Sample records for dopamine transporter binding

  1. Flipped Phenyl Ring Orientations of Dopamine Binding with Human and Drosophila Dopamine Transporters: Remarkable Role of Three Nonconserved Residues.

    PubMed

    Yuan, Yaxia; Zhu, Jun; Zhan, Chang-Guo

    2018-03-09

    Molecular modeling and molecular dynamics simulations were performed in the present study to examine the modes of dopamine binding with human and Drosophila dopamine transporters (hDAT and dDAT). The computational data revealed flipped binding orientations of dopamine in hDAT and dDAT due to the major differences in three key residues (S149, G153, and A423 of hDAT vs A117, D121, and S422 of dDAT) in the binding pocket. These three residues dictate the binding orientation of dopamine in the binding pocket, as the aromatic ring of dopamine tends to take an orientation with both the para- and meta-hydroxyl groups being close to polar residues and away from nonpolar residues of the protein. The flipped binding orientations of dopamine in hDAT and dDAT clearly demonstrate a generally valuable insight concerning how the species difference could drastically affect the protein-ligand binding modes, demonstrating that the species difference, which is a factor rarely considered in early drug design stage, must be accounted for throughout the ligand/drug design and discovery processes in general.

  2. Adolescent social defeat alters markers of adult dopaminergic function.

    PubMed

    Novick, Andrew M; Forster, Gina L; Tejani-Butt, Shanaz M; Watt, Michael J

    2011-08-10

    Stressful experiences during adolescence can alter the trajectory of neural development and contribute to psychiatric disorders in adulthood. We previously demonstrated that adolescent male rats exposed to repeated social defeat stress show changes in mesocorticolimbic dopamine content both at baseline and in response to amphetamine when tested in adulthood. In the present study we examined whether markers of adult dopamine function are also compromised by adolescent experience of social defeat. Given that the dopamine transporter as well as dopamine D1 receptors act as regulators of psychostimulant action, are stress sensitive and undergo changes during adolescence, quantitative autoradiography was used to measure [(3)H]-GBR12935 binding to the dopamine transporter and [(3)H]-SCH23390 binding to dopamine D1 receptors, respectively. Our results indicate that social defeat during adolescence led to higher dopamine transporter binding in the infralimbic region of the medial prefrontal cortex and higher dopamine D1 receptor binding in the caudate putamen, while other brain regions analyzed were comparable to controls. Thus it appears that social defeat during adolescence causes specific changes to the adult dopamine system, which may contribute to behavioral alterations and increased drug seeking. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Impact of disruption of secondary binding site S2 on dopamine transporter function.

    PubMed

    Zhen, Juan; Reith, Maarten E A

    2016-09-01

    The structures of the leucine transporter, drosophila dopamine transporter, and human serotonin transporter show a secondary binding site (designated S2 ) for drugs and substrate in the extracellular vestibule toward the membrane exterior in relation to the primary substrate recognition site (S1 ). The present experiments are aimed at disrupting S2 by mutating Asp476 and Ile159 to Ala. Both mutants displayed a profound decrease in [(3) H]DA uptake compared with wild-type associated with a reduced turnover rate kcat . This was not caused by a conformational bias as the mutants responded to Zn(2+) (10 μM) similarly as WT. The dopamine transporters with either the D476A or I159A mutation both displayed a higher Ki for dopamine for the inhibition of [3H](-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane binding than did the WT transporter, in accordance with an allosteric interaction between the S1 and S2 sites. The results provide evidence in favor of a general applicability of the two-site allosteric model of the Javitch/Weinstein group from LeuT to dopamine transporter and possibly other monoamine transporters. X-ray structures of transporters closely related to the dopamine (DA) transporter show a secondary binding site S2 in the extracellular vestibule proximal to the primary binding site S1 which is closely linked to one of the Na(+) binding sites. This work examines the relationship between S2 and S1 sites. We found that S2 site impairment severely reduced DA transport and allosterically reduced S1 site affinity for the cocaine analog [(3) H]CFT. Our results are the first to lend direct support for the application of the two-site allosteric model, advanced for bacterial LeuT, to the human DA transporter. The model states that, after binding of the first DA molecule (DA1 ) to the primary S1 site (along with Na(+) ), binding of a second DA (DA2 ) to the S2 site triggers, through an allosteric interaction, the release of DA1 and Na(+) into the cytoplasm. © 2016 International Society for Neurochemistry.

  4. Brain serotonin and dopamine transporter bindings in adults with high-functioning autism.

    PubMed

    Nakamura, Kazuhiko; Sekine, Yoshimoto; Ouchi, Yasuomi; Tsujii, Masatsugu; Yoshikawa, Etsuji; Futatsubashi, Masami; Tsuchiya, Kenji J; Sugihara, Genichi; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Suda, Shiro; Sugiyama, Toshiro; Takei, Nori; Mori, Norio

    2010-01-01

    Autism is a neurodevelopmental disorder that is characterized by repetitive and/or obsessive interests and behavior and by deficits in sociability and communication. Although its neurobiological underpinnings are postulated to lie in abnormalities of the serotoninergic and dopaminergic systems, the details remain unknown. To determine the occurrence of changes in the binding of serotonin and dopamine transporters, which are highly selective markers for their respective neuronal systems. Using positron emission tomography, we measured the binding of brain serotonin and dopamine transporters in each individual with the radioligands carbon 11 ((11)C)-labeled trans-1,2,3,5,6,10-beta-hexahydro-6-[4-(methylthio)phenyl]pyrrolo-[2,1-a]isoquinoline ([(11)C](+)McN-5652) and 2beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane ([(11)C]WIN-35,428), respectively. Statistical parametric mapping was used for between-subject analysis and within-subject correlation analysis with respect to clinical variables. Participants recruited from the community. Twenty men (age range, 18-26 years; mean [SD] IQ, 99.3 [18.1]) with autism and 20 age- and IQ-matched control subjects. Serotonin transporter binding was significantly lower throughout the brain in autistic individuals compared with controls (P < .05, corrected). Specifically, the reduction in the anterior and posterior cingulate cortices was associated with the impairment of social cognition in the autistic subjects (P < .05, corrected). A significant correlation was also found between repetitive and/or obsessive behavior and interests and the reduction of serotonin transporter binding in the thalamus (P < .05, corrected). In contrast, the dopamine transporter binding was significantly higher in the orbitofrontal cortex of the autistic group (P < .05, corrected in voxelwise analysis). In the orbitofrontal cortex, the dopamine transporter binding was significantly inversely correlated with serotonin transporter binding (r = -0.61; P = .004). The brains of autistic individuals have abnormalities in both serotonin transporter and dopamine transporter binding. The present findings indicate that the gross abnormalities in these neurotransmitter systems may underpin the neurophysiologic mechanism of autism. Our sample was not characteristic or representative of a typical sample of adults with autism in the community.

  5. Effects of Modafinil on Dopamine and Dopamine Transporters in the Male Human Brain: Clinical Implications

    PubMed Central

    Volkow, Nora D.; Fowler, Joanna S.; Logan, Jean; Alexoff, David; Zhu, Wei; Telang, Frank; Wang, Gene-Jack; Jayne, Millard; Hooker, Jacob M.; Wong, Christopher; Hubbard, Barbara; Carter, Pauline; Warner, Donald; King, Payton; Shea, Colleen; Xu, Youwen; Muench, Lisa; Apelskog-Torres, Karen

    2009-01-01

    Context Modafinil, a wake-promoting drug used to treat narcolepsy, is increasingly being used as a cognitive enhancer. Although initially launched as distinct from stimulants that increase extracellular dopamine by targeting dopamine transporters, recent preclinical studies suggest otherwise. Objective To measure the acute effects of modafinil at doses used therapeutically (200 mg and 400 mg given orally) on extracellular dopamine and on dopamine transporters in the male human brain. Design, Setting, and Participants Positron emission tomography with [11C]raclopride (D2/D3 radioligand sensitive to changes in endogenous dopamine) and [11C]cocaine (dopamine transporter radioligand) was used to measure the effects of modafinil on extracellular dopamine and on dopamine transporters in 10 healthy male participants. The study took place over an 8-month period (2007–2008) at Brookhaven National Laboratory. Main Outcome Measures Primary outcomes were changes in dopamine D2/D3 receptor and dopamine transporter availability (measured by changes in binding potential) after modafinil when compared with after placebo. Results Modafinil decreased mean (SD) [11C]raclopride binding potential in caudate (6.1% [6.5%]; 95% confidence interval [CI], 1.5% to 10.8%; P=.02), putamen (6.7% [4.9%]; 95% CI, 3.2% to 10.3%; P=.002), and nucleus accumbens (19.4% [20%]; 95% CI, 5% to 35%; P=.02), reflecting increases in extracellular dopamine. Modafinil also decreased [11C]cocaine binding potential in caudate (53.8% [13.8%]; 95% CI, 43.9% to 63.6%; P<.001), putamen (47.2% [11.4%]; 95% CI, 39.1% to 55.4%; P<.001), and nucleus accumbens (39.3% [10%]; 95% CI, 30% to 49%; P=.001), reflecting occupancy of dopamine transporters. Conclusions In this pilot study, modafinil blocked dopamine transporters and increased dopamine in the human brain (including the nucleus accumbens). Because drugs that increase dopamine in the nucleus accumbens have the potential for abuse, and considering the increasing use of modafinil, these results highlight the need for heightened awareness for potential abuse of and dependence on modafinil in vulnerable populations. PMID:19293415

  6. Longitudinal imaging of the availability of dopamine transporter and D2 receptor in rat striatum following mild ischemia.

    PubMed

    Momosaki, Sotaro; Ito, Miwa; Yamato, Hiroko; Iimori, Hitoshi; Sumiyoshi, Hirokazu; Morimoto, Kenji; Imamoto, Natsumi; Watabe, Tadashi; Shimosegawa, Eku; Hatazawa, Jun; Abe, Kohji

    2017-02-01

    The changes in the availability of striatal dopamine transporter and dopamine D2 receptor after mild focal ischemia in rats were measured using a small animal positron emission tomography system. Mild focal ischemia was induced by 20-minute middle cerebral artery occlusion. [ 11 C]PE2I binding to dopamine transporter was transiently increased on the ipsilateral side of the striatum at 2 days after middle cerebral artery occlusion. On day 7 and 14 after middle cerebral artery occlusion, [ 11 C]PE2I binding levels were decreased. In contrast, [ 11 C]raclopride binding to dopamine D2 receptor in the ipsilateral striatum had not changed at 2 days after middle cerebral artery occlusion. [ 11 C]Raclopride binding was significantly decreased on the ischemic side of the striatum at 7 and 14 days after middle cerebral artery occlusion. Moreover, on day 1 and 2 after middle cerebral artery occlusion, significant circling behavior to the contralateral direction was induced by amphetamine challenge. This behavior disappeared at 7 days after middle cerebral artery occlusion. At 14 days, circling behavior to the ipsilateral direction (middle cerebral artery occlusion side) was significantly increased, and that to the contralateral direction also appeared again. The present study suggested that amphetamine-induced circling behavior indicated striatal dopaminergic alterations and that dopamine transporter and dopamine D2 receptor binding could be key markers for predicting motor dysfunction after mild focal ischemia.

  7. Regulator of G protein signaling-12 modulates the dopamine transporter in ventral striatum and locomotor responses to psychostimulants.

    PubMed

    Gross, Joshua D; Kaski, Shane W; Schroer, Adam B; Wix, Kimberley A; Siderovski, David P; Setola, Vincent

    2018-02-01

    Regulators of G protein signaling are proteins that accelerate the termination of effector stimulation after G protein-coupled receptor activation. Many regulators of G protein signaling proteins are highly expressed in the brain and therefore considered potential drug discovery targets for central nervous system pathologies; for example, here we show that RGS12 is highly expressed in microdissected mouse ventral striatum. Given a role for the ventral striatum in psychostimulant-induced locomotor activity, we tested whether Rgs12 genetic ablation affected behavioral responses to amphetamine and cocaine. RGS12 loss significantly decreased hyperlocomotion to lower doses of both amphetamine and cocaine; however, other outcomes of administration (sensitization and conditioned place preference) were unaffected, suggesting that RGS12 does not function in support of the rewarding properties of these psychostimulants. To test whether observed response changes upon RGS12 loss were caused by changes to dopamine transporter expression and/or function, we prepared crude membranes from the brains of wild-type and RGS12-null mice and measured dopamine transporter-selective [ 3 H]WIN 35428 binding, revealing an increase in dopamine transporter levels in the ventral-but not dorsal-striatum of RGS12-null mice. To address dopamine transporter function, we prepared striatal synaptosomes and measured [ 3 H]dopamine uptake. Consistent with increased [ 3 H]WIN 35428 binding, dopamine transporter-specific [ 3 H]dopamine uptake in RGS12-null ventral striatal synaptosomes was found to be increased. Decreased amphetamine-induced locomotor activity and increased [ 3 H]WIN 35428 binding were recapitulated with an independent RGS12-null mouse strain. Thus, we propose that RGS12 regulates dopamine transporter expression and function in the ventral striatum, affecting amphetamine- and cocaine-induced increases in dopamine levels that specifically elicit acute hyperlocomotor responses.

  8. In Vivo [11C]Dihydrotetrabenazine ([11C]DTBZ) Binding in Rat Striatum: Sensitivity to Dopamine Concentrations

    PubMed Central

    Kilbourn, Michael R.; Butch, Elizabeth R.; Desmond, Timothy; Sherman, Phillip; Harris, Paul E.; Frey, Kirk A.

    2009-01-01

    Introduction The sensitivity of the in vivo binding of [11C]dihydrotetrabenazine ([11C]DTBZ) and [11C]methylphenidate ([11C]MPH) to their respective targets, the vesicular monoamine transporter (VMAT2) and the neuronal membrane dopamine transporter (DAT), after alterations of endogenous levels of dopamine were examined in the rat brain. Methods In vivo binding of [11C]DTBZ and [11C]MPH were determined using a bolus+infusion protocol. In vitro numbers of VMAT2 binding sites were determined by autoradiography. Results Repeated dosing with α-methyl-p-tyrosine (AMPT) at doses that significantly (−75%) depleted brain tissue dopamine levels resulted in increased (+36%) in vivo [11C]DTBZ binding to VMAT2 in the striatum. The increase in binding could be completely reversed by treatment with L-DOPA/benserazide to restore dopamine levels. There were no changes in total numbers of VMAT2 binding sites as measured using in vitro autoradiography. No changes were observed for in vivo [11C]MPH binding to the DAT in the striatum following AMPT pretreatment. Conclusion These results indicate that large reductions of dopamine concentrations in the rat brain can produce modest but significant changes in binding of radioligands to the VMAT2, which can be reversed by repleneshment of dopamine using exogenous L-DOPA. PMID:20122661

  9. [18F]CFT [(18F)WIN 35,428], a radioligand to study the dopamine transporter with PET: characterization in human subjects.

    PubMed

    Laakso, A; Bergman, J; Haaparanta, M; Vilkman, H; Solin, O; Hietala, J

    1998-03-01

    We have characterized the usage of [18F]CFT (also known as [18F]WIN 35,428) as a radioligand for in vivo studies of human dopamine transporter by PET. CFT was labeled with 18F to a high specific activity, and dynamic PET scans were conducted in healthy volunteers at various time points up to 5 h from [18F]CFT injection. The regional distribution of [18F]CFT uptake correlated well with the known distribution of dopaminergic nerve terminals in the human brain and also with that of other dopamine transporter radioligands. Striatal binding peaked at 225 min after injection and declined thereafter, demonstrating the reversible nature of the binding to the dopamine transporter. Therefore, due to the relatively long half-life of 18F (109.8 min), PET scans with [18F]CFT could easily be conducted during the binding equilibrium, allowing estimation of Bmax/Kd values (i.e., binding potential). Binding potentials for putamen and caudate measured at equilibrium were 4.79+/-0.11 and 4.50+/-0.23, respectively. We were able to also visualize midbrain dopaminergic neurons (substantia nigra) with [18F]CFT in some subjects. In conclusion, the labeling of CFT with 18F allows PET scans to be conducted at binding equilibrium, and therefore a high signal-to-noise ratio and reliable quantification of binding potential can be achieved. With a high resolution 3D PET scanner, the quantification of extrastriatal dopamine transporters should become possible.

  10. Neurotransmitter and psychostimulant recognition by the dopamine transporter

    PubMed Central

    Wang, Kevin H.; Penmatsa, Aravind; Gouaux, Eric

    2015-01-01

    Na+/Cl−-coupled biogenic amine transporters are the primary targets of therapeutic and abused drugs, ranging from antidepressants to the psychostimulants cocaine and amphetamines, and to their cognate substrates. Here we determine x-ray crystal structures of the Drosophila melanogaster dopamine transporter (dDAT) bound to its substrate dopamine (DA), a substrate analogue 3,4-dichlorophenethylamine, the psychostimulants D-amphetamine, methamphetamine, or to cocaine and cocaine analogues. All ligands bind to the central binding site, located approximately halfway across the membrane bilayer, in close proximity to bound sodium and chloride ions. The central binding site recognizes three chemically distinct classes of ligands via conformational changes that accommodate varying sizes and shapes, thus illustrating molecular principles that distinguish substrates from inhibitors in biogenic amine transporters. PMID:25970245

  11. Sleep Deprivation Decreases [11C]Raclopride’s Binding to Dopamine D2/D3 Receptors in the Human Brain

    PubMed Central

    Volkow, Nora D.; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S.; Logan, Jean; Wong, Christopher; Ma, Jim; Pradhan, Kith; Tomasi, Dardo; Thanos, Peter K.; Ferré, Sergi; Jayne, Millard

    2009-01-01

    Sleep deprivation can markedly impair human performance contributing to accidents and poor productivity. The mechanisms underlying this impairment are not well understood but brain dopamine systems have been implicated. Here we test whether one night of sleep deprivation changes dopamine brain activity. We studied fifteen healthy subjects using positron emission tomography and [11C]raclopride (dopamine D2/3 receptor radioligand) and [11C]cocaine (dopamine transporter radioligand). Subjects were tested twice; after one night of rested sleep and after on night of sleep deprivation. [11C]Raclopride’s specific binding in striatum and thalamus were significantly reduced after sleep deprivation and the magnitude of this reduction correlated with increases in fatigue (tiredness and sleepiness) and with deterioration in cognitive performance (visual attention and working memory). In contrast sleep deprivation did not affect the specific binding of [11C]cocaine in striatum. Since [11C]raclopride competes with endogenous dopamine for binding to D2/D3 receptors, we interpret the decreases in binding to reflect dopamine increases with sleep deprivation. However, we can not rule out the possibility that decreased [11C]raclopride binding reflects decreases in receptor levels or affinity. Sleep deprivation did not affect dopamine transporters (target for most wake-promoting medications) and thus dopamine increases are likely to reflect increases in dopamine cell firing and/or release rather than decreases in dopamine reuptake. Inasmuch as dopamine-enhancing drugs increase wakefulness we postulate that dopamine increases after sleep deprivation is a mechanism by which the brain maintains arousal as the drive to sleep increases but one that is insufficient to counteract behavioral and cognitive impairment. PMID:18716203

  12. Increased vesicular monoamine transporter binding during early abstinence in human methamphetamine users: Is VMAT2 a stable dopamine neuron biomarker?

    PubMed

    Boileau, Isabelle; Rusjan, Pablo; Houle, Sylvain; Wilkins, Diana; Tong, Junchao; Selby, Peter; Guttman, Mark; Saint-Cyr, Jean A; Wilson, Alan A; Kish, Stephen J

    2008-09-24

    Animal data indicate that methamphetamine can damage striatal dopamine terminals. Efforts to document dopamine neuron damage in living brain of methamphetamine users have focused on the binding of [(11)C]dihydrotetrabenazine (DTBZ), a vesicular monoamine transporter (VMAT2) positron emission tomography (PET) radioligand, as a stable dopamine neuron biomarker. Previous PET data report a slight decrease in striatal [(11)C]DTBZ binding in human methamphetamine users after prolonged (mean, 3 years) abstinence, suggesting that the reduction would likely be substantial in early abstinence. We measured striatal VMAT2 binding in 16 recently withdrawn (mean, 19 d; range, 1-90 d) methamphetamine users and in 14 healthy matched-control subjects during a PET scan with (+)[(11)C]DTBZ. Unexpectedly, striatal (+)[(11)C]DTBZ binding was increased in methamphetamine users relative to controls (+22%, caudate; +12%, putamen; +11%, ventral striatum). Increased (+)[(11)C]DTBZ binding in caudate was most marked in methamphetamine users abstinent for 1-3 d (+41%), relative to the 7-21 d (+15%) and >21 d (+9%) groups. Above-normal VMAT2 binding in some drug users suggests that any toxic effect of methamphetamine on dopamine neurons might be masked by an increased (+)[(11)C]DTBZ binding and that VMAT2 radioligand binding might not be, as is generally assumed, a "stable" index of dopamine neuron integrity in vivo. One potential explanation for increased (+)[(11)C]DTBZ binding is that VMAT2 binding is sensitive to changes in vesicular dopamine storage levels, presumably low in drug users. If correct, (+)[(11)C]DTBZ might be a useful imaging probe to correlate changes in brain dopamine stores and behavior in users of methamphetamine.

  13. Occupancy of the Zinc-binding Site by Transition Metals Decreases the Substrate Affinity of the Human Dopamine Transporter by an Allosteric Mechanism*

    PubMed Central

    Li, Yang; Mayer, Felix P.; Hasenhuetl, Peter S.; Burtscher, Verena; Schicker, Klaus; Sitte, Harald H.; Freissmuth, Michael; Sandtner, Walter

    2017-01-01

    The human dopamine transporter (DAT) has a tetrahedral Zn2+-binding site. Zn2+-binding sites are also recognized by other first-row transition metals. Excessive accumulation of manganese or of copper can lead to parkinsonism because of dopamine deficiency. Accordingly, we examined the effect of Mn2+, Co2+, Ni2+, and Cu2+ on transport-associated currents through DAT and DAT-H193K, a mutant with a disrupted Zn2+-binding site. All transition metals except Mn2+ modulated the transport cycle of wild-type DAT with affinities in the low micromolar range. In this concentration range, they were devoid of any action on DAT-H193K. The active transition metals reduced the affinity of DAT for dopamine. The affinity shift was most pronounced for Cu2+, followed by Ni2+ and Zn2+ (= Co2+). The extent of the affinity shift and the reciprocal effect of substrate on metal affinity accounted for the different modes of action: Ni2+ and Cu2+ uniformly stimulated and inhibited, respectively, the substrate-induced steady-state currents through DAT. In contrast, Zn2+ elicited biphasic effects on transport, i.e. stimulation at 1 μm and inhibition at 10 μm. A kinetic model that posited preferential binding of transition metal ions to the outward-facing apo state of DAT and a reciprocal interaction of dopamine and transition metals recapitulated all experimental findings. Allosteric activation of DAT via the Zn2+-binding site may be of interest to restore transport in loss-of-function mutants. PMID:28096460

  14. Reduced dopamine transporter binding predates impulse control disorders in Parkinson's disease.

    PubMed

    Vriend, Chris; Nordbeck, Anna H; Booij, Jan; van der Werf, Ysbrand D; Pattij, Tommy; Voorn, Pieter; Raijmakers, Pieter; Foncke, Elisabeth M J; van de Giessen, Elsmarieke; Berendse, Henk W; van den Heuvel, Odile A

    2014-06-01

    Impulse control disorders (ICD) are relatively common in Parkinson's disease (PD) and generally are regarded as adverse effects of dopamine replacement therapy, although certain demographic and clinical risk factors are also involved. Previous single-photon emission computed tomography (SPECT) studies showed reduced ventral striatal dopamine transporter binding in Parkinson patients with ICD compared with patients without. Nevertheless, these studies were performed in patients with preexisting impulse control impairments, which impedes clear-cut interpretation of these findings. We retrospectively procured follow-up data from 31 medication-naïve PD patients who underwent dopamine transporter SPECT imaging at baseline and were subsequently treated with dopamine replacement therapy. We used questionnaires and a telephone interview to assess medication status and ICD symptom development during the follow-up period (31.5 ± 12.0 months). Eleven patients developed ICD symptoms during the follow-up period, eight of which were taking dopamine agonists. The PD patients with ICD symptoms at follow-up had higher baseline depressive scores and lower baseline dopamine transporter availability in the right ventral striatum, anterior-dorsal striatum, and posterior putamen compared with PD patients without ICD symptoms. No baseline between-group differences in age and disease stage or duration were found. The ICD symptom severity correlated negatively with baseline dopamine transporter availability in the right ventral and anterior-dorsal striatum. The results of this preliminary study show that reduced striatal dopamine transporter availability predates the development of ICD symptoms after dopamine replacement therapy and may constitute a neurobiological risk factor related to a lower premorbid dopamine transporter availability or a more pronounced dopamine denervation in PD patients susceptible to ICD. © 2014 International Parkinson and Movement Disorder Society.

  15. Zn(2+) site engineering at the oligomeric interface of the dopamine transporter.

    PubMed

    Norgaard-Nielsen, Kristine; Norregaard, Lene; Hastrup, Hanne; Javitch, Jonathan A; Gether, Ulrik

    2002-07-31

    Increasing evidence suggests that Na(+)/Cl(-)-dependent neurotransmitter transporters exist as homo-oligomeric proteins. However, the functional implication of this oligomerization remains unclear. Here we demonstrate the engineering of a Zn(2+) binding site at the predicted dimeric interface of the dopamine transporter (DAT) corresponding to the external end of transmembrane segment 6. Upon binding to this site, which involves a histidine inserted in position 310 (V310H) and the endogenous Cys306 within the same DAT molecule, Zn(2+) potently inhibits [(3)H]dopamine uptake. These data provide indirect evidence that conformational changes critical for the translocation process may occur at the interface between two transporter molecules in the oligomeric structure.

  16. Tamoxifen protects male mice nigrostriatal dopamine against methamphetamine-induced toxicity.

    PubMed

    Bourque, Mélanie; Liu, Bin; Dluzen, Dean E; Di Paolo, Thérèse

    2007-11-01

    The selective estrogen receptor modulator tamoxifen and estradiol were shown to protect nigrostriatal dopamine concentration loss by methamphetamine in female mice whereas male mice were protected only by tamoxifen. The present study examined the protective properties of tamoxifen in male mice on several nigrostriatal dopaminergic markers and body temperature. Intact male mice were administered 12.5 or 50 microg tamoxifen 24 h before methamphetamine treatment. Basal body temperatures of male mice remained unchanged by the tamoxifen treatment. Methamphetamine reduced striatal dopamine and its metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid concentrations, striatal and substantia nigra dopamine and vesicular monoamine transporter specific binding as well substantia nigra dopamine and vesicular monoamine transporter mRNA levels and increased striatal preproenkephalin mRNA levels. These methamphetamine effects were not altered by 12.5 microg tamoxifen except for increased striatal dopamine metabolites and turnover. Tamoxifen at 50 microg reduced the methamphetamine effect on striatal dopamine concentration, dopamine transporter specific binding and prevented the increase in preproenkephalin mRNA levels; in the substantia nigra tamoxifen prevented the decrease of dopamine transporter mRNA levels. The present results show a tamoxifen dose-dependent prevention of loss of various dopaminergic markers against methamphetamine-induced toxicity in male mice. Since this is the only known hormonal protection of male mice against methamphetamine toxicity, these findings provide important new information on specific parameters of nigrostriatal dopaminergic function preserved by tamoxifen.

  17. Carbon-11-cocaine binding compared at subpharmacological and pharmacological doses: A PET study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, N.D.; Fowler, J.S.; Logan, J.

    The authors have characterized cocaine binding in the brain to a high-affinity site on the dopamine transporter using PET and tracer doses of [{sup 11}C]cocaine in the baboon in vivo. The binding pattern, however, of cocaine at tracer (subpharmacological) doses may differ from that observed when the drug is taken in behaviorally active doses, particularly since in vitro studies have shown that cocaine also binds to low affinity binding sites. PET was used to compare and characterize [{sup 11}C]cocaine binding in the baboon brain at low subpharmacological (18 {mu}g average dose) and at pharmacological (8000 {mu}g) doses. Serial studies onmore » the same day in the same baboon were used to assess the reproducibility of repeated measures and to assess the effects of drugs which inhibit the dopamine, norepinephrine and serotonin transporters. Time-activity curves from brain and the arterial plasma input function were used to calculate the steady-state distribution volume (DV). At subpharmacological doses, [{sup 11}C]cocaine had a more homogeneous distribution. Bmax/Kd for sub-pharmacological [{sup 11}C]cocaine corresponded to 0.5-0.6 and for pharmacological [{sup 11}C]cocaine it corresponded to 0.1-0.2. Two-point Scatchard analysis gave Bmax = 2300 pmole/g and Kd = 3600 nM. Bmax/Kd for sub-pharmacological doses of [{sup 11}C]cocaine was decreased by cocaine and drugs that inhibit the dopamine transporter, to 0.1-0.2, but not by drugs that inhibit the serotonin or the norepinephrine transporter. None of these drugs changed Bmax/Kd for a pharmacological dose of [{sup 11}C]cocaine. At subpharmacological doses, [{sup 11}C]cocaine binds predominantly to a high-affinity site on the dopamine transporter. 36 refs., 4 figs., 5 tabs.« less

  18. Serotonin and dopamine transporter binding in children with autism determined by SPECT.

    PubMed

    Makkonen, Ismo; Riikonen, Raili; Kokki, Hannu; Airaksinen, Mauno M; Kuikka, Jyrki T

    2008-08-01

    Disturbances in the serotonergic system have been recognized in autism. To investigate the association between serotonin and dopamine transporters and autism, we studied 15 children (14 males, one female; mean age 8 y 8 mo [SD 3 y 10 mo]) with autism and 10 non-autistic comparison children (five males, five females; mean age 9 y 10 mo [SD 2 y 8 mo]) using single-photon emission computed tomography (SPECT) with [123 I] nor-beta-CIT. The children, with autism were studied during light sedation. They showed reduced serotonin transporter (SERT) binding capacity in the medial frontal cortex, midbrain, and temporal lobe areas. However, after correction due to the estimated effect of sedation, the difference remained significant only in the medial frontal cortex area (p=0.002). In the individuals with autism dopamine transporter (DAT) binding did not differ from that of the comparison group. The results indicate that SERT binding capacity is disturbed in autism. The reduction is more evident in adolescence than in earlier childhood. The low SERT binding reported here and the low serotonin synthesis capacity shown elsewhere may indicate maturation of a lesser number of serotonergic nerve terminals in individuals with autism.

  19. Serotonin and dopamine transporter PET changes in the premotor phase of LRRK2 parkinsonism: cross-sectional studies.

    PubMed

    Wile, Daryl J; Agarwal, Pankaj A; Schulzer, Michael; Mak, Edwin; Dinelle, Katherine; Shahinfard, Elham; Vafai, Nasim; Hasegawa, Kazuko; Zhang, Jing; McKenzie, Jessamyn; Neilson, Nicole; Strongosky, Audrey; Uitti, Ryan J; Guttman, Mark; Zabetian, Cyrus P; Ding, Yu-Shin; Adam, Mike; Aasly, Jan; Wszolek, Zbigniew K; Farrer, Matthew; Sossi, Vesna; Stoessl, A Jon

    2017-05-01

    People with Parkinson's disease can show premotor neurochemical changes in the dopaminergic and non-dopaminergic systems. Using PET, we assessed whether dopaminergic and serotonin transporter changes are similar in LRRK2 mutation carriers with Parkinson's disease and individuals with sporadic Parkinson's disease, and whether LRRK2 mutation carriers without motor symptoms show PET changes. We did two cross-sectional PET studies at the Pacific Parkinson's Research Centre in Vancouver, BC, Canada. We included LRRK2 mutation carriers with or without manifest Parkinson's disease, people with sporadic Parkinson's disease, and age-matched healthy controls, all aged 18 years or older. People with Parkinson's disease were diagnosed by a neurologist with movement disorder training, in accordance with the UK Parkinson's Disease Society Brain Bank criteria. LRRK2 carrier status was confirmed by bidirectional Sanger sequencing. In the first study, LRRK2 mutation carriers with or without manifest Parkinson's disease who were referred for investigation between July, 1999, and January, 2012, were scanned with PET tracers for the membrane dopamine transporter, and dopamine synthesis and storage ( 18 F-6-fluoro-L-dopa; 18 F-FDOPA). We compared findings with those in people with sporadic Parkinson's disease and age-matched healthy controls. In the second study, distinct groups of LRRK2 mutation carriers, individuals with sporadic Parkinson's disease, and age-matched healthy controls seen from November, 2012, to May, 2016, were studied with tracers for the serotonin transporter and vesicular monoamine transporter 2 (VMAT2). Striatal dopamine transporter binding, VMAT2 binding, 18 F-FDOPA uptake, and serotonin transporter binding in multiple brain regions were compared by ANCOVA, adjusted for age. Between January, 1997, and January, 2012, we obtained data for our first study from 40 LRRK2 mutation carriers, 63 individuals with sporadic Parkinson's disease, and 35 healthy controls. We identified significant group differences in striatal dopamine transporter binding (all age ranges in caudate and putamen, p<0·0001) and 18 F-FDOPA uptake (in caudate: age ≤50 years, p=0·0002; all other age ranges, p<0·0001; in putamen: all age ranges, p<0·0001). LRRK2 mutation carriers with manifest Parkinson's disease (n=15) had reduced striatal dopamine transporter binding and 18 F-FDOPA uptake, comparable with amounts seen in individuals with sporadic Parkinson's disease of similar duration. LRRK2 mutation carriers without manifest Parkinson's disease (n=25) had greater 18 F-FDOPA uptake and dopamine transporter binding than did individuals with sporadic Parkinson's disease, with 18 F-FDOPA uptake comparable with controls and dopamine transporter binding lower than in controls. Between November, 2012, and May, 2016, we obtained data for our second study from 16 LRRK2 mutation carriers, 13 individuals with sporadic Parkinson's disease, and nine healthy controls. Nine LRRK2 mutation carriers without manifest Parkinson's disease had significantly elevated serotonin transporter binding in the hypothalamus (compared with controls, individuals with LRRK2 Parkinson's disease, and people with sporadic Parkinson's disease, p<0·0001), striatum (compared with people with sporadic Parkinson's disease, p=0·02), and brainstem (compared with LRRK2 mutation carriers with manifest Parkinson's disease, p=0·01), after adjustment for age. Serotonin transporter binding in the cortex did not differ significantly between groups after age adjustment. Striatal VMAT2 binding was reduced in all individuals with manifest Parkinson's disease and reduced asymmetrically in one LRRK2 mutation carrier without manifest disease. Dopaminergic and serotonergic changes progress in a similar fashion in LRRK2 mutation carriers with manifest Parkinson's disease and individuals with sporadic Parkinson's disease, but LRRK2 mutation carriers without manifest Parkinson's disease show increased serotonin transporter binding in the striatum, brainstem, and hypothalamus, possibly reflecting compensatory changes in serotonergic innervation preceding the motor onset of Parkinson's disease. Increased serotonergic innervation might contribute to clinical differences in LRRK2 Parkinson's disease, including the emergence of non-motor symptoms and, potentially, differences in the long-term response to levodopa. Canada Research Chairs, Michael J Fox Foundation, National Institutes of Health, Pacific Alzheimer Research Foundation, Pacific Parkinson's Research Institute, National Research Council of Canada. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Nitrogen-based drugs are not essential for blockade of monoamine transporters.

    PubMed

    Madras, B K; Pristupa, Z B; Niznik, H B; Liang, A Y; Blundell, P; Gonzalez, M D; Meltzer, P C

    1996-12-01

    In brain, monoamine transporters are principal targets of widely used therapeutic drugs including antidepressants, methylphenidate (Ritalin), and the addictive drug cocaine. Without exception, these transport blocking agents contain an amine nitrogen. A prevalent view and untested premise is that an amine nitrogen is needed to bind to the same counterion on the transporter as does the amine nitrogen of the monoamine neurotransmitter. We report that several compounds without nitrogen (8-oxa-bicyclo-3-aryl-[3.2.1] octanes, or aryloxatropanes) are active at monoamine transporters. One of these, tropoxane (0-914), bound with high affinity to the dopamine (IC50: 3.35 +/- 0.39 nM), serotonin (IC50: 6.52 +/- 2.05 nM), and norepinephrine (IC50: 20.0 +/- 0.3 nM) transporters in monkey brain, the human striatal dopamine transporter (IC50: 5.01 +/- 1.74 nM), and blocked dopamine transport (IC50: 7.2 +/- 3.0 nM) in COS-7 cells transfected with the human dopamine transporter. These unique compounds require a revision of current concepts of the drug binding domains on monoamine transporters, open avenues for discovery of a new generation of drugs and raise the issue of whether mammalian transporters and receptors may respond to, as yet, undiscovered non-amine bearing neurotransmitters or drugs.

  1. Fluoralkenyl nortropanes

    DOEpatents

    Goodman, Mark M.; Chen, Ping

    2002-02-05

    Provided are compounds of the following formula: ##STR1## wherein R is C2-C6 mono- or multi-unsaturated hydrocarbon having one or more ethylene, acetylene or allene groups, A is 18 or 19, and X is H or halogen. The compounds of the invention bind to dopamine transporter with high affinity and selectivity and are thus useful as diagnostic and therapeutic agents for diseases associated with dopamine transporter dysfunction. The radiolabeled compounds are useful as imaging agents for visualizing the location and density of dopamine transporter by PET imaging.

  2. Long-Term Stimulant Treatment Affects Brain Dopamine Transporter Level in Patients with Attention Deficit Hyperactive Disorder

    PubMed Central

    Wang, Gene-Jack; Volkow, Nora D.; Wigal, Timothy; Kollins, Scott H.; Newcorn, Jeffrey H.; Telang, Frank; Logan, Jean; Jayne, Millard; Wong, Christopher T.; Han, Hao; Fowler, Joanna S.; Zhu, Wei; Swanson, James M.

    2013-01-01

    Objective Brain dopamine dysfunction in attention deficit/hyperactivity disorder (ADHD) could explain why stimulant medications, which increase dopamine signaling, are therapeutically beneficial. However while the acute increases in dopamine induced by stimulant medications have been associated with symptom improvement in ADHD the chronic effects have not been investigated. Method We used positron emission tomography and [11C]cocaine (dopamine transporter radioligand) to measure dopamine transporter availability in the brains of 18 never-medicated adult ADHD subjects prior to and after 12 months of treatment with methylphenidate and in 11 controls who were also scanned twice at 12 months interval but without stimulant medication. Dopamine transporter availability was quantified as non-displaceable binding potential using a kinetic model for reversible ligands. Results Twelve months of methylphenidate treatment increased striatal dopamine transporter availability in ADHD (caudate, putamen and ventral striatum: +24%, p<0.01); whereas there were no changes in control subjects retested at 12-month interval. Comparisons between controls and ADHD participants revealed no significant difference in dopamine transporter availability prior to treatment but showed higher dopamine transporter availability in ADHD participants than control after long-term treatment (caudate: p<0.007; putamen: p<0.005). Conclusion Upregulation of dopamine transporter availability during long-term treatment with methylphenidate may decrease treatment efficacy and exacerbate symptoms while not under the effects of the medication. Our findings also suggest that the discrepancies in the literature regarding dopamine transporter availability in ADHD participants (some studies reporting increases, other no changes and other decreases) may reflect, in part, differences in treatment histories. PMID:23696790

  3. Long-term stimulant treatment affects brain dopamine transporter level in patients with attention deficit hyperactive disorder.

    PubMed

    Wang, Gene-Jack; Volkow, Nora D; Wigal, Timothy; Kollins, Scott H; Newcorn, Jeffrey H; Telang, Frank; Logan, Jean; Jayne, Millard; Wong, Christopher T; Han, Hao; Fowler, Joanna S; Zhu, Wei; Swanson, James M

    2013-01-01

    Brain dopamine dysfunction in attention deficit/hyperactivity disorder (ADHD) could explain why stimulant medications, which increase dopamine signaling, are therapeutically beneficial. However while the acute increases in dopamine induced by stimulant medications have been associated with symptom improvement in ADHD the chronic effects have not been investigated. We used positron emission tomography and [(11)C]cocaine (dopamine transporter radioligand) to measure dopamine transporter availability in the brains of 18 never-medicated adult ADHD subjects prior to and after 12 months of treatment with methylphenidate and in 11 controls who were also scanned twice at 12 months interval but without stimulant medication. Dopamine transporter availability was quantified as non-displaceable binding potential using a kinetic model for reversible ligands. Twelve months of methylphenidate treatment increased striatal dopamine transporter availability in ADHD (caudate, putamen and ventral striatum: +24%, p<0.01); whereas there were no changes in control subjects retested at 12-month interval. Comparisons between controls and ADHD participants revealed no significant difference in dopamine transporter availability prior to treatment but showed higher dopamine transporter availability in ADHD participants than control after long-term treatment (caudate: p<0.007; putamen: p<0.005). Upregulation of dopamine transporter availability during long-term treatment with methylphenidate may decrease treatment efficacy and exacerbate symptoms while not under the effects of the medication. Our findings also suggest that the discrepancies in the literature regarding dopamine transporter availability in ADHD participants (some studies reporting increases, other no changes and other decreases) may reflect, in part, differences in treatment histories.

  4. Oral Administration of Methylphenidate Blocks the Effect of Cocaine on Uptake at the Drosophila Dopamine Transporter

    PubMed Central

    2013-01-01

    Although our understanding of the actions of cocaine in the brain has improved, an effective drug treatment for cocaine addiction has yet to be found. Methylphenidate binds the dopamine transporter and increases extracellular dopamine levels in mammalian central nervous systems similar to cocaine, but it is thought to elicit fewer addictive and reinforcing effects owing to slower pharmacokinetics for different routes of administration between the drugs. This study utilizes the fruit fly model system to quantify the effects of oral methylphenidate on dopamine uptake during direct cocaine exposure to the fly CNS. The effect of methylphenidate on the dopamine transporter has been explored by measuring the uptake of exogenously applied dopamine. The data suggest that oral consumption of methylphenidate inhibits the Drosophila dopamine transporter and the inhibition is concentration dependent. The peak height increased to 150% of control when cocaine was used to block the dopamine transporter for untreated flies but only to 110% for methylphenidate-treated flies. Thus, the dopamine transporter is mostly inhibited for the methylphenidate-fed flies before the addition of cocaine. The same is true for the rate of the clearance of dopamine measured by amperometry. For untreated flies the rate of clearance changes 40% when the dopamine transporter is inhibited with cocaine, and for treated flies the rate changes only 10%. The results were correlated to the in vivo concentration of methylphenidate determined by CE-MS. Our data suggest that oral consumption of methylphenidate inhibits the Drosophila dopamine transporter for cocaine uptake, and the inhibition is concentration dependent. PMID:23402315

  5. The binding sites for benztropines and dopamine in the dopamine transporter overlap

    PubMed Central

    Bisgaard, Heidi; Larsen, M. Andreas B.; Mazier, Sonia; Beuming, Thijs; Newman, Amy Hauck; Weinstein, Harel; Shi, Lei; Loland, Claus J.; Gether, Ulrik

    2013-01-01

    Analogues of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational modeling together with site-directed mutagenesis to characterize the binding site for BZTs in DAT. Docking into molecular models based on the structure of the bacterial homologue LeuT supported a BZT binding site that overlaps with the substrate binding pocket. In agreement, mutations of residues within the pocket, including Val1523.46* to Ala or Ile, Ser4228.60 to Ala and Asn1573.51 to Cys or Ala, resulted in decreased affinity for BZT and the analog JHW007, as assessed in [3H]dopamine uptake inhibition assays and/or [3H]CFT competition binding assay. A putative polar interaction of one of the phenyl ring fluorine substituents in JHW007 with Asn1573.51 was used as a criterion for determining likely binding poses and establish a structural context for the mutagenesis findings. The analysis positioned the other fluorine substituted phenyl ring of JHW007 in close proximity to Ala47910.51/Ala48010.52 in transmembrane segment (TM) 10. The lack of such an interaction for BZT led to a more tilted orientation, as compared to JHW007, bringing one of the phenyl rings even closer to Ala47910.51/Ala48010.52. Mutation of Ala47910.51 and Ala48010.52 to valines supported these predictions with a larger decrease in the affinity for BZT than for JHW007. Summarized, our data suggest that BZTs display a classical competitive binding mode with binding sites overlapping those of cocaine and dopamine. PMID:20816875

  6. Effects of fluoxetine treatment on striatal dopamine transporter binding and cerebrospinal fluid insulin-like growth factor-1 in children with autism.

    PubMed

    Makkonen, I; Kokki, H; Kuikka, J; Turpeinen, U; Riikonen, R

    2011-10-01

    A positive effect of fluoxetine has been shown in some children with autism. The present study was undertaken to correlate striatal dopamine transporter (DAT) binding and cerebrospinal fluid insulin-like growth factor-1 (CSF-IGF-1) with clinical response in autistic children (n=13, age 5-16 years) after a 6-month fluoxetine treatment. Good clinical responders (n=6) had a decrease (p=0.031) in DAT binding as assessed using single-photon emission computed tomography with [123I]-nor-β-CIT, whereas poor responders had a trend to an increase. An increase in CSF-IGF-1 (p=0.003) was detected after the treatment period, but no correlation between the clinical response and CSF-IGF-1 was found. In conclusion, fluoxetine decreases DAT binding indicating alleviation of the hyperdopaminergic state and increases CSF-IGF-1 concentration, which may also have a neuroprotective effect against dopamine-induced neurotoxicity in autistic children. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Dopamine transporter-dependent and -independent striatal binding of the benztropine analog JHW 007, a cocaine antagonist with low abuse liability

    USDA-ARS?s Scientific Manuscript database

    The benztropine analog JHW 007 displays high affinity for the dopamine transporter (DAT), but unlike typical DAT ligands, has relatively low abuse liability and blocks effects of cocaine,including its self-administration. To determine sites responsible for the cocaine-antagonist effects of JHW 007, ...

  8. Vesicular neurotransmitter transporters in Huntington's disease: initial observations and comparison with traditional synaptic markers.

    PubMed

    Suzuki, M; Desmond, T J; Albin, R L; Frey, K A

    2001-09-15

    Markers of identified neuronal populations have previously suggested selective degeneration of projection neurons in Huntington's disease (HD) striatum. Interpretations are, however, limited by effects of compensatory regulation and atrophy. Studies of the vesicular monoamine transporter type-2 (VMAT2) and of the vesicular acetylcholine transporter (VAChT) in experimental animals indicate that they are robust markers of presynaptic integrity and are not subject to regulation. We measured dopamine and acetylcholine vesicular transporters to characterize the selectivity of degeneration in HD striatum. Brains were obtained at autopsy from four HD patients and five controls. Autoradiography was used to quantify radioligand binding to VMAT2, VAChT, the dopamine plasmalemmal transporter (DAT), benzodiazepine (BZ) binding sites, and D2-type dopamine receptors. The activity of choline acetyltransferase (ChAT) was determined as an additional marker of cholinergic neurons. Autoradiograms were analyzed by video-assisted densitometry and assessment of atrophy was made from regional structural areas in the coronal projection. Striatal VMAT2, DAT, and VAChT concentrations were unchanged or increased, while D2 and BZ binding and ChAT activity were decreased in HD. After atrophy correction, all striatal binding sites were decreased. However, the decrease in ChAT activity was 3-fold greater than that of VAChT binding. In addition to degeneration of striatal projection neurons, there are losses of extrinsic nigrostriatal projections and of striatal cholinergic interneurons in HD on the basis of vesicular transporter measures. There is also markedly reduced expression of ChAT by surviving cholinergic striatal interneurons. Copyright 2001 Wiley-Liss, Inc.

  9. Intranasal Dopamine Reduces In Vivo [(123)I]FP-CIT Binding to Striatal Dopamine Transporter: Correlation with Behavioral Changes and Evidence for Pavlovian Conditioned Dopamine Response.

    PubMed

    de Souza Silva, Maria A; Mattern, Claudia; Decheva, Cvetana; Huston, Joseph P; Sadile, Adolfo G; Beu, Markus; Müller, H-W; Nikolaus, Susanne

    2016-01-01

    Dopamine (DA), which does not cross the blood-brain barrier, has central and behavioral effects when administered via the nasal route. Neither the mechanisms of central action of intranasal dopamine (IN-DA), nor its mechanisms of diffusion and transport into the brain are well understood. We here examined whether IN-DA application influences dopamine transporter (DAT) binding in the dorsal striatum and assessed the extent of binding in relation to motor and exploratory behaviors. We hypothesized that, based on the finding of increased extracellular DA in the striatum induced by application of IN-DA, binding of [(123)I]FP-CIT to the DAT should be decreased due to competition at the receptor. Rats were administered 3 mg/kg IN-DA and vehicle (VEH), with IN-DA injection either preceding or following VEH. Then motor and exploratory behaviors (traveled distance, velocity, center time, sitting, rearing, head-shoulder motility, grooming) were assessed for 30 min in an open field prior to administration of [(123)I]FP-CIT. DAT binding after IN-DA and VEH was measured with small animal SPECT 2 h following administration of the radioligand. (1) After IN-DA application, striatal DAT binding was significantly lower as compared to VEH, indicating that the nasally delivered DA had central action and increased DA levels comparable to that found previously with L-DOPA administration; and (2) DAT binding in response to intranasal VEH was lower when IN-DA application preceded VEH treatment. This finding is suggestive of Pavlovian conditioning of DA at the level of the DAT, since the DA treatment modified (decreased) the binding in response to the subsequent VEH treatment. VEH treatment also reduced motor and exploratory behaviors more when applied before, as compared to when it followed IN-DA application, also indicative of behavioral Pavlovian conditioning akin to that found upon application of various psychostimulant drugs. (a) demonstrate a direct central action of intranasally applied DA on the DAT in the dorsal striatum, indicating enhanced DA availability; and (b) provide first evidence of a Pavlovian conditioned DA response at the DAT. The latter results have relevance to understanding neurochemical mechanisms that underlie placebo action in the treatment of Parkinsonian patients.

  10. Dopamine transporter SPECT in patients with mitochondrial disorders

    PubMed Central

    Minnerop, M; Kornblum, C; Joe, A; Tatsch, K; Kunz, W; Klockgether, T; Wullner, U; Reinhardt, M

    2005-01-01

    Objective : To investigate the dopaminergic system in patients with known mitochondrial disorders and complex I deficiency. Methods: Dopamine transporter density was studied in 10 female patients with mitochondrial complex I deficiency by 123I-FP-CIT (N-ß-fluoropropyl-2ß-carbomethyl-3ß-(4-iodophenyl)-nortropane) SPECT. Results: No differences in 123I-FP-CIT striatal binding ratios were observed and no correlation of the degree of complex I deficiency and striatal binding ratios could be detected. Conclusions: These data argue against the possibility that mitochondrial complex I deficiency by itself is sufficient to elicit dopaminergic cell loss. PMID:15608010

  11. Computational and Biochemical Docking of the Irreversible Cocaine Analog RTI 82 Directly Demonstrates Ligand Positioning in the Dopamine Transporter Central Substrate-binding Site*

    PubMed Central

    Dahal, Rejwi Acharya; Pramod, Akula Bala; Sharma, Babita; Krout, Danielle; Foster, James D.; Cha, Joo Hwan; Cao, Jianjing; Newman, Amy Hauck; Lever, John R.; Vaughan, Roxanne A.; Henry, L. Keith

    2014-01-01

    The dopamine transporter (DAT) functions as a key regulator of dopaminergic neurotransmission via re-uptake of synaptic dopamine (DA). Cocaine binding to DAT blocks this activity and elevates extracellular DA, leading to psychomotor stimulation and addiction, but the mechanisms by which cocaine interacts with DAT and inhibits transport remain incompletely understood. Here, we addressed these questions using computational and biochemical methodologies to localize the binding and adduction sites of the photoactivatable irreversible cocaine analog 3β-(p-chlorophenyl)tropane-2β-carboxylic acid, 4′-azido-3′-iodophenylethyl ester ([125I]RTI 82). Comparative modeling and small molecule docking indicated that the tropane pharmacophore of RTI 82 was positioned in the central DA active site with an orientation that juxtaposed the aryliodoazide group for cross-linking to rat DAT Phe-319. This prediction was verified by focused methionine substitution of residues flanking this site followed by cyanogen bromide mapping of the [125I]RTI 82-labeled mutants and by the substituted cysteine accessibility method protection analyses. These findings provide positive functional evidence linking tropane pharmacophore interaction with the core substrate-binding site and support a competitive mechanism for transport inhibition. This synergistic application of computational and biochemical methodologies overcomes many uncertainties inherent in other approaches and furnishes a schematic framework for elucidating the ligand-protein interactions of other classes of DA transport inhibitors. PMID:25179220

  12. Deep serotonergic and dopaminergic structures in fetal alcoholic syndrome: a study with nor-beta-CIT-single-photon emission computed tomography and magnetic resonance imaging volumetry.

    PubMed

    Riikonen, Raili S; Nokelainen, Pekka; Valkonen, Kirsi; Kolehmainen, Anni I; Kumpulainen, Kirsti I; Könönen, Mervi; Vanninen, Ritva-Liisa S; Kuikka, Jyrki T

    2005-06-15

    In prenatally alcohol exposed children, the relationship between brain structure and function is highlighted to be important to study. We studied 12 children with fetal alcoholic syndrome (FAS) and fetal alcoholic effects (FAE) by magnetic resonance imaging volumetry and by single-photon emission computed tomography with iodine-123 labeled 2beta-carbomethoxy-3beta-(4-iodophenyl) ([123I]nor-beta-CIT) and related these findings to those from neuropsychological and psychiatric tests. The absolute volumes of studied nuclei, including the brain volume, were significantly smaller in FAS/FAE children than in control patients. After normalization of volumes, significant differences were not found. Left hippocampus was smaller than the right (p<.003) but did not significantly differ from the control subjects. The children with FAS/FAE showed reduced serotonin (p=.02) in the medial frontal cortex and slightly increased striatal dopamine transporter binding. All FAS/FAE children had attention-deficit/hyperkinetic disorder (ADHD). None had depression. The internalization scores correlated with dopamine transporter binding (r=-.65; p=.03). The results indicate that the serotonin (5-HT) system may be vulnerable to the effects of ethanol in utero. The high dopamine transporter levels may correlate with the ADHD findings. Reduced serotonin and increased binding of dopamine transporter are also seen in type 2 alcoholism. Some behavioral problems of FAS/FAE might be preventable by early intervention and treatment.

  13. Comparison of phosphodiesterase 10A, dopamine receptors D1 and D2 and dopamine transporter ligand binding in the striatum of the R6/2 and BACHD mouse models of Huntington's disease.

    PubMed

    Miller, Silke; Hill Della Puppa, Geraldine; Reidling, Jack; Marcora, Edoardo; Thompson, Leslie M; Treanor, James

    2014-01-01

    Phosphodiesterase 10A (PDE10A) is expressed at high levels in the striatum and has been proposed both as a biomarker for Huntington's disease pathology and as a target for intervention. PDE10A radiotracers have been successfully used to measure changes in binding density in Huntington's disease patients, but little is known about PDE10A binding in mouse models that are used extensively to model pathology and test therapeutic interventions. Our study investigated changes in PDE10A binding using the selective tracer 3H-7980 at specific ages of two Huntington's disease transgenic mouse models: R6/2, a short-lived model carrying exon-1 of mutant HTT and BACHD, a longer-lived model carrying full-length mutant HTT. PDE10A binding was compared to binding of known markers of striatal atrophy in Huntington's disease, e.g. dopamine transporter (DAT) and dopamine receptors D1 and D2. We found that in the R6/2 model at 6 weeks of age, mice showed high variability of binding, however binding of all ligands was significantly decreased at 8 and 12 weeks of age. In contrast, no changes were detectable in the BACHD model at 8, 10 or 12 month of age. These findings suggest that radiotracer binding of PDE10A, DAT, D1 and D2 receptor in the R6/2 model may be a good indicator of striatal pathological changes that are observed in Huntington's disease patients, and that the first 12 months in the BACHD model may be more reflective of early stages of the disease.

  14. Bivalent phenethylamines as novel dopamine transporter inhibitors: evidence for multiple substrate-binding sites in a single transporter.

    PubMed

    Schmitt, Kyle C; Mamidyala, Sreeman; Biswas, Swati; Dutta, Aloke K; Reith, Maarten E A

    2010-03-01

    Bivalent ligands--compounds incorporating two receptor-interacting moieties linked by a flexible chain--often exhibit profoundly enhanced binding affinity compared with their monovalent components, implying concurrent binding to multiple sites on the target protein. It is generally assumed that neurotransmitter sodium symporter (NSS) proteins, such as the dopamine transporter (DAT), contain a single domain responsible for recognition of substrate molecules. In this report, we show that molecules possessing two substrate-like phenylalkylamine moieties linked by a progressively longer aliphatic spacer act as progressively more potent DAT inhibitors (rather than substrates). One compound bearing two dopamine (DA)-like pharmacophoric 'heads' separated by an 8-carbon linker achieved an 82-fold gain in inhibition of [(3)H] 2beta-carbomethoxy-3beta-(4-fluorophenyl)-tropane (CFT) binding compared with DA itself; bivalent compounds with a 6-carbon linker and heterologous combinations of DA-, amphetamine- and beta-phenethylamine-like heads all resulted in considerable and comparable gains in DAT affinity. A series of short-chain bivalent-like compounds with a single N-linkage was also identified, the most potent of which displayed a 74-fold gain in binding affinity. Computational modelling of the DAT protein and docking of the two most potent bivalent (-like) ligands suggested simultaneous occupancy of two discrete substrate-binding domains. Assays with the DAT mutants W84L and D313N--previously employed by our laboratory to probe conformation-specific binding of different structural classes of DAT inhibitors--indicated a bias of the bivalent ligands for inward-facing transporters. Our results strongly indicate the existence of multiple DAT substrate-interaction sites, implying that it is possible to design novel types of DAT inhibitors based upon the 'multivalent ligand' strategy.

  15. Influence of education on cognitive performance and dopamine transporter binding in dementia with Lewy bodies.

    PubMed

    Lamotte, Guillaume; Morello, Rémy; Lebasnier, Adrien; Agostini, Denis; Bouvard, Gérard; De La Sayette, Vincent; Defer, Gilles L

    2016-07-01

    Dementia with Lewy bodies (DLB) and Alzheimer's disease (AD) are the two most common forms of dementia. These two diseases share some clinical and pathological similarities, yet the loss of dopaminergic neurons confirmed by 123-I-Ioflupane Single Photon Emission Computed Tomography (SPECT) is a suggestive feature of DLB. Current evidence suggests that higher education has a protective effect on the risk of developing clinical AD. However, how education influences cognitive performance and the presynaptic dopamine transporter marker in DLB is unknown. We reviewed 56 consecutive patients with DLB who underwent a 123-I-Ioflupane SPECT from January 2009 to August 2013 at the University Hospital of Caen. We collected clinical and neuropsychological data from medical files and 123-I-Ioflupane SPECT data for all patients. There was no correlation between education and global cognitive performance in patients with DLB. However, there was a positive correlation between education and tests exploring visuoconstructive functions (Rey complex figure copy and recall) and verbal retrieval strategies (Grober and Buschke free recall test). There was also a positive correlation between education and dopamine transporter binding. Higher educated patients had higher binding in the striatum, putamen and caudate nucleus (p=0.001 for each regions of interest). Dopamine transporter binding in the striatum, putamen and caudate nucleus was lower in the subgroup of patients with REM sleep behavior disorder, but was not associated with other DLB symptoms. Higher education may have a protective effect on visuoconstructive performance and verbal retrieval strategies and may influence dopaminergic nigrostriatal neurodegeneration in patients with DLB. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The mechanistic basis for noncompetitive ibogaine inhibition of serotonin and dopamine transporters.

    PubMed

    Bulling, Simon; Schicker, Klaus; Zhang, Yuan-Wei; Steinkellner, Thomas; Stockner, Thomas; Gruber, Christian W; Boehm, Stefan; Freissmuth, Michael; Rudnick, Gary; Sitte, Harald H; Sandtner, Walter

    2012-05-25

    Ibogaine, a hallucinogenic alkaloid proposed as a treatment for opiate withdrawal, has been shown to inhibit serotonin transporter (SERT) noncompetitively, in contrast to all other known inhibitors, which are competitive with substrate. Ibogaine binding to SERT increases accessibility in the permeation pathway connecting the substrate-binding site with the cytoplasm. Because of the structural similarity between ibogaine and serotonin, it had been suggested that ibogaine binds to the substrate site of SERT. The results presented here show that ibogaine binds to a distinct site, accessible from the cell exterior, to inhibit both serotonin transport and serotonin-induced ionic currents. Ibogaine noncompetitively inhibited transport by both SERT and the homologous dopamine transporter (DAT). Ibogaine blocked substrate-induced currents also in DAT and increased accessibility of the DAT cytoplasmic permeation pathway. When present on the cell exterior, ibogaine inhibited SERT substrate-induced currents, but not when it was introduced into the cytoplasm through the patch electrode. Similar to noncompetitive transport inhibition, the current block was not reversed by increasing substrate concentration. The kinetics of inhibitor binding and dissociation, as determined by their effect on SERT currents, indicated that ibogaine does not inhibit by forming a long-lived complex with SERT, but rather binds directly to the transporter in an inward-open conformation. A kinetic model for transport describing the noncompetitive action of ibogaine and the competitive action of cocaine accounts well for the results of the present study.

  17. The Mechanistic Basis for Noncompetitive Ibogaine Inhibition of Serotonin and Dopamine Transporters*

    PubMed Central

    Bulling, Simon; Schicker, Klaus; Zhang, Yuan-Wei; Steinkellner, Thomas; Stockner, Thomas; Gruber, Christian W.; Boehm, Stefan; Freissmuth, Michael; Rudnick, Gary; Sitte, Harald H.; Sandtner, Walter

    2012-01-01

    Ibogaine, a hallucinogenic alkaloid proposed as a treatment for opiate withdrawal, has been shown to inhibit serotonin transporter (SERT) noncompetitively, in contrast to all other known inhibitors, which are competitive with substrate. Ibogaine binding to SERT increases accessibility in the permeation pathway connecting the substrate-binding site with the cytoplasm. Because of the structural similarity between ibogaine and serotonin, it had been suggested that ibogaine binds to the substrate site of SERT. The results presented here show that ibogaine binds to a distinct site, accessible from the cell exterior, to inhibit both serotonin transport and serotonin-induced ionic currents. Ibogaine noncompetitively inhibited transport by both SERT and the homologous dopamine transporter (DAT). Ibogaine blocked substrate-induced currents also in DAT and increased accessibility of the DAT cytoplasmic permeation pathway. When present on the cell exterior, ibogaine inhibited SERT substrate-induced currents, but not when it was introduced into the cytoplasm through the patch electrode. Similar to noncompetitive transport inhibition, the current block was not reversed by increasing substrate concentration. The kinetics of inhibitor binding and dissociation, as determined by their effect on SERT currents, indicated that ibogaine does not inhibit by forming a long-lived complex with SERT, but rather binds directly to the transporter in an inward-open conformation. A kinetic model for transport describing the noncompetitive action of ibogaine and the competitive action of cocaine accounts well for the results of the present study. PMID:22451652

  18. Molecular dynamics study of a heteroditopic-calix[4]diquinone-assisted transfer of KCl and dopamine through a water-chloroform liquid-liquid interface.

    PubMed

    Santos, Sérgio M; Costa, Paulo J; Lankshear, Michael D; Beer, Paul D; Félix, Vítor

    2010-09-02

    The ability of two heteroditopic calix[4]diquinone receptors to transport a KCl ion-pair and a dopamine zwitterion through a water-chloroform interface was investigated via molecular dynamics (MD) simulations. Gas-phase conformational analysis has been carried on KCl and dopamine receptor binding associations and the lowest energy structures found in both cases show that the recognition of KCl and dopamine zwitterion occurs through multiple and cooperative N-H...anion and O...cation bonding interactions, with the receptor adopting equivalent folded conformations stabilized by pi-stacking interactions. The unconstrained MD simulations performed on KCl and dopamine complexes inserted in either the chloroform or water phase revealed that receptors are preferentially located at the interface with the hydrophobic tert-butyl groups of the calix[4]diquinone moiety immersed in the chloroform bulk while the polar anion binding cavity is directed toward the water phase. When the KCl complex is placed in chloroform, the release of the ion-pair occurs only after the first contact with the water interface, being a nonsimultaneous event, with the chloride anion leaving the receptor before the potassium cation. The dopamine, via the -NH(3)(+) binding entity, remains bound to the receptor during the entire time of the MD simulation (10 ns). In contrast, when both complexes were inserted in the water bulk, the full release of KCl and dopamine are fast events. The potentials of mean force (PMFs), associated with the migration of the complexes from chloroform to water through the interface, were calculated from steered molecular dynamics (SMD) simulations. The PMFs for the free KCl and zwitterionic dopamine migrations were also obtained for comparison purposes. The transport of KCl from water to chloroform (the reverse path) mediated by the receptor has a free energy barrier estimated in 6.50 kcal mol(-1), which is 3.0 kcal mol(-1) smaller than that found for the free KCl. The transport of dopamine complex along the reverse path is characterized by downhill energy profile, with a small free energy barrier of 6.56 kcal mol(-1).

  19. Serotonin and Dopamine Transporter Binding in Children with Autism Determined by SPECT

    ERIC Educational Resources Information Center

    Makkonen, Ismo; Riikonen, Raili; Kokki, Hannu; Airaksinen, Mauno M.; Kuikka, Jyrki T.

    2008-01-01

    Disturbances in the serotonergic system have been recognized in autism. To investigate the association between serotonin and dopamine transporters and autism, we studied 15 children (14 males, one female; mean age 8y 8mo [SD 3y 10mo]) with autism and 10 non-autistic comparison children (five males, five females; mean age 9y 10mo [SD 2y 8mo]) using…

  20. Scaffold Repurposing of Nucleosides (Adenosine Receptor Agonists): Enhanced Activity at the Human Dopamine and Norepinephrine Sodium Symporters.

    PubMed

    Tosh, Dilip K; Janowsky, Aaron; Eshleman, Amy J; Warnick, Eugene; Gao, Zhan-Guo; Chen, Zhoumou; Gizewski, Elizabeth; Auchampach, John A; Salvemini, Daniela; Jacobson, Kenneth A

    2017-04-13

    We have repurposed (N)-methanocarba adenosine derivatives (A 3 adenosine receptor (AR) agonists) to enhance radioligand binding allosterically at the human dopamine (DA) transporter (DAT) and inhibit DA uptake. We extended the structure-activity relationship of this series with small N 6 -alkyl substitution, 5'-esters, deaza modifications of adenine, and ribose restored in place of methanocarba. C2-(5-Halothien-2-yl)-ethynyl 5'-methyl 9 (MRS7292) and 5'-ethyl 10 (MRS7232) esters enhanced binding at DAT (EC 50 ∼ 35 nM) and at the norepinephrine transporter (NET). 9 and 10 were selective for DAT compared to A 3 AR in the mouse but not in humans. At DAT, the binding of two structurally dissimilar radioligands was enhanced; NET binding of only one radioligand was enhanced; SERT radioligand binding was minimally affected. 10 was more potent than cocaine at inhibiting DA uptake (IC 50 = 107 nM). Ribose analogues were weaker in DAT interaction than the corresponding bicyclics. Thus, we enhanced the neurotransmitter transporter activity of rigid nucleosides while reducing A 3 AR affinity.

  1. Novel L-Dopa and dopamine prodrugs containing a 2-phenyl-imidazopyridine moiety.

    PubMed

    Denora, Nunzio; Laquintana, Valentino; Lopedota, Angela; Serra, Mariangela; Dazzi, Laura; Biggio, Giovanni; Pal, Dhananjay; Mitra, Ashim K; Latrofa, Andrea; Trapani, Giuseppe; Liso, Gaetano

    2007-07-01

    The aim of this study was to gain insight into the feasibility of enhancing the delivery of L-Dopa and dopamine to the brain by linking these neurotransmitters and L-Dopa ethyl ester to 2-phenyl-3-carboxymethyl-imidazopyridine compounds giving rise to the so-called Dopimid compounds. A number of Dopimid compounds were synthesized and both stability and binding studies to dopaminergic and benzodiazepine receptors were performed. To evaluate whether Dopimid compounds are P-gp substrates, [(3)H]ritonavir uptake experiments and bi-directional transport studies on confluent MDCKII-MDR1 monolayers were carried out. The brain penetration properties of Dopimid compounds were estimated by the Clark's computational model and evaluated by investigation of their transport across BBMECs monolayers. The dopamine levels following the intraperitoneal administration of the selected Dopimid compounds were measured in vivo by using brain microdialysis in rat. Tested compounds were adequately stable in solution buffered at pH 7.4 but undergo faster cleavage in dilute rat serum at 37 degrees C. Receptor binding studies showed that Dopimid compounds are essentially devoid of affinity for dopaminergic and benzodiazepine receptors. [(3)H]ritonavir uptake experiments indicated that selected Dopimid compounds, like L-Dopa and dopamine hydrochloride, are not substrates of P-gp and it was also confirmed by bi-directional transport experiments across MDCKII-MDR1 monolayers. By Clark's model a significant brain penetration was deduced for L-Dopa ethyl ester and dopamine derivatives. Transport studies involving BBMECs monolayers indicated that some of these compounds should be able to cross the BBB. Interestingly, the rank order of apparent permeability (P (app)) values observed in these assays parallels that calculated by the computational approach. Brain microdialysis experiments in rat showed that intraperitoneal acute administration of some Dopimid compounds induced a dose-dependent increase in cortical dopamine output. Based on these results, it may be concluded that some Dopimid compounds can be proposed as novel L-Dopa and dopamine prodrugs.

  2. Mutations at Tyrosine 88, Lysine 92 and Tyrosine 470 of human dopamine transporter result in an attenuation of HIV-1 Tat-induced inhibition of dopamine transport

    PubMed Central

    Midde, Narasimha M.; Yuan, Yaxia; Quizon, Pamela M.; Sun, Wei-Lun; Huang, Xiaoqin; Zhan, Chang-Guo; Zhu, Jun

    2015-01-01

    HIV-1 transactivator of transcription (Tat) protein disrupts the dopamine (DA) neurotransmission by inhibiting DA transporter (DAT) function, leading to increased neurocognitive impairment in HIV-1 infected individuals. Through integrated computational modeling and pharmacological studies, we have demonstrated that mutation of tyrosine470 (Y470H) of human DAT (hDAT) attenuates Tat-induced inhibition of DA uptake by changing the transporter conformational transitions. The present study examined the functional influences of other substitutions at tyrosine470 (Y470F and Y470A) and tyrosine88 (Y88F) and lysine92 (K92M), two other relevant residues for Tat binding to hDAT, in Tat-induced inhibitory effects on DA transport. Y88F, K92M and Y470A attenuated Tat-induced inhibition of DA transport, implicating the functional relevance of these residues for Tat binding to hDAT. Compared to wild type hDAT, Y470A and K92M but not Y88F reduced the maximal velocity of [3H]DA uptake without changes in the Km. Y88F and K92M enhanced IC50 values for DA inhibition of [3H]DA uptake and [3H]WIN35,428 binding but decreased IC50 for cocaine and GBR12909 inhibition of [3H]DA uptake, suggesting that these residues are critical for substrate and these inhibitors. Y470F, Y470A, Y88F and K92M attenuated zinc-induced increase of [3H]WIN35,428 binding. Moreover, only Y470A and K92M enhanced DA efflux relative to wild type hDAT, suggesting mutations of these residues differentially modulate transporter conformational transitions. These results demonstrate Tyr88 and Lys92 along with Tyr470 as functional recognition residues in hDAT for Tat-induced inhibition of DA transport and provide mechanistic insights into identifying target residues on the DAT for Tat binding. PMID:25604666

  3. Imaging of striatal dopamine transporters in rat brain with single pinhole SPECT and co-aligned MRI is highly reproducible.

    PubMed

    Booij, Jan; de Bruin, Kora; de Win, Maartje M L; Lavini, Cristina; den Heeten, Gerard J; Habraken, Jan B A

    2003-08-01

    A recently developed pinhole high-resolution SPECT system was used to measure striatal to non-specific binding ratios in rats (n = 9), after injection of the dopamine transporter ligand (123)I-FP-CIT, and to assess its test/retest reproducibility. For co-alignment purposes, the rat brain was imaged on a 1.5 Tesla clinical MRI scanner using a specially developed surface coil. The SPECT images showed clear striatal uptake. On the MR images, cerebral and extra-cerebral structures could be easily delineated. The mean striatal to non-specific [(123)I]FP-CIT binding ratios of the test/retest studies were 1.7 +/- 0.2 and 1.6 +/- 0.2, respectively. The test/retest variability was approximately 9%. We conclude that the assessment of striatal [(123)I]FP-CIT binding ratios in rats is highly reproducible.

  4. Rapid Recovery of Vesicular Dopamine Levels in Methamphetamine Users in Early Abstinence

    PubMed Central

    Boileau, Isabelle; McCluskey, Tina; Tong, Junchao; Furukawa, Yoshiaki; Houle, Sylvain; Kish, Stephen J

    2016-01-01

    We previously reported very low levels of dopamine in post-mortem striatum of chronic methamphetamine users, raising the possibility that restoration of normal dopamine levels could help in this addiction and perhaps prevent early relapse. To establish relevance of this finding to the living brain, we tested whether striatal [11C]-(+)-dihydrotetrabenazine binding, a vesicular monoamine transporter probe sensitive to changes in (stored) vesicular dopamine, is elevated in methamphetamine users. Chronic methamphetamine users underwent [11C]-(+)-dihydrotetrabenazine positron emission tomography scans during early (mean 2.6 days) and later (~10 days) abstinence. Striatal [11C]-(+)-dihydrotetrabenazine binding was elevated (suggesting low stored dopamine) in methamphetamine users (n=28; 2.6 days after last use) relative to controls (n=22) (+28%, p<0.0001) and correlated with severity and recency of drug use and with cognitive impairment and withdrawal symptoms. Mean [11C]-(+)-dihydrotetrabenazine binding levels in the subgroup of methamphetamine users who could remain abstinent ~10 days following last use (n=17) were normal at the follow-up scan. Our imaging data support post-mortem findings and suggest that chronic methamphetamine users have low brain levels of stored dopamine during very early abstinence from MA, which could contribute to behavioral and cognitive deficits. Findings also suggest a rapid recovery of stored dopamine in some methamphetamine users who become abstinent and who therefore might not benefit from dopamine replacement medication (eg, levodopa). Further study is necessary to establish whether those users who could not maintain abstinence for the second scan might have a more severe and persistent dopamine deficiency and who could benefit from this medication. PMID:26321315

  5. Rapid Recovery of Vesicular Dopamine Levels in Methamphetamine Users in Early Abstinence.

    PubMed

    Boileau, Isabelle; McCluskey, Tina; Tong, Junchao; Furukawa, Yoshiaki; Houle, Sylvain; Kish, Stephen J

    2016-03-01

    We previously reported very low levels of dopamine in post-mortem striatum of chronic methamphetamine users, raising the possibility that restoration of normal dopamine levels could help in this addiction and perhaps prevent early relapse. To establish relevance of this finding to the living brain, we tested whether striatal [(11)C]-(+)-dihydrotetrabenazine binding, a vesicular monoamine transporter probe sensitive to changes in (stored) vesicular dopamine, is elevated in methamphetamine users. Chronic methamphetamine users underwent [(11)C]-(+)-dihydrotetrabenazine positron emission tomography scans during early (mean 2.6 days) and later (~10 days) abstinence. Striatal [(11)C]-(+)-dihydrotetrabenazine binding was elevated (suggesting low stored dopamine) in methamphetamine users (n=28; 2.6 days after last use) relative to controls (n=22) (+28%, p<0.0001) and correlated with severity and recency of drug use and with cognitive impairment and withdrawal symptoms. Mean [(11)C]-(+)-dihydrotetrabenazine binding levels in the subgroup of methamphetamine users who could remain abstinent ~10 days following last use (n=17) were normal at the follow-up scan. Our imaging data support post-mortem findings and suggest that chronic methamphetamine users have low brain levels of stored dopamine during very early abstinence from MA, which could contribute to behavioral and cognitive deficits. Findings also suggest a rapid recovery of stored dopamine in some methamphetamine users who become abstinent and who therefore might not benefit from dopamine replacement medication (eg, levodopa). Further study is necessary to establish whether those users who could not maintain abstinence for the second scan might have a more severe and persistent dopamine deficiency and who could benefit from this medication.

  6. Effects of a short-course MDMA binge on dopamine transporter binding and on levels of dopamine and its metabolites in adult male rats

    PubMed Central

    Biezonski, Dominik K.; Piper, Brian J.; Shinday, Nina M.; Kim, Peter J.; Ali, Syed F.; Meyer, Jerrold S.

    2013-01-01

    Although the recreational drug 3,4-methylenedioxymethamphetamine (MDMA) is often described as a selective serotonergic neurotoxin, some research has challenged this view. The objective of this study was to determine the influence of MDMA on subsequent levels of two different markers of dopaminergic function, the dopamine transporter (DAT) as well as dopamine and its major metabolites. In experiment I, adult male Sprague–Dawley rats were administered either a low or moderate dose MDMA binge (2.5 or 5.0 mg/kg × 4 with an inter-dose interval of 1 h) or saline, and were killed 1 week later. The moderate dose dramatically reduced [3H]WIN 35,428 binding to striatal DAT by 73.7% (P ≤ 0.001). In experiment II, animals were binged with a higher dose of MDMA (10 mg/kg × 4) to determine the drug’s effects on concentrations of serotonin (5-HT), dopamine, and their respective major metabolites 5-hydroxyindoleacetic acid (5-HIAA), dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in the striatum and frontal cortex 1 week later. As expected, MDMA significantly reduced 5-HT and 5-HIAA (≥ 50%) in these structures, while only a marginal decrease in dopamine was noted in the striatum. In contrast, levels of DOPAC (34.3%, P < 0.01) and HVA (33.5%, P < 0.001) were reduced by MDMA treatment, suggesting a decrease in dopamine turnover. Overall, these findings indicate that while serotonergic markers are particularly vulnerable to MDMA-induced depletion, significant dopaminergic deficits may also occur under some conditions. Importantly, DAT expression may be more vulnerable to perturbation by MDMA than dopamine itself. PMID:23276666

  7. Small molecule induced oligomerization, clustering and clathrin-independent endocytosis of the dopamine transporter

    PubMed Central

    Sorkina, Tatiana; Ma, Shiqi; Larsen, Mads Breum; Watkins, Simon C

    2018-01-01

    Clathrin-independent endocytosis (CIE) mediates internalization of many transmembrane proteins but the mechanisms of cargo recruitment during CIE are poorly understood. We found that the cell-permeable furopyrimidine AIM-100 promotes dramatic oligomerization, clustering and CIE of human and mouse dopamine transporters (DAT), but not of their close homologues, norepinephrine and serotonin transporters. All effects of AIM-100 on DAT and the occupancy of substrate binding sites in the transporter were mutually exclusive, suggesting that AIM-100 may act by binding to DAT. Surprisingly, AIM-100-induced DAT endocytosis was independent of dynamin, cholesterol-rich microdomains and actin cytoskeleton, implying that a novel endocytic mechanism is involved. AIM-100 stimulated trafficking of internalized DAT was also unusual: DAT accumulated in early endosomes without significant recycling or degradation. We propose that AIM-100 augments DAT oligomerization through an allosteric mechanism associated with the DAT conformational state, and that oligomerization-triggered clustering leads to a coat-independent endocytosis and subsequent endosomal retention of DAT. PMID:29630493

  8. Gβγ subunit activation promotes dopamine efflux through the dopamine transporter

    PubMed Central

    Garcia-Olivares, J; Baust, T; Harris, S; Hamilton, P; Galli, A; Amara, SG; Torres, GE

    2018-01-01

    The dopamine transporter (DAT) is an important regulator of brain dopamine (DA) homeostasis, controlling the intensity and duration of DA signaling. DAT is the target for psychostimulants—like cocaine and amphetamine—and plays an important role in neuropsychiatric disorders, including attention-deficit hyperactivity disorder and drug addiction. Thus, a thorough understanding of the mechanisms that regulate DAT function is necessary for the development of clinical interventions to treat DA-related brain disorders. Previous studies have revealed a plethora of protein–protein interactions influencing DAT cellular localization and activity, suggesting that the fine-tuning of DA homeostasis involves multiple mechanisms. We recently reported that G-protein beta-gamma (Gβγ) subunits bind directly to DAT and decrease DA clearance. Here we show that Gβγ induces the release of DA through DAT. Specifically, a Gβγ-binding/activating peptide, mSIRK, increases DA efflux through DAT in heterologous cells and primary dopaminergic neurons in culture. Addition of the Gβγ inhibitor gallein or DAT inhibitors prevents this effect. Residues 582 to 596 in the DAT carboxy terminus were identified as the primary binding site of Gβγ. A TAT peptide containing the Gβγ-interacting domain of DAT blocked the ability of mSIRK to induce DA efflux, consistent with a direct interaction of Gβγ with the transporter. Finally, activation of a G-protein-coupled receptor, the muscarinic M5R, results in DAT-mediated DA efflux through a Gβγ-dependent mechanism. Collectively, our data show that Gβγ interacts with DAT to promote DA efflux. This novel mechanism may have important implications in the regulation of brain DA homeostasis. PMID:28894302

  9. Molecular mechanism: the human dopamine transporter histidine 547 regulates basal and HIV-1 Tat protein-inhibited dopamine transport

    PubMed Central

    Quizon, Pamela M.; Sun, Wei-Lun; Yuan, Yaxia; Midde, Narasimha M.; Zhan, Chang-Guo; Zhu, Jun

    2016-01-01

    Abnormal dopaminergic transmission has been implicated as a risk determinant of HIV-1-associated neurocognitive disorders. HIV-1 Tat protein increases synaptic dopamine (DA) levels by directly inhibiting DA transporter (DAT) activity, ultimately leading to dopaminergic neuron damage. Through integrated computational modeling prediction and experimental validation, we identified that histidine547 on human DAT (hDAT) is critical for regulation of basal DA uptake and Tat-induced inhibition of DA transport. Compared to wild type hDAT (WT hDAT), mutation of histidine547 (H547A) displayed a 196% increase in DA uptake. Other substitutions of histidine547 showed that DA uptake was not altered in H547R but decreased by 99% in H547P and 60% in H547D, respectively. These mutants did not alter DAT surface expression or surface DAT binding sites. H547 mutants attenuated Tat-induced inhibition of DA transport observed in WT hDAT. H547A displays a differential sensitivity to PMA- or BIM-induced activation or inhibition of DAT function relative to WT hDAT, indicating a change in basal PKC activity in H547A. These findings demonstrate that histidine547 on hDAT plays a crucial role in stabilizing basal DA transport and Tat-DAT interaction. This study provides mechanistic insights into identifying targets on DAT for Tat binding and improving DAT-mediated dysfunction of DA transmission. PMID:27966610

  10. Striatal dopamine transporter binding for predicting the development of delayed neuropsychological sequelae in suicide attempters by carbon monoxide poisoning: A SPECT study.

    PubMed

    Yang, Kai-Chun; Ku, Hsiao-Lun; Wu, Chia-Liang; Wang, Shyh-Jen; Yang, Chen-Chang; Deng, Jou-Fang; Lee, Ming-Been; Chou, Yuan-Hwa

    2011-12-30

    Carbon monoxide poisoning (COP) after charcoal burning results in delayed neuropsychological sequelae (DNS), which show clinical resemblance to Parkinson's disease, without adequate predictors at present. This study examined the role of dopamine transporter (DAT) binding for the prediction of DNS. Twenty-seven suicide attempters with COP were recruited. Seven of them developed DNS, while the remainder did not. The striatal DAT binding was measured by single photon emission computed tomography with (99m)Tc-TRODAT. The specific uptake ratio was derived based on a ratio equilibrium model. Using a logistic regression model, multiple clinical variables were examined as potential predictors for DNS. COP patients with DNS had a lower binding on left striatal DAT binding than patients without DNS. Logistic regression analysis showed that a combination of initial loss of consciousness and lower left striatal DAT binding predicted the development of DNS. Our data indicate that the left striatal DAT binding could help to predict the development of DNS. This finding not only demonstrates the feasibility of brain imaging techniques for predicting the development of DNS but will also help clinicians to improve the quality of care for COP patients. 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Role of dopamine transporters in the behavioral effects of 3,4-methylenedioxymethamphetamine (MDMA) in nonhuman primates

    PubMed Central

    Fantegrossi, William E.; Bauzo, Rayna M.; Manvich, Daniel M.; Morales, Jose C.; Votaw, John R.; Goodman, Mark M.

    2011-01-01

    Rationale The interoceptive and reinforcing effects of 3,4-methylenedioxymethamphetamine (MDMA) are similar to those of psychostimulants, but the role of dopamine in the behavioral effects of MDMA is not well documented, especially in primates. Objective The aim of this study was to assess the role of dopamine in the behavioral effects of MDMA in two nonhuman primate species. Methods The behavioral effects of MDMA, with and without serotonergic or dopaminergic pretreatments, were studied in squirrel monkeys trained to respond under a fixed-interval schedule of stimulus termination; effects on caudate dopamine levels were studied in a separate group of squirrel monkeys using in vivo microdialysis. Positron emission tomography neuroimaging with the dopamine transporter (DAT) ligand [18F]FECNT was used to determine DAT occupancy by MDMA in rhesus monkeys. Results MDMA (0.5–1.5 mg/kg) did not induce behavioral stimulant effects, but the highest dose of MDMA suppressed responding. Pretreatment with fluoxetine (3.0 mg/kg) or the selective 5HT2A antagonist M100907 (0.03–0.3 mg/kg) attenuated the rate suppressing effects of MDMA. In contrast, pretreatment with the selective dopamine transporter inhibitor RTI-177 (0.1 mg/kg) did not alter the rate suppressing effects of MDMA. Administration of MDMA at a dose that suppressed operant behavior had negligible effects on extracellular dopamine. The percent DAT occupancy of MDMA at a dose that suppressed operant behavior also was marginal and reflected low in vivo potency for DAT binding. Conclusions Collectively, these results indicate that behaviorally relevant doses of MDMA do not induce behavioral stimulant or dopamine transporter-mediated effects in nonhuman primates. PMID:19421742

  12. Role of dopamine transporters in the behavioral effects of 3,4-methylenedioxymethamphetamine (MDMA) in nonhuman primates.

    PubMed

    Fantegrossi, William E; Bauzo, Rayna M; Manvich, Daniel M; Morales, Jose C; Votaw, John R; Goodman, Mark M; Howell, Leonard L

    2009-08-01

    The interoceptive and reinforcing effects of 3,4-methylenedioxymethamphetamine (MDMA) are similar to those of psychostimulants, but the role of dopamine in the behavioral effects of MDMA is not well documented, especially in primates. The aim of this study was to assess the role of dopamine in the behavioral effects of MDMA in two nonhuman primate species. The behavioral effects of MDMA, with and without serotonergic or dopaminergic pretreatments, were studied in squirrel monkeys trained to respond under a fixed-interval schedule of stimulus termination; effects on caudate dopamine levels were studied in a separate group of squirrel monkeys using in vivo microdialysis. Positron emission tomography neuroimaging with the dopamine transporter (DAT) ligand [18F]FECNT was used to determine DAT occupancy by MDMA in rhesus monkeys. MDMA (0.5-1.5 mg/kg) did not induce behavioral stimulant effects, but the highest dose of MDMA suppressed responding. Pretreatment with fluoxetine (3.0 mg/kg) or the selective 5HT(2A) antagonist M100907 (0.03-0.3 mg/kg) attenuated the rate suppressing effects of MDMA. In contrast, pretreatment with the selective dopamine transporter inhibitor RTI-177 (0.1 mg/kg) did not alter the rate suppressing effects of MDMA. Administration of MDMA at a dose that suppressed operant behavior had negligible effects on extracellular dopamine. The percent DAT occupancy of MDMA at a dose that suppressed operant behavior also was marginal and reflected low in vivo potency for DAT binding. Collectively, these results indicate that behaviorally relevant doses of MDMA do not induce behavioral stimulant or dopamine transporter-mediated effects in nonhuman primates.

  13. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists

    PubMed Central

    Hiranita, Takato; Kopajtic, Theresa A.; Rice, Kenner C.; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H.; McCurdy, Christopher R.

    2016-01-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. PMID:27189970

  14. Subclinical dopaminergic dysfunction in asymptomatic Parkinson's disease patients' relatives with a decreased sense of smell.

    PubMed

    Berendse, H W; Booij, J; Francot, C M; Bergmans, P L; Hijman, R; Stoof, J C; Wolters, E C

    2001-07-01

    By the time a clinical diagnosis of Parkinson's disease (PD) is made, a significant loss of dopaminergic neurons has already occurred. Identifying patients in the period between the presumed onset of dopaminergic cell loss and the appearance of clinical parkinsonism may be of major importance in the development of effective neuroprotective treatment strategies. In an effort to develop a feasible strategy to detect preclinical PD, a combination of olfactory processing tasks, including odor detection, odor identification, and odor discrimination was used to select groups of hyposmic and normosmic individuals from a total of 250 relatives (parents, siblings, or children) of subjects with PD. Single photon emission computed tomography (SPECT) with [123I]beta-CIT as a dopamine transporter ligand was used to assess nigrostriatal dopaminergic function in 25 hyposmic and 23 normosmic relatives of PD patients. An abnormal reduction in striatal dopamine transporter binding was found in 4 out of 25 hyposmic relatives of PD patients, two of whom subsequently developed clinical parkinsonism, and in none of the 23 normosmic relatives. These observations demonstrate that subclinical reductions in dopamine transporter binding can be detected in asymptomatic relatives of sporadic PD patients by means of [123I]beta-CIT and SPECT. The results further indicate that olfactory deficits may precede clinical motor signs in PD.

  15. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder.

    PubMed

    Hamilton, P J; Campbell, N G; Sharma, S; Erreger, K; Herborg Hansen, F; Saunders, C; Belovich, A N; Sahai, M A; Cook, E H; Gether, U; McHaourab, H S; Matthies, H J G; Sutcliffe, J S; Galli, A

    2013-12-01

    De novo genetic variation is an important class of risk factors for autism spectrum disorder (ASD). Recently, whole-exome sequencing of ASD families has identified a novel de novo missense mutation in the human dopamine (DA) transporter (hDAT) gene, which results in a Thr to Met substitution at site 356 (hDAT T356M). The dopamine transporter (DAT) is a presynaptic membrane protein that regulates dopaminergic tone in the central nervous system by mediating the high-affinity reuptake of synaptically released DA, making it a crucial regulator of DA homeostasis. Here, we report the first functional, structural and behavioral characterization of an ASD-associated de novo mutation in the hDAT. We demonstrate that the hDAT T356M displays anomalous function, characterized as a persistent reverse transport of DA (substrate efflux). Importantly, in the bacterial homolog leucine transporter, substitution of A289 (the homologous site to T356) with a Met promotes an outward-facing conformation upon substrate binding. In the substrate-bound state, an outward-facing transporter conformation is required for substrate efflux. In Drosophila melanogaster, the expression of hDAT T356M in DA neurons-lacking Drosophila DAT leads to hyperlocomotion, a trait associated with DA dysfunction and ASD. Taken together, our findings demonstrate that alterations in DA homeostasis, mediated by aberrant DAT function, may confer risk for ASD and related neuropsychiatric conditions.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovtun, Oleg; Ross, Emily J.; Tomlinson, Ian D.

    Here we present the development and validation of a flow cytometry-based dopamine transporter (DAT) binding assay that uses antagonist-conjugated quantum dots (QDs). Our anticipation is that our QD-based assay is of immediate value to the high throughput screening of novel DAT modulators.

  17. Dopamine D3 receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: Role of hyperthermia

    PubMed Central

    Baladi, Michelle G.; Newman, Amy H.; Nielsen, Shannon M.; Hanson, Glen R.; Fleckenstein, Annette E.

    2014-01-01

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. PMID:24685638

  18. Dopamine D(3) receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: role of hyperthermia.

    PubMed

    Baladi, Michelle G; Newman, Amy H; Nielsen, Shannon M; Hanson, Glen R; Fleckenstein, Annette E

    2014-06-05

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Modeling the Binding of Neurotransmitter Transporter Inhibitors with Molecular Dynamics and Free Energy Calculations

    NASA Astrophysics Data System (ADS)

    Jean, Bernandie

    The monoamine transporter (MAT) proteins responsible for the reuptake of the neurotransmitter substrates, dopamine, serotonin, and norepinephrine, are drug targets for the treatment of psychiatric disorders including depression, anxiety, and attention deficit hyperactivity disorder. Small molecules that inhibit these proteins can serve as useful therapeutic agents. However, some dopamine transporter (DAT) inhibitors, such as cocaine and methamphetamine, are highly addictive and abusable. Efforts have been made to develop small molecules that will inhibit the transporters and elucidate specific binding site interactions. This work provides knowledge of molecular interactions associated with MAT inhibitors by offering an atomistic perspective that can guide designs of new pharmacotherapeutics with enhanced activity. The work described herein evaluates intermolecular interactions using computational methods to reveal the mechanistic detail of inhibitors binding in the DAT. Because cocaine recognizes the extracellular-facing or outward-facing (OF) DAT conformation and benztropine recognizes the intracellular-facing or inward-facing (IF) conformation, it was postulated that behaviorally "typical" (abusable, locomotor psychostimulant) inhibitors stabilize the OF DAT and "atypical" (little or no abuse potential) inhibitors favor IF DAT. Indeed, behaviorally-atypical cocaine analogs have now been shown to prefer the OF DAT conformation. Specifically, the binding interactions of two cocaine analogs, LX10 and LX11, were studied in the OF DAT using molecular dynamics simulations. LX11 was able to interact with residues of transmembrane helix 8 and bind in a fashion that allowed for hydration of the primary binding site (S1) from the intracellular space, thus impacting the intracellular interaction network capable of regulating conformational transitions in DAT. Additionally, a novel serotonin transporter (SERT) inhibitor previously discovered through virtual screening at the SERT secondary binding site (S2) was studied. Intermolecular interactions between SM11 and SERT have been assessed using binding free energy calculations to predict the ligand-binding site and optimize ligand-binding interactions. Results indicate the addition of atoms to the 4-chlorobenzyl moiety were most energetically favorable. The simulations carried out in DAT and SERT were supported by experimental results. Furthermore, the co-crystal structures of DAT and SERT share similar ligand-binding interactions with the homology models used in this study.

