NAcc response.
Karkhanis, Anushree N; Rose, Jamie H; Weiner, Jeffrey L; Jones, Sara R
2016-01-01
Chronic early-life stress increases vulnerability to alcoholism and anxiety disorders during adulthood. Similarly, rats reared in social isolation (SI) during adolescence exhibit augmented ethanol intake and anxiety-like behaviors compared with group housed (GH) rats. Prior studies suggest that disruption of dopamine (DA) signaling contributes to SI-associated behaviors, although the mechanisms underlying these alterations are not fully understood. Kappa opioid receptors (KORs) have an important role in regulating mesolimbic DA signaling, and other kinds of stressors have been shown to augment KOR function. Therefore, we tested the hypothesis that SI-induced increases in KOR function contribute to the dysregulation of NAc DA and the escalation in ethanol intake associated with SI. Our ex vivo voltammetry experiments showed that the inhibitory effects of the kappa agonist U50,488 on DA release were significantly enhanced in the NAc core and shell of SI rats. Dynorphin levels in NAc tissue were observed to be lower in SI rats. Microdialysis in freely moving rats revealed that SI was also associated with reduced baseline DA levels, and pretreatment with the KOR antagonist nor-binaltorphimine (nor-BNI) increased DA levels selectively in SI subjects. Acute ethanol elevated DA in SI and GH rats and nor-BNI pretreatment augmented this effect in SI subjects, while having no effect on ethanol-stimulated DA release in GH rats. Together, these data suggest that KORs may have increased responsiveness following SI, which could lead to hypodopaminergia and contribute to an increased drive to consume ethanol. Indeed, SI rats exhibited greater ethanol intake and preference and KOR blockade selectively attenuated ethanol intake in SI rats. Collectively, the findings that nor-BNI reversed SI-mediated hypodopaminergic state and escalated ethanol intake suggest that KOR antagonists may represent a promising therapeutic strategy for the treatment of alcohol use disorders, particularly in cases linked to chronic early-life stress. PMID:26860203
Siviy, Stephen M; McDowell, Lana S; Eck, Samantha R; Turano, Alexandra; Akopian, Garnik; Walsh, John P
2015-12-01
Previous work from our laboratories has shown that juvenile Fischer 344 (F344) rats are less playful than other strains and also appear to be compromised in dopamine (DA) functioning. To determine whether the dysfunctional play in this strain is associated with deficits in the handling and delivery of vesicular DA, the following experiments assessed the extent to which F344 rats are differentially sensitive to the effects of amphetamine. When exposed to amphetamine, striatal slices obtained from F344 rats showed a small increase in unstimulated DA release when compared with slices from Sprague-Dawley rats; they also showed a more rapid high K+-mediated release of DA. These data provide tentative support for the hypothesis that F344 rats have a higher concentration of cytoplasmic DA than Sprague-Dawley rats. When rats were tested for activity in an open field, F344 rats presented a pattern of results that was consistent with either an enhanced response to amphetamine (3 mg/kg) or a more rapid release of DA (10 mg/kg). Although there was some indication that amphetamine had a dose-dependent differential effect on play in the two strains, play in F344 rats was not enhanced to any degree by amphetamine. Although these results are not consistent with our working hypothesis that F344 rats are less playful because of a deficit in vesicular release of DA, they still suggest that this strain may be a useful model for better understanding the role of DA in social behavior during the juvenile period.
Yang, Kechun; Broussard, John I; Levine, Amber T; Jenson, Daniel; Arenkiel, Benjamin R; Dani, John A
2017-01-01
Physiological and behavioral evidence supports that dopamine (DA) receptor signaling influences hippocampal function. While several recent studies examined how DA influences CA1 plasticity and learning, there are fewer studies investigating the influence of DA signaling to the dentate gyrus. The dentate gyrus receives convergent cortical input through the perforant path fiber tracts and has been conceptualized to detect novelty in spatial memory tasks. To test whether DA-receptor activity influences novelty-detection, we used a novel object recognition (NOR) task where mice remember previously presented objects as an indication of learning. Although DA innervation arises from other sources and the main DA signaling may be from those sources, our molecular approaches verified that midbrain dopaminergic fibers also sparsely innervate the dentate gyrus. During the NOR task, wild-type mice spent significantly more time investigating novel objects rather than previously observed objects. Dentate granule cells in slices cut from those mice showed an increased AMPA/NMDA-receptor current ratio indicative of potentiated synaptic transmission. Post-training injection of a D1-like receptor antagonist not only effectively blocked the preference for the novel objects, but also prevented the increased AMPA/NMDA ratio. Consistent with that finding, neither NOR learning nor the increase in the AMPA/NMDA ratio were observed in DA-receptor KO mice under the same experimental conditions. The results indicate that DA-receptor signaling contributes to the successful completion of the NOR task and to the associated synaptic plasticity of the dentate gyrus that likely contributes to the learning. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Mittleman, Guy; Goldowitz, Daniel; Heck, Detlef H; Blaha, Charles D
2008-07-01
Cerebellar and frontal cortical pathologies have been commonly reported in schizophrenia, autism, and other developmental disorders. Whether there is a relationship between prefrontal and cerebellar pathologies is unknown. Using fixed potential amperometry, dopamine (DA) efflux evoked by cerebellar or, dentate nucleus electrical stimulation (50 Hz, 200 muA) was recorded in prefrontal cortex of urethane anesthetized lurcher (Lc/+) mice with 100% loss of cerebellar Purkinje cells and wildtype (+/+) control mice. Cerebellar stimulation with 25 and 100 pulses evoked prefrontal cortex DA efflux in +/+ mice that persisted for 12 and 25 s poststimulation, respectively. In contrast, 25 pulse cerebellar stimulation failed to evoke prefrontal cortex DA efflux in Lc/+ mice indicating a dependency on cerebellar Purkinje cell outputs. Dentate nucleus stimulation (25 pulses) evoked a comparable but briefer (baseline recovery within 7 s) increase in prefrontal cortex DA efflux compared to similar cerebellar stimulation in +/+ mice. However, in Lc/+ mice 25 pulse dentate nucleus evoked prefrontal cortex DA efflux was attenuated by 60% with baseline recovery within 4 s suggesting that dentate nucleus outputs to prefrontal cortex remain partially functional. DA reuptake blockade enhanced 100 pulse stimulation evoked prefrontal cortex responses, while serotonin or norepinephrine reuptake blockade were without effect indicating the specificity of the amperometric recordings to DA. Results provide neurochemical evidence that the cerebellum can modulate DA efflux in the prefrontal cortex. Together, these findings may explain why cerebellar and frontal cortical pathologies co-occur, and may provide a mechanism that accounts for the diversity of symptoms common to multiple developmental disorders.
MITTLEMAN, GUY; GOLDOWITZ, DANIEL; HECK, DETLEF H.; BLAHA, CHARLES D.
2013-01-01
Cerebellar and frontal cortical pathologies have been commonly reported in schizophrenia, autism, and other developmental disorders. Whether there is a relationship between prefrontal and cerebellar pathologies is unknown. Using fixed potential amperometry, dopamine (DA) efflux evoked by cerebellar or, dentate nucleus electrical stimulation (50 Hz, 200 μA) was recorded in prefrontal cortex of urethane anesthetized lurcher (Lc/+) mice with 100% loss of cerebellar Purkinje cells and wildtype (+/+) control mice. Cerebellar stimulation with 25 and 100 pulses evoked prefrontal cortex DA efflux in +/+ mice that persisted for 12 and 25 s poststimulation, respectively. In contrast, 25 pulse cerebellar stimulation failed to evoke prefrontal cortex DA efflux in Lc/+ mice indicating a dependency on cerebellar Purkinje cell outputs. Dentate nucleus stimulation (25 pulses) evoked a comparable but briefer (baseline recovery within 7 s) increase in prefrontal cortex DA efflux compared to similar cerebellar stimulation in +/+ mice. However, in Lc/+ mice 25 pulse dentate nucleus evoked prefrontal cortex DA efflux was attenuated by 60% with baseline recovery within 4 s suggesting that dentate nucleus outputs to prefrontal cortex remain partially functional. DA reuptake blockade enhanced 100 pulse stimulation evoked pre-frontal cortex responses, while serotonin or norepinephrine reuptake blockade were without effect indicating the specificity of the amperometric recordings to DA. Results provide neurochemical evidence that the cerebellum can modulate DA efflux in the prefrontal cortex. Together, these findings may explain why cerebellar and frontal cortical pathologies co-occur, and may provide a mechanism that accounts for the diversity of symptoms common to multiple developmental disorders. PMID:18435424
Reviriego, Felipe; Navarro, Pilar; García-España, Enrique; Albelda, M Teresa; Frías, Juan C; Domènech, Antonio; Yunta, Maria J R; Costa, Rubén; Ortí, Enrique
2008-11-20
The synthesis and steady-state fluorescence studies on the interaction with AMPH, METH, MDMA, and DA of two diazatetraester pyrazole crowns containing appended N-(9H-fluoren-9-yl) and N-(naphth-2-ylmethyl) functions, in a water/ethanol 70:30 mixture at physiological pH, are described.
Harun, Rashed; Grassi, Christine M; Munoz, Miranda J; Torres, Gonzalo E; Wagner, Amy K
2015-03-02
Fast-scan cyclic voltammetry (FSCV) is an electrochemical method that can assess real-time in vivo dopamine (DA) concentration changes to study the kinetics of DA neurotransmission. Electrical stimulation of dopaminergic (DAergic) pathways can elicit FSCV DA responses that largely reflect a balance of DA release and reuptake. Interpretation of these evoked DA responses requires a framework to discern the contribution of DA release and reuptake. The current, widely implemented interpretive framework for doing so is the Michaelis-Menten (M-M) model, which is grounded on two assumptions- (1) DA release rate is constant during stimulation, and (2) DA reuptake occurs through dopamine transporters (DAT) in a manner consistent with M-M enzyme kinetics. Though the M-M model can simulate evoked DA responses that rise convexly, response types that predominate in the ventral striatum, the M-M model cannot simulate dorsal striatal responses that rise concavely. Based on current neurotransmission principles and experimental FSCV data, we developed a novel, quantitative, neurobiological framework to interpret DA responses that assumes DA release decreases exponentially during stimulation and continues post-stimulation at a diminishing rate. Our model also incorporates dynamic M-M kinetics to describe DA reuptake as a process of decreasing reuptake efficiency. We demonstrate that this quantitative, neurobiological model is an extension of the traditional M-M model that can simulate heterogeneous regional DA responses following manipulation of stimulation duration, frequency, and DA pharmacology. The proposed model can advance our interpretive framework for future in vivo FSCV studies examining regional DA kinetics and their alteration by disease and DA pharmacology. Copyright © 2015 Elsevier B.V. All rights reserved.
Ding, Zheng-Ming; Ingraham, Cynthia M; Rodd, Zachary A; McBride, William J
2016-10-01
Repeated local administration of ethanol (EtOH) sensitized the posterior ventral tegmental area (pVTA) to the local dopamine (DA)-stimulating effects of EtOH. Chronic alcohol drinking increased nucleus accumbens (NAC) DA transmission and pVTA glutamate transmission in alcohol-preferring (P) rats. The objectives of the present study were to determine the effects of chronic alcohol drinking by P rats on the (a) sensitivity and response of the pVTA DA neurons to the DA-stimulating actions of EtOH, and (b) negative feedback control of DA (via D2 auto-receptors) and glutamate (via group II mGlu auto-receptors) release in the pVTA. EtOH (50 or 150 mg%) or the D2/3 receptor antagonist sulpiride (100 or 200 μM) was microinjected into the pVTA while DA was sampled with microdialysis in the NAC shell (NACsh). The mGluR2/3 antagonist LY341495 (1 or 10 μM) was perfused through the pVTA via reverse microdialysis and local extracellular glutamate and DA levels were measured. EtOH produced a more robust increase of NACsh DA in the 'EtOH' than 'Water' groups (e.g., 150 mg% EtOH: to ∼ 210 vs 150% of baseline). In contrast, sulpiride increased DA release in the NACsh more in the 'Water' than 'EtOH' groups (e.g., 200 μM sulpiride: to ∼ 190-240 vs 150-160% of baseline). LY341495 (at 10 μM) increased extracellular glutamate and DA levels in the 'Water' (to ∼ 150-180% and 180-230% of baseline, respectively) but not the 'EtOH' groups. These results indicate that alcohol drinking enhanced the DA-stimulating effects of EtOH, and attenuated the functional activities of D2 auto-receptors and group II mGluRs within the pVTA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kutluay, Aysegul; Aslanoglu, Mehmet
2014-08-11
Multi-walled carbon nanotubes (MWCNTs) functionalized by cobalt nanoparticles were obtained using a single step chemical deposition method in an ultrasonic bath. The composite material was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The electroactivity of the cobalt-functionalized MWCNTs was assessed in respect to the electrooxidation of paracetamol (PAR) and dopamine (DA). It was found that the carbon nanotube supported cobalt nanoparticles have significantly higher catalytic properties. The proposed electrode has been applied for the simultaneous determination of PAR and DA. The modified electrode could resolve the overlapped voltammetric waves of PAR and DA into two well-defined voltammetric peaks with peak to peak separation of about 203 mV. On the other hand, the presence of potential drug interfering compounds AA and UA did not affect the voltammetric responses of PAR and DA. The current of oxidation peaks showed a linear dependent on the concentrations of PAR and DA in the range of 5.2×10(-9)-4.5×10(-7) M (R(2)=0.9987) and 5.0×10(-8)-3.0×10(-6) M (R(2)=0.9999), respectively. The detection limits of 1.0×10(-9) M and 1.5×10(-8) M were obtained for PAR and DA, respectively. The proposed electrode showed good stability (peak current change: 4.9% with and RSD of 2.6% for PAR; 5.5% with and RSD of 3.0% for DA over 3 weeks), reproducibility (RSD 2.3% for PAR and RSD 1.5% for DA), repeatability (RSD 2.25% for PAR and RSD 2.50% for DA) and high recovery (99.7% with an RSD of 1.3% for PAR; 100.8% with an RSD of 1.8% for DA). The proposed method was successfully applied to the determination of PAR and DA in pharmaceuticals. Copyright © 2014. Published by Elsevier B.V.
D’Amour-Horvat, Valérie; Leyton, Marco
2014-01-01
Increases and decreases in dopamine (DA) transmission have both been suggested to influence reward-related impulse-control. The present literature review suggests that, in laboratory animals, the systemic administration of DA augmenters preferentially increases susceptibility to premature responding; with continued DA transmission, reward approach behaviors are sustained. Decreases in DA transmission, in comparison, diminish the appeal of distal and difficult to obtain rewards, thereby increasing susceptibility to temporal discounting and other forms of impulsive choice. The evidence available in humans is not incompatible with this model but is less extensive. PMID:25566001
Deehan, Gerald A.; Knight, Christopher P.; Waeiss, R. Aaron; Engleman, Eric A.; Toalston, Jamie E.; McBride, William J.; Hauser, Sheketha R.; Rodd, Zachary A.
2016-01-01
Aims Two critical neurotransmitter systems regulating ethanol (EtOH) reward are serotonin (5-HT) and dopamine (DA). Within the posterior ventral tegmental area (pVTA), 5-HT receptors have been shown to regulate DA neuronal activity. Increased pVTA neuronal activity has been linked to drug reinforcement. The current experiment sought to determine the effect of EtOH on 5-HT and DA levels within the pVTA. Methods Wistar rats were implanted with cannula aimed at the pVTA. Neurochemical levels were determined using standard microdialysis procedures with concentric probes. Rats were randomly assigned to one of the five groups (n = 41; 7–9 per group) that were treated with 0–3.0 g/kg EtOH (intraperitoneally). Results Ethanol produced increased extracellular DA levels in the pVTA that resembled an inverted U-shape dose–response curve with peak levels (~200% of baseline) at the 2.25 g/kg dose. The increase in DA levels was observed for an extended period of time (~100 minutes). The effects of EtOH on extracellular 5-HT levels in the pVTA also resembled an inverted U-shape dose–response curve. However, increased 5-HT levels were only observed during the initial post-injection sample. The increases in extracellular DA and 5-HT levels were significantly correlated. Conclusion The data indicate intraperitoneal EtOH administration stimulated the release of both 5-HT and DA within the pVTA, the levels of which were significantly correlated. Overall, the current findings suggest that the ability of EtOH to stimulate DA activity within the mesolimbic system may be modulated by increases in 5-HT release within the pVTA. Short summary Two critical neurotransmitter systems regulating ethanol reward are serotonin and dopamine. The current experiment determined that intraperitoneal ethanol administration increased serotonin and dopamine levels within the pVTA (levels were significantly correlated). The current findings suggest the ability of EtOH to stimulate serotonin and dopamine activity within the mesolimbic system. PMID:27307055
ERIC Educational Resources Information Center
Navakkode, Sheeja; Sajikumar, Sreedharan; Korte, Martin; Soong, Tuck Wah
2012-01-01
The dopaminergic modulation of long-term potentiation (LTP) has been studied well, but the mechanism by which dopamine induces LTP (DA-LTP) in CA1 pyramidal neurons is unknown. Here, we report that DA-LTP in basal dendrites is dependent while in apical dendrites it is independent of activation of L-type voltage-gated calcium channels (VDCC).…
Jenni, Nicole L; Larkin, Joshua D; Floresco, Stan B
2017-06-28
Mesocortical dopamine (DA) regulates a variety of cognitive functions via actions on D 1 and/or D 2 receptors. For example, risk/reward decision making is modulated differentially by these two receptors within the prefrontal cortex (PFC), with D 2 receptors enabling flexible decision making and D 1 receptors promoting persistence in choice biases. However, it is unclear how DA mediates opposing patterns of behavior by acting on different receptors within the same terminal region. We explored the possibility that DA may act on separate networks of PFC neurons that are modulated by D 1 or D 2 receptors and in turn interface with divergent downstream structures such as the basolateral amygdala (BLA) or nucleus accumbens (NAc). Decision making was assessed using a probabilistic discounting task in which well trained male rats chose between small/certain or large/risky rewards, with the odds of obtaining the larger reward changing systematically within a session. Selective disruption of D 1 or D 2 modulation of separate PFC output pathways was achieved using unilateral intra-PFC infusions of DA antagonists combined with contralateral inactivation of the BLA or NAc. Disrupting D 2 (but not D 1 ) modulation of PFC→BLA circuitry impaired adjustments in decision biases in response to changes in reward probabilities. In contrast, disrupting D 1 modulation of PFC→NAc networks reduced risky choice, attenuating reward sensitivity and increasing sensitivity to reward omissions. These findings reveal that mesocortical DA can facilitate dissociable components of reward seeking and action selection by acting on different functional networks of PFC neurons that can be distinguished by the subcortical projection targets with which they interface. SIGNIFICANCE STATEMENT Prefrontal cortical dopamine regulates a variety of executive functions governed by the frontal lobes via actions on D 1 and D 2 receptors. These receptors can in some instances mediate different patterns of behavior, but the mechanisms underlying these dissociable actions are unclear. Using a selective disconnection approach, we reveal that D 1 and D 2 receptors can facilitate diverse aspects of decision making by acting on separate networks of prefrontal neurons that interface with distinct striatal or amygdalar targets. These findings reveal an additional level of complexity in how mesocortical DA regulates different forms of cognition via actions on different receptors, highlighting how it may act upon distinct cortical microcircuits to drive different patterns of behavior. Copyright © 2017 the authors 0270-6474/17/376200-14$15.00/0.
Barch, Deanna M; Treadway, Michael T; Schoen, Nathan
2014-05-01
One of the most debilitating aspects of schizophrenia is an apparent interest in or ability to exert effort for rewards. Such "negative symptoms" may prevent individuals from obtaining potentially beneficial outcomes in educational, occupational, or social domains. In animal models, dopamine abnormalities decrease willingness to work for rewards, implicating dopamine (DA) function as a candidate substrate for negative symptoms given that schizophrenia involves dysregulation of the dopamine system. We used the effort-expenditure for rewards task (EEfRT) to assess the degree to which individuals with schizophrenia were wiling to exert increased effort for either larger magnitude rewards or for rewards that were more probable. Fifty-nine individuals with schizophrenia and 39 demographically similar controls performed the EEfRT task, which involves making choices between "easy" and "hard" tasks to earn potential rewards. Individuals with schizophrenia showed less of an increase in effort allocation as either reward magnitude or probability increased. In controls, the frequency of choosing the hard task in high reward magnitude and probability conditions was negatively correlated with depression severity and anhedonia. In schizophrenia, fewer hard task choices were associated with more severe negative symptoms and worse community and work function as assessed by a caretaker. Consistent with patterns of disrupted dopamine functioning observed in animal models of schizophrenia, these results suggest that 1 mechanism contributing to impaired function and motivational drive in schizophrenia may be a reduced allocation of greater effort for higher magnitude or higher probability rewards.
NASA Astrophysics Data System (ADS)
Dan, Wang; Bingbing, Lin; Taipeng, Shen; Jun, Wu; Fuhua, Hao; Chunchao, Xia; Qiyong, Gong; Huiru, Tang; Bin, Song; Hua, Ai
2016-07-01
Polymer-mediated self-assembly of superparamagnetic iron oxide (SPIO) nanoparticles allows modulation of the structure of SPIO nanocrystal cluster and their magnetic properties. In this study, dopamine-functionalized polyesters (DA-polyester) were used to directly control the magnetic nanoparticle spacing and its effect on magnetic resonance relaxation properties of these clusters was investigated. Monodisperse SPIO nanocrystals with different surface coating materials (poly(ɛ-caprolactone), poly(lactic acid)) of different molecular weights containing dopamine (DA) structure (DA-PCL2k, DA-PCL1k, DA-PLA1k)) were prepared via ligand exchange reaction, and these nanocrystals were encapsulated inside amphiphilic polymer micelles to modulate the SPIO nanocrystal interparticle spacing. Small-angle x-ray scattering (SAXS) was applied to quantify the interparticle spacing of SPIO clusters. The results demonstrated that the tailored magnetic nanoparticle clusters featured controllable interparticle spacing providing directly by the different surface coating of SPIO nanocrystals. Systematic modulation of SPIO nanocrystal interparticle spacing can regulate the saturation magnetization (M s) and T 2 relaxation of the aggregation, and lead to increased magnetic resonance (MR) relaxation properties with decreased interparticle spacing. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB933903), the National Key Technology R&D Program of China (Grant No. 2012BAI23B08), and the National Natural Science Foundation of China (Grant Nos. 20974065, 51173117, and 50830107).
Genetic Dissection of Midbrain Dopamine Neuron Development in vivo
Ellisor, Debra; Rieser, Caroline; Voelcker, Bettina; Machan, Jason T.; Zervas, Mark
2012-01-01
Midbrain dopamine (MbDA) neurons are partitioned into medial and lateral cohorts that control complex functions. However, the genetic underpinnings of MbDA neuron heterogeneity are unclear. While it is known that Wnt1-expressing progenitors contribute to MbDA neurons, the role of Wnt1 in MbDA neuron development in vivo is unresolved. We show that mice with a spontaneous point mutation in Wnt1 have a unique phenotype characterized by the loss of medial MbDA neurons concomitant with a severe depletion of Wnt1-expressing progenitors and diminished LMX1a-expressing progenitors. Wnt1 mutant embryos also have alterations in a hierarchical gene regulatory loop suggesting multiple gene involvement in the Wnt1 mutant MbDA neuron phenotype. To investigate this possibility, we conditionally deleted Gbx2, Fgf8, and En1/2 after their early role in patterning and asked whether these genetic manipulations phenocopied the depletion of MbDA neurons in Wnt1 mutants. The conditional deletion of Gbx2 did not result in re-positioning or distribution of MbDA neurons. The temporal deletion of Fgf8 did not result in the loss of either LMX1a-expressing progenitors nor the initial population of differentiated MbDA neurons, but did result in a complete loss of MbDA neurons at later stages. The temporal deletion and species specific manipulation of En1/2 demonstrated a continued and species specific role of Engrailed genes in MbDA neuron development. Notably, our conditional deletion experiments revealed phenotypes dissimilar to Wnt1 mutants indicating the unique role of Wnt1 in MbDA neuron development. By placing Wnt1, Fgf8, and En1/2 in the context of their temporal requirement for MbDA neuron development, we further deciphered the developmental program underpinning MbDA neuron progenitors. PMID:23041116
Haaxma, Charlotte A; Horstink, Martin W I M; Zijlmans, Jan C; Lemmens, Wim A J G; Bloem, Bastiaan R; Borm, George F
2015-01-01
Response fluctuations and dyskinesias develop during the use of both levodopa (LD) and dopamine agonists (DA), but may not be equally disabling. To compare the risk and time of onset of disabling response fluctuations and dyskinesias (DRFD) among patients with Parkinson's disease (PD) who were initially treated with either LD or DA. Open cohort study of all consecutive de-novo PD patients in routine clinical practice, included over a period of 15 years (median follow-up: 8.1 years, range 1.1-17.7), since embarking on LD or DA. Older patients and patients with more severe PD were started on LD (n = 77), younger patients on a DA (n = 50). Therapy was adjusted according to generally accepted guidelines. The primary endpoints were: the onset of response fluctuations, dyskinesias, and the moment when these complications became disabling (DRFD). LD-starters developed response fluctuations 0.8 years earlier than DA-starters (p = 0.07), while dyskinesias appeared around 2.5 years earlier (p = 0.003). However, the risk and time of onset of DRFD did not differ statistically between the groups (LD-starters: 60% , median interval 7.3 years, DA-starters: 52% , 6.1 years, p = 0.63). DA-starters displayed a 0.19 points lower adjusted mean improvement in motor scores than LD-starters (p = 0.002). Adjustments for age and severity of PD at start of dopaminergic therapy did not change these results. In routine clinical practice, the risk and time of onset of DRFD is comparable for LD-starters versus DA-starters, but motor functioning is worse in DA-starters. These results support the use of LD as initial therapy for PD.
Ding, Shengyuan; Wei, Wei
2011-01-01
GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (NaV) channels are critical to spike generation, the different firing properties raise the possibility that, compared with DA neurons, NaV channels in SNr GABA neurons have higher density, faster kinetics, and less cumulative inactivation. Our quantitative RT-PCR analysis on immunohistochemically identified nigral neurons indicated that mRNAs for pore-forming NaV1.1 and NaV1.6 subunits and regulatory NaVβ1 and Navβ4 subunits are more abundant in SNr GABA neurons than SNc DA neurons. These α-subunits and β-subunits are key subunits for forming NaV channels conducting the transient NaV current (INaT), persistent Na current (INaP), and resurgent Na current (INaR). Nucleated patch-clamp recordings showed that INaT had a higher density, a steeper voltage-dependent activation, and a faster deactivation in SNr GABA neurons than in SNc DA neurons. INaT also recovered more quickly from inactivation and had less cumulative inactivation in SNr GABA neurons than in SNc DA neurons. Furthermore, compared with nigral DA neurons, SNr GABA neurons had a larger INaR and INaP. Blockade of INaP induced a larger hyperpolarization in SNr GABA neurons than in SNc DA neurons. Taken together, these results indicate that NaV channels expressed in fast-spiking SNr GABA neurons and slow-spiking SNc DA neurons are tailored to support their different spiking capabilities. PMID:21880943
Addiction: beyond dopamine reward circuitry.
Volkow, Nora D; Wang, Gene-Jack; Fowler, Joanna S; Tomasi, Dardo; Telang, Frank
2011-09-13
Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.
Analysis of the mechanisms by which amphetamine releases dopamine from striatal dopaminergic neurons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, E.M.
1987-01-01
The goals of the studies were (1) to determine the intraneuronal transmitter pools that contribute to the efflux of dopamine (DA) elicited by amphetamine (AMPH) and (2) to determine the biochemical mechanism by which AMPH increases DA efflux from dopaminergic neurons. AMPH increased the efflux of endogenous DA and decreased the electrically-evoked overflow of (/sup 3/H) acetylcholine (ACh) from superfused rabbit striatal slices. These effects were most pronounced when both vesicular DA stores and DA synthesis were intact. Therefore, extravesicular, newly synthesized DA and vesicular stores of DA contribute to AMPH-induced DA efflux. Simultaneous inhibition of monoamine oxidase (MAO) andmore » neuronal DA uptake did not increase the efflux of endogenous DA or inhibit the electrically-evoked overflow of (/sup 3/H)ACh to the same extent as AMPH. Hence, inhibition of MAO and neuronal DA uptake are probably not the major mechanisms by which AMPH increases DA efflux. The AMPH-induced efflux of endogenous or (/sup 3/H)DA was blocked by inhibitors of neuronal DA uptake.« less
Sutoo, Den'etsu; Akiyama, Kayo
2004-08-06
The mechanism by which music modifies brain function is not clear. Clinical findings indicate that music reduces blood pressure in various patients. We investigated the effect of music on blood pressure in spontaneously hypertensive rats (SHR). Previous studies indicated that calcium increases brain dopamine (DA) synthesis through a calmodulin (CaM)-dependent system. Increased DA levels reduce blood pressure in SHR. In this study, we examined the effects of music on this pathway. Systolic blood pressure in SHR was reduced by exposure to Mozart's music (K.205), and the effect vanished when this pathway was inhibited. Exposure to music also significantly increased serum calcium levels and neostriatal DA levels. These results suggest that music leads to increased calcium/CaM-dependent DA synthesis in the brain, thus causing a reduction in blood pressure. Music might regulate and/or affect various brain functions through dopaminergic neurotransmission, and might therefore be effective for rectification of symptoms in various diseases that involve DA dysfunction.
Nowicki, Brittney A; Hamada, Matt A; Robinson, Gina Y; Jones, Douglas C
2016-01-01
The aim of this study was to examine the effects of bisphenol A (BPA) on the brain dopamine (DA) system utilizing both in vitro models (GH3 cells, a rat pituitary cell line, and SH-SY5Y cells, a human neuroblastoma cell line) and an animal model such as Sprague-Dawley (SD) rats. First, cellular DA uptake was measured 2 or 8 h following BPA exposure (0.1-400 μM) in SH-SY5Y cells, where a significant increase in DA uptake was noted. BPA exerted no marked effect on dopamine active transporter levels in GH3 cells exposed for 8 or 24 h. However, SH-SY5Y cells displayed an increase in dopamine transporter (DAT) levels following 24 h of exposure to BPA. In contrast to DAT levels, BPA exposure produced no marked effect on DA D1 receptor levels in SH-SY5Y cells, yet a significant decrease in GH3 cells following both 8- and 24-h exposure periods was noted, suggesting that BPA exerts differential effects dependent upon cell type. BPA produced no significant effects on prolactin levels at 2 h, but a marked fall occurred at 24 h of exposure in GH3 cells. Finally, to examine the influence of dietary developmental exposure to BPA on brain DA levels in F1 offspring, SD rats were exposed to BPA (0.5-20 mg/kg) through maternal transfer and/or diet and striatal DA levels were measured on postnatal day (PND) 60 using high-performance liquid chromatography (HPLC). Data demonstrated that chronic exposure to BPA did not significantly alter striatal DA levels in the SD rat.
Wong, Dean F; Brasić, James R; Singer, Harvey S; Schretlen, David J; Kuwabara, Hiroto; Zhou, Yun; Nandi, Ayon; Maris, Marika A; Alexander, Mohab; Ye, Weiguo; Rousset, Olivier; Kumar, Anil; Szabo, Zsolt; Gjedde, Albert; Grace, Anthony A
2008-05-01
Tourette syndrome (TS) is a neuropsychiatric disorder with childhood onset characterized by motor and phonic tics. Obsessive-compulsive disorder (OCD) is often concomitant with TS. Dysfunctional tonic and phasic dopamine (DA) and serotonin (5-HT) metabolism may play a role in the pathophysiology of TS. We simultaneously measured the density, affinity, and brain distribution of dopamine D2 receptors (D2-R's), dopamine transporter binding potential (BP), and amphetamine-induced dopamine release (DA(rel)) in 14 adults with TS and 10 normal adult controls. We also measured the brain distribution and BP of serotonin 5-HT2A receptors (5-HT2AR), and serotonin transporter (SERT) BP, in 11 subjects with TS and 10 normal control subjects. As compared with controls, DA rel was significantly increased in the ventral striatum among subjects with TS. Adults with TS+OCD exhibited a significant D(2)-R increase in left ventral striatum. SERT BP in midbrain and caudate/putamen was significantly increased in adults with TS (TS+OCD and TS-OCD). In three subjects with TS+OCD, in whom D2-R, 5-HT2AR, and SERT were measured within a 12-month period, there was a weakly significant elevation of DA rel and 5-HT2A BP, when compared with TS-OCD subjects and normal controls. The current study confirms, with a larger sample size and higher resolution PET scanning, our earlier report that elevated DA rel is a primary defect in TS. The finding of decreased SERT BP, and the possible elevation in 5-HT2AR in individuals with TS who had increased DA rel, suggest a condition of increased phasic DA rel modulated by low 5-HT in concomitant OCD.
Engle, Staci E; Shih, Pei-Yu; McIntosh, J Michael; Drenan, Ryan M
2013-09-01
Tobacco addiction is a serious threat to public health in the United States and abroad, and development of new therapeutic approaches is a major priority. Nicotine activates and/or desensitizes nicotinic acetylcholine receptors (nAChRs) throughout the brain. nAChRs in ventral tegmental area (VTA) dopamine (DA) neurons are crucial for the rewarding and reinforcing properties of nicotine in rodents, suggesting that they may be key mediators of nicotine's action in humans. However, it is unknown which nAChR subtypes are sufficient to activate these neurons. To test the hypothesis that nAChRs containing α6 subunits are sufficient to activate VTA DA neurons, we studied mice expressing hypersensitive, gain-of-function α6 nAChRs (α6L9'S mice). In voltage-clamp recordings in brain slices from adult mice, 100 nM nicotine was sufficient to elicit inward currents in VTA DA neurons via α6β2* nAChRs. In addition, we found that low concentrations of nicotine could act selectively through α6β2* nAChRs to enhance the function of 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA) receptors on the surface of these cells. In contrast, α6β2* activation did not enhance N-methyl-D-aspartic acid receptor function. Finally, AMPA receptor (AMPAR) function was not similarly enhanced in brain slices from α6L9'S mice lacking α4 nAChR subunits, suggesting that α4α6β2* nAChRs are important for enhancing AMPAR function in VTA DA neurons. Together, these data suggest that activation of α4α6β2* nAChRs in VTA DA neurons is sufficient to support the initiation of cellular changes that play a role in addiction to nicotine. α4α6β2* nAChRs may be a promising target for future smoking cessation pharmacotherapy.
Balasubramani, Pragathi P.; Chakravarthy, V. Srinivasa; Ravindran, Balaraman; Moustafa, Ahmed A.
2014-01-01
Although empirical and neural studies show that serotonin (5HT) plays many functional roles in the brain, prior computational models mostly focus on its role in behavioral inhibition. In this study, we present a model of risk based decision making in a modified Reinforcement Learning (RL)-framework. The model depicts the roles of dopamine (DA) and serotonin (5HT) in Basal Ganglia (BG). In this model, the DA signal is represented by the temporal difference error (δ), while the 5HT signal is represented by a parameter (α) that controls risk prediction error. This formulation that accommodates both 5HT and DA reconciles some of the diverse roles of 5HT particularly in connection with the BG system. We apply the model to different experimental paradigms used to study the role of 5HT: (1) Risk-sensitive decision making, where 5HT controls risk assessment, (2) Temporal reward prediction, where 5HT controls time-scale of reward prediction, and (3) Reward/Punishment sensitivity, in which the punishment prediction error depends on 5HT levels. Thus the proposed integrated RL model reconciles several existing theories of 5HT and DA in the BG. PMID:24795614
No evidence for attenuated stress-induced extrastriatal dopamine signaling in psychotic disorder
Hernaus, D; Collip, D; Kasanova, Z; Winz, O; Heinzel, A; van Amelsvoort, T; Shali, S M; Booij, J; Rong, Y; Piel, M; Pruessner, J; Mottaghy, F M; Myin-Germeys, I
2015-01-01
Stress is an important risk factor in the etiology of psychotic disorder. Preclinical work has shown that stress primarily increases dopamine (DA) transmission in the frontal cortex. Given that DA-mediated hypofrontality is hypothesized to be a cardinal feature of psychotic disorder, stress-related extrastriatal DA release may be altered in psychotic disorder. Here we quantified for the first time stress-induced extrastriatal DA release and the spatial extent of extrastriatal DA release in individuals with non-affective psychotic disorder (NAPD). Twelve healthy volunteers (HV) and 12 matched drug-free NAPD patients underwent a single infusion [18F]fallypride positron emission tomography scan during which they completed the control and stress condition of the Montreal Imaging Stress Task. HV and NAPD did not differ in stress-induced [18F]fallypride displacement and the spatial extent of stress-induced [18F]fallypride displacement in medial prefrontal cortex (mPFC) and temporal cortex (TC). In the whole sample, the spatial extent of stress-induced radioligand displacement in right ventro-mPFC, but not dorso-mPFC or TC, was positively associated with task-induced subjective stress. Psychotic symptoms during the scan or negative, positive and general subscales of the Positive and Negative Syndrome Scale were not associated with stress-induced [18F]fallypride displacement nor the spatial extent of stress-induced [18F]fallypride displacement in NAPD. Our results do not offer evidence for altered stress-induced extrastriatal DA signaling in NAPD, nor altered functional relevance. The implications of these findings for the role of the DA system in NAPD and stress processing are discussed. PMID:25871972
Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets.
Fuxe, Kjell; Agnati, Luigi F; Marcoli, Manuela; Borroto-Escuela, Dasiel O
2015-12-01
Already in the 1960s the architecture and pharmacology of the brainstem dopamine (DA) and noradrenaline (NA) neurons with formation of vast numbers of DA and NA terminal plexa of the central nervous system (CNS) indicated that they may not only communicate via synaptic transmission. In the 1980s the theory of volume transmission (VT) was introduced as a major communication together with synaptic transmission in the CNS. VT is an extracellular and cerebrospinal fluid transmission of chemical signals like transmitters, modulators etc. moving along energy gradients making diffusion and flow of VT signals possible. VT interacts with synaptic transmission mainly through direct receptor-receptor interactions in synaptic and extrasynaptic heteroreceptor complexes and their signaling cascades. The DA and NA neurons are specialized for extrasynaptic VT at the soma-dendrtitic and terminal level. The catecholamines released target multiple DA and adrenergic subtypes on nerve cells, astroglia and microglia which are the major cell components of the trophic units building up the neural-glial networks of the CNS. DA and NA VT can modulate not only the strength of synaptic transmission but also the VT signaling of the astroglia and microglia of high relevance for neuron-glia interactions. The catecholamine VT targeting astroglia can modulate the fundamental functions of astroglia observed in neuroenergetics, in the Glymphatic system, in the central renin-angiotensin system and in the production of long-distance calcium waves. Also the astrocytic and microglial DA and adrenergic receptor subtypes mediating DA and NA VT can be significant drug targets in neurological and psychiatric disease.
Dissociable roles of dopamine and serotonin transporter function in a rat model of negative urgency.
