ERIC Educational Resources Information Center
Swant, Jarod; Wagner, John J.
2006-01-01
Dopamine has been demonstrated to be involved in the modulation of long-term potentiation (LTP) in the CA1 region of the hippocampus. As monoamine transporter blockade will increase the actions of endogenous monoamine neurotransmitters, the effect of a dopamine transporter (DAT) antagonist on LTP was assessed using field excitatory postsynaptic…
dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing
2015-01-01
The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364
Sotnikova, Tatyana D; Beaulieu, Jean-Martin; Barak, Larry S; Wetsel, William C; Gainetdinov, Raul R
2005-01-01
Brain dopamine is critically involved in movement control, and its deficiency is the primary cause of motor symptoms in Parkinson disease. Here we report development of an animal model of acute severe dopamine deficiency by using mice lacking the dopamine transporter. In the absence of transporter-mediated recycling mechanisms, dopamine levels become entirely dependent on de novo synthesis. Acute pharmacological inhibition of dopamine synthesis in these mice induces transient elimination of striatal dopamine accompanied by the development of a striking behavioral phenotype manifested as severe akinesia, rigidity, tremor, and ptosis. This phenotype can be reversed by administration of the dopamine precursor, L-DOPA, or by nonselective dopamine agonists. Surprisingly, several amphetamine derivatives were also effective in reversing these behavioral abnormalities in a dopamine-independent manner. Identification of dopamine transporter- and dopamine-independent locomotor actions of amphetamines suggests a novel paradigm in the search for prospective anti-Parkinsonian drugs. PMID:16050778
Distinct Roles of Opioid and Dopamine Systems in Lateral Hypothalamic Intracranial Self-Stimulation.
Ide, Soichiro; Takahashi, Takehiro; Takamatsu, Yukio; Uhl, George R; Niki, Hiroaki; Sora, Ichiro; Ikeda, Kazutaka
2017-05-01
Opioid and dopamine systems play crucial roles in reward. Similarities and differences in the neural mechanisms of reward that are mediated by these 2 systems have remained largely unknown. Thus, in the present study, we investigated the differences in reward function in both µ-opioid receptor knockout mice and dopamine transporter knockout mice, important molecules in the opioid and dopamine systems. Mice were implanted with electrodes into the right lateral hypothalamus (l hour). Mice were then trained to put their muzzle into the hole in the head-dipping chamber for intracranial electrical stimulation, and the influences of gene knockout were assessed. Significant differences are observed between opioid and dopamine systems in reward function. µ-Opioid receptor knockout mice exhibited enhanced intracranial electrical stimulation, which induced dopamine release. They also exhibited greater motility under conditions of "despair" in both the tail suspension test and water wheel test. In contrast, dopamine transporter knockout mice maintained intracranial electrical stimulation responding even when more active efforts were required to obtain the reward. The absence of µ-opioid receptor or dopamine transporter did not lead to the absence of intracranial electrical stimulation responsiveness but rather differentially altered it. The present results in µ-opioid receptor knockout mice are consistent with the suppressive involvement of µ-opioid receptors in both positive incentive motivation associated with intracranial electrical stimulation and negative incentive motivation associated with depressive states. In contrast, the results in dopamine transporter knockout mice are consistent with the involvement of dopamine transporters in positive incentive motivation, especially its persistence. Differences in intracranial electrical stimulation in µ-opioid receptor and dopamine transporter knockout mice underscore the multidimensional nature of reward. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Jia, Xiaojian; Wang, Feng; Han, Ying; Geng, Xuewen; Li, Minghua; Shi, Yu; Lu, Lin; Chen, Yun
2016-12-01
The dopamine transporter (DAT) is involved in the regulation of extracellular dopamine levels. A 40-bp variable-number tandem repeat (VNTR) polymorphism in the 3'-untranslated region (3'UTR) of the DAT has been reported to be associated with various phenotypes that are involved in the aberrant regulation of dopaminergic neurotransmission. In the present study, we found that miR-137 and miR-491 caused a marked reduction of DAT expression, thereby influencing neuronal dopamine transport. Moreover, the regulation of miR-137 and miR-491 on this transport disappeared after the DAT was silenced. The miR-491 seed region that is located on the VNTR sequence in the 3'UTR of the DAT and the regulatory effect of miR-491 on the DAT depended on the VNTR copy-number. These data indicate that miR-137 and miR-491 regulate DAT expression and dopamine transport at the post-transcriptional level, suggesting that microRNA may be targeted for the treatment of diseases associated with DAT dysfunction.
Reduced dopamine transporter binding predates impulse control disorders in Parkinson's disease.
Vriend, Chris; Nordbeck, Anna H; Booij, Jan; van der Werf, Ysbrand D; Pattij, Tommy; Voorn, Pieter; Raijmakers, Pieter; Foncke, Elisabeth M J; van de Giessen, Elsmarieke; Berendse, Henk W; van den Heuvel, Odile A
2014-06-01
Impulse control disorders (ICD) are relatively common in Parkinson's disease (PD) and generally are regarded as adverse effects of dopamine replacement therapy, although certain demographic and clinical risk factors are also involved. Previous single-photon emission computed tomography (SPECT) studies showed reduced ventral striatal dopamine transporter binding in Parkinson patients with ICD compared with patients without. Nevertheless, these studies were performed in patients with preexisting impulse control impairments, which impedes clear-cut interpretation of these findings. We retrospectively procured follow-up data from 31 medication-naïve PD patients who underwent dopamine transporter SPECT imaging at baseline and were subsequently treated with dopamine replacement therapy. We used questionnaires and a telephone interview to assess medication status and ICD symptom development during the follow-up period (31.5 ± 12.0 months). Eleven patients developed ICD symptoms during the follow-up period, eight of which were taking dopamine agonists. The PD patients with ICD symptoms at follow-up had higher baseline depressive scores and lower baseline dopamine transporter availability in the right ventral striatum, anterior-dorsal striatum, and posterior putamen compared with PD patients without ICD symptoms. No baseline between-group differences in age and disease stage or duration were found. The ICD symptom severity correlated negatively with baseline dopamine transporter availability in the right ventral and anterior-dorsal striatum. The results of this preliminary study show that reduced striatal dopamine transporter availability predates the development of ICD symptoms after dopamine replacement therapy and may constitute a neurobiological risk factor related to a lower premorbid dopamine transporter availability or a more pronounced dopamine denervation in PD patients susceptible to ICD. © 2014 International Parkinson and Movement Disorder Society.
Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko
2016-01-01
Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941
Zn(2+) site engineering at the oligomeric interface of the dopamine transporter.
Norgaard-Nielsen, Kristine; Norregaard, Lene; Hastrup, Hanne; Javitch, Jonathan A; Gether, Ulrik
2002-07-31
Increasing evidence suggests that Na(+)/Cl(-)-dependent neurotransmitter transporters exist as homo-oligomeric proteins. However, the functional implication of this oligomerization remains unclear. Here we demonstrate the engineering of a Zn(2+) binding site at the predicted dimeric interface of the dopamine transporter (DAT) corresponding to the external end of transmembrane segment 6. Upon binding to this site, which involves a histidine inserted in position 310 (V310H) and the endogenous Cys306 within the same DAT molecule, Zn(2+) potently inhibits [(3)H]dopamine uptake. These data provide indirect evidence that conformational changes critical for the translocation process may occur at the interface between two transporter molecules in the oligomeric structure.
Fungal-derived semiochemical 1-octen-3-ol disrupts dopamine packaging and causes neurodegeneration
Inamdar, Arati A.; Hossain, Muhammad M.; Bernstein, Alison I.; Miller, Gary W.; Richardson, Jason R.; Bennett, Joan Wennstrom
2013-01-01
Parkinson disease (PD) is the most common movement disorder and, although the exact causes are unknown, recent epidemiological and experimental studies indicate that several environmental agents may be significant risk factors. To date, these suspected environmental risk factors have been man-made chemicals. In this report, we demonstrate via genetic, biochemical, and immunological studies that the common volatile fungal semiochemical 1-octen-3-ol reduces dopamine levels and causes dopamine neuron degeneration in Drosophila melanogaster. Overexpression of the vesicular monoamine transporter (VMAT) rescued the dopamine toxicity and neurodegeneration, whereas mutations decreasing VMAT and tyrosine hydroxylase exacerbated toxicity. Furthermore, 1-octen-3-ol also inhibited uptake of dopamine in human cell lines expressing the human plasma membrane dopamine transporter (DAT) and human VMAT ortholog, VMAT2. These data demonstrate that 1-octen-3-ol exerts toxicity via disruption of dopamine homeostasis and may represent a naturally occurring environmental agent involved in parkinsonism. PMID:24218591
Kopra, Jaakko J; Panhelainen, Anne; Af Bjerkén, Sara; Porokuokka, Lauriina L; Varendi, Kärt; Olfat, Soophie; Montonen, Heidi; Piepponen, T Petteri; Saarma, Mart; Andressoo, Jaan-Olle
2017-02-08
Midbrain dopamine neuron dysfunction contributes to various psychiatric and neurological diseases, including drug addiction and Parkinson's disease. Because of its well established dopaminotrophic effects, the therapeutic potential of glial cell line-derived neurotrophic factor (GDNF) has been studied extensively in various disorders with disturbed dopamine homeostasis. However, the outcomes from preclinical and clinical studies vary, highlighting a need for a better understanding of the physiological role of GDNF on striatal dopaminergic function. Nevertheless, the current lack of appropriate animal models has limited this understanding. Therefore, we have generated novel mouse models to study conditional Gdnf deletion in the CNS during embryonic development and reduction of striatal GDNF levels in adult mice via AAV-Cre delivery. We found that both of these mice have reduced amphetamine-induced locomotor response and striatal dopamine efflux. Embryonic GDNF deletion in the CNS did not affect striatal dopamine levels or dopamine release, but dopamine reuptake was increased due to increased levels of both total and synaptic membrane-associated dopamine transporters. Collectively, these results suggest that endogenous GDNF plays an important role in regulating the function of dopamine transporters in the striatum. SIGNIFICANCE STATEMENT Delivery of ectopic glial cell line-derived neurotrophic factor (GDNF) promotes the function, plasticity, and survival of midbrain dopaminergic neurons, the dysfunction of which contributes to various neurological and psychiatric diseases. However, how the deletion or reduction of GDNF in the CNS affects the function of dopaminergic neurons has remained unknown. Using conditional Gdnf knock-out mice, we found that endogenous GDNF affects striatal dopamine homeostasis and regulates amphetamine-induced behaviors by regulating the level and function of dopamine transporters. These data regarding the physiological role of GDNF are relevant in the context of neurological and neurodegenerative diseases that involve changes in dopamine transporter function. Copyright © 2017 the authors 0270-6474/17/371581-10$15.00/0.
Purves-Tyson, T D; Owens, S J; Rothmond, D A; Halliday, G M; Double, K L; Stevens, J; McCrossin, T; Shannon Weickert, C
2017-01-01
The dopamine hypothesis of schizophrenia posits that increased subcortical dopamine underpins psychosis. In vivo imaging studies indicate an increased presynaptic dopamine synthesis capacity in striatal terminals and cell bodies in the midbrain in schizophrenia; however, measures of the dopamine-synthesising enzyme, tyrosine hydroxylase (TH), have not identified consistent changes. We hypothesise that dopamine dysregulation in schizophrenia could result from changes in expression of dopamine synthesis enzymes, receptors, transporters or catabolic enzymes. Gene expression of 12 dopamine-related molecules was examined in post-mortem midbrain (28 antipsychotic-treated schizophrenia cases/29 controls) using quantitative PCR. TH and the synaptic dopamine transporter (DAT) proteins were examined in post-mortem midbrain (26 antipsychotic-treated schizophrenia cases per 27 controls) using immunoblotting. TH and aromatic acid decarboxylase (AADC) mRNA and TH protein were unchanged in the midbrain in schizophrenia compared with controls. Dopamine receptor D2 short, vesicular monoamine transporter (VMAT2) and DAT mRNAs were significantly decreased in schizophrenia, with no change in DRD3 mRNA, DRD3nf mRNA and DAT protein between diagnostic groups. However, DAT protein was significantly increased in putatively treatment-resistant cases of schizophrenia compared to putatively treatment-responsive cases. Midbrain monoamine oxidase A (MAOA) mRNA was increased, whereas MAOB and catechol-O-methyl transferase mRNAs were unchanged in schizophrenia. We conclude that, whereas some mRNA changes are consistent with increased dopamine action (decreased DAT mRNA), others suggest reduced dopamine action (increased MAOA mRNA) in the midbrain in schizophrenia. Here, we identify a molecular signature of dopamine dysregulation in the midbrain in schizophrenia that mainly includes gene expression changes of molecules involved in dopamine synthesis and in regulating the time course of dopamine action. PMID:28094812
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniels, J.; Williams, J.; Asherson, P.
1995-02-27
It has been suggested that the cytochrome P450 mono-oxygenase, debrisoquine 4-hydroxylase, is involved in the catabolism and processing of neurotransmitters subsequent to their reuptake into target cells. It is also thought to be related to the dopamine transporter that acts to take released dopamine back up into presynaptic terminals. The present study used the association approach to test the hypothesis that mutations in the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT) confer susceptibility to schizophrenia. There were no differences in allele or genotype frequencies between patients and controls in the mutations causing the poor metaboliser phenotype inmore » CYP2D6. In addition there was no association found between schizophrenia and a 48 bp repeat within the 3{prime} untranslated region of DAT. 18 refs., 2 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, g.j.; Wang, G.-J.; Geliebter, A.
Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [{sup 11}C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocksmore » the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.« less
Enhanced Striatal Dopamine Release During Food Stimulation in Binge Eating Disorder
Wang, Gene-Jack; Geliebter, Allan; Volkow, Nora D.; Telang, Frank W.; Logan, Jean; Jayne, Millard C.; Galanti, Kochavi; Selig, Peter A.; Han, Hao; Zhu, Wei; Wong, Christopher T.; Fowler, Joanna S.
2011-01-01
Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [11C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating. PMID:21350434
Krasnova, Irina N; Ladenheim, Bruce; Hodges, Amber B; Volkow, Nora D; Cadet, Jean Lud
2011-04-25
Methamphetamine (METH) is an addictive and neurotoxic psychostimulant widely abused in the USA and throughout the world. When administered in large doses, METH can cause depletion of striatal dopamine terminals, with preservation of midbrain dopaminergic neurons. Because alterations in the expression of transcription factors that regulate the development of dopaminergic neurons might be involved in protecting these neurons after toxic insults, we tested the possibility that their expression might be affected by toxic doses of METH in the adult brain. Male Sprague-Dawley rats pretreated with saline or increasing doses of METH were challenged with toxic doses of the drug and euthanized two weeks later. Animals that received toxic METH challenges showed decreases in dopamine levels and reductions in tyrosine hydroxylase protein concentration in the striatum. METH pretreatment protected against loss of striatal dopamine and tyrosine hydroxylase. In contrast, METH challenges caused decreases in dopamine transporters in both saline- and METH-pretreated animals. Interestingly, METH challenges elicited increases in dopamine transporter mRNA levels in the midbrain in the presence but not in the absence of METH pretreatment. Moreover, toxic METH doses caused decreases in the expression of the dopamine developmental factors, Shh, Lmx1b, and Nurr1, but not in the levels of Otx2 and Pitx3, in saline-pretreated rats. METH pretreatment followed by METH challenges also decreased Nurr1 but increased Otx2 and Pitx3 expression in the midbrain. These findings suggest that, in adult animals, toxic doses of METH can differentially influence the expression of transcription factors involved in the developmental regulation of dopamine neurons. The combined increases in Otx2 and Pitx3 expression after METH preconditioning might represent, in part, some of the mechanisms that served to protect against METH-induced striatal dopamine depletion observed after METH preconditioning.
Baladi, Michelle G.; Newman, Amy H.; Nielsen, Shannon M.; Hanson, Glen R.; Fleckenstein, Annette E.
2014-01-01
Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. PMID:24685638
Baladi, Michelle G; Newman, Amy H; Nielsen, Shannon M; Hanson, Glen R; Fleckenstein, Annette E
2014-06-05
Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. Copyright © 2014 Elsevier B.V. All rights reserved.
Milienne-Petiot, Morgane; Groenink, Lucianne; Minassian, Arpi; Young, Jared W
2017-10-01
Patients with bipolar disorder mania exhibit poor cognition, impulsivity, risk-taking, and goal-directed activity that negatively impact their quality of life. To date, existing treatments for bipolar disorder do not adequately remediate cognitive dysfunction. Reducing dopamine transporter expression recreates many bipolar disorder mania-relevant behaviors (i.e. hyperactivity and risk-taking). The current study investigated whether dopamine D 1 -family receptor blockade would attenuate the risk-taking, hypermotivation, and hyperactivity of dopamine transporter knockdown mice. Dopamine transporter knockdown and wild-type littermate mice were tested in mouse versions of the Iowa Gambling Task (risk-taking), Progressive Ratio Breakpoint Test (effortful motivation), and Behavioral Pattern Monitor (activity). Prior to testing, the mice were treated with the dopamine D 1 -family receptor antagonist SCH 23390 hydrochloride (0.03, 0.1, or 0.3 mg/kg), or vehicle. Dopamine transporter knockdown mice exhibited hyperactivity and hyperexploration, hypermotivation, and risk-taking preference compared with wild-type littermates. SCH 23390 hydrochloride treatment decreased premature responding in dopamine transporter knockdown mice and attenuated their hypermotivation. SCH 23390 hydrochloride flattened the safe/risk preference, while reducing activity and exploratory levels of both genotypes similarly. Dopamine transporter knockdown mice exhibited mania-relevant behavior compared to wild-type mice. Systemic dopamine D 1 -family receptor antagonism attenuated these behaviors in dopamine transporter knockdown, but not all effects were specific to only the knockdown mice. The normalization of behavior via blockade of dopamine D 1 -family receptors supports the hypothesis that D 1 and/or D 5 receptors could contribute to the mania-relevant behaviors of dopamine transporter knockdown mice.
Wang, Gene-Jack; Volkow, Nora D.; Wigal, Timothy; Kollins, Scott H.; Newcorn, Jeffrey H.; Telang, Frank; Logan, Jean; Jayne, Millard; Wong, Christopher T.; Han, Hao; Fowler, Joanna S.; Zhu, Wei; Swanson, James M.
2013-01-01
Objective Brain dopamine dysfunction in attention deficit/hyperactivity disorder (ADHD) could explain why stimulant medications, which increase dopamine signaling, are therapeutically beneficial. However while the acute increases in dopamine induced by stimulant medications have been associated with symptom improvement in ADHD the chronic effects have not been investigated. Method We used positron emission tomography and [11C]cocaine (dopamine transporter radioligand) to measure dopamine transporter availability in the brains of 18 never-medicated adult ADHD subjects prior to and after 12 months of treatment with methylphenidate and in 11 controls who were also scanned twice at 12 months interval but without stimulant medication. Dopamine transporter availability was quantified as non-displaceable binding potential using a kinetic model for reversible ligands. Results Twelve months of methylphenidate treatment increased striatal dopamine transporter availability in ADHD (caudate, putamen and ventral striatum: +24%, p<0.01); whereas there were no changes in control subjects retested at 12-month interval. Comparisons between controls and ADHD participants revealed no significant difference in dopamine transporter availability prior to treatment but showed higher dopamine transporter availability in ADHD participants than control after long-term treatment (caudate: p<0.007; putamen: p<0.005). Conclusion Upregulation of dopamine transporter availability during long-term treatment with methylphenidate may decrease treatment efficacy and exacerbate symptoms while not under the effects of the medication. Our findings also suggest that the discrepancies in the literature regarding dopamine transporter availability in ADHD participants (some studies reporting increases, other no changes and other decreases) may reflect, in part, differences in treatment histories. PMID:23696790
Wang, Gene-Jack; Volkow, Nora D; Wigal, Timothy; Kollins, Scott H; Newcorn, Jeffrey H; Telang, Frank; Logan, Jean; Jayne, Millard; Wong, Christopher T; Han, Hao; Fowler, Joanna S; Zhu, Wei; Swanson, James M
2013-01-01
Brain dopamine dysfunction in attention deficit/hyperactivity disorder (ADHD) could explain why stimulant medications, which increase dopamine signaling, are therapeutically beneficial. However while the acute increases in dopamine induced by stimulant medications have been associated with symptom improvement in ADHD the chronic effects have not been investigated. We used positron emission tomography and [(11)C]cocaine (dopamine transporter radioligand) to measure dopamine transporter availability in the brains of 18 never-medicated adult ADHD subjects prior to and after 12 months of treatment with methylphenidate and in 11 controls who were also scanned twice at 12 months interval but without stimulant medication. Dopamine transporter availability was quantified as non-displaceable binding potential using a kinetic model for reversible ligands. Twelve months of methylphenidate treatment increased striatal dopamine transporter availability in ADHD (caudate, putamen and ventral striatum: +24%, p<0.01); whereas there were no changes in control subjects retested at 12-month interval. Comparisons between controls and ADHD participants revealed no significant difference in dopamine transporter availability prior to treatment but showed higher dopamine transporter availability in ADHD participants than control after long-term treatment (caudate: p<0.007; putamen: p<0.005). Upregulation of dopamine transporter availability during long-term treatment with methylphenidate may decrease treatment efficacy and exacerbate symptoms while not under the effects of the medication. Our findings also suggest that the discrepancies in the literature regarding dopamine transporter availability in ADHD participants (some studies reporting increases, other no changes and other decreases) may reflect, in part, differences in treatment histories.
Schuh, Rosemary A.; Richardson, Jason R.; Gupta, Rupesh K.; Flaws, Jodi A.; Fiskum, Gary
2009-01-01
Pesticide exposure has been suggested as an increased risk factor in developing Parkinson’s disease (PD). While the molecular mechanism underlying this association is not clear, several studies have demonstrated a role for mitochondrial dysfunction and oxidative damage in PD. Although data on specific pesticides associated with PD are often lacking, several lines of evidence point to the potential involvement of the organochlorine class of pesticides. Previously, we have found that the organochlorine pesticide methoxychlor (mxc) causes mitochondrial dysfunction and oxidative stress in isolated mitochondria. Here, we sought to determine whether mxc-induced mitochondrial dysfunction results in oxidative damage and dysfunction of the dopamine system. Adult female CD1 mice were dosed with either vehicle (sesame oil) or mxc (16, 32, or 64 mg/kg/day) for 20 consecutive days. Following treatment, we observed a dose-related increase in protein carbonyl levels in non-synaptic mitochondria, indicating oxidative modification of mitochondrial proteins which may lead to mitochondrial dysfunction. Mxc exposure also caused a dose-related decrease in striatal levels of dopamine (16–31%), which were accompanied by decreased levels of the dopamine transporter (DAT; 35–48%) and the vesicular monoamine transporter 2 (VMAT2; 21–44%). Because mitochondrial dysfunction, oxidative damage, and decreased levels of DAT and VMAT2 are found in PD patients, our data suggests that mxc should be investigated as a possible candidate involved in the association of pesticides with increased risk for PD, particularly in highly-exposed populations. PMID:19459224
Erblich, J; Lerman, C; Self, D W; Diaz, G A; Bovbjerg, D H
2005-04-01
Cue-induced craving for addictive substances has long been known to contribute to the problem of persistent addiction in humans. Research in animals over the past decade has solidly established the central role of dopamine in cue-induced craving for addictive substances, including nicotine. Analogous studies in humans, however, are lacking, especially among African-American smokers, who have lower quit rates than Caucasian smokers. Based on the animal literature, the study's objective was to test the hypothesis that smokers carrying specific variants in dopamine-related genes previously associated with risk for addictive behaviors would exhibit heightened levels of cigarette craving following laboratory exposure to cues. To this end, cigarette craving was induced in healthy African-American smokers (n=88) through laboratory exposure to smoking cues. Smokers carrying either the DRD2 (D2 dopamine receptor gene) TaqI A1 RFLP or the SLC6A3 (dopamine transporter gene) 9-repeat VNTR polymorphisms had stronger cue-induced cravings than noncarriers (Ps <0.05 and 0.01, respectively). Consistent with the separate biological pathways involved (receptor, transporter), carriers of both polymorphisms had markedly higher craving responses compared to those with neither (P<0.0006), reflecting additive effects. Findings provide support for the role of dopamine in cue-induced craving in humans, and suggest a possible genetic risk factor for persistent smoking behavior in African-American smokers.
Relationship between cocaine-induced subjective effects and dopamine transporter occupancy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, N.D.; Fischman, M.; Wang, G.J.
The ability of cocaine to occupy the dopamine transporter has been linked to its reinforcing properties. However, such a relationship has not been demonstrated in humans. Methods: Positron Emission Tomography and [C-11]cocaine were used to estimate dopamine transporter occupancies after different doses of cocaine in 18 active cocaine abusers. The ratio of the distribution volume of [C-11]cocaine in striatum to that in cerebellum, which corresponds to Bmax/Kd +1 and is insensitive to changes in cerebral blood flow, was our measure of dopamine transporter availability. In parallel subjective effects were measured to assess the relationship between dopamine transporter occupancy and cocainesmore » behavioral effects. Intravenous cocaine produced a significant dose,-dependent blockade of dopamine transporters: 73 % for 0.6 mg/kg; 601/6 for 0.3 mg/kg; 48 % for 0.1 mg/kg iv and 40 % for 0.05 mg/kg. In addition, dopamine transporter occupancies were significantly correlated with cocaine plasma concentration (r = 0.55 p < 0.001). Cocaine also produced dose-dependent increases in self-reported ratings of {open_quotes}high{close_quotes} which were significantly correlated with the levels of dopamine transporter blockade. Discussion: These results provide the first documentation in humans that dopamine transporter occupancy is associated with cocaine induced subjective effects. They also suggest that dopamine transporter occupancies equal to or greater than 60% are required to produce significant effects on ratings of {open_quotes}high{close_quotes}.« less
Rao, Jagadeesh Sridhara; Kellom, Matthew; Reese, Edmund Arthur; Rapoport, Stanley Isaac; Kim, Hyung-Wook
2012-01-01
Background Dysregulated glutamate, serotonin and dopamine neurotransmission has been reported in bipolar disorder (BD) and schizophrenia (SZ), but the underlying mechanisms of dysregulation are not clear. We hypothesized that they involve alterations in excitatory amino acid transporters (EAATs), the serotonin reuptake transporter (SERT), and the dopamine reuptake transporter (DAT). Methods To test this hypothesis, we determined protein and mRNA levels of EAAT subtypes 1–4, of the SERT and of the DAT in postmortem frontal cortex from BD (n=10) and SZ (n=10) patients and from healthy control (n=10) subjects. Results Compared to control levels, protein and mRNA levels of EAAT1 were increased significantly in cortex from both BD and SZ patients. EAAT2 protein and mRNA levels were decreased significantly in BD but not in SZ cortices. EAAT3 and EAAT 4 protein and mRNA levels were significantly higher in SZ but not in BD compared with control. DAT protein and mRNA levels were decreased significantly in both BD and SZ cortex. There was no significant change in SERT expression in either BD or SZ. Conclusions The altered EAATs and DAT expression could result in altered glutamatergic and hyperdopaminergic function in BD and SZ. Differently altered EAATs involved in glutamatergic transmission could be therapeutic targets for treating BD and SZ. PMID:21925739
2013-01-01
Although our understanding of the actions of cocaine in the brain has improved, an effective drug treatment for cocaine addiction has yet to be found. Methylphenidate binds the dopamine transporter and increases extracellular dopamine levels in mammalian central nervous systems similar to cocaine, but it is thought to elicit fewer addictive and reinforcing effects owing to slower pharmacokinetics for different routes of administration between the drugs. This study utilizes the fruit fly model system to quantify the effects of oral methylphenidate on dopamine uptake during direct cocaine exposure to the fly CNS. The effect of methylphenidate on the dopamine transporter has been explored by measuring the uptake of exogenously applied dopamine. The data suggest that oral consumption of methylphenidate inhibits the Drosophila dopamine transporter and the inhibition is concentration dependent. The peak height increased to 150% of control when cocaine was used to block the dopamine transporter for untreated flies but only to 110% for methylphenidate-treated flies. Thus, the dopamine transporter is mostly inhibited for the methylphenidate-fed flies before the addition of cocaine. The same is true for the rate of the clearance of dopamine measured by amperometry. For untreated flies the rate of clearance changes 40% when the dopamine transporter is inhibited with cocaine, and for treated flies the rate changes only 10%. The results were correlated to the in vivo concentration of methylphenidate determined by CE-MS. Our data suggest that oral consumption of methylphenidate inhibits the Drosophila dopamine transporter for cocaine uptake, and the inhibition is concentration dependent. PMID:23402315
Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease
Lohr, Kelly M.; Masoud, Shababa T.; Salahpour, Ali; Miller, Gary W.
2016-01-01
Dopamine was first identified as a neurotransmitter localized to the midbrain over 50 years ago. The dopamine transporter (DAT; SLC6A3) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2) are two regulators of dopamine homeostasis in the presynaptic neuron. DAT transports dopamine from the extracellular space into the cytosol of the presynaptic terminal. VMAT2 then packages this cytosolic dopamine into vesicular compartments for subsequent release upon neurotransmission. Thus, DAT and VMAT2 act in concert to move transmitter efficiently throughout the neuron. The accumulation of dopamine in the neuronal cytosol can trigger oxidative stress and neurotoxicity, suggesting that the proper compartmentalization of dopamine is critical for neuron function and risk of disease. For decades, studies have examined the effects of reduced transporter function in mice (e.g. DAT-KO, VMAT2-KO, VMAT2-deficient). However, we have only recently been able to assess the effects of elevated transporter expression using BAC transgenic methods (DAT-tg, VMAT2-HI mice). Complemented with in vitro work and neurochemical techniques to assess dopamine compartmentalization, a new focus on the importance of transporter proteins as both models of human disease and potential drug targets has emerged. Here we review the importance of DAT and VMAT2 function in the delicate balance of neuronal dopamine. PMID:27520881
Volz, Trent J; Fleckenstein, Annette E; Hanson, Glen R
2007-04-01
To review studies delineating the neurotoxic effects of methamphetamine on monoamine transport in dopaminergic neurons of the striatum and nucleus accumbens. The scope of this review includes the English language dopamine transporter and vesicular monoamine transporter-2 primary literature to April 2006 identified by Pubmed, Science Citation Index and SciFinder Scholar literature searches. Changes in the function of the plasmalemmal dopamine transporter and the vesicular monoamine transporter-2 are key components of methamphetamine-induced persistent dopaminergic deficits. These deficits include persistent reductions in dopamine content, dopamine transporter density and tyrosine hydroxylase activity. The striatum is susceptible to these effects of methamphetamine while the nucleus accumbens is resistant. Differences in dopamine transporter density and activity, extracellular dopamine levels and antioxidant levels in these two brain regions may, in part, account for the resistance of the nucleus accumbens. These findings concerning the nature of methamphetamine-induced changes in plasmalemmal and vesicular dopamine transport have very important implications for drug targets and for understanding the etiology of dopaminergic neurodegenerative processes, such as those associated with methamphetamine addiction and Parkinson's disease.
Volkow, Nora D.; Fowler, Joanna S.; Logan, Jean; Alexoff, David; Zhu, Wei; Telang, Frank; Wang, Gene-Jack; Jayne, Millard; Hooker, Jacob M.; Wong, Christopher; Hubbard, Barbara; Carter, Pauline; Warner, Donald; King, Payton; Shea, Colleen; Xu, Youwen; Muench, Lisa; Apelskog-Torres, Karen
2009-01-01
Context Modafinil, a wake-promoting drug used to treat narcolepsy, is increasingly being used as a cognitive enhancer. Although initially launched as distinct from stimulants that increase extracellular dopamine by targeting dopamine transporters, recent preclinical studies suggest otherwise. Objective To measure the acute effects of modafinil at doses used therapeutically (200 mg and 400 mg given orally) on extracellular dopamine and on dopamine transporters in the male human brain. Design, Setting, and Participants Positron emission tomography with [11C]raclopride (D2/D3 radioligand sensitive to changes in endogenous dopamine) and [11C]cocaine (dopamine transporter radioligand) was used to measure the effects of modafinil on extracellular dopamine and on dopamine transporters in 10 healthy male participants. The study took place over an 8-month period (2007–2008) at Brookhaven National Laboratory. Main Outcome Measures Primary outcomes were changes in dopamine D2/D3 receptor and dopamine transporter availability (measured by changes in binding potential) after modafinil when compared with after placebo. Results Modafinil decreased mean (SD) [11C]raclopride binding potential in caudate (6.1% [6.5%]; 95% confidence interval [CI], 1.5% to 10.8%; P=.02), putamen (6.7% [4.9%]; 95% CI, 3.2% to 10.3%; P=.002), and nucleus accumbens (19.4% [20%]; 95% CI, 5% to 35%; P=.02), reflecting increases in extracellular dopamine. Modafinil also decreased [11C]cocaine binding potential in caudate (53.8% [13.8%]; 95% CI, 43.9% to 63.6%; P<.001), putamen (47.2% [11.4%]; 95% CI, 39.1% to 55.4%; P<.001), and nucleus accumbens (39.3% [10%]; 95% CI, 30% to 49%; P=.001), reflecting occupancy of dopamine transporters. Conclusions In this pilot study, modafinil blocked dopamine transporters and increased dopamine in the human brain (including the nucleus accumbens). Because drugs that increase dopamine in the nucleus accumbens have the potential for abuse, and considering the increasing use of modafinil, these results highlight the need for heightened awareness for potential abuse of and dependence on modafinil in vulnerable populations. PMID:19293415
Sekine, Y; Iyo, M; Ouchi, Y; Matsunaga, T; Tsukada, H; Okada, H; Yoshikawa, E; Futatsubashi, M; Takei, N; Mori, N
2001-08-01
A positron emission tomography (PET) study has suggested that dopamine transporter density of the caudate/putamen is reduced in methamphetamine users. The authors measured nucleus accumbens and prefrontal cortex density, in addition to caudate/putamen density, in methamphetamine users and assessed the relation of these measures to the subjects' clinical characteristics. PET and 2-beta-carbomethoxy-3beta-(4-[(11)C] fluorophenyl)tropane, a dopamine transporter ligand, were used to measure dopamine transporter density in 11 male methamphetamine users and nine male comparison subjects who did not use methamphetamine. Psychiatric symptoms in methamphetamine users were evaluated by using the Brief Psychiatric Rating Scale and applying a craving score. The dopamine transporter density in all three of the regions observed was significantly lower in the methamphetamine users than the comparison subjects. The severity of psychiatric symptoms was significantly correlated with the duration of methamphetamine use. The dopamine transporter reduction in the caudate/putamen and nucleus accumbens was significantly associated with the duration of methamphetamine use and closely related to the severity of persistent psychiatric symptoms. These findings suggest that longer use of methamphetamine may cause more severe psychiatric symptoms and greater reduction of dopamine transporter density in the brain. They also show that the dopamine transporter reduction may be long-lasting, even if methamphetamine use ceases. Further, persistent psychiatric symptoms in methamphetamine users, including psychotic symptoms, may be attributable to the reduction of dopamine transporter density.
Cloning of the cocaine-sensitive bovine dopamine transporter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usdin, T.B.; Chen, C.; Brownstein, M.J.
1991-12-15
A cDNA encoding the dopamine transporter from bovine brain substantia nigra was identified on the basis of its structural homology to other, recently cloned, neurotransmitter transporters. The sequence of the 693-amino acid protein is quite similar to those of the rat {gamma}-aminobutyric acid, human norepinephrine, and rat serotonin transporters. Dopamine transporter mRNA was detected by in situ hybridization in the substantia nigra but not in the locus coeruleus, raphe, caudate, or other brain areas. ({sup 3}H)Dopamine accumulation in tissue culture cells transfected with the cDNA was inhibited by amphetamine, cocaine, and specific inhibitors of dopamine transports, including GBR12909.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomasi, D.; Fowler, J.; Tomasi, D.
Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [{sup 11}C]cocaine used as DAT radiotracer)more » and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.« less
Novel L-Dopa and dopamine prodrugs containing a 2-phenyl-imidazopyridine moiety.
Denora, Nunzio; Laquintana, Valentino; Lopedota, Angela; Serra, Mariangela; Dazzi, Laura; Biggio, Giovanni; Pal, Dhananjay; Mitra, Ashim K; Latrofa, Andrea; Trapani, Giuseppe; Liso, Gaetano
2007-07-01
The aim of this study was to gain insight into the feasibility of enhancing the delivery of L-Dopa and dopamine to the brain by linking these neurotransmitters and L-Dopa ethyl ester to 2-phenyl-3-carboxymethyl-imidazopyridine compounds giving rise to the so-called Dopimid compounds. A number of Dopimid compounds were synthesized and both stability and binding studies to dopaminergic and benzodiazepine receptors were performed. To evaluate whether Dopimid compounds are P-gp substrates, [(3)H]ritonavir uptake experiments and bi-directional transport studies on confluent MDCKII-MDR1 monolayers were carried out. The brain penetration properties of Dopimid compounds were estimated by the Clark's computational model and evaluated by investigation of their transport across BBMECs monolayers. The dopamine levels following the intraperitoneal administration of the selected Dopimid compounds were measured in vivo by using brain microdialysis in rat. Tested compounds were adequately stable in solution buffered at pH 7.4 but undergo faster cleavage in dilute rat serum at 37 degrees C. Receptor binding studies showed that Dopimid compounds are essentially devoid of affinity for dopaminergic and benzodiazepine receptors. [(3)H]ritonavir uptake experiments indicated that selected Dopimid compounds, like L-Dopa and dopamine hydrochloride, are not substrates of P-gp and it was also confirmed by bi-directional transport experiments across MDCKII-MDR1 monolayers. By Clark's model a significant brain penetration was deduced for L-Dopa ethyl ester and dopamine derivatives. Transport studies involving BBMECs monolayers indicated that some of these compounds should be able to cross the BBB. Interestingly, the rank order of apparent permeability (P (app)) values observed in these assays parallels that calculated by the computational approach. Brain microdialysis experiments in rat showed that intraperitoneal acute administration of some Dopimid compounds induced a dose-dependent increase in cortical dopamine output. Based on these results, it may be concluded that some Dopimid compounds can be proposed as novel L-Dopa and dopamine prodrugs.
Direct involvement of sigma-1 receptors in the dopamine D1 receptor-mediated effects of cocaine.
Navarro, Gemma; Moreno, Estefanía; Aymerich, Marisol; Marcellino, Daniel; McCormick, Peter J; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Canela, Enric I; Ortiz, Jordi; Fuxe, Kjell; Lluís, Carmen; Ferré, Sergi; Franco, Rafael
2010-10-26
It is well known that cocaine blocks the dopamine transporter. This mechanism should lead to a general increase in dopaminergic neurotransmission, and yet dopamine D(1) receptors (D(1)Rs) play a more significant role in the behavioral effects of cocaine than the other dopamine receptor subtypes. Cocaine also binds to σ-1 receptors, the physiological role of which is largely unknown. In the present study, D(1)R and σ(1)R were found to heteromerize in transfected cells, where cocaine robustly potentiated D(1)R-mediated adenylyl cyclase activation, induced MAPK activation per se and counteracted MAPK activation induced by D(1)R stimulation in a dopamine transporter-independent and σ(1)R-dependent manner. Some of these effects were also demonstrated in murine striatal slices and were absent in σ(1)R KO mice, providing evidence for the existence of σ(1)R-D(1)R heteromers in the brain. Therefore, these results provide a molecular explanation for which D(1)R plays a more significant role in the behavioral effects of cocaine, through σ(1)R-D(1)R heteromerization, and provide a unique perspective toward understanding the molecular basis of cocaine addiction.
Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease.
Lohr, Kelly M; Masoud, Shababa T; Salahpour, Ali; Miller, Gary W
2017-01-01
Dopamine was first identified as a neurotransmitter localized to the midbrain over 50 years ago. The dopamine transporter (DAT; SLC6A3) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2) are regulators of dopamine homeostasis in the presynaptic neuron. DAT transports dopamine from the extracellular space into the cytosol of the presynaptic terminal. VMAT2 then packages this cytosolic dopamine into vesicular compartments for subsequent release upon neurotransmission. Thus, DAT and VMAT2 act in concert to move the transmitter efficiently throughout the neuron. Accumulation of dopamine in the neuronal cytosol can trigger oxidative stress and neurotoxicity, suggesting that the proper compartmentalization of dopamine is critical for neuron function and risk of disease. For decades, studies have examined the effects of reduced transporter function in mice (e.g. DAT-KO, VMAT2-KO, VMAT2-deficient). However, we have only recently been able to assess the effects of elevated transporter expression using BAC transgenic methods (DAT-tg, VMAT2-HI mice). Complemented with in vitro work and neurochemical techniques to assess dopamine compartmentalization, a new focus on the importance of transporter proteins as both models of human disease and potential drug targets has emerged. Here, we review the importance of DAT and VMAT2 function in the delicate balance of neuronal dopamine. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
German, Christopher L; Baladi, Michelle G; McFadden, Lisa M; Hanson, Glen R; Fleckenstein, Annette E
2015-10-01
Dopamine (DA) plays a well recognized role in a variety of physiologic functions such as movement, cognition, mood, and reward. Consequently, many human disorders are due, in part, to dysfunctional dopaminergic systems, including Parkinson's disease, attention deficit hyperactivity disorder, and substance abuse. Drugs that modify the DA system are clinically effective in treating symptoms of these diseases or are involved in their manifestation, implicating DA in their etiology. DA signaling and distribution are primarily modulated by the DA transporter (DAT) and by vesicular monoamine transporter (VMAT)-2, which transport DA into presynaptic terminals and synaptic vesicles, respectively. These transporters are regulated by complex processes such as phosphorylation, protein-protein interactions, and changes in intracellular localization. This review provides an overview of 1) the current understanding of DAT and VMAT2 neurobiology, including discussion of studies ranging from those conducted in vitro to those involving human subjects; 2) the role of these transporters in disease and how these transporters are affected by disease; and 3) and how selected drugs alter the function and expression of these transporters. Understanding the regulatory processes and the pathologic consequences of DAT and VMAT2 dysfunction underlies the evolution of therapeutic development for the treatment of DA-related disorders. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
German, Christopher L.; Baladi, Michelle G.; McFadden, Lisa M.; Hanson, Glen R.
2015-01-01
Dopamine (DA) plays a well recognized role in a variety of physiologic functions such as movement, cognition, mood, and reward. Consequently, many human disorders are due, in part, to dysfunctional dopaminergic systems, including Parkinson’s disease, attention deficit hyperactivity disorder, and substance abuse. Drugs that modify the DA system are clinically effective in treating symptoms of these diseases or are involved in their manifestation, implicating DA in their etiology. DA signaling and distribution are primarily modulated by the DA transporter (DAT) and by vesicular monoamine transporter (VMAT)-2, which transport DA into presynaptic terminals and synaptic vesicles, respectively. These transporters are regulated by complex processes such as phosphorylation, protein–protein interactions, and changes in intracellular localization. This review provides an overview of 1) the current understanding of DAT and VMAT2 neurobiology, including discussion of studies ranging from those conducted in vitro to those involving human subjects; 2) the role of these transporters in disease and how these transporters are affected by disease; and 3) and how selected drugs alter the function and expression of these transporters. Understanding the regulatory processes and the pathologic consequences of DAT and VMAT2 dysfunction underlies the evolution of therapeutic development for the treatment of DA-related disorders. PMID:26408528
New developments in brain research of internet and gaming disorder.
Weinstein, Aviv; Livny, Abigail; Weizman, Abraham
2017-04-01
There is evidence that the neural mechanisms underlying Internet Gaming Disorder (IGD) resemble those of drug addiction. Functional Magnetic Resonance Imaging (fMRI) studies of the resting state and measures of gray matter volume have shown that Internet game playing was associated with changes to brain regions responsible for attention and control, impulse control, motor function, emotional regulation, sensory-motor coordination. Furthermore, Internet game playing was associated with lower white matter density in brain regions that are involved in decision-making, behavioral inhibition and emotional regulation. Videogame playing involved changes in reward inhibitory mechanisms and loss of control. Structural brain imaging studies showed alterations in the volume of the ventral striatum that is an important part of the brain's reward mechanisms. Finally, videogame playing was associated with dopamine release similar in magnitude to those of drugs of abuse and lower dopamine transporter and dopamine receptor D 2 occupancy indicating sub-sensitivity of dopamine reward mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
The role of dopamine receptors in the neurotoxicity of methamphetamine.
Ares-Santos, S; Granado, N; Moratalla, R
2013-05-01
Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice. © 2013 The Association for the Publication of the Journal of Internal Medicine.
A peptide disrupting the D2R-DAT interaction protects against dopamine neurotoxicity.
Su, Ping; Liu, Fang
2017-09-01
Dopamine reuptake from extracellular space to cytosol leads to accumulation of dopamine, which triggers neurotoxicity in dopaminergic neurons. Previous studies have shown that both dopamine D2 receptor (D2R) and dopamine transporter (DAT) are involved in dopamine neurotoxicity. However, blockade of either D2R or DAT causes side effects due to antagonism of other physiological functions of these two proteins. We previously found that DAT can form a protein complex with D2R and its cell surface expression is facilitated via D2R-DAT interaction, which regulates dopamine reuptake and intracellular dopamine levels. Here we found that an interfering peptide (DAT-S1) disrupting the D2R-DAT interaction protects neurons against dopamine neurotoxicity, and this effect is mediated by inhibiting DAT cell surface expression and inhibiting both caspase-3 and PARP-1 cleavage. This study demonstrates the role of the D2R-DAT complex in dopamine neurotoxicity and investigated the potential mechanisms, which might help better understand the mechanisms of dopamine neurotoxicity. The peptide may provide some insights to improve treatments for dopamine neurotoxicity and related diseases, such as Parkinson's disease, as well as methamphetamine- and 3,4-methsylenedioxy methamphetamine-induced neurotoxicity. Copyright © 2017. Published by Elsevier Inc.
Urra, Javier A; Villaroel-Espíndola, Franz; Covarrubias, Alejandra A; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I
2014-01-01
Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP(+)), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility.
Covarrubias, Alejandra A.; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I.
2014-01-01
Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP+), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility. PMID:25402186
Volkow, N D; Chang, L; Wang, G J; Fowler, J S; Leonido-Yee, M; Franceschi, D; Sedler, M J; Gatley, S J; Hitzemann, R; Ding, Y S; Logan, J; Wong, C; Miller, E N
2001-03-01
Methamphetamine is a popular and highly addictive drug of abuse that has raised concerns because it has been shown in laboratory animals to be neurotoxic to dopamine terminals. The authors evaluated if similar changes occur in humans and assessed if they were functionally significant. Positron emission tomography scans following administration of [(11)C]d-threo-methylphenidate (a dopamine transporter ligand) measured dopamine transporter levels (a marker of dopamine cell terminals) in the brains of 15 detoxified methamphetamine abusers and 18 comparison subjects. Neuropsychological tests were also performed to assess motor and cognitive function. Methamphetamine abusers showed significant dopamine transporter reduction in the striatum (mean differences of 27.8% in the caudate and 21.1% in the putamen) relative to the comparison subjects; this reduction was evident even in abusers who had been detoxified for at least 11 months. Dopamine transporter reduction was associated with motor slowing and memory impairment. These results provide evidence that methamphetamine at dose levels taken by human abusers of the drug leads to dopamine transporter reduction that is associated with motor and cognitive impairment. These results emphasize the urgency of alerting clinicians and the public of the long-term changes that methamphetamine can induce in the human brain.
Volkow, N D; Wang, G; Fowler, J S; Logan, J; Gerasimov, M; Maynard, L; Ding, Y; Gatley, S J; Gifford, A; Franceschi, D
2001-01-15
Methylphenidate (Ritalin) is the most commonly prescribed psychoactive drug in children for the treatment of attention deficit hyperactivity disorder (ADHD), yet the mechanisms responsible for its therapeutic effects are poorly understood. Whereas methylphenidate blocks the dopamine transporter (main mechanism for removal of extracellular dopamine), it is unclear whether at doses used therapeutically it significantly changes extracellular dopamine (DA) concentration. Here we used positron emission tomography and [(11)C]raclopride (D2 receptor radioligand that competes with endogenous DA for binding to the receptor) to evaluate whether oral methylphenidate changes extracellular DA in the human brain in 11 healthy controls. We showed that oral methylphenidate (average dose 0.8 +/- 0.11 mg/kg) significantly increased extracellular DA in brain, as evidenced by a significant reduction in B(max)/K(d) (measure of D2 receptor availability) in striatum (20 +/- 12%; p < 0.0005). These results provide direct evidence that oral methylphenidate at doses within the therapeutic range significantly increases extracellular DA in human brain. This result coupled with recent findings of increased dopamine transporters in ADHD patients (which is expected to result in reductions in extracellular DA) provides a mechanistic framework for the therapeutic efficacy of methylphenidate. The increase in DA caused by the blockade of dopamine transporters by methylphenidate predominantly reflects an amplification of spontaneously released DA, which in turn is responsive to environmental stimulation. Because DA decreases background firing rates and increases signal-to-noise in target neurons, we postulate that the amplification of weak DA signals in subjects with ADHD by methylphenidate would enhance task-specific signaling, improving attention and decreasing distractibility. Alternatively methylphenidate-induced increases in DA, a neurotransmitter involved with motivation and reward, could enhance the salience of the task facilitating the "interest that it elicits" and thus improving performance.
Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.
Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V; Field, Bianca; Deutch, Ariel Y; Rayport, Stephen
2015-12-09
In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are capable of glutamate cotransmission. With conditional expression of channelrhodopsin in dopamine neurons, we systematically explored dopamine neuron connections in the forebrain and identified regionally specific dopamine neuron excitatory connections. Establishing that only a subset of forebrain regions receive excitatory connections from dopamine neurons will help to determine the function of dopamine neuron glutamate cotransmission, which likely involves transmission of precise temporal signals and enhancement of the dynamic range of dopamine neuron signals. Copyright © 2015 the authors 0270-6474/15/3516259-13$15.00/0.
Sekine, Yoshimoto; Minabe, Yoshio; Ouchi, Yasuomi; Takei, Nori; Iyo, Masaomi; Nakamura, Kazuhiko; Suzuki, Katsuaki; Tsukada, Hideo; Okada, Hiroyuki; Yoshikawa, Etsuji; Futatsubashi, Masami; Mori, Norio
2003-09-01
The authors examined dopamine transporter density in the orbitofrontal cortex, dorsolateral prefrontal cortex, and amygdala in methamphetamine users and assessed the relationship of these measures to the subjects' clinical characteristics. Positron emission tomography with [(11)C]WIN 35,428 was used to examine the regions of interest in 11 methamphetamine users and nine healthy comparison subjects. Psychiatric symptoms were evaluated with the Brief Psychiatric Rating Scale. Dopamine transporter density in the three regions studied was significantly lower in the methamphetamine users than in the comparison subjects. The lower dopamine transporter density in the orbitofrontal and dorsolateral prefrontal cortex was significantly correlated with the duration of methamphetamine use and the severity of psychiatric symptoms. Chronic methamphetamine use may cause dopamine transporter reduction in the orbitofrontal cortex, dorsolateral prefrontal cortex, and amygdala in the brain. Psychiatric symptoms in methamphetamine users may be attributable to the decrease in dopamine transporter density in the orbitofrontal cortex and the dorsolateral prefrontal cortex.
Gross, Joshua D; Kaski, Shane W; Schroer, Adam B; Wix, Kimberley A; Siderovski, David P; Setola, Vincent
2018-02-01
Regulators of G protein signaling are proteins that accelerate the termination of effector stimulation after G protein-coupled receptor activation. Many regulators of G protein signaling proteins are highly expressed in the brain and therefore considered potential drug discovery targets for central nervous system pathologies; for example, here we show that RGS12 is highly expressed in microdissected mouse ventral striatum. Given a role for the ventral striatum in psychostimulant-induced locomotor activity, we tested whether Rgs12 genetic ablation affected behavioral responses to amphetamine and cocaine. RGS12 loss significantly decreased hyperlocomotion to lower doses of both amphetamine and cocaine; however, other outcomes of administration (sensitization and conditioned place preference) were unaffected, suggesting that RGS12 does not function in support of the rewarding properties of these psychostimulants. To test whether observed response changes upon RGS12 loss were caused by changes to dopamine transporter expression and/or function, we prepared crude membranes from the brains of wild-type and RGS12-null mice and measured dopamine transporter-selective [ 3 H]WIN 35428 binding, revealing an increase in dopamine transporter levels in the ventral-but not dorsal-striatum of RGS12-null mice. To address dopamine transporter function, we prepared striatal synaptosomes and measured [ 3 H]dopamine uptake. Consistent with increased [ 3 H]WIN 35428 binding, dopamine transporter-specific [ 3 H]dopamine uptake in RGS12-null ventral striatal synaptosomes was found to be increased. Decreased amphetamine-induced locomotor activity and increased [ 3 H]WIN 35428 binding were recapitulated with an independent RGS12-null mouse strain. Thus, we propose that RGS12 regulates dopamine transporter expression and function in the ventral striatum, affecting amphetamine- and cocaine-induced increases in dopamine levels that specifically elicit acute hyperlocomotor responses.
Covey, Dan P.; Bunner, Kendra D.; Schuweiler, Douglas R.; Cheer, Joseph F.; Garris, Paul A.
2018-01-01
The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement. PMID:27038339
Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A
2016-06-01
The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Genetics Home Reference: dopamine transporter deficiency syndrome
... link) PARKINSONISM-DYSTONIA, INFANTILE Sources for This Page Blackstone C. Infantile parkinsonism-dystonia due to dopamine transporter ... 5. Epub 2010 Nov 25. Citation on PubMed Blackstone C. Infantile parkinsonism-dystonia: a dopamine "transportopathy". J ...
Decoding the contribution of dopaminergic genes and pathways to autism spectrum disorder (ASD).
Nguyen, Michael; Roth, Andrew; Kyzar, Evan J; Poudel, Manoj K; Wong, Keith; Stewart, Adam Michael; Kalueff, Allan V
2014-01-01
Autism spectrum disorder (ASD) is a debilitating brain illness causing social deficits, delayed development and repetitive behaviors. ASD is a heritable neurodevelopmental disorder with poorly understood and complex etiology. The central dopaminergic system is strongly implicated in ASD pathogenesis. Genes encoding various elements of this system (including dopamine receptors, the dopamine transporter or enzymes of synthesis and catabolism) have been linked to ASD. Here, we comprehensively evaluate known molecular interactors of dopaminergic genes, and identify their potential molecular partners within up/down-steam signaling pathways associated with dopamine. These in silico analyses allowed us to construct a map of molecular pathways, regulated by dopamine and involved in ASD. Clustering these pathways reveals groups of genes associated with dopamine metabolism, encoding proteins that control dopamine neurotransmission, cytoskeletal processes, synaptic release, Ca(2+) signaling, as well as the adenosine, glutamatergic and gamma-aminobutyric systems. Overall, our analyses emphasize the important role of the dopaminergic system in ASD, and implicate several cellular signaling processes in its pathogenesis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cartier, Etienne; Hamilton, Peter J; Belovich, Andrea N; Shekar, Aparna; Campbell, Nicholas G; Saunders, Christine; Andreassen, Thorvald F; Gether, Ulrik; Veenstra-Vanderweele, Jeremy; Sutcliffe, James S; Ulery-Reynolds, Paula G; Erreger, Kevin; Matthies, Heinrich J G; Galli, Aurelio
2015-02-01
Syntaxin 1 (STX1) is a presynaptic plasma membrane protein that coordinates synaptic vesicle fusion. STX1 also regulates the function of neurotransmitter transporters, including the dopamine (DA) transporter (DAT). The DAT is a membrane protein that controls DA homeostasis through the high-affinity re-uptake of synaptically released DA. We adopt newly developed animal models and state-of-the-art biophysical techniques to determine the contribution of the identified gene variants to impairments in DA neurotransmission observed in autism spectrum disorder (ASD). Here, we characterize two independent autism-associated variants in the genes that encode STX1 and the DAT. We demonstrate that each variant dramatically alters DAT function. We identify molecular mechanisms that converge to inhibit reverse transport of DA and DA-associated behaviors. These mechanisms involve decreased phosphorylation of STX1 at Ser14 mediated by casein kinase 2 as well as a reduction in STX1/DAT interaction. These findings point to STX1/DAT interactions and STX1 phosphorylation as key regulators of DA homeostasis. We determine the molecular identity and the impact of these variants with the intent of defining DA dysfunction and associated behaviors as possible complications of ASD.
Cartier, Etienne; Hamilton, Peter J.; Belovich, Andrea N.; Shekar, Aparna; Campbell, Nicholas G.; Saunders, Christine; Andreassen, Thorvald F.; Gether, Ulrik; Veenstra-Vanderweele, Jeremy; Sutcliffe, James S.; Ulery-Reynolds, Paula G.; Erreger, Kevin; Matthies, Heinrich J.G.; Galli, Aurelio
2015-01-01
Background Syntaxin 1 (STX1) is a presynaptic plasma membrane protein that coordinates synaptic vesicle fusion. STX1 also regulates the function of neurotransmitter transporters, including the dopamine (DA) transporter (DAT). The DAT is a membrane protein that controls DA homeostasis through the high-affinity re-uptake of synaptically released DA. Methods We adopt newly developed animal models and state-of-the-art biophysical techniques to determine the contribution of the identified gene variants to impairments in DA neurotransmission observed in autism spectrum disorder (ASD). Outcomes Here, we characterize two independent autism-associated variants in the genes that encode STX1 and the DAT. We demonstrate that each variant dramatically alters DAT function. We identify molecular mechanisms that converge to inhibit reverse transport of DA and DA-associated behaviors. These mechanisms involve decreased phosphorylation of STX1 at Ser14 mediated by casein kinase 2 as well as a reduction in STX1/DAT interaction. These findings point to STX1/DAT interactions and STX1 phosphorylation as key regulators of DA homeostasis. Interpretation We determine the molecular identity and the impact of these variants with the intent of defining DA dysfunction and associated behaviors as possible complications of ASD. PMID:25774383
PET evaluation of the dopamine system of the human brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, N.D.; Fowler, J.S.; Gatley, S.
1996-07-01
Dopamine plays a pivotal role in the regulation and control of movement, motivation and cognition. It also is closely linked to reward, reinforcement and addiction. Abnormalities in brain dopamine are associated with many neurological and psychiatric disorders including Parkinson`s disease, schizophrenia and substance abuse. This close association between dopamine and neurological and psychiatric diseases and with substance abuse make it an important topic in research in the neurosciences and an important molecular target in drug development. PET enables the direct measurement of components of the dopamine system in the living human brain. It relies on radiotracers which label dopamine receptors,more » dopamine transporters, precursors of dopamine or compounds which have specificity for the enzymes which degrade dopamine. Additionally, by using tracers that provide information on regional brain metabolism or blood flow as well as neurochemically specific pharmacological interventions, PET can be used to assess the functional consequences of change in brain dopamine activity. PET dopamine measurements have been used to investigate the normal human brain and its involvement in psychiatric and neurological diseases. It has also been used in psychopharmacological research to investigate dopamine drugs used in the treatment of Parkinson`s disease and of schizophrenia as well as to investigate the effects of drugs of abuse on the dopamine system. Since various functional and neurochemical parameters can be studied in the same subject, PET enables investigation of the functional integrity of the dopamine system in the human brain and investigation of the interactions of dopamine with other neurotransmitters. This paper summarizes the different tracers and experimental strategies developed to evaluate the various elements of the dopamine system in the human brain with PET and their applications to clinical research. 254 refs., 7 figs., 3 tabs.« less
Missense dopamine transporter mutations associate with adult parkinsonism and ADHD
Hansen, Freja H.; Skjørringe, Tina; Yasmeen, Saiqa; Arends, Natascha V.; Sahai, Michelle A.; Erreger, Kevin; Andreassen, Thorvald F.; Holy, Marion; Hamilton, Peter J.; Neergheen, Viruna; Karlsborg, Merete; Newman, Amy H.; Pope, Simon; Heales, Simon J.R.; Friberg, Lars; Law, Ian; Pinborg, Lars H.; Sitte, Harald H.; Loland, Claus; Shi, Lei; Weinstein, Harel; Galli, Aurelio; Hjermind, Lena E.; Møller, Lisbeth B.; Gether, Ulrik
2014-01-01
Parkinsonism and attention deficit hyperactivity disorder (ADHD) are widespread brain disorders that involve disturbances of dopaminergic signaling. The sodium-coupled dopamine transporter (DAT) controls dopamine homeostasis, but its contribution to disease remains poorly understood. Here, we analyzed a cohort of patients with atypical movement disorder and identified 2 DAT coding variants, DAT-Ile312Phe and a presumed de novo mutant DAT-Asp421Asn, in an adult male with early-onset parkinsonism and ADHD. According to DAT single-photon emission computed tomography (DAT-SPECT) scans and a fluoro-deoxy-glucose-PET/MRI (FDG-PET/MRI) scan, the patient suffered from progressive dopaminergic neurodegeneration. In heterologous cells, both DAT variants exhibited markedly reduced dopamine uptake capacity but preserved membrane targeting, consistent with impaired catalytic activity. Computational simulations and uptake experiments suggested that the disrupted function of the DAT-Asp421Asn mutant is the result of compromised sodium binding, in agreement with Asp421 coordinating sodium at the second sodium site. For DAT-Asp421Asn, substrate efflux experiments revealed a constitutive, anomalous efflux of dopamine, and electrophysiological analyses identified a large cation leak that might further perturb dopaminergic neurotransmission. Our results link specific DAT missense mutations to neurodegenerative early-onset parkinsonism. Moreover, the neuropsychiatric comorbidity provides additional support for the idea that DAT missense mutations are an ADHD risk factor and suggests that complex DAT genotype and phenotype correlations contribute to different dopaminergic pathologies. PMID:24911152
Matthaeus, Friederike; Schloss, Patrick; Lau, Thorsten
2015-12-16
The actions of the neurotransmitters serotonin, dopamine, and norepinephrine are partly terminated by diffusion and in part by their uptake into neurons via the selective, high-affinity transporters for serotonin (SERT), dopamine (DAT), and norepinephrine (NET), respectively. There is also growing evidence that all three monoamines are taken up into neurons by low-affinity, high-capacity organic cation transporters (OCT) and the plasma membrane monoamine transporter (PMAT). Pharmacological characterization of these low-affinity recombinant transporter proteins in heterologous expression systems has revealed that they are not antagonized by classical inhibitors of SERT, DAT, or NET but that decynium-22 (D22) antagonizes OCT3 and PMAT, whereas corticosterone and progesterone selectively inhibit OCT3. Here, we show that SERT, PMAT, and OCT3, but not OCT1 and OCT2, are coexpressed in murine stem cell-derived serotonergic neurons. Using selective antagonists, we provide evidence that uptake of the fluorescent substrates FFN511, ASP+, and 5-HT into stem cell-derived serotonergic neurons is mediated differentially by these transporters and also involves an as yet unknown transport mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannon, Michael J.
The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)
Striatal dopamine neurotransmission: regulation of release and uptake
Sulzer, David; Cragg, Stephanie J.; Rice, Margaret E.
2016-01-01
Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients. PMID:27141430
Sorkina, Tatiana; Ma, Shiqi; Larsen, Mads Breum; Watkins, Simon C
2018-01-01
Clathrin-independent endocytosis (CIE) mediates internalization of many transmembrane proteins but the mechanisms of cargo recruitment during CIE are poorly understood. We found that the cell-permeable furopyrimidine AIM-100 promotes dramatic oligomerization, clustering and CIE of human and mouse dopamine transporters (DAT), but not of their close homologues, norepinephrine and serotonin transporters. All effects of AIM-100 on DAT and the occupancy of substrate binding sites in the transporter were mutually exclusive, suggesting that AIM-100 may act by binding to DAT. Surprisingly, AIM-100-induced DAT endocytosis was independent of dynamin, cholesterol-rich microdomains and actin cytoskeleton, implying that a novel endocytic mechanism is involved. AIM-100 stimulated trafficking of internalized DAT was also unusual: DAT accumulated in early endosomes without significant recycling or degradation. We propose that AIM-100 augments DAT oligomerization through an allosteric mechanism associated with the DAT conformational state, and that oligomerization-triggered clustering leads to a coat-independent endocytosis and subsequent endosomal retention of DAT. PMID:29630493
Role of external and internal calcium on heterocarrier-mediated transmitter release.
Fassio, A; Bonanno, G; Fontana, G; Usai, C; Marchi, M; Raiteri, M
1996-04-01
Release-regulating heterocarriers exist on brain nerve endings. We have investigated in this study the mechanisms involved in the neurotransmitter release evoked by GABA heterocarrier activation. GABA increased the basal release of [3H]acetylcholine and [3H]noradrenaline from rat hippocampal synaptosomes and of [3H]dopamine from striatal synaptosomes. These GABA effects, insensitive to GABA receptor antagonists, were prevented by inhibiting GABA uptake but not by blocking noradrenaline, choline, or dopamine transport. Lack of extracellular Ca2+ or addition of tetrodotoxin selectively abolished the GABA-evoked release of [3H]noradrenaline, leaving unaffected that of [3H]acetylcholine or [3H]dopamine. 1,2-Bis(2-aminophenoxyl)-ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM) or vesamicol attenuated the release of [3H]acetylcholine elicited by GABA. Reserpine, but not BAPTA-AM, prevented the effect of GABA on [3H] dopamine release. Autoreceptor activation inhibited the GABA-evoked release of [3H]noradrenaline but not that of [3H]acetylcholine or [3H]dopamine. It is concluded that (a) the release of [3H]noradrenaline consequent to activation of GABA heterocarriers sited on noradrenergic terminals meets the criteria of a conventional exocytotic process, (b) the extracellular [Ca2+]-independent releases of [3H]acetylcholine and [3H]dopamine appear to occur from vesicles possibly through involvement of intraterminal Ca2+, and (c) autoreceptor activation only affects heterocarrier-mediated vesicular release linked to entry of extracellular Ca2+.
Rieckmann, Anna; Hedden, Trey; Younger, Alayna P; Sperling, Reisa A; Johnson, Keith A; Buckner, Randy L
2016-02-01
Aging-related differences in white matter integrity, the presence of amyloid plaques, and density of biomarkers indicative of dopamine functions can be detected and quantified with in vivo human imaging. The primary aim of the present study was to investigate whether these imaging-based measures constitute independent imaging biomarkers in older adults, which would speak to the hypothesis that the aging brain is characterized by multiple independent neurobiological cascades. We assessed MRI-based markers of white matter integrity and PET-based marker of dopamine transporter density and amyloid deposition in the same set of 53 clinically normal individuals (age 65-87). A multiple regression analysis demonstrated that dopamine transporter availability is predicted by white matter integrity, which was detectable even after controlling for chronological age. Further post-hoc exploration revealed that dopamine transporter availability was further associated with systolic blood pressure, mirroring the established association between cardiovascular health and white matter integrity. Dopamine transporter availability was not associated with the presence of amyloid burden. Neurobiological correlates of dopamine transporter measures in aging are therefore likely unrelated to Alzheimer's disease but are aligned with white matter integrity and cardiovascular risk. More generally, these results suggest that two common imaging markers of the aging brain that are typically investigated separately do not reflect independent neurobiological processes. Hum Brain Mapp 37:621-631, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Tamoxifen protects male mice nigrostriatal dopamine against methamphetamine-induced toxicity.
Bourque, Mélanie; Liu, Bin; Dluzen, Dean E; Di Paolo, Thérèse
2007-11-01
The selective estrogen receptor modulator tamoxifen and estradiol were shown to protect nigrostriatal dopamine concentration loss by methamphetamine in female mice whereas male mice were protected only by tamoxifen. The present study examined the protective properties of tamoxifen in male mice on several nigrostriatal dopaminergic markers and body temperature. Intact male mice were administered 12.5 or 50 microg tamoxifen 24 h before methamphetamine treatment. Basal body temperatures of male mice remained unchanged by the tamoxifen treatment. Methamphetamine reduced striatal dopamine and its metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid concentrations, striatal and substantia nigra dopamine and vesicular monoamine transporter specific binding as well substantia nigra dopamine and vesicular monoamine transporter mRNA levels and increased striatal preproenkephalin mRNA levels. These methamphetamine effects were not altered by 12.5 microg tamoxifen except for increased striatal dopamine metabolites and turnover. Tamoxifen at 50 microg reduced the methamphetamine effect on striatal dopamine concentration, dopamine transporter specific binding and prevented the increase in preproenkephalin mRNA levels; in the substantia nigra tamoxifen prevented the decrease of dopamine transporter mRNA levels. The present results show a tamoxifen dose-dependent prevention of loss of various dopaminergic markers against methamphetamine-induced toxicity in male mice. Since this is the only known hormonal protection of male mice against methamphetamine toxicity, these findings provide important new information on specific parameters of nigrostriatal dopaminergic function preserved by tamoxifen.
Molecular basis of the dopaminergic system in the cricket Gryllus bimaculatus.
Watanabe, Takayuki; Sadamoto, Hisayo; Aonuma, Hitoshi
2013-12-01
In insects, dopamine modulates various aspects of behavior such as learning and memory, arousal and locomotion, and is also a precursor of melanin. To elucidate the molecular basis of the dopaminergic system in the field cricket Gryllus bimaculatus DeGeer, we identified genes involved in dopamine biosynthesis, signal transduction, and dopamine re-uptake in the cricket. Complementary DNA of two isoforms of tyrosine hydroxylase (TH), which convert tyrosine into L-3,4-dihydroxyphenylalanine, was isolated from the cricket brain cDNA library. In addition, four dopamine receptor genes (Dop1, Dop2, Dop3, and DopEcR) and a high-affinity dopamine transporter gene were identified. The two TH isoforms contained isoform-specific regions in the regulatory ACT domain and showed differential expression patterns in different tissues. In addition, the dopamine receptor genes had a receptor subtype-specific distribution: the Dop1, Dop2, and DopEcR genes were broadly expressed in various tissues at differential expression levels, and the Dop3 gene was restrictedly expressed in neuronal tissues and the testicles. Our findings provide a fundamental basis for understanding the dopaminergic regulation of diverse physiological processes in the cricket.
Dopamine alleviates nutrient deficiency-induced stress in Malus hupehensis.