  20. LeuT-Desipramine Structure Reveals How Antidepressants Block Neurotransmitter Reuptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou,Z.; Zhen, J.; Karpowich, N.

    2007-01-01

    Tricyclic antidepressants exert their pharmacological effect -- inhibiting the reuptake of serotonin, norepinephrine, and dopamine -- by directly blocking neurotransmitter transporters (SERT, NET, and DAT, respectively) in the presynaptic membrane. The drug-binding site and the mechanism of this inhibition are poorly understood. We determined the crystal structure at 2.9 angstroms of the bacterial leucine transporter (LeuT), a homolog of SERT, NET, and DAT, in complex with leucine and the antidepressant desipramine. Desipramine binds at the inner end of the extracellular cavity of the transporter and is held in place by a hairpin loop and by a salt bridge. This bindingmore » site is separated from the leucine-binding site by the extracellular gate of the transporter. By directly locking the gate, desipramine prevents conformational changes and blocks substrate transport. Mutagenesis experiments on human SERT and DAT indicate that both the desipramine-binding site and its inhibition mechanism are probably conserved in the human neurotransmitter transporters.« less

  1. Long-Term Exposure to Oral Methylphenidate or dl-Amphetamine Mixture in Peri-Adolescent Rhesus Monkeys: Effects on Physiology, Behavior, and Dopamine System Development

    PubMed Central

    Soto, Paul L; Wilcox, Kristin M; Zhou, Yun; Ator, Nancy A; Riddle, Mark A; Wong, Dean F; Weed, Michael R

    2012-01-01

    The stimulants methylphenidate and amphetamine are used to treat children with attention deficit/hyperactivity disorder over important developmental periods, prompting concerns regarding possible long-term health impact. This study assessed the effects of such a regimen in male, peri-adolescent rhesus monkeys on a variety of cognitive/behavioral, physiological, and in vivo neurochemical imaging parameters. Twice daily (0900 and 1200 hours), for a total of 18 months, juvenile male monkeys (8 per group) consumed either an unadulterated orange-flavored solution, a methylphenidate solution, or a dl-amphetamine mixture. Doses were titrated to reach blood/plasma levels comparable to therapeutic levels in children. [11C]MPH and [11C]raclopride dynamic PET scans were performed to image dopamine transporter and D2-like receptors, respectively. Binding potential (BPND), an index of tracer-specific binding, and amphetamine-induced changes in BPND of [11C]raclopride were estimated by kinetic modeling. There were no consistent differences among groups on the vast majority of measures, including cognitive (psychomotor speed, timing, inhibitory control, cognitive flexibility), general activity, physiological (body weight, head circumference, crown-to-rump length), and neurochemical (ie, developmental changes in dopamine transporter, dopamine D2 receptor density, and amphetamine-stimulated dopamine release were as expected). Cytogenetic studies indicated that neither drug was a clastogen in rhesus monkeys. Thus, methylphenidate and amphetamine at therapeutic blood/plasma levels during peri-adolescence in non-human primates have little effect on physiological or behavioral/cognitive development. PMID:22805599

  2. Long-term exposure to oral methylphenidate or dl-amphetamine mixture in peri-adolescent rhesus monkeys: effects on physiology, behavior, and dopamine system development.

    PubMed

    Soto, Paul L; Wilcox, Kristin M; Zhou, Yun; Kumar, Anil; Ator, Nancy A; Riddle, Mark A; Wong, Dean F; Weed, Michael R

    2012-11-01

    The stimulants methylphenidate and amphetamine are used to treat children with attention deficit/hyperactivity disorder over important developmental periods, prompting concerns regarding possible long-term health impact. This study assessed the effects of such a regimen in male, peri-adolescent rhesus monkeys on a variety of cognitive/behavioral, physiological, and in vivo neurochemical imaging parameters. Twice daily (0900 and 1200 hours), for a total of 18 months, juvenile male monkeys (8 per group) consumed either an unadulterated orange-flavored solution, a methylphenidate solution, or a dl-amphetamine mixture. Doses were titrated to reach blood/plasma levels comparable to therapeutic levels in children. [¹¹C]MPH and [¹¹C]raclopride dynamic PET scans were performed to image dopamine transporter and D₂-like receptors, respectively. Binding potential (BP(ND)), an index of tracer-specific binding, and amphetamine-induced changes in BP(ND) of [¹¹C]raclopride were estimated by kinetic modeling. There were no consistent differences among groups on the vast majority of measures, including cognitive (psychomotor speed, timing, inhibitory control, cognitive flexibility), general activity, physiological (body weight, head circumference, crown-to-rump length), and neurochemical (ie, developmental changes in dopamine transporter, dopamine D₂ receptor density, and amphetamine-stimulated dopamine release were as expected). Cytogenetic studies indicated that neither drug was a clastogen in rhesus monkeys. Thus, methylphenidate and amphetamine at therapeutic blood/plasma levels during peri-adolescence in non-human primates have little effect on physiological or behavioral/cognitive development.

  3. Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance.

    PubMed

    Bertolino, Alessandro; Taurisano, Paolo; Pisciotta, Nicola Marco; Blasi, Giuseppe; Fazio, Leonardo; Romano, Raffaella; Gelao, Barbara; Lo Bianco, Luciana; Lozupone, Madia; Di Giorgio, Annabella; Caforio, Grazia; Sambataro, Fabio; Niccoli-Asabella, Artor; Papp, Audrey; Ursini, Gianluca; Sinibaldi, Lorenzo; Popolizio, Teresa; Sadee, Wolfgang; Rubini, Giuseppe

    2010-02-22

    Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known. Thirty-seven healthy subjects were genotyped for rs1076560 (G>T) and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors) and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors), as well as BOLD fMRI during N-Back working memory. Subjects carrying the T allele (previously associated with reduced D2S expression) had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers) and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT. Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.

  4. Genetically Determined Measures of Striatal D2 Signaling Predict Prefrontal Activity during Working Memory Performance

    PubMed Central

    Bertolino, Alessandro; Taurisano, Paolo; Pisciotta, Nicola Marco; Blasi, Giuseppe; Fazio, Leonardo; Romano, Raffaella; Gelao, Barbara; Bianco, Luciana Lo; Lozupone, Madia; Di Giorgio, Annabella; Caforio, Grazia; Sambataro, Fabio; Niccoli-Asabella, Artor; Papp, Audrey; Ursini, Gianluca; Sinibaldi, Lorenzo; Popolizio, Teresa; Sadee, Wolfgang; Rubini, Giuseppe

    2010-01-01

    Background Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known. Methods Thirty-seven healthy subjects were genotyped for rs1076560 (G>T) and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors) and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors), as well as BOLD fMRI during N-Back working memory. Results Subjects carrying the T allele (previously associated with reduced D2S expression) had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers) and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT. Conclusions Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway. PMID:20179754

  5. Direct involvement of sigma-1 receptors in the dopamine D1 receptor-mediated effects of cocaine.

    PubMed

    Navarro, Gemma; Moreno, Estefanía; Aymerich, Marisol; Marcellino, Daniel; McCormick, Peter J; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Canela, Enric I; Ortiz, Jordi; Fuxe, Kjell; Lluís, Carmen; Ferré, Sergi; Franco, Rafael

    2010-10-26

    It is well known that cocaine blocks the dopamine transporter. This mechanism should lead to a general increase in dopaminergic neurotransmission, and yet dopamine D(1) receptors (D(1)Rs) play a more significant role in the behavioral effects of cocaine than the other dopamine receptor subtypes. Cocaine also binds to σ-1 receptors, the physiological role of which is largely unknown. In the present study, D(1)R and σ(1)R were found to heteromerize in transfected cells, where cocaine robustly potentiated D(1)R-mediated adenylyl cyclase activation, induced MAPK activation per se and counteracted MAPK activation induced by D(1)R stimulation in a dopamine transporter-independent and σ(1)R-dependent manner. Some of these effects were also demonstrated in murine striatal slices and were absent in σ(1)R KO mice, providing evidence for the existence of σ(1)R-D(1)R heteromers in the brain. Therefore, these results provide a molecular explanation for which D(1)R plays a more significant role in the behavioral effects of cocaine, through σ(1)R-D(1)R heteromerization, and provide a unique perspective toward understanding the molecular basis of cocaine addiction.

  6. GZ-793A, a lobelane analog, interacts with the vesicular monoamine transporter-2 to inhibit the effect of methamphetamine

    PubMed Central

    Horton, David B.; Nickell, Justin R.; Zheng, Guangrong; Crooks, Peter A.; Dwoskin, Linda P.

    2013-01-01

    GZ-793A inhibits methamphetamine-evoked dopamine release from striatal slices and methamphetamine self-administration in rats. GZ-793A potently and selectively inhibits dopamine uptake at the vesicular monoamine transporter-2 (VMAT2). The present study determined GZ-793A’s ability to evoke [3H]dopamine release and inhibit methamphetamine-evoked [3H]dopamine release from isolated striatal synaptic vesicles. Results show GZ-793A concentration-dependent [3H]dopamine release; nonlinear regression revealed a two-site model of interaction with VMAT2 (High- and Low-EC50 = 15.5 nM and 29.3 µM, respectively). Tetrabenazine and reserpine completely inhibited the GZ-793A-evoked [3H]dopamine release, however, only at the High-affinity site. Low concentrations of GZ-793A that interact with the extravesicular dopamine uptake site and the High-affinity intravesicular DA release site also inhibited methamphetamine-evoked [3H]dopamine release from synaptic vesicles. A rightward shift in the methamphetamine concentration-response was evident with increasing concentrations of GZ-793A, and the Schild regression slope was 0.49±0.08, consistent with surmountable allosteric inhibition. These results support a hypothetical model of GZ-793A interaction at more than one site on VMAT2 protein, which explains its potent inhibition of dopamine uptake, dopamine release via a High-affinity tetrabenazine- and reserpine-sensitive site, dopamine release via a Low-affinity tetrabenazine- and reserpine-insensitive site, and low-affinity interaction with the dihydrotetrabenazine binding site on VMAT2. GZ-793A-inhibition of the effects of methamphetamine supports its potential as a therapeutic agent for the treatment of methamphetamine abuse. PMID:23875622

  7. Molecular dynamics of conformation-specific dopamine transporter-inhibitor complexes.

    PubMed

    Jean, Bernandie; Surratt, Christopher K; Madura, Jeffry D

    2017-09-01

    The recreational psychostimulant cocaine inhibits dopamine reuptake from the synapse, resulting in excessive stimulation of postsynaptic dopamine receptors in brain areas associated with reward and addiction. Cocaine binds to and stabilizes the outward- (extracellular-) facing conformation of the dopamine transporter (DAT) protein, while the low abuse potential DAT inhibitor benztropine prefers the inward- (cytoplasmic-) facing conformation. A correlation has been previously postulated between psychostimulant abuse potential and preference for the outward-facing DAT conformation. The 3β-aryltropane cocaine analogs LX10 and LX11, however, differ only in stereochemistry and share a preference for the outward-facing DAT, yet are reported to vary widely in abuse potential in an animal model. In search of the molecular basis for DAT conformation preference, complexes of cocaine, benztropine, LX10 or LX11 bound to each DAT conformation were subjected to 100ns of all-atom molecular dynamics simulation. Results were consistent with previous findings from cysteine accessibility assays used to assess an inhibitor's DAT conformation preference. The respective 2β- and 2α-substituted phenyltropanes of LX10 and LX11 interacted with hydrophobic regions of the DAT S1 binding site that were inaccessible to cocaine. Solvent accessibility measurements also revealed subtle differences in inhibitor positioning within a given DAT conformation. This work serves to advance our understanding of the conformational selectivity of DAT inhibitors and suggests that MD may be useful in antipsychostimulant therapeutic design. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists.

    PubMed

    Katz, Jonathan L; Hiranita, Takato; Kopajtic, Theresa A; Rice, Kenner C; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H; McCurdy, Christopher R

    2016-07-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. U.S. Government work not protected by U.S. copyright.

  9. Effects of chronic methamphetamine on psychomotor and cognitive functions and dopamine signaling in the brain.

    PubMed

    Thanos, Panayotis K; Kim, Ronald; Delis, Foteini; Rocco, Mark J; Cho, Jacob; Volkow, Nora D

    2017-03-01

    Methamphetamine (MA) studies in animals usually involve acute, binge, or short-term exposure to the drug. However, addicts take substantial amounts of MA for extended periods of time. Here we wished to study the effects of MA exposure on brain and behavior, using an animal model analogous to this pattern of MA intake. MA doses, 4 and 8mg/kg/day, were based on previously reported average daily freely available MA self-administration levels. We examined the effects of 16 week MA treatment on psychomotor and cognitive function in the rat using open field and novel object recognition tests and we studied the adaptations of the dopaminergic system, using in vitro and in vivo receptor imaging. We show that chronic MA treatment, at doses that correspond to the average daily freely available self-administration levels in the rat, disorganizes open field activity, impairs alert exploratory behavior and anxiety-like state, and downregulates dopamine transporter in the striatum. Under these treatment conditions, dopamine terminal functional integrity in the nucleus accumbens is also affected. In addition, lower dopamine D1 receptor binding density, and, to a smaller degree, lower dopamine D2 receptor binding density were observed. Potential mechanisms related to these alterations are discussed. Copyright © 2016. Published by Elsevier B.V.

  10. Demonstration of clomipramine and venlafaxine occupation at serotonin reuptake sites in man in vivo.

    PubMed

    Malizia, A L; Melichar, J M; Brown, D J; Gunn, R N; Reynolds, A; Jones, T; Nutt, D J

    1997-01-01

    We describe the use of 11CRTI-55 and the Multiple Objects Coincidences Counter (MOCC) to detect in-vivo binding to peripheral serotonin reuptake sites (left chest comprising platelet and lung serotonin reuptake sites) in man. Displacement and preloading experiments with clomipramine and venlafaxine in two healthy volunteers demonstrated that 11CRTI-55 binding is decreased in a dose-dependent fashion by both these drugs which bind to the serotonin transporter. In addition parallel data from the total head curve (representing 11CRTI-55 binding to central serotonin and dopamine (DA) reuptake sites) suggest that prior blockade of the serotonin transporter may be a useful strategy to maximize radioactive counts in the head when measuring the DA transporter. The MOCC is likely to be useful to determine sequential indices of relative serotonin reuptake blockade in patients on treatment.

  11. Molecular Determinants for Substrate Interactions with the Glycine Transporter GlyT2.

    PubMed

    Carland, Jane E; Thomas, Michael; Mostyn, Shannon N; Subramanian, Nandhitha; O'Mara, Megan L; Ryan, Renae M; Vandenberg, Robert J

    2018-03-21

    Transporters in the SLC6 family play key roles in regulating neurotransmission and are the targets for a wide range of therapeutics. Important insights into the transport mechanisms and the specificity of drug interactions of SLC6 transporters have been obtained from the crystal structures of a bacterial homologue of the family, LeuT Aa , and more recently the Drosophila dopamine transporter and the human serotonin transporter. However, there is disputed evidence that the bacterial leucine transporter, LeuT Aa , contains two substrate binding sites that work cooperatively in the mechanism of transport, with the binding of a second substrate being required for the release of the substrate from the primary site. An alternate proposal is that there may be low affinity binding sites that serve to direct the flow of substrates to the primary site. We have used a combination of molecular dynamics simulations of substrate interactions with a homology model of GlyT2, together with radiolabeled amino acid uptake assays and electrophysiological analysis of wild-type and mutant transporters, to provide evidence that substrate selectivity of GlyT2 is determined entirely by the primary substrate binding site and, furthermore, if a secondary site exists then it is a low affinity nonselective amino acid binding site.

  12. Phosphorylation of Dopamine Transporter Serine 7 Modulates Cocaine Analog Binding*

    PubMed Central

    Moritz, Amy E.; Foster, James D.; Gorentla, Balachandra K.; Mazei-Robison, Michelle S.; Yang, Jae-Won; Sitte, Harald H.; Blakely, Randy D.; Vaughan, Roxanne A.

    2013-01-01

    As an approach to elucidating dopamine transporter (DAT) phosphorylation characteristics, we examined in vitro phosphorylation of a recombinant rat DAT N-terminal peptide (NDAT) using purified protein kinases. We found that NDAT becomes phosphorylated at single distinct sites by protein kinase A (Ser-7) and calcium-calmodulin-dependent protein kinase II (Ser-13) and at multiple sites (Ser-4, Ser-7, and Ser-13) by protein kinase C (PKC), implicating these residues as potential sites of DAT phosphorylation by these kinases. Mapping of rat striatal DAT phosphopeptides by two-dimensional thin layer chromatography revealed basal and PKC-stimulated phosphorylation of the same peptide fragments and comigration of PKC-stimulated phosphopeptide fragments with NDAT Ser-7 phosphopeptide markers. We further confirmed by site-directed mutagenesis and mass spectrometry that Ser-7 is a site for PKC-stimulated phosphorylation in heterologously expressed rat and human DATs. Mutation of Ser-7 and nearby residues strongly reduced the affinity of rat DAT for the cocaine analog (−)-2β-carbomethoxy-3β-(4-fluorophenyl) tropane (CFT), whereas in rat striatal tissue, conditions that promote DAT phosphorylation caused increased CFT affinity. Ser-7 mutation also affected zinc modulation of CFT binding, with Ala and Asp substitutions inducing opposing effects. These results identify Ser-7 as a major site for basal and PKC-stimulated phosphorylation of native and expressed DAT and suggest that Ser-7 phosphorylation modulates transporter conformational equilibria, shifting the transporter between high and low affinity cocaine binding states. PMID:23161550

  13. Positron emission tomographic evaluation of the putative dopamine-D3 receptor ligand, [11C]RGH-1756 in the monkey brain.

    PubMed

    Sóvágó, Judit; Farde, Lars; Halldin, Christer; Langer, Oliver; Laszlovszky, István; Kiss, Béla; Gulyás, Balázs

    2004-10-01

    The dopamine-D3 receptor is of special interest due to its postulated role in the pathophysiology and treatment of schizophrenia and Parkinson's Disease. Increasing evidences support the assumption that the D3 receptors are occupied to a high degree by dopamine at physiological conditions. Research on the functional role of the D3 receptors in brain has however been hampered by the lack of D3 selective ligands. In the present Positron Emission Tomography (PET) study the binding of the novel, putative dopamine-D3 receptor ligand, [11C]RGH-1756 was characterized in the cynomolgus monkey brain. [11C]RGH-1756 was rather homogenously distributed in brain and the regional binding potential (BP) values ranged between 0.17 and 0.48. Pretreatment with unlabelled RGH-1756 decreased radioligand binding to the level of the cerebellum in most brain areas. The regional BP values were lower after intravenous injection of a higher mass of RGH-1756, indicating saturable binding of [11C]RGH-1756. The D2/D3 antagonist raclopride partly inhibited the binding of [11C]RGH-1756 in several brain areas, including the striatum, mesencephalon and neocortex, whereas the 5HT(1A) antagonist WAY-100635 had no evident effect on [11C]RGH-1756 binding. Despite the promising binding characteristics of RGH-1756 in vitro the present PET-study indicates that [11C]RGH-1756 provides a low signal for specific binding to the D3 receptor in vivo. One explanation is that the favorable binding characteristics of RGH-1756 in vitro are not manifested in vivo. Alternatively, the results may support the hypothesis that the dopamine-D3 receptors are indeed occupied to a high extent by dopamine in vivo and thus not available for radioligand binding.

  14. Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system

    PubMed Central

    Hatcher, Jaime M.; Richardson, Jason R.; Guillot, Thomas S.; McCormack, Alison L.; Di Monte, Donato A.; Jones, Dean P.; Pennell, Kurt D.; Miller, Gary W.

    2007-01-01

    Numerous epidemiological studies have shown an association between pesticide exposure and an increased risk of developing Parkinson’s disease (PD). Here, we provide evidence that the insecticide dieldrin causes specific oxidative damage in the nigrostriatal dopamine (DA) system. We report that exposure of mice to low levels of dieldrin for 30 days resulted in alterations in dopamine-handling as evidenced by a decrease in dopamine metabolites, DOPAC (31.7% decrease) and HVA (29.2% decrease) and significantly increased cysteinyl-catechol levels in the striatum. Furthermore, dieldrin resulted in a 53% decrease in total glutathione, an increase in the redox potential of glutathione, and a 90% increase in protein carbonyls. α-Synuclein protein expression was also significantly increased in the striatum (25% increase). Finally, dieldrin caused a significant decrease in striatal expression of the dopamine transporter as measured by 3H-WIN 35,428 binding and 3H-dopamine uptake. These alterations occurred in the absence of dopamine neuron loss in the substantia nigra pars compacta. These effects represent the ability of low doses of dieldrin to increase the vulnerability of nigrostriatal dopamine neurons by inducing oxidative stress and suggest that pesticide exposure may act as a promoter of PD. PMID:17291500

  15. Nicotine- and methamphetamine-induced dopamine release evaluated with in-vivo binding of radiolabelled raclopride to dopamine D2 receptors: comparison with in-vivo microdialysis data.

    PubMed

    Kim, Sang Eun; Han, Seung-Moo

    2009-07-01

    The effect of substances which alter extracellular dopamine (DA) concentration has been studied by measuring changes in the binding of radiolabelled raclopride, a DA D2 receptor ligand that is sensitive to endogenous DA. To better characterize the relationship between extracellular DA concentration and DA D2 receptor binding of raclopride, we compared the changes of extracellular DA concentration (measured using in-vivo microdialysis) and in-vivo [3H]raclopride binding induced by different doses of methamphetamine (Meth) and nicotine, drugs that enhance DA release with and without blocking DA transporters (DATs), respectively, in rat striatum. Nicotine elicited a modest increase of striatal extrasynaptic extracellular DA, while Meth produced a marked increase of striatal extrasynaptic DA in a dose-dependent manner. There was a close correlation between the decrease in [3H]raclopride in-vivo binding and the increase in extrasynaptic DA concentration induced by both nicotine (r2=0.95, p<0.001) and Meth (r2=0.98, p=0.001), supporting the usefulness of the radiolabelled raclopride-binding measurement for the non-invasive assessment of DA release following interventions in the living brain. However, the linear regression analysis revealed that the ratio of percent DA increase to percent [3H]raclopride binding reduction was 25-fold higher for Meth (34.8:1) than for nicotine (1.4:1). The apparent discrepancy in the extrasynaptic DA-[3H]raclopride binding relationship between the DA-enhancing drugs with and without DAT-blocking property indicates that the competition between endogenous DA and radiolabelled raclopride takes place at the intrasynaptic rather than extrasynaptic DA D2 receptors and reflects synaptic concentration of DA.

  16. SPECT neuroimaging and neuropsychological functions in different stages of Parkinson's disease.

    PubMed

    Paschali, Anna; Messinis, Lambros; Kargiotis, Odysseas; Lakiotis, Velissarios; Kefalopoulou, Zinovia; Constantoyannis, Costantinos; Papathanasopoulos, Panagiotis; Vassilakos, Pavlos

    2010-06-01

    The present study investigated differences and associations between cortical perfusion, nigrostriatal dopamine pathway and neuropsychological functions in different stages of Parkinson's disease (PD). We recruited 53 non-demented PD patients divided into four groups according to the Hoehn and Yahr (HY) staging system and 20 healthy controls who were used in the comparison of the neuropsychological findings. Each patient underwent two separate brain single photon emission computed tomography (SPECT) studies (perfusion and dopamine transporter binding) as well as neuropsychological evaluation. Perfusion images of each patient were quantified and compared with a normative database provided by the NeuroGam software manufacturers. Mean values obtained from the cortical areas and neuropsychological measures in the different groups were also compared by analysis of covariance (ANCOVA) controlling for disease duration and educational level. We found cognitive deficits especially in the late PD stages (HY 3, 4 and 5) compared to the early stages (HY 1 and 2) and associations between cognitive decrements and cortical perfusion deterioration mainly in the frontal and posterior cortical areas. Compared with controls, PD patients showed impairments of cognition and cerebral perfusion that increased with clinical severity. Furthermore, we found a significant correlation between the performance on the phonemic fluency task and regional cerebral blood flow (rCBF) in the left frontal lobe. Dopamine transporter binding in the left caudate nucleus significantly correlated with blood flow in the left dorsolateral prefrontal cortex (DLPFC), but not with measures of executive functions. There are significant cognitive and perfusion deficits associated with PD progression, implying a multifactorial neurodegeneration process apart from dopamine depletion in the substantia nigra pars compacta (SNc).

  17. Impulse control disorders in Parkinson's disease: decreased striatal dopamine transporter levels.

    PubMed

    Voon, Valerie; Rizos, Alexandra; Chakravartty, Riddhika; Mulholland, Nicola; Robinson, Stephanie; Howell, Nicholas A; Harrison, Neil; Vivian, Gill; Ray Chaudhuri, K

    2014-02-01

    Impulse control disorders are commonly associated with dopaminergic therapy in Parkinson's disease (PD). PD patients with impulse control disorders demonstrate enhanced dopamine release to conditioned cues and a gambling task on [(11)C]raclopride positron emission tomography (PET) imaging and enhanced ventral striatal activity to reward on functional MRI. We compared PD patients with impulse control disorders and age-matched and gender-matched controls without impulse control disorders using [(123)I]FP-CIT (2β-carbomethoxy-3β-(4-iodophenyl)tropane) single photon emission computed tomography (SPECT), to assess striatal dopamine transporter (DAT) density. The [(123)I]FP-CIT binding data in the striatum were compared between 15 PD patients with and 15 without impulse control disorders using independent t tests. Those with impulse control disorders showed significantly lower DAT binding in the right striatum with a trend in the left (right: F(1,24)=5.93, p=0.02; left: F(1,24)=3.75, p=0.07) compared to controls. Our findings suggest that greater dopaminergic striatal activity in PD patients with impulse control disorders may be partly related to decreased uptake and clearance of dopamine from the synaptic cleft. Whether these findings are related to state or trait effects is not known. These findings dovetail with reports of lower DAT levels secondary to the effects of methamphetamine and alcohol. Although any regulation of DAT by antiparkinsonian medication appears to be modest, PD patients with impulse control disorders may be differentially sensitive to regulatory mechanisms of DAT expression by dopaminergic medications.

  18. Impulse control disorders in Parkinson's disease: decreased striatal dopamine transporter levels

    PubMed Central

    Voon, Valerie; Rizos, Alexandra; Chakravartty, Riddhika; Mulholland, Nicola; Robinson, Stephanie; Howell, Nicholas A; Harrison, Neil; Vivian, Gill; Ray Chaudhuri, K

    2014-01-01

    Objective Impulse control disorders are commonly associated with dopaminergic therapy in Parkinson's disease (PD). PD patients with impulse control disorders demonstrate enhanced dopamine release to conditioned cues and a gambling task on [11C]raclopride positron emission tomography (PET) imaging and enhanced ventral striatal activity to reward on functional MRI. We compared PD patients with impulse control disorders and age-matched and gender-matched controls without impulse control disorders using [123I]FP-CIT (2β-carbomethoxy-3β-(4-iodophenyl)tropane) single photon emission computed tomography (SPECT), to assess striatal dopamine transporter (DAT) density. Methods The [123I]FP-CIT binding data in the striatum were compared between 15 PD patients with and 15 without impulse control disorders using independent t tests. Results Those with impulse control disorders showed significantly lower DAT binding in the right striatum with a trend in the left (right: F(1,24)=5.93, p=0.02; left: F(1,24)=3.75, p=0.07) compared to controls. Conclusions Our findings suggest that greater dopaminergic striatal activity in PD patients with impulse control disorders may be partly related to decreased uptake and clearance of dopamine from the synaptic cleft. Whether these findings are related to state or trait effects is not known. These findings dovetail with reports of lower DAT levels secondary to the effects of methamphetamine and alcohol. Although any regulation of DAT by antiparkinsonian medication appears to be modest, PD patients with impulse control disorders may be differentially sensitive to regulatory mechanisms of DAT expression by dopaminergic medications. PMID:23899625

  19. Insights into the Modulation of Dopamine Transporter Function by Amphetamine, Orphenadrine, and Cocaine Binding

    PubMed Central

    Cheng, Mary Hongying; Block, Ethan; Hu, Feizhuo; Cobanoglu, Murat Can; Sorkin, Alexander; Bahar, Ivet

    2015-01-01

    Human dopamine (DA) transporter (hDAT) regulates dopaminergic signaling in the central nervous system by maintaining the synaptic concentration of DA at physiological levels, upon reuptake of DA into presynaptic terminals. DA translocation involves the co-transport of two sodium ions and the channeling of a chloride ion, and it is achieved via alternating access between outward-facing (OF) and inward-facing states of DAT. hDAT is a target for addictive drugs, such as cocaine, amphetamine (AMPH), and therapeutic antidepressants. Our recent quantitative systems pharmacology study suggested that orphenadrine (ORPH), an anticholinergic agent and anti-Parkinson drug, might be repurposable as a DAT drug. Previous studies have shown that DAT-substrates like AMPH or -blockers like cocaine modulate the function of DAT in different ways. However, the molecular mechanisms of modulation remained elusive due to the lack of structural data on DAT. The newly resolved DAT structure from Drosophila melanogaster opens the way to a deeper understanding of the mechanism and time evolution of DAT–drug/ligand interactions. Using a combination of homology modeling, docking analysis, molecular dynamics simulations, and molecular biology experiments, we performed a comparative study of the binding properties of DA, AMPH, ORPH, and cocaine and their modulation of hDAT function. Simulations demonstrate that binding DA or AMPH drives a structural transition toward a functional form predisposed to translocate the ligand. In contrast, ORPH appears to inhibit DAT function by arresting it in the OF open conformation. The analysis shows that cocaine and ORPH competitively bind DAT, with the binding pose and affinity dependent on the conformational state of DAT. Further assays show that the effect of ORPH on DAT uptake and endocytosis is comparable to that of cocaine. PMID:26106364

  20. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain.

    PubMed

    Volkow, N D; Wang, G; Fowler, J S; Logan, J; Gerasimov, M; Maynard, L; Ding, Y; Gatley, S J; Gifford, A; Franceschi, D

    2001-01-15

    Methylphenidate (Ritalin) is the most commonly prescribed psychoactive drug in children for the treatment of attention deficit hyperactivity disorder (ADHD), yet the mechanisms responsible for its therapeutic effects are poorly understood. Whereas methylphenidate blocks the dopamine transporter (main mechanism for removal of extracellular dopamine), it is unclear whether at doses used therapeutically it significantly changes extracellular dopamine (DA) concentration. Here we used positron emission tomography and [(11)C]raclopride (D2 receptor radioligand that competes with endogenous DA for binding to the receptor) to evaluate whether oral methylphenidate changes extracellular DA in the human brain in 11 healthy controls. We showed that oral methylphenidate (average dose 0.8 +/- 0.11 mg/kg) significantly increased extracellular DA in brain, as evidenced by a significant reduction in B(max)/K(d) (measure of D2 receptor availability) in striatum (20 +/- 12%; p < 0.0005). These results provide direct evidence that oral methylphenidate at doses within the therapeutic range significantly increases extracellular DA in human brain. This result coupled with recent findings of increased dopamine transporters in ADHD patients (which is expected to result in reductions in extracellular DA) provides a mechanistic framework for the therapeutic efficacy of methylphenidate. The increase in DA caused by the blockade of dopamine transporters by methylphenidate predominantly reflects an amplification of spontaneously released DA, which in turn is responsive to environmental stimulation. Because DA decreases background firing rates and increases signal-to-noise in target neurons, we postulate that the amplification of weak DA signals in subjects with ADHD by methylphenidate would enhance task-specific signaling, improving attention and decreasing distractibility. Alternatively methylphenidate-induced increases in DA, a neurotransmitter involved with motivation and reward, could enhance the salience of the task facilitating the "interest that it elicits" and thus improving performance.

  1. Down-regulation of tryptamine binding sites following chronic molindone administration. A comparison with responses of dopamine and 5-hydroxytryptamine receptors.

    PubMed

    Nguyen, T V; Juorio, A V

    1989-10-01

    The present study assessed changes of tryptamine, dopamine D2, 5-HT1 and 5-HT2 binding sites in rat brain following chronic treatment with low (5 mg/kg/day) and high (40 mg/kg/day) doses of molindone, a clinically effective psychotropic drug. The high-dose molindone treatment produced a decrease in the number of tryptamine binding sites while both high and low doses caused an increase in the number of dopamine D2 binding sites in the striatum. No significant changes were observed in either 5-HT1 or 5-HT2 binding sites in the cerebral cortex. Competition binding experiments showed that molindone was a potent inhibitor at dopamine D2 but less effective at tryptamine, 5-HT1 and 5-HT2 binding sites. The inhibition activity of molindone towards type A monoamine oxidase produced a significant increase in endogenous tryptamine accumulation rate which was much higher than that of dopamine and 5-HT. These findings suggest that the reduction in the number of tryptamine binding sites produced by chronic molindone administration is related to monoamine oxidase inhibition and that the increase in the number of dopamine D2 binding sites is correlated to receptor blocking activity of the drug.

  2. The neuronal nitric oxide synthase inhibitor, 7-nitroindazole, protects against methamphetamine-induced neurotoxicity in vivo.

    PubMed

    Itzhak, Y; Ali, S F

    1996-10-01

    The present study was undertaken to investigate whether the relatively selective neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against methamphetamine (METH)-induced neurotoxicity. Male Swiss Webster mice received the following treatments (i.p.; q 3 h x 3): (a) vehicle/saline, (b) 7-NI (25 mg/kg)/saline, (c) vehicle/METH (5 mg/kg), and (d) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (a) and (b) received two vehicle injections, and groups (c) and (d) received two 7-NI injections (25 mg/kg, each). Administration of vehicle/METH resulted in 68, 44, and 55% decreases in the concentration of dopamine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid, respectively, and a 48% decrease in the number of [3H]mazindol binding sites in the striatum compared with control values. Treatment with 7-NI (group d) provided full protection against the depletion of dopamine and its metabolites and the loss of dopamine transporter binding sites. Administration of 7-NI/saline (group b) affected neither the tissue concentration of dopamine and its metabolites nor the binding parameters of [3H] mazindol compared with control values. 7-NI had no significant effect on animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in methamphetamine-induced neurotoxicity and also suggest that blockade of NOS may be beneficial for the management of Parkinson's disease.

  3. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa

    Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [ 11C]cocaine to measure DAT, and with [ 11C]raclopride to measure dopamine release (assessed as changes in specific binding of [ 11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when comparedmore » to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less

  4. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release.

    PubMed

    Volkow, Nora D; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S; Telang, Frank; Logan, Jean; Tomasi, Dardo

    2015-11-01

    Methamphetamine's widepread abuse and concerns that it might increase Parkinson's disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [(11)C]cocaine to measure DAT, and with [(11)C]raclopride to measure dopamine release (assessed as changes in specific binding of [(11)C]raclopride between placebo and methylphenidate), which was used as a marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals. Published by Elsevier Inc.

  5. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release

    DOE PAGES

    Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa; ...

    2015-07-21

    Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [ 11C]cocaine to measure DAT, and with [ 11C]raclopride to measure dopamine release (assessed as changes in specific binding of [ 11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when comparedmore » to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less

  6. Dopamine Transporter-Dependent and -Independent Striatal Binding of the Benztropine Analog JHW 007, a Cocaine Antagonist with Low Abuse Liability

    PubMed Central

    Kopajtic, Theresa A.; Liu, Yi; Surratt, Christopher K.; Donovan, David M.; Newman, Amy H.; Katz, Jonathan L.

    2010-01-01

    The benztropine analog N-(n-butyl)-3α-[bis(4′-fluorophenyl)methoxy]-tropane (JHW 007) displays high affinity for the dopamine transporter (DAT), but unlike typical DAT ligands, has relatively low abuse liability and blocks the effects of cocaine, including its self-administration. To determine sites responsible for the cocaine antagonist effects of JHW 007, its in vitro binding was compared with that of methyl (1R,2S,3S,5S)-3-(4-fluorophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate (WIN 35428) in rats, mice, and human DAT (hDAT)-transfected cells. A one-site model, with Kd values of 4.21 (rat) and 8.99 nM (mouse) best fit the [3H]WIN 35428 data. [3H]JHW 007 binding best fit a two-site model (rat, 7.40/4400 nM; mouse, 8.18/2750 nM), although a one-site fit was observed with hDAT membranes (43.7 nM). Drugs selective for the norepinephrine and serotonin transporters had relatively low affinity in competition with [3H]JHW 007 binding, as did drugs selective for other sites identified previously as potential JHW 007 binding sites. The association of [3H]WIN 35428 best fit a one-phase model, whereas the association of [3H]JHW 007 best fit a two-phase model in all tissues. Because cocaine antagonist effects of JHW 007 have been observed previously soon after injection, its rapid association observed here may contribute to those effects. Multiple [3H]JHW 007 binding sites were obtained in tissue from mice lacking the DAT, suggesting these as yet unidentified sites as potential contributors to the cocaine antagonist effects of JHW 007. Unlike WIN 35428, the binding of JHW 007 was Na+-independent. This feature of JHW 007 has been linked to the conformational status of the DAT, which in turn may contribute to the antagonism of cocaine. PMID:20855444

  7. Characterization of [3H]LS-3-134, a Novel Arylamide Phenylpiperazine D3 Dopamine Receptor Selective Radioligand

    PubMed Central

    Rangel-Barajas, Claudia; Malik, Maninder; Taylor, Michelle; Neve, Kim A.; Mach, Robert H.; Luedtke, Robert R.

    2014-01-01

    LS-3-134 is a substituted N-phenylpiperazine derivative that has been reported to exhibit a) high-affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, b) >100-fold D3 vs. D2 dopamine receptor subtype binding selectivity and c) low-affinity binding (Ki values >5,000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin-dependent activation of the adenylyl cyclase inhibition assay, LS-3-134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [3H]-labeled LS-3-134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10-15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK-293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [3H]LS-3-134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies we propose that [3H]LS-3-134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype. PMID:25041389

  8. Fluoroethoxy-1,4-diphenethylpiperidine and piperazine derivatives: Potent and selective inhibitors of [3H]dopamine uptake at the vesicular monoamine transporter-2.

    PubMed

    Hankosky, Emily R; Joolakanti, Shyam R; Nickell, Justin R; Janganati, Venumadhav; Dwoskin, Linda P; Crooks, Peter A

    2017-12-15

    A small library of fluoroethoxy-1,4-diphenethyl piperidine and fluoroethoxy-1,4-diphenethyl piperazine derivatives were designed, synthesized and evaluated for their ability to inhibit [ 3 H]dopamine (DA) uptake at the vesicular monoamine transporter-2 (VMAT2) and dopamine transporter (DAT), [ 3 H]serotonin (5-HT) uptake at the serotonin transporter (SERT), and [ 3 H]dofetilide binding at the human-ether-a-go-go-related gene (hERG) channel. The majority of the compounds exhibited potent inhibition of [ 3 H]DA uptake at VMAT2, Ki changes in the nanomolar range (K i  = 0.014-0.073 µM). Compound 15d exhibited the highest affinity (K i  = 0.014 µM) at VMAT2, and had 160-, 5-, and 60-fold greater selectivity for VMAT2 vs. DAT, SERT and hERG, respectively. Compound 15b exhibited the greatest selectivity (>60-fold) for VMAT2 relative to all the other targets evaluated, and 15b had high affinity for VMAT2 (K i  = 0.073 µM). Compound 15b was considered the lead compound from this analog series due to its high affinity and selectivity for VMAT2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A DNA sequence obtained by replacement of the dopamine RNA aptamer bases is not an aptamer.

    PubMed

    Álvarez-Martos, Isabel; Ferapontova, Elena E

    2017-08-05

    A unique specificity of the aptamer-ligand biorecognition and binding facilitates bioanalysis and biosensor development, contributing to discrimination of structurally related molecules, such as dopamine and other catecholamine neurotransmitters. The aptamer sequence capable of specific binding of dopamine is a 57 nucleotides long RNA sequence reported in 1997 (Biochemistry, 1997, 36, 9726). Later, it was suggested that the DNA homologue of the RNA aptamer retains the specificity of dopamine binding (Biochem. Biophys. Res. Commun., 2009, 388, 732). Here, we show that the DNA sequence obtained by the replacement of the RNA aptamer bases for their DNA analogues is not able of specific biorecognition of dopamine, in contrast to the original RNA aptamer sequence. This DNA sequence binds dopamine and structurally related catecholamine neurotransmitters non-specifically, as any DNA sequence, and, thus, is not an aptamer and cannot be used neither for in vivo nor in situ analysis of dopamine in the presence of structurally related neurotransmitters. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms

    PubMed Central

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-01-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  11. Missense dopamine transporter mutations associate with adult parkinsonism and ADHD

    PubMed Central

    Hansen, Freja H.; Skjørringe, Tina; Yasmeen, Saiqa; Arends, Natascha V.; Sahai, Michelle A.; Erreger, Kevin; Andreassen, Thorvald F.; Holy, Marion; Hamilton, Peter J.; Neergheen, Viruna; Karlsborg, Merete; Newman, Amy H.; Pope, Simon; Heales, Simon J.R.; Friberg, Lars; Law, Ian; Pinborg, Lars H.; Sitte, Harald H.; Loland, Claus; Shi, Lei; Weinstein, Harel; Galli, Aurelio; Hjermind, Lena E.; Møller, Lisbeth B.; Gether, Ulrik

    2014-01-01

    Parkinsonism and attention deficit hyperactivity disorder (ADHD) are widespread brain disorders that involve disturbances of dopaminergic signaling. The sodium-coupled dopamine transporter (DAT) controls dopamine homeostasis, but its contribution to disease remains poorly understood. Here, we analyzed a cohort of patients with atypical movement disorder and identified 2 DAT coding variants, DAT-Ile312Phe and a presumed de novo mutant DAT-Asp421Asn, in an adult male with early-onset parkinsonism and ADHD. According to DAT single-photon emission computed tomography (DAT-SPECT) scans and a fluoro-deoxy-glucose-PET/MRI (FDG-PET/MRI) scan, the patient suffered from progressive dopaminergic neurodegeneration. In heterologous cells, both DAT variants exhibited markedly reduced dopamine uptake capacity but preserved membrane targeting, consistent with impaired catalytic activity. Computational simulations and uptake experiments suggested that the disrupted function of the DAT-Asp421Asn mutant is the result of compromised sodium binding, in agreement with Asp421 coordinating sodium at the second sodium site. For DAT-Asp421Asn, substrate efflux experiments revealed a constitutive, anomalous efflux of dopamine, and electrophysiological analyses identified a large cation leak that might further perturb dopaminergic neurotransmission. Our results link specific DAT missense mutations to neurodegenerative early-onset parkinsonism. Moreover, the neuropsychiatric comorbidity provides additional support for the idea that DAT missense mutations are an ADHD risk factor and suggests that complex DAT genotype and phenotype correlations contribute to different dopaminergic pathologies. PMID:24911152

  12. Structure-activity relationships for serotonin transporter and dopamine receptor selectivity.

    PubMed

    Agatonovic-Kustrin, Snezana; Davies, Paul; Turner, Joseph V

    2009-05-01

    Antipsychotic medications have a diverse pharmacology with affinity for serotonergic, dopaminergic, adrenergic, histaminergic and cholinergic receptors. Their clinical use now also includes the treatment of mood disorders, thought to be mediated by serotonergic receptor activity. The aim of our study was to characterise the molecular properties of antipsychotic agents, and to develop a model that would indicate molecular specificity for the dopamine (D(2)) receptor and the serotonin (5-HT) transporter. Back-propagation artificial neural networks (ANNs) were trained on a dataset of 47 ligands categorically assigned antidepressant or antipsychotic utility. The structure of each compound was encoded with 63 calculated molecular descriptors. ANN parameters including hidden neurons and input descriptors were optimised based on sensitivity analyses, with optimum models containing between four and 14 descriptors. Predicted binding preferences were in excellent agreement with clinical antipsychotic or antidepressant utility. Validated models were further tested by use of an external prediction set of five drugs with unknown mechanism of action. The SAR models developed revealed the importance of simple molecular characteristics for differential binding to the D(2) receptor and the 5-HT transporter. These included molecular size and shape, solubility parameters, hydrogen donating potential, electrostatic parameters, stereochemistry and presence of nitrogen. The developed models and techniques employed are expected to be useful in the rational design of future therapeutic agents.

  13. Effects of the new psychoactive substances diclofensine, diphenidine, and methoxphenidine on monoaminergic systems.

    PubMed

    Luethi, Dino; Hoener, Marius C; Liechti, Matthias E

    2018-01-15

    Diclofensine, diphenidine, and methoxphenidine are new psychoactive substances (NPSs) that recently appeared on the illicit drug market. Pharmacological profiling of such newly emerged drugs is crucial for a better understanding of their psychotropic effects and toxicity. We therefore investigated the potential of these NPSs to inhibit the norepinephrine, dopamine, and serotonin transporters in human embryonic kidney cells stably transfected with the respective transporters. In addition, we determined monoamine transporter and receptor affinities for the substances. Diclofensine potently bound to the monoamine transporters in the submicromolar range and had similar inhibition potential for all three transporters in the range of 2.5-4.8μM. Moreover, diclofensine bound to adrenergic, dopamine, serotonin, and trace amine-associated receptors. Diphenidine was an equipotent inhibitor of the norepinephrine and dopamine transporters in the low micromolar range and a very weak inhibitor of the serotonin transporter. Besides binding to transporters, diphenidine bound to adrenergic α 1A and α 2A receptors and serotonin 5-hydroxytryptamine 1A (5-HT 1A ) and 5-HT 2A receptors in the range of 4-11μM. Methoxphenidine bound to all transporters, but considerable inhibition (IC 50 < 10μM) was observed only for the norepinephrine transporter. Moreover, methoxphenidine bound to adrenergic α 2A and serotonin 5-HT 2A and 5-HT 2C receptors in the range of 2.5-8.2μM. None of the test drugs mediated substrate-type efflux of monoamines. These data demonstrate that the monoamine transporter inhibition and receptor interactions most likely mediate the psychoactive effects of diclofensine and possibly play a contributory role for diphenidine and methoxphenidine. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Pharmacological activities of Vitex agnus-castus extracts in vitro.

    PubMed

    Meier, B; Berger, D; Hoberg, E; Sticher, O; Schaffner, W

    2000-10-01

    The pharmacological effects of ethanolic Vitex agnus-castus fruit-extracts (especially Ze 440) and various extract fractions of different polarities were evaluated both by radioligand binding studies and by superfusion experiments. A relative potent binding inhibition was observed for dopamine D2 and opioid (micro and kappa subtype) receptors with IC50 values of the native extract between 20 and 70 mg/mL. Binding, neither to the histamine H1, benzodiazepine and OFQ receptor, nor to the binding-site of the serotonin (5-HT) transporter, was significantly inhibited. The lipophilic fractions contained the diterpenes rotun-difuran and 6beta,7beta-diacetoxy-13-hydroxy-labda-8,14-dien . They exhibited inhibitory actions on dopamine D2 receptor binding. While binding inhibition to mu and kappa opioid receptors was most pronounced in lipophilic fractions, binding to delta opioid receptors was inhibited mainly by a aqueous fraction. Standardised Ze 440 extracts of different batches were of constant pharmacological quality according to their potential to inhibit the binding to D2 receptors. In superfusion experiments, the aqueous fraction of a methanolic extract inhibited the release of acetylcholine in a concentration-dependent manner. In addition, the potent D2 receptor antagonist spiperone antagonised the effect of the extract suggesting a dopaminergic action mediated by D2 receptor activation. Our results indicate a dopaminergic effect of Vitex agnus-castus extracts and suggest additional pharmacological actions via opioid receptors.

  15. Functional Genomics of Attention-Deficit/ Hyperactivity Disorder (ADHD) Risk Alleles on Dopamine Transporter Binding in ADHD and Healthy Control Subjects

    PubMed Central

    Spencer, Thomas J.; Biederman, Joseph; Faraone, Stephen V.; Madras, Bertha K.; Bonab, Ali A.; Dougherty, Darin D.; Batchelder, Holly; Clarke, Allison; Fischman, Alan J.

    2013-01-01

    Background The main aim of this study was to examine the relationship between dopamine transporter (DAT) binding in the striatum in individuals with and without attention-deficit/hyperactivity disorder (ADHD), attending to the 3′-untranslated region of the gene (3′-UTR) and intron8 variable number of tandem repeats (VNTR) polymorphisms of the DAT (SLC6A3) gene. Methods Subjects consisted of 68 psychotropic (including stimulant)-naïve and smoking-naïve volunteers between 18 and 55 years of age (ADHD n = 34; control subjects n = 34). Striatal DAT binding was measured with positron emission tomography with 11C altropane. Genotyping of the two DAT (SLC6A3) 3′-UTR and intron8 VNTRs used standard protocols. Results The gene frequencies of each of the gene polymorphisms assessed did not differ between the ADHD and control groups. The ADHD status (t = 2.99; p < .004) and 3′-UTR of SLC6A3 9 repeat carrier status (t = 2.74; p < .008) were independently and additively associated with increased DAT binding in the caudate. The ADHD status was associated with increased striatal (caudate) DAT binding regardless of 3′-UTR genotype, and 3′-UTR genotype was associated with increased striatal (caudate) DAT binding regardless of ADHD status. In contrast, there were no significant associations between polymorphisms of DAT intron8 or the 3′-UTR-intron8 haplotype with DAT binding. Conclusions The 3′-UTR but not intron8 VNTR genotypes were associated with increased DAT binding in both ADHD patients and healthy control subjects. Both ADHD status and the 3′-UTR polymorphism status had an additive effect on DAT binding. Our findings suggest that an ADHD risk polymorphism (3′-UTR) of SLC6A3 has functional consequences on central nervous system DAT binding in humans. PMID:23273726

  16. Brain dopamine and serotonin transporter binding are associated with visual attention bias for food in lean men.

    PubMed

    Koopman, K E; Roefs, A; Elbers, D C E; Fliers, E; Booij, J; Serlie, M J; la Fleur, S E

    2016-06-01

    In rodents, the striatal dopamine (DA) system and the (hypo)thalamic serotonin (5-HT) system are involved in the regulation of feeding behavior. In lean humans, little is known about the relationship between these brain neurotransmitter systems and feeding. We studied the relationship between striatal DA transporters (DAT) and diencephalic 5-HT transporters (SERT), behavioral tasks and questionnaires, and food intake. We measured striatal DAT and diencephalic SERT binding with [123I]FP-CIT SPECT in 36 lean male subjects. Visual attention bias for food (detection speed and distraction time) and degree of impulsivity were measured using response-latency-based computer tasks. Craving and emotional eating were assessed with questionnaires and ratings of hunger by means of VAS scores. Food intake was assessed through a self-reported online diet journal. Striatal DAT and diencephalic SERT binding negatively correlated with food detection speed (p = 0.008, r = -0.50 and p = 0.002, r = -0.57, respectively), but not with food distraction time, ratings of hunger, craving or impulsivity. Striatal DAT and diencephalic SERT binding did not correlate with free choice food intake, whereas food detection speed positively correlated with total caloric intake (p = 0.001, r = 0.60), protein intake (p = 0.01, r = 0.44), carbohydrate intake (p = 0.03, r = 0.39) and fat intake (p = 0.06, r = 0.35). These results indicate a role for the central 5-HT and DA system in the regulation of visual attention bias for food, which contributes to the motivation to eat, in non-obese, healthy humans. In addition, this study confirms that food detection speed, measured with the latency-based computer task, positively correlates with total food and macronutrient intake.

  17. Diet-induced obesity: dopamine transporter function, impulsivity and motivation.

    PubMed

    Narayanaswami, V; Thompson, A C; Cassis, L A; Bardo, M T; Dwoskin, L P

    2013-08-01

    A rat model of diet-induced obesity (DIO) was used to determine dopamine transporter (DAT) function, impulsivity and motivation as neurobehavioral outcomes and predictors of obesity. To evaluate neurobehavioral alterations following the development of DIO induced by an 8-week high-fat diet (HF) exposure, striatal D2-receptor density, DAT function and expression, extracellular dopamine concentrations, impulsivity, and motivation for high- and low-fat reinforcers were determined. To determine predictors of DIO, neurobehavioral antecedents including impulsivity, motivation for high-fat reinforcers, DAT function and extracellular dopamine were evaluated before the 8-week HF exposure. Striatal D2-receptor density was determined by in vitro kinetic analysis of [(3)H]raclopride binding. DAT function was determined using in vitro kinetic analysis of [(3)H]dopamine uptake, methamphetamine-evoked [(3)H]dopamine overflow and no-net flux in vivo microdialysis. DAT cell-surface expression was determined using biotinylation and western blotting. Impulsivity and food-motivated behavior were determined using a delay discounting task and progressive ratio schedule, respectively. Relative to obesity-resistant (OR) rats, obesity-prone (OP) rats exhibited 18% greater body weight following an 8-week HF-diet exposure, 42% lower striatal D2-receptor density, 30% lower total DAT expression, 40% lower in vitro and in vivo DAT function, 45% greater extracellular dopamine and twofold greater methamphetamine-evoked [(3)H]dopamine overflow. OP rats exhibited higher motivation for food, and surprisingly, were less impulsive relative to OR rats. Impulsivity, in vivo DAT function and extracellular dopamine concentration did not predict DIO. Importantly, motivation for high-fat reinforcers predicted the development of DIO. Human studies are limited by their ability to determine if impulsivity, motivation and DAT function are causes or consequences of DIO. The current animal model shows that motivation for high-fat food, but not impulsive behavior, predicts the development of obesity, whereas decreases in striatal DAT function are exhibited only after the development of obesity.

  18. Diet-induced obesity: dopamine transporter function, impulsivity and motivation

    PubMed Central

    Narayanaswami, V; Thompson, AC; Cassis, LA; Bardo, MT; Dwoskin, LP

    2013-01-01

    OBJECTIVE A rat model of diet-induced obesity (DIO) was used to determine dopamine transporter (DAT) function, impulsivity and motivation as neurobehavioral outcomes and predictors of obesity. DESIGN To evaluate neurobehavioral alterations following the development of DIO induced by an 8-week high-fat diet (HF) exposure, striatal D2-receptor density, DAT function and expression, extracellular dopamine concentrations, impulsivity, and motivation for high- and low-fat reinforcers were determined. To determine predictors of DIO, neurobehavioral antecedents including impulsivity, motivation for high-fat reinforcers, DAT function and extracellular dopamine were evaluated before the 8-week HF exposure. METHODS Striatal D2-receptor density was determined by in vitro kinetic analysis of [3H]raclopride binding. DAT function was determined using in vitro kinetic analysis of [3H]dopamine uptake, methamphetamine-evoked [3H]dopamine overflow and no-net flux in vivo microdialysis. DAT cell-surface expression was determined using biotinylation and western blotting. Impulsivity and food-motivated behavior were determined using a delay discounting task and progressive ratio schedule, respectively. RESULTS Relative to obesity-resistant (OR) rats, obesity-prone (OP) rats exhibited 18% greater body weight following an 8-week HF-diet exposure, 42% lower striatal D2-receptor density, 30% lower total DAT expression, 40% lower in vitro and in vivo DAT function, 45% greater extracellular dopamine and twofold greater methamphetamine-evoked [3H]dopamine overflow. OP rats exhibited higher motivation for food, and surprisingly, were less impulsive relative to OR rats. Impulsivity, in vivo DAT function and extracellular dopamine concentration did not predict DIO. Importantly, motivation for high-fat reinforcers predicted the development of DIO. CONCLUSION Human studies are limited by their ability to determine if impulsivity, motivation and DAT function are causes or consequences of DIO. The current animal model shows that motivation for high-fat food, but not impulsive behavior, predicts the development of obesity, whereas decreases in striatal DAT function are exhibited only after the development of obesity. PMID:23164701

  19. Dopaminergic striatal innervation predicts interlimb transfer of a visuomotor skill

    PubMed Central

    Isaias, IU; Moisello, C; Marotta, G; Schiavella, M; Canesi, M; Perfetti, B; Cavallari, P; Pezzoli, G; Ghilardi, MF

    2011-01-01

    We investigated whether dopamine influences the rate of adaptation to a visuomotor distortion and the transfer of this learning from the right to the left limb in human subjects. We thus studied patients with Parkinson disease as a putative in vivo model of dopaminergic denervation. Despite normal adaptation rates, patients showed a reduced transfer compared to age-matched healthy controls. The magnitude of the transfer, but not of the adaptation rate, was positively predicted by the values of dopamine-transporter binding of the right caudate and putamen. We conclude that striatal dopaminergic activity plays an important role in the transfer of visuomotor skills. PMID:21994362

  20. Dopaminergic striatal innervation predicts interlimb transfer of a visuomotor skill.

    PubMed

    Isaias, Ioannis U; Moisello, Clara; Marotta, Giorgio; Schiavella, Mauro; Canesi, Margherita; Perfetti, Bernardo; Cavallari, Paolo; Pezzoli, Gianni; Ghilardi, M Felice

    2011-10-12

    We investigated whether dopamine influences the rate of adaptation to a visuomotor distortion and the transfer of this learning from the right to the left limb in human subjects. We thus studied patients with Parkinson disease as a putative in vivo model of dopaminergic denervation. Despite normal adaptation rates, patients showed a reduced transfer compared with age-matched healthy controls. The magnitude of the transfer, but not of the adaptation rate, was positively predicted by the values of dopamine-transporter binding of the right caudate and putamen. We conclude that striatal dopaminergic activity plays an important role in the transfer of visuomotor skills.

  1. Blockade of dopamine D1-family receptors attenuates the mania-like hyperactive, risk-preferring, and high motivation behavioral profile of mice with low dopamine transporter levels.

    PubMed

    Milienne-Petiot, Morgane; Groenink, Lucianne; Minassian, Arpi; Young, Jared W

    2017-10-01

    Patients with bipolar disorder mania exhibit poor cognition, impulsivity, risk-taking, and goal-directed activity that negatively impact their quality of life. To date, existing treatments for bipolar disorder do not adequately remediate cognitive dysfunction. Reducing dopamine transporter expression recreates many bipolar disorder mania-relevant behaviors (i.e. hyperactivity and risk-taking). The current study investigated whether dopamine D 1 -family receptor blockade would attenuate the risk-taking, hypermotivation, and hyperactivity of dopamine transporter knockdown mice. Dopamine transporter knockdown and wild-type littermate mice were tested in mouse versions of the Iowa Gambling Task (risk-taking), Progressive Ratio Breakpoint Test (effortful motivation), and Behavioral Pattern Monitor (activity). Prior to testing, the mice were treated with the dopamine D 1 -family receptor antagonist SCH 23390 hydrochloride (0.03, 0.1, or 0.3 mg/kg), or vehicle. Dopamine transporter knockdown mice exhibited hyperactivity and hyperexploration, hypermotivation, and risk-taking preference compared with wild-type littermates. SCH 23390 hydrochloride treatment decreased premature responding in dopamine transporter knockdown mice and attenuated their hypermotivation. SCH 23390 hydrochloride flattened the safe/risk preference, while reducing activity and exploratory levels of both genotypes similarly. Dopamine transporter knockdown mice exhibited mania-relevant behavior compared to wild-type mice. Systemic dopamine D 1 -family receptor antagonism attenuated these behaviors in dopamine transporter knockdown, but not all effects were specific to only the knockdown mice. The normalization of behavior via blockade of dopamine D 1 -family receptors supports the hypothesis that D 1 and/or D 5 receptors could contribute to the mania-relevant behaviors of dopamine transporter knockdown mice.

  2. Action of novel antipsychotics at human dopamine D3 receptors coupled to G protein and ERK1/2 activation.

    PubMed

    Bruins Slot, Liesbeth A; Palmier, Christiane; Tardif, Stéphanie; Cussac, Didier

    2007-08-01

    The effects of new generation antipsychotic drugs (APDs) targeting dopamine D(2) and serotonin 5-HT(1A) receptors were compared with typical and atypical APDs on phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2) and measures of G protein activation in CHO cell lines stably expressing the human dopamine D(3) receptor. The preferential dopamine D(3) agonists (+)-7-OH-DPAT and PD128907, like dopamine and quinelorane, efficaciously stimulated ERK 1/2 phosphorylation at dopamine D(3) receptors. In contrast, in [(35)S]GTPgammaS binding experiments, (+)-7-OH-DPAT exhibited partial agonist properties, while PD128907 and quinelorane maintained full agonist properties. The preferential dopamine D(3) ligand BP 897 and the antidyskinetic sarizotan partially activated ERK 1/2 phosphorylation while exerting no agonist activity on GTPgammaS binding, suggesting signal amplification at the MAP kinase level. Antipsychotics differed in their ability to inhibit both agonist-stimulated GTPgammaS binding and ERK 1/2 phosphorylation, but all typical and atypical compounds tested acted as dopamine D(3) receptor antagonists with the exception of n-desmethylclozapine, the active metabolite of clozapine, which partially activated dopamine D(3) receptor-mediated ERK 1/2 phosphorylation. Among the new generation dopamine D(2)/serotonin 5-HT(1A) antipsychotics, only F 15063 and SLV313 acted as pure dopamine D(3) receptor antagonists, bifeprunox was highly efficacious whereas SSR181507 and aripiprazole showed marked partial agonist properties for ERK 1/2 phosphorylation. In contrast, in the GTPgammaS binding study, aripiprazole was devoid of agonist properties and bifeprunox, and to an even lesser extent SSR181507, only weakly stimulated GTPgammaS binding. In summary, these findings underline the differences of dopamine D(3) properties of new generation antipsychotics which may need to be considered in understanding their diverse therapeutic actions.

  3. Lack of effect of reserpine-induced dopamine depletion on the binding of the dopamine-D3 selective radioligand, [11C]RGH-1756.

    PubMed

    Sóvágó, Judit; Farde, Lars; Halldin, Christer; Schukin, Evgenij; Schou, Magnus; Laszlovszky, István; Kiss, Béla; Gulyás, Balázs

    2005-10-15

    The effect of reserpine induced dopamine depletion on the binding of the putative dopamine-D3 receptor ligand, [(11)C]RGH-1756 was examined in the monkey brain with positron emission tomography (PET). In a previous series of experiments, we have made an attempt to selectively label D3 receptors in the monkey brain using [(11)C]RGH-1756. Despite high selectivity and affinity of RGH-1756 in vitro, [(11)C]RGH-1756 displayed only low specific binding to D3 receptors in vivo. The aim of the present study was to examine whether low specific binding of [(11)C]RGH-1756 is caused by insufficient in vivo affinity of the ligand, or by high physiological occupancy of D3 receptors by endogenous dopamine (DA). PET experiments were performed in three monkeys under baseline conditions and after administration of reserpine (0.5 mg/kg). The results of the baseline measurements corresponded well to our earlier observations with [(11)C]RGH-1756. Reserpine caused no evident change in the regional distribution of [(11)C]RGH-1756 in the monkey brain, and no conspicuous regional accumulation of activity could be observed. After reserpine treatment there was no evident increase of specific binding and binding potential (BP) of [(11)C]RGH-1756. The lack of increased [(11)C]RGH-1756 binding after reserpine treatment indicates that competition with endogenous DA is not the predominant reason for the failure of the radioligand to label D3 receptors. Therefore, the low binding of [(11)C]RGH-1756 could largely be explained by the need for very high affinity of radioligand for D3 receptors in vivo, to obtain a suitable signal for the minute densities of D3 receptors expressed in the primate brain.

  4. Heterogeneity of D2 dopamine receptors in different brain regions.

    PubMed Central

    Leonard, M N; Macey, C A; Strange, P G

    1987-01-01

    The binding of [3H]spiperone has been examined in membranes derived from different regions of bovine brain. In caudate nucleus, nucleus accumbens, olfactory tubercle and putamen binding is to D2 dopamine and 5HT2 serotonin receptors, whereas in cingulate cortex only serotonin 5HT2 receptor binding can be detected. D2 dopamine receptors were examined in detail in caudate nucleus, olfactory tubercle and putamen using [3H]spiperone binding in the presence of 0.3 microM-mianserin (to block 5HT2 serotonin receptors). No evidence for heterogeneity among D2 dopamine receptors either between brain regions or within a brain region was found from the displacements of [3H]spiperone binding by a range of antagonists, including dibenzazepines and substituted benzamides. Regulation of agonist binding by guanine nucleotides did, however, differ between regions. In caudate nucleus a population of agonist binding sites appeared resistant to guanine nucleotide regulation, whereas this was not the case in olfactory tubercle and putamen. PMID:2963621

  5. Regional influence of cocaine on evoked dopamine release in the nucleus accumbens core: A role for the caudal brainstem.

    PubMed

    Gerth, Ashlynn I; Alhadeff, Amber L; Grill, Harvey J; Roitman, Mitchell F

    2017-01-15

    Cocaine increases dopamine concentration in the nucleus accumbens through competitive binding to the dopamine transporter (DAT). However, it also increases the frequency of dopamine release events, a finding that cannot be explained by action at the DAT alone. Rather, this effect may be mediated by cocaine-induced modulation of brain regions that project to dopamine neurons. To explore regional contributions of cocaine to dopamine signaling, we administered cocaine to the lateral or fourth ventricles and compared the effects on dopamine release in the nucleus accumbens evoked by electrical stimulation of the ventral tegmental area to that of systemically-delivered cocaine. Stimulation trains caused a sharp rise in dopamine followed by a slower return to baseline. The magnitude of dopamine release ([DA]max) as well as the latency to decay to fifty percent of the maximum (t(1/2); index of DAT activity) by each stimulation train were recorded. All routes of cocaine delivery caused an increase in [DA]max; only systemic cocaine caused an increase in t(1/2). Importantly, these data are the first to show that hindbrain (fourth ventricle)-delivered cocaine modulates phasic dopamine signaling. Fourth ventricular cocaine robustly increased cFos immunoreactivity in the nucleus of the solitary tract (NTS), suggesting a neural substrate for hindbrain cocaine-mediated effects on [DA]max. Together, the data demonstrate that cocaine-induced effects on phasic dopamine signaling are mediated via actions throughout the brain including the hindbrain. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Single cocaine exposure does not alter striatal pre-synaptic dopamine function in mice: an [18 F]-FDOPA PET study.

    PubMed

    Bonsall, David R; Kokkinou, Michelle; Veronese, Mattia; Coello, Christopher; Wells, Lisa A; Howes, Oliver D

    2017-12-01

    Cocaine is a recreational drug of abuse that binds to the dopamine transporter, preventing reuptake of dopamine into pre-synaptic terminals. The increased presence of synaptic dopamine results in stimulation of both pre- and post-synaptic dopamine receptors, considered an important mechanism by which cocaine elicits its reinforcing properties. However, the effects of acute cocaine administration on pre-synaptic dopamine function remain unclear. Non-invasive imaging techniques such as positron emission tomography have revealed impaired pre-synaptic dopamine function in chronic cocaine users. Similar impairments have been seen in animal studies, with microdialysis experiments indicating decreased basal dopamine release. Here we use micro positron emission tomography imaging techniques in mice to measure dopamine synthesis capacity and determine the effect of acute cocaine administration of pre-synaptic dopamine function. We show that a dose of 20 mg/kg cocaine is sufficient to elicit hyperlocomotor activity, peaking 15-20 min post treatment (p < 0.001). However, dopamine synthesis capacity in the striatum was not significantly altered by acute cocaine treatment (KiCer: 0.0097 per min vs. 0.0112 per min in vehicle controls, p > 0.05). Furthermore, expression levels of two key enzymes related to dopamine synthesis, tyrosine hydroxylase and aromatic l-amino acid decarboxylase, within the striatum of scanned mice were not significantly affected by acute cocaine pre-treatment (p > 0.05). Our findings suggest that while the regulation of dopamine synthesis and release in the striatum have been shown to change with chronic cocaine use, leading to a reduced basal tone, these adaptations to pre-synaptic dopaminergic neurons are not initiated following a single exposure to the drug. © 2017 International Society for Neurochemistry.

  7. Relationship between cocaine-induced subjective effects and dopamine transporter occupancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, N.D.; Fischman, M.; Wang, G.J.

    The ability of cocaine to occupy the dopamine transporter has been linked to its reinforcing properties. However, such a relationship has not been demonstrated in humans. Methods: Positron Emission Tomography and [C-11]cocaine were used to estimate dopamine transporter occupancies after different doses of cocaine in 18 active cocaine abusers. The ratio of the distribution volume of [C-11]cocaine in striatum to that in cerebellum, which corresponds to Bmax/Kd +1 and is insensitive to changes in cerebral blood flow, was our measure of dopamine transporter availability. In parallel subjective effects were measured to assess the relationship between dopamine transporter occupancy and cocainesmore » behavioral effects. Intravenous cocaine produced a significant dose,-dependent blockade of dopamine transporters: 73 % for 0.6 mg/kg; 601/6 for 0.3 mg/kg; 48 % for 0.1 mg/kg iv and 40 % for 0.05 mg/kg. In addition, dopamine transporter occupancies were significantly correlated with cocaine plasma concentration (r = 0.55 p < 0.001). Cocaine also produced dose-dependent increases in self-reported ratings of {open_quotes}high{close_quotes} which were significantly correlated with the levels of dopamine transporter blockade. Discussion: These results provide the first documentation in humans that dopamine transporter occupancy is associated with cocaine induced subjective effects. They also suggest that dopamine transporter occupancies equal to or greater than 60% are required to produce significant effects on ratings of {open_quotes}high{close_quotes}.« less

  8. Structure-Activity Relationships for a Novel Series of Citalopram (1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile) Analogues at Monoamine Transporters

    PubMed Central

    Zhang, Peng; Cyriac, George; Kopajtic, Theresa; Zhao, Yongfang; Javitch, Jonathan A.; Katz, Jonathan L.; Newman, Amy Hauck

    2010-01-01

    (±)-Citalopram (1, 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile), and its eutomer, escitalopram (S(+)-1) are selective serotonin reuptake inhibitors (SSRIs) that are used clinically to treat anxiety and depression. To further explore structure-activity relationships at the serotonin transporter (SERT), a series of (±)-4- and 5-substituted citalopram analogues were designed, synthesized and evaluated for binding at the SERT, dopamine transporter (DAT) and norepinephrine transporter (NET) in native rodent tissue. Many of these analogues showed high SERT binding affinities (Ki = 1–40 nM) and selectivities over both NET and DAT. Selected enantiomeric pairs of analogues were synthesized and both retained enantioselectivity as with S- and R-1, wherein S > R at the SERT. In addition, the enantiomeric pairs of 1 and 5 were tested for binding at the homologous bacterial Leucine transporter (LeuT), wherein low affinities and the absence of enantioselectivity suggested distinctive binding sites for these compounds at SERT as compared to LeuT. These novel ligands will provide molecular tools to elucidate drug-protein interactions at the SERT and to relate those to behavioral actions, in vivo. PMID:20672825

  9. Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease

    PubMed Central

    Lohr, Kelly M.; Masoud, Shababa T.; Salahpour, Ali; Miller, Gary W.

    2016-01-01

    Dopamine was first identified as a neurotransmitter localized to the midbrain over 50 years ago. The dopamine transporter (DAT; SLC6A3) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2) are two regulators of dopamine homeostasis in the presynaptic neuron. DAT transports dopamine from the extracellular space into the cytosol of the presynaptic terminal. VMAT2 then packages this cytosolic dopamine into vesicular compartments for subsequent release upon neurotransmission. Thus, DAT and VMAT2 act in concert to move transmitter efficiently throughout the neuron. The accumulation of dopamine in the neuronal cytosol can trigger oxidative stress and neurotoxicity, suggesting that the proper compartmentalization of dopamine is critical for neuron function and risk of disease. For decades, studies have examined the effects of reduced transporter function in mice (e.g. DAT-KO, VMAT2-KO, VMAT2-deficient). However, we have only recently been able to assess the effects of elevated transporter expression using BAC transgenic methods (DAT-tg, VMAT2-HI mice). Complemented with in vitro work and neurochemical techniques to assess dopamine compartmentalization, a new focus on the importance of transporter proteins as both models of human disease and potential drug targets has emerged. Here we review the importance of DAT and VMAT2 function in the delicate balance of neuronal dopamine. PMID:27520881

  10. Relationship between L-DOPA-induced reduction in motor and exploratory activity and degree of DAT binding in the rat

    PubMed Central

    Nikolaus, Susanne; Beu, Markus; De Souza Silva, Angelica Maria; Huston, Joseph P.; Hautzel, Hubertus; Chao, Owen Y.; Antke, Christina; Müller, Hans-Wilhelm

    2014-01-01

    Purpose: The present study assessed the influence of L-DOPA administration on neostriatal dopamine (DA) transporter (DAT) binding in relation to motor and exploratory behaviors in the rat. Methods: Rats received injections of 5 mg/kg L-DOPA, 10 mg/kg L-DOPA or vehicle. Motor and exploratory behaviors were assessed for 30 min in an open field prior to administration of [123I]FP-CIT. Dopamine transporter binding was measured with small animal single-photon emission computed tomography (SPECT) 2 h after radioligand administration for 60 min. Results: Both L-DOPA doses significantly reduced DAT binding and led to significantly less head-shoulder motility and more sitting relative to vehicle. Moreover, 10 mg/kg L-DOPA induced less distance traveled and ambulation than 5 mg/kg L-DOPA. Analysis of time-behavior (t-b) curves showed that L-DOPA-treated animals relative to vehicle exhibited (1) a faster rate of increase in duration of sitting; (2) a slower rate of increase in duration of head-shoulder motility; and (3) a slower rate of decrease in frequency of head-shoulder motility. Conclusions: The reductions of striatal DAT binding after L-DOPA challenges reflected elevated concentrations of synaptic DA. L-DOPA-treated animals showed less head-shoulder motility and more sitting than vehicle-treated animals, indicating an association between less behavioral activity and increased availability of striatal DA. The faster increase of sitting duration to a higher final level and the slower increase of head-shoulder motility to a lower final level relative to controls may be interpreted in terms on behavioral habituation to a novel environment. PMID:25566000

  11. Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core.

    PubMed

    Fortin, Samantha M; Roitman, Mitchell F

    2017-07-01

    Drugs of abuse increase the frequency and magnitude of brief (1-3s), high concentration (phasic) dopamine release events in terminal regions. These are thought to be a critical part of drug reinforcement and ultimately the development of addiction. Recently, metabolic regulatory peptides, including the satiety signal glucagon-like peptide-1 (GLP-1), have been shown to modulate cocaine reward-driven behavior and sustained dopamine levels after cocaine administration. Here, we use fast-scan cyclic voltammetry (FSCV) to explore GLP-1 receptor (GLP-1R) modulation of dynamic dopamine release in the nucleus accumbens (NAc) during cocaine administration. We analyzed dopamine release events in both the NAc shell and core, as these two subregions are differentially affected by cocaine and uniquely contribute to motivated behavior. We found that central delivery of the GLP-1R agonist Exendin-4 suppressed the induction of phasic dopamine release events by intravenous cocaine. This effect was selective for dopamine signaling in the NAc core. Suppression of phasic signaling in the core by Exendin-4 could not be attributed to interference with cocaine binding to one of its major substrates, the dopamine transporter, as cocaine-induced increases in reuptake were unaffected. The results suggest that GLP-1R activation, instead, exerts its suppressive effects by altering dopamine release - possibly by suppressing the excitability of dopamine neurons. Given the role of NAc core dopamine in the generation of conditioned responses based on associative learning, suppression of cocaine-induced dopamine signaling in this subregion by GLP-1R agonism may decrease the reinforcing properties of cocaine. Thus, GLP-1Rs remain viable targets for the treatment and prevention of cocaine seeking, taking and relapse. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Structure-Activity Relationships of Substituted Cathinones, with Transporter Binding, Uptake, and Release

    PubMed Central

    Wolfrum, Katherine M.; Reed, John F.; Kim, Sunyoung O.; Swanson, Tracy; Johnson, Robert A.; Janowsky, Aaron

    2017-01-01

    Synthetic cathinones are components of “bath salts” and have physical and psychologic side effects, including hypertension, paranoia, and hallucinations. Here, we report interactions of 20 “bath salt” components with human dopamine, serotonin, and norepinephrine transporters [human dopamine transporter (hDAT), human serotonin transporter (hSERT), and human norepinephrine transporter (hNET), respectively] heterologously expressed in human embryonic kidney 293 cells. Transporter inhibitors had nanomolar to micromolar affinities (Ki values) at radioligand binding sites, with relative affinities of hDAT>hNET>hSERT for α-pyrrolidinopropiophenone (α-PPP), α-pyrrolidinobutiophenone, α-pyrrolidinohexiophenone, 1-phenyl-2-(1-pyrrolidinyl)-1-heptanone, 3,4-methylenedioxy-α-pyrrolidinopropiophenone, 3,4-methylenedioxy-α-pyrrolidinobutiophenone, 4-methyl-α-pyrrolidinopropiophenone, α-pyrrolidinovalerophenone, 4-methoxy-α-pyrrolidinovalerophenone, α-pyrrolidinopentiothiophenone (alpha-PVT), and α-methylaminovalerophenone, and hDAT>hSERT>hNET for methylenedioxypentedrone. Increasing the α-carbon chain length increased the affinity and potency of the α-pyrrolidinophenones. Uptake inhibitors had relative potencies of hDAT>hNET>hSERT except α-PPP and α-PVT, which had highest potencies at hNET. They did not induce [3H]neurotransmitter release. Substrates can enter presynaptic neurons via transporters, and the substrates methamphetamine and 3,4-methylenedioxymethylamphetamine are neurotoxic. We determined that 3-fluoro-, 4-bromo-, 4-chloro-methcathinone, and 4-fluoroamphetamine were substrates at all three transporters; 5,6-methylenedioxy-2-aminoindane (MDAI) and 4-methylethcathinone (4-MEC) were substrates primarily at hSERT and hNET; and 3,4-methylenedioxy-N-ethylcathinone (ethylone) and 5-methoxy-methylone were substrates only at hSERT and induced [3H]neurotransmitter release. Significant correlations between potencies for inhibition of uptake and for inducing release were observed for these and additional substrates. The excellent correlation of efficacy at stimulating release versus Ki/IC50 ratios suggested thresholds of binding/uptake ratios above which compounds were likely to be substrates. Based on their potencies at hDAT, most of these compounds have potential for abuse and addiction. 4-Bromomethcathinone, 4-MEC, 5-methoxy-methylone, ethylone, and MDAI, which have higher potencies at hSERT than hDAT, may have empathogen psychoactivity. PMID:27799294

  13. Methamphetamine-induced alterations in monoamine transport: implications for neurotoxicity, neuroprotection and treatment.

    PubMed

    Volz, Trent J; Fleckenstein, Annette E; Hanson, Glen R

    2007-04-01

    To review studies delineating the neurotoxic effects of methamphetamine on monoamine transport in dopaminergic neurons of the striatum and nucleus accumbens. The scope of this review includes the English language dopamine transporter and vesicular monoamine transporter-2 primary literature to April 2006 identified by Pubmed, Science Citation Index and SciFinder Scholar literature searches. Changes in the function of the plasmalemmal dopamine transporter and the vesicular monoamine transporter-2 are key components of methamphetamine-induced persistent dopaminergic deficits. These deficits include persistent reductions in dopamine content, dopamine transporter density and tyrosine hydroxylase activity. The striatum is susceptible to these effects of methamphetamine while the nucleus accumbens is resistant. Differences in dopamine transporter density and activity, extracellular dopamine levels and antioxidant levels in these two brain regions may, in part, account for the resistance of the nucleus accumbens. These findings concerning the nature of methamphetamine-induced changes in plasmalemmal and vesicular dopamine transport have very important implications for drug targets and for understanding the etiology of dopaminergic neurodegenerative processes, such as those associated with methamphetamine addiction and Parkinson's disease.

  14. A Markov State-based Quantitative Kinetic Model of Sodium Release from the Dopamine Transporter

    NASA Astrophysics Data System (ADS)

    Razavi, Asghar M.; Khelashvili, George; Weinstein, Harel

    2017-01-01

    The dopamine transporter (DAT) belongs to the neurotransmitter:sodium symporter (NSS) family of membrane proteins that are responsible for reuptake of neurotransmitters from the synaptic cleft to terminate a neuronal signal and enable subsequent neurotransmitter release from the presynaptic neuron. The release of one sodium ion from the crystallographically determined sodium binding site Na2 had been identified as an initial step in the transport cycle which prepares the transporter for substrate translocation by stabilizing an inward-open conformation. We have constructed Markov State Models (MSMs) from extensive molecular dynamics simulations of human DAT (hDAT) to explore the mechanism of this sodium release. Our results quantify the release process triggered by hydration of the Na2 site that occurs concomitantly with a conformational transition from an outward-facing to an inward-facing state of the transporter. The kinetics of the release process are computed from the MSM, and transition path theory is used to identify the most probable sodium release pathways. An intermediate state is discovered on the sodium release pathway, and the results reveal the importance of various modes of interaction of the N-terminus of hDAT in controlling the pathways of release.

  15. Orbitofrontal Dopamine Depletion Upregulates Caudate Dopamine and Alters Behavior via Changes in Reinforcement Sensitivity

    PubMed Central

    Cardinal, R. N.; Rygula, R.; Hong, Y. T.; Fryer, T. D.; Sawiak, S. J.; Ferrari, V.; Cockcroft, G.; Aigbirhio, F. I.; Robbins, T. W.; Roberts, A. C.

    2014-01-01

    Schizophrenia is associated with upregulation of dopamine (DA) release in the caudate nucleus. The caudate has dense connections with the orbitofrontal cortex (OFC) via the frontostriatal loops, and both areas exhibit pathophysiological change in schizophrenia. Despite evidence that abnormalities in dopaminergic neurotransmission and prefrontal cortex function co-occur in schizophrenia, the influence of OFC DA on caudate DA and reinforcement processing is poorly understood. To test the hypothesis that OFC dopaminergic dysfunction disrupts caudate dopamine function, we selectively depleted dopamine from the OFC of marmoset monkeys and measured striatal extracellular dopamine levels (using microdialysis) and dopamine D2/D3 receptor binding (using positron emission tomography), while modeling reinforcement-related behavior in a discrimination learning paradigm. OFC dopamine depletion caused an increase in tonic dopamine levels in the caudate nucleus and a corresponding reduction in D2/D3 receptor binding. Computational modeling of behavior showed that the lesion increased response exploration, reducing the tendency to persist with a recently chosen response side. This effect is akin to increased response switching previously seen in schizophrenia and was correlated with striatal but not OFC D2/D3 receptor binding. These results demonstrate that OFC dopamine depletion is sufficient to induce striatal hyperdopaminergia and changes in reinforcement learning relevant to schizophrenia. PMID:24872570

  16. LeuT conformational sampling utilizing accelerated molecular dynamics and principal component analysis.

    PubMed

    Thomas, James R; Gedeon, Patrick C; Grant, Barry J; Madura, Jeffry D

    2012-07-03

    Monoamine transporters (MATs) function by coupling ion gradients to the transport of dopamine, norepinephrine, or serotonin. Despite their importance in regulating neurotransmission, the exact conformational mechanism by which MATs function remains elusive. To this end, we have performed seven 250 ns accelerated molecular dynamics simulations of the leucine transporter, a model for neurotransmitter MATs. By varying the presence of binding-pocket leucine substrate and sodium ions, we have sampled plausible conformational states representative of the substrate transport cycle. The resulting trajectories were analyzed using principal component analysis of transmembrane helices 1b and 6a. This analysis revealed seven unique structures: two of the obtained conformations are similar to the currently published crystallographic structures, one conformation is similar to a proposed open inward structure, and four conformations represent novel structures of potential importance to the transport cycle. Further analysis reveals that the presence of binding-pocket sodium ions is necessary to stabilize the locked-occluded and open-inward conformations. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET.

    PubMed

    Sekine, Y; Iyo, M; Ouchi, Y; Matsunaga, T; Tsukada, H; Okada, H; Yoshikawa, E; Futatsubashi, M; Takei, N; Mori, N

    2001-08-01

    A positron emission tomography (PET) study has suggested that dopamine transporter density of the caudate/putamen is reduced in methamphetamine users. The authors measured nucleus accumbens and prefrontal cortex density, in addition to caudate/putamen density, in methamphetamine users and assessed the relation of these measures to the subjects' clinical characteristics. PET and 2-beta-carbomethoxy-3beta-(4-[(11)C] fluorophenyl)tropane, a dopamine transporter ligand, were used to measure dopamine transporter density in 11 male methamphetamine users and nine male comparison subjects who did not use methamphetamine. Psychiatric symptoms in methamphetamine users were evaluated by using the Brief Psychiatric Rating Scale and applying a craving score. The dopamine transporter density in all three of the regions observed was significantly lower in the methamphetamine users than the comparison subjects. The severity of psychiatric symptoms was significantly correlated with the duration of methamphetamine use. The dopamine transporter reduction in the caudate/putamen and nucleus accumbens was significantly associated with the duration of methamphetamine use and closely related to the severity of persistent psychiatric symptoms. These findings suggest that longer use of methamphetamine may cause more severe psychiatric symptoms and greater reduction of dopamine transporter density in the brain. They also show that the dopamine transporter reduction may be long-lasting, even if methamphetamine use ceases. Further, persistent psychiatric symptoms in methamphetamine users, including psychotic symptoms, may be attributable to the reduction of dopamine transporter density.

  18. Cloning of the cocaine-sensitive bovine dopamine transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usdin, T.B.; Chen, C.; Brownstein, M.J.

    1991-12-15

    A cDNA encoding the dopamine transporter from bovine brain substantia nigra was identified on the basis of its structural homology to other, recently cloned, neurotransmitter transporters. The sequence of the 693-amino acid protein is quite similar to those of the rat {gamma}-aminobutyric acid, human norepinephrine, and rat serotonin transporters. Dopamine transporter mRNA was detected by in situ hybridization in the substantia nigra but not in the locus coeruleus, raphe, caudate, or other brain areas. ({sup 3}H)Dopamine accumulation in tissue culture cells transfected with the cDNA was inhibited by amphetamine, cocaine, and specific inhibitors of dopamine transports, including GBR12909.

  19. Fast Uptake and Long-Lasting Binding of Methamphetamine in the Human Brain

    PubMed Central

    Fowler, Joanna S.; Volkow, Nora D.; Logan, Jean; Alexoff, David; Telang, Frank; Wang, Gene-Jack; Wong, Christopher; Ma, Yeming; Kriplani, Aarti; Pradhan, Kith; Schlyer, David; Jayne, Millard; Hubbard, Barbara; Carter, Pauline; Warner, Donald; King, Payton; Shea, Colleen; Xu, Youwen; Muench, Lisa; Apelskog, Karen

    2008-01-01

    Methamphetamine is one of the most addictive and neurotoxic drugs of abuse. It produces large elevations in extracellular dopamine in the striatum through vesicular release and inhibition of the dopamine transporter. In the U.S. abuse prevalence varies by ethnicity with very low abuse among African Americans relative to Caucasians, differentiating it from cocaine where abuse rates are similar for the two groups. Here we report the first comparison of methamphetamine and cocaine pharmacokinetics in brain between Caucasians and African Americans along with the measurement of dopamine transporter availability in striatum. Methamphetamine’s uptake in brain was fast (peak uptake at 9 minutes) with accumulation in cortical and subcortical brain regions and in white matter. Its clearance from brain was slow (except for white matter which did not clear over the 90 minutes) and there was no difference in pharmacokinetics between Caucasians and African Americans. In contrast cocaine’s brain uptake and clearance were both fast, distribution was predominantly in striatum and uptake was higher in African Americans. Among individuals, those with the highest striatal (but not cerebellar) methamphetamine accumulation also had the highest dopamine transporter availability suggesting a relationship between METH exposure and DAT availability. Methamphetamine’s fast brain uptake is consistent with its highly reinforcing effects, its slow clearance with its long lasting behavioral effects and its widespread distribution with its neurotoxic effects that affect not only striatal but also cortical and white matter regions. The absence of significant differences between Caucasians and African Americans suggests that variables other than methamphetamine pharmacokinetics and bioavailability account for the lower abuse prevalence in African Americans. PMID:18708148

  20. Fast uptake and long-lasting binding of methamphetamine in the human brain: comparison with cocaine.

    PubMed

    Fowler, Joanna S; Volkow, Nora D; Logan, Jean; Alexoff, David; Telang, Frank; Wang, Gene-Jack; Wong, Christopher; Ma, Yeming; Kriplani, Aarti; Pradhan, Kith; Schlyer, David; Jayne, Millard; Hubbard, Barbara; Carter, Pauline; Warner, Donald; King, Payton; Shea, Colleen; Xu, Youwen; Muench, Lisa; Apelskog, Karen

    2008-12-01

    Methamphetamine is one of the most addictive and neurotoxic drugs of abuse. It produces large elevations in extracellular dopamine in the striatum through vesicular release and inhibition of the dopamine transporter. In the U.S. abuse prevalence varies by ethnicity with very low abuse among African Americans relative to Caucasians, differentiating it from cocaine where abuse rates are similar for the two groups. Here we report the first comparison of methamphetamine and cocaine pharmacokinetics in brain between Caucasians and African Americans along with the measurement of dopamine transporter availability in striatum. Methamphetamine's uptake in brain was fast (peak uptake at 9 min) with accumulation in cortical and subcortical brain regions and in white matter. Its clearance from brain was slow (except for white matter which did not clear over the 90 min) and there was no difference in pharmacokinetics between Caucasians and African Americans. In contrast cocaine's brain uptake and clearance were both fast, distribution was predominantly in striatum and uptake was higher in African Americans. Among individuals, those with the highest striatal (but not cerebellar) methamphetamine accumulation also had the highest dopamine transporter availability suggesting a relationship between METH exposure and DAT availability. Methamphetamine's fast brain uptake is consistent with its highly reinforcing effects, its slow clearance with its long-lasting behavioral effects and its widespread distribution with its neurotoxic effects that affect not only striatal but also cortical and white matter regions. The absence of significant differences between Caucasians and African Americans suggests that variables other than methamphetamine pharmacokinetics and bioavailability account for the lower abuse prevalence in African Americans.

  1. Examination of a Method to Determine the Reference Region for Calculating the Specific Binding Ratio in Dopamine Transporter Imaging.

    PubMed

    Watanabe, Ayumi; Inoue, Yusuke; Asano, Yuji; Kikuchi, Kei; Miyatake, Hiroki; Tokushige, Takanobu

    2017-01-01

    The specific binding ratio (SBR) was first reported by Tossici-Bolt et al. for quantitative indicators for dopamine transporter (DAT) imaging. It is defined as the ratio of the specific binding concentration of the striatum to the non-specific binding concentration of the whole brain other than the striatum. The non-specific binding concentration is calculated based on the region of interest (ROI), which is set 20 mm inside the outer contour, defined by a threshold technique. Tossici-Bolt et al. used a 50% threshold, but sometimes we couldn't define the ROI of non-specific binding concentration (reference region) and calculate SBR appropriately with a 50% threshold. Therefore, we sought a new method for determining the reference region when calculating SBR. We used data from 20 patients who had undergone DAT imaging in our hospital, to calculate the non-specific binding concentration by the following methods, the threshold to define a reference region was fixed at some specific values (the fixing method) and reference region was visually optimized by an examiner at every examination (the visual optimization method). First, we assessed the reference region of each method visually, and afterward, we quantitatively compared SBR calculated based on each method. In the visual assessment, the scores of the fixing method at 30% and visual optimization method were higher than the scores of the fixing method at other values, with or without scatter correction. In the quantitative assessment, the SBR obtained by visual optimization of the reference region, based on consensus of three radiological technologists, was used as a baseline (the standard method). The values of SBR showed good agreement between the standard method and both the fixing method at 30% and the visual optimization method, with or without scatter correction. Therefore, the fixing method at 30% and the visual optimization method were equally suitable for determining the reference region.

  2. Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease.