Yates, Justin R; Darna, Mahesh; Gipson, Cassandra D; Dwoskin, Linda P; Bardo, Michael T
2015-09-15
Negative urgency is a facet of impulsivity that reflects mood-based rash action and is associated with various maladaptive behaviors in humans. However, the underlying neural mechanisms of negative urgency are not fully understood. Several brain regions within the mesocorticolimbic pathway, as well as the neurotransmitters dopamine (DA) and serotonin (5-HT), have been implicated in impulsivity. Extracellular DA and 5-HT concentrations are regulated by DA transporters (DAT) and 5-HT transporters (SERT); thus, these transporters may be important molecular mechanisms underlying individual differences in negative urgency. The current study employed a reward omission task to model negative urgency in rats. During reward trials, a cue light signaled the non-contingent delivery of one sucrose pellet; immediately following the non-contingent reward, rats responded on a lever to earn sucrose pellets (operant phase). Omission trials were similar to reward trials, except that non-contingent sucrose was omitted following the cue light prior to the operant phase. As expected, contingent responding was higher following omission of expected reward than following delivery of expected reward, thus reflecting negative urgency. Upon completion of behavioral training, Vmax and Km were obtained from kinetic analysis of [(3)H]DA and [(3)H]5-HT uptake using synaptosomes prepared from nucleus accumbens (NAc), dorsal striatum (Str), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC) isolated from individual rats. Vmax for DAT in NAc and for SERT in OFC were positively correlated with negative urgency scores. The current findings suggest that mood-based impulsivity (negative urgency) is associated with enhanced DAT function in NAc and SERT function in OFC. Copyright © 2015 Elsevier B.V. All rights reserved.
Ma, Delin; Shuler, Jeffrey M; Raider, Kayla D; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Stanford, John A
2015-07-10
Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson's disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats' nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist. Copyright © 2015 Elsevier B.V. All rights reserved.
Mergy, Marc A; Gowrishankar, Raajaram; Gresch, Paul J; Gantz, Stephanie C; Williams, John; Davis, Gwynne L; Wheeler, C Austin; Stanwood, Gregg D; Hahn, Maureen K; Blakely, Randy D
2014-11-04
Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness.
Mergy, Marc A.; Gowrishankar, Raajaram; Gresch, Paul J.; Gantz, Stephanie C.; Williams, John; Davis, Gwynne L.; Wheeler, C. Austin; Stanwood, Gregg D.; Hahn, Maureen K.; Blakely, Randy D.
2014-01-01
Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness. PMID:25331903
USDA-ARS?s Scientific Manuscript database
Age-related declines in motor function may be due, in part, to an increase in oxidative stress in the aging brain leading to death of brain cells that transmit dopamine (DA), one of the brain chemicals responsible for transmitting signals between brain nerve cells. We examined the neuroprotective ef...
Fontaine, Romain; Affaticati, Pierre; Yamamoto, Kei; Jolly, Cécile; Bureau, Charlotte; Baloche, Sylvie; Gonnet, Françoise; Vernier, Philippe; Dufour, Sylvie; Pasqualini, Catherine
2013-02-01
In many teleosts, the stimulatory control of gonadotrope axis by GnRH is opposed by an inhibitory control by dopamine (DA). The functional importance of this inhibitory pathway differs widely from one teleostean species to another. The zebrafish (Danio rerio) is a teleost fish that has become increasingly popular as an experimental vertebrate model. However, the role of DA in the neuroendocrine control of its reproduction has never been studied. Here the authors evaluated in sexually regressed female zebrafish the effects of in vivo treatments with a DA D2 receptor (D2-R) antagonist domperidone, or a GnRH agonist, alone and in combination, on the pituitary level of FSHβ and LHβ transcripts, the gonadosomatic index, and the ovarian histology. Only the double treatment with GnRH agonist and domperidone could induce an increase in the expression of LHβ, in the gonadosomatic index, and a stimulation of ovarian vitellogenesis, indicating that removal of dopaminergic inhibition is required for the stimulatory action of GnRH and reactivation of ovarian function to occur. Using double immunofluorescent staining on pituitary, the authors showed in this species the innervation of LH cells by tyrosine-hydroxylase immunoreactive fibers. Finally, using in situ hybridization and immunofluorescence, the authors showed that the three subtypes of zebrafish DA D2-R (D2a, D2b, and D2c) were expressed in LH-producing cells, suggesting that they all may be involved in mediating this inhibition. These results show for the first time that, in zebrafish, DA has a direct and potent inhibitory action capable of opposing the stimulatory effect of GnRH in the neuroendocrine control of reproduction.
Noradrenaline and dopamine levels in acute cerveau isolé in the cat.
Szikszay, M; Benedek, G; Obál, F; Obál, F
1980-01-01
Noradrenaline (NA) and dopamine (DA) levels were studied in the forebrain of acute immobilized cats and in cerveau isolé preparations. A gradual decrease in NA and DA was observed one and two hours after high mesencephalic transection, while the amount of NA increased in acute immobilized cats after the cessation of ether anaesthesia. These changes in NA level are consistent with the observations suggesting an inverse relationship between NA and cortical deactivation. The decrease of DA with an exaggeration of spindle activity and increased synchronizing effect of basal forebrain stimulation indicate that the spindle-increasing effect of DA suggested by several authors requires the contribution of the brain stem.
Whole organic electronic synapses for dopamine detection
NASA Astrophysics Data System (ADS)
Giordani, Martina; Di Lauro, Michele; Berto, Marcello; Bortolotti, Carlo A.; Vuillaume, Dominique; Gomes, Henrique L.; Zoli, Michele; Biscarini, Fabio
2016-09-01
A whole organic artificial synapse has been fabricated by patterning PEDOT:PSS electrodes on PDMS that are biased in frequency to yield a STP response. The timescale of the STP response is shown to be sensitive to the concentration of dopamine, DA, a neurotransmitter relevant for monitoring the development of Parkinson's disease and potential locoregional therapies. The sensitivity of the sensor towards DA has been validated comparing signal variation in the presence of DA and its principal interfering agent, ascorbic acid, AA. The whole organic synapse is biocompatible, soft and flexible, and is attractive for implantable devices aimed to real-time monitoring of DA concentration in bodily fluids. This may open applications in chronic neurodegenerative diseases such as Parkinson's disease.
Dopamine in the Brain: Hypothesizing Surfeit or Deficit Links to Reward and Addiction.
Blum, Kenneth; Thanos, Peter K; Oscar-Berman, Marlene; Febo, Marcelo; Baron, David; Badgaiyan, Rajendra D; Gardner, Eliot; Demetrovics, Zsolt; Fahlke, Claudia; Haberstick, Brett C; Dushaj, Kristina; Gold, Mark S
Recently there has been debate concerning the role of brain dopamine in reward and addiction. David Nutt and associates eloquently proposed that dopamine (DA) may be central to psycho stimulant dependence and some what important for alcohol, but not important for opiates, nicotine or even cannabis. Others have also argued that surfeit theories can explain for example cocaine seeking behavior as well as non-substance-related addictive behaviors. It seems prudent to distinguish between what constitutes "surfeit" compared to" deficit" in terms of short-term (acute) and long-term (chronic) brain reward circuitry responsivity. In an attempt to resolve controversy regarding the contributions of mesolimbic DA systems to reward, we review the three main competing explanatory categories: "liking", "learning", and "wanting". They are (a) the hedonic impact -liking reward, (b) the ability to predict rewarding effects-learning and (c) the incentive salience of reward-related stimuli -wanting. In terms of acute effects, most of the evidence seems to favor the "surfeit theory". Due to preferential dopamine release at mesolimbic-VTA-caudate-accumbens loci most drugs of abuse and Reward Deficiency Syndrome (RDS) behaviors have been linked to heightened feelings of well-being and hyperdopaminergic states.The "dopamine hypotheses" originally thought to be simple, is now believed to be quite complex and involves encoding the set point of hedonic tone, encoding attention, reward expectancy, and incentive motivation. Importantly, Willuhn et al. shows that in a self-administration paradigm, (chronic) excessive use of cocaine is caused by decreased phasic dopamine signaling in the striatum. In terms of chronic addictions, others have shown a blunted responsivity at brain reward sites with food, nicotine, and even gambling behavior. Finally, we are cognizant of the differences in dopaminergic function as addiction progresses and argue that relapse may be tied to dopamine deficiency. Vulnerability to addiction and relapse may be the result of the cumulative effects of dopaminergic and other neurotransmitter genetic variants and elevated stress levels. We therefore propose that dopamine homeostasis may be a preferred goal to combat relapse.
Wu, Jin; Zhang, Ruihua; Tang, Ning; Gong, Zizhen; Zhou, Jiefei; Chen, Yingwei; Chen, Kang; Cai, Wei
2015-01-01
MDSCs accumulate in tumor-bearing animals and cancer patients and are a major factor responsible for cancer-induced immunosuppression that limits effective cancer immunotherapy. Strategies aimed at effectively inhibiting the function of MDSCs are expected to enhance host anti-tumor immunity and improve cancer immunotherapy significantly. The neurotransmitter DA has been found to have anti-cancer activity, but the underlying mechanism is poorly understood. In this study, we sought to investigate the therapeutic mechanism and efficacy of DA on the inhibition of cancer development via the regulation of MDSC functions. The regulation of the suppressive function of Gr-1(+)CD115(+) MDSCs by DA was determined by use of murine syngeneic LLC and B16 graft models treated with DA in vivo, as well as Gr-1(+)CD115(+) MDSCs isolated from these model treated with DA ex vivo. Here, we show that Gr-1(+)CD115(+) monocytic MDSCs express D1-like DA receptors. DA dramatically attenuated the inhibitory function of tumor-induced monocytic MDSCs on T cell proliferation and IFN-γ production via D1-like DA receptors and retarded tumor growth. DA and other D1 receptor agonists inhibited IFN-γ-induced NO production by MDSCs from tumor-bearing mice and cancer patients. Decreased NO production was, in part, mediated via the suppression of p-ERK and p-JNK. In conclusion, the neurotransmitter DA potently inhibits the suppressive function of MDSC and enhances anti-tumor immunity. Our finding provides a mechanistic basis for the use of DA or D1-like receptor agonists to overcome tumor-induced immunosuppression in cancer immunotherapy. © Society for Leukocyte Biology.
Activation of VTA GABA neurons disrupts reward consumption
van Zessen, Ruud; Phillips, Jana L.; Budygin, Evgeny A.; Stuber, Garret D.
2012-01-01
The activity of Ventral Tegmental Area (VTA) dopamine (DA) neurons promotes behavioral responses to rewards and environmental stimuli that predict them. VTA GABA inputs synapse directly onto DA neurons and may regulate DA neuronal activity to alter reward-related behaviors, however, the functional consequences of selective activation of VTA GABA neurons remains unknown. Here, we show that in vivo optogenetic activation of VTA GABA neurons disrupts reward consummatory behavior, but not conditioned anticipatory behavior in response to reward-predictive cues. In addition, direct activation of VTA GABA projections to the nucleus accumbens (NAc) resulted in detectable GABA release, but did not alter reward consumption. Furthermore, optogenetic stimulation of VTA GABA neurons directly suppressed the activity and excitability of neighboring DA neurons, as well as the release of DA in the NAc, suggesting that the dynamic interplay between VTA DA and GABA neurons can control the initiation and termination of reward-related behaviors. PMID:22445345
Zhang, Ting; Mou, Di; Wang, Cuicui; Tan, Fengping; Jiang, Yan; Lijun, Zheng; Li, Hong
2015-06-01
The central dopamine system (DA) has a significant role in the executive function (EF). The spontaneous eye blink rate (EBR) is an effective clinical and non-invasive measure, which is strongly related to the activity of the central dopaminergic system. Previous studies show significant relationships between the two main dimensions of EF (i.e., shifting and inhibition) and the central DA system as measured by EBR. However, most of these studies involve only one EF task for shifting or inhibition; whether or not these relationships are replicated by other EF tasks remains unclear. Besides, the relationship between EBR and another important EF dimension-updating-also remains unknown. The present study examined the correlation between EBR and several EF tasks that captured all the three EF dimensions: shifting, inhibition, and updating. A total of 61 healthy participants were subjected to EBR testing and EF tasks. Results showed that EBR had a different relationship with each of the three tested EF dimensions. An increase in EBR levels was related to an increase in accuracy in shifting and inhibition tasks, a decrease in shifting and inhibition cost, and a decrease in accuracy in updating tasks. These results imply that the role of the central DA system in shifting and inhibition differs from its role in updating. Copyright © 2015 Elsevier B.V. All rights reserved.
Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain.
Volkow, N D; Wang, G-J; Logan, J; Alexoff, D; Fowler, J S; Thanos, P K; Wong, C; Casado, V; Ferre, S; Tomasi, D
2015-04-14
Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [(11)C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300 mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). The association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors.
Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain
Volkow, N D; Wang, G-J; Logan, J; Alexoff, D; Fowler, J S; Thanos, P K; Wong, C; Casado, V; Ferre, S; Tomasi, D
2015-01-01
Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [11C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300 mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). The association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors. PMID:25871974
Cadoni, Cristina; Pisanu, Augusta; Simola, Nicola; Frau, Lucia; Porceddu, Pier Francesca; Corongiu, Silvia; Dessì, Christian; Sil, Annesha; Plumitallo, Antonio; Wardas, Jadwiga; Di Chiara, Gaetano
2017-09-01
Although MDMA (3,4-methylendioxymethamphetamine, ecstasy) neurotoxicity in serotonin neurons is largely recognized in a wide variety of species including man, neurotoxicity in dopamine (DA) neurons is thought to be species-specific. MDMA is mainly consumed by adolescents, often in conjunction with caffeine (Energy Drinks) and this association has been reported to exacerbate MDMA toxic effects. In order to model these aspects of MDMA use, vis-à-vis their impact on DA neurons, we investigated the effects of adolescent exposure to low doses of MDMA (5 mg/kg for 10 days), alone or in combination with caffeine (10 mg/kg) on neuronal and functional DA indices and on recognition memory in adult rats. MDMA reduced density of tyrosine hydroxylase (TH) positive neurons in the ventral tegmental area and in the substantia nigra pars compacta, and immunoreactivity of TH and DA transporter in the nucleus accumbens (NAc) shell and core, and caudate-putamen. This same treatment caused a reduction of basal dialysate DA in the NAc core. MDMA-pretreated rats also showed behavioral sensitization to a MDMA challenge at adulthood and potentiation of MDMA-induced increase of dialysate DA in the NAc core, but not in the NAc shell. In addition, MDMA-treated rats displayed a deficit in recognition memory. Caffeine co-administration did not affect the above outcomes. Our results show that adolescent exposure of rats to low doses of MDMA induces long-lasting and widespread reduction of DA neurons indicative of a neurotoxic effect on DA neurons and suggestive of a degeneration of the same neurons. Copyright © 2017 Elsevier Ltd. All rights reserved.
Caffeine increases striatal dopamine D 2/D 3 receptor availability in the human brain
Volkow, N. D.; Wang, G. -J.; Logan, J.; ...
2015-04-14
Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A 2A receptors (A 2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [ 11C]raclopride (DA D 2/D 3 receptor radioligand sensitive to endogenous DA) to assess ifmore » caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300mg p.o.) significantly increased the availability of D 2/D 3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D 2/D 3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D 2/D 3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D 2/D 3 receptor availability. Instead, we interpret our findings to reflect an increase in D 2/D 3 receptor levels in striatum with caffeine (or changes in affinity). Furthermore, the association between increases in D 2/D 3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D 2/D 3 receptors.« less
Tan, Huibing; Rosen, Laura G; Ng, Garye A; Rushlow, Walter J; Laviolette, Steven R
2014-12-01
N-Methyl-D-aspartate (NMDA) receptors in the medial prefrontal cortex (mPFC) are involved in opiate reward processing and modulate sub-cortical dopamine (DA) activity. NMDA receptor blockade in the prelimbic (PLC) division of the mPFC strongly potentiates the rewarding behavioural properties of normally sub-reward threshold doses of opiates. However, the possible functional interactions between cortical NMDA and sub-cortical DAergic motivational neural pathways underlying these effects are not understood. This study examines how NMDA receptor modulation in the PLC influences opiate reward processing via interactions with sub-cortical DAergic transmission. We further examined whether direct intra-PLC NMDA receptor modulation may activate DA-dependent opiate reward signaling via interactions with the ventral tegmental area (VTA). Using an unbiased place conditioning procedure (CPP) in rats, we performed bilateral intra-PLC microinfusions of the competitive NMDA receptor antagonist, (2R)-amino-5-phosphonovaleric acid (AP-5), prior to behavioural morphine place conditioning and challenged the rewarding effects of morphine with DA receptor blockade. We next examined the effects of intra-PLC NMDA receptor blockade on the spontaneous activity patterns of presumptive VTA DA or GABAergic neurons, using single-unit, extracellular in vivo neuronal recordings. We show that intra-PLC NMDA receptor blockade strongly activates sub-cortical DA neurons within the VTA while inhibiting presumptive non-DA GABAergic neurons. Behaviourally, NMDA receptor blockade activates a DA-dependent opiate reward system, as pharmacological blockade of DA transmission blocked morphine reward only in the presence of intra-PLC NMDA receptor antagonism. These findings demonstrate a cortical NMDA-mediated mechanism controlling mesolimbic DAergic modulation of opiate reward processing.
Caffeine increases striatal dopamine D 2/D 3 receptor availability in the human brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, N. D.; Wang, G. -J.; Logan, J.
Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A 2A receptors (A 2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [ 11C]raclopride (DA D 2/D 3 receptor radioligand sensitive to endogenous DA) to assess ifmore » caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300mg p.o.) significantly increased the availability of D 2/D 3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D 2/D 3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D 2/D 3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D 2/D 3 receptor availability. Instead, we interpret our findings to reflect an increase in D 2/D 3 receptor levels in striatum with caffeine (or changes in affinity). Furthermore, the association between increases in D 2/D 3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D 2/D 3 receptors.« less
Dopamine signaling in reward-related behaviors.
Baik, Ja-Hyun
2013-01-01
Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.
He, Zhixiong; Hou, Wenjuan; Hao, Xin; Dong, Na; Du, Peirong; Yuan, Wei; Yang, Jinfeng; Jia, Rui; Tai, Fadao
2017-10-01
Oxytocin (OT) is known to be important in mother-infant bonding. Although the relationship between OT and filial attachment behavior has been studied in a few mammalian species, the effects on infant social behavior have received little attention in monogamous species. The present study examined the effects of OT receptor antagonist (OTA) treatment on attachment behavior and central dopamine (DA) activity in male and female pre-weaning mandarin voles (Microtus mandarinus). Our data showed that OTA treatments decreased the attachment behavior of pups to mothers, measured using preference tests at postnatal day 14, 16, 18 and 20. OTA treatments reduced serum OT concentration in pre-weaning pups and decreased tyrosine hydroxylase (TH) levels in the ventral tegmental area (VTA), indicating a decrease in central DA activity. In male and female pups, OTA reduced DA levels, DA 1-type receptor (D1R) and DA 2-type receptor (D2R) protein expression in the nucleus accumbens (NAcc). Our results indicate that OTA treatment inhibits the attachment of pre-weaning pups to mothers. This inhibition is possibly associated with central DA activity and levels of two types of dopamine receptor in the NAcc. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Role for D1 Dopamine Receptors in Striatal Methamphetamine-Induced Neurotoxicity
Friend, Danielle M.; Keefe, Kristen A.
2015-01-01
Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 Dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Importantly, METH-induced hyperthermia is tightly associated with the neurotoxicity, such that simply cooling animals during METH exposure protects against the neurotoxicity. Therefore, it is difficult to determine whether D1 DA receptors per se play an important role in METH-induced neurotoxicity or whether the protection observed simply resulted from a mitigation of METH-induced hyperthermia. To answer this important question, the current study infused a D1 DA receptor antagonist into striatum during METH exposure while controlling for METH-induced hyperthermia. Here we found that even when METH-induced hyperthermia is maintained, the coadministration of a D1 DA receptor antagonist protects against METH-induced neurotoxicity, strongly suggesting that D1 DA receptors play an important role in METH-induced neurotoxicity apart from the mitigation of METH-induced hyperthermia. PMID:23994061
A role for D1 dopamine receptors in striatal methamphetamine-induced neurotoxicity.
Friend, Danielle M; Keefe, Kristen A
2013-10-25
Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Importantly, METH-induced hyperthermia is tightly associated with the neurotoxicity, such that simply cooling animals during METH exposure protects against the neurotoxicity. Therefore, it is difficult to determine whether D1 DA receptors per se play an important role in METH-induced neurotoxicity or whether the protection observed simply resulted from a mitigation of METH-induced hyperthermia. To answer this important question, the current study infused a D1 DA receptor antagonist into striatum during METH exposure while controlling for METH-induced hyperthermia. Here we found that even when METH-induced hyperthermia is maintained, the coadministration of a D1 DA receptor antagonist protects against METH-induced neurotoxicity, strongly suggesting that D1 DA receptors play an important role in METH-induced neurotoxicity apart from the mitigation of METH-induced hyperthermia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Gopalan, Anantha Iyengar; Lee, Kwang-Pill; Manesh, Kalayil Manian; Santhosh, Padmanabhan; Kim, Jun Heon; Kang, Jae Soo
2007-03-15
A modified electrode is fabricated by embedding gold nanoparticles into a layer of electroactive polymer, poly(4-aminothiophenol) (PAT) on the surface of glassy carbon (GC) electrode. Cyclic voltammetry (CV) is performed to deposit PAT and concomitantly deposit Au nanoparticles. Field emission transmission electron microscopic image of the modified electrode, PAT-Au(nano)-ME, indicates the presence of uniformly distributed Au nanoparticles having the sizes of 8-10nm. Electrochemical behavior of the PAT-Au(nano)-ME towards detection of ascorbic acid (AA) and dopamine (DA) is studied using CV. Electrocatalytic determination of DA in the presence of fixed concentration of AA and vice versa, are studied using differential pulse voltammetry (DPV). PAT-Au(nano)-ME exhibits two well defined anodic peaks at the potential of 75 and 400mV for the oxidation of AA and DA, respectively with a potential difference of 325mV. Further, the simultaneous determination of AA and DA is studied by varying the concentration of AA and DA. PAT-Au(nano)-ME exhibits selectivity and sensitivity for the simultaneous determination of AA and DA without fouling by the oxidation products of AA or DA. PAT and Au nanoparticles provide synergic influence on the accurate electrochemical determination of AA or DA from a mixture having any one of the component (AA or DA) in excess. The practical analytical utilities of the PAT-Au(nano)-ME are demonstrated by the determination of DA and AA in dopamine hydrochloride injection and human blood serum samples.
Hoffman, Alexander F.; Spivak, Charles E.; Lupica, Carl R.
2016-01-01
Fast-scan cyclic voltammetry (FSCV) using carbon fiber electrodes is widely used to rapidly monitor changes in dopamine (DA) levels in vitro and in vivo. Current analytical approaches utilize parameters such as peak oxidation current amplitude and decay times to estimate release and uptake processes, respectively. However, peak amplitude changes are often observed with uptake inhibitors, thereby confounding the interpretation of these parameters. To overcome this limitation, we demonstrate that a simple, 5 parameter, two compartment model mathematically describes DA signals as a balance of release (r/ke) and uptake (ku), summed with adsorption (kads and kdes) of DA to the carbon electrode surface. Using non-linear regression, we demonstrate that our model precisely describes measured DA signals obtained in brain slice recordings. The parameters extracted from these curves were then validated using pharmacological manipulations that selectively alter vesicular release or DA transporter (DAT)-mediated uptake. Manipulation of DA release through altered Ca2+/Mg2+ ratio or tetrodotoxin (TTX), reduced the release parameter with no effect on the uptake parameter. The DAT inhibitors methylenedioxypyrovalerone (MDPV), cocaine, and nomifensine significantly reduced uptake and increased vesicular DA release. In contrast, a low concentration of amphetamine reduced uptake but had no effect on DA release. Finally, the kappa-opioid receptor (KOR) agonist U50,488 significantly reduced vesicular DA release but had no effect on uptake. Together, these data demonstrate a novel analytical approach to distinguish the effects of manipulations on DA release or uptake that can be used to interpret FSCV data. PMID:27018734
Hoffman, Alexander F; Spivak, Charles E; Lupica, Carl R
2016-06-15
Fast-scan cyclic voltammetry (FSCV) using carbon fiber electrodes is widely used to rapidly monitor changes in dopamine (DA) levels in vitro and in vivo. Current analytical approaches utilize parameters such as peak oxidation current amplitude and decay times to estimate release and uptake processes, respectively. However, peak amplitude changes are often observed with uptake inhibitors, thereby confounding the interpretation of these parameters. To overcome this limitation, we demonstrate that a simple five-parameter, two-compartment model mathematically describes DA signals as a balance of release (r/ke) and uptake (ku), summed with adsorption (kads and kdes) of DA to the carbon electrode surface. Using nonlinear regression, we demonstrate that our model precisely describes measured DA signals obtained in brain slice recordings. The parameters extracted from these curves were then validated using pharmacological manipulations that selectively alter vesicular release or DA transporter (DAT)-mediated uptake. Manipulation of DA release through altering the Ca(2+)/Mg(2+) ratio or adding tetrodotoxin reduced the release parameter with no effect on the uptake parameter. DAT inhibitors methylenedioxypyrovalerone, cocaine, and nomifensine significantly reduced uptake and increased vesicular DA release. In contrast, a low concentration of amphetamine reduced uptake but had no effect on DA release. Finally, the kappa opioid receptor agonist U50,488 significantly reduced vesicular DA release but had no effect on uptake. Together, these data demonstrate a novel analytical approach to distinguish the effects of manipulations on DA release or uptake that can be used to interpret FSCV data.
Tsai, Hsiang-Yu; Lin, Zong-Hong; Chang, Huan-Tsung
2012-05-15
Tellurium-nanowire-coated glassy carbon electrodes (TNGCEs) have been fabricated and employed for selective and sensitive detection of dopamine (DA). TNGCEs were prepared by direct deposition of tellurium nanowires, 600 ± 150 nm in length and 16 ± 3 nm in diameter, onto glassy carbon electrodes, which were further coated with Nafion to improve their selectivity and stability. Compared to the GCE, the TNGCE is more electroactive (by approximately 1.9-fold) for DA, and its selectivity toward DA over ascorbic acid (AA) and uric acid (UA) is also greater. By applying differential pulse voltammetry, at a signal-to-noise ratio of 3, the TNGCE provides a limit of detection of 1 nM for DA in the presence of 0.5mM AA and UA. Linearity (R(2)=0.9955) of the oxidation current at 0.19 V against the concentration of DA is found over the range 5 nM-1 μM. TNGCEs have been applied to determine the concentration of dopamine to be 0.59 ± 0.07 μM in PC12 cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Duchesne, Annie; Dufresne, Marc M; Sullivan, Ron M
2009-03-17
Stress-related psychopathology is particularly prevalent in women, although the neurobiological reason(s) for this are unclear. Dopamine (DA) and serotonin (5-HT) systems however, are known to play important adaptive roles in stress and emotion regulation. The aims of the present study included examination of sex differences in stress-related behaviour and neuroendocrine function as well as post mortem neurochemistry, with the main hypothesis that corticolimbic DA and 5-HT systems would show greater functional activity in males than females. Long-Evans rats of both sexes were employed. Additional factors incorporated included differential postnatal experience (handled vs. nonhandled) and adult mild stress experience (acute vs. repeated (5) restraint). Regional neurochemistry measures were conducted separately for left and right hemispheres. Behaviourally, females showed more exploratory behaviour than males in the elevated plus maze and an openfield/holeboard apparatus. Females also exhibited significantly higher levels of adrenocorticotrophic hormone and corticosterone at all time points in response to restraint stress than males across treatment conditions, although both sexes showed similar habituation in stress-induced ACTH activation with repeated mild stress. Neurochemically, females had significantly higher levels of DA (in ventromedial prefrontal cortex (vmPFC), insular cortex and n. accumbens) and 5-HT (in vmPFC, amygdala, dorsal hippocampus and insula) than males. In contrast, males had higher levels of the DA metabolite DOPAC or DOPAC/DA ratios than females in all five regions and higher levels of the 5-HT metabolite 5-HIAA or 5-HIAA/5-HT ratios in vmPFC, amygdala and insula, suggesting greater neurotransmitter utilization in males. Moreover, handling treatment induced a significant male-specific upregulation of 5-HT metabolism in all regions except n. accumbens. Given the adaptive role of 5-HT and DAergic neurotransmission in stress and emotion regulation, the intrinsic sex differences we report in the functional status of these systems across conditions, may be highly relevant to the differential vulnerability to disorders of stress and emotion regulation.
A simple preparation of graphite/gelatin composite for electrochemical detection of dopamine.
Rajkumar, Chellakannu; Thirumalraj, Balamurugan; Chen, Shen-Ming; Chen, His-An
2017-02-01
In this study, we demonstrate a simple preparation of graphite (GR) sheets assisted with gelatin (GLN) polypeptide composite was developed for sensitive detection of dopamine (DA) sensor. The GR/GLN composite was prepared by GR powder in GLN solution (5mg/mL) via sonication process. The prepared GR/GLN composite displays well dispersion ability in biopolymer matrix and characterized via scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS) studies. The GR/GLN modified electrode showed an excellent electrocatalytic activity toward the oxidation of DA, suggesting that the successful formation of GR sheets crosslinked with the functional groups of GLN polypeptide. In addition, the GR/GLN modified electrode achieved a wide linear response ranging from 0.05 to 79.5μM with a detection limit of 0.0045μM. The calculated analytical sensitivity of the sensor was 1.36±0.02μAμM -1 cm -2 . Conversely, the modified electrode demonstrates a good storage stability, reproducibility and repeatability. In addition, the sensor manifests the determination of DA in human serum and urine samples for practical applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Renard, Justine; Norris, Christopher; Rushlow, Walter; Laviolette, Steven R
2017-04-01
Growing clinical and pre-clinical evidence points to a critical role for cannabidiol (CBD), the largest phytochemical component of cannabis, as a potential pharmacotherapy for various neuropsychiatric disorders. In contrast to delta-9-tetrahydrocannabinol (THC), which is associated with acute and neurodevelopmental pro-psychotic side-effects, CBD possesses no known psychoactive or dependence-producing properties. However, evidence has demonstrated that CBD strongly modulates the mesolimbic dopamine (DA) system and may possess promising anti-psychotic properties. Despite the psychotropic differences between CBD and THC, little is known regarding their molecular and neuronal effects on the mesolimbic DA system, nor how these differential effects may relate to their potential pro vs. anti-psychotic properties. This review summarizes clinical and pre-clinical evidence demonstrating CBD's modulatory effects on DA activity states within the mesolimbic pathway, functional interactions with the serotonin 5-HT 1A receptor system, and their downstream molecular signaling effects. Together with clinical evidence showing that CBD may normalize affective and cognitive deficits associated with schizophrenia, CBD may represent a promising treatment for schizophrenia, acting through novel molecular and neuronal mesolimbic substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Durstewitz, Daniel; Seamans, Jeremy K
2008-11-01
There is now general consensus that at least some of the cognitive deficits in schizophrenia are related to dysfunctions in the prefrontal cortex (PFC) dopamine (DA) system. At the cellular and synaptic level, the effects of DA in PFC via D1- and D2-class receptors are highly complex, often apparently opposing, and hence difficult to understand with regard to their functional implications. Biophysically realistic computational models have provided valuable insights into how the effects of DA on PFC neurons and synaptic currents as measured in vitro link up to the neural network and cognitive levels. They suggest the existence of two discrete dynamical regimes, a D1-dominated state characterized by a high energy barrier among different network patterns that favors robust online maintenance of information and a D2-dominated state characterized by a low energy barrier that is beneficial for flexible and fast switching among representational states. These predictions are consistent with a variety of electrophysiological, neuroimaging, and behavioral results in humans and nonhuman species. Moreover, these biophysically based models predict that imbalanced D1:D2 receptor activation causing extremely low or extremely high energy barriers among activity states could lead to the emergence of cognitive, positive, and negative symptoms observed in schizophrenia. Thus, combined experimental and computational approaches hold the promise of allowing a detailed mechanistic understanding of how DA alters information processing in normal and pathological conditions, thereby potentially providing new routes for the development of pharmacological treatments for schizophrenia.
Sun, Wei; Wang, Yuhua; Zhang, Yuanyuan; Ju, Xiaomei; Li, Guangjiu; Sun, Zhenfan
2012-11-02
An ionic liquid 1-butylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) was used as the substrate electrode and a poly(methylene blue) (PMB) functionalized graphene (GR) composite film was co-electrodeposited on CILE surface by cyclic voltammetry. The PMB-GR/CILE exhibited better electrochemical performances with higher conductivity and lower electron transfer resistance. Electrochemical behavior of dopamine (DA) was further investigated by cyclic voltammetry and a pair of well-defined redox peaks appeared with the peak-to-peak separation (ΔE(p)) as 0.058V in 0.1 mol L(-1) pH 6.0 phosphate buffer solution, which proved a fast quasi-reversible electron transfer process on the modified electrode. Electrochemical parameters of DA on PMB-GR/CILE were calculated with the electron transfer number as 1.83, the charge transfer coefficients as 0.70, the apparent heterogeneous electron transfer rate constant as 1.72 s(-1) and the diffusional coefficient (D) as 3.45×10(-4) cm(2) s(-1), respectively. Under the optimal conditions with differential pulse voltammetric measurement, the linear relationship between the oxidation peak current of DA and its concentration was obtained in the range from 0.02 to 800.0 μmol L(-1) with the detection limit as 5.6 nmol L(-1) (3σ). The coexisting substances exhibited no interference and PMB-GR/CILE was applied to the detection of DA injection samples and human urine samples with satisfactory results. Copyright © 2012 Elsevier B.V. All rights reserved.
Yan, Jun; Liu, Shi; Zhang, Zhenqin; He, Guangwu; Zhou, Ping; Liang, Haiying; Tian, Lulu; Zhou, Xuemin; Jiang, Huijun
2013-11-01
Pd-Pt bimetallic nanoparticles anchored on functionalized reduced graphene oxide (RGO) nanomaterials were synthesized via a one-step in situ reduction process, in which Pt and Pd ions were first attached to poly(diallyldimethylammonium chloride) (PDDA) functionalized graphene oxide (GO) sheets, and then the encased metal ions and GO were subjected to simultaneous reduction by ethylene glycol. The as-prepared Pd3Pt1/PDDA-RGO nanocomposites were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and electrochemical methods. In addition, an electrochemical sensor based on the graphene nanocomposites was fabricated for the simultaneous detection of ascorbic acid (AA), dopamine (DA) and uric acid (UA) in their ternary mixture. Three well-separated voltammetric peaks along with remarkable increasing electro-oxidation currents were obtained in differential pulse voltammetry (DPV) measurements. Under the optimized conditions, there were linear relationships between the peak currents and the concentrations in the range of 40-1200 μM for AA, 4-200 μM for DA and 4-400 μM for UA, with the limit of detection (LOD) (based on S/N=3) of 0.61, 0.04 and 0.10 μM for AA, DA and UA, respectively. This improved electrochemical performance can be attributed to the synergistic effect of metallic nanoparticles and RGO and the combination of the bimetallic nanoparticles. Furthermore, the practical electroanalytical utility of the sensor was demonstrated by the determination of AA, DA and together with UA in human urine and blood serum samples with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.
Tan, Can Ozan; Bullock, Daniel
2008-10-01
Recently, dopamine (DA) neurons of the substantia nigra pars compacta (SNc) were found to exhibit sustained responses related to reward uncertainty, in addition to the phasic responses related to reward-prediction errors (RPEs). Thus, cue-dependent anticipations of the timing, magnitude, and uncertainty of rewards are learned and reflected in components of DA signals. Here we simulate a local circuit model to show how learned uncertainty responses are generated, along with phasic RPE responses, on single trials. Both types of simulated DA responses exhibit the empirically observed dependencies on conditional probability, expected value of reward, and time since onset of the reward-predicting cue. The model's three major pathways compute expected values of cues, timed predictions of reward magnitudes, and uncertainties associated with these predictions. The first two pathways' computations refine those modeled by Brown et al. (1999). The third, newly modeled, pathway involves medium spiny projection neurons (MSPNs) of the striatal matrix, whose axons corelease GABA and substance P, both at synapses with GABAergic neurons in the substantia nigra pars reticulata (SNr) and with distal dendrites (in SNr) of DA neurons whose somas are located in ventral SNc. Corelease enables efficient computation of uncertainty responses that are a nonmonotonic function of the conditional probability of reward, and variability in striatal cholinergic transmission can explain observed individual differences in the amplitudes of uncertainty responses. The involvement of matricial MSPNs and cholinergic transmission within the striatum implies a relation between uncertainty in cue-reward contingencies and action-selection functions of the basal ganglia.
Developmental analysis of the dopamine-containing neurons of the Drosophila brain
Hartenstein, Volker; Cruz, Louie; Lovick, Jennifer K.; Guo, Ming
2016-01-01
The Drosophila dopaminergic (DA) system consists of a relatively small number of neurons clustered throughout the brain and ventral nerve cord. Previous work shows that clusters of DA neurons innervate different brain compartments, which in part accounts for functional diversity of the DA system. In this paper, we analyzed the association between DA neuron clusters and specific brain lineages, developmental and structural units of the Drosophila brain which provide a framework of connections that can be followed throughout development. The hatching larval brain contains six groups of primary DA neurons (born in the embryo), which we assign to six distinct lineages. We can show that all larval DA clusters persist into the adult brain. Some clusters increase in cell number during late larval stages while others do not become DA-positive until early pupa. Ablating neuroblasts with hydroxyurea (HU) prior to onset of larval proliferation (generates secondary neurons) confirms these added DA clusters are primary neurons born in the embryo, rather than secondary neurons. A single cluster that becomes DA-positive in the late pupa, PAM1/lineage DALcm1/2, forms part of a secondary lineage which can be ablated by larval HU application. By supplying lineage information for each DA cluster, our analysis promotes further developmental and functional analyses of this important system of neurons. PMID:27350102
( sup 3 H)Dopamine uptake by platelet storage granules in schizophrenia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabey, J.M.; Graff, E.; Oberman, Z.
1992-01-01
({sup 3}H)Dopamine (DA) uptake by platelet storage granules was determined in 26 schizophrenic male patients, paranoid type (14 acute stage; 12 in remission) and 20 age-matched, normal controls. maximum velocity (Vmax) of DA uptake was significantly higher in acute patients, than patients in remission or controls (p>0.05). The apparent Michaelis constant (kM) of DA uptake in acute patients was also significantly different from chronic patients a substantial diminution of DA uptake, while haloperidol produced a substantial diminution of DA uptake, while haloperidol (10{sup {minus}4}, 10{sup {minus}5} M) did not affect the assay. Considering that a DA disequilibrium in schizophrenia maymore » be expressed not only in the brain, but also in the periphery and that an increased amount of DA accumulated in the vesicles, implies that an increased quantity of catecholamine is available for release, our findings suggest additional evidence for the role of DA overactivity in the pathophysiology of this disorder.« less
Dopaminergic control of cognitive flexibility in humans and animals
Klanker, Marianne; Feenstra, Matthijs; Denys, Damiaan
2013-01-01
Striatal dopamine (DA) is thought to code for learned associations between cues and reinforcers and to mediate approach behavior toward a reward. Less is known about the contribution of DA to cognitive flexibility—the ability to adapt behavior in response to changes in the environment. Altered reward processing and impairments in cognitive flexibility are observed in psychiatric disorders such as obsessive compulsive disorder (OCD). Patients with this disorder show a disruption of functioning in the frontostriatal circuit and alterations in DA signaling. In this review we summarize findings from animal and human studies that have investigated the involvement of striatal DA in cognitive flexibility. These findings may provide a better understanding of the role of dopaminergic dysfunction in cognitive inflexibility in psychiatric disorders, such as OCD. PMID:24204329
Somatodendritic dopamine release: recent mechanistic insights
Rice, Margaret E.; Patel, Jyoti C.