Liang, Bowen; Li, Cuiying; Ma, Changqing; Wei, Zhiwei; Wang, Qian; Huang, Dong; Chen, Qi; Li, Chao; Ma, Fengwang
2017-10-01
Dopamine mediates many physiological processes in plants. We investigated its role in regulating growth, root system architecture, nutrient uptake, and responses to nutrient deficiencies in Malus hupehensis Rehd. Under a nutrient deficiency, plants showed significant reductions in growth, chlorophyll concentrations, and net photosynthesis, along with disruptions in nutrient uptake, transport, and distribution. However, pretreatment with 100 μM dopamine markedly alleviated such inhibitions. Supplementation with that compound enabled plants to maintain their photosynthetic capacity and development of the root system while promoting the uptake of N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, and B, altering the way in which those nutrients were partitioned throughout the plant. The addition of dopamine up-regulated genes for antioxidant enzymes involved in the ascorbate-glutathione cycle (MdcAPX, MdcGR, MdMDHAR, MdDHAR-1, and MdDHAR-2) but down-regulated genes for senescence (SAG12, PAO, and MdHXK). These results indicate that exogenous dopamine has an important antioxidant and anti-senescence effect that might be helpful for improving nutrient uptake. Our findings demonstrate that dopamine offers new opportunities for its use in agriculture, especially when addressing the problem of nutrient deficiencies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Baetu, Irina; Burns, Nicholas R; Urry, Kristi; Barbante, Girolamo Giovanni; Pitcher, Julia B
2015-11-01
Performing sequences of movements is a ubiquitous skill that involves dopamine transmission. However, it is unclear which components of the dopamine system contribute to which aspects of motor sequence learning. Here we used a genetic approach to investigate the relationship between different components of the dopamine system and specific aspects of sequence learning in humans. In particular, we investigated variations in genes that code for the catechol-O-methyltransferase (COMT) enzyme, the dopamine transporter (DAT) and dopamine D1 and D2 receptors (DRD1 and DRD2). COMT and the DAT regulate dopamine availability in the prefrontal cortex and the striatum, respectively, two key regions recruited during learning, whereas dopamine D1 and D2 receptors are thought to be involved in long-term potentiation and depression, respectively. We show that polymorphisms in the COMT, DRD1 and DRD2 genes differentially affect behavioral performance on a sequence learning task in 161 Caucasian participants. The DRD1 polymorphism predicted the ability to learn new sequences, the DRD2 polymorphism predicted the ability to perform a previously learnt sequence after performing interfering random movements, whereas the COMT polymorphism predicted the ability to switch flexibly between two sequences. We used computer simulations to explore potential mechanisms underlying these effects, which revealed that the DRD1 and DRD2 effects are possibly related to neuroplasticity. Our prediction-error algorithm estimated faster rates of connection strengthening in genotype groups with presumably higher D1 receptor densities, and faster rates of connection weakening in genotype groups with presumably higher D2 receptor densities. Consistent with current dopamine theories, these simulations suggest that D1-mediated neuroplasticity contributes to learning to select appropriate actions, whereas D2-mediated neuroplasticity is involved in learning to inhibit incorrect action plans. However, the learning algorithm did not account for the COMT effect, suggesting that prefrontal dopamine availability might affect sequence switching via other, non-learning, mechanisms. These findings provide insight into the function of the dopamine system, which is relevant to the development of treatments for disorders such as Parkinson's disease. Our results suggest that treatments targeting dopamine D1 receptors may improve learning of novel sequences, whereas those targeting dopamine D2 receptors may improve the ability to initiate previously learned sequences of movements. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Mutual enhancement of central neurotoxicity induced by ketamine followed by methamphetamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, J.-J.; Chen, H.-I.; Jen, C.J.
2008-03-01
We hereby report that repeated administration of ketamine (350 mg/kg in total) and methamphetamine (30 mg/kg in total) causes specific glutamatergic and dopaminergic neuron deficits, respectively, in adult mouse brain. Acute ketamine did not affect basal body temperature or the later methamphetamine-induced hyperthermia. However, pretreatment with repeated doses of ketamine aggravated methamphetamine-induced dopaminergic terminal loss as evidenced by a drastic decrease in the levels of dopamine, 3,4-dihydroxyphenylacetic acid, and dopamine transporter density as well as poor gait balance performance. In contrast, methamphetamine-induced serotonergic depletion was not altered by ketamine pretreatment. Likewise, the subsequent treatment with methamphetamine exacerbated the ketamine-induced glutamatergicmore » damage as indicated by reduced levels of the vesicular glutamate transporter in hippocampus and striatum and poor memory performance in the Morris water maze. Finally, since activation of the D1 and AMPA/kainate receptors has been known to be involved in the release of glutamate and dopamine, we examined the effects of co-administration of SCH23390, a D1 antagonist, and CNQX, an AMPA/kainate antagonist. Intraventricular CNQX infusion abolished ketamine's potentiation of methamphetamine-induced dopamine neurotoxicity, while systemic SCH23390 mitigated methamphetamine's potentiation of ketamine-induced glutamatergic toxicity. We conclude that repeated doses of ketamine potentiate methamphetamine-induced dopamine neurotoxicity via AMPA/kainate activation and that conjunctive use of methamphetamine aggravates ketamine-induced glutamatergic neurotoxicity possibly via D1 receptor activation.« less
Peraile, I; Torres, E; Mayado, A; Izco, M; Lopez-Jimenez, A; Lopez-Moreno, J A; Colado, M I; O'Shea, E
2010-01-01
3,4-Methylenedioxymethamphetamine (MDMA) and cocaine are two widely abused psychostimulant drugs targeting the dopamine transporter (DAT). DAT availability regulates dopamine neurotransmission and uptake of MDMA-derived neurotoxic metabolites. We aimed to determine the effect of cocaine pre-exposure on the acute and long-term effects of MDMA in mice. Mice received a course of cocaine (20 mg*kg(-1), x2 for 3 days) followed by MDMA (20 mg*kg(-1), x2, 3 h apart). Locomotor activity, extracellular dopamine levels and dopaminergic neurotoxicity were determined. Furthermore, following the course of cocaine, DAT density in striatal plasma membrane and endosome fractions was measured. Four days after the course of cocaine, challenge with MDMA attenuated the MDMA-induced striatal dopaminergic neurotoxicity. Co-administration of the protein kinase C (PKC) inhibitor NPC 15437 prevented cocaine protection. At the same time, after the course of cocaine, DAT density was reduced in the plasma membrane and increased in the endosome fraction, and this effect was prevented by NPC 15437. The course of cocaine potentiated the MDMA-induced increase in extracellular dopamine and locomotor activity, following challenge 4 days later, compared with those pretreated with saline. Repeated cocaine treatment followed by withdrawal protected against MDMA-induced dopaminergic neurotoxicity by internalizing DAT via a mechanism which may involve PKC. Furthermore, repeated cocaine followed by withdrawal induced behavioural and neurochemical sensitization to MDMA, measures which could be indicative of increased rewarding effects of MDMA.
Striatal dopamine in Parkinson disease: A meta-analysis of imaging studies.
Kaasinen, Valtteri; Vahlberg, Tero
2017-12-01
A meta-analysis of 142 positron emission tomography and single photon emission computed tomography studies that have investigated striatal presynaptic dopamine function in Parkinson disease (PD) was performed. Subregional estimates of striatal dopamine metabolism are presented. The aromatic L-amino-acid decarboxylase (AADC) defect appears to be consistently smaller than the dopamine transporter and vesicular monoamine transporter 2 defects, suggesting upregulation of AADC function in PD. The correlation between disease severity and dopamine loss appears linear, but the majority of longitudinal studies point to a negative exponential progression pattern of dopamine loss in PD. Ann Neurol 2017;82:873-882. © 2017 American Neurological Association.
Adolescent social defeat alters markers of adult dopaminergic function.
Novick, Andrew M; Forster, Gina L; Tejani-Butt, Shanaz M; Watt, Michael J
2011-08-10
Stressful experiences during adolescence can alter the trajectory of neural development and contribute to psychiatric disorders in adulthood. We previously demonstrated that adolescent male rats exposed to repeated social defeat stress show changes in mesocorticolimbic dopamine content both at baseline and in response to amphetamine when tested in adulthood. In the present study we examined whether markers of adult dopamine function are also compromised by adolescent experience of social defeat. Given that the dopamine transporter as well as dopamine D1 receptors act as regulators of psychostimulant action, are stress sensitive and undergo changes during adolescence, quantitative autoradiography was used to measure [(3)H]-GBR12935 binding to the dopamine transporter and [(3)H]-SCH23390 binding to dopamine D1 receptors, respectively. Our results indicate that social defeat during adolescence led to higher dopamine transporter binding in the infralimbic region of the medial prefrontal cortex and higher dopamine D1 receptor binding in the caudate putamen, while other brain regions analyzed were comparable to controls. Thus it appears that social defeat during adolescence causes specific changes to the adult dopamine system, which may contribute to behavioral alterations and increased drug seeking. Copyright © 2011 Elsevier Inc. All rights reserved.
Gastrin stimulates renal dopamine production by increasing the renal tubular uptake of l-DOPA.
Jiang, Xiaoliang; Zhang, Yanrong; Yang, Yu; Yang, Jian; Asico, Laureano D; Chen, Wei; Felder, Robin A; Armando, Ines; Jose, Pedro A; Yang, Zhiwei
2017-01-01
Gastrin is a peptide hormone that is involved in the regulation of sodium balance and blood pressure. Dopamine, which is also involved in the regulation of sodium balance and blood pressure, directly or indirectly interacts with other blood pressure-regulating hormones, including gastrin. This study aimed to determine the mechanisms of the interaction between gastrin and dopamine and tested the hypothesis that gastrin produced in the kidney increases renal dopamine production to keep blood pressure within the normal range. We show that in human and mouse renal proximal tubule cells (hRPTCs and mRPTCs, respectively), gastrin stimulates renal dopamine production by increasing the cellular uptake of l-DOPA via the l-type amino acid transporter (LAT) at the plasma membrane. The uptake of l-DOPA in RPTCs from C57Bl/6J mice is lower than in RPTCs from normotensive humans. l-DOPA uptake in renal cortical slices is also lower in salt-sensitive C57Bl/6J than in salt-resistant BALB/c mice. The deficient renal cortical uptake of l-DOPA in C57Bl/6J mice may be due to decreased LAT-1 activity that is related to its decreased expression at the plasma membrane, relative to BALB/c mice. We also show that renal-selective silencing of Gast by the renal subcapsular injection of Gast siRNA in BALB/c mice decreases renal dopamine production and increases blood pressure. These results highlight the importance of renal gastrin in stimulating renal dopamine production, which may give a new perspective in the prevention and treatment of hypertension. Copyright © 2017 the American Physiological Society.
Poewe, Werner; Seppi, Klaus; Tanner, Caroline M; Halliday, Glenda M; Brundin, Patrik; Volkmann, Jens; Schrag, Anette-Eleonore; Lang, Anthony E
2017-03-23
Parkinson disease is the second-most common neurodegenerative disorder that affects 2-3% of the population ≥65 years of age. Neuronal loss in the substantia nigra, which causes striatal dopamine deficiency, and intracellular inclusions containing aggregates of α-synuclein are the neuropathological hallmarks of Parkinson disease. Multiple other cell types throughout the central and peripheral autonomic nervous system are also involved, probably from early disease onwards. Although clinical diagnosis relies on the presence of bradykinesia and other cardinal motor features, Parkinson disease is associated with many non-motor symptoms that add to overall disability. The underlying molecular pathogenesis involves multiple pathways and mechanisms: α-synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal transport and neuroinflammation. Recent research into diagnostic biomarkers has taken advantage of neuroimaging in which several modalities, including PET, single-photon emission CT (SPECT) and novel MRI techniques, have been shown to aid early and differential diagnosis. Treatment of Parkinson disease is anchored on pharmacological substitution of striatal dopamine, in addition to non-dopaminergic approaches to address both motor and non-motor symptoms and deep brain stimulation for those developing intractable L-DOPA-related motor complications. Experimental therapies have tried to restore striatal dopamine by gene-based and cell-based approaches, and most recently, aggregation and cellular transport of α-synuclein have become therapeutic targets. One of the greatest current challenges is to identify markers for prodromal disease stages, which would allow novel disease-modifying therapies to be started earlier.
Gross, Noah B; Duncker, Patrick C; Marshall, John F
2011-11-01
Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.
Disturbed Neurotransmitter Transporter Expression in Alzheimer Disease Brain
Chen, Kevin H.; Reese, Edmund A.; Kim, Hyung-Wook; Rapoport, Stanley I.; Rao, Jagadeesh S.
2011-01-01
Alzheimer disease (AD) is a neurodegenerative disorder characterized by memory loss and behavioral and psychological symptoms of dementia. An imbalance of different neurotransmitters – glutamate, acetylcholine, dopamine, and serotonin - has been proposed as the neurobiological basis of behavioral symptoms in AD. The molecular changes associated with neurotransmission imbalance in AD are not clear. We hypothesized that altered reuptake of neurotransmitters by vesicular glutamate transporters (VGLUTs), excitatory amino acid transporters (EAATs), the vesicular acetylcholine transporter (VAChT), the serotonin reuptake transporter (SERT), or the dopamine reuptake transporter (DAT)) are involved in the neurotransmission imbalance in AD. We tested this hypothesis by examining protein and mRNA levels of these transporters in postmortem prefrontal cortex from 10 AD patients and 10 matched non-AD controls. Compared with controls, protein and mRNA levels of VGLUTs, EAAT1–3, VAChT, and SERT were reduced significantly in AD. Expression of DAT and catechol O-methyltransferase (COMT) was unchanged. Reduced VGLUTs and EAATs may contribute to an alteration in glutamatergic recycling, and reduced SERT could exacerbate depressive symptoms in AD. The reduced VAChT expression could contribute to the recognized cholinergic deficit in AD. Altered neurotransmitter transporters could contribute to the pathophysiology of AD and are potential targets for therapy. PMID:21743130
Kivell, Bronwyn; Uzelac, Zeljko; Sundaramurthy, Santhanalakshmi; Rajamanickam, Jeyaganesh; Ewald, Amy; Chefer, Vladimir; Jaligam, Vanaja; Bolan, Elizabeth; Simonson, Bridget; Annamalai, Balasubramaniam; Mannangatti, Padmanabhan; Prisinzano, Thomas E; Gomes, Ivone; Devi, Lakshmi A; Jayanthi, Lankupalle D; Sitte, Harald H; Ramamoorthy, Sammanda; Shippenberg, Toni S
2014-11-01
Salvinorin A (SalA), a selective κ-opioid receptor (KOR) agonist, produces dysphoria and pro-depressant like effects. These actions have been attributed to inhibition of striatal dopamine release. The dopamine transporter (DAT) regulates dopamine transmission via uptake of released neurotransmitter. KORs are apposed to DAT in dopamine nerve terminals suggesting an additional target by which SalA modulates dopamine transmission. SalA produced a concentration-dependent, nor-binaltorphimine (BNI)- and pertussis toxin-sensitive increase of ASP(+) accumulation in EM4 cells coexpressing myc-KOR and YFP-DAT, using live cell imaging and the fluorescent monoamine transporter substrate, trans 4-(4-(dimethylamino)-styryl)-N-methylpyridinium) (ASP(+)). Other KOR agonists also increased DAT activity that was abolished by BNI pretreatment. While SalA increased DAT activity, SalA treatment decreased serotonin transporter (SERT) activity and had no effect on norepinephrine transporter (NET) activity. In striatum, SalA increased the Vmax for DAT mediated DA transport and DAT surface expression. SalA up-regulation of DAT function is mediated by KOR activation and the KOR-linked extracellular signal regulated kinase-½ (ERK1/2) pathway. Co-immunoprecipitation and BRET studies revealed that DAT and KOR exist in a complex. In live cells, DAT and KOR exhibited robust FRET signals under basal conditions. SalA exposure caused a rapid and significant increase of the FRET signal. This suggests that the formation of KOR and DAT complexes is promoted in response to KOR activation. Together, these data suggest that enhanced DA transport and decreased DA release resulting in decreased dopamine signalling may contribute to the dysphoric and pro-depressant like effects of SalA and other KOR agonists. Copyright © 2014 Elsevier Ltd. All rights reserved.
Methamphetamine Regulation of Firing Activity of Dopamine Neurons
Lin, Min; Sambo, Danielle
2016-01-01
Methamphetamine (METH) is a substrate for the dopamine transporter that increases extracellular dopamine levels by competing with dopamine uptake and increasing reverse transport of dopamine via the transporter. METH has also been shown to alter the excitability of dopamine neurons. The mechanism of METH regulation of the intrinsic firing behaviors of dopamine neurons is less understood. Here we identified an unexpected and unique property of METH on the regulation of firing activity of mouse dopamine neurons. METH produced a transient augmentation of spontaneous spike activity of midbrain dopamine neurons that was followed by a progressive reduction of spontaneous spike activity. Inspection of action potential morphology revealed that METH increased the half-width and produced larger coefficients of variation of the interspike interval, suggesting that METH exposure affected the activity of voltage-dependent potassium channels in these neurons. Since METH has been shown to affect Ca2+ homeostasis, the unexpected findings that METH broadened the action potential and decreased the amplitude of afterhyperpolarization led us to ask whether METH alters the activity of Ca2+-activated potassium (BK) channels. First, we identified BK channels in dopamine neurons by their voltage dependence and their response to a BK channel blocker or opener. While METH suppressed the amplitude of BK channel-mediated unitary currents, the BK channel opener NS1619 attenuated the effects of METH on action potential broadening, afterhyperpolarization repression, and spontaneous spike activity reduction. Live-cell total internal reflection fluorescence microscopy, electrophysiology, and biochemical analysis suggest METH exposure decreased the activity of BK channels by decreasing BK-α subunit levels at the plasma membrane. SIGNIFICANCE STATEMENT Methamphetamine (METH) competes with dopamine uptake, increases dopamine efflux via the dopamine transporter, and affects the excitability of dopamine neurons. Here, we identified an unexpected property of METH on dopamine neuron firing activity. METH transiently increased the spontaneous spike activity of dopamine neurons followed by a progressive reduction of the spontaneous spike activity. METH broadened the action potentials, increased coefficients of variation of the interspike interval, and decreased the amplitude of afterhyperpolarization, which are consistent with changes in the activity of Ca2+-activated potassium (BK) channels. We found that METH decreased the activity of BK channels by stimulating BK-α subunit trafficking. Thus, METH modulation of dopamine neurotransmission and resulting behavioral responses is, in part, due to METH regulation of BK channel activity. PMID:27707972
Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons.
Guillot, Thomas S; Miller, Gary W
2009-04-01
Vesicular monoamine transporters (VMATs) are responsible for the packaging of neurotransmitters such as dopamine, serotonin, norepinephrine, and epinephrine into synaptic vesicles. These proteins evolved from precursors in the major facilitator superfamily of transporters and are among the members of the toxin extruding antiporter family. While the primary function of VMATs is to sequester neurotransmitters within vesicles, they can also translocate toxicants away from cytosolic sites of action. In the case of dopamine, this dual role of VMAT2 is combined-dopamine is more readily oxidized in the cytosol where it can cause oxidative stress so packaging into vesicles serves two purposes: neurotransmission and neuroprotection. Furthermore, the deleterious effects of exogenous toxicants on dopamine neurons, such as MPTP, can be attenuated by VMAT2 activity. The active metabolite of MPTP can be kept within vesicles and prevented from disrupting mitochondrial function thereby sparing the dopamine neuron. The highly addictive drug methamphetamine is also neurotoxic to dopamine neurons by using dopamine itself to destroy the axon terminals. Methamphetamine interferes with vesicular sequestration and increases the production of dopamine, escalating the amount in the cytosol and leading to oxidative damage of terminal components. Vesicular transport seems to resist this process by sequestering much of the excess dopamine, which is illustrated by the enhanced methamphetamine neurotoxicity in VMAT2-deficient mice. It is increasingly evident that VMAT2 provides neuroprotection from both endogenous and exogenous toxicants and that while VMAT2 has been adapted by eukaryotes for synaptic transmission, it is derived from phylogenetically ancient proteins that originally evolved for the purpose of cellular protection.
Goodman, Mark M.; Chen, Ping
2002-02-05
Provided are compounds of the following formula: ##STR1## wherein R is C2-C6 mono- or multi-unsaturated hydrocarbon having one or more ethylene, acetylene or allene groups, A is 18 or 19, and X is H or halogen. The compounds of the invention bind to dopamine transporter with high affinity and selectivity and are thus useful as diagnostic and therapeutic agents for diseases associated with dopamine transporter dysfunction. The radiolabeled compounds are useful as imaging agents for visualizing the location and density of dopamine transporter by PET imaging.
Peraile, I; Torres, E; Mayado, A; Izco, M; Lopez-Jimenez, A; Lopez-Moreno, JA; Colado, MI; O'Shea, E
2010-01-01
Background and purpose: 3,4-Methylenedioxymethamphetamine (MDMA) and cocaine are two widely abused psychostimulant drugs targeting the dopamine transporter (DAT). DAT availability regulates dopamine neurotransmission and uptake of MDMA-derived neurotoxic metabolites. We aimed to determine the effect of cocaine pre-exposure on the acute and long-term effects of MDMA in mice. Experimental approach: Mice received a course of cocaine (20 mg·kg−1, ×2 for 3 days) followed by MDMA (20 mg·kg−1, ×2, 3 h apart). Locomotor activity, extracellular dopamine levels and dopaminergic neurotoxicity were determined. Furthermore, following the course of cocaine, DAT density in striatal plasma membrane and endosome fractions was measured. Key results: Four days after the course of cocaine, challenge with MDMA attenuated the MDMA-induced striatal dopaminergic neurotoxicity. Co-administration of the protein kinase C (PKC) inhibitor NPC 15437 prevented cocaine protection. At the same time, after the course of cocaine, DAT density was reduced in the plasma membrane and increased in the endosome fraction, and this effect was prevented by NPC 15437. The course of cocaine potentiated the MDMA-induced increase in extracellular dopamine and locomotor activity, following challenge 4 days later, compared with those pretreated with saline. Conclusions and implications: Repeated cocaine treatment followed by withdrawal protected against MDMA-induced dopaminergic neurotoxicity by internalizing DAT via a mechanism which may involve PKC. Furthermore, repeated cocaine followed by withdrawal induced behavioural and neurochemical sensitization to MDMA, measures which could be indicative of increased rewarding effects of MDMA. PMID:20015297
Evidence that Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human Brain
Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S.; Logan, Jean; Benveniste, Helene; Kim, Ron; Thanos, Panayotis K.; Ferré, Sergi
2012-01-01
Dopamine D2 receptors are involved with wakefulness but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [11C]raclopride in controls) in striatum, but could not determine if this reflected dopamine increases ([11C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (drug that increases dopamine by blocking dopamine transporters), during sleep deprivation versus rested-sleep with the assumption that methylphenidate’s effects would be greater, if indeed, dopamine release was increased during sleep deprivation. We scanned 20 controls with [11C]raclopride after rested-sleep and after one night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared to rested-sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared to placebo) did not differ between rested-sleep and sleep deprivation and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to one night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans. PMID:22573693
Tzeng, Nian-Sheng; Lu, Ru-Band; Yeh, Hui-Wen; Yeh, Yi-Wei; Huang, Chang-Chih; Yen, Che-Hung; Kuo, Shin-Chang; Chen, Chun-Yen; Chang, Hsin-An; Ho, Pei-Shen; Cheng, Serena; Shih, Mei-Chen; Huang, San-Yuan
2015-04-01
A substantial amount of evidence suggests that dysfunction of the dopamine transporter may be involved in the pathophysiology of amphetamine dependence (AD). The aim of this study was to examine whether the dopamine transporter gene (DAT1, SLC6A3) is associated with development of AD and whether this gene influences personality traits in patients with AD. Eighteen polymorphisms of the DAT1 gene were analyzed in a case-control study that included 909 Han Chinese men (568 patients with AD and 341 control subjects). The patients fulfilled the DSM-IV-TR criteria for AD. The Tridimensional Personality Questionnaire (TPQ) was used to assess personality traits and to examine the association between these traits and DAT1 gene variants. A weak association was found between the rs27072 polymorphism and development of AD, but these borderline associations were unconfirmed by logistic regression and haplotype analysis. Although harm avoidance and novelty seeking scores were significantly higher in patients than in controls, DAT1 polymorphisms did not influence these scores. This study suggests that high harm avoidance and novelty seeking personality traits may be a risk factor for the development of AD. However, the DAT1 gene may not contribute to AD susceptibility and specific personality traits observed in AD among Han Chinese men. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Nitrogen-based drugs are not essential for blockade of monoamine transporters.
Madras, B K; Pristupa, Z B; Niznik, H B; Liang, A Y; Blundell, P; Gonzalez, M D; Meltzer, P C
1996-12-01
In brain, monoamine transporters are principal targets of widely used therapeutic drugs including antidepressants, methylphenidate (Ritalin), and the addictive drug cocaine. Without exception, these transport blocking agents contain an amine nitrogen. A prevalent view and untested premise is that an amine nitrogen is needed to bind to the same counterion on the transporter as does the amine nitrogen of the monoamine neurotransmitter. We report that several compounds without nitrogen (8-oxa-bicyclo-3-aryl-[3.2.1] octanes, or aryloxatropanes) are active at monoamine transporters. One of these, tropoxane (0-914), bound with high affinity to the dopamine (IC50: 3.35 +/- 0.39 nM), serotonin (IC50: 6.52 +/- 2.05 nM), and norepinephrine (IC50: 20.0 +/- 0.3 nM) transporters in monkey brain, the human striatal dopamine transporter (IC50: 5.01 +/- 1.74 nM), and blocked dopamine transport (IC50: 7.2 +/- 3.0 nM) in COS-7 cells transfected with the human dopamine transporter. These unique compounds require a revision of current concepts of the drug binding domains on monoamine transporters, open avenues for discovery of a new generation of drugs and raise the issue of whether mammalian transporters and receptors may respond to, as yet, undiscovered non-amine bearing neurotransmitters or drugs.
Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.
2016-01-01
The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042
Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.
Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary
2017-08-30
The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.
Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT
Aguilar, Jenny I.; Dunn, Matthew; Mingote, Susana; Karam, Caline S.; Farino, Zachary J.; Sonders, Mark S.; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J.; McCabe, Brian D.; Mosharov, Eugene V.; Krantz, David E.; Javitch, Jonathan A.; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary
2017-01-01
SUMMARY The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. PMID:28823729
Molecular imaging and neural networks in impulse control disorders in Parkinson's disease.
Aracil-Bolaños, I; Strafella, A P
2016-01-01
Impulse control disorders (ICDs) may arise in Parkinson's disease (PD) in relation to the use of dopamine agonists (DA). A dysfunction of reward circuits is considered the main underlying mechanism. Neuroimaging has been largely used in this setting to understand the structure of the reward system and its abnormalities brought by exogenous stimulation in PD. Dopaminergic changes, such as increased dopamine release, reduced dopamine transporter activity and other changes, have been shown to be a consistent feature of ICDs in PD. Beyond the striatum, alterations of prefrontal cortical function may also impact an individuals' propensity for impulsivity. Neuroimaging is advancing our knowledge of the mechanisms involved in the development of these behavioral addictions. An increased understanding of these disorders may lead to the discovery of new therapeutic targets, or the identification of risk factors for the development of these disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cholinergic Interneurons Underlie Spontaneous Dopamine Release in Nucleus Accumbens
2017-01-01
The release of dopamine from terminals in the NAc is regulated by a number of factors, including voltage-gated ion channels, D2-autoreceptors, and nAChRs. Cholinergic interneurons (CINs) drive dopamine release through activation of nAChRs on dopamine terminals. Using cyclic voltammetry in mouse brain slices, nAChR-dependent spontaneous dopamine transients and the mechanisms underlying the origin were examined in the NAc. Spontaneous events were infrequent (0.3 per minute), but the rate and amplitude were increased after blocking Kv channels with 4-aminopyridine. Although the firing frequency of CINs was increased by blocking glutamate reuptake with TBOA and the Sk blocker apamin, only 4-aminopyridine increased the frequency of dopamine transients. In contrast, inhibition of CIN firing with the μ/δ selective opioid [Met5]enkephalin (1 μm) decreased spontaneous dopamine transients. Cocaine increased the rate and amplitude of dopamine transients, suggesting that the activity of the dopamine transporter limits the detection of these events. In the presence of cocaine, the rate of spontaneous dopamine transients was further increased after blocking D2-autoreceptors. Blockade of muscarinic receptors had no effect on evoked dopamine release, suggesting that feedback inhibition of acetylcholine release was not involved. Thus, although spontaneous dopamine transients are reliant on nAChRs, the frequency was not strictly governed by the activity of CINs. The increase in frequency of spontaneous dopamine transients induced by cocaine was not due to an increase in cholinergic tone and is likely a product of an increase in detection resulting from decreased dopamine reuptake. SIGNIFICANCE STATEMENT The actions of dopamine in the NAc are thought to be responsible for endogenous reward and the reinforcing properties of drugs of abuse, such as psychostimulants. The present work examines the mechanisms underlying nAChR-induced spontaneous dopamine release. This study demonstrates that spontaneous dopamine release is (1) dependent of the activation of nicotinic receptors, (2) independent on the spontaneous activity of cholinergic interneurons, and (3) that cocaine increased the detection of dopamine transients by prolonging the presence and increasing the diffusion of dopamine in the extracellular space. The release of acetylcholine is therefore responsible for spontaneous dopamine transients, and cocaine augments dopamine tone without altering activity of cholinergic interneurons. PMID:28115487
Hallett, Penelope J; Cooper, Oliver; Sadi, Damaso; Robertson, Harold; Mendez, Ivar; Isacson, Ole
2014-01-01
Summary To determine the long-term health and function of transplanted dopamine neurons in Parkinson’s disease (PD) patients, the expression of dopamine transporters (DAT) and mitochondrial morphology was examined in human fetal midbrain cellular transplants. DAT was robustly expressed in transplanted dopamine neuron terminals in the reinnervated host putamen and caudate, for at least 14 years after transplantation. The transplanted dopamine neurons showed a healthy and non-atrophied morphology at all time points. Labeling of the mitochondrial outer membrane protein Tom20 and alpha-synuclein showed typical cellular pathology in the patients’ own substantia nigra, which was not observed in transplanted dopamine neurons. These results show that the vast majority of transplanted neurons remain healthy long-term in PD patients, consistent with the clinically maintained function of fetal dopamine neuron transplants for up to 15–18 years in patients. These findings are critically important for the rational development of stem cell-based dopamine neuronal replacement therapies for PD. PMID:24910427
Gβγ subunit activation promotes dopamine efflux through the dopamine transporter
Garcia-Olivares, J; Baust, T; Harris, S; Hamilton, P; Galli, A; Amara, SG; Torres, GE
2018-01-01
The dopamine transporter (DAT) is an important regulator of brain dopamine (DA) homeostasis, controlling the intensity and duration of DA signaling. DAT is the target for psychostimulants—like cocaine and amphetamine—and plays an important role in neuropsychiatric disorders, including attention-deficit hyperactivity disorder and drug addiction. Thus, a thorough understanding of the mechanisms that regulate DAT function is necessary for the development of clinical interventions to treat DA-related brain disorders. Previous studies have revealed a plethora of protein–protein interactions influencing DAT cellular localization and activity, suggesting that the fine-tuning of DA homeostasis involves multiple mechanisms. We recently reported that G-protein beta-gamma (Gβγ) subunits bind directly to DAT and decrease DA clearance. Here we show that Gβγ induces the release of DA through DAT. Specifically, a Gβγ-binding/activating peptide, mSIRK, increases DA efflux through DAT in heterologous cells and primary dopaminergic neurons in culture. Addition of the Gβγ inhibitor gallein or DAT inhibitors prevents this effect. Residues 582 to 596 in the DAT carboxy terminus were identified as the primary binding site of Gβγ. A TAT peptide containing the Gβγ-interacting domain of DAT blocked the ability of mSIRK to induce DA efflux, consistent with a direct interaction of Gβγ with the transporter. Finally, activation of a G-protein-coupled receptor, the muscarinic M5R, results in DAT-mediated DA efflux through a Gβγ-dependent mechanism. Collectively, our data show that Gβγ interacts with DAT to promote DA efflux. This novel mechanism may have important implications in the regulation of brain DA homeostasis. PMID:28894302
ERIC Educational Resources Information Center
Durston, Sarah; Fossella, John A.; Mulder, Martijn J.; Casey B. J.; Ziermans, Tim B.; Vessaz, M. Nathalie; Van Engeland, Herman
2008-01-01
The study examines the effect of the dopamine transporter (DAT1) genotype in attention-deficit/hyperactivity disorder (ADHD). The results confirm that DAT1 translates the genetic risk of ADHD through striatal activation.
Evidence That Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human Brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow N. D.; Fowler J.; Volkow, N.D.
Dopamine D2 receptors are involved with wakefulness, but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [{sup 11}C]raclopride in controls) in striatum, but could not determine whether this reflected dopamine increases ([{sup 11}C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (a drug that increases dopamine by blocking dopamine transporters) during sleep deprivation versus rested sleep, with the assumption that methylphenidate's effects would be greater if, indeed, dopaminemore » release was increased during sleep deprivation. We scanned 20 controls with [{sup 11}C]raclopride after rested sleep and after 1 night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared with rested sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared with placebo) did not differ between rested sleep and sleep deprivation, and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to 1 night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans.« less
Impact of disruption of secondary binding site S2 on dopamine transporter function.
Zhen, Juan; Reith, Maarten E A
2016-09-01
The structures of the leucine transporter, drosophila dopamine transporter, and human serotonin transporter show a secondary binding site (designated S2 ) for drugs and substrate in the extracellular vestibule toward the membrane exterior in relation to the primary substrate recognition site (S1 ). The present experiments are aimed at disrupting S2 by mutating Asp476 and Ile159 to Ala. Both mutants displayed a profound decrease in [(3) H]DA uptake compared with wild-type associated with a reduced turnover rate kcat . This was not caused by a conformational bias as the mutants responded to Zn(2+) (10 μM) similarly as WT. The dopamine transporters with either the D476A or I159A mutation both displayed a higher Ki for dopamine for the inhibition of [3H](-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane binding than did the WT transporter, in accordance with an allosteric interaction between the S1 and S2 sites. The results provide evidence in favor of a general applicability of the two-site allosteric model of the Javitch/Weinstein group from LeuT to dopamine transporter and possibly other monoamine transporters. X-ray structures of transporters closely related to the dopamine (DA) transporter show a secondary binding site S2 in the extracellular vestibule proximal to the primary binding site S1 which is closely linked to one of the Na(+) binding sites. This work examines the relationship between S2 and S1 sites. We found that S2 site impairment severely reduced DA transport and allosterically reduced S1 site affinity for the cocaine analog [(3) H]CFT. Our results are the first to lend direct support for the application of the two-site allosteric model, advanced for bacterial LeuT, to the human DA transporter. The model states that, after binding of the first DA molecule (DA1 ) to the primary S1 site (along with Na(+) ), binding of a second DA (DA2 ) to the S2 site triggers, through an allosteric interaction, the release of DA1 and Na(+) into the cytoplasm. © 2016 International Society for Neurochemistry.
Momosaki, Sotaro; Ito, Miwa; Yamato, Hiroko; Iimori, Hitoshi; Sumiyoshi, Hirokazu; Morimoto, Kenji; Imamoto, Natsumi; Watabe, Tadashi; Shimosegawa, Eku; Hatazawa, Jun; Abe, Kohji
2017-02-01
The changes in the availability of striatal dopamine transporter and dopamine D2 receptor after mild focal ischemia in rats were measured using a small animal positron emission tomography system. Mild focal ischemia was induced by 20-minute middle cerebral artery occlusion. [ 11 C]PE2I binding to dopamine transporter was transiently increased on the ipsilateral side of the striatum at 2 days after middle cerebral artery occlusion. On day 7 and 14 after middle cerebral artery occlusion, [ 11 C]PE2I binding levels were decreased. In contrast, [ 11 C]raclopride binding to dopamine D2 receptor in the ipsilateral striatum had not changed at 2 days after middle cerebral artery occlusion. [ 11 C]Raclopride binding was significantly decreased on the ischemic side of the striatum at 7 and 14 days after middle cerebral artery occlusion. Moreover, on day 1 and 2 after middle cerebral artery occlusion, significant circling behavior to the contralateral direction was induced by amphetamine challenge. This behavior disappeared at 7 days after middle cerebral artery occlusion. At 14 days, circling behavior to the ipsilateral direction (middle cerebral artery occlusion side) was significantly increased, and that to the contralateral direction also appeared again. The present study suggested that amphetamine-induced circling behavior indicated striatal dopaminergic alterations and that dopamine transporter and dopamine D2 receptor binding could be key markers for predicting motor dysfunction after mild focal ischemia.
Li, Yixin; Xia, Baijuan; Li, Rongrong; Yin, Dan; Liang, Wenmei
2017-06-09
BACKGROUND The aim of this study was to explore how changes in the expression of BDNF in MLDS change the effect of BDNF on dopamine (DA) neurons, which may have therapeutic implications for heroin addiction. MATERIAL AND METHODS We established a rat model of heroin addiction and observed changes in the expression of BDNF, DA, dopamine receptor (DRD), dopamine transporter (DAT), and other relevant pathways in NAc. We also assessed the effect of BDNF overexpression in the NAc, behavioral changes of heroin-conditioned place preference (CPP), and naloxone withdrawal in rats with high levels of BDNF. We established 5 adult male rat groups: heroin addiction, lentivirus transfection, blank virus, sham operation, and control. The PCR gene chip was used to study gene expression changes. BDNF lentivirus transfection was used for BDNF overexpression. A heroin CPP model and a naloxone withdrawal model of rats were established. RESULTS Expression changes were found in 20 of the 84 DA-associated genes in the NAc of heroin-addicted rats. Weight loss and withdrawal symptoms in the lentivirus group for naloxone withdrawal was less than in the blank virus and the sham operation group. These 2 latter groups also showed significant behavioral changes, but such changes were not observed in the BDNF lentivirus group before or after training. DRD3 and DAT increased in the NAc of the lentivirus group. CONCLUSIONS BDNF and DA in the NAc are involved in heroin addiction. BDNF overexpression in NAc reduces withdrawal symptoms and craving behavior for medicine induced by environmental cues for heroin-addicted rats. BDNF participates in the regulation of the dopamine system by acting on DRD3 and DAT.
Lam, Vincent M.; Salahpour, Ali
2016-01-01
A number of pathological conditions have been linked to mutations in the dopamine transporter gene, including hereditary dopamine transporter deficiency syndrome (DTDS). DTDS is a rare condition that is caused by autosomal recessive loss-of-function mutations in the dopamine transporter (DAT), which often affects transporter trafficking and folding. We examined the possibility of using pharmacological chaperones of DAT to rescue DTDS mutations. After screening a set of known DAT ligands for their ability to increase DAT surface expression, we found that bupropion and ibogaine increased DAT surface expression, whereas others, including cocaine and methylphenidate, had no effect. Bupropion and ibogaine increased wild type DAT protein levels and also promoted maturation of the endoplasmic reticulum (ER)-retained DAT mutant K590A. Rescue of K590A could be blocked by inhibiting ER to Golgi transport using brefeldin A. Furthermore, knockdown of coat protein complex II (COPII) component SEC24D, which is important in the ER export of wild type DAT, also blocked the rescue effects of bupropion and ibogaine. These data suggest that bupropion and ibogaine promote maturation of DAT by acting as pharmacological chaperones in the ER. Importantly, both drugs rescue DAT maturation and functional activity of the DTDS-associated mutations A314V and R445C. Together, these results are the first demonstration of pharmacological chaperoning of DAT and suggest this may be a viable approach to increase DAT levels in DTDS and other conditions associated with reduced DAT function. PMID:27555326
ERIC Educational Resources Information Center
Cornish, Kim M.; Savage, Robert; Hocking, Darren R.; Hollis, Chris P.
2011-01-01
Attention deficit hyperactivity disorder (ADHD) and reading disability (RD) frequently co-occur in the child population and therefore raise the possibility of shared genetic etiology. We used a quantitative trait loci (QTL) approach to assess the involvement of the dopamine transporter (DAT1) gene polymorphism in mediating reading disability and…
Positron emission tomography molecular imaging of dopaminergic system in drug addiction.
Hou, Haifeng; Tian, Mei; Zhang, Hong
2012-05-01
Dopamine (DA) is involved in drug reinforcement, but its role in drug addiction remains unclear. Positron emission tomography (PET) is the first technology used for the direct measurement of components of the dopaminergic system in the living human brain. In this article, we reviewed the major findings of PET imaging studies on the involvement of DA in drug addiction, especially in heroin addiction. Furthermore, we summarized PET radiotracers that have been used to study the role of DA in drug addiction. To investigate presynaptic function in drug addiction, PET tracers have been developed to measure DA synthesis and transport. For the investigation of postsynaptic function, several radioligands targeting dopamine one (D1) receptor and dopamine two (D2) receptor are extensively used in PET imaging studies. Moreover, we also summarized the PET imaging findings of heroin addiction studies, including heroin-induced DA increases and the reinforcement, role of DA in the long-term effects of heroin abuse, DA and vulnerability to heroin abuse and the treatment implications. PET imaging studies have corroborated the role of DA in drug addiction and increase our understanding the mechanism of drug addiction. Copyright © 2012 Wiley Periodicals, Inc.
Nickell, Justin R.; Siripurapu, Kiran B.; Vartak, Ashish; Crooks, Peter A.; Dwoskin, Linda P.
2014-01-01
Methamphetamine abuse escalates, but no approved therapeutics are available to treat addicted individuals. Methamphetamine increases extracellular dopamine in reward-relevant pathways by interacting at vesicular monoamine transporter-2 (VMAT2) to inhibit dopamine uptake and promote dopamine release from synaptic vesicles, increasing cytosolic dopamine available for reverse transport by the dopamine transporter (DAT). VMAT2 is the target of our iterative drug discovery efforts to identify pharmacotherapeutics for methamphetamine addiction. Lobeline, the major alkaloid in Lobelia inflata, potently inhibited VMAT2, methamphetamine-evoked striatal dopamine release, and methamphetamine self-administration in rats but exhibited high affinity for nicotinic acetylcholine receptors (nAChRs). Defunctionalized, unsaturated lobeline analog, meso-transdiene (MTD), exhibited lobeline-like in vitro pharmacology, lacked nAChR affinity, but exhibited high affinity for DAT, suggesting potential abuse liability. The 2,4-dicholorophenyl MTD analog, UKMH-106, exhibited selectivity for VMAT2 over DAT, inhibited methamphetamine-evoked dopamine release, but required a difficult synthetic approach. Lobelane, a saturated, defunctionalized lobeline analog, inhibited the neurochemical and behavioral effects of methamphetamine; tolerance developed to the lobelane-induced decrease in methamphetamine self-administration. Improved drug-likeness was afforded by the incorporation of a chiral N-1,2-dihydroxypropyl moiety into lobelane to afford GZ-793A, which inhibited the neurochemical and behavioral effects of methamphetamine, without tolerance. From a series of 2,5-disubstituted pyrrolidine analogs, AV-2-192 emerged as a lead, exhibiting high affinity for VMAT2 and inhibiting methamphetamine-evoked dopamine release. Current results support the hypothesis that potent, selective VMAT2 inhibitors provide the requisite preclinical behavioral profile for evaluation as pharmacotherapeutics for methamphetamine abuse and emphasize selectivity for VMAT2 relative to DAT as a criterion for reducing abuse liability of the therapeutic. PMID:24484975
Fantegrossi, William E.; Bauzo, Rayna M.; Manvich, Daniel M.; Morales, Jose C.; Votaw, John R.; Goodman, Mark M.
2011-01-01
Rationale The interoceptive and reinforcing effects of 3,4-methylenedioxymethamphetamine (MDMA) are similar to those of psychostimulants, but the role of dopamine in the behavioral effects of MDMA is not well documented, especially in primates. Objective The aim of this study was to assess the role of dopamine in the behavioral effects of MDMA in two nonhuman primate species. Methods The behavioral effects of MDMA, with and without serotonergic or dopaminergic pretreatments, were studied in squirrel monkeys trained to respond under a fixed-interval schedule of stimulus termination; effects on caudate dopamine levels were studied in a separate group of squirrel monkeys using in vivo microdialysis. Positron emission tomography neuroimaging with the dopamine transporter (DAT) ligand [18F]FECNT was used to determine DAT occupancy by MDMA in rhesus monkeys. Results MDMA (0.5–1.5 mg/kg) did not induce behavioral stimulant effects, but the highest dose of MDMA suppressed responding. Pretreatment with fluoxetine (3.0 mg/kg) or the selective 5HT2A antagonist M100907 (0.03–0.3 mg/kg) attenuated the rate suppressing effects of MDMA. In contrast, pretreatment with the selective dopamine transporter inhibitor RTI-177 (0.1 mg/kg) did not alter the rate suppressing effects of MDMA. Administration of MDMA at a dose that suppressed operant behavior had negligible effects on extracellular dopamine. The percent DAT occupancy of MDMA at a dose that suppressed operant behavior also was marginal and reflected low in vivo potency for DAT binding. Conclusions Collectively, these results indicate that behaviorally relevant doses of MDMA do not induce behavioral stimulant or dopamine transporter-mediated effects in nonhuman primates. PMID:19421742
Fantegrossi, William E; Bauzo, Rayna M; Manvich, Daniel M; Morales, Jose C; Votaw, John R; Goodman, Mark M; Howell, Leonard L
2009-08-01
The interoceptive and reinforcing effects of 3,4-methylenedioxymethamphetamine (MDMA) are similar to those of psychostimulants, but the role of dopamine in the behavioral effects of MDMA is not well documented, especially in primates. The aim of this study was to assess the role of dopamine in the behavioral effects of MDMA in two nonhuman primate species. The behavioral effects of MDMA, with and without serotonergic or dopaminergic pretreatments, were studied in squirrel monkeys trained to respond under a fixed-interval schedule of stimulus termination; effects on caudate dopamine levels were studied in a separate group of squirrel monkeys using in vivo microdialysis. Positron emission tomography neuroimaging with the dopamine transporter (DAT) ligand [18F]FECNT was used to determine DAT occupancy by MDMA in rhesus monkeys. MDMA (0.5-1.5 mg/kg) did not induce behavioral stimulant effects, but the highest dose of MDMA suppressed responding. Pretreatment with fluoxetine (3.0 mg/kg) or the selective 5HT(2A) antagonist M100907 (0.03-0.3 mg/kg) attenuated the rate suppressing effects of MDMA. In contrast, pretreatment with the selective dopamine transporter inhibitor RTI-177 (0.1 mg/kg) did not alter the rate suppressing effects of MDMA. Administration of MDMA at a dose that suppressed operant behavior had negligible effects on extracellular dopamine. The percent DAT occupancy of MDMA at a dose that suppressed operant behavior also was marginal and reflected low in vivo potency for DAT binding. Collectively, these results indicate that behaviorally relevant doses of MDMA do not induce behavioral stimulant or dopamine transporter-mediated effects in nonhuman primates.
Thanos, Panayotis K; Kim, Ronald; Delis, Foteini; Rocco, Mark J; Cho, Jacob; Volkow, Nora D
2017-03-01
Methamphetamine (MA) studies in animals usually involve acute, binge, or short-term exposure to the drug. However, addicts take substantial amounts of MA for extended periods of time. Here we wished to study the effects of MA exposure on brain and behavior, using an animal model analogous to this pattern of MA intake. MA doses, 4 and 8mg/kg/day, were based on previously reported average daily freely available MA self-administration levels. We examined the effects of 16 week MA treatment on psychomotor and cognitive function in the rat using open field and novel object recognition tests and we studied the adaptations of the dopaminergic system, using in vitro and in vivo receptor imaging. We show that chronic MA treatment, at doses that correspond to the average daily freely available self-administration levels in the rat, disorganizes open field activity, impairs alert exploratory behavior and anxiety-like state, and downregulates dopamine transporter in the striatum. Under these treatment conditions, dopamine terminal functional integrity in the nucleus accumbens is also affected. In addition, lower dopamine D1 receptor binding density, and, to a smaller degree, lower dopamine D2 receptor binding density were observed. Potential mechanisms related to these alterations are discussed. Copyright © 2016. Published by Elsevier B.V.
Dopamine receptors – IUPHAR Review 13
Beaulieu, Jean-Martin; Espinoza, Stefano; Gainetdinov, Raul R
2015-01-01
The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors. PMID:25671228
Tillerson, Jennifer L; Caudle, W Michael; Parent, Jack M; Gong, C; Schallert, Timothy; Miller, Gary W
2006-09-15
Previous pharmacological studies have implicated dopamine as a modulator of olfactory bulb processing. Several disorders characterized by altered dopamine homeostasis in olfaction-related brain regions display olfactory deficits. To further characterize the role of dopamine in olfactory processing, we subjected dopamine transporter knockout mice (DAT -/-) and dopamine receptor 2 knockout mice (D2 -/-) to a battery of olfactory tests. In addition to behavioral characterization, several neurochemical markers of olfactory bulb integrity and function were examined. DAT -/- mice displayed an olfactory discrimination deficit, but did not differ detectably from DAT wildtype (DAT +/+) mice in odor habituation, olfactory sensitivity, or odor recognition memory. Neurochemically, DAT -/- mice have decreased D2 receptor staining in the periglomerular layer of the olfactory bulb and increased tyrosine hydroxylase immunoreactivity compared to DAT +/+ controls. D2 -/- mice exhibited the same olfactory deficit as the DAT -/- mice, further supporting the role of dopamine at the D2 synapse in olfactory discrimination processing. The findings presented in this paper reinforce the functional significance of dopamine and more specifically the D2 receptor in olfactory discrimination and may help explain the behavioral phenotype in the DAT and D2 knockout mice.
The structure and function of the dopamine transporter and its role in CNS diseases.
McHugh, Patrick C; Buckley, David A
2015-01-01
In this chapter, we explore the basic science of the dopamine transporter (DAT), an integral component of a system that regulates dopamine homeostasis. Dopamine is a key neurotransmitter for several brain functions including locomotor control and reward systems. The transporter structure, function, mechanism of action, localization, and distribution, in addition to gene regulation, are discussed. Over many years, a wealth of information concerning the DAT has been accrued and has led to increased interest in the role of the DAT in a plethora of central nervous system diseases. These DAT characteristics are explored in relation to a range of neurological and neuropsychiatric diseases, with a particular focus on the genetics of the DAT. In addition, we discuss the pharmacology of the DAT and how this relates to disease and addiction. © 2015 Elsevier Inc. All rights reserved.
Brain serotonin and dopamine transporter bindings in adults with high-functioning autism.
Nakamura, Kazuhiko; Sekine, Yoshimoto; Ouchi, Yasuomi; Tsujii, Masatsugu; Yoshikawa, Etsuji; Futatsubashi, Masami; Tsuchiya, Kenji J; Sugihara, Genichi; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Suda, Shiro; Sugiyama, Toshiro; Takei, Nori; Mori, Norio
2010-01-01
Autism is a neurodevelopmental disorder that is characterized by repetitive and/or obsessive interests and behavior and by deficits in sociability and communication. Although its neurobiological underpinnings are postulated to lie in abnormalities of the serotoninergic and dopaminergic systems, the details remain unknown. To determine the occurrence of changes in the binding of serotonin and dopamine transporters, which are highly selective markers for their respective neuronal systems. Using positron emission tomography, we measured the binding of brain serotonin and dopamine transporters in each individual with the radioligands carbon 11 ((11)C)-labeled trans-1,2,3,5,6,10-beta-hexahydro-6-[4-(methylthio)phenyl]pyrrolo-[2,1-a]isoquinoline ([(11)C](+)McN-5652) and 2beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane ([(11)C]WIN-35,428), respectively. Statistical parametric mapping was used for between-subject analysis and within-subject correlation analysis with respect to clinical variables. Participants recruited from the community. Twenty men (age range, 18-26 years; mean [SD] IQ, 99.3 [18.1]) with autism and 20 age- and IQ-matched control subjects. Serotonin transporter binding was significantly lower throughout the brain in autistic individuals compared with controls (P < .05, corrected). Specifically, the reduction in the anterior and posterior cingulate cortices was associated with the impairment of social cognition in the autistic subjects (P < .05, corrected). A significant correlation was also found between repetitive and/or obsessive behavior and interests and the reduction of serotonin transporter binding in the thalamus (P < .05, corrected). In contrast, the dopamine transporter binding was significantly higher in the orbitofrontal cortex of the autistic group (P < .05, corrected in voxelwise analysis). In the orbitofrontal cortex, the dopamine transporter binding was significantly inversely correlated with serotonin transporter binding (r = -0.61; P = .004). The brains of autistic individuals have abnormalities in both serotonin transporter and dopamine transporter binding. The present findings indicate that the gross abnormalities in these neurotransmitter systems may underpin the neurophysiologic mechanism of autism. Our sample was not characteristic or representative of a typical sample of adults with autism in the community.
Chung, Su Jin; Lee, Yoonju; Oh, Jungsu S; Kim, Jae Seung; Lee, Phil Hyu; Sohn, Young H
2018-05-10
The present study aimed to investigate whether the level of presynaptic dopamine neuronal loss predicts future development of wearing-off in de novo Parkinson's disease. This retrospective cohort study included a total of 342 non-demented patients with de novo Parkinson's disease who underwent dopamine transporter positron emission tomography scans at their initial evaluation and received dopaminergic medications for 24 months or longer. Onset of wearing-off was determined based on patients' medical records at their outpatient clinic visits every 3-6 months. Predictive power of dopamine transporter activity in striatal subregions and other clinical factors for the development of wearing-off was evaluated by Cox proportional hazard models. During a median follow-up period of 50.2 ± 18.9 months, 69 patients (20.2%) developed wearing-off. Patients with wearing-off exhibited less dopamine transporter activity in the putamen, particularly the anterior and posterior putamens, compared to those without wearing-off. Multivariate Cox proportional hazard models revealed that dopamine transporter activities of the anterior (hazard ratio 0.556; p = 0.008) and whole putamens (hazard ratio 0.504; p = 0.025) were significant predictors of development of wearing-off. In addition, younger age at onset of Parkinson's disease, lower body weight, and a motor phenotype of postural instability/gait disturbance were also significant predictors for development of wearing-off. The present results provide in vivo evidence to support the hypothesis that presynaptic dopamine neuronal loss, particularly in the anterior putamen, leads to development of wearing-off in Parkinson's disease. Copyright © 2018. Published by Elsevier Ltd.
Neurotransmitter and psychostimulant recognition by the dopamine transporter
Wang, Kevin H.; Penmatsa, Aravind; Gouaux, Eric
2015-01-01
Na+/Cl−-coupled biogenic amine transporters are the primary targets of therapeutic and abused drugs, ranging from antidepressants to the psychostimulants cocaine and amphetamines, and to their cognate substrates. Here we determine x-ray crystal structures of the Drosophila melanogaster dopamine transporter (dDAT) bound to its substrate dopamine (DA), a substrate analogue 3,4-dichlorophenethylamine, the psychostimulants D-amphetamine, methamphetamine, or to cocaine and cocaine analogues. All ligands bind to the central binding site, located approximately halfway across the membrane bilayer, in close proximity to bound sodium and chloride ions. The central binding site recognizes three chemically distinct classes of ligands via conformational changes that accommodate varying sizes and shapes, thus illustrating molecular principles that distinguish substrates from inhibitors in biogenic amine transporters. PMID:25970245
Kish, Stephen J; Boileau, Isabelle; Callaghan, Russell C; Tong, Junchao
2017-01-01
The objective of this review is to evaluate the evidence that recreational methamphetamine exposure might damage dopamine neurones in human brain, as predicted by experimental animal findings. Brain dopamine marker data in methamphetamine users can now be compared with those in Parkinson's disease, for which the Oleh Hornykiewicz discovery in Vienna of a brain dopamine deficiency is established. Whereas all examined striatal (caudate and putamen) dopamine neuronal markers are decreased in Parkinson's disease, levels of only some (dopamine, dopamine transporter) but not others (dopamine metabolites, synthetic enzymes, vesicular monoamine transporter 2) are below normal in methamphetamine users. This suggests that loss of dopamine neurones might not be characteristic of methamphetamine exposure in at least some human drug users. In methamphetamine users, dopamine loss was more marked in caudate than in putamen, whereas in Parkinson's disease, the putamen is distinctly more affected. Substantia nigra loss of dopamine-containing cell bodies is characteristic of Parkinson's disease, but similar neuropathological studies have yet to be conducted in methamphetamine users. Similarly, it is uncertain whether brain gliosis, a common feature of brain damage, occurs after methamphetamine exposure in humans. Preliminary epidemiological findings suggest that methamphetamine use might increase risk of subsequent development of Parkinson's disease. We conclude that the available literature is insufficient to indicate that recreational methamphetamine exposure likely causes loss of dopamine neurones in humans but does suggest presence of a striatal dopamine deficiency that, in principle, could be corrected by dopamine substitution medication if safety and subject selection considerations can be resolved. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Aberrant dopamine D2-like receptor function in a rodent model of schizophrenia.
Perez, Stephanie M; Lodge, Daniel J
2012-11-01
Based on the observation that antipsychotic medications display antagonist properties at dopamine D2-like receptors, aberrant dopamine signaling has been proposed to underlie psychosis in patients with schizophrenia. Thus, it is not surprising that considerable research has been devoted to understanding the mechanisms involved in the antipsychotic action of these compounds. It is important to note that the majority of these studies have been performed in "normal" experimental animals. Given that these animals do not possess the aberrant neuronal information processing typically associated with schizophrenia, the aim of the current study was to examine the dopamine D2 receptor system in a rodent model of schizophrenia. Here, we demonstrate that methylazoxymethanol acetate (MAM)-treated rats display an enhanced effect of quinpirole on dopamine neuron activity and an aberrant locomotor response to D2-like receptor activation, suggesting changes in postsynaptic D2-like receptor function. To better understand the mechanisms underlying the enhanced response to D2-like ligands in MAM-treated rats, we examined the expression of D2, D3, and dopamine transporter mRNA in the nucleus accumbens and ventral tegmental area by quantitative reverse transcription-polymerase chain reaction. MAM-treated rats displayed a significant increase in dopamine D3 receptor mRNA expression in the nucleus accumbens with no significant changes in the expression of the D2 receptor. Taken together, these data demonstrate robust alterations in dopamine D2-like receptor function in a rodent model of schizophrenia and provide evidence that preclinical studies examining the mechanisms of antipsychotic drug action should be performed in animal models that mirror aspects of the abnormal neuronal transmission thought to underlie symptoms of schizophrenia.
Beerepoot, Pieter; Lam, Vincent M; Salahpour, Ali
2016-10-14
A number of pathological conditions have been linked to mutations in the dopamine transporter gene, including hereditary dopamine transporter deficiency syndrome (DTDS). DTDS is a rare condition that is caused by autosomal recessive loss-of-function mutations in the dopamine transporter (DAT), which often affects transporter trafficking and folding. We examined the possibility of using pharmacological chaperones of DAT to rescue DTDS mutations. After screening a set of known DAT ligands for their ability to increase DAT surface expression, we found that bupropion and ibogaine increased DAT surface expression, whereas others, including cocaine and methylphenidate, had no effect. Bupropion and ibogaine increased wild type DAT protein levels and also promoted maturation of the endoplasmic reticulum (ER)-retained DAT mutant K590A. Rescue of K590A could be blocked by inhibiting ER to Golgi transport using brefeldin A. Furthermore, knockdown of coat protein complex II (COPII) component SEC24D, which is important in the ER export of wild type DAT, also blocked the rescue effects of bupropion and ibogaine. These data suggest that bupropion and ibogaine promote maturation of DAT by acting as pharmacological chaperones in the ER. Importantly, both drugs rescue DAT maturation and functional activity of the DTDS-associated mutations A314V and R445C. Together, these results are the first demonstration of pharmacological chaperoning of DAT and suggest this may be a viable approach to increase DAT levels in DTDS and other conditions associated with reduced DAT function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Zhu, Bi; Chen, Chuansheng; Moyzis, Robert K; Dong, Qi; Chen, Chunhui; He, Qinghua; Stern, Hal S; Li, He; Li, Jin; Li, Jun; Lessard, Jared; Lin, Chongde
2012-01-01
This study investigated the relation between genetic variations in the dopamine system and facial expression recognition. A sample of Chinese college students (n = 478) was given a facial expression recognition task. Subjects were genotyped for 98 loci [96 single-nucleotide polymorphisms (SNPs) and 2 variable number tandem repeats] in 16 genes involved in the dopamine neurotransmitter system, including its 4 subsystems: synthesis (TH, DDC, and DBH), degradation/transport (COMT,MAOA,MAOB, and SLC6A3), receptors (DRD1,DRD2,DRD3,DRD4, and DRD5), and modulation (NTS,NTSR1,NTSR2, and NLN). To quantify the total contributions of the dopamine system to emotion recognition, we used a series of multiple regression models. Permutation analyses were performed to assess the posterior probabilities of obtaining such results. Among the 78 loci that were included in the final analyses (after excluding 12 SNPs that were in high linkage disequilibrium and 8 that were not in Hardy-Weinberg equilibrium), 1 (for fear), 3 (for sadness), 5 (for anger), 13 (for surprise), and 15 (for disgust) loci exhibited main effects on the recognition of facial expressions. Genetic variations in the dopamine system accounted for 3% for fear, 6% for sadness, 7% for anger, 10% for surprise, and 18% for disgust, with the latter surviving a stringent permutation test. Genetic variations in the dopamine system (especially the dopamine synthesis and modulation subsystems) made significant contributions to individual differences in the recognition of disgust faces. Copyright © 2012 S. Karger AG, Basel.
Phosphorylation mechanisms in dopamine transporter regulation.
Foster, James D; Vaughan, Roxanne A
2017-10-01
The dopamine transporter (DAT) is a plasma membrane phosphoprotein that actively translocates extracellular dopamine (DA) into presynaptic neurons. The transporter is the primary mechanism for control of DA levels and subsequent neurotransmission, and is the target for abused and therapeutic drugs that exert their effects by suppressing reuptake. The transport capacity of DAT is acutely regulated by signaling systems and drug exposure, providing neurons the ability to fine-tune DA clearance in response to specific conditions. Kinase pathways play major roles in these mechanisms, and this review summarizes the current status of DAT phosphorylation characteristics and the evidence linking transporter phosphorylation to control of reuptake and other functions. Greater understanding of these processes may aid in elucidation of their possible contributions to DA disease states and suggest specific phosphorylation sites as targets for therapeutic manipulation of reuptake. Copyright © 2016. Published by Elsevier B.V.
Park, Sang Won; He, Zhi; Shen, Xine; Roman, Richard J; Ma, Tangeng
2012-06-01
Extensive anatomical and functional interactions exist between central dopaminergic and opioidergic systems and both systems are proposed to be targets for amphetamine-like drugs. We have previously reported that μ-opioid receptor (μ-OR) knockout mice are resistant to the loss of dopamine in the striatum and the development of behavioral sensitization induced by repeated methamphetamine (METH) treatment. The present study assessed whether METH-treated μ-OR knockout mice exhibit a differential response of the expression of dopamine transporter and tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine synthesis and maintaining dopamine levels. Mice daily received intraperitoneal injection of METH (0, 0.6, 2.5, or 10 mg/kg) for 7 days and sacrificed on day 11 (4 days after the last injection). The expression of TH protein in the striatum and the levels of TH mRNA and number of TH positive neurons in the substantia nigra were reduced in wild-type mice treated with METH (2.5 and 10 mg/kg), but not in the μ-OR knockout mice. In contrast, METH exposure at the highest dose (10 mg/kg) reduced dopamine transporter levels in both strains of mice. These results suggest that the μ-OR contributes to METH-induced loss of dopamine and behavioral sensitization by decreasing the expression of TH.
Lebedev, A V; Ivanova, M V; Timoshin, A A; Ruuge, E K
2008-01-01
Ca2+-induced increase in the rate of pyrocatechol and dopamine oxidation by dioxygen and Ca2+-dependent acid-base properties of the catechols were studied by potentiometric titration, UV/Vis-spectrophotometry, EPR-spectroscopy, and by measurement of oxygen consumption. The effect of Ca2+ on the chain reactions of oxidation can be explained by additional deprotonation (decrease in pKai) of the catechols that accelerates one electron transport to dioxygen and formation of calcium semiquinonate, undergoing further oxidation. The described Ca2+-dependent redox-conversion of ortho-phenols proposes that an additional function of calcium in the cell can be its involvement in free radical oxidoreductive reactions at pH > pKai.
Urigüen, L; Gil-Pisa, I; Munarriz-Cuezva, E; Berrocoso, E; Pascau, J; Soto-Montenegro, M L; Gutiérrez-Adán, A; Pintado, B; Madrigal, J L M; Castro, E; Sánchez-Blázquez, P; Ortega, J E; Guerrero, M J; Ferrer-Alcon, M; García-Sevilla, J A; Micó, J A; Desco, M; Leza, J C; Pazos, Á; Garzón, J; Meana, J J
2013-01-01
Overexpression of the mammalian homolog of the unc-18 gene (munc18-1) has been described in the brain of subjects with schizophrenia. Munc18-1 protein is involved in membrane fusion processes, exocytosis and neurotransmitter release. A transgenic mouse strain that overexpresses the protein isoform munc18-1a in the brain was characterized. This animal displays several schizophrenia-related behaviors, supersensitivity to hallucinogenic drugs and deficits in prepulse inhibition that reverse after antipsychotic treatment. Relevant brain areas (that is, cortex and striatum) exhibit reduced expression of dopamine D1 receptors and dopamine transporters together with enhanced amphetamine-induced in vivo dopamine release. Magnetic resonance imaging demonstrates decreased gray matter volume in the transgenic animal. In conclusion, the mouse overexpressing brain munc18-1a represents a new valid animal model that resembles functional and structural abnormalities in patients with schizophrenia. The animal could provide valuable insights into phenotypic aspects of this psychiatric disorder. PMID:23340504
Obesity is associated with genetic variants that alter dopamine availability.
Need, A C; Ahmadi, K R; Spector, T D; Goldstein, D B
2006-05-01
Human and animal studies have implicated dopamine in appetite regulation, and family studies have shown that BMI has a strong genetic component. Dopamine availability is controlled largely by three enzymes: COMT, MAOA and MAOB, and by the dopamine transporter SLC6A3, and each gene has a well-characterized functional variant. Here we look at these four functional polymorphisms together, to investigate how heritable variation in dopamine levels influences the risk of obesity in a cohort of 1150, including 240 defined as obese (BMI > or = 30). The COMT and SLC6A3 polymorphisms showed no association with either weight, BMI or obesity risk. We found, however, that both MAOA and MAOB show an excess of the low-activity genotypes in obese individuals (MAOA:chi2= 15.45, p = 0.004; MAOB:chi2= 8.05, p = 0.018). Additionally, the MAOA genotype was significantly associated with both weight (p = 0.0005) and BMI (p = 0.001). When considered together, the 'at risk genotype'--low activity genotypes at both the MAOA and MAOB loci--shows a relative risk for obesity of 5.01. These results have not been replicated and, given the experience of complex trait genetics, warrant caution in interpretation. In implicating both the MAOA and MOAB variants, however, this study provides the first indication that dopamine availability (as opposed to other effects of MAOA) is involved in human obesity. It is therefore a priority to assess the associations in replication datasets.
Yuan, Yaxia; Zhu, Jun; Zhan, Chang-Guo
2018-03-09
Molecular modeling and molecular dynamics simulations were performed in the present study to examine the modes of dopamine binding with human and Drosophila dopamine transporters (hDAT and dDAT). The computational data revealed flipped binding orientations of dopamine in hDAT and dDAT due to the major differences in three key residues (S149, G153, and A423 of hDAT vs A117, D121, and S422 of dDAT) in the binding pocket. These three residues dictate the binding orientation of dopamine in the binding pocket, as the aromatic ring of dopamine tends to take an orientation with both the para- and meta-hydroxyl groups being close to polar residues and away from nonpolar residues of the protein. The flipped binding orientations of dopamine in hDAT and dDAT clearly demonstrate a generally valuable insight concerning how the species difference could drastically affect the protein-ligand binding modes, demonstrating that the species difference, which is a factor rarely considered in early drug design stage, must be accounted for throughout the ligand/drug design and discovery processes in general.
NASA Astrophysics Data System (ADS)
Hauck Newman, Amy; Katz, Jonathan L.
The dopamine transporter (DAT) has been a primary target for cocaine abuse/addiction medication discovery. However predicted addiction liability and limited clinical evaluation has provided a formidable challenge for development of these agents for human use. The unique and atypical pharmacological profile of the benztropine (BZT) class of dopamine uptake inhibitors, in preclinical models of cocaine effects and abuse, has encouraged further development of these agents. Moreover, in vivo studies have challenged the original DAT hypothesis and demonstrated that DAT occupancy and subsequent increases in dopamine produced by BZT analogues are significantly delayed and long lasting, as compared to cocaine. These important and distinctive elements are critical to the lack of abuse liability among BZT analogues, and improve their potential for development as treatments for cocaine abuse and possibly other neuropsychiatric disorders.
Dopamine Transporter Genotype Predicts Attentional Asymmetry in Healthy Adults
ERIC Educational Resources Information Center
Newman, Daniel P.; O'Connell, Redmond G.; Nathan, Pradeep J.; Bellgrove, Mark A.