    PubMed

    Lohr, Kelly M; Masoud, Shababa T; Salahpour, Ali; Miller, Gary W

    2017-01-01

    Dopamine was first identified as a neurotransmitter localized to the midbrain over 50 years ago. The dopamine transporter (DAT; SLC6A3) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2) are regulators of dopamine homeostasis in the presynaptic neuron. DAT transports dopamine from the extracellular space into the cytosol of the presynaptic terminal. VMAT2 then packages this cytosolic dopamine into vesicular compartments for subsequent release upon neurotransmission. Thus, DAT and VMAT2 act in concert to move the transmitter efficiently throughout the neuron. Accumulation of dopamine in the neuronal cytosol can trigger oxidative stress and neurotoxicity, suggesting that the proper compartmentalization of dopamine is critical for neuron function and risk of disease. For decades, studies have examined the effects of reduced transporter function in mice (e.g. DAT-KO, VMAT2-KO, VMAT2-deficient). However, we have only recently been able to assess the effects of elevated transporter expression using BAC transgenic methods (DAT-tg, VMAT2-HI mice). Complemented with in vitro work and neurochemical techniques to assess dopamine compartmentalization, a new focus on the importance of transporter proteins as both models of human disease and potential drug targets has emerged. Here, we review the importance of DAT and VMAT2 function in the delicate balance of neuronal dopamine. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Dopamine-Independent Locomotor Actions of Amphetamines in a Novel Acute Mouse Model of Parkinson Disease

    PubMed Central

    Sotnikova, Tatyana D; Beaulieu, Jean-Martin; Barak, Larry S; Wetsel, William C; Gainetdinov, Raul R

    2005-01-01

    Brain dopamine is critically involved in movement control, and its deficiency is the primary cause of motor symptoms in Parkinson disease. Here we report development of an animal model of acute severe dopamine deficiency by using mice lacking the dopamine transporter. In the absence of transporter-mediated recycling mechanisms, dopamine levels become entirely dependent on de novo synthesis. Acute pharmacological inhibition of dopamine synthesis in these mice induces transient elimination of striatal dopamine accompanied by the development of a striking behavioral phenotype manifested as severe akinesia, rigidity, tremor, and ptosis. This phenotype can be reversed by administration of the dopamine precursor, L-DOPA, or by nonselective dopamine agonists. Surprisingly, several amphetamine derivatives were also effective in reversing these behavioral abnormalities in a dopamine-independent manner. Identification of dopamine transporter- and dopamine-independent locomotor actions of amphetamines suggests a novel paradigm in the search for prospective anti-Parkinsonian drugs. PMID:16050778

  4. In vitro and in vivo binding of (E)- and (Z)-N-(iodoallyl)spiperone to dopamine D sub 2 and serotonin 5-HT sub 2 neuroreceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lever, J.R.; Scheffel, U.A.; Stathis, M.

    1990-01-01

    Apparent affinities (K{sub i}) of (E)- and (Z)-N-(iodoallyl)spiperone ((E)- and (Z)- NIASP) for dopamine D{sub 2} and serotonin 5-HT{sub 2} receptors were determined in competition binding assays. (Z)-NIASP (K{sub i} 0.35 nM, D{sub 2}; K{sub i} 1.75 nM, 5-HT{sub 2}) proved slightly more potent and selective for D{sub 2} sites in vitro than (E)-NIASP (K{sub i} 0.72 nM, D{sub 2}; K{sub i} 1.14 nM, 5-HT{sub 2}). In vivo, radioiodinated (E)- and (Z)-({sup 125}I)-NIASP showed regional distributions in mouse brain which are consonant with prolonged binding to dopamine D{sub 2} receptors accompanied by a minor serotonergic component of shorter duration. Stereoselective,more » dose-dependent blockade of (E)-({sup 125}I)-NIASP uptake was found for drugs binding to dopamine D{sub 2} sites, while drugs selective for serotonin 5-HT{sub 2}, {alpha}{sub 1}-adrenergic and dopamine D{sub 1} receptors did not inhibit radioligand binding 2 hr postinjection. Specific binding in striatal tissue was essentially irreversible over the time course of the study, and (E)-({sup 125}I)-NIASP gave a striatal to cerebellar tissue radioactivity concentration of 16.9 to 1 at 6 hr postinjection. Thus, (E)-({sup 125}I)-NIASP binds with high selectivity and specificity to dopamine D{sub 2} sites in vivo.« less

  5. Striatal dopamine D2/D3 receptor binding in pathological gambling is correlated with mood-related impulsivity

    PubMed Central

    Clark, Luke; Stokes, Paul R.; Wu, Kit; Michalczuk, Rosanna; Benecke, Aaf; Watson, Ben J.; Egerton, Alice; Piccini, Paola; Nutt, David J.; Bowden-Jones, Henrietta; Lingford-Hughes, Anne R.

    2012-01-01

    Pathological gambling (PG) is a behavioural addiction associated with elevated impulsivity and suspected dopamine dysregulation. Reduced striatal dopamine D2/D3 receptor availability has been reported in drug addiction, and may constitute a premorbid vulnerability marker for addictive disorders. The aim of the present study was to assess striatal dopamine D2/D3 receptor availability in PG, and its association with trait impulsivity. Males with PG (n = 9) and male healthy controls (n = 9) underwent [11C]-raclopride positron emission tomography imaging and completed the UPPS-P impulsivity scale. There was no significant difference between groups in striatal dopamine D2/D3 receptor availability, in contrast to previous reports in drug addiction. However, mood-related impulsivity (‘Urgency’) was negatively correlated with [11C]-raclopride binding potentials in the PG group. The absence of a group difference in striatal dopamine binding implies a distinction between behavioural addictions and drug addictions. Nevertheless, our data indicate heterogeneity in dopamine receptor availability in disordered gambling, such that individuals with high mood-related impulsivity may show differential benefits from dopamine-based medications. PMID:22776462

  6. Tc-99m TRODAT uptake in an osteoid tumor of clivus.

    PubMed

    Taywade, Sameer; Tripathi, Madhavi; Tandon, Vivek; Das, Chandan Jyoti; Damle, Nishikant Avinash; Shamim, Shamim Ahmed; Thukral, Parul; Bal, Chandrasekhar

    2016-01-01

    Tc-99m TRODAT is cocaine analog and binds to the dopamine transporter in vivo . Tc-99m TRODAT single-photon emission computed tomography/computed tomography. (SPECT/CT) is useful for demonstrating presynaptic dopaminergic dysfunction in patients with Parkinsonism. However, few reports have shown extrastriatal uptake of Tc-99m TRODAT. We present the case of a 67-year-old male who underwent Tc-99m TRODAT SPECT/CT for evaluation of Parkinsonism. In addition to tracer binding in the striatum, tracer uptake was noted in an osteoid tumor of the clivus. Integrated SPECT/CT enabled precise localization and characterization of the extrastriatal site of tracer binding and emphasizes the importance of such coincidental findings.

  7. Presence and function of dopamine transporter (DAT) in stallion sperm: dopamine modulates sperm motility and acrosomal integrity.

    PubMed

    Urra, Javier A; Villaroel-Espíndola, Franz; Covarrubias, Alejandra A; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I

    2014-01-01

    Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP(+)), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility.

  8. Presence and Function of Dopamine Transporter (DAT) in Stallion Sperm: Dopamine Modulates Sperm Motility and Acrosomal Integrity

    PubMed Central

    Covarrubias, Alejandra A.; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I.

    2014-01-01

    Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP+), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility. PMID:25402186

  9. X-ray structure of the dopamine transporter in complex with tricyclic antidepressant

    PubMed Central

    Penmatsa, Aravind; Wang, Kevin H.; Gouaux, Eric

    2013-01-01

    Antidepressants targeting Na+/Cl−-coupled neurotransmitter uptake define a major therapeutic strategy to treat clinical depression and neuropathic pain. However, identifying the molecular interactions that underlie the pharmacological activity of these transport inhibitors and thus the mechanism by which the inhibitors lead to increased synaptic neurotransmitter levels has proven elusive. Here we present the crystal structure of the Drosophila melanogaster dopamine transporter (dDAT) at 3.0 Å resolution bound to the tricyclic antidepressant nortriptyline. The transporter is locked in an outward-open conformation with nortriptyline wedged between TMs1/6 and 3/8, blocking the transporter from binding substrate and from isomerizing to an inward facing conformation. While the overall structure of dDAT is similar to that of its prokaryotic relative LeuT, there are multiple distinctions that include a kink in TM12 halfway across the membrane bilayer, a latch-like C-terminal helix that caps the cytoplasmic gate, and a cholesterol molecule wedged within a groove formed by TMs 1a, 5 and 7. Taken together, the dDAT structure reveals the molecular basis for antidepressant action on sodium-coupled neurotransmitter symporters and illuminates critical elements of eukaryotic transporter structure and modulation by lipids, thus expanding our understanding of mechanism and regulation of neurotransmitter uptake at chemical synapses. PMID:24037379

  10. α2A- and α2C-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands.

    PubMed

    Sánchez-Soto, Marta; Casadó-Anguera, Verònica; Yano, Hideaki; Bender, Brian Joseph; Cai, Ning-Sheng; Moreno, Estefanía; Canela, Enric I; Cortés, Antoni; Meiler, Jens; Casadó, Vicent; Ferré, Sergi

    2018-03-18

    The poor norepinephrine innervation and high density of Gi/o-coupled α 2A - and α 2C -adrenoceptors in the striatum and the dense striatal dopamine innervation have prompted the possibility that dopamine could be an effective adrenoceptor ligand. Nevertheless, the reported adrenoceptor agonistic properties of dopamine are still inconclusive. In this study, we analyzed the binding of norepinephrine, dopamine, and several compounds reported as selective dopamine D 2 -like receptor ligands, such as the D 3 receptor agonist 7-OH-PIPAT and the D 4 receptor agonist RO-105824, to α 2 -adrenoceptors in cortical and striatal tissue, which express α 2A -adrenoceptors and both α 2A - and α 2C -adrenoceptors, respectively. The affinity of dopamine for α 2 -adrenoceptors was found to be similar to that for D 1 -like and D 2 -like receptors. Moreover, the exogenous dopamine receptor ligands also showed high affinity for α 2A - and α 2C -adrenoceptors. Their ability to activate Gi/o proteins through α 2A - and α 2C -adrenoceptors was also analyzed in transfected cells with bioluminescent resonance energy transfer techniques. The relative ligand potencies and efficacies were dependent on the Gi/o protein subtype. Furthermore, dopamine binding to α 2 -adrenoceptors was functional, inducing changes in dynamic mass redistribution, adenylyl cyclase activity, and ERK1/2 phosphorylation. Binding events were further studied with computer modeling of ligand docking. Docking of dopamine at α 2A - and α 2C -adrenoceptors was nearly identical to its binding to the crystallized D 3 receptor. Therefore, we provide conclusive evidence that α 2A - and α 2C -adrenoceptors are functional receptors for norepinephrine, dopamine, and other previously assumed selective D 2 -like receptor ligands, which calls for revisiting previous studies with those ligands.

  11. Inverted-U-shaped correlation between dopamine receptor availability in striatum and sensation seeking

    PubMed Central

    Gjedde, Albert; Kumakura, Yoshitaka; Cumming, Paul; Linnet, Jakob; Møller, Arne

    2010-01-01

    Sensation seeking is a core personality trait that declines with age in both men and women, as do also both density and availability of the dopamine D2/3 receptors in striatum and cortical regions. In contrast, novelty seeking at a given age relates inversely to dopamine receptor availability. The simplest explanation of these findings is an inverted-U-shaped correlation between ratings of sensation seeking on the Zuckerman scale and dopamine D2/3 receptor availability. To test the claim of an inverted-U-shaped relation between ratings of the sensation-seeking personality and measures of dopamine receptor availability, we used PET to record [11C]raclopride binding in striatum of 18 healthy men. Here we report that an inverted-U shape significantly matched the receptor availability as a function of the Zuckerman score, with maximum binding potentials observed in the midrange of the scale. The inverted-U shape is consistent with a negative correlation between sensation seeking and the reactivity (“gain”) of dopaminergic neurotransmission to dopamine. The correlation reflects Zuckerman scores that are linearly linked to dopamine receptor densities in the striatum but nonlinearly linked to dopamine concentrations. Higher dopamine occupancy and dopamine concentrations explain the motivation that drives afflicted individuals to seek sensations, in agreement with reduced protection against addictive behavior that is characteristic of individuals with low binding potentials. PMID:20133675

  12. Psychostimulant Effect of the Synthetic Cannabinoid JWH-018 and AKB48: Behavioral, Neurochemical, and Dopamine Transporter Scan Imaging Studies in Mice

    PubMed Central

    Ossato, Andrea; Uccelli, Licia; Bilel, Sabrine; Canazza, Isabella; Di Domenico, Giovanni; Pasquali, Micol; Pupillo, Gaia; De Luca, Maria Antonietta; Boschi, Alessandra; Vincenzi, Fabrizio; Rimondo, Claudia; Beggiato, Sarah; Ferraro, Luca; Varani, Katia; Borea, Pier Andrea; Serpelloni, Giovanni; De-Giorgio, Fabio; Marti, Matteo

    2017-01-01

    JWH-018 and AKB48 are two synthetic cannabinoids (SCBs) belonging to different structural classes and illegally marketed as incense, herbal preparations, or chemical supply for theirs psychoactive cannabis-like effects. Clinical reports from emergency room reported psychomotor agitation as one of the most frequent effects in people assuming SCBs. This study aimed to investigate the psychostimulant properties of JWH-018 and AKB48 in male CD-1 mice and to compare their behavioral and biochemical effects with those caused by cocaine and amphetamine. In vivo studies showed that JWH-018 and AKB48, as cocaine and amphetamine, facilitated spontaneous locomotion in mice. These effects were prevented by CB1 receptor blockade and dopamine (DA) D1/5 and D2/3 receptors inhibition. SPECT-CT studies on dopamine transporter (DAT) revealed that, as cocaine and amphetamine, JWH-018 and AKB48 decreased the [123I]-FP-CIT binding in the mouse striatum. Conversely, in vitro competition binding studies revealed that, unlike cocaine and amphetamine, JWH-018 and AKB48 did not bind to mouse or human DAT. Moreover, microdialysis studies showed that the systemic administration of JWH-018, AKB48, cocaine, and amphetamine stimulated DA release in the nucleus accumbens (NAc) shell of freely moving mice. Finally, unlike amphetamine and cocaine, JWH-018 and AKB48 did not induce any changes on spontaneous [3H]-DA efflux from murine striatal synaptosomes. The present results suggest that SCBs facilitate striatal DA release possibly with different mechanisms than cocaine and amphetamine. Furthermore, they demonstrate, for the first time, that JWH-018 and AKB48 induce a psychostimulant effect in mice possibly by increasing NAc DA release. These data, according to clinical reports, outline the potential psychostimulant action of SCBs highlighting their possible danger to human health. PMID:28824464

  13. The sigma-1 receptor modulates dopamine transporter conformation and cocaine binding and may thereby potentiate cocaine self-administration in rats.

    PubMed

    Hong, Weimin Conrad; Yano, Hideaki; Hiranita, Takato; Chin, Frederick T; McCurdy, Christopher R; Su, Tsung-Ping; Amara, Susan G; Katz, Jonathan L

    2017-07-07

    The dopamine transporter (DAT) regulates dopamine (DA) neurotransmission by recapturing DA into the presynaptic terminals and is a principal target of the psychostimulant cocaine. The sigma-1 receptor (σ 1 R) is a molecular chaperone, and its ligands have been shown to modulate DA neuronal signaling, although their effects on DAT activity are unclear. Here, we report that the prototypical σ 1 R agonist (+)-pentazocine potentiated the dose response of cocaine self-administration in rats, consistent with the effects of the σR agonists PRE-084 and DTG (1,3-di- o -tolylguanidine) reported previously. These behavioral effects appeared to be correlated with functional changes of DAT. Preincubation with (+)-pentazocine or PRE-084 increased the B max values of [ 3 H]WIN35428 binding to DAT in rat striatal synaptosomes and transfected cells. A specific interaction between σ 1 R and DAT was detected by co-immunoprecipitation and bioluminescence resonance energy transfer assays. Mutational analyses indicated that the transmembrane domain of σ 1 R likely mediated this interaction. Furthermore, cysteine accessibility assays showed that σ 1 R agonist preincubation potentiated cocaine-induced changes in DAT conformation, which were blocked by the specific σ 1 R antagonist CM304. Moreover, σ 1 R ligands had distinct effects on σ 1 R multimerization. CM304 increased the proportion of multimeric σ 1 Rs, whereas (+)-pentazocine increased monomeric σ 1 Rs. Together these results support the hypothesis that σ 1 R agonists promote dissociation of σ 1 R multimers into monomers, which then interact with DAT to stabilize an outward-facing DAT conformation and enhance cocaine binding. We propose that this novel molecular mechanism underlies the behavioral potentiation of cocaine self-administration by σ 1 R agonists in animal models. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Psychostimulant Effect of the Synthetic Cannabinoid JWH-018 and AKB48: Behavioral, Neurochemical, and Dopamine Transporter Scan Imaging Studies in Mice.

    PubMed

    Ossato, Andrea; Uccelli, Licia; Bilel, Sabrine; Canazza, Isabella; Di Domenico, Giovanni; Pasquali, Micol; Pupillo, Gaia; De Luca, Maria Antonietta; Boschi, Alessandra; Vincenzi, Fabrizio; Rimondo, Claudia; Beggiato, Sarah; Ferraro, Luca; Varani, Katia; Borea, Pier Andrea; Serpelloni, Giovanni; De-Giorgio, Fabio; Marti, Matteo

    2017-01-01

    JWH-018 and AKB48 are two synthetic cannabinoids (SCBs) belonging to different structural classes and illegally marketed as incense, herbal preparations, or chemical supply for theirs psychoactive cannabis-like effects. Clinical reports from emergency room reported psychomotor agitation as one of the most frequent effects in people assuming SCBs. This study aimed to investigate the psychostimulant properties of JWH-018 and AKB48 in male CD-1 mice and to compare their behavioral and biochemical effects with those caused by cocaine and amphetamine. In vivo studies showed that JWH-018 and AKB48, as cocaine and amphetamine, facilitated spontaneous locomotion in mice. These effects were prevented by CB 1 receptor blockade and dopamine (DA) D 1/5 and D 2/3 receptors inhibition. SPECT-CT studies on dopamine transporter (DAT) revealed that, as cocaine and amphetamine, JWH-018 and AKB48 decreased the [ 123 I]-FP-CIT binding in the mouse striatum. Conversely, in vitro competition binding studies revealed that, unlike cocaine and amphetamine, JWH-018 and AKB48 did not bind to mouse or human DAT. Moreover, microdialysis studies showed that the systemic administration of JWH-018, AKB48, cocaine, and amphetamine stimulated DA release in the nucleus accumbens (NAc) shell of freely moving mice. Finally, unlike amphetamine and cocaine, JWH-018 and AKB48 did not induce any changes on spontaneous [ 3 H]-DA efflux from murine striatal synaptosomes. The present results suggest that SCBs facilitate striatal DA release possibly with different mechanisms than cocaine and amphetamine. Furthermore, they demonstrate, for the first time, that JWH-018 and AKB48 induce a psychostimulant effect in mice possibly by increasing NAc DA release. These data, according to clinical reports, outline the potential psychostimulant action of SCBs highlighting their possible danger to human health.

  15. Positive and negative feedback learning and associated dopamine and serotonin transporter binding after methamphetamine.

    PubMed

    Stolyarova, Alexandra; O'Dell, Steve J; Marshall, John F; Izquierdo, Alicia

    2014-09-01

    Learning from mistakes and prospectively adjusting behavior in response to reward feedback is an important facet of performance monitoring. Dopamine (DA) pathways play an important role in feedback learning and a growing literature has also emerged on the importance of serotonin (5HT) in reward learning, particularly during punishment or reward omission (negative feedback). Cognitive impairments resulting from psychostimulant exposure may arise from altered patterns in feedback learning, which in turn may be modulated by DA and 5HT transmission. We analyzed long-term, off-drug changes in learning from positive and negative feedback and associated striatal DA transporter (DAT) and frontocortical 5HT transporter (SERT) binding in rats pretreated with methamphetamine (mAMPH). Specifically, we assessed the reversal phase of pairwise visual discrimination learning in rats receiving single dose- (mAMPHsingle) vs. escalating-dose exposure (mAMPHescal). Using fine-grained trial-by-trial analyses, we found increased sensitivity to and reliance on positive feedback in mAMPH-pretreated animals, with the mAMPHsingle group showing more pronounced use of this type of feedback. In contrast, overall negative feedback sensitivity was not altered following any mAMPH treatment. In addition to validating the enduring effects of mAMPH on early reversal learning, we found more consecutive error commissions before the first correct response in mAMPH-pretreated rats. This behavioral rigidity was negatively correlated with subregional frontocortical SERT whereas positive feedback sensitivity negatively correlated with striatal DAT binding. These results provide new evidence for the overlapping, yet dissociable roles of DA and 5HT systems in overcoming perseveration and in learning new reward rules. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. 3- and 4-O-sulfoconjugated and methylated dopamine: highly reduced binding affinity to dopamine D2 receptors in rat striatal membranes.

    PubMed

    Werle, E; Lenz, T; Strobel, G; Weicker, H

    1988-07-01

    The binding properties of 3- and 4-O-sulfo-conjugated dopamine (DA-3-O-S, DA-4-O-S) as well as 3-O-methylated dopamine (MT) to rat striatal dopamine D2 receptors were investigated. 3H-spiperone was used as a radioligand in the binding studies. In saturation binding experiments (+)butaclamol, which has been reported to bind to dopaminergic D2 and serotoninergic 5HT2 receptors, was used in conjunction with ketanserin and sulpiride, which preferentially label 5HT2 and D2 receptors, respectively, in order to discriminate between 3H-spiperone binding to D2 and to 5HT2 receptors. Under our particular membrane preparation and assay conditions, 3H-spiperone binds to D2 and 5HT2 receptors with a maximal binding capacity (Bmax) of 340 fmol/mg protein in proportions of about 75%:25% with similar dissociation constants KD (35 pmol/l; 43 pmol/l). This result was verified by the biphasic competition curve of ketanserin, which revealed about 20% high (KD = 24 nmol/l) and 80% low (KD = 420 nmol/l) affinity binding sites corresponding to 5HT2 and D2 receptors, respectively. Therefore, all further competition experiments at a tracer concentration of 50 pmol/l were performed in the presence of 0.1 mumol/l ketanserin to mask the 5HT2 receptors. DA competition curves were best fitted assuming two binding sites, with high (KH = 0.12 mumol/l) and low (KL = 18 mumol/l) affinity, present in a ratio of 3:1. The high affinity binding sites were interconvertible by 100 mumol/l guanyl-5-yl imidodiphosphate [Gpp(NH)p], resulting in a homogenous affinity state of DA receptors (KD = 2.8 mumol/l).2+ off

  17. Identification of a 3rd Na+ Binding Site of the Glycine Transporter, GlyT2.

    PubMed

    Subramanian, Nandhitha; Scopelitti, Amanda J; Carland, Jane E; Ryan, Renae M; O'Mara, Megan L; Vandenberg, Robert J

    2016-01-01

    The Na+/Cl- dependent glycine transporters GlyT1 and GlyT2 regulate synaptic glycine concentrations. Glycine transport by GlyT2 is coupled to the co-transport of three Na+ ions, whereas transport by GlyT1 is coupled to the co-transport of only two Na+ ions. These differences in ion-flux coupling determine their respective concentrating capacities and have a direct bearing on their functional roles in synaptic transmission. The crystal structures of the closely related bacterial Na+-dependent leucine transporter, LeuTAa, and the Drosophila dopamine transporter, dDAT, have allowed prediction of two Na+ binding sites in GlyT2, but the physical location of the third Na+ site in GlyT2 is unknown. A bacterial betaine transporter, BetP, has also been crystallized and shows structural similarity to LeuTAa. Although betaine transport by BetP is coupled to the co-transport of two Na+ ions, the first Na+ site is not conserved between BetP and LeuTAa, the so called Na1' site. We hypothesized that the third Na+ binding site (Na3 site) of GlyT2 corresponds to the BetP Na1' binding site. To identify the Na3 binding site of GlyT2, we performed molecular dynamics (MD) simulations. Surprisingly, a Na+ placed at the location consistent with the Na1' site of BetP spontaneously dissociated from its initial location and bound instead to a novel Na3 site. Using a combination of MD simulations of a comparative model of GlyT2 together with an analysis of the functional properties of wild type and mutant GlyTs we have identified an electrostatically favorable novel third Na+ binding site in GlyT2 formed by Trp263 and Met276 in TM3, Ala481 in TM6 and Glu648 in TM10.

  18. Identification of a 3rd Na+ Binding Site of the Glycine Transporter, GlyT2

    PubMed Central

    Subramanian, Nandhitha; Scopelitti, Amanda J.; Carland, Jane E.; Ryan, Renae M.; O’Mara, Megan L.; Vandenberg, Robert J.

    2016-01-01

    The Na+/Cl- dependent glycine transporters GlyT1 and GlyT2 regulate synaptic glycine concentrations. Glycine transport by GlyT2 is coupled to the co-transport of three Na+ ions, whereas transport by GlyT1 is coupled to the co-transport of only two Na+ ions. These differences in ion-flux coupling determine their respective concentrating capacities and have a direct bearing on their functional roles in synaptic transmission. The crystal structures of the closely related bacterial Na+-dependent leucine transporter, LeuTAa, and the Drosophila dopamine transporter, dDAT, have allowed prediction of two Na+ binding sites in GlyT2, but the physical location of the third Na+ site in GlyT2 is unknown. A bacterial betaine transporter, BetP, has also been crystallized and shows structural similarity to LeuTAa. Although betaine transport by BetP is coupled to the co-transport of two Na+ ions, the first Na+ site is not conserved between BetP and LeuTAa, the so called Na1' site. We hypothesized that the third Na+ binding site (Na3 site) of GlyT2 corresponds to the BetP Na1' binding site. To identify the Na3 binding site of GlyT2, we performed molecular dynamics (MD) simulations. Surprisingly, a Na+ placed at the location consistent with the Na1' site of BetP spontaneously dissociated from its initial location and bound instead to a novel Na3 site. Using a combination of MD simulations of a comparative model of GlyT2 together with an analysis of the functional properties of wild type and mutant GlyTs we have identified an electrostatically favorable novel third Na+ binding site in GlyT2 formed by Trp263 and Met276 in TM3, Ala481 in TM6 and Glu648 in TM10. PMID:27337045

  19. Direct and Systemic Administration of a CNS-Permeant Tamoxifen Analog Reduces Amphetamine-Induced Dopamine Release and Reinforcing Effects.

    PubMed

    Carpenter, Colleen; Zestos, Alexander G; Altshuler, Rachel; Sorenson, Roderick J; Guptaroy, Bipasha; Showalter, Hollis D; Kennedy, Robert T; Jutkiewicz, Emily; Gnegy, Margaret E

    2017-09-01

    Amphetamines (AMPHs) are globally abused. With no effective treatment for AMPH addiction to date, there is urgent need for the identification of druggable targets that mediate the reinforcing action of this stimulant class. AMPH-stimulated dopamine efflux is modulated by protein kinase C (PKC) activation. Inhibition of PKC reduces AMPH-stimulated dopamine efflux and locomotor activity. The only known CNS-permeant PKC inhibitor is the selective estrogen receptor modulator tamoxifen. In this study, we demonstrate that a tamoxifen analog, 6c, which more potently inhibits PKC than tamoxifen but lacks affinity for the estrogen receptor, reduces AMPH-stimulated increases in extracellular dopamine and reinforcement-related behavior. In rat striatal synaptosomes, 6c was almost fivefold more potent at inhibiting AMPH-stimulated dopamine efflux than [ 3 H]dopamine uptake through the dopamine transporter (DAT). The compound did not compete with [ 3 H]WIN 35,428 binding or affect surface DAT levels. Using microdialysis, direct accumbal administration of 1 μM 6c reduced dopamine overflow in freely moving rats. Using LC-MS, we demonstrate that 6c is CNS-permeant. Systemic treatment of rats with 6 mg/kg 6c either simultaneously or 18 h prior to systemic AMPH administration reduced both AMPH-stimulated dopamine overflow and AMPH-induced locomotor effects. Finally, 18 h pretreatment of rats with 6 mg/kg 6c s.c. reduces AMPH-self administration but not food self-administration. These results demonstrate the utility of tamoxifen analogs in reducing AMPH effects on dopamine and reinforcement-related behaviors and suggest a new avenue of development for therapeutics to reduce AMPH abuse.

  20. Evidence that Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human Brain

    PubMed Central

    Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S.; Logan, Jean; Benveniste, Helene; Kim, Ron; Thanos, Panayotis K.; Ferré, Sergi

    2012-01-01

    Dopamine D2 receptors are involved with wakefulness but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [11C]raclopride in controls) in striatum, but could not determine if this reflected dopamine increases ([11C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (drug that increases dopamine by blocking dopamine transporters), during sleep deprivation versus rested-sleep with the assumption that methylphenidate’s effects would be greater, if indeed, dopamine release was increased during sleep deprivation. We scanned 20 controls with [11C]raclopride after rested-sleep and after one night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared to rested-sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared to placebo) did not differ between rested-sleep and sleep deprivation and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to one night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans. PMID:22573693

  1. Surface targeting of the dopamine transporter involves discrete epitopes in the distal C terminus but does not require canonical PDZ domain interactions.

    PubMed

    Bjerggaard, Christian; Fog, Jacob U; Hastrup, Hanne; Madsen, Kenneth; Loland, Claus J; Javitch, Jonathan A; Gether, Ulrik

    2004-08-04

    The human dopamine transporter (hDAT) contains a C-terminal type 2 PDZ (postsynaptic density 95/Discs large/zona occludens 1) domain-binding motif (LKV) known to interact with PDZ domain proteins such as PICK1 (protein interacting with C-kinase 1). As reported previously, we found that, after deletion of this motif, hDAT was retained in the endoplasmic reticulum (ER) of human embryonic kidney (HEK) 293 and Neuro2A cells, suggesting that PDZ domain interactions might be critical for hDAT targeting. Nonetheless, substitution of LKV with SLL, the type 1 PDZ-binding sequence from the beta2-adrenergic receptor, did not disrupt plasma membrane targeting. Moreover, the addition of an alanine to the hDAT C terminus (+Ala), resulting in an LKVA termination sequence, or substitution of LKV with alanines (3xAla_618-620) prevented neither plasma membrane targeting nor targeting into sprouting neurites of differentiated N2A cells. The inability of +Ala and 3xAla_618-620 to bind PDZ domains was confirmed by lack of colocalization with PICK1 in cotransfected HEK293 cells and by the inability of corresponding C-terminal fusion proteins to pull down purified PICK1. Thus, although residues in the hDAT C terminus are indispensable for proper targeting, PDZ domain interactions are not required. By progressive substitutions with beta2-adrenergic receptor sequence, and by triple-alanine substitutions in the hDAT C terminus, we examined the importance of epitopes preceding the LKV motif. Substitution of RHW(615-617) with alanines caused retention of the transporter in the ER despite preserved ability of this mutant to bind PICK1. We propose dual roles of the hDAT C terminus: a role independent of PDZ interactions for ER export and surface targeting, and a not fully clarified role involving PDZ interactions with proteins such as PICK1.

  2. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers.

    PubMed

    Volkow, N D; Chang, L; Wang, G J; Fowler, J S; Leonido-Yee, M; Franceschi, D; Sedler, M J; Gatley, S J; Hitzemann, R; Ding, Y S; Logan, J; Wong, C; Miller, E N

    2001-03-01

    Methamphetamine is a popular and highly addictive drug of abuse that has raised concerns because it has been shown in laboratory animals to be neurotoxic to dopamine terminals. The authors evaluated if similar changes occur in humans and assessed if they were functionally significant. Positron emission tomography scans following administration of [(11)C]d-threo-methylphenidate (a dopamine transporter ligand) measured dopamine transporter levels (a marker of dopamine cell terminals) in the brains of 15 detoxified methamphetamine abusers and 18 comparison subjects. Neuropsychological tests were also performed to assess motor and cognitive function. Methamphetamine abusers showed significant dopamine transporter reduction in the striatum (mean differences of 27.8% in the caudate and 21.1% in the putamen) relative to the comparison subjects; this reduction was evident even in abusers who had been detoxified for at least 11 months. Dopamine transporter reduction was associated with motor slowing and memory impairment. These results provide evidence that methamphetamine at dose levels taken by human abusers of the drug leads to dopamine transporter reduction that is associated with motor and cognitive impairment. These results emphasize the urgency of alerting clinicians and the public of the long-term changes that methamphetamine can induce in the human brain.

  3. Novel codrugs with GABAergic activity for dopamine delivery in the brain.

    PubMed

    Denora, Nunzio; Cassano, Tommaso; Laquintana, Valentino; Lopalco, Antonio; Trapani, Adriana; Cimmino, Concetta Stefania; Laconca, Leonardo; Giuffrida, Andrea; Trapani, Giuseppe

    2012-11-01

    This study investigates the use of codrugs of the GABAergic agent 2-phenyl-imidazo[1,2-a]pyridinacetamide and dopamine (DA) or ethyl ester L-Dopa (LD) as a strategy to deliver DA and simultaneously activate GABA-receptors in the brain. For this purpose, both DA and LD ethyl ester were linked by carbamate bond to imidazo[1,2-a]pyridine acetamide moieties to yield two DA- and two LD-imidazopyridine derivatives. These compounds were evaluated in vitro to assess their stability, binding affinities and cell membrane transport, and in vivo to assess their bio-availability via microdialysis studies. The two DA derivatives were adequately stable in buffered solution, but underwent cleavage in diluted human serum. By contrast, the LD derivatives were unstable in buffered solution. Receptor binding studies showed that the DA-imidazopyridine carbamates had binding affinity for benzodiazepine receptors in the nanomolar range. Brain microdialysis experiments indicated that intraperitoneal administration of the DA derivatives sustained DA levels in rat striatum over a 4-h period. These results suggest that DA-imidazopyridine carbamates are new DA codrugs with potential application for DA replacement therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors.

    PubMed

    Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel

    2015-02-01

    Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [(3)H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. [(3)H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. © 2014 The British Pharmacological Society.

  5. Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors

    PubMed Central

    Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel

    2015-01-01

    Background and Purpose Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). Experimental Approach The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [3H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. Key Results [3H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Conclusions and Implications Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. PMID:25339241

  6. Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity.

    PubMed

    Itzhak, Y; Gandia, C; Huang, P L; Ali, S F

    1998-03-01

    Methamphetamine (METH) is a powerful psychostimulant that produces dopaminergic neurotoxicity manifested by a decrease in the levels of dopamine, tyrosine hydroxylase activity and dopamine transporter (DAT) binding sites in the nigrostriatal system. We have recently reported that blockade of the neuronal nitric oxide synthase (nNOS) isoform by 7-nitroindazole provides protection against METH-induced neurotoxicity in Swiss Webster mice. The present study was undertaken to investigate the effect of a neurotoxic dose of METH on mutant mice lacking the nNOS gene [nNOS(-/-)] and wild-type controls. In addition, we sought to investigate the behavioral outcome of exposure to a neurotoxic dose of METH. Homozygote nNOS(-/-), heterozygote nNOS(+/-) and wild-type animals were administered either saline or METH (5 mg/kg x 3). Dopamine, DOPAC and HVA levels, as well as DAT binding site levels, were determined in striatal tissue derived 72 h after the last METH injection. This regimen of METH given to nNOS(-/-) mice affected neither the tissue content of dopamine and its metabolites nor the number of DAT binding sites. Although a moderate reduction in the levels of dopamine (35%) and DAT binding sites (32%) occurred in striatum of heterozygote nNOS(+/-) mice, a more profound depletion of the dopaminergic markers (up to 68%) was observed in the wild-type animals. METH-induced hyperthermia was observed in all animal strains examined except the nNOS(-/-) mice. Investigation of the animals' spontaneous locomotor activity before and after administration of the neurotoxic dose of METH (5 mg/kg x 3) revealed no differences. A low dose of METH (1.0 mg/kg) administered to naive animals (nNOS(-/-) and wild-type) resulted in a similar intensity of locomotor stimulation. However, 68 to 72 h after exposure to the high-dose METH regimen, a marked sensitized responses to a challenge METH injection was observed in the wild-type mice but not in the nNOS(-/-) mice. Taken together, these results indicate that nNOS(-/-) mice are protected against METH-induced dopaminergic neurotoxicity and locomotor sensitization. It also appears that a partial deficit of dopaminergic transmission in wild-type animals does not prevent the development of sensitization to METH, whereas a deficit in nNOS may attenuate this process.

  7. Lack of effect of dopaminergic denervation on caudate-putamen hyperthermia or hypothermia induced by drugs and mild stressors.

    PubMed

    Marcangione, Caterina; Constantin, Annie; Clarke, Paul B S

    2010-07-01

    A number of drugs and psychological stressors induce brain hyperthermia and increase extracellular dopamine in the caudate-putamen. The present study tested whether caudate-putamen hyperthermia produced by such stimuli is dependent on dopaminergic transmission. Rats were infused with 6-hydroxydopamine unilaterally into the medial forebrain bundle, and after a two-week recovery period, removable thermocouples were used to monitor temperature in the depleted and intact caudate-putamen in freely-moving animals. The indirect dopamine agonist d-amphetamine (1 and 2mg/kg s.c.) increased caudate-putamen temperature, whereas a low dose of the direct agonist apomorphine (0.1mg/kg s.c.) reduced it. Gamma-butyrolactone, which strongly inhibits dopamine release at the dose administered (700mg/kg i.p.), initially reduced and then increased caudate-putamen temperature. Brief (5-10min) presentation of mild stressors, including tail pinch, produced a rapid and transient caudate-putamen hyperthermia. Quantitative (125)I-RTI-55 autoradiography in post-mortem tissue revealed a 97-100% loss of binding to dopamine transporters in the lesioned caudate-putamen. Despite this near-total dopamine denervation, neither basal caudate-putamen temperature, nor any of the observed temperature responses to drugs or mild stressors, was altered. We conclude that in the caudate-putamen, endogenous dopamine is unlikely to modulate temperature significantly at a local level. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Alterations in the Striatal Dopamine System During Intravenous Methamphetamine Exposure: Effects of Contingent and Noncontingent Administration

    PubMed Central

    Laćan, Goran; Hadamitzky, Martin; Kuczenski, Ronald; Melega, William P.

    2014-01-01

    The continuing spread of methamphetamine (METH) abuse has stimulated research aimed at understanding consequences of its prolonged exposure. Alterations in nigrostriatal dopamine (DA) system parameters have been characterized in experimental studies after discontinuation of long term METH but fewer studies have included similar assessments during METH exposure. Here, we report METH plasma pharmacokinetics and striatal DA system alterations in rat after noncontingent and contingent METH administration for 7.5 weeks. Escalating METH exposure was delivered by dynamic infusion (DI) that incorporated a ‘humanized’ plasma METH half life, or by intravenous self-administration (IVSA) that included binge intakes. Kinetic modeling of DI and IVSA for 24 h periods during the final week of METH exposure showed that plasma METH levels remained between 0.7–1.5 μM. Animals were sacrificed during their last METH administration for autoradiography assessment using [3H]ligands and D2 agonist-induced [35S]GTPγS binding. DA transporter binding was decreased (DI, 34%; IVSA, 15%) while vesicular monoamine transporter binding and substantia nigra DA cell numbers were unchanged. Decreases were measured for D2 receptor (DI and IVSA, 15–20%) and [35S]GTPγS binding (DI, 35%; IVSA, 18%). These similar patterns of DI and IVSA associated decreases in striatal DA markers reflect consequences of cumulative METH exposure and not the drug delivery method. For METH IVSA, individual differences were observed, yet each animal’s total intake was similar within and across three 24 h binges. IVSA rodent models may be useful for identifying molecular mechanisms that are associated with METH binges in humans. PMID:23417852

  9. Clinical comparison of 99mTc exametazime and 123I Ioflupane SPECT in patients with chronic mild traumatic brain injury.

    PubMed

    Newberg, Andrew B; Serruya, Mijail; Gepty, Andrew; Intenzo, Charles; Lewis, Todd; Amen, Daniel; Russell, David S; Wintering, Nancy

    2014-01-01

    This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT) using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI). The goal was to determine how these two different scan might be used and compared to each other in this patient population. Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both (99m)Tc exametazime to measure cerebral blood flow (CBF) and (123)I ioflupane to measure dopamine transporter (DAT) binding. The scans were interpreted by two expert readers blinded to any case information and were assessed for abnormal findings in comparison to 10 controls for each type of scan. Qualitative CBF scores for each cortical and subcortical region along with DAT binding scores for the striatum were compared to each other across subjects and to controls. In addition, symptoms were compared to brain scan findings. TBI patients had an average of 6 brain regions with abnormal perfusion compared to controls who had an average of 2 abnormal regions (p<0.001). Patient with headaches had lower CBF in the right frontal lobe, and higher CBF in the left parietal lobe compared to patients without headaches. Lower CBF in the right temporal lobe correlated with poorer reported physical health. Higher DAT binding was associated with more depressive symptoms and overall poorer reported mental health. There was no clear association between CBF and DAT binding in these patients. Overall, both scans detected abnormalities in brain function, but appear to reflect different types of physiological processes associated with chronic mild TBI symptoms. Both types of scans might have distinct uses in the evaluation of chronic TBI patients depending on the clinical scenario.

  10. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.

    PubMed

    Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2015-12-01

    Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

  11. Dopamine Transporter Blockade Increases LTP in the CA1 Region of the Rat Hippocampus via Activation of the D3 Dopamine Receptor

    ERIC Educational Resources Information Center

    Swant, Jarod; Wagner, John J.

    2006-01-01

    Dopamine has been demonstrated to be involved in the modulation of long-term potentiation (LTP) in the CA1 region of the hippocampus. As monoamine transporter blockade will increase the actions of endogenous monoamine neurotransmitters, the effect of a dopamine transporter (DAT) antagonist on LTP was assessed using field excitatory postsynaptic…

  12. Individual differences in schedule-induced polydipsia: neuroanatomical dopamine divergences.

    PubMed

    Pellón, Ricardo; Ruíz, Ana; Moreno, Margarita; Claro, Francisco; Ambrosio, Emilio; Flores, Pilar

    2011-02-02

    Autoradiography analysis of D1 and D2 dopamine receptors and c-Fos activity were performed in brain of rats classified as low drinkers (LD) and high drinkers (HD) according to schedule-induced polydipsia (SIP) performance. Previous studies have shown that groups selected according to their rate of drinking in SIP differ in behavioral response to dopaminergic drugs. This study reports differences between LD and HD rats in dopamine D1 and D2 receptor binding through different mesocorticolimbic brain areas. LD and HD rats showed opposite patterns of binding in dopamine D1 and D2 receptors in the nucleus accumbens, medial prefrontal cortex, amygdala, ventral tegmental area and substantia nigra. Whereas LD rats showed higher binding than HD rats for D1 receptors, HD rats showed higher binding than LD rats for D2 receptors (except in substantia nigra that were roughly similar). These neuroanatomical differences in dopamine receptor binding were also associated with an elevated c-Fos count in the medial prefrontal cortex of HD rats. In tandem with previous evidence, our results suggest a different dopaminergic function between LD and HD, and points to SIP as a behavioral model for distinguishing populations possibly vulnerable to dopaminergic function disorders. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Association of dopamine transporter loss in the orbitofrontal and dorsolateral prefrontal cortices with methamphetamine-related psychiatric symptoms.

    PubMed

    Sekine, Yoshimoto; Minabe, Yoshio; Ouchi, Yasuomi; Takei, Nori; Iyo, Masaomi; Nakamura, Kazuhiko; Suzuki, Katsuaki; Tsukada, Hideo; Okada, Hiroyuki; Yoshikawa, Etsuji; Futatsubashi, Masami; Mori, Norio

    2003-09-01

    The authors examined dopamine transporter density in the orbitofrontal cortex, dorsolateral prefrontal cortex, and amygdala in methamphetamine users and assessed the relationship of these measures to the subjects' clinical characteristics. Positron emission tomography with [(11)C]WIN 35,428 was used to examine the regions of interest in 11 methamphetamine users and nine healthy comparison subjects. Psychiatric symptoms were evaluated with the Brief Psychiatric Rating Scale. Dopamine transporter density in the three regions studied was significantly lower in the methamphetamine users than in the comparison subjects. The lower dopamine transporter density in the orbitofrontal and dorsolateral prefrontal cortex was significantly correlated with the duration of methamphetamine use and the severity of psychiatric symptoms. Chronic methamphetamine use may cause dopamine transporter reduction in the orbitofrontal cortex, dorsolateral prefrontal cortex, and amygdala in the brain. Psychiatric symptoms in methamphetamine users may be attributable to the decrease in dopamine transporter density in the orbitofrontal cortex and the dorsolateral prefrontal cortex.

  14. Evidence That Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow N. D.; Fowler J.; Volkow, N.D.

    Dopamine D2 receptors are involved with wakefulness, but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [{sup 11}C]raclopride in controls) in striatum, but could not determine whether this reflected dopamine increases ([{sup 11}C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (a drug that increases dopamine by blocking dopamine transporters) during sleep deprivation versus rested sleep, with the assumption that methylphenidate's effects would be greater if, indeed, dopaminemore » release was increased during sleep deprivation. We scanned 20 controls with [{sup 11}C]raclopride after rested sleep and after 1 night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared with rested sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared with placebo) did not differ between rested sleep and sleep deprivation, and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to 1 night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans.« less

  15. Essential Oils from the Medicinal Herbs Upregulate Dopamine Transporter in Rat Pheochromocytoma Cells.

    PubMed

    Choi, Min Sun; Choi, Bang-sub; Kim, Sang Heon; Pak, Sok Cheon; Jang, Chul Ho; Chin, Young-Won; Kim, Young-Mi; Kim, Dong-il; Jeon, Songhee; Koo, Byung-Soo

    2015-10-01

    The dopamine transporter (DAT) protein, a component of the dopamine system, undergoes adaptive neurobiological changes from drug abuse. Prevention of relapse and reduction of withdrawal symptoms are still the major limitations in the current pharmacological treatments of drug addiction. The present study aimed to investigate the effects of essential oils extracted from Elsholtzia ciliata, Shinchim, Angelicae gigantis Radix, and Eugenia caryophyllata, well-known traditional Korean medicines for addiction, on the modulation of dopamine system in amphetamine-treated cells and to explore the possible mechanism underlying its therapeutic effect. The potential cytotoxic effect of essential oils was evaluated in PC12 rat pheochromocytoma cells using cell viability assays. Quantification of DAT, p-CREB, p-MAPK, and p-Akt was done by immunoblotting. DAT was significantly reduced in cells treated with 50 μM of amphetamine in a time-dependent manner. No significant toxicity of essential oils from Elsholtzia ciliata and Shinchim was observed at doses of 10, 25, and 50 μg/mL. However, essential oils from A. gigantis Radix at a dose of 100 μg/mL and E. caryophyllata at doses of 50 and 100 μg/mL showed cytotoxicity. Treatment with GBR 12909, a highly selective DAT inhibitor, significantly increased DAT expression compared with that of amphetamine only by enhancing phosphorylation of mitogen-activated protein kinases (MAPK) and Akt. In addition, essential oils effectively induced hyperphosphorylation of cyclic-AMP response element-binding protein (CREB), MAPK, and Akt, which resulted in DAT upregulation. Our study implies that the essential oils may rehabilitate brain dopamine function through increased DAT availability in abstinent former drug users.

  16. SPECT-evaluation of the monoamine uptake site ligand [123I](1R)-2-beta-carbomethoxy-3-beta-(4-iodophenyl)-tropane ([123I]beta-CIT) in untreated patients with suspicion of Parkinson disease.

    PubMed

    Eising, E G; Müller, T T; Zander, C; Kuhn, W; Farahati, J; Reiners, C; Coenen, H H

    1997-10-01

    For a few years, data on SPECT-imaging of dopamine transporters with the cocaine derivate [123I](1R)-2-beta-carbomethoxy-3-beta-(4-iodophenyl)-tropane ([123I] beta-CIT) have been reported mostly in healthy subjects or animals. This study reflects our preliminary results with SPECT-imaging of dopamine transporters using the cocaine analogue 123-beta-CIT in patients with untreated (de novo) parkinsonism. In 33 patients with clinical suspicion of Parkinson disease and 5 healthy controls, SPECT-imaging of dopamine transporters was performed 1, 4, and 24 hours after injection of 180 MBq of 123I-beta-CIT, which was generated by iododestannylation. None of the patients or controls had been treated before with neuroleptical drugs or any other pharmaceuticals with known binding to the dopamine transporters. Clinical symptoms were staged by the scales Hoehn-Yahr (HYS), Unified Parkinson Disease Rating Scale (UPDRS), and the self-rating scale of Beck depression inventory (BDI). For evaluation, striatal/cerebellar ratios were calculated to every time point. Significant correlations of 123I-beta-CIT uptake could be stated compared to UPDRS, HYS, and BDI values (Spearman correlation, p < 0.05). The symptoms of rigor and akinesia showed a significant correlation with the beta-CIT uptake, whereas the symptom of tremor failed, which may be caused by the location of tremor symptoms out of the striatum. Comparing the controls, a significant (p < 0.01) decrease of tracer uptake in parkinsonian patients is stated on the images at 24 hours p.i. In our patients, tracer uptake does not depend significantly on duration of disease and age. 123I-beta-CIT seems to be a promising tool in imaging of untreated parkinsonian patient.

  17. 1,2,3,4-Tetrahydroisoquinoline protects terminals of dopaminergic neurons in the striatum against the malonate-induced neurotoxicity.

    PubMed

    Lorenc-Koci, Elzbieta; Gołembiowska, Krystyna; Wardas, Jadwiga

    2005-07-27

    Malonate, a reversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, is frequently used as a model neurotoxin to produce lesion of the nigrostriatal dopaminergic system in animals due to particular sensitivity of dopamine neurons to mild energy impairment. This model of neurotoxicity was applied in our study to explore neuroprotective potential of 1,2,3,4-tetrahydroisoquinoline (TIQ), an endo- and exogenous substance whose function in the mammalian brain, despite extensive studies, has not been elucidated so far. Injection of malonate at a dose of 3 mumol unilaterally into the rat left medial forebrain bundle resulted in the 54% decrease in dopamine (DA) concentration in the ipsilateral striatum and, depending on the examined striatum regions, caused 24-44% reduction in [3H]GBR12,935 binding to the dopamine transporter (DAT). TIQ (50 mg/kg i.p.) administered 4 h before malonate infusion and next once daily for successive 7 days prevented both these effects of malonate. Such TIQ treatment restored DA content and DAT binding almost to the control level. The results of the present study indicate that TIQ may act as a neuroprotective agent in the rat brain. An inhibition of the enzymatic activities of monoamine oxidase and gamma-glutamyl transpeptidase as well as an increase in the striatal levels of glutathione and nitric oxide found after TIQ administration and reported in our earlier studies are considered to be potential factors that may be involved in the TIQ-mediated protection of dopamine terminals from malonate toxicity.

  18. Distinct Roles of Opioid and Dopamine Systems in Lateral Hypothalamic Intracranial Self-Stimulation.

    PubMed

    Ide, Soichiro; Takahashi, Takehiro; Takamatsu, Yukio; Uhl, George R; Niki, Hiroaki; Sora, Ichiro; Ikeda, Kazutaka

    2017-05-01

    Opioid and dopamine systems play crucial roles in reward. Similarities and differences in the neural mechanisms of reward that are mediated by these 2 systems have remained largely unknown. Thus, in the present study, we investigated the differences in reward function in both µ-opioid receptor knockout mice and dopamine transporter knockout mice, important molecules in the opioid and dopamine systems. Mice were implanted with electrodes into the right lateral hypothalamus (l hour). Mice were then trained to put their muzzle into the hole in the head-dipping chamber for intracranial electrical stimulation, and the influences of gene knockout were assessed. Significant differences are observed between opioid and dopamine systems in reward function. µ-Opioid receptor knockout mice exhibited enhanced intracranial electrical stimulation, which induced dopamine release. They also exhibited greater motility under conditions of "despair" in both the tail suspension test and water wheel test. In contrast, dopamine transporter knockout mice maintained intracranial electrical stimulation responding even when more active efforts were required to obtain the reward. The absence of µ-opioid receptor or dopamine transporter did not lead to the absence of intracranial electrical stimulation responsiveness but rather differentially altered it. The present results in µ-opioid receptor knockout mice are consistent with the suppressive involvement of µ-opioid receptors in both positive incentive motivation associated with intracranial electrical stimulation and negative incentive motivation associated with depressive states. In contrast, the results in dopamine transporter knockout mice are consistent with the involvement of dopamine transporters in positive incentive motivation, especially its persistence. Differences in intracranial electrical stimulation in µ-opioid receptor and dopamine transporter knockout mice underscore the multidimensional nature of reward. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  19. Evaluating Dopamine Reward Pathway in ADHD

    PubMed Central

    Volkow, Nora D.; Wang, Gene-Jack; Kollins, Scott H.; Wigal, Tim L.; Newcorn, Jeffrey H.; Telang, Frank; Fowler, Joanna S.; Zhu, Wei; Logan, Jean; Ma, Yeming; Pradhan, Kith; Wong, Christopher; Swanson, James M.

    2010-01-01

    Context Attention-deficit/hyperactivity disorder (ADHD)—characterized by symptoms of inattention and hyperactivity-impulsivity—is the most prevalent childhood psychiatric disorder that frequently persists into adulthood, and there is increasing evidence of reward-motivation deficits in this disorder. Objective To evaluate biological bases that might underlie a reward/motivation deficit by imaging key components of the brain dopamine reward pathway (mesoaccumbens). Design, Setting, and Participants We used positron emission tomography to measure dopamine synaptic markers (transporters and D2/D3 receptors) in 53 nonmedicated adults with ADHD and 44 healthy controls between 2001–2009 at Brookhaven National Laboratory. Main Outcome Measures We measured specific binding of positron emission tomographic radioligands for dopamine transporters (DAT) using [11C]cocaine and for D2/D3 receptors using [11C]raclopride, quantified as binding potential (distribution volume ratio −1). Results For both ligands, statistical parametric mapping showed that specific binding was lower in ADHD than in controls (threshold for significance set at P<.005) in regions of the dopamine reward pathway in the left side of the brain. Region-of-interest analyses corroborated these findings. The mean (95% confidence interval [CI] of mean difference) for DAT in the nucleus accumbens for controls was 0.71 vs 0.63 for those with ADHD (95% CI, 0.03–0.13, P=.004) and in the midbrain for controls was 0.16 vs 0.09 for those with ADHD (95% CI, 0.03–0.12; P ≤ .001); for D2/D3 receptors, the mean accumbens for controls was 2.85 vs 2.68 for those with ADHD (95% CI, 0.06–0.30, P=.004); and in the midbrain, it was for controls 0.28 vs 0.18 for those with ADHD (95% CI, 0.02–0.17, P=.01). The analysis also corroborated differences in the left caudate: the mean DAT for controls was 0.66 vs 0.53 for those with ADHD (95% CI, 0.04–0.22; P=.003) and the mean D2/D3 for controls was 2.80 vs 2.47 for those with ADHD (95% CI, 0.10–0.56; P=.005) and differences in D2/D3 in the hypothalamic region, with controls having a mean of 0.12 vs 0.05 for those with ADHD (95% CI, 0.02–0.12; P=.004). Ratings of attention correlated with D2/D3 in the accumbens (r =0.35; 95% CI, 0.15–0.52; P =.001), midbrain (r=0.35; 95% CI, 0.14–0.52; P=.001), caudate (r=0.32; 95% CI, 0.11–0.50; P=.003), and hypothalamic (r=0.31; CI, 0.10–0.49; P=.003) regions and with DAT in the midbrain (r=0.37; 95% CI, 0.16–0.53; P ≤ .001). Conclusion A reduction in dopamine synaptic markers associated with symptoms of inattention was shown in the dopamine reward pathway of participants with ADHD. PMID:19738093

  20. CJ-1639: A Potent and Highly Selective Dopamine D3 Receptor Full Agonist.

    PubMed

    Chen, Jianyong; Collins, Gregory T; Levant, Beth; Woods, James; Deschamps, Jeffrey R; Wang, Shaomeng

    2011-08-11

    We have identified several ligands with high binding affinities to the dopamine D3 receptor and excellent selectivity over the D2 and D1 receptors. CJ-1639 (17) binds to the D3 receptor with a K(i) value of 0.50 nM and displays a selectivity of >5,000 times over D2 and D1 receptors in binding assays using dopamine receptors expressed in the native rat brain tissues. CJ-1639 binds to human D3 receptor with a K(i) value of 3.61 nM and displays over >1000-fold selectivity over human D1 and D2 receptors. CJ-1639 is active at 0.01 mg/kg at the dopamine D3 receptor in the rat and only starts to show a modest D2 activity at doses as high as 10 mg/kg. CJ-1639 is the most potent and selective D3 full agonist reported to date.

  1. GM1 ganglioside in Parkinson's disease: Pilot study of effects on dopamine transporter binding.

    PubMed

    Schneider, Jay S; Cambi, Franca; Gollomp, Stephen M; Kuwabara, Hiroto; Brašić, James R; Leiby, Benjamin; Sendek, Stephanie; Wong, Dean F

    2015-09-15

    GM1 ganglioside has been suggested as a treatment for Parkinson's disease (PD), potentially having symptomatic and disease modifying effects. The current pilot imaging study was performed to examine effects of GM1 on dopamine transporter binding, as a surrogate measure of disease progression, studied longitudinally. Positron emission tomography (PET) imaging data were obtained from a subset of subjects enrolled in a delayed start clinical trial of GM1 in PD [1]: 15 Early-start (ES) subjects, 14 Delayed-start (DS) subjects, and 11 Comparison (standard-of-care) subjects. Treatment subjects were studied over a 2.5 year period while Comparison subjects were studied over 2 years. Dynamic PET scans were performed over 90 min following injection of [(11)C]methylphenidate. Regional values of binding potential (BPND) were analyzed for several striatal volumes of interest. Clinical results for this subset of subjects were similar to those previously reported for the larger study group. ES subjects showed early symptomatic improvement and slow symptom progression over the study period. DS and Comparison subjects were initially on the same symptom progression trajectory but diverged once DS subjects received GM1 treatment. Imaging results showed significant slowing of BPND loss in several striatal regions in GM1-treated subjects and in some cases, an increased BPND in some striatal regions was detected after GM1 use. Results of this pilot imaging study provide additional data to suggest a potential disease modifying effect of GM1 on PD. These results need to be confirmed in a larger number of subjects. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Reduction of dopamine D2/3 receptor binding in the striatum after a single administration of esketamine, but not R-ketamine: a PET study in conscious monkeys.

    PubMed

    Hashimoto, Kenji; Kakiuchi, Takeharu; Ohba, Hiroyuki; Nishiyama, Shingo; Tsukada, Hideo

    2017-03-01

    R-ketamine appears to be a potent, long-lasting and safer antidepressant, relative to esketamine (S-ketamine), since it might be free of psychotomimetic side effects. Using [ 11 C]raclopride and positron emission tomography (PET), we investigated whether esketamine and R-ketamine can affect dopamine D 2/3 receptor binding in the conscious monkey brain. A single infusion of esketamine (0.5 mg/kg), but not R-ketamine (0.5 mg/kg), caused a reduction of binding availability of dopamine D 2/3 receptor in the monkey striatum. This study suggests that unlike to R-ketamine, esketamine can cause dopamine release in the striatum, and that its release might be associated with psychotomimetic effects of esketamine.

  3. Potent haloperidol derivatives covalently binding to the dopamine D2 receptor.

    PubMed

    Schwalbe, Tobias; Kaindl, Jonas; Hübner, Harald; Gmeiner, Peter

    2017-10-01

    The dopamine D 2 receptor (D 2 R) is a common drug target for the treatment of a variety of neurological disorders including schizophrenia. Structure based design of subtype selective D 2 R antagonists requires high resolution crystal structures of the receptor and pharmacological tools promoting a better understanding of the protein-ligand interactions. Recently, we reported the development of a chemically activated dopamine derivative (FAUC150) designed to covalently bind the L94C mutant of the dopamine D 2 receptor. Using FAUC150 as a template, we elaborated the design and synthesis of irreversible analogs of the potent antipsychotic drug haloperidol forming covalent D 2 R-ligand complexes. The disulfide- and Michael acceptor-functionalized compounds showed significant receptor affinity and an irreversible binding profile in radioligand depletion experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ctr9, a Protein in the Transcription Complex Paf1, Regulates Dopamine Transporter Activity at the Plasma Membrane.

    PubMed

    De Gois, Stéphanie; Slama, Patrick; Pietrancosta, Nicolas; Erdozain, Amaia M; Louis, Franck; Bouvrais-Veret, Caroline; Daviet, Laurent; Giros, Bruno

    2015-07-17

    Dopamine (DA) is a major regulator of sensorimotor and cognitive functions. The DA transporter (DAT) is the key protein that regulates the spatial and temporal activity of DA release into the synaptic cleft via the rapid reuptake of DA into presynaptic termini. Several lines of evidence have suggested that transporter-interacting proteins may play a role in DAT function and regulation. Here, we identified the tetratricopeptide repeat domain-containing protein Ctr9 as a novel DAT binding partner using a yeast two-hybrid system. We showed that Ctr9 is expressed in dopaminergic neurons and forms a stable complex with DAT in vivo via GST pulldown and co-immunoprecipitation assays. In mammalian cells co-expressing both proteins, Ctr9 partially colocalizes with DAT at the plasma membrane. This interaction between DAT and Ctr9 results in a dramatic enhancement of DAT-mediated DA uptake due to an increased number of DAT transporters at the plasma membrane. We determined that the binding of Ctr9 to DAT requires residues YKF in the first half of the DAT C terminus. In addition, we characterized Ctr9, providing new insight into this protein. Using three-dimensional modeling, we identified three novel tetratricopeptide repeat domains in the Ctr9 sequence, and based on deletion mutation experiments, we demonstrated the role of the SH2 domain of Ctr9 in nuclear localization. Our results demonstrate that Ctr9 localization is not restricted to the nucleus, as previously described for the transcription complex Paf1. Taken together, our data provide evidence that Ctr9 modulates DAT function by regulating its trafficking. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Preserved serotonin transporter binding in de novo Parkinson's disease: negative correlation with the dopamine transporter.

    PubMed

    Strecker, Karl; Wegner, Florian; Hesse, Swen; Becker, Georg-Alexander; Patt, Marianne; Meyer, Philipp M; Lobsien, Donald; Schwarz, Johannes; Sabri, Osama

    2011-01-01

    Recent imaging and neuropathological studies indicate reduced serotonin transporter (SERT) in advanced Parkinson's disease (PD). However, data on SERT in early PD patients are sparse. Following the hypothesis that the serotonergic system is damaged early in PD, the aim of our study was to investigate SERT availability by means of PET imaging. Since the loss of dopaminergic neurons is the pathologic hallmark of PD and SERT might be associated with psychiatric co-morbidity, we further sought to correlate SERT availability with the availability of dopamine transporter (DAT) and depressive or motor symptoms in early PD. We prospectively recruited nine early PD patients (4 female, 5 male; 42-76 years) and nine age matched healthy volunteers (5 female, 4 male; 42-72 years). Diagnosis of PD was confirmed by the UK brain bank criteria and DAT imaging. SERT availability was measured by means of [11C]DASB PET. For neuropsychiatric assessment done on the day of PET we applied UPDRS parts I, II and III, Beck's Depression Inventory, Hamilton Rating Scale for Depression, Mini-Mental State Examination and Demtect. SERT was not reduced in any of 14 investigated regions of interest in the nine PD patients compared to healthy controls (p>0.13). SERT was negatively associated with DAT in the striatum (r=-0.69; p=0.04) but not within the midbrain. There was no correlation of SERT availability with depressive symptoms. No alteration of SERT binding in our patients suggests that the serotonergic system is remarkably preserved in early PD. Correlation with DAT might point to a compensatory regulation of the serotonergic system in early stages of PD.

  6. Genetics Home Reference: dopamine transporter deficiency syndrome

    MedlinePlus

    ... link) PARKINSONISM-DYSTONIA, INFANTILE Sources for This Page Blackstone C. Infantile parkinsonism-dystonia due to dopamine transporter ... 5. Epub 2010 Nov 25. Citation on PubMed Blackstone C. Infantile parkinsonism-dystonia: a dopamine "transportopathy". J ...

  7. Dizocilpine and reduced body temperature do not prevent methamphetamine-induced neurotoxicity in the vervet monkey: [11C]WIN 35,428 - positron emission tomography studies.

    PubMed

    Melega, W P; Lacan, G; Harvey, D C; Huang, S C; Phelps, M E

    1998-12-11

    [11C]WIN 35,428 (WIN), a cocaine analog that binds to the dopamine transporter (DAT), and positron emission tomography (PET) were used to evaluate the potential neuroprotective effects of dizocilpine (MK-801) on methamphetamine (MeAmp) induced neurotoxicity in the striatal dopamine system of the vervet monkey. MK-801 (1 mg/kg, i.m.) was administered 30 min prior to a neurotoxic MeAmp dosage for this species (2 x 2 mg/kg, 4 h apart); control subjects received MeAmp. MK-801 treated subjects were anesthetized by the drug for 6-8 h; throughout that period, a 2-3 degrees C decrease in body temperature was measured. At 1-2 weeks post-MeAmp, decreases of approximately 75% in striatal WIN binding were observed for both MK-801/MeAmp and MeAmp subjects. Thus, in this non-human primate species, the combination of MK-801 pretreatment and reduced body temperature did not provide protection from the MeAmp-induced loss of DAT. Further, the absence of an elevated body temperature during the acute MeAmp exposure period indicated that hyperthermia, per se, was not a necessary concomitant of the MeAmp neurotoxicity profile as has been previously demonstrated in rodents. These results provide evidence that different regulatory factors maintain the integrity of the rodent and primate striatal dopamine systems.

  8. The effects of pargyline and 2-phenylethylamine on D1-like dopamine receptor binding.

    PubMed

    Berry, Mark D

    2011-07-01

    2-Phenylethylamine (PE) potentiates neuronal responses to dopamine by an unknown post-synaptic mechanism. Here, whether PE modifies D1-like receptor binding was examined. An unexpected effect of the monoamine oxidase inhibitor pargyline was observed, which did not involve competition for ligand binding. PE did not affect ligand binding in the presence or absence of pargyline. It is concluded that the effect of pargyline does not involve elevation of endogenous PE, and PE effects on dopaminergic neurotransmission are not due to altered D1-like receptor binding.

  9. Characterization of the Pathological and Biochemical Markers that Correlate to the Clinical Features of Autism. Subproject 1: The Neuropathological Markers of Abnormal Brain Development and Aging in Autism

    DTIC Science & Technology

    2013-04-01

    identifiable genetic etiology corresponding to a known single gene disorder, such as fragile X syndrome, or chromosomal rearrangements, including...DISTRIBUTION STATEMENT: X Approved for public release; distribution unlimited � Distribution limited to U.S. Government agencies...efficacy and tolerability 2006, 67, 407-414 Makkonen I, Riikonen R, Kokki H, Airaksinen MM. Kuikka JT. Serotonin and dopamine transporter binding in

  10. Decoding the Dopamine Signal in Macaque Prefrontal Cortex: A Simulation Study Using the Cx3Dp Simulator

    PubMed Central

    Spühler, Isabelle Ayumi; Hauri, Andreas

    2013-01-01

    Dopamine transmission in the prefrontal cortex plays an important role in reward based learning, working memory and attention. Dopamine is thought to be released non-synaptically into the extracellular space and to reach distant receptors through diffusion. This simulation study examines how the dopamine signal might be decoded by the recipient neuron. The simulation was based on parameters from the literature and on our own quantified, structural data from macaque prefrontal area 10. The change in extracellular dopamine concentration was estimated at different distances from release sites and related to the affinity of the dopamine receptors. Due to the sparse and random distribution of release sites, a transient heterogeneous pattern of dopamine concentration emerges. Our simulation predicts, however, that at any point in the simulation volume there is sufficient dopamine to bind and activate high-affinity dopamine receptors. We propose that dopamine is broadcast to its distant receptors and any change from the local baseline concentration might be decoded by a transient change in the binding probability of dopamine receptors. Dopamine could thus provide a graduated ‘teaching’ signal to reinforce concurrently active synapses and cell assemblies. In conditions of highly reduced or highly elevated dopamine levels the simulations predict that relative changes in the dopamine signal can no longer be decoded, which might explain why cognitive deficits are observed in patients with Parkinson’s disease, or induced through drugs blocking dopamine reuptake. PMID:23951205

  11. Effects of acute nicotine on hemodynamics and binding of [11C]raclopride to dopamine D2,3 receptors in pig brain.

    PubMed

    Cumming, Paul; Rosa-Neto, Pedro; Watanabe, Hideaki; Smith, Donald; Bender, Dirk; Clarke, Paul B S; Gjedde, Albert

    2003-07-01

    Positive reinforcing properties of nicotine and the psychostimulants have been attributed to elevated dopamine release in the basal ganglia. It is well known that the specific binding of [(11)C]raclopride to dopamine D(2,3) receptors in living striatum is reduced by cocaine and amphetamines, revealing increased competition between endogenous dopamine and [(11)C]raclopride for dopamine D(2,3) receptors. However, the sensitivity of [(11)C]raclopride binding to nicotine-induced dopamine release is less well documented. In order to provide the basis for mapping effects of nicotine, we first optimized reference tissue methods for quantifying [(11)C]raclopride binding sites in striatum of living pigs (n = 16). In the same animals, the rate of cerebral blood flow (CBF) was mapped using [(15)O]water. Neither a low dose of nicotine (50 mu kg(-1), iv) nor a high dose of nicotine (500 microg kg(-1), iv) altered CBF in the pig brain, an important condition for calculating the binding of radioligands when using a reference tissue to estimate the free ligand concentration. The methods of Logan and of Lammertsma were compared using the cerebellum or the occipital cortex as reference tissues for calculating the binding potential (pB) of [(11)C]raclolpride in brain. Irrespective of the method used, the mean undrugged baseline pB in striatum (ca. 2.0) was significantly asymmetric, with highest binding in the left caudate and right putamen. Test-retest estimates of pB were stable. Subtraction of Logan pB maps revealed that the low dose of nicotine reduced the pB of [(11)C]raclopride by 10% in a cluster of voxels in the left anteroventral striatum, but this effect did not persist after correction for multiple comparisons. The high dose of nicotine (n = 9) acutely reduced pB by 10% bilaterally in the ventral striatum; 3 h after the high nicotine dose, the reductions had shifted dorsally and caudally into the caudate and putamen. Evidently, nicotine challenge enhances the competition between endogenous dopamine for [(11)C]raclopride binding sites with a complex temporal and spacial pattern in pig brain, initially presenting in the left ventral striatum.

  12. Analysis of the actions of the novel dopamine receptor-directed compounds (S)-OSU6162 and ACR16 at the D2 dopamine receptor

    PubMed Central

    Kara, Elodie; Lin, Hong; Svensson, Kjell; Johansson, Anette M; Strange, Philip G

    2010-01-01

    BACKGROUND AND PURPOSE The two phenylpiperidines, OSU6162 and ACR16, have been proposed as novel drugs for the treatment of brain disorders, including schizophrenia and Huntington's disease, because of their putative dopamine stabilizing effects. Here we evaluated the activities of these compounds in a range of assays for the D2 dopamine receptor in vitro. EXPERIMENTAL APPROACH The affinities of these compounds for the D2 dopamine receptor were evaluated in competition with [3H]spiperone and [3H]NPA. Agonist activity of these compounds was evaluated in terms of their ability to stimulate [35S]GTPγS binding. KEY RESULTS Both compounds had low affinities for inhibition of [3H]spiperone binding (pKi vs. [3H]spiperone, ACR16: <5, OSU6162: 5.36). Neither compound was able to stimulate [35S]GTPγS binding when assayed in the presence of Na+ ions, but if the Na+ ions were removed, both compounds were low-affinity, partial agonists (Emax relative to dopamine: ACR16: 10.2%, OSU6162:54.3%). Schild analysis of the effects of OSU6162 to inhibit dopamine-stimulated [35S]GTPγS binding indicated Schild slopes of ∼0.9, suggesting little deviation from competitive inhibition. OSU6162 was, however, able to accelerate [3H]NPA dissociation from D2 dopamine receptors, indicating some allosteric effects of this compound. CONCLUSIONS AND IMPLICATIONS The two phenylpiperidines were low-affinity, low-efficacy partial agonists at the D2 dopamine receptor in vitro, possibly exhibiting some allosteric effects. Comparing their in vitro and in vivo effects, the in vitro affinities were a reasonable guide to potencies in vivo. However, the lack of in vitro–in vivo correlation for agonist efficacy needs to be further addressed. PMID:20804495

  13. Antidepressant Specificity of Serotonin Transporter Suggested by Three LeuT-SSRI Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Z.; Zhen, J; Karpowich, N

    2009-01-01

    Sertraline and fluoxetine are selective serotonin re-uptake inhibitors (SSRIs) that are widely prescribed to treat depression. They exert their effects by inhibiting the presynaptic plasma membrane serotonin transporter (SERT). All SSRIs possess halogen atoms at specific positions, which are key determinants for the drugs' specificity for SERT. For the SERT protein, however, the structural basis of its specificity for SSRIs is poorly understood. Here we report the crystal structures of LeuT, a bacterial SERT homolog, in complex with sertraline, R-fluoxetine or S-fluoxetine. The SSRI halogens all bind to exactly the same pocket within LeuT. Mutation at this halogen-binding pocket (HBP)more » in SERT markedly reduces the transporter's affinity for SSRIs but not for tricyclic antidepressants. Conversely, when the only nonconserved HBP residue in both norepinephrine and dopamine transporters is mutated into that found in SERT, their affinities for all the three SSRIs increase uniformly. Thus, the specificity of SERT for SSRIs is dependent largely on interaction of the drug halogens with the protein's HBP.« less

  14. Purification of brain D2 dopamine receptor.

    PubMed Central

    Williamson, R A; Worrall, S; Chazot, P L; Strange, P G

    1988-01-01

    D2 dopamine receptors have been extracted from bovine brain using the detergent cholate and purified approximately 20,000-fold by affinity chromatography on haloperidol-sepharose and wheat germ agglutinin-agarose columns. The purified preparation contains D2 dopamine receptors as judged by the pharmacological specificity of [3H]spiperone binding to the purified material. The sp. act. of [3H]spiperone binding in the purified preparation is 2.5 nmol/mg protein. The purified preparation shows a major diffuse band at Mr 95,000 upon SDS-polyacrylamide gel electrophoresis and there is evidence for microheterogeneity either at the protein or glycosylation level. Photoaffinity labelling of D2 dopamine receptors also shows a species of Mr 95,000. The D2 dopamine receptor therefore is a glycoprotein of Mr 95,000. Images PMID:3243275

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannon, Michael J.

    The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)

  16. Psychotomimetic opiate receptors labeled and visualized with (+)-(/sup 3/H)3-(3-hydroxyphenyl)-N-(1-propyl)piperidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Largent, B.L.; Gundlach, A.L.; Snyder, S.H.

    1984-08-01

    3-(3-Hydroxyphenyl)-N-(1-propyl)piperidine (3-PPP) has been proposed as a selective dopamine autoreceptor agonist in the central nervous system. This report describes the pharmacology and localization of specific high-affinity binding sites for (+)-(/sup 3/H)3-PPP in brain. The drug specificity of (+)-(/sup 3/H)3-PPP binding is identical to that of sigma receptors, which may mediate psychotomimetic effects of some opiates. Haloperidol and the opioid derivatives, pentazocine, cyclazocine, and SKF 10,047 are potent inhibitors of (+)-(/sup 3/H)3-PPP binding. Stereoselectivity is exhibited for the (+) isomers of cyclazocine and SKF 10.047 at the sigma site, opposite to the stereoselectivity seen at ..mu.., sigma, and k opiate receptors.more » (+)-(/sup 3/H)3-PPP does not label dopamine receptors, as potent dopamine agonists and antagonists are weak inhibitors of binding and the localization of specific (+)-(/sup 3/H)3-PPP binding sites does not parallel that of dopamine neurons. Discrete localizations of (+)-(/sup 3/H)3-PPP binding sites in many brain areas including limbic, midbrain, brainstem, and cerebellar regions may explain psychotomimetic actions of opiates and behavior effects of 3-PPP. 41 references, 2 figures, 1 table.« less

  17. Effect of melatonin on methamphetamine- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity and methamphetamine-induced behavioral sensitization.

    PubMed

    Itzhak, Y; Martin, J L; Black, M D; Ali, S F

    1998-06-01

    Methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity is thought to be associated with the formation of free radicals. Since evidence suggests that melatonin may act as a free radical scavenger and antioxidant, the present study was undertaken to investigate the effect of melatonin on METH- and MPTP-induced neurotoxicity. In addition, the effect of melatonin on METH-induced locomotor sensitization was investigated. The administration of METH (5 mg kg(-1) x 3) or MPTP (20 mg kg(-1) x 3) to Swiss Webster mice resulted in 45-57% depletion in the content of striatal dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 57-59% depletion in dopamine transporter binding sites. The administration of melatonin (10 mg kg(-1)) before each of the three injections of the neurotoxic agents (on day 1), and thereafter for two additional days, afforded a full protection against METH-induced depletion of dopamine and its metabolites and dopamine transporter binding sites. In addition, melatonin significantly diminished METH-induced hyperthermia. However, the treatment with melatonin had no significant effect on MPTP-induced depletion of the dopaminergic markers tested. In the set of behavioral experiments, we found that the administration of 1 mg kg(-1) METH to Swiss Webster mice for 5 days resulted in marked locomotor sensitization to a subsequent challenge injection of METH, as well as context-dependent sensitization (conditioning). The pretreatment with melatonin (10 mg kg(-1)) prevented neither the sensitized response to METH nor the development of conditioned locomotion. Results of the present study indicate that melatonin has a differential effect on the dopaminergic neurotoxicity produced by METH and MPTP. Since it is postulated that METH-induced hyperthermia is related to its neurotoxic effect, while regulation of body temperature is unrelated to MPTP-induced neurotoxicity or METH-induced locomotor sensitization, the protective effect of melatonin observed in the present study may be due primarily to diminishing METH-induced hyperthermia.

  18. Conformational analysis of methylphenidate: comparison of molecular orbital and molecular mechanics methods

    NASA Astrophysics Data System (ADS)

    Gilbert, Kathleen M.; Skawinski, William J.; Misra, Milind; Paris, Kristina A.; Naik, Neelam H.; Buono, Ronald A.; Deutsch, Howard M.; Venanzi, Carol A.

    2004-11-01

    Methylphenidate (MP) binds to the cocaine binding site on the dopamine transporter and inhibits reuptake of dopamine, but does not appear to have the same abuse potential as cocaine. This study, part of a comprehensive effort to identify a drug treatment for cocaine abuse, investigates the effect of choice of calculation technique and of solvent model on the conformational potential energy surface (PES) of MP and a rigid methylphenidate (RMP) analogue which exhibits the same dopamine transporter binding affinity as MP. Conformational analysis was carried out by the AM1 and AM1/SM5.4 semiempirical molecular orbital methods, a molecular mechanics method (Tripos force field with the dielectric set equal to that of vacuum or water) and the HF/6-31G* molecular orbital method in vacuum phase. Although all three methods differ somewhat in the local details of the PES, the general trends are the same for neutral and protonated MP. In vacuum phase, protonation has a distinctive effect in decreasing the regions of space available to the local conformational minima. Solvent has little effect on the PES of the neutral molecule and tends to stabilize the protonated species. The random search (RS) conformational analysis technique using the Tripos force field was found to be capable of locating the minima found by the molecular orbital methods using systematic grid search. This suggests that the RS/Tripos force field/vacuum phase protocol is a reasonable choice for locating the local minima of MP. However, the Tripos force field gave significantly larger phenyl ring rotational barriers than the molecular orbital methods for MP and RMP. For both the neutral and protonated cases, all three methods found the phenyl ring rotational barriers for the RMP conformers/invertamers (denoted as cte, tte, and cta) to be: cte, tte> MP > cta. Solvation has negligible effect on the phenyl ring rotational barrier of RMP. The B3LYP/6-31G* density functional method was used to calculate the phenyl ring rotational barrier for neutral MP and gave results very similar to those of the HF/6-31G* method.

  19. METHAMPHETAMINE-INDUCED NEUROTOXICITY DISRUPTS PHARMACOLOGICALLY EVOKED DOPAMINE TRANSIENTS IN THE DORSOMEDIAL AND DORSOLATERAL STRIATUM

    PubMed Central

    Robinson, John D.; Howard, Christopher D.; Pastuzyn, Elissa D.; Byers, Diane L.; Keefe, Kristen A.; Garris, Paul A.

    2014-01-01

    Phasic dopamine (DA) signaling, during which burst firing by dopamine neurons generates short-lived elevations in extracellular DA in terminal fields called DA transients, is implicated in reinforcement learning. Disrupted phasic DA signaling is proposed to link DA depletions and cognitive-behavioral impairment in methamphetamine (METH)-induced neurotoxicity. Here we further investigated this disruption by assessing effects of METH pretreatment on DA transients elicited by a drug cocktail of raclopride, a D2 DA receptor antagonist, and nomifensine, an inhibitor of the dopamine transporter (DAT). One advantage of this approach is that pharmacological activation provides a large, high-quality data set of transients elicited by endogenous burst firing of DA neurons for analysis of regional differences and neurotoxicity. These pharmacologically evoked DA transients were measured in the dorsomedial (DM) and dorsolateral (DL) striatum of urethane-anesthetized rats by fast-scan cyclic voltammetry. Electrically evoked DA levels were also recorded to quantify DA release and uptake, and DAT binding was determined by autoradiography to index DA denervation. Pharmacologically evoked DA transients in intact animals exhibited a greater amplitude and frequency and shorter duration in the DM compared to the DL striatum, despite similar pre- and post-drug assessments of DA release and uptake in both sub-regions as determined from the electrically evoked DA signals. METH pretreatment reduced transient activity. The most prominent effect of METH pretreatment on transients across striatal sub-region was decreased amplitude, which mirrored decreased DAT binding and was accompanied by decreased DA release. Overall, these results identify marked intrastriatal differences in the activity of DA transients that appear independent of presynaptic mechanisms for DA release and uptake and further support disrupted phasic DA signaling mediated by decreased DA release in rats with METH-induced neurotoxicity. PMID:24562969

  20. DRD2 genotype-based variation of default mode network activity and of its relationship with striatal DAT binding.

    PubMed

    Sambataro, Fabio; Fazio, Leonardo; Taurisano, Paolo; Gelao, Barbara; Porcelli, Annamaria; Mancini, Marina; Sinibaldi, Lorenzo; Ursini, Gianluca; Masellis, Rita; Caforio, Grazia; Di Giorgio, Annabella; Niccoli-Asabella, Artor; Popolizio, Teresa; Blasi, Giuseppe; Bertolino, Alessandro

    2013-01-01

    The default mode network (DMN) comprises a set of brain regions with "increased" activity during rest relative to cognitive processing. Activity in the DMN is associated with functional connections with the striatum and dopamine (DA) levels in this brain region. A functional single-nucleotide polymorphism within the dopamine D2 receptor gene (DRD2, rs1076560 G > T) shifts splicing of the 2 D2 isoforms, D2 short and D2 long, and has been associated with striatal DA signaling as well as with cognitive processing. However, the effects of this polymorphism on DMN have not been explored. The aim of this study was to evaluate the effects of rs1076560 on DMN and striatal connectivity and on their relationship with striatal DA signaling. Twenty-eight subjects genotyped for rs1076560 underwent functional magnetic resonance imaging during a working memory task and 123 55 I-Fluoropropyl-2-beta-carbomethoxy-3-beta(4-iodophenyl) nortropan Single Photon Emission Computed Tomography ([(123)I]-FP-CIT SPECT) imaging (a measure of dopamine transporter [DAT] binding). Spatial group-independent component (IC) analysis was used to identify DMN and striatal ICs. Within the anterior DMN IC, GG subjects had relatively greater connectivity in medial prefrontal cortex (MPFC), which was directly correlated with striatal DAT binding. Within the posterior DMN IC, GG subjects had reduced connectivity in posterior cingulate relative to T carriers. Additionally, rs1076560 genotype predicted connectivity differences within a striatal network, and these changes were correlated with connectivity in MPFC and posterior cingulate within the DMN. These results suggest that genetically determined D2 receptor signaling is associated with DMN connectivity and that these changes are correlated with striatal function and presynaptic DA signaling.

  1. DRD2 Genotype-Based Variation of Default Mode Network Activity and of Its Relationship With Striatal DAT Binding

    PubMed Central

    Sambataro, Fabio; Fazio, Leonardo; Taurisano, Paolo; Gelao, Barbara; Porcelli, Annamaria; Mancini, Marina; Sinibaldi, Lorenzo; Ursini, Gianluca; Masellis, Rita; Caforio, Grazia; Di Giorgio, Annabella; Niccoli-Asabella, Artor; Popolizio, Teresa; Blasi, Giuseppe; Bertolino, Alessandro

    2013-01-01

    The default mode network (DMN) comprises a set of brain regions with “increased” activity during rest relative to cognitive processing. Activity in the DMN is associated with functional connections with the striatum and dopamine (DA) levels in this brain region. A functional single-nucleotide polymorphism within the dopamine D2 receptor gene (DRD2, rs1076560 G > T) shifts splicing of the 2 D2 isoforms, D2 short and D2 long, and has been associated with striatal DA signaling as well as with cognitive processing. However, the effects of this polymorphism on DMN have not been explored. The aim of this study was to evaluate the effects of rs1076560 on DMN and striatal connectivity and on their relationship with striatal DA signaling. Twenty-eight subjects genotyped for rs1076560 underwent functional magnetic resonance imaging during a working memory task and 123 55 I-Fluoropropyl-2-beta-carbomethoxy-3-beta(4-iodophenyl) nortropan Single Photon Emission Computed Tomography ([123I]-FP-CIT SPECT) imaging (a measure of dopamine transporter [DAT] binding). Spatial group-independent component (IC) analysis was used to identify DMN and striatal ICs. Within the anterior DMN IC, GG subjects had relatively greater connectivity in medial prefrontal cortex (MPFC), which was directly correlated with striatal DAT binding. Within the posterior DMN IC, GG subjects had reduced connectivity in posterior cingulate relative to T carriers. Additionally, rs1076560 genotype predicted connectivity differences within a striatal network, and these changes were correlated with connectivity in MPFC and posterior cingulate within the DMN. These results suggest that genetically determined D2 receptor signaling is associated with DMN connectivity and that these changes are correlated with striatal function and presynaptic DA signaling. PMID:21976709

  2. Reproducibility of quantitative measures of binding potential in rat striatum: A test re-test study using DTBZ dynamic PET studies

    NASA Astrophysics Data System (ADS)

    Avendaño-Estrada, A.; Lara-Camacho, V. M.; Ávila-García, M. C.; Ávila-Rodríguez, M. A.

    2014-11-01

    There is great interest in the study of dopamine (DA) pathways due to the increasing number of patients with illnesses related to the dopaminergic system and molecular imaging based in Positron Emission Tomography (PET) has been proven helpful for this task. Among the different radiopharmaceuticals available to study DA interaction, [11C ]Dihydrotetrabenazine (DTBZ) has a high affinity for the vesicular monoamine transporter type 2 (VMAT2) and its binding potential (BP) is a marker of DA terminal integrity. This paper reports on the intersubject reproducibility of BP measurements in rat striatum with [11C]DTBZ using the Logańs method.

  3. Reproducibility of quantitative measures of binding potential in rat striatum: A test re-test study using DTBZ dynamic PET studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avendaño-Estrada, A., E-mail: avilarod@uwalumni.com; Lara-Camacho, V. M., E-mail: avilarod@uwalumni.com; Ávila-García, M. C., E-mail: avilarod@uwalumni.com

    2014-11-07

    There is great interest in the study of dopamine (DA) pathways due to the increasing number of patients with illnesses related to the dopaminergic system and molecular imaging based in Positron Emission Tomography (PET) has been proven helpful for this task. Among the different radiopharmaceuticals available to study DA interaction, [{sup 11}C]Dihydrotetrabenazine (DTBZ) has a high affinity for the vesicular monoamine transporter type 2 (VMAT2) and its binding potential (BP) is a marker of DA terminal integrity. This paper reports on the intersubject reproducibility of BP measurements in rat striatum with [11C]DTBZ using the Logańs method.

  4. Amphetamine-enhanced accumulation of ( sup 3 H)-spiperone in mouse corpus striatum in vivo: Modification by other drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorris, R.L.

    1989-01-01

    Other investigators have reported that amphetamine administered to rodents results in an increase in the in vivo accumulation of either the tritiated dopamine receptor ligand, spiperone or pimozide in the dopaminergic corpus striatum, (specific binding) while not altering that in the sparsely dopaminergically innervated cerebellum (non-specific binding). Experiments were undertaken to determine if the results could be replicated and if some other drugs would modify the effect. Male mice were injected with ({sup 3}H)-spiperone (20 {mu}Ci/Kg, 0.0003 mg/kg) s.c. and killed 2 hrs later for determination of radioactivity in corpus striatum and cerebellum. Amphetamine (20 mg/kg, i.p.) given 15 minmore » before ({sup 3}H)-spiperone, increased accumulation in striatum but not cerebellum. The increase was inhibited by {alpha} - methyltyrosine ({alpha}-MT), haloperidol, reserpine or amantadine. It is suggested that the amphetamine-induced increase in accumulation of ({sup 3}H)-spiperone in corpus striatum (specific binding) depends on release of large amounts of dopamine, which then must be able to interact with the dopamine receptor. The antagonism of the effect by {alpha}-MT or reserpine can be explained by dopamine depletion, that of haloperidol by antagonism for binding at the receptor site. It is suggested that amantadine acts by a dual mechanism: (1) as a low efficacy agonist, it competes for binding to the receptor and (2) it has some ability to block dopamine release.« less

  5. Raman Spectroscopic Signature Markers of Dopamine-Human Dopamine Transporter Interaction in Living Cells.

    PubMed

    Silwal, Achut P; Yadav, Rajeev; Sprague, Jon E; Lu, H Peter

    2017-07-19

    Dopamine (DA) controls many psychological and behavioral activities in the central nervous system (CNS) through interactions with the human dopamine transporter (hDAT) and dopamine receptors. The roles of DA in the function of the CNS are affected by the targeted binding of drugs to hDAT; thus, hDAT plays a critical role in neurophysiology and neuropathophysiology. An effective experimental method is necessary to study the DA-hDAT interaction and effects of variety of drugs like psychostimulants and antidepressants that are dependent on this interaction. In searching for obtaining and identifying the Raman spectral signatures, we have used surface enhanced Raman scattering (SERS) spectroscopy to record SERS spectra from DA, human embryonic kidney 293 cells (HEK293), hDAT-HEK293, DA-HEK293, and DA-hDAT-HEK293. We have demonstrated a specific 2D-distribution SERS spectral analytical approach to analyze DA-hDAT interaction. Our study shows that the Raman modes at 807, 839, 1076, 1090, 1538, and 1665 cm -1 are related to DA-hDAT interaction, where Raman shifts at 807 and 1076 cm -1 are the signature markers for the bound state of DA to probe DA-hDAT interaction. On the basis of density function theory (DFT) calculation, Raman shift of the bound state of DA at 807 cm -1 is related to combination of bending modes α(C3-O10-H21), α(C2-O11-H22), α(C7-C8-H18), α(C6-C4-H13), α(C7-C8-H19), and α(C7-C8-N9), and Raman shift at 1076 cm -1 is related to combination of bending modes α(H19-N9-C8), γ(N9-H19), γ(C8-H19), γ(N9-H20), γ(C8-H18), and α(C7-C8-H18). These findings demonstrate that protein-ligand interactions can be confirmed by probing change in Raman shift of ligand molecules, which could be crucial to understanding molecular interactions between neurotransmitters and their receptors or transporters.

  6. Dopamine transporter availability in clinically normal aging is associated with individual differences in white matter integrity.

    PubMed

    Rieckmann, Anna; Hedden, Trey; Younger, Alayna P; Sperling, Reisa A; Johnson, Keith A; Buckner, Randy L

    2016-02-01

    Aging-related differences in white matter integrity, the presence of amyloid plaques, and density of biomarkers indicative of dopamine functions can be detected and quantified with in vivo human imaging. The primary aim of the present study was to investigate whether these imaging-based measures constitute independent imaging biomarkers in older adults, which would speak to the hypothesis that the aging brain is characterized by multiple independent neurobiological cascades. We assessed MRI-based markers of white matter integrity and PET-based marker of dopamine transporter density and amyloid deposition in the same set of 53 clinically normal individuals (age 65-87). A multiple regression analysis demonstrated that dopamine transporter availability is predicted by white matter integrity, which was detectable even after controlling for chronological age. Further post-hoc exploration revealed that dopamine transporter availability was further associated with systolic blood pressure, mirroring the established association between cardiovascular health and white matter integrity. Dopamine transporter availability was not associated with the presence of amyloid burden. Neurobiological correlates of dopamine transporter measures in aging are therefore likely unrelated to Alzheimer's disease but are aligned with white matter integrity and cardiovascular risk. More generally, these results suggest that two common imaging markers of the aging brain that are typically investigated separately do not reflect independent neurobiological processes. Hum Brain Mapp 37:621-631, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Higher binding of the dopamine D3 receptor-preferring ligand [11C]-(+)-propyl-hexahydro-naphtho-oxazin in methamphetamine polydrug users: a positron emission tomography study.