2015-01-01
Dopamine (DA) is a key transmitter in motor, reward and cogitative pathways, with DA dysfunction implicated in disorders including Parkinson's disease and addiction. Located in midbrain, DA neurons of the substantia nigra pars compacta project via the medial forebrain bundle to the dorsal striatum (caudate putamen), and DA neurons in the adjacent ventral tegmental area project to the ventral striatum (nucleus accumbens) and prefrontal cortex. In addition to classical vesicular release from axons, midbrain DA neurons exhibit DA release from their cell bodies and dendrites. Somatodendritic DA release leads to activation of D2 DA autoreceptors on DA neurons that inhibit their firing via G-protein-coupled inwardly rectifying K+ channels. This helps determine patterns of DA signalling at distant axonal release sites. Somatodendritically released DA also acts via volume transmission to extrasynaptic receptors that modulate local transmitter release and neuronal activity in the midbrain. Thus, somatodendritic release is a pivotal intrinsic feature of DA neurons that must be well defined in order to fully understand the physiology and pathophysiology of DA pathways. Here, we review recent mechanistic aspects of somatodendritic DA release, with particular emphasis on the Ca2+ dependence of release and the potential role of exocytotic proteins. PMID:26009764
Tremella-like graphene-Au composites used for amperometric determination of dopamine.
Li, Cong; Zhao, Jingyu; Yan, Xiaoyi; Gu, Yue; Liu, Weilu; Tang, Liu; Zheng, Bo; Li, Yaru; Chen, Ruixue; Zhang, Zhiquan
2015-03-21
Electrochemical detection of dopamine (DA) plays an important role in medical diagnosis. In this paper, tremella-like graphene-Au (t-GN-Au) composites were synthesized by a one-step hydrothermal method for selective detection of DA. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy were used to characterize as-prepared t-GN-Au composites. The t-GN-Au composites were directly used for the determination of DA via cyclic voltammetry (CV) and the chronoamperometry (CA) technique. CA measurement gave a wide linear range from 0.8 to 2000 μM, and the detection limit of 57 nM (S/N = 3) for DA. The mechanism and the heterogeneous electron transfer kinetics of the DA oxidation were discussed in the light of rotating disk electrode (RDE) experiments. Moreover, the modified electrode was applied to the determination of DA in human urine and serum samples.
Dopamine Dynamics and Signaling in Drosophila: An Overview of Genes, Drugs and Behavioral Paradigms
Yamamoto, Shinya; Seto, Elaine S.
2014-01-01
Changes in dopamine (DA) signaling have been implicated in a number of human neurologic and psychiatric disorders. Similarly, defects in DA signaling in the fruit fly, Drosophila melanogaster, have also been associated with several behavioral defects. As most genes involved in DA synthesis, transport, secretion, and signaling are conserved between species, Drosophila is a powerful genetic model organism to study the regulation of DA signaling in vivo. In this review, we will provide an overview of the genes and drugs that regulate DA biology in Drosophila. Furthermore, we will discuss the behavioral paradigms that are regulated by DA signaling in flies. By analyzing the genes and neuronal circuits that govern such behaviors using sophisticated genetic, pharmacologic, electrophysiologic, and imaging approaches in Drosophila, we will likely gain a better understanding about how this neuromodulator regulates motor tasks and cognition in humans. PMID:24770636
FMRP acts as a key messenger for dopamine modulation in the forebrain.
Wang, Hansen; Wu, Long-Jun; Kim, Susan S; Lee, Frank J S; Gong, Bo; Toyoda, Hiroki; Ren, Ming; Shang, Yu-Ze; Xu, Hui; Liu, Fang; Zhao, Ming-Gao; Zhuo, Min
2008-08-28
The fragile X mental retardation protein (FMRP) is an RNA-binding protein that controls translational efficiency and regulates synaptic plasticity. Here, we report that FMRP is involved in dopamine (DA) modulation of synaptic potentiation. AMPA glutamate receptor subtype 1 (GluR1) surface expression and phosphorylation in response to D1 receptor stimulation were reduced in cultured Fmr1(-/-) prefrontal cortex (PFC) neurons. Furthermore, D1 receptor signaling was impaired, accompanied by D1 receptor hyperphosphorylation at serine sites and subcellular redistribution of G protein-coupled receptor kinase 2 (GRK2) in both PFC and striatum of Fmr1(-/-) mice. FMRP interacted with GRK2, and pharmacological inhibition of GRK2 rescued D1 receptor signaling in Fmr1(-/-) neurons. Finally, D1 receptor agonist partially rescued hyperactivity and enhanced the motor function of Fmr1(-/-) mice. Our study has identified FMRP as a key messenger for DA modulation in the forebrain and may provide insights into the cellular and molecular mechanisms underlying fragile X syndrome.
Importance of cholesterol in dopamine transporter function
Jones, Kymry T.; Zhen, Juan; Reith, Maarten E.A.
2012-01-01
The conformation and function of the dopamine transporter (DAT) can be affected by manipulating membrane cholesterol, yet there is no agreement as to the impact of cholesterol on the activity of lipid-raft localized DATs compared to non-raft DATs. Given the paucity of information regarding the impact of cholesterol on substrate efflux by the DAT, this study explores its influence on the kinetics of DAT-mediated DA efflux induced by dextroamphetamine, as measured by rotating disk electrode voltammetry (RDEV). Treatment with methyl-β-cyclodextrin (mβCD), which effectively depletes total membrane cholesterol- uniformly affecting cholesterol-DAT interactions in both raft and non-raft membrane domains- reduced both DA uptake and efflux rate. In contrast, disruption of raft localized DAT by cholesterol chelation with nystatin had no effect, arguing against a vital role for raft-localized DAT in substrate uptake or efflux. Supra-normal repletion of cholesterol depleted cells with the analogue desmosterol, a non-raft promoting sterol, was as effective as cholesterol itself in restoring transport rates. Further studies with Zn2+ and the conformationally-biased W84L DAT mutant supported the idea that cholesterol is important for maintaining the outward-facing DAT with normal rates of conformational interconversions. Collectively, these results point to a role for direct cholesterol-DAT interactions in regulating DAT function. PMID:22957537
Cocaine inhibition of nicotinic acetylcholine receptors influences dopamine release
Acevedo-Rodriguez, Alexandra; Zhang, Lifen; Zhou, Fuwen; Gong, Suzhen; Gu, Howard; De Biasi, Mariella; Zhou, Fu-Ming; Dani, John A.
2014-01-01
Nicotinic acetylcholine receptors (nAChRs) potently regulate dopamine (DA) release in the striatum and alter cocaine's ability to reinforce behaviors. Since cocaine is a weak nAChR inhibitor, we hypothesized that cocaine may alter DA release by inhibiting the nAChRs in DA terminals in the striatum and thus contribute to cocaine's reinforcing properties primarily associated with the inhibition of DA transporters. We found that biologically relevant concentrations of cocaine can mildly inhibit nAChR-mediated currents in midbrain DA neurons and consequently alter DA release in the dorsal and ventral striatum. At very high concentrations, cocaine also inhibits voltage-gated Na channels in DA neurons. Furthermore, our results show that partial inhibition of nAChRs by cocaine reduces evoked DA release. This diminution of DA release via nAChR inhibition more strongly influences release evoked at low or tonic stimulation frequencies than at higher (phasic) stimulation frequencies, particularly in the dorsolateral striatum. This cocaine-induced shift favoring phasic DA release may contribute to the enhanced saliency and motivational value of cocaine-associated memories and behaviors. PMID:25237305
The Michelin red guide of the brain: role of dopamine in goal-oriented navigation.
Retailleau, Aude; Boraud, Thomas
2014-01-01
Spatial learning has been recognized over the years to be under the control of the hippocampus and related temporal lobe structures. Hippocampal damage often causes severe impairments in the ability to learn and remember a location in space defined by distal visual cues. Such cognitive disabilities are found in Parkinsonian patients. We recently investigated the role of dopamine in navigation in the 6-Hydroxy-dopamine (6-OHDA) rat, a model of Parkinson's disease (PD) commonly used to investigate the pathophysiology of dopamine depletion (Retailleau et al., 2013). We demonstrated that dopamine (DA) is essential to spatial learning as its depletion results in spatial impairments. Our results showed that the behavioral effect of DA depletion is correlated with modification of the neural encoding of spatial features and decision making processes in hippocampus. However, the origin of these alterations in the neural processing of the spatial information needs to be clarified. It could result from a local effect: dopamine depletion disturbs directly the processing of relevant spatial information at hippocampal level. Alternatively, it could result from a more distributed network effect: dopamine depletion elsewhere in the brain (entorhinal cortex, striatum, etc.) modifies the way hippocampus processes spatial information. Recent experimental evidence in rodents, demonstrated indeed, that other brain areas are involved in the acquisition of spatial information. Amongst these, the cortex-basal ganglia (BG) loop is known to be involved in reinforcement learning and has been identified as an important contributor to spatial learning. In particular, it has been shown that altered activity of the BG striatal complex can impair the ability to perform spatial learning tasks. The present review provides a glimpse of the findings obtained over the past decade that support a dialog between these two structures during spatial learning under DA control.
Zhang, Wuxiang; Zheng, Jianzhong; Shi, Jiangu; Lin, Zhongqiu; Huang, Qitong; Zhang, Hanqiang; Wei, Chan; Chen, Jianhua; Hu, Shirong; Hao, Aiyou
2015-01-01
Nafion covered core-shell structured Fe3O4@graphene nanospheres (GNs) modified glassy carbon electrode (GCE) was successfully prepared and used for selective detection dopamine. Firstly, the characterizations of hydro-thermal synthesized Fe3O4@GNs were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Then Fe3O4@GNs/Nafion modified electrode exhibited excellent electrocatalytic activity toward the oxidations of dopamine (DA). The interference test showed that the coexisted ascorbic acid (AA) and uric acid (UA) had no electrochemical interference toward DA. Under the optimum conditions, the broad linear relationship was obtained in the experimental concentration from 0.020 μM to 130.0 μM with the detection limit (S/N=3) of 0.007 μM. Furthermore, the core-shell structured Fe3O4@GNs/Nafion/GCE was applied to the determination of DA in real samples and satisfactory results were got, which could provide a promising platform to develop excellent biosensor for detecting DA. Copyright © 2014 Elsevier B.V. All rights reserved.
Yu, Yanyan; Chen, Zuanguang; Zhang, Beibei; Li, Xinchun; Pan, Jianbin
2013-08-15
In this work, a facile electrochemical sensor based on poly(diallyldimethylammonium chloride) (PDDA) functionalized graphene (PDDA-G) and graphite was fabricated. The composite electrode exhibited excellent selectivity and sensitivity towards uric acid (UA), owing to the electrocatalytic effect of graphene nanosheets and the electrostatic attractions between PDDA-G and UA. The anodic peak current of UA obtained by cyclic voltammetry (CV) increased over 10-fold compared with bare carbon paste electrode (CPE). And the reversibility of the oxidation process was improved significantly. Differential pulse voltammetry (DPV) was used to determine UA in the presence of ascorbic acid (AA) and dopamine (DA). It was found that all of oxidation peaks of three species could be well resolved, and the peak current of UA was much stronger than the other two components. More importantly, considerable-amount of AA and DA showed negligible interference to UA assay. The calibration curve for UA ranged from 0.5 to 20 μmol L(-1) with a correlation coefficient of 0.9934. The constructed sensor has been employed to quantitatively determine UA in urine samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Riccardi, Patrizia; Park, Sohee; Anderson, Sharlet; Doop, Mikisha; Ansari, M Sib; Schmidt, Dennis; Baldwin, Ronald
2011-02-01
The purpose of this study was to examine sex differences in the correlations of d-amphetamine (d-AMPH) induced displacements of [¹⁸F]fallypride in striatal and extrastriatal regions in relation to affect and cognition. Seven male and six female healthy subjects, whose mean age was 25.9 years, underwent positron emission tomography (PET) with [¹⁸F]fallypride at baseline and 3 h after a 0.43 mg/kg oral dose of d-AMPH. Percent displacements in striatal and extrastriatal regions were calculated using regions of interest (ROI) analysis and on a pixel-by-pixel basis. Subjects underwent neuropsychological testing prior to the baseline PET study and one hour after d-AMPH administration for the second PET. In order to examine the subjective effect of d-AMPH, subjects rated PANAS at baseline and after administration of amphetamine. Correlations of changes in cognition and affect with regional dopamine (DA) release revealed several significant sex related differences. The results of this study demonstrate in vivo sex related differences in the relationship of regional DA release to affect and cognitive function. Copyright © 2010 Wiley-Liss, Inc.
Xin, Yanmei; Li, Zhenzhen; Wu, Wenlong; Fu, Baihe; Wu, Hongjun; Zhang, Zhonghai
2017-01-15
For implementing sensitive and selective detection of biological molecules, the biosensors are been designed more and more complicated. The exploration of detection platform in a simple way without loss their sensitivity and selectivity is always a big challenge. Herein, a prototype of recognition biomolecule unit-free photoelectrochemical (PEC) sensing platform with self-cleaning activity is proposed with TiO 2 nanotube photonic crystal (TiO 2 NTPCs) materials as photoelectrode, and dopamine (DA) molecule as both sensitizer and target analyte. The unique adsorption between DA and TiO 2 NTPCs induces the formation of charge transfer complex, which not only expends the optical absorption of TiO 2 into visible light region, thus significantly boosts the PEC performance under illumination of visible light, but also implements the selective detection of DA on TiO 2 photoelectrode. This simple but efficient PEC analysis platform presents a low detection limit of 0.15nm for detection of DA, which allows to realize the sensitive and selective determination of DA release from the mouse brain for its practical application after coupled with a microdialysis probe. The DA functionalized TiO 2 NTPCs PEC sensing platform opens up a new PEC detection model, without using extra-biomolecule auxiliary, just with target molecule naturally adsorbed on the electrode for sensitive and selective detection, and paves a new avenue for biosensors design with minimalism idea. Copyright © 2016 Elsevier B.V. All rights reserved.
Amphetamine and Methamphetamine Differentially Affect Dopamine Transporters in Vitro and in Vivo*S⃞
Goodwin, J. Shawn; Larson, Gaynor A.; Swant, Jarod; Sen, Namita; Javitch, Jonathan A.; Zahniser, Nancy R.; De Felice, Louis J.; Khoshbouei, Habibeh
2009-01-01
The psychostimulants d-amphetamine (AMPH) and methamphetamine (METH) release excess dopamine (DA) into the synaptic clefts of dopaminergic neurons. Abnormal DA release is thought to occur by reverse transport through the DA transporter (DAT), and it is believed to underlie the severe behavioral effects of these drugs. Here we compare structurally similar AMPH and METH on DAT function in a heterologous expression system and in an animal model. In the in vitro expression system, DAT-mediated whole-cell currents were greater for METH stimulation than for AMPH. At the same voltage and concentration, METH released five times more DA than AMPH and did so at physiological membrane potentials. At maximally effective concentrations, METH released twice as much [Ca2+]i from internal stores compared with AMPH. [Ca2+]i responses to both drugs were independent of membrane voltage but inhibited by DAT antagonists. Intact phosphorylation sites in the N-terminal domain of DAT were required for the AMPH- and METH-induced increase in [Ca2+]i and for the enhanced effects of METH on [Ca2+]i elevation. Calmodulin-dependent protein kinase II and protein kinase C inhibitors alone or in combination also blocked AMPH- or METH-induced Ca2+ responses. Finally, in the rat nucleus accumbens, in vivo voltammetry showed that systemic application of METH inhibited DAT-mediated DA clearance more efficiently than AMPH, resulting in excess external DA. Together these data demonstrate that METH has a stronger effect on DAT-mediated cell physiology than AMPH, which may contribute to the euphoric and addictive properties of METH compared with AMPH. PMID:19047053
Badrinarayan, Aneesha; Wescott, Seth A.; Vander Weele, Caitlin M.; Saunders, Benjamin T.; Couturier, Brenann E.; Maren, Stephen
2012-01-01
Although fear directs adaptive behavioral responses, how aversive cues recruit motivational neural circuitry is poorly understood. Specifically, while it is known that dopamine (DA) transmission within the nucleus accumbens (NAc) is imperative for mediating appetitive motivated behaviors, its role in aversive behavior is controversial. It has been proposed that divergent phasic DA transmission following aversive events may correspond to segregated mesolimbic dopamine pathways; however, this prediction has never been tested. Here, we used fast-scan cyclic voltammetry to examine real-time DA transmission within NAc core and shell projection systems in response to a fear-evoking cue. In male Sprague Dawley rats, we first demonstrate that a fear cue results in decreased DA transmission within the NAc core, but increased transmission within the NAc shell. We examined whether these changes in DA transmission could be attributed to modulation of phasic transmission evoked by cue presentation. We found that cue presentation decreased the probability of phasic DA release in the core, while the same cue enhanced the amplitude of release events in the NAc shell. We further characterized the relationship between freezing and both changes in DA as well as local pH. Although we found that both analytes were significantly correlated with freezing in the NAc across the session, changes in DA were not strictly associated with freezing while basic pH shifts in the core more consistently followed behavioral expression. Together, these results provide the first real-time neurochemical evidence that aversive cues differentially modulate distinct DA projection systems. PMID:23136417
Wakabayashi, Ken T; Bruno, Michael J; Bass, Caroline E; Park, Jinwoo
2016-06-21
The olfactory tubercle (OT), as a component of the ventral striatum, serves as an important multisensory integration center for reward-related processes in the brain. Recent studies show that dense dopaminergic innervation from the ventral tegmental area (VTA) into the OT may play an outsized role in disorders such as psychostimulant addiction and disorders of motivation, increasing recent scientific interest in this brain region. However, due to its anatomical inaccessibility, relative small size, and proximity to other dopamine-rich structures, neurochemical assessments using conventional methods cannot be readily employed. Here, we investigated dopamine (DA) regulation in the OT of urethane-anesthetized rats using in vivo fast-scan voltammetry (FSCV) coupled with carbon-fiber microelectrodes, following optogenetic stimulation of the VTA. The results were compared with DA regulation in the nucleus accumbens (NAc), a structure located adjacent to the OT and which also receives dense DA innervation from the VTA. FSCV coupled with optically evoked release allowed us to investigate the spatial distribution of DA in the OT and characterize OT DA dynamics (release and clearance) with subsecond temporal and micrometer spatial resolution for the first time. In this study, we demonstrated that DA transporters play an important role in regulating DA in the OT. However, the control of extracellular DA by uptake in the OT was less than in the NAc. The difference in DA transmission in the terminal fields of the OT and NAc may be involved in region-specific responses to drugs of abuse and contrasting roles in mediating reward-related behavior.
Molecular imaging and neural networks in impulse control disorders in Parkinson's disease.
Aracil-Bolaños, I; Strafella, A P
2016-01-01
Impulse control disorders (ICDs) may arise in Parkinson's disease (PD) in relation to the use of dopamine agonists (DA). A dysfunction of reward circuits is considered the main underlying mechanism. Neuroimaging has been largely used in this setting to understand the structure of the reward system and its abnormalities brought by exogenous stimulation in PD. Dopaminergic changes, such as increased dopamine release, reduced dopamine transporter activity and other changes, have been shown to be a consistent feature of ICDs in PD. Beyond the striatum, alterations of prefrontal cortical function may also impact an individuals' propensity for impulsivity. Neuroimaging is advancing our knowledge of the mechanisms involved in the development of these behavioral addictions. An increased understanding of these disorders may lead to the discovery of new therapeutic targets, or the identification of risk factors for the development of these disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Karthick Kannan, Padmanathan; Moshkalev, Stanislav A.; Sekhar Rout, Chandra
2016-02-01
In the present study, we report the electrochemical sensing property of multi-layer graphene nanobelts (GNBs) towards dopamine (DA). GNBs are synthesized from natural graphite and characterized by using techniques like field-emission scanning electron microscopy, atomic force microscopy and Raman spectroscopy. An electrochemical sensor based on GNBs is developed for the detection of DA. From the cyclic voltammetry and amperometry studies, it is found that GNBs possess excellent electrocatalytic activity towards DA molecules. The developed DA sensor showed a sensitivity value of 0.95 μA μM-1 cm-2 with a linear range of 2 μM to 0.2 mM. The interference data exhibited that GNB is highly selective to DA even in the presence of common interfering species like ascorbic acid, uric acid, glucose and lactic acid.
Kannan, Padmanathan Karthick; Moshkalev, Stanislav A; Rout, Chandra Sekhar
2016-02-19
In the present study, we report the electrochemical sensing property of multi-layer graphene nanobelts (GNBs) towards dopamine (DA). GNBs are synthesized from natural graphite and characterized by using techniques like field-emission scanning electron microscopy, atomic force microscopy and Raman spectroscopy. An electrochemical sensor based on GNBs is developed for the detection of DA. From the cyclic voltammetry and amperometry studies, it is found that GNBs possess excellent electrocatalytic activity towards DA molecules. The developed DA sensor showed a sensitivity value of 0.95 μA μM(-1) cm(-2) with a linear range of 2 μM to 0.2 mM. The interference data exhibited that GNB is highly selective to DA even in the presence of common interfering species like ascorbic acid, uric acid, glucose and lactic acid.
Yu, Q; Teixeira, C M; Mahadevia, D; Huang, Y; Balsam, D; Mann, J J; Gingrich, J A; Ansorge, M S
2014-06-01
Pharmacologic blockade of monoamine oxidase A (MAOA) or serotonin transporter (5-HTT) has antidepressant and anxiolytic efficacy in adulthood. Yet, genetically conferred MAOA or 5-HTT hypoactivity is associated with altered aggression and increased anxiety/depression. Here we test the hypothesis that increased monoamine signaling during development causes these paradoxical aggressive and affective phenotypes. We find that pharmacologic MAOA blockade during early postnatal development (P2-P21) but not during peri-adolescence (P22-41) increases anxiety- and depression-like behavior in adult (>P90) mice, mimicking the effect of P2-21 5-HTT inhibition. Moreover, MAOA blockade during peri-adolescence, but not P2-21 or P182-201, increases adult aggressive behavior, and 5-HTT blockade from P22-P41 reduced adult aggression. Blockade of the dopamine transporter, but not the norepinephrine transporter, during P22-41 also increases adult aggressive behavior. Thus, P2-21 is a sensitive period during which 5-HT modulates adult anxiety/depression-like behavior, and P22-41 is a sensitive period during which DA and 5-HT bi-directionally modulate adult aggression. Permanently altered DAergic function as a consequence of increased P22-P41 monoamine signaling might underlie altered aggression. In support of this hypothesis, we find altered aggression correlating positively with locomotor response to amphetamine challenge in adulthood. Proving that altered DA function and aggression are causally linked, we demonstrate that optogenetic activation of VTA DAergic neurons increases aggression. It therefore appears that genetic and pharmacologic factors impacting dopamine and serotonin signaling during sensitive developmental periods can modulate adult monoaminergic function and thereby alter risk for aggressive and emotional dysfunction.
Three-Dimensional-Bioprinted Dopamine-Based Matrix for Promoting Neural Regeneration.
Zhou, Xuan; Cui, Haitao; Nowicki, Margaret; Miao, Shida; Lee, Se-Jun; Masood, Fahed; Harris, Brent T; Zhang, Lijie Grace
2018-03-14
Central nerve repair and regeneration remain challenging problems worldwide, largely because of the extremely weak inherent regenerative capacity and accompanying fibrosis of native nerves. Inadequate solutions to the unmet needs for clinical therapeutics encourage the development of novel strategies to promote nerve regeneration. Recently, 3D bioprinting techniques, as one of a set of valuable tissue engineering technologies, have shown great promise toward fabricating complex and customizable artificial tissue scaffolds. Gelatin methacrylate (GelMA) possesses excellent biocompatible and biodegradable properties because it contains many arginine-glycine-aspartic acids (RGD) and matrix metalloproteinase sequences. Dopamine (DA), as an essential neurotransmitter, has proven effective in regulating neuronal development and enhancing neurite outgrowth. In this study, GelMA-DA neural scaffolds with hierarchical structures were 3D-fabricated using our custom-designed stereolithography-based printer. DA was functionalized on GelMA to synthesize a biocompatible printable ink (GelMA-DA) for improving neural differentiation. Additionally, neural stem cells (NSCs) were employed as the primary cell source for these scaffolds because of their ability to terminally differentiate into a variety of cell types including neurons, astrocytes, and oligodendrocytes. The resultant GelMA-DA scaffolds exhibited a highly porous and interconnected 3D environment, which is favorable for supporting NSC growth. Confocal microscopy analysis of neural differentiation demonstrated that a distinct neural network was formed on the GelMA-DA scaffolds. In particular, the most significant improvements were the enhanced neuron gene expression of TUJ1 and MAP2. Overall, our results demonstrated that 3D-printed customizable GelMA-DA scaffolds have a positive role in promoting neural differentiation, which is promising for advancing nerve repair and regeneration in the future.
Role of ventral pallidal D2 dopamine receptors in the consolidation of spatial memory.
Péczely, László; Ollmann, Tamás; László, Kristóf; Kovács, Anita; Gálosi, Rita; Kertes, Erika; Zagorácz, Olga; Kállai, Veronika; Karádi, Zoltán; Lénárd, László
2016-10-15
The role of dopamine (DA) receptors in spatial memory consolidation has been demonstrated in numerous brain regions, among others in the nucleus accumbens which innervates the ventral pallidum (VP). The VP contains both D1 and D2 DA receptors. We have recently shown that the VP D1 DA receptor activation facilitates consolidation of spatial memory in Morris water maze test. In the present study, the role of VP D2 DA receptors was investigated in the same paradigm. In the first experiment, the D2 DA receptor agonist quinpirole was administered into the VP of male Wistar rats in three doses (0.1, 1.0 or 5.0μg, respectively in 0.4μl physiological saline). In the second experiment, the D2 DA receptor antagonist sulpiride was applied to elucidate whether it can antagonise the effects of quinpirole. The antagonist (4.0μg, dissolved in 0.4μl physiological saline) was microinjected into the VP either by itself or prior to 1.0μg agonist treatment. Control animals received saline in both experiments. The two higher doses (1.0 and 5.0μg) of the agonist accelerated memory consolidation relative to controls and increased the stability of the consolidated memory against extinction. Sulpiride pretreatment antagonised the effects of quinpirole. In addition, the antagonist microinjected into the VP immediately after the second conditioning trial impaired learning functions. The present data provide evidences for the important role of VP D2 DA receptors in the consolidation and stabilization of spatial memory. Copyright © 2016 Elsevier B.V. All rights reserved.
Lavoute, Cécile; Weiss, Michel; Risso, Jean-Jacques; Rostain, Jean-Claude
2014-02-01
The purpose of this study was to investigate the change in the striatal dopamine (DA) level in freely-moving rat exposed to different partial pressure of oxygen (from 1 to 5 ATA). Some works have suggested that DA release by the substantia nigra pars compacta (SNc) neurons in the striatum could be disturbed by hyperbaric oxygen (HBO) exposure, altering therefore the basal ganglia activity. Such changes could result in a change in glutamatergic and GABAergic control of the dopaminergic neurons into the SNc. Such alterations could provide more information about the oxygen-induced seizures observed at 5 ATA in rat. DA-sensitive electrodes were implanted into the striatum under general anesthesia. After 1 week rest, awaked rats were exposed to oxygen-nitrogen mixture at a partial pressure of oxygen of 1, 2, 3, 4 and 5 ATA. DA level was monitored continuously (every 3 min) by in vivo voltammetry before and during HBO exposure. HBO induced a decrease in DA level in relationship to the increase in partial pressure of oxygen from 1 ATA to 4 ATA (-15 % at 1 ATA, -30 % at 2 ATA, -40 % at 3 ATA, -45 % at 4 ATA), without signs of oxygen toxicity. At 5 ATA, DA level strongly decreases (-75 %) before seizure which occurred after 27 min ± 7 HBO exposure. After the epileptic seizure the decrease in DA level disappeared. These changes and the biphasic effect of HBO were discussed in function of HBO action on neurochemical regulations of the nigro striatal pathway.
Pereira, Mariana; Farrar, Andrew M; Hockemeyer, Jörg; Müller, Christa E; Salamone, John D; Morrell, Joan I
2011-01-01
Mesolimbic dopamine (DA), particularly in the nucleus accumbens, importantly regulates activational aspects of maternal responsiveness. DA antagonism and accumbens DA depletions interfere with early postpartum maternal motivation by selectively affecting most forms of active maternal behaviors, while leaving nursing behavior relatively intact. Considerable evidence indicates that there is a functional interaction between DA D2 and adenosine A(2A) receptors in striatal areas, including the nucleus accumbens. This study was conducted to determine if adenosine A(2A) receptor antagonism could reverse the effects of DA receptor antagonism on early postpartum maternal behavior. The adenosine A(2A) receptor antagonist MSX-3 (0.25-2.0 mg/kg, IP) was investigated for its ability to reverse the effects of the DA D2 receptor antagonist haloperidol (0.1 mg/kg, IP) on the maternal behavior of early postpartum female rats. Haloperidol severely impaired the expression of active maternal components, including retrieval and grouping the pups at the nest site, pup licking, and nest building. Co-administration of MSX-3 (0.25-2.0 mg/kg, IP) with haloperidol produced a dose-related attenuation of the haloperidol-induced behavioral deficits in early postpartum females. Doses of MSX-3 that effectively reversed the effects of haloperidol (0.5, 1.0 mg/kg), when administered in the absence of haloperidol, did not affect maternal responding or locomotor activity. Adenosine and DA systems interact to regulate early postpartum maternal responsiveness. This research may potentially contribute to the development of strategies for treatments of psychiatric disorders during the postpartum period, with particular emphasis in maintaining or restoring the mother-infant relationship.
Farrar, Andrew M.; Hockemeyer, Jörg; Müller, Christa E.; Salamone, John D.; Morrell, Joan I.
2011-01-01
Rationale Mesolimbic dopamine (DA), particularly in the nucleus accumbens, importantly regulates activational aspects of maternal responsiveness. DA antagonism and accumbens DA depletions interfere with early postpartum maternal motivation by selectively affecting most forms of active maternal behaviors, while leaving nursing behavior relatively intact. Considerable evidence indicates that there is a functional interaction between DA D2 and adenosine A2A receptors in striatal areas, including the nucleus accumbens. Objective This study was conducted to determine if adenosine A2A receptor antagonism could reverse the effects of DA receptor antagonism on early postpartum maternal behavior. Methods The adenosine A2A receptor antagonist MSX-3 (0.25–2.0 mg/kg, IP) was investigated for its ability to reverse the effects of the DA D2 receptor antagonist haloperidol (0.1 mg/kg, IP) on the maternal behavior of early postpartum female rats. Results Haloperidol severely impaired the expression of active maternal components, including retrieval and grouping the pups at the nest site, pup licking, and nest building. Co-administration of MSX-3 (0.25–2.0 mg/kg, IP) with haloperidol produced a dose-related attenuation of the haloperidol-induced behavioral deficits in early postpartum females. Doses of MSX-3 that effectively reversed the effects of haloperidol (0.5, 1.0 mg/kg), when administered in the absence of haloperidol, did not affect maternal responding or locomotor activity. Conclusions Adenosine and DA systems interact to regulate early postpartum maternal responsiveness. This research may potentially contribute to the development of strategies for treatments of psychiatric disorders during the postpartum period, with particular emphasis in maintaining or restoring the mother–infant relationship. PMID:20848086
Dopamine D₂-Like Receptors and Behavioral Economics of Food Reinforcement.
Soto, Paul L; Hiranita, Takato; Xu, Ming; Hursh, Steven R; Grandy, David K; Katz, Jonathan L
2016-03-01
Previous studies suggest dopamine (DA) D2-like receptor involvement in the reinforcing effects of food. To determine contributions of the three D2-like receptor subtypes, knockout (KO) mice completely lacking DA D2, D3, or D4 receptors (D2R, D3R, or D4R KO mice) and their wild-type (WT) littermates were exposed to a series of fixed-ratio (FR) food-reinforcement schedules in two contexts: an open economy with additional food provided outside the experimental setting and a closed economy with all food earned within the experimental setting. A behavioral economic model was used to quantify reinforcer effectiveness with food pellets obtained as a function of price (FR schedule value) plotted to assess elasticity of demand. Under both economies, as price increased, food pellets obtained decreased more rapidly (ie, food demand was more elastic) in DA D2R KO mice compared with WT littermates. Extinction of responding was studied in two contexts: by eliminating food deliveries and by delivering food independently of responding. A hyperbolic model quantified rates of extinction. Extinction in DA D2R KO mice occurred less rapidly compared with WT mice in both contexts. Elasticity of food demand was higher in DA D4R KO than WT mice in the open, but not closed, economy. Extinction of responding in DA D4R KO mice was not different from that in WT littermates in either context. No differences in elasticity of food demand or extinction rate were obtained in D3R KO mice and WT littermates. These results indicate that the D2R is the primary DA D2-like receptor subtype mediating the reinforcing effectiveness of food.
Dopamine D2-Like Receptors and Behavioral Economics of Food Reinforcement
Soto, Paul L; Hiranita, Takato; Xu, Ming; Hursh, Steven R; Grandy, David K; Katz, Jonathan L
2016-01-01
Previous studies suggest dopamine (DA) D2-like receptor involvement in the reinforcing effects of food. To determine contributions of the three D2-like receptor subtypes, knockout (KO) mice completely lacking DA D2, D3, or D4 receptors (D2R, D3R, or D4R KO mice) and their wild-type (WT) littermates were exposed to a series of fixed-ratio (FR) food-reinforcement schedules in two contexts: an open economy with additional food provided outside the experimental setting and a closed economy with all food earned within the experimental setting. A behavioral economic model was used to quantify reinforcer effectiveness with food pellets obtained as a function of price (FR schedule value) plotted to assess elasticity of demand. Under both economies, as price increased, food pellets obtained decreased more rapidly (ie, food demand was more elastic) in DA D2R KO mice compared with WT littermates. Extinction of responding was studied in two contexts: by eliminating food deliveries and by delivering food independently of responding. A hyperbolic model quantified rates of extinction. Extinction in DA D2R KO mice occurred less rapidly compared with WT mice in both contexts. Elasticity of food demand was higher in DA D4R KO than WT mice in the open, but not closed, economy. Extinction of responding in DA D4R KO mice was not different from that in WT littermates in either context. No differences in elasticity of food demand or extinction rate were obtained in D3R KO mice and WT littermates. These results indicate that the D2R is the primary DA D2-like receptor subtype mediating the reinforcing effectiveness of food. PMID:26205210
Howe, William M; Tierney, Patrick L; Young, Damon A; Oomen, Charlotte; Kozak, Rouba
2015-11-01
Gestational day 17 methylazoxymethanol (MAM) treatment has been shown to reproduce, in rodents, some of the alterations in cortical and mesolimbic circuitries thought to contribute to schizophrenia. We characterized the behavior of MAM animals in tasks dependent on these circuitries to see what behavioral aspects of schizophrenia the model captures. We then characterized the integrity of mesolimbic dopamine neurotransmission in a subset of animals used in the behavioral experiments. MAM animals' capacity for working memory, attention, and resilience to distraction was tested with two different paradigms. Cue-reward learning and motivation were assayed with Pavlovian conditioned approach. Measurements of electrically stimulated phasic and tonic DA release in the nucleus accumbens with fast-scan cyclic voltammetry were obtained from the same animals used in the Pavlovian task. MAM animals' basic attentional capacities were intact. MAM animals took longer to acquire the working memory task, but once learned, performed at the same level as shams. MAM animals were also slower to develop a Pavlovian conditioned response, but otherwise no different from controls. These same animals showed alterations in terminal DA release that were unmasked by an amphetamine challenge. The predominant behavioral-cognitive feature of the MAM model is a learning impairment that is evident in acquisition of executive function tasks as well as basic Pavlovian associations. MAM animals also have dysregulated terminal DA release, and this may contribute to observed behavioral differences. The MAM model captures some functional impairments of schizophrenia, particularly those related to acquisition of goal-directed behavior.
Pure uptake blockers of dopamine can reduce prolactin secretion: studies with diclofensine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Renzo, G.; Amoroso, S.; Taglialatela, M.
1988-01-01
The effects of diclofensine, a pure dopamine (DA) uptake inhibitor on 1) /sup 3/H-DA uptake in rat arcuate-periventricular nucleus-median eminence synaptosomes, 2) basal and K+-evoked endogenous DA release from tuberoinfundibular dopaminergic (TIDA) neurons and 3) in vivo prolactin (PRL) secretion were studied. Diclofensine, in concentrations of 0.01, 0.1 and 1 ..mu..M caused a marked decrease of /sup 3/H-DA uptake. In addition, it was unable to stimulate basal endogenous DA release which, on the contrary, was elicited by d-amphetamine in the same concentration. On the other hand, diclofensine caused a 3 fold enhancement on K+-evoked DA release. Finally, the compound, whenmore » administered in vivo to male rats, significantly reduced basal serum PRL levels. The results of the present study seem to indicate that the pharmacological blockade of DA uptake in TIDA neurons is a condition sufficient to cause a reduction of PRL release.« less
Dopamine, the medial preoptic area, and male sexual behavior.
Dominguez, Juan M; Hull, Elaine M
2005-10-15
The medial preoptic area (MPOA), at the rostral end of the hypothalamus, is important for the regulation of male sexual behavior. Results showing that male sexual behavior is impaired following MPOA lesions and enhanced with MPOA stimulation support this conclusion. The neurotransmitter dopamine (DA) facilitates male sexual behavior in all studied species, including rodents and humans. Here, we review data indicating that the MPOA is one site where DA may act to regulate male sexual behavior. DA agonists microinjected into the MPOA facilitate sexual behavior, whereas DA antagonists impair copulation, genital reflexes, and sexual motivation. Moreover, microdialysis experiments showed increased release of DA in the MPOA as a result of precopulatory exposure to an estrous female and during copulation. DA may remove tonic inhibition in the MPOA, thereby enhancing sensorimotor integration, and also coordinate autonomic influences on genital reflexes. In addition to sensory stimulation, other factors influence the release of DA in the MPOA, including testosterone, nitric oxide, and glutamate. Here we summarize and interpret these data.
Sullivan, R M; Dufresne, M M; Siontas, D; Chehab, S; Townsend, J; Laplante, F
2014-10-03
The mesocortical dopamine (DA) system of the rat plays an important role in prefrontal cortex (PFC) regulation of stress and emotion and exhibits functional hemispheric asymmetry for such processing. Since few studies examine sex differences in this context, we compared the effects of left vs. right unilateral PFC DA depletion in males and females in several behavioral situations associated with anxiety or aversion. Adult rats received unilateral injections of 6-hydroxydopamine (6-OHDA) or vehicle in the ventromedial (vm) PFC. Behavioral tests included a predator odor burying test, elevated plus maze and sucrose consumption with simple taste aversion. Tissue analysis confirmed that vmPFCs injected with 6-OHDA were depleted of DA (75-85%) compared to controls. Burying behavior and sucrose consumption were affected only by left lesions, similarly in both sexes. However, risk assessment behaviors were affected by right lesions in opposite directions in males and females. Behaviors modified preferentially by the left cortex thus showed less evidence of sex differences than those modulated by the right. While mesocortical DA depletion effects are lateralized, the nature of these effects can vary with sex and specific behavior. Such findings may be clinically significant, given the large gender differences in the incidence of mood and anxiety disorders, which also show many lateralized prefrontal abnormalities. Copyright © 2014 Elsevier Inc. All rights reserved.