2012-01-01
A number of recent studies suggest that DNA variation in the dopamine transporter gene (DAT1) influences spatial attention asymmetry in clinical populations such as ADHD, but confirmation in non-clinical samples is required. Since non-spatial factors such as attentional load have been shown to influence spatial biases in clinical conditions, here…
Nicholas, Timothy; Tsai, Kuenhi; Macha, Sreeraj; Sinha, Vikram; Stone, Julie; Corrigan, Brian; Bani, Massimo; Muglia, Pierandrea; Watson, Ian A.; Kern, Volker D.; Sheveleva, Elena; Marek, Kenneth; Stephenson, Diane T.; Romero, Klaus
2017-01-01
Abstract Given the recognition that disease‐modifying therapies should focus on earlier Parkinson's disease stages, trial enrollment based purely on clinical criteria poses significant challenges. The goal herein was to determine the utility of dopamine transporter neuroimaging as an enrichment biomarker in early motor Parkinson's disease clinical trials. Patient‐level longitudinal data of 672 subjects with early‐stage Parkinson's disease in the Parkinson's Progression Markers Initiative (PPMI) observational study and the Parkinson Research Examination of CEP‐1347 Trial (PRECEPT) clinical trial were utilized in a linear mixed‐effects model analysis. The rate of worsening in the motor scores between subjects with or without a scan without evidence of dopamine transporter deficit was different both statistically and clinically. The average difference in the change from baseline of motor scores at 24 months between biomarker statuses was –3.16 (90% confidence interval [CI] = –0.96 to –5.42) points. Dopamine transporter imaging could identify subjects with a steeper worsening of the motor scores, allowing trial enrichment and 24% reduction of sample size. PMID:28749580
[Study of dopamine transporter imaging on the brain of children with autism].
Sun, Xiaomian; Yue, Jing; Zheng, Chongxun
2008-04-01
This study was conducted to evaluate the applicability of 99mTc-2beta-[ N, N'-bis (2-mercaptoethyl) ethylenediamino]methyl,3beta(4-chlorophenyl)tropane(TRODAT-1) dopamine transporter(DAT) SPECT imaging in children with autism, and thus to provide an academic basis for the etiology, mechanism and clinical therapy of autism. Ten autistic children and ten healthy controls were examined with 99mTc-TRODAT-1 DAT SPECT imaging. Striatal specific uptake of 99mTc-TRODAT-1 was calculated with region of interest analysis according to the ratics between striatum and cerebellum [(STR-BKG)/BKG]. There was no statistically significant difference in semiquantitative dopamine transporter between the bilateral striata of autistic children (P=0.562), and between those of normal controls (p=0.573); Dopamine transporter in the brain of patients with autism increased significantly as compared with that in the brain of normal controls (P=0.017). Dopaminergic nervous system is dysfunctioning in the brain of children with autism, and DAT 99mTc-TRODAT-1 SPECT imaging on the brain will help the imaging diagnosis of childhcod autism.
van der Voet, M; Harich, B; Franke, B; Schenck, A
2016-01-01
Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neuropsychiatric disorder with hyperactivity as one of the hallmarks. Aberrant dopamine signaling is thought to be a major theme in ADHD, but how this relates to the vast majority of ADHD candidate genes is illusive. Here we report a Drosophila dopamine-related locomotor endophenotype that is shared by pan-neuronal knockdown of orthologs of the ADHD-associated genes Dopamine transporter (DAT1) and Latrophilin (LPHN3), and of a gene causing a monogenic disorder with frequent ADHD comorbidity: Neurofibromin (NF1). The locomotor signature was not found in control models and could be ameliorated by methylphenidate, validating its relevance to symptoms of the disorder. The Drosophila ADHD endophenotype can be further exploited in high throughput to characterize the growing number of candidate genes. It represents an equally useful outcome measure for testing chemical compounds to define novel treatment options. PMID:25962619
Glutamatergic modulation of hyperactivity in mice lacking the dopamine transporter
Gainetdinov, Raul R.; Mohn, Amy R.; Bohn, Laura M.; Caron, Marc G.
2001-01-01
In the brain, dopamine exerts an important modulatory influence over behaviors such as emotion, cognition, and affect as well as mechanisms of reward and the control of locomotion. The dopamine transporter (DAT), which reuptakes the released neurotransmitter into presynaptic terminals, is a major determinant of the intensity and duration of the dopaminergic signal. Knockout mice lacking the dopamine transporter (DAT-KO mice) display marked changes in dopamine homeostasis that result in elevated dopaminergic tone and pronounced locomotor hyperactivity. A feature of DAT-KO mice is that their hyperactivity can be inhibited by psychostimulants and serotonergic drugs. The pharmacological effect of these drugs occurs without any observable changes in dopaminergic parameters, suggesting that other neurotransmitter systems in addition to dopamine might contribute to the control of locomotion in these mice. We report here that the hyperactivity of DAT-KO mice can be markedly further enhanced when N-methyl-d-aspartate receptor-mediated glutamatergic transmission is blocked. Conversely, drugs that enhance glutamatergic transmission, such as positive modulators of l-α-amino-3-hydroxy-5-methylisoxazole-4-propionate glutamate receptors, suppress the hyperactivity of DAT-KO mice. Interestingly, blockade of N- methyl-d-aspartate receptors prevented the inhibitory effects of both psychostimulant and serotonergic drugs on hyperactivity. These findings support the concept of a reciprocal functional interaction between dopamine and glutamate in the basal ganglia and suggest that agents modulating glutamatergic transmission may represent an approach to manage conditions associated with dopaminergic dysfunction. PMID:11572967
Sleep Deprivation Decreases [11C]Raclopride’s Binding to Dopamine D2/D3 Receptors in the Human Brain
Volkow, Nora D.; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S.; Logan, Jean; Wong, Christopher; Ma, Jim; Pradhan, Kith; Tomasi, Dardo; Thanos, Peter K.; Ferré, Sergi; Jayne, Millard
2009-01-01
Sleep deprivation can markedly impair human performance contributing to accidents and poor productivity. The mechanisms underlying this impairment are not well understood but brain dopamine systems have been implicated. Here we test whether one night of sleep deprivation changes dopamine brain activity. We studied fifteen healthy subjects using positron emission tomography and [11C]raclopride (dopamine D2/3 receptor radioligand) and [11C]cocaine (dopamine transporter radioligand). Subjects were tested twice; after one night of rested sleep and after on night of sleep deprivation. [11C]Raclopride’s specific binding in striatum and thalamus were significantly reduced after sleep deprivation and the magnitude of this reduction correlated with increases in fatigue (tiredness and sleepiness) and with deterioration in cognitive performance (visual attention and working memory). In contrast sleep deprivation did not affect the specific binding of [11C]cocaine in striatum. Since [11C]raclopride competes with endogenous dopamine for binding to D2/D3 receptors, we interpret the decreases in binding to reflect dopamine increases with sleep deprivation. However, we can not rule out the possibility that decreased [11C]raclopride binding reflects decreases in receptor levels or affinity. Sleep deprivation did not affect dopamine transporters (target for most wake-promoting medications) and thus dopamine increases are likely to reflect increases in dopamine cell firing and/or release rather than decreases in dopamine reuptake. Inasmuch as dopamine-enhancing drugs increase wakefulness we postulate that dopamine increases after sleep deprivation is a mechanism by which the brain maintains arousal as the drive to sleep increases but one that is insufficient to counteract behavioral and cognitive impairment. PMID:18716203
Leroy, Claire; Karila, Laurent; Martinot, Jean-Luc; Lukasiewicz, Michaël; Duchesnay, Edouard; Comtat, Claude; Dollé, Frédéric; Benyamina, Amine; Artiges, Eric; Ribeiro, Maria-Joao; Reynaud, Michel; Trichard, Christian
2012-11-01
The dopamine (DA) system is known to be involved in the reward and dependence mechanisms of addiction. However, modifications in dopaminergic neurotransmission associated with long-term tobacco and cannabis use have been poorly documented in vivo. In order to assess striatal and extrastriatal dopamine transporter (DAT) availability in tobacco and cannabis addiction, three groups of male age-matched subjects were compared: 11 healthy non-smoker subjects, 14 tobacco-dependent smokers (17.6 ± 5.3 cigarettes/day for 12.1 ± 8.5 years) and 13 cannabis and tobacco smokers (CTS) (4.8 ± 5.3 cannabis joints/day for 8.7 ± 3.9 years). DAT availability was examined in positron emission tomography (HRRT) with a high resolution research tomograph after injection of [11C]PE2I, a selective DAT radioligand. Region of interest and voxel-by-voxel approaches using a simplified reference tissue model were performed for the between-group comparison of DAT availability. Measurements in the dorsal striatum from both analyses were concordant and showed a mean 20% lower DAT availability in drug users compared with controls. Whole-brain analysis also revealed lower DAT availability in the ventral striatum, the midbrain, the middle cingulate and the thalamus (ranging from -15 to -30%). The DAT availability was slightly lower in all regions in CTS than in subjects who smoke tobacco only, but the difference does not reach a significant level. These results support the existence of a decrease in DAT availability associated with tobacco and cannabis addictions involving all dopaminergic brain circuits. These findings are consistent with the idea of a global decrease in cerebral DA activity in dependent subjects. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.
Effect of 1 GeV/n Fe particles on cocaine-stimulated locomotor activity
NASA Astrophysics Data System (ADS)
Vazquez, M.; Bruneus, M.; Gatley, J.; Russell, S.; Billups, A.
Space travel beyond the Earth's protective magnetic field (for example, to Mars) will involve exposure of astronauts to irradiation by high-energy nuclei such as 56Fe (HZE radiation), which are a component of galactic cosmic rays. These particles have high linear energy transfer (LET) and are expected to irreversibly damage cells they traverse. Our working hypothesis is that long-term behavioral alterations are induced after exposure of the brain to 1 GeV/n iron particles with fluences of 1 to 8 particles/cell targets. Previous studies support this notion but are not definitive, especially with regard to long-term effects. Using the Alternating Gradient Synchrotron (AGS) we expose C57 mice to 1 GeV/n 56Fe radiation (head only) at doses of 0, 15, 30, 60, 120 and 240 cGy. There were originally 19 mice per group. The ability of cocaine to increase locomotor activity in 16 of these animals in response to an intraperitoneal injection of cocaine has been measured so far at 1, 4, 8, 12, 16, 20, 24 and 28 weeks. Cocaine-stimulated locomotor activity was chosen in part because it is a behavioral assay with which we have considerable experience. More importantly, the ability to respond to cocaine is a complex behavior involving many neurotransmitter systems and brain circuits. Therefore, the probability of alteration of this behavior by HZE particles was considered high. However, the central circuit is the nigrostriatal dopamine system, in which dopamine is released in striatum from nerve terminals whose cell bodies are located in the substantia nigra. Cocaine activates behavior by blocking dopamine transporters on striatal nerve terminals and therefore elevating the concentration of dopamine in the synapse. Dopamine activates receptors on striatal GABAergic cells that project via other brain regions to the thalamus. Activation of the motor cortex by glutamatergic projections from the thalamus leads ultimately to increased locomotion. The experimental paradigm involves placing mice in a plexiglass box fitted with arrays of photocells. A mouse placed in the box exhibits exploratory behavior that diminishes to a low level over the course of about 20 min. Iron particle irradiation caused dose related reductions in locomotor activity stimulated by cocaine, as evidenced by the group data presented here. The impairments after HZE radiation appeared to be persistent. Irradiation using a 137Co source also led to alterations in cocaine-stimulated locomotion at early times, but, unlike the situation for HZE radiation, these disappeared at later times. These studies were very recently terminated and data analysis is not yet complete. For example, spontaneous activity was also monitored, and it is possible that comparison of stimulated and spontaneous locomotion for each animal may expose larger changes. Most of the mice were sacrificed and their brains stored for histology and neurochemistry. Ex vivo determination of dopamine transporter status in striata of some of the mice indicated no large decrease in this marker of pre-synaptic dopamine terminals, supporting an earlier pilot study in rats.
[Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].
Bagrov, Ia Iu; Manusova, N B
2014-01-01
Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms.
ERIC Educational Resources Information Center
Li, James J.; Lee, Steve S.
2012-01-01
Background: Although the association of the dopamine transporter (DAT1) gene and attention-deficit/hyperactivity disorder (ADHD) has been widely studied, far less is known about its potential interaction with environmental risk factors. Given that maltreatment is a replicated risk factor for ADHD, we explored the interaction between DAT1 and…
ERIC Educational Resources Information Center
Li, James J.; Lee, Steve S.
2013-01-01
Emerging evidence suggests that some individuals may be simultaneously more responsive to the effects from environmental adversity "and" enrichment (i.e., differential susceptibility). Given that parenting behavior and a variable number tandem repeat polymorphism in the 3'untranslated region of the dopamine transporter (DAT1) gene are…
USDA-ARS?s Scientific Manuscript database
The benztropine analog JHW 007 displays high affinity for the dopamine transporter (DAT), but unlike typical DAT ligands, has relatively low abuse liability and blocks effects of cocaine,including its self-administration. To determine sites responsible for the cocaine-antagonist effects of JHW 007, ...
Ashok, A H; Marques, T R; Jauhar, S; Nour, M M; Goodwin, G M; Young, A H; Howes, O D
2017-01-01
Bipolar affective disorder is a common neuropsychiatric disorder. Although its neurobiological underpinnings are incompletely understood, the dopamine hypothesis has been a key theory of the pathophysiology of both manic and depressive phases of the illness for over four decades. The increased use of antidopaminergics in the treatment of this disorder and new in vivo neuroimaging and post-mortem studies makes it timely to review this theory. To do this, we conducted a systematic search for post-mortem, pharmacological, functional magnetic resonance and molecular imaging studies of dopamine function in bipolar disorder. Converging findings from pharmacological and imaging studies support the hypothesis that a state of hyperdopaminergia, specifically elevations in D2/3 receptor availability and a hyperactive reward processing network, underlies mania. In bipolar depression imaging studies show increased dopamine transporter levels, but changes in other aspects of dopaminergic function are inconsistent. Puzzlingly, pharmacological evidence shows that both dopamine agonists and antidopaminergics can improve bipolar depressive symptoms and perhaps actions at other receptors may reconcile these findings. Tentatively, this evidence suggests a model where an elevation in striatal D2/3 receptor availability would lead to increased dopaminergic neurotransmission and mania, whilst increased striatal dopamine transporter (DAT) levels would lead to reduced dopaminergic function and depression. Thus, it can be speculated that a failure of dopamine receptor and transporter homoeostasis might underlie the pathophysiology of this disorder. The limitations of this model include its reliance on pharmacological evidence, as these studies could potentially affect other monoamines, and the scarcity of imaging evidence on dopaminergic function. This model, if confirmed, has implications for developing new treatment strategies such as reducing the dopamine synthesis and/or release in mania and DAT blockade in bipolar depression. PMID:28289283
Karkhanis, Anushree; Holleran, Katherine M; Jones, Sara R
2017-01-01
The dynorphin/kappa opioid receptor (KOR) system is implicated in the "dark side" of addiction, in which stress exacerbates maladaptive responses to drug and alcohol exposure. For example, acute stress and acute ethanol exposure result in an elevation in dynorphin, the KOR endogenous ligand. Activation of KORs results in modulation of several neurotransmitters; however, this chapter will focus on its regulatory effects on dopamine in mesolimbic areas. Specifically, KOR activation has an inhibitory effect on dopamine release, thereby influencing reward processing. Repeated stimulation of KORs, for example, via chronic drug and/or stress exposure, results in increased function of the dynorphin/KOR system. This augmentation in KOR function shifts the homeostatic balance in favor of an overall reduction in dopamine signaling via either by reducing dopamine release or by increasing dopamine transporter function. This chapter examines the effects of chronic ethanol exposure on KOR function and the downstream effects on dopamine transmission. Additionally, the impact of chronic cocaine exposure and its effects on KOR function will be explored. Further, KORs may also be involved in driving excessive consumption of food, contributing to the risk of developing obesity. While some studies have shown that KOR agonists reduce drug intake, other studies have shown that antagonists reduce addiction-like behaviors, demonstrating therapeutic potential. For example, KOR inhibition reduces ethanol intake in dependent animals, motivation to self-administer cocaine in chronic stress-exposed animals, and food consumption in obese animals. This chapter will delve into the mechanisms by which modulation of the dynorphin/KOR system may be therapeutic. © 2017 Elsevier Inc. All rights reserved.
Li, Yang; Mayer, Felix P.; Hasenhuetl, Peter S.; Burtscher, Verena; Schicker, Klaus; Sitte, Harald H.; Freissmuth, Michael; Sandtner, Walter
2017-01-01
The human dopamine transporter (DAT) has a tetrahedral Zn2+-binding site. Zn2+-binding sites are also recognized by other first-row transition metals. Excessive accumulation of manganese or of copper can lead to parkinsonism because of dopamine deficiency. Accordingly, we examined the effect of Mn2+, Co2+, Ni2+, and Cu2+ on transport-associated currents through DAT and DAT-H193K, a mutant with a disrupted Zn2+-binding site. All transition metals except Mn2+ modulated the transport cycle of wild-type DAT with affinities in the low micromolar range. In this concentration range, they were devoid of any action on DAT-H193K. The active transition metals reduced the affinity of DAT for dopamine. The affinity shift was most pronounced for Cu2+, followed by Ni2+ and Zn2+ (= Co2+). The extent of the affinity shift and the reciprocal effect of substrate on metal affinity accounted for the different modes of action: Ni2+ and Cu2+ uniformly stimulated and inhibited, respectively, the substrate-induced steady-state currents through DAT. In contrast, Zn2+ elicited biphasic effects on transport, i.e. stimulation at 1 μm and inhibition at 10 μm. A kinetic model that posited preferential binding of transition metal ions to the outward-facing apo state of DAT and a reciprocal interaction of dopamine and transition metals recapitulated all experimental findings. Allosteric activation of DAT via the Zn2+-binding site may be of interest to restore transport in loss-of-function mutants. PMID:28096460
Hamilton, P J; Campbell, N G; Sharma, S; Erreger, K; Herborg Hansen, F; Saunders, C; Belovich, A N; Sahai, M A; Cook, E H; Gether, U; McHaourab, H S; Matthies, H J G; Sutcliffe, J S; Galli, A
2013-12-01
De novo genetic variation is an important class of risk factors for autism spectrum disorder (ASD). Recently, whole-exome sequencing of ASD families has identified a novel de novo missense mutation in the human dopamine (DA) transporter (hDAT) gene, which results in a Thr to Met substitution at site 356 (hDAT T356M). The dopamine transporter (DAT) is a presynaptic membrane protein that regulates dopaminergic tone in the central nervous system by mediating the high-affinity reuptake of synaptically released DA, making it a crucial regulator of DA homeostasis. Here, we report the first functional, structural and behavioral characterization of an ASD-associated de novo mutation in the hDAT. We demonstrate that the hDAT T356M displays anomalous function, characterized as a persistent reverse transport of DA (substrate efflux). Importantly, in the bacterial homolog leucine transporter, substitution of A289 (the homologous site to T356) with a Met promotes an outward-facing conformation upon substrate binding. In the substrate-bound state, an outward-facing transporter conformation is required for substrate efflux. In Drosophila melanogaster, the expression of hDAT T356M in DA neurons-lacking Drosophila DAT leads to hyperlocomotion, a trait associated with DA dysfunction and ASD. Taken together, our findings demonstrate that alterations in DA homeostasis, mediated by aberrant DAT function, may confer risk for ASD and related neuropsychiatric conditions.
Neuron membrane trafficking and protein kinases involved in autism and ADHD.
Kitagishi, Yasuko; Minami, Akari; Nakanishi, Atsuko; Ogura, Yasunori; Matsuda, Satoru
2015-01-30
A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1) are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD) is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT). AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.
Laakso, A; Bergman, J; Haaparanta, M; Vilkman, H; Solin, O; Hietala, J
1998-03-01
We have characterized the usage of [18F]CFT (also known as [18F]WIN 35,428) as a radioligand for in vivo studies of human dopamine transporter by PET. CFT was labeled with 18F to a high specific activity, and dynamic PET scans were conducted in healthy volunteers at various time points up to 5 h from [18F]CFT injection. The regional distribution of [18F]CFT uptake correlated well with the known distribution of dopaminergic nerve terminals in the human brain and also with that of other dopamine transporter radioligands. Striatal binding peaked at 225 min after injection and declined thereafter, demonstrating the reversible nature of the binding to the dopamine transporter. Therefore, due to the relatively long half-life of 18F (109.8 min), PET scans with [18F]CFT could easily be conducted during the binding equilibrium, allowing estimation of Bmax/Kd values (i.e., binding potential). Binding potentials for putamen and caudate measured at equilibrium were 4.79+/-0.11 and 4.50+/-0.23, respectively. We were able to also visualize midbrain dopaminergic neurons (substantia nigra) with [18F]CFT in some subjects. In conclusion, the labeling of CFT with 18F allows PET scans to be conducted at binding equilibrium, and therefore a high signal-to-noise ratio and reliable quantification of binding potential can be achieved. With a high resolution 3D PET scanner, the quantification of extrastriatal dopamine transporters should become possible.
[Neurotransmission in developmental disorders].
Takeuchi, Yoshihiro
2008-11-01
Attention deficit/hyperactivity disorder (AD/HD) is a heterogeneous developmental disorder with an etiology that is not fully understood. AD/HD has been considered to occur due to a disturbance in cathecholaminergic neurotransmission, with particular emphasis on dopamine. The neurotransmission of dopamine in subcortical regions such as the basal ganglia and limbic areas is synaptic; on the other hand, dopamine neurotransmission in the frontal cortex is quite different, because there are very few dopamine transporters (DAT) in the frontal cortex that allow dopamine to diffuse away from the dopamine synapse ("volume transmission"). It is now clear that noradrenergic neurons play a key regulatory role in dopaminergic function in the frontal cortex. Furthermore, serotonergic neurons exert an inhibitory effect on midbrain dopamine cell bodies, and they have an influence on dopamine release in terminal regions. There is accumulating neurobiological evidence pointing toward a role of the serotonin system in AD/HD. The etiology of autism spectrum disorders (ASD) is still unclear, but information from genetics, neuropathology, brain imaging, and basic neuroscience has provided insights into the understanding of this developmental disorder. In addition to abnormal circuitry in specific limbic and neocortical areas of the cerebral cortex, impairments in brainstem, cerebellar, thalamic, and basal ganglia connections have been reported. Numerous studies have pointed to abnormalities in serotonin and glutamate neurotransmission. Three important aspects involved in the pathophysiology of ASD have been proposed. The first is cell migration, the second is unbalanced excitatory-inhibitory networks, and the third is synapse formation and pruning, the key factors being reelin, neurexin, and neuroligin. Serotonin is considered to play an important role in all of these aspects of the pathophysiology of ASD. Finally, I would like to emphasize that it is crucial in the field of child neurology medical examination and treatment should be based on the basic neuroscience, always taking "neurons" into consideration.
Prata, Diana P; Mechelli, Andrea; Picchioni, Marco M; Fu, Cynthia H Y; Toulopoulou, Timothea; Bramon, Elvira; Walshe, Muriel; Murray, Robin M; Collier, David A; McGuire, Philip
2009-11-01
The dopamine transporter plays a key role in the regulation of central dopaminergic transmission, which modulates cognitive processing. Disrupted dopamine function and impaired executive processing are robust features of schizophrenia. To examine the effect of a polymorphism in the dopamine transporter gene (the variable number of tandem repeats in the 3' untranslated region) on brain function during executive processing in healthy volunteers and patients with schizophrenia. We hypothesized that this variation would have a different effect on prefrontal and striatal activation in schizophrenia, reflecting altered dopamine function. Case-control study. Psychiatric research center. Eighty-five subjects, comprising 44 healthy volunteers (18 who were 9-repeat carriers and 26 who were 10-repeat homozygotes) and 41 patients with DSM-IV schizophrenia (18 who were 9-repeat carriers and 23 who were 10-repeat homozygotes). Regional brain activation during word generation relative to repetition in an overt verbal fluency task measured by functional magnetic resonance imaging. Main effects of genotype and diagnosis on activation and their interaction were estimated with analysis of variance in SPM5. Irrespective of diagnosis, the 10-repeat allele was associated with greater activation than the 9-repeat allele in the left anterior insula and right caudate nucleus. Trends for the same effect in the right insula and for greater deactivation in the rostral anterior cingulate cortex were also detected. There were diagnosis x genotype interactions in the left middle frontal gyrus and left nucleus accumbens, where the 9-repeat allele was associated with greater activation than the 10-repeat allele in patients but not controls. Insular, cingulate, and striatal function during an executive task is normally modulated by variation in the dopamine transporter gene. Its effect on activation in the dorsolateral prefrontal cortex and ventral striatum is altered in patients with schizophrenia. This may reflect altered dopamine function in these regions in schizophrenia.
Dawson, Patrick; Opacka-Juffry, Jolanta; Moffatt, James D; Daniju, Yusuf; Dutta, Neelakshi; Ramsey, John; Davidson, Colin
2014-01-03
5-APB, commonly marketed as 'benzofury' is a new psychoactive substance and erstwhile 'legal high' which has been implicated in 10 recent drug-related deaths in the UK. This drug was available on the internet and in 'head shops' and was one of the most commonly sold legal highs up until its recent UK temporary ban (UK Home Office). Despite its prominence, very little is known about its pharmacology. This study was undertaken to examine the pharmacology of 5-APB in vitro. We hypothesised that 5-APB would activate the dopamine and 5-HT systems which may underlie its putative stimulant and hallucinogenic effects. Autoradiographic studies showed that 5-APB displaced both [(125)I] RTI-121 and [(3)H] ketanserin from rat brain tissue suggesting affinity at the dopamine transporter and 5-HT2 receptor sites respectively. Voltammetric studies in rat accumbens brain slices revealed that 5-APB slowed dopamine reuptake, and at high concentrations caused reverse transport of dopamine. 5-APB also caused vasoconstriction of rat aorta, an effect antagonised by the 5-HT2A receptor antagonist ketanserin, and caused contraction of rat stomach fundus, which was reversed by the 5-HT2B receptor antagonist RS-127445. These data show that 5-APB interacts with the dopamine transporter and is an agonist at the 5-HT2A and 5-HT2B receptors in the rat. Thus 5-APB's pharmacology is consistent with it having both stimulant and hallucinogenic properties. In addition, 5-APB's activity at the 5-HT2B receptor may cause cardiotoxicity. © 2013.
Horton, David B.; Nickell, Justin R.; Zheng, Guangrong; Crooks, Peter A.; Dwoskin, Linda P.
2013-01-01
GZ-793A inhibits methamphetamine-evoked dopamine release from striatal slices and methamphetamine self-administration in rats. GZ-793A potently and selectively inhibits dopamine uptake at the vesicular monoamine transporter-2 (VMAT2). The present study determined GZ-793A’s ability to evoke [3H]dopamine release and inhibit methamphetamine-evoked [3H]dopamine release from isolated striatal synaptic vesicles. Results show GZ-793A concentration-dependent [3H]dopamine release; nonlinear regression revealed a two-site model of interaction with VMAT2 (High- and Low-EC50 = 15.5 nM and 29.3 µM, respectively). Tetrabenazine and reserpine completely inhibited the GZ-793A-evoked [3H]dopamine release, however, only at the High-affinity site. Low concentrations of GZ-793A that interact with the extravesicular dopamine uptake site and the High-affinity intravesicular DA release site also inhibited methamphetamine-evoked [3H]dopamine release from synaptic vesicles. A rightward shift in the methamphetamine concentration-response was evident with increasing concentrations of GZ-793A, and the Schild regression slope was 0.49±0.08, consistent with surmountable allosteric inhibition. These results support a hypothetical model of GZ-793A interaction at more than one site on VMAT2 protein, which explains its potent inhibition of dopamine uptake, dopamine release via a High-affinity tetrabenazine- and reserpine-sensitive site, dopamine release via a Low-affinity tetrabenazine- and reserpine-insensitive site, and low-affinity interaction with the dihydrotetrabenazine binding site on VMAT2. GZ-793A-inhibition of the effects of methamphetamine supports its potential as a therapeutic agent for the treatment of methamphetamine abuse. PMID:23875622
The role of dopamine in human addiction: from reward to motivated attention.
Franken, Ingmar H A; Booij, Jan; van den Brink, Wim
2005-12-05
There is general consensus among preclinical researchers that dopamine plays an important role in the development and persistence of addiction. However, the precise role of dopamine in addictive behaviors is far from clear and only a few clinical studies on the role of dopamine in human addiction have been conducted so far. The present paper reviews studies addressing the role of dopamine in humans. There is substantial and consistent evidence that dopamine is involved in the experience of drug reward in humans. Dopamine may also be involved in motivational processes such as drug craving. However, given the inconsistent findings of studies using dopamine receptor (ant)agonists, the role of dopamine in the experience of craving is far from resolved. Recent theories claiming that dopamine signals salience and makes the brain paying attention to biological relevant stimuli may provide an interesting framework for explaining addictive behaviors. There is accumulating evidence that patients with drug and alcohol addiction have an aberrant focus on drug-related stimuli. Although there is some preliminary support for the role of dopamine in these attention processes, more studies have to be carried out in order to test the validity of these theories in human subjects.
Riederer, Peter; Müller, Thomas
2018-03-22
This invited narrative review emphasizes the role of MAO-B inhibition in the drug portfolio for dopamine substitution in patients with Parkinson's disease. Neuronal and glial MAO-B inhibition contributes to more stable levels of dopamine and other biogenic amines in the synaptic cleft. Accordingly, symptomatic effects of MAO-B inhibition for a limited amelioration of impaired motor behaviour and wearing-off phenomena in patients with Parkinson's disease are well proven, even when MAO-B inhibitors are only applied together with dopamine agonists. Delay of disease progression by MAO-B inhibition is under debate despite positive experimental findings. This discussion does not consider, that levodopa, respectively, dopamine agonists, are substrates, respectively, inhibitors of the ABCB1 (P-gp, MDR1, and CD243) transporter system. It supports toxin efflux over the blood-brain barrier. ABCB1 transporters have a limited capacity. MAO-B inhibitors do not weaken it. Treatment with MAO-B inhibitors is advantageous as it enables sparing of dopamine agonist and levodopa dosing.
Disruption of dopamine transport by DDT and its metabolites
Hatcher, Jaime M.; Delea, Kristin C.; Richardson, Jason R.; Pennell, Kurt D.; Miller, Gary W.
2016-01-01
Epidemiological studies suggest a link between pesticide exposure and an increased risk of developing Parkinson’s disease (PD). Although studies have been unable to clearly identify specific pesticides that contribute to PD, a few human studies have reported higher levels of the organochlorine pesticides dieldrin and DDE (a metabolite of DDT) in post-mortem PD brains. Previously, we found that exposure of mice to dieldrin caused perturbations in the nigrostriatal dopamine system consistent with those seen in PD. Given the concern over the environmental persistence and reintroduction of DDT for the control of malaria-carrying mosquitoes and other pests, we sought to determine whether DDT and its two major metabolites, DDD and DDE, could damage the dopamine system. In vitro analyses in mouse synaptosomes and vesicles demonstrated that DDT and its metabolites inhibit the plasma membrane dopamine transporter (DAT) and the vesicular monoamine transporter (VMAT2). However, exposure of mice to either DDT or DDE failed to show evidence of nigrostriatal damage or behavioral abnormalities in any of the measures examined. Thus, we report that in vitro effects of DDT and its metabolites on components of the dopamine system do not translate into neurotoxicological outcomes in orally exposed mice and DDT appears to have less dopamine toxicity when compared to dieldrin. These data suggest elevated DDE levels in PD patients may represent a measure of general pesticide exposure and that other pesticides may be responsible for the association between pesticide exposure and PD. PMID:18533268
On the role of endogenous neurotoxins and neuroprotection in Parkinson's disease.
Segura-Aguilar, Juan
2017-06-01
For 50 years ago was introduced L-3,4-dihydroxyphenylalanine (L-dopa) in Parkinson's disease treatment and during this significant advances has been done but what trigger the degeneration of the nigrostriatal system remain unknown. There is a general agreement in the scientific community that mitochondrial dysfunction, protein degradation dysfunction, alpha-synuclein aggregation to neurotoxic oligomers, neuroinflammation, oxidative and endoplasmic reticulum stress are involved in the loss of dopaminergic neurons containing neuromelanin in Parkinson's disease. The question is what triggers these mechanisms. The age of normal onset in idiopathic Parkinson's disease suggests that environmental factors such as metals, pollutants or genetic mutations cannot be involved because these factors are related to early onset of Parkinsonism. Therefore, we have to search for endogenous neurotoxins and neuroprotection in order to understand what trigger the loss of dopaminergic neurons. One important feature of Parkinson's disease is the rate of the degenerative process before the motor symptoms are evident and during the disease progression. The extremely slow rate of Parkinson's disease suggests that the neurotoxins and the neuroprotection have to be related to dopamine metabolism. Possible candidates for endogenous neurotoxins are alpha-synuclein neurotoxic oligomers, 4-dihydroxyphenylacetaldehyde and ortho-quinones formed during dopamine oxidation to neuromelanin. Vesicular monoamine transporter-2, DT-diaphorase and glutathione transferase M2-2 seems to be the most important neuroprotective mechanism to prevent neurotoxic mechanism during dopamine oxidation.
Norepinephrine Activates Dopamine D4 Receptors in the Rat Lateral Habenula
Root, David H.; Hoffman, Alexander F.; Good, Cameron H.; Zhang, Shiliang; Gigante, Eduardo
2015-01-01
The lateral habenula (LHb) is involved in reward and aversion and is reciprocally connected with dopamine (DA)-containing brain regions, including the ventral tegmental area (VTA). We used a multidisciplinary approach to examine the properties of DA afferents to the LHb in the rat. We find that >90% of VTA tyrosine hydroxylase (TH) neurons projecting to the LHb lack vesicular monoamine transporter 2 (VMAT2) mRNA, and there is little coexpression of TH and VMAT2 protein in this mesohabenular pathway. Consistent with this, electrical stimulation of LHb did not evoke DA-like signals, assessed with fast-scan cyclic voltammetry. However, electrophysiological currents that were inhibited by L741,742, a DA-D4-receptor antagonist, were observed in LHb neurons when DA uptake or degradation was blocked. To prevent DA activation of D4 receptors, we repeated this experiment in LHb slices from DA-depleted rats. However, this did not disrupt D4 receptor activation initiated by the dopamine transporter inhibitor, GBR12935. As the LHb is also targeted by noradrenergic afferents, we examined whether GBR12935 activation of DA-D4 receptors occurred in slices depleted of norepinephrine (NE). Unlike DA, NE depletion prevented the activation of DA-D4 receptors. Moreover, direct application of NE elicited currents in LHb neurons that were blocked by L741,742, and GBR12935 was found to be a more effective blocker of NE uptake than the NE-selective transport inhibitor nisoxetine. These findings demonstrate that NE is released in the rat LHb under basal conditions and that it activates DA-D4 receptors. Therefore, NE may be an important regulator of LHb function. PMID:25716845
Can, Adem; Zanos, Panos; Moaddel, Ruin; Kang, Hye Jin; Dossou, Katinia S. S.; Wainer, Irving W.; Cheer, Joseph F.; Frost, Douglas O.; Huang, Xi-Ping
2016-01-01
Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine’s antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-d-aspartate glutamate receptor inhibition. These antidepressant actions of (2S,6S;2R,6R)-HNK, or other metabolites, as well as ketamine’s side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1–D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine’s enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters (up to 10 μM). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect. PMID:27469513
Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro
2015-01-01
Blonanserin differs from currently used serotonin 5-HT2A/dopamine-D2 receptor antagonists in that it exhibits higher affinity for dopamine-D2/3 receptors than for serotonin 5-HT2A receptors. We investigated the involvement of dopamine-D3 receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT2A receptor agonist) and 7-OH-DPAT (a dopamine-D3 receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D1 receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr197 and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser897 by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser896 by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D1-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D3 and serotonin 5-HT2A receptors in the mPFC. PMID:25120077
beta-Alanine elevates dopamine levels in the rat nucleus accumbens: antagonism by strychnine.
Ericson, Mia; Clarke, Rhona B C; Chau, PeiPei; Adermark, Louise; Söderpalm, Bo
2010-04-01
Glycine receptors (GlyRs) in the nucleus accumbens (nAc) have recently been suggested to be involved in the reinforcing and dopamine-elevating properties of ethanol via a neuronal circuitry involving the VTA. Apart from ethanol, both glycine and taurine have the ability to modulate dopamine output via GlyRs in the same brain region. In the present study, we wanted to explore whether yet another endogenous ligand for the GlyR, beta-alanine, had similar effects. To this end, we monitored dopamine in the nAc by means of in vivo microdialysis and found that local perfusion of beta-alanine increased dopamine output. In line with previous observations investigating ethanol, glycine and taurine, the competitive GlyR antagonist strychnine completely blocked the dopamine elevation. The present results suggest that beta-alanine has the ability to modulate dopamine levels in the nAc via strychnine-sensitive GlyRs, and are consistent with previous studies suggesting the importance of this receptor for modulating dopamine output.
ERIC Educational Resources Information Center
Darvas, Martin; Fadok, Jonathan P.; Palmiter, Richard D.
2011-01-01
Two-way active avoidance (2WAA) involves learning Pavlovian (association of a sound cue with a foot shock) and instrumental (shock avoidance) contingencies. To identify regions where dopamine (DA) is involved in mediating 2WAA, we restored DA signaling in specific brain areas of dopamine-deficient (DD) mice by local reactivation of conditionally…
PRESYNAPTIC DOPAMINE MODULATION BY STIMULANT SELF ADMINISTRATION
España, Rodrigo A.; Jones, Sara R.
2013-01-01
The mesolimbic dopamine system is an essential participant in the initiation and modulation of various forms of goal-directed behavior, including drug reinforcement and addiction processes. Dopamine neurotransmission is increased by acute administration of all drugs of abuse, including the stimulants cocaine and amphetamine. Chronic exposure to these drugs via voluntary self-administration provides a model of stimulant abuse that is useful in evaluating potential behavioral and neurochemical adaptations that occur during addiction. This review describes commonly used methodologies to measure dopamine and baseline parameters of presynaptic dopamine regulation, including exocytotic release and reuptake through the dopamine transporter in the nucleus accumbens core, as well as dramatic adaptations in dopamine neurotransmission and drug sensitivity that occur with acute non-contingent and chronic, contingent self-administration of cocaine and amphetamine. PMID:23277050
Neuroimaging and Drug Taking in Primates Abbreviated title: Neuroimaging and Drug taking
Murnane, Kevin S.; Howell, Leonard L.
2011-01-01
Rationale Neuroimaging techniques have led to significant advances in our understanding of the neurobiology of drug-taking and the treatment of drug addiction in humans. Neuroimaging approaches provide a powerful translational approach that can link findings from humans and laboratory animals. Objective This review describes the utility of neuroimaging toward understanding the neurobiological basis of drug taking, and documents the close concordance that can be achieved among neuroimaging, neurochemical and behavioral endpoints. Results The study of drug interactions with dopamine and serotonin transporters in vivo has identified pharmacological mechanisms of action associated with the abuse liability of stimulants. Neuroimaging has identified the extended limbic system, including the prefrontal cortex and anterior cingulate, as important neuronal circuitry that underlies drug taking. The ability to conduct within-subject, longitudinal assessments of brain chemistry and neuronal function has enhanced our efforts to document long-term changes in dopamine D2 receptors, monoamine transporters, and prefrontal metabolism due to chronic drug exposure. Dysregulation of dopamine function and brain metabolic changes in areas involved in reward circuitry have been linked to drug-taking behavior, cognitive impairment and treatment response. Conclusions Experimental designs employing neuroimaging should consider well-documented determinants of drug taking, including pharmacokinetic considerations, subject history and environmental variables. Methodological issues to consider include limited molecular probes, lack of neurochemical specificity in brain activation studies, and the potential influence of anesthetics in animal studies. Nevertheless, these integrative approaches should have important implications for understanding drug-taking behavior and the treatment of drug addiction. PMID:21360099
Serotonin and Dopamine Transporter Binding in Children with Autism Determined by SPECT
ERIC Educational Resources Information Center
Makkonen, Ismo; Riikonen, Raili; Kokki, Hannu; Airaksinen, Mauno M.; Kuikka, Jyrki T.
2008-01-01
Disturbances in the serotonergic system have been recognized in autism. To investigate the association between serotonin and dopamine transporters and autism, we studied 15 children (14 males, one female; mean age 8y 8mo [SD 3y 10mo]) with autism and 10 non-autistic comparison children (five males, five females; mean age 9y 10mo [SD 2y 8mo]) using…
Conrado, Daniela J; Nicholas, Timothy; Tsai, Kuenhi; Macha, Sreeraj; Sinha, Vikram; Stone, Julie; Corrigan, Brian; Bani, Massimo; Muglia, Pierandrea; Watson, Ian A; Kern, Volker D; Sheveleva, Elena; Marek, Kenneth; Stephenson, Diane T; Romero, Klaus
2018-01-01
Given the recognition that disease-modifying therapies should focus on earlier Parkinson's disease stages, trial enrollment based purely on clinical criteria poses significant challenges. The goal herein was to determine the utility of dopamine transporter neuroimaging as an enrichment biomarker in early motor Parkinson's disease clinical trials. Patient-level longitudinal data of 672 subjects with early-stage Parkinson's disease in the Parkinson's Progression Markers Initiative (PPMI) observational study and the Parkinson Research Examination of CEP-1347 Trial (PRECEPT) clinical trial were utilized in a linear mixed-effects model analysis. The rate of worsening in the motor scores between subjects with or without a scan without evidence of dopamine transporter deficit was different both statistically and clinically. The average difference in the change from baseline of motor scores at 24 months between biomarker statuses was -3.16 (90% confidence interval [CI] = -0.96 to -5.42) points. Dopamine transporter imaging could identify subjects with a steeper worsening of the motor scores, allowing trial enrichment and 24% reduction of sample size. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, E.H. Jr.; Stein, M.A.; Krasowski, M.D.
Attention-deficit hyperactivity disorder (ADHD) has been shown to be familial and heritable, in previous studies. As with most psychiatric disorders, examination of pedigrees has not revealed a consistent Mendelian mode of transmission. The response of ADHD patients to medications that inhibit the dopamine transporter, including methylphenidate, amphetamine, pemoline, and bupropion, led us to consider the dopamine transporter as a primary candidate gene for ADHD. To avoid effects of population stratification and to avoid the problem of classification of relatives with other psychiatric disorders as affected or unaffected, we used the haplotype-based haplotype relative risk (HHRR) method to test for associationmore » between a VNTR polymorphism at the dopamine transporter locus (DAT1) and DSM-III-R-diagnosed ADHD (N = 49) and undifferentiated attention-deficit disorder (UADD) (N = 8) in trios composed of father, mother, and affected offspring. HHRR analysis revealed significant association between ADHS/UADD and the 480-bp DAT1 allele (X{sup 2} 7.51, 1 df, P = .006). When cases of UADD were dropped from the analysis, similar results were found (X{sup 2} 7.29, 1 df, P = .007). If these findings are replicated, molecular analysis of the dopamine transporter gene may identify mutations that increase susceptibility to ADHD/UADD. Biochemical analysis of such mutations may lead to development of more effective therapeutic interventions. 36 refs., 4 tabs.« less
Brain Region-Specific Trafficking of the Dopamine Transporter
Block, Ethan R.; Nuttle, Jacob; Balcita-Pedicino, Judith Joyce; Caltagarone, John; Watkins, Simon C.
2015-01-01
The dopamine (DA) transporter (DAT) controls dopaminergic neurotransmission by removing extracellular DA. Although DA reuptake is proposed to be regulated by DAT traffic to and from the cell surface, the membrane trafficking system involved in the endocytic cycling of DAT in the intact mammalian brain has not been characterized. Hence, we performed immunolabeling and quantitative analysis of the subcellular and regional distribution of DAT using the transgenic knock-in mouse expressing hemagglutinin (HA) epitope-tagged DAT (HA-DAT) and by using a combination of electron microscopy and a novel method for immunofluorescence labeling of HA-DAT in acute sagittal brain slices. Both approaches demonstrated that, in midbrain somatodendritic regions, HA-DAT was present in the plasma membrane, endoplasmic reticulum, and Golgi complex, with a small fraction in early and recycling endosomes and an even smaller fraction in late endosomes and lysosomes. In the striatum and in axonal tracts between the midbrain and striatum, HA-DAT was detected predominantly in the plasma membrane, and quantitative analysis revealed increased DAT density in striatal compared with midbrain plasma membranes. Endosomes were strikingly rare and lysosomes were absent in striatal axons, in which there was little intracellular HA-DAT. Acute administration of amphetamine in vivo (60 min) or to slices ex vivo (10–60 min) did not result in detectable changes in DAT distribution. Altogether, these data provide evidence for regional differences in DAT plasma membrane targeting and retention and suggest a surprisingly low level of endocytic trafficking of DAT in the striatum along with limited DAT endocytic activity in somatodendritic areas. SIGNIFICANCE STATEMENT The dopamine transporter (DAT) is the key regulator of the dopamine neurotransmission in the CNS. In the present study, we developed a new approach for studying DAT localization and dynamics in intact neurons in acute sagittal brain slices from the knock-in mouse expressing epitope-tagged DAT. For the first time, the fluorescence imaging analysis of DAT was combined with the immunogold labeling of DAT and quantitative electron microscopy. In contrast to numerous studies of DAT trafficking in heterologous expression systems and dissociated cultured neurons, studies in intact neurons revealed a surprisingly low amount of endocytic trafficking of DAT at steady state and after acute amphetamine treatment and suggested that non-vesicular transport could be the main mechanism establishing DAT distribution within the dopaminergic neuron. PMID:26377471
Dopamine-dependent neurotoxicity of lipopolysaccharide in substantia nigra.
De Pablos, Rocío M; Herrera, Antonio J; Villarán, Ruth F; Cano, Josefina; Machado, Alberto
2005-03-01
Intranigral injection of lipopolysaccharide (LPS), a potent inductor of inflammation, induces degeneration of dopaminergic neurons, along with an inflammatory process that features activation of microglial cells and loss of astrocytes. To test the involvement of dopamine (DA) in this degeneration induced by LPS, we treated albino Wistar rats with different concentrations of alpha-methyl-p-tyrosine (alpha-MPT), an inhibitor of tyrosine hydroxylase (TH) activity. Results showed that alpha-MPT prevented LPS-induced loss of TH immunostaining and expression of mRNA for TH and DA transporter; it also prevented substantial activation of microglial cells. Loss of the astroglial population, a marker of damage in our model, was also prevented. This protective effect resulted from inhibition of TH and the consequent decrease in DA concentration, because treatment with L-DOPA/benserazide, which bypasses TH inhibition induced by alpha-MPT, reversed the protective effect produced by this drug. These results point out the important contribution of DA to the vulnerability and degeneration of dopaminergic neurons of the substantia nigra. Knowledge about the involvement of DA in this process may lead to the possibility of new protection strategies against this important degenerative process.
Kuhlmann, Naila; Kadgien, Chelsie A; Tatarnikov, Igor; Fox, Jesse; Khinda, Jaskaran; Mitchell, Emma; Bergeron, Sabrina; Melrose, Heather
2017-01-01
LRRK2 mutations produce end-stage Parkinson’s disease (PD) with reduced nigrostriatal dopamine, whereas, asymptomatic carriers have increased dopamine turnover and altered brain connectivity. LRRK2 pathophysiology remains unclear, but reduced dopamine and mitochondrial abnormalities occur in aged G2019S mutant knock-in (GKI) mice. Conversely, cultured GKI neurons exhibit increased synaptic transmission. We assessed behavior and synaptic glutamate and dopamine function across a range of ages. Young GKI mice exhibit more vertical exploration, elevated glutamate and dopamine transmission, and aberrant D2-receptor responses. These phenomena decline with age, but are stable in littermates. In young GKI mice, dopamine transients are slower, independent of dopamine transporter (DAT), increasing the lifetime of extracellular dopamine. Slowing of dopamine transients is observed with age in littermates, suggesting premature ageing of dopamine synapses in GKI mice. Thus, GKI mice exhibit early, but declining, synaptic and behavioral phenotypes, making them amenable to investigation of early pathophysiological, and later parkinsonian-like, alterations. This model will prove valuable in efforts to develop neuroprotection for PD. PMID:28930069
Volta, Mattia; Beccano-Kelly, Dayne A; Paschall, Sarah A; Cataldi, Stefano; MacIsaac, Sarah E; Kuhlmann, Naila; Kadgien, Chelsie A; Tatarnikov, Igor; Fox, Jesse; Khinda, Jaskaran; Mitchell, Emma; Bergeron, Sabrina; Melrose, Heather; Farrer, Matthew J; Milnerwood, Austen J
2017-09-20
LRRK2 mutations produce end-stage Parkinson's disease (PD) with reduced nigrostriatal dopamine, whereas, asymptomatic carriers have increased dopamine turnover and altered brain connectivity. LRRK2 pathophysiology remains unclear, but reduced dopamine and mitochondrial abnormalities occur in aged G2019S mutant knock-in (GKI) mice. Conversely, cultured GKI neurons exhibit increased synaptic transmission. We assessed behavior and synaptic glutamate and dopamine function across a range of ages. Young GKI mice exhibit more vertical exploration, elevated glutamate and dopamine transmission, and aberrant D2-receptor responses. These phenomena decline with age, but are stable in littermates. In young GKI mice, dopamine transients are slower, independent of dopamine transporter (DAT), increasing the lifetime of extracellular dopamine. Slowing of dopamine transients is observed with age in littermates, suggesting premature ageing of dopamine synapses in GKI mice. Thus, GKI mice exhibit early, but declining, synaptic and behavioral phenotypes, making them amenable to investigation of early pathophysiological, and later parkinsonian-like, alterations. This model will prove valuable in efforts to develop neuroprotection for PD.
ILLICIT DOPAMINE TRANSIENTS: RECONCILING ACTIONS OF ABUSED DRUGS
Covey, Dan P.; Roitman, Mitchell F.; Garris, Paul A.
2014-01-01
Phasic increases in brain dopamine are required for cue-directed reward seeking. While compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyper-activating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyper-activation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural reward and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. PMID:24656971
Santos, Sérgio M; Costa, Paulo J; Lankshear, Michael D; Beer, Paul D; Félix, Vítor
2010-09-02
The ability of two heteroditopic calix[4]diquinone receptors to transport a KCl ion-pair and a dopamine zwitterion through a water-chloroform interface was investigated via molecular dynamics (MD) simulations. Gas-phase conformational analysis has been carried on KCl and dopamine receptor binding associations and the lowest energy structures found in both cases show that the recognition of KCl and dopamine zwitterion occurs through multiple and cooperative N-H...anion and O...cation bonding interactions, with the receptor adopting equivalent folded conformations stabilized by pi-stacking interactions. The unconstrained MD simulations performed on KCl and dopamine complexes inserted in either the chloroform or water phase revealed that receptors are preferentially located at the interface with the hydrophobic tert-butyl groups of the calix[4]diquinone moiety immersed in the chloroform bulk while the polar anion binding cavity is directed toward the water phase. When the KCl complex is placed in chloroform, the release of the ion-pair occurs only after the first contact with the water interface, being a nonsimultaneous event, with the chloride anion leaving the receptor before the potassium cation. The dopamine, via the -NH(3)(+) binding entity, remains bound to the receptor during the entire time of the MD simulation (10 ns). In contrast, when both complexes were inserted in the water bulk, the full release of KCl and dopamine are fast events. The potentials of mean force (PMFs), associated with the migration of the complexes from chloroform to water through the interface, were calculated from steered molecular dynamics (SMD) simulations. The PMFs for the free KCl and zwitterionic dopamine migrations were also obtained for comparison purposes. The transport of KCl from water to chloroform (the reverse path) mediated by the receptor has a free energy barrier estimated in 6.50 kcal mol(-1), which is 3.0 kcal mol(-1) smaller than that found for the free KCl. The transport of dopamine complex along the reverse path is characterized by downhill energy profile, with a small free energy barrier of 6.56 kcal mol(-1).
Siciliano, Cody A.; Fordahl, Steve C.
2016-01-01
Cocaine addiction is a debilitating neuropsychiatric disorder characterized by uncontrolled cocaine intake, which is thought to be driven, at least in part, by cocaine-induced deficits in dopamine system function. A decreased ability of cocaine to elevate dopamine levels has been repeatedly observed as a consequence of cocaine use in humans, and preclinical work has highlighted tolerance to cocaine's effects as a primary determinant in the development of aberrant cocaine taking behaviors. Here we determined that cocaine self-administration in rats produced tolerance to the dopamine transporter-inhibiting effects of cocaine in the nucleus accumbens core, which was normalized following a 14 or 60 d abstinence period; however, although these rats appeared to be similar to controls, a single self-administered infusion of cocaine at the end of abstinence, even after 60 d, fully reinstated tolerance to cocaine's effects. A single cocaine infusion in a naive rat had no effect on cocaine potency, demonstrating that cocaine self-administration leaves the dopamine transporter in a “primed” state, which allows for cocaine-induced plasticity to be reinstated by a subthreshold cocaine exposure. Further, reinstatement of cocaine tolerance was accompanied by decreased cocaine-induced locomotion and escalated cocaine intake despite extended abstinence from cocaine. These data demonstrate that cocaine leaves a long-lasting imprint on the dopamine system that is activated by re-exposure to cocaine. Further, these results provide a potential mechanism for severe cocaine binge episodes, which occur even after sustained abstinence from cocaine, and suggest that treatments aimed at transporter sites may be efficacious in promoting binge termination following relapse. SIGNIFICANCE STATEMENT Tolerance is a DSM-V criterion for substance abuse disorders. Abusers consistently show reduced subjective effects of cocaine concomitant with reduced effects of cocaine at its main site of action, the dopamine transporter (DAT). Preclinical literature has shown that reduced cocaine potency at the DAT increases cocaine taking, highlighting the key role of tolerance in addiction. Addiction is characterized by cycles of abstinence, often for many months, followed by relapse, making it important to determine possible interactions between abstinence and subsequent drug re-exposure. Using a rodent model of cocaine abuse, we found long-lasting, possibly permanent, cocaine-induced alterations to the DAT, whereby cocaine tolerance is reinstated by minimal drug exposure, even after recovery of DAT function over prolonged abstinence periods. PMID:27466327
Kilbourn, Michael R.; Butch, Elizabeth R.; Desmond, Timothy; Sherman, Phillip; Harris, Paul E.; Frey, Kirk A.
2009-01-01
Introduction The sensitivity of the in vivo binding of [11C]dihydrotetrabenazine ([11C]DTBZ) and [11C]methylphenidate ([11C]MPH) to their respective targets, the vesicular monoamine transporter (VMAT2) and the neuronal membrane dopamine transporter (DAT), after alterations of endogenous levels of dopamine were examined in the rat brain. Methods In vivo binding of [11C]DTBZ and [11C]MPH were determined using a bolus+infusion protocol. In vitro numbers of VMAT2 binding sites were determined by autoradiography. Results Repeated dosing with α-methyl-p-tyrosine (AMPT) at doses that significantly (−75%) depleted brain tissue dopamine levels resulted in increased (+36%) in vivo [11C]DTBZ binding to VMAT2 in the striatum. The increase in binding could be completely reversed by treatment with L-DOPA/benserazide to restore dopamine levels. There were no changes in total numbers of VMAT2 binding sites as measured using in vitro autoradiography. No changes were observed for in vivo [11C]MPH binding to the DAT in the striatum following AMPT pretreatment. Conclusion These results indicate that large reductions of dopamine concentrations in the rat brain can produce modest but significant changes in binding of radioligands to the VMAT2, which can be reversed by repleneshment of dopamine using exogenous L-DOPA. PMID:20122661
Enhanced extinction of contextual fear conditioning in ClockΔ19 mutant mice.
Bernardi, Rick E; Spanagel, Rainer
2014-08-01
Clock genes have been implicated in several disorders, such as schizophrenia, bipolar disorder, autism spectrum disorders, and drug dependence. However, few studies to date have examined the role of clock genes in fear-related behaviors. The authors used mice with the ClockΔ19 mutation to assess the involvement of this gene in contextual fear conditioning. Male wild-type (WT) and ClockΔ19 mutant mice underwent a single session of contextual fear conditioning (12 min, 4 unsignaled shocks), followed by daily 12-min retention trials. There were no differences between mutant and WT mice in the acquisition of contextual fear, and WT and mutant mice demonstrated similar freezing during the first retention session. However, extinction of contextual fear was accelerated in mutant mice across the remaining retention sessions, as compared to WT mice, suggesting a role for Clock in extinction following aversive learning. Because the ClockΔ19 mutation has previously been demonstrated to result in an increase in dopamine signaling, the authors confirmed the role of dopamine in extinction learning using preretention session administration of a low dose of the dopamine transport reuptake inhibitor modafinil (0.75 mg/kg), which resulted in decreased freezing across retention sessions. These findings are consistent with an emerging portrayal of the importance of Clock genes in noncircadian functions, as well as the important role of dopamine in extinction learning.
Mutation of Drosophila dopamine receptor DopR leads to male-male courtship behavior.
Chen, Bin; Liu, He; Ren, Jing; Guo, Aike
2012-07-06
In Drosophila, dopamine plays important roles in many biological processes as a neuromodulator. Previous studies showed that dopamine level could affect fly courtship behaviors. Disturbed dopamine level leads to abnormal courtship behavior in two different ways. Dopamine up-regulation induces male-male courtship behavior, while down-regulation of dopamine level results in increased sexual attractiveness of males towards other male flies. Until now, the identity of the dopamine receptor involved in this abnormal male-male courtship behavior remains unknown. Here we used genetic approaches to investigate the role of dopamine receptors in fly courtship behavior. We found that a dopamine D1-like receptor, DopR, was involved in fly courtship behavior. DopR mutant male flies display male-male courtship behavior. This behavior is mainly due to the male's increased propensity to court other males. Expression of functional DopR successfully rescued this mutant phenotype. Knock-down of D2-like receptor D2R and another D1-like receptor, DAMB, did not induce male-male courtship behavior, indicating the receptor-type specificity of this phenomenon. Our findings provide insight into a possible link between dopamine level disturbance and the induced male-male courtship behavior. Copyright © 2012 Elsevier Inc. All rights reserved.
Aher, Yogesh D.; Subramaniyan, Saraswathi; Shanmugasundaram, Bharanidharan; Sase, Ajinkya; Saroja, Sivaprakasam R.; Holy, Marion; Höger, Harald; Beryozkina, Tetyana; Sitte, Harald H.; Leban, Johann J.; Lubec, Gert
2016-01-01
Various psychostimulants targeting monoamine neurotransmitter transporters (MATs) have been shown to rescue cognition in patients with neurological disorders and improve cognitive abilities in healthy subjects at low doses. Here, we examined the effects upon cognition of a chemically synthesized novel MAT inhibiting compound 2-(benzhydrylsulfinylmethyl)-4-methylthiazole (named as CE-104). The efficacy of CE-104 in blocking MAT [dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter] was determined using in vitro neurotransmitter uptake assay. The effect of the drug at low doses (1 and 10 mg/kg) on spatial memory was studied in male rats in the radial arm maze (RAM). Furthermore, the dopamine receptor and transporter complex levels of frontal cortex (FC) tissue of trained and untrained animals treated either with the drug or vehicle were quantified on blue native PAGE (BN-PAGE). The drug inhibited dopamine (IC50: 27.88 μM) and norepinephrine uptake (IC50: 160.40 μM), but had a negligible effect on SERT. In the RAM, both drug-dose groups improved spatial working memory during the performance phase of RAM as compared to vehicle. BN-PAGE Western blot quantification of dopamine receptor and transporter complexes revealed that D1, D2, D3, and DAT complexes were modulated due to training and by drug effects. The drug’s ability to block DAT and its influence on DAT and receptor complex levels in the FC is proposed as a possible mechanism for the observed learning and memory enhancement in the RAM. PMID:26941626
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa
Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [ 11C]cocaine to measure DAT, and with [ 11C]raclopride to measure dopamine release (assessed as changes in specific binding of [ 11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when comparedmore » to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less
Volkow, Nora D; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S; Telang, Frank; Logan, Jean; Tomasi, Dardo
2015-11-01
Methamphetamine's widepread abuse and concerns that it might increase Parkinson's disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [(11)C]cocaine to measure DAT, and with [(11)C]raclopride to measure dopamine release (assessed as changes in specific binding of [(11)C]raclopride between placebo and methylphenidate), which was used as a marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals. Published by Elsevier Inc.
Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa; ...
2015-07-21
Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [ 11C]cocaine to measure DAT, and with [ 11C]raclopride to measure dopamine release (assessed as changes in specific binding of [ 11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when comparedmore » to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less
Dopamine Dynamics and Signaling in Drosophila: An Overview of Genes, Drugs and Behavioral Paradigms
Yamamoto, Shinya; Seto, Elaine S.
2014-01-01
Changes in dopamine (DA) signaling have been implicated in a number of human neurologic and psychiatric disorders. Similarly, defects in DA signaling in the fruit fly, Drosophila melanogaster, have also been associated with several behavioral defects. As most genes involved in DA synthesis, transport, secretion, and signaling are conserved between species, Drosophila is a powerful genetic model organism to study the regulation of DA signaling in vivo. In this review, we will provide an overview of the genes and drugs that regulate DA biology in Drosophila. Furthermore, we will discuss the behavioral paradigms that are regulated by DA signaling in flies. By analyzing the genes and neuronal circuits that govern such behaviors using sophisticated genetic, pharmacologic, electrophysiologic, and imaging approaches in Drosophila, we will likely gain a better understanding about how this neuromodulator regulates motor tasks and cognition in humans. PMID:24770636
ERIC Educational Resources Information Center
Braet, Wouter; Johnson, Katherine A.; Tobin, Claire T.; Acheson, Ruth; McDonnell, Caroline; Hawi, Ziarah; Barry, Edwina; Mulligan, Aisling; Gill, Michael; Bellgrove, Mark A.; Robertson, Ian H.; Garavan, Hugh
2011-01-01
The DAT1 gene codes for the dopamine transporter, which clears dopamine from the synaptic cleft, and a variant of this gene has previously been associated with compromised response inhibition in both healthy and clinical populations. This variant has also been associated with ADHD, a disorder that is characterised by disturbed dopamine function as…
Moreines, Jared L; Owrutsky, Zoe L; Grace, Anthony A
2017-03-01
Emerging evidence supports a role for dopamine in major depressive disorder (MDD). We recently reported fewer spontaneously active ventral tegmental area (VTA) dopamine neurons (ie, reduced dopamine neuron population activity) in the chronic mild stress (CMS) rodent model of MDD. In this study, we examined the role of two brain regions that have been implicated in MDD in humans, the infralimbic prefrontal cortex (ILPFC)-that is, rodent homolog of Brodmann area 25 (BA25), and the lateral habenula (LHb) in the CMS-induced attenuation of dopamine neuron activity. The impact of activating the ILPFC or LHb was evaluated using single-unit extracellular recordings of identified VTA dopamine neurons. The involvement of each region in dopamine neuron attenuation following 5-7 weeks of CMS was then evaluated by selective inactivation. Activation of either ILPFC or LHb in normal rats potently suppressed dopamine neuron population activity, but in unique patterns. ILPFC activation selectively inhibited dopamine neurons in medial VTA, which were most impacted by CMS. Conversely, LHb activation selectively inhibited dopamine neurons in lateral VTA, which were unaffected by CMS. Moreover, only ILPFC inactivation restored dopamine neuron population activity to normal levels following CMS; LHb inactivation had no restorative effect. These data suggest that, in the CMS model of MDD, the ILPFC is the primary driver of diminished dopamine neuron responses. These findings support a neural substrate for ILPFC/BA25 linking affective and motivational circuitry dysfunction in MDD.
Illicit dopamine transients: reconciling actions of abused drugs.
Covey, Dan P; Roitman, Mitchell F; Garris, Paul A
2014-04-01
Phasic increases in brain dopamine are required for cue-directed reward seeking. Although compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyperactivating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyperactivation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural rewards and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yamamoto, Dorothy J.; Nelson, Anna M.; Mandt, Bruce H.; Larson, Gaynor A.; Rorabaugh, Jacki M.; Ng, Christopher M.C.; Barcomb, Kelsey M.; Richards, Toni L.; Allen, Richard M.; Zahniser, Nancy R.
2013-01-01
Individual differences are a hallmark of drug addiction. Here, we describe a rat model based on differential initial responsiveness to low dose cocaine. Despite similar brain cocaine levels, individual outbred Sprague-Dawley rats exhibit markedly different magnitudes of acute cocaine-induced locomotor activity and, thereby, can be classified as low or high cocaine responders (LCRs or HCRs). LCRs and HCRs differ in drug-induced, but not novelty-associated, hyperactivity. LCRs have higher basal numbers of striatal dopamine transporters (DATs) than HCRs and exhibit marginal cocaine inhibition of in vivo DAT activity and cocaine-induced increases in extracellular DA. Importantly, lower initial cocaine response predicts greater locomotor sensitization, conditioned place preference and greater motivation to self-administer cocaine following low dose acquisition. Further, outbred Long-Evans rats classified as LCRs, versus HCRs, are more sensitive to cocaine’s discriminative stimulus effects. Overall, results to date with the LCR/HCR model underscore the contribution of striatal DATs to individual differences in initial cocaine responsiveness and the value of assessing the influence of initial drug response on subsequent expression of addiction-like behaviors. PMID:23850581
Infantile parkinsonism-dystonia: a dopamine "transportopathy".
Blackstone, Craig
2009-06-01
The dopamine transporter (DAT) retrieves the neurotransmitter dopamine from the synaptic cleft at dopaminergic synapses. Variations in solute carrier family 6A, member 3 (SLC6A3/DAT1), the human gene encoding DAT, have been implicated in attention deficit hyperactivity and bipolar disorders, and DAT is a prominent site of action for drugs such as amphetamines and cocaine. In this issue of the JCI, Kurian et al. report that an autosomal recessive infantile parkinsonism-dystonia is caused by loss-of-function mutations in DAT that impair dopamine reuptake (see the related article beginning on page 1595). Though this might be predicted to result in dopamine excess in the synaptic cleft, it likely also causes depletion of presynaptic dopamine stores and possibly downregulation of postsynaptic dopamine receptor function, resulting in impairments in dopaminergic neurotransmission consistent with the clinical presentation. This is the first report of a genetic alteration in DAT function underlying a parkinsonian disorder.
Infantile parkinsonism-dystonia: a dopamine “transportopathy”
Blackstone, Craig
2009-01-01
The dopamine transporter (DAT) retrieves the neurotransmitter dopamine from the synaptic cleft at dopaminergic synapses. Variations in solute carrier family 6A, member 3 (SLC6A3/DAT1), the human gene encoding DAT, have been implicated in attention deficit hyperactivity and bipolar disorders, and DAT is a prominent site of action for drugs such as amphetamines and cocaine. In this issue of the JCI, Kurian et al. report that an autosomal recessive infantile parkinsonism-dystonia is caused by loss-of-function mutations in DAT that impair dopamine reuptake (see the related article beginning on page 1595). Though this might be predicted to result in dopamine excess in the synaptic cleft, it likely also causes depletion of presynaptic dopamine stores and possibly downregulation of postsynaptic dopamine receptor function, resulting in impairments in dopaminergic neurotransmission consistent with the clinical presentation. This is the first report of a genetic alteration in DAT function underlying a parkinsonian disorder. PMID:19504720
Dal Bo, Gregory; St-Gelais, Fannie; Danik, Marc; Williams, Sylvain; Cotton, Mathieu; Trudeau, Louis-Eric
2004-03-01
Dopamine neurons have been suggested to use glutamate as a cotransmitter. To identify the basis of such a phenotype, we have examined the expression of the three recently identified vesicular glutamate transporters (VGLUT1-3) in postnatal rat dopamine neurons in culture. We found that the majority of isolated dopamine neurons express VGLUT2, but not VGLUT1 or 3. In comparison, serotonin neurons express only VGLUT3. Single-cell RT-PCR experiments confirmed the presence of VGLUT2 mRNA in dopamine neurons. Arguing for phenotypic heterogeneity among axon terminals, we find that only a proportion of terminals established by dopamine neurons are VGLUT2-positive. Taken together, our results provide a basis for the ability of dopamine neurons to release glutamate as a cotransmitter. A detailed analysis of the conditions under which DA neurons gain or loose a glutamatergic phenotype may provide novel insight into pathophysiological processes that underlie diseases such as schizophrenia, Parkinson's disease and drug dependence.
Baumann, Michael H; Partilla, John S; Lehner, Kurt R; Thorndike, Eric B; Hoffman, Alexander F; Holy, Marion; Rothman, Richard B; Goldberg, Steven R; Lupica, Carl R; Sitte, Harald H; Brandt, Simon D; Tella, Srihari R; Cozzi, Nicholas V; Schindler, Charles W
2013-03-01
The abuse of psychoactive 'bath salts' containing cathinones such as 3,4-methylenedioxypyrovalerone (MDPV) is a growing public health concern, yet little is known about their pharmacology. Here, we evaluated the effects of MDPV and related drugs using molecular, cellular, and whole-animal methods. In vitro transporter assays were performed in rat brain synaptosomes and in cells expressing human transporters, while clearance of endogenous dopamine was measured by fast-scan cyclic voltammetry in mouse striatal slices. Assessments of in vivo neurochemistry, locomotor activity, and cardiovascular parameters were carried out in rats. We found that MDPV blocks uptake of [(3)H]dopamine (IC(50)=4.1 nM) and [(3)H]norepinephrine (IC(50)=26 nM) with high potency but has weak effects on uptake of [(3)H]serotonin (IC(50)=3349 nM). In contrast to other psychoactive cathinones (eg, mephedrone), MDPV is not a transporter substrate. The clearance of endogenous dopamine is inhibited by MDPV and cocaine in a similar manner, but MDPV displays greater potency and efficacy. Consistent with in vitro findings, MDPV (0.1-0.3 mg/kg, intravenous) increases extracellular concentrations of dopamine in the nucleus accumbens. Additionally, MDPV (0.1-3.0 mg/kg, subcutaneous) is at least 10 times more potent than cocaine at producing locomotor activation, tachycardia, and hypertension in rats. Our data show that MDPV is a monoamine transporter blocker with increased potency and selectivity for catecholamines when compared with cocaine. The robust stimulation of dopamine transmission by MDPV predicts serious potential for abuse and may provide a mechanism to explain the adverse effects observed in humans taking high doses of 'bath salts' preparations.