    PubMed

    Boileau, Isabelle; Payer, Doris; Houle, Sylvain; Behzadi, Arian; Rusjan, Pablo M; Tong, Junchao; Wilkins, Diana; Selby, Peter; George, Tony P; Zack, Martin; Furukawa, Yoshiaki; McCluskey, Tina; Wilson, Alan A; Kish, Stephen J

    2012-01-25

    Positron emission tomography (PET) findings suggesting lower D2-type dopamine receptors and dopamine concentration in brains of stimulant users have prompted speculation that increasing dopamine signaling might help in drug treatment. However, this strategy needs to consider the possibility, based on animal and postmortem human data, that dopaminergic activity at the related D3 receptor might, in contrast, be elevated and thereby contribute to drug-taking behavior. We tested the hypothesis that D3 receptor binding is above normal in methamphetamine (MA) polydrug users, using PET and the D3-preferring ligand [11C]-(+)-propyl-hexahydro-naphtho-oxazin ([11C]-(+)-PHNO). Sixteen control subjects and 16 polydrug users reporting MA as their primary drug of abuse underwent PET scanning after [11C]-(+)-PHNO. Compared with control subjects, drug users had higher [11C]-(+)-PHNO binding in the D3-rich midbrain substantia nigra (SN; +46%; p<0.02) and in the globus pallidus (+9%; p=0.06) and ventral pallidum (+11%; p=0.1), whereas binding was slightly lower in the D2-rich dorsal striatum (approximately -4%, NS; -12% in heavy users, p=0.01) and related to drug-use severity. The [11C]-(+)-PHNO binding ratio in D3-rich SN versus D2-rich dorsal striatum was 55% higher in MA users (p=0.004), with heavy but not moderate users having ratios significantly different from controls. [11C]-(+)-PHNO binding in SN was related to self-reported "drug wanting." We conclude that the dopamine D3 receptor, unlike the D2 receptor, might be upregulated in brains of MA polydrug users, although lower dopamine levels in MA users could have contributed to the finding. Pharmacological studies are needed to establish whether normalization of D3 receptor function could reduce vulnerability to relapse in stimulant abuse.

  8. Higher binding of the dopamine D3 receptor-preferring ligand [11C]-(+)-PHNO in Methamphetamine Polydrug Users: A Positron Emission Tomography Study

    PubMed Central

    Boileau, Isabelle; Payer, Doris; Houle, Sylvain; Behzadi, Arian; Rusjan, Pablo M.; Tong, Junchao; Wilkins, Diana; Selby, Peter; George, Tony P.; Zack, Martin; Furukawa, Yoshiaki; McCluskey, Tina; Wilson, Alan A.; Kish, Stephen J.

    2012-01-01

    Positron emission tomography (PET) findings suggesting lower D2-type dopamine receptors and dopamine concentration in brains of stimulant users have prompted speculation that increasing dopamine signaling might help in drug-treatment. However, this strategy needs to consider the possibility, based on animal and postmortem human data, that dopaminergic activity at the related D3 receptor might, in contrast, be elevated, and thereby contribute to drug-taking behavior. We tested the hypothesis that D3 receptor binding is above-normal in methamphetamine (MA) polydrug users, using PET and the D3-preferring ligand [11C]-(+)-PHNO. Sixteen control subjects and 16 polydrug users reporting MA as their primary drug of abuse underwent PET scanning following [11C]-(+)-PHNO. Compared to control subjects, drug users had higher [11C]-(+)-PHNO binding in the D3-rich midbrain substantia nigra (SN, +46%, p<0.02) and in the globus pallidus (+9%, p=0.06) and ventral pallidum (+11%, p=0.1), whereas binding was slightly lower in the D2-rich dorsal striatum (~−4%, NS; −12% in heavy users, p=0.01) and related to drug-use severity. [11C]-(+)-PHNO binding ratio in D3-rich SN vs. D2-rich dorsal striatum was 55% higher in MA users (p=0.004), with heavy but not moderate users having ratios significantly different from controls. [11C]-(+)-PHNO binding in SN was related to self-reported “drug-wanting.” We conclude that the dopamine D3 receptor, unlike the D2 receptor, might be upregulated in brains of MA polydrug users although lower dopamine levels in MA users could have contributed to the finding. Pharmacological studies are needed to establish whether normalization of D3 receptor function could reduce vulnerability to relapse in stimulant abuse. PMID:22279219

  9. Dampened Amphetamine-Stimulated Behavior and Altered Dopamine Transporter Function in the Absence of Brain GDNF.

    PubMed

    Kopra, Jaakko J; Panhelainen, Anne; Af Bjerkén, Sara; Porokuokka, Lauriina L; Varendi, Kärt; Olfat, Soophie; Montonen, Heidi; Piepponen, T Petteri; Saarma, Mart; Andressoo, Jaan-Olle

    2017-02-08

    Midbrain dopamine neuron dysfunction contributes to various psychiatric and neurological diseases, including drug addiction and Parkinson's disease. Because of its well established dopaminotrophic effects, the therapeutic potential of glial cell line-derived neurotrophic factor (GDNF) has been studied extensively in various disorders with disturbed dopamine homeostasis. However, the outcomes from preclinical and clinical studies vary, highlighting a need for a better understanding of the physiological role of GDNF on striatal dopaminergic function. Nevertheless, the current lack of appropriate animal models has limited this understanding. Therefore, we have generated novel mouse models to study conditional Gdnf deletion in the CNS during embryonic development and reduction of striatal GDNF levels in adult mice via AAV-Cre delivery. We found that both of these mice have reduced amphetamine-induced locomotor response and striatal dopamine efflux. Embryonic GDNF deletion in the CNS did not affect striatal dopamine levels or dopamine release, but dopamine reuptake was increased due to increased levels of both total and synaptic membrane-associated dopamine transporters. Collectively, these results suggest that endogenous GDNF plays an important role in regulating the function of dopamine transporters in the striatum. SIGNIFICANCE STATEMENT Delivery of ectopic glial cell line-derived neurotrophic factor (GDNF) promotes the function, plasticity, and survival of midbrain dopaminergic neurons, the dysfunction of which contributes to various neurological and psychiatric diseases. However, how the deletion or reduction of GDNF in the CNS affects the function of dopaminergic neurons has remained unknown. Using conditional Gdnf knock-out mice, we found that endogenous GDNF affects striatal dopamine homeostasis and regulates amphetamine-induced behaviors by regulating the level and function of dopamine transporters. These data regarding the physiological role of GDNF are relevant in the context of neurological and neurodegenerative diseases that involve changes in dopamine transporter function. Copyright © 2017 the authors 0270-6474/17/371581-10$15.00/0.

  10. Molecular cloning and functional characterization of the dopamine transporter from Eloria noyesi, a caterpillar pest of cocaine-rich coca plants.

    PubMed

    Chen, Rong; Wu, Xiaohong; Wei, Hua; Han, Dawn D; Gu, Howard H

    2006-01-17

    Cocaine is produced by coca plants as a chemical defense to deter feeding by insects. It has been shown that cocaine sprayed on tomato leaves reduces insect feeding, causes abnormal behaviors at low doses and kills feeding insects at doses equivalent to that in coca leaves [Nathanson, J.A., Hunnicutt, E.J., Kantham, L., Scavone, C., 1993. Cocaine as a naturally occurring insecticide. Proc. Natl. Acad. Sci. U. S. A. 90, 9645-9648.]. Most insects avoid coca leaves except the larvae of Eloria noyesi, a caterpillar pest of coca plants, which feeds preferentially on coca leaves. In the current study, we cloned and characterized the dopamine transporters (DATs) from caterpillars of E. noyesi (enDAT) and the silkworm, Bombyx mori (B. mori, bmDAT). The two insect DATs shared 88% amino acid sequence homology and functional similarity. Although enDAT and bmDAT showed the highest affinity for dopamine among endogenous amines, they were more sensitive to mammalian NET-selective inhibitors than to mammalian DAT-selective inhibitors. Despite a high cocaine content in the food source for E. noyesi, cocaine sensitivity of enDAT was similar to that of bmDAT, suggesting that mechanisms other than DAT insensitivity to cocaine, such as cocaine sequestration, might be responsible for cocaine resistance in this species. Given the significant differences in pharmacological profile from mammalian DATs, invertebrate DATs provide excellent tools for identifying regions and residues in the transporters that contribute to high-affinity binding of psychostimulants and antidepressants.

  11. Affinity States of Striatal Dopamine D2 Receptors in Antipsychotic-Free Patients with Schizophrenia

    PubMed Central

    Kubota, Manabu; Nagashima, Tomohisa; Takano, Harumasa; Kodaka, Fumitoshi; Fujiwara, Hironobu; Takahata, Keisuke; Moriguchi, Sho; Higuchi, Makoto; Okubo, Yoshiro; Takahashi, Hidehiko; Ito, Hiroshi

    2017-01-01

    Abstract Background Dopamine D2 receptors are reported to have high-affinity (D2High) and low-affinity (D2Low) states. Although an increased proportion of D2High has been demonstrated in animal models of schizophrenia, few clinical studies have investigated this alteration of D2High in schizophrenia in vivo. Methods Eleven patients with schizophrenia, including 10 antipsychotic-naive and 1 antipsychotic-free individuals, and 17 healthy controls were investigated. Psychopathology was assessed by Positive and Negative Syndrome Scale, and a 5-factor model was used. Two radioligands, [11C]raclopride and [11C]MNPA, were employed to quantify total dopamine D2 receptor and D2High, respectively, in the striatum by measuring their binding potentials. Binding potential values of [11C]raclopride and [11C]MNPA and the binding potential ratio of [11C]MNPA to [11C]raclopride in the striatal subregions were statistically compared between the 2 diagnostic groups using multivariate analysis of covariance controlling for age, gender, and smoking. Correlations between binding potential and Positive and Negative Syndrome Scale scores were also examined. Results Multivariate analysis of covariance demonstrated a significant effect of diagnosis (schizophrenia and control) on the binding potential ratio (P=.018), although the effects of diagnosis on binding potential values obtained with either [11C]raclopride or [11C]MNPA were nonsignificant. Posthoc test showed that the binding potential ratio was significantly higher in the putamen of patients (P=.017). The Positive and Negative Syndrome Scale “depressed” factor in patients was positively correlated with binding potential values of both ligands in the caudate. Conclusions The present study indicates the possibilities of: (1) a higher proportion of D2High in the putamen despite unaltered amounts of total dopamine D2 receptors; and (2) associations between depressive symptoms and amounts of caudate dopamine D2 receptors in patients with schizophrenia. PMID:29016872

  12. Interaction between serotonin transporter and dopamine D2/D3 receptor radioligand measures is associated with harm avoidant symptoms in anorexia and bulimia nervosa.

    PubMed

    Bailer, Ursula F; Frank, Guido K; Price, Julie C; Meltzer, Carolyn C; Becker, Carl; Mathis, Chester A; Wagner, Angela; Barbarich-Marsteller, Nicole C; Bloss, Cinnamon S; Putnam, Karen; Schork, Nicholas J; Gamst, Anthony; Kaye, Walter H

    2013-02-28

    Individuals with anorexia nervosa (AN) and bulimia nervosa (BN) have alterations of measures of serotonin (5-HT) and dopamine (DA) function, which persist after long-term recovery and are associated with elevated harm avoidance (HA), a measure of anxiety and behavioral inhibition. Based on theories that 5-HT is an aversive motivational system that may oppose a DA-related appetitive system, we explored interactions of positron emission tomography (PET) radioligand measures that reflect portions of these systems. Twenty-seven individuals recovered (REC) from eating disorders (EDs) (7 AN-BN, 11 AN, 9 BN) and nine control women (CW) were analyzed for correlations between [(11)C]McN5652 and [(11)C]raclopride binding. There was a significant positive correlation between [(11)C]McN5652 binding potential (BP(non displaceable(ND))) and [(11)C]Raclopride BP(ND) for the dorsal caudate, antero-ventral striatum (AVS), middle caudate, and ventral and dorsal putamen. No significant correlations were found in CW. [(11)C]Raclopride BP(ND), but not [(11)C]McN5652 BP(ND), was significantly related to HA in REC EDs. A linear regression analysis showed that the interaction between [(11)C]McN5652 BP(ND) and [(11)C]raclopride BP(ND) in the dorsal putamen significantly predicted HA. This is the first study using PET and the radioligands [(11)C]McN5652 and [(11)C]raclopride to show a direct relationship between 5-HT transporter and striatal DA D2/D3 receptor binding in humans, supporting the possibility that 5-HT and DA interactions contribute to HA behaviors in EDs. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. 2-Substituted 3β-Aryltropane Cocaine Analogs Produce Atypical Effects without Inducing Inward-Facing Dopamine Transporter Conformations.

    PubMed

    Hong, Weimin C; Kopajtic, Theresa A; Xu, Lifen; Lomenzo, Stacey A; Jean, Bernandie; Madura, Jeffry D; Surratt, Christopher K; Trudell, Mark L; Katz, Jonathan L

    2016-03-01

    Previous structure-activity relationship studies indicate that a series of cocaine analogs, 3β-aryltropanes with 2β-diarylmethoxy substituents, selectively bind to the dopamine transporter (DAT) with nanomolar affinities that are 10-fold greater than the affinities of their corresponding 2α-enantiomers. The present study compared these compounds to cocaine with respect to locomotor effects in mice, and assessed their ability to substitute for cocaine (10 mg/kg, i.p.) in rats trained to discriminate cocaine from saline. Despite nanomolar DAT affinity, only the 2β-Ph2COCH2-3β-4-Cl-Ph analog fully substituted for cocaine-like discriminative effects. Whereas all of the 2β compounds increased locomotion, only the 2β-(4-ClPh)PhCOCH2-3β-4-Cl-Ph analog had cocaine-like efficacy. None of the 2α-substituted compounds produced either of these cocaine-like effects. To explore the molecular mechanisms of these drugs, their effects on DAT conformation were probed using a cysteine-accessibility assay. Previous reports indicate that cocaine binds with substantially higher affinity to the DAT in its outward (extracellular)- compared with inward-facing conformation, whereas atypical DAT inhibitors, such as benztropine, have greater similarity in affinity to these conformations, and this is postulated to explain their divergent behavioral effects. All of the 2β- and 2α-substituted compounds tested altered cysteine accessibility of DAT in a manner similar to cocaine. Furthermore, molecular dynamics of in silico inhibitor-DAT complexes suggested that the 2-substituted compounds reach equilibrium in the binding pocket in a cocaine-like fashion. These behavioral, biochemical, and computational results show that aryltropane analogs can bind to the DAT and stabilize outward-facing DAT conformations like cocaine, yet produce effects that differ from those of cocaine. U.S. Government work not protected by U.S. copyright.

  14. Clinical Comparison of 99mTc Exametazime and 123I Ioflupane SPECT in Patients with Chronic Mild Traumatic Brain Injury

    PubMed Central

    Newberg, Andrew B.; Serruya, Mijail; Gepty, Andrew; Intenzo, Charles; Lewis, Todd; Amen, Daniel; Russell, David S.; Wintering, Nancy

    2014-01-01

    Background This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT) using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI). The goal was to determine how these two different scan might be used and compared to each other in this patient population. Methods and Findings Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both 99mTc exametazime to measure cerebral blood flow (CBF) and 123I ioflupane to measure dopamine transporter (DAT) binding. The scans were interpreted by two expert readers blinded to any case information and were assessed for abnormal findings in comparison to 10 controls for each type of scan. Qualitative CBF scores for each cortical and subcortical region along with DAT binding scores for the striatum were compared to each other across subjects and to controls. In addition, symptoms were compared to brain scan findings. TBI patients had an average of 6 brain regions with abnormal perfusion compared to controls who had an average of 2 abnormal regions (p<0.001). Patient with headaches had lower CBF in the right frontal lobe, and higher CBF in the left parietal lobe compared to patients without headaches. Lower CBF in the right temporal lobe correlated with poorer reported physical health. Higher DAT binding was associated with more depressive symptoms and overall poorer reported mental health. There was no clear association between CBF and DAT binding in these patients. Conclusions Overall, both scans detected abnormalities in brain function, but appear to reflect different types of physiological processes associated with chronic mild TBI symptoms. Both types of scans might have distinct uses in the evaluation of chronic TBI patients depending on the clinical scenario. PMID:24475210

  15. Striatal dopamine in Parkinson disease: A meta-analysis of imaging studies.

    PubMed

    Kaasinen, Valtteri; Vahlberg, Tero

    2017-12-01

    A meta-analysis of 142 positron emission tomography and single photon emission computed tomography studies that have investigated striatal presynaptic dopamine function in Parkinson disease (PD) was performed. Subregional estimates of striatal dopamine metabolism are presented. The aromatic L-amino-acid decarboxylase (AADC) defect appears to be consistently smaller than the dopamine transporter and vesicular monoamine transporter 2 defects, suggesting upregulation of AADC function in PD. The correlation between disease severity and dopamine loss appears linear, but the majority of longitudinal studies point to a negative exponential progression pattern of dopamine loss in PD. Ann Neurol 2017;82:873-882. © 2017 American Neurological Association.

  16. Association of dopamine D(3) receptors with actin-binding protein 280 (ABP-280).

    PubMed

    Li, Ming; Li, Chuanyu; Weingarten, Paul; Bunzow, James R; Grandy, David K; Zhou, Qun Yong

    2002-03-01

    Proteins that bind to G protein-coupled receptors have been identified as regulators of receptor localization and signaling. In our previous studies, a cytoskeletal protein, actin-binding protein 280 (ABP-280), was found to associate with the third cytoplasmic loop of dopamine D(2) receptors. In this study, we demonstrate that ABP-280 also interacts with dopamine D(3) receptors, but not with D(4) receptors. Similar to the dopamine D(2) receptor, the D(3)/ABP-280 association is of signaling importance. In human melanoma M2 cells lacking ABP-280, D(3) receptors were unable to inhibit forskolin-stimulated cyclic AMP (cAMP) production significantly. D(4) receptors, however, exhibited a similar degree of inhibition of forskolin-stimulated cAMP production in ABP-280-deficient M2 cells and ABP-280-replent M2 subclones (A7 cells). Further experiments revealed that the D(3)/ABP-280 interaction was critically dependent upon a 36 amino acid carboxyl domain of the D(3) receptor third loop, which is conserved in the D(2) receptor but not in the D(4) receptor. Our results demonstrate a subtype-specific regulation of dopamine D(2)-family receptor signaling by the cytoskeletal protein ABP-280.

  17. Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection.

    PubMed

    O'Dell, S J; Gross, N B; Fricks, A N; Casiano, B D; Nguyen, T B; Marshall, J F

    2007-02-09

    Forced use of the forelimb contralateral to a unilateral injection of the dopaminergic neurotoxin 6-hydroxydopamine can promote recovery of motor function in that limb and can significantly decrease damage to dopamine terminals. The present study was conducted to determine (1) whether a form of voluntary exercise, wheel running, would improve motor performance in rats with such lesions, and (2) whether any beneficial effects of wheel running are attributable to ameliorating the dopaminergic damage. In experiment 1, rats were allowed to run in exercise wheels or kept in home cages for 2 1/2 weeks, then given stereotaxic infusions of 6-hydroxydopamine into the left striatum. The rats were replaced into their original environments (wheels or home cages) for four additional weeks, and asymmetries in forelimb use were quantified at 3, 10, 17, and 24 days postoperatively. After killing, dopaminergic damage was assessed by both quantifying 3 beta-(4-iodophenyl)tropan-2 beta-carboxylic acid methyl ester ([(125)I]RTI-55) binding to striatal dopamine transporters and counting tyrosine hydroxylase-positive cells in the substantia nigra. Exercised 6-hydroxydopamine-infused rats showed improved motor outcomes relative to sedentary lesioned controls, effects that were most apparent at postoperative days 17 and 24. Despite this behavioral improvement, 6-hydroxydopamine-induced loss of striatal dopamine transporters and tyrosine hydroxylase-positive nigral cells in exercised and sedentary groups did not differ. Since prior studies suggested that forced limb use improves motor performance by sparing nigrostriatal dopaminergic neurons from 6-hydroxydopamine damage, experiment 2 used a combined regimen of forced plus voluntary wheel running. Again, we found that the motor performance of exercised rats improved more rapidly than that of sedentary controls, but that there were no differences between these groups in the damage produced by 6-hydroxydopamine. It appears that voluntary exercise can facilitate recovery from partial nigrostriatal injury, but it does so without evident sparing of dopamine nerve terminals.

  18. Striatal Dopamine Transporter Modulation After Rotigotine: Results From a Pilot Single-Photon Emission Computed Tomography Study in a Group of Early Stage Parkinson Disease Patients.

    PubMed

    Rossi, Carlo; Genovesi, Dario; Marzullo, Paolo; Giorgetti, Assuero; Filidei, Elena; Corsini, Giovanni Umberto; Bonuccelli, Ubaldo; Ceravolo, Roberto

    Several in vitro data have reported negative interference by dopamine-agonists on the expression of dopamine transporter (DAT), whereas the majority of imaging studies have shown that neither L-dopa nor dopamine-agonists interfere with DAT availability. As yet, there are no in vivo studies on DAT expression after treatment with rotigotine. We evaluated presynaptic nigrostriatal function in 8 patients with de novo Parkinson disease (age, 59 ± 6.2 years; male/female sex, 5/3) using 123-I- N-ω-fluoropropyl-2-β-carbomethoxy-3-β-(4-iodophenyl)nortropane (FP-CIT) single-photon emission computed tomography before and after 3 months of treatment with rotigotine (mean dose, 7.75 ± 1.98 mg). For data analysis, specific (left and right caudate, left and right putamen) to nonspecific (occipital cortex) binding ratios, putamen-to-caudate ratios, and asymmetry indices were calculated. After rotigotine, motor symptoms improved in all patients (Unified Parkinson Disease Rating Scale III mean score, 11.88 ± 2.59 vs 7.63 ± 1.92 on therapy; P = 0.0022). Striatal FP-CIT levels showed a significant improvement in every patient at the follow-up scan. Comparisons between before and after treatment in the whole group revealed a significant improvement in FP-CIT uptake in both caudate and putamen (P < 0.001 in each nucleus). Putamen-to-caudate ratio and asymmetry indices did not show any significant difference before and after treatment. Although the study population was small, we found DAT overexpression after chronic treatment with rotigotine, presumably related to its pharmacological profile. The DAT upregulation by rotigotine in an opposite direction with respect to early Parkinson disease compensatory mechanisms might reduce the risk of dyskinesia, but it could imply less motor benefit because of less stimulation by the dopamine itself on dopaminergic receptors.

  19. Mechanisms of dopaminergic and serotonergic neurotransmission in Tourette syndrome: clues from an in vivo neurochemistry study with PET.

    PubMed

    Wong, Dean F; Brasić, James R; Singer, Harvey S; Schretlen, David J; Kuwabara, Hiroto; Zhou, Yun; Nandi, Ayon; Maris, Marika A; Alexander, Mohab; Ye, Weiguo; Rousset, Olivier; Kumar, Anil; Szabo, Zsolt; Gjedde, Albert; Grace, Anthony A

    2008-05-01

    Tourette syndrome (TS) is a neuropsychiatric disorder with childhood onset characterized by motor and phonic tics. Obsessive-compulsive disorder (OCD) is often concomitant with TS. Dysfunctional tonic and phasic dopamine (DA) and serotonin (5-HT) metabolism may play a role in the pathophysiology of TS. We simultaneously measured the density, affinity, and brain distribution of dopamine D2 receptors (D2-R's), dopamine transporter binding potential (BP), and amphetamine-induced dopamine release (DA(rel)) in 14 adults with TS and 10 normal adult controls. We also measured the brain distribution and BP of serotonin 5-HT2A receptors (5-HT2AR), and serotonin transporter (SERT) BP, in 11 subjects with TS and 10 normal control subjects. As compared with controls, DA rel was significantly increased in the ventral striatum among subjects with TS. Adults with TS+OCD exhibited a significant D(2)-R increase in left ventral striatum. SERT BP in midbrain and caudate/putamen was significantly increased in adults with TS (TS+OCD and TS-OCD). In three subjects with TS+OCD, in whom D2-R, 5-HT2AR, and SERT were measured within a 12-month period, there was a weakly significant elevation of DA rel and 5-HT2A BP, when compared with TS-OCD subjects and normal controls. The current study confirms, with a larger sample size and higher resolution PET scanning, our earlier report that elevated DA rel is a primary defect in TS. The finding of decreased SERT BP, and the possible elevation in 5-HT2AR in individuals with TS who had increased DA rel, suggest a condition of increased phasic DA rel modulated by low 5-HT in concomitant OCD.

  20. Mapping Dopamine Function in Primates Using Pharmacologic Magnetic Resonance Imaging

    PubMed Central

    Sanchez-Pernaute, Rosario; Brownell, Anna-Liisa; Chen, Yin-Ching Iris; Isacson, Ole

    2008-01-01

    Dopamine (DA) receptors play a central role in such diverse pathologies as Parkinson's disease, schizophrenia, and drug abuse. We used an amphetamine challenge combined with pharmacologic magnetic resonance imaging (phMRI) to map DA-associated circuitry in nonhuman primates with high sensitivity and spatial resolution. Seven control cynomolgous monkeys and 10 MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated parkinsonian primates were studied longitudinally using both positron emission tomography (PET) and phMRI. Amphetamine challenge (2.5 mg/kg, i.v.) in control monkeys increased relative cerebral blood volume (rCBV) in a number of brain regions not described previously, such as parafascicular thalamus, precentral gyrus, and dentate nucleus of the cerebellum. With the high spatial resolution, we were also able to readily identify changes in rCBV in the anterior cingulate, substantia nigra, ventral tegmental area, caudate (tail and head), putamen, and nucleus accumbens. Amphetamine induced decreases in rCBV in occipital and posterior parietal cortices. Parkinsonian primates had a prominent loss of response to amphetamine, with relative sparing of the nucleus accumbens and parafascicular thalamus. There was a significant correlation between rCBV loss in the substantia nigra and both PET imaging of dopamine transporters and behavioral measures. Monkeys with partial lesions as defined by 2β-carbomethoxy-3β-(4-fluorophenyl) tropane binding to dopamine transporters showed recruitment of premotor and motor cortex after amphetamine stimulus similar to what has been noted in Parkinson's patients during motor tasks. These data indicate that phMRI is a powerful tool for assessment of dynamic changes associated with normal and dysfunctional DA brain circuitry in primates. PMID:15509742

  1. Putative presynaptic dopamine dysregulation in schizophrenia is supported by molecular evidence from post-mortem human midbrain

    PubMed Central

    Purves-Tyson, T D; Owens, S J; Rothmond, D A; Halliday, G M; Double, K L; Stevens, J; McCrossin, T; Shannon Weickert, C

    2017-01-01

    The dopamine hypothesis of schizophrenia posits that increased subcortical dopamine underpins psychosis. In vivo imaging studies indicate an increased presynaptic dopamine synthesis capacity in striatal terminals and cell bodies in the midbrain in schizophrenia; however, measures of the dopamine-synthesising enzyme, tyrosine hydroxylase (TH), have not identified consistent changes. We hypothesise that dopamine dysregulation in schizophrenia could result from changes in expression of dopamine synthesis enzymes, receptors, transporters or catabolic enzymes. Gene expression of 12 dopamine-related molecules was examined in post-mortem midbrain (28 antipsychotic-treated schizophrenia cases/29 controls) using quantitative PCR. TH and the synaptic dopamine transporter (DAT) proteins were examined in post-mortem midbrain (26 antipsychotic-treated schizophrenia cases per 27 controls) using immunoblotting. TH and aromatic acid decarboxylase (AADC) mRNA and TH protein were unchanged in the midbrain in schizophrenia compared with controls. Dopamine receptor D2 short, vesicular monoamine transporter (VMAT2) and DAT mRNAs were significantly decreased in schizophrenia, with no change in DRD3 mRNA, DRD3nf mRNA and DAT protein between diagnostic groups. However, DAT protein was significantly increased in putatively treatment-resistant cases of schizophrenia compared to putatively treatment-responsive cases. Midbrain monoamine oxidase A (MAOA) mRNA was increased, whereas MAOB and catechol-O-methyl transferase mRNAs were unchanged in schizophrenia. We conclude that, whereas some mRNA changes are consistent with increased dopamine action (decreased DAT mRNA), others suggest reduced dopamine action (increased MAOA mRNA) in the midbrain in schizophrenia. Here, we identify a molecular signature of dopamine dysregulation in the midbrain in schizophrenia that mainly includes gene expression changes of molecules involved in dopamine synthesis and in regulating the time course of dopamine action. PMID:28094812

  2. Pharmacogenetics of Antidepressants

    PubMed Central

    Crisafulli, Concetta; Fabbri, Chiara; Porcelli, Stefano; Drago, Antonio; Spina, Edoardo; De Ronchi, Diana; Serretti, Alessandro

    2010-01-01

    Up to 60% of depressed patients do not respond completely to antidepressants (ADs) and up to 30% do not respond at all. Genetic factors contribute for about 50% of the AD response. During the recent years the possible influence of a set of candidate genes as genetic predictors of AD response efficacy was investigated by us and others. They include the cytochrome P450 superfamily, the P-glycoprotein (ABCB1), the tryptophan hydroxylase, the catechol-O-methyltransferase, the monoamine oxidase A, the serotonin transporter (5-HTTLPR), the norepinephrine transporter, the dopamine transporter, variants in the 5-hydroxytryptamine receptors (5-HT1A, 5-HT2A, 5-HT3A, 5-HT3B, and 5-HT6), adrenoreceptor beta-1 and alpha-2, the dopamine receptors (D2), the G protein beta 3 subunit, the corticotropin releasing hormone receptors (CRHR1 and CRHR2), the glucocorticoid receptors, the c-AMP response-element binding, and the brain-derived neurotrophic factor. Marginal associations were reported for angiotensin I converting enzyme, circadian locomotor output cycles kaput protein, glutamatergic system, nitric oxide synthase, and interleukin 1-beta gene. In conclusion, gene variants seem to influence human behavior, liability to disorders and treatment response. Nonetheless, gene × environment interactions have been hypothesized to modulate several of these effects. PMID:21687501

  3. Perinatal MAO Inhibition Produces Long-Lasting Impairment of Serotonin Function in Offspring.

    PubMed

    Burke, Mark W; Fillion, Myriam; Mejia, Jose; Ervin, Frank R; Palmour, Roberta M

    2018-06-11

    In addition to transmitter functions, many neuroamines have trophic or ontogenetic regulatory effects important to both normal and disordered brain development. In previous work (Mejia et al., 2002), we showed that pharmacologically inhibiting monoamine oxidase (MAO) activity during murine gestation increases the prevalence of behaviors thought to reflect impulsivity and aggression. The goal of the present study was to determine the extent to which this treatment influences dopamine and serotonin innervation of murine cortical and subcortical areas, as measured by regional density of dopamine (DAT) and serotonin transporters (SERT). We measured DAT and SERT densities at 3 developmental times (PND 14, 35 and 90) following inhibition of MAO A, or MAO B or both throughout murine gestation and early post-natal development. DAT binding was unaltered within the nigrostriatal pathway, but concurrent inhibition of MAO-A and MAO-B significantly and specifically reduced SERT binding by 10⁻25% in both the frontal cortex and raphe nuclei. Low levels of SERT binding persisted (PND 35, 90) after the termination (PND 21) of exposure to MAO inhibitors and was most marked in brain structures germane to the previously described behavioral changes. The relatively modest level of enzyme inhibition (25⁻40%) required to produce these effects mandates care in the use of any compound which might inhibit MAO activity during gestation.

  4. Dopamine efflux in response to ultraviolet radiation in addicted sunbed users

    PubMed Central

    Aubert, Pamela M.; Seibyl, John P.; Price, Julianne L.; Harris, Thomas S.; Filbey, Francesca M.; Jacobe, Heidi; Devous, Michael D.; Adinoff, Bryon

    2017-01-01

    Compulsive tanning despite awareness of ultraviolet radiation (UVR) carcinogenicity may represent an “addictive” behavior. Many addictive disorders are associated with alterations in dopamine (D2/D3) receptor binding and dopamine reactivity in the brain’s reward pathway. To determine if compulsive tanners exhibited neurobiologic responses similar to other addictive disorders, this study assessed basal striatal D2/D3 binding and UVR-induced striatal dopamine efflux in ten addicted and ten infrequent tanners. In a double-blind crossover trial, UVR or sham UVR was administered in separate sessions during brain imaging with single photon emission computerized tomography (SPECT). Basal D2/D3 receptor density and UVR-induced dopamine efflux in the caudate were assessed using 123I-iodobenzamide (123I-IBZM) binding potential non-displaceable (BPnd). Basal BPnd did not significantly differ between addicted and infrequent tanners. Whereas neither UVR nor sham UVR induced significant changes in bilateral caudate BPnd in either group, post-hoc analyses revealed left caudate BPnd significantly decreased (reflecting increased dopamine efflux) in the addicted tanners – but not the infrequent tanners –during the UVR session only. Bilateral ΔBPnd correlated with tanning severity only in the addicted tanners. These preliminary findings are consistent with a stronger neural rewarding response to UVR in addicted tanners, supporting a cutaneous-neural connection driving excessive sunbed use. PMID:27085608

  5. Binding Interactions of Dopamine and Apomorphine in D2High and D2Low States of Human Dopamine D2 Receptor Using Computational and Experimental Techniques.

    PubMed

    Durdagi, Serdar; Salmas, Ramin Ekhteiari; Stein, Matthias; Yurtsever, Mine; Seeman, Philip

    2016-02-17

    We have recently reported G-protein coupled receptor (GPCR) model structures for the active and inactive states of the human dopamine D2 receptor (D2R) using adrenergic crystal structures as templates. Since the therapeutic concentrations of dopamine agonists that suppress the release of prolactin are the same as those that act at the high-affinity state of the D2 receptor (D2High), D2High in the anterior pituitary gland is considered to be the functional state of the receptor. In addition, the therapeutic concentrations of anti-Parkinson drugs are also related to the dissociation constants in the D2High form of the receptor. The discrimination between the high- and low-affinity (D2Low) components of the D2R is not obvious and requires advanced computer-assisted structural biology investigations. Therefore, in this work, the derived D2High and D2Low receptor models (GPCR monomer and dimer three-dimensional structures) are used as drug-binding targets to investigate binding interactions of dopamine and apomorphine. The study reveals a match between the experimental dissociation constants of dopamine and apomorphine at their high- and low-affinity sites of the D2 receptor in monomer and dimer and their calculated dissociation constants. The allosteric receptor-receptor interaction for dopamine D2R dimer is associated with the accessibility of adjacent residues of transmembrane region 4. The measured negative cooperativity between agonist ligand at dopamine D2 receptor is also correctly predicted using the D2R homodimerization model.

  6. Small effect of dopamine release and no effect of dopamine depletion on [18F]fallypride binding in healthy humans.

    PubMed

    Cropley, Vanessa L; Innis, Robert B; Nathan, Pradeep J; Brown, Amira K; Sangare, Janet L; Lerner, Alicja; Ryu, Yong Hoon; Sprague, Kelly E; Pike, Victor W; Fujita, Masahiro

    2008-06-01

    Molecular imaging has been used to estimate both drug-induced and tonic dopamine release in the striatum and most recently extrastriatal areas of healthy humans. However, to date, studies of drug-induced and tonic dopamine release have not been performed in the same subjects. This study performed positron emission tomography (PET) with [18F]fallypride in healthy subjects to assess (1) the reproducibility of [18F]fallypride and (2) both D-amphetamine-induced and alpha-methyl-p-tyrosine (AMPT)-induced changes in dopamin release on [(18)F]fallypride binding in striatal and extrastriatal areas. Subjects underwent [18F]fallypride PET studies at baseline and following oral D-amphetamine administration (0.5 mg/kg) and oral AMPT administration (3 g/70 kg/day over 44 h). Binding potential (BP) (BP(ND)) of [18F]fallypride was calculated in striatal and extrastriatal areas using a reference region method. Percent change in regional BP(ND) was computed and correlated with change in cognition and mood. Test-retest variability of [18F]fallypride was low in both striatal and extrastriatal regions. D-Amphetamine significantly decreased BP(ND) by 8-14% in striatal subdivisions, caudate, putamen, substantia nigra, medial orbitofrontal cortex, and medial temporal cortex. Correlation between change in BP(ND) and verbal fluency was seen in the thalamus and substantia nigra. In contrast, depletion of endogenous dopamine with AMPT did not effect [18F]fallypride BP(ND) in both striatum and extrastriatal regions. These findings indicate that [18F]fallypride is useful for measuring amphetamine-induced dopamine release, but may be unreliable for estimating tonic dopamine levels, in striatum and extrastriatal regions of healthy humans.

  7. Salvinorin A regulates dopamine transporter function via a kappa opioid receptor and ERK1/2-dependent mechanism.

    PubMed

    Kivell, Bronwyn; Uzelac, Zeljko; Sundaramurthy, Santhanalakshmi; Rajamanickam, Jeyaganesh; Ewald, Amy; Chefer, Vladimir; Jaligam, Vanaja; Bolan, Elizabeth; Simonson, Bridget; Annamalai, Balasubramaniam; Mannangatti, Padmanabhan; Prisinzano, Thomas E; Gomes, Ivone; Devi, Lakshmi A; Jayanthi, Lankupalle D; Sitte, Harald H; Ramamoorthy, Sammanda; Shippenberg, Toni S

    2014-11-01

    Salvinorin A (SalA), a selective κ-opioid receptor (KOR) agonist, produces dysphoria and pro-depressant like effects. These actions have been attributed to inhibition of striatal dopamine release. The dopamine transporter (DAT) regulates dopamine transmission via uptake of released neurotransmitter. KORs are apposed to DAT in dopamine nerve terminals suggesting an additional target by which SalA modulates dopamine transmission. SalA produced a concentration-dependent, nor-binaltorphimine (BNI)- and pertussis toxin-sensitive increase of ASP(+) accumulation in EM4 cells coexpressing myc-KOR and YFP-DAT, using live cell imaging and the fluorescent monoamine transporter substrate, trans 4-(4-(dimethylamino)-styryl)-N-methylpyridinium) (ASP(+)). Other KOR agonists also increased DAT activity that was abolished by BNI pretreatment. While SalA increased DAT activity, SalA treatment decreased serotonin transporter (SERT) activity and had no effect on norepinephrine transporter (NET) activity. In striatum, SalA increased the Vmax for DAT mediated DA transport and DAT surface expression. SalA up-regulation of DAT function is mediated by KOR activation and the KOR-linked extracellular signal regulated kinase-½ (ERK1/2) pathway. Co-immunoprecipitation and BRET studies revealed that DAT and KOR exist in a complex. In live cells, DAT and KOR exhibited robust FRET signals under basal conditions. SalA exposure caused a rapid and significant increase of the FRET signal. This suggests that the formation of KOR and DAT complexes is promoted in response to KOR activation. Together, these data suggest that enhanced DA transport and decreased DA release resulting in decreased dopamine signalling may contribute to the dysphoric and pro-depressant like effects of SalA and other KOR agonists. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Dopamine transporter occupancy by RTI-55 determined using labeled cocaine, and displacement of RTI-55 with unlabeled cocaine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatley, S.J.; Volkow, N.D.; Fowler, J.S.

    We have previously visualized dopamine transporters (DAT) in human and baboon striatum using PET and C-11 cocaine. Cocaine analogs such as 3{beta}-(4-iodophenyl) tropane-2{beta}-carboxylic acid methyl ester (RTI-55 or {beta}CIT) with a higher affinity for the DAT may be potentially useful in interfering with cocaine`s actions in brain. We evaluated the time course of the effects of RTI-55 on C-11 cocaine binding in baboon brain prior to and 90 minutes, 24 hours, 4-5 days and 11-13 days after RTI-55(0.3 mg/kg iv). RTI-55 significantly inhibited C-11 cocaine binding at 90 minutes and 24 hours after administration. The half life for the clearancemore » of RTI-55 from the DAT was estimated to be 2 to 3 days in the baboon brain. Parallel studies with H-3 cocaine and RTI-55 (0.5 mg/kg iv or 2 mg/kg ip) were performed in mice, where RTI-55 significantly inhibited 5 minute striatum-to-cerebellium ratios (S/C) at 60 and 180 minutes after administration, and recovery was obtained at 12 hours. However, unlabeled cocaine (20 mg/Kg, i/p) given 60 minutes after RTI-55 led to a greater recovery of H-3 cocaine uptake measured at 180 minutes (S/C = 1.23 {plus_minus} 0.07, n= 5), than in control animals given saline after RTI-55 (S/C = 9.5{plus_minus}0.08). Animals given saline instead of RTI-55 had S/C = 1.45{plus_minus}0.04. These results document long lasting inhibition of cocaine binding by RTI-55 and corroborate the assumption that the binding kinetics of RTI-55 in striatum observed in SPECT imaging studies with I-123 RTI-55 represents binding to DAT`s. However, a pharmacological dose of cocaine is able to displace a fraction of the previously bound RTI-55 from the DAT. These findings have implications for drug development strategies for cocaine abuse.« less

  9. Mechanism of the Association between Na+ Binding and Conformations at the Intracellular Gate in Neurotransmitter:Sodium Symporters*

    PubMed Central

    Stolzenberg, Sebastian; Quick, Matthias; Zhao, Chunfeng; Gotfryd, Kamil; Khelashvili, George; Gether, Ulrik; Loland, Claus J.; Javitch, Jonathan A.; Noskov, Sergei; Weinstein, Harel; Shi, Lei

    2015-01-01

    Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na+-dependent reuptake of released neurotransmitters. Previous studies suggested that Na+-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. We describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT, two different perturbations disrupting Na+ binding and transport (i.e. replacing Na+ with Li+ or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na+ cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na+ dependence. Thus, the detailed AIN generated from our method is shown to connect Na+ binding with global conformational changes that are critical for the transport mechanism. That the AIN between the Na+ binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function. PMID:25869126

  10. Mechanism of the association between Na + binding and conformations at the intracellular gate in neurotransmitter:sodium symporters

    DOE PAGES

    Stolzenberg, Sebastian; Quick, Matthias; Zhao, Chunfeng; ...

    2015-04-13

    Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na +-dependent reuptake of released neurotransmitters. Previous studies suggested that Na +-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. Here we describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT,more » two different perturbations disrupting Na+ binding and transport ( i.e. replacing Na + with Li + or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na + cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na + dependence. Furthermore, the detailed AIN generated from our method is shown to connect Na + binding with global conformational changes that are critical for the transport mechanism. Lastly, that the AIN between the Na + binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function.« less

  11. Methamphetamine Regulation of Firing Activity of Dopamine Neurons

    PubMed Central

    Lin, Min; Sambo, Danielle

    2016-01-01

    Methamphetamine (METH) is a substrate for the dopamine transporter that increases extracellular dopamine levels by competing with dopamine uptake and increasing reverse transport of dopamine via the transporter. METH has also been shown to alter the excitability of dopamine neurons. The mechanism of METH regulation of the intrinsic firing behaviors of dopamine neurons is less understood. Here we identified an unexpected and unique property of METH on the regulation of firing activity of mouse dopamine neurons. METH produced a transient augmentation of spontaneous spike activity of midbrain dopamine neurons that was followed by a progressive reduction of spontaneous spike activity. Inspection of action potential morphology revealed that METH increased the half-width and produced larger coefficients of variation of the interspike interval, suggesting that METH exposure affected the activity of voltage-dependent potassium channels in these neurons. Since METH has been shown to affect Ca2+ homeostasis, the unexpected findings that METH broadened the action potential and decreased the amplitude of afterhyperpolarization led us to ask whether METH alters the activity of Ca2+-activated potassium (BK) channels. First, we identified BK channels in dopamine neurons by their voltage dependence and their response to a BK channel blocker or opener. While METH suppressed the amplitude of BK channel-mediated unitary currents, the BK channel opener NS1619 attenuated the effects of METH on action potential broadening, afterhyperpolarization repression, and spontaneous spike activity reduction. Live-cell total internal reflection fluorescence microscopy, electrophysiology, and biochemical analysis suggest METH exposure decreased the activity of BK channels by decreasing BK-α subunit levels at the plasma membrane. SIGNIFICANCE STATEMENT Methamphetamine (METH) competes with dopamine uptake, increases dopamine efflux via the dopamine transporter, and affects the excitability of dopamine neurons. Here, we identified an unexpected property of METH on dopamine neuron firing activity. METH transiently increased the spontaneous spike activity of dopamine neurons followed by a progressive reduction of the spontaneous spike activity. METH broadened the action potentials, increased coefficients of variation of the interspike interval, and decreased the amplitude of afterhyperpolarization, which are consistent with changes in the activity of Ca2+-activated potassium (BK) channels. We found that METH decreased the activity of BK channels by stimulating BK-α subunit trafficking. Thus, METH modulation of dopamine neurotransmission and resulting behavioral responses is, in part, due to METH regulation of BK channel activity. PMID:27707972

  12. miR-137 and miR-491 Negatively Regulate Dopamine Transporter Expression and Function in Neural Cells.

    PubMed

    Jia, Xiaojian; Wang, Feng; Han, Ying; Geng, Xuewen; Li, Minghua; Shi, Yu; Lu, Lin; Chen, Yun

    2016-12-01

    The dopamine transporter (DAT) is involved in the regulation of extracellular dopamine levels. A 40-bp variable-number tandem repeat (VNTR) polymorphism in the 3'-untranslated region (3'UTR) of the DAT has been reported to be associated with various phenotypes that are involved in the aberrant regulation of dopaminergic neurotransmission. In the present study, we found that miR-137 and miR-491 caused a marked reduction of DAT expression, thereby influencing neuronal dopamine transport. Moreover, the regulation of miR-137 and miR-491 on this transport disappeared after the DAT was silenced. The miR-491 seed region that is located on the VNTR sequence in the 3'UTR of the DAT and the regulatory effect of miR-491 on the DAT depended on the VNTR copy-number. These data indicate that miR-137 and miR-491 regulate DAT expression and dopamine transport at the post-transcriptional level, suggesting that microRNA may be targeted for the treatment of diseases associated with DAT dysfunction.

  13. Protein adsorption on dopamine-melanin films: role of electrostatic interactions inferred from zeta-potential measurements versus chemisorption.

    PubMed

    Bernsmann, Falk; Frisch, Benoît; Ringwald, Christian; Ball, Vincent

    2010-04-01

    We recently showed the possibility to build dopamine-melanin films of controlled thickness by successive immersions of a substrate in alkaline solutions of dopamine [F. Bernsmann, A. Ponche, C. Ringwald, J. Hemmerlé, J. Raya, B. Bechinger, J.-C. Voegel, P. Schaaf, V. Ball, J. Phys. Chem. C 113 (2009) 8234-8242]. In this work the structure and properties of such films are further explored. The zeta-potential of dopamine-melanin films is measured as a function of the total immersion time to build the film. It appears that the film bears a constant zeta-potential of (-39+/-3) mV after 12 immersion steps. These data are used to calculate the surface density of charged groups of the dopamine-melanin films at pH 8.5 that are mostly catechol or quinone imine chemical groups. Furthermore the zeta-potential is used to explain the adsorption of three model proteins (lysozyme, myoglobin, alpha-lactalbumin), which is monitored by quartz crystal microbalance. We come to the conclusion that protein adsorption on dopamine-melanin is not only determined by possible covalent binding between amino groups of the proteins and catechol groups of dopamine-melanin but that electrostatic interactions contribute to protein binding. Part of the adsorbed proteins can be desorbed by sodium dodecylsulfate solutions at the critical micellar concentration. The fraction of weakly bound proteins decreases with their isoelectric point. Additionally the number of available sites for covalent binding of amino groups on melanin grains is quantified. Copyright 2009 Elsevier Inc. All rights reserved.

  14. Pineal-mediated inhibition of prolactin cell activity: Investigation of dopaminergic involvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, D.M.

    The present studies in the male Syrian hamster addressed two issues. First, it was of interest to determine if anterior pituitaries of long photoperiod-exposed male hamsters possess dopamine receptors, which are presumably necessary for responsiveness to dopamine. This was accomplished by analysis of {sup 3}H-spiperone binding to anterior pituitary membranes. Second, possible changes in pituitary sensitivity to dopamine were assessed by comparison of dose response curves for the inhibition by dopamine of prolactin release from hemipituitaries incubated in vitro from both long and short photoperiod-exposed animals over a series of time points from three to fifteen weeks. In the secondmore » series of experiments, adult female F344 rats received daily injection of melatonin or saline vehicle. After two weeks, half of the animals were sacrificed for analysis of {sup 3}H-spiperone binding to anterior pituitary membranes, measurement of hypothalamic dopamine turnover and analysis of in vitro pituitary sensitivity to dopamine. The remaining animals received subcutaneous implants containing DES and injections were continued on the same schedule until sacrifice four weeks later for measurement of the same parameters.« less

  15. Cortical Dopamine Transmission as Measured with the [11C]FLB 457 – Amphetamine PET Imaging Paradigm Is Not Influenced by COMT Genotype

    PubMed Central

    Narendran, Rajesh; Tumuluru, Divya; May, Maureen A.; Chowdari, Kodavali V.; Himes, Michael L.; Fasenmyer, Kelli; Frankle, W. Gordon; Nimgaonkar, Vishwajit L.

    2016-01-01

    Basic investigations link a Val158Met polymorphism (rs4680) in the catechol-O-methyltransferase (COMT) gene to not only its enzymatic activity, but also to its dopaminergic tone in the prefrontal cortex. Previous PET studies have documented the relationship between COMT Val158Met polymorphism and D1 and D2/3 receptor binding potential (BP), and interpreted them in terms of dopaminergic tone. The use of baseline dopamine D1 and D2/3 receptor binding potential (BPND) as a proxy for dopaminergic tone is problematic because they reflect both endogenous dopamine levels (a change in radiotracer's apparent affinity) and receptor density. In this analysis of 31 healthy controls genotyped for the Val158Met polymorphism (Val/Val, Val/Met, and Met/Met), we used amphetamine-induced displacement of [11C]FLB 457 as a direct measure of dopamine release. Our analysis failed to show a relationship between COMT genotype status and prefrontal cortical dopamine release. COMT genotype was also not predictive of baseline dopamine D2/3 receptor BPND. PMID:27322568

  16. Dopamine transporter-dependent and -independent actions of trace amine beta-phenylethylamine.

    PubMed

    Sotnikova, Tatyana D; Budygin, Evgeny A; Jones, Sara R; Dykstra, Linda A; Caron, Marc G; Gainetdinov, Raul R

    2004-10-01

    Beta-phenylethylamine (beta-PEA) is an endogenous amine that is found in trace amounts in the brain. It is believed that the locomotor-stimulating action of beta-PEA, much like amphetamine, depends on its ability to increase extracellular dopamine (DA) concentrations owing to reversal of the direction of dopamine transporter (DAT)-mediated DA transport. beta-PEA can also bind directly to the recently identified G protein-coupled receptors, but the physiological significance of this interaction is unclear. To assess the mechanism by which beta-PEA mediates its effects, we compared the neurochemical and behavioral effects of this amine in wild type (WT), heterozygous and 'null' DAT mutant mice. In microdialysis studies, beta-PEA, administered either systemically or locally via intrastriatal infusion, produced a pronounced outflow of striatal DA in WT mice whereas no increase was detected in mice lacking the DAT (DAT-KO mice). Similarly, in fast-scan voltammetry studies beta-PEA did not alter DA release and clearance rate in striatal slices from DAT-KO mice. In behavioral studies beta-PEA produced a robust but transient increase in locomotor activity in WT and heterozygous mice. In DAT-KO mice, whose locomotor activity and stereotypy are increased in a novel environment, beta-PEA (10-100 mg/kg) exerted a potent inhibitory action. At high doses, beta-PEA induced stereotypies in WT and heterozygous mice; some manifestations of stereotypy were also observed in the DAT-KO mice. These data demonstrate that the DAT is required for the striatal DA-releasing and hyperlocomotor actions of beta-PEA. The inhibitory action on hyperactivity and certain stereotypies induced by beta-PEA in DAT-KO mice indicate that targets other than the DAT are responsible for these effects.

  17. Dorsal-to-Ventral Shift in Midbrain Dopaminergic Projections and Increased Thalamic/Raphe Serotonergic Function in Early Parkinson Disease.

    PubMed

    Joutsa, Juho; Johansson, Jarkko; Seppänen, Marko; Noponen, Tommi; Kaasinen, Valtteri

    2015-07-01

    Loss of nigrostriatal neurons leading to dopamine depletion in the dorsal striatum is the pathologic hallmark of Parkinson disease contributing to the primary motor symptoms of the disease. However, Parkinson pathology is more widespread in the brain, affecting also other dopaminergic pathways and neurotransmitter systems, but these changes are less well characterized. This study aimed to investigate the mesencephalic striatal and extrastriatal dopaminergic projections together with extrastriatal serotonin transporter binding in Parkinson disease. Two hundred sixteen patients with Parkinson disease and 204 control patients (patients without neurodegenerative parkinsonism syndromes and normal SPECT imaging) were investigated with SPECT using the dopamine/serotonin transporter ligand (123)I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane ((123)I-FP-CIT) in the clinical setting. The group differences and midbrain correlations were analyzed voxel by voxel over the entire brain. We found that Parkinson patients had lower (123)I-FP-CIT uptake in the striatum and ventral midbrain but higher uptake in the thalamus and raphe nuclei than control patients. In patients with Parkinson disease, the correlation of the midbrain tracer uptake was shifted from the putamen to widespread corticolimbic areas. All findings were highly significant at the voxel level familywise error-corrected P value of less than 0.05. Our findings show that Parkinson disease is associated not only with the degeneration of the nigrostriatal dopamine neurotransmission, but also with a parallel shift toward mesolimbic and mesocortical function. Furthermore, Parkinson disease patients seem to have upregulation of brain serotonin transporter function at the early phase of the disease. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  18. Comparison of the functional potencies of ropinirole and other dopamine receptor agonists at human D2(long), D3 and D4.4 receptors expressed in Chinese hamster ovary cells

    PubMed Central

    Coldwell, Martyn C; Boyfield, Izzy; Brown, Tony; Hagan, Jim J; Middlemiss, Derek N

    1999-01-01

    The aim of the present study was to characterize functional responses to ropinirole, its major metabolites in man (SKF-104557 (4-[2-(propylamino)ethyl]-2-(3H) indolone), SKF-97930 (4-carboxy-2-(3H) indolone)) and other dopamine receptor agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) receptors separately expressed in Chinese hamster ovary cells using microphysiometry.All the receptor agonists tested (ropinirole, SKF-104557, SKF-97930, bromocriptine, lisuride, pergolide, pramipexole, talipexole, dopamine) increased extracellular acidification rate in Chinese hamster ovary clones expressing the human D2, D3 or D4 receptor. The pEC50s of ropinirole at hD2, hD3 and hD4 receptors were 7.4, 8.4 and 6.8, respectively. Ropinirole is therefore at least 10 fold selective for the human dopamine D3 receptor over the other D2 receptor family members.At the hD2 and hD3 dopamine receptors all the compounds tested were full agonists as compared to quinpirole. Talipexole and the ropinirole metabolite, SKF-104557, were partial agonists at the hD4 receptor.Bromocriptine and lisuride had a slow onset of agonist action which precluded determination of EC50s.The rank order of agonist potencies was dissimilar to the rank order of radioligand binding affinities at each of the dopamine receptor subtypes. Functional selectivities of the dopamine receptor agonists, as measured in the microphysiometer, were less than radioligand binding selectivities.The results show that ropinirole is a full agonist at human D2, D3 and D4 dopamine receptors. SKF-104557 the major human metabolite of ropinirole, had similar radioligand binding affinities to, but lower functional potencies than, the parent compound. PMID:10455328

  19. Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons.

    PubMed

    Guillot, Thomas S; Miller, Gary W

    2009-04-01

    Vesicular monoamine transporters (VMATs) are responsible for the packaging of neurotransmitters such as dopamine, serotonin, norepinephrine, and epinephrine into synaptic vesicles. These proteins evolved from precursors in the major facilitator superfamily of transporters and are among the members of the toxin extruding antiporter family. While the primary function of VMATs is to sequester neurotransmitters within vesicles, they can also translocate toxicants away from cytosolic sites of action. In the case of dopamine, this dual role of VMAT2 is combined-dopamine is more readily oxidized in the cytosol where it can cause oxidative stress so packaging into vesicles serves two purposes: neurotransmission and neuroprotection. Furthermore, the deleterious effects of exogenous toxicants on dopamine neurons, such as MPTP, can be attenuated by VMAT2 activity. The active metabolite of MPTP can be kept within vesicles and prevented from disrupting mitochondrial function thereby sparing the dopamine neuron. The highly addictive drug methamphetamine is also neurotoxic to dopamine neurons by using dopamine itself to destroy the axon terminals. Methamphetamine interferes with vesicular sequestration and increases the production of dopamine, escalating the amount in the cytosol and leading to oxidative damage of terminal components. Vesicular transport seems to resist this process by sequestering much of the excess dopamine, which is illustrated by the enhanced methamphetamine neurotoxicity in VMAT2-deficient mice. It is increasingly evident that VMAT2 provides neuroprotection from both endogenous and exogenous toxicants and that while VMAT2 has been adapted by eukaryotes for synaptic transmission, it is derived from phylogenetically ancient proteins that originally evolved for the purpose of cellular protection.

  20. Molecular imaging genetics of methylphenidate response in ADHD and substance use comorbidity.

    PubMed

    Szobot, Claudia M; Roman, Tatiana; Hutz, Mara H; Genro, Júlia P; Shih, Ming Chi; Hoexter, Marcelo Q; Júnior, Neivo; Pechansky, Flávio; Bressan, Rodrigo A; Rohde, Luis A P

    2011-02-01

    Attention-deficit/hyperactivity disorder (ADHD) and substance use disorders (SUDs) are highly comorbid and may share a genetic vulnerability. Methylphenidate (MPH), a dopamine transporter (DAT) blocker, is an effective drug for most ADHD patients. Although dopamine D4 receptor (DRD4) and dopamine transporter (DAT1) genes have a role in both disorders, little is known about how these genes influence brain response to MPH in individuals with ADHD/SUDs. The goal of this study was to evaluate whether ADHD risk alleles at DRD4 and DAT1 genes could predict the change in striatal DAT occupancy after treatment with MPH in adolescents with ADHD/SUDs. Seventeen adolescents with ADHD/SUDs underwent a SPECT scan with [Tc(99m) ]TRODAT-1 at baseline and after three weeks on MPH. Caudate and putamen DAT binding potential was calculated. Comparisons on DAT changes were made according to the subjects' genotype. The combination of both DRD4 7-repeat allele (7R) and homozygosity for the DAT1 10-repeat allele (10/10) was significantly associated with a reduced DAT change after MPH treatment in right and left caudate and putamen, even adjusting the results for potential confounders (P ≤ 0.02; R² from 0.50 to 0.56). In patients with ADHD/SUDs, combined DRD4 7R and DAT1 10/10 could index MPH reduced DAT occupancy. This might be important for clinical trials, in terms of better understanding individual variability in treatment response. Copyright © 2010 Wiley-Liss, Inc.

  1. Aptamer Recognition of Multiplexed Small-Molecule-Functionalized Substrates.

    PubMed

    Nakatsuka, Nako; Cao, Huan H; Deshayes, Stephanie; Melkonian, Arin Lucy; Kasko, Andrea M; Weiss, Paul S; Andrews, Anne M

    2018-05-31

    Aptamers are chemically synthesized oligonucleotides or peptides with molecular recognition capabilities. We investigated recognition of substrate-tethered small-molecule targets, using neurotransmitters as examples, and fluorescently labeled DNA aptamers. Substrate regions patterned via microfluidic channels with dopamine or L-tryptophan were selectively recognized by previously identified dopamine or L-tryptophan aptamers, respectively. The on-substrate dissociation constant determined for the dopamine aptamer was comparable to, though slightly greater than the previously determined solution dissociation constant. Using pre-functionalized neurotransmitter-conjugated oligo(ethylene glycol) alkanethiols and microfluidics patterning, we produced multiplexed substrates to capture and to sort aptamers. Substrates patterned with L-DOPA, L-DOPS, and L-5-HTP enabled comparison of the selectivity of the dopamine aptamer for different targets via simultaneous determination of in situ binding constants. Thus, beyond our previous demonstrations of recognition by protein binding partners (i.e., antibodies and G-protein-coupled receptors), strategically optimized small-molecule-functionalized substrates show selective recognition of nucleic acid binding partners. These substrates are useful for side-by-side target comparisons, and future identification and characterization of novel aptamers targeting neurotransmitters or other important small-molecules.

  2. Distribution of messenger RNAs for D1 dopamine receptors and DARPP-32 in striatum and cerebral cortex of the cynomolgus monkey: relationship to D1 dopamine receptors.

    PubMed

    Brené, S; Hall, H; Lindefors, N; Karlsson, P; Halldin, C; Sedvall, G

    1995-07-01

    Messenger RNAs for the D1 dopamine receptor and dopamine- and cyclic AMP-regulated phosphoprotein of relative mass 32,000 (DARPP-32) were examined by in situ hybridization in the cynomolgus monkey brain. The messenger RNA distribution was compared to the distribution of D1 dopamine receptors using [3H]SCH 23390 autoradiography. In the caudate nucleus and putamen, D1 dopamine receptor messenger RNA-positive cells were unevenly distributed. Clusters of cells with an approximately three-fold higher intensity of labeling, as compared to surrounding regions, were found. Some of these D1 dopamine receptor messenger RNA intensive cell clusters in the caudate nucleus appeared to some extent to be matched to regions of higher intensity of [3H]SCH 23390 binding. The distribution of cells expressing DARPP-32 messenger RNA in the caudate nucleus and putamen was found to be non-clustered. In neocortical regions, cells of different sizes expressing D1 dopamine receptor messenger RNA were present in layers II-VI. D1 dopamine receptor messenger RNA-positive cells were most abundant in layer V. Unexpectedly, no DARPP-32 messenger RNA signal was detected in neocortex. Chronic SCH 23390 administration did not change the relative levels of messenger RNAs for the D1 dopamine receptor and DARPP-32 or [3H]SCH 23390 binding as measured by quantitative image analysis. The clustered distribution of D1 dopamine receptor messenger RNA is in contrast to that of DARPP-32 messenger RNA. This suggests that D1 dopamine receptors may play a more significant role in regulating DARPP-32 function in patch regions as compared to matrix regions. D1 dopamine receptor messenger RNA-expressing cells could also be visualized in several layers of the primate neocortex, implying that dopamine acts through D1 dopamine receptors within functionally different neuronal circuits of the neocortex.

  3. Differential manipulation of arrestin-3 binding to basal and agonist-activated G protein-coupled receptors.

    PubMed

    Prokop, Susanne; Perry, Nicole A; Vishnivetskiy, Sergey A; Toth, Andras D; Inoue, Asuka; Milligan, Graeme; Iverson, Tina M; Hunyady, Laszlo; Gurevich, Vsevolod V

    2017-08-01

    Non-visual arrestins interact with hundreds of different G protein-coupled receptors (GPCRs). Here we show that by introducing mutations into elements that directly bind receptors, the specificity of arrestin-3 can be altered. Several mutations in the two parts of the central "crest" of the arrestin molecule, middle-loop and C-loop, enhanced or reduced arrestin-3 interactions with several GPCRs in receptor subtype and functional state-specific manner. For example, the Lys139Ile substitution in the middle-loop dramatically enhanced the binding to inactive M 2 muscarinic receptor, so that agonist activation of the M 2 did not further increase arrestin-3 binding. Thus, the Lys139Ile mutation made arrestin-3 essentially an activation-independent binding partner of M 2 , whereas its interactions with other receptors, including the β 2 -adrenergic receptor and the D 1 and D 2 dopamine receptors, retained normal activation dependence. In contrast, the Ala248Val mutation enhanced agonist-induced arrestin-3 binding to the β 2 -adrenergic and D 2 dopamine receptors, while reducing its interaction with the D 1 dopamine receptor. These mutations represent the first example of altering arrestin specificity via enhancement of the arrestin-receptor interactions rather than selective reduction of the binding to certain subtypes. Copyright © 2017. Published by Elsevier Inc.

  4. Rapid eye movement sleep behaviour disorder and striatal dopamine depletion in patients with Parkinson's disease.

    PubMed

    Chung, S J; Lee, Y; Lee, J J; Lee, P H; Sohn, Y H

    2017-10-01

    Rapid eye movement sleep behaviour disorder (RBD) is related to striatal dopamine depletion. This study was performed to confirm whether clinically probable RBD (cpRBD) in patients with Parkinson's disease (PD) is associated with a specific pattern of striatal dopamine depletion. A prospective survey was conducted using the RBD Screening Questionnaire (RBDSQ) in 122 patients with PD who had undergone dopamine transporter (DAT) positron emission tomography scan. Patients with cpRBD (RBDSQ ≥ 7) exhibited greater motor deficits, predominantly in the less-affected side and axial symptoms, and were prescribed higher levodopa-equivalent doses at follow-up than those without cpRBD (RBDSQ ≤ 4), despite their similar disease and treatment durations. Compared to patients without cpRBD, those with cpRBD showed lower DAT activities in the putamen, particularly in the less-affected side in all putaminal subregions, and a tendency to be lower in the ventral striatum. In addition, greater motor deficits in patients with cpRBD than in those without cpRBD remained significant after controlling for DAT binding in the putamen and other confounding variables. These results demonstrated that the presence of RBD in patients with PD is associated with different patterns of both motor deficit distribution and striatal DAT depletion, suggesting that the presence of RBD represents a distinct PD subtype with a malignant motor parkinsonism. © 2017 EAN.

  5. GABAergic control of neostriatal dopamine D2 receptor binding and behaviors in the rat.

    PubMed

    Nikolaus, Susanne; Beu, Markus; de Souza Silva, Maria Angelica; Huston, Joseph P; Antke, Christina; Müller, Hans-Wilhelm; Hautzel, Hubertus

    2017-02-01

    The present study assessed the influence of the GABA A receptor agonist muscimol and the GABA A receptor antagonist bicuculline on neostriatal dopamine D 2 receptor binding in relation to motor and exploratory behaviors in the rat. D 2 receptor binding was measured in baseline and after challenge with either 1mg/kg muscimol or 1mg/kg bicuculline. In additional rats, D 2 receptor binding was measured after injection of saline. After treatment with muscimol, bicuculline and saline, motor and exploratory behaviors were assessed for 30min in an open field prior to administration of [ 123 I]S-3-iodo-N-(1-ethyl-2-pyrrolidinyl)methyl-2-hydroxy-6-methoxybenzamide ([ 123 I]IBZM). For baseline and challenges, striatal equilibrium ratios (V 3 ″) were computed as estimation of the binding potential. Muscimol but not bicuculline reduced D 2 receptor binding relative to baseline and to saline. Travelled distance, duration of rearing and frequency of rearing and of head-shoulder motility were lower after muscimol compared to saline. In contrast, duration of rearing and grooming and frequency of rearing, head-shoulder motility and grooming were elevated after bicuculline relative to saline. Moreover, bicuculline decreased duration of sitting and head-shoulder motility. The muscimol-induced decrease of motor/exploratory behaviors can be related to an elevation of striatal dopamine levels. In contrast, bicuculline is likely to elicit a decline of synaptic dopamine, which, however, is compensated by the time of D 2 receptor imaging studies. The results indicate direct GABAergic control over D 2 receptor binding in the neostriatum in relation to behavioral action, and, thus, complement earlier pharmacological studies. Copyright © 2016. Published by Elsevier Inc.

  6. Differential effect of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) on (/sup 3/H)SCH23390 and (/sup numberH/)forskolin binding in rat striatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, A.B.; Wachendorf, T.J.; Sanberg, P.R.

    1989-01-01

    The binding of (/sup 3/H)forskolin to a homogeneous population of binding sites in rat striatum was enhanced by NaF, guanine nucleotides and MgCl/sub 2/. These effects of NaF and guanylylimidodiphosphate (Gpp(NH)p) were synergistic with MgCl/sub 2/, but NaF and Gpp(NH)p together elicited no greater enhancement of (/sup 3/H)forskolin binding. These data suggest that (/sup 3/H)forskolin may label a site which is modulated by the guanine nucleotide regulatory subunit which mediates the stimulation of adenylate cyclase (N/sub S/). The D/sub 1/ dopamine receptor is known to stimulate adenylate cyclase via N/sub S/. In rat striatum, the B/sub max/ of (/sup 3/H)forskolinmore » binding sites in the presence of MgCl/sub 2/ and NaF was approximately two fold greater than the B/sub max/ of (/sup 3/H)SCH23390-labeled D/sub 1/ dopamine receptors. Incubation of striatal homogenates with the protein modifying reagent EEDQ elicited a concentration-dependent decrease in the binding of both (/sup 3/H)SCH23390 and (/sup 3/H)forskolin, although EEDQ was approximately 14 fold more potent at inactivating the D/sub 1/ dopamine receptor. Following in vivo administration of EEDQ there was no significant effect on (/sup 3/H)forskolin binding sites using a dose of EEDQ that irreversibly inactivated greater than 90% of D/sub 1/ dopamine receptors. These data suggest that EEDQ is a suitable tool for investigating changes in the stoichiometry of receptors and their second messenger systems.« less

  7. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    PubMed Central

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  8. Fungal-derived semiochemical 1-octen-3-ol disrupts dopamine packaging and causes neurodegeneration

    PubMed Central

    Inamdar, Arati A.; Hossain, Muhammad M.; Bernstein, Alison I.; Miller, Gary W.; Richardson, Jason R.; Bennett, Joan Wennstrom

    2013-01-01

    Parkinson disease (PD) is the most common movement disorder and, although the exact causes are unknown, recent epidemiological and experimental studies indicate that several environmental agents may be significant risk factors. To date, these suspected environmental risk factors have been man-made chemicals. In this report, we demonstrate via genetic, biochemical, and immunological studies that the common volatile fungal semiochemical 1-octen-3-ol reduces dopamine levels and causes dopamine neuron degeneration in Drosophila melanogaster. Overexpression of the vesicular monoamine transporter (VMAT) rescued the dopamine toxicity and neurodegeneration, whereas mutations decreasing VMAT and tyrosine hydroxylase exacerbated toxicity. Furthermore, 1-octen-3-ol also inhibited uptake of dopamine in human cell lines expressing the human plasma membrane dopamine transporter (DAT) and human VMAT ortholog, VMAT2. These data demonstrate that 1-octen-3-ol exerts toxicity via disruption of dopamine homeostasis and may represent a naturally occurring environmental agent involved in parkinsonism. PMID:24218591

  9. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    PubMed

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT

    PubMed Central

    Aguilar, Jenny I.; Dunn, Matthew; Mingote, Susana; Karam, Caline S.; Farino, Zachary J.; Sonders, Mark S.; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J.; McCabe, Brian D.; Mosharov, Eugene V.; Krantz, David E.; Javitch, Jonathan A.; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-01-01

    SUMMARY The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. PMID:28823729

  11. Dopamine synapse is a neuroligin-2–mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures

    PubMed Central

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-01-01

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  12. Long-term dopamine transporter expression and normal cellular distribution of mitochondria in dopaminergic neuron transplants in Parkinson’s disease patients

    PubMed Central

    Hallett, Penelope J; Cooper, Oliver; Sadi, Damaso; Robertson, Harold; Mendez, Ivar; Isacson, Ole

    2014-01-01

    Summary To determine the long-term health and function of transplanted dopamine neurons in Parkinson’s disease (PD) patients, the expression of dopamine transporters (DAT) and mitochondrial morphology was examined in human fetal midbrain cellular transplants. DAT was robustly expressed in transplanted dopamine neuron terminals in the reinnervated host putamen and caudate, for at least 14 years after transplantation. The transplanted dopamine neurons showed a healthy and non-atrophied morphology at all time points. Labeling of the mitochondrial outer membrane protein Tom20 and alpha-synuclein showed typical cellular pathology in the patients’ own substantia nigra, which was not observed in transplanted dopamine neurons. These results show that the vast majority of transplanted neurons remain healthy long-term in PD patients, consistent with the clinically maintained function of fetal dopamine neuron transplants for up to 15–18 years in patients. These findings are critically important for the rational development of stem cell-based dopamine neuronal replacement therapies for PD. PMID:24910427

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, Ellen Y.T.; Liu, Wei; Zhao, Qiang

    Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein-coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differsmore » between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.« less

  14. A solid-phase combinatorial approach for indoloquinolizidine-peptides with high affinity at D(1) and D(2) dopamine receptors.

    PubMed

    Molero, Anabel; Vendrell, Marc; Bonaventura, Jordi; Zachmann, Julian; López, Laura; Pardo, Leonardo; Lluis, Carme; Cortés, Antoni; Albericio, Fernando; Casadó, Vicent; Royo, Miriam

    2015-06-05

    Ligands acting at multiple dopamine receptors hold potential as therapeutic agents for a number of neurodegenerative disorders. Specifically, compounds able to bind at D1R and D2R with high affinity could restore the effects of dopamine depletion and enhance motor activation on degenerated nigrostriatal dopaminergic systems. We have directed our research towards the synthesis and characterisation of heterocycle-peptide hybrids based on the indolo[2,3-a]quinolizidine core. This privileged structure is a water-soluble and synthetically accessible scaffold with affinity for diverse GPCRs. Herein we have prepared a solid-phase combinatorial library of 80 indoloquinolizidine-peptides to identify compounds with enhanced binding affinity at D2R, a receptor that is crucial to re-establish activity on dopamine-depleted degenerated GABAergic neurons. We applied computational tools and high-throughput screening assays to identify 9a{1,3,3} as a ligand for dopamine receptors with nanomolar affinity and agonist activity at D2R. Our results validate the application of indoloquinolizidine-peptide combinatorial libraries to fine-tune the pharmacological profiles of multiple ligands at D1 and D2 dopamine receptors. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Dopamine D2 receptors photolabeled by iodo-azido-clebopride.

    PubMed

    Niznik, H B; Dumbrille-Ross, A; Guan, J H; Neumeyer, J L; Seeman, P

    1985-04-19

    Iodo-azido-clebopride, a photoaffinity compound for dopamine D2 receptors, had high affinity for canine brain striatal dopamine D2 receptors with a dissociation constant (Kd) of 14 nM. Irradiation of striatal homogenate with iodo-azido-clebopride irreversibly inactivated 50% of dopamine D2 receptors at 20 nM (as indicated by subsequent [3H]spiperone binding). Dopamine agonists and antagonists prevented this photo-inactivation with the appropriate rank-order of potency. Striatal dopamine D1, serotonin (S2), alpha 1- and beta-adrenoceptors were not significantly inactivated following irradiation with iodo-azido-clebopride. Thus, iodo-azido-clebopride is a selective photoaffinity probe for dopamine D2 receptors, the radiolabelled form of which may aid in the molecular characterization of these proteins.

  16. Acute effect of intravenously applied alcohol in the human striatal and extrastriatal D2 /D3 dopamine system.

    PubMed

    Pfeifer, Philippe; Tüscher, Oliver; Buchholz, Hans Georg; Gründer, Gerhard; Vernaleken, Ingo; Paulzen, Michael; Zimmermann, Ulrich S; Maus, Stephan; Lieb, Klaus; Eggermann, Thomas; Fehr, Christoph; Schreckenberger, Mathias

    2017-09-01

    Investigations on the acute effects of alcohol in the human mesolimbic dopamine D 2 /D 3 receptor system have yielded conflicting results. With respect to the effects of alcohol on extrastriatal D 2 /D 3 dopamine receptors no investigations have been reported yet. Therefore we applied PET imaging using the postsynaptic dopamine D 2 /D 3 receptor ligand [ 18 F]fallypride addressing the question, whether intravenously applied alcohol stimulates the extrastriatal and striatal dopamine system. We measured subjective effects of alcohol and made correlation analyses with the striatal and extrastriatal D 2 /D 3 binding potential. Twenty-four healthy male μ-opioid receptor (OPRM1)118G allele carriers underwent a standardized intravenous and placebo alcohol administration. The subjective effects of alcohol were measured with a visual analogue scale. For the evaluation of the dopamine response we calculated the binding potential (BP ND ) by using the simplified reference tissue model (SRTM). In addition, we calculated distribution volumes (target and reference regions) in 10 subjects for which metabolite corrected arterial samples were available. In the alcohol condition no significant dopamine response in terms of a reduction of BP ND was observed in striatal and extrastriatal brain regions. We found a positive correlation for 'liking' alcohol and the BP ND in extrastriatal brain regions (Inferior frontal cortex (IFC) (r = 0.533, p = 0.007), orbitofrontal cortex (OFC) (r = 0.416, p = 0.043) and prefrontal cortex (PFC) (r = 0.625, p = 0.001)). The acute alcohol effects on the D 2 /D 3 dopamine receptor binding potential of the striatal and extrastriatal system in our experiment were insignificant. A positive correlation of the subjective effect of 'liking' alcohol with cortical D 2 /D 3 receptors may hint at an addiction relevant trait. © 2016 Society for the Study of Addiction.

  17. In Vitro and In Vivo Identification of Novel Positive Allosteric Modulators of the Human Dopamine D2 and D3 Receptor.

    PubMed

    Wood, Martyn; Ates, Ali; Andre, Veronique Marie; Michel, Anne; Barnaby, Robert; Gillard, Michel

    2016-02-01

    Agonists at dopamine D2 and D3 receptors are important therapeutic agents in the treatment of Parkinson's disease. Compared with the use of agonists, allosteric potentiators offer potential advantages such as temporal, regional, and phasic potentiation of natural signaling, and that of receptor subtype selectivity. We report the identification of a stereoselective interaction of a benzothiazol racemic compound that acts as a positive allosteric modulator (PAM) of the rat and human dopamine D2 and D3 receptors. The R isomer did not directly stimulate the dopamine D2 receptor but potentiated the effects of dopamine. In contrast the S isomer attenuated the effects of the PAM and the effects of dopamine. In radioligand binding studies, these compounds do not compete for binding of orthosteric ligands, but indeed the R isomer increased the number of high-affinity sites for [(3)H]-dopamine without affecting K(d). We went on to identify a more potent PAM for use in native receptor systems. This compound potentiated the effects of D2/D3 signaling in vitro in electrophysiologic studies on dissociated striatal neurons and in vivo on the effects of L-dopa in the 6OHDA (6-hydroxydopamine) contralateral turning model. These PAMs lacked activity at a wide variety of receptors, lacked PAM activity at related Gi-coupled G protein-coupled receptors, and lacked activity at D1 receptors. However, the PAMs did potentiate [(3)H]-dopamine binding at both D2 and D3 receptors. Together, these studies show that we have identified PAMs of the D2 and D3 receptors both in vitro and in vivo. Such compounds may have utility in the treatment of hypodopaminergic function. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Reduced striatal dopamine D2/3 receptor availability in Body Dysmorphic Disorder.

    PubMed

    Vulink, Nienke C; Planting, Robin S; Figee, Martijn; Booij, Jan; Denys, Damiaan

    2016-02-01

    Though the dopaminergic system is implicated in Obsessive Compulsive and Related Disorders (OCRD), the dopaminergic system has never been investigated in-vivo in Body Dysmorphic Disorder (BDD). In line with consistent findings of reduced striatal dopamine D2/3 receptor availability in Obsessive Compulsive Disorder (OCD), we hypothesized that the dopamine D2/3 receptor availability in the striatum will be lower in patients with BDD in comparison to healthy subjects. Striatal dopamine D2/3 receptor Binding Potential (BPND) was examined in 12 drug-free BDD patients and 12 control subjects pairwise matched by age, sex, and handedness using [(123)I]iodobenzamide Single Photon Emission Computed Tomography (SPECT; bolus/constant infusion technique). Regions of interest were the caudate nucleus and the putamen. BPND was calculated as the ratio of specific striatal to binding in the occipital cortex (representing nonspecific binding). Compared to controls, dopamine D2/3 receptor BPND was significantly lower in BDD, both in the putamen (p=0.017) and caudate nucleus (p=0.022). This study provides the first evidence of a disturbed dopaminergic system in BDD patients. Although previously BDD was classified as a separate disorder (somatoform disorder), our findings give pathophysiological support for the recent reclassification of BDD to the OCRD in DSM-5. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  19. Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine Decarboxylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Q.; Ding, H; Robinson, H

    2010-01-01

    3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82more » and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.« less

  20. Nanodisc-Targeted STD NMR Spectroscopy Reveals Atomic Details of Ligand Binding to Lipid Environments.

    PubMed

    Muñoz-García, Juan C; Inacio Dos Reis, Rosana; Taylor, Richard J; Henry, Alistair J; Watts, Anthony

    2018-05-18

    Saturation transfer difference (STD) NMR spectroscopy is one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. This is due to its robustness and the fact that it is focused on the signals of the ligand, without any need for NMR information on the macromolecular target. This technique is most commonly applied to systems involving different types of ligands (e.g., small organic molecules, carbohydrates or lipids) and a protein as the target, in which the latter is selectively saturated. However, only a few examples have been reported where membrane mimetics are the macromolecular binding partners. Here, we have employed STD NMR spectroscopy to investigate the interactions of the neurotransmitter dopamine with mimetics of lipid bilayers, such as nanodiscs, by saturation of the latter. In particular, the interactions between dopamine and model lipid nanodiscs formed either from charged or zwitterionic lipids have been resolved at the atomic level. The results, in agreement with previous isothermal titration calorimetry studies, show that dopamine preferentially binds to negatively charged model membranes, but also provide detailed atomic insights into the mode of interaction of dopamine with membrane mimetics. Our findings provide relevant structural information for the design of lipid-based drug carriers of dopamine and its structural analogues and are of general applicability to other systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Pharmacological evaluation of SN79, a sigma (σ) receptor ligand, against methamphetamine-induced neurotoxicity in vivo

    PubMed Central

    Kaushal, Nidhi; Seminerio, Michael J.; Robson, Matthew J.; McCurdy, Christopher R.; Matsumoto, Rae R.

    2013-01-01

    Methamphetamine is a highly addictive psychostimulant drug of abuse, causing hyperthermia and neurotoxicity at high doses. Currently, there is no clinically proven pharmacotherapy to treat these effects of methamphetamine, necessitating identification of potential novel therapeutic targets. Earlier studies showed that methamphetamine binds to sigma (σ) receptors in the brain at physiologically relevant concentrations, where it acts in part as an agonist. SN79 (6-acetyl-3-(4-(4-(4-florophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one) was synthesized as a putative σ receptor antagonist with nanomolar affinity and selectivity for σ receptors over 57 other binding sites. SN79 pretreatment afforded protection against methamphetamine-induced hyperthermia and striatal dopaminergic and serotonergic neurotoxicity in male, Swiss Webster mice (measured as depletions in striatal dopamine and serotonin levels, and reductions in striatal dopamine and serotonin transporter expression levels). In contrast, di-o-tolylguanidine (DTG), a well established σ receptor agonist, increased the lethal effects of methamphetamine, although it did not further exacerbate methamphetamine-induced hyperthermia. Together, the data implicate σ receptors in the direct modulation of some effects of methamphetamine such as lethality, while having a modulatory role which can mitigate other methamphetamine-induced effects such as hyperthermia and neurotoxicity. PMID:22921523

  2. Pharmacological evaluation of SN79, a sigma (σ) receptor ligand, against methamphetamine-induced neurotoxicity in vivo.

    PubMed

    Kaushal, Nidhi; Seminerio, Michael J; Robson, Matthew J; McCurdy, Christopher R; Matsumoto, Rae R

    2013-08-01

    Methamphetamine is a highly addictive psychostimulant drug of abuse, causing hyperthermia and neurotoxicity at high doses. Currently, there is no clinically proven pharmacotherapy to treat these effects of methamphetamine, necessitating identification of potential novel therapeutic targets. Earlier studies showed that methamphetamine binds to sigma (σ) receptors in the brain at physiologically relevant concentrations, where it "acts in part as an agonist." SN79 (6-acetyl-3-(4-(4-(4-florophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one) was synthesized as a putative σ receptor antagonist with nanomolar affinity and selectivity for σ receptors over 57 other binding sites. SN79 pretreatment afforded protection against methamphetamine-induced hyperthermia and striatal dopaminergic and serotonergic neurotoxicity in male, Swiss Webster mice (measured as depletions in striatal dopamine and serotonin levels, and reductions in striatal dopamine and serotonin transporter expression levels). In contrast, di-o-tolylguanidine (DTG), a well established σ receptor agonist, increased the lethal effects of methamphetamine, although it did not further exacerbate methamphetamine-induced hyperthermia. Together, the data implicate σ receptors in the direct modulation of some effects of methamphetamine such as lethality, while having a modulatory role which can mitigate other methamphetamine-induced effects such as hyperthermia and neurotoxicity. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.

  3. Dopamine Transporter Genotype Conveys Familial Risk of Attention-Deficit/Hyperactivity Disorder through Striatal Activation

    ERIC Educational Resources Information Center

    Durston, Sarah; Fossella, John A.; Mulder, Martijn J.; Casey B. J.; Ziermans, Tim B.; Vessaz, M. Nathalie; Van Engeland, Herman

    2008-01-01

    The study examines the effect of the dopamine transporter (DAT1) genotype in attention-deficit/hyperactivity disorder (ADHD). The results confirm that DAT1 translates the genetic risk of ADHD through striatal activation.

  4. In vitro expressed GPCR inserted in polymersome membranes for ligand-binding studies.

    PubMed

    May, Sylvia; Andreasson-Ochsner, Mirjam; Fu, Zhikang; Low, Ying Xiu; Tan, Darren; de Hoog, Hans-Peter M; Ritz, Sandra; Nallani, Madhavan; Sinner, Eva-Kathrin

    2013-01-07

    The dopamine receptor D2 (DRD2), a G-protein coupled receptor is expressed into PBd(22)-PEO(13) and PMOXA(20)-PDMS(54)-PMOXA(20) block copolymer vesicles. The conformational integrity of the receptor is confirmed by antibody- and ligand-binding assays. Replacement of bound dopamine is demonstrated on surface-immobilized polymersomes, thus making this a promising platform for drug screening. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Exploration of N-arylpiperazine Binding Sites of D2 Dopaminergic Receptor.

    PubMed

    Soskic, Vukic; Sukalovic, Vladimir; Kostic-Rajacic, Sladjana

    2015-01-01

    The crystal structures of the D3 dopamine receptor and several other G-protein coupled receptors (GPCRs) were published in recent times. Those 3D structures are used by us and other scientists as a template for the homology modeling and ligand docking analysis of related GPCRs. Our main scientific interest lies in the field of pharmacologically active N-arylpiperazines that exhibit antipsychotic and/or antidepressant properties, and as such are dopaminergic and serotonergic receptor ligands. In this short review article we are presenting synthesis and biological data on the new N-arylpipereazine as well our results on molecular modeling of the interactions of those N-arylpiperazines with the model of D2 dopamine receptors. To obtain that model the crystal structure of the D3 dopamine receptor was used. Our results show that the N-arylpiperazines binding site consists of two pockets: one is the orthosteric binding site where the N-arylpiperazine part of the ligand is docked and the second is a non-canonical accessory binding site for N-arylpipereazine that is formed by a second extracellular loop (ecl2) of the receptor. Until now, the structure of this receptor region was unresolved in crystal structure analyses of the D3 dopamine receptor. To get a more complete picture of the ligand - receptor interaction, DFT quantum mechanical calculations on N-arylpiperazine were performed and the obtained models were used to examine those interactions.

  6. Sodium ion modulates D2 receptor characteristics of dopamine agonist and antagonist binding sites in striatum and retina

    PubMed Central

    Makman, Maynard H.; Dvorkin, B.; Klein, Patrice N.

    1982-01-01

    Sodium ion (Na+) influences binding of both dopamine agonists and antagonists to D2 receptors in striatum and retina. Also, Na+ markedly potentiates the loss of high-affinity agonist binding due to the GTP analogue p[NH]ppG. 2-Amino-6, 7-dihydroxy-1,2,3,4-tetrahydro[5,8-3H]naphthalene ([3H]ADTN) binds exclusively to an agonist conformation of D2 receptor in both striatum and retina, distinct from the antagonist conformation labeled by [3H]spiroperidol or [3H]domperidone in striatum or by [3H]spiroperidol in retina. Na+ is not required for interaction of [3H]ADTN or antagonist radioligand sites with the selective D2 agonist LY-141865, the D2 antagonist domperidone, or nonselective dopamine agonists or antagonists; however, Na+ is necessary for high affinity interaction of those radioligand sites with the D2 antagonists molindone and metoclopramide. With Na+ present, striatal sites for [3H]ADTN, [3H]spiroperidol, and [3H]domperidone have similar affinities for antagonists but only [3H]ADTN sites have high affinity for agonists. Na+ further decreases the low affinity of dopamine agonists for [3H]spiroperidol binding sites. Also, Na+ enhances [3H]spiroperidol and decreases [3H]ADTN binding. Na+ alone causes bound [3H]ADTN to dissociate from at least 30% of striatal and 50% of retinal sites, and with Na+ present [3H]ADTN rapidly dissociates from the remaining sites upon addition of p[NH]ppG. It is proposed that D2 receptors in striatum and retina exist in distinct but interconvertible conformational states, with different properties depending on the presence or absence of Na+ and of guanine nucleotide. PMID:6213964

  7. Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities.

    PubMed

    Staley, J K; Mash, D C

    1996-10-01

    The mesolimbic dopaminergic system plays a primary role in mediating the euphoric and rewarding effects of most abused drugs. Chronic cocaine use is associated with an increase in dopamine neurotransmission resulting from the blockade of dopamine uptake and is mediated by the activation of dopamine receptors. Recent studies have suggested that the D3 receptor subtype plays a pivotal role in the reinforcing effects of cocaine. The D3 receptor-preferring agonist 7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT) is a reinforcer in rhesus monkeys trained to self-administer cocaine, but not in cocainenaive monkeys. In vitro autoradiographic localization of [3H]-(+)-7-OH-DPAT binding in the human brain demonstrated that D3 receptors were prevalent and highly localized over the ventromedial sectors of the striatum. Pharmacological characterization of [3H]-(+)-7-OH-DPAT binding to the human nucleus accumbens demonstrated a rank order of potency similar to that observed for binding to the cloned D3 receptor expressed in transfected cell lines. Region-of-interest analysis of [3H]-(+)-7-OH-DPAT binding to the D3 receptor demonstrated a one- to threefold elevation in the number of binding sites over particular sectors of the striatum and substantia nigra in cocaine overdose victims as compared with age-matched and drug-free control subjects. The elevated number of [3H]-(+)-7-OH-DPAT binding sites demonstrates that adaptive changes in the D3 receptor in the reward circuitry of the brain are associated with chronic cocaine abuse. These results suggest that the D3 receptor may be a useful target for drug development of anticocaine medications.

  8. A universal label-free fluorescent aptasensor based on Ru complex and quantum dots for adenosine, dopamine and 17β-estradiol detection.

    PubMed

    Huang, Hailiang; Shi, Shuo; Gao, Xing; Gao, Ruru; Zhu, Ying; Wu, Xuewen; Zang, Ruimin; Yao, Tianming

    2016-05-15

    Based on specific aptamer binding properties, a strategy for adenosine, dopamine and 17β-estradiol detection was realised by employing Ru complex and quantum dots (QDs) as fluorescence probes. Ru complex, which could quench the fluorescence of QDs, preferred to bind with aptamer DNA and resulted in the fluorescence rise of QDs. When the aptamer DNA was incubated with the target first, it could not bind with Ru complex and the fluorescence of QDs was quenched. Under the optimal condition, the fluorescence intensity was linearly proportional to the concentration of adenosine, dopamine and 17β-estradiol with a limit of detection (LOD) of 101 nM, 19 nM and 37 nM, respectively. The experiments in fetal bovine serum were also carried out with good results. This universal method was rapid, label-free, low-cost, easy-operating and highly repeatable for the detection of adenosine, dopamine and 17β-estradiol. Qualitative detection by naked eyes was also available without complex instruments. It could also be extended to detect various analytes, such as metal ions, proteins and small molecules by using appropriate aptamers. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolzenberg, Sebastian; Quick, Matthias; Zhao, Chunfeng

    Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na +-dependent reuptake of released neurotransmitters. Previous studies suggested that Na +-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. Here we describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT,more » two different perturbations disrupting Na+ binding and transport ( i.e. replacing Na + with Li + or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na + cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na + dependence. Furthermore, the detailed AIN generated from our method is shown to connect Na + binding with global conformational changes that are critical for the transport mechanism. Lastly, that the AIN between the Na + binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function.« less

  10. Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography.