Caravaggio, Fernando; Chung, Jun Ku; Gerretsen, Philip; Fervaha, Gagan; Nakajima, Shinichiro; Plitman, Eric; Iwata, Yusuke; Wilson, Alan; Graff-Guerrero, Ariel
2017-01-01
Differences in striatal dopamine (DA) function may be related to differences in the degree of social attachment to others. Using positron emission tomography (PET), socially detached persons demonstrate reduced DA D2/3 receptor (D2/3R) availability in the striatum. However, previous PET studies have only used antagonist radiotracers for D2/3R and have not specifically examined regions of interest (ROIs) such as the ventral striatum (VS). In 32 healthy persons, we investigated the relationship between self-reported attachment and DA D2/3R availability in striatal and extrastriatal ROIs as measured using the agonist radiotracer [11C]-(+)-PHNO. Surprisingly, more social attachment—as measured by the attachment subscale of the temperament and character inventory—was related to less [11C]-(+)-PHNO binding in the VS (r(30) =−.43, p = .01). This relationship held in a subsample who also completed the detachment subscale of the Karolinska Scales of Personality (r(10) = .62, p = .03). However, no relationships were observed with BPND in the dorsal striatum or D3R-specific ROIs. One potential explanation for these findings is that persons who are more socially detached have less endogenous DA occupying D2/3R in the VS. This interpretation warrants investigation by future research. These findings may help us better understand the neurochemical basis of attachment. PMID:26873034
Zhang, Yuehua; Lei, Wu; Xu, Yujuan; Xia, Xifeng; Hao, Qingli
2016-01-01
A novel, simple and selective electrochemical method was investigated for the simultaneous detection of dopamine (DA) and uric acid (UA) on a poly(l-lysine)/graphene oxide (GO) modified glassy carbon electrode (PLL/GO/GCE) by differential pulse voltammetry (DPV). The electrochemically prepared PLL/GO sensory platform toward the oxidation of UA and DA exhibited several advantages, including high effective surface area, more active sites and enhanced electrochemical activity. Compared to the PLL-modified GCE (PLL/GCE), GO-modified GCE and bare GCE, the PLL/GO/GCE exhibited an increase in the anodic potential difference and a remarkable enhancement in the current responses for both UA and DA. For the simultaneous detection of DA and UA, the detection limits of 0.021 and 0.074 μM were obtained, while 0.031 and 0.018 μM were obtained as the detection limits for the selective detection of UA and DA, using DPV in the linear concentration ranges of 0.5 to 20.0 and 0.5 to 35 μM, respectively. In addition, the PLL/GO/GCE demonstrated good reproducibility, long-term stability, excellent selectivity and negligible interference of ascorbic acid (AA). The proposed modified electrode was successfully implemented in the simultaneous detection of DA and UA in human blood serum, urine and dopamine hydrochloride injection with satisfactory results. PMID:28335305
NASA Astrophysics Data System (ADS)
Uppa, Yuwapon; Ngamdee, Kessarin; Promarak, Vinich; Ngeontae, Wittaya
2018-07-01
A new strategy for the sensitive and selective detection of dopamine (DA) was proposed. The chemodosimeter design was based on the measurement of the fluorescent quenching of fluorescein dye caused by the in situ generation of silver nanoparticles (AgNPs). The AgNPs can be simply generated by a reaction between DA and Ag+ in the presence of polymethacrylic acid (PMAA). In addition, the generated AgNPs possess the maximum surface plasmon resonance (SPR) at 440 nm and an increase in the SPR intensity with an increasing DA concentration. Basically, fluorescein dye can emit the fluorescent intensity maximum at 513 nm with excitation at 487 nm. Thus, fluorescent quenching was achieved due to an inner filter effect from the overlap between the excitation spectrum of the fluorescein dye and the SPR spectrum of the generated AgNPs. The degree of fluorescent quenching linearly depends on the number of generated AgNPs that can be directly related to the concentration of DA. The proposed chemodosimeter can be used to detect DA in a working linear concentration range of 1.0-5.0 μM at a detection limit of 10.6 nM. This chemodosimeter was successfully applied to determine DA in a real urine sample and a dopamine injection formulation with satisfactory results.
Wickham, Robert J; Park, Jinwoo; Nunes, Eric J; Addy, Nii A
2015-08-12
Rapid, phasic dopamine (DA) release in the mammalian brain plays a critical role in reward processing, reinforcement learning, and motivational control. Fast scan cyclic voltammetry (FSCV) is an electrochemical technique with high spatial and temporal (sub-second) resolution that has been utilized to examine phasic DA release in several types of preparations. In vitro experiments in single-cells and brain slices and in vivo experiments in anesthetized rodents have been used to identify mechanisms that mediate dopamine release and uptake under normal conditions and in disease models. Over the last 20 years, in vivo FSCV experiments in awake, freely moving rodents have also provided insight of dopaminergic mechanisms in reward processing and reward learning. One major advantage of the awake, freely moving preparation is the ability to examine rapid DA fluctuations that are time-locked to specific behavioral events or to reward or cue presentation. However, one limitation of combined behavior and voltammetry experiments is the difficulty of dissociating DA effects that are specific to primary rewarding or aversive stimuli from co-occurring DA fluctuations that mediate reward-directed or other motor behaviors. Here, we describe a combined method using in vivo FSCV and intra-oral infusion in an awake rat to directly investigate DA responses to oral tastants. In these experiments, oral tastants are infused directly to the palate of the rat--bypassing reward-directed behavior and voluntary drinking behavior--allowing for direct examination of DA responses to tastant stimuli.
Li, Yixin; Xia, Baijuan; Li, Rongrong; Yin, Dan; Liang, Wenmei
2017-06-09
BACKGROUND The aim of this study was to explore how changes in the expression of BDNF in MLDS change the effect of BDNF on dopamine (DA) neurons, which may have therapeutic implications for heroin addiction. MATERIAL AND METHODS We established a rat model of heroin addiction and observed changes in the expression of BDNF, DA, dopamine receptor (DRD), dopamine transporter (DAT), and other relevant pathways in NAc. We also assessed the effect of BDNF overexpression in the NAc, behavioral changes of heroin-conditioned place preference (CPP), and naloxone withdrawal in rats with high levels of BDNF. We established 5 adult male rat groups: heroin addiction, lentivirus transfection, blank virus, sham operation, and control. The PCR gene chip was used to study gene expression changes. BDNF lentivirus transfection was used for BDNF overexpression. A heroin CPP model and a naloxone withdrawal model of rats were established. RESULTS Expression changes were found in 20 of the 84 DA-associated genes in the NAc of heroin-addicted rats. Weight loss and withdrawal symptoms in the lentivirus group for naloxone withdrawal was less than in the blank virus and the sham operation group. These 2 latter groups also showed significant behavioral changes, but such changes were not observed in the BDNF lentivirus group before or after training. DRD3 and DAT increased in the NAc of the lentivirus group. CONCLUSIONS BDNF and DA in the NAc are involved in heroin addiction. BDNF overexpression in NAc reduces withdrawal symptoms and craving behavior for medicine induced by environmental cues for heroin-addicted rats. BDNF participates in the regulation of the dopamine system by acting on DRD3 and DAT.
Werle, E; Lenz, T; Strobel, G; Weicker, H
1988-07-01
The binding properties of 3- and 4-O-sulfo-conjugated dopamine (DA-3-O-S, DA-4-O-S) as well as 3-O-methylated dopamine (MT) to rat striatal dopamine D2 receptors were investigated. 3H-spiperone was used as a radioligand in the binding studies. In saturation binding experiments (+)butaclamol, which has been reported to bind to dopaminergic D2 and serotoninergic 5HT2 receptors, was used in conjunction with ketanserin and sulpiride, which preferentially label 5HT2 and D2 receptors, respectively, in order to discriminate between 3H-spiperone binding to D2 and to 5HT2 receptors. Under our particular membrane preparation and assay conditions, 3H-spiperone binds to D2 and 5HT2 receptors with a maximal binding capacity (Bmax) of 340 fmol/mg protein in proportions of about 75%:25% with similar dissociation constants KD (35 pmol/l; 43 pmol/l). This result was verified by the biphasic competition curve of ketanserin, which revealed about 20% high (KD = 24 nmol/l) and 80% low (KD = 420 nmol/l) affinity binding sites corresponding to 5HT2 and D2 receptors, respectively. Therefore, all further competition experiments at a tracer concentration of 50 pmol/l were performed in the presence of 0.1 mumol/l ketanserin to mask the 5HT2 receptors. DA competition curves were best fitted assuming two binding sites, with high (KH = 0.12 mumol/l) and low (KL = 18 mumol/l) affinity, present in a ratio of 3:1. The high affinity binding sites were interconvertible by 100 mumol/l guanyl-5-yl imidodiphosphate [Gpp(NH)p], resulting in a homogenous affinity state of DA receptors (KD = 2.8 mumol/l).2+ off
Novel codrugs with GABAergic activity for dopamine delivery in the brain.
Denora, Nunzio; Cassano, Tommaso; Laquintana, Valentino; Lopalco, Antonio; Trapani, Adriana; Cimmino, Concetta Stefania; Laconca, Leonardo; Giuffrida, Andrea; Trapani, Giuseppe
2012-11-01
This study investigates the use of codrugs of the GABAergic agent 2-phenyl-imidazo[1,2-a]pyridinacetamide and dopamine (DA) or ethyl ester L-Dopa (LD) as a strategy to deliver DA and simultaneously activate GABA-receptors in the brain. For this purpose, both DA and LD ethyl ester were linked by carbamate bond to imidazo[1,2-a]pyridine acetamide moieties to yield two DA- and two LD-imidazopyridine derivatives. These compounds were evaluated in vitro to assess their stability, binding affinities and cell membrane transport, and in vivo to assess their bio-availability via microdialysis studies. The two DA derivatives were adequately stable in buffered solution, but underwent cleavage in diluted human serum. By contrast, the LD derivatives were unstable in buffered solution. Receptor binding studies showed that the DA-imidazopyridine carbamates had binding affinity for benzodiazepine receptors in the nanomolar range. Brain microdialysis experiments indicated that intraperitoneal administration of the DA derivatives sustained DA levels in rat striatum over a 4-h period. These results suggest that DA-imidazopyridine carbamates are new DA codrugs with potential application for DA replacement therapy. Copyright © 2012 Elsevier B.V. All rights reserved.
Effects of amantadine on modification of dopamine dependent behaviours by molindone.
Dhaware, B S; Balsara, J J; Nandal, N V; Chandorkar, A G
2000-08-01
Amantadine, a dopamine agonist is reported to act by releasing dopamine from the dopaminergic nerve terminals as an anti-Parkinsonian drug. In the present behavioural study in the rat, molindone-induced catalepsy and ptosis, which are dopamine dependent-behaviors are reversed by amantadine. Amantadine has also revered molindone-induced inhibition of traction response in mice. Our study indicates that amantadine, like other DA agonists, e.g. amphetamine and apomorphine can antagonize or even reverse the neuroleptic induced dopaminergic behaviors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurse, B.; Russell, V.A.; Taljaard, J.J.
1988-05-01
The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of (/sup 3/H)dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal /sup 3/H overflow and reduced K+-induced release of (/sup 3/H)DA from nucleus accumbens slices. The effect of serotonin on basal /sup 3/H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of (/sup 3/H)DA in the nucleus accumbens or striatum. The serotoninmore » agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of (/sup 3/H)DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens.« less
Reversal of dopamine system dysfunction in response to high-fat diet.
Carlin, Jesselea; Hill-Smith, Tiffany E; Lucki, Irwin; Reyes, Teresa M
2013-12-01
To test whether high-fat diet (HFD) decreases dopaminergic tone in reward regions of the brain and evaluate whether these changes reverse after removal of the HFD. Male and female mice were fed a 60% HFD for 12 weeks. An additional group was evaluated 4 weeks after removal of the HFD. These groups were compared with control fed, age-matched controls. Sucrose and saccharin preference was measured along with mRNA expression of dopamine (DA)-related genes by Real Time-quantitative PCR (RT-qPCR). DA and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured using high-performance liquid chromatography. DNA methylation of the dopamine transporter (DAT) promoter was measured by methylated DNA immunoprecipitation and RT-qPCR. After chronic HFD, sucrose preference was reduced, and then normalized after removal of the HFD. Decreased expression of DA genes, decreased DA content and alterations in DAT promoter methylation, was observed. Importantly, response to HFD and the persistence of changes depended on sex and brain region. These data identify diminished DA tone after early-life chronic HFD with a complex pattern of reversal and persistence that varies by both sex and brain region. Central nervous system changes that did not reverse after HFD withdrawal may contribute to the difficulty in maintaining weight-loss after diet intervention. Copyright © 2013 The Obesity Society.
Epigenetic dysregulation of the dopamine system in diet-induced obesity.
Vucetic, Zivjena; Carlin, Jesse Lea; Totoki, Kathy; Reyes, Teresa M
2012-03-01
Chronic intake of high-fat (HF) diet is known to alter brain neurotransmitter systems that participate in the central regulation of food intake. Dopamine (DA) system changes in response to HF diet have been observed in the hypothalamus, important in the homeostatic control of food intake, as well as within the central reward circuitry [ventral tegmental area (VTA), nucleus accumbens (NAc), and pre-frontal cortex (PFC)], critical for coding the rewarding properties of palatable food and important in hedonically driven feeding behavior. Using a mouse model of diet-induced obesity (DIO), significant alterations in the expression of DA-related genes were documented in adult animals, and the general pattern of gene expression changes was opposite within the hypothalamus versus the reward circuitry (increased vs. decreased, respectively). Differential DNA methylation was identified within the promoter regions of tyrosine hydroxylase (TH) and dopamine transporter (DAT), and the pattern of this response was consistent with the pattern of gene expression. Behaviors consistent with increased hypothalamic DA and decreased reward circuitry DA were observed. These data identify differential DNA methylation as an epigenetic mechanism linking the chronic intake of HF diet with altered DA-related gene expression, and this response varies by brain region and DNA sequence. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.
Jo, Junghyun; Xiao, Yixin; Sun, Alfred Xuyang; Cukuroglu, Engin; Tran, Hoang-Dai; Göke, Jonathan; Tan, Zi Ying; Saw, Tzuen Yih; Tan, Cheng-Peow; Lokman, Hidayat; Lee, Younghwan; Kim, Donghoon; Ko, Han Seok; Kim, Seong-Oh; Park, Jae Hyeon; Cho, Nam-Joon; Hyde, Thomas M; Kleinman, Joel E; Shin, Joo Heon; Weinberger, Daniel R; Tan, Eng King; Je, Hyunsoo Shawn; Ng, Huck-Hui
2016-08-04
Recent advances in 3D culture systems have led to the generation of brain organoids that resemble different human brain regions; however, a 3D organoid model of the midbrain containing functional midbrain dopaminergic (mDA) neurons has not been reported. We developed a method to differentiate human pluripotent stem cells into a large multicellular organoid-like structure that contains distinct layers of neuronal cells expressing characteristic markers of human midbrain. Importantly, we detected electrically active and functionally mature mDA neurons and dopamine production in our 3D midbrain-like organoids (MLOs). In contrast to human mDA neurons generated using 2D methods or MLOs generated from mouse embryonic stem cells, our human MLOs produced neuromelanin-like granules that were structurally similar to those isolated from human substantia nigra tissues. Thus our MLOs bearing features of the human midbrain may provide a tractable in vitro system to study the human midbrain and its related diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Lorenc-Koci, Elzbieta; Gołembiowska, Krystyna; Wardas, Jadwiga
2005-07-27
Malonate, a reversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, is frequently used as a model neurotoxin to produce lesion of the nigrostriatal dopaminergic system in animals due to particular sensitivity of dopamine neurons to mild energy impairment. This model of neurotoxicity was applied in our study to explore neuroprotective potential of 1,2,3,4-tetrahydroisoquinoline (TIQ), an endo- and exogenous substance whose function in the mammalian brain, despite extensive studies, has not been elucidated so far. Injection of malonate at a dose of 3 mumol unilaterally into the rat left medial forebrain bundle resulted in the 54% decrease in dopamine (DA) concentration in the ipsilateral striatum and, depending on the examined striatum regions, caused 24-44% reduction in [3H]GBR12,935 binding to the dopamine transporter (DAT). TIQ (50 mg/kg i.p.) administered 4 h before malonate infusion and next once daily for successive 7 days prevented both these effects of malonate. Such TIQ treatment restored DA content and DAT binding almost to the control level. The results of the present study indicate that TIQ may act as a neuroprotective agent in the rat brain. An inhibition of the enzymatic activities of monoamine oxidase and gamma-glutamyl transpeptidase as well as an increase in the striatal levels of glutathione and nitric oxide found after TIQ administration and reported in our earlier studies are considered to be potential factors that may be involved in the TIQ-mediated protection of dopamine terminals from malonate toxicity.
Age-related changes in dopamine signaling in Nurr1 deficient mice as a model of Parkinson’s disease
Zhang, Lifen; Le, Weidong; Xie, Wenjie; Dani, John A.
2011-01-01
The nuclear receptor related 1 (Nurr1) transcription factor contributes to the development and maintenance of dopamine (DA) neurons in the brain. We found that heterozygous Nurr1 knock-out (Nurr1 +/−) influenced the age-dependent decline in the number of DA neurons and influenced DA signaling. We examined the DA marker, tyrosine hydroxylase, using immunohistochemistry, and we measured DA signaling using fast-scan cyclic voltammetry in 3 age groups of wild-type (Nurr1 +/+) and mutant (Nurr1 +/−) mice: 3–6, 9–12, and 15–23 months old. Prior to significant loss of DA neurons and to the onset of parkinsonian symptoms, young Nurr1 +/− mice (3–6 months) exhibited a decrease in peak evoked DA release that was partially countered by a decrease in the rate of DA reuptake. As peak evoked DA release declined with age for both the wild-type and Nurr1 +/− mice, both genotypes manifested decreased DA reuptake. As the DA release fell further with age, decreased DA reuptake eventually could not adequately compensate the Nurr1 +/− mice. The results indicated that Nurr1 deficiency led to impaired DA release even before significant DA neuron loss. PMID:21531044
Mastwal, Surjeet; Cao, Vania; Wang, Kuan Hong
2016-01-01
Mental functions involve coordinated activities of specific neuronal ensembles that are embedded in complex brain circuits. Aberrant neuronal ensemble dynamics is thought to form the neurobiological basis of mental disorders. A major challenge in mental health research is to identify these cellular ensembles and determine what molecular mechanisms constrain their emergence and consolidation during development and learning. Here, we provide a perspective based on recent studies that use activity-dependent gene Arc/Arg3.1 as a cellular marker to identify neuronal ensembles and a molecular probe to modulate circuit functions. These studies have demonstrated that the transcription of Arc is activated in selective groups of frontal cortical neurons in response to specific behavioral tasks. Arc expression regulates the persistent firing of individual neurons and predicts the consolidation of neuronal ensembles during repeated learning. Therefore, the Arc pathway represents a prototypical example of activity-dependent genetic feedback regulation of neuronal ensembles. The activation of this pathway in the frontal cortex starts during early postnatal development and requires dopaminergic (DA) input. Conversely, genetic disruption of Arc leads to a hypoactive mesofrontal dopamine circuit and its related cognitive deficit. This mutual interaction suggests an auto-regulatory mechanism to amplify the impact of neuromodulators and activity-regulated genes during postnatal development. Such a mechanism may contribute to the association of mutations in dopamine and Arc pathways with neurodevelopmental psychiatric disorders. As the mesofrontal dopamine circuit shows extensive activity-dependent developmental plasticity, activity-guided modulation of DA projections or Arc ensembles during development may help to repair circuit deficits related to neuropsychiatric disorders.
Dopamine D2 receptor over-expression alters behavior and physiology in Drd2-EGFP mice
Kramer, Paul F.; Christensen, Christine H.; Hazelwood, Lisa A.; Dobi, Alice; Bock, Roland; Sibley, David R.; Mateo, Yolanda; Alvarez, Veronica A.
2011-01-01
BAC transgenic mice expressing the fluorescent reporter protein EGFP under the control of the D1 and D2 dopamine receptor promoters (Drd1-EGFP and Drd2-EGFP) have been widely used to study striatal function and have contributed to our understanding of the physiological and pathological function of the basal ganglia. These tools were produced and promptly made available to address questions in a cell-specific manner that has transformed the way we frame hypotheses in neuroscience. However, these mice have not been fully characterized until now. We found that Drd2-EGFP mice display a ~40% increase in membrane expression of the dopamine D2 receptor (D2R) and a two-fold increase in D2R mRNA levels in the striatum when compared to wild-type and Drd1-EGFP mice D2R over-expression was accompanied by behavioral hypersensitivity to D2R-like agonists, as well as enhanced electrophysiological responses to D2R activation in midbrain dopaminergic neurons. DA transients evoked by stimulation in the nucleus accumbens showed slower clearance in Drd2-EGFP mice and cocaine actions on DA clearance were impaired in these mice. Thus, it was not surprising to find that Drd2-EGFP mice were hyperactive when exposed to a novel environment and locomotion was suppressed by acute cocaine administration. All together, this study demonstrates that Drd2-EGFP mice over-express D2R and have altered dopaminergic signaling that fundamentally differentiates them from wild-type and Drd1-EGFP mice. PMID:21209197
Bartoszyk, G D; Van Amsterdam, C; Greiner, H E; Rautenberg, W; Russ, H; Seyfried, C A
2004-02-01
Sarizotan exhibited high affinities only to serotonin 5-HT1A receptors and dopamine DA D4>D3>D2 receptors with the profile of a 5-HT1A agonist and DA antagonist demonstrated by the inhibition of cAMP-stimulation and guinea pig ileum contraction, decreased accumulation of the 5-HT precursor 5-hydroxytryptophan and increased levels of 5-HT metabolites, increased accumulation of DA precursor dihydroxyphenylalanine (DOPA) and the reduced levels of DA metabolites in intact rats. However, sarizotan at higher doses decreased DA precursor accumulation in reserpinized rats and induced contralateral rotational behavior in unilaterally substantia nigra lesioned rats, indicating some intrinsic dopaminergic activity; at D2 receptors sarizotan may act as a partial agonist, depending on the dopaminergic impulse flow. Sarizotan represents a new approach for the treatment of extrapyramidal motor complications such as l-DOPA-induced dyskinesia in Parkinson's disease.
The effect of a dopamine antagonist on conditioning of sexual arousal in women.
Brom, Mirte; Laan, Ellen; Everaerd, Walter; Spinhoven, Philip; Trimbos, Baptist; Both, Stephanie
2016-04-01
Dopamine (DA) plays a key role in reward-seeking behaviours. Accumulating evidence from animal and human studies suggests that human sexual reward learning may also depend on DA transmission. However, research on the role of DA in human sexual reward learning is completely lacking. To investigate whether DA antagonism attenuates classical conditioning of sexual response in humans. Healthy women were randomly allocated to one of two treatment conditions: haloperidol (n = 29) or placebo (n = 29). A differential conditioning paradigm was applied with genital vibrostimulation as unconditional stimulus (US) and neutral pictures as conditional stimuli (CSs). Genital arousal was assessed, and ratings of affective value and subjective sexual arousal were obtained. Haloperidol administration affected unconditional genital responding. However, no significant effects of medication were found for conditioned responding. No firm conclusions can be drawn about whether female sexual reward learning implicates DA transmission since the results do not lend themselves to unambiguous interpretation.
Zhou, Xi; Wang, Anqi; Yu, Chenfei; Wu, Shishan; Shen, Jian
2015-06-10
A facilely prepared fluorescence sensor was developed for dopamine (DA) determination based on polyindole/graphene quantum dots molecularly imprinted polymers (PIn/GQDs@MIPs). The proposed sensor exhibits a high sensitivity with a linear range of 5 × 10(-10) to 1.2 × 10(-6) M and the limit of detection as low as 1 × 10(-10) M in the determination of DA, which is probably due to the tailor-made imprinted cavities for binding DA thought hydrogen bonds between amine groups of DA and oxygen-containing groups of the novel composite. Furthermore, the prepared sensor can rebind DA in dual-type: a low affinity type (noncovalent interaction is off) and a high affinity type (noncovalent interaction is on), and the rebinding interaction can be adjusted by tuning the pH, which shows a unique potential for adjusting the binding interaction while keeping the specificity, allowing for wider applications.
Phasic dopamine release in the rat nucleus accumbens predicts approach and avoidance performance
Gentry, Ronny N.; Lee, Brian; Roesch, Matthew R.
2016-01-01
Dopamine (DA) is critical for reward processing, but significantly less is known about its role in punishment avoidance. Using a combined approach-avoidance task, we measured phasic DA release in the nucleus accumbens (NAc) of rats during presentation of cues that predicted reward, punishment or neutral outcomes and investigated individual differences based on avoidance performance. Here we show that DA release within a single microenvironment is higher for reward and avoidance cues compared with neutral cues and positively correlated with poor avoidance behaviour. We found that DA release delineates trial-type during sessions with good avoidance but is non-selective during poor avoidance, with high release correlating with poor performance. These data demonstrate that phasic DA is released during cued approach and avoidance within the same microenvironment and abnormal processing of value signals is correlated with poor performance. PMID:27786172
Napolitano, Francesco; Bonito-Oliva, Alessandra; Federici, Mauro; Carta, Manolo; Errico, Francesco; Magara, Salvatore; Martella, Giuseppina; Nisticò, Robert; Centonze, Diego; Pisani, Antonio; Gu, Howard H; Mercuri, Nicola B; Usiello, Alessandro
2010-08-18
Attention deficit/hyperactivity disorder (ADHD) is characterized by inattention, impulsivity, and motor hyperactivity. Several lines of research support a crucial role for the dopamine transporter (DAT) gene in this psychiatric disease. Consistently, the most commonly prescribed medications in ADHD treatment are stimulant drugs, known to preferentially act on DAT. Recently, a knock-in mouse [DAT-cocaine insensitive (DAT-CI)] has been generated carrying a cocaine-insensitive DAT that is functional but with reduced dopamine uptake function. DAT-CI mutants display enhanced striatal extracellular dopamine levels and basal motor hyperactivity. Herein, we showed that DAT-CI animals present higher striatal dopamine turnover, altered basal phosphorylation state of dopamine and cAMP-regulated phosphoprotein 32 kDa (DARPP32) at Thr75 residue, but preserved D(2) receptor (D(2)R) function. However, although we demonstrated that striatal D(1) receptor (D(1)R) is physiologically responsive under basal conditions, its stimulus-induced activation strikingly resulted in paradoxical electrophysiological, behavioral, and biochemical responses. Indeed, in DAT-CI animals, (1) striatal LTP was completely disrupted, (2) R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF 81297) treatment induced paradoxical motor calming effects, and (3) SKF 81297 administration failed to increase cAMP/protein kinase A (PKA)/DARPP32 signaling. Such biochemical alteration selectively affected dopamine D(1)Rs since haloperidol, by blocking the tonic inhibition of D(2)R, unmasked a normal activation of striatal adenosine A(2A) receptor-mediated cAMP/PKA/DARPP32 cascade in mutants. Most importantly, our studies highlighted that amphetamine, nomifensine, and bupropion, through increased striatal dopaminergic transmission, are able to revert motor hyperactivity of DAT-CI animals. Overall, our results suggest that the paradoxical motor calming effect induced by these drugs in DAT-CI mutants depends on selective aberrant phasic activation of D(1)R/cAMP/PKA/DARPP32 signaling in response to increased striatal extracellular dopamine levels.
Huang, Mei; Kwon, Sunoh; Oyamada, Yoshihiro; Rajagopal, Lakshmi; Miyauchi, Masanori; Meltzer, Herbert Y
2015-11-01
Blonanserin is a novel atypical antipsychotic drug (APD), which, unlike most atypical APDs, has a slightly higher affinity for dopamine (DA) D2 than serotonin (5-HT)2A receptors, and is an antagonist at both, as well as at D3 receptors. The effects of atypical APDs to enhance rodent cortical, hippocampal, limbic, and dorsal striatal (dSTR) DA and acetylcholine (ACh) release, contribute to their ability to improve novel object recognition (NOR) in rodents treated with sub-chronic (sc) phencyclidine (PCP) and cognitive impairment associated with schizophrenia (CIAS). Here we determined the ability of blonanserin, the D3 antagonist NGB 2904, and the typical APD, haloperidol, a D2 antagonist, to enhance neurotransmitter efflux in the medial prefrontal cortex (mPFC) and dSTR of mice, and to ameliorate the scPCP-induced deficit in NOR in rats. Blonanserin, 10mg/kg, i.p., increased DA, norepinephrine (NE), and ACh efflux in mPFC and dSTR. NGB 2904, 3mg/kg, increased DA and ACh, but not NE, efflux in mPFC, and DA, but not ACh, efflux in dSTR. Haloperidol increased DA and NE efflux in dSTR only. The selective D3 agonist PD 128907 partially blocked the blonanserin-induced cortical ACh, DA, NE and striatal DA efflux. NGB 2904, 3mg/kg, like blonanserin, 1mg/kg, and the combination of sub-effective doses of NGB 2904 and blonanserin (both 0.3mg/kg), ameliorated the scPCP-induced NOR deficit in rats. These results suggest that D3 receptor blockade may contribute to the ability of blonanserin to increase cortical DA and ACh efflux, as well as to restore NOR and improve CIAS. Copyright © 2015 Elsevier Inc. All rights reserved.
Shekar, Aparna; Aguilar, Jenny I; Galli, Greta; Cozzi, Nicholas V; Brandt, Simon D; Ruoho, Arnold E; Baumann, Michael H; Matthies, Heinrich J G; Galli, Aurelio
2017-10-01
Synthetic cathinones are similar in chemical structure to amphetamines, and their behavioral effects are associated with enhanced dopaminergic signaling. The past ten years of research on the common constituent of bath salts, MDPV (the synthetic cathinone 3,4-methylenedioxypyrovalerone), has aided the understanding of how synthetic cathinones act at the dopamine (DA) transporter (DAT). Several groups have described the ability of MDPV to block the DAT with high-affinity. In this study, we demonstrate for the first time a new mode of action of MDPV, namely its ability to promote DAT-mediated DA efflux. Using single cell amperometric assays, we determined that low concentrations of MDPV (1nM) can cause reverse transport of DA via DAT. Notably, administration of MDPV leads to hyperlocomotion in Drosophila melanogaster. These data describe further how MDPV acts at the DAT, possibly paving the way for novel treatment strategies for individuals who abuse bath salts. Copyright © 2017 Elsevier B.V. All rights reserved.
Melchior, James R.; Ferris, Mark J.; Stuber, Garret D.; Riddle, David R.; Jones, Sara R.
2015-01-01
The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. PMID:26011081
Özkan, Mazhar; Johnson, Nicholas W; Sehirli, Umit S; Woodhall, Gavin L; Stanford, Ian M
2017-01-01
The loss of dopamine (DA) in Parkinson's is accompanied by the emergence of exaggerated theta and beta frequency neuronal oscillatory activity in the primary motor cortex (M1) and basal ganglia. DA replacement therapy or deep brain stimulation reduces the power of these oscillations and this is coincident with an improvement in motor performance implying a causal relationship. Here we provide in vitro evidence for the differential modulation of theta and gamma activity in M1 by DA acting at receptors exhibiting conventional and non-conventional DA pharmacology. Recording local field potentials in deep layer V of rat M1, co-application of carbachol (CCh, 5 μM) and kainic acid (KA, 150 nM) elicited simultaneous oscillations at a frequency of 6.49 ± 0.18 Hz (theta, n = 84) and 34.97 ± 0.39 Hz (gamma, n = 84). Bath application of DA resulted in a decrease in gamma power with no change in theta power. However, application of either the D1-like receptor agonist SKF38393 or the D2-like agonist quinpirole increased the power of both theta and gamma suggesting that the DA-mediated inhibition of oscillatory power is by action at other sites other than classical DA receptors. Application of amphetamine, which promotes endogenous amine neurotransmitter release, or the adrenergic α1-selective agonist phenylephrine mimicked the action of DA and reduced gamma power, a result unaffected by prior co-application of D1 and D2 receptor antagonists SCH23390 and sulpiride. Finally, application of the α1-adrenergic receptor antagonist prazosin blocked the action of DA on gamma power suggestive of interaction between α1 and DA receptors. These results show that DA mediates complex actions acting at dopamine D1-like and D2-like receptors, α1 adrenergic receptors and possibly DA/α1 heteromultimeric receptors to differentially modulate theta and gamma activity in M1.
Manitt, C; Eng, C; Pokinko, M; Ryan, R T; Torres-Berrío, A; Lopez, J P; Yogendran, S V; Daubaras, M J J; Grant, A; Schmidt, E R E; Tronche, F; Krimpenfort, P; Cooper, H M; Pasterkamp, R J; Kolb, B; Turecki, G; Wong, T P; Nestler, E J; Giros, B; Flores, C
2013-12-17
Adolescence is a period of heightened susceptibility to psychiatric disorders of medial prefrontal cortex (mPFC) dysfunction and cognitive impairment. mPFC dopamine (DA) projections reach maturity only in early adulthood, when their control over cognition becomes fully functional. The mechanisms governing this protracted and unique development are unknown. Here we identify dcc as the first DA neuron gene to regulate mPFC connectivity during adolescence and dissect the mechanisms involved. Reduction or loss of dcc from DA neurons by Cre-lox recombination increased mPFC DA innervation. Underlying this was the presence of ectopic DA fibers that normally innervate non-cortical targets. Altered DA input changed the anatomy and electrophysiology of mPFC circuits, leading to enhanced cognitive flexibility. All phenotypes only emerged in adulthood. Using viral Cre, we demonstrated that dcc organizes mPFC wiring specifically during adolescence. Variations in DCC may determine differential predisposition to mPFC disorders in humans. Indeed, DCC expression is elevated in brains of antidepressant-free subjects who committed suicide.
Dopamine fluorescent sensors based on polypyrrole/graphene quantum dots core/shell hybrids.
Zhou, Xi; Ma, Peipei; Wang, Anqi; Yu, Chenfei; Qian, Tao; Wu, Shishan; Shen, Jian
2015-02-15
A facilely prepared fluorescent sensor was developed for dopamine (DA) detection with high sensitivity and selectivity based on polypyrrole/graphene quantum dots (PPy/GQDs) core/shell hybrids. The composites exhibit strong fluorescence emission, which is dramatically enhanced as high as three times than pristine GQDs. The prepared sensor allows a highly sensitive determination of DA by fluorescent intensity decreasing with the addition of DA and presents a good linearity in range of 5-8000 nM with the detection limit of 10 pM (S/N = 3). Furthermore, the application of the proposed approach have been demonstrated in real samples and showed promise in diagnostic purposes. Copyright © 2014 Elsevier B.V. All rights reserved.
Figueiredo-Filho, Luiz C S; Silva, Tiago A; Vicentini, Fernando C; Fatibello-Filho, Orlando
2014-06-07
A simple and highly selective electrochemical method was developed for the single or simultaneous determination of dopamine (DA) and epinephrine (EP) in human body fluids using a glassy carbon electrode modified with nickel oxide nanoparticles and carbon nanotubes within a dihexadecylphosphate film using square-wave voltammetry (SWV) or differential-pulse voltammetry (DPV). Using DPV with the proposed electrode, a separation of ca. 360 mV between the peak reduction potentials of DA and EP present in binary mixtures was obtained. The analytical curves for the simultaneous determination of dopamine and epinephrine showed an excellent linear response, ranging from 7.0 × 10(-8) to 4.8 × 10(-6) and 3.0 × 10(-7) to 9.5 × 10(-6) mol L(-1) for DA and EP, respectively. The detection limits for the simultaneous determination of DA and EP were 5.0 × 10(-8) mol L(-1) and 8.2 × 10(-8) mol L(-1), respectively. The proposed method was successfully applied in the simultaneous determination of these analytes in human body fluid samples of cerebrospinal fluid, human serum and lung fluid.
Wang, Lei; Pooler, Amy M; Albrecht, Meredith A; Wurtman, Richard J
2005-01-01
Membrane phospholipids like phosphatidylcholine (PC) are required for cellular growth and repair, and specifically for synaptic function. PC synthesis is controlled by cellular levels of its precursor, cytidine-5'-diphosphate choline (CDP-choline), which is produced from cytidine triphosphate (CTP) and phosphocholine. In rat PC12 cells exogenous uridine was shown to elevate intracellular CDP-choline levels, by promoting the synthesis of uridine triphosphate (UTP), which was partly converted to CTP. In such cells uridine also enhanced the neurite outgrowth produced by nerve growth factor (NGF). The present study assessed the effect of dietary supplementation with uridine-5'-monophosphate disodium (UMP-2Na+, an additive in infant milk formulas) on striatal dopamine (DA) release in aged rats. Male Fischer 344 rats consumed either a control diet or one fortified with 2.5% UMP for 6 wk, ad libitum. In vivo microdialysis was then used to measure spontaneous and potassium (K+)-evoked DA release in the right striatum. Potassium (K+)-evoked DA release was significantly greater among UMP-treated rats, i.e., 341+/-21% of basal levels vs. 283+/-9% of basal levels in control rats (p<0.05); basal DA release was unchanged. In general, each animal's K+-evoked DA release correlated with its striatal DA content, measured postmortem. The levels of neurofilament-70 and neurofilament-M proteins, biomarkers of neurite outgrowth, increased to 182+/-25% (p<0.05) and 221+/-34% (p<0.01) of control values, respectively, with UMP consumption. Hence, UMP treatment not only enhances membrane phosphatide production but also can modulate two membrane-dependent processes, neurotransmitter release and neurite outgrowth, in vivo.
Xu, Shengwei; Zhang, Yu; Zhang, Song; Xiao, Guihua; Wang, Mixia; Song, Yilin; Gao, Fei; Li, Ziyue; Zhuang, Ping; Chan, Piu; Tao, Guoxian; Yue, Feng; Cai, Xinxia
2018-07-01
Synchronous detecting neuron spikes and dopamine (DA) activities in the non-human primate brain play an important role in understanding of Parkinson's disease (PD). At present, most experiments are carried out by combing of electrodes and commercial instruments, which are inconvenient, time-consuming and inefficient. Herein, this study describes a novel integrated system for monitoring neuron spikes and DA activities in non-human primate brain synchronously. This system integrates an implantable sensor, a dual-function head-stage and a low noise detection instrument. The system was developed efficiently by using the key technologies of noise reduction, interference protection and differential amplification. To demonstrate the utility of this system, synchronous recordings of electrophysiological signals and DA were in vivo performed in a monkey before and after treated as a Parkinson model monkey. The system typically exhibited input-referred noise levels of only ∼ 3 μV RMS , input impedance levels of up to 5.1 GΩ, and a sensitivity of 14.075 pA/μM for DA and could detect electrophysiological signals and DA without mutual interference. In monkey experiments, lower DA concentrations in the striatum and more intensive spikes of the Parkinson model monkey than the normal one were synchronously recorded efficiently. This integrated system will not only significantly simplify the experimental operation and improve the experimental efficiency, but also improve the signal quality and synchronization performance. This integrated system, which is practical, efficient and convenient, can be widely used for the study of PD and other neurological disorders. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Yijia; Chu, Mi; Yang, Lu; Tan, Yueming; Deng, Wenfang; Ma, Ming; Su, Xiaoli; Xie, Qingji
2014-08-13
We report here three-dimensional graphene networks (3D-GNs) as a novel substrate for the immobilization of laccase (Lac) and dopamine (DA) and its application in glucose/O2 biofuel cell. 3D-GNs were synthesized with an Ni(2+)-exchange/KOH activation combination method using a 732-type sulfonic acid ion-exchange resin as the carbon precursor. The 3D-GNs exhibited an interconnected network structure and a high specific surface area. DA was noncovalently functionalized on the surface of 3D-GNs with 3,4,9,10-perylene tetracarboxylic acid (PTCA) as a bridge and used as a novel immobilized mediating system for Lac-based bioelectrocatalytic reduction of oxygen. The 3D-GNs-PTCA-DA nanocomposite modified glassy carbon electrode (GCE) showed stable and well-defined redox current peaks for the catechol/o-quinone redox couple. Due to the mediated electron transfer by the 3D-GNs-PTCA-DA nanocomposite, the Nafion/Lac/3D-GNs-PTCA-DA/GCE exhibited high catalytic activity for oxygen reduction. The 3D-GNs are proven to be a better substrate for Lac and its mediator immobilization than 2D graphene nanosheets (2D-GNs) due to the interconnected network structure and high specific surface area of 3D-GNs. A glucose/O2 fuel cell using Nafion/Lac/3D-GNs-PTCA-DA/GCE as the cathode and Nafion/glucose oxidase/ferrocence/3D-GNs/GCE as the anode can output a maximum power density of 112 μW cm(-2) and a short-circuit current density of 0.96 mA cm(-2). This work may be helpful for exploiting the popular 3D-GNs as an efficient electrode material for many other biotechnology applications.