Baumann, Michael H; Partilla, John S; Lehner, Kurt R; Thorndike, Eric B; Hoffman, Alexander F; Holy, Marion; Rothman, Richard B; Goldberg, Steven R; Lupica, Carl R; Sitte, Harald H; Brandt, Simon D; Tella, Srihari R; Cozzi, Nicholas V; Schindler, Charles W
2013-01-01
The abuse of psychoactive ‘bath salts' containing cathinones such as 3,4-methylenedioxypyrovalerone (MDPV) is a growing public health concern, yet little is known about their pharmacology. Here, we evaluated the effects of MDPV and related drugs using molecular, cellular, and whole-animal methods. In vitro transporter assays were performed in rat brain synaptosomes and in cells expressing human transporters, while clearance of endogenous dopamine was measured by fast-scan cyclic voltammetry in mouse striatal slices. Assessments of in vivo neurochemistry, locomotor activity, and cardiovascular parameters were carried out in rats. We found that MDPV blocks uptake of [3H]dopamine (IC50=4.1 nℳ) and [3H]norepinephrine (IC50=26 nℳ) with high potency but has weak effects on uptake of [3H]serotonin (IC50=3349 nℳ). In contrast to other psychoactive cathinones (eg, mephedrone), MDPV is not a transporter substrate. The clearance of endogenous dopamine is inhibited by MDPV and cocaine in a similar manner, but MDPV displays greater potency and efficacy. Consistent with in vitro findings, MDPV (0.1–0.3 mg/kg, intravenous) increases extracellular concentrations of dopamine in the nucleus accumbens. Additionally, MDPV (0.1–3.0 mg/kg, subcutaneous) is at least 10 times more potent than cocaine at producing locomotor activation, tachycardia, and hypertension in rats. Our data show that MDPV is a monoamine transporter blocker with increased potency and selectivity for catecholamines when compared with cocaine. The robust stimulation of dopamine transmission by MDPV predicts serious potential for abuse and may provide a mechanism to explain the adverse effects observed in humans taking high doses of ‘bath salts' preparations. PMID:23072836
Kristofova, Martina; Aher, Yogesh D; Ilic, Marija; Radoman, Bojana; Kalaba, Predrag; Dragacevic, Vladimir; Aher, Nilima Y; Leban, Johann; Korz, Volker; Zanon, Lisa; Neuhaus, Winfried; Wieder, Marcus; Langer, Thierry; Urban, Ernst; Sitte, Harald H; Hoeger, Harald; Lubec, Gert; Aradska, Jana
2018-05-02
Dopamine reuptake inhibitors have been shown to improve cognitive parameters in various tasks and animal models. We recently reported a series of modafinil analogues, of which the most promising, 5-((benzhydrylsulfinyl)methyl) thiazole (CE-123), was selected for further development. The present study aims to characterize pharmacological properties of CE-123 and to investigate the potential to enhance memory performance in a rat model. In vitro transporter assays were performed in cells expressing human transporters. CE-123 blocked uptake of [3H] dopamine (IC50 = 4.606 μM) while effects on serotonin (SERT) and the norepinephrine transporter (NET) were negligible. Blood-brain barrier and pharmacokinetic studies showed that the compound reached the brain and lower elimination than R-modafinil. The Pro-cognitive effect was evaluated in a spatial hole-board task in male Sprague-Dawley rats and CE-123 enhances memory acquisition and memory retrieval, represented by significantly increased reference memory indices and shortened latency. Since DAT blockers can be considered as indirect dopamine receptor agonists, western blotting was used to quantify protein levels of dopamine receptors D1R, D2R and D5R and DAT in the synaptosomal fraction of hippocampal subregions CA1, CA3 and dentate gyrus (DG). CE-123 administration in rats increased total DAT levels and D1R protein levels were significantly increased in CA1 and CA3 in treated/trained groups. The increase of D5R was observed in DG only. Dopamine receptors, particularly D1R, seem to play a role in mediating CE-123-induced memory enhancement. Dopamine reuptake inhibition by CE-123 may represent a novel and improved stimulant therapeutic for impairments of cognitive functions. Copyright © 2018 Elsevier B.V. All rights reserved.
Omori, Yoshihiro; Chaya, Taro; Yoshida, Satoyo; Irie, Shoichi; Tsujii, Toshinori; Furukawa, Takahisa
2015-01-01
Primary cilia are sensory organelles that harbor various receptors such as G protein-coupled receptors (GPCRs). We analyzed subcellular localization of 138 non-odorant GPCRs. We transfected GPCR expression vectors into NIH3T3 cells, induced ciliogenesis by serum starvation, and observed subcellular localization of GPCRs by immunofluorescent staining. We found that several GPCRs whose ligands are involved in feeding behavior, including prolactin-releasing hormone receptor (PRLHR), neuropeptide FF receptor 1 (NPFFR1), and neuromedin U receptor 1 (NMUR1), localized to the primary cilia. In addition, we found that a short form of dopamine receptor D2 (DRD2S) is efficiently transported to the primary cilia, while a long form of dopamine receptor D2 (DRD2L) is rarely transported to the primary cilia. Using an anti-Prlhr antibody, we found that Prlhr localized to the cilia on the surface of the third ventricle in the vicinity of the hypothalamic periventricular nucleus. We generated the Npy2r-Cre transgenic mouse line in which Cre-recombinase is expressed under the control of the promoter of Npy2r encoding a ciliary GPCR. By mating Npy2r-Cre mice with Ift80 flox mice, we generated Ift80 conditional knockout (CKO) mice in which Npy2r-positive cilia were diminished in number. We found that Ift80 CKO mice exhibited a body weight increase. Our results suggest that Npy2r-positive cilia are important for body weight control.
Synthesis and dopamine transporter imaging in rhesus monkeys with fluorine-18 labeled FECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keil, R.; Hoffman, J.M.; Eschima, D.
1996-05-01
Parkinson`s patients have been shown to suffer a 60-80% loss of dopamine transporters in the substantia nigra and striatum. Dopamine transporter ligands labeled with fluorine-18 (t {1/2}=110 min) are attractive probes for measuring the density of dopamine transporter sites n the striatum for the diagnosis and evaluation of Parkinson`s patients by PET. We have synthesized (Ki = 32 nM vs RTI-55), fluorine-18 labeled 2{beta}-carbomethoxy-3{beta}(4-chlorophenyl)-8-(3-fluoropropyl)nortropane (FECT), with favorable kinetics as a potential dopamine transporter PET imaging agent. Treatment of 2{beta}-carbomethoxy-3{beta}-(4-chlorophenyl)nortropane (1) with 1-bromo-2-fluoroethane (2) in CH3CN at 80{degrees}C gave FECT (3). [F-18]FECT (3) was prepared by treating 1,2-ditosyloxyethane (4) with NCAmore » K[F-18]/K222 (365 mCi) for 5 min in CH3CN at 85{degrees}C to give [F-18] 1-fluoro-2-tosyloxyethane (5) (175 mCi)in 59% E.O.B. yield. Coupling of [F-18] 5 with 1 in DMF at 135 {degrees}C for 45 min gave [F-18]FECT (41 mCi) in 25% yield E.O.B. following HPLC purification in a total synthesis time of 122 min. [F-18] 5 was >99% radiochemically pure with a specific activity of 5 Ci/{mu}mole. Following intravenous administration to a rhesus monkey [F-18]FECT (8.13 mCi) showed a peak uptake at 30 min in the striatum (S) followed by a slow clearance and a rapid washout from the cerebellum to afford a high S/C ratio = 11.0 at 125 min. Radio-HPLC analysis of the ether extracts form plasma samples for radioactive metabolites detected only the presence of [F-18]FECT. These results suggest that FECT is an Research supported by DOE.« less
Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users.
McCann, Una D; Kuwabara, Hiroto; Kumar, Anil; Palermo, Michael; Abbey, Rubyna; Brasic, James; Ye, Weiguo; Alexander, Mohab; Dannals, Robert F; Wong, Dean F; Ricaurte, George A
2008-02-01
Studies in abstinent methamphetamine (METH) users have demonstrated reductions in brain dopamine transporter (DAT) binding potential (BP), as well as cognitive and motor deficits, but it is not yet clear whether cognitive deficits and brain DAT reductions fully reverse with sustained abstinence, or whether behavioral deficits in METH users are related to dopamine (DA) deficits. This study was conducted to further investigate potential persistent psychomotor deficits secondary to METH abuse, and their relationship to brain DAT availability, as measured using quantitative PET methods with [(11)C]WIN 35428. Twenty-two abstinent METH users and 17 healthy non-METH using controls underwent psychometric testing to test the hypothesis that METH users would demonstrate selective deficits in neuropsychiatric domains known to involve DA neurons (e.g., working memory, executive function, motor function). A subset of subjects also underwent PET scanning with [(11)C]WIN 35428. METH users were found to have modest deficits in short-term memory, executive function, and manual dexterity. Exploratory correlational analyses revealed that deficits in memory, but not those in executive or motor function, were associated with decreases in striatal DAT BP. These results suggest a possible relationship between DAT BP and memory deficits in abstinent METH users, and lend support to the notion that METH produces lasting effects on central DA neurons in humans. As METH can also produce toxic effects on serotonin (5-HT) neurons, further study is needed to address the potential role of brain 5-HT depletion in cognitive deficits in abstinent METH users. (c) 2007 Wiley-Liss, Inc.
Fachinetto, Roselei; Villarinho, Jardel G; Wagner, Caroline; Pereira, Romaiana P; Avila, Daiana Silva; Burger, Marilise E; Calixto, João Batista; Rocha, João B T; Ferreira, Juliano
2007-10-01
Chronic treatment with classical neuroleptics in humans can produce a serious side effect, known as tardive dyskinesia (TD). Here, we examined the effects of V. officinalis, a medicinal herb widely used as calming and sleep-promoting, in an animal model of orofacial dyskinesia (OD) induced by long-term treatment with haloperidol. Adult male rats were treated during 12 weeks with haloperidol decanoate (38 mg/kg, i.m., each 28 days) and with V. officinalis (in the drinking water). Vacuous chewing movements (VCMs), locomotor activity and plus maze performance were evaluated. Haloperidol treatment produced VCM in 40% of the treated rats and the concomitant treatment with V. officinalis did not alter either prevalence or intensity of VCMs. The treatment with V. officinalis increased the percentage of the time spent on open arm and the number of entries into open arm in the plus maze test. Furthermore, the treatment with haloperidol and/or V. officinalis decreased the locomotor activity in the open field test. We did not find any difference among the groups when oxidative stress parameters were evaluated. Haloperidol treatment significantly decreased [(3)H]-dopamine uptake in striatal slices and V. officinalis was not able to prevent this effect. Taken together, our data suggest a mechanism involving the reduction of dopamine transport in the maintenance of chronic VCMs in rats. Furthermore, chronic treatment with V. officinalis seems not produce any oxidative damage to central nervous system (CNS), but it also seems to be devoid of action to prevent VCM, at least in the dose used in this study.
Brown, Ariel B.; Biederman, Joseph; Valera, Eve M.; Doyle, Alysa E.; Bush, George; Spencer, Thomas; Monuteaux, Michael C.; Mick, Eric; Whitfield-Gabrieli, Susan; Makris, Nikos; LaViolette, Peter S.; Oscar-Berman, Marlene; Faraone, Stephen V.; Seidman, Larry J.
2010-01-01
Objective - Although Attention-Deficit/Hyperactivity Disorder (ADHD) is associated both with brain alterations in attention and executive function (EF) circuitry and with genetic variations within the dopamine system (including the dopamine transporter gene [SLC6A3]), few studies have directly investigated how genetic variations are linked to brain alterations. We sought to examine how a polymorphism in the 3’ untranslated region (UTR) of SLC6A3, associated with ADHD in meta-analysis, might contribute to variation in dorsal anterior cingulate cortex (dACC) function in subjects with ADHD. Method - We collected fMRI scans of 42 individuals with ADHD, all of European descent and over the age of 17, while they performed the Multi-Source Interference Task (MSIT), a cognitive task shown to activate dACC. SLC6A3 3’ UTR variable number tandem repeat (VNTR) polymorphisms were genotyped and brain activity was compared for groups based on allele status. Results - ADHD individuals homozygous for the 10R allele showed significant hypoactivation in the left dACC compared to 9R-carriers. Exploratory analysis also showed trends toward hypoactivation in the 10R homozygotes in left cerebellar vermis and right lateral prefrontal cortex. Further breakdown of genotype groups showed similar activation in individuals heterozygous and homozygous for the 9R allele. Conclusions - Alterations in activation of attention and EF networks found previously to be involved in ADHD are likely influenced by SLC6A3 genotype. This genotype may contribute to heterogeneity of brain alterations found within ADHD samples. PMID:19676101
Reguilón, Marina Daiana; Montagud-Romero, Sandra; Ferrer-Pérez, Carmen; Roger-Sánchez, Concepción; Aguilar, María Asunción; Miñarro, José; Rodríguez-Arias, Marta
2017-03-15
Social stress modifies the activity of brain areas involved in the rewarding effects of psychostimulants, inducing neuroadaptations in the dopaminergic mesolimbic system and modifying the sensitivity of dopamine receptors. In the present study we evaluated the effect of the dopamine D 1 - and D 2 -like receptor antagonists (SCH23390 and raclopride, respectively) on the short-time effects of acute social defeat (ASD). Male OF1 mice were socially defeated before each conditioning session of the conditioned place preference (CPP) induced by 1mg/kg or 25mg/kg of cocaine plus the corresponding dopamine antagonist. A final experiment was designed to evaluate the effect of the dopamine antagonists on the CPP induced by 3mg/kg of cocaine with or without a stress experience. Mice exposed to ASD showed an increase in reinstatement of the conditioned reinforcing effects of cocaine that was blocked by all of the dopamine receptor antagonists. Blockade of dopamine D 2 -like receptors with raclopride specifically prevented the effects of stress without affecting the rewarding properties of cocaine. However, SCH23390 inhibited cocaine-induced preference in the control groups and even induced aversion in defeated mice conditioned with the lower dose of cocaine. Moreover, the lowest dose of SCH23390 blocked the rewarding effects of 3mg/kg of cocaine-induced CPP. Our results confirm that the dopamine D 2 receptor is involved in the short-term effects of ASD on the rewarding effects of cocaine. The dopamine D 1 receptor is clearly involved in the rewarding effects of cocaine, but its role in the effects of ASD remains to be demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.
Wile, Daryl J; Agarwal, Pankaj A; Schulzer, Michael; Mak, Edwin; Dinelle, Katherine; Shahinfard, Elham; Vafai, Nasim; Hasegawa, Kazuko; Zhang, Jing; McKenzie, Jessamyn; Neilson, Nicole; Strongosky, Audrey; Uitti, Ryan J; Guttman, Mark; Zabetian, Cyrus P; Ding, Yu-Shin; Adam, Mike; Aasly, Jan; Wszolek, Zbigniew K; Farrer, Matthew; Sossi, Vesna; Stoessl, A Jon
2017-05-01
People with Parkinson's disease can show premotor neurochemical changes in the dopaminergic and non-dopaminergic systems. Using PET, we assessed whether dopaminergic and serotonin transporter changes are similar in LRRK2 mutation carriers with Parkinson's disease and individuals with sporadic Parkinson's disease, and whether LRRK2 mutation carriers without motor symptoms show PET changes. We did two cross-sectional PET studies at the Pacific Parkinson's Research Centre in Vancouver, BC, Canada. We included LRRK2 mutation carriers with or without manifest Parkinson's disease, people with sporadic Parkinson's disease, and age-matched healthy controls, all aged 18 years or older. People with Parkinson's disease were diagnosed by a neurologist with movement disorder training, in accordance with the UK Parkinson's Disease Society Brain Bank criteria. LRRK2 carrier status was confirmed by bidirectional Sanger sequencing. In the first study, LRRK2 mutation carriers with or without manifest Parkinson's disease who were referred for investigation between July, 1999, and January, 2012, were scanned with PET tracers for the membrane dopamine transporter, and dopamine synthesis and storage ( 18 F-6-fluoro-L-dopa; 18 F-FDOPA). We compared findings with those in people with sporadic Parkinson's disease and age-matched healthy controls. In the second study, distinct groups of LRRK2 mutation carriers, individuals with sporadic Parkinson's disease, and age-matched healthy controls seen from November, 2012, to May, 2016, were studied with tracers for the serotonin transporter and vesicular monoamine transporter 2 (VMAT2). Striatal dopamine transporter binding, VMAT2 binding, 18 F-FDOPA uptake, and serotonin transporter binding in multiple brain regions were compared by ANCOVA, adjusted for age. Between January, 1997, and January, 2012, we obtained data for our first study from 40 LRRK2 mutation carriers, 63 individuals with sporadic Parkinson's disease, and 35 healthy controls. We identified significant group differences in striatal dopamine transporter binding (all age ranges in caudate and putamen, p<0·0001) and 18 F-FDOPA uptake (in caudate: age ≤50 years, p=0·0002; all other age ranges, p<0·0001; in putamen: all age ranges, p<0·0001). LRRK2 mutation carriers with manifest Parkinson's disease (n=15) had reduced striatal dopamine transporter binding and 18 F-FDOPA uptake, comparable with amounts seen in individuals with sporadic Parkinson's disease of similar duration. LRRK2 mutation carriers without manifest Parkinson's disease (n=25) had greater 18 F-FDOPA uptake and dopamine transporter binding than did individuals with sporadic Parkinson's disease, with 18 F-FDOPA uptake comparable with controls and dopamine transporter binding lower than in controls. Between November, 2012, and May, 2016, we obtained data for our second study from 16 LRRK2 mutation carriers, 13 individuals with sporadic Parkinson's disease, and nine healthy controls. Nine LRRK2 mutation carriers without manifest Parkinson's disease had significantly elevated serotonin transporter binding in the hypothalamus (compared with controls, individuals with LRRK2 Parkinson's disease, and people with sporadic Parkinson's disease, p<0·0001), striatum (compared with people with sporadic Parkinson's disease, p=0·02), and brainstem (compared with LRRK2 mutation carriers with manifest Parkinson's disease, p=0·01), after adjustment for age. Serotonin transporter binding in the cortex did not differ significantly between groups after age adjustment. Striatal VMAT2 binding was reduced in all individuals with manifest Parkinson's disease and reduced asymmetrically in one LRRK2 mutation carrier without manifest disease. Dopaminergic and serotonergic changes progress in a similar fashion in LRRK2 mutation carriers with manifest Parkinson's disease and individuals with sporadic Parkinson's disease, but LRRK2 mutation carriers without manifest Parkinson's disease show increased serotonin transporter binding in the striatum, brainstem, and hypothalamus, possibly reflecting compensatory changes in serotonergic innervation preceding the motor onset of Parkinson's disease. Increased serotonergic innervation might contribute to clinical differences in LRRK2 Parkinson's disease, including the emergence of non-motor symptoms and, potentially, differences in the long-term response to levodopa. Canada Research Chairs, Michael J Fox Foundation, National Institutes of Health, Pacific Alzheimer Research Foundation, Pacific Parkinson's Research Institute, National Research Council of Canada. Copyright © 2017 Elsevier Ltd. All rights reserved.
Boileau, Isabelle; Rusjan, Pablo; Houle, Sylvain; Wilkins, Diana; Tong, Junchao; Selby, Peter; Guttman, Mark; Saint-Cyr, Jean A; Wilson, Alan A; Kish, Stephen J
2008-09-24
Animal data indicate that methamphetamine can damage striatal dopamine terminals. Efforts to document dopamine neuron damage in living brain of methamphetamine users have focused on the binding of [(11)C]dihydrotetrabenazine (DTBZ), a vesicular monoamine transporter (VMAT2) positron emission tomography (PET) radioligand, as a stable dopamine neuron biomarker. Previous PET data report a slight decrease in striatal [(11)C]DTBZ binding in human methamphetamine users after prolonged (mean, 3 years) abstinence, suggesting that the reduction would likely be substantial in early abstinence. We measured striatal VMAT2 binding in 16 recently withdrawn (mean, 19 d; range, 1-90 d) methamphetamine users and in 14 healthy matched-control subjects during a PET scan with (+)[(11)C]DTBZ. Unexpectedly, striatal (+)[(11)C]DTBZ binding was increased in methamphetamine users relative to controls (+22%, caudate; +12%, putamen; +11%, ventral striatum). Increased (+)[(11)C]DTBZ binding in caudate was most marked in methamphetamine users abstinent for 1-3 d (+41%), relative to the 7-21 d (+15%) and >21 d (+9%) groups. Above-normal VMAT2 binding in some drug users suggests that any toxic effect of methamphetamine on dopamine neurons might be masked by an increased (+)[(11)C]DTBZ binding and that VMAT2 radioligand binding might not be, as is generally assumed, a "stable" index of dopamine neuron integrity in vivo. One potential explanation for increased (+)[(11)C]DTBZ binding is that VMAT2 binding is sensitive to changes in vesicular dopamine storage levels, presumably low in drug users. If correct, (+)[(11)C]DTBZ might be a useful imaging probe to correlate changes in brain dopamine stores and behavior in users of methamphetamine.
Biezonski, Dominik K.; Piper, Brian J.; Shinday, Nina M.; Kim, Peter J.; Ali, Syed F.; Meyer, Jerrold S.
2013-01-01
Although the recreational drug 3,4-methylenedioxymethamphetamine (MDMA) is often described as a selective serotonergic neurotoxin, some research has challenged this view. The objective of this study was to determine the influence of MDMA on subsequent levels of two different markers of dopaminergic function, the dopamine transporter (DAT) as well as dopamine and its major metabolites. In experiment I, adult male Sprague–Dawley rats were administered either a low or moderate dose MDMA binge (2.5 or 5.0 mg/kg × 4 with an inter-dose interval of 1 h) or saline, and were killed 1 week later. The moderate dose dramatically reduced [3H]WIN 35,428 binding to striatal DAT by 73.7% (P ≤ 0.001). In experiment II, animals were binged with a higher dose of MDMA (10 mg/kg × 4) to determine the drug’s effects on concentrations of serotonin (5-HT), dopamine, and their respective major metabolites 5-hydroxyindoleacetic acid (5-HIAA), dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in the striatum and frontal cortex 1 week later. As expected, MDMA significantly reduced 5-HT and 5-HIAA (≥ 50%) in these structures, while only a marginal decrease in dopamine was noted in the striatum. In contrast, levels of DOPAC (34.3%, P < 0.01) and HVA (33.5%, P < 0.001) were reduced by MDMA treatment, suggesting a decrease in dopamine turnover. Overall, these findings indicate that while serotonergic markers are particularly vulnerable to MDMA-induced depletion, significant dopaminergic deficits may also occur under some conditions. Importantly, DAT expression may be more vulnerable to perturbation by MDMA than dopamine itself. PMID:23276666
Shekar, Aparna; Aguilar, Jenny I; Galli, Greta; Cozzi, Nicholas V; Brandt, Simon D; Ruoho, Arnold E; Baumann, Michael H; Matthies, Heinrich J G; Galli, Aurelio
2017-10-01
Synthetic cathinones are similar in chemical structure to amphetamines, and their behavioral effects are associated with enhanced dopaminergic signaling. The past ten years of research on the common constituent of bath salts, MDPV (the synthetic cathinone 3,4-methylenedioxypyrovalerone), has aided the understanding of how synthetic cathinones act at the dopamine (DA) transporter (DAT). Several groups have described the ability of MDPV to block the DAT with high-affinity. In this study, we demonstrate for the first time a new mode of action of MDPV, namely its ability to promote DAT-mediated DA efflux. Using single cell amperometric assays, we determined that low concentrations of MDPV (1nM) can cause reverse transport of DA via DAT. Notably, administration of MDPV leads to hyperlocomotion in Drosophila melanogaster. These data describe further how MDPV acts at the DAT, possibly paving the way for novel treatment strategies for individuals who abuse bath salts. Copyright © 2017 Elsevier B.V. All rights reserved.
Excessive D1 Dopamine Receptor Activation in the Dorsal Striatum Promotes Autistic-Like Behaviors.
Lee, Yunjin; Kim, Hannah; Kim, Ji-Eun; Park, Jin-Young; Choi, Juli; Lee, Jung-Eun; Lee, Eun-Hwa; Han, Pyung-Lim
2018-07-01
The dopamine system has been characterized in motor function, goal-directed behaviors, and rewards. Recent studies recognize various dopamine system genes as being associated with autism spectrum disorder (ASD). However, how dopamine system dysfunction induces ASD pathophysiology remains unknown. In the present study, we demonstrated that mice with increased dopamine functions in the dorsal striatum via the suppression of dopamine transporter expression in substantia nigra neurons or the optogenetic stimulation of the nigro-striatal circuitry exhibited sociability deficits and repetitive behaviors relevant to ASD pathology in animal models, while these behavioral changes were blocked by a D1 receptor antagonist. Pharmacological activation of D1 dopamine receptors in normal mice or the genetic knockout (KO) of D2 dopamine receptors also produced typical autistic-like behaviors. Moreover, the siRNA-mediated inhibition of D2 dopamine receptors in the dorsal striatum was sufficient to replicate autistic-like phenotypes in D2 KO mice. Intervention of D1 dopamine receptor functions or the signaling pathways-related D1 receptors in D2 KO mice produced anti-autistic effects. Together, our results indicate that increased dopamine function in the dorsal striatum promotes autistic-like behaviors and that the dorsal striatum is the neural correlate of ASD core symptoms.
Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals
Daberkow, DP; Brown, HD; Bunner, KD; Kraniotis, SA; Doellman, MA; Ragozzino, ME; Garris, PA; Roitman, MF
2013-01-01
Drugs of abuse hijack brain reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting non-exocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties - which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to two hours. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration and frequency of spontaneous dopamine transients, the naturally occurring, non-electrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sucrose reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sucrose-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify up-regulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926
The potential role of myostatin and neurotransmission genes in elite sport performances.
Filonzi, L; Franchini, N; Vaghi, M; Chiesa, S; Marzano, F Nonnis
2015-09-01
Elite athletes are those who represent their sport at such major competition as the Olympic Games or World contests. The most outstanding athletes appear to emerge as a result of endogenous biologic characteristics interacting with exogenous influences of the environment, often described as a 'Nature and Nurture' struggle. In this work, we assessed the contribution given by 4 genes involved in muscles development (MSTN) and behavioural insights (5HTT, DAT and MAOA) to athletic performances. As for neurotransmission, 5HTT, DAT and MAOA genes have been considered as directly involved in the management of aggressiveness and anxiety. Genotypes and allelic frequencies of 5HTTLPR, MAOA-u VNTR, DAT VNTR and MSTN K153R were determined in 50 elite athletes and compared with 100 control athletes. In this work we found a significant correlation between the dopamine transporter genotype 9/9 and allele 9 and elite sport performances. On the contrary, no association was found between muscle development regulation or serotonin pathway and elite performances. Our data, for the first time, suggest a strong role of dopamine neurotransmitter in determining sport success, highlighting the role of emotional control and psycological management to reach high-level performances.
Riikonen, Raili S; Nokelainen, Pekka; Valkonen, Kirsi; Kolehmainen, Anni I; Kumpulainen, Kirsti I; Könönen, Mervi; Vanninen, Ritva-Liisa S; Kuikka, Jyrki T
2005-06-15
In prenatally alcohol exposed children, the relationship between brain structure and function is highlighted to be important to study. We studied 12 children with fetal alcoholic syndrome (FAS) and fetal alcoholic effects (FAE) by magnetic resonance imaging volumetry and by single-photon emission computed tomography with iodine-123 labeled 2beta-carbomethoxy-3beta-(4-iodophenyl) ([123I]nor-beta-CIT) and related these findings to those from neuropsychological and psychiatric tests. The absolute volumes of studied nuclei, including the brain volume, were significantly smaller in FAS/FAE children than in control patients. After normalization of volumes, significant differences were not found. Left hippocampus was smaller than the right (p<.003) but did not significantly differ from the control subjects. The children with FAS/FAE showed reduced serotonin (p=.02) in the medial frontal cortex and slightly increased striatal dopamine transporter binding. All FAS/FAE children had attention-deficit/hyperkinetic disorder (ADHD). None had depression. The internalization scores correlated with dopamine transporter binding (r=-.65; p=.03). The results indicate that the serotonin (5-HT) system may be vulnerable to the effects of ethanol in utero. The high dopamine transporter levels may correlate with the ADHD findings. Reduced serotonin and increased binding of dopamine transporter are also seen in type 2 alcoholism. Some behavioral problems of FAS/FAE might be preventable by early intervention and treatment.
Bermingham, Daniel P.; Snider, Sam L.; Miller, David M.
2017-01-01
The neurotransmitter dopamine (DA) regulates multiple behaviors across phylogeny, with disrupted DA signaling in humans associated with addiction, attention-deficit/ hyperactivity disorder, schizophrenia, and Parkinson's disease. The DA transporter (DAT) imposes spatial and temporal limits on DA action, and provides for presynaptic DA recycling to replenish neurotransmitter pools. Molecular mechanisms that regulate DAT expression, trafficking, and function, particularly in vivo, remain poorly understood, though recent studies have implicated rho-linked pathways in psychostimulant action. To identify genes that dictate the ability of DAT to sustain normal levels of DA clearance, we pursued a forward genetic screen in Caenorhabditis elegans based on the phenotype swimming-induced paralysis (Swip), a paralytic behavior observed in hermaphrodite worms with loss-of-function dat-1 mutations. Here, we report the identity of swip-13, which encodes a highly conserved ortholog of the human atypical MAP kinase ERK8. We present evidence that SWIP-13 acts presynaptically to insure adequate levels of surface DAT expression and DA clearance. Moreover, we provide in vitro and in vivo evidence supporting a conserved pathway involving SWIP-13/ERK8 activation of Rho GTPases that dictates DAT surface expression and function. SIGNIFICANCE STATEMENT Signaling by the neurotransmitter dopamine (DA) is tightly regulated by the DA transporter (DAT), insuring efficient DA clearance after release. Molecular networks that regulate DAT are poorly understood, particularly in vivo. Using a forward genetic screen in the nematode Caenorhabditis elegans, we implicate the atypical mitogen activated protein kinase, SWIP-13, in DAT regulation. Moreover, we provide in vitro and in vivo evidence that SWIP-13, as well as its human counterpart ERK8, regulate DAT surface availability via the activation of Rho proteins. Our findings implicate a novel pathway that regulates DA synaptic availability and that may contribute to risk for disorders linked to perturbed DA signaling. Targeting this pathway may be of value in the development of therapeutics in such disorders. PMID:28842414
Wheeler, David S.; Underhill, Suzanne M.; Stolz, Donna B.; Murdoch, Geoffrey H.; Thiels, Edda; Romero, Guillermo; Amara, Susan G.
2015-01-01
Acute amphetamine (AMPH) exposure elevates extracellular dopamine through a variety of mechanisms that include inhibition of dopamine reuptake, depletion of vesicular stores, and facilitation of dopamine efflux across the plasma membrane. Recent work has shown that the DAT substrate AMPH, unlike cocaine and other nontransported blockers, can also stimulate endocytosis of the plasma membrane dopamine transporter (DAT). Here, we show that when AMPH enters the cytoplasm it rapidly stimulates DAT internalization through a dynamin-dependent, clathrin-independent process. This effect, which can be observed in transfected cells, cultured dopamine neurons, and midbrain slices, is mediated by activation of the small GTPase RhoA. Inhibition of RhoA activity with C3 exotoxin or a dominant-negative RhoA blocks AMPH-induced DAT internalization. These actions depend on AMPH entry into the cell and are blocked by the DAT inhibitor cocaine. AMPH also stimulates cAMP accumulation and PKA-dependent inactivation of RhoA, thus providing a mechanism whereby PKA- and RhoA-dependent signaling pathways can interact to regulate the timing and robustness of AMPH’s effects on DAT internalization. Consistent with this model, the activation of D1/D5 receptors that couple to PKA in dopamine neurons antagonizes RhoA activation, DAT internalization, and hyperlocomotion observed in mice after AMPH treatment. These observations support the existence of an unanticipated intracellular target that mediates the effects of AMPH on RhoA and cAMP signaling and suggest new pathways to target to disrupt AMPH action. PMID:26553986
Pyrethroid pesticide-induced alterations in dopamine transporter function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elwan, Mohamed A.; Department of Environmental and Occupational Health, School of Medicine, Emory University, Atlanta, GA 30322; Richardson, Jason R.
Parkinson's disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determinedmore » that exposure (10 min) to deltamethrin and permethrin (1 nM-100 {mu}M) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 {mu}M) or 24 h (1, 5, and 10 {mu}M) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD.« less
Truong, Jannine G; Wilkins, Diana G; Baudys, Jakub; Crouch, Dennis J; Johnson-Davis, Kamisha L; Gibb, James W; Hanson, Glen R; Fleckenstein, Annette E
2005-09-01
Tens of thousands of adolescents and young adults have used illicit methamphetamine. This is of concern since its high-dose administration causes persistent dopaminergic deficits in adult animal models. The effects in adolescents are less studied. In adult rodents, toxic effects of methamphetamine may result partly from aberrant cytosolic dopamine accumulation and subsequent reactive oxygen species formation. The vesicular monoamine transporter-2 (VMAT-2) sequesters cytoplasmic dopamine into synaptic vesicles for storage and perhaps protection against dopamine-associated oxidative consequences. Accordingly, aberrant VMAT-2 function may contribute to the methamphetamine-induced persistent dopaminergic deficits. Hence, this study examined effects of methamphetamine on VMAT-2 in adolescent (postnatal day 40) and young adult (postnatal day 90) rats. Results revealed that high-dose methamphetamine treatment caused greater acute (within 1 h) decreases in vesicular dopamine uptake in postnatal day 90 versus 40 rats, as determined in a nonmembrane-associated subcellular fraction. Greater basal levels of VMAT-2 at postnatal day 90 versus 40 in this purified fraction seemed to contribute to the larger effect. Basal tissue dopamine content was also greater in postnatal day 90 versus 40 rats. In addition, postnatal day 90 rats were more susceptible to methamphetamine-induced persistent dopaminergic deficits as assessed by measuring VMAT-2 activity and dopamine content 7 days after treatment, even if drug doses were adjusted for age-related pharmacokinetic differences. Together, these data demonstrate dynamic changes in VMAT-2 susceptibility to methamphetamine as a function of development. Implications with regard to methamphetamine-induced dopaminergic deficits, as well as dopamine-associated neurodegenerative disorders such as Parkinson's disease, are discussed.
Phasic Dopaminergic Signaling and the Presymptomatic Phase of Parkinson’s Disease
2005-07-01
provides an ambient , steady- state level of extracellular dopamine, whereas phasic signaling results in a transient increase (i.e., a short-lived...certain ambient extracellular level of dopamine is essential for movement to occur [116]. Phasic signaling involves synchronized high frequency firing of...microdialysis. A measurement of the ambient level of dopamine by microdialysis in animal studies shows that extracellular dopamine levels are normal
Long-term health of dopaminergic neuron transplants in Parkinson's disease patients.
Hallett, Penelope J; Cooper, Oliver; Sadi, Damaso; Robertson, Harold; Mendez, Ivar; Isacson, Ole
2014-06-26
To determine the long-term health and function of transplanted dopamine neurons in Parkinson's disease (PD) patients, the expression of dopamine transporters (DATs) and mitochondrial morphology were examined in human fetal midbrain cellular transplants. DAT was robustly expressed in transplanted dopamine neuron terminals in the reinnervated host putamen and caudate for at least 14 years after transplantation. The transplanted dopamine neurons showed a healthy and nonatrophied morphology at all time points. Labeling of the mitochondrial outer membrane protein Tom20 and α-synuclein showed a typical cellular pathology in the patients' own substantia nigra, which was not observed in transplanted dopamine neurons. These results show that the vast majority of transplanted neurons remain healthy for the long term in PD patients, consistent with clinical findings that fetal dopamine neuron transplants maintain function for up to 15-18 years in patients. These findings are critically important for the rational development of stem-cell-based dopamine neuronal replacement therapies for PD. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Diet-induced obesity: dopamine transporter function, impulsivity and motivation.
Narayanaswami, V; Thompson, A C; Cassis, L A; Bardo, M T; Dwoskin, L P
2013-08-01
A rat model of diet-induced obesity (DIO) was used to determine dopamine transporter (DAT) function, impulsivity and motivation as neurobehavioral outcomes and predictors of obesity. To evaluate neurobehavioral alterations following the development of DIO induced by an 8-week high-fat diet (HF) exposure, striatal D2-receptor density, DAT function and expression, extracellular dopamine concentrations, impulsivity, and motivation for high- and low-fat reinforcers were determined. To determine predictors of DIO, neurobehavioral antecedents including impulsivity, motivation for high-fat reinforcers, DAT function and extracellular dopamine were evaluated before the 8-week HF exposure. Striatal D2-receptor density was determined by in vitro kinetic analysis of [(3)H]raclopride binding. DAT function was determined using in vitro kinetic analysis of [(3)H]dopamine uptake, methamphetamine-evoked [(3)H]dopamine overflow and no-net flux in vivo microdialysis. DAT cell-surface expression was determined using biotinylation and western blotting. Impulsivity and food-motivated behavior were determined using a delay discounting task and progressive ratio schedule, respectively. Relative to obesity-resistant (OR) rats, obesity-prone (OP) rats exhibited 18% greater body weight following an 8-week HF-diet exposure, 42% lower striatal D2-receptor density, 30% lower total DAT expression, 40% lower in vitro and in vivo DAT function, 45% greater extracellular dopamine and twofold greater methamphetamine-evoked [(3)H]dopamine overflow. OP rats exhibited higher motivation for food, and surprisingly, were less impulsive relative to OR rats. Impulsivity, in vivo DAT function and extracellular dopamine concentration did not predict DIO. Importantly, motivation for high-fat reinforcers predicted the development of DIO. Human studies are limited by their ability to determine if impulsivity, motivation and DAT function are causes or consequences of DIO. The current animal model shows that motivation for high-fat food, but not impulsive behavior, predicts the development of obesity, whereas decreases in striatal DAT function are exhibited only after the development of obesity.
Diet-induced obesity: dopamine transporter function, impulsivity and motivation
Narayanaswami, V; Thompson, AC; Cassis, LA; Bardo, MT; Dwoskin, LP
2013-01-01
OBJECTIVE A rat model of diet-induced obesity (DIO) was used to determine dopamine transporter (DAT) function, impulsivity and motivation as neurobehavioral outcomes and predictors of obesity. DESIGN To evaluate neurobehavioral alterations following the development of DIO induced by an 8-week high-fat diet (HF) exposure, striatal D2-receptor density, DAT function and expression, extracellular dopamine concentrations, impulsivity, and motivation for high- and low-fat reinforcers were determined. To determine predictors of DIO, neurobehavioral antecedents including impulsivity, motivation for high-fat reinforcers, DAT function and extracellular dopamine were evaluated before the 8-week HF exposure. METHODS Striatal D2-receptor density was determined by in vitro kinetic analysis of [3H]raclopride binding. DAT function was determined using in vitro kinetic analysis of [3H]dopamine uptake, methamphetamine-evoked [3H]dopamine overflow and no-net flux in vivo microdialysis. DAT cell-surface expression was determined using biotinylation and western blotting. Impulsivity and food-motivated behavior were determined using a delay discounting task and progressive ratio schedule, respectively. RESULTS Relative to obesity-resistant (OR) rats, obesity-prone (OP) rats exhibited 18% greater body weight following an 8-week HF-diet exposure, 42% lower striatal D2-receptor density, 30% lower total DAT expression, 40% lower in vitro and in vivo DAT function, 45% greater extracellular dopamine and twofold greater methamphetamine-evoked [3H]dopamine overflow. OP rats exhibited higher motivation for food, and surprisingly, were less impulsive relative to OR rats. Impulsivity, in vivo DAT function and extracellular dopamine concentration did not predict DIO. Importantly, motivation for high-fat reinforcers predicted the development of DIO. CONCLUSION Human studies are limited by their ability to determine if impulsivity, motivation and DAT function are causes or consequences of DIO. The current animal model shows that motivation for high-fat food, but not impulsive behavior, predicts the development of obesity, whereas decreases in striatal DAT function are exhibited only after the development of obesity. PMID:23164701
Jentsch, J D; Roth, R H; Taylor, J R
2000-01-01
We have discussed the role of dopamine in modulating the interactions between cortical and striatal regions that are involved in behavioral regulation. The evidence reviewed seems to suggest that dopamine acts, overall, to promote stimulus-induced responding for conditioned or reward-related stimuli by integrative actions at multiple forebrain sites. It is thus not surprising that dopaminergic dysfunction has been implicated in a number of neuropsychiatric disorders that involve abnormal cognitive and affective function. Future studies aimed at pinpointing the precise anatomical sites of action and molecular mechanisms involved in dopaminergic transmission within the corticolimbic circuit are critical for trying to disentangle the cellular mechanisms by which dopamine exerts its actions. Moreover, the afferent control of dopamine neurons from brainstem and forebrain sites need to be fully explored in order to begin to understand what mechanisms are involved in regulating the dopaminergic response to stimuli with incentive value. Finally, the post-synaptic consequences of prolonged and supranormal dopaminergic activation need to be investigated in order to understand what persistent neuroadaptations result from chronic activation of this neuromodulatory system (e.g. in drug addiction). Answers to these sorts of questions will undoubtedly provide important insights into the nature of dopaminergic function in the animal and human brain.
Balthazart, Jacques; Baillien, Michelle; Ball, Gregory F
2002-05-01
In male quail, like in other vertebrates including rodents, testosterone acting especially through its estrogenic metabolites is necessary for the activation of male sexual behavior. Also, the administration of dopamine agonists and antagonists profoundly influences male sexual behavior. How the steroid-sensitive neural network and dopamine interact physiologically, remains largely unknown. It is often implicitly assumed that testosterone or its metabolite estradiol, stimulates male sexual behavior via the modification of dopaminergic transmission. We have now identified in quail two possible ways in which dopamine could potentially affect sexual behavior by modulating the aromatization of testosterone into an estrogen. One is a long-acting mechanism that presumably involves the modification of dopaminergic transmission followed by the alteration of the genomic expression of aromatase. The other is a more rapid mechanism that does not appear to be dopamine receptor-mediated and may involve a direct interaction of dopamine with aromatase (possibly via substrate competition). We review here the experimental data supporting the existence of these controls of aromatase activity by dopamine and discuss the possible contribution of these controls to the activation of male sexual behavior.
Dopaminergic Modulation of Decision Making and Subjective Well-Being.
Rutledge, Robb B; Skandali, Nikolina; Dayan, Peter; Dolan, Raymond J
2015-07-08
The neuromodulator dopamine has a well established role in reporting appetitive prediction errors that are widely considered in terms of learning. However, across a wide variety of contexts, both phasic and tonic aspects of dopamine are likely to exert more immediate effects that have been less well characterized. Of particular interest is dopamine's influence on economic risk taking and on subjective well-being, a quantity known to be substantially affected by prediction errors resulting from the outcomes of risky choices. By boosting dopamine levels using levodopa (l-DOPA) as human subjects made economic decisions and repeatedly reported their momentary happiness, we show here an effect on both choices and happiness. Boosting dopamine levels increased the number of risky options chosen in trials involving potential gains but not trials involving potential losses. This effect could be better captured as increased Pavlovian approach in an approach-avoidance decision model than as a change in risk preferences within an established prospect theory model. Boosting dopamine also increased happiness resulting from some rewards. Our findings thus identify specific novel influences of dopamine on decision making and emotion that are distinct from its established role in learning. Copyright © 2015 Rutledge et al.
Dopaminergic Modulation of Decision Making and Subjective Well-Being
Skandali, Nikolina; Dayan, Peter; Dolan, Raymond J.
2015-01-01
The neuromodulator dopamine has a well established role in reporting appetitive prediction errors that are widely considered in terms of learning. However, across a wide variety of contexts, both phasic and tonic aspects of dopamine are likely to exert more immediate effects that have been less well characterized. Of particular interest is dopamine's influence on economic risk taking and on subjective well-being, a quantity known to be substantially affected by prediction errors resulting from the outcomes of risky choices. By boosting dopamine levels using levodopa (l-DOPA) as human subjects made economic decisions and repeatedly reported their momentary happiness, we show here an effect on both choices and happiness. Boosting dopamine levels increased the number of risky options chosen in trials involving potential gains but not trials involving potential losses. This effect could be better captured as increased Pavlovian approach in an approach–avoidance decision model than as a change in risk preferences within an established prospect theory model. Boosting dopamine also increased happiness resulting from some rewards. Our findings thus identify specific novel influences of dopamine on decision making and emotion that are distinct from its established role in learning. PMID:26156984
Felt, Barbara T.; Beard, John L.; Schallert, Timothy; Shao, Jie; Aldridge, J. Wayne; Connor, James R.; Georgieff, Michael K.; Lozoff, Betsy
2006-01-01
Background Iron deficiency anemia (IDA) has been associated with altered cognitive, motor, and social-emotional outcomes in human infants. We recently reported that rats with chronic perinatal IDA, had altered regional brain iron, monoamines, and sensorimotor skill emergence during early development. Objective To examine the long-term consequences of chronic perinatal IDA on behavior, brain iron and monoamine systems after dietary iron treatment in rats. Methods Sixty dams were randomly assigned to iron-sufficient (CN) or low-iron (EID) diets during gestation and lactation. Thereafter, all offspring were fed the iron-sufficient diet, assessed for hematology and behavior after weaning and into adulthood and for brain measures as adults (regional brain iron, monoamines, dopamine and serotonin transporters, and dopamine receptor). Behavioral assessments included sensorimotor function, general activity, response to novelty, spatial alternation, and spatial water maze performance. Results Hematology and growth were similar for EID and CN rats by postnatal day 35. In adulthood, EID thalamic iron content was lower. Monoamines, dopamine transporter, and dopamine receptor concentrations did not differ from CN. EID serotonin transporter concentration was reduced in striatum and related regions. EID rats had persisting sensorimotor deficits (delayed vibrissae-evoked forelimb placing, longer sticker removal time, and more imperfect grooming chains), were more hesitant in novel settings, and had poorer spatial water maze performance than CN. General activity and spatial alternation were similar for EID and CN. Conclusion Rats that had chronic perinatal IDA showed behavioral impairments that suggest persistent striatal dopamine and hippocampal dysfunction despite normalization of hematology, growth and most brain measures. PMID:16713640
Carbon-11-cocaine binding compared at subpharmacological and pharmacological doses: A PET study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, N.D.; Fowler, J.S.; Logan, J.
The authors have characterized cocaine binding in the brain to a high-affinity site on the dopamine transporter using PET and tracer doses of [{sup 11}C]cocaine in the baboon in vivo. The binding pattern, however, of cocaine at tracer (subpharmacological) doses may differ from that observed when the drug is taken in behaviorally active doses, particularly since in vitro studies have shown that cocaine also binds to low affinity binding sites. PET was used to compare and characterize [{sup 11}C]cocaine binding in the baboon brain at low subpharmacological (18 {mu}g average dose) and at pharmacological (8000 {mu}g) doses. Serial studies onmore » the same day in the same baboon were used to assess the reproducibility of repeated measures and to assess the effects of drugs which inhibit the dopamine, norepinephrine and serotonin transporters. Time-activity curves from brain and the arterial plasma input function were used to calculate the steady-state distribution volume (DV). At subpharmacological doses, [{sup 11}C]cocaine had a more homogeneous distribution. Bmax/Kd for sub-pharmacological [{sup 11}C]cocaine corresponded to 0.5-0.6 and for pharmacological [{sup 11}C]cocaine it corresponded to 0.1-0.2. Two-point Scatchard analysis gave Bmax = 2300 pmole/g and Kd = 3600 nM. Bmax/Kd for sub-pharmacological doses of [{sup 11}C]cocaine was decreased by cocaine and drugs that inhibit the dopamine transporter, to 0.1-0.2, but not by drugs that inhibit the serotonin or the norepinephrine transporter. None of these drugs changed Bmax/Kd for a pharmacological dose of [{sup 11}C]cocaine. At subpharmacological doses, [{sup 11}C]cocaine binds predominantly to a high-affinity site on the dopamine transporter. 36 refs., 4 figs., 5 tabs.« less
Marusich, Julie A.; Antonazzo, Kateland R.; Wiley, Jenny L.; Blough, Bruce E.; Partilla, John S.; Baumann, Michael H.
2014-01-01
There has been a dramatic rise in the abuse of synthetic cathinones known as “bath salts,” including 3,4-methylenedioxypyrovalerone (MDPV), an analog linked to many adverse events. MDPV differs from other synthetic cathinones because it contains a pyrrolidine ring which gives the drug potent actions as an uptake blocker at dopamine and norepinephrine transporters. While MDPV is now illegal, a wave of “second generation” pyrrolidinophenones has appeared on the market, with α-pyrrolidinovalerophenone (α-PVP) being most popular. Here, we sought to compare the in vitro and in vivo pharmacological effects of MDPV and its congeners: α-PVP, α-pyrrolidinobutiophenone (α-PBP), and α-pyrrolidinopropiophenone (α-PPP). We examined effects of test drugs in transporter uptake and release assays using rat brain synaptosomes, then assessed behavioral stimulant effects in mice. We found that α-PVP is a potent uptake blocker at dopamine and norepinephrine transporters, similar to MDPV. α-PBP and α-PPP are also catecholamine transporter blockers but display reduced potency. All of the test drugs are locomotor stimulants, and the rank order of in vivo potency parallels dopamine transporter activity, with MDPV>α-PVP>α-PBP>α-PPP. Motor activation produced by all drugs is reversed by the dopamine receptor antagonist SCH23390. Furthermore, results of a functional observational battery show that all test drugs produce typical stimulant effects at lower doses and some drugs produce bizarre behaviors at higher doses. Taken together, our findings represent the first evidence that second generation analogs of MDPV are catecholamine-selective uptake blockers which may pose risk for addiction and adverse effects in human users. PMID:24594476
Marusich, Julie A; Antonazzo, Kateland R; Wiley, Jenny L; Blough, Bruce E; Partilla, John S; Baumann, Michael H
2014-12-01
There has been a dramatic rise in the abuse of synthetic cathinones known as "bath salts," including 3,4-methylenedioxypyrovalerone (MDPV), an analog linked to many adverse events. MDPV differs from other synthetic cathinones because it contains a pyrrolidine ring which gives the drug potent actions as an uptake blocker at dopamine and norepinephrine transporters. While MDPV is now illegal, a wave of "second generation" pyrrolidinophenones has appeared on the market, with α-pyrrolidinovalerophenone (α-PVP) being most popular. Here, we sought to compare the in vitro and in vivo pharmacological effects of MDPV and its congeners: α-PVP, α-pyrrolidinobutiophenone (α-PBP), and α-pyrrolidinopropiophenone (α-PPP). We examined effects of test drugs in transporter uptake and release assays using rat brain synaptosomes, then assessed behavioral stimulant effects in mice. We found that α-PVP is a potent uptake blocker at dopamine and norepinephrine transporters, similar to MDPV. α-PBP and α-PPP are also catecholamine transporter blockers but display reduced potency. All of the test drugs are locomotor stimulants, and the rank order of in vivo potency parallels dopamine transporter activity, with MDPV > α-PVP > α-PBP > α-PPP. Motor activation produced by all drugs is reversed by the dopamine receptor antagonist SCH23390. Furthermore, results of a functional observational battery show that all test drugs produce typical stimulant effects at lower doses and some drugs produce bizarre behaviors at higher doses. Taken together, our findings represent the first evidence that second generation analogs of MDPV are catecholamine-selective uptake blockers which may pose risk for addiction and adverse effects in human users. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.
Salinas, Armando G.; Davis, Margaret I.; Lovinger, David M.; Mateo, Yolanda
2016-01-01
The striatum is typically classified according to its major output pathways, which consist of dopamine D1 and D2 receptor-expressing neurons. The striatum is also divided into striosome and matrix compartments, based on the differential expression of a number of proteins, including the mu opioid receptor, dopamine transporter (DAT), and Nr4a1 (nuclear receptor subfamily 4, group A, member 1). Numerous functional differences between the striosome and matrix compartments are implicated in dopamine-related neurological disorders including Parkinson’s disease and addiction. Using Nr4a1-eGFP mice, we provide evidence that electrically evoked dopamine release differs between the striosome and matrix compartments in a regionally-distinct manner. We further demonstrate that this difference is not due to differences in inhibition of dopamine release by dopamine autoreceptors or nicotinic acetylcholine receptors. Furthermore, cocaine enhanced extracellular dopamine in striosomes to a greater degree than in the matrix and concomitantly inhibited dopamine uptake in the matrix to a greater degree than in striosomes. Importantly, these compartment differences in cocaine sensitivity were limited to the dorsal striatum. These findings demonstrate a level of exquisite microanatomical regulation of dopamine by the DAT in striosomes relative to the matrix. PMID:27036891
Dopamine Signaling Regulates Fat Content through β-Oxidation in Caenorhabditis elegans
Barros, Alexandre Guimarães de Almeida; Bridi, Jessika Cristina; de Souza, Bruno Rezende; de Castro Júnior, Célio; de Lima Torres, Karen Cecília; Malard, Leandro; Jorio, Ado; de Miranda, Débora Marques; Ashrafi, Kaveh; Romano-Silva, Marco Aurélio
2014-01-01
The regulation of energy balance involves an intricate interplay between neural mechanisms that respond to internal and external cues of energy demand and food availability. Compelling data have implicated the neurotransmitter dopamine as an important part of body weight regulation. However, the precise mechanisms through which dopamine regulates energy homeostasis remain poorly understood. Here, we investigate mechanisms through which dopamine modulates energy storage. We showed that dopamine signaling regulates fat reservoirs in Caenorhabditis elegans. We found that the fat reducing effects of dopamine were dependent on dopaminergic receptors and a set of fat oxidation enzymes. Our findings reveal an ancient role for dopaminergic regulation of fat and suggest that dopamine signaling elicits this outcome through cascades that ultimately mobilize peripheral fat depots. PMID:24465759
Serotonin and dopamine transporter binding in children with autism determined by SPECT.
Makkonen, Ismo; Riikonen, Raili; Kokki, Hannu; Airaksinen, Mauno M; Kuikka, Jyrki T
2008-08-01
Disturbances in the serotonergic system have been recognized in autism. To investigate the association between serotonin and dopamine transporters and autism, we studied 15 children (14 males, one female; mean age 8 y 8 mo [SD 3 y 10 mo]) with autism and 10 non-autistic comparison children (five males, five females; mean age 9 y 10 mo [SD 2 y 8 mo]) using single-photon emission computed tomography (SPECT) with [123 I] nor-beta-CIT. The children, with autism were studied during light sedation. They showed reduced serotonin transporter (SERT) binding capacity in the medial frontal cortex, midbrain, and temporal lobe areas. However, after correction due to the estimated effect of sedation, the difference remained significant only in the medial frontal cortex area (p=0.002). In the individuals with autism dopamine transporter (DAT) binding did not differ from that of the comparison group. The results indicate that SERT binding capacity is disturbed in autism. The reduction is more evident in adolescence than in earlier childhood. The low SERT binding reported here and the low serotonin synthesis capacity shown elsewhere may indicate maturation of a lesser number of serotonergic nerve terminals in individuals with autism.
Chapy, Hélène; André, Pascal; Declèves, Xavier; Scherrmann, Jean-Michel; Cisternino, Salvatore
2015-01-01
Background and Purpose Transporters at the blood-retinal barrier (BRB), as at the blood–brain barrier (BBB), regulate the distribution of compounds into the neural parenchyma. However, the expression of BRB transporters and their quantitative impact in vivo are still poorly understood. Experimental Approach Clonidine and diphenhydramine are substrates of a novel BBB drug/proton-antiporter. We evaluated their transport at the BRB by in situ carotid perfusion in wild-type or knocked-out mice for Oct1-3 (Slc22a1-3). Key Results At pharmacological exposure levels, carrier-mediated BRB influx was 2 and 12 times greater than the passive diffusion rate for clonidine and diphenhydramine, respectively. Functional identification demonstrated the involvement of a high-capacity potassium- and sodium-independent proton-antiporter that shared the features of the previously characterized clonidine, diphenhydramine and cocaine BBB transporter. The functional characterization suggests that SLC transporters Oct1-3, Mate1 (Slc47a1) and Octn1-2 (Slc22a4-5) are not involved. Melanin/retinal toxic drugs like antimalarials (amodiaquine, quinine), quinidine and tricyclic antidepressants (imipramine) acted as inhibitors of this proton-antiporter. The endogenous indole derivative tryptamine inhibited the transporter, unlike 5-HT (serotonin), dopamine or L-DOPA. Trans-stimulation experiments with [3H]-clonidine at the BRB indicated that diphenhydramine, nicotine, oxycodone, naloxone, tramadol, 3,4-methylenedioxyamphetamine (MDMA, ecstasy), heroin, methadone and verapamil are common substrates. Conclusions and Implications A proton-antiporter is physiologically involved in the transport of clonidine and diphenhydramine and is quantitatively more important than their passive diffusion flux at the mouse BRB. The features of this molecularly unidentified transporter highlight its importance in regulating drug delivery at the retina and suggest that it has the capacity to handle several drugs. PMID:26177775
Luethi, Dino; Hoener, Marius C; Liechti, Matthias E
2018-01-15
Diclofensine, diphenidine, and methoxphenidine are new psychoactive substances (NPSs) that recently appeared on the illicit drug market. Pharmacological profiling of such newly emerged drugs is crucial for a better understanding of their psychotropic effects and toxicity. We therefore investigated the potential of these NPSs to inhibit the norepinephrine, dopamine, and serotonin transporters in human embryonic kidney cells stably transfected with the respective transporters. In addition, we determined monoamine transporter and receptor affinities for the substances. Diclofensine potently bound to the monoamine transporters in the submicromolar range and had similar inhibition potential for all three transporters in the range of 2.5-4.8μM. Moreover, diclofensine bound to adrenergic, dopamine, serotonin, and trace amine-associated receptors. Diphenidine was an equipotent inhibitor of the norepinephrine and dopamine transporters in the low micromolar range and a very weak inhibitor of the serotonin transporter. Besides binding to transporters, diphenidine bound to adrenergic α 1A and α 2A receptors and serotonin 5-hydroxytryptamine 1A (5-HT 1A ) and 5-HT 2A receptors in the range of 4-11μM. Methoxphenidine bound to all transporters, but considerable inhibition (IC 50 < 10μM) was observed only for the norepinephrine transporter. Moreover, methoxphenidine bound to adrenergic α 2A and serotonin 5-HT 2A and 5-HT 2C receptors in the range of 2.5-8.2μM. None of the test drugs mediated substrate-type efflux of monoamines. These data demonstrate that the monoamine transporter inhibition and receptor interactions most likely mediate the psychoactive effects of diclofensine and possibly play a contributory role for diphenidine and methoxphenidine. Copyright © 2017 Elsevier B.V. All rights reserved.
Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro
2015-02-01
Blonanserin differs from currently used serotonin 5-HT₂A/dopamine-D₂ receptor antagonists in that it exhibits higher affinity for dopamine-D₂/₃ receptors than for serotonin 5-HT₂A receptors. We investigated the involvement of dopamine-D₃ receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT₂A receptor agonist) and 7-OH-DPAT (a dopamine-D₃ receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D₁ receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr(197) and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser(897) by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser(896) by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D₁-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D₃ and serotonin 5-HT₂A receptors in the mPFC.
García-Toral, Dolores; González-Melchor, Minerva; Rivas-Silva, Juan F; Meneses-Juárez, Efraín; Cano-Ordaz, José; H Cocoletzi, Gregorio
2018-06-07
Classical molecular dynamics (MD) and density functional theory (DFT) calculations are developed to investigate the dopamine and caffeine encapsulation within boron nitride (BN) nanotubes (NT) with (14,0) chirality. Classical MD studies are done at canonical and isobaric-isothermal conditions at 298 K and 1 bar in explicit water. Results reveal that both molecules are attracted by the nanotube; however, only dopamine is able to enter the nanotube, whereas caffeine moves in its vicinity, suggesting that both species can be transported: the first by encapsulation and the second by drag. Findings are analyzed using the dielectric behavior, pair correlation functions, diffusion of the species, and energy contributions. The DFT calculations are performed according to the BLYP approach and applying the atomic base of the divided valence 6-31g(d) orbitals. The geometry optimization uses the minimum-energy criterion, accounting for the total charge neutrality and multiplicity of 1. Adsorption energies in the dopamine encapsulation indicate physisorption, which induces the highly occupied molecular orbital-lower unoccupied molecular orbital gap reduction yielding a semiconductor behavior. The charge redistribution polarizes the BNNT/dopamine and BNNT/caffeine structures. The work function decrease and the chemical potential values suggest the proper transport properties in these systems, which may allow their use in nanobiomedicine.
D'Arcy, Christina; Luevano, Joe E; Miranda-Arango, Manuel; Pipkin, Joseph A; Jackson, Jonathan A; Castañeda, Eddie; Gosselink, Kristin L; O'Dell, Laura E
2016-01-01
Previous studies have demonstrated that there are persistent changes in dopamine systems following withdrawal from methamphetamine (METH). This study examined changes in striatal dopamine transporter (DAT), tyrosine hydroxylase (TH) and dopamine receptor 2 (D2) 72 h after withdrawal from METH intravenous self- administration (IVSA). Rats were given limited (1h) or extended (6h) access to METH IVSA (0.05 mg/kg/0.1 ml infusion) for 22 days. Controls did not receive METH IVSA. The rats given extended access to IVSA displayed higher METH intake during the first hour of drug access compared to rats given limited access. Extended access to METH also produced a concomitant increase in striatal DAT levels relative to drug-naïve controls. There were no changes in TH or D2 levels across groups. Previous studies have reported a decrease in striatal DAT levels during protracted periods (>7 days) of withdrawal from METH IVSA. This study extends previous work by showing an increase in striatal DAT protein expression during an earlier time point of withdrawal from this drug. These results are an important step toward understanding the dynamic changes in dopamine systems that occur during different time points of withdrawal from METH IVSA. Copyright © 2015 Elsevier B.V. All rights reserved.
Cherepkova, Elena V; Maksimov, Vladimir N; Kushnarev, Alexandr P; Shakhmatov, Igor I; Aftanas, Lyubomir I
2017-09-12
Variable-number tandem repeat (VNTR) polymorphisms of DRD4 and DAT genes were studied in the Russian and Chechen men convicted of crimes, and two control groups comprised of the MMA fighters and a sample of general population. A group of MMA fighters included only the subjects without history of antisocial behaviour. DNA was isolated by phenol-chloroform extraction from the blood. Genotyping VNTR polymorphisms of the DRD4 and DAT genes were performed by PCR on published methods. Among those convicted of felonies and most grave crimes, carriers of DRD4 long alleles are found more frequently, similarly to the cohort of MMA fighters (lacking criminal record in both paternal lines). The 9/9 DAT genotype carriers are more frequently encountered among the habitual offenders. A frequency of the combination of the DRD4 genotype 4/7 and DAT genotype 10/10 is clearly higher among the convicts of violent crimes and the MMA fighters. One can speculate the presence of a 'controlled aggression' without a predisposition to pathological violence in the MMA fighters. Our study supports the hypothesis of genetic predisposition to different variants of extreme behaviour mediated by genetic determinants involved in the functioning of neuromediator systems including those controlling dopamine pathways.
Different roles of retinal dopamine in albino Guinea pig myopia.
Mao, Junfeng; Liu, Shuangzhen
2017-02-03
To investigate whether the different role of ocular dopamine was involved in the myopic development between spontaneous myopia (SM) and form deprivation myopia (FDM) in albino guinea pigs. 55 myopic animals were randomly divided into SM, Levodapa (L-DOPA), L-DOPA+carbidopa and vehicle. 70 non-myopic animals were randomly divided into normal control, FDM, L-DOPA+FDM, L-DOPA+carbidopa+FDM and vehicle. Once per day, for 14days, L-DOPA (10mg/kg) was injected intraperitoneally, and carbidopa (1μg) was injected at the same time into the peribulbar space of the right eye. Refractive parameters and dopamine content in neural retina and RPE/choroid complex were measured. In SM animals, high myopia was formed at 5 week of ages. L-DOPA treatment could reduce its myopic degree, and inhibit the increase of axial length and vitreous chamber depth with the increase of retinal dopamine in both eyes. Administration of carbidopa could prevent the increase of retinal dopamine induced by L-DOPA, but no influenced on its refractive state in the injected eyes. In non-SM animals, intraperitoneal L-DOPA could inhibit FDM, accompanied by the increase of retinal dopamine. Carbidopa treatment diminished the inhibition of FDM and prevented the increase in retinal dopamine by L-Dopa. Retinal dopamine was highly correlated with ocular refraction in FDM, but not in SM. There was no significant difference in dopamine content of RPE/choroid complex among all groups. The role of retinal dopamine was different between SM and FDM in albino guinea pigs. Although systemic L-DOPA could inhibit the development of SM and FDM, retinal dopamine was only involved in the L-DOPA inhibition on FDM, but not on SM. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia.
Howes, Oliver D; McCutcheon, Robert; Owen, Michael J; Murray, Robin M
2017-01-01
The dopamine hypothesis is the longest standing pathoetiologic theory of schizophrenia. Because it was initially based on indirect evidence and findings in patients with established schizophrenia, it was unclear what role dopamine played in the onset of the disorder. However, recent studies in people at risk of schizophrenia have found elevated striatal dopamine synthesis capacity and increased dopamine release to stress. Furthermore, striatal dopamine changes have been linked to altered cortical function during cognitive tasks, in line with preclinical evidence that a circuit involving cortical projections to the striatum and midbrain may underlie the striatal dopamine changes. Other studies have shown that a number of environmental risk factors for schizophrenia, such as social isolation and childhood trauma, also affect presynaptic dopaminergic function. Advances in preclinical work and genetics have begun to unravel the molecular architecture linking dopamine, psychosis, and psychosocial stress. Included among the many genes associated with risk of schizophrenia are the gene encoding the dopamine D 2 receptor and those involved in the upstream regulation of dopaminergic synthesis, through glutamatergic and gamma-aminobutyric acidergic pathways. A number of these pathways are also linked to the stress response. We review these new lines of evidence and present a model of how genes and environmental factors may sensitize the dopamine system so that it is vulnerable to acute stress, leading to progressive dysregulation and the onset of psychosis. Finally, we consider the implications for rational drug development, in particular regionally selective dopaminergic modulation, and the potential of genetic factors to stratify patients. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Lahey, Benjamin B.; Rathouz, Paul J.; Lee, Steve S.; Chronis-Tuscano, Andrea; Pelham, William E.; Waldman, Irwin D.; Cook, Edwin H.
2010-01-01
Mounting evidence suggests that genetic risks for mental disorders often interact with the social environment, but most studies still ignore environmental moderation of genetic influences. We tested interactions between maternal parenting and the variable number tandem repeat (VNTR) polymorphism in the 3′ untranslated region (UTR) of the dopamine transporter gene in the child to increase understanding of gene-environment interactions involving early parenting. Participants were part of a 9-year longitudinal study of 4–6-year-old children who met criteria for attention-deficit/hyperactivity disorder (ADHD) and demographically matched controls. Maternal parenting was observed during standard mother-child interactions in wave 1. The child’s conduct disorder (CD) symptoms 5–8 years later were measured using separate structured diagnostic interviews of the mother and youth. Controlling for ADHD symptoms and child disruptive behavior during the mother-child interaction, there was a significant inverse relation between levels of both positive and negative parenting at 4–6 years and the number of later CD symptoms, but primarily among children with two copies of the 9-repeat allele of the VNTR. The significant interaction with negative parenting was replicated in parent and youth reports of CD symptoms separately. PMID:21171728
Omori, Yoshihiro; Chaya, Taro; Yoshida, Satoyo; Irie, Shoichi; Tsujii, Toshinori; Furukawa, Takahisa
2015-01-01
Primary cilia are sensory organelles that harbor various receptors such as G protein-coupled receptors (GPCRs). We analyzed subcellular localization of 138 non-odorant GPCRs. We transfected GPCR expression vectors into NIH3T3 cells, induced ciliogenesis by serum starvation, and observed subcellular localization of GPCRs by immunofluorescent staining. We found that several GPCRs whose ligands are involved in feeding behavior, including prolactin-releasing hormone receptor (PRLHR), neuropeptide FF receptor 1 (NPFFR1), and neuromedin U receptor 1 (NMUR1), localized to the primary cilia. In addition, we found that a short form of dopamine receptor D2 (DRD2S) is efficiently transported to the primary cilia, while a long form of dopamine receptor D2 (DRD2L) is rarely transported to the primary cilia. Using an anti-Prlhr antibody, we found that Prlhr localized to the cilia on the surface of the third ventricle in the vicinity of the hypothalamic periventricular nucleus. We generated the Npy2r-Cre transgenic mouse line in which Cre-recombinase is expressed under the control of the promoter of Npy2r encoding a ciliary GPCR. By mating Npy2r-Cre mice with Ift80 flox mice, we generated Ift80 conditional knockout (CKO) mice in which Npy2r-positive cilia were diminished in number. We found that Ift80 CKO mice exhibited a body weight increase. Our results suggest that Npy2r-positive cilia are important for body weight control. PMID:26053317
Mesolimbic Dopamine Signals the Value of Work
Hamid, Arif A.; Pettibone, Jeffrey R.; Mabrouk, Omar S.; Hetrick, Vaughn L.; Schmidt, Robert; Vander Weele, Caitlin M.; Kennedy, Robert T.; Aragona, Brandon J.; Berke, Joshua D.
2015-01-01
Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (“phasic”) dopamine fluctuations support learning, while much slower (“tonic”) dopamine changes are involved in motivation. We examined dopamine release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods during adaptive decision-making. We first show that minute-by-minute dopamine levels covary with reward rate and motivational vigor. We then show that second-by-second dopamine release encodes an estimate of temporally-discounted future reward (a value function). We demonstrate that changing dopamine immediately alters willingness to work, and reinforces preceding action choices by encoding temporal-difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly-evolving decision variable, the available reward for investment of effort, that is employed for both learning and motivational functions. PMID:26595651
Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, N.D.; Wang, G.; Volkow, N.D.