    PubMed

    Acton, Paul D; Choi, Seok-Rye; Plössl, Karl; Kung, Hank F

    2002-05-01

    Functional imaging of small animals, such as mice and rats, using ultra-high resolution positron emission tomography (PET) and single-photon emission tomography (SPET), is becoming a valuable tool for studying animal models of human disease. While several studies have shown the utility of PET imaging in small animals, few have used SPET in real research applications. In this study we aimed to demonstrate the feasibility of using ultra-high resolution SPET in quantitative studies of dopamine transporters (DAT) in the mouse brain. Four healthy ICR male mice were injected with (mean+/-SD) 704+/-154 MBq [(99m)Tc]TRODAT-1, and scanned using an ultra-high resolution SPET system equipped with pinhole collimators (spatial resolution 0.83 mm at 3 cm radius of rotation). Each mouse had two studies, to provide an indication of test-retest reliability. Reference tissue kinetic modeling analysis of the time-activity data in the striatum and cerebellum was used to quantitate the availability of DAT. A simple equilibrium ratio of striatum to cerebellum provided another measure of DAT binding. The SPET imaging results were compared against ex vivo biodistribution data from the striatum and cerebellum. The mean distribution volume ratio (DVR) from the reference tissue kinetic model was 2.17+/-0.34, with a test-retest reliability of 2.63%+/-1.67%. The ratio technique gave similar results (DVR=2.03+/-0.38, test-retest reliability=6.64%+/-3.86%), and the ex vivo analysis gave DVR=2.32+/-0.20. Correlations between the kinetic model and the ratio technique ( R(2)=0.86, P<0.001) and the ex vivo data ( R(2)=0.92, P=0.04) were both excellent. This study demonstrated clearly that ultra-high resolution SPET of small animals is capable of accurate, repeatable, and quantitative measures of DAT binding, and should open up the possibility of further studies of cerebral binding sites in mice using pinhole SPET.

  11. Pharmacologic Characterization of Valbenazine (NBI-98854) and Its Metabolites.

    PubMed

    Grigoriadis, Dimitri E; Smith, Evan; Hoare, Sam R J; Madan, Ajay; Bozigian, Haig

    2017-06-01

    The vesicular monoamine transporter 2 (VMAT2) is an integral presynaptic protein that regulates the packaging and subsequent release of dopamine and other monoamines from neuronal vesicles into the synapse. Valbenazine (NBI-98854), a novel compound that selectively inhibits VMAT2, is approved for the treatment of tardive dyskinesia. Valbenazine is converted to two significant circulating metabolites in vivo, namely, (+)- α -dihydrotetrabenazine (R,R,R-HTBZ) and a mono-oxy metabolite, NBI-136110. Radioligand-binding studies were conducted to assess and compare valbenazine, tetrabenazine, and their respective metabolites in their abilities to selectively and potently inhibit [ 3 H]-HTBZ binding to VMAT2 in rat striatal, rat forebrain, and human platelet homogenates. A broad panel screen was conducted to evaluate possible off-target interactions of valbenazine, R,R,R-HTBZ, and NBI-136110 at >80 receptor, transporter, and ion channel sites. Radioligand binding showed R,R,R-HTBZ to be a potent VMAT2 inhibitor in homogenates of rat striatum (K i = 1.0-2.8 nM), rat forebrain (K i = 4.2 nM), and human platelets (K i = 2.6-3.3 nM). Valbenazine (K i = 110-190 nM) and NBI-136110 (K i = 160-220 nM) also exhibited inhibitory effects on VMAT2, but with lower potency than R,R,R-HTBZ. Neither valbenazine, R,R,R-HTBZ, nor NBI-136110 had significant off-target interactions at serotonin (5-HT 1A , 5-HT 2A , 5-HT 2B ) or dopamine (D 1 or D 2 ) receptor sites. In vivo studies measuring ptosis and prolactin secretion in the rat confirmed the specific and dose-dependent interactions of tetrabenazine and R,R,R-HTBZ with VMAT2. Evaluations of potency and selectivity of tetrabenazine and its pharmacologically active metabolites were also performed. Overall, the pharmacologic characteristics of valbenazine appear consistent with the favorable efficacy and tolerability findings of recent clinical studies [KINECT 2 (NCT01733121), KINECT 3 (NCT02274558)]. Copyright © 2017 by The Author(s).

  12. Dopamine agonist suppression of rapid-eye-movement sleep is secondary to sleep suppression mediated via limbic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miletich, R.S.

    The effects of pergolide, a direct dopamine receptor agonist, on sleep and wakefulness, motor behavior and /sup 3/H-spiperone specific binding in limbic structures and striatum in rats was studied. The results show that pergolide induced a biphasic dose effect, with high doses increasing wakefulness and suppressing sleep while low dose decreased wakefulness, but increased sleep. It was shown that pergolide-induced sleep suppression was blocked by ..cap alpha..-glupenthixol and pimozide, two dopamine receptor antagonists. It was further shown that pergolide merely delayed the rebound resulting from rapid-eye-movement (REM) sleep deprivation, that dopamine receptors stimulation had no direct effect on the period,more » phase or amplitude of the circadian rhythm of REM sleep propensity and that there was no alteration in the coupling of REM sleep episodes with S/sub 2/ episodes. Rapid-eye-movement sleep deprivation resulted in increased sensitivity to the pergolide-induced wakefulness stimulation and sleep suppression and pergolide-induced motor behaviors of locomotion and head bobbing. /sup 3/H-spiperone specific binding to dopamine receptors was shown to be altered by REM sleep deprivation in the subcortical limbic structures. It is concluded that the REM sleep suppressing action of dopamine receptor stimulation is secondary to sleep suppression per se and not secondary to a unique effect on the REM sleep. Further, it is suggested that the wakefulness stimulating action of dopamine receptor agonists is mediated by activation of the dopamine receptors in the terminal areas of the mesolimbocortical dopamine projection system.« less

  13. Effects of Prenatal Exposure to Nicotine on Working Memory, Activity, Sensory Gating, and Dopamine Receptor Binding in Adolescent and Adult Male and Female Rats

    DTIC Science & Technology

    1999-01-08

    28 Physical Chemistry ........... • . ... •. . . . . • .•...... . ... 28 Synthesis and Degradation...12 Figure 13 Figure 14 List of Figures Structure of dopamine and related compounds .. •. •.•. .... 28 Metabolism of dopamine...31 Structure of nicotine ............................ •.... . 33 Example of video software output. ............... • . • ..... 44 Placement of

  14. Decreased prefrontal cortical dopamine transmission in alcoholism.

    PubMed

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  15. Pharmacological Chaperones of the Dopamine Transporter Rescue Dopamine Transporter Deficiency Syndrome Mutations in Heterologous Cells*

    PubMed Central

    Lam, Vincent M.; Salahpour, Ali

    2016-01-01

    A number of pathological conditions have been linked to mutations in the dopamine transporter gene, including hereditary dopamine transporter deficiency syndrome (DTDS). DTDS is a rare condition that is caused by autosomal recessive loss-of-function mutations in the dopamine transporter (DAT), which often affects transporter trafficking and folding. We examined the possibility of using pharmacological chaperones of DAT to rescue DTDS mutations. After screening a set of known DAT ligands for their ability to increase DAT surface expression, we found that bupropion and ibogaine increased DAT surface expression, whereas others, including cocaine and methylphenidate, had no effect. Bupropion and ibogaine increased wild type DAT protein levels and also promoted maturation of the endoplasmic reticulum (ER)-retained DAT mutant K590A. Rescue of K590A could be blocked by inhibiting ER to Golgi transport using brefeldin A. Furthermore, knockdown of coat protein complex II (COPII) component SEC24D, which is important in the ER export of wild type DAT, also blocked the rescue effects of bupropion and ibogaine. These data suggest that bupropion and ibogaine promote maturation of DAT by acting as pharmacological chaperones in the ER. Importantly, both drugs rescue DAT maturation and functional activity of the DTDS-associated mutations A314V and R445C. Together, these results are the first demonstration of pharmacological chaperoning of DAT and suggest this may be a viable approach to increase DAT levels in DTDS and other conditions associated with reduced DAT function. PMID:27555326

  16. Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users.

    PubMed

    McCann, Una D; Kuwabara, Hiroto; Kumar, Anil; Palermo, Michael; Abbey, Rubyna; Brasic, James; Ye, Weiguo; Alexander, Mohab; Dannals, Robert F; Wong, Dean F; Ricaurte, George A

    2008-02-01

    Studies in abstinent methamphetamine (METH) users have demonstrated reductions in brain dopamine transporter (DAT) binding potential (BP), as well as cognitive and motor deficits, but it is not yet clear whether cognitive deficits and brain DAT reductions fully reverse with sustained abstinence, or whether behavioral deficits in METH users are related to dopamine (DA) deficits. This study was conducted to further investigate potential persistent psychomotor deficits secondary to METH abuse, and their relationship to brain DAT availability, as measured using quantitative PET methods with [(11)C]WIN 35428. Twenty-two abstinent METH users and 17 healthy non-METH using controls underwent psychometric testing to test the hypothesis that METH users would demonstrate selective deficits in neuropsychiatric domains known to involve DA neurons (e.g., working memory, executive function, motor function). A subset of subjects also underwent PET scanning with [(11)C]WIN 35428. METH users were found to have modest deficits in short-term memory, executive function, and manual dexterity. Exploratory correlational analyses revealed that deficits in memory, but not those in executive or motor function, were associated with decreases in striatal DAT BP. These results suggest a possible relationship between DAT BP and memory deficits in abstinent METH users, and lend support to the notion that METH produces lasting effects on central DA neurons in humans. As METH can also produce toxic effects on serotonin (5-HT) neurons, further study is needed to address the potential role of brain 5-HT depletion in cognitive deficits in abstinent METH users. (c) 2007 Wiley-Liss, Inc.

  17. The Vesicular Monoamine Transporter-2: An Important Pharmacological Target for the Discovery of Novel Therapeutics to Treat Methamphetamine Abuse

    PubMed Central

    Nickell, Justin R.; Siripurapu, Kiran B.; Vartak, Ashish; Crooks, Peter A.; Dwoskin, Linda P.

    2014-01-01

    Methamphetamine abuse escalates, but no approved therapeutics are available to treat addicted individuals. Methamphetamine increases extracellular dopamine in reward-relevant pathways by interacting at vesicular monoamine transporter-2 (VMAT2) to inhibit dopamine uptake and promote dopamine release from synaptic vesicles, increasing cytosolic dopamine available for reverse transport by the dopamine transporter (DAT). VMAT2 is the target of our iterative drug discovery efforts to identify pharmacotherapeutics for methamphetamine addiction. Lobeline, the major alkaloid in Lobelia inflata, potently inhibited VMAT2, methamphetamine-evoked striatal dopamine release, and methamphetamine self-administration in rats but exhibited high affinity for nicotinic acetylcholine receptors (nAChRs). Defunctionalized, unsaturated lobeline analog, meso-transdiene (MTD), exhibited lobeline-like in vitro pharmacology, lacked nAChR affinity, but exhibited high affinity for DAT, suggesting potential abuse liability. The 2,4-dicholorophenyl MTD analog, UKMH-106, exhibited selectivity for VMAT2 over DAT, inhibited methamphetamine-evoked dopamine release, but required a difficult synthetic approach. Lobelane, a saturated, defunctionalized lobeline analog, inhibited the neurochemical and behavioral effects of methamphetamine; tolerance developed to the lobelane-induced decrease in methamphetamine self-administration. Improved drug-likeness was afforded by the incorporation of a chiral N-1,2-dihydroxypropyl moiety into lobelane to afford GZ-793A, which inhibited the neurochemical and behavioral effects of methamphetamine, without tolerance. From a series of 2,5-disubstituted pyrrolidine analogs, AV-2-192 emerged as a lead, exhibiting high affinity for VMAT2 and inhibiting methamphetamine-evoked dopamine release. Current results support the hypothesis that potent, selective VMAT2 inhibitors provide the requisite preclinical behavioral profile for evaluation as pharmacotherapeutics for methamphetamine abuse and emphasize selectivity for VMAT2 relative to DAT as a criterion for reducing abuse liability of the therapeutic. PMID:24484975

  18. Intrastriatal administration of botulinum neurotoxin A normalizes striatal D2 R binding and reduces striatal D1 R binding in male hemiparkinsonian rats.

    PubMed

    Wedekind, Franziska; Oskamp, Angela; Lang, Markus; Hawlitschka, Alexander; Zilles, Karl; Wree, Andreas; Bauer, Andreas

    2018-01-01

    Cerebral administration of botulinum neurotoxin A (BoNT-A) has been shown to improve disease-specific motor behavior in a rat model of Parkinson disease (PD). Since the dopaminergic system of the basal ganglia fundamentally contributes to motor function, we investigated the impact of BoNT-A on striatal dopamine receptor expression using in vitro and in vivo imaging techniques (positron emission tomography and quantitative autoradiography, respectively). Seventeen male Wistar rats were unilaterally lesioned with 6-hydroxydopamine (6-OHDA) and assigned to two treatment groups 7 weeks later: 10 rats were treated ipsilaterally with an intrastriatal injection of 1 ng BoNT-A, while the others received vehicle (n = 7). All animals were tested for asymmetric motor behavior (apomorphine-induced rotations and forelimb usage) and for striatal expression of dopamine receptors and transporters (D 1 R, D 2 R, and DAT). The striatal D 2 R availability was also quantified longitudinally (1.5, 3, and 5 months after intervention) in 5 animals per treatment group. The 6-OHDA lesion alone induced a unilateral PD-like phenotype and a 13% increase of striatal D 2 R. BoNT-A treatment reduced the asymmetry in both apomorphine-induced rotational behavior and D 2 R expression, with the latter returning to normal values 5 months after intervention. D 1 R expression was significantly reduced, while DAT concentrations showed no alteration. Independent of the treatment, higher interhemispheric symmetry in raclopride binding to D 2 R was generally associated with reduced forelimb akinesia. Our findings indicate that striatal BoNT-A treatment diminishes motor impairment and induces changes in D 1 and D 2 binding site density in the 6-OHDA rat model of PD. © 2017 Wiley Periodicals, Inc.

  19. Comparative effects of chlordecone and mirex on rat cardiac ATPases and binding of 3H-catecholamines.

    PubMed

    Desaiah, D

    1980-08-01

    The effects of chlordecone and mirex on the rat myocardial ATPases and binding of 3H-dopamine and 3H-norepinephrine to the NAK-fraction were determined both by in vitro and in vivo treatment. The in vitro data showed that chlordecone significantly inhibited mitochondrial Mg2+ ATPase and Na+--K+ ATPase in a concentration dependent manner with ID50 values of 5 x 10(-8) and 2 x 10(-6) M, respectively. Mitrex, a close structural analog of chlordecone did not inhibit mitochondrial Mg2+ ATPase but inhibited about 15% of N+--K+ ATPase activity. Rats treated with symptomatogenic doses of chlordecone showed a marked and significant decrease of myocardial Na+--K+ ATPase and the residual Mg2+ ATPase activities. The decrease in the enzyme activities was dose dependent and significant. However, mirex treated rats showed a slight decrease in the myocardial Na+--K+ ATPase. The potency of chlordecone to inhibit the ATPase system was parallel to its ability to decrease the dopamine and norepinephrine binding of the myocardial NAK-fraction. Preincubation of the NAK-fraction with various concentrations of chlordecone resulted in a decreased binding of dopamine and norepinephrine. The decrease was significant and concentration dependent. Similar findings were observed in rats pretreated with chlordecone. Mirex did not show any effect, either in vitro or in vivo treatment, on the binding of dopamine or norepinephrine to the myocardial NAK-fraction. These results suggest that chlordecone may be altering the sodium pump activity by inhibiting both ATP hydrolysis and ATP synthesis and thus reducing other cellular events such as catecholamine uptake.

  20. Olfactory discrimination deficits in mice lacking the dopamine transporter or the D2 dopamine receptor.

    PubMed

    Tillerson, Jennifer L; Caudle, W Michael; Parent, Jack M; Gong, C; Schallert, Timothy; Miller, Gary W

    2006-09-15

    Previous pharmacological studies have implicated dopamine as a modulator of olfactory bulb processing. Several disorders characterized by altered dopamine homeostasis in olfaction-related brain regions display olfactory deficits. To further characterize the role of dopamine in olfactory processing, we subjected dopamine transporter knockout mice (DAT -/-) and dopamine receptor 2 knockout mice (D2 -/-) to a battery of olfactory tests. In addition to behavioral characterization, several neurochemical markers of olfactory bulb integrity and function were examined. DAT -/- mice displayed an olfactory discrimination deficit, but did not differ detectably from DAT wildtype (DAT +/+) mice in odor habituation, olfactory sensitivity, or odor recognition memory. Neurochemically, DAT -/- mice have decreased D2 receptor staining in the periglomerular layer of the olfactory bulb and increased tyrosine hydroxylase immunoreactivity compared to DAT +/+ controls. D2 -/- mice exhibited the same olfactory deficit as the DAT -/- mice, further supporting the role of dopamine at the D2 synapse in olfactory discrimination processing. The findings presented in this paper reinforce the functional significance of dopamine and more specifically the D2 receptor in olfactory discrimination and may help explain the behavioral phenotype in the DAT and D2 knockout mice.

  1. Pharmacological Investigations of the Dissociative ‘Legal Highs’ Diphenidine, Methoxphenidine and Analogues

    PubMed Central

    Colestock, Tristan; Morris, Hamilton; Bortolotto, Zuner A.; Lodge, David; Halberstadt, Adam L.; Brandt, Simon D.

    2016-01-01

    1,2-Diarylethylamines including lanicemine, lefetamine, and remacemide have clinical relevance in a range of therapeutic areas including pain management, epilepsy, neurodegenerative disease and depression. More recently 1,2-diarylethylamines have been sold as ‘legal highs’ in a number of different forms including powders and tablets. These compounds are sold to circumvent governmental legislation regulating psychoactive drugs. Examples include the opioid MT-45 and the dissociative agents diphenidine (DPH) and 2-methoxy-diphenidine (2-MXP). A number of fatal and non-fatal overdoses have been linked to abuse of these compounds. As with many ‘legal highs’, little is known about their pharmacology. To obtain a better understanding, the effects of DPH, 2-MXP and its 3- and 4-MeO- isomers, and 2-Cl-diphenidine (2-Cl-DPH) were investigated using binding studies at 46 central nervous system receptors including the N-methyl-D-aspartate receptor (NMDAR), serotonin, dopamine, norepinephrine, histamine, and sigma receptors as well as the reuptake transporters for serotonin, dopamine and norepinephrine. Reuptake inhibition potencies were measured at serotonin, norepinephrine and dopamine transporters. NMDAR antagonism was established in vitro using NMDAR-induced field excitatory postsynaptic potential (fEPSP) experiments. Finally, DPH and 2-MXP were investigated using tests of pre-pulse inhibition of startle (PPI) in rats to determine whether they reduce sensorimotor gating, an effect observed with known dissociative drugs such as phencyclidine (PCP) and ketamine. The results suggest that these 1,2-diarylethylamines are relatively selective NMDAR antagonists with weak off-target inhibitory effects on dopamine and norepinephrine reuptake. DPH and 2-MXP significantly inhibited PPI. DPH showed greater potency than 2-MXP, acting with a median effective dose (ED50) of 9.5 mg/kg, which is less potent than values reported for other commonly abused dissociative drugs such as PCP and ketamine. PMID:27314670

  2. Methamphetamine-induced neurotoxicity disrupts pharmacologically evoked dopamine transients in the dorsomedial and dorsolateral striatum.

    PubMed

    Robinson, John D; Howard, Christopher D; Pastuzyn, Elissa D; Byers, Diane L; Keefe, Kristen A; Garris, Paul A

    2014-08-01

    Phasic dopamine (DA) signaling, during which burst firing by DA neurons generates short-lived elevations in extracellular DA in terminal fields called DA transients, is implicated in reinforcement learning. Disrupted phasic DA signaling is proposed to link DA depletions and cognitive-behavioral impairment in methamphetamine (METH)-induced neurotoxicity. Here, we further investigated this disruption by assessing effects of METH pretreatment on DA transients elicited by a drug cocktail of raclopride, a D2 DA receptor antagonist, and nomifensine, an inhibitor of the dopamine transporter (DAT). One advantage of this approach is that pharmacological activation provides a large, high-quality data set of transients elicited by endogenous burst firing of DA neurons for analysis of regional differences and neurotoxicity. These pharmacologically evoked DA transients were measured in the dorsomedial (DM) and dorsolateral (DL) striatum of urethane-anesthetized rats by fast-scan cyclic voltammetry. Electrically evoked DA levels were also recorded to quantify DA release and uptake, and DAT binding was determined by means of autoradiography to index DA denervation. Pharmacologically evoked DA transients in intact animals exhibited a greater amplitude and frequency and shorter duration in the DM compared to the DL striatum, despite similar pre- and post-drug assessments of DA release and uptake in both sub-regions as determined from the electrically evoked DA signals. METH pretreatment reduced transient activity. The most prominent effect of METH pretreatment on transients across striatal sub-region was decreased amplitude, which mirrored decreased DAT binding and was accompanied by decreased DA release. Overall, these results identify marked intrastriatal differences in the activity of DA transients that appear independent of presynaptic mechanisms for DA release and uptake and further support disrupted phasic DA signaling mediated by decreased DA release in rats with METH-induced neurotoxicity.

  3. Development and validation of an LC-ESI-MS/MS method for the quantification of D-84, reboxetine and citalopram for their use in MS Binding Assays addressing the monoamine transporters hDAT, hSERT and hNET.

    PubMed

    Neiens, Patrick; De Simone, Angela; Ramershoven, Anna; Höfner, Georg; Allmendinger, Lars; Wanner, Klaus T

    2018-03-03

    MS Binding Assays represent a label-free alternative to radioligand binding assays. In this study, we present an LC-ESI-MS/MS method for the quantification of (R,R)-4-(2-benzhydryloxyethyl)-1-(4-fluorobenzyl)piperidin-3-ol [(R,R)-D-84, (R,R)-1], (S,S)-reboxetine [(S,S)-2], and (S)-citalopram [(S)-3] employed as highly selective nonlabeled reporter ligands in MS Binding Assays addressing the dopamine [DAT, (R,R)-D-84], norepinephrine [NET, (S,S)-reboxetine] and serotonin transporter [SERT, (S)-citalopram], respectively. The developed LC-ESI-MS/MS method uses a pentafluorphenyl stationary phase in combination with a mobile phase composed of acetonitrile and ammonium formate buffer for chromatography and a triple quadrupole mass spectrometer in the multiple reaction monitoring mode for mass spectrometric detection. Quantification is based on deuterated derivatives of all three analytes serving as internal standards. The established LC-ESI-MS/MS method enables fast, robust, selective and highly sensitive quantification of all three reporter ligands in a single chromatographic run. The method was validated according to the Center for Drug Evaluation and Research (CDER) guideline for bioanalytical method validation regarding selectivity, accuracy, precision, calibration curve and sensitivity. Finally, filtration-based MS Binding Assays were performed for all three monoamine transporters based on this LC-ESI-MS/MS quantification method as read out. The affinities determined in saturation experiments for (R,R)-D-84 toward hDAT, for (S,S)-reboxetine toward hNET, and for (S)-citalopram toward hSERT, respectively, were in good accordance with results from literature, clearly demonstrating that the established MS Binding Assays have the potential to be an efficient alternative to radioligand binding assays widely used for this purpose so far. Copyright © 2018 John Wiley & Sons, Ltd.

  4. The structure and function of the dopamine transporter and its role in CNS diseases.

    PubMed

    McHugh, Patrick C; Buckley, David A

    2015-01-01

    In this chapter, we explore the basic science of the dopamine transporter (DAT), an integral component of a system that regulates dopamine homeostasis. Dopamine is a key neurotransmitter for several brain functions including locomotor control and reward systems. The transporter structure, function, mechanism of action, localization, and distribution, in addition to gene regulation, are discussed. Over many years, a wealth of information concerning the DAT has been accrued and has led to increased interest in the role of the DAT in a plethora of central nervous system diseases. These DAT characteristics are explored in relation to a range of neurological and neuropsychiatric diseases, with a particular focus on the genetics of the DAT. In addition, we discuss the pharmacology of the DAT and how this relates to disease and addiction. © 2015 Elsevier Inc. All rights reserved.

  5. Putaminal dopamine depletion in de novo Parkinson's disease predicts future development of wearing-off.

    PubMed

    Chung, Su Jin; Lee, Yoonju; Oh, Jungsu S; Kim, Jae Seung; Lee, Phil Hyu; Sohn, Young H

    2018-05-10

    The present study aimed to investigate whether the level of presynaptic dopamine neuronal loss predicts future development of wearing-off in de novo Parkinson's disease. This retrospective cohort study included a total of 342 non-demented patients with de novo Parkinson's disease who underwent dopamine transporter positron emission tomography scans at their initial evaluation and received dopaminergic medications for 24 months or longer. Onset of wearing-off was determined based on patients' medical records at their outpatient clinic visits every 3-6 months. Predictive power of dopamine transporter activity in striatal subregions and other clinical factors for the development of wearing-off was evaluated by Cox proportional hazard models. During a median follow-up period of 50.2 ± 18.9 months, 69 patients (20.2%) developed wearing-off. Patients with wearing-off exhibited less dopamine transporter activity in the putamen, particularly the anterior and posterior putamens, compared to those without wearing-off. Multivariate Cox proportional hazard models revealed that dopamine transporter activities of the anterior (hazard ratio 0.556; p = 0.008) and whole putamens (hazard ratio 0.504; p = 0.025) were significant predictors of development of wearing-off. In addition, younger age at onset of Parkinson's disease, lower body weight, and a motor phenotype of postural instability/gait disturbance were also significant predictors for development of wearing-off. The present results provide in vivo evidence to support the hypothesis that presynaptic dopamine neuronal loss, particularly in the anterior putamen, leads to development of wearing-off in Parkinson's disease. Copyright © 2018. Published by Elsevier Ltd.

  6. Functional recovery of supersensitive dopamine receptors after intrastriatal grafts of fetal substantia nigra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, T.M.; Dawson, V.L.; Gage, F.H.

    1991-03-01

    Interruption of the ascending dopamine neurons of the nigrostriatal pathway, by 6-hydroxydopamine (6-OHDA) lesion in rats, produced a significant loss of the dopamine transport complexes labeled with the phencyclidine derivative (3H)BTCP. This loss of dopamine innervation in the striatum was present at least 12 to 14 months after lesioning and was functionally manifested by ipsilateral rotation of the animals in response to amphetamine. In these same animals, in comparison to controls, there was a significant increase in the number (Bmax) of (3H)SCH 23390-labeled D-1 receptors in the striatum (36.7%) and the substantia nigra (35.1%) and a 54.4% increase in themore » number (Bmax) of (3H)sulpiride-labeled striatal D-2 receptors without an apparent change in affinity (Kd). Ten to twelve months after the transplantation of homologous fetal substantia nigra into the denervated striatum, there was a significant decrease in amphetamine-induced turning behavior. In these animals, there was an ingrowth of dopamine nerve terminals in the striatum as demonstrated by a return of (3H)BTCP binding. Accompanying this reinnervation was the normalization of D-1 and D-2 receptors to control values in the striatum as well as the return of D-1 receptors to prelesion densities in the substantia nigra. In a subgroup of transplanted rats, amphetamine continued to induce ipsilateral turning. In these animals both D-1 and D-2 receptors remained supersensitive. These results support the hypothesis that the functional recovery of transplanted animals is due, in part, to reinnervation of the striatum. In addition, long-term alterations in receptor density may be related to the behavioral deficits that are associated with the 6-OHDA-lesioned rat.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, N.D.; Wang, G.; Volkow, N.D.

    Attention-deficit/hyperactivity disorder (ADHD) - characterized by symptoms of inattention and hyperactivity-impulsivity - is the most prevalent childhood psychiatric disorder that frequently persists into adulthood, and there is increasing evidence of reward-motivation deficits in this disorder. To evaluate biological bases that might underlie a reward/motivation deficit by imaging key components of the brain dopamine reward pathway (mesoaccumbens). We used positron emission tomography to measure dopamine synaptic markers (transporters and D{sub 2}/D{sub 3} receptors) in 53 nonmedicated adults with ADHD and 44 healthy controls between 2001-2009 at Brookhaven National Laboratory. We measured specific binding of positron emission tomographic radioligands for dopamine transportersmore » (DAT) using [{sup 11}C]cocaine and for D{sub 2}/D{sub 3} receptors using [{sup 11}C]raclopride, quantified as binding potential (distribution volume ratio -1). For both ligands, statistical parametric mapping showed that specific binding was lower in ADHD than in controls (threshold for significance set at P < .005) in regions of the dopamine reward pathway in the left side of the brain. Region-of-interest analyses corroborated these findings. The mean (95% confidence interval [CI] of mean difference) for DAT in the nucleus accumbens for controls was 0.71 vs 0.63 for those with ADHD (95% CI, 0.03-0.13, P = .004) and in the midbrain for controls was 0.16 vs 0.09 for those with ADHD (95% CI, 0.03-0.12; P {le} .001); for D{sub 2}/D{sub 3} receptors, the mean accumbens for controls was 2.85 vs 2.68 for those with ADHD (95% CI, 0.06-0.30, P = .004); and in the midbrain, it was for controls 0.28 vs 0.18 for those with ADHD (95% CI, 0.02-0.17, P = .01). The analysis also corroborated differences in the left caudate: the mean DAT for controls was 0.66 vs 0.53 for those with ADHD (95% CI, 0.04-0.22; P = .003) and the mean D{sub 2}/D{sub 3} for controls was 2.80 vs 2.47 for those with ADHD (95% CI, 0.10-0.56; P = .005) and differences in D{sub 2}/D{sub 3} in the hypothalamic region, with controls having a mean of 0.12 vs 0.05 for those with ADHD (95% CI, 0.02-0.12; P = .004). Ratings of attention correlated with D{sub 2}/D{sub 3} in the accumbens (r = 0.35; 95% CI, 0.15-0.52; P = .001), midbrain (r = 0.35; 95% CI, 0.14-0.52; P = .001), caudate (r = 0.32; 95% CI, 0.11-0.50; P = .003), and hypothalamic (r = 0.31; CI, 0.10-0.49; P = .003) regions and with DAT in the midbrain (r = 0.37; 95% CI, 0.16-0.53; P {le} .001). A reduction in dopamine synaptic markers associated with symptoms of inattention was shown in the dopamine reward pathway of participants with ADHD.« less

  8. Brain dopamine neurone 'damage': methamphetamine users vs. Parkinson's disease - a critical assessment of the evidence.

    PubMed

    Kish, Stephen J; Boileau, Isabelle; Callaghan, Russell C; Tong, Junchao

    2017-01-01

    The objective of this review is to evaluate the evidence that recreational methamphetamine exposure might damage dopamine neurones in human brain, as predicted by experimental animal findings. Brain dopamine marker data in methamphetamine users can now be compared with those in Parkinson's disease, for which the Oleh Hornykiewicz discovery in Vienna of a brain dopamine deficiency is established. Whereas all examined striatal (caudate and putamen) dopamine neuronal markers are decreased in Parkinson's disease, levels of only some (dopamine, dopamine transporter) but not others (dopamine metabolites, synthetic enzymes, vesicular monoamine transporter 2) are below normal in methamphetamine users. This suggests that loss of dopamine neurones might not be characteristic of methamphetamine exposure in at least some human drug users. In methamphetamine users, dopamine loss was more marked in caudate than in putamen, whereas in Parkinson's disease, the putamen is distinctly more affected. Substantia nigra loss of dopamine-containing cell bodies is characteristic of Parkinson's disease, but similar neuropathological studies have yet to be conducted in methamphetamine users. Similarly, it is uncertain whether brain gliosis, a common feature of brain damage, occurs after methamphetamine exposure in humans. Preliminary epidemiological findings suggest that methamphetamine use might increase risk of subsequent development of Parkinson's disease. We conclude that the available literature is insufficient to indicate that recreational methamphetamine exposure likely causes loss of dopamine neurones in humans but does suggest presence of a striatal dopamine deficiency that, in principle, could be corrected by dopamine substitution medication if safety and subject selection considerations can be resolved. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Pharmacological Chaperones of the Dopamine Transporter Rescue Dopamine Transporter Deficiency Syndrome Mutations in Heterologous Cells.

    PubMed

    Beerepoot, Pieter; Lam, Vincent M; Salahpour, Ali

    2016-10-14

    A number of pathological conditions have been linked to mutations in the dopamine transporter gene, including hereditary dopamine transporter deficiency syndrome (DTDS). DTDS is a rare condition that is caused by autosomal recessive loss-of-function mutations in the dopamine transporter (DAT), which often affects transporter trafficking and folding. We examined the possibility of using pharmacological chaperones of DAT to rescue DTDS mutations. After screening a set of known DAT ligands for their ability to increase DAT surface expression, we found that bupropion and ibogaine increased DAT surface expression, whereas others, including cocaine and methylphenidate, had no effect. Bupropion and ibogaine increased wild type DAT protein levels and also promoted maturation of the endoplasmic reticulum (ER)-retained DAT mutant K590A. Rescue of K590A could be blocked by inhibiting ER to Golgi transport using brefeldin A. Furthermore, knockdown of coat protein complex II (COPII) component SEC24D, which is important in the ER export of wild type DAT, also blocked the rescue effects of bupropion and ibogaine. These data suggest that bupropion and ibogaine promote maturation of DAT by acting as pharmacological chaperones in the ER. Importantly, both drugs rescue DAT maturation and functional activity of the DTDS-associated mutations A314V and R445C. Together, these results are the first demonstration of pharmacological chaperoning of DAT and suggest this may be a viable approach to increase DAT levels in DTDS and other conditions associated with reduced DAT function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Diabetes mellitus and Parkinson disease.

    PubMed

    Pagano, Gennaro; Polychronis, Sotirios; Wilson, Heather; Giordano, Beniamino; Ferrara, Nicola; Niccolini, Flavia; Politis, Marios

    2018-05-08

    To investigate whether diabetes mellitus is associated with Parkinson-like pathology in people without Parkinson disease and to evaluate the effect of diabetes mellitus on markers of Parkinson pathology and clinical progression in drug-naive patients with early-stage Parkinson disease. We compared 25 patients with Parkinson disease and diabetes mellitus to 25 without diabetes mellitus, and 14 patients with diabetes mellitus and no Parkinson disease to 14 healthy controls (people with no diabetes mellitus or Parkinson disease). The clinical diagnosis of diabetes mellitus was confirmed by 2 consecutive fasting measurements of serum glucose levels >126 mL/dL. Over a 36-month follow-up period, we then investigated in the population with Parkinson disease whether the presence of diabetes mellitus was associated with faster motor progression or cognitive decline. The presence of diabetes mellitus was associated with higher motor scores ( p < 0.01), lower striatal dopamine transporter binding ( p < 0.05), and higher tau CSF levels ( p < 0.05) in patients with Parkinson disease. In patients with diabetes but without Parkinson disease, the presence of diabetes mellitus was associated with lower striatal dopamine transporter binding ( p < 0.05) and higher tau ( p < 0.05) and α-synuclein ( p < 0.05) CSF levels compared to healthy controls. At the Cox survival analysis in the population of patients with Parkinson disease, the presence of diabetes mellitus was associated with faster motor progression (hazard ratio = 4.521, 95% confidence interval = 1.468-13.926; p < 0.01) and cognitive decline (hazard ratio = 9.314, 95% confidence interval = 1.164-74.519; p < 0.05). Diabetes mellitus may predispose toward a Parkinson-like pathology, and when present in patients with Parkinson disease, can induce a more aggressive phenotype. © 2018 American Academy of Neurology.

  11. Oleic Acid in the Ventral Tegmental Area Inhibits Feeding, Food Reward, and Dopamine Tone.

    PubMed

    Hryhorczuk, Cecile; Sheng, Zhenyu; Décarie-Spain, Léa; Giguère, Nicolas; Ducrot, Charles; Trudeau, Louis-Éric; Routh, Vanessa H; Alquier, Thierry; Fulton, Stephanie

    2018-02-01

    Long-chain fatty acids (FAs) act centrally to decrease food intake and hepatic glucose production and alter hypothalamic neuronal activity in a manner that depends on FA type and cellular transport proteins. However, it is not known whether FAs are sensed by ventral tegmental area (VTA) dopamine (DA) neurons to control food-motivated behavior and DA neurotransmission. We investigated the impact of the monounsaturated FA oleate in the VTA on feeding, locomotion, food reward, and DA neuronal activity and DA neuron expression of FA-handling proteins and FA uptake. A single intra-VTA injection of oleate, but not of the saturated FA palmitate, decreased food intake and increased locomotor activity. Furthermore, intra-VTA oleate blunted the rewarding effects of high-fat/sugar food in an operant task and inhibited DA neuronal firing. Using sorted DA neuron preparations from TH-eGFP mice we found that DA neurons express FA transporter and binding proteins, and are capable of intracellular transport of long-chain FA. Finally, we demonstrate that a transporter blocker attenuates FA uptake into DA neurons and blocks the effects of intra-VTA oleate to decrease food-seeking and DA neuronal activity. Together, these results suggest that DA neurons detect FA and that oleate has actions in the VTA to suppress DA neuronal activity and food seeking following cellular incorporation. These findings highlight the capacity of DA neurons to act as metabolic sensors by responding not only to hormones but also to FA nutrient signals to modulate food-directed behavior.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riss P. J.; Fowler J.; Riss, P.J.

    N-(4-fluorobut-2-yn-1-yl)-2{beta}-carbomethoxy-3{beta}-(4{prime}-tolyl)nortropane (PR04.MZ, 1) is a PET radioligand for the non-invasive exploration of the function of the cerebral dopamine transporter (DAT). A reliable automated process for routine production of the carbon-11 labelled analogue [{sup 11}C]PR04.MZ ([{sup 11}C]-1) has been developed using GMP compliant equipment. An adult female Papioanubis baboon was studied using a test-retest protocol with [{sup 11}C]-1 in order to assess test-retest reliability, metabolism and CNS distribution profile of the tracer in non-human primates. Blood sampling was performed throughout the studies for determination of the free fraction in plasma (fP), plasma input functions and metabolic degradation of the radiotracer [{supmore » 11}C]-1. Time-activity curves were derived for the putamen, the caudate nucleus, the ventral striatum, the midbrain and the cerebellum. Distribution volumes (VT) and non-displaceable binding potentials (BPND) for various brain regions and the blood were obtained from kinetic modelling. [{sup 11}C]-1 shows promising results as aselective marker of the presynaptic dopamine transporter. With the reliable visualisation of the extra-striatal dopaminergic neurons and no indication on labelled metabolites, the tracer provides excellent potential for translation into man.« less

  13. Phosphorylation mechanisms in dopamine transporter regulation.

    PubMed

    Foster, James D; Vaughan, Roxanne A

    2017-10-01

    The dopamine transporter (DAT) is a plasma membrane phosphoprotein that actively translocates extracellular dopamine (DA) into presynaptic neurons. The transporter is the primary mechanism for control of DA levels and subsequent neurotransmission, and is the target for abused and therapeutic drugs that exert their effects by suppressing reuptake. The transport capacity of DAT is acutely regulated by signaling systems and drug exposure, providing neurons the ability to fine-tune DA clearance in response to specific conditions. Kinase pathways play major roles in these mechanisms, and this review summarizes the current status of DAT phosphorylation characteristics and the evidence linking transporter phosphorylation to control of reuptake and other functions. Greater understanding of these processes may aid in elucidation of their possible contributions to DA disease states and suggest specific phosphorylation sites as targets for therapeutic manipulation of reuptake. Copyright © 2016. Published by Elsevier B.V.

  14. Guanine nucleotide regulatory protein co-purifies with the D/sub 2/-dopamine receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senogles, S.E.; Caron, M.G.

    1986-05-01

    The D/sub 2/-dopamine receptor from bovine anterior pituitary was purified approx.1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with /sup 3/H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D/sub 2/ receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 ..mu..M NPA. /sup 35/S-GTP..gamma..Smore » binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D/sub 2/-dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D/sub 2/-dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes.« less

  15. Differential action of methamphetamine on tyrosine hydroxylase and dopamine transport in the nigrostriatal pathway of μ-opioid receptor knockout mice.

    PubMed

    Park, Sang Won; He, Zhi; Shen, Xine; Roman, Richard J; Ma, Tangeng

    2012-06-01

    Extensive anatomical and functional interactions exist between central dopaminergic and opioidergic systems and both systems are proposed to be targets for amphetamine-like drugs. We have previously reported that μ-opioid receptor (μ-OR) knockout mice are resistant to the loss of dopamine in the striatum and the development of behavioral sensitization induced by repeated methamphetamine (METH) treatment. The present study assessed whether METH-treated μ-OR knockout mice exhibit a differential response of the expression of dopamine transporter and tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine synthesis and maintaining dopamine levels. Mice daily received intraperitoneal injection of METH (0, 0.6, 2.5, or 10 mg/kg) for 7 days and sacrificed on day 11 (4 days after the last injection). The expression of TH protein in the striatum and the levels of TH mRNA and number of TH positive neurons in the substantia nigra were reduced in wild-type mice treated with METH (2.5 and 10 mg/kg), but not in the μ-OR knockout mice. In contrast, METH exposure at the highest dose (10 mg/kg) reduced dopamine transporter levels in both strains of mice. These results suggest that the μ-OR contributes to METH-induced loss of dopamine and behavioral sensitization by decreasing the expression of TH.

  16. Optical Control of Dopamine Receptors Using a Photoswitchable Tethered Inverse Agonist.

    PubMed

    Donthamsetti, Prashant C; Winter, Nils; Schönberger, Matthias; Levitz, Joshua; Stanley, Cherise; Javitch, Jonathan A; Isacoff, Ehud Y; Trauner, Dirk

    2017-12-27

    Family A G protein-coupled receptors (GPCRs) control diverse biological processes and are of great clinical relevance. Their archetype rhodopsin becomes naturally light sensitive by binding covalently to the photoswitchable tethered ligand (PTL) retinal. Other GPCRs, however, neither bind covalently to ligands nor are light sensitive. We sought to impart the logic of rhodopsin to light-insensitive Family A GPCRs in order to enable their remote control in a receptor-specific, cell-type-specific, and spatiotemporally precise manner. Dopamine receptors (DARs) are of particular interest for their roles in motor coordination, appetitive, and aversive behavior, as well as neuropsychiatric disorders such as Parkinson's disease, schizophrenia, mood disorders, and addiction. Using an azobenzene derivative of the well-known DAR ligand 2-(N-phenethyl-N-propyl)amino-5-hydroxytetralin (PPHT), we were able to rapidly, reversibly, and selectively block dopamine D1 and D2 receptors (D1R and D2R) when the PTL was conjugated to an engineered cysteine near the dopamine binding site. Depending on the site of tethering, the ligand behaved as either a photoswitchable tethered neutral antagonist or inverse agonist. Our results indicate that DARs can be chemically engineered for selective remote control by light and provide a template for precision control of Family A GPCRs.

  17. Investigating the structural impact of S311C mutation in DRD2 receptor by molecular dynamics & docking studies.

    PubMed

    Podder, Avijit; Pandey, Deeksha; Latha, N

    2016-04-01

    Dopamine receptors (DR) are neuronal cell surface proteins that mediate the action of neurotransmitter dopamine in brain. Dopamine receptor D2 (DRD2) that belongs to G-protein coupled receptors (GPCR) family is a major therapeutic target for of various neurological and psychiatric disorders in human. The third inter cellular loop (ICL3) in DRD2 is essential for coupling G proteins and several signaling scaffold proteins. A mutation in ICL3 can interfere with this binding interface, thereby altering the DRD2 signaling. In this study we have examined the deleterious effect of serine to cysteine mutation at position 311 (S311C) in the ICL3 region that is implicated in diseases like schizophrenia and alcoholism. An in silico structure modeling approach was employed to determine the wild type (WT) and mutant S311C structures of DRD2, scaffold proteins - Gαi/o and NEB2. Protein-ligand docking protocol was exercised to predict the interactions of natural agonist dopamine with both the WT and mutant structures of DRD2. Besides, atomistic molecular dynamics (MD) simulations were performed to provide insights into essential dynamics of the systems-unbound and dopamine bound DRD2 (WT and mutant) and three independent simulations for Gαi, Gαo and NEB2 systems. To provide information on intra-molecular arrangement of the structures, a comprehensive residue interactions network of both dopamine bound WT and mutant DRD2 protein were studied. We also employed a protein-protein docking strategy to find the interactions of scaffold proteins - Gαi/o and NEB2 with both dopamine bound WT and mutant structures of DRD2. We observed a marginal effect of the mutation in dopamine binding mechanism on the trajectories analyzed. However, we noticed a significant structural alteration of the mutant receptor which affects Gαi/o and NEB2 binding that can be causal for malfunctioning in cAMP-dependent signaling and Ca(+) homeostasis in the brain dopaminergic system leading to neuropsychiatric disorders. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. No association between schizophrenia and polymorphisms within the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, J.; Williams, J.; Asherson, P.

    1995-02-27

    It has been suggested that the cytochrome P450 mono-oxygenase, debrisoquine 4-hydroxylase, is involved in the catabolism and processing of neurotransmitters subsequent to their reuptake into target cells. It is also thought to be related to the dopamine transporter that acts to take released dopamine back up into presynaptic terminals. The present study used the association approach to test the hypothesis that mutations in the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT) confer susceptibility to schizophrenia. There were no differences in allele or genotype frequencies between patients and controls in the mutations causing the poor metaboliser phenotype inmore » CYP2D6. In addition there was no association found between schizophrenia and a 48 bp repeat within the 3{prime} untranslated region of DAT. 18 refs., 2 tabs.« less

  19. Frontal D2/3 Receptor Availability in Schizophrenia Patients Before and After Their First Antipsychotic Treatment: Relation to Cognitive Functions and Psychopathology.

    PubMed

    Nørbak-Emig, Henrik; Ebdrup, Bjørn H; Fagerlund, Birgitte; Svarer, Claus; Rasmussen, Hans; Friberg, Lars; Allerup, Peter N; Rostrup, Egill; Pinborg, Lars H; Glenthøj, Birte Y

    2016-05-01

    We have previously reported associations between frontal D2/3 receptor binding potential positive symptoms and cognitive deficits in antipsychotic-naïve schizophrenia patients. Here, we examined the effect of dopamine D2/3 receptor blockade on cognition. Additionally, we explored the relation between frontal D2/3 receptor availability and treatment effect on positive symptoms. Twenty-five antipsychotic-naïve first-episode schizophrenia patients were examined with the Positive and Negative Syndrome Scale, tested with the cognitive test battery Cambridge Neuropsychological Test Automated Battery, scanned with single-photon emission computerized tomography using the dopamine D2/3 receptor ligand [(123)I]epidepride, and scanned with MRI. After 3 months of treatment with either risperidone (n=13) or zuclopenthixol (n=9), 22 patients were reexamined. Blockade of extrastriatal dopamine D2/3 receptors was correlated with decreased attentional focus (r = -0.615, P=.003) and planning time (r = -0.436, P=.048). Moreover, baseline frontal dopamine D2/3 binding potential and positive symptom reduction correlated positively (D2/3 receptor binding potential left frontal cortex rho = 0.56, P=.003; D2/3 receptor binding potential right frontal cortex rho = 0.48, P=.016). Our data support the hypothesis of a negative influence of D2/3 receptor blockade on specific cognitive functions in schizophrenia. This is highly clinically relevant given the well-established association between severity of cognitive disturbances and a poor functional outcome in schizophrenia. Additionally, the findings support associations between frontal D2/3 receptor binding potential at baseline and the effect of antipsychotic treatment on positive symptoms. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  20. Atypical Dopamine Uptake Inhibitors that Provide Clues About Cocaine's Mechanism at the Dopamine Transporter

    NASA Astrophysics Data System (ADS)

    Hauck Newman, Amy; Katz, Jonathan L.

    The dopamine transporter (DAT) has been a primary target for cocaine abuse/addiction medication discovery. However predicted addiction liability and limited clinical evaluation has provided a formidable challenge for development of these agents for human use. The unique and atypical pharmacological profile of the benztropine (BZT) class of dopamine uptake inhibitors, in preclinical models of cocaine effects and abuse, has encouraged further development of these agents. Moreover, in vivo studies have challenged the original DAT hypothesis and demonstrated that DAT occupancy and subsequent increases in dopamine produced by BZT analogues are significantly delayed and long lasting, as compared to cocaine. These important and distinctive elements are critical to the lack of abuse liability among BZT analogues, and improve their potential for development as treatments for cocaine abuse and possibly other neuropsychiatric disorders.

  1. Structural analysis of thermostabilizing mutations of cocaine esterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narasimhan, Diwahar; Nance, Mark R.; Gao, Daquan

    Cocaine is considered to be the most addictive of all substances of abuse and mediates its effects by inhibiting monoamine transporters, primarily the dopamine transporters. There are currently no small molecules that can be used to combat its toxic and addictive properties, in part because of the difficulty of developing compounds that inhibit cocaine binding without having intrinsic effects on dopamine transport. Most of the effective cocaine inhibitors also display addictive properties. We have recently reported the use of cocaine esterase (CocE) to accelerate the removal of systemic cocaine and to prevent cocaine-induced lethality. However, wild-type CocE is relatively unstablemore » at physiological temperatures ({tau}{sub 1/2} {approx} 13 min at 37 C), presenting challenges for its development as a viable therapeutic agent. We applied computational approaches to predict mutations to stabilize CocE and showed that several of these have increased stability both in vitro and in vivo, with the most efficacious mutant (T172R/G173Q) extending half-life up to 370 min. Here we present novel X-ray crystallographic data on these mutants that provide a plausible model for the observed enhanced stability. We also more extensively characterize the previously reported variants and report on a new stabilizing mutant, L169K. The improved stability of these engineered CocE enzymes will have a profound influence on the use of this protein to combat cocaine-induced toxicity and addiction in humans.« less

  2. Structural and Functional Characterization of the Interaction of Snapin with the Dopamine Transporter: Differential Modulation of Psychostimulant Actions.

    PubMed

    Erdozain, Amaia M; De Gois, Stéphanie; Bernard, Véronique; Gorgievski, Victor; Pietrancosta, Nicolas; Dumas, Sylvie; Macedo, Carlos E; Vanhoutte, Peter; Ortega, Jorge E; Meana, J Javier; Tzavara, Eleni T; Vialou, Vincent; Giros, Bruno

    2018-04-01

    The importance of dopamine (DA) neurotransmission is emphasized by its direct implication in several neurological and psychiatric disorders. The DA transporter (DAT), target of psychostimulant drugs, is the key protein that regulates spatial and temporal activity of DA in the synaptic cleft via the rapid reuptake of DA into the presynaptic terminal. There is strong evidence suggesting that DAT-interacting proteins may have a role in its function and regulation. Performing a two-hybrid screening, we identified snapin, a SNARE-associated protein implicated in synaptic transmission, as a new binding partner of the carboxyl terminal of DAT. Our data show that snapin is a direct partner and regulator of DAT. First, we determined the domains required for this interaction in both proteins and characterized the DAT-snapin interface by generating a 3D model. Using different approaches, we demonstrated that (i) snapin is expressed in vivo in dopaminergic neurons along with DAT; (ii) both proteins colocalize in cultured cells and brain and, (iii) DAT and snapin are present in the same protein complex. Moreover, by functional studies we showed that snapin produces a significant decrease in DAT uptake activity. Finally, snapin downregulation in mice produces an increase in DAT levels and transport activity, hence increasing DA concentration and locomotor response to amphetamine. In conclusion, snapin/DAT interaction represents a direct link between exocytotic and reuptake mechanisms and is a potential target for DA transmission modulation.

  3. Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farde, L.; Wiesel, F.A.; Halldin, C.

    1988-01-01

    Using positron emission tomography and the carbon 11-labeled ligand raclopride, central D2-dopamine receptor occupancy in the putamen was determined in psychiatric patients treated with clinical doses of psychoactive drugs. Receptor occupancy in drug-treated patients was defined as the percent reduction of specific carbon 11-raclopride binding in relation to the expected binding in the absence of drug treatment. Clinical treatment of schizophrenic patients with 11 chemically distinct antipsychotic drugs (including both classic and atypical neuroleptics such as clozapine) resulted in a 65% to 85% occupancy of D2-dopamine receptors. In a depressed patient treated with the tricyclic antidepressant nortriptyline, no occupancy wasmore » found. The time course for receptor occupancy and drug levels was followed after withdrawal of sulpiride or haloperidol. D2-dopamine receptor occupancy remained above 65% for many hours despite a substantial reduction of serum drug concentrations. In a sulpiride-treated patient, the dosage was reduced in four steps over a nine-week period and a curvilinear relationship was demonstrated between central D2-dopamine receptor occupancy and serum drug concentrations. The results demonstrate that clinical doses of all the currently used classes of antipsychotic drugs cause a substantial blockade of central D2-dopamine receptors in humans. This effect appears to be selective for the antipsychotics, since it was not induced by the antidepressant nortriptyline.« less

  4. No difference in striatal dopamine transporter availability between active smokers, ex-smokers and non-smokers using [123I]FP-CIT (DaTSCAN) and SPECT.

    PubMed

    Thomsen, Gerda; Knudsen, Gitte Moos; Jensen, Peter S; Ziebell, Morten; Holst, Klaus K; Asenbaum, Susanne; Booij, Jan; Darcourt, Jacques; Dickson, John C; Kapucu, Ozlem L; Nobili, Flavio; Sabri, Osama; Sera, Terez; Tatsch, Klaus; Tossici-Bolt, Livia; Laere, Koen Van; Borght, Thierry Vander; Varrone, Andrea; Pagani, Marco; Pinborg, Lars Hageman

    2013-05-20

    Mesolimbic and nigrostriatal dopaminergic pathways play important roles in both the rewarding and conditioning effects of drugs. The dopamine transporter (DAT) is of central importance in regulating dopaminergic neurotransmission and in particular in activating the striatal D2-like receptors. Molecular imaging studies of the relationship between DAT availability/dopamine synthesis capacity and active cigarette smoking have shown conflicting results. Through the collaboration between 13 SPECT centres located in 10 different European countries, a database of FP-CIT-binding in healthy controls was established. We used the database to test the hypothesis that striatal DAT availability is changed in active smokers compared to non-smokers and ex-smokers. A total of 129 healthy volunteers were included. Subjects were divided into three categories according to past and present tobacco smoking: (1) non-smokers (n = 64), (2) ex-smokers (n = 39) and (3) active smokers (n = 26). For imaging of the DAT availability, we used [123I]FP-CIT (DaTSCAN) and single photon emission computed tomography (SPECT). Data were collected in collaboration between 13 SPECT centres located in 10 different European countries. The striatal measure of DAT availability was analyzed in a multiple regression model with age, SPECT centre and smoking as predictor. There was no statistically significant difference in DAT availability between the groups of active smokers, ex-smokers and non-smokers (p = 0.34). Further, we could not demonstrate a significant association between striatal DAT and the number of cigarettes per day or total lifetime cigarette packages in smokers and ex-smokers. Our results do not support the hypothesis that large differences in striatal DAT availability are present in smokers compared to ex-smokers and healthy volunteers with no history of smoking.

  5. GZ-793A inhibits the neurochemical effects of methamphetamine via a selective interaction with the vesicular monoamine transporter-2.

    PubMed

    Nickell, Justin R; Siripurapu, Kiran B; Horton, David B; Zheng, Guangrong; Crooks, Peter A; Dwoskin, Linda P

    2017-01-15

    Lobeline and lobelane inhibit the behavioral and neurochemical effects of methamphetamine via an interaction with the vesicular monoamine transporter-2 (VMAT2). However, lobeline has high affinity for nicotinic receptors, and tolerance develops to the behavioral effects of lobelane. A water-soluble analog of lobelane, R-N-(1,2-dihydroxypropyl)-2,6-cis-di-(4-methoxyphenethyl)piperidine hydrochloride (GZ-793A), also interacts selectively with VMAT2 to inhibit the effects of methamphetamine, but does not produce behavioral tolerance. The current study further evaluated the mechanism underlying the GZ-793A-mediated inhibition of the neurochemical effects of methamphetamine. In contrast to lobeline, GZ-793A does not interact with the agonist recognition site on α4β2 * and α7 * nicotinic receptors. GZ-793A (0.3-100µM) inhibited methamphetamine (5µM)-evoked fractional dopamine release from rat striatal slices, and did not evoke dopamine release in the absence of methamphetamine. Furthermore, GZ-793A (1-100µM) inhibited neither nicotine (30µM)-evoked nor electrical field-stimulation-evoked (100Hz/1min) fractional dopamine release. Unfortunately, GZ-793A inhibited [ 3 H]dofetilide binding to human-ether-a-go-go related gene channels expressed on human embryonic kidney cells, and further, prolonged action potentials in rabbit cardiac Purkinje fibers, suggesting the potential for GZ-793A to induce ventricular arrhythmias. Thus, GZ-793A selectively inhibits the neurochemical effects of methamphetamine and lacks nicotinic receptor interactions; however, development as a pharmacotherapy for methamphetamine use disorders will not be pursued due to its potential cardiac liabilities. Copyright © 2016. Published by Elsevier B.V.

  6. Modeling and analysis of PET studies with norepinephrine transporter ligands: the search for a reference region.

    PubMed

    Logan, Jean; Ding, Yu-Shin; Lin, Kuo-Shyan; Pareto, Deborah; Fowler, Joanna; Biegon, Anat

    2005-07-01

    The development of positron emission tomography (PET) ligands for the norepinephrine transporter (NET) has been slow compared to the development of radiotracers for others systems, such as the dopamine (DAT) or the serotonin transporters (SERT). The main reason for this appears to be the high nonspecific (non-NET) binding exhibited by many of these tracers, which makes the identification of a reference region difficult. With other PET ligands the use of a reference region increases the reproducibility of the outcome measure in test/retest studies. The focus of this work is to identify a suitable reference region or means of normalizing data for the NET ligands investigated. We have analyzed the results of PET studies in the baboon brain with labeled reboxetine derivatives (S,S)-[(11)C]O-methyl reboxetine (SS-MRB), (S,S)-[(18)F]fluororeboxetine (SS-FRB) as well as O-[(11)C]nisoxetine and N-[(11)C]nisoxetine (NIS), and, for comparison, the less active (R,R) enantiomers (RR-MRB, RR-FRB) in terms of the distribution volume (DV) using measured arterial input functions. (1) For a given subject, a large variation in DV for successive baseline studies was observed in regions with both high and low NET density. (2) The occipital cortex and the basal ganglia were found to be the regions with the smallest change between baseline (SS-MRB) and pretreatment with cocaine, and were therefore used as a composite reference region for calculation of a distribution volume ratio (DVR). (3) The variability [as measured by the coefficient of variation (CV) = standard deviation/mean] in the distribution volume ratio (DVR) of thalamus (to reference region) was considerably reduced over that of the DV using this composite reference region. (4) Pretreatment with nisoxetine (1.0 mg/kg 10 min prior to tracer) in one study produced (in decreasing order) reductions in thalamus, cerebellum, cingulate and frontal cortex consistent with known NET densities. (5) [(11)C]Nisoxetine had a higher background non-NET binding (DV) than the other tracers reported here with basal ganglia (a non-NET region) higher than thalamus. The reboxetine derivatives show a lot of promise as tracers for human PET studies of the norepinephrine system. We have identified a strategy for normalizing DVs to a reference region with the understanding that the DVR for these tracers may not be related to the binding potential in the same way as, for example, for the dopamine tracers, since the non-NET binding may differ between the target and nontarget regions. From our baboon studies the average DVR for thalamus (n = 18) for SS-MRB is 1.8; however, the lower limit is most likely less than 1 due to this difference in non-NET binding.

  7. Dopamine Transporter Genotype Predicts Attentional Asymmetry in Healthy Adults

    ERIC Educational Resources Information Center

    Newman, Daniel P.; O'Connell, Redmond G.; Nathan, Pradeep J.; Bellgrove, Mark A.

    2012-01-01

    A number of recent studies suggest that DNA variation in the dopamine transporter gene (DAT1) influences spatial attention asymmetry in clinical populations such as ADHD, but confirmation in non-clinical samples is required. Since non-spatial factors such as attentional load have been shown to influence spatial biases in clinical conditions, here…

  8. Dopamine Transporter Neuroimaging as an Enrichment Biomarker in Early Parkinson's Disease Clinical Trials: A Disease Progression Modeling Analysis

    PubMed Central

    Nicholas, Timothy; Tsai, Kuenhi; Macha, Sreeraj; Sinha, Vikram; Stone, Julie; Corrigan, Brian; Bani, Massimo; Muglia, Pierandrea; Watson, Ian A.; Kern, Volker D.; Sheveleva, Elena; Marek, Kenneth; Stephenson, Diane T.; Romero, Klaus

    2017-01-01

    Abstract Given the recognition that disease‐modifying therapies should focus on earlier Parkinson's disease stages, trial enrollment based purely on clinical criteria poses significant challenges. The goal herein was to determine the utility of dopamine transporter neuroimaging as an enrichment biomarker in early motor Parkinson's disease clinical trials. Patient‐level longitudinal data of 672 subjects with early‐stage Parkinson's disease in the Parkinson's Progression Markers Initiative (PPMI) observational study and the Parkinson Research Examination of CEP‐1347 Trial (PRECEPT) clinical trial were utilized in a linear mixed‐effects model analysis. The rate of worsening in the motor scores between subjects with or without a scan without evidence of dopamine transporter deficit was different both statistically and clinically. The average difference in the change from baseline of motor scores at 24 months between biomarker statuses was –3.16 (90% confidence interval [CI] = –0.96 to –5.42) points. Dopamine transporter imaging could identify subjects with a steeper worsening of the motor scores, allowing trial enrichment and 24% reduction of sample size. PMID:28749580

  9. [Study of dopamine transporter imaging on the brain of children with autism].

    PubMed

    Sun, Xiaomian; Yue, Jing; Zheng, Chongxun

    2008-04-01

    This study was conducted to evaluate the applicability of 99mTc-2beta-[ N, N'-bis (2-mercaptoethyl) ethylenediamino]methyl,3beta(4-chlorophenyl)tropane(TRODAT-1) dopamine transporter(DAT) SPECT imaging in children with autism, and thus to provide an academic basis for the etiology, mechanism and clinical therapy of autism. Ten autistic children and ten healthy controls were examined with 99mTc-TRODAT-1 DAT SPECT imaging. Striatal specific uptake of 99mTc-TRODAT-1 was calculated with region of interest analysis according to the ratics between striatum and cerebellum [(STR-BKG)/BKG]. There was no statistically significant difference in semiquantitative dopamine transporter between the bilateral striata of autistic children (P=0.562), and between those of normal controls (p=0.573); Dopamine transporter in the brain of patients with autism increased significantly as compared with that in the brain of normal controls (P=0.017). Dopaminergic nervous system is dysfunctioning in the brain of children with autism, and DAT 99mTc-TRODAT-1 SPECT imaging on the brain will help the imaging diagnosis of childhcod autism.

  10. Heightened Dopaminergic Response to Amphetamine at the D3 Dopamine Receptor in Methamphetamine Users

    PubMed Central

    Boileau, Isabelle; Payer, Doris; Rusjan, Pablo M; Houle, Sylvain; Tong, Junchao; McCluskey, Tina; Wilson, Alan A; Kish, Stephen J

    2016-01-01

    Neuroimaging studies in stimulant use (eg, cocaine, methamphetamine) disorders show that diminished dopamine release by dopamine-elevating drugs is a potential marker of relapse and suggest that increasing dopamine at the D2/3 receptors may be therapeutically beneficial. In contrast, recent investigations indicate heightened D3 receptor levels in stimulant users prompting the view that D3 antagonism may help prevent relapse. Here we tested whether a ‘blunted' response to amphetamine in methamphetamine (MA) users extends to D3-rich brain areas. Fourteen MA users and 15 healthy controls completed two positron emission tomographic scans with a D3-preferring probe [11C]-(+)-PHNO at baseline and after amphetamine (0.4 mg/kg). Relative to healthy controls, MA users had greater decreases in [11C]-(+)-PHNO binding (increased dopamine release) after amphetamine in D3-rich substantia nigra (36 vs 20%, p=0.03) and globus pallidus (30 vs 17%, p=0.06), which correlated with self-reported ‘drug wanting'. We did not observe a ‘blunted' dopamine response to amphetamine in D2-rich striatum; however, drug use severity was negatively associated with amphetamine-induced striatal changes in [11C]-(+)-PHNO binding. Our study provides evidence that dopamine transmission in extrastriatal ‘D3-areas' is not blunted but rather increased in MA users. Together with our previous finding of elevated D3 receptor level in MA users, the current observation suggests that greater dopaminergic transmission at the D3 dopamine receptor may contribute to motivation to use drugs and argues in favor of D3 antagonism as a possible therapeutic tool to reduce craving and relapse in MA addiction. PMID:27353309

  11. Heightened Dopaminergic Response to Amphetamine at the D3 Dopamine Receptor in Methamphetamine Users.

    PubMed

    Boileau, Isabelle; Payer, Doris; Rusjan, Pablo M; Houle, Sylvain; Tong, Junchao; McCluskey, Tina; Wilson, Alan A; Kish, Stephen J

    2016-12-01

    Neuroimaging studies in stimulant use (eg, cocaine, methamphetamine) disorders show that diminished dopamine release by dopamine-elevating drugs is a potential marker of relapse and suggest that increasing dopamine at the D 2/3 receptors may be therapeutically beneficial. In contrast, recent investigations indicate heightened D 3 receptor levels in stimulant users prompting the view that D 3 antagonism may help prevent relapse. Here we tested whether a 'blunted' response to amphetamine in methamphetamine (MA) users extends to D 3 -rich brain areas. Fourteen MA users and 15 healthy controls completed two positron emission tomographic scans with a D 3 -preferring probe [ 11 C]-(+)-PHNO at baseline and after amphetamine (0.4 mg/kg). Relative to healthy controls, MA users had greater decreases in [ 11 C]-(+)-PHNO binding (increased dopamine release) after amphetamine in D 3 -rich substantia nigra (36 vs 20%, p=0.03) and globus pallidus (30 vs 17%, p=0.06), which correlated with self-reported 'drug wanting'. We did not observe a 'blunted' dopamine response to amphetamine in D 2 -rich striatum; however, drug use severity was negatively associated with amphetamine-induced striatal changes in [ 11 C]-(+)-PHNO binding. Our study provides evidence that dopamine transmission in extrastriatal 'D 3 -areas' is not blunted but rather increased in MA users. Together with our previous finding of elevated D 3 receptor level in MA users, the current observation suggests that greater dopaminergic transmission at the D 3 dopamine receptor may contribute to motivation to use drugs and argues in favor of D 3 antagonism as a possible therapeutic tool to reduce craving and relapse in MA addiction.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilts, R.P.; Kalivas, P.W.

    The enkephalin analog (2-D-penicillamine, 5-D-penicillamine)enkephalin was radioiodinated (125I-DPDPE) and shown to retain a pharmacological selectivity characteristic of the delta opioid receptor in in vitro binding studies. The distributions of 125I-DPDPE binding, using in vitro autoradiographic techniques, were similar to those previously reported for the delta opioid receptor. The nucleus accumbens, striatum, and medial prefrontal cortex contain dense gradients of 125I-DPDPE binding in regions known to receive dopaminergic afferents emanating from the mesencephalic tegmentum. Selective chemical lesions of the ventral tegmental area and substantia nigra were employed to deduce the location of the 125I-DPDPE binding within particular regions of the mesocorticolimbicmore » dopamine system. Unilateral lesions of dopamine perikarya (A9 and A10) within the ventral tegmental area and substantia nigra produced by mesencephalic injection of 6-hydroxydopamine resulted in significant (20-30%) increases in 125I-DPDPE binding contralateral to the lesion within the striatum and nucleus accumbens. Lesions of the perikarya (dopaminergic and nondopaminergic) of the ventral tegmental area, induced by quinolinic acid injections, caused increases of less magnitude within these same nuclei. No significant alterations in 125I-DPDPE binding were observed within the mesencephalon as a result of either treatment. The specificity of the lesions was confirmed by immunocytochemistry for tyrosine hydroxylase. These results suggest that the enkephalins and opioid agonists acting through delta opioid receptors do not directly modulate dopaminergic afferents but do regulate postsynaptic targets of the mesocorticolimbic dopamine system.« less

  13. ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila

    PubMed Central

    van der Voet, M; Harich, B; Franke, B; Schenck, A

    2016-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neuropsychiatric disorder with hyperactivity as one of the hallmarks. Aberrant dopamine signaling is thought to be a major theme in ADHD, but how this relates to the vast majority of ADHD candidate genes is illusive. Here we report a Drosophila dopamine-related locomotor endophenotype that is shared by pan-neuronal knockdown of orthologs of the ADHD-associated genes Dopamine transporter (DAT1) and Latrophilin (LPHN3), and of a gene causing a monogenic disorder with frequent ADHD comorbidity: Neurofibromin (NF1). The locomotor signature was not found in control models and could be ameliorated by methylphenidate, validating its relevance to symptoms of the disorder. The Drosophila ADHD endophenotype can be further exploited in high throughput to characterize the growing number of candidate genes. It represents an equally useful outcome measure for testing chemical compounds to define novel treatment options. PMID:25962619

  14. Glutamatergic modulation of hyperactivity in mice lacking the dopamine transporter

    PubMed Central

    Gainetdinov, Raul R.; Mohn, Amy R.; Bohn, Laura M.; Caron, Marc G.

    2001-01-01

    In the brain, dopamine exerts an important modulatory influence over behaviors such as emotion, cognition, and affect as well as mechanisms of reward and the control of locomotion. The dopamine transporter (DAT), which reuptakes the released neurotransmitter into presynaptic terminals, is a major determinant of the intensity and duration of the dopaminergic signal. Knockout mice lacking the dopamine transporter (DAT-KO mice) display marked changes in dopamine homeostasis that result in elevated dopaminergic tone and pronounced locomotor hyperactivity. A feature of DAT-KO mice is that their hyperactivity can be inhibited by psychostimulants and serotonergic drugs. The pharmacological effect of these drugs occurs without any observable changes in dopaminergic parameters, suggesting that other neurotransmitter systems in addition to dopamine might contribute to the control of locomotion in these mice. We report here that the hyperactivity of DAT-KO mice can be markedly further enhanced when N-methyl-d-aspartate receptor-mediated glutamatergic transmission is blocked. Conversely, drugs that enhance glutamatergic transmission, such as positive modulators of l-α-amino-3-hydroxy-5-methylisoxazole-4-propionate glutamate receptors, suppress the hyperactivity of DAT-KO mice. Interestingly, blockade of N- methyl-d-aspartate receptors prevented the inhibitory effects of both psychostimulant and serotonergic drugs on hyperactivity. These findings support the concept of a reciprocal functional interaction between dopamine and glutamate in the basal ganglia and suggest that agents modulating glutamatergic transmission may represent an approach to manage conditions associated with dopaminergic dysfunction. PMID:11572967

  15. Reduced striatal D2 receptor binding in myoclonus-dystonia.

    PubMed

    Beukers, R J; Booij, J; Weisscher, N; Zijlstra, F; van Amelsvoort, T A M J; Tijssen, M A J

    2009-02-01

    To study striatal dopamine D(2) receptor availability in DYT11 mutation carriers of the autosomal dominantly inherited disorder myoclonus-dystonia (M-D). Fifteen DYT11 mutation carriers (11 clinically affected) and 15 age- and sex-matched controls were studied using (123)I-IBZM SPECT. Specific striatal binding ratios were calculated using standard templates for striatum and occipital areas. Multivariate analysis with corrections for ageing and smoking showed significantly lower specific striatal to occipital IBZM uptake ratios (SORs) both in the left and right striatum in clinically affected patients and also in all DYT11 mutation carriers compared to control subjects. Our findings are consistent with the theory of reduced dopamine D(2) receptor (D2R) availability in dystonia, although the possibility of increased endogenous dopamine, and consequently, competitive D2R occupancy cannot be ruled out.

  16. [Neurotensin-like oligopeptides as potential antipsychotics: effect on dopamine system].

    PubMed

    Kost, N V; Meshavkin, V K; Batishcheva, E Iu; Sokolov, O Iu; Andreeva, L A; Miasoedov, N F

    2011-01-01

    According to published data, peptide neurotensin is considered as endogenous antipsychotic agent. A series of oligopeptides have been synthesized based on the proposed active center of neurotensin. These oligopeptides (called neurotensin-like peptides, NLPs) have been studied on behavioral models, in which the functional state of the dopamine system of animals was modified by apomorphine injections. The results of verticalization, stereotypy, and yawning tests revealed NLPs that behave as antagonists of dopamine receptors. Radioligand analysis showed that these peptides compete for specific binding to these receptors with sulpiride, which is a D2-type selective antagonist of dopamine receptors. The high degree of NLPs efficiency manifested in the behavioral tests and radioligand analysis suggests that the their antipsychotic action can be mediated by dopamine receptors.

  17. Potentiometric and NMR complexation studies of phenylboronic acid PBA and its aminophosphonate analog with selected catecholamines

    NASA Astrophysics Data System (ADS)

    Ptak, Tomasz; Młynarz, Piotr; Dobosz, Agnieszka; Rydzewska, Agata; Prokopowicz, Monika

    2013-05-01

    Boronic acids are a class of intensively explored compounds, which according to their specific properties have been intensively explored in last decades. Among them phenylboronic acids and their derivatives are most frequently examined as receptors for diverse carbohydrates. In turn, there is a large gap in basic research concerning complexation of catecholamines by these compounds. Therefore, we decided to undertake studies on interaction of chosen catecholamines, namely: noradrenaline (norephinephrine), dopamine, L-DOPA, DOPA-P (phosphonic analog of L-DOPA) and catechol, with simple phenyl boronic acid PBA by means of potentiometry and NMR spectroscopy. For comparison, the binding properties of recently synthesized phenylboronic receptor 1 bearing aminophosphonate function in meta-position were investigated and showed promising ability to bind catecholamines. The protonation and stability constants of PBA and receptor 1 complexes were examined by potentiometry. The obtained results demonstrated that PBA binds the catecholamines with the following affinity order: noradrenaline ⩾ dopamine ≈ L-DOPA > catechol > DOPA-P, while its modified analog 1 reveals slightly different preferences: dopamine > noradrenaline > catechol > L-DOPA > DOPA-P.

  18. Differences between high-affinity forskolin binding sites in dopamine-riche and other regions of rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poat, J.A.; Cripps, H.E.; Iversen, L.L.

    1988-05-01

    Forskolin labelled with (/sup 3/H) bound to high- and low-affinity sites in the rat brain. The high-affinity site was discretely located, with highest densities in the striatum, nucleus accumbens, olfactory tubercule, substantia nigra, hippocampus, and the molecular layers of the cerebellum. This site did not correlate well with the distribution of adenylate cyclase. The high-affinity striatal binding site may be associated with a stimulatory guanine nucleotide-binding protein. Thus, the number of sites was increased by the addition of Mg/sup 2 +/ and guanylyl imidodiphosphate. Cholera toxin stereotaxically injected into rat striatum increased the number of binding sites, and no furthermore » increase was noted following the subsequent addition of guanyl nucleotide. High-affinity forskolin binding sites in non-dopamine-rich brain areas (hippocampus and cerebullum) were modulated in a qualitatively different manner by guanyl nucleotides. In these areas the number of binding sites was significantly reduced by the addition of guanyl nucleotide. These results suggest that forskolin may have a potential role in identifying different functional/structural guanine nucleotide-binding proteins.« less

  19. [Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2014-01-01

    Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms.

  20. Effect of in vivo exposure to ambient fine particles (PM2.5) on the density of dopamine D2-like receptors and dopamine-induced [35S]-GTPγS binding in rat prefrontal cortex and striatum membranes.

    PubMed

    Andrade-Oliva, María-de-Los-Angeles; Aztatzi-Aguilar, Octavio-Gamaliel; García-Sierra, Francisco; De Vizcaya-Ruiz, Andrea; Arias-Montaño, José-Antonio

    2018-06-01

    Male Sprague-Dawley rats (8-9 weeks-old) were exposed for three days (acute exposure) or eight weeks (subchronic exposure) to purified air or concentrated ambient fine particles, PM 2.5 (≤2.5 μm; 15 to 18-fold of ambient air; 370-445 μg/m 3 ). In membranes from rat prefrontal cortex (PFC) or striatum, the density and function of dopamine D 2 -like receptors (D 2 Rs) were assessed by [ 3 H]-spiperone binding and dopamine-stimulated [ 35 S]-GTPγS binding, respectively. Glial activation was evaluated by immunoperoxidase labeling of the glial fibrillary acidic protein (GFAP). In the PFC, no significant changes in D 2 R density or signaling were observed after the acute and subchronic exposure to PM 2.5 . In the striatum, acute exposure to PM 2.5 decreased D 2 R density, with no effect on signaling efficacy, whereas subchronic exposure did not affect D 2 R density but reduced signaling efficacy. Both acute and subchronic exposure to PM 2.5 induced reactive gliosis in the striatum but not in the PFC. These results indicate that exposure to PM 2.5 induces astrocyte activation and alters striatal dopaminergic transmission. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Mechanism-based inactivation of dopamine beta-hydroxylase by p-cresol and related alkylphenols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodhart, P.J.; DeWolf, W.E. Jr.; Kruse, L.I.

    1987-05-05

    The mechanism-based inhibition of dopamine beta-hydroxylase by p-cresol (4-methylphenol) and other simple structural analogues of dopamine, which lack a basic side-chain nitrogen, is reported. p-Cresol binds DBH by a mechanism that is kinetically indistinguishable from normal dopamine substrate binding. Under conditions (pH 6.6) of random oxygen and phenethylamine substrate addition p-cresol adds randomly, whereas at pH 4.5 or in the presence of fumarate activator addition of p-cresol precedes oxygen binding as is observed with phenethylamine substrate. p-Cresol is shown to be a rapid (kinact = 2.0 min-1, pH 5.0) mechanism-based inactivator of DBH. This inactivation exhibits pseudo-first-order kinetics, is irreversible,more » is prevented by tyramine substrate or competitive inhibitor, and is dependent upon oxygen and ascorbic acid cosubstrates. Inhibition occurs with partial covalent incorporation of p-cresol into DBH. A plot of -log kinact vs. pH shows maximal inactivation occurs at pH 5.0 with dependence upon enzymatic groups with apparent pK values of 4.51 +/- 0.06 and 5.12 +/- 0.06. p-Cresol and related alkylphenols, unlike other mechanism-based inhibitors of DBH, lack a latent electrophile. These inhibitors are postulated to covalently modify DBH by a direct insertion of an aberrant substrate-derived benzylic radical into an active site residue.« less

  2. Interaction of Dopamine Transporter (DAT1) Genotype and Maltreatment for ADHD: A Latent Class Analysis

    ERIC Educational Resources Information Center

    Li, James J.; Lee, Steve S.

    2012-01-01

    Background: Although the association of the dopamine transporter (DAT1) gene and attention-deficit/hyperactivity disorder (ADHD) has been widely studied, far less is known about its potential interaction with environmental risk factors. Given that maltreatment is a replicated risk factor for ADHD, we explored the interaction between DAT1 and…

  3. Interaction of Dopamine Transporter Gene and Observed Parenting Behaviors on Attention-Deficit/Hyperactivity Disorder: A Structural Equation Modeling Approach

    ERIC Educational Resources Information Center

    Li, James J.; Lee, Steve S.

    2013-01-01

    Emerging evidence suggests that some individuals may be simultaneously more responsive to the effects from environmental adversity "and" enrichment (i.e., differential susceptibility). Given that parenting behavior and a variable number tandem repeat polymorphism in the 3'untranslated region of the dopamine transporter (DAT1) gene are…

  4. The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment

    PubMed Central

    Ashok, A H; Marques, T R; Jauhar, S; Nour, M M; Goodwin, G M; Young, A H; Howes, O D

    2017-01-01

    Bipolar affective disorder is a common neuropsychiatric disorder. Although its neurobiological underpinnings are incompletely understood, the dopamine hypothesis has been a key theory of the pathophysiology of both manic and depressive phases of the illness for over four decades. The increased use of antidopaminergics in the treatment of this disorder and new in vivo neuroimaging and post-mortem studies makes it timely to review this theory. To do this, we conducted a systematic search for post-mortem, pharmacological, functional magnetic resonance and molecular imaging studies of dopamine function in bipolar disorder. Converging findings from pharmacological and imaging studies support the hypothesis that a state of hyperdopaminergia, specifically elevations in D2/3 receptor availability and a hyperactive reward processing network, underlies mania. In bipolar depression imaging studies show increased dopamine transporter levels, but changes in other aspects of dopaminergic function are inconsistent. Puzzlingly, pharmacological evidence shows that both dopamine agonists and antidopaminergics can improve bipolar depressive symptoms and perhaps actions at other receptors may reconcile these findings. Tentatively, this evidence suggests a model where an elevation in striatal D2/3 receptor availability would lead to increased dopaminergic neurotransmission and mania, whilst increased striatal dopamine transporter (DAT) levels would lead to reduced dopaminergic function and depression. Thus, it can be speculated that a failure of dopamine receptor and transporter homoeostasis might underlie the pathophysiology of this disorder. The limitations of this model include its reliance on pharmacological evidence, as these studies could potentially affect other monoamines, and the scarcity of imaging evidence on dopaminergic function. This model, if confirmed, has implications for developing new treatment strategies such as reducing the dopamine synthesis and/or release in mania and DAT blockade in bipolar depression. PMID:28289283

  5. Rostrocaudal gradients of dopamine D2/3 receptor binding in striatal subregions measured with [(11)C]raclopride and high-resolution positron emission tomography.

    PubMed

    Alakurtti, Kati; Johansson, Jarkko J; Tuokkola, Terhi; Någren, Kjell; Rinne, Juha O

    2013-11-15

    The human striatum has structural and functional subdivisions, both dorsoventrally and rostrocaudally. To date, the gradients of dopamine D2/3 receptor binding in the human striatum have not been measured with positron emission tomography (PET). Seven healthy male subjects aged 24.5 ± 3.5 years were scanned with brain-dedicated high-resolution research tomography (HRRT, Siemens Medical Solutions, Knoxville, TN, USA) and [(11)C]raclopride. Coronally defined regions of interest (ROIs) of the caudate nucleus, putamen and ventral striatum (VST) were sampled plane-by-plane, 1.5mm apart, on spatially normalized binding potential (BPND) images. Regional [(11)C]raclopride BPND values were calculated using the simplified reference tissue model (SRTM) from a total of 25 coronal planes. An increasing rostrocaudal gradient of the D2/3 receptor binding was detected in the putamen, which is consistent with the known distribution of D2/3 dopamine receptors. In the caudate nucleus, there was an initial increase in the BPND values in the most anterior planes, suggesting that the highest D2/3 receptor binding occurred in the head; however, there was an overall descending gradient. A declining trend was also observed in the VST. The novelty of this study lies in the presentation, for the first time, of the D2/3 receptor binding gradients in each striatal subregion in the brains of living healthy humans. The high spatial resolution provided by HRRT enables frequent sampling of BPND along the longitudinal extent of striatum; this method is superior to the sectioning used in previous post mortem studies. Regarding the functional organization of the striatum, our findings can inform future investigations of normal neurophysiology as well as efforts to differentiate neuropsychiatric disorders affecting the brain dopamine (DA) system. Furthermore, the average distribution of D2/3 receptor binding revealed in this study could serve as a basis for a database that includes distributions of various DA markers as a function of healthy aging. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Nigrostriatal proteasome inhibition impairs dopamine neurotransmission and motor function in minipigs.

    PubMed

    Lillethorup, Thea P; Glud, Andreas N; Alstrup, Aage K O; Mikkelsen, Trine W; Nielsen, Erik H; Zaer, Hamed; Doudet, Doris J; Brooks, David J; Sørensen, Jens Christian H; Orlowski, Dariusz; Landau, Anne M

    2018-05-01

    Parkinson's disease (PD) is characterized by degeneration of dopaminergic neurons in the substantia nigra leading to slowness and stiffness of limb movement with rest tremor. Using ubiquitin proteasome system inhibitors, rodent models have shown nigrostriatal degeneration and motor impairment. We translated this model to the Göttingen minipig by administering lactacystin into the medial forebrain bundle (MFB). Minipigs underwent positron emission tomography (PET) imaging with (+)-α-[ 11 C]dihydrotetrabenazine ([ 11 C]DTBZ), a marker of vesicular monoamine transporter 2 availability, at baseline and three weeks after the unilateral administration of 100 μg lactacystin into the MFB. Compared to their baseline values, minipigs injected with lactacystin showed on average a 36% decrease in ipsilateral striatal binding potential corresponding to impaired presynaptic dopamine terminals. Behaviourally, minipigs displayed asymmetrical motor disability with spontaneous rotations in one of the animals. Immunoreactivity for tyrosine hydroxylase (TH) and HLA-DR-positive microglia confirmed asymmetrical reduction in nigral TH-positive neurons with an inflammatory response in the lactacystin-injected minipigs. In conclusion, direct injection of lactacystin into the MFB of minipigs provides a model of PD with reduced dopamine neurotransmission, TH-positive neuron reduction, microglial activation and behavioural deficits. This large animal model could be useful in studies of symptomatic and neuroprotective therapies with translatability to human PD. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Sex differences in amphetamine-induced displacement of [(18)F]fallypride in striatal and extrastriatal regions: a PET study.

    PubMed

    Riccardi, Patrizia; Zald, David; Li, Rui; Park, Sohee; Ansari, M Sib; Dawant, Benoit; Anderson, Sharlet; Woodward, Neil; Schmidt, Dennis; Baldwin, Ronald; Kessler, Robert

    2006-09-01

    The authors examined gender differences in d-amphetamine-induced displacements of [(18)F]fallypride in the striatal and extrastriatal brain regions and the correlations of these displacements with cognition and sensation seeking. Six women and seven men underwent positron emission tomography (PET) with [(18)F]fallypride before and after an oral dose of d-amphetamine. Percent displacements were calculated using regions of interest and parametric images of dopamine 2 (D(2)) receptor binding potential. Parametric images of dopamine release suggest that the female subjects had greater dopamine release than the male subjects in the right globus pallidus and right inferior frontal gyrus. Gender differences were observed in correlations of changes in cognition and sensation seeking with regional dopamine release. Findings revealed a greater dopamine release in women as well as gender differences in the relationship between regional dopamine release and sensation seeking and cognition.

  8. Structure-activity relationships of substituted N-benzyl piperidines in the GBR series: Synthesis of 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-1-(2-trifluoromethylbenzyl)piperidine, an allosteric modulator of the serotonin transporter.

    PubMed

    Boos, Terrence L; Greiner, Elisabeth; Calhoun, W Jason; Prisinzano, Thomas E; Nightingale, Barbara; Dersch, Christina M; Rothman, Richard B; Jacobson, Arthur E; Rice, Kenner C

    2006-06-01

    A series of 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-(substituted benzyl) piperidines with substituents at the ortho and meta positions in the aromatic ring of the N-benzyl side chain were synthesized and their affinities and selectivities for the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET) were determined. One analogue, 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-1-(2-trifluoromethylbenzyl)piperidine (the C(2)-trifluoromethyl substituted compound), has been found to act as an allosteric modulator of hSERT binding and function. It had little affinity for any of the transporters. Several compounds showed affinity for the DAT in the low nanomolar range and displayed a broad range of SERT/DAT selectivity ratios and very little affinity for the NET. The pharmacological tools provided by the availability of compounds with varying transporter affinity and selectivity could be used to obtain additional information about the properties a compound should have to act as a useful pharmacotherapeutic agent for cocaine addiction and help unravel the pharmacological mechanisms relevant to stimulant abuse.

  9. Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates.

    PubMed

    Peters, Robert F; Gutierrez-Rivera, Luis; Dew, Steven K; Stepanova, Maria

    2015-03-20

    Fabrication and characterization of conjugate nano-biological systems interfacing metallic nanostructures on solid supports with immobilized biomolecules is reported. The entire sequence of relevant experimental steps is described, involving the fabrication of nanostructured substrates using electron beam lithography, immobilization of biomolecules on the substrates, and their characterization utilizing surface-enhanced Raman spectroscopy (SERS). Three different designs of nano-biological systems are employed, including protein A, glucose binding protein, and a dopamine binding DNA aptamer. In the latter two cases, the binding of respective ligands, D-glucose and dopamine, is also included. The three kinds of biomolecules are immobilized on nanostructured substrates by different methods, and the results of SERS imaging are reported. The capabilities of SERS to detect vibrational modes from surface-immobilized proteins, as well as to capture the protein-ligand and aptamer-ligand binding are demonstrated. The results also illustrate the influence of the surface nanostructure geometry, biomolecules immobilization strategy, Raman activity of the molecules and presence or absence of the ligand binding on the SERS spectra acquired.

  10. Molindone compared to haloperidol in a guinea-pig model of tardive dyskinesia.

    PubMed

    Koller, W; Curtin, J; Fields, J

    1984-10-01

    Molindone was compared with haloperidol in animal models of tardive dyskinesia. Treatment with molindone for 14 days at 3, 6, 20 and 40 mg/kg, enhanced the stereotyped behavioral response induced by apomorphine and increased the numbered of D-2 dopamine receptors in the striatum (Bmax) labelled by high affinity (Kd = 40 pmol) binding or [3H] spiroperidol in the guinea-pig. Molindone at 1 mg/kg, caused no behavioral supersensitivity or change in the binding of dopamine receptors. Chronic administration of haloperidol (0.1, 0.5 and 5.0 mg/kg) also increased both the behavioral response to apomorphine and the number of dopamine receptors. Haloperidol, at 0.02 and 0.004 mg/kg, had no effect. Molindone potentiated dopaminergic activity in animal models in a similar way to other neuroleptics, suggesting that its use may also result in tardive dyskinesia.

  11. New Repeat Polymorphism in the AKT1 Gene Predicts Striatal Dopamine D2/D3 Receptor Availability and Stimulant-Induced Dopamine Release in the Healthy Human Brain.

    PubMed

    Shumay, Elena; Wiers, Corinde E; Shokri-Kojori, Ehsan; Kim, Sung Won; Hodgkinson, Colin A; Sun, Hui; Tomasi, Dardo; Wong, Christopher T; Weinberger, Daniel R; Wang, Gene-Jack; Fowler, Joanna S; Volkow, Nora D

    2017-05-10

    The role of the protein kinase Akt1 in dopamine neurotransmission is well recognized and has been implicated in schizophrenia and psychosis. However, the extent to which variants in the AKT1 gene influence dopamine neurotransmission is not well understood. Here we investigated the effect of a newly characterized variant number tandem repeat (VNTR) polymorphism in AKT1 [major alleles: L- (eight repeats) and H- (nine repeats)] on striatal dopamine D2/D3 receptor (DRD2) availability and on dopamine release in healthy volunteers. We used PET and [ 11 C]raclopride to assess baseline DRD2 availability in 91 participants. In 54 of these participants, we also measured intravenous methylphenidate-induced dopamine release to measure dopamine release. Dopamine release was quantified as the difference in specific binding of [ 11 C]raclopride (nondisplaceable binding potential) between baseline values and values following methylphenidate injection. There was an effect of AKT1 genotype on DRD2 availability at baseline for the caudate ( F (2,90) = 8.2, p = 0.001) and putamen ( F (2,90) = 6.6, p = 0.002), but not the ventral striatum ( p = 0.3). For the caudate and putamen, LL showed higher DRD2 availability than HH; HL were in between. There was also a significant effect of AKT1 genotype on dopamine increases in the ventral striatum ( F (2,53) = 5.3, p = 0.009), with increases being stronger in HH > HL > LL. However, no dopamine increases were observed in the caudate ( p = 0.1) or putamen ( p = 0.8) following methylphenidate injection. Our results provide evidence that the AKT1 gene modulates both striatal DRD2 availability and dopamine release in the human brain, which could account for its association with schizophrenia and psychosis. The clinical relevance of the newly characterized AKT1 VNTR merits investigation. SIGNIFICANCE STATEMENT The AKT1 gene has been implicated in schizophrenia and psychosis. This association is likely to reflect modulation of dopamine signaling by Akt1 kinase since striatal dopamine hyperstimulation is associated with psychosis and schizophrenia. Here, using PET with [ 11 C]raclopride, we identified in the AKT1 gene a new variable number tandem repeat (VNTR) marker associated with baseline striatal dopamine D2/D3 receptor availability and with methylphenidate-induced striatal dopamine increases in healthy volunteers. Our results confirm the involvement of the AKT1 gene in modulating striatal dopamine signaling in the human brain. Future studies are needed to assess the association of this new VNTR AKT1 variant in schizophrenia and drug-induced psychoses. Copyright © 2017 the authors 0270-6474/17/374983-10$15.00/0.

  12. Sorting Nexin 1 Loss Results in D5 Dopamine Receptor Dysfunction in Human Renal Proximal Tubule Cells and Hypertension in Mice*

    PubMed Central

    Villar, Van Anthony M.; Jones, John Edward; Armando, Ines; Asico, Laureano D.; Escano, Crisanto S.; Lee, Hewang; Wang, Xiaoyan; Yang, Yu; Pascua-Crusan, Annabelle M.; Palmes-Saloma, Cynthia P.; Felder, Robin A.; Jose, Pedro A.

    2013-01-01

    The peripheral dopaminergic system plays a crucial role in blood pressure regulation through its actions on renal hemodynamics and epithelial ion transport. The dopamine D5 receptor (D5R) interacts with sorting nexin 1 (SNX1), a protein involved in receptor retrieval from the trans-Golgi network. In this report, we elucidated the spatial, temporal, and functional significance of this interaction in human renal proximal tubule cells and HEK293 cells stably expressing human D5R and in mice. Silencing of SNX1 expression via RNAi resulted in the failure of D5R to internalize and bind GTP, blunting of the agonist-induced increase in cAMP production and decrease in sodium transport, and up-regulation of angiotensin II receptor expression, of which expression was previously shown to be negatively regulated by D5R. Moreover, siRNA-mediated depletion of renal SNX1 in C57BL/6J and BALB/cJ mice resulted in increased blood pressure and blunted natriuretic response to agonist in salt-loaded BALB/cJ mice. These data demonstrate a crucial role for SNX1 in D5R trafficking and that SNX1 depletion results in D5R dysfunction and thus may represent a novel mechanism for the pathogenesis of essential hypertension. PMID:23152498

  13. Kinetic analysis of central ( sup 11 C)raclopride binding to D2-dopamine receptors studied by PET--a comparison to the equilibrium analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farde, L.; Eriksson, L.; Blomquist, G.