Gantner, Carlos W.; Alsanie, Walaa F.; McDougall, Stuart J.; Bye, Chris R.; Elefanty, Andrew G.; Stanley, Edouard G.; Haynes, John M.; Pouton, Colin W.; Thompson, Lachlan H.
2016-01-01
Abstract Recent studies have shown evidence for the functional integration of human pluripotent stem cell (hPSC)‐derived ventral midbrain dopamine (vmDA) neurons in animal models of Parkinson’s disease. Although these cells present a sustainable alternative to fetal mesencephalic grafts, a number of hurdles require attention prior to clinical translation. These include the persistent use of xenogeneic reagents and challenges associated with scalability and storage of differentiated cells. In this study, we describe the first fully defined feeder‐ and xenogeneic‐free protocol for the generation of vmDA neurons from hPSCs and utilize two novel reporter knock‐in lines (LMX1A‐eGFP and PITX3‐eGFP) for in‐depth in vitro and in vivo tracking. Across multiple embryonic and induced hPSC lines, this “next generation” protocol consistently increases both the yield and proportion of vmDA neural progenitors (OTX2/FOXA2/LMX1A) and neurons (FOXA2/TH/PITX3) that display classical vmDA metabolic and electrophysiological properties. We identify the mechanism underlying these improvements and demonstrate clinical applicability with the first report of scalability and cryopreservation of bona fide vmDA progenitors at a time amenable to transplantation. Finally, transplantation of xeno‐free vmDA progenitors from LMX1A‐ and PITX3‐eGFP reporter lines into Parkinsonian rodents demonstrates improved engraftment outcomes and restoration of motor deficits. These findings provide important and necessary advancements for the translation of hPSC‐derived neurons into the clinic. Stem Cells Translational Medicine 2017;6:937–948 PMID:28297587
Aged monkeys as a partial model for Parkinson's disease.
Hurley, P J; Elsworth, J D; Whittaker, M C; Roth, R H; Redmond, D E
2011-09-01
Parkinson's Disease (PD) and the natural aging process share a number of biochemical mechanisms, including reduced function of dopaminergic systems. The present study aims to determine the extent that motor and behavioral changes in aged monkeys resemble parkinsonism induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. The behavioral and physiological changes in PD are believed to result largely from selective depletion of dopamine in the nigrostriatal system. In the present study, ten aged female monkeys were compared with three groups: 9 untreated young adult female monkeys, 10 young adult male monkeys and 13 older male monkeys that had been exposed to MPTP. Trained observers, blind as to age and drug condition and without knowledge of the hypotheses, scored the monkeys using the Parkinson's factor score (Parkscore), which has been validated by a high correlation with post mortem striatal dopamine (DA) concentrations. The aged animals had higher scores on the Parkscore compared with the young adults, with most of its component behavioral items showing significance (tremor, Eating Problems, Delayed initiation of movement, and Poverty of Movement). L-Dopa and DA-agonists did not clearly reverse the principal measure of parkinsonism. DA concentrations post mortem were 63% lower in 3 aged monkeys in the ventral putamen compared with 4 young adults, with greater reductions in putamen than in caudate (45%). We conclude that aged monkeys, unexposed to MPTP, show a similar profile of parkinsonism to that seen after the neurotoxin exposure to MPTP in young adult monkeys. The pattern of greater DA depletion in putamen than in caudate in aged monkeys is the same as in human Parkinson's disease and contrasts with the greater depletion in caudate seen after MPTP. Aged monkeys of this species reflect many facets of Parkinson's disease, but like older humans do not improve with standard dopamine replacement pharmacotherapies. Copyright © 2011 Elsevier Inc. All rights reserved.
Aged monkeys as a partial model for Parkinson's disease
Hurley, P.J.; Elsworth, J.D.; Whittaker, M.C.; Roth, R.H.; Redmond, D.E.
2011-01-01
Parkinson's Disease (PD) and the natural aging process share a number of biochemical mechanisms, including reduced function of dopaminergic systems. The present study aims to determine the extent that motor and behavioral changes in aged monkeys resemble parkinsonism induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. The behavioral and physiological changes in PD are believed to result largely from selective depletion of dopamine in the nigrostriatal system. In the present study, ten aged female monkeys were compared with three groups: 9 untreated young adult female monkeys, 10 young adult male monkeys and 13 older male monkeys that had been exposed to MPTP. Trained observers, blind as to age and drug condition and without knowledge of the hypotheses, scored the monkeys using the Parkinson's factor score (Parkscore), which has been validated by a high correlation with post mortem striatal dopamine (DA) concentrations. The aged animals had higher scores on the Parkscore compared with the young adults, with most of its component behavioral items showing significance (tremor, eating problems, delayed initiation of movement, and poverty of movement). L-Dopa and DA-agonists did not clearly reverse the principal measure of parkinsonism. DA concentrations post mortem were 63% lower in 3 aged monkeys in the ventral putamen compared with 4 young adults, with greater reductions in putamen than in caudate (45%). We conclude that aged monkeys, unexposed to MPTP, show a similar profile of parkinsonism to that seen after the neurotoxin exposure to MPTP in young adult monkeys. The pattern of greater DA depletion in putamen than in caudate in aged monkeys is the same as in human Parkinson's disease and contrasts with the greater depletion in caudate seen after MPTP. Aged monkeys of this species reflect many facets of Parkinson's disease, but like older humans do not improve with standard dopamine replacement pharmacotherapies. PMID:21620883
Arnt, J
1985-08-26
The effects of DA agonists and antagonists with different dopamine (DA) D-1 and D-2 receptor selectivity have been studied in rats with bilateral 6-OHDA lesions. The D-1 agonist SK & F 38393, the D-2 agonist pergolide and the mixed agonist apomorphine all induced marked hyperactivity in lesioned rats in doses which were without stimulant effect in sham-operated animals. The hyperactivity induced by SK & F 38393 was blocked by the DA D-1 antagonist SCH 23390, but unaffected by the D-2 antagonists spiroperidol or clebopride. Pergolide-induced hyperactivity showed the reverse selectivity. The mixed D-1/D-2 antagonists, cis(Z)-flupentixol and cis(Z)-clopenthixol, however blocked the effect of both agonists. Apomorphine-induced hyperactivity was neither blocked by selective D-1 nor D-2 antagonists, but was dose-dependently inhibited by cis(Z)-flupentixol and cis(Z)-clopenthixol. Potent blockade was also obtained by combined treatment with SCH 23390 and spiroperidol, indicating the need of blocking both D-1 and D-2 receptors simultaneously. The results indicate that D-1 and D-2 receptor function can be independently manipulated in denervated rats and they confirm similar results obtained in rats with unilateral 6-OHDA lesions using circling behaviour.
NASA Astrophysics Data System (ADS)
Lin, Mouhong; Huang, Haoliang; Liu, Yingju; Liang, Canjian; Fei, Shidong; Chen, Xiaofen; Ni, Chunlin
2013-02-01
Multiwalled carbon nanotubes (MWCNT) were homogeneously covered with a bio-functional polydopamine (PDOP) by a simple dip-coating approach in mild basic solution. Then, uniformly dispersed and highly loaded platinum nanoparticles (PtNPs) were deposited on MWCNT@PDOP by a mild reductant, and were characterized by transmission electron microscopy and x-ray photoelectron spectroscopy. Afterwards, this nanocomposite was modified on the glass carbon electrode and applied to simultaneously determine dopamine (DA) and uric acid (UA) by differential pulse voltammetry (DPV). Results showed that a linear electro-oxidation response was found for DA and UA in the range of 0.25-20 μM and 0.3-13 μM with the detection limit (S/N = 3) of 0.08 μM and 0.12 μM, respectively. In addition, the detection sensitivities for DA and UA by DPV were 1.03 μA μM-1 and 2.09 μA μM-1, respectively, which were much higher than those from a cyclic voltammogram. Finally, the reproducibility and stability of the nanocomposite were also evaluated, demonstrating that such MWCNT@PDOP@PtNPs can be a promising candidate for advanced electrode material in electrochemical sensing and other electrocatalytic applications.
Alakurtti, Kati; Johansson, Jarkko J; Tuokkola, Terhi; Någren, Kjell; Rinne, Juha O
2013-11-15
The human striatum has structural and functional subdivisions, both dorsoventrally and rostrocaudally. To date, the gradients of dopamine D2/3 receptor binding in the human striatum have not been measured with positron emission tomography (PET). Seven healthy male subjects aged 24.5 ± 3.5 years were scanned with brain-dedicated high-resolution research tomography (HRRT, Siemens Medical Solutions, Knoxville, TN, USA) and [(11)C]raclopride. Coronally defined regions of interest (ROIs) of the caudate nucleus, putamen and ventral striatum (VST) were sampled plane-by-plane, 1.5mm apart, on spatially normalized binding potential (BPND) images. Regional [(11)C]raclopride BPND values were calculated using the simplified reference tissue model (SRTM) from a total of 25 coronal planes. An increasing rostrocaudal gradient of the D2/3 receptor binding was detected in the putamen, which is consistent with the known distribution of D2/3 dopamine receptors. In the caudate nucleus, there was an initial increase in the BPND values in the most anterior planes, suggesting that the highest D2/3 receptor binding occurred in the head; however, there was an overall descending gradient. A declining trend was also observed in the VST. The novelty of this study lies in the presentation, for the first time, of the D2/3 receptor binding gradients in each striatal subregion in the brains of living healthy humans. The high spatial resolution provided by HRRT enables frequent sampling of BPND along the longitudinal extent of striatum; this method is superior to the sectioning used in previous post mortem studies. Regarding the functional organization of the striatum, our findings can inform future investigations of normal neurophysiology as well as efforts to differentiate neuropsychiatric disorders affecting the brain dopamine (DA) system. Furthermore, the average distribution of D2/3 receptor binding revealed in this study could serve as a basis for a database that includes distributions of various DA markers as a function of healthy aging. Copyright © 2013 Elsevier Inc. All rights reserved.
Role for VGLUT2 in selective vulnerability of midbrain dopamine neurons
Steinkellner, Thomas; Farino, Zachary J.; Sonders, Mark S.; Villeneuve, Michael; Freyberg, Robin J.; Przedborski, Serge; Lu, Wei; Hnasko, Thomas S.
2018-01-01
Parkinson’s disease is characterized by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). DA neurons in the ventral tegmental area are more resistant to this degeneration than those in the SNc, though the mechanisms for selective resistance or vulnerability remain poorly understood. A key to elucidating these processes may lie within the subset of DA neurons that corelease glutamate and express the vesicular glutamate transporter VGLUT2. Here, we addressed the potential relationship between VGLUT expression and DA neuronal vulnerability by overexpressing VGLUT in DA neurons of flies and mice. In Drosophila, VGLUT overexpression led to loss of select DA neuron populations. Similarly, expression of VGLUT2 specifically in murine SNc DA neurons led to neuronal loss and Parkinsonian behaviors. Other neuronal cell types showed no such sensitivity, suggesting that DA neurons are distinctively vulnerable to VGLUT2 expression. Additionally, most DA neurons expressed VGLUT2 during development, and coexpression of VGLUT2 with DA markers increased following injury in the adult. Finally, conditional deletion of VGLUT2 made DA neurons more susceptible to Parkinsonian neurotoxins. These data suggest that the balance of VGLUT2 expression is a crucial determinant of DA neuron survival. Ultimately, manipulation of this VGLUT2-dependent process may represent an avenue for therapeutic development. PMID:29337309
Fifel, Karim; Vezoli, Julien; Dzahini, Kwamivi; Claustrat, Bruno; Leviel, Vincent; Kennedy, Henry; Procyk, Emmanuel; Dkhissi-Benyahya, Ouria; Gronfier, Claude; Cooper, Howard M.
2014-01-01
Disturbances of the daily sleep/wake cycle are common non-motor symptoms of Parkinson's disease (PD). However, the impact of dopamine (DA) depletion on circadian rhythms in PD patients or non-human primate (NHP) models of the disorder have not been investigated. We evaluated alterations of circadian rhythms in NHP following MPTP lesion of the dopaminergic nigro-striatal system. DA degeneration was assessed by in vivo PET ([11C]-PE2I) and post-mortem TH and DAT quantification. In a light∶dark cycle, control and MPTP-treated NHP both exhibit rest-wake locomotor rhythms, although DA-depleted NHP show reduced amplitude, decreased stability and increased fragmentation. In all animals, 6-sulphatoxymelatonin peaks at night and cortisol in early morning. When the circadian system is challenged by exposure to constant light, controls retain locomotor rest-wake and hormonal rhythms that free-run with stable phase relationships whereas in the DA-depleted NHP, locomotor rhythms are severely disturbed or completely abolished. The amplitude and phase relations of hormonal rhythms nevertheless remain unaltered. Use of a light-dark masking paradigm shows that expression of daily rest-wake activity in MPTP monkeys requires the stimulatory and inhibitory effects of light and darkness. These results suggest that following DA lesion, the central clock in the SCN remains intact but, in the absence of environmental timing cues, is unable to drive downstream rhythmic processes of striatal clock gene and dopaminergic functions that control locomotor output. These findings suggest that the circadian component of the sleep-wake disturbances in PD is more profoundly affected than previously assumed. PMID:24465981
ERIC Educational Resources Information Center
Colzato, Lorenza S.; Slagter, Heleen A.; de Rover, Mischa; Hommel, Bernhard
2011-01-01
The attentional blink (AB)--a deficit in reporting the second of two target stimuli presented in close succession in a rapid sequence of distracters--has been related to processing limitations in working memory. Given that dopamine (DA) plays a crucial role working memory, the present study tested whether individual differences in the size of the…
Lipton, Jack W.; Tolod, Emeline G.; Thompson, Valerie B.; Pei, Lin; Paumier, Katrina L.; Terpstra, Brian T.; Lynch, Kaari A.; Collier, Timothy J.; Sortwell, Caryl E.
2008-01-01
Summary The current study examined whether modest concentrations of MDMA could increase the survival and/or neurite outgrowth of fetal midbrain dopamine (DA) neurons in vitro since increased DA neurite outgrowth has been previously observed in vivo from prenatal exposure. MDMA concentrations in fetal brain were quantified to determine relevant in vivo concentrations to employ in vitro. A dose-response study in vitro demonstrated that MDMA, at concentrations observed in vivo, resulted in increased, DA-specific, neuron survival. Higher doses resulted in nonspecific neurotoxicity. MDMA application immediately after culture establishment resulted in greater survival than delayed application, however both were superior to control. MDMA significantly increased the expression of the slc6a3 gene (dopamine transporter; DAT) in culture. Co-application of the DAT reuptake inhibitor methylphenidate (MPH) with MDMA attenuated this effect. Progressive reductions in MPH concentrations restored the MDMA-induced survival effect. This suggests that MDMA’s action at DAT mediates the survival effect. Neurite density per neuron was unaffected by MDMA in vitro suggesting that MDMA promotes DA neuron survival but not neurite outgrowth in culture. Finally, animals prenatally exposed to MDMA and examined on postnatal day 35 showed an increase in tyrosine hydroxylase-positive (TH+) neurons in the substantia nigra but not in the ventral tegmental area. These data suggest that during development, MDMA can increase the survival of DA neurons through its action at its transporter. Understanding how MDMA increases DA neuron survival may provide insight into normal DA neuron loss during development. PMID:18655796
Angoa-Pérez, Mariana; Kane, Michael J.; Briggs, Denise I.; Francescutti, Dina M.; Sykes, Catherine E.; Shah, Mrudang M.; Thomas, David M.; Kuhn, Donald M.
2012-01-01
Mephedrone (4-methylmethcathinone) is a β-ketoamphetamine stimulant drug of abuse with close structural and mechanistic similarities to methamphetamine. One of the most powerful actions associated with mephedrone is the ability to stimulate dopamine (DA) release and block its reuptake through its interaction with the dopamine transporter (DAT). Although mephedrone does not cause toxicity to DA nerve endings, its ability to serve as a DAT blocker could provide protection against methamphetamine-induced neurotoxicity like other DAT inhibitors. To test this possibility, mice were treated with mephedrone (10, 20 or 40 mg/kg) prior to each injection of a neurotoxic regimen of methamphetamine (4 injections of 2.5 or 5.0 mg/kg at 2 hr intervals). The integrity of DA nerve endings of the striatum was assessed through measures of DA, DAT and tyrosine hydroxylase levels. The moderate to severe DA toxicity associated with the different doses of methamphetamine was not prevented by any dose of mephedrone but was, in fact, significantly enhanced. The hyperthermia caused by combined treatment with mephedrone and methamphetamine was the same as seen after either drug alone. Mephedrone also enhanced the neurotoxic effects of amphetamine and MDMA on DA nerve endings. In contrast, nomifensine protected against methamphetamine-induced neurotoxicity. Because mephedrone increases methamphetamine neurotoxicity, the present results suggest that it interacts with the DAT in a manner unlike that of other typical DAT inhibitors. The relatively innocuous effects of mephedrone alone on DA nerve endings mask a potentially dangerous interaction with drugs that are often co-abused with it, leading to heightened neurotoxicity. PMID:23205838
Horner, Kristen A.; Gilbert, Yamiece E.; Cline, Susan D.
2011-01-01
Treatment with multiple high doses of methamphetamine (METH) can induce oxidative damage, including dopamine (DA)-mediated reactive oxygen species (ROS) formation, which may contribute to the neurotoxic damage of monoamine neurons and long-term depletion of DA in the caudate putamen (CPu) and substantia nigra pars compacta (SNpc). Malondialdehyde (MDA), a product of lipid peroxidation by ROS, is commonly used as a marker of oxidative damage and treatment with multiple high doses of METH increases MDA reactivity in the CPu of humans and experimental animals. Recent data indicate that MDA itself may contribute to the destruction of DA neurons, as MDA causes the accumulation of toxic intermediates of DA metabolism via its chemical modification of the enzymes necessary for the breakdown of DA. However, it has been shown that in human METH abusers there is also increased MDA reactivity in the frontal cortex, which receives relatively fewer DA afferents than the CPu. These data suggest that METH may induce neuronal damage regardless of the regional density of DA or origin of DA input. The goal of the current study was to examine the modification of proteins by MDA in the DA-rich nigrostriatal and mesoaccumbal systems, as well as the less DA-dense cortex and hippocampus following a neurotoxic regimen of METH treatment. Animals were treated with METH (10 mg/kg) every 2 h for 6 h, sacrificed 1 week later, and examined using immunocytochemistry for changes in MDA-adducted proteins. Multiple, high doses of METH significantly increased MDA immunoreactivity (MDA-ir) in the CPu, SNpc, cortex, and hippocampus. Multiple METH administration also increased MDA-ir in the ventral tegmental area and nucleus accumbens. Our data indicate that multiple METH treatment can induce persistent and widespread neuronal damage that may not necessarily be limited to the nigrostriatal DA system. PMID:21602916
Qin, Caidie; Bai, Xue; Zhang, Yue; Gao, Kai
2018-05-03
A photoelectrochemical wire microelectrode was constructed based on the use of a TiO 2 nanotube array with electrochemically deposited CdSe semiconductor. A strongly amplified photocurrent is generated on the sensor surface. The microsensor has a response in the 0.05-20 μM dopamine (DA) concentration range and a 16.7 μM detection limit at a signal-to-noise ratio of 3. Sensitivity, recovery and reproducibility of the sensor were validated by detecting DA in spiked human urine, and satisfactory results were obtained. Graphical abstract Schematic of a sensitive photoelectrochemical microsensor based on CdSe modified TiO 2 nanotube array. The photoelectrochemical microsensor was successfully applied to the determination of dopamine in urine samples.
Liu, Qin; Zhu, Xu; Huo, Zhaohui; He, Xulun; Liang, Yong; Xu, Maotian
2012-08-15
Graphene (GR) was synthesized through electrochemical reduction of graphene oxide and characterized by spectroscopic and electrochemical techniques. Polyvinylpyrrolidone (PVP)/graphene modified glassy carbon electrode (PVP/GR/GCE) was prepared and applied for the fabrication of dopamine (DA) sensors without the interference of ascorbic acid (AA). Compared to bare GCE, an increase of current signal was observed, demonstrating that PVP/GR/GCE exhibited favorable electron transfer kinetics and electrocatalytic activity towards the oxidation of dopamine. Furthermore, PVP/GR/GCE exhibited good ability to suppress the background current from large excess ascorbic acid. Amperometric response results show that the PVP based sensor displayed a wide linear range of 5×10(-10) to 1.13×10(-3) mol/L DA with a correlation coefficient of 0.9990 and a detection limit of 0.2 nM (S/N=3). The determination of dopamine in urine and human serum samples were studied. Copyright © 2012 Elsevier B.V. All rights reserved.
Baladi, Michelle G; Daws, Lynette C; France, Charles P
2012-01-01
The important role of dopamine (DA) in mediating feeding behavior and the positive reinforcing effects of some drugs is well recognized. Less widely studied is how feeding conditions might impact the sensitivity of drugs acting on DA systems. Food restriction, for example, has often been the focus of aging and longevity studies; however, other studies have demonstrated that mild food restriction markedly increases sensitivity to direct- and indirect-acting DA receptor agonists. Moreover, it is becoming clear that not only the amount of food, but the type of food, is an important factor in modifying the effects of drugs. Given the increased consumption of high fat and sugary foods, studies are exploring how consumption of highly palatable food impacts DA neurochemistry and the effects of drugs acting on these systems. For example, eating high fat chow increases sensitivity to some behavioral effects of direct- as well as indirect-acting DA receptor agonists. A compelling mechanistic possibility is that the central DA pathways that mediate the effects of some drugs are regulated by one or more of the endocrine hormones (e.g. insulin) that undergo marked changes during food restriction or after consuming high fat or sugary foods. Although traditionally recognized as an important signaling molecule in regulating energy homeostasis, insulin can also regulate DA neurochemistry. Because direct- and indirect-acting DA receptor drugs are used therapeutically and some are abused, a better understanding of how food intake impacts response to these drugs would likely facilitate improved treatment of clinical disorders and provide information that would be relevant to the causes of vulnerability to abuse drugs. PMID:22710441
Rodriguez-Menchaca, Aldo A; Solis Jr, Ernesto; Cameron, Krasnodara; De Felice, Louis J
2012-01-01
BACKGROUND AND PURPOSE Wherever they are located, dopamine transporters (DATs) clear dopamine (DA) from the extracellular milieu to help regulate dopaminergic signalling. Exposure to amphetamine (AMPH) increases extracellular DA in the synaptic cleft, which has been ascribed to DAT reverse transport. Increased extracellular DA prolongs postsynaptic activity and reinforces abuse and hedonic behaviour. EXPERIMENTAL APPROACH Xenopus laevis oocytes expressing human (h) DAT were voltage-clamped and exposed to DA, R(-)AMPH, or S(+)AMPH. KEY RESULTS At -60mV, near neuronal resting potentials, S(+)AMPH induced a depolarizing current through hDAT, which after removing the drug, persisted for more than 30 min. This persistent leak in the absence of S(+)AMPH was in contrast to the currents induced by R(-)AMPH and DA, which returned to baseline immediately after their removal. Our data suggest that S(+)AMPH and Na+ carry the initial S(+)AMPH-induced current, whereas Na+ and Cl- carry the persistent leak current. We propose that the persistent current results from the internal action of S(+)AMPH on hDAT because the temporal effect was consistent with S(+)AMPH influx, and intracellular S(+)AMPH activated the effect. The persistent current was dependent on Na+ and was blocked by cocaine. Intracellular injection of S(+)AMPH also activated a DA-induced persistent leak current. CONCLUSIONS AND IMPLICATIONS We report a hitherto unknown action of S(+)AMPH on hDAT that potentially affects AMPH-induced DA release. We propose that internal S(+)AMPH acts as a molecular stent that holds the transporter open even after external S(+)AMPH is removed. Amphetamine-induced persistent leak currents are likely to influence dopaminergic signalling, DA release mechanisms, and amphetamine abuse. PMID:22014068
Distinct effects of ketamine and acetyl l-carnitine on the dopamine system in zebrafish
Robinson, Bonnie L.; Dumas, Melanie; Cuevas, Elvis; Gu, Qiang; Paule, Merle G.; Ali, Syed F.; Kanungo, Jyotshna
2016-01-01
Ketamine, a noncompetitive N-methyl-d-aspartic acid (NMDA) receptor antagonist is commonly used as a pediatric anesthetic. We have previously shown that acetyl L-carnitine (ALCAR) prevents ketamine toxicity in zebrafish embryos. In mammals, ketamine is known to modulate the dopaminergic system. NMDA receptor antagonists are considered as promising anti-depressants, but the exact mechanism of their function is unclear. Here, we measured the levels of dopamine (DA) and its metabolites, 3, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the zebrafish embryos exposed to ketamine in the presence and absence of 0.5 mM ALCAR. Ketamine, at lower doses (0.1–0.3 mM), did not produce significant changes in DA, DOPAC or HVA levels in 52 h post-fertilization embryos treated for 24 h. In these embryos, tyrosine hydroxylase (TH) mRNA expression remained unchanged. However, 2 mM ketamine (internal embryo exposure levels equivalent to human anesthetic plasma concentration) significantly reduced DA level and TH mRNA indicating that DA synthesis was adversely affected. In the presence or absence of 2 mM ketamine, ALCAR showed similar effects on DA level and TH mRNA, but increased DOPAC level compared to control. ALCAR reversed 2 mM ketamine-induced reduction in HVA levels. With ALCAR alone, the expression of genes encoding the DA metabolizing enzymes, MAO (monoamine oxidase) and catechol-O-methyltransferase (COMT), was not affected. However, ketamine altered MAO mRNA expression, except at the 0.1 mM dose. COMT transcripts were reduced in the 2 mM ketamine-treated group. These distinct effects of ketamine and ALCAR on the DA system may shed some light on the mechanism on how ketamine can work as an anti-depressant, especially at sub-anesthetic doses that do not affect DA metabolism and suppress MAO gene expression. PMID:26898327
GABAB-receptor activation alters the firing pattern of dopamine neurons in the rat substantia nigra.
Engberg, G; Kling-Petersen, T; Nissbrandt, H
1993-11-01
Previous electrophysiological experiments have emphasized the importance of the firing pattern for the functioning of midbrain dopamine (DA) neurons. In this regard, excitatory amino acid receptors appear to constitute an important modulatory control mechanism. In the present study, extracellular recording techniques were used to investigate the significance of GABAB-receptor activation for the firing properties of DA neurons in the substantia nigra (SN) in the rat. Intravenous administration of the GABAB-receptor agonist baclofen (1-16 mg/kg) was associated with a dose-dependent regularization of the firing pattern, concomitant with a reduction in burst firing. At higher doses (16-32 mg/kg), the firing rate of the DA neurons was dose-dependently decreased. Also, microiontophoretic application of baclofen regularized the firing pattern of nigral DA neurons, including a reduction of burst firing. Both the regularization of the firing pattern and inhibition of firing rate produced by systemic baclofen administration was antagonized by the GABAB-receptor antagonist CGP 35348 (200 mg/kg, i.v.). The GABAA-receptor agonist muscimol produced effects on the firing properties of DA neurons that were opposite to those observed following baclofen, i.e., an increase in firing rate accompanied by a decreased regularity. The NMDA receptor antagonist MK 801 (0.4-3.2 mg/kg, i.v.) produced a moderate, dose-dependent increase in the firing rate of the nigral DA neurons as well as a slightly regularized firing pattern. Pretreatment with MK 801 (3.2 mg/kg, i.v., 3-10 min) did neither promote nor prevent the regularization of the firing pattern or inhibition of firing rate on the nigral DA neurons produced by baclofen. The present results clearly show that GABAB-receptors can alter the firing pattern of nigral DA neurons, hereby counterbalancing the previously described ability of glutamate to induce burst firing activity on these neurons.
Zaman, Vandana; Boger, Heather A.; Granholm, Ann-Charlotte; Rohrer, Baerbel; Moore, Alfred; Buhusi, Mona; Gerhardt, Greg A.; Hoffer, Barry J.; Middaugh, Lawrence D.
2009-01-01
Given the established importance of glial cell line-derived neurotrophic factor (GDNF) in maintaining dopaminergic neurotransmitter systems, the nigrostriatal system and associated behaviors of mice with genetic reduction of its high-affinity receptor, GDNF receptor (GFR)α-1 (GFRα-1+/−), were compared with wild-type controls. Motor activity and the stimulatory effects of a dopamine (DA) D1 receptor agonist (SKF 82958) were assessed longitudinally at 8 and 18 months of age. Monoamine concentrations and dopaminergic nerve terminals in the striatum and the number of dopaminergic neurons in the substantia nigra (SN) were assessed. The results support the importance of GFRα-1 in maintaining normal function of the nigrostriatal dopaminergic system, with deficits being observed for GFRα-1+/− mice at both ages. Motor activity was lower and the stimulatory effects of the DA agonist were enhanced for the older GFRα-1+/− mice. DA in the striatum was reduced in the GFRα-1+/− mice at both ages, and tyrosine hydroxylase-positive cell numbers in the SN were reduced most substantially in the older GFRα-1+/− mice. The combined behavioral, pharmacological probe, neurochemical and morphological measures provide evidence of abnormalities in GFRα-1+/− mice that are indicative of an exacerbated aging-related decline in dopaminergic system function. The noted deficiencies, in turn, suggest that GFRα-1 is necessary for GDNF to maintain normal function of the nigrostriatal dopaminergic system. Although the precise mechanism(s) for the aging-related changes in the dopaminergic system remain to be established, the present study clearly establishes that genetic reductions in GFRα-1 can contribute to the degenerative changes observed in this system during the aging process. PMID:18973577
Fischer 344 and Lewis Rat Strains as a Model of Genetic Vulnerability to Drug Addiction
Cadoni, Cristina
2016-01-01
Today it is well acknowledged that both nature and nurture play important roles in the genesis of psychopathologies, including drug addiction. Increasing evidence suggests that genetic factors contribute for at least 40–60% of the variation in liability to drug dependence. Human genetic studies suggest that multiple genes of small effect, rather than single genes, contribute to the genesis of behavioral psychopathologies. Therefore, the use of inbred rat strains might provide a valuable tool to identify differences, linked to genotype, important in liability to addiction and related disorders. In this regard, Lewis and Fischer 344 inbred rats have been proposed as a model of genetic vulnerability to drug addiction, given their innate differences in sensitivity to the reinforcing and rewarding effects of drugs of abuse, as well their different responsiveness to stressful stimuli. This review will provide evidence in support of this model for the study of the genetic influence on addiction vulnerability, with particular emphasis on differences in mesolimbic dopamine (DA) transmission, rewarding and emotional function. It will be highlighted that Lewis and Fischer 344 rats differ not only in several indices of DA transmission and adaptive changes following repeated drug exposure, but also in hypothalamic-pituitary-adrenal (HPA) axis responsiveness, influencing not only the ability of the individual to cope with stressful events, but also interfering with rewarding and motivational processes, given the influence of corticosteroids on dopamine neuron functionality. Further differences between the two strains, as impulsivity or anxiousness, might contribute to their different proneness to addiction, and likely these features might be linked to their different DA neurotransmission plasticity. Although differences in other neurotransmitter systems might deserve further investigation, results from the reviewed studies might open new vistas in understanding aberrant deviations in reward and motivational functions. PMID:26903787
Fischer 344 and Lewis Rat Strains as a Model of Genetic Vulnerability to Drug Addiction.
Cadoni, Cristina
2016-01-01
Today it is well acknowledged that both nature and nurture play important roles in the genesis of psychopathologies, including drug addiction. Increasing evidence suggests that genetic factors contribute for at least 40-60% of the variation in liability to drug dependence. Human genetic studies suggest that multiple genes of small effect, rather than single genes, contribute to the genesis of behavioral psychopathologies. Therefore, the use of inbred rat strains might provide a valuable tool to identify differences, linked to genotype, important in liability to addiction and related disorders. In this regard, Lewis and Fischer 344 inbred rats have been proposed as a model of genetic vulnerability to drug addiction, given their innate differences in sensitivity to the reinforcing and rewarding effects of drugs of abuse, as well their different responsiveness to stressful stimuli. This review will provide evidence in support of this model for the study of the genetic influence on addiction vulnerability, with particular emphasis on differences in mesolimbic dopamine (DA) transmission, rewarding and emotional function. It will be highlighted that Lewis and Fischer 344 rats differ not only in several indices of DA transmission and adaptive changes following repeated drug exposure, but also in hypothalamic-pituitary-adrenal (HPA) axis responsiveness, influencing not only the ability of the individual to cope with stressful events, but also interfering with rewarding and motivational processes, given the influence of corticosteroids on dopamine neuron functionality. Further differences between the two strains, as impulsivity or anxiousness, might contribute to their different proneness to addiction, and likely these features might be linked to their different DA neurotransmission plasticity. Although differences in other neurotransmitter systems might deserve further investigation, results from the reviewed studies might open new vistas in understanding aberrant deviations in reward and motivational functions.
PCBs Alter Dopamine Mediated Function in Aging Workers
2011-01-01
inhibitors, COX-2 inhibi- tors, other non - steroidal anti - inflammatory agents, opiate agonists, miscellaneous analgesics and antipyretics, thyroid...DA) similar to changes previously seen in PCB exposed adult non -human primates. To test that hypothesis we used [123I]β-CIT SPECT imaging to...adult non -human primates (Seegal et al., 1994a), also occur in occupationally exposed humans. In this study, we used in vivo molecular imaging of the
Caravaggio, Fernando; Chung, Jun Ku; Gerretsen, Philip; Fervaha, Gagan; Nakajima, Shinichiro; Plitman, Eric; Iwata, Yusuke; Wilson, Alan; Graff-Guerrero, Ariel
2017-04-01
Differences in striatal dopamine (DA) function may be related to differences in the degree of social attachment to others. Using positron emission tomography (PET), socially detached persons demonstrate reduced DA D 2/3 receptor (D 2/3 R) availability in the striatum. However, previous PET studies have only used antagonist radiotracers for D 2/3 R and have not specifically examined regions of interest (ROIs) such as the ventral striatum (VS). In 32 healthy persons, we investigated the relationship between self-reported attachment and DA D 2/3 R availability in striatal and extrastriatal ROIs as measured using the agonist radiotracer [ 11 C]-(+)-PHNO. Surprisingly, more social attachment-as measured by the attachment subscale of the temperament and character inventory-was related to less [ 11 C]-(+)-PHNO binding in the VS (r(30) = -.43, p = .01). This relationship held in a subsample who also completed the detachment subscale of the Karolinska Scales of Personality (r(10) = .62, p = .03). However, no relationships were observed with BP ND in the dorsal striatum or D 3 R-specific ROIs. One potential explanation for these findings is that persons who are more socially detached have less endogenous DA occupying D 2/3 R in the VS. This interpretation warrants investigation by future research. These findings may help us better understand the neurochemical basis of attachment.
NASA Astrophysics Data System (ADS)
Mphuthi, Ntsoaki G.; Adekunle, Abolanle S.; Fayemi, Omolola E.; Olasunkanmi, Lukman O.; Ebenso, Eno E.
2017-03-01
The electrocatalytic properties of metal oxides (MO = Fe3O4, ZnO) nanoparticles doped phthalocyanine (Pc) and functionalized MWCNTs, decorated on glassy carbon electrode (GCE) was investigated. Successful synthesis of the metal oxide nanoparticles and the MO/Pc/MWCNT composite were confirmed using UV-Vis, EDX, XRD and TEM techniques. Successful modification of GCE with the MO and their composite was also confirmed using cyclic voltammetry (CV) technique. GCE-MWCNT/ZnO/29H,31H-Pc was the best electrode towards DA detection with very low detection limit (0.75 μM) which compared favourably with literature, good sensitivity (1.45 μA/μM), resistance to electrode fouling, and excellent ability to detect DA without interference from AA signal. Electrocatalytic oxidation of DA on GCE-MWCNT/ZnO/29H,31H-Pc electrode was diffusion controlled but characterized with some adsorption of electro-oxidation reaction intermediates products. The fabricated sensors are easy to prepare, cost effective and can be applied for real sample analysis of dopamine in drug composition. The good electrocatalytic properties of 29H,31H-Pc and 2,3-Nc were related to their (quantum chemically derived) frontier molecular orbital energies and global electronegativities. The better performance of 29H,31H-Pc than 2,3-Nc in aiding electrochemical oxidation of DA might be due to its better electron accepting ability, which is inferred from its lower ELUMO and higher χ.
Mphuthi, Ntsoaki G.; Adekunle, Abolanle S.; Fayemi, Omolola E.; Olasunkanmi, Lukman O.; Ebenso, Eno E.
2017-01-01
The electrocatalytic properties of metal oxides (MO = Fe3O4, ZnO) nanoparticles doped phthalocyanine (Pc) and functionalized MWCNTs, decorated on glassy carbon electrode (GCE) was investigated. Successful synthesis of the metal oxide nanoparticles and the MO/Pc/MWCNT composite were confirmed using UV-Vis, EDX, XRD and TEM techniques. Successful modification of GCE with the MO and their composite was also confirmed using cyclic voltammetry (CV) technique. GCE-MWCNT/ZnO/29H,31H-Pc was the best electrode towards DA detection with very low detection limit (0.75 μM) which compared favourably with literature, good sensitivity (1.45 μA/μM), resistance to electrode fouling, and excellent ability to detect DA without interference from AA signal. Electrocatalytic oxidation of DA on GCE-MWCNT/ZnO/29H,31H-Pc electrode was diffusion controlled but characterized with some adsorption of electro-oxidation reaction intermediates products. The fabricated sensors are easy to prepare, cost effective and can be applied for real sample analysis of dopamine in drug composition. The good electrocatalytic properties of 29H,31H-Pc and 2,3-Nc were related to their (quantum chemically derived) frontier molecular orbital energies and global electronegativities. The better performance of 29H,31H-Pc than 2,3-Nc in aiding electrochemical oxidation of DA might be due to its better electron accepting ability, which is inferred from its lower ELUMO and higher χ. PMID:28256521
Effects of dopamine D1 modulation of the anterior cingulate cortex in a fear conditioning procedure
Pezze, M.A.; Marshall, H.J.; Domonkos, A.; Cassaday, H.J.