Attention-deficit hyperactivity disorder (ADHD) is typically characterized as a disorder of inattention and hyperactivity/impulsivity but there is increasing evidence of deficits in motivation. Using positron emission tomography (PET), we showed decreased function in the brain dopamine reward pathway in adults with ADHD, which, we hypothesized, could underlie the motivation deficits in this disorder. To evaluate this hypothesis, we performed secondary analyses to assess the correlation between the PET measures of dopamine D2/D3 receptor and dopamine transporter availability (obtained with [{sup 11}C]raclopride and [{sup 11}C]cocaine, respectively) in the dopamine reward pathway (midbrain and nucleus accumbens) and a surrogate measure of traitmore » motivation (assessed using the Achievement scale on the Multidimensional Personality Questionnaire or MPQ) in 45 ADHD participants and 41 controls. The Achievement scale was lower in ADHD participants than in controls (11 {+-} 5 vs 14 {+-} 3, P < 0.001) and was significantly correlated with D2/D3 receptors (accumbens: r = 0.39, P < 0.008; midbrain: r = 0.41, P < 0.005) and transporters (accumbens: r = 0.35, P < 0.02) in ADHD participants, but not in controls. ADHD participants also had lower values in the Constraint factor and higher values in the Negative Emotionality factor of the MPQ but did not differ in the Positive Emotionality factor - and none of these were correlated with the dopamine measures. In ADHD participants, scores in the Achievement scale were also negatively correlated with symptoms of inattention (CAARS A, E and SWAN I). These findings provide evidence that disruption of the dopamine reward pathway is associated with motivation deficits in ADHD adults, which may contribute to attention deficits and supports the use of therapeutic interventions to enhance motivation in ADHD.« less
Watabe, Masahiko; Nakaki, Toshio
2008-10-01
Parkinson's disease is a progressive neurodegenerative disorder characterized by selective degeneration of nigrostriatal dopaminergic neurons. Long-term systemic mitochondrial complex I inhibition by rotenone induces selective degeneration of dopaminergic neurons in rats. We have reported dopamine redistribution from vesicles to the cytosol to play a crucial role in selective dopaminergic cell apoptosis. In the present study, we investigated how rotenone causes dopamine redistribution to the cytosol using an in vitro model of human dopaminergic SH-SY5Y cells. Rotenone stimulated nitration of the tyrosine residues of intracellular proteins. The inhibition of nitric-oxide synthase or reactive oxygen species decreased the amount of nitrotyrosine and attenuated rotenone-induced apoptosis. When we examined the intracellular localization of dopamine immunocytochemically using anti-dopamine/vesicular monoamine transporter 2 (VMAT2) antibodies and quantitatively using high-performance liquid chromatography, inhibiting nitration was found to suppress rotenone-induced dopamine redistribution from vesicles to the cytosol. We demonstrated rotenone to nitrate tyrosine residues of VMAT2 using an immunocytochemical method with anti-nitrotyrosine antibodies and biochemically with immunoprecipitation experiments. Rotenone inhibited the VMAT2 activity responsible for the uptake of dopamine into vesicles, and this inhibition was reversed by inhibiting nitration. Moreover, rotenone induced the accumulation of aggregate-like formations in the stained image of VMAT2, which was reversed by inhibiting nitration. Our findings demonstrate that nitration of the tyrosine residues of VMAT2 by rotenone leads to both functional inhibition and accumulation of aggregate-like formations of VMAT2 and consequently to the redistribution of dopamine to the cytosol and apoptosis of dopaminergic SH-SY5Y cells.
Baladi, Michelle G.; Horton, Rebecca E.; Owens, William A.; Daws, Lynette C.
2015-01-01
Background: Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Methods: Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Results: Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. Conclusions: These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. PMID:25805560
Baladi, Michelle G; Horton, Rebecca E; Owens, William A; Daws, Lynette C; France, Charles P
2015-03-24
Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Nagy, Katalin; Marko, Bernadett; Zsilla, Gabriella; Matyus, Peter; Pallagi, Katalin; Szabo, Geza; Juranyi, Zsolt; Barkoczy, Jozsef; Levay, Gyorgy; Harsing, Laszlo G
2010-12-01
The most dominant hypotheses for the pathogenesis of schizophrenia have focused primarily upon hyperfunctional dopaminergic and hypofunctional glutamatergic neurotransmission in the central nervous system. The therapeutic efficacy of all atypical antipsychotics is explained in part by antagonism of the dopaminergic neurotransmission, mainly by blockade of D(2) dopamine receptors. N-methyl-D-aspartate (NMDA) receptor hypofunction in schizophrenia can be reversed by glycine transporter type-1 (GlyT-1) inhibitors, which regulate glycine concentrations at the vicinity of NMDA receptors. Combined drug administration with D(2) dopamine receptor blockade and activation of hypofunctional NMDA receptors may be needed for a more effective treatment of positive and negative symptoms and the accompanied cognitive deficit in schizophrenia. To investigate this type of combined drug administration, rats were treated with the atypical antipsychotic risperidone together with the GlyT-1 inhibitor Org-24461. Brain microdialysis was applied in the striatum of conscious rats and determinations of extracellular dopamine, DOPAC, HVA, glycine, glutamate, and serine concentrations were carried out using HPLC/electrochemistry. Risperidone increased extracellular concentrations of dopamine but failed to influence those of glycine or glutamate measured in microdialysis samples. Org-24461 injection reduced extracellular dopamine concentrations and elevated extracellular glycine levels but the concentrations of serine and glutamate were not changed. When risperidone and Org-24461 were added in combination, a decrease in extracellular dopamine concentrations was accompanied with sustained elevation of extracellular glycine levels. Interestingly, the extracellular concentrations of glutamate were also enhanced. Our data indicate that coadministration of an antipsychotic with a GlyT-1 inhibitor may normalize hypofunctional NMDA receptor-mediated glutamatergic neurotransmission with reduced dopaminergic side effects characteristic for antipsychotic medication.
Murata, Mikio; Katagiri, Nobuyuki; Ishida, Kota; Abe, Kenji; Ishikawa, Masago; Utsunomiya, Iku; Hoshi, Keiko; Miyamoto, Ken-ichi; Taguchi, Kyoji
2009-05-07
It is known that psychostimulants stimulate dopamine transmission in the nucleus accumbens. In the present study, we examined the effects of systemically administered beta-phenylethylamine (beta-PEA), a psychomotor-stimulating trace amine, on dopamine concentrations in the nucleus accumbens and prefrontal cortex in freely moving rats, using an in vivo microdialysis technique. Intraperitoneal administration of beta-PEA (12.5 and 25 mg/kg) significantly increased extracellular dopamine levels in the nucleus accumbens shell. The observed increase in the dopamine concentration in nucleus accumbens shell dialysate after intraperitoneal administration of 25 mg/kg beta-PEA was inhibited by pre-treatment with a dopamine uptake inhibitor, GBR12909 (10 mg/kg, i.p.). In contrast, beta-PEA (25 mg/kg, i.p.) did not affect dopamine release in the nucleus accumbens core. Although a high dose of beta-PEA (50 mg/kg) significantly increased dopamine levels in the nucleus accumbens core, the dopamine increasing effect of beta-PEA was more potent in the nucleus accumbens shell. Systemic administration of 12.5 and 25 mg/kg beta-PEA also increased extracellular dopamine levels in the prefrontal cortex of rats. However, systemic 25 mg/kg beta-PEA-induced increases in extracellular dopamine levels were not blocked by GBR12909 within the prefrontal cortex. These results suggest that beta-PEA has a greater effect in the shell than in the core and low-dose beta-PEA stimulates dopamine release in the nucleus accumbens shell through uptake by a dopamine transporter. Similarly, beta-PEA increased extracellular dopamine levels in the prefrontal cortex. Thus, beta-PEA may increase extracellular dopamine concentrations in the mesocorticolimbic pathway.
Shimada, Ryo; Abe, Keiichi; Furutani, Rui; Kibayashi, Kazuhiko
2014-03-01
An association has been suggested between trauma and neurological degenerative diseases. Magnetic resonance imaging has revealed that traumatic brain injury (TBI) can cause primary lesions in the midbrain including the substantia nigra (SN). Dopamine transporter (DAT) is mainly expressed in the SN, ventral tegmental area (VTA), and retrorubral field (RRF) of the ventral midbrain. Previous western blot studies have examined DAT levels in the rat frontal cortex and striatum after a controlled cortical impact (CCI); however, no study has comprehensively examined DAT expression in the midbrain following TBI in an animal model. We used immunohistochemistry and in situ hybridization to examine the time-dependent changes in the expression of DAT in the midbrain during the first 14 days after TBI in a mouse CCI model. The expression of DAT protein in the RRF on the side ipsilateral to the site of injury decreased in 14 days after injury. Dopamine transporter mRNA expression in the RRF on the ipsilateral side decreased in 1, 7, and 14 days and increased in 4 days after injury. These findings indicated that TBI induced changes in DAT expression in the RRF. Because the DAT pumps dopamine (DA) out of the synapse back into the cytosol and maintains DA homeostasis, the decreased expression of DAT after TBI may result in decreased DA neurotransmission in the brain.
Ustione, Alessandro
2012-01-01
Pancreatic islets are critical for glucose homeostasis via the regulated secretion of insulin and other hormones. We propose a novel mechanism that regulates insulin secretion from β-cells within mouse pancreatic islets: a dopaminergic negative feedback acting on insulin secretion. We show that islets are a site of dopamine synthesis and accumulation outside the central nervous system. We show that both dopamine and its precursor l-dopa inhibit glucose-stimulated insulin secretion, and this inhibition correlates with a reduction in frequency of the intracellular [Ca2+] oscillations. We further show that the effects of dopamine are abolished by a specific antagonist of the dopamine receptor D3. Because the dopamine transporter and dopamine receptors are expressed in the islets, we propose that cosecretion of dopamine with insulin activates receptors on the β-cell surface. D3 receptor activation results in changes in intracellular [Ca2+] dynamics, which, in turn, lead to lowered insulin secretion. Because blocking dopaminergic negative feedback increases insulin secretion, expanding the knowledge of this pathway in β-cells might offer a potential new target for the treatment of type 2 diabetes. PMID:22918877
Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system
Hatcher, Jaime M.; Richardson, Jason R.; Guillot, Thomas S.; McCormack, Alison L.; Di Monte, Donato A.; Jones, Dean P.; Pennell, Kurt D.; Miller, Gary W.
2007-01-01
Numerous epidemiological studies have shown an association between pesticide exposure and an increased risk of developing Parkinson’s disease (PD). Here, we provide evidence that the insecticide dieldrin causes specific oxidative damage in the nigrostriatal dopamine (DA) system. We report that exposure of mice to low levels of dieldrin for 30 days resulted in alterations in dopamine-handling as evidenced by a decrease in dopamine metabolites, DOPAC (31.7% decrease) and HVA (29.2% decrease) and significantly increased cysteinyl-catechol levels in the striatum. Furthermore, dieldrin resulted in a 53% decrease in total glutathione, an increase in the redox potential of glutathione, and a 90% increase in protein carbonyls. α-Synuclein protein expression was also significantly increased in the striatum (25% increase). Finally, dieldrin caused a significant decrease in striatal expression of the dopamine transporter as measured by 3H-WIN 35,428 binding and 3H-dopamine uptake. These alterations occurred in the absence of dopamine neuron loss in the substantia nigra pars compacta. These effects represent the ability of low doses of dieldrin to increase the vulnerability of nigrostriatal dopamine neurons by inducing oxidative stress and suggest that pesticide exposure may act as a promoter of PD. PMID:17291500
Interactions between dopamine and oxytocin in the control of sexual behaviour.
Baskerville, Tracey A; Douglas, Alison J
2008-01-01
Dopamine and oxytocin are two key neuromodulators involved in reproductive behaviours, such as mating and maternal care. Much evidence underlies their separate roles in such behaviours, but particularly in sexual behaviour. It is generally believed that central dopaminergic and oxytocinergic systems work together to regulate the expression of penile erection, but relatively little is known regarding how they interact. Thus, this review aims to discuss neuroanatomical proof, neuromodulator secretory profiles in the hypothalamus and behavioural pharmacological evidence which support a dopamine-oxytocin link in three hypothalamic nuclei that have been implicated in sexual behaviour, namely the medial preoptic nucleus, supraoptic nucleus and paraventricular nucleus (PVN). We also aim to provide an overview of potential dopamine-mediated transduction pathways that occur within these nuclei and are correlated with the exhibition of penile erection. The PVN provides the most convincing evidence for a dopamine-oxytocin link and it is becoming increasingly apparent that parvocellular oxytocinergic neurons in the PVN, in part, mediate the effects of dopamine to elicit penile erection. However, while we show that oxytocin neurons express dopamine receptors, other evidence on whether dopaminergic activation of PVN oxytocin cells involves a direct and/or indirect mechanism is inconclusive and further evidence is required to establish whether the two systems interact synergistically or sequentially in the regulation of penile erection.
Kaneko, Fumi; Kishikawa, Yuki; Hanada, Yuuki; Yamada, Makiko; Kakuma, Tatsuyuki; Kawahara, Hiroshi; Nishi, Akinori
2016-01-01
Background: Cortical dopamine and noradrenaline are involved in the stress response. Citalopram, a selective serotonin reuptake inhibitor, has direct and indirect effects on the serotonergic system. Furthermore, long-term treatment with citalopram affects the dopamine and noradrenaline systems, which could contribute to the therapeutic action of antidepressants. Methods: The effects of long-term treatment with citalopram on the responses of the dopamine and noradrenaline systems in the rat prefrontal cortex to acute handling stress were evaluated using in vivo microdialysis. Results: Acute handling stress increased dopamine and noradrenaline levels in the prefrontal cortex. The dopamine and noradrenaline responses were suppressed by local infusion of a 5-HT1A receptor agonist, 7-(Dipropylamino)-5,6,7,8-tetrahydronaphthalen-1-ol;hydrobromide, into the prefrontal cortex. The dopamine response was abolished by long-term treatment with citalopram, and the abolished dopamine response was reversed by local infusion of a 5-HT1A receptor antagonist, (Z)-but-2-enedioic acid;N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-ylcyclohexanecarboxamide into the prefrontal cortex. On the other hand, long-term treatment with citalopram reduced the basal noradrenaline levels (approximately 40% of the controls), but not the basal dopamine levels. The noradrenaline response was maintained despite the low basal noradrenaline levels. Signaling from the 5-HT1A receptors and α2-adrenoceptors was not involved in the decrease in the basal noradrenaline levels but partially affected the noradrenaline response. Conclusions: Chronic citalopram treatment differentially suppresses the dopamine and noradrenaline systems in the prefrontal cortex, and the dopamine stress response was preferentially controlled by upregulating 5-HT1A receptor signaling. Our findings provide insight into how antidepressants modulate the dopamine and noradrenaline systems to overcome acute stress. PMID:27029212
Lorenc-Koci, Elzbieta; Gołembiowska, Krystyna; Wardas, Jadwiga
2005-07-27
Malonate, a reversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, is frequently used as a model neurotoxin to produce lesion of the nigrostriatal dopaminergic system in animals due to particular sensitivity of dopamine neurons to mild energy impairment. This model of neurotoxicity was applied in our study to explore neuroprotective potential of 1,2,3,4-tetrahydroisoquinoline (TIQ), an endo- and exogenous substance whose function in the mammalian brain, despite extensive studies, has not been elucidated so far. Injection of malonate at a dose of 3 mumol unilaterally into the rat left medial forebrain bundle resulted in the 54% decrease in dopamine (DA) concentration in the ipsilateral striatum and, depending on the examined striatum regions, caused 24-44% reduction in [3H]GBR12,935 binding to the dopamine transporter (DAT). TIQ (50 mg/kg i.p.) administered 4 h before malonate infusion and next once daily for successive 7 days prevented both these effects of malonate. Such TIQ treatment restored DA content and DAT binding almost to the control level. The results of the present study indicate that TIQ may act as a neuroprotective agent in the rat brain. An inhibition of the enzymatic activities of monoamine oxidase and gamma-glutamyl transpeptidase as well as an increase in the striatal levels of glutathione and nitric oxide found after TIQ administration and reported in our earlier studies are considered to be potential factors that may be involved in the TIQ-mediated protection of dopamine terminals from malonate toxicity.
Hossain, Murad; Wickramasekara, Rochelle N; Carvelli, Lucia
2014-07-01
β-Phenylethylamine (βPEA) is an endogenous amine that has been shown to increase the synaptic levels of dopamine (DA). A number of in vitro and behavioral studies suggest the dopamine transporter (DAT) plays a role in the effects generated by βPEA, however the mechanism through which βPEA affects DAT has not yet been elucidated. Here, we used Caenorhabditis (C.) elegans DAT (DAT-1) expressing LLC-pk1 cells and neuronal cultures to investigate whether the βPEA-induced increase of extracellular DA required DAT-1. Our data show that βPEA increases extracellular dopamine both in DAT-1 transfected cells and cultures of differentiated neurons. RTI-55, a cocaine homologue and DAT inhibitor, completely blocked the βPEA-induced effect in transfected cells. However in neuronal cultures, RTI-55 only partly inhibited the increase of extracellular DA generated by βPEA. These results suggest that βPEA requires DAT-1 and other, not yet identified proteins, to increase extracellular DA when tested in a native system. Furthermore, our results suggest that βPEA-induced increase of extracellular DA does not require functional monoamine vesicles as genetic ablation of the C. elegans homologue vesicular monoamine transporter, cat-1, did not compromise the ability of βPEA to increase extracellular DA. Finally, our electrophysiology data show that βPEA caused fast-rising and self-inactivating amperometric currents in a subset of wild-type DA neurons but not in neurons isolated from dat-1 knockout animals. Taken together, these data demonstrate that in both DA neurons and heterogeneous cultures of differentiated C. elegans neurons, βPEA releases cytoplasmic DA through DAT-1 to ultimately increase the extracellular concentration of DA. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hossain, Murad; Wickramasekara, Rochelle N.; Carvelli, Lucia
2013-01-01
β-phenylethylamine (βPEA) is an endogenous amine that has been shown to increase the synaptic levels of dopamine (DA). A number of in vitro and behavioral studies suggest the dopamine transporter (DAT) plays a role in the effects generated by βPEA, however the mechanism through which βPEA affects DAT has not yet been elucidated. Here, we used Caenorhabditis (C.) elegans DAT (DAT-1) expressing LLC-pk1 cells and neuronal cultures to investigate whether the βPEA-induced increase of extracellular DA required DAT-1. Our data show that βPEA increases extracellular dopamine both in DAT-1 transfected cells and cultures of differentiated neurons. RTI-55, a cocaine homologue and DAT inhibitor, completely blocked the βPEA-induced effect in transfected cells. However in neuronal cultures, RTI-55 only partly inhibited the increase of extracellular DA generated by βPEA. These results suggest that βPEA requires DAT-1 and other, not yet identified proteins, to increase extracellular DA when tested in a native system. Furthermore, our results suggest that βPEA-induced increase of extracellular DA does not require functional monoamine vesicles as genetic ablation of the C. elegans homologue vesicular monoamine transporter, cat-1, did not compromise the ability of βPEA to increase extracellular DA. Finally, our electrophysiology data show that βPEA caused fast-rising and self-inactivating amperometric currents in a subset of wild-type DA neurons but not in neurons isolated from dat-1 knockout animals. Taken together, these data demonstrate that in both DA neurons and heterogeneous cultures of differentiated C. elegans neurons, βPEA releases cytoplasmic DA through DAT-1 to ultimately increase the extracellular concentration of DA. PMID:24161617
Savel'ev, S A
2006-11-01
Studies using vital microdialysis and high-performance liquid chromatography showed that local infusion of the NO synthase inhibitor N-nitro-L-arginine (1 mM) into the striatum decreased, while infusion of the dopamine receptor agonist apomorphine (100 microM) increased the level of citrulline (a side product of nitric oxide synthesis) in the intercellular space of this structure in Sprague-Dawley rats. The increase in the citrulline level induced by infusions of apomorphine was completely prevented by local infusions of N-nitro-L-arginine (1 mM) and raclopride (10 microm), a dopamine D2 receptor blocker, but not by infusion of SCH-23390 (50 microm), a dopamine D1 receptor blocker. These data suggest that the increase in extracellular citrulline in the striatum induced by dopaminergic stimulation results from local increases in NO synthase activity and that this effect involves D2, but not D1 dopamine receptors.
Goñi-Allo, Beatriz; Ramos, Mar'a; Herv'as, Isabel; Lasheras, Berta; Aguirre, Norberto
2006-03-01
The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA) produces long-term toxicity to serotonin (5-HT) neurones in rats, which is exacerbated when combined with the mitochondrial inhibitor malonate. Moreover, MDMA, which does not produce dopamine depletion in the rat, potentiates malonate-induced striatal dopamine toxicity. Because the malonate/MDMA combination acutely causes a synergistic increase of 5-HT and dopamine release, in this study we sought to determine whether pharmacological blockade of MDMA- and/or malonate-induced dopamine release prevents neurotoxicity. Fluoxetine, given 30 min prior to the malonate/MDMA combination, afforded complete protection against 5-HT depletion and reversed MDMA-induced exacerbation of dopamine toxicity found in the malonate/MDMA treated rats. Protection afforded by fluoxetine was not related to changes in MDMA-induced hyperthermia. Similarly, potentiation of malonate-induced dopamine toxicity caused by MDMA was not observed in p-chlorophenylalanine-5-HT depleted rats. Finally, the dopamine transporter inhibitor GBR 12909 completely prevented dopamine neurotoxicity caused by the malonate/MDMA combination and reversed the exacerbating toxic effects of malonate on MDMA-induced 5-HT depletion without significantly altering the hyperthermic response. Overall, these results suggest that the synergic release of dopamine caused by the malonate/MDMA combination plays an important role in the long-term toxic effects. A possible mechanism of neurotoxicity and protection is proposed.
Jennings, Alistair; Tyurikova, Olga; Bard, Lucie; Zheng, Kaiyu; Semyanov, Alexey; Henneberger, Christian; Rusakov, Dmitri A
2017-03-01
Whilst astrocytes in culture invariably respond to dopamine with cytosolic Ca 2+ rises, the dopamine sensitivity of astroglia in situ and its physiological roles remain unknown. To minimize effects of experimental manipulations on astroglial physiology, here we monitored Ca 2+ in cells connected via gap junctions to astrocytes loaded whole-cell with cytosolic indicators in area CA1 of acute hippocampal slices. Aiming at high sensitivity of [Ca 2+ ] measurements, we also employed life-time imaging of the Ca 2+ indicator Oregon Green BAPTA-1. We found that dopamine triggered a dose-dependent, bidirectional Ca 2+ response in stratum radiatum astroglia, a jagged elevation accompanied and followed by below-baseline decreases. The elevation depended on D1/D2 receptors and engaged intracellular Ca 2+ storage and removal whereas the dopamine-induced [Ca 2+ ] decrease involved D2 receptors only and was sensitive to Ca 2+ channel blockade. In contrast, the stratum lacunosum moleculare astroglia generated higher-threshold dopamine-induced Ca 2+ responses which did not depend on dopamine receptors and were uncoupled from the prominent inhibitory action of dopamine on local perforant path synapses. Our findings thus suggest that a single neurotransmitter-dopamine-could either elevate or decrease astrocyte [Ca 2+ ] depending on the receptors involved, that such actions are specific to the regional neural circuitry and that they may be causally uncoupled from dopamine actions on local synapses. The results also indicate that [Ca 2+ ] elevations commonly detected in astroglia can represent the variety of distinct mechanisms acting on the microscopic scale. GLIA 2017;65:447-459. © 2016 The Authors Glia Published by Wiley Periodicals, Inc.
Weber, Matthew A; Graack, Eric T; Scholl, Jamie L; Renner, Kenneth J; Forster, Gina L; Watt, Michael J
2018-06-14
Adult psychiatric disorders characterized by cognitive deficits reliant on prefrontal cortex (PFC) dopamine are promoted by teenage bullying. Similarly, male Sprague-Dawley rats exposed to social defeat in mid-adolescence (P35-39) show impaired working memory in adulthood (P56-70), along with decreased medial PFC (mPFC) dopamine activity that results in part from increased dopamine transporter-mediated clearance. Here, we determined if dopamine synthesis and D2 autoreceptor-mediated inhibition of dopamine release in the adult mPFC are also enhanced by adolescent defeat to contribute to later dopamine hypofunction. Control and previously defeated rats did not differ in either DOPA accumulation following amino acid decarboxylase inhibition (NSD-1015 100 mg/kg ip.) or total/phosphorylated tyrosine hydroxylase protein expression, suggesting dopamine synthesis in the adult mPFC is not altered by adolescent defeat. However, exposure to adolescent defeat caused greater decreases in extracellular dopamine release (measured using in vivo chronoamperometry) in the adult mPFC upon local infusion of the D2 receptor agonist quinpirole (3 nM), implying greater D2 autoreceptor function. Equally enhanced D2 autoreceptor-mediated inhibition of dopamine release is seen in the adolescent (P40 or P49) mPFC, which declines in control rats by adulthood. However, this developmental decrease in autoreceptor function is absent following adolescent defeat, suggesting retention of an adolescent-like phenotype into adulthood. Current and previous findings indicate adolescent defeat decreases extracellular dopamine availability in the adult mPFC via both enhanced inhibition of dopamine release and increased dopamine clearance, which may be viable targets for improving treatment of cognitive deficits seen in neuropsychiatric disorders promoted by adolescent stress. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The Role of the Dopamine Transporter (DAT) in the Development of PTSD in Preschool Children
Drury, Stacy S.; Theall, Katherine P.; Keats, Bronya J.B.; Scheeringa, Michael
2015-01-01
Population-based association studies have supported the heritability of posttraumatic stress disorder (PTSD). This study explored the influence of genetic variation in the dopamine transporter (DAT) 3′ untranslated region variable number tandem repeat on the development of PTSD in preschool children exposed to Hurricane Katrina, diagnosed using a developmentally appropriate semistructured interview. A diagnosis according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV; American Psychiatric Association, 1994), total symptoms, and specifically Criterion D symptoms were significantly more likely to be found in children with the 9 allele. This study replicates a previous finding in adults with PTSD. The specificity of this finding to the increased arousal symptoms of Criterion D suggests that dopamine and the DAT allele may contribute to one heritable path in a multifinality model of the development of PTSD. PMID:19960520
Quizon, Pamela M.; Sun, Wei-Lun; Yuan, Yaxia; Midde, Narasimha M.; Zhan, Chang-Guo; Zhu, Jun
2016-01-01
Abnormal dopaminergic transmission has been implicated as a risk determinant of HIV-1-associated neurocognitive disorders. HIV-1 Tat protein increases synaptic dopamine (DA) levels by directly inhibiting DA transporter (DAT) activity, ultimately leading to dopaminergic neuron damage. Through integrated computational modeling prediction and experimental validation, we identified that histidine547 on human DAT (hDAT) is critical for regulation of basal DA uptake and Tat-induced inhibition of DA transport. Compared to wild type hDAT (WT hDAT), mutation of histidine547 (H547A) displayed a 196% increase in DA uptake. Other substitutions of histidine547 showed that DA uptake was not altered in H547R but decreased by 99% in H547P and 60% in H547D, respectively. These mutants did not alter DAT surface expression or surface DAT binding sites. H547 mutants attenuated Tat-induced inhibition of DA transport observed in WT hDAT. H547A displays a differential sensitivity to PMA- or BIM-induced activation or inhibition of DAT function relative to WT hDAT, indicating a change in basal PKC activity in H547A. These findings demonstrate that histidine547 on hDAT plays a crucial role in stabilizing basal DA transport and Tat-DAT interaction. This study provides mechanistic insights into identifying targets on DAT for Tat binding and improving DAT-mediated dysfunction of DA transmission. PMID:27966610
The role of genes, stress and dopamine in the development of schizophrenia
Howes, Oliver D; McCutcheon, Robert; Owen, Michael J; Murray, Robin
2017-01-01
The dopamine hypothesis is the longest standing pathoaetiological theory of schizophrenia. As it was initially based on indirect evidence and findings in patients with established schizophrenia it was unclear what role dopamine played in the onset of the disorder. However, recent studies in people at risk of schizophrenia have found elevated striatal dopamine synthesis capacity, and increased dopamine release to stress. Furthermore, striatal dopamine changes have been linked to altered cortical function during cognitive tasks, in-line with preclinical evidence that a circuit involving cortical projections to the striatum and midbrain may underlie the striatal dopamine changes. Other studies have shown that a number of environmental risk factors for schizophrenia, such as social isolation and childhood trauma, also impact on presynaptic dopaminergic function. Advances in preclinical work and genetics have begun to unravel the molecular architecture linking dopamine, psychosis and psychosocial stress. Included among the many genes associated with risk of schizophrenia, are the gene encoding the DRD2 receptor and those involved in the up-stream regulation of dopaminergic synthesis, through glutamatergic and gamma-aminobutyric acid (GABA)-ergic pathways. A number of these pathways are also linked to the stress response. We review these new lines of evidence and present a model of how genes and environmental factors may sensitise the dopamine system so that it is vulnerable to acute stress, leading to progressive dysregulation and the onset of psychosis. Finally, we consider the implications for rational drug development, in particular regionally selective dopaminergic modulation, and the potential of genetic factors to stratify patients. PMID:27720198
Blough, Bruce E; Landavazo, Antonio; Partilla, John S; Baumann, Michael H; Decker, Ann M; Page, Kevin M; Rothman, Richard B
2014-06-12
As part of our program to study neurotransmitter releasers, we report herein a class of hybrid dopamine reuptake inhibitors that display serotonin releasing activity. Hybrid compounds are interesting since they increase the design potential of transporter related compounds and hence represent a novel and unexplored strategy for therapeutic drug discovery. A series of N-alkylpropiophenones was synthesized and assessed for uptake inhibition and release activity using rat brain synaptosomes. Substitution on the aromatic ring yielded compounds that maintained hybrid activity, with the two disubstituted analogues (PAL-787 and PAL-820) having the most potent hybrid activity.
Dopamine transporter SPECT in patients with mitochondrial disorders
Minnerop, M; Kornblum, C; Joe, A; Tatsch, K; Kunz, W; Klockgether, T; Wullner, U; Reinhardt, M
2005-01-01
Objective : To investigate the dopaminergic system in patients with known mitochondrial disorders and complex I deficiency. Methods: Dopamine transporter density was studied in 10 female patients with mitochondrial complex I deficiency by 123I-FP-CIT (N-ß-fluoropropyl-2ß-carbomethyl-3ß-(4-iodophenyl)-nortropane) SPECT. Results: No differences in 123I-FP-CIT striatal binding ratios were observed and no correlation of the degree of complex I deficiency and striatal binding ratios could be detected. Conclusions: These data argue against the possibility that mitochondrial complex I deficiency by itself is sufficient to elicit dopaminergic cell loss. PMID:15608010
THE MYSTERIOUS MOTIVATIONAL FUNCTIONS OF MESOLIMBIC DOPAMINE
Salamone, John D.; Correa, Mercè
2012-01-01
Summary Nucleus accumbens dopamine is known to play a role in motivational processes, and dysfunctions of mesolimbic dopamine may contribute to motivational symptoms of depression and other disorders, as well as features of substance abuse. Although it has become traditional to label dopamine neurons as “reward” neurons, this is an over-generalization, and it is important to distinguish between aspects of motivation that are differentially affected by dopaminergic manipulations. For example, accumbens dopamine does not mediate primary food motivation or appetite, but is involved in appetitive and aversive motivational processes including behavioral activation, exertion of effort, approach behavior, sustained task engagement, Pavlovian processes and instrumental learning. In this review, we discuss the complex roles of dopamine in behavioral functions related to motivation. PMID:23141060
The metal transporter SMF-3/DMT-1 mediates aluminum-induced dopamine neuron degeneration.
VanDuyn, Natalia; Settivari, Raja; LeVora, Jennifer; Zhou, Shaoyu; Unrine, Jason; Nass, Richard
2013-01-01
Aluminum (Al(3+)) is the most prevalent metal in the earth's crust and is a known human neurotoxicant. Al(3+) has been shown to accumulate in the substantia nigra of patients with Parkinson's disease (PD), and epidemiological studies suggest correlations between Al(3+) exposure and the propensity to develop both PD and the amyloid plaque-associated disorder Alzheimer's disease (AD). Although Al(3+) exposures have been associated with the development of the most common neurodegenerative disorders, the molecular mechanism involved in Al(3+) transport in neurons and subsequent cellular death has remained elusive. In this study, we show that a brief exposure to Al(3+) decreases mitochondrial membrane potential and cellular ATP levels, and confers dopamine (DA) neuron degeneration in the genetically tractable nematode Caenorhabditis elegans (C. elegans). Al(3+) exposure also exacerbates DA neuronal death conferred by the human PD-associated protein α-synuclein. DA neurodegeneration is dependent on SMF-3, a homologue to the human divalent metal transporter (DMT-1), as a functional null mutation partially inhibits the cell death. We also show that SMF-3 is expressed in DA neurons, Al(3+) exposure results in a significant decrease in protein levels, and the neurodegeneration is partially dependent on the PD-associated transcription factor Nrf2/SKN-1 and caspase Apaf1/CED-4. Furthermore, we provide evidence that the deletion of SMF-3 confers Al(3+) resistance due to sequestration of Al(3+) into an intracellular compartment. This study describes a novel model for Al(3+)-induced DA neurodegeneration and provides the first molecular evidence of an animal Al(3+) transporter. © 2012 International Society for Neurochemistry.
Bertolino, Alessandro; Fazio, Leonardo; Di Giorgio, Annabella; Blasi, Giuseppe; Romano, Raffaella; Taurisano, Paolo; Caforio, Grazia; Sinibaldi, Lorenzo; Ursini, Gianluca; Popolizio, Teresa; Tirotta, Emanuele; Papp, Audrey; Dallapiccola, Bruno; Borrelli, Emiliana; Sadee, Wolfgang
2009-01-28
Dopamine modulation of neuronal activity during memory tasks identifies a nonlinear inverted-U shaped function. Both the dopamine transporter (DAT) and dopamine D(2) receptors (encoded by DRD(2)) critically regulate dopamine signaling in the striatum and in prefrontal cortex during memory. Moreover, in vitro studies have demonstrated that DAT and D(2) proteins reciprocally regulate each other presynaptically. Therefore, we have evaluated the genetic interaction between a DRD(2) polymorphism (rs1076560) causing reduced presynaptic D(2) receptor expression and the DAT 3'-VNTR variant (affecting DAT expression) in a large sample of healthy subjects undergoing blood oxygenation level-dependent (BOLD)-functional magnetic resonance imaging (MRI) during memory tasks and structural MRI. Results indicated a significant DRD(2)/DAT interaction in prefrontal cortex and striatum BOLD activity during both working memory and encoding of recognition memory. The differential effect on BOLD activity of the DAT variant was mostly manifest in the context of the DRD(2) allele associated with lower presynaptic expression. Similar results were also evident for gray matter volume in caudate. These interactions describe a nonlinear relationship between compound genotypes and brain activity or gray matter volume. Complementary data from striatal protein extracts from wild-type and D(2) knock-out animals (D2R(-/-)) indicate that DAT and D(2) proteins interact in vivo. Together, our results demonstrate that the interaction between genetic variants in DRD(2) and DAT critically modulates the nonlinear relationship between dopamine and neuronal activity during memory processing.
Veeneman, Maartje M J; Broekhoven, Mark H; Damsteegt, Ruth; Vanderschuren, Louk J M J
2012-01-01
Dopaminergic neurotransmission in the dorsal and ventral striatum is thought to be involved in distinct aspects of cocaine addiction. Ventral striatal dopamine mediates the acute reinforcing properties of cocaine, whereas dopamine in the dorsolateral striatum (DLS) is thought to become involved in later stages of the addiction process to mediate well-established cue-controlled drug seeking. However, it is unclear whether the DLS also has a role in the reinforcing properties of cocaine itself. Therefore, we systematically investigated the involvement of dopamine in dorsal and ventral striatal regions in cocaine self-administration, using various schedules of reinforcement in animals with limited drug taking experience. Intra-DLS infusion of the dopamine receptor antagonist α-flupenthixol did not affect the acquisition of cocaine self-administration, increased cocaine self-administration under a fixed ratio-1 (FR-1) schedule of reinforcement, caused a rightward and downward shift of the dose–response curve of cocaine under an FR-1 schedule of reinforcement and decreased responding for cocaine under a progressive ratio (PR) schedule of reinforcement. Infusion of α-flupenthixol into the ventral nucleus accumbens (NAcc) shell inhibited the acquisition of cocaine self-administration, reduced responding for the drug under FR-1 and PR schedules of reinforcement, and caused a downward shift of the dose–response curve of cocaine self-administration under an FR-1 schedule of reinforcement. These data show that dopamine in both the DLS and NAcc shell is involved in cocaine reinforcement. We suggest that the DLS and the NAcc shell mediate somewhat distinct facets of the reinforcing properties of cocaine, related to its rewarding and motivational aspects, respectively. PMID:21918505
Hankosky, Emily R; Joolakanti, Shyam R; Nickell, Justin R; Janganati, Venumadhav; Dwoskin, Linda P; Crooks, Peter A
2017-12-15
A small library of fluoroethoxy-1,4-diphenethyl piperidine and fluoroethoxy-1,4-diphenethyl piperazine derivatives were designed, synthesized and evaluated for their ability to inhibit [ 3 H]dopamine (DA) uptake at the vesicular monoamine transporter-2 (VMAT2) and dopamine transporter (DAT), [ 3 H]serotonin (5-HT) uptake at the serotonin transporter (SERT), and [ 3 H]dofetilide binding at the human-ether-a-go-go-related gene (hERG) channel. The majority of the compounds exhibited potent inhibition of [ 3 H]DA uptake at VMAT2, Ki changes in the nanomolar range (K i = 0.014-0.073 µM). Compound 15d exhibited the highest affinity (K i = 0.014 µM) at VMAT2, and had 160-, 5-, and 60-fold greater selectivity for VMAT2 vs. DAT, SERT and hERG, respectively. Compound 15b exhibited the greatest selectivity (>60-fold) for VMAT2 relative to all the other targets evaluated, and 15b had high affinity for VMAT2 (K i = 0.073 µM). Compound 15b was considered the lead compound from this analog series due to its high affinity and selectivity for VMAT2. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zahavi, Arielle Y; Sabbagh, Mark A; Washburn, Dustin; Mazurka, Raegan; Bagby, R Michael; Strauss, John; Kennedy, James L; Ravindran, Arun; Harkness, Kate L
2016-01-01
Theory of mind-the ability to decode and reason about others' mental states-is a universal human skill and forms the basis of social cognition. Theory of mind accuracy is impaired in clinical conditions evidencing social impairment, including major depressive disorder. The current study is a preliminary investigation of the association of polymorphisms of the serotonin transporter (SLC6A4), dopamine transporter (DAT1), dopamine receptor D4 (DRD4), and catechol-O-methyl transferase (COMT) genes with theory of mind decoding in a sample of adults with major depression. Ninety-six young adults (38 depressed, 58 non-depressed) completed the 'Reading the Mind in the Eyes task' and a non-mentalistic control task. Genetic associations were only found for the depressed group. Specifically, superior accuracy in decoding mental states of a positive valence was seen in those homozygous for the long allele of the serotonin transporter gene, 9-allele carriers of DAT1, and long-allele carriers of DRD4. In contrast, superior accuracy in decoding mental states of a negative valence was seen in short-allele carriers of the serotonin transporter gene and 10/10 homozygotes of DAT1. Results are discussed in terms of their implications for integrating social cognitive and neurobiological models of etiology in major depression.
Dai, Zhipan; Tang, Xia; Chen, Jia; Tang, Xiaochao; Wang, Xianchun
2017-11-01
Rab3 and synaptotagmin have been suggested to play important roles in the regulation of neurotransmitter release and, however, the molecular mechanism has not been completely clear. Here, we studied the effects of Rab3A and synaptotagmin I (Syt I) on dopamine release using PC12 cells as a model system. Rab3A was demonstrated to have effects on both Ca 2+ -independent and Ca 2+ -dependent dopamine releases from the PC12 cells. Application of Rab3A (up to 2500 nM) gradually decreased the amount of Ca 2+ -dependently released dopamine, indicating that Rab3A is a negative modulator that was further supported by the increase in dopamine release caused by Rab3A knockdown. Syt I knockdown weakened the Ca 2+ -dependent dopamine release, suggesting that Syt I plays a positive regulatory role in the cellular process. Treatment of the Syt I-knocked down PC12 cells with Rab3A further decreased Ca 2+ -dependent dopamine release and, however, the decrease magnitude was significantly reduced compared with that before Syt I knockdown, thus for the first time demonstrating that the inhibitory effect of Rab3A on Ca 2+ -dependent dopamine release involves the interaction with Syt I. This work has shed new light on the molecular mechanism for Rab3 and synaptotamin regulation of neurotransmitter release. J. Cell. Biochem. 118: 3696-3705, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Bjerggaard, Christian; Fog, Jacob U; Hastrup, Hanne; Madsen, Kenneth; Loland, Claus J; Javitch, Jonathan A; Gether, Ulrik
2004-08-04
The human dopamine transporter (hDAT) contains a C-terminal type 2 PDZ (postsynaptic density 95/Discs large/zona occludens 1) domain-binding motif (LKV) known to interact with PDZ domain proteins such as PICK1 (protein interacting with C-kinase 1). As reported previously, we found that, after deletion of this motif, hDAT was retained in the endoplasmic reticulum (ER) of human embryonic kidney (HEK) 293 and Neuro2A cells, suggesting that PDZ domain interactions might be critical for hDAT targeting. Nonetheless, substitution of LKV with SLL, the type 1 PDZ-binding sequence from the beta2-adrenergic receptor, did not disrupt plasma membrane targeting. Moreover, the addition of an alanine to the hDAT C terminus (+Ala), resulting in an LKVA termination sequence, or substitution of LKV with alanines (3xAla_618-620) prevented neither plasma membrane targeting nor targeting into sprouting neurites of differentiated N2A cells. The inability of +Ala and 3xAla_618-620 to bind PDZ domains was confirmed by lack of colocalization with PICK1 in cotransfected HEK293 cells and by the inability of corresponding C-terminal fusion proteins to pull down purified PICK1. Thus, although residues in the hDAT C terminus are indispensable for proper targeting, PDZ domain interactions are not required. By progressive substitutions with beta2-adrenergic receptor sequence, and by triple-alanine substitutions in the hDAT C terminus, we examined the importance of epitopes preceding the LKV motif. Substitution of RHW(615-617) with alanines caused retention of the transporter in the ER despite preserved ability of this mutant to bind PICK1. We propose dual roles of the hDAT C terminus: a role independent of PDZ interactions for ER export and surface targeting, and a not fully clarified role involving PDZ interactions with proteins such as PICK1.
Flores, Juan A; El Banoua, Fadwa; Galán-Rodríguez, Beatriz; Fernandez-Espejo, Emilio
2004-07-01
The periaqueductal grey (PAG) area is involved in pain modulation as well as in opiate-induced anti-nociceptive effects. The PAG possess dopamine neurons, and it is likely that this dopaminergic network participates in anti-nociception. The objective was to further study the morphology of the PAG dopaminergic network, along with its role in nociception and opiate-induced analgesia in rats, following either dopamine depletion with the toxin 6-hydroxydopamine or local injection of dopaminergic antagonists. Nociceptive responses were studied through the tail-immersion (spinal reflex) and the hot-plate tests (integrated supraspinal response), establishing a cut-off time to further minimize animal suffering. Heroin and morphine were employed as opiates. Histological data indicated that the dopaminergic network of the PAG is composed of two types of neurons: small rounded cells, and large multipolar neurons. Following dopamine depletion of the PAG, large neurons (not small ones) were selectively affected by the toxin (61.9% dopamine cell loss, 80.7% reduction of in vitro dopaminergic peak), and opiate-induced analgesia in the hot-plate test (not the tail-immersion test) was reliably attenuated in lesioned rats (P < 0.01). After infusions of dopaminergic ligands into the PAG, D(1) (not D(2)) receptor antagonism attenuated opiate-induced analgesia in a dose-dependent manner in the hot-plate test. The present study provides evidence that large neurons of the dopaminergic network of the PAG participate in supraspinal (not spinal) nociceptive responses after opiates through the involvement of D(1) dopamine receptors. This dopaminergic system should be included as another network within the PAG involved in opiate-induced anti-nociception.
Bonsall, David R; Kokkinou, Michelle; Veronese, Mattia; Coello, Christopher; Wells, Lisa A; Howes, Oliver D
2017-12-01
Cocaine is a recreational drug of abuse that binds to the dopamine transporter, preventing reuptake of dopamine into pre-synaptic terminals. The increased presence of synaptic dopamine results in stimulation of both pre- and post-synaptic dopamine receptors, considered an important mechanism by which cocaine elicits its reinforcing properties. However, the effects of acute cocaine administration on pre-synaptic dopamine function remain unclear. Non-invasive imaging techniques such as positron emission tomography have revealed impaired pre-synaptic dopamine function in chronic cocaine users. Similar impairments have been seen in animal studies, with microdialysis experiments indicating decreased basal dopamine release. Here we use micro positron emission tomography imaging techniques in mice to measure dopamine synthesis capacity and determine the effect of acute cocaine administration of pre-synaptic dopamine function. We show that a dose of 20 mg/kg cocaine is sufficient to elicit hyperlocomotor activity, peaking 15-20 min post treatment (p < 0.001). However, dopamine synthesis capacity in the striatum was not significantly altered by acute cocaine treatment (KiCer: 0.0097 per min vs. 0.0112 per min in vehicle controls, p > 0.05). Furthermore, expression levels of two key enzymes related to dopamine synthesis, tyrosine hydroxylase and aromatic l-amino acid decarboxylase, within the striatum of scanned mice were not significantly affected by acute cocaine pre-treatment (p > 0.05). Our findings suggest that while the regulation of dopamine synthesis and release in the striatum have been shown to change with chronic cocaine use, leading to a reduced basal tone, these adaptations to pre-synaptic dopaminergic neurons are not initiated following a single exposure to the drug. © 2017 International Society for Neurochemistry.
Shnitko, Tatiana A.; Spear, Linda P.; Robinson, Donita L.
2015-01-01
Rationale Early onset of alcohol drinking has been associated with alcohol abuse in adulthood. The neurobiology of this phenomenon is unclear, but mesolimbic dopamine pathways, which are dynamic during adolescence, may play a role. Objectives We investigated the impact of adolescent binge-like alcohol on phasic dopaminergic neurotransmission during adulthood. Methods Rats received intermittent intragastric ethanol, water or nothing during adolescence. In adulthood, electrically-evoked dopamine release and subsequent uptake were measured in the nucleus accumbens core at baseline and after acute challenge of ethanol or saline. Results Adolescent ethanol exposure did not alter basal measures of evoked dopamine release or uptake. Ethanol challenge dose-dependently decreased the amplitude of evoked dopamine release in rats by 30–50% in control groups, as previously reported, but did not alter evoked release in ethanol-exposed animals. To address the mechanism by which ethanol altered dopamine signaling, the evoked signals were modeled to estimate dopamine efflux per impulse and the velocity of the dopamine transporter. Dopamine uptake was slower in all exposure groups after ethanol challenge compared to saline, while dopamine efflux per pulse of electrical stimulation was reduced by ethanol only in ethanol-naive rats. Conclusions The results demonstrate that exposure to binge levels of ethanol during adolescence blunts the effect of ethanol challenge to reduce the amplitude of phasic dopamine release in adulthood. Large dopamine transients may result in more extracellular dopamine after alcohol challenge in adolescent-exposed rats, and may be one mechanism by which alcohol is more reinforcing in people who initiated drinking at an early age. PMID:26487039
Jin, Chun Mei; Yang, Yoo Jung; Huang, Hai Shan; Lim, Sung Cil; Kai, Masaaki; Lee, Myung Koo
2008-09-04
The effects of 3,4-dihydroxyphenylalanine (l-DOPA) on dopamine biosynthesis and cytotoxicity were investigated in PC12 cells. l-DOPA treatment (20-200 microM) increased the levels of dopamine by 226%-504% after 3-6 h of treatment and enhanced the activities of tyrosine hydroxylase (TH) and aromatic l-amino acid decarboxylase (AADC). l-DOPA (20-200 muM) treatment led to a 562%-937% increase in l-DOPA influx at 1 h, which inhibited the activity of TH, but not AADC, during the same period. The extracellular releases of dopamine were also increased by 231%-570% after treatment with 20 and 200 microM l-DOPA for 0.5-3 h. l-DOPA at a concentration of 100-200 microM, but not 20 microM, exerted apoptotic cytotoxicity towards PC12 cells for 24-48 h. l-DOPA (20-200 microM) increased the intracellular cyclic AMP levels by 318%-557% after 0.5-1 h in a concentration-dependent manner. However, the elevated cyclic AMP levels by l-DOPA could not protect against l-DOPA (100-200 microM)-induced cytotoxicity after 24-48 h. In addition, l-DOPA (20-200 microM)-induced increases in cyclic AMP and dopamine were significantly reduced by treatment with SCH23390 (dopamine D(1) receptor antagonist). The increased levels of dopamine by l-DOPA were also reduced by H89 (protein kinase A, PKA, inhibitor) and GF109203X (protein kinase C inhibitor); however, the reduction by GF109203X was not significant. l-DOPA at 20-200 microM stimulated the phosphorylation of PKA and cyclic AMP-response element binding protein and induced the biosynthesis of the TH protein. These results indicate that 20-200 microM l-DOPA induces dopamine biosynthesis by two pathways. One pathway involves l-DOPA directly entering the cells to convert dopamine through AADC activity (l-DOPA decarboxylation). The other pathway involves l-DOPA and/or released dopamine activating TH to enhance dopamine biosynthesis by the dopamine D(1) receptor-cyclic AMP-PKA signaling system (dopamine biosynthesis by TH).
Dopamine and extinction: a convergence of theory with fear and reward circuitry.
Abraham, Antony D; Neve, Kim A; Lattal, K Matthew
2014-02-01
Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes. Copyright © 2013 Elsevier Inc. All rights reserved.
2018-01-01
Abstract Dopamine has been suggested to be crucially involved in effort-related choices. Key findings are that dopamine depletion (i) changed preference for a high-cost, large-reward option to a low-cost, small-reward option, (ii) but not when the large-reward option was also low-cost or the small-reward option gave no reward, (iii) while increasing the latency in all the cases but only transiently, and (iv) that antagonism of either dopamine D1 or D2 receptors also specifically impaired selection of the high-cost, large-reward option. The underlying neural circuit mechanisms remain unclear. Here we show that findings i–iii can be explained by the dopaminergic representation of temporal-difference reward-prediction error (TD-RPE), whose mechanisms have now become clarified, if (1) the synaptic strengths storing the values of actions mildly decay in time and (2) the obtained-reward-representing excitatory input to dopamine neurons increases after dopamine depletion. The former is potentially caused by background neural activity–induced weak synaptic plasticity, and the latter is assumed to occur through post-depletion increase of neural activity in the pedunculopontine nucleus, where neurons representing obtained reward exist and presumably send excitatory projections to dopamine neurons. We further show that finding iv, which is nontrivial given the suggested distinct functions of the D1 and D2 corticostriatal pathways, can also be explained if we additionally assume a proposed mechanism of TD-RPE calculation, in which the D1 and D2 pathways encode the values of actions with a temporal difference. These results suggest a possible circuit mechanism for the involvements of dopamine in effort-related choices and, simultaneously, provide implications for the mechanisms of TD-RPE calculation. PMID:29468191
Lamotte, Guillaume; Morello, Rémy; Lebasnier, Adrien; Agostini, Denis; Bouvard, Gérard; De La Sayette, Vincent; Defer, Gilles L
2016-07-01
Dementia with Lewy bodies (DLB) and Alzheimer's disease (AD) are the two most common forms of dementia. These two diseases share some clinical and pathological similarities, yet the loss of dopaminergic neurons confirmed by 123-I-Ioflupane Single Photon Emission Computed Tomography (SPECT) is a suggestive feature of DLB. Current evidence suggests that higher education has a protective effect on the risk of developing clinical AD. However, how education influences cognitive performance and the presynaptic dopamine transporter marker in DLB is unknown. We reviewed 56 consecutive patients with DLB who underwent a 123-I-Ioflupane SPECT from January 2009 to August 2013 at the University Hospital of Caen. We collected clinical and neuropsychological data from medical files and 123-I-Ioflupane SPECT data for all patients. There was no correlation between education and global cognitive performance in patients with DLB. However, there was a positive correlation between education and tests exploring visuoconstructive functions (Rey complex figure copy and recall) and verbal retrieval strategies (Grober and Buschke free recall test). There was also a positive correlation between education and dopamine transporter binding. Higher educated patients had higher binding in the striatum, putamen and caudate nucleus (p=0.001 for each regions of interest). Dopamine transporter binding in the striatum, putamen and caudate nucleus was lower in the subgroup of patients with REM sleep behavior disorder, but was not associated with other DLB symptoms. Higher education may have a protective effect on visuoconstructive performance and verbal retrieval strategies and may influence dopaminergic nigrostriatal neurodegeneration in patients with DLB. Copyright © 2016 Elsevier B.V. All rights reserved.
Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila.
Bainton, R J; Tsai, L T; Singh, C M; Moore, M S; Neckameyer, W S; Heberlein, U
2000-02-24
Drugs of abuse have a common property in mammals, which is their ability to facilitate the release of the neurotransmitter and neuromodulator dopamine in specific brain regions involved in reward and motivation. This increase in synaptic dopamine levels is believed to act as a positive reinforcer and to mediate some of the acute responses to drugs. The mechanisms by which dopamine regulates acute drug responses and addiction remain unknown. We present evidence that dopamine plays a role in the responses of Drosophila to cocaine, nicotine or ethanol. We used a startle-induced negative geotaxis assay and a locomotor tracking system to measure the effect of psychostimulants on fly behavior. Using these assays, we show that acute responses to cocaine and nicotine are blunted by pharmacologically induced reductions in dopamine levels. Cocaine and nicotine showed a high degree of synergy in their effects, which is consistent with an action through convergent pathways. In addition, we found that dopamine is involved in the acute locomotor-activating effect, but not the sedating effect, of ethanol. We show that in Drosophila, as in mammals, dopaminergic pathways play a role in modulating specific behavioral responses to cocaine, nicotine or ethanol. We therefore suggest that Drosophila can be used as a genetically tractable model system in which to study the mechanisms underlying behavioral responses to multiple drugs of abuse.
Linking Inflammation and Parkinson Disease: Hypochlorous Acid Generates Parkinsonian Poisons
Jeitner, Thomas M.; Kalogiannis, Mike; Krasnikov, Boris F.; Gomlin, Irving; Peltier, Morgan R.; Moran, Graham R.
2016-01-01
Inflammation is a common feature of Parkinson Disease and other neurodegenerative disorders. Hypochlorous acid (HOCl) is a reactive oxygen species formed by neutrophils and other myeloperoxidase-containing cells during inflammation. HOCl chlorinates the amine and catechol moieties of dopamine to produce chlorinated derivatives collectively termed chlorodopamine. Here, we report that chlorodopamine is toxic to dopaminergic neurons both in vivo and in vitro. Intrastriatal administration of 90 nmol chlorodopamine to mice resulted in loss of dopaminergic neurons from the substantia nigra and decreased ambulation-results that were comparable to those produced by the same dose of the parkinsonian poison, 1-methyl-4-phenylpyridinium (MPP+). Chlorodopamine was also more toxic to differentiated SH SY5Y cells than HOCl. The basis of this selective toxicity is likely mediated by chlorodopamine uptake through the dopamine transporter, as expression of this transporter in COS-7 cells conferred sensitivity to chlorodopamine toxicity. Pharmacological blockade of the dopamine transporter also mitigated the deleterious effects of chlorodopamine in vivo. The cellular actions of chlorodopamine included inactivation of the α-ketoglutarate dehydrogenase complex, as well as inhibition of mitochondrial respiration. The latter effect is consistent with inhibition of cytochrome c oxidase. Illumination at 670 nm, which stimulates cytochrome c oxidase, reversed the effects of chlorodopamine. The observed changes in mitochondrial biochemistry were also accompanied by the swelling of these organelles. Overall, our findings suggest that chlorination of dopamine by HOCl generates toxins that selectively kill dopaminergic neurons in the substantia nigra in a manner comparable to MPP+. PMID:27026709
Modulation by Cocaine of Dopamine Receptors through miRNA-133b in Zebrafish Embryos
Barreto-Valer, Katherine; López-Bellido, Roger; Macho Sánchez-Simón, Fátima; Rodríguez, Raquel E.
2012-01-01
The use of cocaine during pregnancy can affect the mother and indirectly might alter the development of the embryo/foetus. Accordingly, in the present work our aim was to study in vivo (in zebrafish embryos) the effects of cocaine on the expression of dopamine receptors and on miR-133b. These embryos were exposed to cocaine hydrochloride (HCl) at 5 hours post-fertilization (hpf) and were then collected at 8, 16, 24, 48 and 72 hpf to study the expression of dopamine receptors, drd1, drd2a, drd2b and drd3, by quantitative real time PCR (qPCR) and in situ hybridization (ISH, only at 24 hpf). Our results indicate that cocaine alters the expression of the genes studied, depending on the stage of the developing embryo and the type of dopamine receptor. We found that cocaine reduced the expression of miR-133b at 24 and 48 hpf in the central nervous system (CNS) and at the periphery by qPCR and also that the spatial distribution of miR-133b was mainly seen in somites, a finding that suggests the involvement of miR-133b in the development of the skeletal muscle. In contrast, at the level of the CNS miR-133b had a weak and moderate expression at 24 and 48 hpf. We also analysed the interaction of miR-133b with the Pitx3 and Pitx3 target genes drd2a and drd2b, tyrosine hydroxylase (th) and dopamine transporter (dat) by microinjection of the Pitx3-3'UTR sequence. Microinjection of Pitx3-3'UTR affected the expression of pitx3, drd2a, drd2b, th and dat. In conclusion, in the present work we describe a possible mechanism to account for cocaine activity by controlling miR-133b transcription in zebrafish. Via miR-133b cocaine would modulate the expression of pitx3 and subsequently of dopamine receptors, dat and th. These results indicate that miRNAs can play an important role during embryogenesis and in drug addiction. PMID:23285158
Dopamine in motivational control: rewarding, aversive, and alerting
Bromberg-Martin, Ethan S.; Matsumoto, Masayuki; Hikosaka, Okihide
2010-01-01
SUMMARY Midbrain dopamine neurons are well known for their strong responses to rewards and their critical role in positive motivation. It has become increasingly clear, however, that dopamine neurons also transmit signals related to salient but non-rewarding experiences such as aversive and alerting events. Here we review recent advances in understanding the reward and non-reward functions of dopamine. Based on this data, we propose that dopamine neurons come in multiple types that are connected with distinct brain networks and have distinct roles in motivational control. Some dopamine neurons encode motivational value, supporting brain networks for seeking, evaluation, and value learning. Others encode motivational salience, supporting brain networks for orienting, cognition, and general motivation. Both types of dopamine neurons are augmented by an alerting signal involved in rapid detection of potentially important sensory cues. We hypothesize that these dopaminergic pathways for value, salience, and alerting cooperate to support adaptive behavior. PMID:21144997
Amphetamine Elicits Opposing Actions on Readily Releasable and Reserve Pools for Dopamine
Covey, Dan P.; Juliano, Steven A.; Garris, Paul A.
2013-01-01
Amphetamine, a highly addictive drug with therapeutic efficacy, exerts paradoxical effects on the fundamental communication modes employed by dopamine neurons in modulating behavior. While amphetamine elevates tonic dopamine signaling by depleting vesicular stores and driving non-exocytotic release through reverse transport, this psychostimulant also activates phasic dopamine signaling by up-regulating vesicular dopamine release. We hypothesized that these seemingly incongruent effects arise from amphetamine depleting the reserve pool and enhancing the readily releasable pool. This novel hypothesis was tested using in vivo voltammetry and stimulus trains of varying duration to access different vesicular stores. We show that amphetamine actions are stimulus dependent in the dorsal striatum. Specifically, amphetamine up-regulated vesicular dopamine release elicited by a short-duration train, which interrogates the readily releasable pool, but depleted release elicited by a long-duration train, which interrogates the reserve pool. These opposing actions of vesicular dopamine release were associated with concurrent increases in tonic and phasic dopamine responses. A link between vesicular depletion and tonic signaling was supported by results obtained for amphetamine in the ventral striatum and cocaine in both striatal sub-regions, which demonstrated augmented vesicular release and phasic signals only. We submit that amphetamine differentially targeting dopamine stores reconciles the paradoxical activation of tonic and phasic dopamine signaling. Overall, these results further highlight the unique and region-distinct cellular mechanisms of amphetamine and may have important implications for its addictive and therapeutic properties. PMID:23671560
Wernicke, Catrin; Hellmann, Julian; Finckh, Ulrich; Rommelspacher, Hans
2010-01-01
There is evidence for ethanol-induced impairment of the dopaminergic system in the brain during development. The dopamine D2 receptor (DRD2) and the dopamine transporter (DAT) are decisively involved in dopaminergic signaling. Two splice variants of DRD2 are known, with the short one (DRD2s) representing the autoreceptor and the long one (DRD2l) the postsynaptic receptor. We searched for a model to investigate the impact of chronic ethanol exposure and withdrawal on the expression of these proteins during neuronal differentiation. RA-induced differentiation of human neuroblastoma SH-SY5Y cells seems to represent such a model. Our real-time RT-PCR, Western blot, and immunocytochemistry analyses of undifferentiated and RA-differentiated cells have demonstrated the enhanced expression of both splice variants of DRD2, with the short one being stronger enhanced than the long one under RA-treatment, and the DRD2 distribution on cell bodies and neurites under both conditions. In contrast, DAT was down-regulated by RA. The DAT is functional both in undifferentiated and RA-differentiated cells as demonstrated by [(3)H]dopamine uptake. Chronic ethanol exposure during differentiation for up to 4 weeks resulted in a delayed up-regulation of DRD2s. Ethanol withdrawal caused an increased expression of DRD2l and a normalization of DRD2s. Thus the DRD2s/DRD2l ratio was still disturbed. The dopamine level was increased by RA-differentiation compared to controls and was diminished under RA/ethanol treatment and ethanol withdrawal compared to RA-only treated cells. In conclusion, chronic ethanol exposure impairs differentiation-dependent adaptation of dopaminergic proteins, specifically of DRD2s. RA-differentiating SH-SY5Y cells are suited to study the impact of chronic ethanol exposure and withdrawal on expression of dopaminergic proteins during neuronal differentiation.
Treble-Barna, Amery; Wade, Shari L; Martin, Lisa J; Pilipenko, Valentina; Yeates, Keith Owen; Taylor, H Gerry; Kurowski, Brad G
2017-06-01
The present study examined the association of dopamine-related genes with short- and long-term neurobehavioral recovery, as well as neurobehavioral recovery trajectories over time, in children who had sustained early childhood traumatic brain injuries (TBI) relative to children who had sustained orthopedic injuries (OI). Participants were recruited from a prospective, longitudinal study evaluating outcomes of children who sustained a TBI (n = 68) or OI (n = 72) between the ages of 3 and 7 years. Parents completed ratings of child executive function and behavior at the immediate post-acute period (0-3 months after injury); 6, 12, and 18 months after injury; and an average of 3.5 and 7 years after injury. Thirty-two single nucleotide polymorphisms (SNPs) in dopamine-related genes (dopamine receptor D2 [DRD2], solute carrier family 6 member 3 [SLC6A3], solute carrier family 18 member A2 [SLC18A2], catechol-o-methyltransferase [COMT], and ankyrin repeat and kinase domain containing 1 [ANKK1]) were examined in association with short- and long-term executive function and behavioral adjustment, as well as their trajectories over time. After controlling for premorbid child functioning, genetic variation within the SLC6A3 (rs464049 and rs460000) gene was differentially associated with neurobehavioral recovery trajectories over time following TBI relative to OI, with rs464049 surviving multiple testing corrections. In addition, genetic variation within the ANKK1 (rs1800497 and rs2734849) and SLC6A3 (rs464049, rs460000, and rs1042098) genes was differentially associated with short- and long-term neurobehavioral recovery following TBI, with rs460000 and rs464049 surviving multiple testing corrections. The findings provide preliminary evidence that genetic variation in genes involved in DRD2 expression and density (ANKK1) and dopamine transport (SLC6A3) plays a role in neurobehavioral recovery following pediatric TBI.
DAT1 Polymorphism Determines L-DOPA Effects on Learning about Others’ Prosociality
Rieskamp, Jörg; Zehnder, Christian; Ebstein, Richard; Fehr, Ernst; Knoch, Daria
2013-01-01
Despite that a wealth of evidence links striatal dopamine to individualś reward learning performance in non-social environments, the neurochemical underpinnings of such learning during social interaction are unknown. Here, we show that the administration of 300 mg of the dopamine precursor L-DOPA to 200 healthy male subjects influences learning about a partners’ prosocial preferences in a novel social interaction task, which is akin to a repeated trust game. We found learning to be modulated by a well-established genetic marker of striatal dopamine levels, the 40-bp variable number tandem repeats polymorphism of the dopamine transporter (DAT1 polymorphism). In particular, we found that L-DOPA improves learning in 10/10R genoype subjects, who are assumed to have lower endogenous striatal dopamine levels and impairs learning in 9/10R genotype subjects, who are assumed to have higher endogenous dopamine levels. These findings provide first evidence for a critical role of dopamine in learning whether an interaction partner has a prosocial or a selfish personality. The applied pharmacogenetic approach may open doors to new ways of studying psychiatric disorders such as psychosis, which is characterized by distorted perceptions of others’ prosocial attitudes. PMID:23861813
Gerth, Ashlynn I; Alhadeff, Amber L; Grill, Harvey J; Roitman, Mitchell F
2017-01-15
Cocaine increases dopamine concentration in the nucleus accumbens through competitive binding to the dopamine transporter (DAT). However, it also increases the frequency of dopamine release events, a finding that cannot be explained by action at the DAT alone. Rather, this effect may be mediated by cocaine-induced modulation of brain regions that project to dopamine neurons. To explore regional contributions of cocaine to dopamine signaling, we administered cocaine to the lateral or fourth ventricles and compared the effects on dopamine release in the nucleus accumbens evoked by electrical stimulation of the ventral tegmental area to that of systemically-delivered cocaine. Stimulation trains caused a sharp rise in dopamine followed by a slower return to baseline. The magnitude of dopamine release ([DA]max) as well as the latency to decay to fifty percent of the maximum (t(1/2); index of DAT activity) by each stimulation train were recorded. All routes of cocaine delivery caused an increase in [DA]max; only systemic cocaine caused an increase in t(1/2). Importantly, these data are the first to show that hindbrain (fourth ventricle)-delivered cocaine modulates phasic dopamine signaling. Fourth ventricular cocaine robustly increased cFos immunoreactivity in the nucleus of the solitary tract (NTS), suggesting a neural substrate for hindbrain cocaine-mediated effects on [DA]max. Together, the data demonstrate that cocaine-induced effects on phasic dopamine signaling are mediated via actions throughout the brain including the hindbrain. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Bradner, Joshua M.; Suragh, Tiffany A.; Wilson, W. Wyatt; Lazo, Carlos R.; Stout, Kristen A.; Kim, Hye Mi; Wang, Min Z.; Walker, Douglas I.; Pennell, Kurt D.; Richardson, Jason R.; Miller, Gary W.; Caudle, W. Michael
2013-01-01
In the last several decades polybrominated diphenyl ethers (PBDEs) have replaced the previously banned polychlorinated biphenyls (PCBs) in multiple flame retardant utilities. As epidemiological and laboratory studies have suggested PCBs as a risk factor for Parkinson’s disease (PD), the similarities between PBDEs and PCBs suggest that PBDEs have the potential to be neurotoxic to the dopamine system. The purpose of this study was to evaluate the neurotoxic effects of the PBDE mixture, DE-71, on the nigrostriatal dopamine system and address the role of altered dopamine handling in mediating this neurotoxicity. Using an in vitro model system we found DE-71 effectively caused cell death in a dopaminergic cell line as well as reducing the number of TH+ neurons isolated from VMAT2 WT and LO animals. Assessment of DE-71 neurotoxicity in vivo demonstrated significant deposition of PBDE congeners in the brains of mice, leading to reductions in striatal dopamine and dopamine handling, as well as reductions in the striatal dopamine transporter (DAT) and VMAT2. Additionally, DE-71 elicited a significant locomotor deficit in the VMAT2 WT and LO mice. However, no change was seen in TH expression in dopamine terminal or in the number of dopamine neurons in the substantia nigra pars compacta (SNpc). To date, these are the first data to demonstrate that exposure to PBDEs disrupts the nigrostriatal dopamine system. Given their similarities to PCBs, additional laboratory and epidemiological research should be considered to assess PBDEs as a potential risk factor for PD and other neurological disorders. PMID:23287494
Dib, Tatiana; Martínez-Pinto, Jonathan; Reyes-Parada, Miguel; Torres, Gonzalo E; Sotomayor-Zárate, Ramón
2018-07-02
Research in programming is focused on the study of stimuli that alters sensitive periods in development, such as prenatal and neonatal stages, that can produce long-term deleterious effects. These effects can occur in various organs or tissues such as the brain, affecting brain circuits and related behaviors. Our laboratory has demonstrated that neonatal programming with sex hormones affects the mesocorticolimbic circuitry, increasing the synthesis and release of dopamine (DA) in striatum and nucleus accumbens (NAcc). However, the behavioral response to psychostimulant drugs such as methylphenidate and the possible mechanism(s) involved have not been studied in adult rats exposed to sex hormones during the first hours of life. Thus, the aim of this study was to examine the locomotor activity induced by methylphenidate (5mg/kg i.p.) and the expression of the DA transporter (DAT) in NAcc of adult rats exposed to a single dose of testosterone propionate (TP: 1mg/50μLs.c.) or estradiol valerate (EV: 0.1mg/50μLs.c.) at postnatal day 1. Our results demonstrated that adult female rats treated with TP have a lower methylphenidate-induced locomotor activity compared to control and EV-treated adult female rats. This reduction in locomotor activity is related with a lower NAcc DAT expression. However, neither methylphenidate-induced locomotor activity nor NAcc DAT expression was affected in EV or TP-treated adult male rats. Our results suggest that early exposure to sex hormones affects long-term dopaminergic brain areas involved in the response to psychostimulants, which could be a vulnerability factor to favor the escalating doses of drugs of abuse. Copyright © 2017 Elsevier B.V. All rights reserved.