    1989-10-01

    (11C)Raclopride binding to central D2-dopamine receptors in humans has previously been examined by positron emission tomography (PET). Based on the rapid occurrence of binding equilibrium, a saturation analysis has been developed for the determination of receptor density (Bmax) and affinity (Kd). For analysis of PET measurements obtained with other ligands, a kinetic three-compartment model has been used. In the present study, the brain uptake of (11C)raclopride was analyzed further by applying both a kinetic and an equilibrium analysis to data obtained from four PET experiments in each of three healthy subjects. First regional CBV was determined. In the second andmore » third experiment, (11C)-raclopride with high and low specific activity was used. In a fourth experiment, the (11C)raclopride enantiomer (11C)FLB472 was used to examine the concentration of free radioligand and nonspecific binding in brain. Radio-activity in arterial blood was measured using an automated blood sampling system. Bmax and Kd values for (11C)raclopride binding could be determined also with the kinetic analysis. As expected theoretically, those values were similar to those obtained with the equilibrium analysis. In addition, the kinetic analysis allowed separate determination of the association and dissociation rate constants, kon and koff, respectively. Examination of (11C)raclopride and (11C)FLB472 uptake in brain regions devoid of specific D2-dopamine receptor binding indicated a fourth compartment in which uptake was reversible, nonstereoselective, and nonsaturable in the dose range studied.« less

  14. Altered effect of dopamine transporter 3'UTR VNTR genotype on prefrontal and striatal function in schizophrenia.

    PubMed

    Prata, Diana P; Mechelli, Andrea; Picchioni, Marco M; Fu, Cynthia H Y; Toulopoulou, Timothea; Bramon, Elvira; Walshe, Muriel; Murray, Robin M; Collier, David A; McGuire, Philip

    2009-11-01

    The dopamine transporter plays a key role in the regulation of central dopaminergic transmission, which modulates cognitive processing. Disrupted dopamine function and impaired executive processing are robust features of schizophrenia. To examine the effect of a polymorphism in the dopamine transporter gene (the variable number of tandem repeats in the 3' untranslated region) on brain function during executive processing in healthy volunteers and patients with schizophrenia. We hypothesized that this variation would have a different effect on prefrontal and striatal activation in schizophrenia, reflecting altered dopamine function. Case-control study. Psychiatric research center. Eighty-five subjects, comprising 44 healthy volunteers (18 who were 9-repeat carriers and 26 who were 10-repeat homozygotes) and 41 patients with DSM-IV schizophrenia (18 who were 9-repeat carriers and 23 who were 10-repeat homozygotes). Regional brain activation during word generation relative to repetition in an overt verbal fluency task measured by functional magnetic resonance imaging. Main effects of genotype and diagnosis on activation and their interaction were estimated with analysis of variance in SPM5. Irrespective of diagnosis, the 10-repeat allele was associated with greater activation than the 9-repeat allele in the left anterior insula and right caudate nucleus. Trends for the same effect in the right insula and for greater deactivation in the rostral anterior cingulate cortex were also detected. There were diagnosis x genotype interactions in the left middle frontal gyrus and left nucleus accumbens, where the 9-repeat allele was associated with greater activation than the 10-repeat allele in patients but not controls. Insular, cingulate, and striatal function during an executive task is normally modulated by variation in the dopamine transporter gene. Its effect on activation in the dorsolateral prefrontal cortex and ventral striatum is altered in patients with schizophrenia. This may reflect altered dopamine function in these regions in schizophrenia.

  15. Simultaneous Multiple MS Binding Assays Addressing D1 and D2 Dopamine Receptors.

    PubMed

    Schuller, Marion; Höfner, Georg; Wanner, Klaus T

    2017-10-09

    MS Binding Assays are a label-free alternative to radioligand binding assays. They provide basically the same capabilities as the latter, but use a non-labeled reporter ligand instead of a radioligand. In contrast to radioligand binding assays, MS Binding Assays offer-owing to the selectivity of mass spectrometric detection-the opportunity to monitor the binding of different reporter ligands at different targets simultaneously. The present study shows a proof of concept for this strategy as exemplified for MS Binding Assays selectively addressing D 1 and D 2 dopamine receptors in a single binding experiment. A highly sensitive, rapid and robust LC-ESI-MS/MS quantification method capable of quantifying both SCH23390 and raclopride, selectively addressing D 1 and D 2 receptors, respectively, was established and validated for this purpose. Based thereon, simultaneous saturation and competition experiments with SCH23390 and raclopride in the presence of both D 1 and D 2 receptors were performed and analyzed by LC-MS/MS within a single chromatographic cycle. The present study thus demonstrates the feasibility of this strategy and the high versatility of MS Binding Assays that appears to surpass that common for conventional radioligand binding assays. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Pharmacological characterization of extracellular acidification rate responses in human D2(long), D3 and D4.4 receptors expressed in Chinese hamster ovary cells

    PubMed Central

    Coldwell, M C; Boyfield, I; Brown, A M; Stemp, G; Middlemiss, D N

    1999-01-01

    This study characterized pharmacologically the functional responses to agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) zreceptors separately expressed in cloned cells using the cytosensor microphysiometer. Dopaminergic receptor agonists caused increases in extracellular acidification rate in adherent Chinese hamster ovary (CHO) clones expressing hD2, hD3 or hD4 receptors. Acidification rate responses to agonists in other cell lines expressing these receptors were smaller than those in adherent CHO cells. The time courses and maximum increases in acidification rate of the agonist responses in adherent CHO cells were different between the three dopamine receptor clones. Responses were blocked by pretreatment of cells with pertussis toxin or amiloride analogues. Most agonists had full intrinsic activity at each of the dopamine receptor subtypes, as compared to quinpirole, however both enantiomers of UH-232 and (−)3-PPP were partial agonists in this assay system. The functional potency of full agonists at each of the three receptors expressed in CHO cells was either higher than, or similar to, the apparent inhibition constants (Ki) determined in [125I]-iodosulpride competition binding studies. Functional selectivities of the agonists were less than radioligand binding selectivities. The rank orders of agonist potencies and selectivities were similar, but not identical, to the rank orders of radioligand binding affinities and selectivities. The dopamine receptor antagonists, iodosulpride and clozapine, had no effect on basal acidification rates but inhibited acidification responses in CHO cells to quinpirole in an apparently competitive manner. Antagonist potencies closely matched their radioligand binding affinities in these cells. PMID:10455259

  17. The effects of benzofury (5-APB) on the dopamine transporter and 5-HT2-dependent vasoconstriction in the rat.

    PubMed

    Dawson, Patrick; Opacka-Juffry, Jolanta; Moffatt, James D; Daniju, Yusuf; Dutta, Neelakshi; Ramsey, John; Davidson, Colin

    2014-01-03

    5-APB, commonly marketed as 'benzofury' is a new psychoactive substance and erstwhile 'legal high' which has been implicated in 10 recent drug-related deaths in the UK. This drug was available on the internet and in 'head shops' and was one of the most commonly sold legal highs up until its recent UK temporary ban (UK Home Office). Despite its prominence, very little is known about its pharmacology. This study was undertaken to examine the pharmacology of 5-APB in vitro. We hypothesised that 5-APB would activate the dopamine and 5-HT systems which may underlie its putative stimulant and hallucinogenic effects. Autoradiographic studies showed that 5-APB displaced both [(125)I] RTI-121 and [(3)H] ketanserin from rat brain tissue suggesting affinity at the dopamine transporter and 5-HT2 receptor sites respectively. Voltammetric studies in rat accumbens brain slices revealed that 5-APB slowed dopamine reuptake, and at high concentrations caused reverse transport of dopamine. 5-APB also caused vasoconstriction of rat aorta, an effect antagonised by the 5-HT2A receptor antagonist ketanserin, and caused contraction of rat stomach fundus, which was reversed by the 5-HT2B receptor antagonist RS-127445. These data show that 5-APB interacts with the dopamine transporter and is an agonist at the 5-HT2A and 5-HT2B receptors in the rat. Thus 5-APB's pharmacology is consistent with it having both stimulant and hallucinogenic properties. In addition, 5-APB's activity at the 5-HT2B receptor may cause cardiotoxicity. © 2013.

  18. Monoamine transporter and receptor interaction profiles of a new series of designer cathinones.

    PubMed

    Simmler, L D; Rickli, A; Hoener, M C; Liechti, M E

    2014-04-01

    Psychoactive β-keto amphetamines (cathinones) are sold as "bath salts" or "legal highs" and recreationally abused. We characterized the pharmacology of a new series of cathinones, including methedrone, 4-methylethcathinone (4-MEC), 3-fluoromethcathinone (3-FMC), pentylone, ethcathinone, buphedrone, pentedrone, and N,N-dimethylcathinone. We investigated norepinephrine (NE), dopamine (DA), and serotonin (5-HT) uptake inhibition using human embryonic kidney 293 (HEK 293) cells that express the respective human monoamine transporter, the drug-induced efflux of NE, DA, and 5-HT from monoamine-preloaded cells, and binding affinity to monoamine transporters and receptors. All of the cathinones were potent NE uptake inhibitors but differed in their DA vs. 5-HT transporter inhibition profiles and monoamine release effects. Methedrone was a more potent 5-HT than DA transporter inhibitor and released NE and 5-HT similar to para-methoxymethamphetamine (PMMA), para-methoxyamphetamine (PMA), 4-methylthioamphetamine (4-MTA), and 3,4-methylenedioxymethamphetamine (MDMA). 4-MEC and pentylone equipotently inhibited all of the monoamine transporters and released 5-HT. Ethcathinone and 3-FMC inhibited NE and DA uptake and released NE, and 3-FMC also released DA similar to N-ethylamphetamine and methamphetamine. Pentedrone and N,N-dimethylcathinone were non-releasing NE and DA uptake inhibitors as previously shown for pyrovalerone cathinones. Buphedrone preferentially inhibited NE and DA uptake and also released NE. None of the cathinones bound to rodent trace amine-associated receptor 1, in contrast to the non-β-keto-amphetamines. None of the cathinones exhibited relevant binding to other monoamine receptors. In summary, we found considerable differences in the monoamine transporter interaction profiles among different cathinones and compared with related amphetamines. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. D2 dopaminergic and 5-HT1A serotonergic activity of 2-(1-naphthyl)ethyl- and 2-(2-naphthyl)ethyl amines.

    PubMed

    Šukalović, V; Roglić, G; Husinec, S; Kostić-Rajaćić, S; Andrić, D; Šoškić, Vukić

    2003-11-01

    Several tertiary 2-phenylethyl, 2-(1-naphthyl)ethyl and 2-(2-naphthyl)ethyl amines were synthesized and their binding affinities for dopamine D(1), D(2) and serotonin 5-HT(1A) receptors evaluated in radioligand binding assays. All compounds were inactive in D(1) dopamine radioligand binding assay. The 2-(1-naphthyl)ethyl analogues expressed a low but significant binding affinity for the D(2) and moderate one for the 5-HT(1A) receptor subtypes. Most of the remaining compounds expressed binding affinity at the 5-HT(1A) receptor subtype but were inactive in D(2) receptor binding assay. Based on these results and considering the chemical characteristics of the compounds synthesized and evaluated for dopaminergic and serotonergic activity throughout the present study it can be concluded that hydrophobic type of interaction (stacking or edge-to-face) plays a significant role in the formation of receptor-ligand complexes of 2-(1-naphthyl)ethyl amines. This structural motive can be applied to design and synthesize new, more potent dopaminergic/serotonergic ligands by slight chemical modifications.

  20. Probabilistic classification learning with corrective feedback is associated with in vivo striatal dopamine release in the ventral striatum, while learning without feedback is not

    PubMed Central

    Wilkinson, Leonora; Tai, Yen Foung; Lin, Chia Shu; Lagnado, David Albert; Brooks, David James; Piccini, Paola; Jahanshahi, Marjan

    2014-01-01

    The basal ganglia (BG) mediate certain types of procedural learning, such as probabilistic classification learning on the ‘weather prediction task’ (WPT). Patients with Parkinson's disease (PD), who have BG dysfunction, are impaired at WPT-learning, but it remains unclear what component of the WPT is important for learning to occur. We tested the hypothesis that learning through processing of corrective feedback is the essential component and is associated with release of striatal dopamine. We employed two WPT paradigms, either involving learning via processing of corrective feedback (FB) or in a paired associate manner (PA). To test the prediction that learning on the FB but not PA paradigm would be associated with dopamine release in the striatum, we used serial 11C-raclopride (RAC) positron emission tomography (PET), to investigate striatal dopamine release during FB and PA WPT-learning in healthy individuals. Two groups, FB, (n = 7) and PA (n = 8), underwent RAC PET twice, once while performing the WPT and once during a control task. Based on a region-of-interest approach, striatal RAC-binding potentials reduced by 13–17% in the right ventral striatum when performing the FB compared to control task, indicating release of synaptic dopamine. In contrast, right ventral striatal RAC binding non-significantly increased by 9% during the PA task. While differences between the FB and PA versions of the WPT in effort and decision-making is also relevant, we conclude striatal dopamine is released during FB-based WPT-learning, implicating the striatum and its dopamine connections in mediating learning with FB. PMID:24777947

  1. Nature-inspired indolyl-2-azabicyclo[2.2.2]oct-7-ene derivatives as promising agents for the attenuation of withdrawal symptoms: synthesis of 20-desethyl-20-hydroxymethyl-11-demethoxyibogaine.

    PubMed

    Passarella, D; Barilli, A; Efange, S M N; Elisabetsky, E; Leal, M B; Lesma, G; Linck, V M; Mash, D C; Martinelli, M; Peretto, I; Silvani, A; Danieli, B

    2006-07-10

    Microwave assisted Diels-Alder cycloaddition of 5-Br-N-benzylpyridinone (2) with methyl acrylate is described to gain an easy access to 7-bromo-2-benzyl-3-oxo-2-aza-5 or 6-carbomethoxy bicyclo[2.2.2]oct-7-enes (3)-(6). The preparation of the ibogaine analogue 20-desethyl-(20-endo)-hydroxymethyl-11-demethoxyibogaine (17) is described by stereoselective hydrogenation of the C(7)-C(8) double bond. Biological evaluation showed an interesting in vitro binding profile toward dopamine transporter, serotonin transporter and opioid receptor systems accompanied by an antiwithdrawal effect in mice for hydroxymethyl 7-indolyl-2-aza-bicyclo[2.2.2]oct-2-ene (14). The simplification of the ibogaine structure appears as a promising approach toward the design of compounds that could reduce the withdrawal symptoms.

  2. Monoamine oxidase-B inhibitors in the treatment of Parkinson's disease: clinical-pharmacological aspects.

    PubMed

    Riederer, Peter; Müller, Thomas

    2018-03-22

    This invited narrative review emphasizes the role of MAO-B inhibition in the drug portfolio for dopamine substitution in patients with Parkinson's disease. Neuronal and glial MAO-B inhibition contributes to more stable levels of dopamine and other biogenic amines in the synaptic cleft. Accordingly, symptomatic effects of MAO-B inhibition for a limited amelioration of impaired motor behaviour and wearing-off phenomena in patients with Parkinson's disease are well proven, even when MAO-B inhibitors are only applied together with dopamine agonists. Delay of disease progression by MAO-B inhibition is under debate despite positive experimental findings. This discussion does not consider, that levodopa, respectively, dopamine agonists, are substrates, respectively, inhibitors of the ABCB1 (P-gp, MDR1, and CD243) transporter system. It supports toxin efflux over the blood-brain barrier. ABCB1 transporters have a limited capacity. MAO-B inhibitors do not weaken it. Treatment with MAO-B inhibitors is advantageous as it enables sparing of dopamine agonist and levodopa dosing.

  3. Blonanserin extensively occupies rat dopamine D3 receptors at antipsychotic dose range.

    PubMed

    Baba, Satoko; Enomoto, Takeshi; Horisawa, Tomoko; Hashimoto, Takashi; Ono, Michiko

    2015-03-01

    Antagonism of the dopamine D3 receptor has been hypothesized to be beneficial for schizophrenia cognitive deficits, negative symptoms and extrapyramidal symptoms. However, recent animal and human studies have shown that most antipsychotics do not occupy D3 receptors in vivo, despite their considerable binding affinity for this receptor in vitro. In the present study, we investigated the D3 receptor binding of blonanserin, a dopamine D2/D3 and serotonin 5-HT2A receptors antagonist, in vitro and in vivo. Blonanserin showed the most potent binding affinity for human D3 receptors among the tested atypical antipsychotics (risperidone, olanzapine and aripiprazole). Our GTPγS-binding assay demonstrated that blonanserin acts as a potent full antagonist for human D3 receptors. All test-drugs exhibited antipsychotic-like efficacy in methamphetamine-induced hyperactivity in rats. Treatment with blonanserin at its effective dose blocked the binding of [(3)H]-(+)-PHNO, a D2/D3 receptor radiotracer, both in the D2 receptor-rich region (striatum) and the D3 receptor-rich region (cerebellum lobes 9 and 10). On the other hand, the occupancies of other test-drugs for D3 receptors were relatively low. In conclusion, we have shown that blonanserin, but not other tested antipsychotics, extensively occupies D3 receptors in vivo in rats. Copyright © 2015 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  4. Disruption of dopamine transport by DDT and its metabolites

    PubMed Central

    Hatcher, Jaime M.; Delea, Kristin C.; Richardson, Jason R.; Pennell, Kurt D.; Miller, Gary W.

    2016-01-01

    Epidemiological studies suggest a link between pesticide exposure and an increased risk of developing Parkinson’s disease (PD). Although studies have been unable to clearly identify specific pesticides that contribute to PD, a few human studies have reported higher levels of the organochlorine pesticides dieldrin and DDE (a metabolite of DDT) in post-mortem PD brains. Previously, we found that exposure of mice to dieldrin caused perturbations in the nigrostriatal dopamine system consistent with those seen in PD. Given the concern over the environmental persistence and reintroduction of DDT for the control of malaria-carrying mosquitoes and other pests, we sought to determine whether DDT and its two major metabolites, DDD and DDE, could damage the dopamine system. In vitro analyses in mouse synaptosomes and vesicles demonstrated that DDT and its metabolites inhibit the plasma membrane dopamine transporter (DAT) and the vesicular monoamine transporter (VMAT2). However, exposure of mice to either DDT or DDE failed to show evidence of nigrostriatal damage or behavioral abnormalities in any of the measures examined. Thus, we report that in vitro effects of DDT and its metabolites on components of the dopamine system do not translate into neurotoxicological outcomes in orally exposed mice and DDT appears to have less dopamine toxicity when compared to dieldrin. These data suggest elevated DDE levels in PD patients may represent a measure of general pesticide exposure and that other pesticides may be responsible for the association between pesticide exposure and PD. PMID:18533268

  5. Effects of dopamine D2 receptor (DRD2) and transporter (SLC6A3) polymorphisms on smoking cue-induced cigarette craving among African-American smokers.

    PubMed

    Erblich, J; Lerman, C; Self, D W; Diaz, G A; Bovbjerg, D H

    2005-04-01

    Cue-induced craving for addictive substances has long been known to contribute to the problem of persistent addiction in humans. Research in animals over the past decade has solidly established the central role of dopamine in cue-induced craving for addictive substances, including nicotine. Analogous studies in humans, however, are lacking, especially among African-American smokers, who have lower quit rates than Caucasian smokers. Based on the animal literature, the study's objective was to test the hypothesis that smokers carrying specific variants in dopamine-related genes previously associated with risk for addictive behaviors would exhibit heightened levels of cigarette craving following laboratory exposure to cues. To this end, cigarette craving was induced in healthy African-American smokers (n=88) through laboratory exposure to smoking cues. Smokers carrying either the DRD2 (D2 dopamine receptor gene) TaqI A1 RFLP or the SLC6A3 (dopamine transporter gene) 9-repeat VNTR polymorphisms had stronger cue-induced cravings than noncarriers (Ps <0.05 and 0.01, respectively). Consistent with the separate biological pathways involved (receptor, transporter), carriers of both polymorphisms had markedly higher craving responses compared to those with neither (P<0.0006), reflecting additive effects. Findings provide support for the role of dopamine in cue-induced craving in humans, and suggest a possible genetic risk factor for persistent smoking behavior in African-American smokers.

  6. Interaction between LSD and dopamine D2/3 binding sites in pig brain.

    PubMed

    Minuzzi, Luciano; Nomikos, George G; Wade, Mark R; Jensen, Svend B; Olsen, Aage K; Cumming, Paul

    2005-06-15

    The psychoactive properties of the hallucinogen LSD have frequently been attributed to high affinity interactions with serotonin 5HT2 receptors in brain. Possible effects of LSD on dopamine D2/3 receptor availability have not previously been investigated in living brain. Therefore, we used PET to map the binding potential (pB) of [11C]raclopride in brain of three pigs, first in a baseline condition, and again at 1 and 4 h after administration of LSD (2.5 microg/kg, i.v.). There was a progressive treatment effect in striatum, where the pB was significantly reduced by 19% at 4 h after LSD administration. Concomitant maps of cerebral blood flow did not reveal significant changes in perfusion during this interval. Subsequent in vitro studies showed that LSD displaced [3H]raclopride (2 nM) from pig brain cryostat sections with an IC50 of 275 nM according to a one-site model. Fitting of a two-site model to the data suggested the presence of a component of the displacement curves with a subnanomolar IC50, comprising 20% of the total [3H]raclopride binding. In microdialysis experiments, LSD at similar and higher doses did not evoke changes in the interstitial concentration of dopamine or its acidic metabolites in rat striatum. Together, these results are consistent with a direct interaction between LSD and a portion of dopamine D2/3 receptors in pig brain, possibly contributing to the psychopharmacology of LSD. (c) 2005 Wiley-Liss, Inc.

  7. Intranasal administration of dopamine attenuates unconditioned fear in that it reduces restraint-induced ultrasound vocalizations and escape from bright light.

    PubMed

    Talbot, Teddy; Mattern, Claudia; de Souza Silva, Maria Angelica; Brandão, Marcus Lira

    2017-06-01

    Although substantial evidence suggests that dopamine (DA) enhances conditioned fear responses, few studies have examined the role of DA in unconditioned fear states. Whereas DA does not cross the blood-brain barrier, intranasally-applied dopamine reaches the brain directly via the nose-brain pathways in rodents, providing an alternative means of targeting DA receptors. Intranasal dopamine (IN-DA) has been demonstrated to bind to DA transporters and to increase extracellular DA in the striatum as well as having memory-promoting effects in rats. The purpose of this study was to examine the influence of IN-DA in three tests of fear/anxiety. The three doses of DA hydrochloride (0.03, 0.3, or 1 mg/kg) were applied in a viscous castor oil gel in a volume of 5 µl to each of both nostrils of adult Wistar rats prior to testing of (a) escape from a bright light, using a two-chamber procedure, (b) restraint-induced 22 kHz ultrasound vocalizations (USVs), and (c) exploratory behavior in the elevated plus-maze (EPM). IN-DA dose-dependently reduced escape from bright light and the number of USV responses to restraint. It had no influence on the exploratory behavior in the EPM. IN-DA application reduced escape behavior in two tests of unconditioned fear (escape from bright light and USV response to immobilization). These findings may be interpreted in light of the known antidepressant action of IN-DA and DA reuptake blockers. The results also confirm the promise of the nasal route as an alternative means for targeting the brain's dopaminergic receptors with DA.

  8. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfaffly, J.; Michaelides, M.; Wang, G-J.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2Rmore » binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.« less

  9. The serotonin-dopamine interaction measured with positron emission tomography (PET) and C-11 raclopride in normal human subjects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.S.; Dewey, S.L.; Logan, J.

    1994-05-01

    Our previous studies have shown that the interaction between serotonin and dopamine can be measured with C-11 raclopride and PET in the baboon brain. A series of studies was undertaken to extend dim findings to the normal human brain. PET studies were conducted in male control subjects (n=8) using the CTI 931 tomograph. Two C-11 raclopride scans were performed, prior to and 180 minutes following administration of the selective serotonin releasing agent, fenfluramine (60mg/PO). The neuroendocrine response to fenfluramine challenge is commonly used in psychiatric research as an index of serotonin activity. The C-11 raclopride data were analyzed with themore » distribution volume method. For the group of subjects, an increase was observed in the striatum to cerebellum ratio (specific to non-specific binding ratio), in excess of the test-retest variability of the ligand. Variability in response was observed across subjects. These results are consistent with our previous findings in the baboon that citalopram administration increased C-11 raclopride binding, consistent with a decrease in endogenous dopamine. In vivo microdialysis studies in freely moving rats confirmed that citalopram produces a time-dependent decrease in extracellular dopamine levels, consistent with the PET results. In vivo PET studies of the serotonin-dopamine interaction are relevant to the evaluation of etiologic and therapeutic mechanisms in schizophrenia and affective disorder.« less

  10. Frontal Transcranial Direct Current Stimulation Induces Dopamine Release in the Ventral Striatum in Human

    PubMed Central

    Fonteneau, Clara; Redoute, Jérome; Haesebaert, Frédéric; Le Bars, Didier; Costes, Nicolas; Suaud-Chagny, Marie-Françoise; Brunelin, Jérome

    2018-01-01

    Abstract A single transcranial direct current stimulation (tDCS) session applied over the dorsolateral prefrontal cortex (DLFPC) can be associated with procognitive effects. Furthermore, repeated DLPFC tDCS sessions are under investigation as a new therapeutic tool for a range of neuropsychiatric conditions. A possible mechanism explaining such beneficial effects is a modulation of meso-cortico-limbic dopamine transmission. We explored the spatial and temporal neurobiological effects of bifrontal tDCS on subcortical dopamine transmission during and immediately after the stimulation. In a double blind sham-controlled study, 32 healthy subjects randomly received a single session of either active (20 min, 2 mA; n = 14) or sham (n = 18) tDCS during a dynamic positron emission tomography scan using [11C]raclopride binding. During the stimulation period, no significant effect of tDCS was observed. After the stimulation period, compared with sham tDCS, active tDCS induced a significant decrease in [11C]raclopride binding potential ratio in the striatum, suggesting an increase in extracellular dopamine in a part of the striatum involved in the reward–motivation network. The present study provides the first evidence that bifrontal tDCS induces neurotransmitter release in polysynaptic connected subcortical areas. Therefore, levels of dopamine activity and reactivity should be a new element to consider for a general hypothesis of brain modulation by bifrontal tDCS. PMID:29688276

  11. Frontal Transcranial Direct Current Stimulation Induces Dopamine Release in the Ventral Striatum in Human.

    PubMed

    Fonteneau, Clara; Redoute, Jérome; Haesebaert, Frédéric; Le Bars, Didier; Costes, Nicolas; Suaud-Chagny, Marie-Françoise; Brunelin, Jérome

    2018-07-01

    A single transcranial direct current stimulation (tDCS) session applied over the dorsolateral prefrontal cortex (DLFPC) can be associated with procognitive effects. Furthermore, repeated DLPFC tDCS sessions are under investigation as a new therapeutic tool for a range of neuropsychiatric conditions. A possible mechanism explaining such beneficial effects is a modulation of meso-cortico-limbic dopamine transmission. We explored the spatial and temporal neurobiological effects of bifrontal tDCS on subcortical dopamine transmission during and immediately after the stimulation. In a double blind sham-controlled study, 32 healthy subjects randomly received a single session of either active (20 min, 2 mA; n = 14) or sham (n = 18) tDCS during a dynamic positron emission tomography scan using [11C]raclopride binding. During the stimulation period, no significant effect of tDCS was observed. After the stimulation period, compared with sham tDCS, active tDCS induced a significant decrease in [11C]raclopride binding potential ratio in the striatum, suggesting an increase in extracellular dopamine in a part of the striatum involved in the reward-motivation network. The present study provides the first evidence that bifrontal tDCS induces neurotransmitter release in polysynaptic connected subcortical areas. Therefore, levels of dopamine activity and reactivity should be a new element to consider for a general hypothesis of brain modulation by bifrontal tDCS.

  12. Opiate-induced dopamine release is modulated by severity of alcohol dependence: an [(18)F]fallypride positron emission tomography study.

    PubMed

    Spreckelmeyer, Katja N; Paulzen, Michael; Raptis, Mardjan; Baltus, Thomas; Schaffrath, Sabrina; Van Waesberghe, Julia; Zalewski, Magdalena M; Rösch, Frank; Vernaleken, Ingo; Schäfer, Wolfgang M; Gründer, Gerhard

    2011-10-15

    Preclinical data implicate the reinforcing effects of alcohol to be mediated by interaction between the opioid and dopamine systems of the brain. Specifically, alcohol-induced release of β-endorphins stimulates μ-opioid receptors (MORs), which is believed to cause dopamine release in the brain reward system. Individual differences in opioid or dopamine neurotransmission have been suggested to be responsible for enhanced liability to abuse alcohol. In the present study, a single dose of the MOR agonist remifentanil was administered in detoxified alcohol-dependent patients and healthy control subjects to mimic the β-endorphin-releasing properties of ethanol and to assess the effects of direct MOR stimulation on dopamine release in the mesolimbic reward system. Availability of D(2/3) receptors was assessed before and after single-dose administration of the MOR agonist remifentanil in 11 detoxified alcohol-dependent patients and 11 healthy control subjects with positron emission tomography with the radiotracer [(18)F]fallypride. Severity of dependence as assessed with the Alcohol Use Disorders Identification Test was compared with remifentanil-induced percentage change in [(18)F]fallypride binding (Δ%BP(ND)). The [(18)F]fallypride binding potentials (BP(ND)s) were significantly reduced in the ventral striatum, dorsal putamen, and amygdala after remifentanil application in both patients and control subjects. In the patient group, ventral striatum Δ%BP(ND) was correlated with the Alcohol Use Disorders Identification Test score. The data provide evidence for a MOR-mediated interaction between the opioid and the dopamine system, supporting the assumption that one way by which alcohol unfolds its rewarding effects is via a MOR-(γ-aminobutyric acid)-dopamine pathway. No difference in dopamine release was found between patients and control subjects, but evidence for a patient-specific association between sensitivity to MOR stimulation and severity of alcohol dependence was found. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Sparteine monooxygenase in brain and liver: Identified by the dopamine uptake blocker ( sup 3 H)GBR-12935

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalow, W.; Tyndale, R.F.; Niznik, H.B.

    1990-02-26

    P450IID6 (human sparteine monooxygenase) metabolizes many drugs including neuroleptics, antidepressants, and beta-blockers. The P450IID6 exists in human, bovine, rat and canine brains, but in very low quantities causing methodological difficulties in its assessment. Work with ({sup 3}H)GBR-12935; 1-(2-(diphenylmethoxy) ethyl)-4-(3-phenyl propyl) piperazine has shown that it binds a neuronal/hepatic protein with high affinity ({approximately}7nM) and a rank order of inhibitory potency suggesting that the binding protein is cytochrome P450IID6. The binding was used to predict that d-amphetamine and methamphetamine would interact with P450IID6. Inhibition studies indicated that these compounds were competitive inhibitors of P450IID6. Haloperidol (HAL) and it's metabolite hydroxy-haloperidol (RHAL)more » are both competitive inhibitors of P450IID6 activity and were found to inhibit ({sup 3}H)GBR-12935 binding. K{sub i} values of twelve compounds (known to interact with the DA transporter or P450IID6) for ({sup 3}H)GRB-12935 binding and P450IID6 activity. The techniques are now available for measurements of cytochrome P450IID6 in healthy and diseased brain/liver tissue using radio-receptor binding assay techniques with ({sup 3}H)GBR-12935.« less

  14. Cross-talk between an activator of nuclear receptors-mediated transcription and the D1 dopamine receptor signaling pathway.

    PubMed

    Schmidt, Azriel; Vogel, Robert; Rutledge, Su Jane; Opas, Evan E; Rodan, Gideon A; Friedman, Eitan

    2005-03-01

    Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta). TOFA and hydroxycholesterols also modulate transcription from NF-kappaB- and AP-1-controlled reporter genes and induce neurite differentiation in PC12 cells. In CV-1 cells that express D(1) dopamine receptors, D(1) dopamine receptor stimulation was found to inhibit TOFA-stimulated transcription from the MMTV promoter that is under the control of chimeric GR/PPARbeta and GR/LXRbeta receptors. Treatment with the D(1) dopamine receptor antagonist, SCH23390, prevented dopamine-mediated suppression of transcription, and by itself increased transcription controlled by GR/LXRbeta. Furthermore, combined treatment of CV-1 cells with TOFA and SCH23390 increased transcription controlled by the GR/LXRbeta chimeric receptor synergistically. The significance of this in vitro synergy was demonstrated in vivo, by the observation that SCH23390 (but not haloperidol)-mediated catalepsy in rats was potentiated by TOFA, thus showing that an agent that mimics the in vitro activities of compounds that activate members of the LXR and PPAR receptor families can influence D1 dopamine receptor elicited responses.

  15. Trans-synaptic (GABA-dopamine) modulation of cocaine induced dopamine release: A potential therapeutic strategy for cocaine abuse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewey, S.L.; Straughter-Moore, R.; Chen, R.

    We recently developed a new experimental strategy for measuring interactions between functionally-linked neurotransmitter systems in the primate and human brain with PET. As part of this research, we demonstrated that increases in endogenous GABA concentrations significantly reduced striatal dopamine concentrations in the primate brain. We report here the application of the neurotransmitter interaction paradigm with PET and with microdialysis to the investigation of a novel therapeutic strategy for treating cocaine abuse based on the ability of GABA to inhibit cocaine induced increases in striatal dopamine. Using gamma-vinyl GABA (GVG, a suicide inhibitor of GABA transaminase), we performed a series ofmore » PET studies where animals received a baseline PET scan with labeled raclopride injection, animals received cocaine (2.0 mg/kg). Normally, a cocaine challenge significantly reduces the striatal binding of {sup 11}C-raclopride. However, in animals pretreated with GVG, {sup 11}C-raclopride binding was less affected by a cocaine challenge compared to control studies. Furthermore, microdialysis studies in freely moving rats demonstrate that GVG (300 mg/kg) significantly inhibited cocaine-induced increases in extracellular dopamine release. GVG also attenuated cocaine-induced increases in locomotor activity. However, at a dose of 100 mg/kg, GVG had no effect. Similar findings were obtained with alcohol. Alcohol pretreatment dose dependantly (1-4 g/kg) inhibited cocaine-induced increases in extracellular dopamine concentrations in freely moving rats. Taken together, these studies suggest that therapeutic strategies targeted at increasing central GABA concentrations may be beneficial for the treatment of cocaine abuse.« less

  16. Clebopride enhances contractility of the guinea pig stomach by blocking peripheral D2 dopamine receptor and alpha-2 adrenoceptor.

    PubMed

    Takeda, K; Taniyama, K; Kuno, T; Sano, I; Ishikawa, T; Ohmura, I; Tanaka, C

    1991-05-01

    The mechanism of action of clebopride on the motility of guinea pig stomach was examined by the receptor binding assay for bovine brain membrane and by measuring gastric contractility and the release of acetylcholine from the stomach. The receptor binding assay revealed that clebopride bound to the D2 dopamine receptor with a high affinity and to the alpha-2 adrenoceptor and 5-HT2 serotonin receptor with relatively lower affinity, and not to D1 dopamine, alpha-1 adrenergic, muscarinic acetylcholine, H1 histamine, or opioid receptor. In strips of the stomach, clebopride at 10(-8) M to 10(-5) M enhanced the electrical transmural stimulation-evoked contraction and the release of acetylcholine. This enhancement was attributed to the blockade of the D2 dopamine receptor and alpha-2 adrenoceptor because: 1) Maximum responses obtained with specific D2 dopamine receptor antagonist, domperidone, and with specific alpha-2 adrenoceptor antagonist, yohimbine, were smaller than that with clebopride, and the sum of the effects of these two specific receptor antagonists is approximately equal to the effect of clebopride. 2) The facilitatory effect of clebopride was partially eliminated by pretreatment of the sample with domperidone or yohimbine, and the facilitatory effect of clebopride was not observed in preparations treated with the combination of domperidone and yohimbine. Clebopride also antagonized the inhibitory effects of dopamine and clonidine on the electrical transmural stimulation-evoked responses. These results indicate that clebopride acts on post ganglionic cholinergic neurons at D2 and alpha-2 receptors in this preparation to enhance enteric nervous system stimulated motility.

  17. PRESYNAPTIC DOPAMINE MODULATION BY STIMULANT SELF ADMINISTRATION

    PubMed Central

    España, Rodrigo A.; Jones, Sara R.

    2013-01-01

    The mesolimbic dopamine system is an essential participant in the initiation and modulation of various forms of goal-directed behavior, including drug reinforcement and addiction processes. Dopamine neurotransmission is increased by acute administration of all drugs of abuse, including the stimulants cocaine and amphetamine. Chronic exposure to these drugs via voluntary self-administration provides a model of stimulant abuse that is useful in evaluating potential behavioral and neurochemical adaptations that occur during addiction. This review describes commonly used methodologies to measure dopamine and baseline parameters of presynaptic dopamine regulation, including exocytotic release and reuptake through the dopamine transporter in the nucleus accumbens core, as well as dramatic adaptations in dopamine neurotransmission and drug sensitivity that occur with acute non-contingent and chronic, contingent self-administration of cocaine and amphetamine. PMID:23277050

  18. Identification and Characterization of ML352: A Novel, Noncompetitive Inhibitor of the Presynaptic Choline Transporter

    PubMed Central

    2015-01-01

    The high-affinity choline transporter (CHT) is the rate-limiting determinant of acetylcholine (ACh) synthesis, yet the transporter remains a largely undeveloped target for the detection and manipulation of synaptic cholinergic signaling. To expand CHT pharmacology, we pursued a high-throughput screen for novel CHT-targeted small molecules based on the electrogenic properties of transporter-mediated choline transport. In this effort, we identified five novel, structural classes of CHT-specific inhibitors. Chemical diversification and functional analysis of one of these classes identified ML352 as a high-affinity (Ki = 92 nM) and selective CHT inhibitor. At concentrations that fully antagonized CHT in transfected cells and nerve terminal preparations, ML352 exhibited no inhibition of acetylcholinesterase (AChE) or cholineacetyltransferase (ChAT) and also lacked activity at dopamine, serotonin, and norepinephrine transporters, as well as many receptors and ion channels. ML352 exhibited noncompetitive choline uptake inhibition in intact cells and synaptosomes and reduced the apparent density of hemicholinium-3 (HC-3) binding sites in membrane assays, suggesting allosteric transporter interactions. Pharmacokinetic studies revealed limited in vitro metabolism and significant CNS penetration, with features predicting rapid clearance. ML352 represents a novel, potent, and specific tool for the manipulation of CHT, providing a possible platform for the development of cholinergic imaging and therapeutic agents. PMID:25560927

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasi, D.; Fowler, J.; Tomasi, D.

    Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [{sup 11}C]cocaine used as DAT radiotracer)more » and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.« less

  20. Accuracy of partial volume effect correction in clinical molecular imaging of dopamine transporter using SPECT

    NASA Astrophysics Data System (ADS)

    Soret, Marine; Alaoui, Jawad; Koulibaly, Pierre M.; Darcourt, Jacques; Buvat, Irène

    2007-02-01

    ObjectivesPartial volume effect (PVE) is a major source of bias in brain SPECT imaging of dopamine transporter. Various PVE corrections (PVC) making use of anatomical data have been developed and yield encouraging results. However, their accuracy in clinical data is difficult to demonstrate because the gold standard (GS) is usually unknown. The objective of this study was to assess the accuracy of PVC. MethodTwenty-three patients underwent MRI and 123I-FP-CIT SPECT. The binding potential (BP) values were measured in the striata segmented on the MR images after coregistration to SPECT images. These values were calculated without and with an original PVC. In addition, for each patient, a Monte Carlo simulation of the SPECT scan was performed. For these simulations where true simulated BP values were known, percent biases in BP estimates were calculated. For the real data, an evaluation method that simultaneously estimates the GS and a quadratic relationship between the observed and the GS values was used. It yields a surrogate mean square error (sMSE) between the estimated values and the estimated GS values. ResultsThe averaged percent difference between BP measured for real and for simulated patients was 0.7±9.7% without PVC and was -8.5±14.5% with PVC, suggesting that the simulated data reproduced the real data well enough. For the simulated patients, BP was underestimated by 66.6±9.3% on average without PVC and overestimated by 11.3±9.5% with PVC, demonstrating the greatest accuracy of BP estimates with PVC. For the simulated data, sMSE were 27.3 without PVC and 0.90 with PVC, confirming that our sMSE index properly captured the greatest accuracy of BP estimates with PVC. For the real patient data, sMSE was 50.8 without PVC and 3.5 with PVC. These results were consistent with those obtained on the simulated data, suggesting that for clinical data, and despite probable segmentation and registration errors, BP were more accurately estimated with PVC than without. ConclusionPVC was very efficient to greatly reduce the error in BP estimates in clinical imaging of dopamine transporter.

  1. Dopamine Transporter Neuroimaging as an Enrichment Biomarker in Early Parkinson's Disease Clinical Trials: A Disease Progression Modeling Analysis.

    PubMed

    Conrado, Daniela J; Nicholas, Timothy; Tsai, Kuenhi; Macha, Sreeraj; Sinha, Vikram; Stone, Julie; Corrigan, Brian; Bani, Massimo; Muglia, Pierandrea; Watson, Ian A; Kern, Volker D; Sheveleva, Elena; Marek, Kenneth; Stephenson, Diane T; Romero, Klaus

    2018-01-01

    Given the recognition that disease-modifying therapies should focus on earlier Parkinson's disease stages, trial enrollment based purely on clinical criteria poses significant challenges. The goal herein was to determine the utility of dopamine transporter neuroimaging as an enrichment biomarker in early motor Parkinson's disease clinical trials. Patient-level longitudinal data of 672 subjects with early-stage Parkinson's disease in the Parkinson's Progression Markers Initiative (PPMI) observational study and the Parkinson Research Examination of CEP-1347 Trial (PRECEPT) clinical trial were utilized in a linear mixed-effects model analysis. The rate of worsening in the motor scores between subjects with or without a scan without evidence of dopamine transporter deficit was different both statistically and clinically. The average difference in the change from baseline of motor scores at 24 months between biomarker statuses was -3.16 (90% confidence interval [CI] = -0.96 to -5.42) points. Dopamine transporter imaging could identify subjects with a steeper worsening of the motor scores, allowing trial enrichment and 24% reduction of sample size. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, E.H. Jr.; Stein, M.A.; Krasowski, M.D.

    Attention-deficit hyperactivity disorder (ADHD) has been shown to be familial and heritable, in previous studies. As with most psychiatric disorders, examination of pedigrees has not revealed a consistent Mendelian mode of transmission. The response of ADHD patients to medications that inhibit the dopamine transporter, including methylphenidate, amphetamine, pemoline, and bupropion, led us to consider the dopamine transporter as a primary candidate gene for ADHD. To avoid effects of population stratification and to avoid the problem of classification of relatives with other psychiatric disorders as affected or unaffected, we used the haplotype-based haplotype relative risk (HHRR) method to test for associationmore » between a VNTR polymorphism at the dopamine transporter locus (DAT1) and DSM-III-R-diagnosed ADHD (N = 49) and undifferentiated attention-deficit disorder (UADD) (N = 8) in trios composed of father, mother, and affected offspring. HHRR analysis revealed significant association between ADHS/UADD and the 480-bp DAT1 allele (X{sup 2} 7.51, 1 df, P = .006). When cases of UADD were dropped from the analysis, similar results were found (X{sup 2} 7.29, 1 df, P = .007). If these findings are replicated, molecular analysis of the dopamine transporter gene may identify mutations that increase susceptibility to ADHD/UADD. Biochemical analysis of such mutations may lead to development of more effective therapeutic interventions. 36 refs., 4 tabs.« less

  3. Lack of dopamine supersensitivity in rats after chronic administration of blonanserin: Comparison with haloperidol.

    PubMed

    Hashimoto, Takashi; Baba, Satoko; Ikeda, Hiroko; Oda, Yasunori; Hashimoto, Kenji; Shimizu, Isao

    2018-07-05

    Long-term treatment with antipsychotic drugs in patients with schizophrenia can lead to dopamine supersensitivity psychosis. It is reported that repeated administration of haloperidol caused dopamine supersensitivity in rats. Blonanserin is an atypical antipsychotic drug with high affinity for dopamine D 2 , D 3 and serotonin 2A receptors. In this study, we investigated whether chronic administration of blonanserin leads to dopamine supersensitivity. Following oral treatment with blonanserin (0.78 mg/kg) or haloperidol (1.1 mg/kg) twice daily for 28 days, the dopamine D 2 agonist quinpirole-induced hyperlocomotion test and a dopamine D 2 receptor binding assay were conducted. We found that haloperidol significantly enhanced both quinpirole-induced hyperlocomotion and striatal dopamine D 2 receptor density in rats. On the other hand, repeated administration of blonanserin had no effect on either locomotor activity or striatal dopamine D 2 receptor density. Further, our results show that mRNA levels of dopamine D 2 and D 3 receptors in several brain regions were unaffected by repeated administration of both agents. In addition, we examined the effect of the dopamine D 3 receptor antagonist PG-01037 on development of dopamine supersensitivity induced by chronic haloperidol treatment and showed that PG-01037 prevents the development of supersensitivity to quinpirole in chronic haloperidol-treated rats. Given the higher affinity of blonanserin at dopamine D 3 receptors than haloperidol, antagonism of blonanserin at dopamine D 3 receptors may play a role in lack of dopamine supersensitivity after chronic administration. The present findings suggest long-term treatment with antipsychotic dose of blonanserin may be unlikely to lead to dopamine supersensitivity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Initial elevations in glutamate and dopamine neurotransmission decline with age, as does exploratory behavior, in LRRK2 G2019S knock-in mice

    PubMed Central

    Kuhlmann, Naila; Kadgien, Chelsie A; Tatarnikov, Igor; Fox, Jesse; Khinda, Jaskaran; Mitchell, Emma; Bergeron, Sabrina; Melrose, Heather

    2017-01-01

    LRRK2 mutations produce end-stage Parkinson’s disease (PD) with reduced nigrostriatal dopamine, whereas, asymptomatic carriers have increased dopamine turnover and altered brain connectivity. LRRK2 pathophysiology remains unclear, but reduced dopamine and mitochondrial abnormalities occur in aged G2019S mutant knock-in (GKI) mice. Conversely, cultured GKI neurons exhibit increased synaptic transmission. We assessed behavior and synaptic glutamate and dopamine function across a range of ages. Young GKI mice exhibit more vertical exploration, elevated glutamate and dopamine transmission, and aberrant D2-receptor responses. These phenomena decline with age, but are stable in littermates. In young GKI mice, dopamine transients are slower, independent of dopamine transporter (DAT), increasing the lifetime of extracellular dopamine. Slowing of dopamine transients is observed with age in littermates, suggesting premature ageing of dopamine synapses in GKI mice. Thus, GKI mice exhibit early, but declining, synaptic and behavioral phenotypes, making them amenable to investigation of early pathophysiological, and later parkinsonian-like, alterations. This model will prove valuable in efforts to develop neuroprotection for PD. PMID:28930069

  5. Initial elevations in glutamate and dopamine neurotransmission decline with age, as does exploratory behavior, in LRRK2 G2019S knock-in mice.

    PubMed

    Volta, Mattia; Beccano-Kelly, Dayne A; Paschall, Sarah A; Cataldi, Stefano; MacIsaac, Sarah E; Kuhlmann, Naila; Kadgien, Chelsie A; Tatarnikov, Igor; Fox, Jesse; Khinda, Jaskaran; Mitchell, Emma; Bergeron, Sabrina; Melrose, Heather; Farrer, Matthew J; Milnerwood, Austen J

    2017-09-20

    LRRK2 mutations produce end-stage Parkinson's disease (PD) with reduced nigrostriatal dopamine, whereas, asymptomatic carriers have increased dopamine turnover and altered brain connectivity. LRRK2 pathophysiology remains unclear, but reduced dopamine and mitochondrial abnormalities occur in aged G2019S mutant knock-in (GKI) mice. Conversely, cultured GKI neurons exhibit increased synaptic transmission. We assessed behavior and synaptic glutamate and dopamine function across a range of ages. Young GKI mice exhibit more vertical exploration, elevated glutamate and dopamine transmission, and aberrant D2-receptor responses. These phenomena decline with age, but are stable in littermates. In young GKI mice, dopamine transients are slower, independent of dopamine transporter (DAT), increasing the lifetime of extracellular dopamine. Slowing of dopamine transients is observed with age in littermates, suggesting premature ageing of dopamine synapses in GKI mice. Thus, GKI mice exhibit early, but declining, synaptic and behavioral phenotypes, making them amenable to investigation of early pathophysiological, and later parkinsonian-like, alterations. This model will prove valuable in efforts to develop neuroprotection for PD.

  6. ILLICIT DOPAMINE TRANSIENTS: RECONCILING ACTIONS OF ABUSED DRUGS

    PubMed Central

    Covey, Dan P.; Roitman, Mitchell F.; Garris, Paul A.

    2014-01-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. While compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyper-activating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyper-activation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural reward and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. PMID:24656971

  7. Link between D sub 1 and D sub 2 dopamine receptors is reduced in schizophrenia and Huntington diseased brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeman, P.; Niznik, H.B.; Guan, H.C.

    1989-12-01

    Dopamine receptor types D{sub 1} and D{sub 2} can oppose enhance each other's actions for electrical, biochemical, and psychomotor effects. The authors report a D{sub 1}-D{sub 2} interaction in homogenized tissue as revealed by ligand binding. D{sub 2} agonists lowered the binding of ({sup 3}H)raclopride to D{sub 2} receptors in striatal and anterior pituitary tissues. Pretreating the tissue with the D{sub 1}-selective antagonist SCH 23390 prevented the agonist-induced decrease in ({sup 3}H)raclopride binding to D{sub 2} sites in the striatum but not in the anterior pituitary, which has no D{sub 1} receptors. Conversely, a dopamine-induced reduction in the binding ofmore » ({sup 3}H)SCH 23390 to D{sub 1} receptors could be prevented by the D{sub 2}-selective antagonist eticlopride. Receptor photolabeling experiments confirmed both these D{sub 1}-D{sub 2} interactions. The blocking effect by SCH 23390 was similar to that produced by a nonhydrolyzable guanine nucleotide analogue, and SCH 23390 reduced the number of agonist-labeled D{sub 2} receptors in the high-affinity state. Thus, the D{sub 1}-D{sub 2} link may be mediated by guanine nucleotide-binding protein components. The link may underlie D{sub 1}-D{sub 2} interactions influencing behavior, since the link was missing in over half the postmortem striata from patients with schizophrenia and Huntington disease (both diseases that show some hyperdopamine signs) but was present in human control, Alzheimer, and Parkinson striata.« less

  8. Cocaine Self-Administration Produces Long-Lasting Alterations in Dopamine Transporter Responses to Cocaine

    PubMed Central

    Siciliano, Cody A.; Fordahl, Steve C.

    2016-01-01

    Cocaine addiction is a debilitating neuropsychiatric disorder characterized by uncontrolled cocaine intake, which is thought to be driven, at least in part, by cocaine-induced deficits in dopamine system function. A decreased ability of cocaine to elevate dopamine levels has been repeatedly observed as a consequence of cocaine use in humans, and preclinical work has highlighted tolerance to cocaine's effects as a primary determinant in the development of aberrant cocaine taking behaviors. Here we determined that cocaine self-administration in rats produced tolerance to the dopamine transporter-inhibiting effects of cocaine in the nucleus accumbens core, which was normalized following a 14 or 60 d abstinence period; however, although these rats appeared to be similar to controls, a single self-administered infusion of cocaine at the end of abstinence, even after 60 d, fully reinstated tolerance to cocaine's effects. A single cocaine infusion in a naive rat had no effect on cocaine potency, demonstrating that cocaine self-administration leaves the dopamine transporter in a “primed” state, which allows for cocaine-induced plasticity to be reinstated by a subthreshold cocaine exposure. Further, reinstatement of cocaine tolerance was accompanied by decreased cocaine-induced locomotion and escalated cocaine intake despite extended abstinence from cocaine. These data demonstrate that cocaine leaves a long-lasting imprint on the dopamine system that is activated by re-exposure to cocaine. Further, these results provide a potential mechanism for severe cocaine binge episodes, which occur even after sustained abstinence from cocaine, and suggest that treatments aimed at transporter sites may be efficacious in promoting binge termination following relapse. SIGNIFICANCE STATEMENT Tolerance is a DSM-V criterion for substance abuse disorders. Abusers consistently show reduced subjective effects of cocaine concomitant with reduced effects of cocaine at its main site of action, the dopamine transporter (DAT). Preclinical literature has shown that reduced cocaine potency at the DAT increases cocaine taking, highlighting the key role of tolerance in addiction. Addiction is characterized by cycles of abstinence, often for many months, followed by relapse, making it important to determine possible interactions between abstinence and subsequent drug re-exposure. Using a rodent model of cocaine abuse, we found long-lasting, possibly permanent, cocaine-induced alterations to the DAT, whereby cocaine tolerance is reinstated by minimal drug exposure, even after recovery of DAT function over prolonged abstinence periods. PMID:27466327

  9. Basal Ganglia Dysfunction Contributes to Physical Inactivity in Obesity.

    PubMed

    Friend, Danielle M; Devarakonda, Kavya; O'Neal, Timothy J; Skirzewski, Miguel; Papazoglou, Ioannis; Kaplan, Alanna R; Liow, Jeih-San; Guo, Juen; Rane, Sushil G; Rubinstein, Marcelo; Alvarez, Veronica A; Hall, Kevin D; Kravitz, Alexxai V

    2017-02-07

    Obesity is associated with physical inactivity, which exacerbates the health consequences of weight gain. However, the mechanisms that mediate this association are unknown. We hypothesized that deficits in dopamine signaling contribute to physical inactivity in obesity. To investigate this, we quantified multiple aspects of dopamine signaling in lean and obese mice. We found that D2-type receptor (D2R) binding in the striatum, but not D1-type receptor binding or dopamine levels, was reduced in obese mice. Genetically removing D2Rs from striatal medium spiny neurons was sufficient to reduce motor activity in lean mice, whereas restoring G i signaling in these neurons increased activity in obese mice. Surprisingly, although mice with low D2Rs were less active, they were not more vulnerable to diet-induced weight gain than control mice. We conclude that deficits in striatal D2R signaling contribute to physical inactivity in obesity, but inactivity is more a consequence than a cause of obesity. Published by Elsevier Inc.

  10. Label-Free Detection of Small Organic Molecules by Molecularly Imprinted Polymer Functionalized Thermocouples: Toward In Vivo Applications

    PubMed Central

    2017-01-01

    Molecularly imprinted polymers (MIPs), synthetic polymeric receptors, have been combined successfully with thermal transducers for the detection of small molecules in recent years. However, up until now they have been combined with planar electrodes which limits their use for in vivo applications. In this work, a new biosensor platform is developed by roll-coating MIP particles onto thermocouples, functionalized with polylactic acid (PLLA). As a first proof-of-principle, MIPs for the neurotransmitter dopamine were incorporated into PLLA-coated thermocouples. The response of the synthetic receptor layer to an increasing concentration of dopamine in buffer was analyzed using a homemade heat-transfer setup. Binding of the template to the MIP layer blocks the heat transport through the thermocouple, leading to less heat loss to the environment and an overall higher temperature in the measuring chamber. The measured temperature increase is correlated to the neurotransmitter concentration, which enables measurement of dopamine levels in the micromolar regime. To demonstrate the general applicability of the proposed biosensor platform, thermocouples were functionalized with similar MIPs for cortisol and serotonin, indicating a similar response and limit-of-detection. As the platform does not require planar electrodes, it can easily be integrated in, e.g., a catheter. In this way, it is an excellent fit for the current niche in the market of therapeutics and diagnostics. Moreover, the use of a biocompatible and disposable PLLA-layer further illustrates its potential for in vivo diagnostics. PMID:28480332

  11. A role for locus coeruleus in Parkinson tremor

    PubMed Central

    Isaias, Ioannis U.; Marzegan, Alberto; Pezzoli, Gianni; Marotta, Giorgio; Canesi, Margherita; Biella, Gabriele E. M.; Volkmann, Jens; Cavallari, Paolo

    2012-01-01

    We analyzed rest tremor, one of the etiologically most elusive hallmarks of Parkinson disease (PD), in 12 consecutive PD patients during a specific task activating the locus coeruleus (LC) to investigate a putative role of noradrenaline (NA) in tremor generation and suppression. Clinical diagnosis was confirmed in all subjects by reduced dopamine reuptake transporter (DAT) binding values investigated by single photon computed tomography imaging (SPECT) with [123I] N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) tropane (FP-CIT). The intensity of tremor (i.e., the power of Electromyography [EMG] signals), but not its frequency, significantly increased during the task. In six subjects, tremor appeared selectively during the task. In a second part of the study, we retrospectively reviewed SPECT with FP-CIT data and confirmed the lack of correlation between dopaminergic loss and tremor by comparing DAT binding values of 82 PD subjects with bilateral tremor (n = 27), unilateral tremor (n = 22), and no tremor (n = 33). This study suggests a role of the LC in Parkinson tremor. PMID:22287946

  12. A Novel Heterocyclic Compound CE-104 Enhances Spatial Working Memory in the Radial Arm Maze in Rats and Modulates the Dopaminergic System

    PubMed Central

    Aher, Yogesh D.; Subramaniyan, Saraswathi; Shanmugasundaram, Bharanidharan; Sase, Ajinkya; Saroja, Sivaprakasam R.; Holy, Marion; Höger, Harald; Beryozkina, Tetyana; Sitte, Harald H.; Leban, Johann J.; Lubec, Gert

    2016-01-01

    Various psychostimulants targeting monoamine neurotransmitter transporters (MATs) have been shown to rescue cognition in patients with neurological disorders and improve cognitive abilities in healthy subjects at low doses. Here, we examined the effects upon cognition of a chemically synthesized novel MAT inhibiting compound 2-(benzhydrylsulfinylmethyl)-4-methylthiazole (named as CE-104). The efficacy of CE-104 in blocking MAT [dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter] was determined using in vitro neurotransmitter uptake assay. The effect of the drug at low doses (1 and 10 mg/kg) on spatial memory was studied in male rats in the radial arm maze (RAM). Furthermore, the dopamine receptor and transporter complex levels of frontal cortex (FC) tissue of trained and untrained animals treated either with the drug or vehicle were quantified on blue native PAGE (BN-PAGE). The drug inhibited dopamine (IC50: 27.88 μM) and norepinephrine uptake (IC50: 160.40 μM), but had a negligible effect on SERT. In the RAM, both drug-dose groups improved spatial working memory during the performance phase of RAM as compared to vehicle. BN-PAGE Western blot quantification of dopamine receptor and transporter complexes revealed that D1, D2, D3, and DAT complexes were modulated due to training and by drug effects. The drug’s ability to block DAT and its influence on DAT and receptor complex levels in the FC is proposed as a possible mechanism for the observed learning and memory enhancement in the RAM. PMID:26941626

  13. σ Receptor Effects of N-Substituted Benztropine Analogs: Implications for Antagonism of Cocaine Self-Administration

    PubMed Central

    Hiranita, Takato; Hong, Weimin C.; Kopajtic, Theresa

    2017-01-01

    Several N-substituted benztropine (BZT) analogs are atypical dopamine transport inhibitors as they have affinity for the dopamine transporter (DAT) but have minimal cocaine-like pharmacologic effects and can block numerous effects of cocaine, including its self-administration. Among these compounds, N-methyl (AHN1-055), N-allyl (AHN2-005), and N-butyl (JHW007) analogs of 3α-[bis(4′-fluorophenyl)methoxy]-tropane were more potent in antagonizing self-administration of cocaine and d-methamphetamine than in decreasing food-maintained responding. The antagonism of cocaine self-administration (0.03–1.0 mg/kg per injection) with the above BZT analogs was reproduced in the present study. Further, the stimulant-antagonist effects resembled previously reported effects of pretreatments with combinations of standard DAT inhibitors and σ1-receptor (σ1R) antagonists. Therefore, the present study examined binding of the BZT analogs to σRs, as well as their in vivo σR antagonist effects. Each of the BZT analogs displaced radiolabeled σR ligands with nanomolar affinity. Further, self-administration of the σR agonist DTG (0.1–3.2 mg/kg/injection) was dose dependently blocked by AHN2-005 and JHW007 but potentiated by AHN1-055. In contrast, none of the BZT analogs that were active against DTG self-administration was active against the self-administration of agonists at dopamine D1-like [R(+)-SKF 81297, (±)-SKF 82958 (0.00032–0.01 mg/kg per injection each)], D2-like [R(–)-NPA (0.0001–0.0032 mg/kg per injection), (–)-quinpirole (0.0032–0.1 mg/kg per injection)], or μ-opioid (remifentanil, 0.0001–0.0032 mg/kg per injection) receptors. The present results indicate that behavioral antagonist effects of the N-substituted BZT analogs are specific for abused drugs acting at the DAT and further suggest that σR antagonism contributes to those actions. PMID:28442581

  14. σ Receptor Effects of N-Substituted Benztropine Analogs: Implications for Antagonism of Cocaine Self-Administration.

    PubMed

    Hiranita, Takato; Hong, Weimin C; Kopajtic, Theresa; Katz, Jonathan L

    2017-07-01

    Several N-substituted benztropine (BZT) analogs are atypical dopamine transport inhibitors as they have affinity for the dopamine transporter (DAT) but have minimal cocaine-like pharmacologic effects and can block numerous effects of cocaine, including its self-administration. Among these compounds, N -methyl (AHN1-055), N -allyl (AHN2-005), and N -butyl (JHW007) analogs of 3 α -[bis(4'-fluorophenyl)methoxy]-tropane were more potent in antagonizing self-administration of cocaine and d -methamphetamine than in decreasing food-maintained responding. The antagonism of cocaine self-administration (0.03-1.0 mg/kg per injection) with the above BZT analogs was reproduced in the present study. Further, the stimulant-antagonist effects resembled previously reported effects of pretreatments with combinations of standard DAT inhibitors and σ 1 -receptor ( σ 1 R) antagonists. Therefore, the present study examined binding of the BZT analogs to σ Rs, as well as their in vivo σ R antagonist effects. Each of the BZT analogs displaced radiolabeled σ R ligands with nanomolar affinity. Further, self-administration of the σ R agonist DTG (0.1-3.2 mg/kg/injection) was dose dependently blocked by AHN2-005 and JHW007 but potentiated by AHN1-055. In contrast, none of the BZT analogs that were active against DTG self-administration was active against the self-administration of agonists at dopamine D 1 -like [ R (+)-SKF 81297, (±)-SKF 82958 (0.00032-0.01 mg/kg per injection each)], D 2 -like [ R (-)-NPA (0.0001-0.0032 mg/kg per injection), (-)-quinpirole (0.0032-0.1 mg/kg per injection)], or μ -opioid (remifentanil, 0.0001-0.0032 mg/kg per injection) receptors. The present results indicate that behavioral antagonist effects of the N -substituted BZT analogs are specific for abused drugs acting at the DAT and further suggest that σ R antagonism contributes to those actions. U.S. Government work not protected by U.S. copyright.

  15. Incident impulse control disorder symptoms and dopamine transporter imaging in Parkinson disease.

    PubMed

    Smith, Kara M; Xie, Sharon X; Weintraub, Daniel

    2016-08-01

    To describe the incidence of, and clinical and neurobiological risk factors for, new-onset impulse control disorder (ICD) symptoms and related behaviours in early Parkinson disease (PD). The Parkinson's Progression Markers Initiative is an international, multicenter, prospective study of de novo patients with PD untreated at baseline and assessed annually, including serial dopamine transporter imaging (DAT-SPECT) and ICD assessment (Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease short form, QUIP). Participants were included if they screened negative on the QUIP at baseline. Kaplan-Meier curves and generalised estimating equations examined frequency and predictors of incident ICD symptoms. Participants were seen at baseline (n=320), year 1 (n=284), year 2 (n=217) and year 3 (n=96). Estimated cumulative incident rates of ICD symptoms and related behaviours were 8% (year 1), 18% (year 2) and 25% (year 3) and increased each year in those on dopamine replacement therapy (DRT) and decreased in those not on DRT. In participants on DRT, risk factors for incident ICD symptoms were younger age (OR=0.97, p=0.05), a greater decrease in right caudate (OR=4.03, p=0.01) and mean striatal (OR=6.90, p=0.04) DAT availability over the first year, and lower right putamen (OR=0.06, p=0.01) and mean total striatal (OR=0.25, p=0.04) DAT availability at any post-baseline visit. The rate of incident ICD symptoms increases with time and initiation of DRT in early PD. In this preliminary study, a greater decrease or lower DAT binding over time increases risk of incident ICD symptoms, conferring additional risk to those taking DRT. NCT01141023. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. fMRI Activation during Response Inhibition and Error Processing: The Role of the DAT1 Gene in Typically Developing Adolescents and Those Diagnosed with ADHD

    ERIC Educational Resources Information Center

    Braet, Wouter; Johnson, Katherine A.; Tobin, Claire T.; Acheson, Ruth; McDonnell, Caroline; Hawi, Ziarah; Barry, Edwina; Mulligan, Aisling; Gill, Michael; Bellgrove, Mark A.; Robertson, Ian H.; Garavan, Hugh

    2011-01-01

    The DAT1 gene codes for the dopamine transporter, which clears dopamine from the synaptic cleft, and a variant of this gene has previously been associated with compromised response inhibition in both healthy and clinical populations. This variant has also been associated with ADHD, a disorder that is characterised by disturbed dopamine function as…

  17. Amphetamine-induced dopamine release and neurocognitive function in treatment-naive adults with ADHD.

    PubMed

    Cherkasova, Mariya V; Faridi, Nazlie; Casey, Kevin F; O'Driscoll, Gillian A; Hechtman, Lily; Joober, Ridha; Baker, Glen B; Palmer, Jennifer; Dagher, Alain; Leyton, Marco; Benkelfat, Chawki

    2014-05-01

    Converging evidence from clinical, preclinical, neuroimaging, and genetic research implicates dopamine neurotransmission in the pathophysiology of attention deficit hyperactivity disorder (ADHD). The in vivo neuroreceptor imaging evidence also suggests alterations in the dopamine system in ADHD; however, the nature and behavioral significance of those have not yet been established. Here, we investigated striatal dopaminergic function in ADHD using [(11)C]raclopride PET with a d-amphetamine challenge. We also examined the relationship of striatal dopamine responses to ADHD symptoms and neurocognitive function. A total of 15 treatment-free, noncomorbid adult males with ADHD (age: 29.87 ± 8.65) and 18 healthy male controls (age: 25.44 ± 6.77) underwent two PET scans: one following a lactose placebo and the other following d-amphetamine (0.3 mg/kg, p.o.), administered double blind and in random order counterbalanced across groups. In a separate session without a drug, participants performed a battery of neurocognitive tests. Relative to the healthy controls, the ADHD patients, as a group, showed greater d-amphetamine-induced decreases in striatal [(11)C]raclopride binding and performed more poorly on measures of response inhibition. Across groups, a greater magnitude of d-amphetamine-induced change in [(11)C]raclopride binding potential was associated with poorer performance on measures of response inhibition and ADHD symptoms. Our findings suggest an augmented striatal dopaminergic response in treatment-naive ADHD. Though in contrast to results of a previous study, this finding appears consistent with a model proposing exaggerated phasic dopamine release in ADHD. A susceptibility to increased phasic dopamine responsivity may contribute to such characteristics of ADHD as poor inhibition and impulsivity.

  18. Glycyrrhetinic acid and E.resveratroloside act as potential plant derived compounds against dopamine receptor D3 for Parkinson’s disease: a pharmacoinformatics study

    PubMed Central

    Mirza, Muhammad Usman; Mirza, A Hammad; Ghori, Noor-Ul-Huda; Ferdous, Saba

    2015-01-01

    Parkinson’s disease (PD) is caused by loss in nigrostriatal dopaminergic neurons and is ranked as the second most common neurodegenerative disorder. Dopamine receptor D3 is considered as a potential target in drug development against PD because of its lesser side effects and higher degree of neuro-protection. One of the prominent therapies currently available for PD is the use of dopamine agonists which mimic the natural action of dopamine in the brain and stimulate dopamine receptors directly. Unfortunately, use of these pharmacological therapies such as bromocriptine, apomorphine, and ropinirole provides only temporary relief of the disease symptoms and is frequently linked with insomnia, anxiety, depression, and agitation. Thus, there is a need for an alternative treatment that not only hinders neurodegeneration, but also has few or no side effects. Since the past decade, much attention has been given to exploitation of phytochemicals and their use in alternative medicine research. This is because plants are a cheap, indispensable, and never ending resource of active compounds that are beneficial against various diseases. In the current study, 40 active phytochemicals against PD were selected through literature survey. These ligands were docked with dopamine receptor D3 using AutoDock and AutoDockVina. Binding energies were compared to docking results of drugs approved by the US Food and Drug Administration against PD. The compounds were further analyzed for their absorption, distribution, metabolism, and excretion-toxicity profile. From the study it is concluded that glycyrrhetinic acid and E.resveratroloside are potent compounds having high binding energies which should be considered as potential lead compounds for drug development against PD. PMID:25565772

  19. Glycyrrhetinic acid and E.resveratroloside act as potential plant derived compounds against dopamine receptor D3 for Parkinson's disease: a pharmacoinformatics study.

    PubMed

    Mirza, Muhammad Usman; Mirza, A Hammad; Ghori, Noor-Ul-Huda; Ferdous, Saba

    2015-01-01

    Parkinson's disease (PD) is caused by loss in nigrostriatal dopaminergic neurons and is ranked as the second most common neurodegenerative disorder. Dopamine receptor D3 is considered as a potential target in drug development against PD because of its lesser side effects and higher degree of neuro-protection. One of the prominent therapies currently available for PD is the use of dopamine agonists which mimic the natural action of dopamine in the brain and stimulate dopamine receptors directly. Unfortunately, use of these pharmacological therapies such as bromocriptine, apomorphine, and ropinirole provides only temporary relief of the disease symptoms and is frequently linked with insomnia, anxiety, depression, and agitation. Thus, there is a need for an alternative treatment that not only hinders neurodegeneration, but also has few or no side effects. Since the past decade, much attention has been given to exploitation of phytochemicals and their use in alternative medicine research. This is because plants are a cheap, indispensable, and never ending resource of active compounds that are beneficial against various diseases. In the current study, 40 active phytochemicals against PD were selected through literature survey. These ligands were docked with dopamine receptor D3 using AutoDock and AutoDockVina. Binding energies were compared to docking results of drugs approved by the US Food and Drug Administration against PD. The compounds were further analyzed for their absorption, distribution, metabolism, and excretion-toxicity profile. From the study it is concluded that glycyrrhetinic acid and E.resveratroloside are potent compounds having high binding energies which should be considered as potential lead compounds for drug development against PD.

  20. GBR-12909 and fluspirilene potently inhibited binding of ( sup 3 H) (+) 3-PPP to sigma receptors in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contreras, P.C.; Bremer, M.E.; Rao, T.S.

    1990-01-01

    Fluspirilene and GBR-12909, two compounds structurally similar to BMY-14802 and haloperidol, were assessed for their ability to interact with sigma receptors. Fluspirilene, an antipsychotic agent that interacts potently with dopamine receptors, inhibited the binding of ({sup 3}H)-(+)3-PPP (IC{sub 50} = 380 nM) more potently than rimcazole, a putative sigma antagonist that was tested clinically for antipsychotic activity. GBR-12909, a potent dopamine uptake blocker, also inhibited the binding of ({sup 3}H)-(+)3-PPP with an IC{sub 50} of 48 nM. However, other compounds that block the re-uptake of catecholamines, such as nomifensine, desipramine, imipramine, xylamine, benztropine and cocaine, were much weaker than GBR-12909asmore » sigma ligands. Thus, GBR-12909 and fluspirilene, compounds structurally similar to BMY-14802, are potent sigma ligands.« less

  1. Does education modify motor compensation in Parkinson's disease?

    PubMed

    Sunwoo, Mun K; Hong, Jin Yong; Lee, Jae J; Lee, Phil H; Sohn, Young H

    2016-03-15

    In Alzheimer's disease, higher educational attainment is associated with fewer cognitive deficits despite similar pathological lesions. In animal models of Parkinson's disease (PD), enhanced levels of cognitive and physical stimulation can reduce motor deficits due to dopaminergic neuronal loss. Therefore, in this study, we tested whether higher educational attainment has a beneficial influence on PD motor symptoms. We included data from 182 patients with de novo PD without dementia, who underwent dopamine transporter (DAT) scans for an initial diagnostic work-up. Patients were divided into 2 groups according to their educational attainment; high education (HE-PD; ≥12years of education) and low education (LE-PD; <12years of education). The HE-PD group exhibited significantly higher mini-mental state exam scores, fewer motor deficits, and lower DAT binding to the posterior putamen than the LE-PD group, despite a similar duration of PD symptoms. A general linear model revealed that this difference in motor deficits remained statistically significant after controlling for potential confounding factors (p=0.032). These results suggest that higher educational attainment can lead to reduced motor deficits in PD despite greater reductions in dopamine levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Illicit dopamine transients: reconciling actions of abused drugs.

    PubMed

    Covey, Dan P; Roitman, Mitchell F; Garris, Paul A

    2014-04-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. Although compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyperactivating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyperactivation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural rewards and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Active-State Model of a Dopamine D2 Receptor - Gαi Complex Stabilized by Aripiprazole-Type Partial Agonists

    PubMed Central

    Kling, Ralf C.; Tschammer, Nuska; Lanig, Harald; Clark, Timothy; Gmeiner, Peter

    2014-01-01

    Partial agonists exhibit a submaximal capacity to enhance the coupling of one receptor to an intracellular binding partner. Although a multitude of studies have reported different ligand-specific conformations for a given receptor, little is known about the mechanism by which different receptor conformations are connected to the capacity to activate the coupling to G-proteins. We have now performed molecular-dynamics simulations employing our recently described active-state homology model of the dopamine D2 receptor-Gαi protein-complex coupled to the partial agonists aripiprazole and FAUC350, in order to understand the structural determinants of partial agonism better. We have compared our findings with our model of the D2R-Gαi-complex in the presence of the full agonist dopamine. The two partial agonists are capable of inducing different conformations of important structural motifs, including the extracellular loop regions, the binding pocket and, in particular, intracellular G-protein-binding domains. As G-protein-coupling to certain intracellular epitopes of the receptor is considered the key step of allosterically triggered nucleotide-exchange, it is tempting to assume that impaired coupling between the receptor and the G-protein caused by distinct ligand-specific conformations is a major determinant of partial agonist efficacy. PMID:24932547

  4. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity

    PubMed Central

    Eisenstein, Sarah A.; Gredysa, Danuta M.; Antenor–Dorsey, Jo Ann; Green, Leonard; Arbeláez, Ana Maria; Koller, Jonathan M.; Black, Kevin J.; Perlmutter, Joel S.; Moerlein, Stephen M.; Hershey, Tamara

    2015-01-01

    Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30) and non-obese (n = 20; body mass index<30) adults were assessed for percent body fat with dual-energy X-ray absorptiometry and for β-cell function using disposition index. Choice of larger, but delayed or less certain, monetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methyl)benperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting). Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting). In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding and metabolic factors, including β-cell function, interact to affect reward discounting in humans. PMID:26192187

  5. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity.

    PubMed

    Eisenstein, Sarah A; Gredysa, Danuta M; Antenor-Dorsey, Jo Ann; Green, Leonard; Arbeláez, Ana Maria; Koller, Jonathan M; Black, Kevin J; Perlmutter, Joel S; Moerlein, Stephen M; Hershey, Tamara

    2015-01-01

    Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30) and non-obese (n = 20; body mass index<30) adults were assessed for percent body fat with dual-energy X-ray absorptiometry and for β-cell function using disposition index. Choice of larger, but delayed or less certain, monetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methyl)benperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting). Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting). In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding and metabolic factors, including β-cell function, interact to affect reward discounting in humans.

  6. Infantile parkinsonism-dystonia: a dopamine "transportopathy".

    PubMed

    Blackstone, Craig

    2009-06-01

    The dopamine transporter (DAT) retrieves the neurotransmitter dopamine from the synaptic cleft at dopaminergic synapses. Variations in solute carrier family 6A, member 3 (SLC6A3/DAT1), the human gene encoding DAT, have been implicated in attention deficit hyperactivity and bipolar disorders, and DAT is a prominent site of action for drugs such as amphetamines and cocaine. In this issue of the JCI, Kurian et al. report that an autosomal recessive infantile parkinsonism-dystonia is caused by loss-of-function mutations in DAT that impair dopamine reuptake (see the related article beginning on page 1595). Though this might be predicted to result in dopamine excess in the synaptic cleft, it likely also causes depletion of presynaptic dopamine stores and possibly downregulation of postsynaptic dopamine receptor function, resulting in impairments in dopaminergic neurotransmission consistent with the clinical presentation. This is the first report of a genetic alteration in DAT function underlying a parkinsonian disorder.

  7. Infantile parkinsonism-dystonia: a dopamine “transportopathy”

    PubMed Central

    Blackstone, Craig

    2009-01-01

    The dopamine transporter (DAT) retrieves the neurotransmitter dopamine from the synaptic cleft at dopaminergic synapses. Variations in solute carrier family 6A, member 3 (SLC6A3/DAT1), the human gene encoding DAT, have been implicated in attention deficit hyperactivity and bipolar disorders, and DAT is a prominent site of action for drugs such as amphetamines and cocaine. In this issue of the JCI, Kurian et al. report that an autosomal recessive infantile parkinsonism-dystonia is caused by loss-of-function mutations in DAT that impair dopamine reuptake (see the related article beginning on page 1595). Though this might be predicted to result in dopamine excess in the synaptic cleft, it likely also causes depletion of presynaptic dopamine stores and possibly downregulation of postsynaptic dopamine receptor function, resulting in impairments in dopaminergic neurotransmission consistent with the clinical presentation. This is the first report of a genetic alteration in DAT function underlying a parkinsonian disorder. PMID:19504720

  8. D2 receptor genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans.

    PubMed

    Fazio, Leonardo; Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Romano, Raffaella; Gelao, Barbara; Ursini, Gianluca; Quarto, Tiziana; Lo Bianco, Luciana; Di Giorgio, Annabella; Mancini, Marina; Popolizio, Teresa; Rubini, Giuseppe; Bertolino, Alessandro

    2011-02-14

    Pre-synaptic D2 receptors regulate striatal dopamine release and DAT activity, key factors for modulation of motor pathways. A functional SNP of DRD2 (rs1076560 G>T) is associated with alternative splicing such that the relative expression of D2S (mainly pre-synaptic) vs. D2L (mainly post-synaptic) receptor isoforms is decreased in subjects with the T allele with a putative increase of striatal dopamine levels. To evaluate how DRD2 genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans, we have investigated the association of rs1076560 with BOLD fMRI activity during a motor task. To further evaluate the relationship of this circuitry with dopamine signaling, we also explored the correlation between genotype based differences in motor brain activity and pre-synaptic striatal DAT binding measured with [(123)I] FP-CIT SPECT. Fifty healthy subjects, genotyped for DRD2 rs1076560 were studied with BOLD-fMRI at 3T while performing a visually paced motor task with their right hand; eleven of these subjects also underwent [(123)I]FP-CIT SPECT. SPM5 random-effects models were used for statistical analyses. Subjects carrying the T allele had greater BOLD responses in left basal ganglia, thalamus, supplementary motor area, and primary motor cortex, whose activity was also negatively correlated with reaction time at the task. Moreover, left striatal DAT binding and activity of left supplementary motor area were negatively correlated. The present results suggest that DRD2 genetic variation was associated with focusing of responses in the whole motor network, in which activity of predictable nodes was correlated with reaction time and with striatal pre-synaptic dopamine signaling. Our results in humans may help shed light on genetic risk for neurobiological mechanisms involved in the pathophysiology of disorders with dysregulation of striatal dopamine like Parkinson's disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Dopamine D1A directly interacts with otoferlin synaptic pathway proteins: Ca2+ and phosphorylation underlie an NSF-to-AP2mu1 molecular switch.

    PubMed

    Selvakumar, Dakshnamurthy; Drescher, Marian J; Deckard, Nathan A; Ramakrishnan, Neeliyath A; Morley, Barbara J; Drescher, Dennis G

    2017-01-01

    Dopamine receptors regulate exocytosis via protein-protein interactions (PPIs) as well as via adenylyl cyclase transduction pathways. Evidence has been obtained for PPIs in inner ear hair cells coupling D1A to soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE)-related proteins snapin, otoferlin, N-ethylmaleimide-sensitive factor (NSF), and adaptor-related protein complex 2, mu 1 (AP2mu1), dependent on [Ca 2+ ] and phosphorylation. Specifically, the carboxy terminus of dopamine D1A was found to directly bind t-SNARE-associated protein snapin in teleost and mammalian hair cell models by yeast two-hybrid (Y2H) and pull-down assays, and snapin directly interacts with hair cell calcium-sensor otoferlin. Surface plasmon resonance (SPR) analysis, competitive pull-downs, and co-immunoprecipitation indicated that these interactions were promoted by Ca 2+ and occur together. D1A was also found to separately interact with NSF, but with an inverse dependence on Ca 2+ Evidence was obtained, for the first time, that otoferlin domains C2A, C2B, C2D, and C2F interact with NSF and AP2mu1, whereas C2C or C2E do not bind to either protein, representing binding characteristics consistent with respective inclusion or omission in individual C2 domains of the tyrosine motif YXXΦ. In competitive pull-down assays, as predicted by K D values from SPR (+Ca 2+ ), C2F pulled down primarily NSF as opposed to AP2mu1. Phosphorylation of AP2mu1 gave rise to a reversal: an increase in binding by C2F to phosphorylated AP2mu1 was accompanied by a decrease in binding to NSF, consistent with a molecular switch for otoferlin from membrane fusion (NSF) to endocytosis (AP2mu1). An increase in phosphorylated AP2mu1 at the base of the cochlear inner hair cell was the observed response elicited by a dopamine D1A agonist, as predicted. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  10. Azidobupramine, an Antidepressant-Derived Bifunctional Neurotransmitter Transporter Ligand Allowing Covalent Labeling and Attachment of Fluorophores

    PubMed Central

    Werner, Anna M.; Cuboni, Serena; Rudolf, Georg C.; Höfner, Georg; Wanner, Klaus T.; Sieber, Stephan A.; Schmidt, Ulrike; Holsboer, Florian; Rein, Theo; Hausch, Felix

    2016-01-01

    The aim of this study was to design, synthesize and validate a multifunctional antidepressant probe that is modified at two distinct positions. The purpose of these modifications was to allow covalent linkage of the probe to interaction partners, and decoration of probe-target complexes with fluorescent reporter molecules. The strategy for the design of such a probe (i.e., azidobupramine) was guided by the need for the introduction of additional functional groups, conveying the required properties while keeping the additional moieties as small as possible. This should minimize the risk of changing antidepressant-like properties of the new probe azidobupramine. To control for this, we evaluated the binding parameters of azidobupramine to known target sites such as the transporters for serotonin (SERT), norepinephrine (NET), and dopamine (DAT). The binding affinities of azidobupramine to SERT, NET, and DAT were in the range of structurally related and clinically active antidepressants. Furthermore, we successfully visualized azidobupramine-SERT complexes not only in SERT-enriched protein material but also in living cells stably overexpressing SERT. To our knowledge, azidobupramine is the first structural analogue of a tricyclic antidepressant that can be covalently linked to target structures and further attached to reporter molecules while preserving antidepressant-like properties and avoiding radioactive isotopes. PMID:26863431

  11. Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine.

    PubMed

    Dal Bo, Gregory; St-Gelais, Fannie; Danik, Marc; Williams, Sylvain; Cotton, Mathieu; Trudeau, Louis-Eric

    2004-03-01

    Dopamine neurons have been suggested to use glutamate as a cotransmitter. To identify the basis of such a phenotype, we have examined the expression of the three recently identified vesicular glutamate transporters (VGLUT1-3) in postnatal rat dopamine neurons in culture. We found that the majority of isolated dopamine neurons express VGLUT2, but not VGLUT1 or 3. In comparison, serotonin neurons express only VGLUT3. Single-cell RT-PCR experiments confirmed the presence of VGLUT2 mRNA in dopamine neurons. Arguing for phenotypic heterogeneity among axon terminals, we find that only a proportion of terminals established by dopamine neurons are VGLUT2-positive. Taken together, our results provide a basis for the ability of dopamine neurons to release glutamate as a cotransmitter. A detailed analysis of the conditions under which DA neurons gain or loose a glutamatergic phenotype may provide novel insight into pathophysiological processes that underlie diseases such as schizophrenia, Parkinson's disease and drug dependence.

  12. Corticotropin-releasing hormone and dopamine release in healthy individuals.

    PubMed

    Payer, Doris; Williams, Belinda; Mansouri, Esmaeil; Stevanovski, Suzanna; Nakajima, Shinichiro; Le Foll, Bernard; Kish, Stephen; Houle, Sylvain; Mizrahi, Romina; George, Susan R; George, Tony P; Boileau, Isabelle

    2017-02-01

    Corticotropin-releasing hormone (CRH) is a key component of the neuroendocrine response to stress. In animal models, CRH has been shown to modulate dopamine release, and this interaction is believed to contribute to stress-induced relapse in neuropsychiatric disorders. Here we investigated whether CRH administration induces dopamine release in humans, using positron emission tomography (PET). Eight healthy volunteers (5 female, 22-48 years old) completed two PET scans with the dopamine D 2/3 receptor radioligand [ 11 C]-(+)-PHNO: once after saline injection, and once after injection of corticorelin (synthetic human CRH). We also assessed subjective reports and measured plasma levels of endocrine hormones (adrenocorticotropic hormone and cortisol). Relative to saline, corticorelin administration decreased binding of the D 2/3 PET probe [ 11 C]-(+)-PHNO, suggesting dopamine release. Endocrine stress markers were also elevated, in line with activation of the hypothalamic-pituitary-adrenal axis, but we detected no changes in subjective ratings. Preliminary results from this proof-of-concept study suggests that CRH challenge in combination with [ 11 C]-(+)-PHNO PET may serve as an assay of dopamine release, presenting a potential platform for evaluating CRH/dopamine interactions in neuropsychiatric disorders and CRH antagonists as potential treatment avenues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Dopamine D2 receptors in the cerebral cortex: distribution and pharmacological characterization with [3H]raclopride.

    PubMed Central

    Lidow, M S; Goldman-Rakic, P S; Rakic, P; Innis, R B

    1989-01-01

    An apparent involvement of dopamine in the regulation of cognitive functions and the recognition of a widespread dopaminergic innervation of the cortex have focused attention on the identity of cortical dopamine receptors. However, only the presence and distribution of dopamine D1 receptors in the cortex have been well documented. Comparable information on cortical D2 sites is lacking. We report here the results of binding studies in the cortex and neostriatum of rat and monkey using the D2 selective antagonist [3H]raclopride. In both structures [3H]raclopride bound in a sodium-dependent and saturable manner to a single population of sites with pharmacological profiles of dopamine D2 receptors. D2 sites were present in all regions of the cortex, although their density was much lower than in the neostriatum. The density of these sites in both monkey and, to a lesser extent, rat cortex displayed a rostral-caudal gradient with highest concentrations in the prefrontal and lowest concentrations in the occipital cortex, corresponding to dopamine levels in these areas. Thus, the present study establishes the presence and widespread distribution of dopamine D2 receptors in the cortex. PMID:2548214

  14. Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive 'bath salts' products.

    PubMed

    Baumann, Michael H; Partilla, John S; Lehner, Kurt R; Thorndike, Eric B; Hoffman, Alexander F; Holy, Marion; Rothman, Richard B; Goldberg, Steven R; Lupica, Carl R; Sitte, Harald H; Brandt, Simon D; Tella, Srihari R; Cozzi, Nicholas V; Schindler, Charles W

    2013-03-01

    The abuse of psychoactive 'bath salts' containing cathinones such as 3,4-methylenedioxypyrovalerone (MDPV) is a growing public health concern, yet little is known about their pharmacology. Here, we evaluated the effects of MDPV and related drugs using molecular, cellular, and whole-animal methods. In vitro transporter assays were performed in rat brain synaptosomes and in cells expressing human transporters, while clearance of endogenous dopamine was measured by fast-scan cyclic voltammetry in mouse striatal slices. Assessments of in vivo neurochemistry, locomotor activity, and cardiovascular parameters were carried out in rats. We found that MDPV blocks uptake of [(3)H]dopamine (IC(50)=4.1 nM) and [(3)H]norepinephrine (IC(50)=26 nM) with high potency but has weak effects on uptake of [(3)H]serotonin (IC(50)=3349 nM). In contrast to other psychoactive cathinones (eg, mephedrone), MDPV is not a transporter substrate. The clearance of endogenous dopamine is inhibited by MDPV and cocaine in a similar manner, but MDPV displays greater potency and efficacy. Consistent with in vitro findings, MDPV (0.1-0.3 mg/kg, intravenous) increases extracellular concentrations of dopamine in the nucleus accumbens. Additionally, MDPV (0.1-3.0 mg/kg, subcutaneous) is at least 10 times more potent than cocaine at producing locomotor activation, tachycardia, and hypertension in rats. Our data show that MDPV is a monoamine transporter blocker with increased potency and selectivity for catecholamines when compared with cocaine. The robust stimulation of dopamine transmission by MDPV predicts serious potential for abuse and may provide a mechanism to explain the adverse effects observed in humans taking high doses of 'bath salts' preparations.

  15. Powerful Cocaine-Like Actions of 3,4-Methylenedioxypyrovalerone (MDPV), a Principal Constituent of Psychoactive ‘Bath Salts' Products

    PubMed Central

    Baumann, Michael H; Partilla, John S; Lehner, Kurt R; Thorndike, Eric B; Hoffman, Alexander F; Holy, Marion; Rothman, Richard B; Goldberg, Steven R; Lupica, Carl R; Sitte, Harald H; Brandt, Simon D; Tella, Srihari R; Cozzi, Nicholas V; Schindler, Charles W

    2013-01-01

    The abuse of psychoactive ‘bath salts' containing cathinones such as 3,4-methylenedioxypyrovalerone (MDPV) is a growing public health concern, yet little is known about their pharmacology. Here, we evaluated the effects of MDPV and related drugs using molecular, cellular, and whole-animal methods. In vitro transporter assays were performed in rat brain synaptosomes and in cells expressing human transporters, while clearance of endogenous dopamine was measured by fast-scan cyclic voltammetry in mouse striatal slices. Assessments of in vivo neurochemistry, locomotor activity, and cardiovascular parameters were carried out in rats. We found that MDPV blocks uptake of [3H]dopamine (IC50=4.1 nℳ) and [3H]norepinephrine (IC50=26 nℳ) with high potency but has weak effects on uptake of [3H]serotonin (IC50=3349 nℳ). In contrast to other psychoactive cathinones (eg, mephedrone), MDPV is not a transporter substrate. The clearance of endogenous dopamine is inhibited by MDPV and cocaine in a similar manner, but MDPV displays greater potency and efficacy. Consistent with in vitro findings, MDPV (0.1–0.3 mg/kg, intravenous) increases extracellular concentrations of dopamine in the nucleus accumbens. Additionally, MDPV (0.1–3.0 mg/kg, subcutaneous) is at least 10 times more potent than cocaine at producing locomotor activation, tachycardia, and hypertension in rats. Our data show that MDPV is a monoamine transporter blocker with increased potency and selectivity for catecholamines when compared with cocaine. The robust stimulation of dopamine transmission by MDPV predicts serious potential for abuse and may provide a mechanism to explain the adverse effects observed in humans taking high doses of ‘bath salts' preparations. PMID:23072836

  16. Reward-based hypertension control by a synthetic brain-dopamine interface.

    PubMed

    Rössger, Katrin; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2013-11-05

    Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal's reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future.