2016-01-01
The anterior cingulate cortex (AC) component of the medial prefrontal cortex (mPFC) has been implicated in attention and working memory as measured by trace conditioning. Since dopamine (DA) is a key modulator of mPFC function, the present study evaluated the role of DA receptor agents in rat AC, using trace fear conditioning. A conditioned stimulus (CS, noise) was followed by an unconditioned stimulus (US, shock) with or without a 10 s trace interval interposed between these events in a between-subjects design. Conditioned suppression of drinking was assessed in response to presentation of the CS or an experimental background stimulus (flashing lights, previously presented for the duration of the conditioning session). The selective D1 agonist SKF81297 (0.05 μg/side) or D1 antagonist SCH23390 (0.5 μg/side) was administered by intra-cerebral microinfusion directly into AC. It was predicted that either of these manipulations should be sufficient to impair trace (but not delay) conditioning. Counter to expectation, there was no effect of DA D1 modulation on trace conditioning as measured by suppression to the noise CS. However, rats infused with SKF81297 acquired stronger conditioned suppression to the experimental background stimulus than those infused with SCH23390 or saline. Thus, the DA D1 agonist SKF81297 increased conditioned suppression to the contextual background light stimulus but was otherwise without effect on fear conditioning. PMID:26343307
Kim, Jong-Min; Chung, Sun Ju; Kim, Jae Woo; Jeon, Beom Seok; Singh, Pritibha; Thierfelder, Stephan; Ikeda, Junji; Bauer, Lars
2015-02-28
Achieving optimal symptom control with minimal side effects is a major goal in clinical practice. Dual-agent dopamine receptor agonist (DA) therapy in Parkinson's disease (PD) may represent a promising approach to treatment, as the combination of different pharmacokinetic/pharmacological profiles may result in a lesser need for high dosages and, accordingly, may be well tolerated. The objective of the current study was to investigate safety and efficacy of rotigotine transdermal system as add-on to oral DA in patients with advanced PD inadequately controlled with levodopa and low-dose oral DA. PD0015 was an open-label, multinational study in patients with advanced-PD and sleep disturbance or early-morning motor impairment. Patients were titrated to optimal dose rotigotine (≤8 mg/24 h) over 1-4 weeks and maintained for 4-7 weeks (8-week treatment). Dosage of levodopa and oral DA (pramipexole ≤1.5 mg/day, ropinirole ≤6.0 mg/day) was stable. Primary variable was Clinical Global Impressions (CGI) item 4: side effects, assessing safety. Other variables included adverse events (AEs), Patient Global Impressions of Change (PGIC), Unified Parkinson's Disease Rating Scale (UPDRS) II and III, Parkinson's Disease Sleep Scale (PDSS-2), Pittsburgh Sleep Quality Index (PSQI), and "off" time. Of 90 patients who received rotigotine, 79 (88%) completed the study; 5 (6%) withdrew due to AEs. Most (83/89; 93%) had a CGI-4 score <3 indicating that rotigotine add-on therapy did not interfere with functioning; 6 (7%) experienced drug-related AEs that interfered with functioning (score ≥3). AEs occurring in ≥5% were application site pruritus (13%), dizziness (10%), orthostatic hypotension (10%), nausea (8%), dyskinesia (8%), and nasopharyngitis (6%). Numerical improvements in motor function (UPDRS III), activities of daily living (UPDRS II), sleep disturbances (PDSS-2, PSQI), and reduction in "off" time were observed. The majority (71/88; 81%) improved on PGIC. Addition of rotigotine transdermal system to low-dose oral DA in patients with advanced-PD was feasible and may be associated with clinical benefit. ClinicalTrials.gov identifier NCT01723904 . Trial registration date: November 6, 2012.
Schneider, Mary L.; Moore, Colleen F.; Larson, Julie A.; Barr, Christina S.; DeJesus, Onofre T.; Roberts, Andrew D.
2009-01-01
Sensory processing disorder, characterized by over- or under-responsivity to non-noxious environmental stimuli, is a common but poorly understood disorder. We examined the role of prenatal alcohol exposure, serotonin transporter gene polymorphic region variation (rh5-HTTLPR), and striatal dopamine (DA) function on behavioral measures of sensory responsivity to repeated non-noxious sensory stimuli in macaque monkeys. Results indicated that early gestation alcohol exposure induced behavioral under-responsivity to environmental stimuli in monkeys carrying the short (s) rh5-HTTLPR allele compared to both early-exposed monkeys homozygous for the long (l) allele and monkeys from middle-to-late exposed pregnancies and controls, regardless of genotype. Moreover, prenatal timing of alcohol exposure altered the relationship between sensory scores and DA D2R availability. In early-exposed monkeys, a positive relationship was shown between sensory scores and DA D2R availability, with low or blunted DA function associated with under-responsive sensory function. The opposite pattern was found for the middle-to-late gestation alcohol-exposed group. These findings raise questions about how the timing of prenatal perturbation and genotype contributes to effects on neural processing and possibly alters neural connections. PMID:19936317
Stolzenberg, Danielle S; Numan, Michael
2011-01-01
The medial preoptic area (MPOA) of the hypothalamus regulates maternal behavior, male sexual behavior, and female sexual behavior. Functional neuroanatomical evidence indicates that the appetitive aspects of maternal behavior are regulated through MPOA interactions with the mesolimbic dopamine (DA) system; a major focus of this review is to explore whether or not the MPOA participates in the appetitive aspects of sexual behavior via its interaction with the mesolimbic DA system. A second focus of this review is to examine the extent to which estradiol interactions with DA within this circuit regulate all three reproductive behaviors. One mechanism through which estradiol activates male sexual behavior is through the potentiation of DA activity in the MPOA. In the hypothalamus, estradiol has also been found to act in concert with DA, through the activation of similar intracellular signaling pathways, in order to stimulate female sexual behavior. Finally, recent evidence suggests that some effects of estradiol are mediated by direct action of estradiol on the mesolimbic DA system. Copyright © 2010 Elsevier Ltd. All rights reserved.
Yang, Qiaoqiao; Liu, Shuxi; Yin, Min; Yin, Yanqing; Zhou, Guomin; Zhou, Jiawei
2015-11-01
Dopaminergic (DA) neurons in the midbrain ventral periaqueductal gray matter (PAG) play critical roles in various physiological and pathophysiological processes including sleep-wake rhyme, antinociception, and drug addiction. However, the molecular mechanisms underlying their development are poorly understood. Here, we showed that PAG DA neurons arose as early as E15.5 in mouse embryos. During the prenatal period, the majority of PAG DA neurons was distributed in the intermediate and caudal regions of the PAG. In the postnatal brain, ∼50% of PAG DA neurons were preferentially located in the caudal portion of the PAG. Moreover, transcription factor early B-cell factor 2 (Ebf2) was transiently expressed in a subset of DA neurons in embryonic ventral mesencephalon. Functional analysis revealed that loss of Ebf2 in vivo caused a marked reduction in the number of DA neurons in the midbrain PAG but not in the substantia nigra and ventral tegmental area. Thus, Ebf2 is identified as a novel and important regulator selectively required for midbrain PAG DA neuron development. © 2015 Wiley Periodicals, Inc.
The role of N-methyl-D-aspartate receptors and nitric oxide in cochlear dopamine release.
Halmos, G; Horváth, T; Polony, G; Fekete, A; Kittel, A; Vizi, E S; van der Laan, B F A M; Zelles, T; Lendvai, B
2008-06-23
Dopamine (DA) released from lateral olivocochlear (LOC) terminals may have a neuroprotective effect in the cochlea. To explore the role of N-methyl-d-aspartate (NMDA) receptors and nitric oxide (NO) in the modulation of a cochlear DA release, we measured the release of [3H]DA from isolated mouse cochlea in response to the application of NMDA. NMDA at 100 muM significantly increased the electrical-field stimulation-evoked and resting release of DA from the cochlea. The NO donor sodium nitroprusside enhanced the basal outflow of DA but failed to influence the evoked release. The administration of the nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME) alone was ineffective, but it significantly inhibited the initial phase of the NMDA-induced elevation of DA outflow, which suggested the role of NO in the NMDA-induced DA release. The DA uptake inhibitor nomifensine increased the electrically evoked release of DA. Nomifensine failed to change the effect of NMDA on the resting or electrically-evoked DA release, which suggested that the uptake mechanism does not play a role in NMDA-evoked and NO-mediated DA release. In summary, we provide evidence that NO can modulate the release of DA from the cochlea following NMDA receptor activation, but does not affect the uptake of DA.
Boekhoudt, Linde; Voets, Elisa S; Flores-Dourojeanni, Jacques P; Luijendijk, Mieneke Cm; Vanderschuren, Louk Jmj; Adan, Roger Ah
2017-05-01
Attentional impairments and exaggerated impulsivity are key features of psychiatric disorders, such as attention-deficit/hyperactivity disorder, schizophrenia, and addiction. These deficits in attentional performance and impulsive behaviors have been associated with aberrant dopamine (DA) signaling, but it remains unknown whether these deficits result from enhanced DA neuronal activity in the midbrain. Here, we took a novel approach by testing the impact of chemogenetically activating DA neurons in the ventral tegmental area (VTA) or substantia nigra pars compacta (SNc) on attention and impulsivity in the five-choice serial reaction time task (5-CSRTT) in rats. We found that activation of DA neurons in both the VTA and SNc impaired attention by increasing trial omissions. In addition, SNc DA neuron activation decreased attentional accuracy. Surprisingly, enhanced DA neuron activity did not affect impulsive action in this task. These results show that enhanced midbrain DA neuronal activity induces deficits in attentional performance, but not impulsivity. Furthermore, DA neurons in the VTA and SNc have different roles in regulating attention. These findings contribute to our understanding of the neural substrates underlying attention deficits and impulsivity, and provide valuable insights to improve treatment of these symptoms.
Lai, Yu-Ting; Tsai, Yen-Ping N; Cherng, Chianfang G; Ke, Jing-Jer; Ho, Ming-Che; Tsai, Chia-Wen; Yu, Lung
2009-04-01
Systemic lipopolysaccharide (LPS) treatment may affect methamphetamine (MA)-induced nigrostriatal dopamine (DA) depletion. This study was undertaken to determine the critical time window for the protective effects of LPS treatment and the underlying mechanisms. An LPS injection (1 mg/kg) 72 h before or 2 h after MA treatment [three consecutive, subcutaneous injections of MA (10 mg/kg each) at 2-h intervals] diminished the MA-induced DA depletion in mouse striatum. Such an LPS-associated effect was independent of MA-produced hyperthermia. TNF-alpha, IL-1beta, IL-6 expressions were all elevated in striatal tissues following a systemic injection with LPS, indicating that peripheral LPS treatment affected striatal pro-inflammatory cytokine expression. Striatal TNF-alpha expression was dramatically increased at 72 and 96 h after the MA treatment, while such TNF-alpha elevation was abolished by the LPS pretreatment protocol. Moreover, MA-produced activation of nuclear NFkappaB, a transcription factor following TNF-alpha activation, in striatum was abolished by the LPS (1 mg/kg) pretreatment. Furthermore, thalidomide, a TNF-alpha antagonist, treatment abolished the LPS pretreatment-associated protective effects. Pretreatment with mouse recombinant TNF-alpha in striatum diminished the MA-produced DA depletion. Finally, single LPS treatment caused a rapid down-regulation of dopamine transporter (DAT) in striatum. Taken together, we conclude that peripheral LPS treatment protects nigrostriatal DA neurons against MA-induced toxicity, in part, by reversing elevated TNF-alpha expression and subsequent signaling cascade and causing a rapid DAT down-regulation in striatum.
Palanisamy, Selvakumar; Thangavelu, Kokulnathan; Chen, Shen-Ming; Gnanaprakasam, P; Velusamy, Vijayalakshmi; Liu, Xiao-Heng
2016-10-20
The accurate detection of dopamine (DA) levels in biological samples such as human serum and urine are essential indicators in medical diagnostics. In this work, we describe the preparation of chitosan (CS) biopolymer grafted graphite (GR) composite for the sensitive and lower potential detection of DA in its sub micromolar levels. The composite modified electrode has been used for the detection of DA in biological samples such as human serum and urine. The GR-CS composite modified electrode shows an enhanced oxidation peak current response and low oxidation potential for the detection of DA than that of electrodes modified with bare, GR and CS discretely. Under optimum conditions, the fabricated GR-CS composite modified electrode shows the DPV response of DA in the linear response ranging from 0.03 to 20.06μM. The detection limit and sensitivity of the sensor were estimated as 0.0045μM and 6.06μA μM(-1)cm(-2), respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Brain on Fire: Incentive Salience, Hedonic Hot Spots, Dopamine, Obesity, and Other Hunger Games.
Cameron, Jameason D; Chaput, Jean-Philippe; Sjödin, Anders M; Goldfield, Gary S
2017-08-21
This review examines human feeding behavior in light of psychological motivational theory and highlights the importance of midbrain dopamine (DA). Prospective evidence of both reward surfeit and reward deficit pathways to increased body weight are evaluated, and we argue that it is more complex than an either/or scenario when examining DA's role in reward sensitivity, eating, and obesity. The Taq1A genotype is a common thread that ties the contrasting models of DA reward and obesity; this genotype related to striatal DA is not associated with obesity class per se but may nevertheless confer an increased risk of weight gain. We also critically examine the concept of so-called food addiction, and despite growing evidence, we argue that there is currently insufficient human data to warrant this diagnostic label. The surgical and pharmacological treatments of obesity are discussed, and evidence is presented for the selective use of DA-class drugs in obesity treatment.
Cappon, G D; Broening, H W; Pu, C; Morford, L; Vorhees, C V
1996-10-01
Methamphetamine (MA) administration to adult rats (4 x 10 mg/kg s.c.) induces neurotoxicity predominately characterized by a persistent reduction of neostriatal dopamine (DA) content. Hyperthermia following MA administration potentiates the resulting DA depletion. DA-derived free radicals are postulated to be a mechanism through which MA-induced neurotoxicity is produced. The spin trapping agent PBN reacts with free radicals to form nitroxyl adducts, thereby preventing damaging free radical reactions with cellular substrates. MA with saline pretreatment (Sal-MA) reduced neostriatal DA by 55% (P < 0.01 vs. Sal-Sal). MA with PBN pretreatment (PBN-MA) at 36 or 60 mg/kg reduced neostriatal DA by 36 and 22%, respectively (P < 0.05 and P < 0.01 vs Sal-MA) indicating partial protection. PBN pretreatment did not alter MA-induced hyperthermia. Thus, PBN does not attenuate MA-induced neurotoxicity by reducing MA-induced hyperthermia. These results support a role for free radicals in the generation of MA-induced dopaminergic neurotoxicity.
Dopamine Receptor D4 Gene Variation Predicts Preschoolers' Developing Theory of Mind
ERIC Educational Resources Information Center
Lackner, Christine; Sabbagh, Mark A.; Hallinan, Elizabeth; Liu, Xudong; Holden, Jeanette J. A.
2012-01-01
Individual differences in preschoolers' understanding that human action is caused by internal mental states, or representational theory of mind (RTM), are heritable, as are developmental disorders such as autism in which RTM is particularly impaired. We investigated whether polymorphisms of genes affecting dopamine (DA) utilization and metabolism…
Ulubay, Sükriye; Dursun, Zekerya
2010-01-15
Cu nanoparticles have been electrochemically incorporated polypyrrole film that was used for modification of the glassy carbon electrode surface. The performance of the electrode has been characterized by cyclic voltammetry and atomic force microscopy. The electrode has shown high electrocatalytic activity towards the oxidation of dopamine (DA) and uric acid (UA) simultaneously in a phosphate buffer solution (pH 7.00). The electrocatalytic oxidation currents of UA and DA were found linearly related to concentration over the range 1x10(-9) to 1x10(-5)M for UA and 1x10(-9) to 1x10(-7)M for DA using DPVs method. The detection limits were determined as 8x10(-10)M (s/n=3) for UA and 8.5x10(-10)M (s/n=3) for DA at a signal-to-noise ratio of 3.
PPL2ab neurons restore sexual responses in aged Drosophila males through dopamine.
Kuo, Shu-Yun; Wu, Chia-Lin; Hsieh, Min-Yen; Lin, Chen-Ta; Wen, Rong-Kun; Chen, Lien-Cheng; Chen, Yu-Hui; Yu, Yhu-Wei; Wang, Horng-Dar; Su, Yi-Ju; Lin, Chun-Ju; Yang, Cian-Yi; Guan, Hsien-Yu; Wang, Pei-Yu; Lan, Tsuo-Hung; Fu, Tsai-Feng
2015-06-30
Male sexual desire typically declines with ageing. However, our understanding of the neurobiological basis for this phenomenon is limited by our knowledge of the brain circuitry and neuronal pathways controlling male sexual desire. A number of studies across species suggest that dopamine (DA) affects sexual desire. Here we use genetic tools and behavioural assays to identify a novel subset of DA neurons that regulate age-associated male courtship activity in Drosophila. We find that increasing DA levels in a subset of cells in the PPL2ab neuronal cluster is necessary and sufficient for increased sustained courtship in both young and aged male flies. Our results indicate that preventing the age-related decline in DA levels in PPL2ab neurons alleviates diminished courtship behaviours in male Drosophila. These results may provide the foundation for deciphering the circuitry involved in sexual motivation in the male Drosophila brain.
Mechanism of aminopyridine-induced release of [3H]dopamine from rat brain synaptosomes.
Scheer, H W; Lavoie, P A
1991-01-01
1. Aminopyridines (APs) induced the release of [3H]dopamine (3H-DA) from rat synaptosomal preparations. 2. 4-AP and 3,4-DAP were of equal efficacy in inducing release of 3H-DA; 3-AP, 2-AP and 2,6-AP were less active; pyridine and pyridine-4-carboxylamide were inactive. 3. Cd2+ was more effective in inhibiting 4-AP-induced release of 3H-DA (IC50 approximately 4 microM) than Co2+ and Ni2+ (IC50s approximately 500 microM). 4. While 4-AP increased the 45Ca2+ content of whole synaptosomal preparations, no effect of 4-AP on 45Ca2+ content was observed in lysed synaptosomal preparations. 5. 4-AP-induced 45Ca2+ uptake was inhibited by Cd2+, Ni2+ and Co2+ in concentration ranges similar to those inhibiting 3H-DA release.
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Zhang, Jing; Zhang, Bailin; Tang, Jilin
2012-12-01
Mussels have been shown to attach to virtually all types of inorganic and organic surfaces via their adhesive proteins. The adhesive proteins secreted by mussels contain high concentrations of catechol and amine functional groups, which have similar functional groups with polydopamine (PDA). Inspired by mussels, a mild and environmentally friendly method was used to synthesize Ag nanoparticles (Ag NPs) on functionalized PDA-graphene nanosheets (PDA-GNS) with uniform and high dispersion. First, a uniform layer of PDA was coated on graphene oxide (GO) by polymerizing dopamine (DA) at room temperature. During the process GO was reduced by the DA. The PDA layer on the surface of GNS can be used as a nanoscale guide to form uniform Ag NPs on the surface of PDA-GNS. The obtained Ag-PDA-GNS hybrid materials are characterized by atomic force microscopy, transmission electron microscopy, UV-vis spectroscopy, Raman spectroscopy, X-ray photo-electron spectroscopy, X-ray diffraction, and thermal gravimetric analysis. The resultant Ag-PDA-GNS hybrid materials exhibited strong antibacterial properties to both Gram-negative and Gram-positive bacteria due to the synergistic effect of GNS and Ag NPs.Mussels have been shown to attach to virtually all types of inorganic and organic surfaces via their adhesive proteins. The adhesive proteins secreted by mussels contain high concentrations of catechol and amine functional groups, which have similar functional groups with polydopamine (PDA). Inspired by mussels, a mild and environmentally friendly method was used to synthesize Ag nanoparticles (Ag NPs) on functionalized PDA-graphene nanosheets (PDA-GNS) with uniform and high dispersion. First, a uniform layer of PDA was coated on graphene oxide (GO) by polymerizing dopamine (DA) at room temperature. During the process GO was reduced by the DA. The PDA layer on the surface of GNS can be used as a nanoscale guide to form uniform Ag NPs on the surface of PDA-GNS. The obtained Ag-PDA-GNS hybrid materials are characterized by atomic force microscopy, transmission electron microscopy, UV-vis spectroscopy, Raman spectroscopy, X-ray photo-electron spectroscopy, X-ray diffraction, and thermal gravimetric analysis. The resultant Ag-PDA-GNS hybrid materials exhibited strong antibacterial properties to both Gram-negative and Gram-positive bacteria due to the synergistic effect of GNS and Ag NPs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32092d
NASA Astrophysics Data System (ADS)
Joubert, C.; Jacquet, N.; Lambert, F.; Martin, S.; Martin, C.
1998-04-01
Whole-body irradiation leads to delayed cognitive dysfunction which could result from perturbations of neurotransmission, specially the dopaminergic and the serotoninergic one. The aim of this study was to determine the concentrations of dopamine (DA), serotonin (5-HT) and their metabolites in three cerebral areas of rats, one month after (neutron-gamma) irradiation at 3.38Gy. An increase of DA, 5-HT, and their catabolites was observed. These effects are weak but observed in older rats. Au cours des mois suivant une irradiation corporell totale peuvent se manifester des troubles comportementaux qui pourraient être la conséquence d'altérations de la neuraotransmission, plus particulièrement de la transmission dopaminergique ou sérotoninergique. Nous avons recherché les variations des taux de dopamine (DA), de sérotonine (5-HT) et de leurs métabolites dans 3structures cérébrales 1 mois après une irradiation (neutron-gamma) à la dose de 3,38Gy. Les résultats préliminaires mettent en évidence une augmentation des taux de DA, de 5-HT et de leurs catabolites ; ces effets sont plus discrets mais similaires à ceux observés chez des animaux plus âgés.
Guo, Xinrong; Wu, Fangying; Ni, Yongnian; Kokot, Serge
2016-10-26
A strong red fluorescent nanocomposite, consisting of graphite-like carbon nitride nanosheets (g-C 3 N 4 NSs) and serum albumin-capped Au nanoclusters (AuNCs), was synthesized. Dopamine (DA) can quench the red fluorescence of the nanocomposite, based on the Forster resonance energy transfer (FRET) mechanism. In this quenching process, the energy is transferred from the fluorescent g-C 3 N 4 NSs-AuNCs to the oxidized DA quinine molecules (DA is easily oxidated to form DA quinine in air). The red fluorescence emission at 420 nm decreases dramatically and the quenching ratio (F 0 - F)/F 0 is linearly related to the concentration of DA in the range of 0.05-8.0 μmol L -1 with a detection limit of 0.018 μmol L -1 (S/N = 3). Additionally, this sensor has a potential of application to assay the DA in the real samples, such as human serum and human urine. Copyright © 2016 Elsevier B.V. All rights reserved.
Ali, Sikander; Nawaz, Wajeeha
2017-02-01
The optimisation of nutritional requirements for dopamine (DA) synthesis by calcium alginate-entrapped mutant variant of Aspergillus oryzae EMS-6 using submerged fermentation technique was investigated. A total of 13 strains were isolated from soil. Isolate I-2 was selected as a better producer of DA and improved by exposing with ethyl methylsulphonate (EMS). EMS-6 was selected as it exhibited 43 μg/mL DA activity. The mutant variable was further treated with low levels of l-cysteine HCl to make it resistant against diversion and environmental stress. The conidiospores of mutant variant were entrapped in calcium alginate beads for stable product formation. EMS-6 gave maximum DA activity (124 μg/mL) when supplemented with 0.1% peptone and 0.2% sucrose, under optimised parameters viz. pH 3, temperature of 55 °C and incubation time of 70 min. The study involves the high profile of DA activity and is needed, as DA is capable to control numerous neurogenic disorders.
Niu, Xiuli; Yang, Wu; Guo, Hao; Ren, Jie; Yang, Fusheng; Gao, Jinzhang
2012-09-15
A promising electrochemical sensor for simultaneous determination of dopamine (DA), uric acid (UA) and ascorbic acid (AA) was fabricated based on the stacked graphene platelet nanofibers (SGNF)/ionic liquid (IL)/chitosan (CS) modified electrode. The SGNF/IL/CS modified electrode possessed excellent electrocatalytic activity towards the oxidation of DA, UA and AA with obvious reduction of over-potential and increased peak current, and the separations of oxidation peak potentials of DA-UA, DA-AA, and UA-AA were of 151, 213 and 364 mV, respectively. Under the optimum conditions, the linear range for the detection of DA, UA and AA were 0.05-240, 0.12-260, and 30-350 μM with the lowest detection limits of 0.05, 0.10 and 14.8 μM for DA, UA and AA, respectively. In addition, the electrochemical sensor showed high sensitivity, excellent selectivity, reproducibility and long-term stability. Copyright © 2012 Elsevier B.V. All rights reserved.
Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping.
Beier, Kevin T; Steinberg, Elizabeth E; DeLoach, Katherine E; Xie, Stanley; Miyamichi, Kazunari; Schwarz, Lindsay; Gao, Xiaojing J; Kremer, Eric J; Malenka, Robert C; Luo, Liqun
2015-07-30
Dopamine (DA) neurons in the midbrain ventral tegmental area (VTA) integrate complex inputs to encode multiple signals that influence motivated behaviors via diverse projections. Here, we combine axon-initiated viral transduction with rabies-mediated trans-synaptic tracing and Cre-based cell-type-specific targeting to systematically map input-output relationships of VTA-DA neurons. We found that VTA-DA (and VTA-GABA) neurons receive excitatory, inhibitory, and modulatory input from diverse sources. VTA-DA neurons projecting to different forebrain regions exhibit specific biases in their input selection. VTA-DA neurons projecting to lateral and medial nucleus accumbens innervate largely non-overlapping striatal targets, with the latter also sending extensive extra-striatal axon collaterals. Using electrophysiology and behavior, we validated new circuits identified in our tracing studies, including a previously unappreciated top-down reinforcing circuit from anterior cortex to lateral nucleus accumbens via VTA-DA neurons. This study highlights the utility of our viral-genetic tracing strategies to elucidate the complex neural substrates that underlie motivated behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.
Direct effects of manganese compounds on dopamine and its metabolite Dopac: an in vitro study
Sistrunk, Shannon C.; Ross, Matthew K.; Filipov, Nikolay M.
2007-01-01
Following combustion of fuel containing the additive methylcyclopentadienyl-manganese-tricarbonyl (MMT), manganese phosphate (MnPO4) and manganese sulfate (MnSO4) are emitted in the atmosphere. Manganese chloride (MnCl2), another Mn2+ species, is widely used experimentally. Using rat striatal slices, we found that MnPO4 decreased tissue and media dopamine (DA) and media Dopac (a DA metabolite) levels substantially more than either MnCl2 or MnSO4; antioxidants were partially protective. Also, both MnCl2 and MnPO4 (more potently) oxidized DA and Dopac even in the absence of tissue in the media, suggesting a direct interaction between Mn and DA/Dopac. Because aminochrome is a major oxidation product of DA, we next determined whether MnPO4 will be more potent in forming aminochrome than MnCl2 or MnSO4 which, indeed, was the case. Thus, a potential additional mechanism for the neurotoxic effects of environmentally-relevant forms of Mn, MnPO4 in particular, is the generation of reactive DA intermediates. PMID:18449324
Henderson, Brandon J.; Wall, Teagan R.; Henley, Beverley M.; Kim, Charlene H.; Nichols, Weston A.; Moaddel, Ruin; Xiao, Cheng
2016-01-01
Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. SIGNIFICANCE STATEMENT Menthol, the most popular flavorant for tobacco products, has been considered simply a benign flavor additive. However, as we show here, menthol alone exerts several neurobiological changes. We are among the first to show that menthol, by itself, increases the number of nicotinic acetylcholine receptors (nAChRs) in the mouse brain. It does so at a dose that matches nicotine in its ability to increase nAChR number. At this same dose, menthol also alters midbrain dopamine neuron function and prevents nicotine reward-related behavior. Together, our data show that menthol is more than an “inert” flavor additive and is able to change the function of midbrain dopamine neurons that are part of the mesolimbic reward pathway. PMID:26961950
Yu, Xiantong; He, XiaoXiao; Yang, Taiqun; Zhao, Litao; Chen, Qichen; Zhang, Sanjun; Chen, Jinquan; Xu, Jianhua
2018-01-01
Dopamine (DA) is an important neurotransmitter in the hypothalamus and pituitary gland, which can produce a direct influence on mammals' emotions in midbrain. Additionally, the level of DA is highly related with some important neurologic diseases such as schizophrenia, Parkinson, and Huntington's diseases, etc. In light of the important roles that DA plays in the disease modulation, it is of considerable significance to develop a sensitive and reproducible approach for monitoring DA. The objective of this study was to develop an efficient approach to quantitatively monitor the level of DA using Ag nanoparticle (NP) dimers and enhanced Raman spectroscopy. Ag NP dimers were synthesized for the sensitive detection of DA via surface-enhanced Raman scattering (SERS). Citrate was used as both the capping agent of NPs and sensing agent to DA, which is self-assembled on the surface of Ag NP dimers by reacting with the surface carboxyl group to form a stable amide bond. To improve accuracy and precision, the multiplicative effects model for surface-enhanced Raman spectroscopy was utilized to analyze the SERS assays. A low limits of detection (LOD) of 20 pM and a wide linear response range from 30 pM to 300 nM were obtained for DA quantitative detection. The SERS enhancement factor was theoretically valued at approximately 10 7 by discrete dipole approximation. DA was self-assembled on the citrate capped surface of Ag NPs dimers through the amide bond. The adsorption energy was estimated to be 256 KJ/mol using the Langmuir isotherm model. The density functional theory was used to simulate the spectral characteristics of SERS during the adsorption of DA on the surface of the Ag dimers. Furthermore, to improve the accuracy and precision of quantitative analysis of SERS assays with a multiplicative effects model for surface-enhanced Raman spectroscopy. A LOD of 20 pM DA-level was obtained, and the linear response ranged from 30 pM to 300 nM for quantitative DA detection. The absolute relative percentage error was 4.22% between the real and predicted DA concentrations. This detection scheme is expected to have good applications in the prevention and diagnosis of certain diseases caused by disorders in the DA level.
Yu, Xiantong; He, XiaoXiao; Yang, Taiqun; Zhao, Litao; Chen, Qichen; Zhang, Sanjun; Chen, Jinquan; Xu, Jianhua
2018-01-01
Background Dopamine (DA) is an important neurotransmitter in the hypothalamus and pituitary gland, which can produce a direct influence on mammals’ emotions in midbrain. Additionally, the level of DA is highly related with some important neurologic diseases such as schizophrenia, Parkinson, and Huntington’s diseases, etc. In light of the important roles that DA plays in the disease modulation, it is of considerable significance to develop a sensitive and reproducible approach for monitoring DA. Purpose The objective of this study was to develop an efficient approach to quantitatively monitor the level of DA using Ag nanoparticle (NP) dimers and enhanced Raman spectroscopy. Methods Ag NP dimers were synthesized for the sensitive detection of DA via surface-enhanced Raman scattering (SERS). Citrate was used as both the capping agent of NPs and sensing agent to DA, which is self-assembled on the surface of Ag NP dimers by reacting with the surface carboxyl group to form a stable amide bond. To improve accuracy and precision, the multiplicative effects model for surface-enhanced Raman spectroscopy was utilized to analyze the SERS assays. Results A low limits of detection (LOD) of 20 pM and a wide linear response range from 30 pM to 300 nM were obtained for DA quantitative detection. The SERS enhancement factor was theoretically valued at approximately 107 by discrete dipole approximation. DA was self-assembled on the citrate capped surface of Ag NPs dimers through the amide bond. The adsorption energy was estimated to be 256 KJ/mol using the Langmuir isotherm model. The density functional theory was used to simulate the spectral characteristics of SERS during the adsorption of DA on the surface of the Ag dimers. Furthermore, to improve the accuracy and precision of quantitative analysis of SERS assays with a multiplicative effects model for surface-enhanced Raman spectroscopy. Conclusion A LOD of 20 pM DA-level was obtained, and the linear response ranged from 30 pM to 300 nM for quantitative DA detection. The absolute relative percentage error was 4.22% between the real and predicted DA concentrations. This detection scheme is expected to have good applications in the prevention and diagnosis of certain diseases caused by disorders in the DA level. PMID:29713165
Suridjan, Ivonne; Boileau, Isabelle; Bagby, Michael; Rusjan, Pablo M; Wilson, Alan A; Houle, Sylvain; Mizrahi, Romina
2012-07-01
Previous studies have reported inter-individual variability in the dopamine (DA) response to stress. This variability might be related to individual differences in the vulnerability to experience the negative effect of stress. To investigate whether personality traits as measured by the revised NEO personality inventory explain variability in DA response to a psychosocial stress task. Eleven healthy adults, mean age of 26 ± 3.87 underwent two positron emission tomography (PET) scans using the dopamine D(2/3) agonist, [11C]-(+)-PHNO under a control and stress condition. The simplified reference tissue model (SRTM) was used to obtain [11C]-(+)-PHNO binding potential (BP(ND)). Stress-induced DA response was indexed as a percent change in [11C]-(+)-PHNO BP(ND) between control and stress conditions. The regions of interest were defined into D2-rich regions, which included the Associative and Sensorimotor Striatum (AST and SMST); D(2/3) mixed regions, which included the limbic striatum (LST) and globus pallidus (GP); and D3-rich region, which included the Substantia Nigra (SN). Several personality traits within the Neuroticism and Openness to Experience domain were significantly correlated with blunted DA response to stress. Specifically, the Angry-Hostility, Vulnerability, and Depression trait were associated with blunted DA stress response in the AST (r = -0.645, p = 0.032), LST (r = -0.677, p = 0.022) and GP (r = -0.736, p = 0.010), respectively. The Openness to Values was correlated with a decreased DA release in the SN (r = -0.706, p = 0.015). Variability in DA stress response might be related to individual differences in personality. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Jacobs, Frank M. J.; van der Linden, Annemarie J. A.; Wang, Yuhui; von Oerthel, Lars; Sul, Hei Sook; Burbach, J. Peter H.; Smidt, Marten P.
2009-01-01
The orphan nuclear receptor Nurr1 is essential for the development of meso-diencephalic dopamine (mdDA) neurons and is required, together with the homeobox transcription factor Pitx3, for the expression of genes involved in dopamine metabolism. In order to elucidate the molecular mechanisms that underlie the neuronal deficits in Nurr1-/- mice, we performed combined gene expression microarrays and ChIP-on-chip analysis and thereby identified Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in vivo. In line with the previously described cooperativity between Nurr1 and Pitx3, we show that the expression of Ptpru and Klhl1 in mdDA neurons is also dependent on Pitx3. Furthermore, we demonstrate that Nurr1 interacts with the Ptpru promoter directly and requires Pitx3 for full expression of Ptpru in mdDA neurons. By contrast, the expression of Dlk1 is maintained in Pitx3-/- embryos and is even expanded into the rostral part of the mdDA area, suggesting a unique position of Dlk1 in the Nurr1 and Pitx3 transcriptional cascades. Expression analysis in Dlk1-/- embryos reveals that Dlk1 is required to prevent premature expression of Dat in mdDA neuronal precursors as part of the multifaceted process of mdDA neuronal differentiation driven by Nurr1 and Pitx3. Taken together, the involvement of Nurr1 and Pitx3 in the expression of novel target genes involved in important neuronal processes such as neuronal patterning, axon outgrowth and terminal differentiation, opens up new avenues to study the properties of mdDA neurons during development and in neuronal pathology as observed in Parkinson's disease. PMID:19515692
Can, Adem; Zanos, Panos; Moaddel, Ruin; Kang, Hye Jin; Dossou, Katinia S. S.; Wainer, Irving W.; Cheer, Joseph F.; Frost, Douglas O.; Huang, Xi-Ping
2016-01-01
Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine’s antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-d-aspartate glutamate receptor inhibition. These antidepressant actions of (2S,6S;2R,6R)-HNK, or other metabolites, as well as ketamine’s side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1–D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine’s enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters (up to 10 μM). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect. PMID:27469513
Angoa-Pérez, Mariana; Kane, Michael J; Briggs, Denise I; Francescutti, Dina M; Sykes, Catherine E; Shah, Mrudang M; Thomas, David M; Kuhn, Donald M
2013-04-01
Mephedrone (4-methylmethcathinone) is a β-ketoamphetamine stimulant drug of abuse with close structural and mechanistic similarities to methamphetamine. One of the most powerful actions associated with mephedrone is the ability to stimulate dopamine (DA) release and block its re-uptake through its interaction with the dopamine transporter (DAT). Although mephedrone does not cause toxicity to DA nerve endings, its ability to serve as a DAT blocker could provide protection against methamphetamine-induced neurotoxicity like other DAT inhibitors. To test this possibility, mice were treated with mephedrone (10, 20, or 40 mg/kg) prior to each injection of a neurotoxic regimen of methamphetamine (four injections of 2.5 or 5.0 mg/kg at 2 h intervals). The integrity of DA nerve endings of the striatum was assessed through measures of DA, DAT, and tyrosine hydroxylase levels. The moderate to severe DA toxicity associated with the different doses of methamphetamine was not prevented by any dose of mephedrone but was, in fact, significantly enhanced. The hyperthermia caused by combined treatment with mephedrone and methamphetamine was the same as seen after either drug alone. Mephedrone also enhanced the neurotoxic effects of amphetamine and 3,4-methylenedioxymethamphetamine on DA nerve endings. In contrast, nomifensine protected against methamphetamine-induced neurotoxicity. As mephedrone increases methamphetamine neurotoxicity, the present results suggest that it interacts with the DAT in a manner unlike that of other typical DAT inhibitors. The relatively innocuous effects of mephedrone alone on DA nerve endings mask a potentially dangerous interaction with drugs that are often co-abused with it, leading to heightened neurotoxicity. © 2012 International Society for Neurochemistry.
Vidal, Lucía; Durán, Rafael; Faro, Lilian F; Campos, Francisco; Cervantes, Rosa C; Alfonso, Miguel
2007-09-05
The possible role of ionotropics glutamate receptors on the HgCl(2)-induced dopamine (DA) release from rat striatum was investigated by using in vivo brain microdialysis technique after administration of selective NMDA and AMPA/Kainate receptors antagonists dizocilpine (MK-801), D (-)-2-amino-5-phoshonopentanoic acid (AP5), and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Moreover, we have also studied the effects of nitric oxide synthase (NOS) inhibitors L-nitro-arginine methyl ester (L-NAME) and 7-nitro-indazol (7-NI) on HgCl(2)-induced DA release. Intraestriatal infusion of 1mM HgCl(2) increased striatal DA to 1717.2+/-375.4% respect to basal levels. Infusion of 1mM HgCl(2) in 400 microM MK-801 pre-treated animals produced an increase on striatal DA levels 61% smaller than that induced in non-pre-treated animals. In the case of AP5, this treatment reduced 92% the increase produced by HgCl(2) as compared to non-pre-treated rats. Nevertheless, the administration of CNQX did not produce any effect on HgCl(2)-induced dopamine release. Intrastriatal infusion of 1mM HgCl(2) in 100 microM L-NAME pre-treated animals produced an increase on extracellular DA levels 82% smaller than produced by HgCl(2) alone. In addition, the pre-treatment with 7-NI reduced 90% the increase produced by infusion of HgCl(2) alone in rats. Thus, HgCl(2)-induced DA release could be produced at last in part, by overstimulation of NMDA receptors with NO production, since administration of NMDA receptor antagonists and NOS inhibitors protected against HgCl(2) effects on DA release.
Cognitive control predicted by color vision, and vice versa.