Shen, Yu-Chih; Liao, Ding-Lieh; Lu, Chao-Lin; Chen, Jen-Yeu; Liou, Ying-Jay; Chen, Tzu-Ting; Chen, Chia-Hsiang
2010-08-01
Vesicular glutamate transporters (VGLUT1-3) package glutamate into vesicles in the presynaptic terminal and regulate the release of glutamate. In mesencephalic dopamine neuron culture, the majority of isolated dopamine neurons express VGLUT2, but not VGLUT1 or 3, have been demonstrated. As related to the dysregulated glutamatergic hypothesis of schizophrenia, the gene encoding VGLUT2 is the most plausible candidate involved in the pathogenesis of this illness. We searched for genetic variants in the promoter region and 12 exons (including UTR ends) of the VGLUT2 gene using direct sequencing in a sample of Han Chinese schizophrenic patients (n=375) and non-psychotic controls (n=366) from Taiwan, and conducted a case-control association study. We identified 8 common SNPs in the VGLUT2 gene. SNP and haplotype-based analyses showed no association with schizophrenia. Besides, we identified 9 rare variants in 13 out of 375 patients, including 3 variants located at the promoter region, 2 synonymous variants located at protein coding regions, and 4 variants located at UTR ends. No rare variants were found in the control subjects. Collectively, these rare variants were significantly overrepresented in the patient group (3.5% versus 0, p value of Fisher's exact test=2.3x10(-5)), suggesting they may contribute to the pathogenesis of schizophrenia. Although the functional significance of these rare variants remains to be characterized, our study may lend support to the multiple rare mutations hypothesis of schizophrenia, and may provide genetic clues to indicate the involvement of the glutamate transmission pathway in the pathogenesis of schizophrenia. Copyright 2010 Elsevier B.V. All rights reserved.
Bhaskar, Lakkakula V K S; Thangaraj, Kumarasamy; Wasnik, Samiksha; Singh, Lalji; Raghavendra Rao, Vadlamudi
2012-01-01
It is well established that the central dopaminergic reward pathway is likely involved in alcohol intake and the progression of alcohol dependence. Dopamine transporter (DAT1) mediates the active re-uptake of DA from the synapse and is a principal regulator of dopaminergic neurotransmission. The gene for the human DAT1 displays several polymorphisms, including a 40-bp variable number of tandem repeats (VNTR) ranging from 3 to 16 copies in the 3'-untranslated region (UTR) of the gene. To assess the role of this gene in alcoholism, we genotyped the VNTR of DAT1 gene in a sample of 206 subjects from the Kota population (111 alcohol dependence cases and 95 controls) and 142 subjects from Badaga population (81 alcohol dependence cases and 61 controls). Both populations inhabit a similar environmental zone, but have different ethnic histories. Phenotype was defined based on the DSM-IV criteria. Genotyping was performed using PCR and electrophoresis. The association of DAT1 with alcoholism was tested by using the Clump v1.9 program which uses the Monte Carlo method. In both Kota and Badaga populations, the allele A10 was the most frequent allele followed by allele A9. The genotypic distribution is in Hardy-Weinberg equilibrium in both cases and control groups of Kota and Badaga populations. The DAT1 VNTR was significantly associated with alcoholism in Badaga population but not in Kota population. Our results suggest that the A9 allele of the DAT gene is involved in vulnerability to alcoholism, but that these associations are population specific. Copyright © American Academy of Addiction Psychiatry.
The Role of Dopamine and Its Dysfunction as a Consequence of Oxidative Stress
Juárez Olguín, Hugo; Calderón Guzmán, David; Hernández García, Ernestina; Barragán Mejía, Gerardo
2016-01-01
Dopamine is a neurotransmitter that is produced in the substantia nigra, ventral tegmental area, and hypothalamus of the brain. Dysfunction of the dopamine system has been implicated in different nervous system diseases. The level of dopamine transmission increases in response to any type of reward and by a large number of strongly additive drugs. The role of dopamine dysfunction as a consequence of oxidative stress is involved in health and disease. Introduce new potential targets for the development of therapeutic interventions based on antioxidant compounds. The present review focuses on the therapeutic potential of antioxidant compounds as a coadjuvant treatment to conventional neurological disorders is discussed. PMID:26770661
Fulks, Jenny L; O'Bryhim, Bliss E; Wenzel, Sara K; Fowler, Stephen C; Vorontsova, Elena; Pinkston, Jonathan W; Ortiz, Andrea N; Johnson, Michael A
2010-10-20
In this study we evaluated the relationship between amphetamine-induced behavioral alterations and dopamine release and uptake characteristics in Fmr1 knockout (Fmr1 KO) mice, which model fragile X syndrome. The behavioral analyses, obtained at millisecond temporal resolution and 2 mm spatial resolution using a force-plate actometer, revealed that Fmr1 KO mice express a lower degree of focused stereotypy compared to wild type (WT) control mice after injection with 10 mg/kg (ip) amphetamine. To identify potentially related neurochemical mechanisms underlying this phenomenon, we measured electrically-evoked dopamine release and uptake using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal brain slices. At 10 weeks of age, dopamine release per pulse, which is dopamine release corrected for differences in uptake, was unchanged. However, at 15 (the age of behavioral testing) and 20 weeks of age, dopamine per pulse and the maximum rate of dopamine uptake was diminished in Fmr1 KO mice compared to WT mice. Dopamine uptake measurements, obtained at different amphetamine concentrations, indicated that dopamine transporters in both genotypes have equal affinities for amphetamine. Moreover, dopamine release measurements from slices treated with quinpirole, a D2-family receptor agonist, rule out enhanced D2 autoreceptor sensitivity as a mechanism of release inhibition. However, dopamine release, uncorrected for uptake and normalized against the corresponding pre-drug release peaks, increased in Fmr1 KO mice, but not in WT mice. Collectively, these data are consistent with a scenario in which a decrease in extracellular dopamine levels in the striatum result in diminished expression of focused stereotypy in Fmr1 KO mice.
Fortin, Samantha M; Roitman, Mitchell F
2017-07-01
Drugs of abuse increase the frequency and magnitude of brief (1-3s), high concentration (phasic) dopamine release events in terminal regions. These are thought to be a critical part of drug reinforcement and ultimately the development of addiction. Recently, metabolic regulatory peptides, including the satiety signal glucagon-like peptide-1 (GLP-1), have been shown to modulate cocaine reward-driven behavior and sustained dopamine levels after cocaine administration. Here, we use fast-scan cyclic voltammetry (FSCV) to explore GLP-1 receptor (GLP-1R) modulation of dynamic dopamine release in the nucleus accumbens (NAc) during cocaine administration. We analyzed dopamine release events in both the NAc shell and core, as these two subregions are differentially affected by cocaine and uniquely contribute to motivated behavior. We found that central delivery of the GLP-1R agonist Exendin-4 suppressed the induction of phasic dopamine release events by intravenous cocaine. This effect was selective for dopamine signaling in the NAc core. Suppression of phasic signaling in the core by Exendin-4 could not be attributed to interference with cocaine binding to one of its major substrates, the dopamine transporter, as cocaine-induced increases in reuptake were unaffected. The results suggest that GLP-1R activation, instead, exerts its suppressive effects by altering dopamine release - possibly by suppressing the excitability of dopamine neurons. Given the role of NAc core dopamine in the generation of conditioned responses based on associative learning, suppression of cocaine-induced dopamine signaling in this subregion by GLP-1R agonism may decrease the reinforcing properties of cocaine. Thus, GLP-1Rs remain viable targets for the treatment and prevention of cocaine seeking, taking and relapse. Copyright © 2017 Elsevier Inc. All rights reserved.
Prommer, Eric
2017-03-01
Delirium is a palliative care emergency where patients experience changes in perception, awareness, and behavior. Common features include changes in the sleep-wake cycle, emotional lability, delusional thinking, and language and thought disorders. Delirium results from neurotransmitter imbalances involving several neurotransmitters such as dopamine, glutamate, norepinephrine, acetylcholine, gamma-aminobutyric acid, and serotonin. Untreated delirium causes significant morbidity and mortality. Nonpharmacologic and pharmacologic approaches treat delirium. Current pharmacologic management of delirium involves using agents such as haloperidol or second-generation antipsychotics. Third-generation atypical antipsychotic drugs have emerged as a potential choice for delirium management. Aripiprazole is a third-generation antipsychotic with a dopamine receptor-binding profile distinct from other second-generation antipsychotics. Aripiprazole acts as partial agonist at dopamine D 2 and 5-hydroxytryptamine (5-HT) 1A receptors, stabilizing the dopamine receptor leading to improvement in symptoms. The article reviews the pharmacology, pharmacodynamics, metabolism, and evidence of clinical efficacy for this new antipsychotic agent. This article explores possible roles in palliative care.
Further evidence of no linkage between schizophrenia and the dopamine D{sub 3} receptor gene locus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanko, S.; Fukuda, R.; Hattori, M.
The dopamine hypothesis of schizophrenia proposed that dopaminergic pathways are involved in the etiology of the disease. In particular, interest among psychiatrists has focused on the D{sub 2} receptor because of its affinity to antipsychotic drugs. Recently a new dopamine receptor gene has been cloned and named the dopamine D{sub 3} receptor. The D{sub 3} receptor is a potential site for antipsychotic drug action and may be involved in the pathophysiology of schizophrenia. We have carried out a linkage study between the susceptibility gene for schizophrenia and polymorphism of the dopamine D{sub 3} receptor gene in two Japanese pedigrees. Themore » LOD scores were negative for all genetic models and for all affective status at a recombination fraction {theta} = 0. Linkage of DRD{sub 3} has been excluded for the model 1 (dominant model) and the model 3 (recessive model). The LOD score was -3.43 at {theta} = 0 for model 1 (dominant model) and broad definition of affected status. These results were consistent with previous studies. 19 refs., 2 figs., 3 tabs.« less
Leptin Suppresses the Rewarding Effects of Running via STAT3 Signaling in Dopamine Neurons.
Fernandes, Maria Fernanda A; Matthys, Dominique; Hryhorczuk, Cécile; Sharma, Sandeep; Mogra, Shabana; Alquier, Thierry; Fulton, Stephanie
2015-10-06
The adipose hormone leptin potently influences physical activity. Leptin can decrease locomotion and running, yet the mechanisms involved and the influence of leptin on the rewarding effects of running ("runner's high") are unknown. Leptin receptor (LepR) signaling involves activation of signal transducer and activator of transcription-3 (STAT3), including in dopamine neurons of the ventral tegmental area (VTA) that are essential for reward-relevant behavior. We found that mice lacking STAT3 in dopamine neurons exhibit greater voluntary running, an effect reversed by viral-mediated STAT3 restoration. STAT3 deletion increased the rewarding effects of running whereas intra-VTA leptin blocked it in a STAT3-dependent manner. Finally, STAT3 loss-of-function reduced mesolimbic dopamine overflow and function. Findings suggest that leptin influences the motivational effects of running via LepR-STAT3 modulation of dopamine tone. Falling leptin is hypothesized to increase stamina and the rewarding effects of running as an adaptive means to enhance the pursuit and procurement of food. Copyright © 2015 Elsevier Inc. All rights reserved.
Serotonin 2B Receptors in Mesoaccumbens Dopamine Pathway Regulate Cocaine Responses.
Doly, Stéphane; Quentin, Emily; Eddine, Raphaël; Tolu, Stefania; Fernandez, Sebastian P; Bertran-Gonzalez, Jesus; Valjent, Emmanuel; Belmer, Arnauld; Viñals, Xavier; Callebert, Jacques; Faure, Philippe; Meye, Frank J; Hervé, Denis; Robledo, Patricia; Mameli, Manuel; Launay, Jean-Marie; Maldonado, Rafael; Maroteaux, Luc
2017-10-25
Addiction is a maladaptive pattern of behavior following repeated use of reinforcing drugs in predisposed individuals, leading to lifelong changes. Common among these changes are alterations of neurons releasing dopamine in the ventral and dorsal territories of the striatum. The serotonin 5-HT 2B receptor has been involved in various behaviors, including impulsivity, response to antidepressants, and response to psychostimulants, pointing toward putative interactions with the dopamine system. Despite these findings, it remains unknown whether 5-HT 2B receptors directly modulate dopaminergic activity and the possible mechanisms involved. To answer these questions, we investigated the contribution of 5-HT 2B receptors to cocaine-dependent behavioral responses. Male mice permanently lacking 5-HT 2B receptors, even restricted to dopamine neurons, developed heightened cocaine-induced locomotor responses. Retrograde tracing combined with single-cell mRNA amplification indicated that 5-HT 2B receptors are expressed by mesolimbic dopamine neurons. In vivo and ex vivo electrophysiological recordings showed that 5-HT 2B -receptor inactivation in dopamine neurons affects their neuronal activity and increases AMPA-mediated over NMDA-mediated excitatory synaptic currents. These changes are associated with lower ventral striatum dopamine activity and blunted cocaine self-administration. These data identify the 5-HT 2B receptor as a pharmacological intermediate and provide mechanistic insight into attenuated dopamine tone following exposure to drugs of abuse. SIGNIFICANCE STATEMENT Here we report that mice lacking 5-HT 2B receptors totally or exclusively in dopamine neurons exhibit heightened cocaine-induced locomotor responses. Despite the sensitized state of these mice, we found that associated changes include lower ventral striatum dopamine activity and lower cocaine operant self-administration. We described the selective expression of 5-HT 2B receptors in a subpopulation of dopamine neurons sending axons to the ventral striatum. Increased bursting in vivo properties of these dopamine neurons and a concomitant increase in AMPA synaptic transmission to ex vivo dopamine neurons were found in mice lacking 5-HT 2B receptors. These data support the idea that the chronic 5-HT 2B -receptor inhibition makes mice behave like animals already exposed to cocaine with higher cocaine-induced locomotion associated with changes in dopamine neuron reactivity. Copyright © 2017 the authors 0270-6474/17/3710373-17$15.00/0.
Yates, J R; Darna, M; Beckmann, J S; Dwoskin, L P; Bardo, M T
2016-01-28
Impulsivity, which can be subdivided into impulsive action and impulsive choice, is implicated as a factor underlying drug abuse vulnerability. Although previous research has shown that dopamine (DA) systems in prefrontal cortex are involved in impulsivity and substance abuse, it is not known if inherent variation in DA transporter (DAT) function contributes to impulsivity. The current study determined if individual differences in either impulsive action or impulsive choice are related to DAT function in orbitofrontal (OFC) and/or medial prefrontal cortex (mPFC). Rats were first tested both for impulsive action in a cued go/no-go task and for impulsive choice in a delay-discounting task. Following behavioral evaluation, in vitro [(3)H]DA uptake assays were performed in OFC and mPFC isolated from individual rats. Vmax in OFC, but not mPFC, was correlated with performance in the cued go/no-go task, with decreased OFC DAT function being associated with high impulsive action. In contrast, Vmax in OFC and mPFC was not correlated with performance in the delay-discounting task. The current results demonstrate that impulsive behavior in cued go/no-go performance is associated with decreased DAT function in OFC, suggesting that hyperdopaminergic tone in this prefrontal subregion mediates, at least in part, increased impulsive action. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Patrick, Kennerly S.; Corbin, Timothy R.; Murphy, Cristina E.
2014-01-01
We review the pharmaceutical science of ethylphenidate (EPH) in the contexts of drug discovery; drug interactions; biomarker for dl-methylphenidate (MPH)-ethanol exposure; potentiation of dl-MPH abuse liability; contemporary “designer drug”; pertinence to the newer transdermal and chiral switch MPH formulations; as well as problematic internal standard. d-EPH selectively targets the dopamine transporter while d-MPH exhibits equipotent actions at dopamine and norepinephrine transporters. This selectivity carries implications for the advancement of tailored attention-deficit/hyperactivity disorder (ADHD) pharmacotherapy in the era of genome-based diagnostics. Abuse of dl-MPH often involves ethanol co-abuse. Carboxylesterase 1 enantioselectively transesterifies l-MPH with ethanol to yield l-EPH accompanied by significantly increased early exposure to d-MPH and rapid potentiation of euphoria. The pharmacokinetic component of this drug interaction can largely be avoided using dexmethylphenidate (dexMPH). This notwithstanding, maximal potentiated euphoria occurs following dexMPH-ethanol. C57BL/6 mice model dl-MPH-ethanol interactions: An otherwise depressive dose of ethanol synergistically increases dl-MPH stimulation; A sub-stimulatory dose of dl-MPH potentiates a low, stimulatory dose of ethanol; Ethanol elevates blood, brain and urinary d-MPH concentrations while forming l-EPH. Integration of EPH preclinical neuropharmacology with clinical studies of MPH-ethanol interactions provides a translational approach toward advancement of ADHD personalized medicine and management of comorbid alcohol use disorder. PMID:25303048
Patrick, Kennerly S; Corbin, Timothy R; Murphy, Cristina E
2014-12-01
We review the pharmaceutical science of ethylphenidate (EPH) in the contexts of drug discovery, drug interactions, biomarker for dl-methylphenidate (MPH)-ethanol exposure, potentiation of dl-MPH abuse liability, contemporary "designer drug," pertinence to the newer transdermal and chiral switch MPH formulations, as well as problematic internal standard. d-EPH selectively targets the dopamine transporter, whereas d-MPH exhibits equipotent actions at dopamine and norepinephrine transporters. This selectivity carries implications for the advancement of tailored attention-deficit/hyperactivity disorder (ADHD) pharmacotherapy in the era of genome-based diagnostics. Abuse of dl-MPH often involves ethanol coabuse. Carboxylesterase 1 enantioselectively transesterifies l-MPH with ethanol to yield l-EPH accompanied by significantly increased early exposure to d-MPH and rapid potentiation of euphoria. The pharmacokinetic component of this drug interaction can largely be avoided using dexmethylphenidate (dexMPH). This notwithstanding, maximal potentiated euphoria occurs following dexMPH-ethanol. C57BL/6 mice model dl-MPH-ethanol interactions: an otherwise depressive dose of ethanol synergistically increases dl-MPH stimulation; a substimulatory dose of dl-MPH potentiates a low, stimulatory dose of ethanol; ethanol elevates blood, brain, and urinary d-MPH concentrations while forming l-EPH. Integration of EPH preclinical neuropharmacology with clinical studies of MPH-ethanol interactions provides a translational approach toward advancement of ADHD personalized medicine and management of comorbid alcohol use disorder. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Villar, Van Anthony M.; Jones, John Edward; Armando, Ines; Asico, Laureano D.; Escano, Crisanto S.; Lee, Hewang; Wang, Xiaoyan; Yang, Yu; Pascua-Crusan, Annabelle M.; Palmes-Saloma, Cynthia P.; Felder, Robin A.; Jose, Pedro A.
2013-01-01
The peripheral dopaminergic system plays a crucial role in blood pressure regulation through its actions on renal hemodynamics and epithelial ion transport. The dopamine D5 receptor (D5R) interacts with sorting nexin 1 (SNX1), a protein involved in receptor retrieval from the trans-Golgi network. In this report, we elucidated the spatial, temporal, and functional significance of this interaction in human renal proximal tubule cells and HEK293 cells stably expressing human D5R and in mice. Silencing of SNX1 expression via RNAi resulted in the failure of D5R to internalize and bind GTP, blunting of the agonist-induced increase in cAMP production and decrease in sodium transport, and up-regulation of angiotensin II receptor expression, of which expression was previously shown to be negatively regulated by D5R. Moreover, siRNA-mediated depletion of renal SNX1 in C57BL/6J and BALB/cJ mice resulted in increased blood pressure and blunted natriuretic response to agonist in salt-loaded BALB/cJ mice. These data demonstrate a crucial role for SNX1 in D5R trafficking and that SNX1 depletion results in D5R dysfunction and thus may represent a novel mechanism for the pathogenesis of essential hypertension. PMID:23152498
Tadokoro, Koh; Ohta, Yasuyuki; Sato, Kota; Maeki, Takahiro; Sasaki, Ryo; Takahashi, Yoshiaki; Shang, Jingwei; Takemoto, Mami; Hishikawa, Nozomi; Yamashita, Toru; Lim, Chang Kweng; Tajima, Shigeru; Abe, Koji
2018-03-09
Japanese encephalitis (JE) survivors often present with nigrostriatal aftereffects with parkinsonian features. A 67-year-old woman with JE showed right-dominant clinical parkinsonism and left-dominant substantia nigra lesions after magnetic resonance imaging (MRI). Dopamine transporter (DAT) imaging using 123 I-labeled 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)-nortropane ( 123 I-FP-CIT) revealed a corresponding left-dominant decrease. The present case is the first to reveal a clear match of laterality between clinical parkinsonism, MRI-based substantia nigra lesions, and impaired DAT in presynaptic dopaminergic neurons in JE.
Serretti, A; Macciardi, F; Di Bella, D; Catalano, M; Smeraldi, E
1998-08-17
Disturbances of the dopaminergic and serotoninergic neurotransmitter systems have been implicated in the pathogenesis of depressive symptoms. Associations have been reported between markers of the two neurotransmitter systems and the presence of illness or severity of depressive episodes, but no attention has been focused on the periods of remission. The present report focuses on a possible association of self-esteem in remitted mood disorder patients with the functional polymorphism located in the upstream regulatory region of the serotonin transporter gene (5-HTTLPR) and the dopamine receptor D4 (DRD4). Inpatients (N=162) affected by bipolar (n=103) and unipolar (n=59) disorder (DSM III-R) were assessed by the Self-Esteem Scale (SES, Rosenberg, 1965) and were typed for DRD4 and 5-HTTLPR (n=58 subjects) variants at the third exon using polymerase chain reaction (PCR) techniques. Neither DRD4 nor 5-HTTLPR variants were associated with SES scores, and consideration of possible stratification effects such as sex and psychiatric diagnosis did not reveal any association either. The serotonin transporter and dopamine receptor D4 genes do not, therefore, influence self-esteem in remitted mood disorder subjects.
Faraone, Stephen V
2018-04-01
Psychostimulants, including amphetamines and methylphenidate, are first-line pharmacotherapies for individuals with attention-deficit/hyperactivity disorder (ADHD). This review aims to educate physicians regarding differences in pharmacology and mechanisms of action between amphetamine and methylphenidate, thus enhancing physician understanding of psychostimulants and their use in managing individuals with ADHD who may have comorbid psychiatric conditions. A systematic literature review of PubMed was conducted in April 2017, focusing on cellular- and brain system-level effects of amphetamine and methylphenidate. The primary pharmacologic effect of both amphetamine and methylphenidate is to increase central dopamine and norepinephrine activity, which impacts executive and attentional function. Amphetamine actions include dopamine and norepinephrine transporter inhibition, vesicular monoamine transporter 2 (VMAT-2) inhibition, and monoamine oxidase activity inhibition. Methylphenidate actions include dopamine and norepinephrine transporter inhibition, agonist activity at the serotonin type 1A receptor, and redistribution of the VMAT-2. There is also evidence for interactions with glutamate and opioid systems. Clinical implications of these actions in individuals with ADHD with comorbid depression, anxiety, substance use disorder, and sleep disturbances are discussed. Copyright © 2018 The Author. Published by Elsevier Ltd.. All rights reserved.
Suzuki, M; Desmond, T J; Albin, R L; Frey, K A
2001-09-15
Markers of identified neuronal populations have previously suggested selective degeneration of projection neurons in Huntington's disease (HD) striatum. Interpretations are, however, limited by effects of compensatory regulation and atrophy. Studies of the vesicular monoamine transporter type-2 (VMAT2) and of the vesicular acetylcholine transporter (VAChT) in experimental animals indicate that they are robust markers of presynaptic integrity and are not subject to regulation. We measured dopamine and acetylcholine vesicular transporters to characterize the selectivity of degeneration in HD striatum. Brains were obtained at autopsy from four HD patients and five controls. Autoradiography was used to quantify radioligand binding to VMAT2, VAChT, the dopamine plasmalemmal transporter (DAT), benzodiazepine (BZ) binding sites, and D2-type dopamine receptors. The activity of choline acetyltransferase (ChAT) was determined as an additional marker of cholinergic neurons. Autoradiograms were analyzed by video-assisted densitometry and assessment of atrophy was made from regional structural areas in the coronal projection. Striatal VMAT2, DAT, and VAChT concentrations were unchanged or increased, while D2 and BZ binding and ChAT activity were decreased in HD. After atrophy correction, all striatal binding sites were decreased. However, the decrease in ChAT activity was 3-fold greater than that of VAChT binding. In addition to degeneration of striatal projection neurons, there are losses of extrinsic nigrostriatal projections and of striatal cholinergic interneurons in HD on the basis of vesicular transporter measures. There is also markedly reduced expression of ChAT by surviving cholinergic striatal interneurons. Copyright 2001 Wiley-Liss, Inc.
Dopamine neuron dependent behaviors mediated by glutamate cotransmission
Mingote, Susana; Chuhma, Nao; Kalmbach, Abigail; Thomsen, Gretchen M; Wang, Yvonne; Mihali, Andra; Sferrazza, Caroline; Zucker-Scharff, Ilana; Siena, Anna-Claire; Welch, Martha G; Lizardi-Ortiz, José; Sulzer, David; Moore, Holly; Gaisler-Salomon, Inna; Rayport, Stephen
2017-01-01
Dopamine neurons in the ventral tegmental area use glutamate as a cotransmitter. To elucidate the behavioral role of the cotransmission, we targeted the glutamate-recycling enzyme glutaminase (gene Gls1). In mice with a dopamine transporter (Slc6a3)-driven conditional heterozygous (cHET) reduction of Gls1 in their dopamine neurons, dopamine neuron survival and transmission were unaffected, while glutamate cotransmission at phasic firing frequencies was reduced, enabling a selective focus on the cotransmission. The mice showed normal emotional and motor behaviors, and an unaffected response to acute amphetamine. Strikingly, amphetamine sensitization was reduced and latent inhibition potentiated. These behavioral effects, also seen in global GLS1 HETs with a schizophrenia resilience phenotype, were not seen in mice with an Emx1-driven forebrain reduction affecting most brain glutamatergic neurons. Thus, a reduction in dopamine neuron glutamate cotransmission appears to mediate significant components of the GLS1 HET schizophrenia resilience phenotype, and glutamate cotransmission appears to be important in attribution of motivational salience. DOI: http://dx.doi.org/10.7554/eLife.27566.001 PMID:28703706
Dopamine and extinction: A convergence of theory with fear and reward circuitry
Abraham, Antony D.; Neve, Kim A.; Lattal, K. Matthew
2014-01-01
Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine’s function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes. PMID:24269353
Dahal, Rejwi Acharya; Pramod, Akula Bala; Sharma, Babita; Krout, Danielle; Foster, James D.; Cha, Joo Hwan; Cao, Jianjing; Newman, Amy Hauck; Lever, John R.; Vaughan, Roxanne A.; Henry, L. Keith
2014-01-01
The dopamine transporter (DAT) functions as a key regulator of dopaminergic neurotransmission via re-uptake of synaptic dopamine (DA). Cocaine binding to DAT blocks this activity and elevates extracellular DA, leading to psychomotor stimulation and addiction, but the mechanisms by which cocaine interacts with DAT and inhibits transport remain incompletely understood. Here, we addressed these questions using computational and biochemical methodologies to localize the binding and adduction sites of the photoactivatable irreversible cocaine analog 3β-(p-chlorophenyl)tropane-2β-carboxylic acid, 4′-azido-3′-iodophenylethyl ester ([125I]RTI 82). Comparative modeling and small molecule docking indicated that the tropane pharmacophore of RTI 82 was positioned in the central DA active site with an orientation that juxtaposed the aryliodoazide group for cross-linking to rat DAT Phe-319. This prediction was verified by focused methionine substitution of residues flanking this site followed by cyanogen bromide mapping of the [125I]RTI 82-labeled mutants and by the substituted cysteine accessibility method protection analyses. These findings provide positive functional evidence linking tropane pharmacophore interaction with the core substrate-binding site and support a competitive mechanism for transport inhibition. This synergistic application of computational and biochemical methodologies overcomes many uncertainties inherent in other approaches and furnishes a schematic framework for elucidating the ligand-protein interactions of other classes of DA transport inhibitors. PMID:25179220
ERIC Educational Resources Information Center
van der Meulen, Emma M.; Bakker, Steven C.; Pauls, David L.; Oteman, Nicole; Kruitwagen, Cas L. J. J.; Pearson, Peter L.; Sinke, Richard J.; Buitelaar, Jan K.
2005-01-01
Background: A minority of patients with attention-deficit hyperactivity disorder (ADHD) do not respond favorably to methylphenidate. This has been partially associated with homozygosity for the Dopamine transporter (DAT1) 10-repeat allele and the presence of one or two Dopamine D4 receptor (DRD4) 7-repeat alleles. This study examined the sibling…
Quik, Maryka; Mallela, Archana; Chin, Matthew; McIntosh, J Michael; Perez, Xiomara A; Bordia, Tanuja
2013-02-01
L-dopa-induced dyskinesias (LIDs) are abnormal involuntary movements that develop with long term L-dopa therapy for Parkinson's disease. Studies show that nicotine administration reduced LIDs in several parkinsonian animal models. The present work was done to understand the factors that regulate the nicotine-mediated reduction in LIDs in MPTP-lesioned nonhuman primates. To approach this, we used two groups of monkeys, one with mild-moderate and the other with more severe parkinsonism rendered dyskinetic using L-dopa. In mild-moderately parkinsonian monkeys, nicotine pretreatment (300 μg/ml via drinking water) prevented the development of LIDs by ~75%. This improvement was maintained when the nicotine dose was lowered to 50 μg/ml but was lost with nicotine removal. Nicotine re-exposure again decreased LIDs. By contrast, nicotine treatment did not reduce LIDs in monkeys with more severe parkinsonism. We next determined how nicotine's ability to reduce LIDs correlated with lesion-induced changes in the striatal dopamine transporter and (3)H-dopamine release in these two groups of monkeys. The striatal dopamine transporter was reduced to 54% and 28% of control in mild-moderately and more severely parkinsonian monkeys, respectively. However, basal, K(+), α4β2* and α6β2* nAChR-evoked (3)H-dopamine release were near control levels in striatum of mild-moderately parkinsonian monkeys. By contrast, these same release measures were reduced to a significantly greater extent in striatum of more severely parkinsonian monkeys. Thus, nicotine best improves LIDs in lesioned monkeys in which striatal dopamine transmission is still relatively intact. These data suggest that nicotine treatment would most effectively reduce LIDs in patients with mild to moderate Parkinson's disease. Copyright © 2012 Elsevier Inc. All rights reserved.
Li, Yan; Zhu, Zhuo R; Ou, Bao C; Wang, Ya Q; Tan, Zhou B; Deng, Chang M; Gao, Yi Y; Tang, Ming; So, Ji H; Mu, Yang L; Zhang, Lan Q
2015-02-15
Major depressive disorder is one of the most prevalent and life-threatening forms of mental illnesses. The traditional antidepressants often take several weeks, even months, to obtain clinical effects. However, recent clinical studies have shown that ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects within 2h and are long-lasting. The aim of the present study was to investigate whether dopaminergic system was involved in the rapid antidepressant effects of ketamine. The acute administration of ketamine (20 mg/kg) significantly reduced the immobility time in the forced swim test. MK-801 (0.1 mg/kg), the more selective NMDA antagonist, also exerted rapid antidepressant-like effects. In contrast, fluoxetine (10 mg/kg) did not significantly reduced the immobility time in the forced swim test after 30 min administration. Notably, pretreatment with haloperidol (0.15 mg/kg, a nonselective dopamine D2/D3 antagonist), but not SCH23390 (0.04 and 0.1 mg/kg, a selective dopamine D1 receptor antagonist), significantly prevented the effects of ketamine or MK-801. Moreover, the administration of sub-effective dose of ketamine (10 mg/kg) in combination with pramipexole (0.3 mg/kg, a dopamine D2/D3 receptor agonist) exerted antidepressant-like effects compared with each drug alone. In conclusion, our results indicated that the dopamine D2/D3 receptors, but not D1 receptors, are involved in the rapid antidepressant-like effects of ketamine. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persico, A.M.; Uhl, G.R.; Wang, Zhe Wu
The principal brain synaptic vesicular monoamine transporter (VMAT2) is responsible for the reuptake of serotonin, dopamine, norepinephrine, epinephrine, and histamine from the cytoplasm into synaptic vesicles, thus contributing to determination of the size of releasable neurotransmitter vesicular pools. Potential involvement of VMAT2 gene variants in the etiology of schizophrenia and related disorders was tested using polymorphic VMAT2 gene markers in 156 subjects from 16 multiplex pedigrees with schizophrenia, schizophreniform, schizoaffective, and schizotypal disorders and mood incongruent psychotic depression. Assuming genetic homogeneity, complete ({theta} = 0.0) linkage to the schizophrenia spectrum was excluded under both dominant and recessive models. Allelic variantsmore » at the VMAT2 locus do not appear to provide major genetic contributions to the etiology of schizophrenia spectrum disorders in these pedigrees. 16 refs.« less
Weiss, Linda C.; Leese, Florian; Laforsch, Christian; Tollrian, Ralph
2015-01-01
The waterflea Daphnia is a model to investigate the genetic basis of phenotypic plasticity resulting from one differentially expressed genome. Daphnia develops adaptive phenotypes (e.g. morphological defences) thwarting predators, based on chemical predator cue perception. To understand the genomic basis of phenotypic plasticity, the description of the precedent cellular and neuronal mechanisms is fundamental. However, key regulators remain unknown. All neuronal and endocrine stimulants were able to modulate but not induce defences, indicating a pathway of interlinked steps. A candidate able to link neuronal with endocrine responses is the multi-functional amine dopamine. We here tested its involvement in trait formation in Daphnia pulex and Daphnia longicephala using an induction assay composed of predator cues combined with dopaminergic and cholinergic stimulants. The mere application of both stimulants was sufficient to induce morphological defences. We determined dopamine localization in cells found in close association with the defensive trait. These cells serve as centres controlling divergent morphologies. As a mitogen and sclerotization agent, we anticipate that dopamine is involved in proliferation and structural formation of morphological defences. Furthermore, dopamine pathways appear to be interconnected with endocrine pathways, and control juvenile hormone and ecdysone levels. In conclusion, dopamine is suggested as a key regulator of phenotypic plasticity. PMID:26423840
Egerton, Alice; Howes, Oliver D; Houle, Sylvain; McKenzie, Kwame; Valmaggia, Lucia R; Bagby, Michael R; Tseng, Huai-Hsuan; Bloomfield, Michael A P; Kenk, Miran; Bhattacharyya, Sagnik; Suridjan, Ivonne; Chaddock, Chistopher A; Winton-Brown, Toby T; Allen, Paul; Rusjan, Pablo; Remington, Gary; Meyer-Lindenberg, Andreas; McGuire, Philip K; Mizrahi, Romina
2017-03-01
Migration is a major risk factor for schizophrenia but the neurochemical processes involved are unknown. One candidate mechanism is through elevations in striatal dopamine synthesis and release. The objective of this research was to determine whether striatal dopamine function is elevated in immigrants compared to nonimmigrants and the relationship with psychosis. Two complementary case-control studies of in vivo dopamine function (stress-induced dopamine release and dopamine synthesis capacity) in immigrants compared to nonimmigrants were performed in Canada and the United Kingdom. The Canadian dopamine release study included 25 immigrant and 31 nonmigrant Canadians. These groups included 23 clinical high risk (CHR) subjects, 9 antipsychotic naïve patients with schizophrenia, and 24 healthy volunteers. The UK dopamine synthesis study included 32 immigrants and 44 nonimmigrant British. These groups included 50 CHR subjects and 26 healthy volunteers. Both striatal stress-induced dopamine release and dopamine synthesis capacity were significantly elevated in immigrants compared to nonimmigrants, independent of clinical status. These data provide the first evidence that the effect of migration on the risk of developing psychosis may be mediated by an elevation in brain dopamine function. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.
Lohr, Kelly M; Chen, Merry; Hoffman, Carlie A; McDaniel, Miranda J; Stout, Kristen A; Dunn, Amy R; Wang, Minzheng; Bernstein, Alison I; Miller, Gary W
2016-09-01
The vesicular monoamine transporter 2 (VMAT2) packages neurotransmitters for release during neurotransmission and sequesters toxicants into vesicles to prevent neuronal damage. In mice, low VMAT2 levels causes catecholaminergic cell loss and behaviors resembling Parkinson's disease, while high levels of VMAT2 increase dopamine release and protect against dopaminergic toxicants. However, comparisons across these VMAT2 mouse genotypes were impossible due to the differing genetic background strains of the animals. Following back-crossing to a C57BL/6 line, we confirmed that mice with approximately 95% lower VMAT2 levels compared with wild-type (VMAT2-LO) display significantly reduced vesicular uptake, progressive dopaminergic terminal loss with aging, and exacerbated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity. Conversely, VMAT2-overexpressing mice (VMAT2-HI) are protected from the loss of striatal terminals following MPTP treatment. We also provide evidence that enhanced vesicular filling in the VMAT2-HI mice modifies the handling of newly synthesized dopamine, indicated by changes in indirect measures of extracellular dopamine clearance. These results confirm the role of VMAT2 in the protection of vulnerable nigrostriatal dopamine neurons and may also provide new insight into the side effects of L-DOPA treatments in Parkinson's disease. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Xu, Tai-Xiang; Ma, Qi; Spealman, Roger D; Yao, Wei-Dong
2010-12-01
Amphetamine can improve cognition in healthy subjects and patients with schizophrenia, attention-deficit hyperactivity disorder, and other neuropsychiatric diseases; higher doses, however, can impair cognitive function, especially those mediated by the prefrontal cortex. We investigated how amphetamine affects prefrontal cortex long-term potentiation (LTP), a cellular correlate of learning and memory, in normal and hyperdopaminergic mice lacking the dopamine transporter. Acute amphetamine treatment in wild-type mice produced a biphasic dose-response modulation of LTP, with a low dose enhancing LTP and a high dose impairing it. Amphetamine-induced LTP enhancement was prevented by pharmacological blockade of D(1) - (but not D(2)-) class dopamine receptors, by blockade of β-adrenergic receptors, or by inhibition of cAMP-PKA signaling. In contrast, amphetamine-induced LTP impairment was prevented by inhibition of post-synaptic protein phosphatase-1, a downstream target of PKA signaling, or by blockade of either D(1) - or D(2)-class dopamine, but not noradrenergic, receptors. Thus, amphetamine biphasically modulates LTP via cAMP-PKA signaling orchestrated mainly through dopamine receptors. Unexpectedly, amphetamine restored the loss of LTP in dopamine transporter-knockout mice primarily by activation of the noradrenergic system. Our results mirror the biphasic effectiveness of amphetamine in humans and provide new mechanistic insights into its effects on cognition under normal and hyperdopaminergic conditions. © 2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.
Fernandez Espejo, Emilio
2003-03-01
Prefrontal dopamine loss delays extinction of cued fear conditioning responses, but its role in contextual fear conditioning has not been explored. Medial prefrontal lesions also enhance social interaction in rats, but the role of prefrontal dopamine loss on social interaction memory is not known. Besides, a role for subcortical accumbal dopamine on mnesic changes after prefrontal dopamine manipulation has been proposed but not explored. The objective was to study the involvement of dopaminergic neurotransmission in the medial prefrontal cortex (mPFC) and nucleus accumbens in two mnesic tasks: contextual fear conditioning and social interaction memory. For contextual fear conditioning, short- and long-term freezing responses after an electric shock were studied, as well as extinction retention. Regarding social interaction memory, the recognition of a juvenile, a very sensitive short-term memory test, was used. Dopamine loss was carried out by injection of 6-hydroxydopamine, and postmortem catecholamine levels were analyzed by high-performance liquid chromatography. Prefrontocortical dopamine loss (>76%) led to a reactive enhancement of accumbal dopamine content (p<0.01), supporting the hypothesis that a hyperdopaminergic tone emerges in the nucleus accumbens after prefrontocortical dopamine loss. In lesioned rats, long-term extinction of contextual fear conditioning was significantly delayed and extinction retention was impaired without changes in acquisition and short-term contextual fear conditioning and, on the other hand, acquisition and short-term social interaction memory were not affected, although time spent on social interaction was significantly reduced. Added dopamine loss in the nucleus accumbens (>76%) did not alter these behavioral changes. In summary, the results of the present study indicate that the dopaminergic network in the mPFC (but not in the nucleus accumbens) coordinates the normal long-term extinction of contextual fear conditioning responses without affecting their acquisition, and it is involved in time spent on social interaction, but not acquisition and short-term social interaction memory.
Blum, Kenneth; Chen, Amanda L. C.; Oscar-Berman, Marlene; Chen, Thomas J. H.; Lubar, Joel; White, Nancy; Lubar, Judith; Bowirrat, Abdalla; Braverman, Eric; Schoolfield, John; Waite, Roger L.; Downs, Bernard W.; Madigan, Margaret; Comings, David E.; Davis, Caroline; Kerner, Mallory M.; Knopf, Jennifer; Palomo, Tomas; Giordano, John J.; Morse, Siobhan A.; Fornari, Frank; Barh, Debmalya; Femino, John; Bailey, John A.
2011-01-01
Abnormal behaviors involving dopaminergic gene polymorphisms often reflect an insufficiency of usual feelings of satisfaction, or Reward Deficiency Syndrome (RDS). RDS results from a dysfunction in the “brain reward cascade,” a complex interaction among neurotransmitters (primarily dopaminergic and opioidergic). Individuals with a family history of alcoholism or other addictions may be born with a deficiency in the ability to produce or use these neurotransmitters. Exposure to prolonged periods of stress and alcohol or other substances also can lead to a corruption of the brain reward cascade function. We evaluated the potential association of four variants of dopaminergic candidate genes in RDS (dopamine D1 receptor gene [DRD1]; dopamine D2 receptor gene [DRD2]; dopamine transporter gene [DAT1]; dopamine beta-hydroxylase gene [DBH]). Methodology: We genotyped an experimental group of 55 subjects derived from up to five generations of two independent multiple-affected families compared to rigorously screened control subjects (e.g., N = 30 super controls for DRD2 gene polymorphisms). Data related to RDS behaviors were collected on these subjects plus 13 deceased family members. Results: Among the genotyped family members, the DRD2 Taq1 and the DAT1 10/10 alleles were significantly (at least p < 0.015) more often found in the RDS families vs. controls. The TaqA1 allele occurred in 100% of Family A individuals (N = 32) and 47.8% of Family B subjects (11 of 23). No significant differences were found between the experimental and control positive rates for the other variants. Conclusions: Although our sample size was limited, and linkage analysis is necessary, the results support the putative role of dopaminergic polymorphisms in RDS behaviors. This study shows the importance of a nonspecific RDS phenotype and informs an understanding of how evaluating single subset behaviors of RDS may lead to spurious results. Utilization of a nonspecific “reward” phenotype may be a paradigm shift in future association and linkage studies involving dopaminergic polymorphisms and other neurotransmitter gene candidates. PMID:22408582
Makkonen, I; Kokki, H; Kuikka, J; Turpeinen, U; Riikonen, R
2011-10-01
A positive effect of fluoxetine has been shown in some children with autism. The present study was undertaken to correlate striatal dopamine transporter (DAT) binding and cerebrospinal fluid insulin-like growth factor-1 (CSF-IGF-1) with clinical response in autistic children (n=13, age 5-16 years) after a 6-month fluoxetine treatment. Good clinical responders (n=6) had a decrease (p=0.031) in DAT binding as assessed using single-photon emission computed tomography with [123I]-nor-β-CIT, whereas poor responders had a trend to an increase. An increase in CSF-IGF-1 (p=0.003) was detected after the treatment period, but no correlation between the clinical response and CSF-IGF-1 was found. In conclusion, fluoxetine decreases DAT binding indicating alleviation of the hyperdopaminergic state and increases CSF-IGF-1 concentration, which may also have a neuroprotective effect against dopamine-induced neurotoxicity in autistic children. © Georg Thieme Verlag KG Stuttgart · New York.
Electrophysiological characterization of harmane-induced activation of mesolimbic dopamine neurons.
Arib, Ouafa; Rat, Pascal; Molimard, Robert; Chait, Abderrahman; Faure, Philippe; de Beaurepaire, Renaud
2010-03-10
It has been suggested that the beta-carbolines harmane and norharmane may be involved in the pathophysiology of Parkinson's disease, psychosis and addiction, but the mechanisms of these possible effects remain to be elucidated. In the present study, the effects of the two compounds were examined by using in vivo extracellular recordings of ventral tegmental dopamine neurons. The effects of harmane (2mg/kg) and norharmane (2mg/kg), were compared to those of nicotine (11microg/kg), of cotinine (0.5mg/kg), of the monoamine-oxidase-A inhibitor befloxatone (0.12mg/kg), and of the monoamine-oxidase-B inhibitor selegiline (0.5mg/kg). The effects of harmane were also tested after pre-treatment with the nicotine receptor antagonist mecamylamine. The results show that all substances, except befloxatone, activate the firing and/or burst activity of dopamine neurons. The increase in firing rate produced by harmane was approximately 18 times greater than that produced by nicotine. Such powerful excitation of dopamine neurons by harmane may in part explain its involvement in neurotoxicity, psychosis and addiction. The absence of effect of befloxatone supports the hypothesis that the effect of harmane is not related to its monoamine-oxidase-A inhibitory properties. Mecamylamine inhibited by approximately 80% the activity of harmane, indicating that the activating effect of harmane on dopamine neurons involves several mechanisms, among which activation of nicotinic receptors likely has a prominent importance. The results of the present study support the hypothesis that harmane could be a tobacco (or smoke) component other than nicotine involved in tobacco dependence. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Dopamine Gene Profiling to Predict Impulse Control and Effects of Dopamine Agonist Ropinirole.
MacDonald, Hayley J; Stinear, Cathy M; Ren, April; Coxon, James P; Kao, Justin; Macdonald, Lorraine; Snow, Barry; Cramer, Steven C; Byblow, Winston D
2016-07-01
Dopamine agonists can impair inhibitory control and cause impulse control disorders for those with Parkinson disease (PD), although mechanistically this is not well understood. In this study, we hypothesized that the extent of such drug effects on impulse control is related to specific dopamine gene polymorphisms. This double-blind, placebo-controlled study aimed to examine the effect of single doses of 0.5 and 1.0 mg of the dopamine agonist ropinirole on impulse control in healthy adults of typical age for PD onset. Impulse control was measured by stop signal RT on a response inhibition task and by an index of impulsive decision-making on the Balloon Analogue Risk Task. A dopamine genetic risk score quantified basal dopamine neurotransmission from the influence of five genes: catechol-O-methyltransferase, dopamine transporter, and those encoding receptors D1, D2, and D3. With placebo, impulse control was better for the high versus low genetic risk score groups. Ropinirole modulated impulse control in a manner dependent on genetic risk score. For the lower score group, both doses improved response inhibition (decreased stop signal RT) whereas the lower dose reduced impulsiveness in decision-making. Conversely, the higher score group showed a trend for worsened response inhibition on the lower dose whereas both doses increased impulsiveness in decision-making. The implications of the present findings are that genotyping can be used to predict impulse control and whether it will improve or worsen with the administration of dopamine agonists.
Hyperactivity and impaired response habituation in hyperdopaminergic mice
Zhuang, Xiaoxi; Oosting, Ronald S.; Jones, Sara R.; Gainetdinov, Raul R.; Miller, Gary W.; Caron, Marc G.; Hen, René
2001-01-01
Abnormal dopaminergic transmission is implicated in schizophrenia, attention deficit hyperactivity disorder, and drug addiction. In an attempt to model aspects of these disorders, we have generated hyperdopaminergic mutant mice by reducing expression of the dopamine transporter (DAT) to 10% of wild-type levels (DAT knockdown). Fast-scan cyclic voltammetry and in vivo microdialysis revealed that released dopamine was cleared at a slow rate in knockdown mice, which resulted in a higher extracellular dopamine concentration. Unlike the DAT knockout mice, the DAT knockdown mice do not display a growth retardation phenotype. They have normal home cage activity but display hyperactivity and impaired response habituation in novel environments. In addition, we show that both the indirect dopamine receptor agonist amphetamine and the direct agonists apomorphine and quinpirole inhibit locomotor activity in the DAT knockdown mice, leading to the hypothesis that a shift in the balance between dopamine auto and heteroreceptor function may contribute to the therapeutic effect of psychostimulants in attention deficit hyperactivity disorder. PMID:11172062
Womersley, Jacqueline S; Hsieh, Jennifer H; Kellaway, Lauriston A; Gerhardt, Greg A; Russell, Vivienne A
2011-12-01
Attention-deficit/hyperactivity disorder (ADHD) is a developmental disorder characterised by symptoms of inattention, impulsivity and hyperactivity. The spontaneously hypertensive rat (SHR) is a well-characterised model of this disorder and has been shown to exhibit dopamine dysregulation, one of the hypothesised causes of ADHD. Since stress experienced in the early stages of life can have long-lasting effects on behaviour, it was considered that early life stress may alter development of the dopaminergic system and thereby contribute to the behavioural characteristics of SHR. It was hypothesized that maternal separation would alter dopamine regulation by the transporter (DAT) in ways that distinguish SHR from control rat strains. SHR and control Wistar-Kyoto (WKY) rats were subjected to maternal separation for 3 hours per day from postnatal day 2 to 14. Rats were tested for separation-induced anxiety-like behaviour followed by in vivo chronoamperometry to determine whether changes had occurred in striatal clearance of dopamine by DAT. The rate of disappearance of ejected dopamine was used as a measure of DAT function. Consistent with a model for ADHD, SHR were more active than WKY in the open field. SHR entered the inner zone more frequently and covered a significantly greater distance than WKY. Maternal separation increased the time that WKY spent in the closed arms and latency to enter the open arms of the elevated plus maze, consistent with other rat strains. Of note is that, maternal separation failed to produce anxiety-like behaviour in SHR. Analysis of the chronoamperometric data revealed that there was no difference in DAT function in the striatum of non-separated SHR and WKY. Maternal separation decreased the rate of dopamine clearance (k-1) in SHR striatum. Consistent with this observation, the dopamine clearance time (T100) was increased in SHR. These results suggest that the chronic mild stress of maternal separation impaired the function of striatal DAT in SHR. The present findings suggest that maternal separation failed to alter the behaviour of SHR in the open field and elevated plus maze. However, maternal separation altered the dopaminergic system by decreasing surface expression of DAT and/or the affinity of DAT for dopamine, increasing the time to clear dopamine from the extracellular fluid in the striatum of SHR.
Rose, Jamie H.; Karkhanis, Anushree N.; Steiniger-Brach, Björn; Jones, Sara R.
2016-01-01
The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc) κ opioid receptors (KOR) in chronic intermittent ethanol (CIE) exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs. PMID:27472317
Fortin, Samantha M; Chartoff, Elena H; Roitman, Mitchell F
2016-02-01
Unconditioned rewarding stimuli evoke phasic increases in dopamine concentration in the nucleus accumbens (NAc) while discrete aversive stimuli elicit pauses in dopamine neuron firing and reductions in NAc dopamine concentration. The unconditioned effects of more prolonged aversive states on dopamine release dynamics are not well understood and are investigated here using the malaise-inducing agent lithium chloride (LiCl). We used fast-scan cyclic voltammetry to measure phasic increases in NAc dopamine resulting from electrical stimulation of dopamine cell bodies in the ventral tegmental area (VTA). Systemic LiCl injection reduced electrically evoked dopamine release in the NAc of both anesthetized and awake rats. As some behavioral effects of LiCl appear to be mediated through glucagon-like peptide-1 receptor (GLP-1R) activation, we hypothesized that the suppression of phasic dopamine by LiCl is GLP-1R dependent. Indeed, peripheral pretreatment with the GLP-1R antagonist exendin-9 (Ex-9) potently attenuated the LiCl-induced suppression of dopamine. Pretreatment with Ex-9 did not, however, affect the suppression of phasic dopamine release by the kappa-opioid receptor agonist, salvinorin A, supporting a selective effect of GLP-1R stimulation in LiCl-induced dopamine suppression. By delivering Ex-9 to either the lateral or fourth ventricle, we highlight a population of central GLP-1 receptors rostral to the hindbrain that are involved in the LiCl-mediated suppression of NAc dopamine release.
LIV-1 and Zn Transporters: Establishing a Link Between Hyperprolactinemia and Breast Cancer
2008-10-14
depression (e.g. dopamine antagonists) secondarily increase prolactin levels, potentially increasing breast cancer risk in an extraordinary number of...this relationship lies in the fact that drugs which induce hyperprolactinemia secondarily to the principal mode of action (e.g. dopamine antagonists...developmental disorders, mood disorders and autism . In many cases, these drugs are prescribed for patients as young as 3 years of age and are chronically
Costa, Vincent D; Kakalios, Laura C; Averbeck, Bruno B
2016-10-01
Dopamine and serotonin have opponent interactions on aspects of impulsivity. Therefore we wanted to test the hypothesis that dopamine and serotonin would have opposing effects on speed-accuracy trade offs in a perceptual decision making task. Unlike other behavioral measures of impulsivity, perceptual decision making allows us to determine whether decreasing premature responses, often interpreted as decreased impulsivity, corresponds to increased behavioral performance. We administered GBR-12909 (a dopamine transporter blocker), escitalopram (a serotonin transporter blocker), or saline in separate sessions to 3 rhesus macaques. We found that animals had slower reaction times (RTs) on escitalopram than on GBR-12909 or saline. However, they were also least accurate on escitalopram. Animals were faster, although nonsignificantly, on GBR than saline and had equivalent accuracy. Administration of GBR-12909 did cause animals to be faster in error trials than correct trials. Therefore, from the point of view of RTs the animals were less impulsive on escitalopram. However, the decreased accuracy of the monkeys shows that they were not able to make use of their slower response times to make more accurate decisions. Therefore, impulsivity was reduced on escitalopram, but at the expense of a slower information-processing rate in the perceptual inference task. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Cerebral glucose utilisation in hepatitis C virus infection-associated encephalopathy.
Heeren, Meike; Weissenborn, Karin; Arvanitis, Dimitrios; Bokemeyer, Martin; Goldbecker, Annemarie; Tountopoulou, Argyro; Peschel, Thomas; Grosskreutz, Julian; Hecker, Hartmut; Buchert, Ralph; Berding, Georg
2011-11-01
Patients with hepatitis C virus (HCV) infection frequently show neuropsychiatric symptoms. This study aims to help clarify the neurochemical mechanisms behind these symptoms and to add further proof to the hypothesis that HCV may affect brain function. Therefore, 15 patients who reported increasing chronic fatigue, mood alterations, and/or cognitive decline since their HCV infection underwent neurologic and neuropsychological examination, magnetic resonance imaging, (18)F-fluoro-deoxy-glucose positron emission tomography of the brain, and single photon emission tomography of striatal dopamine and midbrain serotonin transporter (SERT) availability. None of the patients had liver cirrhosis. Patients' data were compared with data of age-matched controls. In addition, regression analysis was performed between cognitive deficits, and mood and fatigue scores as dependent variables, and cerebral glucose metabolism, dopamine, or SERT availability as predictors. Patients showed significant cognitive deficits, significantly decreased striatal dopamine and midbrain SERT availability, and significantly reduced glucose metabolism in the limbic association cortex, and in the frontal, parietal, and superior temporal cortices, all of which correlated with dopamine transporter availability and psychometric results. Thus, the study provides further evidence of central nervous system affection in HCV-afflicted patients with neuropsychiatric symptoms. Data indicate alteration of dopaminergic neurotransmission as a possible mechanism of cognitive decline.
Fast Uptake and Long-Lasting Binding of Methamphetamine in the Human Brain
Fowler, Joanna S.; Volkow, Nora D.; Logan, Jean; Alexoff, David; Telang, Frank; Wang, Gene-Jack; Wong, Christopher; Ma, Yeming; Kriplani, Aarti; Pradhan, Kith; Schlyer, David; Jayne, Millard; Hubbard, Barbara; Carter, Pauline; Warner, Donald; King, Payton; Shea, Colleen; Xu, Youwen; Muench, Lisa; Apelskog, Karen
2008-01-01
Methamphetamine is one of the most addictive and neurotoxic drugs of abuse. It produces large elevations in extracellular dopamine in the striatum through vesicular release and inhibition of the dopamine transporter. In the U.S. abuse prevalence varies by ethnicity with very low abuse among African Americans relative to Caucasians, differentiating it from cocaine where abuse rates are similar for the two groups. Here we report the first comparison of methamphetamine and cocaine pharmacokinetics in brain between Caucasians and African Americans along with the measurement of dopamine transporter availability in striatum. Methamphetamine’s uptake in brain was fast (peak uptake at 9 minutes) with accumulation in cortical and subcortical brain regions and in white matter. Its clearance from brain was slow (except for white matter which did not clear over the 90 minutes) and there was no difference in pharmacokinetics between Caucasians and African Americans. In contrast cocaine’s brain uptake and clearance were both fast, distribution was predominantly in striatum and uptake was higher in African Americans. Among individuals, those with the highest striatal (but not cerebellar) methamphetamine accumulation also had the highest dopamine transporter availability suggesting a relationship between METH exposure and DAT availability. Methamphetamine’s fast brain uptake is consistent with its highly reinforcing effects, its slow clearance with its long lasting behavioral effects and its widespread distribution with its neurotoxic effects that affect not only striatal but also cortical and white matter regions. The absence of significant differences between Caucasians and African Americans suggests that variables other than methamphetamine pharmacokinetics and bioavailability account for the lower abuse prevalence in African Americans. PMID:18708148
Fast uptake and long-lasting binding of methamphetamine in the human brain: comparison with cocaine.
Fowler, Joanna S; Volkow, Nora D; Logan, Jean; Alexoff, David; Telang, Frank; Wang, Gene-Jack; Wong, Christopher; Ma, Yeming; Kriplani, Aarti; Pradhan, Kith; Schlyer, David; Jayne, Millard; Hubbard, Barbara; Carter, Pauline; Warner, Donald; King, Payton; Shea, Colleen; Xu, Youwen; Muench, Lisa; Apelskog, Karen
2008-12-01
Methamphetamine is one of the most addictive and neurotoxic drugs of abuse. It produces large elevations in extracellular dopamine in the striatum through vesicular release and inhibition of the dopamine transporter. In the U.S. abuse prevalence varies by ethnicity with very low abuse among African Americans relative to Caucasians, differentiating it from cocaine where abuse rates are similar for the two groups. Here we report the first comparison of methamphetamine and cocaine pharmacokinetics in brain between Caucasians and African Americans along with the measurement of dopamine transporter availability in striatum. Methamphetamine's uptake in brain was fast (peak uptake at 9 min) with accumulation in cortical and subcortical brain regions and in white matter. Its clearance from brain was slow (except for white matter which did not clear over the 90 min) and there was no difference in pharmacokinetics between Caucasians and African Americans. In contrast cocaine's brain uptake and clearance were both fast, distribution was predominantly in striatum and uptake was higher in African Americans. Among individuals, those with the highest striatal (but not cerebellar) methamphetamine accumulation also had the highest dopamine transporter availability suggesting a relationship between METH exposure and DAT availability. Methamphetamine's fast brain uptake is consistent with its highly reinforcing effects, its slow clearance with its long-lasting behavioral effects and its widespread distribution with its neurotoxic effects that affect not only striatal but also cortical and white matter regions. The absence of significant differences between Caucasians and African Americans suggests that variables other than methamphetamine pharmacokinetics and bioavailability account for the lower abuse prevalence in African Americans.
Dopamine Modulates Delta-Gamma Phase-Amplitude Coupling in the Prefrontal Cortex of Behaving Rats.
Andino-Pavlovsky, Victoria; Souza, Annie C; Scheffer-Teixeira, Robson; Tort, Adriano B L; Etchenique, Roberto; Ribeiro, Sidarta
2017-01-01
Dopamine release and phase-amplitude cross-frequency coupling (CFC) have independently been implicated in prefrontal cortex (PFC) functioning. To causally investigate whether dopamine release affects phase-amplitude comodulation between different frequencies in local field potentials (LFP) recorded from the medial PFC (mPFC) of behaving rats, we used RuBiDopa, a light-sensitive caged compound that releases the neurotransmitter dopamine when irradiated with visible light. LFP power did not change in any frequency band after the application of light-uncaged dopamine, but significantly strengthened phase-amplitude comodulation between delta and gamma oscillations. Saline did not exert significant changes, while injections of dopamine and RuBiDopa produced a slow increase in comodulation for several minutes after the injection. The results show that dopamine release in the medial PFC shifts phase-amplitude comodulation from theta-gamma to delta-gamma. Although being preliminary results due to the limitation of the low number of animals present in this study, our findings suggest that dopamine-mediated modification of the frequencies involved in comodulation could be a mechanism by which this neurotransmitter regulates functioning in mPFC.
Dopamine Modulates Delta-Gamma Phase-Amplitude Coupling in the Prefrontal Cortex of Behaving Rats
Andino-Pavlovsky, Victoria; Souza, Annie C.; Scheffer-Teixeira, Robson; Tort, Adriano B. L.; Etchenique, Roberto; Ribeiro, Sidarta
2017-01-01
Dopamine release and phase-amplitude cross-frequency coupling (CFC) have independently been implicated in prefrontal cortex (PFC) functioning. To causally investigate whether dopamine release affects phase-amplitude comodulation between different frequencies in local field potentials (LFP) recorded from the medial PFC (mPFC) of behaving rats, we used RuBiDopa, a light-sensitive caged compound that releases the neurotransmitter dopamine when irradiated with visible light. LFP power did not change in any frequency band after the application of light-uncaged dopamine, but significantly strengthened phase-amplitude comodulation between delta and gamma oscillations. Saline did not exert significant changes, while injections of dopamine and RuBiDopa produced a slow increase in comodulation for several minutes after the injection. The results show that dopamine release in the medial PFC shifts phase-amplitude comodulation from theta-gamma to delta-gamma. Although being preliminary results due to the limitation of the low number of animals present in this study, our findings suggest that dopamine-mediated modification of the frequencies involved in comodulation could be a mechanism by which this neurotransmitter regulates functioning in mPFC. PMID:28536507
Basal ganglia circuit loops, dopamine and motivation: A review and enquiry
Ikemoto, Satoshi; Yang, Chen; Tan, Aaron
2015-01-01
Dopamine neurons located in the midbrain play a role in motivation that regulates approach behavior (approach motivation). In addition, activation and inactivation of dopamine neurons regulate mood and induce reward and aversion, respectively. Accumulating evidence suggests that such motivational role of dopamine neurons is not limited to those located in the ventral tegmental area, but also in the substantia nigra. The present paper reviews previous rodent work concerning dopamine’s role in approach motivation and the connectivity of dopamine neurons, and proposes two working models: One concerns the relationship between extracellular dopamine concentration and approach motivation. High, moderate and low concentrations of extracellular dopamine induce euphoric, seeking and aversive states, respectively. The other concerns circuit loops involving the cerebral cortex, basal ganglia, thalamus, epithalamus, and midbrain through which dopaminergic activity alters approach motivation. These models should help to generate hypothesis-driven research and provide insights for understanding altered states associated with drugs of abuse and affective disorders. PMID:25907747
Bertolino, Alessandro; Di Giorgio, Annabella; Blasi, Giuseppe; Sambataro, Fabio; Caforio, Grazia; Sinibaldi, Lorenzo; Latorre, Valeria; Rampino, Antonio; Taurisano, Paolo; Fazio, Leonardo; Romano, Raffaella; Douzgou, Sofia; Popolizio, Teresa; Kolachana, Bhaskar; Nardini, Marcello; Weinberger, Daniel R; Dallapiccola, Bruno
2008-08-01
Dopamine modulation of neuronal activity in prefrontal cortex maps to an inverted U-curve. Dopamine is also an important factor in regulation of hippocampal mediated memory processing. Here, we investigated the effect of genetic variation of dopamine inactivation via catechol-O-methyltransferase (COMT) and the dopamine transporter (DAT) on hippocampal activity in healthy humans during different memory conditions. Using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in 82 subjects matched for a series of demographic and genetic variables, we studied the effect of the COMT valine (Val)(158)methionine (Met) and the DAT 3' variable number tandem repeat (VNTR) polymorphisms on function of the hippocampus during encoding of recognition memory and during working memory. Our results consistently demonstrated a double dissociation so that DAT 9-repeat carrier alleles modulated activity in the hippocampus in the exact opposite direction of DAT 10/10-repeat alleles based on COMT Val(158)Met genotype during different memory conditions. Similar results were evident in ventrolateral and dorsolateral prefrontal cortex. These findings suggest that genetically determined dopamine signaling during memory processing maps to a nonlinear relationship also in the hippocampus. Our data also demonstrate in human brain epistasis of two genes implicated in dopamine signaling on brain activity during different memory conditions.
Chau, PeiPei; Söderpalm, Bo; Ericson, Mia
2011-10-01
Studies have indicated that the metabotropic glutamate receptor 5 (mGluR5) antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP) decreases ethanol self-administration, and the same receptor type was also suggested to be involved in the mechanism of action of the anti-craving substance acamprosate. Our previous research suggested that glycine receptors (GlyRs) in the nucleus accumbens (nAc) play a major part in mediating the dopamine-elevating properties of ethanol and are highly involved in the ethanol intake-reducing effect of acamprosate. The aim of this study was to examine if modulation of nAc dopamine via mGluR5 antagonism or GlyR agonism is a linked or separated phenomena. The extracellular levels of dopamine as well as of the GlyR ligands, glycine, taurine and β-alanine were measured in the nAc by means of microdialysis after local perfusion of MPEP (100 or 500 µM) with or without pre-treatment with strychnine. MPEP increased dopamine levels, an effect that was blocked by pre-treatment with strychnine. In addition, the higher MPEP concentration increased glycine output, whereas no alterations of taurine or β-alanine were observed. These results indicate a relationship between the glutamatergic and glycinergic transmitter systems in regulating dopamine output, possibly via alteration of extracellular glycine levels. Taken together with our previous data demonstrating the importance of accumbal GlyRs both in ethanol-induced elevation of nAc dopamine and in ethanol consumption, it is plausible that the effects of MPEP treatment, on dopamine output and on ethanol intake, may be mediated via interaction with the same neuronal circuitry that previously has been demonstrated for ethanol, taurine and acamprosate. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.
Biggio, Francesca; Utzeri, Cinzia; Lallai, Valeria; Licheri, Valentina; Lutzu, Stefano; Mostallino, Maria Cristina; Secci, Pietro Paolo; Biggio, Giovanni; Sanna, Enrico
2014-01-01
Increase in dopamine output on corticolimbic structures, such as medial prefrontal cortex (mPFC) and nucleus accumbens, has been related to reward effects associated with palatable food or food presentation after a fasting period. The endocannabinoid system regulates feeding behavior through a modulatory action on different neurotransmitter systems, including the dopaminergic system. To elucidate the involvement of type 1 cannabinoid receptors in the regulation of dopamine output in the mPFC associated with feeding in hungry rats, we restricted the food availability to a 2-h period daily for 3 weeks. In food-restricted rats the extracellular dopamine concentration in the mPFC increased starting 80 min before food presentation and returned to baseline after food removal. These changes were attenuated in animals treated with the CB1 receptor antagonist SR141716. To better understand how food restriction can change the response of mesocortical dopaminergic neurons, we studied several components of the neuronal circuit that regulates dopamine output in the mPFC. Patch-clamp experiments revealed that the inhibitory effect of the CB1 receptor agonist WIN 55,212-2 on GABAergic sIPSC frequency was diminished in mPFC neurons of FR compared to fed ad libitum rats. The basal sIPSC frequency resulted reduced in mPFC neurons of food-restricted rats, suggestive of an altered regulation of presynaptic GABA release; these changes were accompanied by an enhanced excitability of mPFC and ventral tegmental area neurons. Finally, type 1 cannabinoid receptor expression in the mPFC was reduced in food-restricted rats. Together, our data support an involvement of the endocannabinoid system in regulation of dopamine release in the mPFC through changes in GABA inhibitory synapses and suggest that the emphasized feeding-associated increase in dopamine output in the mPFC of food-restricted rats might be correlated with an altered expression and function of type 1 cannabinoid receptor in this brain region. PMID:24632810
Dazzi, Laura; Talani, Giuseppe; Biggio, Francesca; Utzeri, Cinzia; Lallai, Valeria; Licheri, Valentina; Lutzu, Stefano; Mostallino, Maria Cristina; Secci, Pietro Paolo; Biggio, Giovanni; Sanna, Enrico
2014-01-01
Increase in dopamine output on corticolimbic structures, such as medial prefrontal cortex (mPFC) and nucleus accumbens, has been related to reward effects associated with palatable food or food presentation after a fasting period. The endocannabinoid system regulates feeding behavior through a modulatory action on different neurotransmitter systems, including the dopaminergic system. To elucidate the involvement of type 1 cannabinoid receptors in the regulation of dopamine output in the mPFC associated with feeding in hungry rats, we restricted the food availability to a 2-h period daily for 3 weeks. In food-restricted rats the extracellular dopamine concentration in the mPFC increased starting 80 min before food presentation and returned to baseline after food removal. These changes were attenuated in animals treated with the CB1 receptor antagonist SR141716. To better understand how food restriction can change the response of mesocortical dopaminergic neurons, we studied several components of the neuronal circuit that regulates dopamine output in the mPFC. Patch-clamp experiments revealed that the inhibitory effect of the CB1 receptor agonist WIN 55,212-2 on GABAergic sIPSC frequency was diminished in mPFC neurons of FR compared to fed ad libitum rats. The basal sIPSC frequency resulted reduced in mPFC neurons of food-restricted rats, suggestive of an altered regulation of presynaptic GABA release; these changes were accompanied by an enhanced excitability of mPFC and ventral tegmental area neurons. Finally, type 1 cannabinoid receptor expression in the mPFC was reduced in food-restricted rats. Together, our data support an involvement of the endocannabinoid system in regulation of dopamine release in the mPFC through changes in GABA inhibitory synapses and suggest that the emphasized feeding-associated increase in dopamine output in the mPFC of food-restricted rats might be correlated with an altered expression and function of type 1 cannabinoid receptor in this brain region.