  17. A daily single dose of a novel modafinil analogue CE-123 improves memory acquisition and memory retrieval.

    PubMed

    Kristofova, Martina; Aher, Yogesh D; Ilic, Marija; Radoman, Bojana; Kalaba, Predrag; Dragacevic, Vladimir; Aher, Nilima Y; Leban, Johann; Korz, Volker; Zanon, Lisa; Neuhaus, Winfried; Wieder, Marcus; Langer, Thierry; Urban, Ernst; Sitte, Harald H; Hoeger, Harald; Lubec, Gert; Aradska, Jana

    2018-05-02

    Dopamine reuptake inhibitors have been shown to improve cognitive parameters in various tasks and animal models. We recently reported a series of modafinil analogues, of which the most promising, 5-((benzhydrylsulfinyl)methyl) thiazole (CE-123), was selected for further development. The present study aims to characterize pharmacological properties of CE-123 and to investigate the potential to enhance memory performance in a rat model. In vitro transporter assays were performed in cells expressing human transporters. CE-123 blocked uptake of [3H] dopamine (IC50 = 4.606 μM) while effects on serotonin (SERT) and the norepinephrine transporter (NET) were negligible. Blood-brain barrier and pharmacokinetic studies showed that the compound reached the brain and lower elimination than R-modafinil. The Pro-cognitive effect was evaluated in a spatial hole-board task in male Sprague-Dawley rats and CE-123 enhances memory acquisition and memory retrieval, represented by significantly increased reference memory indices and shortened latency. Since DAT blockers can be considered as indirect dopamine receptor agonists, western blotting was used to quantify protein levels of dopamine receptors D1R, D2R and D5R and DAT in the synaptosomal fraction of hippocampal subregions CA1, CA3 and dentate gyrus (DG). CE-123 administration in rats increased total DAT levels and D1R protein levels were significantly increased in CA1 and CA3 in treated/trained groups. The increase of D5R was observed in DG only. Dopamine receptors, particularly D1R, seem to play a role in mediating CE-123-induced memory enhancement. Dopamine reuptake inhibition by CE-123 may represent a novel and improved stimulant therapeutic for impairments of cognitive functions. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Synthesis and dopamine transporter imaging in rhesus monkeys with fluorine-18 labeled FECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keil, R.; Hoffman, J.M.; Eschima, D.

    1996-05-01

    Parkinson`s patients have been shown to suffer a 60-80% loss of dopamine transporters in the substantia nigra and striatum. Dopamine transporter ligands labeled with fluorine-18 (t {1/2}=110 min) are attractive probes for measuring the density of dopamine transporter sites n the striatum for the diagnosis and evaluation of Parkinson`s patients by PET. We have synthesized (Ki = 32 nM vs RTI-55), fluorine-18 labeled 2{beta}-carbomethoxy-3{beta}(4-chlorophenyl)-8-(3-fluoropropyl)nortropane (FECT), with favorable kinetics as a potential dopamine transporter PET imaging agent. Treatment of 2{beta}-carbomethoxy-3{beta}-(4-chlorophenyl)nortropane (1) with 1-bromo-2-fluoroethane (2) in CH3CN at 80{degrees}C gave FECT (3). [F-18]FECT (3) was prepared by treating 1,2-ditosyloxyethane (4) with NCAmore » K[F-18]/K222 (365 mCi) for 5 min in CH3CN at 85{degrees}C to give [F-18] 1-fluoro-2-tosyloxyethane (5) (175 mCi)in 59% E.O.B. yield. Coupling of [F-18] 5 with 1 in DMF at 135 {degrees}C for 45 min gave [F-18]FECT (41 mCi) in 25% yield E.O.B. following HPLC purification in a total synthesis time of 122 min. [F-18] 5 was >99% radiochemically pure with a specific activity of 5 Ci/{mu}mole. Following intravenous administration to a rhesus monkey [F-18]FECT (8.13 mCi) showed a peak uptake at 30 min in the striatum (S) followed by a slow clearance and a rapid washout from the cerebellum to afford a high S/C ratio = 11.0 at 125 min. Radio-HPLC analysis of the ether extracts form plasma samples for radioactive metabolites detected only the presence of [F-18]FECT. These results suggest that FECT is an Research supported by DOE.« less

  19. Synthesis and evaluation of the racemate and individual enantiomers of C-11 labeled methylphenidate as radioligands for the presynaptic dopaminergic neuron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Y.S.; Fowler, J.S.; Volkow, N.D.

    1994-05-01

    Methylphenidate (MP, ritalin) is a psychostimulant drug widely used to treat attention deficit hyperactivity disorder and narcolepsy. Its therapeutic properties are attributed to inhibition of the dopamine (DA) transporter enhancing synaptic DA. MP has two chiral centers and is marketed as the dl-threo racemic form. However, its pharmacological activity is believed due solely to the d-enantiomer. We have synthesized [{sup 11}C]d,l-threo-methylphenidate ([{sup 11}C]MP) in order to examine its pharmacokinetics in vivo and to examine its suitability as a radioligand for PET studies of the presynaptic DA neuron. [{sup 11}C]MP was prepared by O-{sup 11}C-alkylation of a protected derivative of ritalinicmore » acid with labeled methyl iodide. Serial studies at baseline and after treatment with methylphenidate (0.5 mg/kg, 20 min prior); GBR 12909 (1.5 mg/kg; 30 min prior); tomoxetine (1.5 mg/kg, 20 min prior) and citalopram (2.0 mg/kg, 30 min prior) were performed to assess non-specific binding and binding to the DA, norepinephrine and serotonin transporters respectively. Only MP and GBR 12909 changed the SR/CB distribution volume ratio (decrease of 38 and 37% respectively) demonstrating selectivity for DA transporters over other monoamine transporters. We then pursued the synthesis of enantiomerically pure C-{sup 11} labeled d- and l-MP by using enantiomerically pure protected d- and l-ritalinic acids as precursors. A striking difference in SR/CB ratio (3.3 and 1.1 for d- and l-respectively at 1 hr. after i.v. injections) strongly suggests that the pharmacological specificity of MP resides entirely in the d-isomer and the binding of l-isomer was mostly non-specific. Further evaluations are underway. Radioligand reversibility, selectivity and the fact that MP is an approved drug are advantages of using [{sup 11}C]MP.« less

  20. A peptide disrupting the D2R-DAT interaction protects against dopamine neurotoxicity.

    PubMed

    Su, Ping; Liu, Fang

    2017-09-01

    Dopamine reuptake from extracellular space to cytosol leads to accumulation of dopamine, which triggers neurotoxicity in dopaminergic neurons. Previous studies have shown that both dopamine D2 receptor (D2R) and dopamine transporter (DAT) are involved in dopamine neurotoxicity. However, blockade of either D2R or DAT causes side effects due to antagonism of other physiological functions of these two proteins. We previously found that DAT can form a protein complex with D2R and its cell surface expression is facilitated via D2R-DAT interaction, which regulates dopamine reuptake and intracellular dopamine levels. Here we found that an interfering peptide (DAT-S1) disrupting the D2R-DAT interaction protects neurons against dopamine neurotoxicity, and this effect is mediated by inhibiting DAT cell surface expression and inhibiting both caspase-3 and PARP-1 cleavage. This study demonstrates the role of the D2R-DAT complex in dopamine neurotoxicity and investigated the potential mechanisms, which might help better understand the mechanisms of dopamine neurotoxicity. The peptide may provide some insights to improve treatments for dopamine neurotoxicity and related diseases, such as Parkinson's disease, as well as methamphetamine- and 3,4-methsylenedioxy methamphetamine-induced neurotoxicity. Copyright © 2017. Published by Elsevier Inc.

  1. Stereocontrolled dopamine receptor binding and subtype selectivity of clebopride analogues synthesized from aspartic acid.

    PubMed

    Einsiedel, Jürgen; Weber, Klaus; Thomas, Christoph; Lehmann, Thomas; Hübner, Harald; Gmeiner, Peter

    2003-10-06

    Employing the achiral 4-aminopiperidine derivative clebopride as a lead compound, chiral analogues were developed displaying dopamine receptor binding profiles that proved to be strongly dependent on the stereochemistry. Compared to the D1 receptor, the test compounds showed high selectivity for the D2-like subtypes including D2(long), D2(short), D3 and D4. The highest D4 and D3 affinities were observed for the cis-3-amino-4-methylpyrrolidines 3e and the enantiomer ent3e resulting in K(i) values of 0.23 and 1.8 nM, respectively. The benzamides of type 3 and 5 were synthesized in enantiopure form starting from (S)-aspartic acid and its unnatural optical antipode.

  2. Parkinson Disease Protein DJ-1 Binds Metals and Protects against Metal-induced Cytotoxicity*

    PubMed Central

    Björkblom, Benny; Adilbayeva, Altynai; Maple-Grødem, Jodi; Piston, Dominik; Ökvist, Mats; Xu, Xiang Ming; Brede, Cato; Larsen, Jan Petter; Møller, Simon Geir

    2013-01-01

    The progressive loss of motor control due to reduction of dopamine-producing neurons in the substantia nigra pars compacta and decreased striatal dopamine levels are the classically described features of Parkinson disease (PD). Neuronal damage also progresses to other regions of the brain, and additional non-motor dysfunctions are common. Accumulation of environmental toxins, such as pesticides and metals, are suggested risk factors for the development of typical late onset PD, although genetic factors seem to be substantial in early onset cases. Mutations of DJ-1 are known to cause a form of recessive early onset Parkinson disease, highlighting an important functional role for DJ-1 in early disease prevention. This study identifies human DJ-1 as a metal-binding protein able to evidently bind copper as well as toxic mercury ions in vitro. The study further characterizes the cytoprotective function of DJ-1 and PD-mutated variants of DJ-1 with respect to induced metal cytotoxicity. The results show that expression of DJ-1 enhances the cells' protective mechanisms against induced metal toxicity and that this protection is lost for DJ-1 PD mutations A104T and D149A. The study also shows that oxidation site-mutated DJ-1 C106A retains its ability to protect cells. We also show that concomitant addition of dopamine exposure sensitizes cells to metal-induced cytotoxicity. We also confirm that redox-active dopamine adducts enhance metal-catalyzed oxidation of intracellular proteins in vivo by use of live cell imaging of redox-sensitive S3roGFP. The study indicates that even a small genetic alteration can sensitize cells to metal-induced cell death, a finding that may revive the interest in exogenous factors in the etiology of PD. PMID:23792957

  3. Development and application of hybrid structure based method for efficient screening of ligands binding to G-protein coupled receptors

    NASA Astrophysics Data System (ADS)

    Kortagere, Sandhya; Welsh, William J.

    2006-12-01

    G-protein coupled receptors (GPCRs) comprise a large superfamily of proteins that are targets for nearly 50% of drugs in clinical use today. In the past, the use of structure-based drug design strategies to develop better drug candidates has been severely hampered due to the absence of the receptor's three-dimensional structure. However, with recent advances in molecular modeling techniques and better computing power, atomic level details of these receptors can be derived from computationally derived molecular models. Using information from these models coupled with experimental evidence, it has become feasible to build receptor pharmacophores. In this study, we demonstrate the use of the Hybrid Structure Based (HSB) method that can be used effectively to screen and identify prospective ligands that bind to GPCRs. Essentially; this multi-step method combines ligand-based methods for building enriched libraries of small molecules and structure-based methods for screening molecules against the GPCR target. The HSB method was validated to identify retinal and its analogues from a random dataset of ˜300,000 molecules. The results from this study showed that the 9 top-ranking molecules are indeed analogues of retinal. The method was also tested to identify analogues of dopamine binding to the dopamine D2 receptor. Six of the ten top-ranking molecules are known analogues of dopamine including a prodrug, while the other thirty-four molecules are currently being tested for their activity against all dopamine receptors. The results from both these test cases have proved that the HSB method provides a realistic solution to bridge the gap between the ever-increasing demand for new drugs to treat psychiatric disorders and the lack of efficient screening methods for GPCRs.

  4. Chronic methamphetamine administration causes differential regulation of transcription factors in the rat midbrain.

    PubMed

    Krasnova, Irina N; Ladenheim, Bruce; Hodges, Amber B; Volkow, Nora D; Cadet, Jean Lud

    2011-04-25

    Methamphetamine (METH) is an addictive and neurotoxic psychostimulant widely abused in the USA and throughout the world. When administered in large doses, METH can cause depletion of striatal dopamine terminals, with preservation of midbrain dopaminergic neurons. Because alterations in the expression of transcription factors that regulate the development of dopaminergic neurons might be involved in protecting these neurons after toxic insults, we tested the possibility that their expression might be affected by toxic doses of METH in the adult brain. Male Sprague-Dawley rats pretreated with saline or increasing doses of METH were challenged with toxic doses of the drug and euthanized two weeks later. Animals that received toxic METH challenges showed decreases in dopamine levels and reductions in tyrosine hydroxylase protein concentration in the striatum. METH pretreatment protected against loss of striatal dopamine and tyrosine hydroxylase. In contrast, METH challenges caused decreases in dopamine transporters in both saline- and METH-pretreated animals. Interestingly, METH challenges elicited increases in dopamine transporter mRNA levels in the midbrain in the presence but not in the absence of METH pretreatment. Moreover, toxic METH doses caused decreases in the expression of the dopamine developmental factors, Shh, Lmx1b, and Nurr1, but not in the levels of Otx2 and Pitx3, in saline-pretreated rats. METH pretreatment followed by METH challenges also decreased Nurr1 but increased Otx2 and Pitx3 expression in the midbrain. These findings suggest that, in adult animals, toxic doses of METH can differentially influence the expression of transcription factors involved in the developmental regulation of dopamine neurons. The combined increases in Otx2 and Pitx3 expression after METH preconditioning might represent, in part, some of the mechanisms that served to protect against METH-induced striatal dopamine depletion observed after METH preconditioning.

  5. Atypical dopamine efflux caused by 3,4-methylenedioxypyrovalerone (MDPV) via the human dopamine transporter.

    PubMed

    Shekar, Aparna; Aguilar, Jenny I; Galli, Greta; Cozzi, Nicholas V; Brandt, Simon D; Ruoho, Arnold E; Baumann, Michael H; Matthies, Heinrich J G; Galli, Aurelio

    2017-10-01

    Synthetic cathinones are similar in chemical structure to amphetamines, and their behavioral effects are associated with enhanced dopaminergic signaling. The past ten years of research on the common constituent of bath salts, MDPV (the synthetic cathinone 3,4-methylenedioxypyrovalerone), has aided the understanding of how synthetic cathinones act at the dopamine (DA) transporter (DAT). Several groups have described the ability of MDPV to block the DAT with high-affinity. In this study, we demonstrate for the first time a new mode of action of MDPV, namely its ability to promote DAT-mediated DA efflux. Using single cell amperometric assays, we determined that low concentrations of MDPV (1nM) can cause reverse transport of DA via DAT. Notably, administration of MDPV leads to hyperlocomotion in Drosophila melanogaster. These data describe further how MDPV acts at the DAT, possibly paving the way for novel treatment strategies for individuals who abuse bath salts. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Excessive D1 Dopamine Receptor Activation in the Dorsal Striatum Promotes Autistic-Like Behaviors.

    PubMed

    Lee, Yunjin; Kim, Hannah; Kim, Ji-Eun; Park, Jin-Young; Choi, Juli; Lee, Jung-Eun; Lee, Eun-Hwa; Han, Pyung-Lim

    2018-07-01

    The dopamine system has been characterized in motor function, goal-directed behaviors, and rewards. Recent studies recognize various dopamine system genes as being associated with autism spectrum disorder (ASD). However, how dopamine system dysfunction induces ASD pathophysiology remains unknown. In the present study, we demonstrated that mice with increased dopamine functions in the dorsal striatum via the suppression of dopamine transporter expression in substantia nigra neurons or the optogenetic stimulation of the nigro-striatal circuitry exhibited sociability deficits and repetitive behaviors relevant to ASD pathology in animal models, while these behavioral changes were blocked by a D1 receptor antagonist. Pharmacological activation of D1 dopamine receptors in normal mice or the genetic knockout (KO) of D2 dopamine receptors also produced typical autistic-like behaviors. Moreover, the siRNA-mediated inhibition of D2 dopamine receptors in the dorsal striatum was sufficient to replicate autistic-like phenotypes in D2 KO mice. Intervention of D1 dopamine receptor functions or the signaling pathways-related D1 receptors in D2 KO mice produced anti-autistic effects. Together, our results indicate that increased dopamine function in the dorsal striatum promotes autistic-like behaviors and that the dorsal striatum is the neural correlate of ASD core symptoms.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, g.j.; Wang, G.-J.; Geliebter, A.

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [{sup 11}C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocksmore » the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.« less

  8. Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals

    PubMed Central

    Daberkow, DP; Brown, HD; Bunner, KD; Kraniotis, SA; Doellman, MA; Ragozzino, ME; Garris, PA; Roitman, MF

    2013-01-01

    Drugs of abuse hijack brain reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting non-exocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties - which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to two hours. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration and frequency of spontaneous dopamine transients, the naturally occurring, non-electrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sucrose reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sucrose-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify up-regulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  9. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids

    PubMed Central

    Covey, Dan P.; Bunner, Kendra D.; Schuweiler, Douglas R.; Cheer, Joseph F.; Garris, Paul A.

    2018-01-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement. PMID:27038339

  10. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    PubMed

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine

    PubMed Central

    Wheeler, David S.; Underhill, Suzanne M.; Stolz, Donna B.; Murdoch, Geoffrey H.; Thiels, Edda; Romero, Guillermo; Amara, Susan G.

    2015-01-01

    Acute amphetamine (AMPH) exposure elevates extracellular dopamine through a variety of mechanisms that include inhibition of dopamine reuptake, depletion of vesicular stores, and facilitation of dopamine efflux across the plasma membrane. Recent work has shown that the DAT substrate AMPH, unlike cocaine and other nontransported blockers, can also stimulate endocytosis of the plasma membrane dopamine transporter (DAT). Here, we show that when AMPH enters the cytoplasm it rapidly stimulates DAT internalization through a dynamin-dependent, clathrin-independent process. This effect, which can be observed in transfected cells, cultured dopamine neurons, and midbrain slices, is mediated by activation of the small GTPase RhoA. Inhibition of RhoA activity with C3 exotoxin or a dominant-negative RhoA blocks AMPH-induced DAT internalization. These actions depend on AMPH entry into the cell and are blocked by the DAT inhibitor cocaine. AMPH also stimulates cAMP accumulation and PKA-dependent inactivation of RhoA, thus providing a mechanism whereby PKA- and RhoA-dependent signaling pathways can interact to regulate the timing and robustness of AMPH’s effects on DAT internalization. Consistent with this model, the activation of D1/D5 receptors that couple to PKA in dopamine neurons antagonizes RhoA activation, DAT internalization, and hyperlocomotion observed in mice after AMPH treatment. These observations support the existence of an unanticipated intracellular target that mediates the effects of AMPH on RhoA and cAMP signaling and suggest new pathways to target to disrupt AMPH action. PMID:26553986

  12. Pyrethroid pesticide-induced alterations in dopamine transporter function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elwan, Mohamed A.; Department of Environmental and Occupational Health, School of Medicine, Emory University, Atlanta, GA 30322; Richardson, Jason R.

    Parkinson's disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determinedmore » that exposure (10 min) to deltamethrin and permethrin (1 nM-100 {mu}M) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 {mu}M) or 24 h (1, 5, and 10 {mu}M) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD.« less

  13. Age-dependent methamphetamine-induced alterations in vesicular monoamine transporter-2 function: implications for neurotoxicity.

    PubMed

    Truong, Jannine G; Wilkins, Diana G; Baudys, Jakub; Crouch, Dennis J; Johnson-Davis, Kamisha L; Gibb, James W; Hanson, Glen R; Fleckenstein, Annette E

    2005-09-01

    Tens of thousands of adolescents and young adults have used illicit methamphetamine. This is of concern since its high-dose administration causes persistent dopaminergic deficits in adult animal models. The effects in adolescents are less studied. In adult rodents, toxic effects of methamphetamine may result partly from aberrant cytosolic dopamine accumulation and subsequent reactive oxygen species formation. The vesicular monoamine transporter-2 (VMAT-2) sequesters cytoplasmic dopamine into synaptic vesicles for storage and perhaps protection against dopamine-associated oxidative consequences. Accordingly, aberrant VMAT-2 function may contribute to the methamphetamine-induced persistent dopaminergic deficits. Hence, this study examined effects of methamphetamine on VMAT-2 in adolescent (postnatal day 40) and young adult (postnatal day 90) rats. Results revealed that high-dose methamphetamine treatment caused greater acute (within 1 h) decreases in vesicular dopamine uptake in postnatal day 90 versus 40 rats, as determined in a nonmembrane-associated subcellular fraction. Greater basal levels of VMAT-2 at postnatal day 90 versus 40 in this purified fraction seemed to contribute to the larger effect. Basal tissue dopamine content was also greater in postnatal day 90 versus 40 rats. In addition, postnatal day 90 rats were more susceptible to methamphetamine-induced persistent dopaminergic deficits as assessed by measuring VMAT-2 activity and dopamine content 7 days after treatment, even if drug doses were adjusted for age-related pharmacokinetic differences. Together, these data demonstrate dynamic changes in VMAT-2 susceptibility to methamphetamine as a function of development. Implications with regard to methamphetamine-induced dopaminergic deficits, as well as dopamine-associated neurodegenerative disorders such as Parkinson's disease, are discussed.

  14. Long-term health of dopaminergic neuron transplants in Parkinson's disease patients.

    PubMed

    Hallett, Penelope J; Cooper, Oliver; Sadi, Damaso; Robertson, Harold; Mendez, Ivar; Isacson, Ole

    2014-06-26

    To determine the long-term health and function of transplanted dopamine neurons in Parkinson's disease (PD) patients, the expression of dopamine transporters (DATs) and mitochondrial morphology were examined in human fetal midbrain cellular transplants. DAT was robustly expressed in transplanted dopamine neuron terminals in the reinnervated host putamen and caudate for at least 14 years after transplantation. The transplanted dopamine neurons showed a healthy and nonatrophied morphology at all time points. Labeling of the mitochondrial outer membrane protein Tom20 and α-synuclein showed a typical cellular pathology in the patients' own substantia nigra, which was not observed in transplanted dopamine neurons. These results show that the vast majority of transplanted neurons remain healthy for the long term in PD patients, consistent with clinical findings that fetal dopamine neuron transplants maintain function for up to 15-18 years in patients. These findings are critically important for the rational development of stem-cell-based dopamine neuronal replacement therapies for PD. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Enhanced Striatal Dopamine Release During Food Stimulation in Binge Eating Disorder

    PubMed Central

    Wang, Gene-Jack; Geliebter, Allan; Volkow, Nora D.; Telang, Frank W.; Logan, Jean; Jayne, Millard C.; Galanti, Kochavi; Selig, Peter A.; Han, Hao; Zhu, Wei; Wong, Christopher T.; Fowler, Joanna S.

    2011-01-01

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [11C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating. PMID:21350434

  16. Hypothyroidism leads to increased dopamine receptor sensitivity and concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocker, A.D.; Overstreet, D.H.; Crocker, J.M.

    1986-06-01

    Rats treated with iodine-131 were confirmed to be hypothyroid by their reduced baseline core body temperatures, reduced serum thyroxine concentrations and elevated serum thyroid stimulating hormone concentrations. When hypothyroid rats were compared to euthyroid controls they were more sensitive to the effects of apomorphine (1.0 mumol/kg) on stereotypy, operant responding and body temperature and showed a smaller reduction in locomotor activity after injection of haloperidol (0.25 mumol/kg). Receptor binding studies on striatal homogenates indicated that hypothyroid rats had increased concentrations of D2 dopamine receptors but there was no change in the affinity. It is concluded that hypothyroidism increases dopamine receptormore » sensitivity by increasing receptor concentration.« less

  17. The role of dopamine receptors in the neurotoxicity of methamphetamine.

    PubMed

    Ares-Santos, S; Granado, N; Moratalla, R

    2013-05-01

    Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  18. Naltrexone modulates dopamine release following chronic, but not acute amphetamine administration: a translational study

    PubMed Central

    Jayaram-Lindström, N; Guterstam, J; Häggkvist, J; Ericson, M; Malmlöf, T; Schilström, B; Halldin, C; Cervenka, S; Saijo, T; Nordström, A-L; Franck, J

    2017-01-01

    The opioid antagonist naltrexone has been shown to attenuate the subjective effects of amphetamine. However, the mechanisms behind this modulatory effect are currently unknown. We hypothesized that naltrexone would diminish the striatal dopamine release induced by amphetamine, which is considered an important mechanism behind many of its stimulant properties. We used positron emission tomography and the dopamine D2-receptor radioligand [11C]raclopride in healthy subjects to study the dopaminergic effects of an amphetamine injection after pretreatment with naltrexone or placebo. In a rat model, we used microdialysis to study the modulatory effects of naltrexone on dopamine levels after acute and chronic amphetamine exposure. In healthy humans, naltrexone attenuated the subjective effects of amphetamine, confirming our previous results. Amphetamine produced a significant reduction in striatal radioligand binding, indicating increased levels of endogenous dopamine. However, there was no statistically significant effect of naltrexone on dopamine release. The same pattern was observed in rats, where an acute injection of amphetamine caused a significant rise in striatal dopamine levels, with no effect of naltrexone pretreatment. However, in a chronic model, naltrexone significantly attenuated the dopamine release caused by reinstatement of amphetamine. Collectively, these data suggest that the opioid system becomes engaged during the more chronic phase of drug use, evidenced by the modulatory effect of naltrexone on dopamine release following chronic amphetamine administration. The importance of opioid-dopamine interactions in the reinforcing and addictive effects of amphetamine is highlighted by the present findings and may help to facilitate medication development in the field of stimulant dependence. PMID:28440810

  19. Effects of S-citalopram, citalopram, and R-citalopram on the firing patterns of dopamine neurons in the ventral tegmental area, N-methyl-D-aspartate receptor-mediated transmission in the medial prefrontal cortex and cognitive function in the rat.

    PubMed

    Schilström, Björn; Konradsson-Geuken, Asa; Ivanov, Vladimir; Gertow, Jens; Feltmann, Kristin; Marcus, Monica M; Jardemark, Kent; Svensson, Torgny H

    2011-05-01

    Escitalopram, the S-enantiomer of citalopram, possesses superior efficacy compared to other selective serotonin reuptake inhibitors (SSRIs) in the treatment of major depression. Escitalopram binds to an allosteric site on the serotonin transporter, which further enhances the blockade of serotonin reuptake, whereas R-citalopram antagonizes this positive allosteric modulation. Escitalopram's effects on neurotransmitters other than serotonin, for example, dopamine and glutamate, are not well studied. Therefore, we here studied the effects of escitalopram, citalopram, and R-citalopram on dopamine cell firing in the ventral tegmental area, using single-cell recording in vivo and on NMDA receptor-mediated currents in pyramidal neurons in the medial prefrontal cortex using in vitro electrophysiology in rats. The cognitive effects of escitalopram and citalopram were also compared using the novel object recognition test. Escitalopram (40-640 μg/kg i.v.) increased both firing rate and burst firing of dopaminergic neurons, whereas citalopram (80-1280 μg/kg) had no effect on firing rate and only increased burst firing at high dosage. R-citalopram (40-640 μg/kg) had no significant effects. R-citalopram (320 μg/kg) antagonized the effects of escitalopram (320 μg/kg). A very low concentration of escitalopram (5 nM), but not citalopram (10 nM) or R-citalopram (5 nM), potentiated NMDA-induced currents in pyramidal neurons. Escitalopram's effect was antagonized by R-citalopram and blocked by the dopamine D(1) receptor antagonist SCH23390. Escitalopram, but not citalopram, improved recognition memory. Our data suggest that the excitatory effect of escitalopram on dopaminergic and NMDA receptor-mediated neurotransmission may have bearing on its cognitive-enhancing effect and superior efficacy compared to other SSRIs in major depression. Copyright © 2010 Wiley-Liss, Inc.

  20. Effect of raclopride on dopamine D2 receptor mRNA expression in rat brain.

    PubMed

    Kopp, J; Lindefors, N; Brené, S; Hall, H; Persson, H; Sedvall, G

    1992-01-01

    Prolonged treatment with dopamine D2 receptor antagonists is known to elevate the density of dopamine D2 receptor binding sites in caudate-putamen and nucleus accumbens in rat and human brain. In this study we used the dopamine D2 receptor antagonist raclopride (3 mumol/kg, s.c.) to determine if a single injection or daily administration of this drug for up to 18 days changed the expression of dopamine D2 receptor mRNA in rat caudate-putamen and accumbens as measured by in situ hybridization. A single injection of raclopride did not significantly change the numerical density of dopamine D2 receptor mRNA-expressing neurons in any of the regions examined. A daily administration of raclopride for 18 days resulted in a 31% increase in the number of cells expressing detectable amounts of dopamine D2 receptor mRNA in dorsolateral caudate-putamen and in a 20% increase in the area of silver grains over individual hybridization-positive neurons in this brain region measured on emulsion-dipped slides. The region-specific increase in the D2 receptor mRNA level in dorsolateral caudate-putamen was confirmed by measurement of the hybridization signal on X-ray film autoradiograms. The levels of D2 receptor mRNA remained unchanged in medial caudate-putamen and accumbens after 18 days' treatment. The region-selective increase in dopamine D2 receptor mRNA expression in dorsolateral caudate-putamen indicates a differential regulation of dopamine D2 receptor mRNA expression in a subpopulation of caudate-putamen neurons by this neuroleptic. We suggest that the increase in dopamine D2 receptor density in caudate-putamen known to follow prolonged dopamine D2 receptor blockade to some extent is regulated at the level of gene expression.

  1. A photoaffinity ligand for dopamine D2 receptors: azidoclebopride.

    PubMed

    Niznik, H B; Guan, J H; Neumeyer, J L; Seeman, P

    1985-02-01

    In order to label D2 dopamine receptors selectively and covalently by means of a photosensitive compound, azidoclebopride was synthesized directly from clebopride. The dissociation constant (KD) of clebopride for the D2 dopamine receptor (canine brain striatum) was 1.5 nM, while that for azidoclebopride was 21 nM. The affinities of both clebopride and azidoclebopride were markedly reduced in the absence of sodium chloride. In the presence of ultraviolet light, azidoclebopride inactivated D2 dopamine receptors irreversibly, as indicated by the inability of the receptors to bind [3H]spiperone. Maximal photoinactivation of about 60% of the D2 dopamine receptors occurred at 1 microM azidoclebopride; 30% of the receptors were inactivated at 80 nM azidoclebopride (pseudo-IC50). Dopamine agonists selectively protected the D2 receptors from being inactivated by azidoclebopride, the order of potency being (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than noradrenaline greater than serotonin. Similarly, dopaminergic antagonists prevented the photoinactivation of D2 receptors by azidoclebopride with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than (-)-butaclamol. The degree of D2 dopamine receptor photoinduced inactivation by azidoclebopride was not significantly affected by scavengers such as p-aminobenzoic acid and dithiothreitol. Furthermore, irradiation of striatal membranes with a concentration of azidoclebopride sufficient to inactivate dopamine D2 receptors by 60% did not significantly reduce dopamine D1, serotonin (S2), benzodiazepine, alpha 1- or beta-noradrenergic receptors. This study describes the use of a novel and selective photoaffinity ligand for brain dopamine D2 receptors. The molecule, in radiolabeled form, may aid in the molecular characterization of these receptors.

  2. Toward development of an in vitro model of methamphetamine-induced dopamine nerve terminal toxicity.

    PubMed

    Kim, S; Westphalen, R; Callahan, B; Hatzidimitriou, G; Yuan, J; Ricaurte, G A

    2000-05-01

    To develop an in vitro model of methamphetamine (METH)-induced dopamine (DA) neurotoxicity, striatal synaptosomes were incubated at 37 degrees C with METH for different periods of time (10-80 min), washed once, then tested for DA transporter function at 37 degrees C. METH produced time- and dose-dependent reductions in the V(max) of DA uptake, without producing any change in K(m). Incubation of synaptosomes with the DA neurotoxins 1-methyl-4-phenyl-pyridinium ion, 6-hydroxydopamine, and amphetamine under similar conditions produced comparable effects. In contrast, incubation with fenfluramine, a serotonin neurotoxin, did not. METH-induced decreases in DA uptake were selective, insofar as striatal glutamate uptake was unaffected. Various DA transporter blockers (cocaine, methylphenidate, and bupropion) afforded complete protection against METH-induced decreases in DA uptake, without producing any effect themselves. METH's effects were also temperature dependent, with greater decreases in DA uptake occurring at higher temperatures. Tests for residual drug revealed small amounts (0.1-0.2 microM) of remaining METH, but kinetic studies indicated that decreases in DA uptake were not likely to be due to METH acting as a competitive inhibitor of DA uptake. Decreases in the V(max) of DA uptake were not accompanied by decreases in B(max) of [(3)H]WIN 35,428 binding, possibly because there is no mechanism for removing damaged DA nerve endings from the in vitro preparation Collectively, these results give good support to the development of a valid in vitro model that may prove helpful for elucidating the mechanisms underlying METH-induced DA neurotoxicity.

  3. Persistent neurochemical and behavioral abnormalities in adulthood despite early iron supplementation for perinatal iron deficiency anemia in rats⋆

    PubMed Central

    Felt, Barbara T.; Beard, John L.; Schallert, Timothy; Shao, Jie; Aldridge, J. Wayne; Connor, James R.; Georgieff, Michael K.; Lozoff, Betsy

    2006-01-01

    Background Iron deficiency anemia (IDA) has been associated with altered cognitive, motor, and social-emotional outcomes in human infants. We recently reported that rats with chronic perinatal IDA, had altered regional brain iron, monoamines, and sensorimotor skill emergence during early development. Objective To examine the long-term consequences of chronic perinatal IDA on behavior, brain iron and monoamine systems after dietary iron treatment in rats. Methods Sixty dams were randomly assigned to iron-sufficient (CN) or low-iron (EID) diets during gestation and lactation. Thereafter, all offspring were fed the iron-sufficient diet, assessed for hematology and behavior after weaning and into adulthood and for brain measures as adults (regional brain iron, monoamines, dopamine and serotonin transporters, and dopamine receptor). Behavioral assessments included sensorimotor function, general activity, response to novelty, spatial alternation, and spatial water maze performance. Results Hematology and growth were similar for EID and CN rats by postnatal day 35. In adulthood, EID thalamic iron content was lower. Monoamines, dopamine transporter, and dopamine receptor concentrations did not differ from CN. EID serotonin transporter concentration was reduced in striatum and related regions. EID rats had persisting sensorimotor deficits (delayed vibrissae-evoked forelimb placing, longer sticker removal time, and more imperfect grooming chains), were more hesitant in novel settings, and had poorer spatial water maze performance than CN. General activity and spatial alternation were similar for EID and CN. Conclusion Rats that had chronic perinatal IDA showed behavioral impairments that suggest persistent striatal dopamine and hippocampal dysfunction despite normalization of hematology, growth and most brain measures. PMID:16713640

  4. Analogues of doxanthrine reveal differences between the dopamine D 1 receptor binding properties of chromanoisoquinolines and hexahydrobenzo[a]phenanthridines

    USGS Publications Warehouse

    Cueva, J.P.; Chemel, B.R.; Juncosa, J.I.; Lill, M.A.; Watts, V.J.; Nichols, D.E.

    2012-01-01

    Efforts to develop selective agonists for dopamine D 1-like receptors led to the discovery of dihydrexidine and doxanthrine, two bioisosteric ??-phenyldopamine-type full agonist ligands that display selectivity and potency at D 1-like receptors. We report herein an improved methodology for the synthesis of substituted chromanoisoquinolines (doxanthrine derivatives) and the evaluation of several new compounds for their ability to bind to D 1- and D 2-like receptors. Identical pendant phenyl ring substitutions on the dihydrexidine and doxanthrine templates surprisingly led to different effects on D 1-like receptor binding, suggesting important differences between the interactions of these ligands with the D 1 receptor. We propose, based on the biological results and molecular modeling studies, that slight conformational differences between the tetralin and chroman-based compounds lead to a shift in the location of the pendant ring substituents within the receptor. ?? 2011 Elsevier Ltd. All rights reserved.

  5. Cell-type specific increases in female hamster nucleus accumbens spine density following female sexual experience.

    PubMed

    Staffend, Nancy A; Hedges, Valerie L; Chemel, Benjamin R; Watts, Val J; Meisel, Robert L

    2014-11-01

    Female sexual behavior is an established model of a naturally motivated behavior which is regulated by activity within the mesolimbic dopamine system. Repeated activation of the mesolimbic circuit by female sexual behavior elevates dopamine release and produces persistent postsynaptic alterations to dopamine D1 receptor signaling within the nucleus accumbens. Here we demonstrate that sexual experience in female Syrian hamsters significantly increases spine density and alters morphology selectively in D1 receptor-expressing medium spiny neurons within the nucleus accumbens core, with no corresponding change in dopamine receptor binding or protein expression. Our findings demonstrate that previous life experience with a naturally motivated behavior has the capacity to induce persistent structural alterations to the mesolimbic circuit that can increase reproductive success and are analogous to the persistent structural changes following repeated exposure to many drugs of abuse.

  6. Cell-Type Specific Increases in Female Hamster Nucleus Accumbens Spine Density following Female Sexual Experience

    PubMed Central

    Staffend, Nancy A.; Hedges, Valerie L.; Chemel, Benjamin R.; Watts, Val J.; Meisel, Robert L.

    2013-01-01

    Female sexual behavior is an established model of a naturally motivated behavior which is regulated by activity within the mesolimbic dopamine system. Repeated activation of the mesolimbic circuit by female sexual behavior elevates dopamine release and produces persistent postsynaptic alterations to dopamine D1 receptor signaling within the nucleus accumbens. Here we demonstrate that sexual experience in female Syrian hamsters significantly increases spine density and alters morphology selectively in D1 receptor expressing medium spiny neurons within the nucleus accumbens core, with no corresponding change in dopamine receptor binding or protein expression. Our findings demonstrate that previous life experience with a naturally motivated behavior has the capacity to induce persistent structural alterations to the mesolimbic circuit that can increase reproductive success and are analogous to the persistent structural changes following repeated exposure to many drugs of abuse. PMID:23934655

  7. Imaging addiction: D2 receptors and dopamine signaling in the striatum as biomarkers for impulsivity

    PubMed Central

    Trifilieff, Pierre; Martinez, Diana

    2014-01-01

    Dependence to drugs of abuse is closely associated with impulsivity, or the propensity to choose a lower, but immediate, reward over a delayed, but more valuable outcome. Here, we review clinical and preclinical studies showing that striatal dopamine signaling and D2 receptor levels – which have been shown to be decreased in addiction - directly impact impulsivity, which is itself predictive of drug self-administration. Based on these studies, we propose that the alterations in D2 receptor binding and dopamine release seen in imaging studies of addiction constitute neurobiological markers of impulsivity. Recent studies in animals also show that higher striatal dopamine signaling at the D2 receptor is associated with a greater willingness to expend effort to reach goals, and we propose that this same relationship applies to humans, particularly with respect to recovery from addiction. PMID:23851257

  8. Aripiprazole.

    PubMed

    Prommer, Eric

    2017-03-01

    Delirium is a palliative care emergency where patients experience changes in perception, awareness, and behavior. Common features include changes in the sleep-wake cycle, emotional lability, delusional thinking, and language and thought disorders. Delirium results from neurotransmitter imbalances involving several neurotransmitters such as dopamine, glutamate, norepinephrine, acetylcholine, gamma-aminobutyric acid, and serotonin. Untreated delirium causes significant morbidity and mortality. Nonpharmacologic and pharmacologic approaches treat delirium. Current pharmacologic management of delirium involves using agents such as haloperidol or second-generation antipsychotics. Third-generation atypical antipsychotic drugs have emerged as a potential choice for delirium management. Aripiprazole is a third-generation antipsychotic with a dopamine receptor-binding profile distinct from other second-generation antipsychotics. Aripiprazole acts as partial agonist at dopamine D 2 and 5-hydroxytryptamine (5-HT) 1A receptors, stabilizing the dopamine receptor leading to improvement in symptoms. The article reviews the pharmacology, pharmacodynamics, metabolism, and evidence of clinical efficacy for this new antipsychotic agent. This article explores possible roles in palliative care.

  9. Pharmacology of novel synthetic stimulants structurally related to the “bath salts” constituent 3,4-methylenedioxypyrovalerone (MDPV)

    PubMed Central

    Marusich, Julie A.; Antonazzo, Kateland R.; Wiley, Jenny L.; Blough, Bruce E.; Partilla, John S.; Baumann, Michael H.

    2014-01-01

    There has been a dramatic rise in the abuse of synthetic cathinones known as “bath salts,” including 3,4-methylenedioxypyrovalerone (MDPV), an analog linked to many adverse events. MDPV differs from other synthetic cathinones because it contains a pyrrolidine ring which gives the drug potent actions as an uptake blocker at dopamine and norepinephrine transporters. While MDPV is now illegal, a wave of “second generation” pyrrolidinophenones has appeared on the market, with α-pyrrolidinovalerophenone (α-PVP) being most popular. Here, we sought to compare the in vitro and in vivo pharmacological effects of MDPV and its congeners: α-PVP, α-pyrrolidinobutiophenone (α-PBP), and α-pyrrolidinopropiophenone (α-PPP). We examined effects of test drugs in transporter uptake and release assays using rat brain synaptosomes, then assessed behavioral stimulant effects in mice. We found that α-PVP is a potent uptake blocker at dopamine and norepinephrine transporters, similar to MDPV. α-PBP and α-PPP are also catecholamine transporter blockers but display reduced potency. All of the test drugs are locomotor stimulants, and the rank order of in vivo potency parallels dopamine transporter activity, with MDPV>α-PVP>α-PBP>α-PPP. Motor activation produced by all drugs is reversed by the dopamine receptor antagonist SCH23390. Furthermore, results of a functional observational battery show that all test drugs produce typical stimulant effects at lower doses and some drugs produce bizarre behaviors at higher doses. Taken together, our findings represent the first evidence that second generation analogs of MDPV are catecholamine-selective uptake blockers which may pose risk for addiction and adverse effects in human users. PMID:24594476

  10. Pharmacology of novel synthetic stimulants structurally related to the "bath salts" constituent 3,4-methylenedioxypyrovalerone (MDPV).

    PubMed

    Marusich, Julie A; Antonazzo, Kateland R; Wiley, Jenny L; Blough, Bruce E; Partilla, John S; Baumann, Michael H

    2014-12-01

    There has been a dramatic rise in the abuse of synthetic cathinones known as "bath salts," including 3,4-methylenedioxypyrovalerone (MDPV), an analog linked to many adverse events. MDPV differs from other synthetic cathinones because it contains a pyrrolidine ring which gives the drug potent actions as an uptake blocker at dopamine and norepinephrine transporters. While MDPV is now illegal, a wave of "second generation" pyrrolidinophenones has appeared on the market, with α-pyrrolidinovalerophenone (α-PVP) being most popular. Here, we sought to compare the in vitro and in vivo pharmacological effects of MDPV and its congeners: α-PVP, α-pyrrolidinobutiophenone (α-PBP), and α-pyrrolidinopropiophenone (α-PPP). We examined effects of test drugs in transporter uptake and release assays using rat brain synaptosomes, then assessed behavioral stimulant effects in mice. We found that α-PVP is a potent uptake blocker at dopamine and norepinephrine transporters, similar to MDPV. α-PBP and α-PPP are also catecholamine transporter blockers but display reduced potency. All of the test drugs are locomotor stimulants, and the rank order of in vivo potency parallels dopamine transporter activity, with MDPV > α-PVP > α-PBP > α-PPP. Motor activation produced by all drugs is reversed by the dopamine receptor antagonist SCH23390. Furthermore, results of a functional observational battery show that all test drugs produce typical stimulant effects at lower doses and some drugs produce bizarre behaviors at higher doses. Taken together, our findings represent the first evidence that second generation analogs of MDPV are catecholamine-selective uptake blockers which may pose risk for addiction and adverse effects in human users. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Dopamine dynamics and cocaine sensitivity differ between striosome and matrix compartments of the striatum

    PubMed Central

    Salinas, Armando G.; Davis, Margaret I.; Lovinger, David M.; Mateo, Yolanda

    2016-01-01

    The striatum is typically classified according to its major output pathways, which consist of dopamine D1 and D2 receptor-expressing neurons. The striatum is also divided into striosome and matrix compartments, based on the differential expression of a number of proteins, including the mu opioid receptor, dopamine transporter (DAT), and Nr4a1 (nuclear receptor subfamily 4, group A, member 1). Numerous functional differences between the striosome and matrix compartments are implicated in dopamine-related neurological disorders including Parkinson’s disease and addiction. Using Nr4a1-eGFP mice, we provide evidence that electrically evoked dopamine release differs between the striosome and matrix compartments in a regionally-distinct manner. We further demonstrate that this difference is not due to differences in inhibition of dopamine release by dopamine autoreceptors or nicotinic acetylcholine receptors. Furthermore, cocaine enhanced extracellular dopamine in striosomes to a greater degree than in the matrix and concomitantly inhibited dopamine uptake in the matrix to a greater degree than in striosomes. Importantly, these compartment differences in cocaine sensitivity were limited to the dorsal striatum. These findings demonstrate a level of exquisite microanatomical regulation of dopamine by the DAT in striosomes relative to the matrix. PMID:27036891

  12. Dopamine and Caffeine Encapsulation within Boron Nitride (14,0) Nanotubes: Classical Molecular Dynamics and First Principles Calculations.

    PubMed

    García-Toral, Dolores; González-Melchor, Minerva; Rivas-Silva, Juan F; Meneses-Juárez, Efraín; Cano-Ordaz, José; H Cocoletzi, Gregorio

    2018-06-07

    Classical molecular dynamics (MD) and density functional theory (DFT) calculations are developed to investigate the dopamine and caffeine encapsulation within boron nitride (BN) nanotubes (NT) with (14,0) chirality. Classical MD studies are done at canonical and isobaric-isothermal conditions at 298 K and 1 bar in explicit water. Results reveal that both molecules are attracted by the nanotube; however, only dopamine is able to enter the nanotube, whereas caffeine moves in its vicinity, suggesting that both species can be transported: the first by encapsulation and the second by drag. Findings are analyzed using the dielectric behavior, pair correlation functions, diffusion of the species, and energy contributions. The DFT calculations are performed according to the BLYP approach and applying the atomic base of the divided valence 6-31g(d) orbitals. The geometry optimization uses the minimum-energy criterion, accounting for the total charge neutrality and multiplicity of 1. Adsorption energies in the dopamine encapsulation indicate physisorption, which induces the highly occupied molecular orbital-lower unoccupied molecular orbital gap reduction yielding a semiconductor behavior. The charge redistribution polarizes the BNNT/dopamine and BNNT/caffeine structures. The work function decrease and the chemical potential values suggest the proper transport properties in these systems, which may allow their use in nanobiomedicine.

  13. Extended access to methamphetamine self-administration up-regulates dopamine transporter levels 72 hours after withdrawal in rats.

    PubMed

    D'Arcy, Christina; Luevano, Joe E; Miranda-Arango, Manuel; Pipkin, Joseph A; Jackson, Jonathan A; Castañeda, Eddie; Gosselink, Kristin L; O'Dell, Laura E

    2016-01-01

    Previous studies have demonstrated that there are persistent changes in dopamine systems following withdrawal from methamphetamine (METH). This study examined changes in striatal dopamine transporter (DAT), tyrosine hydroxylase (TH) and dopamine receptor 2 (D2) 72 h after withdrawal from METH intravenous self- administration (IVSA). Rats were given limited (1h) or extended (6h) access to METH IVSA (0.05 mg/kg/0.1 ml infusion) for 22 days. Controls did not receive METH IVSA. The rats given extended access to IVSA displayed higher METH intake during the first hour of drug access compared to rats given limited access. Extended access to METH also produced a concomitant increase in striatal DAT levels relative to drug-naïve controls. There were no changes in TH or D2 levels across groups. Previous studies have reported a decrease in striatal DAT levels during protracted periods (>7 days) of withdrawal from METH IVSA. This study extends previous work by showing an increase in striatal DAT protein expression during an earlier time point of withdrawal from this drug. These results are an important step toward understanding the dynamic changes in dopamine systems that occur during different time points of withdrawal from METH IVSA. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. PET evaluation of the dopamine system of the human brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, N.D.; Fowler, J.S.; Gatley, S.

    1996-07-01

    Dopamine plays a pivotal role in the regulation and control of movement, motivation and cognition. It also is closely linked to reward, reinforcement and addiction. Abnormalities in brain dopamine are associated with many neurological and psychiatric disorders including Parkinson`s disease, schizophrenia and substance abuse. This close association between dopamine and neurological and psychiatric diseases and with substance abuse make it an important topic in research in the neurosciences and an important molecular target in drug development. PET enables the direct measurement of components of the dopamine system in the living human brain. It relies on radiotracers which label dopamine receptors,more » dopamine transporters, precursors of dopamine or compounds which have specificity for the enzymes which degrade dopamine. Additionally, by using tracers that provide information on regional brain metabolism or blood flow as well as neurochemically specific pharmacological interventions, PET can be used to assess the functional consequences of change in brain dopamine activity. PET dopamine measurements have been used to investigate the normal human brain and its involvement in psychiatric and neurological diseases. It has also been used in psychopharmacological research to investigate dopamine drugs used in the treatment of Parkinson`s disease and of schizophrenia as well as to investigate the effects of drugs of abuse on the dopamine system. Since various functional and neurochemical parameters can be studied in the same subject, PET enables investigation of the functional integrity of the dopamine system in the human brain and investigation of the interactions of dopamine with other neurotransmitters. This paper summarizes the different tracers and experimental strategies developed to evaluate the various elements of the dopamine system in the human brain with PET and their applications to clinical research. 254 refs., 7 figs., 3 tabs.« less

  15. Pharmacological modulation of abnormal involuntary DOI-induced head twitch response movements in male DBA/2J mice: II. Effects of D3 dopamine receptor selective compounds.

    PubMed

    Rangel-Barajas, Claudia; Malik, Maninder; Mach, Robert H; Luedtke, Robert R

    2015-06-01

    We recently reported on the characterization of the hallucinogen 2,5-dimethoxy-4-methylamphetamine's (DOI) ability to elicit a head twitch response (HTR) in DBA/2J mice and the ability of D2 vs. D3 dopamine receptor selective compounds to modulate that response. For these studies, the ability of D3 vs. D2 dopamine receptor selective compounds to attenuate the DOI-dependent HTR was examined. WC 10, a D3 dopamine receptor weak partial agonist with 40-fold binding selectivity for D3 vs. D2 dopamine receptors, produced a dose-dependent decrease in the DOI-induced HTR (IC50 = 3.7 mg/kg). WC 44, a D3 receptor selective full agonist, also inhibited the DOI-induced HTR (IC50 = 5.1 mg/kg). The effect of two D3 receptor selective partial agonists, LAX-4-136 and WW-III-55, were also evaluated. These analogs exhibit 150-fold and 800-fold D3 vs. D2 binding selectivity, respectively. Both compounds inhibited the HTR with similar potency but with different maximum efficacies. At 10 mg/kg WW-III-55 inhibited the HTR by 95%, while LAX-4-136 administration resulted in a 50% reduction. In addition, DOI (5 mg/kg) was administered at various times after LAX-4-136 or WW-III-55 administration to compare the duration of action. The homopiperazine analog LAX-4-136 exhibited greater stability. An assessment of our test compounds on motor performance and coordination was performed using a rotarod test. None of the D3 dopamine receptor selective compounds significantly altered latency to fall, suggesting that these compounds a) did not attenuate the DOI-dependent HTR due to sedative or adverse motor effects and b) may have antipsychotic/antihallucinogenic activity. Copyright © 2015. Published by Elsevier Ltd.

  16. Angiotensin AT1 and AT2 receptor antagonists modulate nicotine-evoked [³H]dopamine and [³H]norepinephrine release.

    PubMed

    Narayanaswami, Vidya; Somkuwar, Sucharita S; Horton, David B; Cassis, Lisa A; Dwoskin, Linda P

    2013-09-01

    Tobacco smoking is the leading preventable cause of death in the United States. A major negative health consequence of chronic smoking is hypertension. Untoward addictive and cardiovascular sequelae associated with chronic smoking are mediated by nicotine-induced activation of nicotinic receptors (nAChRs) within striatal dopaminergic and hypothalamic noradrenergic systems. Hypertension involves both brain and peripheral angiotensin systems. Activation of angiotensin type-1 receptors (AT1) release dopamine and norepinephrine. The current study determined the role of AT1 and angiotensin type-2 (AT2) receptors in mediating nicotine-evoked dopamine and norepinephrine release from striatal and hypothalamic slices, respectively. The potential involvement of nAChRs in mediating effects of AT1 antagonist losartan and AT2 antagonist, 1-[[4-(dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (PD123319) was evaluated by determining their affinities for α4β2* and α7* nAChRs using [³H]nicotine and [³H]methyllycaconitine binding assays, respectively. Results show that losartan concentration-dependently inhibited nicotine-evoked [³H]dopamine and [³H]norepinephrine release (IC₅₀: 3.9 ± 1.2 and 2.2 ± 0.7 μM; Imax: 82 ± 3 and 89 ± 6%, respectively). In contrast, PD123319 did not alter nicotine-evoked norepinephrine release, and potentiated nicotine-evoked dopamine release. These results indicate that AT1 receptors modulate nicotine-evoked striatal dopamine and hypothalamic norepinephrine release. Furthermore, AT1 receptor activation appears to be counteracted by AT2 receptor activation in striatum. Losartan and PD123319 did not inhibit [³H]nicotine or [³H]methyllycaconitine binding, indicating that these AT1 and AT2 antagonists do not interact with the agonist recognition sites on α4β2* and α7* nAChRs to mediate these effects of nicotine. Thus, angiotensin receptors contribute to the effects of nicotine on dopamine and norepinephrine release in brain regions involved in nicotine reward and hypertension. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study.

    PubMed

    Newman-Tancredi, A; Gavaudan, S; Conte, C; Chaput, C; Touzard, M; Verrièle, L; Audinot, V; Millan, M J

    1998-08-21

    Recombinant human (h) 5-HT1A receptor-mediated G-protein activation was characterised in membranes of transfected Chinese hamster ovary (CHO) cells by use of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS binding). The potency and efficacy of 21 5-HT receptor agonists and antagonists was determined. The agonists, 5-CT (carboxamidotryptamine) and flesinoxan displayed high affinity (subnanomolar Ki values) and high efficacy (Emax > 90%, relative to 5-HT = 100%). In contrast, ipsapirone, zalospirone and buspirone displayed partial agonist activity. EC50s for agonist stimulation of [35S]GTPgammaS binding correlated well with Ki values from competition binding (r = +0.99). Among the compounds tested for antagonist activity, methiothepin and (+)butaclamol exhibited 'inverse agonist' behaviour, inhibiting basal [35S]GTPgammaS binding. The actions of 17 antipsychotic agents were investigated. Clozapine and several putatively 'atypical' antipsychotic agents, including ziprasidone, quetiapine and tiospirone, exhibited partial agonist activity and marked affinity at h5-HT1A receptors, similar to their affinity at hD2 dopamine receptors. In contrast, risperidone and sertindole displayed low affinity at h5-HT1A receptors and behaved as 'neutral' antagonists, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Likewise the 'typical' neuroleptics, haloperidol, pimozide, raclopride and chlorpromazine exhibited relatively low affinity and 'neutral' antagonist activity at h5-HT1A receptors with Ki values which correlated with their respective Kb values. The present data show that (i) [35S]GTPgammaS binding is an effective method to evaluate the efficacy and potency of agonists and antagonists at recombinant human 5-HT1A receptors. (ii) Like clozapine, several putatively 'atypical' antipsychotic drugs display balanced serotonin h5-HT1A/dopamine hD2 receptor affinity and partial agonist activity at h5-HT1A receptors. (iii) Several 'typical' and some putatively 'atypical' antipsychotic agents displayed antagonist properties at h5-HT1A sites with generally much lower affinity than at hD2 dopamine receptors. It is suggested that agonist activity at 5-HT1A receptors may be of utility for certain antipsychotic agents.

  18. Plasma α-synuclein and cognitive impairment in the Parkinson's Associated Risk Syndrome: A pilot study.

    PubMed

    Wang, Hua; Atik, Anzari; Stewart, Tessandra; Ginghina, Carmen; Aro, Patrick; Kerr, Kathleen F; Seibyl, John; Jennings, Danna; Jensen, Poul Henning; Marek, Kenneth; Shi, Min; Zhang, Jing

    2018-04-27

    Plasma total and nervous system derived exosomal (NDE) α-synuclein have been determined as potential biomarkers of Parkinson's disease (PD). To explore the utility of plasma α-synuclein in the prodromal phase of PD, plasma total and NDE α-synuclein were evaluated in baseline and 2-year follow-up samples from 256 individuals recruited as part of the Parkinson's Associated Risk Syndrome (PARS) study. The results demonstrated that baseline and longitudinal increases in total α-synuclein predicted progression of cognitive decline in hyposmic individuals with dopamine transporter (DAT) binding reduction. On the other hand, a longitudinal decrease in NDE α-synuclein predicted worsening cognitive scores in hyposmic individuals with DAT binding reduction. Finally, in individuals with faster DAT progression, decreasing NDE/total α-synuclein ratio was associated with a larger reduction in DAT from baseline to follow-up. These results suggest that, though underlying mechanisms remain to be defined, alterations in plasma total and NDE α-synuclein concentrations are likely associated with PD progression, especially in the aspect of cognitive impairment, at early stages of the disease. Copyright © 2018. Published by Elsevier Inc.

  19. Sigma opiates and certain antipsychotic drugs mutually inhibit (+)-[3H] SKF 10,047 and [3H]haloperidol binding in guinea pig brain membranes.

    PubMed Central

    Tam, S W; Cook, L

    1984-01-01

    The relationship between binding of antipsychotic drugs and sigma psychotomimetic opiates to binding sites for the sigma agonist (+)-[3H]SKF 10,047 (N-allylnormetazocine) and to dopamine D2 sites was investigated. In guinea pig brain membranes, (+)-[3H]SKF 10,047 bound to a single class of sites with a Kd of 4 X 10(-8) M and a Bmax of 333 fmol/mg of protein. This binding was different from mu, kappa, or delta opiate receptor binding. It was inhibited by opiates that produce psychotomimetic activities but not by opiates that lack such activities. Some antipsychotic drugs inhibited (+)-[3H]SKF 10,047 binding with high to moderate affinities in the following order of potency: haloperidol greater than perphenazine greater than fluphenazine greater than acetophenazine greater than trifluoperazine greater than molindone greater than or equal to pimozide greater than or equal to thioridazine greater than or equal to chlorpromazine greater than or equal to triflupromazine. However, there were other antipsychotic drugs such as spiperone and clozapine that showed low affinity for the (+)-[3H]SKF 10,047 binding sites. Affinities of antipsychotic drugs for (+)-[3H]SKF 10,047 binding sites did not correlate with those for [3H]spiperone (dopamine D2) sites. [3H]-Haloperidol binding in whole brain membranes was also inhibited by the sigma opiates pentazocine, cyclazocine, and (+)-SKF 10,047. In the striatum, about half of the saturable [3H]haloperidol binding was to [3H]spiperone (D2) sites and the other half was to sites similar to (+)-[3H]SKF 10,047 binding sites. PMID:6147851

  20. Analysis of the Glutamate Agonist LY404,039 Binding to Nonstatic Dopamine Receptor D2 Dimer Structures and Consensus Docking.

    PubMed

    Salmas, Ramin Ekhteiari; Seeman, Philip; Aksoydan, Busecan; Erol, Ismail; Kantarcioglu, Isik; Stein, Matthias; Yurtsever, Mine; Durdagi, Serdar

    2017-06-21

    Dopamine receptor D2 (D2R) plays an important role in the human central nervous system and is a focal target of antipsychotic agents. The D2 High R and D2 Low R dimeric models previously developed by our group are used to investigate the prediction of binding affinity of the LY404,039 ligand and its binding mechanism within the catalytic domain. The computational data obtained using molecular dynamics simulations fit well with the experimental results. The calculated binding affinities of LY404,039 using MM/PBSA for the D2 High R and D2 Low R targets were -12.04 and -9.11 kcal/mol, respectively. The experimental results suggest that LY404,039 binds to D2 High R and D2 Low R with binding affinities (K i ) of 8.2 and 1640 nM, respectively. The high binding affinity of LY404,039 in terms of binding to [ 3 H]domperidone was inhibited by the presence of a guanine nucleotide, indicating an agonist action of the drug at D2 High R. The interaction analysis demonstrated that while Asp114 was among the most critical amino acids for D2 High R binding, residues Ser193 and Ser197 were significantly more important within the binding cavity of D2 Low R. Molecular modeling analyses are extended to ensemble docking as well as structure-based pharmacophore model (E-pharmacophore) development using the bioactive conformation of LY404,039 at the binding pocket as a template and screening of small-molecule databases with derived pharmacophore models.

  1. Bacillus Calmette-Guerin Vaccine-Mediated Neuroprotection Is Associated With Regulatory T-Cell Induction in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Mouse Model of Parkinson’s Disease

    PubMed Central

    Laćan, Goran; Dang, Hoa; Middleton, Blake; Horwitz, Marcus A.; Tian, Jide; Melega, William P.; Kaufman, Daniel L.

    2018-01-01

    We previously showed that, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease (PD), vaccination with bacillus Calmette-Guerin (BCG) prior to MPTP exposure limited the loss of striatal dopamine (DA) and dopamine transporter (DAT) and prevented the activation of nigral microglia. Here, we conducted BCG dose studies and investigated the mechanisms underlying BCG vaccination’s neuroprotective effects in this model. We found that a dose of 1 × 106 cfu BCG led to higher levels of striatal DA and DAT ligand binding (28% and 42%, respectively) in BCG-vaccinated vs. unvaccinated MPTP-treated mice, but without a significant increase in substantia nigra tyrosine hydroxylase-staining neurons. Previous studies showed that BCG can induce regulatory T cells (Tregs) and that Tregs are neuroprotective in models of neurodegenerative diseases. However, MPTP is lymphotoxic, so it was unclear whether Tregs were maintained after MPTP treatment and whether a relationship existed between Tregs and the preservation of striatal DA system integrity. We found that, 21 days post-MPTP treatment, Treg levels in mice that had received BCG prior to MPTP were threefold greater than those in MPTP-only-treated mice and elevated above those in saline-only-treated mice, suggesting that the persistent BCG infection continually promoted Treg responses. Notably, the magnitude of the Treg response correlated positively with both striatal DA levels and DAT ligand binding. Therefore, BCG vaccine-mediated neuroprotection is associated with Treg levels in this mouse model. Our results suggest that BCG-induced Tregs could provide a new adjunctive therapeutic approach to ameliorating pathology associated with PD and other neurodegenerative diseases. PMID:23907992

  2. Computer and video game addiction-a comparison between game users and non-game users.

    PubMed

    Weinstein, Aviv Malkiel

    2010-09-01

    Computer game addiction is excessive or compulsive use of computer and video games that may interfere with daily life. It is not clear whether video game playing meets diagnostic criteria for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV). First objective is to review the literature on computer and video game addiction over the topics of diagnosis, phenomenology, epidemiology, and treatment. Second objective is to describe a brain imaging study measuring dopamine release during computer game playing. Article search of 15 published articles between 2000 and 2009 in Medline and PubMed on computer and video game addiction. Nine abstinent "ecstasy" users and 8 control subjects were scanned at baseline and after performing on a motorbike riding computer game while imaging dopamine release in vivo with [123I] IBZM and single photon emission computed tomography (SPECT). Psycho-physiological mechanisms underlying computer game addiction are mainly stress coping mechanisms, emotional reactions, sensitization, and reward. Computer game playing may lead to long-term changes in the reward circuitry that resemble the effects of substance dependence. The brain imaging study showed that healthy control subjects had reduced dopamine D2 receptor occupancy of 10.5% in the caudate after playing a motorbike riding computer game compared with baseline levels of binding consistent with increased release and binding to its receptors. Ex-chronic "ecstasy" users showed no change in levels of dopamine D2 receptor occupancy after playing this game. This evidence supports the notion that psycho-stimulant users have decreased sensitivity to natural reward. Computer game addicts or gamblers may show reduced dopamine response to stimuli associated with their addiction presumably due to sensitization.

  3. Cerebral morphology and dopamine D2/D3receptor distribution in humans: A combined [18F]fallypride and voxel-based morphometry study

    PubMed Central

    Woodward, Neil D.; Zald, David H.; Ding, Zhaohua; Riccardi, Patrizia; Ansari, M. Sib; Baldwin, Ronald M.; Cowan, Ronald L.; Li, Rui; Kessler, Robert M.

    2009-01-01

    The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D2/D3 ligand [18F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BPND) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BPND were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BPND throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BPND and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BPND were observed. Overall, grey matter density appeared more strongly correlated with BPND than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [18F]fallypride BPND in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization. PMID:19457373

  4. Cerebral morphology and dopamine D2/D3 receptor distribution in humans: a combined [18F]fallypride and voxel-based morphometry study.

    PubMed

    Woodward, Neil D; Zald, David H; Ding, Zhaohua; Riccardi, Patrizia; Ansari, M Sib; Baldwin, Ronald M; Cowan, Ronald L; Li, Rui; Kessler, Robert M

    2009-05-15

    The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D(2)/D(3) ligand [(18)F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BP(ND)) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BP(ND) were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BP(ND) throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BP(ND) and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BP(ND) were observed. Overall, grey matter density appeared more strongly correlated with BP(ND) than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [(18)F]fallypride BP(ND) in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization.

  5. Receptor Subtype Alterations: Bases of Neuronal Plasticity and Learning

    DTIC Science & Technology

    1991-12-03

    AVAILA5LhTY STATEMENT 12b. OISTRISTION C00OE P. 7ŕ F! 13. AaSTPACT (M~jmium a QfVwJ The following findings were reported: 1) Oxotremorine -M binding...748-7738 -~Avail aiidjr Dist Special SUMMARY The following projects were completed: 1) It was shown that oxotremorine -M binding in rabbit anterior...between training-induced neuronal plasticities and changes in oxotremorine -M binding. 3) The concentrations of noradrenaline, serotonin and dopamine

  6. Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, N.D.; Wang, G.; Volkow, N.D.

    Attention-deficit hyperactivity disorder (ADHD) is typically characterized as a disorder of inattention and hyperactivity/impulsivity but there is increasing evidence of deficits in motivation. Using positron emission tomography (PET), we showed decreased function in the brain dopamine reward pathway in adults with ADHD, which, we hypothesized, could underlie the motivation deficits in this disorder. To evaluate this hypothesis, we performed secondary analyses to assess the correlation between the PET measures of dopamine D2/D3 receptor and dopamine transporter availability (obtained with [{sup 11}C]raclopride and [{sup 11}C]cocaine, respectively) in the dopamine reward pathway (midbrain and nucleus accumbens) and a surrogate measure of traitmore » motivation (assessed using the Achievement scale on the Multidimensional Personality Questionnaire or MPQ) in 45 ADHD participants and 41 controls. The Achievement scale was lower in ADHD participants than in controls (11 {+-} 5 vs 14 {+-} 3, P < 0.001) and was significantly correlated with D2/D3 receptors (accumbens: r = 0.39, P < 0.008; midbrain: r = 0.41, P < 0.005) and transporters (accumbens: r = 0.35, P < 0.02) in ADHD participants, but not in controls. ADHD participants also had lower values in the Constraint factor and higher values in the Negative Emotionality factor of the MPQ but did not differ in the Positive Emotionality factor - and none of these were correlated with the dopamine measures. In ADHD participants, scores in the Achievement scale were also negatively correlated with symptoms of inattention (CAARS A, E and SWAN I). These findings provide evidence that disruption of the dopamine reward pathway is associated with motivation deficits in ADHD adults, which may contribute to attention deficits and supports the use of therapeutic interventions to enhance motivation in ADHD.« less

  7. Mitochondrial complex I inhibitor rotenone inhibits and redistributes vesicular monoamine transporter 2 via nitration in human dopaminergic SH-SY5Y cells.

    PubMed

    Watabe, Masahiko; Nakaki, Toshio

    2008-10-01

    Parkinson's disease is a progressive neurodegenerative disorder characterized by selective degeneration of nigrostriatal dopaminergic neurons. Long-term systemic mitochondrial complex I inhibition by rotenone induces selective degeneration of dopaminergic neurons in rats. We have reported dopamine redistribution from vesicles to the cytosol to play a crucial role in selective dopaminergic cell apoptosis. In the present study, we investigated how rotenone causes dopamine redistribution to the cytosol using an in vitro model of human dopaminergic SH-SY5Y cells. Rotenone stimulated nitration of the tyrosine residues of intracellular proteins. The inhibition of nitric-oxide synthase or reactive oxygen species decreased the amount of nitrotyrosine and attenuated rotenone-induced apoptosis. When we examined the intracellular localization of dopamine immunocytochemically using anti-dopamine/vesicular monoamine transporter 2 (VMAT2) antibodies and quantitatively using high-performance liquid chromatography, inhibiting nitration was found to suppress rotenone-induced dopamine redistribution from vesicles to the cytosol. We demonstrated rotenone to nitrate tyrosine residues of VMAT2 using an immunocytochemical method with anti-nitrotyrosine antibodies and biochemically with immunoprecipitation experiments. Rotenone inhibited the VMAT2 activity responsible for the uptake of dopamine into vesicles, and this inhibition was reversed by inhibiting nitration. Moreover, rotenone induced the accumulation of aggregate-like formations in the stained image of VMAT2, which was reversed by inhibiting nitration. Our findings demonstrate that nitration of the tyrosine residues of VMAT2 by rotenone leads to both functional inhibition and accumulation of aggregate-like formations of VMAT2 and consequently to the redistribution of dopamine to the cytosol and apoptosis of dopaminergic SH-SY5Y cells.

  8. Eating High Fat Chow Decreases Dopamine Clearance in Adolescent and Adult Male Rats but Selectively Enhances the Locomotor Stimulating Effects of Cocaine in Adolescents

    PubMed Central

    Baladi, Michelle G.; Horton, Rebecca E.; Owens, William A.; Daws, Lynette C.

    2015-01-01

    Background: Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Methods: Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Results: Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. Conclusions: These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. PMID:25805560

  9. Eating high fat chow decreases dopamine clearance in adolescent and adult male rats but selectively enhances the locomotor stimulating effects of cocaine in adolescents.

    PubMed

    Baladi, Michelle G; Horton, Rebecca E; Owens, William A; Daws, Lynette C; France, Charles P

    2015-03-24

    Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  10. Alterations in brain extracellular dopamine and glycine levels following combined administration of the glycine transporter type-1 inhibitor Org-24461 and risperidone.

    PubMed

    Nagy, Katalin; Marko, Bernadett; Zsilla, Gabriella; Matyus, Peter; Pallagi, Katalin; Szabo, Geza; Juranyi, Zsolt; Barkoczy, Jozsef; Levay, Gyorgy; Harsing, Laszlo G

    2010-12-01

    The most dominant hypotheses for the pathogenesis of schizophrenia have focused primarily upon hyperfunctional dopaminergic and hypofunctional glutamatergic neurotransmission in the central nervous system. The therapeutic efficacy of all atypical antipsychotics is explained in part by antagonism of the dopaminergic neurotransmission, mainly by blockade of D(2) dopamine receptors. N-methyl-D-aspartate (NMDA) receptor hypofunction in schizophrenia can be reversed by glycine transporter type-1 (GlyT-1) inhibitors, which regulate glycine concentrations at the vicinity of NMDA receptors. Combined drug administration with D(2) dopamine receptor blockade and activation of hypofunctional NMDA receptors may be needed for a more effective treatment of positive and negative symptoms and the accompanied cognitive deficit in schizophrenia. To investigate this type of combined drug administration, rats were treated with the atypical antipsychotic risperidone together with the GlyT-1 inhibitor Org-24461. Brain microdialysis was applied in the striatum of conscious rats and determinations of extracellular dopamine, DOPAC, HVA, glycine, glutamate, and serine concentrations were carried out using HPLC/electrochemistry. Risperidone increased extracellular concentrations of dopamine but failed to influence those of glycine or glutamate measured in microdialysis samples. Org-24461 injection reduced extracellular dopamine concentrations and elevated extracellular glycine levels but the concentrations of serine and glutamate were not changed. When risperidone and Org-24461 were added in combination, a decrease in extracellular dopamine concentrations was accompanied with sustained elevation of extracellular glycine levels. Interestingly, the extracellular concentrations of glutamate were also enhanced. Our data indicate that coadministration of an antipsychotic with a GlyT-1 inhibitor may normalize hypofunctional NMDA receptor-mediated glutamatergic neurotransmission with reduced dopaminergic side effects characteristic for antipsychotic medication.

  11. Effect of beta-phenylethylamine on extracellular concentrations of dopamine in the nucleus accumbens and prefrontal cortex.

    PubMed

    Murata, Mikio; Katagiri, Nobuyuki; Ishida, Kota; Abe, Kenji; Ishikawa, Masago; Utsunomiya, Iku; Hoshi, Keiko; Miyamoto, Ken-ichi; Taguchi, Kyoji

    2009-05-07

    It is known that psychostimulants stimulate dopamine transmission in the nucleus accumbens. In the present study, we examined the effects of systemically administered beta-phenylethylamine (beta-PEA), a psychomotor-stimulating trace amine, on dopamine concentrations in the nucleus accumbens and prefrontal cortex in freely moving rats, using an in vivo microdialysis technique. Intraperitoneal administration of beta-PEA (12.5 and 25 mg/kg) significantly increased extracellular dopamine levels in the nucleus accumbens shell. The observed increase in the dopamine concentration in nucleus accumbens shell dialysate after intraperitoneal administration of 25 mg/kg beta-PEA was inhibited by pre-treatment with a dopamine uptake inhibitor, GBR12909 (10 mg/kg, i.p.). In contrast, beta-PEA (25 mg/kg, i.p.) did not affect dopamine release in the nucleus accumbens core. Although a high dose of beta-PEA (50 mg/kg) significantly increased dopamine levels in the nucleus accumbens core, the dopamine increasing effect of beta-PEA was more potent in the nucleus accumbens shell. Systemic administration of 12.5 and 25 mg/kg beta-PEA also increased extracellular dopamine levels in the prefrontal cortex of rats. However, systemic 25 mg/kg beta-PEA-induced increases in extracellular dopamine levels were not blocked by GBR12909 within the prefrontal cortex. These results suggest that beta-PEA has a greater effect in the shell than in the core and low-dose beta-PEA stimulates dopamine release in the nucleus accumbens shell through uptake by a dopamine transporter. Similarly, beta-PEA increased extracellular dopamine levels in the prefrontal cortex. Thus, beta-PEA may increase extracellular dopamine concentrations in the mesocorticolimbic pathway.

  12. GHSR-D2R heteromerization modulates dopamine signaling through an effect on G protein conformation.

    PubMed

    Damian, Marjorie; Pons, Véronique; Renault, Pedro; M'Kadmi, Céline; Delort, Bartholomé; Hartmann, Lucie; Kaya, Ali I; Louet, Maxime; Gagne, Didier; Ben Haj Salah, Khoubaib; Denoyelle, Séverine; Ferry, Gilles; Boutin, Jean A; Wagner, Renaud; Fehrentz, Jean-Alain; Martinez, Jean; Marie, Jacky; Floquet, Nicolas; Galès, Céline; Mary, Sophie; Hamm, Heidi E; Banères, Jean-Louis

    2018-04-24

    The growth hormone secretagogue receptor (GHSR) and dopamine receptor (D2R) have been shown to oligomerize in hypothalamic neurons with a significant effect on dopamine signaling, but the molecular processes underlying this effect are still obscure. We used here the purified GHSR and D2R to establish that these two receptors assemble in a lipid environment as a tetrameric complex composed of two each of the receptors. This complex further recruits G proteins to give rise to an assembly with only two G protein trimers bound to a receptor tetramer. We further demonstrate that receptor heteromerization directly impacts on dopamine-mediated Gi protein activation by modulating the conformation of its α-subunit. Indeed, association to the purified GHSR:D2R heteromer triggers a different active conformation of Gαi that is linked to a higher rate of GTP binding and a faster dissociation from the heteromeric receptor. This is an additional mechanism to expand the repertoire of GPCR signaling modulation that could have implications for the control of dopamine signaling in normal and physiopathological conditions.

  13. Challenges in the development of dopamine D2- and D3-selective radiotracers for PET imaging studies.

    PubMed

    Mach, Robert H; Luedtke, Robert R

    2018-03-01

    The dopamine D2-like receptors (ie, D2/3 receptors) have been the most extensively studied CNS receptor with Positron Emission Tomography (PET). The 3 different radiotracers that have been used in these studies are [ 11 C]raclopride, [ 18 F]fallypride, and [ 11 C]PHNO. Because these radiotracers have a high affinity for both dopamine D2 and D3 receptors, the density of dopamine receptors in the CNS is reported as the D2/3 binding potential, which reflects a measure of the density of both receptor subtypes. Although the development of D2- and D3-selective PET radiotracers has been an active area of research for many years, this by and large presents an unmet need in the area of translational PET imaging studies. This article discusses some of the challenges that have inhibited progress in this area of research and the current status of the development of subtype selective radiotracers for imaging D3 and D2 dopamine receptors with PET. Copyright © 2017 John Wiley & Sons, Ltd.

  14. The effect of prolonged treatment with imipramine on the biosynthesis and functional characteristics of D2 dopamine receptors in the rat caudate putamen

    PubMed Central

    Dziedzicka-Wasylewska, Marta; Rogoż, Renata

    1998-01-01

    The present study shows the effects of imipramine in a single dose (10 mg kg−1, p.o.) or following repeated (14 days, twice a day) treatment on the level of mRNA coding for D2 dopamine receptors in the rat caudate putamen (CP). Repeated administration of imipramine resulted in the increase of the level of mRNA coding for D2 dopamine receptors. Radioligand binding studies with the D2 receptor agonist, [3H]-N-0437, indicated, that following imipramine administration, the affinity of the agonist for the D2 dopamine receptor significantly increased, though without any alterations in the Bmax. Pharmacological manipulations (by use of forskolin, GppNHp and quinpirole) of the cyclic AMP generating system, ex vivo following administration of imipramine indicated that an up-regulation of factors inhibiting cyclic GMP formation takes place. Most probably it is the D2 dopamine receptor which undergoes functional up-regulation, resulting from the enhancement of its biosynthesis. PMID:9535010

  15. Changes in dopamine transporter expression in the midbrain following traumatic brain injury: an immunohistochemical and in situ hybridization study in a mouse model.

    PubMed

    Shimada, Ryo; Abe, Keiichi; Furutani, Rui; Kibayashi, Kazuhiko

    2014-03-01

    An association has been suggested between trauma and neurological degenerative diseases. Magnetic resonance imaging has revealed that traumatic brain injury (TBI) can cause primary lesions in the midbrain including the substantia nigra (SN). Dopamine transporter (DAT) is mainly expressed in the SN, ventral tegmental area (VTA), and retrorubral field (RRF) of the ventral midbrain. Previous western blot studies have examined DAT levels in the rat frontal cortex and striatum after a controlled cortical impact (CCI); however, no study has comprehensively examined DAT expression in the midbrain following TBI in an animal model. We used immunohistochemistry and in situ hybridization to examine the time-dependent changes in the expression of DAT in the midbrain during the first 14 days after TBI in a mouse CCI model. The expression of DAT protein in the RRF on the side ipsilateral to the site of injury decreased in 14 days after injury. Dopamine transporter mRNA expression in the RRF on the ipsilateral side decreased in 1, 7, and 14 days and increased in 4 days after injury. These findings indicated that TBI induced changes in DAT expression in the RRF. Because the DAT pumps dopamine (DA) out of the synapse back into the cytosol and maintains DA homeostasis, the decreased expression of DAT after TBI may result in decreased DA neurotransmission in the brain.

  16. Gender differences in nigrostriatal dopaminergic innervation are present at young-to-middle but not at older age in normal adults.

    PubMed

    Wong, Ka Kit; Müller, Martijn L T M; Kuwabara, Hiroto; Studenski, Stephanie A; Bohnen, Nicolaas I

    2012-01-01

    Gender differences in brain dopaminergic activity have been variably reported in the literature. We performed an evaluation for gender effects on striatal dopamine transporter (DAT) binding in a group of normal subjects. Community-dwelling adults (n = 85, 50F/35M, mean age 62.7 ± 16.2 SD, range 20-85) underwent DAT [(11)C]2-β-carbomethoxy-3β-(4-fluorophenyl) tropane (β-CFT) positron emission tomography (PET) imaging. Gender effects for DAT binding were compared using ANCOVA for two subgroups; young-to-middle aged adults and older adults, using an age threshold of 60 years. There were 54 subjects (24M/30F; mean age 72.9 ± 7.3) 60 years and older and 31 (11M/20F; mean age 45.0 ± 11.4) subjects younger than 60. Age-adjusted striatal DAT gender effects were present in the young-to-middle (F = 10.4, P = 0.003) but not in the elderly age group (F = 0.5, ns). Gender differences in nigrostriatal dopaminergic innervation are present, with higher levels of DAT binding in young-to-middle age women compared to men, but not present in the elderly. Published by Elsevier Ltd.

  17. Synthesis and binding affinity of new 1,4-disubstituted triazoles as potential dopamine D(3) receptor ligands.

    PubMed

    Insua, Ignacio; Alvarado, Mario; Masaguer, Christian F; Iglesias, Alba; Brea, José; Loza, María I; Carro, Laura

    2013-10-15

    A series of new 1,4-disubstituted triazoles was prepared from appropriate arylacetylenes and aminoalkylazides using click chemistry methodology. These compounds were evaluated as potential ligands on several subtypes of dopamine receptors in in vitro competition assays, showing high affinity for dopamine D3 receptors, lower affinity for D2 and D4, and no affinity for the D1 receptors. Compound 18 displayed the highest affinity at the D3 receptor with a Ki value of 2.7 nM, selectivity over D2 (70-fold) and D4 (200-fold), and behaviour as a competitive antagonist in the low nanomolar range. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Original mechanisms of antipsychotic action by the indole alkaloid alstonine (Picralima nitida).

    PubMed

    Linck, Viviane M; Ganzella, Marcelo; Herrmann, Ana P; Okunji, Christopher O; Souza, Diogo O; Antonelli, Marta C; Elisabetsky, Elaine

    2015-01-15

    Alstonine is the major component of plant based remedies that traditional psychiatrists use in Nigeria. Alstonine is an indole alkaloid that has an antipsychotic experimental profile comparable with that of clozapine and is compatible with the alleged effects in mental patients. Representing a desirable innovation in the pharmacodynamics of antipsychotic medications, the evidence indicates that alstonine does not bind to D2 dopamine receptors (D2R) and differentially regulates dopamine in the cortical and limbic areas. The purpose of this study was to further investigate the effects of alstonine on D2R binding in specific brain regions using quantitative autoradiography (QAR) and its effects on dopamine (DA) uptake in mouse striatal synaptosomes. The effects of alstonine on D2R binding were determined in the nucleus accumbens and caudate-putamen using QAR in mice treated with alstonine doses that have antipsychotic effects. The effects of alstonine [3H]DA uptake were assessed in synaptosomes prepared from striatal tissue obtained from mice treated acutely or for 7 days with alstonine. Alstonine did not change the D2R binding densities in the studied regions. DA uptake was increased after acute (but not after 7 days) treatment with alstonine. Consistent with the alstonine behavioral profile, these results indicate that alstonine indirectly modulates DA receptors, specifically by modulating DA uptake. This unique mechanism for DA transmission modulation contributes to the antipsychotic-like effects of alstonine and is compatible with its behavioral profile in mice and alleged effects in patients. These results may represent an innovation in the antipsychotic development field. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. High-affinity dopamine D2/D3 PET radioligands 18F-fallypride and 11C-FLB457: A comparison of kinetics in extrastriatal regions using a multiple-injection protocol

    PubMed Central

    Vandehey, Nicholas T; Moirano, Jeffrey M; Converse, Alexander K; Holden, James E; Mukherjee, Jogesh; Murali, Dhanabalan; Nickles, R Jerry; Davidson, Richard J; Schneider, Mary L; Christian, Bradley T

    2010-01-01

    18F-Fallypride and 11C-FLB457 are commonly used PET radioligands for imaging extrastriatal dopamine D2/D3 receptors, but differences in their in vivo kinetics may affect the sensitivity for measuring subtle changes in receptor binding. Focusing on regions of low binding, a direct comparison of the kinetics of 18F-fallypride and 11C-FLB457 was made using a MI protocol. Injection protocols were designed to estimate K1, k2, fNDkon, Bmax, and koff in the midbrain and cortical regions of the rhesus monkey. 11C-FLB457 cleared from the arterial plasma faster and yielded a ND space distribution volume (K1/k2) that is three times higher than 18F-fallypride, primarily due to a slower k2 (FAL:FLB; k2=0.54 min−1:0.18 min−1). The dissociation rate constant, koff, was slower for 11C-FLB457, resulting in a lower KDapp than 18F-fallypride (FAL:FLB; 0.39 nM:0.13 nM). Specific D2/D3 binding could be detected in the cerebellum for 11C-FLB457 but not 18F-fallypride. Both radioligands can be used to image extrastriatal D2/D3 receptors, with 11C-FLB457 providing greater sensitivity to subtle changes in low-receptor-density cortical regions and 18F-fallypride being more sensitive to endogenous dopamine displacement in medium-to-high-receptor-density regions. In the presence of specific D2/D3 binding in the cerebellum, reference region analysis methods will give a greater bias in BPND with 11C-FLB457 than with 18F-fallypride. PMID:20040928

  20. Chronic molindone treatment: relative inability to elicit dopamine receptor supersensitivity in rats.

    PubMed

    Meller, E

    1982-01-01

    Chronic treatment of rats with the antipsychotic drug molindone (2.5 mg/kg) did not elicit behavioral supersensitivity to apomorphine (AP) (0.25 mg/kg) or increased striatal 3H-spiroperidol binding, whereas treatment with haloperidol (0.5-1.0 mg/kg) produced manifestations of dopaminergic supersensitivity in both paradigms. Chronic treatment with a high dose of molindone (20 mg/kg) elicited a small, but significant increase in behavioral sensitivity to AP (57%) which was, however, significantly less than that produced by 1 mg/kg haloperidol (126%, P less than 0.01). Apparent tolerance to elevation of striatal and frontal cortical 3,4-dihydroxyphenylacetic acid (DOPAC) levels was obtained with chronic molindone treatment (5 or 20 mg/kg). None of the molindone doses used (2.5-50 mg/kg) increased striatal dopamine receptor binding. Scatchard analyses revealed no change in either maximal binding capacity (Bmax) or dissociation constant (Kd). A significant (P less than 0.001) correlation of receptor binding activity and stereotypy score was obtained for haloperidol-, but not molindone-treated rats. These results with molindone in an animal model of tardive dyskinesia suggest that this drug may have a lower potential for eliciting this disorder in humans.

  1. Dopamine Synthesis and D3 Receptor Activation in Pancreatic β-Cells Regulates Insulin Secretion and Intracellular [Ca2+] Oscillations

    PubMed Central

    Ustione, Alessandro

    2012-01-01

    Pancreatic islets are critical for glucose homeostasis via the regulated secretion of insulin and other hormones. We propose a novel mechanism that regulates insulin secretion from β-cells within mouse pancreatic islets: a dopaminergic negative feedback acting on insulin secretion. We show that islets are a site of dopamine synthesis and accumulation outside the central nervous system. We show that both dopamine and its precursor l-dopa inhibit glucose-stimulated insulin secretion, and this inhibition correlates with a reduction in frequency of the intracellular [Ca2+] oscillations. We further show that the effects of dopamine are abolished by a specific antagonist of the dopamine receptor D3. Because the dopamine transporter and dopamine receptors are expressed in the islets, we propose that cosecretion of dopamine with insulin activates receptors on the β-cell surface. D3 receptor activation results in changes in intracellular [Ca2+] dynamics, which, in turn, lead to lowered insulin secretion. Because blocking dopaminergic negative feedback increases insulin secretion, expanding the knowledge of this pathway in β-cells might offer a potential new target for the treatment of type 2 diabetes. PMID:22918877

  2. sigma opiates and certain antipsychotic drugs mutually inhibit (+)-(/sup 3/H)SKF 10,047 and (/sup 3/H)haloperidol binding in guinea pig brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tam, S.W.; Cook, L.

    1984-09-01

    The relationship between binding of antipsychotic drugs and sigma psychotomimetic opiates to binding sites for the sigma agonist (+)-(/sup 3/H)SKF 10,047 (N-allylnormetazocine) and to dopamine D/sub 2/ sites was investigated. In guinea pig brain membranes, (+)-(/sup 3/H)SKF 10,047 bound to single class of sites with a K/sub d/ of 4 x 10/sup -8/ M and a B/sub max/ of 333 fmol/mg of protein. This binding was different from ..mu.., kappa, or delta opiate receptor binding. It was inhibited by opiates that produce psychotomimetic activities but not by opiates that lack such activities. Some antipsychotic drugs inhibited (+)-(/sup 3/H)SKF 10,047 bindingmore » with high to moderate affinities in the following order of potency: haloperidol > perphenazine > fluphenazine > acetophenazine > trifluoperazine > molindone greater than or equal to pimozide greater than or equal to thioridazine greater than or equal to chlorpromazine greater than or equal to triflupromazine. However, there were other antipsychotic drugs such as spiperone and clozapine that showed low affinity for the (+)-(/sup 3/H)SKF 10,047 binding sites. Affinities of antipsychotic drugs for (+)-(/sup 3/H)SKF 10,047 binding sites did not correlate with those for (/sup 3/H)spiperone (dopamine D/sub 2/) sites. (/sup 3/H)-Haloperidol binding in whole brain membranes was also inhibited by the sigma opiates pentazocine, cyclazocine, and (+)-(/sup 3/H)SKF 10,047. In the striatum, about half of the saturable (/sup 3/H)haloperidol binding was to (/sup 3/H)spiperone (D/sub 2/) sites and the other half was to sites similar to (+)-(/sup 3/H)SKF 10,047 binding sites. 15 references, 4 figures, 1 table.« less

  3. β-Phenylethylamine requires the dopamine transporter to increase extracellular dopamine in Caenorhabditis elegans dopaminergic neurons.

    PubMed

    Hossain, Murad; Wickramasekara, Rochelle N; Carvelli, Lucia

    2014-07-01

    β-Phenylethylamine (βPEA) is an endogenous amine that has been shown to increase the synaptic levels of dopamine (DA). A number of in vitro and behavioral studies suggest the dopamine transporter (DAT) plays a role in the effects generated by βPEA, however the mechanism through which βPEA affects DAT has not yet been elucidated. Here, we used Caenorhabditis (C.) elegans DAT (DAT-1) expressing LLC-pk1 cells and neuronal cultures to investigate whether the βPEA-induced increase of extracellular DA required DAT-1. Our data show that βPEA increases extracellular dopamine both in DAT-1 transfected cells and cultures of differentiated neurons. RTI-55, a cocaine homologue and DAT inhibitor, completely blocked the βPEA-induced effect in transfected cells. However in neuronal cultures, RTI-55 only partly inhibited the increase of extracellular DA generated by βPEA. These results suggest that βPEA requires DAT-1 and other, not yet identified proteins, to increase extracellular DA when tested in a native system. Furthermore, our results suggest that βPEA-induced increase of extracellular DA does not require functional monoamine vesicles as genetic ablation of the C. elegans homologue vesicular monoamine transporter, cat-1, did not compromise the ability of βPEA to increase extracellular DA. Finally, our electrophysiology data show that βPEA caused fast-rising and self-inactivating amperometric currents in a subset of wild-type DA neurons but not in neurons isolated from dat-1 knockout animals. Taken together, these data demonstrate that in both DA neurons and heterogeneous cultures of differentiated C. elegans neurons, βPEA releases cytoplasmic DA through DAT-1 to ultimately increase the extracellular concentration of DA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. β-phenylethylamine Requires the Dopamine Transporter to Increase Extracellular Dopamine in C. elegans Dopaminergic Neurons

    PubMed Central

    Hossain, Murad; Wickramasekara, Rochelle N.; Carvelli, Lucia

    2013-01-01

    β-phenylethylamine (βPEA) is an endogenous amine that has been shown to increase the synaptic levels of dopamine (DA). A number of in vitro and behavioral studies suggest the dopamine transporter (DAT) plays a role in the effects generated by βPEA, however the mechanism through which βPEA affects DAT has not yet been elucidated. Here, we used Caenorhabditis (C.) elegans DAT (DAT-1) expressing LLC-pk1 cells and neuronal cultures to investigate whether the βPEA-induced increase of extracellular DA required DAT-1. Our data show that βPEA increases extracellular dopamine both in DAT-1 transfected cells and cultures of differentiated neurons. RTI-55, a cocaine homologue and DAT inhibitor, completely blocked the βPEA-induced effect in transfected cells. However in neuronal cultures, RTI-55 only partly inhibited the increase of extracellular DA generated by βPEA. These results suggest that βPEA requires DAT-1 and other, not yet identified proteins, to increase extracellular DA when tested in a native system. Furthermore, our results suggest that βPEA-induced increase of extracellular DA does not require functional monoamine vesicles as genetic ablation of the C. elegans homologue vesicular monoamine transporter, cat-1, did not compromise the ability of βPEA to increase extracellular DA. Finally, our electrophysiology data show that βPEA caused fast-rising and self-inactivating amperometric currents in a subset of wild-type DA neurons but not in neurons isolated from dat-1 knockout animals. Taken together, these data demonstrate that in both DA neurons and heterogeneous cultures of differentiated C. elegans neurons, βPEA releases cytoplasmic DA through DAT-1 to ultimately increase the extracellular concentration of DA. PMID:24161617

  5. Studies on striatal neurotoxicity caused by the 3,4-methylenedioxymethamphetamine/ malonate combination: implications for serotonin/dopamine interactions.