Colzato, Lorenza S; Sellaro, Roberta; Hulka, Lea M; Quednow, Boris B; Hommel, Bernhard
2014-09-01
One of the most important functions of cognitive control is to continuously adapt cognitive processes to changing and often conflicting demands of the environment. Dopamine (DA) has been suggested to play a key role in the signaling and resolution of such response conflict. Given that DA is found in high concentration in the retina, color vision discrimination has been suggested as an index of DA functioning and in particular blue-yellow color vision impairment (CVI) has been used to indicate a central hypodopaminergic state. We used color discrimination (indexed by the total color distance score; TCDS) to predict individual differences in the cognitive control of response conflict, as reflected by conflict-resolution efficiency in an auditory Simon task. As expected, participants showing better color discrimination were more efficient in resolving response conflict. Interestingly, participants showing a blue-yellow CVI were associated with less efficiency in handling response conflict. Our findings indicate that color vision discrimination might represent a promising predictor of cognitive controlability in healthy individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Anneken, John H.; Angoa-Pérez, Mariana; Kuhn, Donald M.
2016-01-01
Methylone, 3,4-methylenedioxypyrovalerone (MDPV), and mephedrone are psychoactive ingredients of ‘bath salts’ and their abuse represents a growing public health care concern. These drugs are cathinone derivatives and are classified chemically as β-ketoamphetamines. Because of their close structural similarity to the amphetamines, methylone, MDPV, and mephedrone share most of their pharmacological, neurochemical, and behavioral properties. One point of divergence in their actions is the ability to cause damage to the CNS. Unlike methamphetamine, the β-ketoamphetamines do not damage dopamine (DA) nerve endings. However, mephedrone has been shown to significantly accentuate methamphetamine neurotoxicity. Bath salt formulations contain numerous different psychoactive ingredients, and individuals who abuse bath salts also coabuse other illicit drugs. Therefore, we have evaluated the effects of methylone, MDPV, mephedrone, and methamphetamine on DA nerve endings. The β-ketoamphetamines alone or in all possible two-drug combinations do not result in damage to DA nerve endings but do cause hyperthermia. MDPV completely protects against the neurotoxic effects of methamphetamine while methylone accentuates it. Neither MDPV nor methylone attenuates the hyperthermic effects of methamphetamine. The potent neuroprotective effects of MDPV extend to amphetamine-, 3,4-methylenedioxymethamphetamine-, and MPTP-induced neurotoxicity. These results indicate that β-ketoamphetamine drugs that are non-substrate blockers of the DA transporter (i.e., MDPV) protect against methamphetamine neurotoxicity, whereas those that are substrates for uptake by the DA transporter and which cause DA release (i.e., methylone, mephedrone) accentuate neurotoxicity. PMID:25626880
Morrow, Bret A.; Roth, Robert H.; Redmond, D. Eugene; Sladek, John R.; Elsworth, John D.
2012-01-01
Natural cell death (NCD) by apoptosis is a normal developmental event in most neuronal populations, and is a determinant of the eventual size of a population. We decided to examine the timing and extent of NCD of the midbrain dopamine system in a primate species, as dopamine deficiency or excess has been implicated in several disorders. Genetic or environmental differences may alter the extent of NCD and predispose individuals to neurological or psychiatric diseases. In developing rats, NCD in the midbrain dopamine system has been observed to start at the end of gestation and peak in the postnatal period. In fetal monkey brains, apoptosis in midbrain DA neurons was identified histologically by chromatin clumping in tyrosine hydroxylase-positive cells, and confirmed by TUNEL and active caspase-3 staining. A distinct peak of NCD occurred at about E80, midway through gestation in this species. We estimate that at least 50% of the population may be lost in this process. In other brains we determined biochemically that the onset of apoptosis coincides with the time of greatest rate of increase of striatal DA concentration. Thus, marked apoptotic NCD occurs in the primate midbrain dopamine system half-way through gestation, and appears to be associated with the rapid developmental increase in striatal dopamine innervation. PMID:17313945
Rauf, Khalid; Subhan, Fazal; Sewell, Robert D E
2012-05-01
Bacopa monnieri (BM) has been used in Ayurvedic medicine as a nootropic, anxiolytic, antiepileptic and antidepressant. An n-butanol extract of the plant (nBt-ext BM) was analysed and found to contain Bacoside A (Bacoside A3, Bacopaside II and Bacopasaponin C). The effects of the BM extract were then studied on morphine-induced hyperactivity as well as dopamine and serotonin turnover in the striatum since these parameters have a role in opioid sensitivity and dependence. Mice were pretreated with saline or nBt-ext BM (5, 10 and 15 mg/kg, orally), 60 min before morphine administration and locomotor activity was subsequently recorded. Immediately after testing, striatal tissues were analysed for dopamine (DA), serotonin (5HT) and their metabolites using HPLC coupled with electrochemical detection. The results indicated that nBt-ext BM significantly (p < 0.001) decreased locomotor activity in both the saline and morphine treated groups. Additionally, nBt-ext BM significantly lowered morphine-induced dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindole acetic acid (5-H1AA) upsurges in the striatum but failed to affect DA, 5-HT and their metabolites in the saline treated group. These findings suggest that nBt-ext BM has an antidopaminergic/serotonergic effect and may have potential beneficial effects in the treatment of morphine dependence. Copyright © 2011 John Wiley & Sons, Ltd.
Shimada, Ryo; Abe, Keiichi; Furutani, Rui; Kibayashi, Kazuhiko
2014-03-01
An association has been suggested between trauma and neurological degenerative diseases. Magnetic resonance imaging has revealed that traumatic brain injury (TBI) can cause primary lesions in the midbrain including the substantia nigra (SN). Dopamine transporter (DAT) is mainly expressed in the SN, ventral tegmental area (VTA), and retrorubral field (RRF) of the ventral midbrain. Previous western blot studies have examined DAT levels in the rat frontal cortex and striatum after a controlled cortical impact (CCI); however, no study has comprehensively examined DAT expression in the midbrain following TBI in an animal model. We used immunohistochemistry and in situ hybridization to examine the time-dependent changes in the expression of DAT in the midbrain during the first 14 days after TBI in a mouse CCI model. The expression of DAT protein in the RRF on the side ipsilateral to the site of injury decreased in 14 days after injury. Dopamine transporter mRNA expression in the RRF on the ipsilateral side decreased in 1, 7, and 14 days and increased in 4 days after injury. These findings indicated that TBI induced changes in DAT expression in the RRF. Because the DAT pumps dopamine (DA) out of the synapse back into the cytosol and maintains DA homeostasis, the decreased expression of DAT after TBI may result in decreased DA neurotransmission in the brain.
Ohngemach, S; Feldkaemper, M; Schaeffel, F
2001-09-01
Retinal dopamine (DA) and the DA D2-receptor have been implicated in the development of "deprivation myopia", induced by frosted eye occluders. We have studied the changes in D2-mediated dopaminergic transmission in the retina, their possible relations to eye growth rhythms and myopia, and their control by the pineal gland. (1) We found that the sensitivity of eye growth to retinal image degradation varied over the day. Intermittent periods of normal vision inhibited deprivation myopia more if they occurred in the evening than in the morning. (2) Diurnal growth rhythms in both eyes interacted even though it was previously shown that both deprivation myopia and the accompanying changes in retinal DA release can be monocularly induced. (3) The D2-receptor mRNA concentration in the retina showed no systemic diurnal changes and was not affected by deprivation myopia, but was increased after 2 days in darkness. Since DA release varies over the day, the gain of dopaminergic transmission may also vary, which could explain the observation described in (1) above. (4) Depletion of retinal DA by intravitreal application of reserpine, which lowers DA content severely, had little effect on D2-receptor mRNA concentration. (5) Selective illumination of the pineal gland reduced the D2-receptor mRNA content in the retina to a similar level to full illumination, indicating that the pineal gland controls the D2-receptor mRNA content in the retina. The pineal also controlled DA release in the retina. These results show that the pineal has a surprisingly large influence on both the retinal DA receptor gene transcription and DA release. It can probably control the gain of dopaminergic transmission in the retina and deprivation myopia and mediate the interactions of the growth rhythms in both eyes.
Wakeman, Dustin R; Redmond, D Eugene; Dodiya, Hemraj B; Sladek, John R; Leranth, Csaba; Teng, Yang D; Samulski, R Jude; Snyder, Evan Y
2014-06-01
Transplanted multipotent human fetal neural stem cells (hfNSCs) significantly improved the function of parkinsonian monkeys in a prior study primarily by neuroprotection, with only 3%-5% of cells expressing a dopamine (DA) phenotype. In this paper, we sought to determine whether further manipulation of the neural microenvironment by overexpression of a developmentally critical molecule, glial cell-derived neurotrophic factor (GDNF), in the host striatum could enhance DA differentiation of hfNSCs injected into the substantia nigra and elicit growth of their axons to the GDNF-expressing target. hfNSCs were transplanted into the midbrain of 10 green monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine. GDNF was delivered concomitantly to the striatum via an adeno-associated virus serotype 5 vector, and the fate of grafted cells was assessed after 11 months. Donor cells remained predominantly within the midbrain at the injection site and sprouted numerous neurofilament-immunoreactive fibers that appeared to course rostrally toward the striatum in parallel with tyrosine hydroxylase-immunoreactive fibers from the host substantia nigra but did not mature into DA neurons. This work suggests that hfNSCs can generate neurons that project long fibers in the adult primate brain. However, in the absence of region-specific signals and despite GDNF overexpression, hfNSCs did not differentiate into mature DA neurons in large numbers. It is encouraging, however, that the adult primate brain appeared to retain axonal guidance cues. We believe that transplantation of stem cells, specifically instructed ex vivo to yield DA neurons, could lead to reconstruction of some portion of the nigrostriatal pathway and prove beneficial for the parkinsonian condition. ©AlphaMed Press.
Heidbreder, Christian A.; Newman, Amy H.
2011-01-01
Repeated exposure to drugs of abuse produces long-term molecular and neurochemical changes that may explain the core features of addiction, such as the compulsive seeking and taking of the drug, as well as the risk of relapse. A growing number of new molecular and cellular targets of addictive drugs have been identified, and rapid advances are being made in relating those targets to specific behavioral phenotypes in animal models of addiction. In this context, the pattern of expression of the dopamine (DA) D3 receptor in the rodent and human brain and changes in this pattern in response to drugs of abuse have contributed primarily to direct research efforts toward the development of selective DA D3 receptor antagonists. Growing preclinical evidence indicates that these compounds may actually regulate the motivation to self-administer drugs and disrupt drug-associated cue-induced craving. This report will be divided into three parts. First, preclinical evidence in support of the efficacy of selective DA D3 receptor antagonists in animal models of drug addiction will be reviewed. The effects of mixed DA D2/D3 receptor antagonists will not be discussed here because most of these compounds have low selectivity at the D3 versus D2 receptor, and their efficacy profile is related primarily to functional antagonism at D2 receptors and possibly interactions with other neurotransmitter systems. Second, major advances in medicinal chemistry for the identification and optimization of selective DA D3 receptor antagonists and partial agonists will be analyzed. Third, translational research from preclinical efficacy studies to so-called proof-of-concept studies for drug addiction indications will be discussed. PMID:20201845
Brenes, Juan C; Fornaguera, Jaime
2009-03-02
This study examined the effect of fluoxetine, a selective serotonin (5-HT) reuptake inhibitor, on isolation-induced changes on sucrose consumption and preference, spontaneous open-field activity, forced swimming behavior, and on tissue levels of 5-HT and dopamine (DA) in hippocampus and ventral striatum (VS). Male Sprague-Dawley rats were reared in social isolation or group housing from postnatal day 28. Thirty-two days later, half of the isolated animals were orally treated with fluoxetine (10mg/kg/day) during the following 34 days. At the end of this period, behavior was assessed and afterward ex-vivo tissue samples were obtained. It was found that fluoxetine restored isolation-increased sucrose consumption and immobility behavior, without affecting locomotor activity, which appeared slightly increased in isolated groups both treated and untreated. In the hippocampus, isolation rearing depleted 5-HT contents and increased 3,4-dihydroxyphenylacetic acid (DOPAC) levels, as well as 5-HT and DA turnover. These neurochemical alterations were reversed by fluoxetine. In VS, treated and untreated isolated rats showed higher 5-HT levels than grouped congeners. Although fluoxetine did not affect 5-HT and DA contents in this region, it slightly reversed the alterations in the 5-HT and DA turnover observed in isolated rats. Overall, social isolation impaired incentive and escape motivated behaviors. At the neurochemical level, isolation rearing affected 5-HT rather than DA activity, and this differential effect was more noticeable in hippocampus than in VS. The chronic treatment with fluoxetine during the last month of rearing somewhat prevented these behavioral and neurochemical alterations. Our data suggest that isolation rearing is an appropriate procedure to model some developmental-related alterations underlying depression disorders.
Cholinergic modulation of mesolimbic dopamine function and reward.
Mark, Gregory P; Shabani, Shkelzen; Dobbs, Lauren K; Hansen, Stephen T
2011-07-25
The substantial health risk posed by obesity and compulsive drug use has compelled a serious research effort to identify the neurobiological substrates that underlie the development these pathological conditions. Despite substantial progress, an understanding of the neurochemical systems that mediate the motivational aspects of drug-seeking and craving remains incomplete. Important work from the laboratory of Bart Hoebel has provided key information on neurochemical systems that interact with dopamine (DA) as potentially important components in both the development of addiction and the expression of compulsive behaviors such as binge eating. One such modulatory system appears to be cholinergic pathways that interact with DA systems at all levels of the reward circuit. Cholinergic cells in the pons project to DA-rich cell body regions in the ventral tegmental area (VTA) and substantial nigra (SN) where they modulate the activity of dopaminergic neurons and reward processing. The DA terminal region of the nucleus accumbens (NAc) contains a small but particularly important group of cholinergic interneurons, which have extensive dendritic arbors that make synapses with a vast majority of NAc neurons and afferents. Together with acetylcholine (ACh) input onto DA cell bodies, cholinergic systems could serve a vital role in gating information flow concerning the motivational value of stimuli through the mesolimbic system. In this report we highlight evidence that CNS cholinergic systems play a pivotal role in behaviors that are motivated by both natural and drug rewards. We argue that the search for underlying neurochemical substrates of compulsive behaviors, as well as attempts to identify potential pharmacotherapeutic targets to combat them, must include a consideration of central cholinergic systems. Copyright © 2011 Elsevier Inc. All rights reserved.
The metal transporter SMF-3/DMT-1 mediates aluminum-induced dopamine neuron degeneration.
VanDuyn, Natalia; Settivari, Raja; LeVora, Jennifer; Zhou, Shaoyu; Unrine, Jason; Nass, Richard
2013-01-01
Aluminum (Al(3+)) is the most prevalent metal in the earth's crust and is a known human neurotoxicant. Al(3+) has been shown to accumulate in the substantia nigra of patients with Parkinson's disease (PD), and epidemiological studies suggest correlations between Al(3+) exposure and the propensity to develop both PD and the amyloid plaque-associated disorder Alzheimer's disease (AD). Although Al(3+) exposures have been associated with the development of the most common neurodegenerative disorders, the molecular mechanism involved in Al(3+) transport in neurons and subsequent cellular death has remained elusive. In this study, we show that a brief exposure to Al(3+) decreases mitochondrial membrane potential and cellular ATP levels, and confers dopamine (DA) neuron degeneration in the genetically tractable nematode Caenorhabditis elegans (C. elegans). Al(3+) exposure also exacerbates DA neuronal death conferred by the human PD-associated protein α-synuclein. DA neurodegeneration is dependent on SMF-3, a homologue to the human divalent metal transporter (DMT-1), as a functional null mutation partially inhibits the cell death. We also show that SMF-3 is expressed in DA neurons, Al(3+) exposure results in a significant decrease in protein levels, and the neurodegeneration is partially dependent on the PD-associated transcription factor Nrf2/SKN-1 and caspase Apaf1/CED-4. Furthermore, we provide evidence that the deletion of SMF-3 confers Al(3+) resistance due to sequestration of Al(3+) into an intracellular compartment. This study describes a novel model for Al(3+)-induced DA neurodegeneration and provides the first molecular evidence of an animal Al(3+) transporter. © 2012 International Society for Neurochemistry.
Heidbreder, Christian A; Newman, Amy H
2010-02-01
Repeated exposure to drugs of abuse produces long-term molecular and neurochemical changes that may explain the core features of addiction, such as the compulsive seeking and taking of the drug, as well as the risk of relapse. A growing number of new molecular and cellular targets of addictive drugs have been identified, and rapid advances are being made in relating those targets to specific behavioral phenotypes in animal models of addiction. In this context, the pattern of expression of the dopamine (DA) D(3) receptor in the rodent and human brain and changes in this pattern in response to drugs of abuse have contributed primarily to direct research efforts toward the development of selective DA D(3) receptor antagonists. Growing preclinical evidence indicates that these compounds may actually regulate the motivation to self-administer drugs and disrupt drug-associated cue-induced craving. This report will be divided into three parts. First, preclinical evidence in support of the efficacy of selective DA D(3) receptor antagonists in animal models of drug addiction will be reviewed. The effects of mixed DA D(2)/D(3) receptor antagonists will not be discussed here because most of these compounds have low selectivity at the D(3) versus D(2) receptor, and their efficacy profile is related primarily to functional antagonism at D(2) receptors and possibly interactions with other neurotransmitter systems. Second, major advances in medicinal chemistry for the identification and optimization of selective DA D(3) receptor antagonists and partial agonists will be analyzed. Third, translational research from preclinical efficacy studies to so-called proof-of-concept studies for drug addiction indications will be discussed.
Braun, Stephanie; Hauber, Wolfgang
2012-02-01
Dopamine (DA) depletion of the posterior dorsomedial striatum (pDMS) can impair the capability of rats to detect changes in the causal efficacy of actions. Here we sought to characterize in more detail the effects of pDMS DA depletions on contingency detection as a function of different contingency degradation training protocols. In experiment 1, sham controls and rats with pDMS DA depletions received limited contingency degradation training (4 days) that involved an invariable and high degree of degradation to one of two contingencies controlling instrumental choice behaviour. The results demonstrated that lesioned rats were insensitive to contingency manipulations both during contingency degradation training and in the subsequent extinction test. Experiment 2 further indicated that rats with pDMS DA depletion subjected to extended contingency degradation training (12 days) became sensitive to contingency manipulations during the training phase but not in the subsequent extinction test. In experiment 3, an extended but more complex contingency degradation training protocol (12 days) was used that involved a gradual shift from a low to an intermediate and a high degree of contingency degradation rather than a high and invariable degree of contingency degradation as in experiments 1 and 2. Notably, lesioned rats were sensitive to contingency manipulations both during the contingency degradation training phase and in the subsequent extinction test. Thus, pDMS DA depletions can impair the capability to detect changes in the causal efficacy of actions; however, the occurrence and pattern of impairments depend on the contingency degradation training protocol being used. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Vuong, Helen E.; Hardi, Claudia N.; Barnes, Steven
2015-01-01
An inner retinal microcircuit composed of dopamine (DA)-containing amacrine cells and melanopsin-containing, intrinsically photosensitive retinal ganglion cells (M1 ipRGCs) process information about the duration and intensity of light exposures, mediating light adaptation, circadian entrainment, pupillary reflexes, and other aspects of non-image-forming vision. The neural interaction is reciprocal: M1 ipRGCs excite DA amacrine cells, and these, in turn, feed inhibition back onto M1 ipRGCs. We found that the neuropeptide somatostatin [somatotropin release inhibiting factor (SRIF)] also inhibits the intrinsic light response of M1 ipRGCs and postulated that, to tune the bidirectional interaction of M1 ipRGCs and DA amacrine cells, SRIF amacrine cells would provide inhibitory modulation to both cell types. SRIF amacrine cells, DA amacrine cells, and M1 ipRGCs form numerous contacts. DA amacrine cells and M1 ipRGCs express the SRIF receptor subtypes sst2A and sst4 respectively. SRIF modulation of the microcircuit was investigated with targeted patch-clamp recordings of DA amacrine cells in TH–RFP mice and M1 ipRGCs in OPN4–EGFP mice. SRIF increases K+ currents, decreases Ca2+ currents, and inhibits spike activity in both cell types, actions reproduced by the selective sst2A agonist L-054,264 (N-[(1R)-2-[[[(1S*,3R*)-3-(aminomethyl)cyclohexyl]methyl]amino]-1-(1H-indol-3-ylmethyl)-2-oxoethyl]spiro[1H-indene-1,4′-piperidine]-1′-carboxamide) in DA amacrine cells and the selective sst4 agonist L-803,087 (N2-[4-(5,7-difluoro-2-phenyl-1H-indol-3-yl)-1-oxobutyl]-l-arginine methyl ester trifluoroacetate) in M1 ipRGCs. These parallel actions of SRIF may serve to counteract the disinhibition of M1 ipRGCs caused by SRIF inhibition of DA amacrine cells. This allows the actions of SRIF on DA amacrine cells to proceed with adjusting retinal DA levels without destabilizing light responses by M1 ipRGCs, which project to non-image-forming targets in the brain. SIGNIFICANCE STATEMENT Amacrine cells form multiple microcircuits in the inner retina to mediate visual processing, although their organization and function remain incompletely understood. The somatostatin [somatotropin release inhibiting factor (SRIF)]- and dopamine (DA)-releasing amacrine cells act globally, and, in this study, they are shown to interact and modulate the light response of intrinsically photosensitive retinal ganglion cells (ipRGCs). SRIF amacrine cells target both DA amacrine cells and M1 ipRGCs for inhibition. The parallel actions of SRIF may serve to compensate for the loss of DA-mediated inhibition of M1 ipRGCs. This inhibitory tuning is of particular importance because the DA system mediates a broad range of light adaptational actions in the retina and M1 ipRGCs project to brain areas that influence sleep, mood, cognition, circadian entrainment, and pupillary reflexes. PMID:26631476
Lu, Qiujun; Chen, Xiaogen; Liu, Dan; Wu, Cuiyan; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo
2018-05-15
The selective and sensitive detection of dopamine (DA) is of great significance for the identification of schizophrenia, Huntington's disease, and Parkinson's disease from the perspective of molecular diagnostics. So far, most of DA fluorescence sensors are based on the electron transfer from the fluorescence nanomaterials to DA-quinone. However, the limited electron transfer ability of the DA-quinone affects the level of detection sensitivity of these sensors. In this work, based on the DA can reduce Ag + into AgNPs followed by oxidized to DA-quinone, we developed a novel silicon nanoparticles-based electron transfer fluorescent sensor for the detection of DA. As electron transfer acceptor, the AgNPs and DA-quinone can quench the fluorescence of silicon nanoparticles effectively through the synergistic electron transfer effect. Compared with traditional fluorescence DA sensors, the proposed synergistic electron transfer-based sensor improves the detection sensitivity to a great extent (at least 10-fold improvement). The proposed sensor shows a low detection limit of DA, which is as low as 0.1 nM under the optimal conditions. This sensor has potential applicability for the detection of DA in practical sample. This work has been demonstrated to contribute to a substantial improvement in the sensitivity of the sensors. It also gives new insight into design electron transfer-based sensors. Copyright © 2018. Published by Elsevier B.V.
Ye, Nengsheng; Li, Jian
2014-08-01
A novel capillary electrochromatography method was developed for the determination of dopamine (DA), epinephrine (EP), and norepinephrine (NE) by using a graphene oxide (GO) molecularly imprinted polymers (MIPs) coated capillary. In this article, GO was introduced as supporting matrix to synthesize MIPs in the presence of DA as template molecule. Then GO MIPs were used as the stationary phase in electrochromatography for the determination of DA, EP, and NE. The separation of these three analytes was achieved under the optimal conditions with a satisfactory correlation coefficients (R(2) ) > 0.9957 in the range of 5.0-200.0 μg/mL for EP and NE, and 20.0-200.0 μg/mL for DA, respectively. The RSDs for the determination of three analytes were <6.19%, and the detection limits were 1.25 μg/mL for EP and NE, and 10.0 μg/mL for DA, respectively. Finally, this method was used for the determination of DA, EP, and NE in human serum and DA hydrochloride injection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrochemical detection of dopamine based on pre-concentration by graphene nanosheets.
Bagherzadeh, Mojtaba; Heydari, Maryam
2013-10-21
Herein, graphene nanosheets (GNS) were synthesized, by a green and facile method based on reduction by glucose, and characterized. Afterwards, a carbon paste electrode (CPE) was modified with GNS by casting and drying GNS on top of the CPE (CPE/GNS). The behavior of the CPE/GNS towards dopamine (DA) and ascorbic acid (AA) was investigated by electrochemical methods and the obtained results showed that the CPE/GNS had adsorbed only DA. Based on this behavior, the DA molecules were pre-concentrated on top of the CPE/GNS, followed by stripping in DA free solution. Subsequent to experimental and instrumental optimization, a calibration curve from 2.0 × 10(-6) to 1.0 × 10(-3) M DA, r(2) = 0.99 (±0.01), with detection limit (DL) = 8.5 × 10(-7) M DA, sensitivity = 15.4 (±0.94) μA, and RSD = 6.1 was observed in the presence of 1.0 × 10(-3) M AA. Finally, the performance of the CPE/GNS was successfully tested in a pharmaceutical sample. This work provides a promising strategy for DA detection in the presence of biological interferences, e.g. AA, with high sensitivity and simple characteristics.
Zhong, Min; Teng, Ying; Pang, Shufen; Yan, Liqin; Kan, Xianwen
2015-02-15
A molecular imprinting polymer (MIP) based electrochemical sensor was successfully prepared for dopamine (DA) recognition and detection using pyrrole-phenylboronic acid (py-PBA) as a novel electropolymerized monomer. py-PBA could form cyclic boronic ester bond with DA, thus endowing a double recognition capacity of the sensor to DA in the combination of the imprinted effect of MIP. Compared with the sensor prepared using pyrrole or phenylboronic acid as electropolymerized monomer, the present sensor exhibited a remarkable high imprinted factor to DA. The influence factors including pH value, the mole ratio between monomer and template molecule, electropolymerization scan rate, and scan cycles of electropolymerization process were investigated and optimized. Under the optimal conditions, the sensor could recognize DA from its analogs and monosaccharides. A linear ranging from 5.0 × 10(-8) to 1.0 × 10(-5) mol/L for the detection of DA was obtained with a detection limit of 3.3 × 10(-8) mol/L (S/N = 3). The sensor has been applied to analyze DA in injection samples with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.
Antihistamine effect on synaptosomal uptake of serotonin, norepinephrine and dopamine
NASA Technical Reports Server (NTRS)
Brown, P. A.; Vernikos, J.
1980-01-01
A study on the effects of five H1 and H2 antihistamines on the synaptosomal uptake of serotonin (5HT), norepinephrine (NE), and dopamine (DA) is presented. Brain homogenates from female rats were incubated in Krebs-Ringer phosphate buffer solution in the presence of one of three radioactive neurotransmitters, and one of the five antihistamines. Low concentrations of pyrilamine competitively inhibited 5HT uptake, had little effect on NE uptake, and no effect on DA uptake. Promethazine, diphenhydramine, metiamide, and cimetidine had no effect on 5HT or DA uptake at the same concentration. Diphenhydramine had a small inhibitory effect on NE uptake. It is concluded that pyrilamine is a selective and potent competitive inhibitor of 5HT uptake at concentrations between .05 and .5 micromolars.
Effect of 7-nitroindazole on body temperature and methamphetamine-induced dopamine toxicity.
Callahan, B T; Ricaurte, G A
1998-08-24
The present study was undertaken to examine the role of temperature on the ability of 7-nitroindazole (7-NI) to prevent methamphetamine-induced dopamine (DA) neurotoxicity. Male Swiss-Webster mice received methamphetamine alone or in combination with 7-NI at either room temperature (20+/-1 degrees C) or at 28+/-1 degrees C. At 20+/-1 degrees C, 7-NI produced hypothermic effects and afforded total protection against methamphetamine-induced DA depletions in the striatum. At 28+/-1 degrees C, 7-NI produced minimal effects on body temperature and failed to prevent methamphetamine-induced DA reductions. These findings indicate that the neuroprotection afforded by 7-NI is likely related to its ability to produce hypothermia because agents that produce hypothermia and/or prevent hyperthermia are known to attenuate methamphetamine-induced neurotoxicity.
Axelsson, Jan; Riklund, Katrine; Nyberg, Lars; Dayan, Peter; Bäckman, Lars
2017-01-01
Probabilistic reward learning is characterised by individual differences that become acute in aging. This may be due to age-related dopamine (DA) decline affecting neural processing in striatum, prefrontal cortex, or both. We examined this by administering a probabilistic reward learning task to younger and older adults, and combining computational modelling of behaviour, fMRI and PET measurements of DA D1 availability. We found that anticipatory value signals in ventromedial prefrontal cortex (vmPFC) were attenuated in older adults. The strength of this signal predicted performance beyond age and was modulated by D1 availability in nucleus accumbens. These results uncover that a value-anticipation mechanism in vmPFC declines in aging, and that this mechanism is associated with DA D1 receptor availability. PMID:28870286
ERIC Educational Resources Information Center
Qi, Zhenghan; Gold, Paul E.
2009-01-01
Intra-amygdala injections of anisomycin produce large increases in the release of norepinephrine (NE), dopamine (DA), and serotonin in the amygdala. Pretreatment with intra-amygdala injections of the beta-adrenergic receptor antagonist propranolol attenuates anisomycin-induced amnesia without reversing the inhibition of protein synthesis, and…
Evaluation of the Dopamine Hypothesis of ADHD with PET Brain Imaging
Swanson, James
2018-01-24
The Dopamine (DA) Hypothesis of ADHD (Wender, 1971; Levy, 1990) suggests that abnormalities in the synaptic mechanisms of DA transmission may be disrupted, and specific abnormalities in DA receptors and DA transporters (DAT) have been proposed (see Swanson et al, 1998). Early studies with small samples (e.g., n = 6, Dougherty et al, 1999) used single photon emission tomography (SPECT) and the radioligand (123I Altropane) to test a theory that ADHD may be caused by an over expression of DAT and reported 'a 70% increase in age-corrected dopamine transporter density in patients with attention deficit hyperactivity disorder compared with healthy controls' and suggested that treatment with stimulant medication decreased DAT density in ADHD patients and corrected an underlying abnormality (Krause et al, 2000). The potential importance of these findings was noted by Swanson (1999): 'If true, this is a major finding and points the way for new investigations of the primary pharmacological treatment for ADHD (with the stimulant drugs - e.g., methylphenidate), for which the dopamine transporter is the primary site of action. The potential importance of this finding demands special scrutiny'. This has been provided over the past decade using Positron Emission Tomography (PET). Brain imaging studies were conducted at Brookhaven National Laboratory (BNL) in a relatively large sample of stimulant-naive adults assessed for DAT (11C cocaine) density and DA receptors (11C raclopride) availability. These studies (Volkow et al, 2007; Volkow et al, 2009) do not confirm the hypothesis of increased DAT density and suggest the opposite (i.e., decreased rather than increased DAT density), and follow-up after treatment (Wang et al, 2010) does not confirm the hypothesis that therapeutic doses of methylphenidate decrease DAT density and suggests the opposite (i.e., increased rather than decreased DAT density). The brain regions implicated by these PET imaging studies also suggest that a motivation deficit may contribute as much as an attention deficit to the manifestation of behaviors that underlie the symptoms of ADHD.
1993-01-01
behavioral func- agonists (as assessed by examining oxotremorine enhancement tions such as coordination and muscle strength [for reviews, of K4-evoked...interface and by comparing the response to oxotremorine -en- made by examining the oxotremorine (OXO)-enhanced hanced K4-evoked release of dopamine...Results showed that al- K+-evoked release of dopamine (DA) from perifused stria- though oxotremorine -enhanced K4-evoked release of dopamine tal slices
Gender effects of the COMT Val 158 Met genotype on verbal fluency in healthy adults.
Soeiro-De-Souza, Marcio Gerhardt; Bio, Danielle Soares; David, Denise Petresco; Missio, Giovani; Lima, Bruno; Fernandes, Fernando; Machado-Vieira, Rodrigo; Moreno, Ricardo Alberto
2013-09-01
Cognitive performance in healthy individuals is associated with gender differences in specific tests; a female advantage has been demonstrated in language tests, whereas a male advantage has been demonstrated in spatial relation examinations. The prefrontal cortex (PFC) mediates important cognitive domains and is influenced by dopamine (DA) activity. The single nucleotide polymorphism (SNP) rs4680 in the catechol‑O‑methyltransferase (COMT) gene results in an amino acid substitution from valine (Val) to methionine (Met). The Met allele has been demonstrated to decrease COMT enzyme activity and improve PFC cognitive function. COMT regulates DA activity in the PFC and exhibits gender effects. The aim of the present study was to investigate the gender‑specific effects of the COMT genotype on cognition in healthy young adults. Seventy‑six healthy subjects were genotyped for COMT rs4680 and submitted to an extensive range of neuropsychological tests assessing aspects of PFC function. The COMT Met allele influenced the performance of executive function. The results revealed gender effects of the COMT rs4680 Met allele on verbal fluency, with positive effects in males and negative effects in females. This suggested that DA activity affects cognitive function in different ways, according to gender.
McCall, Nora M; Kotecki, Lydia; Dominguez-Lopez, Sergio; Marron Fernandez de Velasco, Ezequiel; Carlblom, Nicholas; Sharpe, Amanda L; Beckstead, Michael J; Wickman, Kevin
2017-02-01
The increase in dopamine (DA) neurotransmission stimulated by in vivo cocaine exposure is tempered by G protein-dependent inhibitory feedback mechanisms in DA neurons of the ventral tegmental area (VTA). G protein-gated inwardly rectifying K + (GIRK/Kir3) channels mediate the direct inhibitory effect of GABA B receptor (GABA B R) and D 2 DA receptor (D 2 R) activation in VTA DA neurons. Here we examined the effect of the DA neuron-specific loss of GIRK channels on D 2 R-dependent regulation of VTA DA neuron excitability and on cocaine-induced, reward-related behaviors. Selective ablation of Girk2 in DA neurons did not alter the baseline excitability of VTA DA neurons but significantly reduced the magnitude of D 2 R-dependent inhibitory somatodendritic currents and blunted the impact of D 2 R activation on spontaneous activity and neuronal excitability. Mice lacking GIRK channels in DA neurons exhibited increased locomotor activation in response to acute cocaine administration and an altered locomotor sensitization profile, as well as increased responding for and intake of cocaine in an intravenous self-administration test. These mice, however, showed unaltered cocaine-induced conditioned place preference. Collectively, our data suggest that feedback inhibition to VTA DA neurons, mediated by GIRK channel activation, tempers the locomotor stimulatory effect of cocaine while also modulating the reinforcing effect of cocaine in an operant-based self-administration task.
Effects of DA-Phen, a dopamine-aminoacidic conjugate, on alcohol intake and forced abstinence.
Sutera, Flavia Maria; De Caro, Viviana; Cannizzaro, Carla; Giannola, Libero Italo; Lavanco, Gianluca; Plescia, Fulvio
2016-09-01
The mesolimbic dopamine (DA) system plays a key role in drug reinforcement and is involved in the development of alcohol addiction. Manipulation of the DAergic system represents a promising strategy to control drug-seeking behavior. Previous studies on 2-amino-N-[2-(3,4-dihydroxy-phenyl)-ethyl]-3-phenyl-propionamide (DA-Phen) showed in vivo effects as a DA-ergic modulator. This study was aimed at investigate DA-Phen effects on operant behavior for alcohol seeking behavior, during reinstatement following subsequent periods of alcohol deprivation. For this purpose, male Wistar rats were tested in an operant paradigm of self-administration; behavioral reactivity and anxiety like-behavior during acute abstinence were evaluated. A characterization of DA-Phen CNS targeting by its quantification in the brain was also carried out. Our findings showed that DA-Phen administration was able to reduce relapse in alcohol drinking by 50% and reversed the alterations in behavioral reactivity and emotionality observed during acute abstinence. In conclusion, DA-Phen can reduce reinstatement of alcohol drinking in an operant-drinking paradigm following deprivation periods and reverse abstinence-induced behavioral phenotype. DA-Phen activity seems to be mediated by the modulation of the DAergic transmission. However further studies are needed to characterize DA-Phen pharmacodynamic and pharmacokinetic properties, and its potential therapeutic profile in alcohol addiction. Copyright © 2016 Elsevier B.V. All rights reserved.
Ding, Saidan; Wang, Weikan; Wang, Xuebao; Liang, Yong; Liu, Leping; Ye, Yiru; Yang, Jianjing; Gao, Hongchang; Zhuge, Qichuan
2016-10-01
Dopamine (DA)-induced learning and memory impairment is well documented in minimal hepatic encephalopathy (MHE), but the contribution of DA to neurodegeneration and the involved underlying mechanisms are not fully understood. In this study, the effect of DA on neuronal apoptosis was initially detected. The results showed that MHE/DA (10 μg)-treated rats displayed neuronal apoptosis. However, we found that DA (10 μM) treatment did not induce evident apoptosis in primary cultured neurons (PCNs) but did produce TNF-α in primary cultured astrocytes (PCAs). Furthermore, co-cultures between PCAs and PCNs exposed to DA exhibited increased astrocytic TNF-α levels and neuronal apoptosis compared with co-cultures exposed to the vehicle, indicating the attribution of the neuronal apoptosis to astrocytic TNF-α. We also demonstrated that DA enhanced TNF-α production from astrocytes by activation of the TLR4/MyD88/NF-κB pathway, and secreted astrocytic TNF-α-potentiated neuronal apoptosis through inactivation of the PI3K/Akt/mTOR pathway. Overall, the findings from this study suggest that DA stimulates substantial production and secretion of astrocytic TNF-α, consequently and indirectly triggering progressive neurodegeneration, resulting in cognitive decline and memory loss in MHE.
NASA Astrophysics Data System (ADS)
Park, Seon Joo; Song, Hyun Seok; Kwon, Oh Seok; Chung, Ji Hyun; Lee, Seung Hwan; An, Ji Hyun; Ahn, Sae Ryun; Lee, Ji Eun; Yoon, Hyeonseok; Park, Tai Hyun; Jang, Jyongsik
2014-03-01
The development of molecular detection that allows rapid responses with high sensitivity and selectivity remains challenging. Herein, we demonstrate the strategy of novel bio-nanotechnology to successfully fabricate high-performance dopamine (DA) biosensor using DA Receptor-containing uniform-particle-shaped Nanovesicles-immobilized Carboxylated poly(3,4-ethylenedioxythiophene) (CPEDOT) NTs (DRNCNs). DA molecules are commonly associated with serious diseases, such as Parkinson's and Alzheimer's diseases. For the first time, nanovesicles containing a human DA receptor D1 (hDRD1) were successfully constructed from HEK-293 cells, stably expressing hDRD1. The nanovesicles containing hDRD1 as gate-potential modulator on the conducting polymer (CP) nanomaterial transistors provided high-performance responses to DA molecule owing to their uniform, monodispersive morphologies and outstanding discrimination ability. Specifically, the DRNCNs were integrated into a liquid-ion gated field-effect transistor (FET) system via immobilization and attachment processes, leading to high sensitivity and excellent selectivity toward DA in liquid state. Unprecedentedly, the minimum detectable level (MDL) from the field-induced DA responses was as low as 10 pM in real- time, which is 10 times more sensitive than that of previously reported CP based-DA biosensors. Moreover, the FET-type DRNCN biosensor had a rapid response time (<1 s) and showed excellent selectivity in human serum.