Renal dopaminergic system: Pathophysiological implications and clinical perspectives
Choi, Marcelo Roberto; Kouyoumdzian, Nicolás Martín; Rukavina Mikusic, Natalia Lucía; Kravetz, María Cecilia; Rosón, María Inés; Rodríguez Fermepin, Martín; Fernández, Belisario Enrique
2015-01-01
Fluid homeostasis, blood pressure and redox balance in the kidney are regulated by an intricate interaction between local and systemic anti-natriuretic and natriuretic systems. Intrarenal dopamine plays a central role on this interactive network. By activating specific receptors, dopamine promotes sodium excretion and stimulates anti-oxidant and anti-inflammatory pathways. Different pathological scenarios where renal sodium excretion is dysregulated, as in nephrotic syndrome, hypertension and renal inflammation, can be associated with impaired action of renal dopamine including alteration in biosynthesis, dopamine receptor expression and signal transduction. Given its properties on the regulation of renal blood flow and sodium excretion, exogenous dopamine has been postulated as a potential therapeutic strategy to prevent renal failure in critically ill patients. The aim of this review is to update and discuss on the most recent findings about renal dopaminergic system and its role in several diseases involving the kidneys and the potential use of dopamine as a nephroprotective agent. PMID:25949933
Dopamine, Effort-Based Choice, and Behavioral Economics: Basic and Translational Research
Salamone, John D.; Correa, Merce; Yang, Jen-Hau; Rotolo, Renee; Presby, Rose
2018-01-01
Operant behavior is not only regulated by factors related to the quality or quantity of reinforcement, but also by the work requirements inherent in performing instrumental actions. Moreover, organisms often make effort-related decisions involving economic choices such as cost/benefit analyses. Effort-based decision making is studied using behavioral procedures that offer choices between high-effort options leading to relatively preferred reinforcers vs. low effort/low reward choices. Several neural systems, including the mesolimbic dopamine (DA) system and other brain circuits, are involved in regulating effort-related aspects of motivation. Considerable evidence indicates that mesolimbic DA transmission exerts a bi-directional control over exertion of effort on instrumental behavior tasks. Interference with DA transmission produces a low-effort bias in animals tested on effort-based choice tasks, while increasing DA transmission with drugs such as DA transport blockers tends to enhance selection of high-effort options. The results from these pharmacology studies are corroborated by the findings from recent articles using optogenetic, chemogenetic and physiological techniques. In addition to providing important information about the neural regulation of motivated behavior, effort-based choice tasks are useful for developing animal models of some of the motivational symptoms that are seen in people with various psychiatric and neurological disorders (e.g., depression, schizophrenia, Parkinson’s disease). Studies of effort-based decision making may ultimately contribute to the development of novel drug treatments for motivational dysfunction. PMID:29628879
Dopamine, Effort-Based Choice, and Behavioral Economics: Basic and Translational Research.
Salamone, John D; Correa, Merce; Yang, Jen-Hau; Rotolo, Renee; Presby, Rose
2018-01-01
Operant behavior is not only regulated by factors related to the quality or quantity of reinforcement, but also by the work requirements inherent in performing instrumental actions. Moreover, organisms often make effort-related decisions involving economic choices such as cost/benefit analyses. Effort-based decision making is studied using behavioral procedures that offer choices between high-effort options leading to relatively preferred reinforcers vs. low effort/low reward choices. Several neural systems, including the mesolimbic dopamine (DA) system and other brain circuits, are involved in regulating effort-related aspects of motivation. Considerable evidence indicates that mesolimbic DA transmission exerts a bi-directional control over exertion of effort on instrumental behavior tasks. Interference with DA transmission produces a low-effort bias in animals tested on effort-based choice tasks, while increasing DA transmission with drugs such as DA transport blockers tends to enhance selection of high-effort options. The results from these pharmacology studies are corroborated by the findings from recent articles using optogenetic, chemogenetic and physiological techniques. In addition to providing important information about the neural regulation of motivated behavior, effort-based choice tasks are useful for developing animal models of some of the motivational symptoms that are seen in people with various psychiatric and neurological disorders (e.g., depression, schizophrenia, Parkinson's disease). Studies of effort-based decision making may ultimately contribute to the development of novel drug treatments for motivational dysfunction.
Reinforcing Doses of Intravenous Cocaine Produce Only Modest Dopamine Uptake Inhibition.
Brodnik, Zachary D; Ferris, Mark J; Jones, Sara R; España, Rodrigo A
2017-02-15
The reinforcing efficacy of cocaine is thought to stem from inhibition of the dopamine transporter (DAT) and subsequent increases in extracellular dopamine concentrations in the brain. In humans, this hypothesis has generally been supported by positron emission tomography imaging studies where the percent of DATs occupied by cocaine is used as a measure of cocaine activity in the brain. Interpretation of these studies, however, often relies on the assumption that measures of DAT occupancy directly correspond with functional DAT blockade. In the current studies, we used in vivo and in vitro fast scan cyclic voltammetry in mice to measure dopamine uptake inhibition following varying doses of cocaine as well as two high affinity DAT inhibitors. We then compared dopamine clearance rates following these drug treatments to dopamine clearance obtained from DAT knockout mice as a proxy for complete DAT blockade. We found that administration of abused doses of cocaine resulted in approximately 2% of maximal DAT blockade. Overall, our data indicate that abused doses of cocaine produce a relatively modest degree of DA uptake inhibition, and suggest that the relationship between DAT occupancy and functional blockade of the DAT is more complex than originally posited.
Linking unfounded beliefs to genetic dopamine availability
Schmack, Katharina; Rössler, Hannes; Sekutowicz, Maria; Brandl, Eva J.; Müller, Daniel J.; Petrovic, Predrag; Sterzer, Philipp
2015-01-01
Unfounded convictions involving beliefs in the paranormal, grandiosity ideas or suspicious thoughts are endorsed at varying degrees among the general population. Here, we investigated the neurobiopsychological basis of the observed inter-individual variability in the propensity toward unfounded beliefs. One hundred two healthy individuals were genotyped for four polymorphisms in the COMT gene (rs6269, rs4633, rs4818, and rs4680, also known as val158met) that define common functional haplotypes with substantial impact on synaptic dopamine degradation, completed a questionnaire measuring unfounded beliefs, and took part in a behavioral experiment assessing perceptual inference. We found that greater dopamine availability was associated with a stronger propensity toward unfounded beliefs, and that this effect was statistically mediated by an enhanced influence of expectations on perceptual inference. Our results indicate that genetic differences in dopaminergic neurotransmission account for inter-individual differences in perceptual inference linked to the formation and maintenance of unfounded beliefs. Thus, dopamine might be critically involved in the processes underlying one's interpretation of the relationship between the self and the world. PMID:26483654
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodman, A.B.
1995-08-14
Vitamin A (retinoid), an essential nutrient for fetal and subsequent mammalian development, is involved in gene expression, cell differentiation, proliferation, migration, and death. Retinoic acid (RA) the morphogenic derivative of vitamin A is highly teratogenic. In humans retinoid excess or deficit can result in brain anomalies and psychosis. This review discusses chromosomal loci of genes that control the retinoid cascade in relation to some candidate genes in schizophrenia. The paper relates the knowledge about the transport, delivery, and action of retinoids to what is presently known about the pathology of schizophrenia, with particular reference to the dopamine hypothesis, neurotransmitters, themore » glutamate hypothesis, neurotransmitters, the glutamate hypothesis, retinitis pigmentosa, dermatologic disorders, and craniofacial anomalies. 201 refs., 1 tab.« less
Villani, Vanessa; Ludmer, Jaclyn; Gonzalez, Andrea; Levitan, Robert; Kennedy, James; Masellis, Mario; Basile, Vincenzo S; Wekerle, Christine; Atkinson, Leslie
2018-05-01
Although infants less than 18 months old are capable of engaging in self-regulatory behavior (e.g., avoidance, withdrawal, and orienting to other aspects of their environment), the use of self-regulatory strategies at this age (as opposed to relying on caregivers) is associated with elevated behavioral and physiological distress. This study investigated infant dopamine-related genotypes (dopamine receptor D2 [DRD2], dopamine transporter solute carrier family C6, member 4 [SLC6A3], and catechol-O-methyltransferase [COMT]) as they interact with maternal self-reported history of maltreatment to predict observed infant independent emotion regulation behavior. A community sample (N = 193) of mother-infant dyads participated in a toy frustration challenge at infant age 15 months, and infant emotion regulation behavior was coded. Buccal cells were collected for genotyping. Maternal maltreatment history significantly interacted with infant SLC6A3 and COMT genotypes, such that infants with more 10-repeat and valine alleles of SLC6A3 and COMT, respectively, relative to infants with fewer or no 10-repeat and valine alleles, utilized more independent (i.e., maladaptive) regulatory behavior if mother reported a more extensive maltreatment history, as opposed to less. The findings indicate that child genetic factors moderate the intergenerational impact of maternal maltreatment history. The results are discussed in terms of potential mechanism of Gene × Environment interaction.
Soto, Paul L; Wilcox, Kristin M; Zhou, Yun; Ator, Nancy A; Riddle, Mark A; Wong, Dean F; Weed, Michael R
2012-01-01
The stimulants methylphenidate and amphetamine are used to treat children with attention deficit/hyperactivity disorder over important developmental periods, prompting concerns regarding possible long-term health impact. This study assessed the effects of such a regimen in male, peri-adolescent rhesus monkeys on a variety of cognitive/behavioral, physiological, and in vivo neurochemical imaging parameters. Twice daily (0900 and 1200 hours), for a total of 18 months, juvenile male monkeys (8 per group) consumed either an unadulterated orange-flavored solution, a methylphenidate solution, or a dl-amphetamine mixture. Doses were titrated to reach blood/plasma levels comparable to therapeutic levels in children. [11C]MPH and [11C]raclopride dynamic PET scans were performed to image dopamine transporter and D2-like receptors, respectively. Binding potential (BPND), an index of tracer-specific binding, and amphetamine-induced changes in BPND of [11C]raclopride were estimated by kinetic modeling. There were no consistent differences among groups on the vast majority of measures, including cognitive (psychomotor speed, timing, inhibitory control, cognitive flexibility), general activity, physiological (body weight, head circumference, crown-to-rump length), and neurochemical (ie, developmental changes in dopamine transporter, dopamine D2 receptor density, and amphetamine-stimulated dopamine release were as expected). Cytogenetic studies indicated that neither drug was a clastogen in rhesus monkeys. Thus, methylphenidate and amphetamine at therapeutic blood/plasma levels during peri-adolescence in non-human primates have little effect on physiological or behavioral/cognitive development. PMID:22805599
Soto, Paul L; Wilcox, Kristin M; Zhou, Yun; Kumar, Anil; Ator, Nancy A; Riddle, Mark A; Wong, Dean F; Weed, Michael R
2012-11-01
The stimulants methylphenidate and amphetamine are used to treat children with attention deficit/hyperactivity disorder over important developmental periods, prompting concerns regarding possible long-term health impact. This study assessed the effects of such a regimen in male, peri-adolescent rhesus monkeys on a variety of cognitive/behavioral, physiological, and in vivo neurochemical imaging parameters. Twice daily (0900 and 1200 hours), for a total of 18 months, juvenile male monkeys (8 per group) consumed either an unadulterated orange-flavored solution, a methylphenidate solution, or a dl-amphetamine mixture. Doses were titrated to reach blood/plasma levels comparable to therapeutic levels in children. [¹¹C]MPH and [¹¹C]raclopride dynamic PET scans were performed to image dopamine transporter and D₂-like receptors, respectively. Binding potential (BP(ND)), an index of tracer-specific binding, and amphetamine-induced changes in BP(ND) of [¹¹C]raclopride were estimated by kinetic modeling. There were no consistent differences among groups on the vast majority of measures, including cognitive (psychomotor speed, timing, inhibitory control, cognitive flexibility), general activity, physiological (body weight, head circumference, crown-to-rump length), and neurochemical (ie, developmental changes in dopamine transporter, dopamine D₂ receptor density, and amphetamine-stimulated dopamine release were as expected). Cytogenetic studies indicated that neither drug was a clastogen in rhesus monkeys. Thus, methylphenidate and amphetamine at therapeutic blood/plasma levels during peri-adolescence in non-human primates have little effect on physiological or behavioral/cognitive development.
Berendse, H W; Booij, J; Francot, C M; Bergmans, P L; Hijman, R; Stoof, J C; Wolters, E C
2001-07-01
By the time a clinical diagnosis of Parkinson's disease (PD) is made, a significant loss of dopaminergic neurons has already occurred. Identifying patients in the period between the presumed onset of dopaminergic cell loss and the appearance of clinical parkinsonism may be of major importance in the development of effective neuroprotective treatment strategies. In an effort to develop a feasible strategy to detect preclinical PD, a combination of olfactory processing tasks, including odor detection, odor identification, and odor discrimination was used to select groups of hyposmic and normosmic individuals from a total of 250 relatives (parents, siblings, or children) of subjects with PD. Single photon emission computed tomography (SPECT) with [123I]beta-CIT as a dopamine transporter ligand was used to assess nigrostriatal dopaminergic function in 25 hyposmic and 23 normosmic relatives of PD patients. An abnormal reduction in striatal dopamine transporter binding was found in 4 out of 25 hyposmic relatives of PD patients, two of whom subsequently developed clinical parkinsonism, and in none of the 23 normosmic relatives. These observations demonstrate that subclinical reductions in dopamine transporter binding can be detected in asymptomatic relatives of sporadic PD patients by means of [123I]beta-CIT and SPECT. The results further indicate that olfactory deficits may precede clinical motor signs in PD.
Carpenter, Colleen; Zestos, Alexander G; Altshuler, Rachel; Sorenson, Roderick J; Guptaroy, Bipasha; Showalter, Hollis D; Kennedy, Robert T; Jutkiewicz, Emily; Gnegy, Margaret E
2017-09-01
Amphetamines (AMPHs) are globally abused. With no effective treatment for AMPH addiction to date, there is urgent need for the identification of druggable targets that mediate the reinforcing action of this stimulant class. AMPH-stimulated dopamine efflux is modulated by protein kinase C (PKC) activation. Inhibition of PKC reduces AMPH-stimulated dopamine efflux and locomotor activity. The only known CNS-permeant PKC inhibitor is the selective estrogen receptor modulator tamoxifen. In this study, we demonstrate that a tamoxifen analog, 6c, which more potently inhibits PKC than tamoxifen but lacks affinity for the estrogen receptor, reduces AMPH-stimulated increases in extracellular dopamine and reinforcement-related behavior. In rat striatal synaptosomes, 6c was almost fivefold more potent at inhibiting AMPH-stimulated dopamine efflux than [ 3 H]dopamine uptake through the dopamine transporter (DAT). The compound did not compete with [ 3 H]WIN 35,428 binding or affect surface DAT levels. Using microdialysis, direct accumbal administration of 1 μM 6c reduced dopamine overflow in freely moving rats. Using LC-MS, we demonstrate that 6c is CNS-permeant. Systemic treatment of rats with 6 mg/kg 6c either simultaneously or 18 h prior to systemic AMPH administration reduced both AMPH-stimulated dopamine overflow and AMPH-induced locomotor effects. Finally, 18 h pretreatment of rats with 6 mg/kg 6c s.c. reduces AMPH-self administration but not food self-administration. These results demonstrate the utility of tamoxifen analogs in reducing AMPH effects on dopamine and reinforcement-related behaviors and suggest a new avenue of development for therapeutics to reduce AMPH abuse.
A new arylalkylamine N-acetyltransferase in silkworm (Bombyx mori) affects integument pigmentation.
Long, Yaohang; Li, Jiaorong; Zhao, Tianfu; Li, Guannan; Zhu, Yong
2015-04-01
Dopamine is a precursor for melanin synthesis. Arylalkylamine N-acetyltransferase (AANAT) is involved in the melatonin formation in insects because it could catalyze the transformation from dopamine to dopamine-N-acetyldopamine. In this study, we identified a new AANAT gene in the silkworm (Bombyx mori) and assessed its role in the silkworm. The cDNA of this gene encodes 233 amino acids that shares 57 % amino acid identity with the Bm-iAANAT protein. We thus refer to this gene as Bm-iAANAT2. To investigate the role of Bm-iAANAT2, we constructed a transgenic interference system using a 3xp3 promoter to suppress the expression of Bm-iAANAT2 in the silkworm. We observed that melanin deposition occurs in the head and integument in transgenic lines. To verify the melanism pattern, dopamine content and the enzyme activity of AANAT were determined by high-performance liquid chromatography (HPLC). We found that an increase in dopamine levels affects melanism patterns on the heads of transgenic B. mori. A reduction in the enzyme activity of AANAT leads to changes in dopamine levels. We analyzed the expression of the Bm-iAANAT2 genes by qPCR and found that the expression of Bm-iAANAT2 gene is significantly lower in transgenic lines. Our results lead us to conclude that Bm-iAANAT2 is a new arylalkylamine N-acetyltransferase gene in the silkworm and is involved in the metabolism of the dopamine to avoid the generation of melanin.
Cheng, Mary Hongying; Block, Ethan; Hu, Feizhuo; Cobanoglu, Murat Can; Sorkin, Alexander; Bahar, Ivet
2015-01-01
Human dopamine (DA) transporter (hDAT) regulates dopaminergic signaling in the central nervous system by maintaining the synaptic concentration of DA at physiological levels, upon reuptake of DA into presynaptic terminals. DA translocation involves the co-transport of two sodium ions and the channeling of a chloride ion, and it is achieved via alternating access between outward-facing (OF) and inward-facing states of DAT. hDAT is a target for addictive drugs, such as cocaine, amphetamine (AMPH), and therapeutic antidepressants. Our recent quantitative systems pharmacology study suggested that orphenadrine (ORPH), an anticholinergic agent and anti-Parkinson drug, might be repurposable as a DAT drug. Previous studies have shown that DAT-substrates like AMPH or -blockers like cocaine modulate the function of DAT in different ways. However, the molecular mechanisms of modulation remained elusive due to the lack of structural data on DAT. The newly resolved DAT structure from Drosophila melanogaster opens the way to a deeper understanding of the mechanism and time evolution of DAT–drug/ligand interactions. Using a combination of homology modeling, docking analysis, molecular dynamics simulations, and molecular biology experiments, we performed a comparative study of the binding properties of DA, AMPH, ORPH, and cocaine and their modulation of hDAT function. Simulations demonstrate that binding DA or AMPH drives a structural transition toward a functional form predisposed to translocate the ligand. In contrast, ORPH appears to inhibit DAT function by arresting it in the OF open conformation. The analysis shows that cocaine and ORPH competitively bind DAT, with the binding pose and affinity dependent on the conformational state of DAT. Further assays show that the effect of ORPH on DAT uptake and endocytosis is comparable to that of cocaine. PMID:26106364
Koopman, K E; Roefs, A; Elbers, D C E; Fliers, E; Booij, J; Serlie, M J; la Fleur, S E
2016-06-01
In rodents, the striatal dopamine (DA) system and the (hypo)thalamic serotonin (5-HT) system are involved in the regulation of feeding behavior. In lean humans, little is known about the relationship between these brain neurotransmitter systems and feeding. We studied the relationship between striatal DA transporters (DAT) and diencephalic 5-HT transporters (SERT), behavioral tasks and questionnaires, and food intake. We measured striatal DAT and diencephalic SERT binding with [123I]FP-CIT SPECT in 36 lean male subjects. Visual attention bias for food (detection speed and distraction time) and degree of impulsivity were measured using response-latency-based computer tasks. Craving and emotional eating were assessed with questionnaires and ratings of hunger by means of VAS scores. Food intake was assessed through a self-reported online diet journal. Striatal DAT and diencephalic SERT binding negatively correlated with food detection speed (p = 0.008, r = -0.50 and p = 0.002, r = -0.57, respectively), but not with food distraction time, ratings of hunger, craving or impulsivity. Striatal DAT and diencephalic SERT binding did not correlate with free choice food intake, whereas food detection speed positively correlated with total caloric intake (p = 0.001, r = 0.60), protein intake (p = 0.01, r = 0.44), carbohydrate intake (p = 0.03, r = 0.39) and fat intake (p = 0.06, r = 0.35). These results indicate a role for the central 5-HT and DA system in the regulation of visual attention bias for food, which contributes to the motivation to eat, in non-obese, healthy humans. In addition, this study confirms that food detection speed, measured with the latency-based computer task, positively correlates with total food and macronutrient intake.
Ferris, Mark J; Calipari, Erin S; Rose, Jamie H; Siciliano, Cody A; Sun, Haiguo; Chen, Rong; Jones, Sara R
2015-07-01
There are ∼ 1.6 million people who meet the criteria for cocaine addiction in the United States, and there are currently no FDA-approved pharmacotherapies. Amphetamine-based dopamine-releasing drugs have shown efficacy in reducing the motivation to self-administer cocaine and reducing intake in animals and humans. It is hypothesized that amphetamine acts as a replacement therapy for cocaine through elevation of extracellular dopamine levels. Using voltammetry in brain slices, we tested the ability of a single amphetamine infusion in vivo to modulate dopamine release, uptake kinetics, and cocaine potency in cocaine-naive animals and after a history of cocaine self-administration (1.5 mg/kg/infusion, fixed-ratio 1, 40 injections/day × 5 days). Dopamine kinetics were measured 1 and 24 h after amphetamine infusion (0.56 mg/kg, i.v.). Following cocaine self-administration, dopamine release, maximal rate of uptake (Vmax), and membrane-associated dopamine transporter (DAT) levels were reduced, and the DAT was less sensitive to cocaine. A single amphetamine infusion reduced Vmax and membrane DAT levels in cocaine-naive animals, but fully restored all aspects of dopamine terminal function in cocaine self-administering animals. Here, for the first time, we demonstrate pharmacologically induced, immediate rescue of deficits in dopamine nerve-terminal function in animals with a history of high-dose cocaine self-administration. This observation supports the notion that the DAT expression and function can be modulated on a rapid timescale and also suggests that the pharmacotherapeutic actions of amphetamine for cocaine addiction go beyond that of replacement therapy.
Rapid Recovery of Vesicular Dopamine Levels in Methamphetamine Users in Early Abstinence
Boileau, Isabelle; McCluskey, Tina; Tong, Junchao; Furukawa, Yoshiaki; Houle, Sylvain; Kish, Stephen J
2016-01-01
We previously reported very low levels of dopamine in post-mortem striatum of chronic methamphetamine users, raising the possibility that restoration of normal dopamine levels could help in this addiction and perhaps prevent early relapse. To establish relevance of this finding to the living brain, we tested whether striatal [11C]-(+)-dihydrotetrabenazine binding, a vesicular monoamine transporter probe sensitive to changes in (stored) vesicular dopamine, is elevated in methamphetamine users. Chronic methamphetamine users underwent [11C]-(+)-dihydrotetrabenazine positron emission tomography scans during early (mean 2.6 days) and later (~10 days) abstinence. Striatal [11C]-(+)-dihydrotetrabenazine binding was elevated (suggesting low stored dopamine) in methamphetamine users (n=28; 2.6 days after last use) relative to controls (n=22) (+28%, p<0.0001) and correlated with severity and recency of drug use and with cognitive impairment and withdrawal symptoms. Mean [11C]-(+)-dihydrotetrabenazine binding levels in the subgroup of methamphetamine users who could remain abstinent ~10 days following last use (n=17) were normal at the follow-up scan. Our imaging data support post-mortem findings and suggest that chronic methamphetamine users have low brain levels of stored dopamine during very early abstinence from MA, which could contribute to behavioral and cognitive deficits. Findings also suggest a rapid recovery of stored dopamine in some methamphetamine users who become abstinent and who therefore might not benefit from dopamine replacement medication (eg, levodopa). Further study is necessary to establish whether those users who could not maintain abstinence for the second scan might have a more severe and persistent dopamine deficiency and who could benefit from this medication. PMID:26321315
Rapid Recovery of Vesicular Dopamine Levels in Methamphetamine Users in Early Abstinence.
Boileau, Isabelle; McCluskey, Tina; Tong, Junchao; Furukawa, Yoshiaki; Houle, Sylvain; Kish, Stephen J
2016-03-01
We previously reported very low levels of dopamine in post-mortem striatum of chronic methamphetamine users, raising the possibility that restoration of normal dopamine levels could help in this addiction and perhaps prevent early relapse. To establish relevance of this finding to the living brain, we tested whether striatal [(11)C]-(+)-dihydrotetrabenazine binding, a vesicular monoamine transporter probe sensitive to changes in (stored) vesicular dopamine, is elevated in methamphetamine users. Chronic methamphetamine users underwent [(11)C]-(+)-dihydrotetrabenazine positron emission tomography scans during early (mean 2.6 days) and later (~10 days) abstinence. Striatal [(11)C]-(+)-dihydrotetrabenazine binding was elevated (suggesting low stored dopamine) in methamphetamine users (n=28; 2.6 days after last use) relative to controls (n=22) (+28%, p<0.0001) and correlated with severity and recency of drug use and with cognitive impairment and withdrawal symptoms. Mean [(11)C]-(+)-dihydrotetrabenazine binding levels in the subgroup of methamphetamine users who could remain abstinent ~10 days following last use (n=17) were normal at the follow-up scan. Our imaging data support post-mortem findings and suggest that chronic methamphetamine users have low brain levels of stored dopamine during very early abstinence from MA, which could contribute to behavioral and cognitive deficits. Findings also suggest a rapid recovery of stored dopamine in some methamphetamine users who become abstinent and who therefore might not benefit from dopamine replacement medication (eg, levodopa). Further study is necessary to establish whether those users who could not maintain abstinence for the second scan might have a more severe and persistent dopamine deficiency and who could benefit from this medication.
Dopaminergic control of anxiety in young and aged zebrafish.
Kacprzak, Victoria; Patel, Neil A; Riley, Elizabeth; Yu, Lili; Yeh, Jing-Ruey J; Zhdanova, Irina V
2017-06-01
Changes in the expression of the dopamine transporter (DAT), or the sensitivity of dopamine receptors, are associated with aging and substance abuse and may underlie some of the symptoms common to both conditions. In this study, we explored the role of the dopaminergic system in the anxiogenic effects of aging and acute cocaine exposure by comparing the behavioral phenotypes of wild type (WT) and DAT knockout zebrafish (DAT-KO) of different ages. To determine the involvement of specific dopamine receptors in anxiety states, antagonists to D1 (SCH23390) and D2/D3 (sulpiride) were employed. We established that DAT-KO results in a chronic anxiety-like state, seen as an increase in bottom-dwelling and thigmotaxis. Similar effects were produced by aging and acute cocaine administration, both leading to reduction in DAT mRNA abundance (qPCR). Inhibition of D1 activity counteracted the anxiety-like effects associated with DAT deficit, independent of its origin. Inhibition of D2/D3 receptors reduced anxiety in young DAT-KO, and enhanced the anxiogenic effects of cocaine in WT, but did not affect aged WT or DAT-KO fish. These findings provide new evidence that the dopaminergic system plays a critical role in anxiety-like states, and suggest that adult zebrafish provide a sensitive diurnal vertebrate model for elucidating the molecular mechanisms of anxiety and a platform for anxiolytic drug screens. Copyright © 2017 Elsevier Inc. All rights reserved.
Viggiano, Davide; Vallone, Daniela; Welzl, Hans; Sadile, Adolfo G
2002-09-01
The Naples High- (NHE) and Low-Excitability (NLE) rat lines have been selected since 1976 on the basis of behavioral arousal to novelty (Làt-maze). Selective breeding has been conducted under continuous genetic pressure, with no brother-sister mating. The behavioral analyses presented here deal with (1) activity in environments of different complexity, i.e., holeboard and Làt maze; (2) maze learning in hexagonal tunnel, Olton, and Morris water mazes and; (3) two-way active avoidance and conditioned taste aversion tests. Morphometric analyses deal with central dopaminergic systems at their origin and target sites, as well as the density of dopamine transporter immunoreactivity. Molecular biology analyses are also presented, dealing with recent experiments on the prefrontal cortex (PFc), cloning and identifying differentially expressed genes using subtractive libraries and RNAase protection. The divergence between NLE and NHE rats varies as a function of the complexity level of the environment, with an impaired working and reference memory in both lines compared to random bred (NRB) controls. Moreover, data from the PFc of NHE rats show a hyperdopaminergic innervation, with overexpression of mRNA species involved in basal metabolism, and down-regulation of dopamine D1 receptors. Altogether, the evidence gathered so far supports a hyperfunctioning mesocorticolimbic system that makes NHE rats a useful tool for the study of hyperactivity and attention deficit, learning and memory disabilities, and drug abuse.
Eising, E G; Müller, T T; Zander, C; Kuhn, W; Farahati, J; Reiners, C; Coenen, H H
1997-10-01
For a few years, data on SPECT-imaging of dopamine transporters with the cocaine derivate [123I](1R)-2-beta-carbomethoxy-3-beta-(4-iodophenyl)-tropane ([123I] beta-CIT) have been reported mostly in healthy subjects or animals. This study reflects our preliminary results with SPECT-imaging of dopamine transporters using the cocaine analogue 123-beta-CIT in patients with untreated (de novo) parkinsonism. In 33 patients with clinical suspicion of Parkinson disease and 5 healthy controls, SPECT-imaging of dopamine transporters was performed 1, 4, and 24 hours after injection of 180 MBq of 123I-beta-CIT, which was generated by iododestannylation. None of the patients or controls had been treated before with neuroleptical drugs or any other pharmaceuticals with known binding to the dopamine transporters. Clinical symptoms were staged by the scales Hoehn-Yahr (HYS), Unified Parkinson Disease Rating Scale (UPDRS), and the self-rating scale of Beck depression inventory (BDI). For evaluation, striatal/cerebellar ratios were calculated to every time point. Significant correlations of 123I-beta-CIT uptake could be stated compared to UPDRS, HYS, and BDI values (Spearman correlation, p < 0.05). The symptoms of rigor and akinesia showed a significant correlation with the beta-CIT uptake, whereas the symptom of tremor failed, which may be caused by the location of tremor symptoms out of the striatum. Comparing the controls, a significant (p < 0.01) decrease of tracer uptake in parkinsonian patients is stated on the images at 24 hours p.i. In our patients, tracer uptake does not depend significantly on duration of disease and age. 123I-beta-CIT seems to be a promising tool in imaging of untreated parkinsonian patient.
DAT isn’t all that: cocaine reward and reinforcement requires Toll Like Receptor 4 signaling
Northcutt, A.L.; Hutchinson, M.R.; Wang, X.; Baratta, M.V.; Hiranita, T.; Cochran, T.A.; Pomrenze, M.B.; Galer, E.L.; Kopajtic, T.A.; Li, C.M.; Amat, J.; Larson, G.; Cooper, D.C.; Huang, Y.; O’Neill, C.E.; Yin, H.; Zahniser, N.R.; Katz, J.L.; Rice, K.C.; Maier, S.F.; Bachtell, R.K.; Watkins, L.R.
2014-01-01
The initial reinforcing properties of drugs of abuse, such as cocaine, are largely attributed to their ability to activate the mesolimbic dopamine system. Resulting increases in extracellular dopamine in the nucleus accumbens (NAc) are traditionally thought to result from cocaine’s ability to block dopamine transporters (DATs). Here we demonstrate that cocaine also interacts with the immunosurveillance receptor complex, Toll-Like Receptor 4 (TLR4), on microglial cells to initiate central innate immune signaling. Disruption of cocaine signaling at TLR4 suppresses cocaine-induced extracellular dopamine in the NAc, as well as cocaine conditioned place preference and cocaine self-administration. These results provide a novel understanding of the neurobiological mechanisms underlying cocaine reward/reinforcement that includes a critical role for central immune signaling, and offer a new target for medication development for cocaine abuse treatment. PMID:25644383
Single Molecule Imaging of Conformational Dynamics in Sodium-Coupled Transporters
ERIC Educational Resources Information Center
Terry, Daniel S.
2013-01-01
Neurotransmitter:sodium symporter (NSS) proteins remove neurotransmitters released into the synapse through a transport process driven by the physiological sodium ion (Na[superscript +]) gradient. NSSs for dopamine, noradrenaline, and serotonin are targeted by the psychostimulants cocaine and amphetamines, as well as by antidepressants. The…
Dopamine function in cigarette smokers: an [¹⁸F]-DOPA PET study.
Bloomfield, Michael A P; Pepper, Fiona; Egerton, Alice; Demjaha, Arsime; Tomasi, Gianpaolo; Mouchlianitis, Elias; Maximen, Levi; Veronese, Mattia; Turkheimer, Federico; Selvaraj, Sudhakar; Howes, Oliver D
2014-09-01
Tobacco addiction is a global public health problem. Addiction to tobacco is thought to involve the effects of nicotine on the dopaminergic system. Only one study has previously investigated dopamine synthesis capacity in cigarette smokers. This study, exclusively in male volunteers, reported increased dopamine synthesis capacity in heavy smokers compared with non-smokers. We sought to determine whether dopamine synthesis capacity was elevated in a larger sample of cigarette smokers that included females. Dopamine synthesis capacity was measured in 15 daily moderate smokers with 15 sex- and age-matched control subjects who had never smoked tobacco. Dopamine synthesis capacity (indexed as the influx rate constant K(i)(cer)) was measured with positron emission tomography and 3,4-dihydroxy-6-[(18)F]-fluoro-l-phenylalanine. There was no significant group difference in dopamine synthesis capacity between smokers and non-smoker controls in the whole striatum (t28=0.64, p=0.53) or any of its functional subdivisions. In smokers, there were no significant relationships between the number of cigarettes smoked per day and dopamine synthesis capacity in the whole striatum (r=-0.23, p=0.41) or any striatal subdivision. These findings indicate that moderate smoking is not associated with altered striatal dopamine synthesis capacity.
Scalable Nanostructured Carbon Electrode Arrays for Enhanced Dopamine Detection.
Demuru, Silvia; Nela, Luca; Marchack, Nathan; Holmes, Steven J; Farmer, Damon B; Tulevski, George S; Lin, Qinghuang; Deligianni, Hariklia
2018-04-27
Dopamine is a neurotransmitter that modulates arousal and motivation in humans and animals. It plays a central role in the brain "reward" system. Its dysregulation is involved in several debilitating disorders such as addiction, depression, Parkinson's disease, and schizophrenia. Dopamine neurotransmission and its reuptake in extracellular space takes place with millisecond temporal and nanometer spatial resolution. Novel nanoscale electrodes are needed with superior sensitivity and improved spatial resolution to gain an improved understanding of dopamine dysregulation. We report on a scalable fabrication of dopamine neurochemical probes of a nanostructured glassy carbon that is smaller than any existing dopamine sensor and arrays of more than 6000 nanorod probes. We also report on the electrochemical dopamine sensing of the glassy carbon nanorod electrode. Compared with a carbon fiber, the nanostructured glassy carbon nanorods provide about 2× higher sensitivity per unit area for dopamine sensing and more than 5× higher signal per unit area at low concentration of dopamine, with comparable LOD and time response. These glassy carbon nanorods were fabricated by pyrolysis of a lithographically defined polymeric nanostructure with an industry standard semiconductor fabrication infrastructure. The scalable fabrication strategy offers the potential to integrate these nanoscale carbon rods with an integrated circuit control system and with other complementary metal oxide semiconductor (CMOS) compatible sensors.
Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Bini, Valentina; Gessa, Gian Luigi
2014-07-01
The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.
de Souza Silva, Maria A; Mattern, Claudia; Decheva, Cvetana; Huston, Joseph P; Sadile, Adolfo G; Beu, Markus; Müller, H-W; Nikolaus, Susanne
2016-01-01
Dopamine (DA), which does not cross the blood-brain barrier, has central and behavioral effects when administered via the nasal route. Neither the mechanisms of central action of intranasal dopamine (IN-DA), nor its mechanisms of diffusion and transport into the brain are well understood. We here examined whether IN-DA application influences dopamine transporter (DAT) binding in the dorsal striatum and assessed the extent of binding in relation to motor and exploratory behaviors. We hypothesized that, based on the finding of increased extracellular DA in the striatum induced by application of IN-DA, binding of [(123)I]FP-CIT to the DAT should be decreased due to competition at the receptor. Rats were administered 3 mg/kg IN-DA and vehicle (VEH), with IN-DA injection either preceding or following VEH. Then motor and exploratory behaviors (traveled distance, velocity, center time, sitting, rearing, head-shoulder motility, grooming) were assessed for 30 min in an open field prior to administration of [(123)I]FP-CIT. DAT binding after IN-DA and VEH was measured with small animal SPECT 2 h following administration of the radioligand. (1) After IN-DA application, striatal DAT binding was significantly lower as compared to VEH, indicating that the nasally delivered DA had central action and increased DA levels comparable to that found previously with L-DOPA administration; and (2) DAT binding in response to intranasal VEH was lower when IN-DA application preceded VEH treatment. This finding is suggestive of Pavlovian conditioning of DA at the level of the DAT, since the DA treatment modified (decreased) the binding in response to the subsequent VEH treatment. VEH treatment also reduced motor and exploratory behaviors more when applied before, as compared to when it followed IN-DA application, also indicative of behavioral Pavlovian conditioning akin to that found upon application of various psychostimulant drugs. (a) demonstrate a direct central action of intranasally applied DA on the DAT in the dorsal striatum, indicating enhanced DA availability; and (b) provide first evidence of a Pavlovian conditioned DA response at the DAT. The latter results have relevance to understanding neurochemical mechanisms that underlie placebo action in the treatment of Parkinsonian patients.
Glutamate Receptors within the Mesolimbic Dopamine System Mediate Alcohol Relapse Behavior.
Eisenhardt, Manuela; Leixner, Sarah; Luján, Rafael; Spanagel, Rainer; Bilbao, Ainhoa
2015-11-25
Glutamatergic input within the mesolimbic dopamine (DA) pathway plays a critical role in the development of addictive behavior. Although this is well established for some drugs of abuse, it is not known whether glutamate receptors within the mesolimbic system are involved in mediating the addictive properties of chronic alcohol use. Here we evaluated the contribution of mesolimbic NMDARs and AMPARs in mediating alcohol-seeking responses induced by environmental stimuli and relapse behavior using four inducible mutant mouse lines lacking the glutamate receptor genes Grin1 or Gria1 in either DA transporter (DAT) or D1R-expressing neurons. We first demonstrate the lack of GluN1 or GluA1 in either DAT- or D1R-expressing neurons in our mutant mouse lines by colocalization studies. We then show that GluN1 and GluA1 receptor subunits within these neuronal subpopulations mediate the alcohol deprivation effect, while having no impact on context- plus cue-induced reinstatement of alcohol-seeking behavior. We further validated these results pharmacologically by demonstrating similar reductions in the alcohol deprivation effect after infusion of the NMDAR antagonist memantine into the nucleus accumbens and ventral tegmental area of control mice, and a rescue of the mutant phenotype via pharmacological potentiation of AMPAR activity using aniracetam. In conclusion, dopamine neurons as well as D1R-expressing medium spiny neurons and their glutamatergic inputs via NMDARs and AMPARs act in concert to influence relapse responses. These results provide a neuroanatomical and molecular substrate for relapse behavior and emphasize the importance of glutamatergic drugs in modulating relapse behavior. Here we provide genetic and pharmacological evidence that glutamate receptors within the mesolimbic dopamine system play an essential role in alcohol relapse. Using various inducible and site-specific transgenic mouse models and pharmacological validation experiments, we show that critical subunits of NMDARs and AMPARs expressed either in dopamine neurons or in dopamine receptor D1-containing neurons play an important role in the alcohol deprivation effect (the increase in alcohol intake after a period of abstinence) while having no impact on context- plus cue-induced reinstatement of alcohol-seeking responses. Medications targeting glutamatergic neurotransmission by selective inactivation of these glutamate receptors might have therapeutic efficacy. Copyright © 2015 the authors 0270-6474/15/3515523-16$15.00/0.
Schindler, Charles W; Thorndike, Eric B; Goldberg, Steven R; Lehner, Kurt R; Cozzi, Nicholas V; Brandt, Simon D; Baumann, Michael H
2016-05-01
3,4-Methylenedioxypyrovalerone (MDPV) and 3,4-methylenedioxy-N-methylcathinone (methylone) are synthetic drugs found in so-called "bath salts" products. Both drugs exert their effects by interacting with monoamine transporter proteins. MDPV is a potent uptake blocker at transporters for dopamine and norepinephrine while methylone is a non-selective releaser at transporters for dopamine, norepinephrine, and serotonin (5-HT). We hypothesized that prominent 5-HT-releasing actions of methylone would render this drug less reinforcing than MDPV. To test this hypothesis, we compared behavioral effects of MDPV and methylone using intravenous (i.v.) self-administration on a fixed-ratio 1 schedule in male rats. Additionally, neurochemical effects of the drugs were examined using in vivo microdialysis in nucleus accumbens, in a separate cohort of rats. MDPV self-administration (0.03 mg/kg/inj) was acquired rapidly and reached 40 infusions per session, similar to the effects of cocaine (0.5 mg/kg/inj), by the end of training. In contrast, methylone self-administration (0.3 and 0.5 mg/kg/inj) was acquired slowly, and response rates only reached 20 infusions per session by the end of training. In dose substitution studies, MDPV and cocaine displayed typical inverted U-shaped dose-effect functions, but methylone did not. In vivo microdialysis revealed that i.v. MDPV (0.1 and 0.3 mg/kg) increased extracellular dopamine while i.v. methylone (1 and 3 mg/kg) increased extracellular dopamine and 5-HT. Our findings support the hypothesis that elevations in extracellular 5-HT in the brain can dampen positive reinforcing effects of cathinone-type drugs. Nevertheless, MDPV and methylone are both self-administered by rats, suggesting these drugs possess significant abuse liability in humans.
Novick, Andrew M; Forster, Gina L; Hassell, James E; Davies, Daniel R; Scholl, Jamie L; Renner, Kenneth J; Watt, Michael J
2015-10-01
Being bullied during adolescence is associated with later mental illnesses characterized by deficits in cognitive tasks mediated by prefrontal cortex (PFC) dopamine (DA). Social defeat of adolescent male rats, as a model of teenage bullying victimization, results in medial PFC (mPFC) dopamine (DA) hypofunction in adulthood that is associated with increased drug seeking and working memory deficits. Increased expression of the DA transporter (DAT) is also seen in the adult infralimbic mPFC following adolescent defeat. We propose the functional consequence of this increased DAT expression is enhanced DA clearance and subsequently decreased infralimbic mPFC DA availability. To test this, in vivo chronoamperometry was used to measure changes in accumulation of the DA signal following DAT blockade, with increased DAT-mediated clearance being reflected by lower DA signal accumulation. Previously defeated rats and controls were pre-treated with the norepinephrine transporter (NET) inhibitor desipramine (20 mg/kg, ip.) to isolate infralimbic mPFC DA clearance to DAT, then administered the selective DAT inhibitor GBR-12909 (20 or 40 mg/kg, sc.). Sole NET inhibition with desipramine produced no differences in DA signal accumulation between defeated rats and controls. However, rats exposed to adolescent social defeat demonstrated decreased DA signal accumulation compared to controls in response to both doses of GBR-12909, indicating greater DAT-mediated clearance of infralimbic mPFC DA. These results suggest that protracted increases in infralimbic mPFC DAT function represent a mechanism by which adolescent social defeat stress produces deficits in adult mPFC DA activity and corresponding behavioral and cognitive dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Linking Inflammation and Parkinson Disease: Hypochlorous Acid Generates Parkinsonian Poisons.
Jeitner, Thomas M; Kalogiannis, Mike; Krasnikov, Boris F; Gomolin, Irving; Peltier, Morgan R; Moran, Graham R
2016-06-01
Inflammation is a common feature of Parkinson Disease and other neurodegenerative disorders. Hypochlorous acid (HOCl) is a reactive oxygen species formed by neutrophils and other myeloperoxidase-containing cells during inflammation. HOCl chlorinates the amine and catechol moieties of dopamine to produce chlorinated derivatives collectively termed chlorodopamine. Here, we report that chlorodopamine is toxic to dopaminergic neurons both in vivo and in vitro Intrastriatal administration of 90 nmol chlorodopamine to mice resulted in loss of dopaminergic neurons from the substantia nigra and decreased ambulation-results that were comparable to those produced by the same dose of the parkinsonian poison, 1-methyl-4-phenylpyridinium (MPP+). Chlorodopamine was also more toxic to differentiated SH SY5Y cells than HOCl. The basis of this selective toxicity is likely mediated by chlorodopamine uptake through the dopamine transporter, as expression of this transporter in COS-7 cells conferred sensitivity to chlorodopamine toxicity. Pharmacological blockade of the dopamine transporter also mitigated the deleterious effects of chlorodopamine in vivo The cellular actions of chlorodopamine included inactivation of the α-ketoglutarate dehydrogenase complex, as well as inhibition of mitochondrial respiration. The latter effect is consistent with inhibition of cytochrome c oxidase. Illumination at 670 nm, which stimulates cytochrome c oxidase, reversed the effects of chlorodopamine. The observed changes in mitochondrial biochemistry were also accompanied by the swelling of these organelles. Overall, our findings suggest that chlorination of dopamine by HOCl generates toxins that selectively kill dopaminergic neurons in the substantia nigra in a manner comparable to MPP+. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Gleich, Tobias; Deserno, Lorenz; Lorenz, Robert Christian; Boehme, Rebecca; Pankow, Anne; Buchert, Ralph; Kühn, Simone; Heinz, Andreas; Schlagenhauf, Florian; Gallinat, Jürgen
2015-07-01
Theoretical and animal work has proposed that prefrontal cortex (PFC) glutamate inhibits dopaminergic inputs to the ventral striatum (VS) indirectly, whereas direct VS glutamatergic afferents have been suggested to enhance dopaminergic inputs to the VS. In the present study, we aimed to investigate relationships of glutamate and dopamine measures in prefrontostriatal circuitries of healthy humans. We hypothesized that PFC and VS glutamate, as well as their balance, are differently associated with VS dopamine. Glutamate concentrations in the left lateral PFC and left striatum were assessed using 3-Tesla proton magnetic resonance spectroscopy. Striatal presynaptic dopamine synthesis capacity was measured by fluorine-18-l-dihydroxyphenylalanine (F-18-FDOPA) positron emission tomography. First, a negative relationship was observed between glutamate concentrations in lateral PFC and VS dopamine synthesis capacity (n = 28). Second, a positive relationship was revealed between striatal glutamate and VS dopamine synthesis capacity (n = 26). Additionally, the intraindividual difference between PFC and striatal glutamate concentrations correlated negatively with VS dopamine synthesis capacity (n = 24). The present results indicate an involvement of a balance in PFC and striatal glutamate in the regulation of VS dopamine synthesis capacity. This notion points toward a potential mechanism how VS presynaptic dopamine levels are kept in a fine-tuned range. A disruption of this mechanism may account for alterations in striatal dopamine turnover as observed in mental diseases (e.g., in schizophrenia). The present work demonstrates complementary relationships between prefrontal and striatal glutamate and ventral striatal presynaptic dopamine using human imaging measures: a negative correlation between prefrontal glutamate and presynaptic dopamine and a positive relationship between striatal glutamate and presynaptic dopamine are revealed. The results may reflect a regulatory role of prefrontal and striatal glutamate for ventral striatal presynaptic dopamine levels. Such glutamate-dopamine relationships improve our understanding of neurochemical interactions in prefrontostriatal circuits and have implications for the neurobiology of mental disease. Copyright © 2015 the authors 0270-6474/15/359615-07$15.00/0.
Blink Rate in Boys with Fragile X Syndrome: Preliminary Evidence for Altered Dopamine Function
ERIC Educational Resources Information Center
Roberts, J. E.; Symons, F. J.; Johnson, A.-M.; Hatton, D. D.; Boccia, M. L.
2005-01-01
Background: Dopamine, a neurotransmitter involved in motor and cognitive functioning, can be non-invasively measured via observation of spontaneous blink rates. Blink rates have been studied in a number of clinical conditions including schizophrenia, autism, Parkinsons, and attention deficit/hyperactivity disorder with results implicating either…
Pádua-Reis, Marina; Aquino, Nayara S; Oliveira, Vinícius E M; Szawka, Raphael E; Prado, Marco A M; Prado, Vânia F; Pereira, Grace S
2017-07-14
Depression is extremely harmful to modern society. Despite its complex spectrum of symptoms, previous studies have mostly focused on the monaminergic system in search of pharmacological targets. However, other neurotransmitter systems have also been linked to the pathophysiology of depression. In this study, we provide evidence for a role of the cholinergic system in depressive-like behavior of female mice. We evaluated mice knockdown for the vesicular acetylcholine transporter (VAChT KD mice), which have been previously shown to exhibit reduced cholinergic transmission. Animals were subjected to the tail suspension and marble burying tests, classical paradigms to assess depressive-like behaviors and to screen for novel antidepressant drugs. In addition, brain levels of serotonin and dopamine were measured by high performance liquid chromatography. We found that female homozygous VAChT KD mice spent less time immobile during tail suspension and buried less marbles, indicating a less depressive phenotype. These differences in behavior were reverted by central, but not peripheral, acetylcholinesterase inhibition. Moreover, female homozygous VAChT KD mice exhibited higher levels of dopamine and serotonin in the striatum, and increased dopamine in the hippocampus. Our study thus shows a connection between depressive-like behaviors and the cholinergic system, and that the latter interacts with the monoaminergic system. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanko, S.; Hattori, M.; Dai, X.Y.
1994-12-15
Parkinson`s disease is thought to be caused by a combination of unknown environmental, genetic, and degenerative factors. Evidence from necropsy brain samples and pharmacokinetics suggests involvement of dopamine receptors in the pathogenesis or pathophysiology of Parkinson`s disease. Genetic association studies between Parkinson`s disease and dopamine D2, D3 and D4 receptor gene polymorphisms were conducted. The polymorphism was examined in 71 patients with Parkinson`s disease and 90 controls. There were no significant differences between two groups in allele frequencies at the D2, D3, and D4 dopamine receptor loci. Our findings do not support the hypothesis that susceptibility to Parkinson`s disease ismore » associated with the dopamine receptor polymorphisms examined. 35 refs., 2 tabs.« less
Siciliano, Cody A.; Calipari, Erin S.; Yorgason, Jordan T.; Lovinger, David M.; Mateo, Yolanda; Jimenez, Vanessa A.; Helms, Christa M.; Grant, Kathleen A.; Jones, Sara R.
2016-01-01
Rationale Hypofunction of striatal dopamine neurotransmission, or hypodopaminergia, is a consequence of excessive ethanol use, and is hypothesized to be a critical component of alcoholism, driving alcohol intake in an attempt to restore dopamine levels; however, the neurochemical mechanisms involved in these dopaminergic deficiencies are unknown. Objective Here we examined the specific dopaminergic adaptations that produce hypodopaminergia and contribute to alcohol use disorders using direct, sub-second measurements of dopamine signaling in nonhuman primates following chronic ethanol self-administration. Methods Female rhesus macaques completed one year of daily (22 hr/day) ethanol self-administration. Subsequently, fast-scan cyclic voltammetry was used in nucleus accumbens core brain slices to determine alterations in dopamine terminal function, including release and uptake kinetics, and sensitivity to quinpirole (D2/D3 dopamine receptor agonist) and U50,488 (kappa-opioid receptor agonist) induced inhibition of dopamine release. Results Ethanol drinking greatly increased uptake rates, which were positively correlated with lifetime ethanol intake. Furthermore, the sensitivity of dopamine D2/D3 autoreceptors and kappa-opioid receptors, which both act as negative regulators of presynaptic dopamine release, were moderately and robustly enhanced in ethanol drinkers. Conclusions Greater uptake rates and sensitivity to D2-type autoreceptor and kappa-opioid receptor agonists could converge to drive a hypodopaminergic state, characterized by reduced basal dopamine and an inability to mount appropriate dopaminergic responses to salient stimuli. Together, we outline the specific alterations to dopamine signaling that may drive ethanol-induced hypofunction of the dopamine system, and suggest that the dopamine and dynorphin/kappa-opioid receptor systems may be efficacious pharmcotherapeutic targets in the treatment of alcohol use disorders. PMID:26892380
Siciliano, Cody A; Calipari, Erin S; Yorgason, Jordan T; Lovinger, David M; Mateo, Yolanda; Jimenez, Vanessa A; Helms, Christa M; Grant, Kathleen A; Jones, Sara R
2016-04-01
Hypofunction of striatal dopamine neurotransmission, or hypodopaminergia, is a consequence of excessive ethanol use and is hypothesized to be a critical component of alcoholism, driving alcohol intake in an attempt to restore dopamine levels; however, the neurochemical mechanisms involved in these dopaminergic deficiencies are not fully understood. Here we examined the specific dopaminergic adaptations that produce hypodopaminergia and contribute to alcohol use disorders using direct, sub-second measurements of dopamine signaling in nonhuman primates following chronic ethanol self-administration. Female rhesus macaques completed 1 year of daily (22 h/day) ethanol self-administration. Subsequently, fast-scan cyclic voltammetry was used in nucleus accumbens core brain slices to determine alterations in dopamine terminal function, including release and uptake kinetics, and sensitivity to quinpirole (D2/D3 dopamine receptor agonist) and U50,488 (kappa opioid receptor agonist) induced inhibition of dopamine release. Ethanol drinking greatly increased uptake rates, which were positively correlated with lifetime ethanol intake. Furthermore, the sensitivity of dopamine D2/D3 autoreceptors and kappa opioid receptors, which both act as negative regulators of presynaptic dopamine release, was moderately and robustly enhanced in ethanol drinkers. Greater uptake rates and sensitivity to D2-type autoreceptor and kappa opioid receptor agonists could converge to drive a hypodopaminergic state, characterized by reduced basal dopamine and an inability to mount appropriate dopaminergic responses to salient stimuli. Together, we outline the specific alterations to dopamine signaling that may drive ethanol-induced hypofunction of the dopamine system and suggest that the dopamine and dynorphin/kappa opioid receptor systems may be efficacious pharmacotherapeutic targets in the treatment of alcohol use disorders.
Sambataro, Fabio; Podell, Jamie E; Murty, Vishnu P; Das, Saumitra; Kolachana, Bhaskar; Goldberg, Terry E; Weinberger, Daniel R; Mattay, Venkata S
2015-08-01
Dopamine modulation of striatal function is critical for executive functions such as working memory (WM) updating. The dopamine transporter (DAT) regulates striatal dopamine signaling via synaptic reuptake. A variable number of tandem repeats in the 3'-untranslated region of SLC6A3 (DAT1-3'-UTR-VNTR) is associated with DAT expression, such that 9-repeat allele carriers tend to express lower levels (associated with higher extracellular dopamine concentrations) than 10-repeat homozygotes. Aging is also associated with decline of the dopamine system. The goal of the present study was to investigate the effects of aging and DAT1-3'-UTR-VNTR on the neural activity and functional connectivity of the striatum during WM updating. Our results showed both an age-related decrease in striatal activity and an effect of DAT1-3'-UTR-VNTR. Ten-repeat homozygotes showed reduced striatal activity and increased striatal-hippocampal connectivity during WM updating relative to the 9-repeat carriers. There was no age by DAT1-3'-UTR-VNTR interaction. These results suggest that, whereas striatal function during WM updating is modulated by both age and genetically determined DAT levels, the rate of the age-related decline in striatal function is similar across both DAT1-3'-UTR-VNTR genotype groups. They further suggest that, because of the baseline difference in striatal function based on DAT1-3'-UTR-VNTR polymorphism, 10-repeat homozygotes, who have lower levels of striatal function throughout the adult life span, may reach a threshold of decreased striatal function and manifest impairments in cognitive processes mediated by the striatum earlier in life than the 9-repeat carriers. Our data suggest that age and DAT1-3'-UTR-VNTR polymorphism independently modulate striatal function. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
The Michelin red guide of the brain: role of dopamine in goal-oriented navigation.
Retailleau, Aude; Boraud, Thomas
2014-01-01
Spatial learning has been recognized over the years to be under the control of the hippocampus and related temporal lobe structures. Hippocampal damage often causes severe impairments in the ability to learn and remember a location in space defined by distal visual cues. Such cognitive disabilities are found in Parkinsonian patients. We recently investigated the role of dopamine in navigation in the 6-Hydroxy-dopamine (6-OHDA) rat, a model of Parkinson's disease (PD) commonly used to investigate the pathophysiology of dopamine depletion (Retailleau et al., 2013). We demonstrated that dopamine (DA) is essential to spatial learning as its depletion results in spatial impairments. Our results showed that the behavioral effect of DA depletion is correlated with modification of the neural encoding of spatial features and decision making processes in hippocampus. However, the origin of these alterations in the neural processing of the spatial information needs to be clarified. It could result from a local effect: dopamine depletion disturbs directly the processing of relevant spatial information at hippocampal level. Alternatively, it could result from a more distributed network effect: dopamine depletion elsewhere in the brain (entorhinal cortex, striatum, etc.) modifies the way hippocampus processes spatial information. Recent experimental evidence in rodents, demonstrated indeed, that other brain areas are involved in the acquisition of spatial information. Amongst these, the cortex-basal ganglia (BG) loop is known to be involved in reinforcement learning and has been identified as an important contributor to spatial learning. In particular, it has been shown that altered activity of the BG striatal complex can impair the ability to perform spatial learning tasks. The present review provides a glimpse of the findings obtained over the past decade that support a dialog between these two structures during spatial learning under DA control.
Ferris, Mark J; Calipari, Erin S; Rose, Jamie H; Siciliano, Cody A; Sun, Haiguo; Chen, Rong; Jones, Sara R
2015-01-01
There are ∼1.6 million people who meet the criteria for cocaine addiction in the United States, and there are currently no FDA-approved pharmacotherapies. Amphetamine-based dopamine-releasing drugs have shown efficacy in reducing the motivation to self-administer cocaine and reducing intake in animals and humans. It is hypothesized that amphetamine acts as a replacement therapy for cocaine through elevation of extracellular dopamine levels. Using voltammetry in brain slices, we tested the ability of a single amphetamine infusion in vivo to modulate dopamine release, uptake kinetics, and cocaine potency in cocaine-naive animals and after a history of cocaine self-administration (1.5 mg/kg/infusion, fixed-ratio 1, 40 injections/day × 5 days). Dopamine kinetics were measured 1 and 24 h after amphetamine infusion (0.56 mg/kg, i.v.). Following cocaine self-administration, dopamine release, maximal rate of uptake (Vmax), and membrane-associated dopamine transporter (DAT) levels were reduced, and the DAT was less sensitive to cocaine. A single amphetamine infusion reduced Vmax and membrane DAT levels in cocaine-naive animals, but fully restored all aspects of dopamine terminal function in cocaine self-administering animals. Here, for the first time, we demonstrate pharmacologically induced, immediate rescue of deficits in dopamine nerve-terminal function in animals with a history of high-dose cocaine self-administration. This observation supports the notion that the DAT expression and function can be modulated on a rapid timescale and also suggests that the pharmacotherapeutic actions of amphetamine for cocaine addiction go beyond that of replacement therapy. PMID:25689882
Dopamine selectively remediates ‘model-based’ reward learning: a computational approach
Sharp, Madeleine E.; Foerde, Karin; Daw, Nathaniel D.
2016-01-01
Patients with loss of dopamine due to Parkinson’s disease are impaired at learning from reward. However, it remains unknown precisely which aspect of learning is impaired. In particular, learning from reward, or reinforcement learning, can be driven by two distinct computational processes. One involves habitual stamping-in of stimulus-response associations, hypothesized to arise computationally from ‘model-free’ learning. The other, ‘model-based’ learning, involves learning a model of the world that is believed to support goal-directed behaviour. Much work has pointed to a role for dopamine in model-free learning. But recent work suggests model-based learning may also involve dopamine modulation, raising the possibility that model-based learning may contribute to the learning impairment in Parkinson’s disease. To directly test this, we used a two-step reward-learning task which dissociates model-free versus model-based learning. We evaluated learning in patients with Parkinson’s disease tested ON versus OFF their dopamine replacement medication and in healthy controls. Surprisingly, we found no effect of disease or medication on model-free learning. Instead, we found that patients tested OFF medication showed a marked impairment in model-based learning, and that this impairment was remediated by dopaminergic medication. Moreover, model-based learning was positively correlated with a separate measure of working memory performance, raising the possibility of common neural substrates. Our results suggest that some learning deficits in Parkinson’s disease may be related to an inability to pursue reward based on complete representations of the environment. PMID:26685155
Pauli, Andreina; Prata, Diana P; Mechelli, Andrea; Picchioni, Marco; Fu, Cynthia H Y; Chaddock, Christopher A; Kane, Fergus; Kalidindi, Sridevi; McDonald, Colm; Kravariti, Eugenia; Toulopoulou, Timothea; Bramon, Elvira; Walshe, Muriel; Ehlert, Natascha; Georgiades, Anna; Murray, Robin; Collier, David A; McGuire, Philip
2013-09-01
The genes for the dopamine transporter (DAT) and the D-Amino acid oxidase activator (DAOA or G72) have been independently implicated in the risk for schizophrenia and in bipolar disorder and/or their related intermediate phenotypes. DAT and G72 respectively modulate central dopamine and glutamate transmission, the two systems most robustly implicated in these disorders. Contemporary studies have demonstrated that elevated dopamine function is associated with glutamatergic dysfunction in psychotic disorders. Using functional magnetic resonance imaging we examined whether there was an interaction between the effects of genes that influence dopamine and glutamate transmission (DAT and G72) on regional brain activation during verbal fluency, which is known to be abnormal in psychosis, in 80 healthy volunteers. Significant interactions between the effects of G72 and DAT polymorphisms on activation were evident in the striatum, parahippocampal gyrus, and supramarginal/angular gyri bilaterally, the right insula, in the right pre-/postcentral and the left posterior cingulate/retrosplenial gyri (P < 0.05, FDR-corrected across the whole brain). This provides evidence that interactions between the dopamine and the glutamate system, thought to be altered in psychosis, have an impact in executive processing which can be modulated by common genetic variation. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.
Spiller, Henry A; Hays, Hannah L; Aleguas, Alfred
2013-07-01
The prevalence of attention-deficit hyperactivity disorder (ADHD) in the USA is estimated at approximately 4-9% in children and 4% in adults. It is estimated that prescriptions for ADHD medications are written for more than 2.7 million children per year. In 2010, US poison centers reported 17,000 human exposures to ADHD medications, with 80% occurring in children <19 years old and 20% in adults. The drugs used for the treatment of ADHD are diverse but can be roughly separated into two groups: the stimulants such as amphetamine, methylphenidate, and modafinil; and the non-stimulants such as atomoxetine, guanfacine, and clonidine. This review focuses on mechanisms of toxicity after overdose with ADHD medications, clinical effects from overdose, and management. Amphetamine, dextroamphetamine, and methylphenidate act as substrates for the cellular monoamine transporter, especially the dopamine transporter (DAT) and less so the norepinephrine (NET) and serotonin transporter. The mechanism of toxicity is primarily related to excessive extracellular dopamine, norepinephrine, and serotonin. The primary clinical syndrome involves prominent neurological and cardiovascular effects, but secondary complications can involve renal, muscle, pulmonary, and gastrointestinal (GI) effects. In overdose, the patient may present with mydriasis, tremor, agitation, hyperreflexia, combative behavior, confusion, hallucinations, delirium, anxiety, paranoia, movement disorders, and seizures. The management of amphetamine, dextroamphetamine, and methylphenidate overdose is largely supportive, with a focus on interruption of the sympathomimetic syndrome with judicious use of benzodiazepines. In cases where agitation, delirium, and movement disorders are unresponsive to benzodiazepines, second-line therapies include antipsychotics such as ziprasidone or haloperidol, central alpha-adrenoreceptor agonists such as dexmedetomidine, or propofol. Modafinil is not US FDA approved for treatment of ADHD; however, it has been shown to improve ADHD signs and symptoms and has been used as an off-label pharmaceutical for this diagnosis in both adults and children. The mechanism of action of modafinil is complex and not fully understood. It is known to cause an increase in extracellular concentrations of dopamine, norepinephrine, and serotonin in the neocortex. Overdose with modafinil is generally of moderate severity, with reported ingestions of doses up to 8 g. The most common neurological effects include increased anxiety, agitation, headache, dizziness, insomnia, tremors, and dystonia. The management of modafinil overdose is largely supportive, with a focus on sedation, and control of dyskinesias and blood pressure. Atomoxetine is a selective presynaptic norepinephrine transporter inhibitor. The clinical presentation after overdose with atomoxetine has generally been mild. The primary effects have been drowsiness, agitation, hyperactivity, GI upset, tremor, hyperreflexia, tachycardia hypertension, and seizure. The management of atomoxetine overdose is largely supportive, with a focus on sedation, and control of dyskinesias and seizures. Clonidine is a synthetic imidazole derivative with both central and peripheral alpha-adrenergic agonist actions. The primary clinical syndrome involves prominent neurological and cardiovascular effects, with the most commonly reported features of depressed sensorium, bradycardia, and hypotension. While clonidine is an anti-hypertensive medication, a paradoxical hypertension may occur early with overdose. The clinical syndrome after overdose of guanfacine may be mixed depending on central or peripheral alpha-adrenoreceptor effects. Initial clinical effects may be drowsiness, lethargy, dry mouth, and diaphoresis. Cardiovascular effects may depend on time post-ingestion and may present as hypotension or hypertension. The management of guanfacine overdose is largely supportive, with a focus on support of blood pressure. Overdose with ADHD medications can produce major morbidity, with many cases requiring intensive care medicine and prolonged hospital stays. However, fatalities are rare with appropriate care.
Vengeliene, Valentina; Bespalov, Anton; Roßmanith, Martin; Horschitz, Sandra; Berger, Stefan; Relo, Ana L.; Noori, Hamid R.; Schneider, Peggy; Enkel, Thomas; Bartsch, Dusan; Schneider, Miriam; Behl, Berthold; Hansson, Anita C.; Schloss, Patrick
2017-01-01
ABSTRACT The research domain criteria (RDoC) matrix has been developed to reorient psychiatric research towards measurable behavioral dimensions and underlying mechanisms. Here, we used a new genetic rat model with a loss-of-function point mutation in the dopamine transporter (DAT) gene (Slc6a3_N157K) to systematically study the RDoC matrix. First, we examined the impact of the Slc6a3_N157K mutation on monoaminergic signaling. We then performed behavioral tests representing each of the five RDoC domains: negative and positive valence systems, cognitive, social and arousal/regulatory systems. The use of RDoC may be particularly helpful for drug development. We studied the effects of a novel pharmacological approach metabotropic glutamate receptor mGluR2/3 antagonism, in DAT mutants in a comparative way with standard medications. Loss of DAT functionality in mutant rats not only elevated subcortical extracellular dopamine concentration but also altered the balance of monoaminergic transmission. DAT mutant rats showed deficits in all five RDoC domains. Thus, mutant rats failed to show conditioned fear responses, were anhedonic, were unable to learn stimulus-reward associations, showed impaired cognition and social behavior, and were hyperactive. Hyperactivity in mutant rats was reduced by amphetamine and atomoxetine, which are well-established medications to reduce hyperactivity in humans. The mGluR2/3 antagonist LY341495 also normalized hyperactivity in DAT mutant rats without affecting extracellular dopamine levels. We systematically characterized an altered dopamine system within the context of the RDoC matrix and studied mGluR2/3 antagonism as a new pharmacological strategy to treat mental disorders with underlying subcortical dopaminergic hyperactivity. PMID:28167616
The effects of DAT1 genotype on fMRI activation in an emotional go/no-go task.
Brown, Brenna K; Murrell, Jill; Karne, Harish; Anand, Amit
2017-02-01
Dopaminergic brain circuits participate in emotional processing and impulsivity. The dopamine transporter (DAT) modulates dopamine reuptake. A variable number tandem repeat (VNTR) in the dopamine transporter gene (DAT1) affects DAT expression. The influence of DAT1 genotype on neural activation during emotional processing and impulse inhibition has not been examined. Forty-two healthy subjects were classified as 9DAT (n = 17) or 10DAT (n = 25) based on DAT1 genotype (9DAT = 9R/9R and 9R/10R; 10DAT = 10R/10R). Subjects underwent fMRI during non-emotional and emotional go/no-go tasks. Subjects were instructed to inhibit responses to letters, happy faces, or sad faces in separate blocks. Accuracy and reaction time did not differ between groups. Within group results showed activation in regions previously implicated in emotional processing and response inhibition. Between groups results showed increased activation in 9DAT individuals during inhibition. During letter inhibition, 9DAT individuals exhibited greater activation in right inferior parietal regions. During sad inhibition, 9DAT Individuals exhibited greater activation in frontal, posterior cingulate, precuneus, right cerebellar, left paracentral, and right occipital brain regions. The interaction between DAT genotype and response type in sad versus letter stimuli showed increased activation in 9DAT individuals during sad no-go responses in the anterior cingulate cortex, extending into frontal-orbital regions. 9DAT individuals have greater activation than 10DAT individuals during neutral and sad inhibition, showing that genotypic variation influencing basal dopamine levels can alter the neural basis of emotional processing and response inhibition. This may indicate that 9R carriers exert more effort to overcome increased basal dopamine activation when inhibiting responses in emotional contexts.
Choi, Min Sun; Choi, Bang-sub; Kim, Sang Heon; Pak, Sok Cheon; Jang, Chul Ho; Chin, Young-Won; Kim, Young-Mi; Kim, Dong-il; Jeon, Songhee; Koo, Byung-Soo
2015-10-01
The dopamine transporter (DAT) protein, a component of the dopamine system, undergoes adaptive neurobiological changes from drug abuse. Prevention of relapse and reduction of withdrawal symptoms are still the major limitations in the current pharmacological treatments of drug addiction. The present study aimed to investigate the effects of essential oils extracted from Elsholtzia ciliata, Shinchim, Angelicae gigantis Radix, and Eugenia caryophyllata, well-known traditional Korean medicines for addiction, on the modulation of dopamine system in amphetamine-treated cells and to explore the possible mechanism underlying its therapeutic effect. The potential cytotoxic effect of essential oils was evaluated in PC12 rat pheochromocytoma cells using cell viability assays. Quantification of DAT, p-CREB, p-MAPK, and p-Akt was done by immunoblotting. DAT was significantly reduced in cells treated with 50 μM of amphetamine in a time-dependent manner. No significant toxicity of essential oils from Elsholtzia ciliata and Shinchim was observed at doses of 10, 25, and 50 μg/mL. However, essential oils from A. gigantis Radix at a dose of 100 μg/mL and E. caryophyllata at doses of 50 and 100 μg/mL showed cytotoxicity. Treatment with GBR 12909, a highly selective DAT inhibitor, significantly increased DAT expression compared with that of amphetamine only by enhancing phosphorylation of mitogen-activated protein kinases (MAPK) and Akt. In addition, essential oils effectively induced hyperphosphorylation of cyclic-AMP response element-binding protein (CREB), MAPK, and Akt, which resulted in DAT upregulation. Our study implies that the essential oils may rehabilitate brain dopamine function through increased DAT availability in abstinent former drug users.