    PubMed

    Goñi-Allo, Beatriz; Ramos, Mar'a; Herv'as, Isabel; Lasheras, Berta; Aguirre, Norberto

    2006-03-01

    The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA) produces long-term toxicity to serotonin (5-HT) neurones in rats, which is exacerbated when combined with the mitochondrial inhibitor malonate. Moreover, MDMA, which does not produce dopamine depletion in the rat, potentiates malonate-induced striatal dopamine toxicity. Because the malonate/MDMA combination acutely causes a synergistic increase of 5-HT and dopamine release, in this study we sought to determine whether pharmacological blockade of MDMA- and/or malonate-induced dopamine release prevents neurotoxicity. Fluoxetine, given 30 min prior to the malonate/MDMA combination, afforded complete protection against 5-HT depletion and reversed MDMA-induced exacerbation of dopamine toxicity found in the malonate/MDMA treated rats. Protection afforded by fluoxetine was not related to changes in MDMA-induced hyperthermia. Similarly, potentiation of malonate-induced dopamine toxicity caused by MDMA was not observed in p-chlorophenylalanine-5-HT depleted rats. Finally, the dopamine transporter inhibitor GBR 12909 completely prevented dopamine neurotoxicity caused by the malonate/MDMA combination and reversed the exacerbating toxic effects of malonate on MDMA-induced 5-HT depletion without significantly altering the hyperthermic response. Overall, these results suggest that the synergic release of dopamine caused by the malonate/MDMA combination plays an important role in the long-term toxic effects. A possible mechanism of neurotoxicity and protection is proposed.

  6. Pharmacological Characterization of a Dopamine Transporter Ligand That Functions as a Cocaine Antagonist

    PubMed Central

    Desai, Rajeev I.; Grandy, David K.; Lupica, Carl R.

    2014-01-01

    An N-butyl analog of benztropine, JHW007 [N-(n-butyl)-3α-[bis(4′-fluorophenyl)methoxy]-tropane], binds to dopamine transporters (DAT) but has reduced cocaine-like behavioral effects and antagonizes various effects of cocaine. The present study further examined mechanisms underlying these effects. Cocaine dose-dependently increased locomotion, whereas JHW007 was minimally effective but increased activity 24 hours after injection. JHW007 (3–10 mg/kg) dose-dependently and fully antagonized the locomotor-stimulant effects of cocaine (5–60 mg/kg), whereas N-methyl and N-allyl analogs and the dopamine (DA) uptake inhibitor GBR12909 [1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine dihydrochloride] stimulated activity and failed to antagonize effects of cocaine. JHW007 also blocked the locomotor-stimulant effects of the DAT inhibitor GBR12909 but not stimulation produced by the δ-opioid agonist SNC 80 [4-[(R)-[(2S,5R)-4-allyl-2,5-dimethylpiperazin-1-yl](3-methoxyphenyl)methyl]-N,N-diethylbenzamide], which increases activity through nondopaminergic mechanisms. JHW007 blocked locomotor-stimulant effects of cocaine in both DA D2- and CB1-receptor knockout and wild-type mice, indicating a lack of involvement of these targets. Furthermore, JHW007 blocked effects of cocaine on stereotyped rearing but enhanced stereotyped sniffing, suggesting that interference with locomotion by enhanced stereotypies is not responsible for the cocaine-antagonist effects of JHW007. Time-course data indicate that administration of JHW007 antagonized the locomotor-stimulant effects of cocaine within 10 minutes of injection, whereas occupancy at the DAT, as determined in vivo, did not reach a maximum until 4.5 hours after injection. The σ1-receptor antagonist BD 1008 [N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine dihydrobromide] blocked the locomotor-stimulant effects of cocaine. Overall, these findings suggest that JHW007 has cocaine-antagonist effects that are deviate from its DAT occupancy and that some other mechanism, possibly σ-receptor antagonist activity, may contribute to the cocaine-antagonist effect of JHW007 and like drugs. PMID:24194528

  7. Enhanced dopamine D2 autoreceptor function in the adult prefrontal cortex contributes to dopamine hypoactivity following adolescent social stress.

    PubMed

    Weber, Matthew A; Graack, Eric T; Scholl, Jamie L; Renner, Kenneth J; Forster, Gina L; Watt, Michael J

    2018-06-14

    Adult psychiatric disorders characterized by cognitive deficits reliant on prefrontal cortex (PFC) dopamine are promoted by teenage bullying. Similarly, male Sprague-Dawley rats exposed to social defeat in mid-adolescence (P35-39) show impaired working memory in adulthood (P56-70), along with decreased medial PFC (mPFC) dopamine activity that results in part from increased dopamine transporter-mediated clearance. Here, we determined if dopamine synthesis and D2 autoreceptor-mediated inhibition of dopamine release in the adult mPFC are also enhanced by adolescent defeat to contribute to later dopamine hypofunction. Control and previously defeated rats did not differ in either DOPA accumulation following amino acid decarboxylase inhibition (NSD-1015 100 mg/kg ip.) or total/phosphorylated tyrosine hydroxylase protein expression, suggesting dopamine synthesis in the adult mPFC is not altered by adolescent defeat. However, exposure to adolescent defeat caused greater decreases in extracellular dopamine release (measured using in vivo chronoamperometry) in the adult mPFC upon local infusion of the D2 receptor agonist quinpirole (3 nM), implying greater D2 autoreceptor function. Equally enhanced D2 autoreceptor-mediated inhibition of dopamine release is seen in the adolescent (P40 or P49) mPFC, which declines in control rats by adulthood. However, this developmental decrease in autoreceptor function is absent following adolescent defeat, suggesting retention of an adolescent-like phenotype into adulthood. Current and previous findings indicate adolescent defeat decreases extracellular dopamine availability in the adult mPFC via both enhanced inhibition of dopamine release and increased dopamine clearance, which may be viable targets for improving treatment of cognitive deficits seen in neuropsychiatric disorders promoted by adolescent stress. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. The Role of the Dopamine Transporter (DAT) in the Development of PTSD in Preschool Children

    PubMed Central

    Drury, Stacy S.; Theall, Katherine P.; Keats, Bronya J.B.; Scheeringa, Michael

    2015-01-01

    Population-based association studies have supported the heritability of posttraumatic stress disorder (PTSD). This study explored the influence of genetic variation in the dopamine transporter (DAT) 3′ untranslated region variable number tandem repeat on the development of PTSD in preschool children exposed to Hurricane Katrina, diagnosed using a developmentally appropriate semistructured interview. A diagnosis according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV; American Psychiatric Association, 1994), total symptoms, and specifically Criterion D symptoms were significantly more likely to be found in children with the 9 allele. This study replicates a previous finding in adults with PTSD. The specificity of this finding to the increased arousal symptoms of Criterion D suggests that dopamine and the DAT allele may contribute to one heritable path in a multifinality model of the development of PTSD. PMID:19960520

  9. Hybrid dopamine uptake blocker-serotonin releaser ligands: a new twist on transporter-focused therapeutics.

    PubMed

    Blough, Bruce E; Landavazo, Antonio; Partilla, John S; Baumann, Michael H; Decker, Ann M; Page, Kevin M; Rothman, Richard B

    2014-06-12

    As part of our program to study neurotransmitter releasers, we report herein a class of hybrid dopamine reuptake inhibitors that display serotonin releasing activity. Hybrid compounds are interesting since they increase the design potential of transporter related compounds and hence represent a novel and unexplored strategy for therapeutic drug discovery. A series of N-alkylpropiophenones was synthesized and assessed for uptake inhibition and release activity using rat brain synaptosomes. Substitution on the aromatic ring yielded compounds that maintained hybrid activity, with the two disubstituted analogues (PAL-787 and PAL-820) having the most potent hybrid activity.

  10. Labeled Cocaine Analogs

    DOEpatents

    Goodman, Mark M.; Shi, Bing Zhi; Keil, Robert N.

    1999-03-30

    Novel methods for positron emission tomography or single photon emission spectroscopy using tracer compounds having the structure: ##STR1## where X in .beta. configuration is phenyl, naphthyl; 2,3 or 4-iodophenyl; 2,3 or 4-(trimethylsilyl)phenyl; 3,4,5 or 6-iodonaphthyl; 3,4,5 or 6-(trimethylsilyl)naphthyl; 2,3 or 4-(trialkylstannyl)phenyl; or 3,4,5 or 6-(trialkylstannyl)napthyl Y in .beta. configuration is 2-fluoroethoxy, 3-fluoropropoxy, 4-fluorobutoxy, 2-fluorocyclopropoxy, 2 or 3-fluorocyclobutoxy, R,S 1'-fluoroisopropoxy, R 1'-fluoroisopropoxy, S 1'-fluoroisopropoxy, 1',3'-difluoroisopropoxy, R,S 1'-fluoroisobutoxy, R 1'-fluoroisobutoxy, S 1'-fluoroisobutoxy, R,S 4'-fluoroisobutoxy, R 4'-fluoroisobutoxy, S 4'-fluoroisobutoxy, or 1',1'-di(fluoromethyl)isobutoxy, The compounds bind dopamine transporter protein and can be labeled with .sup.18 F or .sup.123 I for imaging.

  11. The Nrf2/SKN-1-dependent glutathione S-transferase π homologue GST-1 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of manganism.

    PubMed

    Settivari, Raja; VanDuyn, Natalia; LeVora, Jennifer; Nass, Richard

    2013-09-01

    Exposure to high levels of manganese (Mn) results in a neurological condition termed manganism, which is characterized by oxidative stress, abnormal dopamine (DA) signaling, and cell death. Epidemiological evidence suggests correlations with occupational exposure to Mn and the development of the movement disorder Parkinson's disease (PD), yet the molecular determinants common between the diseases are ill-defined. Glutathione S-transferases (GSTs) of the class pi (GSTπ) are phase II detoxification enzymes that conjugate both endogenous and exogenous compounds to glutathione to reduce cellular oxidative stress, and their decreased expression has recently been implicated in PD progression. In this study we demonstrate that a Caenorhabditis elegans GSTπ homologue, GST-1, inhibits Mn-induced DA neuron degeneration. We show that GST-1 is expressed in DA neurons, Mn induces GST-1 gene and protein expression, and GST-1-mediated neuroprotection is dependent on the PD-associated transcription factor Nrf2/SKN-1, as a reduction in SKN-1 gene expression results in a decrease in GST-1 protein expression and an increase in DA neuronal death. Furthermore, decreases in gene expression of the SKN-1 inhibitor WDR-23 or the GSTπ-binding cell death activator JNK/JNK-1 result in an increase in resistance to the metal. Finally, we show that the Mn-induced DA neuron degeneration is independent of the dopamine transporter DAT, but is largely dependent on the caspases CED-3 and the novel caspase CSP-1. This study identifies a C. elegans Nrf2/SKN-1-dependent GSTπ homologue, cell death effectors of GSTπ-associated xenobiotic-induced pathology, and provides the first in vivo evidence that a phase II detoxification enzyme may modulate DA neuron vulnerability in manganism. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Pharmacology of Rasagiline, a New MAO-B Inhibitor Drug for the Treatment of Parkinson’s Disease with Neuroprotective Potential

    PubMed Central

    Finberg, John P.M.

    2010-01-01

    Rasagiline (Azilect) is a highly selective and potent propargylamine inhibitor of monoamine oxidase (MAO) type B. Like other similar propargylamine inhibitors, rasagiline binds covalently to the N5 nitrogen of the flavin residue of MAO, resulting in irreversible inactivation of the enzyme. Therapeutic doses of the drug which inhibit brain MAO-B by 95% or more cause minimal inhibition of MAO-A, and do not potentiate the pressor or other pharmacological effects of tyramine. Metabolic conversion of the compound in vivo is by hepatic cytochrome P450-1A2, with generation of 1-aminoindan as the major metabolite. Rasagiline possesses no amphetamine-like properties, by contrast with the related compound selegiline (Deprenyl, Jumex, Eldepryl). Although the exact distribution of MAO isoforms in different neurons and tissues is not known, dopamine behaves largely as a MAO-A substrate in vivo, but following loss of dopaminergic axonal varicosities from the striatum, metabolism by glial MAO-B becomes increasingly important. Following subchronic administration to normal rats, rasagiline increases levels of dopamine in striatal microdialysate, possibly by the build-up of β-phenylethylamine, which is an excellent substrate for MAO-B, and is an effective inhibitor of the plasma membrane dopamine transporter (DAT). Both of these mechanisms may participate in the anti-Parkinsonian effect of rasagiline in humans. Rasagiline possesses neuroprotective properties in a variety of primary neuronal preparations and neuron-like cell lines, which is not due to MAO inhibition. Recent clinical studies have also demonstrated possible neuroprotective properties of the drug in human Parkinsonian patients, as shown by a reduced rate of decline of symptoms over time. PMID:23908775

  13. A role for sigma receptors in stimulant self-administration and addiction.

    PubMed

    Katz, Jonathan L; Hong, Weimin C; Hiranita, Takato; Su, Tsung-Ping

    2016-04-01

    Sigma-1 receptors (σ1Rs) are structurally unique intracellular proteins that function as chaperones. σ1Rs translocate from the mitochondria-associated membrane to other subcellular compartments, and can influence a host of targets, including ion channels, G-protein-coupled receptors, lipids, and other signaling proteins. Drugs binding to σRs can induce or block the actions of σRs. Studies indicate that stimulant self-administration induces the reinforcing effects of σR agonists, because of dopamine transporter actions. Once established, the reinforcing effects of σR agonists are independent of dopaminergic mechanisms traditionally thought to be critical to the reinforcing effects of stimulants. Self-administered doses of σR agonists do not increase dopamine concentrations in the nucleus accumbens shell, a transmitter and brain region considered important for the reinforcing effects of abused drugs. However, self-administration of σR agonists is blocked by σR antagonists. Several effects of stimulants have been blocked by σR antagonists, including the reinforcing effects, assessed by a place-conditioning procedure. However, the self-administration of stimulants is largely unaffected by σR antagonists, indicating fundamental differences in the mechanisms underlying these two procedures used to assess the reinforcing effects. When σR antagonists are administered in combination with dopamine uptake inhibitors, an effective and specific blockade of stimulant self-administration is obtained. Actions of stimulant drugs related to their abuse induce unique changes in σR activity and the changes induced potentially create redundant and, once established, independent reinforcement pathways. Concomitant targeting of both dopaminergic pathways and σR proteins produces a selective antagonism of stimulant self-administration, suggesting new avenues for combination chemotherapies to specifically combat stimulant abuse.

  14. A Role for σRs in Stimulant Self-administration and Addiction

    PubMed Central

    Katz, Jonathan L.; Hong, Weimin C.; Hiranita, Takato; Su, Tsung-Ping

    2015-01-01

    Sigma-1 receptors (σ1Rs) are structurally unique intracellular proteins that function as chaperones. σ1Rs translocate from the mitochondria-associated membrane to other sub-cellular compartments, and can influence a host of targets, including ion channels, G-protein-coupled receptors, lipids, and other signaling proteins. Drugs binding to σRs can induce or block the actions of σRs. Studies indicate that stimulant self-administration induces reinforcing effects of σR agonists, due to dopamine transporter actions. Once established the reinforcing effects of σR agonists are independent of dopaminergic mechanisms traditionally thought to be critical in the reinforcing effects of stimulants. Self-administered doses of σR agonists do not increase dopamine concentrations in the nucleus accumbens shell, a transmitter and brain region considered important for reinforcing effects of abused drugs. However, the self-administration of σR agonists is blocked by σR antagonists. Several effects of stimulants have been blocked by σR antagonists, including reinforcing effects assessed by a place-conditioning procedure. However, the self-administration of stimulants is largely unaffected by σR antagonists, indicating fundamental differences in the mechanisms underlying these two procedures used to assess reinforcing effects. When σR antagonists are administered in combination with dopamine uptake inhibitors an effective and specific blockade of stimulant self-administration is obtained. Actions of stimulant drugs related to their abuse induce unique changes in σR activity and the changes induced potentially create redundant, and once established, independent reinforcement pathways. Concomitant targeting of both dopaminergic pathways and σR proteins produces a selective antagonism of stimulant self-administration, suggesting new avenues for combination chemotherapies to specifically combat stimulant abuse. PMID:26650253

  15. Genetically determined interaction between the dopamine transporter and the D2 receptor on prefronto-striatal activity and volume in humans.

    PubMed

    Bertolino, Alessandro; Fazio, Leonardo; Di Giorgio, Annabella; Blasi, Giuseppe; Romano, Raffaella; Taurisano, Paolo; Caforio, Grazia; Sinibaldi, Lorenzo; Ursini, Gianluca; Popolizio, Teresa; Tirotta, Emanuele; Papp, Audrey; Dallapiccola, Bruno; Borrelli, Emiliana; Sadee, Wolfgang

    2009-01-28

    Dopamine modulation of neuronal activity during memory tasks identifies a nonlinear inverted-U shaped function. Both the dopamine transporter (DAT) and dopamine D(2) receptors (encoded by DRD(2)) critically regulate dopamine signaling in the striatum and in prefrontal cortex during memory. Moreover, in vitro studies have demonstrated that DAT and D(2) proteins reciprocally regulate each other presynaptically. Therefore, we have evaluated the genetic interaction between a DRD(2) polymorphism (rs1076560) causing reduced presynaptic D(2) receptor expression and the DAT 3'-VNTR variant (affecting DAT expression) in a large sample of healthy subjects undergoing blood oxygenation level-dependent (BOLD)-functional magnetic resonance imaging (MRI) during memory tasks and structural MRI. Results indicated a significant DRD(2)/DAT interaction in prefrontal cortex and striatum BOLD activity during both working memory and encoding of recognition memory. The differential effect on BOLD activity of the DAT variant was mostly manifest in the context of the DRD(2) allele associated with lower presynaptic expression. Similar results were also evident for gray matter volume in caudate. These interactions describe a nonlinear relationship between compound genotypes and brain activity or gray matter volume. Complementary data from striatal protein extracts from wild-type and D(2) knock-out animals (D2R(-/-)) indicate that DAT and D(2) proteins interact in vivo. Together, our results demonstrate that the interaction between genetic variants in DRD(2) and DAT critically modulates the nonlinear relationship between dopamine and neuronal activity during memory processing.

  16. Effects of asarinin on dopamine biosynthesis and 6-hydroxydopamine-induced cytotoxicity in PC12 cells.

    PubMed

    Park, Hyun Jin; Lee, Kyung Sook; Zhao, Ting Ting; Lee, Kyung Eun; Lee, Myung Koo

    2017-05-01

    This study investigated the effects of asarinin on dopamine biosynthesis and 6-hydroxydopamine (6-OHDA)-induced cytotoxicity in rat adrenal pheochromocytoma (PC12) cells. Treatment with asarinin (25-50 μM) increased intracellular dopamine levels and enhanced L-DOPA-induced increases in dopamine levels. Asarinin (25 μM) induced cyclic AMP-dependent protein kinase A (PKA) signaling, leading to increased cyclic AMP-response element binding protein (CREB) and tyrosine hydroxylase (TH) phosphorylation, which in turn stimulated dopamine production. Asarinin (25 μM) also activated transient phosphorylation of extracellular signal-regulated kinase (ERK1/2) and Bad phosphorylation at Ser 112, both of which have been shown to promote cell survival. In contrast, asarinin (25 μM) inhibited sustained ERK1/2, Bax, c-Jun N-terminal kinase (JNK1/2) and p38 mitogen-activated protein kinase (p38MAPK) phosphorylation and caspase-3 activity, which were induced by 6-OHDA (100 μM). These results suggest that asarinin induces dopamine biosynthesis via activation of the PKA-CREB-TH system and protects against 6-OHDA-induced cytotoxicity by inhibiting the sustained activation of the ERK-p38MAPK-JNK1/2-caspase-3 system in PC12 cells.

  17. Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6.

    PubMed

    Ladenheim, B; Krasnova, I N; Deng, X; Oyler, J M; Polettini, A; Moran, T H; Huestis, M A; Cadet, J L

    2000-12-01

    Increasing evidence implicates apoptosis as a major mechanism of cell death in methamphetamine (METH) neurotoxicity. The involvement of a neuroimmune component in apoptotic cell death after injury or chemical damage suggests that cytokines may play a role in METH effects. In the present study, we examined if the absence of IL-6 in knockout (IL-6-/-) mice could provide protection against METH-induced neurotoxicity. Administration of METH resulted in a significant reduction of [(125)I]RTI-121-labeled dopamine transporters in the caudate-putamen (CPu) and cortex as well as depletion of dopamine in the CPu and frontal cortex of wild-type mice. However, these METH-induced effects were significantly attenuated in IL-6-/- animals. METH also caused a decrease in serotonin levels in the CPu and hippocampus of wild-type mice, but no reduction was observed in IL-6-/- animals. Moreover, METH induced decreases in [(125)I]RTI-55-labeled serotonin transporters in the hippocampal CA3 region and in the substantia nigra-reticulata but increases in serotonin transporters in the CPu and cingulate cortex in wild-type animals, all of which were attenuated in IL-6-/- mice. Additionally, METH caused increased gliosis in the CPu and cortices of wild-type mice as measured by [(3)H]PK-11195 binding; this gliotic response was almost completely inhibited in IL-6-/- animals. There was also significant protection against METH-induced DNA fragmentation, measured by the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeled (TUNEL) cells in the cortices. The protective effects against METH toxicity observed in the IL-6-/- mice were not caused by differences in temperature elevation or in METH accumulation in wild-type and mutant animals. Therefore, these observations support the proposition that IL-6 may play an important role in the neurotoxicity of METH.

  18. Rare autism-associated variants implicate syntaxin 1 (STX1 R26Q) phosphorylation and the dopamine transporter (hDAT R51W) in dopamine neurotransmission and behaviors.

    PubMed

    Cartier, Etienne; Hamilton, Peter J; Belovich, Andrea N; Shekar, Aparna; Campbell, Nicholas G; Saunders, Christine; Andreassen, Thorvald F; Gether, Ulrik; Veenstra-Vanderweele, Jeremy; Sutcliffe, James S; Ulery-Reynolds, Paula G; Erreger, Kevin; Matthies, Heinrich J G; Galli, Aurelio

    2015-02-01

    Syntaxin 1 (STX1) is a presynaptic plasma membrane protein that coordinates synaptic vesicle fusion. STX1 also regulates the function of neurotransmitter transporters, including the dopamine (DA) transporter (DAT). The DAT is a membrane protein that controls DA homeostasis through the high-affinity re-uptake of synaptically released DA. We adopt newly developed animal models and state-of-the-art biophysical techniques to determine the contribution of the identified gene variants to impairments in DA neurotransmission observed in autism spectrum disorder (ASD). Here, we characterize two independent autism-associated variants in the genes that encode STX1 and the DAT. We demonstrate that each variant dramatically alters DAT function. We identify molecular mechanisms that converge to inhibit reverse transport of DA and DA-associated behaviors. These mechanisms involve decreased phosphorylation of STX1 at Ser14 mediated by casein kinase 2 as well as a reduction in STX1/DAT interaction. These findings point to STX1/DAT interactions and STX1 phosphorylation as key regulators of DA homeostasis. We determine the molecular identity and the impact of these variants with the intent of defining DA dysfunction and associated behaviors as possible complications of ASD.

  19. Serotonin and Dopamine Gene Variation and Theory of Mind Decoding Accuracy in Major Depression: A Preliminary Investigation.

    PubMed

    Zahavi, Arielle Y; Sabbagh, Mark A; Washburn, Dustin; Mazurka, Raegan; Bagby, R Michael; Strauss, John; Kennedy, James L; Ravindran, Arun; Harkness, Kate L

    2016-01-01

    Theory of mind-the ability to decode and reason about others' mental states-is a universal human skill and forms the basis of social cognition. Theory of mind accuracy is impaired in clinical conditions evidencing social impairment, including major depressive disorder. The current study is a preliminary investigation of the association of polymorphisms of the serotonin transporter (SLC6A4), dopamine transporter (DAT1), dopamine receptor D4 (DRD4), and catechol-O-methyl transferase (COMT) genes with theory of mind decoding in a sample of adults with major depression. Ninety-six young adults (38 depressed, 58 non-depressed) completed the 'Reading the Mind in the Eyes task' and a non-mentalistic control task. Genetic associations were only found for the depressed group. Specifically, superior accuracy in decoding mental states of a positive valence was seen in those homozygous for the long allele of the serotonin transporter gene, 9-allele carriers of DAT1, and long-allele carriers of DRD4. In contrast, superior accuracy in decoding mental states of a negative valence was seen in short-allele carriers of the serotonin transporter gene and 10/10 homozygotes of DAT1. Results are discussed in terms of their implications for integrating social cognitive and neurobiological models of etiology in major depression.

  20. Rare Autism-Associated Variants Implicate Syntaxin 1 (STX1 R26Q) Phosphorylation and the Dopamine Transporter (hDAT R51W) in Dopamine Neurotransmission and Behaviors

    PubMed Central

    Cartier, Etienne; Hamilton, Peter J.; Belovich, Andrea N.; Shekar, Aparna; Campbell, Nicholas G.; Saunders, Christine; Andreassen, Thorvald F.; Gether, Ulrik; Veenstra-Vanderweele, Jeremy; Sutcliffe, James S.; Ulery-Reynolds, Paula G.; Erreger, Kevin; Matthies, Heinrich J.G.; Galli, Aurelio

    2015-01-01

    Background Syntaxin 1 (STX1) is a presynaptic plasma membrane protein that coordinates synaptic vesicle fusion. STX1 also regulates the function of neurotransmitter transporters, including the dopamine (DA) transporter (DAT). The DAT is a membrane protein that controls DA homeostasis through the high-affinity re-uptake of synaptically released DA. Methods We adopt newly developed animal models and state-of-the-art biophysical techniques to determine the contribution of the identified gene variants to impairments in DA neurotransmission observed in autism spectrum disorder (ASD). Outcomes Here, we characterize two independent autism-associated variants in the genes that encode STX1 and the DAT. We demonstrate that each variant dramatically alters DAT function. We identify molecular mechanisms that converge to inhibit reverse transport of DA and DA-associated behaviors. These mechanisms involve decreased phosphorylation of STX1 at Ser14 mediated by casein kinase 2 as well as a reduction in STX1/DAT interaction. These findings point to STX1/DAT interactions and STX1 phosphorylation as key regulators of DA homeostasis. Interpretation We determine the molecular identity and the impact of these variants with the intent of defining DA dysfunction and associated behaviors as possible complications of ASD. PMID:25774383

  1. AAV1/2-induced overexpression of A53T-α-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinson's disease.

    PubMed

    Ip, Chi Wang; Klaus, Laura-Christin; Karikari, Akua A; Visanji, Naomi P; Brotchie, Jonathan M; Lang, Anthony E; Volkmann, Jens; Koprich, James B

    2017-02-01

    α-Synuclein is a protein implicated in the etiopathogenesis of Parkinson's disease (PD). AAV1/2-driven overexpression of human mutated A53T-α-synuclein in rat and monkey substantia nigra (SN) induces degeneration of nigral dopaminergic neurons and decreases striatal dopamine and tyrosine hydroxylase (TH). Given certain advantages of the mouse, especially it being amendable to genetic manipulation, translating the AAV1/2-A53T α-synuclein model to mice would be of significant value. AAV1/2-A53T α-synuclein or AAV1/2 empty vector (EV) at a concentration of 5.16 x 10 12 gp/ml were unilaterally injected into the right SN of male adult C57BL/6 mice. Post-mortem examinations included immunohistochemistry to analyze nigral α-synuclein, Ser129 phosphorylated α-synuclein and TH expression, striatal dopamine transporter (DAT) levels by autoradiography and dopamine levels by high performance liquid chromatography. At 10 weeks, in AAV1/2-A53T α-synuclein mice there was a 33% reduction in TH+ dopaminergic nigral neurons (P < 0.001), 29% deficit in striatal DAT binding (P < 0.05), 38% and 33% reductions in dopamine (P < 0.001) and DOPAC (P < 0.01) levels and a 60% increase in dopamine turnover (homovanilic acid/dopamine ratio; P < 0.001). Immunofluorescence showed that the AAV1/2-A53T α-synuclein injected mice had widespread nigral and striatal expression of vector-delivered A53T-α-synuclein. Concurrent staining with human PD SN samples using gold standard histological methodology for Lewy pathology detection by proteinase K digestion and application of specific antibody raised against human Lewy body α-synuclein (LB509) and Ser129 phosphorylated α-synuclein (81A) revealed insoluble α-synuclein aggregates in AAV1/2-A53T α-synuclein mice resembling Lewy-like neurites and bodies. In the cylinder test, we observed significant paw use asymmetry in the AAV1/2-A53T α-synuclein group when compared to EV controls at 5 and 9 weeks post injection (P < 0.001; P < 0.05). These data show that unilateral injection of AAV1/2-A53T α-synuclein into the mouse SN leads to persistent motor deficits, neurodegeneration of the nigrostriatal dopaminergic system and development of Lewy-like pathology, thereby reflecting clinical and pathological hallmarks of human PD.

  2. Adolescent binge-like alcohol alters sensitivity to acute alcohol effects on dopamine release in the nucleus accumbens of adult rats

    PubMed Central

    Shnitko, Tatiana A.; Spear, Linda P.; Robinson, Donita L.

    2015-01-01

    Rationale Early onset of alcohol drinking has been associated with alcohol abuse in adulthood. The neurobiology of this phenomenon is unclear, but mesolimbic dopamine pathways, which are dynamic during adolescence, may play a role. Objectives We investigated the impact of adolescent binge-like alcohol on phasic dopaminergic neurotransmission during adulthood. Methods Rats received intermittent intragastric ethanol, water or nothing during adolescence. In adulthood, electrically-evoked dopamine release and subsequent uptake were measured in the nucleus accumbens core at baseline and after acute challenge of ethanol or saline. Results Adolescent ethanol exposure did not alter basal measures of evoked dopamine release or uptake. Ethanol challenge dose-dependently decreased the amplitude of evoked dopamine release in rats by 30–50% in control groups, as previously reported, but did not alter evoked release in ethanol-exposed animals. To address the mechanism by which ethanol altered dopamine signaling, the evoked signals were modeled to estimate dopamine efflux per impulse and the velocity of the dopamine transporter. Dopamine uptake was slower in all exposure groups after ethanol challenge compared to saline, while dopamine efflux per pulse of electrical stimulation was reduced by ethanol only in ethanol-naive rats. Conclusions The results demonstrate that exposure to binge levels of ethanol during adolescence blunts the effect of ethanol challenge to reduce the amplitude of phasic dopamine release in adulthood. Large dopamine transients may result in more extracellular dopamine after alcohol challenge in adolescent-exposed rats, and may be one mechanism by which alcohol is more reinforcing in people who initiated drinking at an early age. PMID:26487039

  3. Improvement in the measurement error of the specific binding ratio in dopamine transporter SPECT imaging due to exclusion of the cerebrospinal fluid fraction using the threshold of voxel RI count.

    PubMed

    Mizumura, Sunao; Nishikawa, Kazuhiro; Murata, Akihiro; Yoshimura, Kosei; Ishii, Nobutomo; Kokubo, Tadashi; Morooka, Miyako; Kajiyama, Akiko; Terahara, Atsuro

    2018-05-01

    In Japan, the Southampton method for dopamine transporter (DAT) SPECT is widely used to quantitatively evaluate striatal radioactivity. The specific binding ratio (SBR) is the ratio of specific to non-specific binding observed after placing pentagonal striatal voxels of interest (VOIs) as references. Although the method can reduce the partial volume effect, the SBR may fluctuate due to the presence of low-count areas of cerebrospinal fluid (CSF), caused by brain atrophy, in the striatal VOIs. We examined the effect of the exclusion of low-count VOIs on SBR measurement. We retrospectively reviewed DAT imaging of 36 patients with parkinsonian syndromes performed after injection of 123 I-FP-CIT. SPECT data were reconstructed using three conditions. We defined the CSF area in each SPECT image after segmenting the brain tissues. A merged image of gray and white matter images was constructed from each patient's magnetic resonance imaging (MRI) to create an idealized brain image that excluded the CSF fraction (MRI-mask method). We calculated the SBR and asymmetric index (AI) in the MRI-mask method for each reconstruction condition. We then calculated the mean and standard deviation (SD) of voxel RI counts in the reference VOI without the striatal VOIs in each image, and determined the SBR by excluding the low-count pixels (threshold method) using five thresholds: mean-0.0SD, mean-0.5SD, mean-1.0SD, mean-1.5SD, and mean-2.0SD. We also calculated the AIs from the SBRs measured using the threshold method. We examined the correlation among the SBRs of the threshold method, between the uncorrected SBRs and the SBRs of the MRI-mask method, and between the uncorrected AIs and the AIs of the MRI-mask method. The intraclass correlation coefficient indicated an extremely high correlation among the SBRs and among the AIs of the MRI-mask and threshold methods at thresholds between mean-2.0D and mean-1.0SD, regardless of the reconstruction correction. The differences among the SBRs and the AIs of the two methods were smallest at thresholds between man-2.0SD and mean-1.0SD. The SBR calculated using the threshold method was highly correlated with the MRI-SBR. These results suggest that the CSF correction of the threshold method is effective for the calculation of idealized SBR and AI values.

  4. Further human evidence for striatal dopamine release induced by administration of ∆9-tetrahydrocannabinol (THC): selectivity to limbic striatum.

    PubMed

    Bossong, Matthijs G; Mehta, Mitul A; van Berckel, Bart N M; Howes, Oliver D; Kahn, René S; Stokes, Paul R A

    2015-08-01

    Elevated dopamine function is thought to play a key role in both the rewarding effects of addictive drugs and the pathophysiology of schizophrenia. Accumulating epidemiological evidence indicates that cannabis use is a risk factor for the development of schizophrenia. However, human neurochemical imaging studies that examined the impact of ∆9-tetrahydrocannabinol (THC), the main psychoactive component in cannabis, on striatal dopamine release have provided inconsistent results. The objective of this study is to assess the effect of a THC challenge on human striatal dopamine release in a large sample of healthy participants. We combined human neurochemical imaging data from two previous studies that used [(11)C]raclopride positron emission tomography (PET) (n = 7 and n = 13, respectively) to examine the effect of THC on striatal dopamine neurotransmission in humans. PET images were re-analysed to overcome differences in PET data analysis. THC administration induced a significant reduction in [(11)C]raclopride binding in the limbic striatum (-3.65 %, from 2.39 ± 0.26 to 2.30 ± 0.23, p = 0.023). This is consistent with increased dopamine levels in this region. No significant differences between THC and placebo were found in other striatal subdivisions. In the largest data set of healthy participants so far, we provide evidence for a modest increase in human striatal dopamine transmission after administration of THC compared to other drugs of abuse. This finding suggests limited involvement of the endocannabinoid system in regulating human striatal dopamine release and thereby challenges the hypothesis that an increase in striatal dopamine levels after cannabis use is the primary biological mechanism underlying the associated higher risk of schizophrenia.

  5. Searching for a neurobiological basis for self-medication theory in ADHD comorbid with substance use disorders: an in vivo study of dopamine transporters using (99m)Tc-TRODAT-1 SPECT.

    PubMed

    Silva, Neivo; Szobot, Claudia M; Shih, Ming C; Hoexter, Marcelo Q; Anselmi, Carlos Eduardo; Pechansky, Flavio; Bressan, Rodrigo A; Rohde, Luis Augusto

    2014-02-01

    Attention-deficit/hyperactivity disorder (ADHD) and substance use disorders (SUD) frequently co-occur. Although several studies have shown changes in striatal dopamine transporter (DAT) density in these disorders, little is known about the neurobiological basis of the comorbidity. The aim of this study was to evaluate striatal DAT density in treatment-naive ADHD adolescents with SUD (ADHD + SUD) and without SUD (ADHD), compared to SUD adolescents without ADHD (SUD) and healthy control subjects (HC). Sixty-two male age-matched subjects diagnosed with DSM-IV criteria were included: ADHD + SUD (n = 18), SUD (n = 14), HC (n = 19), and ADHD (n = 11). Urine tests confirmed participants' drug use. All subjects performed SPECT scans with Tc-TRODAT-1 to evaluate DAT density in the striatum. The mean right striatum specific binding were 1.68 (ADHD), 1.38 (ADHD + SUD), 1.19 (HC), 1.17 (SUD), and in left striatum 1.65 (ADHD), 1.39 (ADHD + SUD), 1.19 (HC), and 1.17 (SUD). The ADHD group presented significantly higher striatal DAT density compared with ADHD + SUD, SUD, and HC groups. Adolescents with ADHD + SUD had significantly lower DAT density than those with ADHD, but significantly higher DAT density than those with SUD only and no significant difference from the healthy control group. The ADHD + SUD group had lower striatal DAT density in comparison with ADHD without SUD. It is possible to speculate that the use of cannabis and cocaine is responsible for the lower striatal DAT density in this group which would help in understanding the neurobiological basis for the self-medication theory in ADHD adolescents.

  6. Pharmacochaperoning in a Drosophila model system rescues human dopamine transporter variants associated with infantile/juvenile parkinsonism

    PubMed Central

    Asjad, H. M. Mazhar; Kasture, Ameya; El-Kasaby, Ali; Sackel, Michael; Hummel, Thomas; Freissmuth, Michael; Sucic, Sonja

    2017-01-01

    Point mutations in the gene encoding the human dopamine transporter (hDAT, SLC6A3) cause a syndrome of infantile/juvenile dystonia and parkinsonism. To unravel the molecular mechanism underlying these disorders and investigate possible pharmacological therapies, here we examined 13 disease-causing DAT mutants that were retained in the endoplasmic reticulum when heterologously expressed in HEK293 cells. In three of these mutants, i.e. hDAT-V158F, hDAT-G327R, and hDAT-L368Q, the folding deficit was remedied with the pharmacochaperone noribogaine or the heat shock protein 70 (HSP70) inhibitor pifithrin-μ such that endoplasmic reticulum export of and radioligand binding and substrate uptake by these DAT mutants were restored. In Drosophila melanogaster, DAT deficiency results in reduced sleep. We therefore exploited the power of targeted transgene expression of mutant hDAT in Drosophila to explore whether these hDAT mutants could also be pharmacologically rescued in an intact organism. Noribogaine or pifithrin-μ treatment supported hDAT delivery to the presynaptic terminals of dopaminergic neurons and restored sleep to normal length in DAT-deficient (fumin) Drosophila lines expressing hDAT-V158F or hDAT-G327R. In contrast, expression of hDAT-L368Q in the Drosophila DAT mutant background caused developmental lethality, indicating a toxic action not remedied by pharmacochaperoning. Our observations identified those mutations most likely amenable to pharmacological rescue in the affected children. In addition, our findings also highlight the challenges of translating insights from pharmacochaperoning in cell culture to the clinical situation. Because of the evolutionary conservation in dopaminergic neurotransmission between Drosophila and people, pharmacochaperoning of DAT in D. melanogaster may allow us to bridge that gap. PMID:28972153

  7. Induction of dopamine biosynthesis by l-DOPA in PC12 cells: implications of L-DOPA influx and cyclic AMP.

    PubMed

    Jin, Chun Mei; Yang, Yoo Jung; Huang, Hai Shan; Lim, Sung Cil; Kai, Masaaki; Lee, Myung Koo

    2008-09-04

    The effects of 3,4-dihydroxyphenylalanine (l-DOPA) on dopamine biosynthesis and cytotoxicity were investigated in PC12 cells. l-DOPA treatment (20-200 microM) increased the levels of dopamine by 226%-504% after 3-6 h of treatment and enhanced the activities of tyrosine hydroxylase (TH) and aromatic l-amino acid decarboxylase (AADC). l-DOPA (20-200 muM) treatment led to a 562%-937% increase in l-DOPA influx at 1 h, which inhibited the activity of TH, but not AADC, during the same period. The extracellular releases of dopamine were also increased by 231%-570% after treatment with 20 and 200 microM l-DOPA for 0.5-3 h. l-DOPA at a concentration of 100-200 microM, but not 20 microM, exerted apoptotic cytotoxicity towards PC12 cells for 24-48 h. l-DOPA (20-200 microM) increased the intracellular cyclic AMP levels by 318%-557% after 0.5-1 h in a concentration-dependent manner. However, the elevated cyclic AMP levels by l-DOPA could not protect against l-DOPA (100-200 microM)-induced cytotoxicity after 24-48 h. In addition, l-DOPA (20-200 microM)-induced increases in cyclic AMP and dopamine were significantly reduced by treatment with SCH23390 (dopamine D(1) receptor antagonist). The increased levels of dopamine by l-DOPA were also reduced by H89 (protein kinase A, PKA, inhibitor) and GF109203X (protein kinase C inhibitor); however, the reduction by GF109203X was not significant. l-DOPA at 20-200 microM stimulated the phosphorylation of PKA and cyclic AMP-response element binding protein and induced the biosynthesis of the TH protein. These results indicate that 20-200 microM l-DOPA induces dopamine biosynthesis by two pathways. One pathway involves l-DOPA directly entering the cells to convert dopamine through AADC activity (l-DOPA decarboxylation). The other pathway involves l-DOPA and/or released dopamine activating TH to enhance dopamine biosynthesis by the dopamine D(1) receptor-cyclic AMP-PKA signaling system (dopamine biosynthesis by TH).

  8. Serotonin transporter occupancy by escitalopram and citalopram in the non-human primate brain: a [(11)C]MADAM PET study.

    PubMed

    Finnema, Sjoerd J; Halldin, Christer; Bang-Andersen, Benny; Bundgaard, Christoffer; Farde, Lars

    2015-11-01

    A number of serotonin receptor positron emission tomography (PET) radioligands have been shown to be sensitive to changes in extracellular serotonin concentration, in a generalization of the well-known dopamine competition model. High doses of selective serotonin reuptake inhibitors (SSRIs) decrease serotonin receptor availability in monkey brain, consistent with increased serotonin concentrations. However, two recent studies on healthy human subjects, using a single, lower and clinically relevant SSRI dose, showed increased cortical serotonin receptor radioligand binding, suggesting potential decreases in serotonin concentration in projection regions when initiating treatment. The cross-species differential SSRI effect may be partly explained by serotonin transporter (SERT) occupancy in monkey brain being higher than is clinically relevant. We here determine SERT occupancy after single doses of escitalopram or citalopram by conducting PET measurements with [(11)C]MADAM in monkeys. Relationships between dose, plasma concentration and SERT occupancy were estimated by one-site binding analyses. Binding affinity was expressed as dose (ID50) or plasma concentration (K i) where 50 % SERT occupancy was achieved. Estimated ID50 and K i values were 0.020 mg/kg and 9.6 nmol/L for escitalopram and 0.059 mg/kg and 9.7 nmol/L for citalopram, respectively. Obtained K i values are comparable to values reported in humans. Escitalopram or citalopram doses nearly saturated SERT in previous monkey studies which examined serotonin sensitivity of receptor radioligands. PET-measured cross-species differential effects of SSRI on cortical serotonin concentration may thus be related to SSRI dose. Future monkey studies using SSRI doses inducing clinically relevant SERT occupancy may further illuminate the delayed onset of SSRI therapeutic effects.

  9. Selective labeling of serotonin receptors by d-[3H]lysergic acid diethylamide in calf caudate.

    PubMed Central

    Whitaker, P M; Seeman, P

    1978-01-01

    Since it was known that d-lysergic acid diethylamide (LSD) affected catecholaminergic as well as serotoninergic neurons, the objective in this study was to enhance the selectivity of [3H]LSD binding to serotonin receptors in vitro by using crude homogenates of calf caudate. In the presence of a combination of 50 nM each of phentolamine (added to preclude the binding of [3H]LSD to alpha-adrenoceptors), apomorphine, and spiperone (added to preclude the binding of [3H]LSD to dopamine receptors), it was found by Scatchard analysis that the total number of [3H]LSD sites went down to 300 fmol/mg, compared to 1100 fmol/mg in the absence of the catecholamine-blocking drugs. The IC50 values (concentrations to inhibit binding by 50%) for various drugs were tested on the binding of [3H]LSD in the presence of 50 nM each of apomorphine (A), phentolamine (P) and spiperone (S). With this combination, the IC50 for serotonin was 35 nM (compared to 1000 nM without it), indicating that [3H]LSD had become considerably more selectively displaceable by serotonin under these conditions whereas the effects of norepinephrine and dopamine on [3H]LSD binding were eliminated. Various ergots had approximately equal IC50 values against [3H]serotonin and [3H]LSD but tryptamines were much more selective against [3H]serotonin; the data may indicate the existence of the two types of serotonin receptors. PMID:32537

  10. EFFECTS OF THE ORGANOCHLORINE PESTICIDE METHOXYCHLOR ON DOPAMINE METABOLITES AND TRANSPORTERS IN THE MOUSE BRAIN

    PubMed Central

    Schuh, Rosemary A.; Richardson, Jason R.; Gupta, Rupesh K.; Flaws, Jodi A.; Fiskum, Gary

    2009-01-01

    Pesticide exposure has been suggested as an increased risk factor in developing Parkinson’s disease (PD). While the molecular mechanism underlying this association is not clear, several studies have demonstrated a role for mitochondrial dysfunction and oxidative damage in PD. Although data on specific pesticides associated with PD are often lacking, several lines of evidence point to the potential involvement of the organochlorine class of pesticides. Previously, we have found that the organochlorine pesticide methoxychlor (mxc) causes mitochondrial dysfunction and oxidative stress in isolated mitochondria. Here, we sought to determine whether mxc-induced mitochondrial dysfunction results in oxidative damage and dysfunction of the dopamine system. Adult female CD1 mice were dosed with either vehicle (sesame oil) or mxc (16, 32, or 64 mg/kg/day) for 20 consecutive days. Following treatment, we observed a dose-related increase in protein carbonyl levels in non-synaptic mitochondria, indicating oxidative modification of mitochondrial proteins which may lead to mitochondrial dysfunction. Mxc exposure also caused a dose-related decrease in striatal levels of dopamine (16–31%), which were accompanied by decreased levels of the dopamine transporter (DAT; 35–48%) and the vesicular monoamine transporter 2 (VMAT2; 21–44%). Because mitochondrial dysfunction, oxidative damage, and decreased levels of DAT and VMAT2 are found in PD patients, our data suggests that mxc should be investigated as a possible candidate involved in the association of pesticides with increased risk for PD, particularly in highly-exposed populations. PMID:19459224

  11. Linking Inflammation and Parkinson Disease: Hypochlorous Acid Generates Parkinsonian Poisons

    PubMed Central

    Jeitner, Thomas M.; Kalogiannis, Mike; Krasnikov, Boris F.; Gomlin, Irving; Peltier, Morgan R.; Moran, Graham R.

    2016-01-01

    Inflammation is a common feature of Parkinson Disease and other neurodegenerative disorders. Hypochlorous acid (HOCl) is a reactive oxygen species formed by neutrophils and other myeloperoxidase-containing cells during inflammation. HOCl chlorinates the amine and catechol moieties of dopamine to produce chlorinated derivatives collectively termed chlorodopamine. Here, we report that chlorodopamine is toxic to dopaminergic neurons both in vivo and in vitro. Intrastriatal administration of 90 nmol chlorodopamine to mice resulted in loss of dopaminergic neurons from the substantia nigra and decreased ambulation-results that were comparable to those produced by the same dose of the parkinsonian poison, 1-methyl-4-phenylpyridinium (MPP+). Chlorodopamine was also more toxic to differentiated SH SY5Y cells than HOCl. The basis of this selective toxicity is likely mediated by chlorodopamine uptake through the dopamine transporter, as expression of this transporter in COS-7 cells conferred sensitivity to chlorodopamine toxicity. Pharmacological blockade of the dopamine transporter also mitigated the deleterious effects of chlorodopamine in vivo. The cellular actions of chlorodopamine included inactivation of the α-ketoglutarate dehydrogenase complex, as well as inhibition of mitochondrial respiration. The latter effect is consistent with inhibition of cytochrome c oxidase. Illumination at 670 nm, which stimulates cytochrome c oxidase, reversed the effects of chlorodopamine. The observed changes in mitochondrial biochemistry were also accompanied by the swelling of these organelles. Overall, our findings suggest that chlorination of dopamine by HOCl generates toxins that selectively kill dopaminergic neurons in the substantia nigra in a manner comparable to MPP+. PMID:27026709

  12. [C-11]{beta}CNT: A new monoamine uptake ligand for studying serotonin and dopamine transporter sites in the living brain with PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulholland, G.K.; Zheng, Q.H.; Zhou, F.C.

    1996-05-01

    There is considerable interest in measuring serotonin (5HT) and dopamine (DA) function in the human brain. Altered levels of 5HT and DA are recognized in drug abuse, neurotoxicities, psychiatric disorders, and neurodegenerative conditions including Alzheimer`s and Parkinson`s disease. Several phenyltropane analogs of cocaine bind tightly to both DA and 5HT uptake proteins. We have made a new agent from this class called {beta}CNT, 2{beta}-carboxymethyl-3{beta}-(2-naphthyl)-tropane, the isosteric O-for-CH{sub 2} analog of a compound reported to have among the highest measured affinities for DA and 5HT transporters and studied its in vivo brain distributions in animals for the first time. Optically puremore » {beta}CNT was made from cocaine, and labeled at the O-methyl position by esterification of {beta}CNT-acid with [C-11]CH{sub 3}OTfl under conditions similar to Wilson`s. HPLC-purified (99+%) final products (15-50% eob yield from CO{sub 2}, 40 min synth) had specific activities 0.1-1.2 Ci/{mu}mol at the time of injection. Preliminary [C-11]{beta}{beta}CNT rodent distribution showed very high brain uptake (3% ID at 60 min) and localization (striat: fr cort: hypo: cer: blood, 11: 5: 4: 1: 06). {beta}CNT-PET studies in juvenile pigs (5-20 mCi, 20-35 kg) found rapid brain uptake, and prominent retention (85 min) in midbrain, anterior brainstem and striatum, followed by cortex and olfactory bulb. Paroxetine pretreatment (5HT uptake blocker, 2mg/kg), diminished retention in most brain areas; nomifensine (DA/NE uptake blocker, 6 mg/kg) reduced striatum selectively. Direct comparisons of [C-11]{beta}CNT with other PET transporter radioligands {beta}CFT, {beta}CIT, and {beta}CTT (RTI-32) in the same pig found {beta}CNT had highest overall brain uptake among the agents. These initial results suggest {beta}CNT has favorable properties for imaging both 5HT and DA transporters in vivo, and further evaluation of its potential as a human PET agent is warranted.« less

  13. Amphetamine Elicits Opposing Actions on Readily Releasable and Reserve Pools for Dopamine

    PubMed Central

    Covey, Dan P.; Juliano, Steven A.; Garris, Paul A.

    2013-01-01

    Amphetamine, a highly addictive drug with therapeutic efficacy, exerts paradoxical effects on the fundamental communication modes employed by dopamine neurons in modulating behavior. While amphetamine elevates tonic dopamine signaling by depleting vesicular stores and driving non-exocytotic release through reverse transport, this psychostimulant also activates phasic dopamine signaling by up-regulating vesicular dopamine release. We hypothesized that these seemingly incongruent effects arise from amphetamine depleting the reserve pool and enhancing the readily releasable pool. This novel hypothesis was tested using in vivo voltammetry and stimulus trains of varying duration to access different vesicular stores. We show that amphetamine actions are stimulus dependent in the dorsal striatum. Specifically, amphetamine up-regulated vesicular dopamine release elicited by a short-duration train, which interrogates the readily releasable pool, but depleted release elicited by a long-duration train, which interrogates the reserve pool. These opposing actions of vesicular dopamine release were associated with concurrent increases in tonic and phasic dopamine responses. A link between vesicular depletion and tonic signaling was supported by results obtained for amphetamine in the ventral striatum and cocaine in both striatal sub-regions, which demonstrated augmented vesicular release and phasic signals only. We submit that amphetamine differentially targeting dopamine stores reconciles the paradoxical activation of tonic and phasic dopamine signaling. Overall, these results further highlight the unique and region-distinct cellular mechanisms of amphetamine and may have important implications for its addictive and therapeutic properties. PMID:23671560

  14. DAT1 Polymorphism Determines L-DOPA Effects on Learning about Others’ Prosociality

    PubMed Central

    Rieskamp, Jörg; Zehnder, Christian; Ebstein, Richard; Fehr, Ernst; Knoch, Daria

    2013-01-01

    Despite that a wealth of evidence links striatal dopamine to individualś reward learning performance in non-social environments, the neurochemical underpinnings of such learning during social interaction are unknown. Here, we show that the administration of 300 mg of the dopamine precursor L-DOPA to 200 healthy male subjects influences learning about a partners’ prosocial preferences in a novel social interaction task, which is akin to a repeated trust game. We found learning to be modulated by a well-established genetic marker of striatal dopamine levels, the 40-bp variable number tandem repeats polymorphism of the dopamine transporter (DAT1 polymorphism). In particular, we found that L-DOPA improves learning in 10/10R genoype subjects, who are assumed to have lower endogenous striatal dopamine levels and impairs learning in 9/10R genotype subjects, who are assumed to have higher endogenous dopamine levels. These findings provide first evidence for a critical role of dopamine in learning whether an interaction partner has a prosocial or a selfish personality. The applied pharmacogenetic approach may open doors to new ways of studying psychiatric disorders such as psychosis, which is characterized by distorted perceptions of others’ prosocial attitudes. PMID:23861813

  15. Facile Synthesis of Molecularly Imprinted Graphene Quantum Dots for the Determination of Dopamine with Affinity-Adjustable.

    PubMed

    Zhou, Xi; Wang, Anqi; Yu, Chenfei; Wu, Shishan; Shen, Jian

    2015-06-10

    A facilely prepared fluorescence sensor was developed for dopamine (DA) determination based on polyindole/graphene quantum dots molecularly imprinted polymers (PIn/GQDs@MIPs). The proposed sensor exhibits a high sensitivity with a linear range of 5 × 10(-10) to 1.2 × 10(-6) M and the limit of detection as low as 1 × 10(-10) M in the determination of DA, which is probably due to the tailor-made imprinted cavities for binding DA thought hydrogen bonds between amine groups of DA and oxygen-containing groups of the novel composite. Furthermore, the prepared sensor can rebind DA in dual-type: a low affinity type (noncovalent interaction is off) and a high affinity type (noncovalent interaction is on), and the rebinding interaction can be adjusted by tuning the pH, which shows a unique potential for adjusting the binding interaction while keeping the specificity, allowing for wider applications.

  16. Exposure to the Polybrominated Diphenyl Ether Mixture DE-71 Damages the Nigrostriatal Dopamine System: Role of Dopamine Handling in Neurotoxicity

    PubMed Central

    Bradner, Joshua M.; Suragh, Tiffany A.; Wilson, W. Wyatt; Lazo, Carlos R.; Stout, Kristen A.; Kim, Hye Mi; Wang, Min Z.; Walker, Douglas I.; Pennell, Kurt D.; Richardson, Jason R.; Miller, Gary W.; Caudle, W. Michael

    2013-01-01

    In the last several decades polybrominated diphenyl ethers (PBDEs) have replaced the previously banned polychlorinated biphenyls (PCBs) in multiple flame retardant utilities. As epidemiological and laboratory studies have suggested PCBs as a risk factor for Parkinson’s disease (PD), the similarities between PBDEs and PCBs suggest that PBDEs have the potential to be neurotoxic to the dopamine system. The purpose of this study was to evaluate the neurotoxic effects of the PBDE mixture, DE-71, on the nigrostriatal dopamine system and address the role of altered dopamine handling in mediating this neurotoxicity. Using an in vitro model system we found DE-71 effectively caused cell death in a dopaminergic cell line as well as reducing the number of TH+ neurons isolated from VMAT2 WT and LO animals. Assessment of DE-71 neurotoxicity in vivo demonstrated significant deposition of PBDE congeners in the brains of mice, leading to reductions in striatal dopamine and dopamine handling, as well as reductions in the striatal dopamine transporter (DAT) and VMAT2. Additionally, DE-71 elicited a significant locomotor deficit in the VMAT2 WT and LO mice. However, no change was seen in TH expression in dopamine terminal or in the number of dopamine neurons in the substantia nigra pars compacta (SNpc). To date, these are the first data to demonstrate that exposure to PBDEs disrupts the nigrostriatal dopamine system. Given their similarities to PCBs, additional laboratory and epidemiological research should be considered to assess PBDEs as a potential risk factor for PD and other neurological disorders. PMID:23287494

  17. Delta-9-Tetrahydrocannabinol-Induced Dopamine Release as a Function of Psychosis Risk: 18F-Fallypride Positron Emission Tomography Study

    PubMed Central

    Kuepper, Rebecca; Ceccarini, Jenny; Lataster, Johan; van Os, Jim; van Kroonenburgh, Marinus; van Gerven, Joop M. A.; Marcelis, Machteld; Van Laere, Koen; Henquet, Cécile

    2013-01-01

    Cannabis use is associated with psychosis, particularly in those with expression of, or vulnerability for, psychotic illness. The biological underpinnings of these differential associations, however, remain largely unknown. We used Positron Emission Tomography and 18F-fallypride to test the hypothesis that genetic risk for psychosis is expressed by differential induction of dopamine release by Δ9-THC (delta-9-tetrahydrocannabinol, the main psychoactive ingredient of cannabis). In a single dynamic PET scanning session, striatal dopamine release after pulmonary administration of Δ9-THC was measured in 9 healthy cannabis users (average risk psychotic disorder), 8 patients with psychotic disorder (high risk psychotic disorder) and 7 un-related first-degree relatives (intermediate risk psychotic disorder). PET data were analyzed applying the linear extension of the simplified reference region model (LSRRM), which accounts for time-dependent changes in 18F-fallypride displacement. Voxel-based statistical maps, representing specific D2/3 binding changes, were computed to localize areas with increased ligand displacement after Δ9-THC administration, reflecting dopamine release. While Δ9-THC was not associated with dopamine release in the control group, significant ligand displacement induced by Δ9-THC in striatal subregions, indicative of dopamine release, was detected in both patients and relatives. This was most pronounced in caudate nucleus. This is the first study to demonstrate differential sensitivity to Δ9-THC in terms of increased endogenous dopamine release in individuals at risk for psychosis. PMID:23936196

  18. Dopamine Release and Uptake Impairments and Behavioral Alterations Observed in Mice that Model Fragile X Mental Retardation Syndrome.

    PubMed

    Fulks, Jenny L; O'Bryhim, Bliss E; Wenzel, Sara K; Fowler, Stephen C; Vorontsova, Elena; Pinkston, Jonathan W; Ortiz, Andrea N; Johnson, Michael A

    2010-10-20

    In this study we evaluated the relationship between amphetamine-induced behavioral alterations and dopamine release and uptake characteristics in Fmr1 knockout (Fmr1 KO) mice, which model fragile X syndrome. The behavioral analyses, obtained at millisecond temporal resolution and 2 mm spatial resolution using a force-plate actometer, revealed that Fmr1 KO mice express a lower degree of focused stereotypy compared to wild type (WT) control mice after injection with 10 mg/kg (ip) amphetamine. To identify potentially related neurochemical mechanisms underlying this phenomenon, we measured electrically-evoked dopamine release and uptake using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal brain slices. At 10 weeks of age, dopamine release per pulse, which is dopamine release corrected for differences in uptake, was unchanged. However, at 15 (the age of behavioral testing) and 20 weeks of age, dopamine per pulse and the maximum rate of dopamine uptake was diminished in Fmr1 KO mice compared to WT mice. Dopamine uptake measurements, obtained at different amphetamine concentrations, indicated that dopamine transporters in both genotypes have equal affinities for amphetamine. Moreover, dopamine release measurements from slices treated with quinpirole, a D2-family receptor agonist, rule out enhanced D2 autoreceptor sensitivity as a mechanism of release inhibition. However, dopamine release, uncorrected for uptake and normalized against the corresponding pre-drug release peaks, increased in Fmr1 KO mice, but not in WT mice. Collectively, these data are consistent with a scenario in which a decrease in extracellular dopamine levels in the striatum result in diminished expression of focused stereotypy in Fmr1 KO mice.

  19. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    PubMed

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.

  20. Cholinergic Interneurons Underlie Spontaneous Dopamine Release in Nucleus Accumbens

    PubMed Central

    2017-01-01

    The release of dopamine from terminals in the NAc is regulated by a number of factors, including voltage-gated ion channels, D2-autoreceptors, and nAChRs. Cholinergic interneurons (CINs) drive dopamine release through activation of nAChRs on dopamine terminals. Using cyclic voltammetry in mouse brain slices, nAChR-dependent spontaneous dopamine transients and the mechanisms underlying the origin were examined in the NAc. Spontaneous events were infrequent (0.3 per minute), but the rate and amplitude were increased after blocking Kv channels with 4-aminopyridine. Although the firing frequency of CINs was increased by blocking glutamate reuptake with TBOA and the Sk blocker apamin, only 4-aminopyridine increased the frequency of dopamine transients. In contrast, inhibition of CIN firing with the μ/δ selective opioid [Met5]enkephalin (1 μm) decreased spontaneous dopamine transients. Cocaine increased the rate and amplitude of dopamine transients, suggesting that the activity of the dopamine transporter limits the detection of these events. In the presence of cocaine, the rate of spontaneous dopamine transients was further increased after blocking D2-autoreceptors. Blockade of muscarinic receptors had no effect on evoked dopamine release, suggesting that feedback inhibition of acetylcholine release was not involved. Thus, although spontaneous dopamine transients are reliant on nAChRs, the frequency was not strictly governed by the activity of CINs. The increase in frequency of spontaneous dopamine transients induced by cocaine was not due to an increase in cholinergic tone and is likely a product of an increase in detection resulting from decreased dopamine reuptake. SIGNIFICANCE STATEMENT The actions of dopamine in the NAc are thought to be responsible for endogenous reward and the reinforcing properties of drugs of abuse, such as psychostimulants. The present work examines the mechanisms underlying nAChR-induced spontaneous dopamine release. This study demonstrates that spontaneous dopamine release is (1) dependent of the activation of nicotinic receptors, (2) independent on the spontaneous activity of cholinergic interneurons, and (3) that cocaine increased the detection of dopamine transients by prolonging the presence and increasing the diffusion of dopamine in the extracellular space. The release of acetylcholine is therefore responsible for spontaneous dopamine transients, and cocaine augments dopamine tone without altering activity of cholinergic interneurons. PMID:28115487

  1. A Japanese Encephalitis Patient Presenting with Parkinsonism with Corresponding Laterality of Magnetic Resonance and Dopamine Transporter Imaging Findings.

    PubMed

    Tadokoro, Koh; Ohta, Yasuyuki; Sato, Kota; Maeki, Takahiro; Sasaki, Ryo; Takahashi, Yoshiaki; Shang, Jingwei; Takemoto, Mami; Hishikawa, Nozomi; Yamashita, Toru; Lim, Chang Kweng; Tajima, Shigeru; Abe, Koji

    2018-03-09

    Japanese encephalitis (JE) survivors often present with nigrostriatal aftereffects with parkinsonian features. A 67-year-old woman with JE showed right-dominant clinical parkinsonism and left-dominant substantia nigra lesions after magnetic resonance imaging (MRI). Dopamine transporter (DAT) imaging using 123 I-labeled 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)-nortropane ( 123 I-FP-CIT) revealed a corresponding left-dominant decrease. The present case is the first to reveal a clear match of laterality between clinical parkinsonism, MRI-based substantia nigra lesions, and impaired DAT in presynaptic dopaminergic neurons in JE.

  2. A dopamine D2 receptor mutant capable of G protein-mediated signaling but deficient in arrestin binding.

    PubMed

    Lan, Hongxiang; Liu, Yong; Bell, Michal I; Gurevich, Vsevolod V; Neve, Kim A

    2009-01-01

    Arrestins mediate G protein-coupled receptor desensitization, internalization, and signaling. Dopamine D(2) and D(3) receptors have similar structures but distinct characteristics of interaction with arrestins. The goals of this study were to compare arrestin-binding determinants in D(2) and D(3) receptors other than phosphorylation sites and to create a D(2) receptor that is deficient in arrestin binding. We first assessed the ability of purified arrestins to bind to glutathione transferase (GST) fusion proteins containing the receptor third intracellular loops (IC3). Arrestin3 bound to IC3 of both D(2) and D(3) receptors, with the affinity and localization of the binding site indistinguishable between the receptor subtypes. Mutagenesis of the GST-IC3 fusion proteins identified an important determinant of the binding of arrestin3 in the N-terminal region of IC3. Alanine mutations of this determinant (IYIV212-215) in the full-length D(2) receptor generated a signaling-biased receptor with intact ligand binding and G-protein coupling and activation, but deficient in receptor-mediated arrestin3 translocation to the membrane, agonist-induced receptor internalization, and agonist-induced desensitization in human embryonic kidney 293 cells. This mutation also decreased arrestin-dependent activation of extracellular signal-regulated kinases. The finding that nonphosphorylated D(2)-IC3 and D(3)-IC3 have similar affinity for arrestin is consistent with previous suggestions that the differential effects of D(2) and D(3) receptor activation on membrane translocation of arrestin and receptor internalization are due, at least in part, to differential phosphorylation of the receptors. In addition, these results imply that the sequence IYIV212-215 at the N terminus of IC3 of the D(2) receptor is a key element of the arrestin binding site.

  3. Self-esteem in remitted patients with mood disorders is not associated with the dopamine receptor D4 and the serotonin transporter genes.

    PubMed

    Serretti, A; Macciardi, F; Di Bella, D; Catalano, M; Smeraldi, E

    1998-08-17

    Disturbances of the dopaminergic and serotoninergic neurotransmitter systems have been implicated in the pathogenesis of depressive symptoms. Associations have been reported between markers of the two neurotransmitter systems and the presence of illness or severity of depressive episodes, but no attention has been focused on the periods of remission. The present report focuses on a possible association of self-esteem in remitted mood disorder patients with the functional polymorphism located in the upstream regulatory region of the serotonin transporter gene (5-HTTLPR) and the dopamine receptor D4 (DRD4). Inpatients (N=162) affected by bipolar (n=103) and unipolar (n=59) disorder (DSM III-R) were assessed by the Self-Esteem Scale (SES, Rosenberg, 1965) and were typed for DRD4 and 5-HTTLPR (n=58 subjects) variants at the third exon using polymerase chain reaction (PCR) techniques. Neither DRD4 nor 5-HTTLPR variants were associated with SES scores, and consideration of possible stratification effects such as sex and psychiatric diagnosis did not reveal any association either. The serotonin transporter and dopamine receptor D4 genes do not, therefore, influence self-esteem in remitted mood disorder subjects.

  4. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities.

    PubMed

    Faraone, Stephen V

    2018-04-01

    Psychostimulants, including amphetamines and methylphenidate, are first-line pharmacotherapies for individuals with attention-deficit/hyperactivity disorder (ADHD). This review aims to educate physicians regarding differences in pharmacology and mechanisms of action between amphetamine and methylphenidate, thus enhancing physician understanding of psychostimulants and their use in managing individuals with ADHD who may have comorbid psychiatric conditions. A systematic literature review of PubMed was conducted in April 2017, focusing on cellular- and brain system-level effects of amphetamine and methylphenidate. The primary pharmacologic effect of both amphetamine and methylphenidate is to increase central dopamine and norepinephrine activity, which impacts executive and attentional function. Amphetamine actions include dopamine and norepinephrine transporter inhibition, vesicular monoamine transporter 2 (VMAT-2) inhibition, and monoamine oxidase activity inhibition. Methylphenidate actions include dopamine and norepinephrine transporter inhibition, agonist activity at the serotonin type 1A receptor, and redistribution of the VMAT-2. There is also evidence for interactions with glutamate and opioid systems. Clinical implications of these actions in individuals with ADHD with comorbid depression, anxiety, substance use disorder, and sleep disturbances are discussed. Copyright © 2018 The Author. Published by Elsevier Ltd.. All rights reserved.

  5. Insights into the structural biology of G-protein coupled receptors impacts drug design for central nervous system neurodegenerative processes

    PubMed Central

    Dalet, Farfán-García Eunice; Guadalupe, Trujillo-Ferrara José; María del Carmen, Castillo-Hernández; Humberto, Guerra-Araiza Christian; Antonio, Soriano-Ursúa Marvin

    2013-01-01

    In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selectivity of ligands for G-protein coupled receptors, and that signaling by these receptors involves both G-protein dependent and independent pathways. The present review outlines the physiological and pharmacological implications of this perspective for the design of new drugs to treat disorders of the central nervous system. Specifically, new possibilities are explored in relation to allosteric and orthosteric binding sites on dopamine receptors for the treatment of Parkinson's disease, and on muscarinic receptors for Alzheimer's disease. Future research can seek to identify ligands that can bind to more than one site on the same receptor, or simultaneously bind to two receptors and form a dimer. For example, the design of bivalent drugs that can reach homo/hetero-dimers of D2 dopamine receptor holds promise as a relevant therapeutic strategy for Parkinson's disease. Regarding the treatment of Alzheimer's disease, the design of dualsteric ligands for mono-oligomeric rinic receptors could increase therapeutic effectiveness by generating potent compounds that could activate more than one signaling pathway. PMID:25206539

  6. Relationship between inhibition of cyclic AMP production in Chinese hamster ovary cells expressing the rat D2(444) receptor and antagonist/agonist binding ratios.

    PubMed Central

    Harley, E. A.; Middlemiss, D. N.; Ragan, C. I.

    1995-01-01

    1. Radioligand binding assays using [3H]-(-)-sulpiride, in the presence of 1 mM ethylenediaminetetraacetic acid (EDTA) and 100 microM guanylylimidodiphosphate (GppNHp) and [3H]-N0437 were developed to label the low and high agonist affinity states of the rD2(444) receptor (long form of the rat D2 receptor) respectively. The ratios of the affinities of compounds in these two assays (Kapp [3H]-(-)-supiride/Kapp [3H]-N-0437) were then calculated. 2. The prediction that the binding ratio reflected the functional efficacy of a compound was supported by measurement of the ability of a number of compounds acting at dopamine receptors to inhibit rD2(444)-mediated inhibition of cyclic AMP production. When the rank order of the ratios of a number of these compounds was compared to their ability to inhibit the production of cyclic AMP, a significant correlation was seen (Spearman rank correlation coefficient = 0.943, P = 0.01). 3. In conclusion, the sulpiride/N-0437 binding ratio reliably predicted the efficacy of compounds acting at dopamine receptors to inhibit cyclic AMP production mediated by the rD2(444) receptor. PMID:7582561

  7. Decoding the contribution of dopaminergic genes and pathways to autism spectrum disorder (ASD).

    PubMed

    Nguyen, Michael; Roth, Andrew; Kyzar, Evan J; Poudel, Manoj K; Wong, Keith; Stewart, Adam Michael; Kalueff, Allan V

    2014-01-01

    Autism spectrum disorder (ASD) is a debilitating brain illness causing social deficits, delayed development and repetitive behaviors. ASD is a heritable neurodevelopmental disorder with poorly understood and complex etiology. The central dopaminergic system is strongly implicated in ASD pathogenesis. Genes encoding various elements of this system (including dopamine receptors, the dopamine transporter or enzymes of synthesis and catabolism) have been linked to ASD. Here, we comprehensively evaluate known molecular interactors of dopaminergic genes, and identify their potential molecular partners within up/down-steam signaling pathways associated with dopamine. These in silico analyses allowed us to construct a map of molecular pathways, regulated by dopamine and involved in ASD. Clustering these pathways reveals groups of genes associated with dopamine metabolism, encoding proteins that control dopamine neurotransmission, cytoskeletal processes, synaptic release, Ca(2+) signaling, as well as the adenosine, glutamatergic and gamma-aminobutyric systems. Overall, our analyses emphasize the important role of the dopaminergic system in ASD, and implicate several cellular signaling processes in its pathogenesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Dopamine neuron dependent behaviors mediated by glutamate cotransmission

    PubMed Central

    Mingote, Susana; Chuhma, Nao; Kalmbach, Abigail; Thomsen, Gretchen M; Wang, Yvonne; Mihali, Andra; Sferrazza, Caroline; Zucker-Scharff, Ilana; Siena, Anna-Claire; Welch, Martha G; Lizardi-Ortiz, José; Sulzer, David; Moore, Holly; Gaisler-Salomon, Inna; Rayport, Stephen

    2017-01-01

    Dopamine neurons in the ventral tegmental area use glutamate as a cotransmitter. To elucidate the behavioral role of the cotransmission, we targeted the glutamate-recycling enzyme glutaminase (gene Gls1). In mice with a dopamine transporter (Slc6a3)-driven conditional heterozygous (cHET) reduction of Gls1 in their dopamine neurons, dopamine neuron survival and transmission were unaffected, while glutamate cotransmission at phasic firing frequencies was reduced, enabling a selective focus on the cotransmission. The mice showed normal emotional and motor behaviors, and an unaffected response to acute amphetamine. Strikingly, amphetamine sensitization was reduced and latent inhibition potentiated. These behavioral effects, also seen in global GLS1 HETs with a schizophrenia resilience phenotype, were not seen in mice with an Emx1-driven forebrain reduction affecting most brain glutamatergic neurons. Thus, a reduction in dopamine neuron glutamate cotransmission appears to mediate significant components of the GLS1 HET schizophrenia resilience phenotype, and glutamate cotransmission appears to be important in attribution of motivational salience. DOI: http://dx.doi.org/10.7554/eLife.27566.001 PMID:28703706

  9. High Sibling Correlation on Methylphenidate Response but No Association with DAT1-10R Homozygosity in Dutch Sibpairs with ADHD

    ERIC Educational Resources Information Center

    van der Meulen, Emma M.; Bakker, Steven C.; Pauls, David L.; Oteman, Nicole; Kruitwagen, Cas L. J. J.; Pearson, Peter L.; Sinke, Richard J.; Buitelaar, Jan K.

    2005-01-01

    Background: A minority of patients with attention-deficit hyperactivity disorder (ADHD) do not respond favorably to methylphenidate. This has been partially associated with homozygosity for the Dopamine transporter (DAT1) 10-repeat allele and the presence of one or two Dopamine D4 receptor (DRD4) 7-repeat alleles. This study examined the sibling…

  10. The dopamine D2 receptor dimer and its interaction with homobivalent antagonists: homology modeling, docking and molecular dynamics.

    PubMed

    Kaczor, Agnieszka A; Jörg, Manuela; Capuano, Ben

    2016-09-01

    In order to apply structure-based drug design techniques to G protein-coupled receptor complexes, it is essential to model their 3D structure and to identify regions that are suitable for selective drug binding. For this purpose, we have developed and tested a multi-component protocol to model the inactive conformation of the dopamine D2 receptor dimer, suitable for interaction with homobivalent antagonists. Our approach was based on protein-protein docking, applying the Rosetta software to obtain populations of dimers as present in membranes with all the main possible interfaces. Consensus scoring based on the values and frequencies of best interfaces regarding four scoring parameters, Rosetta interface score, interface area, free energy of binding and energy of hydrogen bond interactions indicated that the best scored dimer model possesses a TM4-TM5-TM7-TM1 interface, which is in agreement with experimental data. This model was used to study interactions of the previously published dopamine D2 receptor homobivalent antagonists based on clozapine,1,4-disubstituted aromatic piperidines/piperazines and arylamidoalkyl substituted phenylpiperazine pharmacophores. It was found that the homobivalent antagonists stabilize the receptor-inactive conformation by maintaining the ionic lock interaction, and change the dimer interface by disrupting a set of hydrogen bonds and maintaining water- and ligand-mediated hydrogen bonds in the extracellular and intracellular part of the interface. Graphical Abstract Structure of the final model of the dopamine D2 receptor homodimer, indicating the distancebetween Tyr37 and Tyr 5.42 in the apo form (left) and in the complex with the ligand (right).

  11. Nicotine-mediated improvement in L-dopa-induced dyskinesias in MPTP-lesioned monkeys is dependent on dopamine nerve terminal function.

    PubMed

    Quik, Maryka; Mallela, Archana; Chin, Matthew; McIntosh, J Michael; Perez, Xiomara A; Bordia, Tanuja

    2013-02-01

    L-dopa-induced dyskinesias (LIDs) are abnormal involuntary movements that develop with long term L-dopa therapy for Parkinson's disease. Studies show that nicotine administration reduced LIDs in several parkinsonian animal models. The present work was done to understand the factors that regulate the nicotine-mediated reduction in LIDs in MPTP-lesioned nonhuman primates. To approach this, we used two groups of monkeys, one with mild-moderate and the other with more severe parkinsonism rendered dyskinetic using L-dopa. In mild-moderately parkinsonian monkeys, nicotine pretreatment (300 μg/ml via drinking water) prevented the development of LIDs by ~75%. This improvement was maintained when the nicotine dose was lowered to 50 μg/ml but was lost with nicotine removal. Nicotine re-exposure again decreased LIDs. By contrast, nicotine treatment did not reduce LIDs in monkeys with more severe parkinsonism. We next determined how nicotine's ability to reduce LIDs correlated with lesion-induced changes in the striatal dopamine transporter and (3)H-dopamine release in these two groups of monkeys. The striatal dopamine transporter was reduced to 54% and 28% of control in mild-moderately and more severely parkinsonian monkeys, respectively. However, basal, K(+), α4β2* and α6β2* nAChR-evoked (3)H-dopamine release were near control levels in striatum of mild-moderately parkinsonian monkeys. By contrast, these same release measures were reduced to a significantly greater extent in striatum of more severely parkinsonian monkeys. Thus, nicotine best improves LIDs in lesioned monkeys in which striatal dopamine transmission is still relatively intact. These data suggest that nicotine treatment would most effectively reduce LIDs in patients with mild to moderate Parkinson's disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Effects of 7-Nitroindazole, an NOS Inhibitor on Methamphetamine-Induced Dopaminergic and Serotonergic Neurotoxicity in Micea.

    PubMed

    Ali, Syed F; Itzhak, Yossef

    1998-05-01

    Methamphetamine (METH) is one of the major drugs of abuse that is postulated to cause neurotoxicity by depleting dopamine (DA) and its metabolites, high-affinity DA uptake sites, and the activity of tyrosine hydroxylase. The present study was undertaken to investigate whether the relatively selective, neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against METH-induced neurotoxicity. Male Swiss Webster mice received the following injections intraperitoneally (i.p.) 3 times (every 3 hr): (i) vehicle/saline, (ii) 7-NI (25 mg/kg)/saline, (iii) vehicle/METH (5 mg/kg), and (iv) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (i) and (iii) received two vehicle injections and groups (ii) and (iv) received two 7-NI injections (25 mg/kg each). The administration of vehicle/METH resulted in 68, 44 and 55% decreases in the concentration of DA, dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA), respectively, and a 48% decrease in the number of [ 3 H]mazindol binding sites in the striatum compared to control values. The treatment with 7-NI (group iv) provided a full protection against the depletion of DA and its metabolites, and the loss of dopamine transporter binding sites. Multiple injection of METH caused a significant decrease in the concentration of serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). Treatment with 7-NI partially blocked the depletion of 5-HT and completely blocked the reduction in 5-HIAA levels. The administration of 7-NI/saline (group ii) affected neither the tissue concentration of DA, 5-HT and their metabolites (DOPAC, HVA and 5-HIAA) nor the binding parameters of [ 3 H]-mazindol compared to control (vehicle/saline) values. 7-NI had no significant effect on the animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in METH-induced neurotoxicity and also suggest that blockage of NOS may be beneficial for the management of Parkinson's disease.

  13. Effects of 7-nitroindazole, an NOS inhibitor on methamphetamine-induced dopaminergic and serotonergic neurotoxicity in mice.

    PubMed

    Ali, S F; Itzhak, Y

    1998-05-30

    Methamphetamine (METH) is one of the major drugs of abuse that is postulated to cause neurotoxicity by depleting dopamine (DA) and its metabolites, high-affinity DA uptake sites, and the activity of tyrosine hydroxylase. The present study was undertaken to investigate whether the relatively selective, neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against METH-induced neurotoxicity. Male Swiss Webster mice received the following injections intraperitoneally (i.p.) 3 times (every 3 hr): (i) vehicle/saline, (ii) 7-NI (25 mg/kg)/saline, (iii) vehicle/METH (5 mg/kg), and (iv) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (i) and (iii) received two vehicle injections and groups (ii) and (iv) received two 7-NI injections (25 mg/kg each). The administration of vehicle/METH resulted in 68, 44 and 55% decreases in the concentration of DA, dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA), respectively, and a 48% decrease in the number of [3H]mazindol binding sites in the striatum compared to control values. The treatment with 7-NI (group iv) provided a full protection against the depletion of DA and its metabolites, and the loss of dopamine transporter binding sites. Multiple injection of METH caused a significant decrease in the concentration of serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). Treatment with 7-NI partially blocked the depletion of 5-HT and completely blocked the reduction in 5-HIAA levels. The administration of 7-NI/saline (group ii) affected neither the tissue concentration of DA, 5-HT and their metabolites (DOPAC, HVA and 5-HIAA) nor the binding parameters of [3H]-mazindol compared to control (vehicle/saline) values. 7-NI had no significant effect on the animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in METH-induced neurotoxicity and also suggest that blockage of NOS may be beneficial for the management of Parkinson's disease.

  14. Three-dimensional structure-activity relationship modeling of cocaine binding to two monoclonal antibodies by comparative molecular field analysis.

    PubMed

    Paula, Stefan; Tabet, Michael R; Keenan, Susan M; Welsh, William J; Ball, W James

    2003-01-17

    Successful immunotherapy of cocaine addiction and overdoses requires cocaine-binding antibodies with specific properties, such as high affinity and selectivity for cocaine. We have determined the affinities of two cocaine-binding murine monoclonal antibodies (mAb: clones 3P1A6 and MM0240PA) for cocaine and its metabolites by [3H]-radioligand binding assays. mAb 3P1A6 (K(d) = 0.22 nM) displayed a 50-fold higher affinity for cocaine than mAb MM0240PA (K(d) = 11 nM) and also had a greater specificity for cocaine. For the systematic exploration of both antibodies' binding specificities, we used a set of approximately 35 cocaine analogues as structural probes by determining their relative binding affinities (RBAs) using an enzyme-linked immunosorbent competition assay. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models on the basis of comparative molecular field analysis (CoMFA) techniques correlated the binding data with structural features of the ligands. The analysis indicated that despite the mAbs' differing specificities for cocaine, the relative contributions of the steric (approximately 80%) and electrostatic (approximately 20%) field interactions to ligand-binding were similar. Generated three-dimensional CoMFA contour plots then located the specific regions about cocaine where the ligand/receptor interactions occurred. While the overall binding patterns of the two mAbs had many features in common, distinct differences were observed about the phenyl ring and the methylester group of cocaine. Furthermore, using previously published data, a 3D-QSAR model was developed for cocaine binding to the dopamine reuptake transporter (DAT) that was compared to the mAb models. Although the relative steric and electrostatic field contributions were similar to those of the mAbs, the DAT cocaine-binding site showed a preference for negatively charged ligands. Besides establishing molecular level insight into the interactions that govern cocaine binding specificity by biopolymers, the three-dimensional images obtained reflect the properties of the mAbs binding pockets and provide the initial information needed for the possible design of novel antibodies with properties optimized for immunotherapy. Copyright 2003 Elsevier Science Ltd.

  15. Mutual enhancement of central neurotoxicity induced by ketamine followed by methamphetamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, J.-J.; Chen, H.-I.; Jen, C.J.

    2008-03-01

    We hereby report that repeated administration of ketamine (350 mg/kg in total) and methamphetamine (30 mg/kg in total) causes specific glutamatergic and dopaminergic neuron deficits, respectively, in adult mouse brain. Acute ketamine did not affect basal body temperature or the later methamphetamine-induced hyperthermia. However, pretreatment with repeated doses of ketamine aggravated methamphetamine-induced dopaminergic terminal loss as evidenced by a drastic decrease in the levels of dopamine, 3,4-dihydroxyphenylacetic acid, and dopamine transporter density as well as poor gait balance performance. In contrast, methamphetamine-induced serotonergic depletion was not altered by ketamine pretreatment. Likewise, the subsequent treatment with methamphetamine exacerbated the ketamine-induced glutamatergicmore » damage as indicated by reduced levels of the vesicular glutamate transporter in hippocampus and striatum and poor memory performance in the Morris water maze. Finally, since activation of the D1 and AMPA/kainate receptors has been known to be involved in the release of glutamate and dopamine, we examined the effects of co-administration of SCH23390, a D1 antagonist, and CNQX, an AMPA/kainate antagonist. Intraventricular CNQX infusion abolished ketamine's potentiation of methamphetamine-induced dopamine neurotoxicity, while systemic SCH23390 mitigated methamphetamine's potentiation of ketamine-induced glutamatergic toxicity. We conclude that repeated doses of ketamine potentiate methamphetamine-induced dopamine neurotoxicity via AMPA/kainate activation and that conjunctive use of methamphetamine aggravates ketamine-induced glutamatergic neurotoxicity possibly via D1 receptor activation.« less

  16. Dopamine transporter down-regulation following repeated cocaine: implications for 3,4-methylenedioxymethamphetamine-induced acute effects and long-term neurotoxicity in mice.

    PubMed

    Peraile, I; Torres, E; Mayado, A; Izco, M; Lopez-Jimenez, A; Lopez-Moreno, J A; Colado, M I; O'Shea, E

    2010-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) and cocaine are two widely abused psychostimulant drugs targeting the dopamine transporter (DAT). DAT availability regulates dopamine neurotransmission and uptake of MDMA-derived neurotoxic metabolites. We aimed to determine the effect of cocaine pre-exposure on the acute and long-term effects of MDMA in mice. Mice received a course of cocaine (20 mg*kg(-1), x2 for 3 days) followed by MDMA (20 mg*kg(-1), x2, 3 h apart). Locomotor activity, extracellular dopamine levels and dopaminergic neurotoxicity were determined. Furthermore, following the course of cocaine, DAT density in striatal plasma membrane and endosome fractions was measured. Four days after the course of cocaine, challenge with MDMA attenuated the MDMA-induced striatal dopaminergic neurotoxicity. Co-administration of the protein kinase C (PKC) inhibitor NPC 15437 prevented cocaine protection. At the same time, after the course of cocaine, DAT density was reduced in the plasma membrane and increased in the endosome fraction, and this effect was prevented by NPC 15437. The course of cocaine potentiated the MDMA-induced increase in extracellular dopamine and locomotor activity, following challenge 4 days later, compared with those pretreated with saline. Repeated cocaine treatment followed by withdrawal protected against MDMA-induced dopaminergic neurotoxicity by internalizing DAT via a mechanism which may involve PKC. Furthermore, repeated cocaine followed by withdrawal induced behavioural and neurochemical sensitization to MDMA, measures which could be indicative of increased rewarding effects of MDMA.

  17. Vesicular Monoamine Transporter 2 (VMAT2) Level Regulates MPTP Vulnerability and Clearance of Excess Dopamine in Mouse Striatal Terminals.

    PubMed

    Lohr, Kelly M; Chen, Merry; Hoffman, Carlie A; McDaniel, Miranda J; Stout, Kristen A; Dunn, Amy R; Wang, Minzheng; Bernstein, Alison I; Miller, Gary W

    2016-09-01

    The vesicular monoamine transporter 2 (VMAT2) packages neurotransmitters for release during neurotransmission and sequesters toxicants into vesicles to prevent neuronal damage. In mice, low VMAT2 levels causes catecholaminergic cell loss and behaviors resembling Parkinson's disease, while high levels of VMAT2 increase dopamine release and protect against dopaminergic toxicants. However, comparisons across these VMAT2 mouse genotypes were impossible due to the differing genetic background strains of the animals. Following back-crossing to a C57BL/6 line, we confirmed that mice with approximately 95% lower VMAT2 levels compared with wild-type (VMAT2-LO) display significantly reduced vesicular uptake, progressive dopaminergic terminal loss with aging, and exacerbated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity. Conversely, VMAT2-overexpressing mice (VMAT2-HI) are protected from the loss of striatal terminals following MPTP treatment. We also provide evidence that enhanced vesicular filling in the VMAT2-HI mice modifies the handling of newly synthesized dopamine, indicated by changes in indirect measures of extracellular dopamine clearance. These results confirm the role of VMAT2 in the protection of vulnerable nigrostriatal dopamine neurons and may also provide new insight into the side effects of L-DOPA treatments in Parkinson's disease. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Amphetamine modulation of long-term potentiation in the prefrontal cortex: dose dependency, monoaminergic contributions, and paradoxical rescue in hyperdopaminergic mutant.

    PubMed

    Xu, Tai-Xiang; Ma, Qi; Spealman, Roger D; Yao, Wei-Dong

    2010-12-01

    Amphetamine can improve cognition in healthy subjects and patients with schizophrenia, attention-deficit hyperactivity disorder, and other neuropsychiatric diseases; higher doses, however, can impair cognitive function, especially those mediated by the prefrontal cortex. We investigated how amphetamine affects prefrontal cortex long-term potentiation (LTP), a cellular correlate of learning and memory, in normal and hyperdopaminergic mice lacking the dopamine transporter. Acute amphetamine treatment in wild-type mice produced a biphasic dose-response modulation of LTP, with a low dose enhancing LTP and a high dose impairing it. Amphetamine-induced LTP enhancement was prevented by pharmacological blockade of D(1) - (but not D(2)-) class dopamine receptors, by blockade of β-adrenergic receptors, or by inhibition of cAMP-PKA signaling. In contrast, amphetamine-induced LTP impairment was prevented by inhibition of post-synaptic protein phosphatase-1, a downstream target of PKA signaling, or by blockade of either D(1) - or D(2)-class dopamine, but not noradrenergic, receptors. Thus, amphetamine biphasically modulates LTP via cAMP-PKA signaling orchestrated mainly through dopamine receptors. Unexpectedly, amphetamine restored the loss of LTP in dopamine transporter-knockout mice primarily by activation of the noradrenergic system. Our results mirror the biphasic effectiveness of amphetamine in humans and provide new mechanistic insights into its effects on cognition under normal and hyperdopaminergic conditions. © 2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.

  19. Novel C-1 Substituted Cocaine Analogs Unlike Cocaine or Benztropine

    PubMed Central

    Ali, Solav; Hashim, Audrey; Sheikh, Imran S.; Theddu, Naresh; Gaddiraju, Narendra V.; Mehrotra, Suneet; Schmitt, Kyle C.; Murray, Thomas F.; Sershen, Henry; Unterwald, Ellen M.; Davis, Franklin A.

    2012-01-01

    Despite a wealth of information on cocaine-like compounds, there is no information on cocaine analogs with substitutions at C-1. Here, we report on (R)-(−)-cocaine analogs with various C-1 substituents: methyl (2), ethyl (3), n-propyl (4), n-pentyl (5), and phenyl (6). Analog 2 was equipotent to cocaine as an inhibitor of the dopamine transporter (DAT), whereas 3 and 6 were 3- and 10-fold more potent, respectively. None of the analogs, however, stimulated mouse locomotor activity, in contrast to cocaine. Pharmacokinetic assays showed compound 2 occupied mouse brain rapidly, as cocaine itself; moreover, 2 and 6 were behaviorally active in mice in the forced-swim test model of depression and the conditioned place preference test. Analog 2 was a weaker inhibitor of voltage-dependent Na+ channels than cocaine, although 6 was more potent than cocaine, highlighting the need to assay future C-1 analogs for this activity. Receptorome screening indicated few significant binding targets other than the monoamine transporters. Benztropine-like “atypical” DAT inhibitors are known to display reduced cocaine-like locomotor stimulation, presumably by their propensity to interact with an inward-facing transporter conformation. However, 2 and 6, like cocaine, but unlike benztropine, exhibited preferential interaction with an outward-facing conformation upon docking in our DAT homology model. In summary, C-1 cocaine analogs are not cocaine-like in that they are not stimulatory in vivo. However, they are not benztropine-like in binding mechanism and seem to interact with the DAT similarly to cocaine. The present data warrant further consideration of these novel cocaine analogs for antidepressant or cocaine substitution potential. PMID:22895898

  20. Dysregulated glutamate and dopamine transporters in postmortem frontal cortex from bipolar and schizophrenic patients

    PubMed Central

    Rao, Jagadeesh Sridhara; Kellom, Matthew; Reese, Edmund Arthur; Rapoport, Stanley Isaac; Kim, Hyung-Wook

    2012-01-01

    Background Dysregulated glutamate, serotonin and dopamine neurotransmission has been reported in bipolar disorder (BD) and schizophrenia (SZ), but the underlying mechanisms of dysregulation are not clear. We hypothesized that they involve alterations in excitatory amino acid transporters (EAATs), the serotonin reuptake transporter (SERT), and the dopamine reuptake transporter (DAT). Methods To test this hypothesis, we determined protein and mRNA levels of EAAT subtypes 1–4, of the SERT and of the DAT in postmortem frontal cortex from BD (n=10) and SZ (n=10) patients and from healthy control (n=10) subjects. Results Compared to control levels, protein and mRNA levels of EAAT1 were increased significantly in cortex from both BD and SZ patients. EAAT2 protein and mRNA levels were decreased significantly in BD but not in SZ cortices. EAAT3 and EAAT 4 protein and mRNA levels were significantly higher in SZ but not in BD compared with control. DAT protein and mRNA levels were decreased significantly in both BD and SZ cortex. There was no significant change in SERT expression in either BD or SZ. Conclusions The altered EAATs and DAT expression could result in altered glutamatergic and hyperdopaminergic function in BD and SZ. Differently altered EAATs involved in glutamatergic transmission could be therapeutic targets for treating BD and SZ. PMID:21925739

Top