Zhang, Fuping; Zhang, Min; Cheng, Jiongjia; Yang, Li; Ji, Ming; Bi, Shuping
2007-11-01
In this paper, we firstly report the direct voltammetric recognition and determination of dopamine (DA) by using Al(III)-DA complexes at the hanging mercury drop electrode (HMDE). A new sensitive cathodic peak of Al(III)-DA can be detected at -900 mV (vs. SCE) in 0.1 M NH(4)Cl-NH(3).H(2)O-0.1 M KCl buffer solution at pH 8.5. This unique -900 mV cathodic peak arises from the specific interaction between Al(III) and DA on the HMDE, whereas other substances with similar structures, such as L-dopa, epinephrine (EP), norepinephrine (NE), catechols, caffeic acid (CA), trihydric phenols and tiron, do not yield any new peak on the voltammograms in the potential range from -100 to -1200 mV when Al(III) is added. The distinct voltammetric characteristic of the recognition of DA can effectively inhibit the interferences of both ascorbic acid and uric acid in the DA determination by the direct electrochemistry, which is a major difficulty when a solid electrode is used. The proposed method can be anticipated as an effective means for the recognition of DA in the elucidation of the mechanisms of Parkinson's disease (PD) and Alzheimer's disease (AD) in the presence of Al(III).
Elliott, P J; Mason, G S; Stephens-Smith, M; Hagan, R M
1991-06-01
Preferential activation of mesolimbic and nigro-striatal dopamine (DA) pathways by receptor-selective and peptidase-resistant neurokinin (NK) agonists is reported. The DA cell body region of the mesolimbic pathway appears to be activated by NK agonists selective for NK-1 and NK-3 receptors whereas the DA cell bodies in the substantia nigra are under an excitatory NK-2 receptor-mediated influence. Stimulation of the mesolimbic DA pathway by NK-1 (Ava[L-Pro9,N-Me-Leu10]SP (7-11) [GR73632]) or NK-3 (Senktide) agonists increase locomotor activity. Additional studies showed that this elevated motor response observed after intra-VTA infusion of GR73632 was accompanied by a corresponding increase in DA turnover in the terminal fields of this pathway. Similarly, unilateral activation of the nigro-striatal DA pathway by NK-2 selective agonists (Ava (D-Pro9) SP (7-11) [GR51667] or [Lys3,Gly8,R-Lac-Leu9]NKA (3-10) [GR64349]) elicit contralateral rotational activity and an increase in DA turnover in the ipsilateral striatum. The rotational response was attenuated by prior administration of an NK-2 antagonist (cyclo (Gln, Trp, Phe, Gly, Leu, Met)] L-659877]) into the nigra. Peripheral injection of haloperidol, a DA antagonist, also blocked the NK-2 agonist induced rotations.
Role of dopamine D2 receptors in human reinforcement learning.
Eisenegger, Christoph; Naef, Michael; Linssen, Anke; Clark, Luke; Gandamaneni, Praveen K; Müller, Ulrich; Robbins, Trevor W
2014-09-01
Influential neurocomputational models emphasize dopamine (DA) as an electrophysiological and neurochemical correlate of reinforcement learning. However, evidence of a specific causal role of DA receptors in learning has been less forthcoming, especially in humans. Here we combine, in a between-subjects design, administration of a high dose of the selective DA D2/3-receptor antagonist sulpiride with genetic analysis of the DA D2 receptor in a behavioral study of reinforcement learning in a sample of 78 healthy male volunteers. In contrast to predictions of prevailing models emphasizing DA's pivotal role in learning via prediction errors, we found that sulpiride did not disrupt learning, but rather induced profound impairments in choice performance. The disruption was selective for stimuli indicating reward, whereas loss avoidance performance was unaffected. Effects were driven by volunteers with higher serum levels of the drug, and in those with genetically determined lower density of striatal DA D2 receptors. This is the clearest demonstration to date for a causal modulatory role of the DA D2 receptor in choice performance that might be distinct from learning. Our findings challenge current reward prediction error models of reinforcement learning, and suggest that classical animal models emphasizing a role of postsynaptic DA D2 receptors in motivational aspects of reinforcement learning may apply to humans as well.
Role of Dopamine D2 Receptors in Human Reinforcement Learning
Eisenegger, Christoph; Naef, Michael; Linssen, Anke; Clark, Luke; Gandamaneni, Praveen K; Müller, Ulrich; Robbins, Trevor W
2014-01-01
Influential neurocomputational models emphasize dopamine (DA) as an electrophysiological and neurochemical correlate of reinforcement learning. However, evidence of a specific causal role of DA receptors in learning has been less forthcoming, especially in humans. Here we combine, in a between-subjects design, administration of a high dose of the selective DA D2/3-receptor antagonist sulpiride with genetic analysis of the DA D2 receptor in a behavioral study of reinforcement learning in a sample of 78 healthy male volunteers. In contrast to predictions of prevailing models emphasizing DA's pivotal role in learning via prediction errors, we found that sulpiride did not disrupt learning, but rather induced profound impairments in choice performance. The disruption was selective for stimuli indicating reward, whereas loss avoidance performance was unaffected. Effects were driven by volunteers with higher serum levels of the drug, and in those with genetically determined lower density of striatal DA D2 receptors. This is the clearest demonstration to date for a causal modulatory role of the DA D2 receptor in choice performance that might be distinct from learning. Our findings challenge current reward prediction error models of reinforcement learning, and suggest that classical animal models emphasizing a role of postsynaptic DA D2 receptors in motivational aspects of reinforcement learning may apply to humans as well. PMID:24713613
Ferris, Mark J.; Frederick-Duus, Danielle; Fadel, Jim; Mactutus, Charles F.; Booze, Rosemarie M.
2009-01-01
Injection drug use accounts for approximately one-third of HIV-infections in the United States. HIV associated proteins have been shown to interact with various drugs of abuse to incite concerted neurotoxicity. One common area for their interaction is the nerve terminal, including dopamine transporter (DAT) systems. However, results regarding DAT function and regulation in HIV-infection, regardless of drug use, are mixed. Thus, the present experiments were designed to explicitly control Tat and cocaine administration in an in vivo model in order to reconcile differences that exist in the literature to date. We examined Tat plus cocaine-induced alterations using no-net-flux microdialysis, which is sensitive to alterations in DAT function, in order to test the potential for DAT as an early mediator of HIV-induced oxidative stress and neurodegeneration in vivo. Within 5 hours of intra-accumbal administration of the HIV-associated protein, Tat, we noted a significant reduction in local DAT efficiency with little change in DA overflow/release dynamics. Further, at 48 hrs post-Tat administration, we demonstrated a concerted effect of the HIV-protein Tat with cocaine on both uptake and release function. Finally, we discuss the extent to which DAT dysfunction may be considered a predecessor to generalized nerve terminal dysfunction. Characterization of DAT dysfunction in vivo may provide an early pharamacotherapeutic target, which in turn may prevent or attenuate downstream mediators of neurotoxicity (i.e., reactive species) to DA systems occurring in NeuroAIDS. PMID:19344635
Eisenstein, Sarah A; Bogdan, Ryan; Chen, Ling; Moerlein, Stephen M; Black, Kevin J; Perlmutter, Joel S; Hershey, Tamara; Barch, Deanna M
2017-03-01
Deficits in central, subcortical dopamine (DA) signaling may underlie negative symptom severity, particularly anhedonia, in healthy individuals and in schizophrenia. To investigate these relationships, we assessed negative symptoms with the Schedule for the Assessment of Negative Symptoms and the Brief Negative Symptom Scale (BNSS) and self-reported anhedonia with the Scales for Physical and Social Anhedonia (SPSA), Temporal Experience of Pleasure Scale, and Snaith-Hamilton Pleasure Scale in 36 healthy controls (HC), 27 siblings (SIB) of individuals with schizophrenia, and 66 individuals with schizophrenia or schizoaffective disorder (SCZ). A subset of participants (N = 124) were genotyped for DA-related polymorphisms in genes for DRD4, DRD2/ANKK1, DAT1, and COMT, which were used to construct biologically-informed multi-locus genetic profile (MGP) scores reflective of subcortical dopaminergic signaling. DA receptor type 2 (D2R) binding was assessed among a second subset of participants (N = 23) using PET scans with the D2R-selective, non-displaceable radioligand (N-[ 11 C]methyl)benperidol. Higher MGP scores, reflecting elevated subcortical dopaminergic signaling capacity, were associated with less negative symptom severity, as measured by the BNSS, across all participants. In addition, higher striatal D2R binding was associated with less physical and social anhedonia, as measured by the SPSA, across HC, SIB, and SCZ. The current preliminary findings support the hypothesis that subcortical DA function may contribute to negative symptom severity and self-reported anhedonia, independent of diagnostic status. Copyright © 2016 Elsevier Ltd. All rights reserved.
Eisenstein, Sarah A.; Bogdan, Ryan; Chen, Ling; Moerlein, Stephen M.; Black, Kevin J.; Perlmutter, Joel S.; Hershey, Tamara; Barch, Deanna M.
2017-01-01
Deficits in central, subcortical dopamine (DA) signaling may underlie negative symptom severity, particularly anhedonia, in healthy individuals and in schizophrenia. To investigate these relationships, we assessed negative symptoms with the Schedule for the Assessment of Negative Symptoms and the Brief Negative Symptom Scale (BNSS) and self-reported anhedonia with the Scales for Physical and Social Anhedonia (SPSA), Temporal Experience of Pleasure Scale, and Snaith-Hamilton Pleasure Scale in 36 healthy controls (HC), 27 siblings (SIB) of individuals with schizophrenia, and 66 individuals with schizophrenia or schizoaffective disorder (SCZ). A subset of participants (N = 124) were genotyped for DA-related polymorphisms in genes for DRD4, DRD2/ANKK1, DAT1, and COMT, which were used to construct biologically-informed multi-locus genetic profile (MGP) scores reflective of subcortical dopaminergic signaling. DA receptor type 2 (D2R) binding was assessed among a second subset of participants (N = 23) using PET scans with the D2R-selective, non-displaceable radioligand (N-[11C]methyl)benperidol. Higher MGP scores, reflecting elevated subcortical dopaminergic signaling capacity, were associated with less negative symptom severity, as measured by the BNSS, across all participants. In addition, higher striatal D2R binding was associated with less physical and social anhedonia, as measured by the SPSA, across HC, SIB, and SCZ. The current preliminary findings support the hypothesis that subcortical DA function may contribute to negative symptom severity and self-reported anhedonia, independent of diagnostic status. PMID:27886638
Cawley, Elizabeth I.; Park, Sarah; Rot, Marije aan het; Sancton, Kimberley; Benkelfat, Chawki; Young, Simon N.; Boivin, Diane B.; Leyton, Marco
2013-01-01
Background Despite evidence that bright light can improve mood, the neurobiology remains poorly understood. Some evidence implicates the catecholamines. In the present study, we measured the effects of transiently decreasing dopamine (DA) synthesis on mood and motivational states in healthy women with mild seasonal mood changes who were tested in either bright or dim light. Methods On 2 test days, participants slept overnight in a light-controlled room. On the morning of each session, half of the participants awoke to gradual increases of bright light, up to 3000 lux, and half to dim light (10 lux). For all participants, DA was reduced on 1 of the test days using the acute phenylalanine/tyrosine depletion (APTD) method; on the other day, they ingested a nutritionally balanced control mixture (BAL). Beginning 4 hours postingestion, participants completed subjective mood questionnaires, psychological tests and a progressive ratio breakpoint task during which they worked for successive units of $5. Results Thirty-two women participated in our study. The APTD lowered mood, agreeableness, energy and the willingness to work for monetary reward. The effects on energy and motivation were independent of light, while the effects on mood and agreeableness were seen in the dim condition only, being prevented by bright light. Limitations Acute phenylalanine/tyrosine depletion might affect systems other than DA. The sample size was small. Conclusion These results suggest that increased DA function may be responsible for some of the beneficial effects of light, while adding to the evidence that the neurobiology of mood and motivational states can be dissociated. PMID:23735584
Cawley, Elizabeth I; Park, Sarah; aan het Rot, Marije; Sancton, Kimberley; Benkelfat, Chawki; Young, Simon N; Boivin, Diane B; Leyton, Marco
2013-11-01
Despite evidence that bright light can improve mood, the neurobiology remains poorly understood. Some evidence implicates the catecholamines. In the present study, we measured the effects of transiently decreasing dopamine (DA) synthesis on mood and motivational states in healthy women with mild seasonal mood changes who were tested in either bright or dim light. On 2 test days, participants slept overnight in a light-controlled room. On the morning of each session, half of the participants awoke to gradual increases of bright light, up to 3000 lux, and half to dim light (10 lux). For all participants, DA was reduced on 1 of the test days using the acute phenylalanine/tyrosine depletion (APTD) method; on the other day, they ingested a nutritionally balanced control mixture (BAL). Beginning 4 hours postingestion, participants completed subjective mood questionnaires, psychological tests and a progressive ratio breakpoint task during which they worked for successive units of $5. Thirty-two women participated in our study. The APTD lowered mood, agreeableness, energy and the willingness to work for monetary reward. The effects on energy and motivation were independent of light, while the effects on mood and agreeableness were seen in the dim condition only, being prevented by bright light. Acute phenylalanine/tyrosine depletion might affect systems other than DA. The sample size was small. These results suggest that increased DA function may be responsible for some of the beneficial effects of light, while adding to the evidence that the neurobiology of mood and motivational states can be dissociated.
Bowton, E; Saunders, C; Reddy, I A; Campbell, N G; Hamilton, P J; Henry, L K; Coon, H; Sakrikar, D; Veenstra-VanderWeele, J M; Blakely, R D; Sutcliffe, J; Matthies, H J G; Erreger, K; Galli, A
2014-10-14
Emerging evidence associates dysfunction in the dopamine (DA) transporter (DAT) with the pathophysiology of autism spectrum disorder (ASD). The human DAT (hDAT; SLC6A3) rare variant with an Ala to Val substitution at amino acid 559 (hDAT A559V) was previously reported in individuals with bipolar disorder or attention-deficit hyperactivity disorder (ADHD). We have demonstrated that this variant is hyper-phosphorylated at the amino (N)-terminal serine (Ser) residues and promotes an anomalous DA efflux phenotype. Here, we report the novel identification of hDAT A559V in two unrelated ASD subjects and provide the first mechanistic description of its impaired trafficking phenotype. DAT surface expression is dynamically regulated by DAT substrates including the psychostimulant amphetamine (AMPH), which causes hDAT trafficking away from the plasma membrane. The integrity of DAT trafficking directly impacts DA transport capacity and therefore dopaminergic neurotransmission. Here, we show that hDAT A559V is resistant to AMPH-induced cell surface redistribution. This unique trafficking phenotype is conferred by altered protein kinase C β (PKCβ) activity. Cells expressing hDAT A559V exhibit constitutively elevated PKCβ activity, inhibition of which restores the AMPH-induced hDAT A559V membrane redistribution. Mechanistically, we link the inability of hDAT A559V to traffic in response to AMPH to the phosphorylation of the five most distal DAT N-terminal Ser. Mutation of these N-terminal Ser to Ala restores AMPH-induced trafficking. Furthermore, hDAT A559V has a diminished ability to transport AMPH, and therefore lacks AMPH-induced DA efflux. Pharmacological inhibition of PKCβ or Ser to Ala substitution in the hDAT A559V background restores AMPH-induced DA efflux while promoting intracellular AMPH accumulation. Although hDAT A559V is a rare variant, it has been found in multiple probands with neuropsychiatric disorders associated with imbalances in DA neurotransmission, including ADHD, bipolar disorder, and now ASD. These findings provide valuable insight into a new cellular phenotype (altered hDAT trafficking) supporting dysregulated DA function in these disorders. They also provide a novel potential target (PKCβ) for therapeutic interventions in individuals with ASD.
Baladi, Michelle G; Daws, Lynette C; France, Charles P
2012-07-01
The important role of dopamine (DA) in mediating feeding behavior and the positive reinforcing effects of some drugs is well recognized. Less widely studied is how feeding conditions might impact the sensitivity of drugs acting on DA systems. Food restriction, for example, has often been the focus of aging and longevity studies; however, other studies have demonstrated that mild food restriction markedly increases sensitivity to direct- and indirect-acting DA receptor agonists. Moreover, it is becoming clear that not only the amount of food, but the type of food, is an important factor in modifying the effects of drugs. Given the increased consumption of high fat and sugary foods, studies are exploring how consumption of highly palatable food impacts DA neurochemistry and the effects of drugs acting on these systems. For example, eating high fat chow increases sensitivity to some behavioral effects of direct- as well as indirect-acting DA receptor agonists. A compelling mechanistic possibility is that central DA pathways that mediate the effects of some drugs are regulated by one or more of the endocrine hormones (e.g. insulin) that undergo marked changes during food restriction or after consuming high fat or sugary foods. Although traditionally recognized as an important signaling molecule in regulating energy homeostasis, insulin can also regulate DA neurochemistry. Because direct- and indirect-acting DA receptor drugs are used therapeutically and some are abused, a better understanding of how food intake impacts response to these drugs would likely facilitate improved treatment of clinical disorders and provide information that would be relevant to the causes of vulnerability to abuse drugs. This article is part of a Special Issue entitled 'Central Control of Food Intake'. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dal Bo, Gregory; St-Gelais, Fannie; Danik, Marc; Williams, Sylvain; Cotton, Mathieu; Trudeau, Louis-Eric
2004-03-01
Dopamine neurons have been suggested to use glutamate as a cotransmitter. To identify the basis of such a phenotype, we have examined the expression of the three recently identified vesicular glutamate transporters (VGLUT1-3) in postnatal rat dopamine neurons in culture. We found that the majority of isolated dopamine neurons express VGLUT2, but not VGLUT1 or 3. In comparison, serotonin neurons express only VGLUT3. Single-cell RT-PCR experiments confirmed the presence of VGLUT2 mRNA in dopamine neurons. Arguing for phenotypic heterogeneity among axon terminals, we find that only a proportion of terminals established by dopamine neurons are VGLUT2-positive. Taken together, our results provide a basis for the ability of dopamine neurons to release glutamate as a cotransmitter. A detailed analysis of the conditions under which DA neurons gain or loose a glutamatergic phenotype may provide novel insight into pathophysiological processes that underlie diseases such as schizophrenia, Parkinson's disease and drug dependence.
Functionalization of a membrane sublayer using reverse filtration of enzymes and dopamine coating.
Luo, Jianquan; Meyer, Anne S; Mateiu, R V; Kalyani, Dayanand; Pinelo, Manuel
2014-12-24
High permeability, high enzyme loading, and strong antifouling ability are the desired features for a biocatalytic membrane to be used in an enzymatic membrane reactor (EMR). To achieve these goals, the membrane sublayer was enriched with laccase by reverse filtration in this case, and the resulting enzyme-loaded sublayer was covered with a dopamine coating. After membrane reversal, the virgin membrane skin layer was facing the feed and the enzymes were entrapped by a polydopamine network in the membrane sublayer. Thus, the membrane sublayer was functionalized as a catalytically active layer. The effects of the original membrane properties (i.e., materials, pore size, and structure), enzyme type (i.e., laccase and alcohol dehydrogenase), and coating conditions (i.e., time and pH) on the resulting biocatalytic membrane permeability, enzyme loading, and activity were investigated. Using a RC10 kDa membrane with sponge-like sublayer to immobilize laccase with dopamine coating, the trade-off between permeability and enzyme loading was broken, and enzyme loading reached 44.5% without any permeability loss. After 85 days of storage and reuse 14 times, more than 80% of the immobilized laccase activity was retained for the membrane with a dopamine coating, while the relative activity was less than 40% without the coating. The resistance to high temperature and acidic/alkaline pH was also improved by the dopamine coating for the immobilized laccase. Moreover, this biocatalytic membrane could resist mild hydrodynamic cleaning (e.g., back-flushing), but the catalytic ability was reduced by chemical cleaning at extreme pH (e.g., 1.5 and 11.5). Since the immobilized enzyme is not directly facing the bulk of EMRs and the substrate can be specifically selected by the separation skin layer, this biocatalytic membrane is promising for cascade catalytic reactions.
Settivari, Raja; VanDuyn, Natalia; LeVora, Jennifer; Nass, Richard
2013-09-01
Exposure to high levels of manganese (Mn) results in a neurological condition termed manganism, which is characterized by oxidative stress, abnormal dopamine (DA) signaling, and cell death. Epidemiological evidence suggests correlations with occupational exposure to Mn and the development of the movement disorder Parkinson's disease (PD), yet the molecular determinants common between the diseases are ill-defined. Glutathione S-transferases (GSTs) of the class pi (GSTπ) are phase II detoxification enzymes that conjugate both endogenous and exogenous compounds to glutathione to reduce cellular oxidative stress, and their decreased expression has recently been implicated in PD progression. In this study we demonstrate that a Caenorhabditis elegans GSTπ homologue, GST-1, inhibits Mn-induced DA neuron degeneration. We show that GST-1 is expressed in DA neurons, Mn induces GST-1 gene and protein expression, and GST-1-mediated neuroprotection is dependent on the PD-associated transcription factor Nrf2/SKN-1, as a reduction in SKN-1 gene expression results in a decrease in GST-1 protein expression and an increase in DA neuronal death. Furthermore, decreases in gene expression of the SKN-1 inhibitor WDR-23 or the GSTπ-binding cell death activator JNK/JNK-1 result in an increase in resistance to the metal. Finally, we show that the Mn-induced DA neuron degeneration is independent of the dopamine transporter DAT, but is largely dependent on the caspases CED-3 and the novel caspase CSP-1. This study identifies a C. elegans Nrf2/SKN-1-dependent GSTπ homologue, cell death effectors of GSTπ-associated xenobiotic-induced pathology, and provides the first in vivo evidence that a phase II detoxification enzyme may modulate DA neuron vulnerability in manganism. Copyright © 2013 Elsevier Inc. All rights reserved.
Original mechanisms of antipsychotic action by the indole alkaloid alstonine (Picralima nitida).
Linck, Viviane M; Ganzella, Marcelo; Herrmann, Ana P; Okunji, Christopher O; Souza, Diogo O; Antonelli, Marta C; Elisabetsky, Elaine
2015-01-15
Alstonine is the major component of plant based remedies that traditional psychiatrists use in Nigeria. Alstonine is an indole alkaloid that has an antipsychotic experimental profile comparable with that of clozapine and is compatible with the alleged effects in mental patients. Representing a desirable innovation in the pharmacodynamics of antipsychotic medications, the evidence indicates that alstonine does not bind to D2 dopamine receptors (D2R) and differentially regulates dopamine in the cortical and limbic areas. The purpose of this study was to further investigate the effects of alstonine on D2R binding in specific brain regions using quantitative autoradiography (QAR) and its effects on dopamine (DA) uptake in mouse striatal synaptosomes. The effects of alstonine on D2R binding were determined in the nucleus accumbens and caudate-putamen using QAR in mice treated with alstonine doses that have antipsychotic effects. The effects of alstonine [3H]DA uptake were assessed in synaptosomes prepared from striatal tissue obtained from mice treated acutely or for 7 days with alstonine. Alstonine did not change the D2R binding densities in the studied regions. DA uptake was increased after acute (but not after 7 days) treatment with alstonine. Consistent with the alstonine behavioral profile, these results indicate that alstonine indirectly modulates DA receptors, specifically by modulating DA uptake. This unique mechanism for DA transmission modulation contributes to the antipsychotic-like effects of alstonine and is compatible with its behavioral profile in mice and alleged effects in patients. These results may represent an innovation in the antipsychotic development field. Copyright © 2014 Elsevier GmbH. All rights reserved.
Shen, Hui; Harvey, Brandon K; Chiang, Yung-Hsiao; Pick, Chaim G; Wang, Yun
2011-01-12
We previously demonstrated that high doses of methamphetamine (MA) exacerbate damage induced by severe brain trauma. The purpose of the present study was to examine if MA, at low dosage, affected abnormalities in locomotor activity and dopamine turnover in a mouse model of mild traumatic brain injury (mTBI). Adult male CD1 mice were treated with MA (5 mg/kgi.p.) or vehicle 30-min prior to mTBI, conducted by dropping a 30 g metal weight onto the temporal skull, anterior the right ear. At 15 min after mTBI, animals were put into locomotor activity chambers for up to 72 h. During the first 3 h, mTBI alone, compared with vehicle control, did not alter total distance travelled. Treatment with MA significantly increased locomotor activity in the control animals during the first 3 h; mTBI reduced MA-induced hyperactivity. In contrast, at 2 and 3 days after injury, mTBI or MA alone reduced locomotor activity. Co-treatment with MA and mTBI further reduced this activity, suggesting a differential and temporal behavioral interaction between MA and mTBI during acute and subacute phases after injury. Dopamine and DOPAC levels in striatal tissue were analyzed using HPLC-ECD. At 1h after mTBI or injection, DA was not altered but DOPAC level and DOPAC/DA turnover ratios were significantly reduced. Co-treatment with MA further reduced the DOPAC/DA ratio. At 36 h after injury, mTBI increased tissue DA levels, but reduced DOPAC levels and DOPAC/DA ratios. Co-treatment with MA further reduced DOPAC/DA ratios in striatum. In conclusion, our data suggest that low dosage of MA worsens the suppression of locomotor responses and striatal dopamine turnover after mTBI. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Chiniforoshan, Hossein; Ensafi, Ali A.; Heydari-Bafrooei, Esmaeil; Khalesi, Sara Bahmanpour; Tabrizi, Leila
2015-08-01
In this research, new polymer of 4,4‧-dicyanamidobiphenyl (bpH2)-Cu(II) complex, [Cu(bp)(H2O)2]n, has been synthesized and characterized by FT-IR, UV-vis spectroscopy and elemental analysis. The spherical morphology of Cu nanoparticles was confirmed by scanning electron microscopy (SEM) image and the transmission electron microscopy (TEM) image showed that the particle size dimensions of Cu nanoparticles were about 80 nm. Thermal gravimetric analysis (TGA) results indicated that this polymer was thermally stable. Hence, the prepared polymer was used as a modifier for the electrochemical determination of dopamine (DA) and ascorbic acid (AA). Compared to the bare carbon paste electrode (CPE) and multiwall carbon paste electrode (CNTPE), bpCu modified CPE (bpCu-CPE) exhibits much higher electrocatalytic activities toward the oxidation of dopamine and ascorbic acid with an increase in peak currents and a decrease in oxidation overpotentials. The effects of scan rate, concentration and pH were also studied. Differential pulse voltammetry results show that DA and AA could be detected selectively and sensitively at bpCu-CPE with peak-to-peak separation of 200 mV. Relative standard deviations for AA and DA determinations were less than 2.5%, and the linear response ranges of the electrode were 0.05-30.0 μmol L-1 for AA and DA, respectively. The calculated detection limits were 0.02 and 0.04 μmol L-1 (S/N = 3) for AA and DA, respectively. In addition, the presented method was successfully applied for the simultaneous determination of DA and AA in urine and blood samples with reliable recovery.
Budygin, Evgeny A.; Oleson, Erik B.; Lee, Yun Beom; Blume, Lawrence C.; Bruno, Michael J.; Howlett, Allyn C.; Thompson, Alexis C.; Bass, Caroline E.
2017-01-01
Recent studies have used conditional knockout mice to selectively delete the D2 autoreceptor; however, these approaches result in global deletion of D2 autoreceptors early in development. The present study takes a different approach using RNA interference (RNAi) to knockdown the expression of the D2 receptors (D2R) in the substantia nigra (SN), including dopaminergic neurons, which project primarily to the dorsal striatum (dStr) in adult rats. This approach restricts the knockdown primarily to nigrostriatal pathways, leaving mesolimbic D2 autoreceptors intact. Analyses of dopamine (DA) kinetics in the dStr reveal a decrease in DA transporter (DAT) function in the knockdown rats, an effect not observed in D2 autoreceptor knockout mouse models. SN D2 knockdown rats exhibit a behavioral phenotype characterized by persistent enhancement of locomotor activity in a familiar open field, reduced locomotor responsiveness to high doses of cocaine and the ability to overcome haloperidol-induced immobility on the bar test. Together these results demonstrate that presynaptic D2R can be depleted from specific neuronal populations and implicates nigrostriatal D2R in different behavioral responses to psychotropic drugs. PMID:28154530
Liu, Bingdi; Ouyang, Xiaoqian; Ding, Yaping; Luo, Liqing; Xu, Duo; Ning, Yanqun
2016-01-01
In the present work, transition metal oxides decorated graphene (GR) have been fabricated for simultaneous determination of dopamine (DA), acetaminophen (AC) and tryptophan (Trp) using square wave voltammetry. Electro-deposition is a facile preparation strategy for the synthesis of nickel oxide (NiO) and copper oxide (CuO) nanoparticles. GR can be modified by using citric acid to produce more functional groups, which is conducive to the deposition of dispersed metal particles. The morphologies and interface properties of the obtained NiO-CuO/GR nanocomposite were examined by scanning electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. Moreover, the electrochemical performances of the composite film were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The modified electrode exhibited that the linear response ranges for detecting DA, AC and Trp were 0.5-20 μM, 4-400 μM and 0.3-40 μM, respectively, and the detection limits were 0.17 μM, 1.33 μM and 0.1 μM (S/N=3). Under optimal conditions, the sensor displayed high sensitivity, excellent stability and satisfactory results in real samples analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Zeng, Yanbo; Zhou, Ying; Kong, Lei; Zhou, Tianshu; Shi, Guoyue
2013-07-15
A novel imprinting route based on graphene oxide (GO) was proposed for preparing a composite of SiO2-coated GO and molecularly imprinted polymers (GO/SiO2-MIPs). In this route, SiO2-coated GO sheets were synthesized in a water-alcohol mixture with sol-gel technique. Prior to polymerization, the vinyl groups were introduced onto the surface of GO/SiO2 through chemical modification with γ-methacryloxypropyl trimethoxysilane (γ-MAPS), which can direct the selective polymerization on the GO/SiO2 surface. Then a novel composite of GO/SiO2-MIPs was successfully obtained by the copolymerization in presence of vinyl groups functionalized GO/SiO2, dopamine (DA), methacrylic acid and ethylene glycol dimethacrylate. The GO/SiO2-MIPs composite was characterized by FTIR, TGA, Raman spectroscopy, SEM and AFM. The properties such as special binding, adsorption dynamics and selective recognition ability using differential pulse voltammetry (DPV) were evaluated. The DPV current response of GO/SiO2-MIPs sensor was nearly 3.2 times that of the non-imprinted polymers (NIPs). In addition, the GO/SiO2-MIPs sensor could recognize DA from its relatively similar molecules of norepinephrine and epinephrine, while the sensors based on GO/SiO2-NIPs and vinyl groups functionalized GO/SiO2 did not have the ability. The GO/SiO2-MIPs sensor had a wide linear range over DA concentration from 5.0 × 10(-8) to 1.6 × 10(-4)M with a detection limit of 3.0 × 10(-8)M (S/N=3). The sensor based on this novel imprinted composite was applied to the determination of DA in injections and human urine samples with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.
Vuong, Helen E.; de Sevilla Müller, Luis Pérez; Hardi, Claudia N.; McMahon, Douglas G.; Brecha, Nicholas C.
2015-01-01
Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) line with three catecholamine-related Cre recombinase lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ~6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium somal diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines were generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing. PMID:26335381
Vuong, H E; Pérez de Sevilla Müller, L; Hardi, C N; McMahon, D G; Brecha, N C
2015-10-29
Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) mouse line with three catecholamine-related Cre recombinase mouse lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ∼ 6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines was generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing. Published by Elsevier Ltd.
Graphene-loaded nanofiber-modified electrodes for the ultrasensitive determination of dopamine.
Rodthongkum, Nadnudda; Ruecha, Nipapan; Rangkupan, Ratthapol; Vachet, Richard W; Chailapakul, Orawon
2013-12-04
A novel and highly sensitive electrochemical system based on electrospun graphene/polyaniline/polystyrene (G/PANI/PS) nanofiber-modified screen-printed carbon electrodes has been developed for dopamine (DA) determination. A dramatic increase (9 times) in the current signal for the redox reaction of a standard, ferri/ferrocyanide [Fe(CN)6](3-/4-) couple was found when compared to an unmodified electrode. This modified electrode also exhibited favorable electron transfer kinetics and excellent electrocatalytic activity toward the oxidation of DA. When used together with square wave voltammetry (SWV), DA can be selectively determined in the presence of the common interferents (i.e. ascorbic acid and uric acid). Under optimal conditions, a very low limit of detection (0.05 nM) and limit of quantification (0.30 nM) were achieved for DA. In addition, a wide dynamic range of 0.1 nM to 100 μM was found for this electrode system. Finally, the system can be successfully applied to determine DA in complex biological environment (e.g. human serum, urine) with excellent reproducibility. Copyright © 2013 Elsevier B.V. All rights reserved.
Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide.
Ren, Hui; Kulkarni, Dhaval D; Kodiyath, Rajesh; Xu, Weinan; Choi, Ikjun; Tsukruk, Vladimir V
2014-02-26
Competitive adsorption-desorption behavior of popular fluorescent labeling and bioanalyte molecules, Rhodamine 6G (R6G) and dopamine (DA), on a chemically heterogeneous graphene oxide (GO) surface is discussed in this study. Individually, R6G and DA compounds were found to adsorb rapidly on the surface of graphene oxide as they followed the traditional Langmuir adsorption behavior. FTIR analysis suggested that both R6G and DA molecules predominantly adsorb on the hydrophilic oxidized regions of the GO surface. Thus, when R6G and DA compounds were adsorbed from mixed solution, competitive adsorption was observed around the oxygen-containing groups of GO sheets, which resulted in partial desorption of R6G molecules from the surface of GO into the solution. The desorbed R6G molecules can be monitored by fluorescence change in solution and was dependent on the DA concentration. We suggest that the efficient competitive adsorption of different strongly bound bioanalytes onto GO-dye complex can be used for the development of sensitive and selective colorimetric biosensors.
Cheemalapati, Srikanth; Palanisamy, Selvakumar; Mani, Veerappan; Chen, Shen-Ming
2013-12-15
In the present study, multiwalled carbon nanotubes (MWCNT)/graphene oxide (GO) nanocomposite was prepared by homogenous dispersion of MWCNT and GO and used for the simultaneous voltammetric determination of dopamine (DA) and paracetamol (PA). The TEM results confirmed that MWCNT walls were wrapped well with GO sheets. The MWCNT/GO nanocomposite showed superior electrocatalytic activity towards the oxidation of DA and PA, when compared with either pristine MWCNT or GO. The major reason for the efficient simultaneous detection of DA and PA at nanocomposite was the synergistic effect between MWCNT and GO. The electrochemical oxidation of DA and PA was investigated by cyclic voltammetry, differential pulse voltammetry and amperometry. The nanocomposite modified electrode showed electrocatalytic oxidation of DA and PA in the linear response range from 0.2 to 400 µmol L(-1) and 0.5 to 400 µmol L(-1) with the detection limit of 22 nmol L(-1) and 47 nmol L(-1) respectively. The proposed sensor displayed good selectivity, sensitivity, stability with appreciable consistency and precision. © 2013 Elsevier B.V. All rights reserved.
Detection of Free and Protein-Bound ortho-Quinones by Near-Infrared Fluorescence.
Mazzulli, Joseph R; Burbulla, Lena F; Krainc, Dimitri; Ischiropoulos, Harry
2016-02-16
Aging and oxidative stress are two prominent pathological mechanisms for Parkinson's disease (PD) that are strongly associated with the degeneration of dopamine (DA) neurons in the midbrain. DA and other catechols readily oxidize into highly reactive o-quinone species that are precursors of neuromelanin (NM) pigment and under pathological conditions can modify and damage macromolecules. The role of DA oxidation in PD pathogenesis remains unclear in part due to the lack of appropriate disease models and the absence of a simple method for the quantification of DA-derived oxidants. Here, we describe a rapid, simple, and reproducible method for the quantification of o-quinones in cells and tissues that relies on the near-infrared fluorescent properties of these species. Importantly, we demonstrate that catechol-derived oxidants can be quantified in human neuroblastoma cells and midbrain dopamine neurons derived from induced pluripotent stem cells, providing a novel model to study the downstream actions of o-quinones. This method should facilitate further study of oxidative stress and DA oxidation in PD and related diseases that affect the dopaminergic system.
Dopamine-dependent neurotoxicity of lipopolysaccharide in substantia nigra.
De Pablos, Rocío M; Herrera, Antonio J; Villarán, Ruth F; Cano, Josefina; Machado, Alberto
2005-03-01
Intranigral injection of lipopolysaccharide (LPS), a potent inductor of inflammation, induces degeneration of dopaminergic neurons, along with an inflammatory process that features activation of microglial cells and loss of astrocytes. To test the involvement of dopamine (DA) in this degeneration induced by LPS, we treated albino Wistar rats with different concentrations of alpha-methyl-p-tyrosine (alpha-MPT), an inhibitor of tyrosine hydroxylase (TH) activity. Results showed that alpha-MPT prevented LPS-induced loss of TH immunostaining and expression of mRNA for TH and DA transporter; it also prevented substantial activation of microglial cells. Loss of the astroglial population, a marker of damage in our model, was also prevented. This protective effect resulted from inhibition of TH and the consequent decrease in DA concentration, because treatment with L-DOPA/benserazide, which bypasses TH inhibition induced by alpha-MPT, reversed the protective effect produced by this drug. These results point out the important contribution of DA to the vulnerability and degeneration of dopaminergic neurons of the substantia nigra. Knowledge about the involvement of DA in this process may lead to the possibility of new protection strategies against this important degenerative process.
Boireau, A; Bordier, F; Dubédat, P; Doble, A
1995-07-28
The effects of riluzole and lamotrigine, two agents which interfere with the release of glutamate (GLU), and MK-801, a blocker of N-methyl-D-aspartate (NMDA) receptors, were compared in the model of methamphetamine-induced depletion of dopamine (DA) levels in mice. Repeated injections with methamphetamine (4 x 5 mg/kg i.p.) markedly decreased levels of DA, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels. When mice were treated with riluzole (2 x 10 mg/kg p.o.), no protection was observed against the decrease in DA and the two metabolites. Lamotrigine (2 x 10 mg/kg p.o.) was also inactive. Treatment with MK-801 (2 x 2.5 mg/kg i.p.) antagonized the decrease in DA, DOPAC and HVA levels induced by the neurotoxin. Thus, unlike an NMDA blocker, drugs that interfere with GLU release did not antagonize the methamphetamine-induced DA neurotoxicity in mice. The consequences of this inactivity are discussed in terms of the reliability of this model to test new drugs with putative efficacy in the treatment of Parkinson's disease.
Shervedani, Reza Karimi; Amini, Akbar
2012-04-01
Direct electrochemistry of a new laccase enzyme immobilized on gold and its application as a biosensor for dopamine (DA) are investigated by voltammetry and electrochemical impedance spectroscopy. The sensor demonstrated a redox adsorption behavior with E(0') = + 180 mV vs. Ag/AgCl for immobilized Agaricus bisporus laccase (LacAB) enzyme. The MPA platform was assembled on Au with and without utilization of ultrasounds. Excellent results were obtained by using the enzyme electrode fabricated based on MPA assembled with sonication. The LacAB immobilized in this condition showed a large electrocatalytic activity for oxidation of DA. Accordingly, a third-generation (mediator free) biosensor was constructed for DA. The DA concentration could be measured in the linear range of 0.5 to 13.0 and 47.0 to 430.0 μmol L(-1) with correlation coefficients of 0.999 and 0.989, respectively, and a detection limit of 29.0 nmol L(-1). The biosensor was successfully tested for determination of DA in human blood plasma and pharmaceutical samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Opposite Actions of Dopamine on Aversive and Appetitive Memories in the Crab
ERIC Educational Resources Information Center
Klappenbach, Martin; Maldonado, Hector; Locatelli, Fernando; Kaczer, Laura
2012-01-01
The understanding of how the reinforcement is represented in the central nervous system during memory formation is a current issue in neurobiology. Several studies in insects provide evidence of the instructive role of biogenic amines during the learning and memory process. In insects it was widely accepted that dopamine (DA) mediates aversive…