Vengeliene, Valentina; Bespalov, Anton; Roßmanith, Martin; Horschitz, Sandra; Berger, Stefan; Relo, Ana L; Noori, Hamid R; Schneider, Peggy; Enkel, Thomas; Bartsch, Dusan; Schneider, Miriam; Behl, Berthold; Hansson, Anita C; Schloss, Patrick; Spanagel, Rainer
2017-04-01
The research domain criteria (RDoC) matrix has been developed to reorient psychiatric research towards measurable behavioral dimensions and underlying mechanisms. Here, we used a new genetic rat model with a loss-of-function point mutation in the dopamine transporter (DAT) gene ( Slc6a3 _N157K) to systematically study the RDoC matrix. First, we examined the impact of the Slc6a3 _N157K mutation on monoaminergic signaling. We then performed behavioral tests representing each of the five RDoC domains: negative and positive valence systems, cognitive, social and arousal/regulatory systems. The use of RDoC may be particularly helpful for drug development. We studied the effects of a novel pharmacological approach metabotropic glutamate receptor mGluR2/3 antagonism, in DAT mutants in a comparative way with standard medications. Loss of DAT functionality in mutant rats not only elevated subcortical extracellular dopamine concentration but also altered the balance of monoaminergic transmission. DAT mutant rats showed deficits in all five RDoC domains. Thus, mutant rats failed to show conditioned fear responses, were anhedonic, were unable to learn stimulus-reward associations, showed impaired cognition and social behavior, and were hyperactive. Hyperactivity in mutant rats was reduced by amphetamine and atomoxetine, which are well-established medications to reduce hyperactivity in humans. The mGluR2/3 antagonist LY341495 also normalized hyperactivity in DAT mutant rats without affecting extracellular dopamine levels. We systematically characterized an altered dopamine system within the context of the RDoC matrix and studied mGluR2/3 antagonism as a new pharmacological strategy to treat mental disorders with underlying subcortical dopaminergic hyperactivity. © 2017. Published by The Company of Biologists Ltd.
The binding sites for benztropines and dopamine in the dopamine transporter overlap
Bisgaard, Heidi; Larsen, M. Andreas B.; Mazier, Sonia; Beuming, Thijs; Newman, Amy Hauck; Weinstein, Harel; Shi, Lei; Loland, Claus J.; Gether, Ulrik
2013-01-01
Analogues of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational modeling together with site-directed mutagenesis to characterize the binding site for BZTs in DAT. Docking into molecular models based on the structure of the bacterial homologue LeuT supported a BZT binding site that overlaps with the substrate binding pocket. In agreement, mutations of residues within the pocket, including Val1523.46* to Ala or Ile, Ser4228.60 to Ala and Asn1573.51 to Cys or Ala, resulted in decreased affinity for BZT and the analog JHW007, as assessed in [3H]dopamine uptake inhibition assays and/or [3H]CFT competition binding assay. A putative polar interaction of one of the phenyl ring fluorine substituents in JHW007 with Asn1573.51 was used as a criterion for determining likely binding poses and establish a structural context for the mutagenesis findings. The analysis positioned the other fluorine substituted phenyl ring of JHW007 in close proximity to Ala47910.51/Ala48010.52 in transmembrane segment (TM) 10. The lack of such an interaction for BZT led to a more tilted orientation, as compared to JHW007, bringing one of the phenyl rings even closer to Ala47910.51/Ala48010.52. Mutation of Ala47910.51 and Ala48010.52 to valines supported these predictions with a larger decrease in the affinity for BZT than for JHW007. Summarized, our data suggest that BZTs display a classical competitive binding mode with binding sites overlapping those of cocaine and dopamine. PMID:20816875
Narayanaswami, Vidya; Somkuwar, Sucharita S; Horton, David B; Cassis, Lisa A; Dwoskin, Linda P
2013-09-01
Tobacco smoking is the leading preventable cause of death in the United States. A major negative health consequence of chronic smoking is hypertension. Untoward addictive and cardiovascular sequelae associated with chronic smoking are mediated by nicotine-induced activation of nicotinic receptors (nAChRs) within striatal dopaminergic and hypothalamic noradrenergic systems. Hypertension involves both brain and peripheral angiotensin systems. Activation of angiotensin type-1 receptors (AT1) release dopamine and norepinephrine. The current study determined the role of AT1 and angiotensin type-2 (AT2) receptors in mediating nicotine-evoked dopamine and norepinephrine release from striatal and hypothalamic slices, respectively. The potential involvement of nAChRs in mediating effects of AT1 antagonist losartan and AT2 antagonist, 1-[[4-(dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (PD123319) was evaluated by determining their affinities for α4β2* and α7* nAChRs using [³H]nicotine and [³H]methyllycaconitine binding assays, respectively. Results show that losartan concentration-dependently inhibited nicotine-evoked [³H]dopamine and [³H]norepinephrine release (IC₅₀: 3.9 ± 1.2 and 2.2 ± 0.7 μM; Imax: 82 ± 3 and 89 ± 6%, respectively). In contrast, PD123319 did not alter nicotine-evoked norepinephrine release, and potentiated nicotine-evoked dopamine release. These results indicate that AT1 receptors modulate nicotine-evoked striatal dopamine and hypothalamic norepinephrine release. Furthermore, AT1 receptor activation appears to be counteracted by AT2 receptor activation in striatum. Losartan and PD123319 did not inhibit [³H]nicotine or [³H]methyllycaconitine binding, indicating that these AT1 and AT2 antagonists do not interact with the agonist recognition sites on α4β2* and α7* nAChRs to mediate these effects of nicotine. Thus, angiotensin receptors contribute to the effects of nicotine on dopamine and norepinephrine release in brain regions involved in nicotine reward and hypertension. Copyright © 2013 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Aspartate 1-decarboxylase (ADC) and dopa decarboxylase (DDC) provide b–alanine and dopamine used in insect cuticle tanning. Beta-alanine is conjugated with dopamine to yield N-b-alanyldopamine (NBAD), a substrate for the phenoloxidase laccase that catalyzes the synthesis of cuticle protein cross-li...
Yang, Chen; Ge, Shun-Nan; Zhang, Jia-Rui; Chen, Lei; Yan, Zhi-Qiang; Heng, Li-Jun; Zhao, Tian-Zhi; Li, Wei-Xin; Jia, Dong; Zhu, Jun-Ling; Gao, Guo-Dong
2013-01-01
High-voltage spindles (HVSs) have been reported to appear spontaneously and widely in the cortical-basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP) and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D₁-like receptors or D₂-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1) in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D₂-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D₂-like receptor antagonists. On the contrary, the selective dopamine D₁-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D₂-like receptors, but not D₁-like receptors, were involved in HVS regulation. This supports the important role of dopamine D₂-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.
Mizoguchi, Hiroyuki; Yamada, Kiyofumi; Nabeshima, Toshitaka
2008-01-01
Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) function to remodel the pericellular environment. We have investigated the role of the MMP/TIMP system in methamphetamine (METH) dependence in rodents, in which the remodeling of neural circuits may be crucial. Repeated METH treatment induced behavioral sensitization, which was accompanied by an increase in MMP-2/-9/TIMP-2 activity in the brain. An antisense TIMP-2 oligonucleotide enhanced the sensitization, which was associated with a potentiation of the METH-induced release of dopamine in the nucleus accumbens (NAc). MMP-2/-9 inhibitors blocked the METH-induced behavioral sensitization and conditioned place preference (CPP), a measure of the rewarding effect of a drug, and reduced the METH-increased dopamine release in the NAc. In MMP-2- and MMP-9-deficient mice, METH-induced behavioral sensitization and CPP as well as dopamine release were attenuated. The MMP/TIMP system may be involved in METH-induced sensitization and reward by regulating extracellular dopamine levels.
Silwal, Achut P; Yadav, Rajeev; Sprague, Jon E; Lu, H Peter
2017-07-19
Dopamine (DA) controls many psychological and behavioral activities in the central nervous system (CNS) through interactions with the human dopamine transporter (hDAT) and dopamine receptors. The roles of DA in the function of the CNS are affected by the targeted binding of drugs to hDAT; thus, hDAT plays a critical role in neurophysiology and neuropathophysiology. An effective experimental method is necessary to study the DA-hDAT interaction and effects of variety of drugs like psychostimulants and antidepressants that are dependent on this interaction. In searching for obtaining and identifying the Raman spectral signatures, we have used surface enhanced Raman scattering (SERS) spectroscopy to record SERS spectra from DA, human embryonic kidney 293 cells (HEK293), hDAT-HEK293, DA-HEK293, and DA-hDAT-HEK293. We have demonstrated a specific 2D-distribution SERS spectral analytical approach to analyze DA-hDAT interaction. Our study shows that the Raman modes at 807, 839, 1076, 1090, 1538, and 1665 cm -1 are related to DA-hDAT interaction, where Raman shifts at 807 and 1076 cm -1 are the signature markers for the bound state of DA to probe DA-hDAT interaction. On the basis of density function theory (DFT) calculation, Raman shift of the bound state of DA at 807 cm -1 is related to combination of bending modes α(C3-O10-H21), α(C2-O11-H22), α(C7-C8-H18), α(C6-C4-H13), α(C7-C8-H19), and α(C7-C8-N9), and Raman shift at 1076 cm -1 is related to combination of bending modes α(H19-N9-C8), γ(N9-H19), γ(C8-H19), γ(N9-H20), γ(C8-H18), and α(C7-C8-H18). These findings demonstrate that protein-ligand interactions can be confirmed by probing change in Raman shift of ligand molecules, which could be crucial to understanding molecular interactions between neurotransmitters and their receptors or transporters.
Loewinger, Gabriel C.; Beckert, Michael V.; Tejeda, Hugo A.; Cheer, Joseph F.
2012-01-01
Methamphetamine (METH) exposure is primarily associated with deleterious effects to dopaminergic neurons. While several studies have implicated the endocannabinoid system in METH’s locomotor, rewarding and neurochemical effects, a role for this signaling system in METH’s effects on dopamine terminal dynamics has not been elucidated. Given that CB1 receptor blockade reduces the acute potentiation of phasic extracellular dopamine release from other psychomotor stimulant drugs and that the degree of acute METH-induced increases in extracellular dopamine levels is related to the severity of dopamine depletion, we predicted that pretreatment with the CB1 receptor antagonist rimonabant would reduce METH-induced alterations at dopamine terminals. Furthermore, we hypothesized that administration of METH in environments where reward associated-cues were present would potentiate METH’s acute effects on dopamine release in the nucleus accumbens and exacerbate changes in dopamine terminal activity. Fast-scan cyclic voltammetry was used to measure electrically-evoked dopamine release in the nucleus accumbens and revealed markers of compromised dopamine terminal integrity nine days after a single dose of METH. These were exacerbated in animals that received METH in the presence of reward-associated cues, and attenuated in rimonabant-pretreated animals. While these deficits in dopamine dynamics were associated with reduced operant responding on days following METH administration in animals treated with only METH, rimonabant-pretreated animals exhibited levels of operant responding comparable to control. Moreover, dopamine release correlated significantly with changes in lever pressing behavior that occurred on days following METH administration. Together these data suggest that the endocannabinoid system is involved in the subsecond dopaminergic response to METH. PMID:22306525
Volkow, Nora D.; Wang, Gene-Jack; Tomasi, Dardo; Kollins, Scott H.; Wigal, Tim L.; Newcorn, Jeffrey H.; Telang, Frank W.; Fowler, Joanna S.; Logan, Jean; Wong, Christopher T.; Swanson, James M.
2012-01-01
Stimulant medications, such as methylphenidate, which are effective treatments for attention deficit hyperactivity disorder (ADHD), enhance brain dopamine signaling. However, the relationship between regional brain dopamine enhancement and treatment response has not been evaluated. Here, we assessed whether the dopamine increases elicited by methylphenidate are associated with long-term clinical response. We used a prospective design to study 20 treatment-naive adults with ADHD who were evaluated before treatment initiation and after 12 months of clinical treatment with a titrated regimen of oral methylphenidate. Methylphenidate-induced dopamine changes were evaluated with positron emission tomography and [11C]raclopride (D2/D3 receptor radioligand sensitive to competition with endogenous dopamine). Clinical responses were assessed using the Conners' Adult ADHD Rating Scale and revealed a significant reduction in symptoms of inattention and hyperactivity with long-term methylphenidate treatment. A challenge dose of 0.5 mg/kg intravenous methylphenidate significantly increased dopamine in striatum (assessed as decreases in D2/D3 receptor availability). In the ventral striatum, these dopamine increases were associated with the reductions in ratings of symptoms of inattention with clinical treatment. Statistical parametric mapping additionally showed dopamine increases in prefrontal and temporal cortices with intravenous methylphenidate that were also associated with decreases in symptoms of inattention. Our findings indicate that dopamine enhancement in ventral striatum (the brain region involved with reward and motivation) was associated with therapeutic response to methylphenidate, further corroborating the relevance of the dopamine reward/motivation circuitry in ADHD. It also provides preliminary evidence that methylphenidate-elicited dopamine increases in prefrontal and temporal cortices may also contribute to the clinical response. PMID:22262882
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow N. D.; Wang G.; Volkow, N.D.
Stimulant medications, such as methylphenidate, which are effective treatments for attention deficit hyperactivity disorder (ADHD), enhance brain dopamine signaling. However, the relationship between regional brain dopamine enhancement and treatment response has not been evaluated. Here, we assessed whether the dopamine increases elicited by methylphenidate are associated with long-term clinical response. We used a prospective design to study 20 treatment-naive adults with ADHD who were evaluated before treatment initiation and after 12 months of clinical treatment with a titrated regimen of oral methylphenidate. Methylphenidate-induced dopamine changes were evaluated with positron emission tomography and [{sup 11}C]raclopride (D{sub 2}/D{sub 3} receptor radioligand sensitivemore » to competition with endogenous dopamine). Clinical responses were assessed using the Conners Adult ADHD Rating Scale and revealed a significant reduction in symptoms of inattention and hyperactivity with long-term methylphenidate treatment. A challenge dose of 0.5 mg/kg intravenous methylphenidate significantly increased dopamine in striatum (assessed as decreases in D{sub 2}/D{sub 3} receptor availability). In the ventral striatum, these dopamine increases were associated with the reductions in ratings of symptoms of inattention with clinical treatment. Statistical parametric mapping additionally showed dopamine increases in prefrontal and temporal cortices with intravenous methylphenidate that were also associated with decreases in symptoms of inattention. Our findings indicate that dopamine enhancement in ventral striatum (the brain region involved with reward and motivation) was associated with therapeutic response to methylphenidate, further corroborating the relevance of the dopamine reward/motivation circuitry in ADHD. It also provides preliminary evidence that methylphenidate-elicited dopamine increases in prefrontal and temporal cortices may also contribute to the clinical response.« less
Boger, Heather A.; Mannangatti, Padmanabhan; Samuvel, Devadoss J.; Saylor, Alicia J.; Bender, Tara S.; McGinty, Jacqueline F.; Fortress, Ashley M.; Zaman, Vandana; Huang, Peng; Middaugh, Lawrence D.; Randall, Patrick K.; Jayanthi, Lankupalle D.; Rohrer, Baerbel; Helke, Kristi L.; Granholm, Ann-Charlotte; Ramamoorthy, Sammanda
2010-01-01
Brain-derived neurotrophic factor (BDNF) is critical in synaptic plasticity and in the survival and function of midbrain dopamine neurons. In the present study, we assessed the effects of a partial genetic deletion of BDNF on motor function and dopamine (DA) neurotransmitter measures by comparing (Bdnf+/−) with wildtype mice (WT) at different ages. Bdnf+/ and WT mice had similar body weights until 12 months of age; however, at 21 months, Bdnf+/− mice were significantly heavier than WT mice. Horizontal and vertical motor activity was reduced for Bdnf+/− compared to WT mice; but was not influenced by Age. Performance on an accelerating rotarod declined with age for both genotypes and was exacerbated for Bdnf+/− mice. Body weight did not correlate with any of the three behavioral measures studied. DA neurotransmitter markers indicated no genotypic difference in striatal tyrosine hydroxylase (TH), dopamine transporter (DAT), or vesicular monoamine transporter 2 (VMAT2) immunoreactivity at any age. However, DA transport via DAT (starting at 12 months) and VMAT2 (starting at 3 months) as well as KCl-stimulated DA release were reduced in Bdnf+/− mice and declined with age suggesting an increasingly important role for BDNF in the release and uptake of DA with the aging process. These findings suggest that a BDNF expression deficit becomes more critical to dopaminergic dynamics and related behavioral activities with increasing age. PMID:20860702
NASA Astrophysics Data System (ADS)
Harano, Ken-Ichi; Sasaki, Ken; Nagao, Takashi
2005-07-01
To explore neuro-endocrinal changes in the brain of European honeybee (Apis mellifera) queens before and after mating, we measured the amount of several biogenic amines, including dopamine and its metabolite in the brain of 6- and 12-day-old virgins and 12-day-old mated queens. Twelve-day-old mated queens showed significantly lower amounts of dopamine and its metabolite (N-acetyldopamine) than both 6- and 12-day-old virgin queens, whereas significant differences in the amounts of these amines were not detected between 6- and 12-day-old virgin queens. These results are explained by down-regulation of both synthesis and secretion of brain dopamine after mating. It is speculated that higher amounts of brain dopamine in virgin queens might be involved in activation of ovarian follicles arrested in previtellogenic stages, as well as regulation of their characteristic behaviors.
A computational substrate for incentive salience.
McClure, Samuel M; Daw, Nathaniel D; Montague, P Read
2003-08-01
Theories of dopamine function are at a crossroads. Computational models derived from single-unit recordings capture changes in dopaminergic neuron firing rate as a prediction error signal. These models employ the prediction error signal in two roles: learning to predict future rewarding events and biasing action choice. Conversely, pharmacological inhibition or lesion of dopaminergic neuron function diminishes the ability of an animal to motivate behaviors directed at acquiring rewards. These lesion experiments have raised the possibility that dopamine release encodes a measure of the incentive value of a contemplated behavioral act. The most complete psychological idea that captures this notion frames the dopamine signal as carrying 'incentive salience'. On the surface, these two competing accounts of dopamine function seem incommensurate. To the contrary, we demonstrate that both of these functions can be captured in a single computational model of the involvement of dopamine in reward prediction for the purpose of reward seeking.
Insulin resistance impairs nigrostriatal dopamine function.
Morris, J K; Bomhoff, G L; Gorres, B K; Davis, V A; Kim, J; Lee, P-P; Brooks, W M; Gerhardt, G A; Geiger, P C; Stanford, J A
2011-09-01
Clinical studies have indicated a link between Parkinson's disease (PD) and Type 2 Diabetes. Although preclinical studies have examined the effect of high-fat feeding on dopamine function in brain reward pathways, the effect of diet on neurotransmission in the nigrostriatal pathway, which is affected in PD and parkinsonism, is less clear. We hypothesized that a high-fat diet, which models early-stage Type 2 Diabetes, would disrupt nigrostriatal dopamine function in young adult Fischer 344 rats. Rats were fed a high fat diet (60% calories from fat) or a normal chow diet for 12 weeks. High fat-fed animals were insulin resistant compared to chow-fed controls. Potassium-evoked dopamine release and dopamine clearance were measured in the striatum using in vivo electrochemistry. Dopamine release was attenuated and dopamine clearance was diminished in the high-fat diet group compared to chow-fed rats. Magnetic resonance imaging indicated increased iron deposition in the substantia nigra of the high fat group. This finding was supported by alterations in the expression of several proteins involved in iron metabolism in the substantia nigra in this group compared to chow-fed animals. The diet-induced systemic and basal ganglia-specific changes may play a role in the observed impairment of nigrostriatal dopamine function. Copyright © 2011 Elsevier Inc. All rights reserved.
The role of dopamine in risk taking: a specific look at Parkinson’s disease and gambling
Clark, Crystal A.; Dagher, Alain
2014-01-01
An influential model suggests that dopamine signals the difference between predicted and experienced reward. In this way, dopamine can act as a learning signal that can shape behaviors to maximize rewards and avoid punishments. Dopamine is also thought to invigorate reward seeking behavior. Loss of dopamine signaling is the major abnormality in Parkinson’s disease. Dopamine agonists have been implicated in the occurrence of impulse control disorders in Parkinson’s disease patients, the most common being pathological gambling, compulsive sexual behavior, and compulsive buying. Recently, a number of functional imaging studies investigating impulse control disorders in Parkinson’s disease have been published. Here we review this literature, and attempt to place it within a decision-making framework in which potential gains and losses are evaluated to arrive at optimum choices. We also provide a hypothetical but still incomplete model on the effect of dopamine agonist treatment on these value and risk assessments. Two of the main brain structures thought to be involved in computing aspects of reward and loss are the ventral striatum (VStr) and the insula, both dopamine projection sites. Both structures are consistently implicated in functional brain imaging studies of pathological gambling in Parkinson’s disease. PMID:24910600
Pharmacological examination of trifluoromethyl ring-substituted methcathinone analogs.
Cozzi, Nicholas V; Brandt, Simon D; Daley, Paul F; Partilla, John S; Rothman, Richard B; Tulzer, Andreas; Sitte, Harald H; Baumann, Michael H
2013-01-15
Cathinones are a class of drugs used to treat various medical conditions including depression, obesity, substance abuse, and muscle spasms. Some "designer" cathinones, such as methcathinone, mephedrone, and methylone, are used nonclinically for their stimulant or entactogenic properties. Given the recent rise in nonmedical use of designer cathinones, we aimed to improve understanding of cathinone pharmacology by investigating analogs of methcathinone with a CF(3) substituent at the 2-, 3-, or 4-position of the phenyl ring (TFMAPs). We compared the TFMAPs with methcathinone for effects on monoamine uptake transporter function in vitro and in vivo, and for effects on locomotor activity in rats. At the serotonin transporter (SERT), 3-TFMAP and 4-TFMAP were 10-fold more potent than methcathinone as uptake inhibitors and as releasing agents, but 2-TFMAP was both a weak uptake inhibitor and releaser. At the norepinephrine and dopamine transporters (NET and DAT), all TFMAP isomers were less potent than methcathinone as uptake inhibitors and releasers. In vivo, 4-TFMAP released 5-HT, but not dopamine, in rat nucleus accumbens and did not affect locomotor activity, whereas methcathinone increased both 5-HT and dopamine and produced locomotor stimulation. These experiments reveal that TFMAPs are substrates for the monoamine transporters and that phenyl ring substitution at the 3- or 4-position increases potency at SERT but decreases potency at NET and DAT, resulting in selectivity for SERT. The TFMAPs might have a therapeutic value for a variety of medical and psychiatric conditions and may have lower abuse liability compared to methcathinone due to their decreased DAT activity. Copyright © 2012 Elsevier B.V. All rights reserved.
A Markov State-based Quantitative Kinetic Model of Sodium Release from the Dopamine Transporter
NASA Astrophysics Data System (ADS)
Razavi, Asghar M.; Khelashvili, George; Weinstein, Harel
2017-01-01
The dopamine transporter (DAT) belongs to the neurotransmitter:sodium symporter (NSS) family of membrane proteins that are responsible for reuptake of neurotransmitters from the synaptic cleft to terminate a neuronal signal and enable subsequent neurotransmitter release from the presynaptic neuron. The release of one sodium ion from the crystallographically determined sodium binding site Na2 had been identified as an initial step in the transport cycle which prepares the transporter for substrate translocation by stabilizing an inward-open conformation. We have constructed Markov State Models (MSMs) from extensive molecular dynamics simulations of human DAT (hDAT) to explore the mechanism of this sodium release. Our results quantify the release process triggered by hydration of the Na2 site that occurs concomitantly with a conformational transition from an outward-facing to an inward-facing state of the transporter. The kinetics of the release process are computed from the MSM, and transition path theory is used to identify the most probable sodium release pathways. An intermediate state is discovered on the sodium release pathway, and the results reveal the importance of various modes of interaction of the N-terminus of hDAT in controlling the pathways of release.
Lidow, M S; Goldman-Rakic, P S; Rakic, P; Innis, R B
1989-01-01
An apparent involvement of dopamine in the regulation of cognitive functions and the recognition of a widespread dopaminergic innervation of the cortex have focused attention on the identity of cortical dopamine receptors. However, only the presence and distribution of dopamine D1 receptors in the cortex have been well documented. Comparable information on cortical D2 sites is lacking. We report here the results of binding studies in the cortex and neostriatum of rat and monkey using the D2 selective antagonist [3H]raclopride. In both structures [3H]raclopride bound in a sodium-dependent and saturable manner to a single population of sites with pharmacological profiles of dopamine D2 receptors. D2 sites were present in all regions of the cortex, although their density was much lower than in the neostriatum. The density of these sites in both monkey and, to a lesser extent, rat cortex displayed a rostral-caudal gradient with highest concentrations in the prefrontal and lowest concentrations in the occipital cortex, corresponding to dopamine levels in these areas. Thus, the present study establishes the presence and widespread distribution of dopamine D2 receptors in the cortex. PMID:2548214
[Self-rated Caffeine Sensitivity: Implications for Personalized Sleep Medicine?].
Landolt, Hans Peter
2016-05-11
The prevalence of the insomnia syndrome and the effects of caffeine on sleep are in part genetically determined. Pharmacogenetic studies in humans demonstrate that functional polymorphisms of the genes encoding adenosine A2A receptors and dopamine transporters contribute to individual differences in impaired sleep quality by caffeine. The A2A receptor and dopamine transporter are preferentially expressed in the striatum. Together, these observations suggest that the striatum plays an important role in sleep-wake regulation. Individual caffeine sensitivity and A2A receptor genotype should be taken into account in the development of possible novel adenosine-based pharmacotherapies of sleep-wake disorders and neurodegenerative disorders such as Parkinson's disease. This may permit the prediction of individual drug effects and improve the reliability of clinical trials.
Omelchenko, Natalia; Sesack, Susan R.
2008-01-01
Cholinergic afferents to the ventral tegmental area (VTA) contribute substantially to the regulation of motivated behaviors and the rewarding properties of nicotine. These actions are believed to involve connections with dopamine (DA) neurons projecting to the nucleus accumbens (NAc). However, this direct synaptic link has never been investigated, nor is it known whether cholinergic inputs innervate other populations of DA and GABA neurons, including those projecting to the prefrontal cortex (PFC). We addressed these questions using electron microscopic analysis of retrograde tract-tracing and immunocytochemistry for the vesicular acetylcholine transporter (VAChT) and for tyrosine hydroxylase (TH) and GABA. In tissue labeled for TH, VAChT+ terminals frequently synapsed onto DA mesoaccumbens neurons but only seldom contacted DA mesoprefrontal cells. In tissue labeled for GABA, one third of VAChT+ terminals innervated GABA-labeled dendrites, including both mesoaccumbens and mesoprefrontal populations. VAChT+ synapses onto DA and mesoaccumbens neurons were more commonly of the asymmetric (presumed excitatory) morphological type, whereas VAChT+ synapses onto GABA cells were more frequently symmetric (presumed inhibitory or modulatory). These findings suggest that cholinergic inputs to the VTA mediate complex synaptic actions, with a major portion of this effect likely to involve an excitatory influence on DA mesoaccumbens neurons. As such, the results suggest that natural and drug rewards operating through cholinergic afferents to the VTA have a direct synaptic link to the mesoaccumbens DA neurons that modulate approach behaviors. PMID:16385486
Wang, Yi-Ting; Lin, Hui-Ching; Zhao, Wei-Zhong; Huang, Hui-Ju; Lo, Yu-Li; Wang, Hsiang-Tsui; Maan-Yuh Lin, Anya
2017-01-01
Clinical studies report significant increases in acrolein (an α,β-unsaturated aldehyde) in the substantia nigra (SN) of patients with Parkinson’s disease (PD). In the present study, acrolein-induced neurotoxicity in the nigrostriatal dopaminergic system was investigated by local infusion of acrolein (15, 50, 150 nmoles/0.5 μl) in the SN of Sprague-Dawley rats. Acrolein-induced neurodegeneration of nigrostriatal dopaminergic system was delineated by reductions in tyrosine hydroxylase (TH) levels, dopamine transporter levels and TH-positive neurons in the infused SN as well as in striatal dopamine content. At the same time, apomorphine-induced turning behavior was evident in rats subjected to a unilateral infusion of acrolein in SN. Acrolein was pro-oxidative by increasing 4-hydroxy-2-nonenal and heme oxygenase-1 levels. Furthermore, acrolein conjugated with proteins at lysine residue and induced α-synuclein aggregation in the infused SN. Acrolein was pro-inflammatory by activating astrocytes and microglia. In addition, acrolein activated caspase 1 in the infused SN, suggesting acrolein-induced inflammasome formation. The neurotoxic mechanisms underlying acrolein-induced neurotoxicity involved programmed cell death, including apoptosis and necroptosis. Compared with well-known Parkinsonian neurotoxins, including 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and rotenone which do not exist in the SN of PD patients, our in vivo study shows that acrolein acts as a Parkinsonian neurotoxin in the nigrostriatal dopaminergic system of rat brain. PMID:28401906
The effects of pargyline and 2-phenylethylamine on D1-like dopamine receptor binding.
Berry, Mark D
2011-07-01
2-Phenylethylamine (PE) potentiates neuronal responses to dopamine by an unknown post-synaptic mechanism. Here, whether PE modifies D1-like receptor binding was examined. An unexpected effect of the monoamine oxidase inhibitor pargyline was observed, which did not involve competition for ligand binding. PE did not affect ligand binding in the presence or absence of pargyline. It is concluded that the effect of pargyline does not involve elevation of endogenous PE, and PE effects on dopaminergic neurotransmission are not due to altered D1-like receptor binding.
A highly tunable dopaminergic oscillator generates ultradian rhythms of behavioral arousal
Blum, Ian D; Zhu, Lei; Moquin, Luc; Kokoeva, Maia V; Gratton, Alain; Giros, Bruno; Storch, Kai-Florian
2014-01-01
Ultradian (∼4 hr) rhythms in locomotor activity that do not depend on the master circadian pacemaker in the suprachiasmatic nucleus have been observed across mammalian species, however, the underlying mechanisms driving these rhythms are unknown. We show that disruption of the dopamine transporter gene lengthens the period of ultradian locomotor rhythms in mice. Period lengthening also results from chemogenetic activation of midbrain dopamine neurons and psychostimulant treatment, while the antipsychotic haloperidol has the opposite effect. We further reveal that striatal dopamine levels fluctuate in synchrony with ultradian activity cycles and that dopaminergic tone strongly predicts ultradian period. Our data indicate that an arousal regulating, dopaminergic ultradian oscillator (DUO) operates in the mammalian brain, which normally cycles in harmony with the circadian clock, but can desynchronize when dopamine tone is elevated, thereby producing aberrant patterns of arousal which are strikingly similar to perturbed sleep-wake cycles comorbid with psychopathology. DOI: http://dx.doi.org/10.7554/eLife.05105.001 PMID:25546305
Kohno, Milky; Nurmi, Erika L; Laughlin, Christopher P; Morales, Angelica M; Gail, Emma H; Hellemann, Gerhard S; London, Edythe D
2016-02-01
Brain imaging has revealed links between prefrontal activity during risky decision-making and striatal dopamine receptors. Specifically, striatal dopamine D2-like receptor availability is correlated with risk-taking behavior and sensitivity of prefrontal activation to risk in the Balloon Analogue Risk Task (BART). The extent to which these associations, involving a single neurochemical measure, reflect more general effects of dopaminergic functioning on risky decision making, however, is unknown. Here, 65 healthy participants provided genotypes and performed the BART during functional magnetic resonance imaging. For each participant, dopamine function was assessed using a gene composite score combining known functional variation across five genes involved in dopaminergic signaling: DRD2, DRD3, DRD4, DAT1, and COMT. The gene composite score was negatively related to dorsolateral prefrontal cortical function during risky decision making, and nonlinearly related to earnings on the task. Iterative permutations of all possible allelic variations (7777 allelic combinations) was tested on brain function in an independently defined region of the prefrontal cortex and confirmed empirical validity of the composite score, which yielded stronger association than 95% of all other possible combinations. The gene composite score also accounted for a greater proportion of variability in neural and behavioral measures than the independent effects of each gene variant, indicating that the combined effects of functional dopamine pathway genes can provide a robust assessment, presumably reflecting the cumulative and potentially interactive effects on brain function. Our findings support the view that the links between dopaminergic signaling, prefrontal function, and decision making vary as a function of dopamine signaling capacity.
Concomitant Release of Ventral Tegmental Acetylcholine and Accumbal Dopamine by Ghrelin in Rats
Jerlhag, Elisabet; Janson, Anna Carin; Waters, Susanna; Engel, Jörgen A.
2012-01-01
Ghrelin, an orexigenic peptide, regulates energy balance specifically via hypothalamic circuits. Growing evidence suggest that ghrelin increases the incentive value of motivated behaviours via activation of the cholinergic-dopaminergic reward link. It encompasses the cholinergic afferent projection from the laterodorsal tegmental area (LDTg) to the dopaminergic cells of the ventral tegmental area (VTA) and the mesolimbic dopamine system projecting from the VTA to nucleus accumbens (N.Acc.). Ghrelin receptors (GHS-R1A) are expressed in these reward nodes and ghrelin administration into the LDTg increases accumbal dopamine, an effect involving nicotinic acetylcholine receptors in the VTA. The present series of experiments were undertaken directly to test this hypothesis. Here we show that ghrelin, administered peripherally or locally into the LDTg concomitantly increases ventral tegmental acetylcholine as well as accumbal dopamine release. A GHS-R1A antagonist blocks this synchronous neurotransmitter release induced by peripheral ghrelin. In addition, local perfusion of the unselective nicotinic antagonist mecamylamine into the VTA blocks the ability of ghrelin (administered into the LDTg) to increase N.Acc.-dopamine, but not VTA-acetylcholine. Collectively our data indicate that ghrelin activates the LDTg causing a release of acetylcholine in the VTA, which in turn activates local nicotinic acetylcholine receptors causing a release of accumbal dopamine. Given that a dysfunction in the cholinergic-dopaminergic reward system is involved in addictive behaviours, including compulsive overeating and alcohol use disorder, and that hyperghrelinemia is associated with such addictive behaviours, ghrelin-responsive circuits may serve as a novel pharmacological target for treatment of alcohol use disorder as well as binge eating. PMID:23166710
Cooper, S J; Al-Naser, H A
2006-06-01
The aim of the present study was to determine the behavioural effects of the selective dopamine D1 receptor agonist, SKF 38393, and of the selective dopamine D2/D3 receptor agonist, quinpirole, on the feeding performance of food-deprived rats in a model of food-preference behaviour. The animals were familiarised with a choice between a high-palatability, high-fat, high-sugar food (chocolate biscuits/cookies) and their regular maintenance diet. Following administration of either SKF 38393 (1.0-10.0 mg/kg, s.c.) or quinpirole (0.03-0.3 mg/kg, s.c.), the animals were observed throughout a 15-min test period, and their feeding behaviour was carefully monitored. Other behavioural categories were also observed. The resulting data were subject to a microstructural analysis to determine the loci of the behavioural effects. The results indicated that SKF 38393 and quinpirole had contrasting effects on the preference for the high-palatability chocolate food. SKF 38393 enhanced the preference, whereas quinpirole eliminated it. These data reinforce the view that forebrain dopamine mechanisms are closely involved in responses to high-palatability energy-dense food constituents, including chocolate. The data also indicate that pharmacological characterization is important, such that dopamine receptor subtypes appear to mediate contrasting effects on food preference for a high-fat, high-sugar food. Hence, brain dopamine appears to be involved in potentially complex ways in determining food preferences, and this may carry implications in the growing evidence for a link between brain dopamine and human obesity.
Pharmacological action of DA-9701 on the motility of feline stomach circular smooth muscle.
Nguyen, Thanh Thao; Song, Hyun Ju; Ko, Sung Kwon; Sohn, Uy Dong
2015-03-01
DA-9701, a new prokinetic agent for the treatment of functional dyspepsia, is formulated with Pharbitis semen and Corydalis tuber. This study wasconducted to determine the pharmacological action of DA-9701 and to identify the receptors involved in DA-9701 -induced contractile responsesin the feline gastric corporal, fundic and antral circular smooth muscle. Concentration-response curve to DA-9701 was established. The tissue trips were exposed to methylsergide, ketanserin, ondansetron, GR 113808, atropine and dopamine before administration of DA-9701. The contractile force was determined before and after administration of drugs by a polygraph.DA-9701 enhanced the spontaneous contractile amplitude of antrum, corpus and fundus. However, it did not change the spontaneous contractile frequency of antrum and corpus, but concentration-dependently reduced that of fundus. In the fundus, DA-9701 -induced tonic contractions were inhibited by dopamine, methylsergide, ketanserine, ondansetron or GR 113808 respectively, but not by atropine, indicating that the contractile responses are mediated by multiple receptors: 5-HT2, 5-HT3, 5-HT4, and dopamine receptors. In the corpus, DA-9701-induced contractions were blocked by atropine, dopamine or GR 113808, but not by methysergide, ketanserin or ondansetron, indicating that they are involved in receptors on both, smooth muscles and neurons: 5-HT4 and dopamine receptors. However, contractile responses to DA-9701 are mainly mediated by dopamine receptors in the antrum. These results suggest that DA-9701 has important roles in gastric accommodation by enhancing tonic activity of fundus, and in gastric emptying and gastrointestinal transit by phasic contractions of corpus and antrum mediated by multiple receptors.
Hom, D G; Jiang, D; Hong, E J; Mo, J Q; Andersen, J K
1997-06-01
In vivo administration of either 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or methamphetamine (MA) produces damage to the dopaminergic nervous system which may be due in part to the generation of reactive oxygen species (ROS). The resistance of superoxide dismutase (SOD) over-expressing transgenic mice to the effects of both MPTP and MA suggests the involvement of superoxide in the resulting neurotoxicity of both compounds. Superoxide can be converted by SOD to hydrogen peroxide, which itself can cause cellular degeneration by reacting with free iron to produce highly reactive hydroxyl radicals resulting in damage to proteins, nucleic acids and membrane phospholipids. Hydrogen peroxide has also been reported to be produced via inhibition of NADH dehydrogenase by MPP + formed during oxidation of MPTP by MAO-B and by dopamine auto-oxidation following MA-induced dopamine release from synaptic vesicles within nerve terminals. To test whether hydrogen peroxide is an important factor in the toxicity of either of these two neurotoxins, we created clonal PC12 lines expressing elevated levels of the hydrogen peroxide-reducing enzyme glutathione peroxidase (GSHPx). Elevation of GSHPx levels in PC12 was found to diminish the rise in ROS levels and lipid peroxidation resulting from MA but not MPTP treatment. Elevated levels of GSHPx also appeared to prevent decreases in transport-mediated dopamine uptake produced via MA administration as well as to attenuate toxin-induced cell loss as measured by either MTT reduction or LDH release. Our data, therefore, suggest that hydrogen peroxide production likely contributes to MA toxicity in dopaminergic neurons.
Wakabayashi, Ken T; Bruno, Michael J; Bass, Caroline E; Park, Jinwoo
2016-06-21
The olfactory tubercle (OT), as a component of the ventral striatum, serves as an important multisensory integration center for reward-related processes in the brain. Recent studies show that dense dopaminergic innervation from the ventral tegmental area (VTA) into the OT may play an outsized role in disorders such as psychostimulant addiction and disorders of motivation, increasing recent scientific interest in this brain region. However, due to its anatomical inaccessibility, relative small size, and proximity to other dopamine-rich structures, neurochemical assessments using conventional methods cannot be readily employed. Here, we investigated dopamine (DA) regulation in the OT of urethane-anesthetized rats using in vivo fast-scan voltammetry (FSCV) coupled with carbon-fiber microelectrodes, following optogenetic stimulation of the VTA. The results were compared with DA regulation in the nucleus accumbens (NAc), a structure located adjacent to the OT and which also receives dense DA innervation from the VTA. FSCV coupled with optically evoked release allowed us to investigate the spatial distribution of DA in the OT and characterize OT DA dynamics (release and clearance) with subsecond temporal and micrometer spatial resolution for the first time. In this study, we demonstrated that DA transporters play an important role in regulating DA in the OT. However, the control of extracellular DA by uptake in the OT was less than in the NAc. The difference in DA transmission in the terminal fields of the OT and NAc may be involved in region-specific responses to drugs of abuse and contrasting roles in mediating reward-related behavior.
X-ray structure of the dopamine transporter in complex with tricyclic antidepressant
Penmatsa, Aravind; Wang, Kevin H.; Gouaux, Eric
2013-01-01
Antidepressants targeting Na+/Cl−-coupled neurotransmitter uptake define a major therapeutic strategy to treat clinical depression and neuropathic pain. However, identifying the molecular interactions that underlie the pharmacological activity of these transport inhibitors and thus the mechanism by which the inhibitors lead to increased synaptic neurotransmitter levels has proven elusive. Here we present the crystal structure of the Drosophila melanogaster dopamine transporter (dDAT) at 3.0 Å resolution bound to the tricyclic antidepressant nortriptyline. The transporter is locked in an outward-open conformation with nortriptyline wedged between TMs1/6 and 3/8, blocking the transporter from binding substrate and from isomerizing to an inward facing conformation. While the overall structure of dDAT is similar to that of its prokaryotic relative LeuT, there are multiple distinctions that include a kink in TM12 halfway across the membrane bilayer, a latch-like C-terminal helix that caps the cytoplasmic gate, and a cholesterol molecule wedged within a groove formed by TMs 1a, 5 and 7. Taken together, the dDAT structure reveals the molecular basis for antidepressant action on sodium-coupled neurotransmitter symporters and illuminates critical elements of eukaryotic transporter structure and modulation by lipids, thus expanding our understanding of mechanism and regulation of neurotransmitter uptake at chemical synapses. PMID:24037379
Assar, Nasim; Mahmoudi, Dorna; Farhoudian, Ali; Farhadi, Mohammad Hasan; Fatahi, Zahra; Haghparast, Abbas
2016-10-01
The hippocampus plays a vital role in processing contextual memories and reward related learning tasks, such as conditioned place preference (CPP). Among the neurotransmitters in the hippocampus, dopamine is deeply involved in reward-related processes. This study assessed the role of D1- and D2-like dopamine receptors within the CA1 region of the hippocampus in the acquisition and reinstatement of morphine-CPP. To investigate the role of D1 and D2 receptors in morphine acquisition, the animals received different doses of D1- and/or D2-like dopamine receptor antagonists (SCH23390 and sulpiride, respectively) into the CA1, 5min before the administration of morphine (5mg/kg, subcutaneously) during a 3-days conditioning phase. To evaluate the involvement of these receptors in morphine reinstatement, the animals received different doses of SCH23390 or sulpiride (after extinction period) 5min before the administration of a low dose of morphine (1mg/kg) in order to reinstate the extinguished morphine-CPP. Conditioning scores were recorded by Ethovision software. The results of this study showed that the administration of SCH23390 or sulpiride, significantly decreased the acquisition of morphine-CPP. Besides, the injection of these antagonists before the administration of a priming dose of morphine, following the extinction period, decreased the reinstatement of morphine-CPP in sacrificed rats. However, the effect of sulpiride on the acquisition and reinstatement of morphine-CPP was more significant than that of SCH23390. These findings suggested that D1- and D2-like dopamine receptors in the CA1 are involved in the acquisition and reinstatement of morphine-CPP, and antagonism of these receptors can reduce the rewarding properties of morphine. Copyright © 2016 Elsevier B.V. All rights reserved.
Midde, Narasimha M.; Yuan, Yaxia; Quizon, Pamela M.; Sun, Wei-Lun; Huang, Xiaoqin; Zhan, Chang-Guo; Zhu, Jun
2015-01-01
HIV-1 transactivator of transcription (Tat) protein disrupts the dopamine (DA) neurotransmission by inhibiting DA transporter (DAT) function, leading to increased neurocognitive impairment in HIV-1 infected individuals. Through integrated computational modeling and pharmacological studies, we have demonstrated that mutation of tyrosine470 (Y470H) of human DAT (hDAT) attenuates Tat-induced inhibition of DA uptake by changing the transporter conformational transitions. The present study examined the functional influences of other substitutions at tyrosine470 (Y470F and Y470A) and tyrosine88 (Y88F) and lysine92 (K92M), two other relevant residues for Tat binding to hDAT, in Tat-induced inhibitory effects on DA transport. Y88F, K92M and Y470A attenuated Tat-induced inhibition of DA transport, implicating the functional relevance of these residues for Tat binding to hDAT. Compared to wild type hDAT, Y470A and K92M but not Y88F reduced the maximal velocity of [3H]DA uptake without changes in the Km. Y88F and K92M enhanced IC50 values for DA inhibition of [3H]DA uptake and [3H]WIN35,428 binding but decreased IC50 for cocaine and GBR12909 inhibition of [3H]DA uptake, suggesting that these residues are critical for substrate and these inhibitors. Y470F, Y470A, Y88F and K92M attenuated zinc-induced increase of [3H]WIN35,428 binding. Moreover, only Y470A and K92M enhanced DA efflux relative to wild type hDAT, suggesting mutations of these residues differentially modulate transporter conformational transitions. These results demonstrate Tyr88 and Lys92 along with Tyr470 as functional recognition residues in hDAT for Tat-induced inhibition of DA transport and provide mechanistic insights into identifying target residues on the DAT for Tat binding. PMID:25604666
Molecular dynamics of conformation-specific dopamine transporter-inhibitor complexes.
Jean, Bernandie; Surratt, Christopher K; Madura, Jeffry D
2017-09-01
The recreational psychostimulant cocaine inhibits dopamine reuptake from the synapse, resulting in excessive stimulation of postsynaptic dopamine receptors in brain areas associated with reward and addiction. Cocaine binds to and stabilizes the outward- (extracellular-) facing conformation of the dopamine transporter (DAT) protein, while the low abuse potential DAT inhibitor benztropine prefers the inward- (cytoplasmic-) facing conformation. A correlation has been previously postulated between psychostimulant abuse potential and preference for the outward-facing DAT conformation. The 3β-aryltropane cocaine analogs LX10 and LX11, however, differ only in stereochemistry and share a preference for the outward-facing DAT, yet are reported to vary widely in abuse potential in an animal model. In search of the molecular basis for DAT conformation preference, complexes of cocaine, benztropine, LX10 or LX11 bound to each DAT conformation were subjected to 100ns of all-atom molecular dynamics simulation. Results were consistent with previous findings from cysteine accessibility assays used to assess an inhibitor's DAT conformation preference. The respective 2β- and 2α-substituted phenyltropanes of LX10 and LX11 interacted with hydrophobic regions of the DAT S1 binding site that were inaccessible to cocaine. Solvent accessibility measurements also revealed subtle differences in inhibitor positioning within a given DAT conformation. This work serves to advance our understanding of the conformational selectivity of DAT inhibitors and suggests that MD may be useful in antipsychostimulant therapeutic design. Copyright © 2017 Elsevier Inc. All rights reserved.
Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine Decarboxylase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Q.; Ding, H; Robinson, H
2010-01-01
3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82more » and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.« less
O'Hara, Caitlin B; Keyes, Alexandra; Renwick, Bethany; Leyton, Marco; Campbell, Iain C; Schmidt, Ulrike
2016-01-01
This study investigated whether dopaminergic systems are involved in the motivation to engage in behaviours associated with anorexia nervosa (AN), specifically, the drive to exercise. Women recovered from AN (AN REC, n = 17) and healthy controls (HC, n = 15) were recruited. The acute phenylalanine/tyrosine depletion (APTD) method was used to transiently decrease dopamine synthesis and transmission. The effect of dopamine precursor depletion on drive to exercise was measured using a progressive ratio (PR) exercise breakpoint task. Both groups worked for the opportunity to exercise, and, at baseline, PR breakpoint scores were higher in AN REC than HC. Compared to values on the experimental control session, APTD did not decrease PR breakpoint scores in AN REC, but significantly decreased scores in HC. These data show that women recovered from AN are more motivated to exercise than HC, although in both groups, activity is more reinforcing than inactivity. Importantly, decreasing dopamine does not reduce the motivation to exercise in people recovered from AN, but in contrast, does so in HC. It is proposed that in AN, drive to exercise develops into a behaviour that is largely independent of dopamine mediated reward processes and becomes dependent on cortico-striatal neurocircuitry that regulates automated, habit- or compulsive-like behaviours. These data strengthen the case for the involvement of reward, learning, habit, and dopaminergic systems in the aetiology of AN.
Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens.
Bardo, M T
1998-01-01
Multiple lines of research have implicated the mesolimbic dopamine system in drug reward measured by either the drug self-administration or conditioned place preference paradigm. The present review summarizes recent work that examines the neuropharmacological mechanisms by which drugs impinge on this dopaminergic neural circuitry, as well as other systems that provide input and output circuits to the mesolimbic dopamine system. Studies examining the effect of selective agonist and antagonist drugs administered systemically have indicated that multiple neurotransmitters are involved, including dopamine, serotonin, acetylcholine, glutamate, GABA, and various peptides. Direct microinjection studies have also provided crucial evidence indicating that, in addition to the mesolimbic dopamine system, other structures play a role in drug reward, including the ventral pallidum, amygdala, hippocampus, hypothalamus, and pedunculopontine tegmental nucleus. GABAergic circuitry descending from the nucleus accumbens to the pedunculopontine tegmental nucleus via the ventral pallidum appears to be especially important in directing the behavioral sequelae associated with reward produced by various drugs of abuse. However, activation of the reward circuitry is achieved differently for various drugs of abuse. With amphetamine and cocaine, initiation of reward is controlled within the nucleus accumbens and prefrontal cortex, respectively. With opiates, initiation of reward involves the ventral tegmental area, nucleus accumbens, hippocampus, and hypothalamus. It is not clear presently if these multiple anatomical structures mediate opiate reward by converging on a single output system or multiple output systems.
O’Hara, Caitlin B.; Keyes, Alexandra; Renwick, Bethany; Leyton, Marco; Campbell, Iain C.; Schmidt, Ulrike
2016-01-01
This study investigated whether dopaminergic systems are involved in the motivation to engage in behaviours associated with anorexia nervosa (AN), specifically, the drive to exercise. Women recovered from AN (AN REC, n = 17) and healthy controls (HC, n = 15) were recruited. The acute phenylalanine/tyrosine depletion (APTD) method was used to transiently decrease dopamine synthesis and transmission. The effect of dopamine precursor depletion on drive to exercise was measured using a progressive ratio (PR) exercise breakpoint task. Both groups worked for the opportunity to exercise, and, at baseline, PR breakpoint scores were higher in AN REC than HC. Compared to values on the experimental control session, APTD did not decrease PR breakpoint scores in AN REC, but significantly decreased scores in HC. These data show that women recovered from AN are more motivated to exercise than HC, although in both groups, activity is more reinforcing than inactivity. Importantly, decreasing dopamine does not reduce the motivation to exercise in people recovered from AN, but in contrast, does so in HC. It is proposed that in AN, drive to exercise develops into a behaviour that is largely independent of dopamine mediated reward processes and becomes dependent on cortico-striatal neurocircuitry that regulates automated, habit- or compulsive-like behaviours. These data strengthen the case for the involvement of reward, learning, habit, and dopaminergic systems in the aetiology of AN. PMID:26808920
Is Overeating Behavior Similar to Drug Addiction? (427th Brookhaven Lecture)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Gene-Jack
2007-09-27
The increasing number of obese individuals in the U.S. and other countries world-wide adds urgency to the need to understand the mechanisms underlying pathological overeating. Research by the speaker and others at Brookhaven National Laboratory and elsewhere is compiling evidence that the brain circuits disrupted in obesity are similar to those involved in drug addiction. Using positron emission tomography (PET), the speaker and his colleagues have implicated brain dopamine in the normal and the pathological intake of food by humans. During the 427th Brookhaven Lecture, speaker will review the findings and implications of PET studies of obese subjects and thenmore » compare them to PET research involving drug-addicted individuals. For example, in pathologically obese subjects, it was found that reductions in striatal dopamine D2 receptors are similar to those observed in drug-addicted subjects. The speaker and his colleagues have postulated that decreased levels of dopamine receptors predisposed subjects to search for strongly rewarding reinforcers, be it drugs for the drug-addicted or food for the obese, as a means to compensate for decreased sensitivity of their dopamine-regulated reward circuits. As the speaker will summarize, multiple but similar brain circuits involved in reward, motivation, learning and inhibitory control are disrupted both in drug addiction and obesity, resulting in the need for a multimodal approach to the treatment of obesity.« less
Pineal-mediated inhibition of prolactin cell activity: Investigation of dopaminergic involvement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, D.M.
The present studies in the male Syrian hamster addressed two issues. First, it was of interest to determine if anterior pituitaries of long photoperiod-exposed male hamsters possess dopamine receptors, which are presumably necessary for responsiveness to dopamine. This was accomplished by analysis of {sup 3}H-spiperone binding to anterior pituitary membranes. Second, possible changes in pituitary sensitivity to dopamine were assessed by comparison of dose response curves for the inhibition by dopamine of prolactin release from hemipituitaries incubated in vitro from both long and short photoperiod-exposed animals over a series of time points from three to fifteen weeks. In the secondmore » series of experiments, adult female F344 rats received daily injection of melatonin or saline vehicle. After two weeks, half of the animals were sacrificed for analysis of {sup 3}H-spiperone binding to anterior pituitary membranes, measurement of hypothalamic dopamine turnover and analysis of in vitro pituitary sensitivity to dopamine. The remaining animals received subcutaneous implants containing DES and injections were continued on the same schedule until sacrifice four weeks later for measurement of the same parameters.« less
Theoretical study of the interactions of a graphene-on-Ni(111) composite with dopamine
NASA Astrophysics Data System (ADS)
Yang, Junwei; Yuan, Yanhong; Zhao, Hua
2016-03-01
The physics underlying the interactions between nanomaterials and biomolecules is largely unexplored. In this study, we modelled the interactions of a graphene-on-Ni(111) nanocomposite with dopamine, an important biomolecule with crucial physiological functions in the human brain and body, using density functional theory methods. Stable adsorption of the dopamine molecule was observed on the surface of the graphene-on-Ni(111) composite. The adsorption mechanism was revealed to involve both charge and π-π interactions between the dopamine and graphene when they are in close proximity. Simulated scanning tunnelling microscopy images of dopamine on the surface of the graphene-on-Ni(111) composite, as an application of this nanomaterial, could distinguish one side of the G2 conformation of dopamine from the other conformations as a result of their interactions. Therefore, the graphene-on-Ni(111) composite is expected to have potential as a nanomaterial for detecting single biomolecules. The findings of this study will provide a significant contribution to the fields of nanomaterials and biotechnology, including the development of highly accurate biodevices and biosensors.
Del Bello, Fabio; Sakloth, Farhana; Partilla, John S.; Baumann, Michael H.; Glennon, Richard A.
2015-01-01
N -Methyl-(3,4-methylenedioxyphenyl)-2-aminopropane (MDMA; ‘Ecstasy’; 1) and its β-keto analog methylone (MDMC; 2) are popular drugs of abuse. Little is known about their ring-expanded ethylenedioxy homologs. Here, we prepared N-methyl-(3,4-ethylenedioxyphenyl)-2-aminopropane (EDMA; 3), both of its optical isomers, and β-keto EDMA (i.e., EDMC; 4) to examine their effects at transporters for serotonin (SERT), dopamine (DAT), and norepinephrine (NET). In general, ring-expansion of the methylenedioxy group led to a several-fold reduction in potency at all three transporters. With respect to EDMA (3), S(+)3 was 6-fold, 50-fold, and 8-fold more potent than its R(−) enantiomer at SERT, DAT, and NET, respectively. Overall, in the absence of a β-carbonyl group, the ethylenedioxy (i.e., 1,4-dioxane) substituent seems better accommodated at SERT than at DAT and NET. PMID:26233799
Woodward, Neil D; Cowan, Ronald L; Park, Sohee; Ansari, M Sib; Baldwin, Ronald M; Li, Rui; Doop, Mikisha; Kessler, Robert M; Zald, David H
2011-04-01
Schizotypal personality traits are associated with schizophrenia spectrum disorders, and individuals with schizophrenia spectrum disorders demonstrate increased dopamine transmission in the striatum. The authors sought to determine whether individual differences in normal variation in schizotypal traits are correlated with dopamine transmission in the striatum and in extrastriatal brain regions. Sixty-three healthy volunteers with no history of psychiatric illness completed the Schizotypal Personality Questionnaire and underwent positron emission tomography imaging with [(18)F]fallypride at baseline and after administration of oral d-amphetamine (0.43 mg/kg). Dopamine release, quantified by subtracting each participant's d-amphetamine scan from his or her baseline scan, was correlated with Schizotypal Personality Questionnaire total and factor scores using region-of-interest and voxel-wise analyses. Dopamine release in the striatum was positively correlated with overall schizotypal traits. The association was especially robust in the associative subdivision of the striatum. Voxel-wise analyses identified additional correlations between dopamine release and schizotypal traits in the left middle frontal gyrus and left supramarginal gyrus. Exploratory analyses of Schizotypal Personality Questionnaire factor scores revealed correlations between dopamine release and disorganized schizotypal traits in the striatum, thalamus, medial prefrontal cortex, temporal lobe, insula, and inferior frontal cortex. The association between dopamine signaling and psychosis phenotypes extends to individual differences in normal variation in schizotypal traits and involves dopamine transmission in both striatal and extrastriatal brain regions. Amphetamine-induced dopamine release may be a useful endophenotype for investigating the genetic basis of schizophrenia spectrum disorders.
The role of dopamine in the nucleus accumbens and striatum during sexual behavior in the female rat.
Becker, J B; Rudick, C N; Jenkins, W J
2001-05-01
Dopamine in dialysate from the nucleus accumbens (NAcc) increases during sexual and feeding behavior and after administration of drugs of abuse, even those that do not directly activate dopaminergic systems (e.g., morphine or nicotine). These findings and others have led to hypotheses that propose that dopamine is rewarding, predicts that reinforcement will occur, or attributes incentive salience. Examining increases in dopamine in NAcc or striatum during sexual behavior in female rats provides a unique situation to study these relations. This is because, for the female rat, sexual behavior is associated with an increase in NAcc dopamine and conditioned place preference only under certain testing conditions. This experiment was conducted to determine what factors are important for the increase in dopamine in dialysate from NAcc and striatum during sexual behavior in female rats. The factors considered were the number of contacts by the male, the timing of contacts by the male, or the ability of the female to control contacts by the male. The results indicate that increased NAcc dopamine is dependent on the timing of copulatory stimuli, independent of whether the female rat is actively engaged in regulating this timing. For the striatum, the timing of copulatory behavior influences the magnitude of the increase in dopamine in dialysate, but other factors are also involved. We conclude that increased extracellular dopamine in the NAcc and striatum conveys qualitative or interpretive information about the rewarding value of stimuli. Sexual behavior in the female rat is proposed as a model to determine the role of dopamine in motivated behavior.
Dopamine selectively remediates 'model-based' reward learning: a computational approach.
Sharp, Madeleine E; Foerde, Karin; Daw, Nathaniel D; Shohamy, Daphna
2016-02-01
Patients with loss of dopamine due to Parkinson's disease are impaired at learning from reward. However, it remains unknown precisely which aspect of learning is impaired. In particular, learning from reward, or reinforcement learning, can be driven by two distinct computational processes. One involves habitual stamping-in of stimulus-response associations, hypothesized to arise computationally from 'model-free' learning. The other, 'model-based' learning, involves learning a model of the world that is believed to support goal-directed behaviour. Much work has pointed to a role for dopamine in model-free learning. But recent work suggests model-based learning may also involve dopamine modulation, raising the possibility that model-based learning may contribute to the learning impairment in Parkinson's disease. To directly test this, we used a two-step reward-learning task which dissociates model-free versus model-based learning. We evaluated learning in patients with Parkinson's disease tested ON versus OFF their dopamine replacement medication and in healthy controls. Surprisingly, we found no effect of disease or medication on model-free learning. Instead, we found that patients tested OFF medication showed a marked impairment in model-based learning, and that this impairment was remediated by dopaminergic medication. Moreover, model-based learning was positively correlated with a separate measure of working memory performance, raising the possibility of common neural substrates. Our results suggest that some learning deficits in Parkinson's disease may be related to an inability to pursue reward based on complete representations of the environment. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DeMaro, Joseph A.; Knoten, Amanda; Hoshi, Masato; Pehek, Elizabeth; Johnson, Eugene M.; Gereau, Robert W.
2013-01-01
The loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and consequent depletion of striatal dopamine are known to underlie the motor deficits observed in Parkinson's disease (PD). Adaptive changes in dopaminergic terminals and in postsynaptic striatal neurons can compensate for significant losses of striatal dopamine, resulting in preservation of motor behavior. In addition, compensatory changes independent of striatal dopamine have been proposed based on PD therapies that modulate nondopaminergic circuits within the basal ganglia. We used a genetic strategy to selectively destroy dopaminergic neurons in mice during development to determine the necessity of these neurons for the maintenance of normal motor behavior in adult and aged mice. We find that loss of 90% of SNc dopaminergic neurons and consequent depletion of >95% of striatal dopamine does not result in changes in motor behavior in young-adult or aged mice as evaluated by an extensive array of motor behavior tests. Treatment of aged mutant mice with the dopamine receptor antagonist haloperidol precipitated motor behavior deficits in aged mutant mice, indicating that <5% of striatal dopamine is sufficient to maintain motor function in these mice. We also found that mutant mice exhibit an exaggerated response to l-DOPA compared with control mice, suggesting that preservation of motor function involves sensitization of striatal dopamine receptors. Our results indicate that congenital loss of dopaminergic neurons induces remarkable adaptions in the nigrostriatal system where limited amounts of dopamine in the dorsal striatum can maintain normal motor function. PMID:24155314
Larsen, Mads Breum; Sonders, Mark S.; Mortensen, Ole Valente; Larson, Gaynor A.; Zahniser, Nancy R.; Amara, Susan G.
2011-01-01
The serotonin transporter (SERT) is the principal mechanism for terminating serotonin (5HT) signals in the nervous system and is a site of action for a variety of psychoactive drugs including antidepressants, amphetamines, and cocaine. Here we show that human SERTs (hSERTs) and rat SERTs are capable of robust dopamine (DA) uptake through a process that differs mechanistically from 5HT transport in several unanticipated ways. DA transport by hSERT has a higher maximum velocity than 5HT transport, requires significantly higher Na+ and Cl− concentrations to sustain transport, is inhibited non-competitively by 5HT and is more sensitive to SERT inhibitors, including selective serotonin reuptake inhibitors (SSRIs). We use a thiol reactive methane thiosulfonate (MTS) reagent to modify a conformationally-sensitive cysteine residue to demonstrate that hSERT spends more time in an outward facing conformation when transporting DA than when transporting 5HT. Co-transfection of an inactive or an MTS-sensitive SERT with wild type SERT subunits reveals an absence of cooperative interactions between subunits during DA, but not 5HT transport. To establish the physiological relevance of this mechanism for DA clearance, we show using in vivo high-speed chronoamperometry that SERT has the capacity to clear extracellularly applied DA in the hippocampal CA3 region of anesthetized rats. Together, these observations suggest the possibility that SERT serves as a DA transporter in vivo and highlight the idea that there can be distinct modes of transport of alternative physiological substrates by SERT. PMID:21525301
Dandekar, Manoj P; Luse, Dustin; Hoffmann, Carson; Cotton, Patrick; Peery, Travis; Ruiz, Christian; Hussey, Caroline; Giridharan, Vijayasree V; Soares, Jair C; Quevedo, Joao; Fenoy, Albert J
2017-08-01
Among several potential neuroanatomical targets pursued for deep brain stimulation (DBS) for treating those with treatment-resistant depression (TRD), the superolateral-branch of the medial forebrain bundle (MFB) is emerging as a privileged location. We investigated the antidepressant-like phenotypic and chemical changes associated with reward-processing dopaminergic systems in rat brains after MFB-DBS. Male Wistar rats were divided into three groups: sham-operated, DBS-Off, and DBS-On. For DBS, a concentric bipolar electrode was stereotactically implanted into the right MFB. Exploratory activity and depression-like behavior were evaluated using the open-field and forced-swimming test (FST), respectively. MFB-DBS effects on the dopaminergic system were evaluated using immunoblotting for tyrosine hydroxylase (TH), dopamine transporter (DAT), and dopamine receptors (D1-D5), and high-performance liquid chromatography for quantifying dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in brain homogenates of prefrontal cortex (PFC), hippocampus, amygdala, and nucleus accumbens (NAc). Animals receiving MFB-DBS showed a significant increase in swimming time without alterations in locomotor activity, relative to the DBS-Off (p<0.039) and sham-operated groups (p<0.014), indicating an antidepressant-like response. MFB-DBS led to a striking increase in protein levels of dopamine D2 receptors and DAT in the PFC and hippocampus, respectively. However, we did not observe appreciable differences in the expression of other dopamine receptors, TH, or in the concentrations of dopamine, DOPAC, and HVA in PFC, hippocampus, amygdala, and NAc. This study was not performed on an animal model of TRD. MFB-DBS rescues the depression-like phenotypes and selectively activates expression of dopamine receptors in brain regions distant from the target area of stimulation. Copyright © 2017. Published by Elsevier B.V.
Marcangione, Caterina; Constantin, Annie; Clarke, Paul B S
2010-07-01
A number of drugs and psychological stressors induce brain hyperthermia and increase extracellular dopamine in the caudate-putamen. The present study tested whether caudate-putamen hyperthermia produced by such stimuli is dependent on dopaminergic transmission. Rats were infused with 6-hydroxydopamine unilaterally into the medial forebrain bundle, and after a two-week recovery period, removable thermocouples were used to monitor temperature in the depleted and intact caudate-putamen in freely-moving animals. The indirect dopamine agonist d-amphetamine (1 and 2mg/kg s.c.) increased caudate-putamen temperature, whereas a low dose of the direct agonist apomorphine (0.1mg/kg s.c.) reduced it. Gamma-butyrolactone, which strongly inhibits dopamine release at the dose administered (700mg/kg i.p.), initially reduced and then increased caudate-putamen temperature. Brief (5-10min) presentation of mild stressors, including tail pinch, produced a rapid and transient caudate-putamen hyperthermia. Quantitative (125)I-RTI-55 autoradiography in post-mortem tissue revealed a 97-100% loss of binding to dopamine transporters in the lesioned caudate-putamen. Despite this near-total dopamine denervation, neither basal caudate-putamen temperature, nor any of the observed temperature responses to drugs or mild stressors, was altered. We conclude that in the caudate-putamen, endogenous dopamine is unlikely to modulate temperature significantly at a local level. Copyright 2010 Elsevier Inc. All rights reserved.
Dissociable contribution of prefrontal and striatal dopaminergic genes to learning in economic games
Set, Eric; Saez, Ignacio; Zhu, Lusha; Houser, Daniel E.; Myung, Noah; Zhong, Songfa; Ebstein, Richard P.; Chew, Soo Hong; Hsu, Ming
2014-01-01
Game theory describes strategic interactions where success of players’ actions depends on those of coplayers. In humans, substantial progress has been made at the neural level in characterizing the dopaminergic and frontostriatal mechanisms mediating such behavior. Here we combined computational modeling of strategic learning with a pathway approach to characterize association of strategic behavior with variations in the dopamine pathway. Specifically, using gene-set analysis, we systematically examined contribution of different dopamine genes to variation in a multistrategy competitive game captured by (i) the degree players anticipate and respond to actions of others (belief learning) and (ii) the speed with which such adaptations take place (learning rate). We found that variation in genes that primarily regulate prefrontal dopamine clearance—catechol-O-methyl transferase (COMT) and two isoforms of monoamine oxidase—modulated degree of belief learning across individuals. In contrast, we did not find significant association for other genes in the dopamine pathway. Furthermore, variation in genes that primarily regulate striatal dopamine function—dopamine transporter and D2 receptors—was significantly associated with the learning rate. We found that this was also the case with COMT, but not for other dopaminergic genes. Together, these findings highlight dissociable roles of frontostriatal systems in strategic learning and support the notion that genetic variation, organized along specific pathways, forms an important source of variation in complex phenotypes such as strategic behavior. PMID:24979760
Set, Eric; Saez, Ignacio; Zhu, Lusha; Houser, Daniel E; Myung, Noah; Zhong, Songfa; Ebstein, Richard P; Chew, Soo Hong; Hsu, Ming
2014-07-01
Game theory describes strategic interactions where success of players' actions depends on those of coplayers. In humans, substantial progress has been made at the neural level in characterizing the dopaminergic and frontostriatal mechanisms mediating such behavior. Here we combined computational modeling of strategic learning with a pathway approach to characterize association of strategic behavior with variations in the dopamine pathway. Specifically, using gene-set analysis, we systematically examined contribution of different dopamine genes to variation in a multistrategy competitive game captured by (i) the degree players anticipate and respond to actions of others (belief learning) and (ii) the speed with which such adaptations take place (learning rate). We found that variation in genes that primarily regulate prefrontal dopamine clearance--catechol-O-methyl transferase (COMT) and two isoforms of monoamine oxidase--modulated degree of belief learning across individuals. In contrast, we did not find significant association for other genes in the dopamine pathway. Furthermore, variation in genes that primarily regulate striatal dopamine function--dopamine transporter and D2 receptors--was significantly associated with the learning rate. We found that this was also the case with COMT, but not for other dopaminergic genes. Together, these findings highlight dissociable roles of frontostriatal systems in strategic learning and support the notion that genetic variation, organized along specific pathways, forms an important source of variation in complex phenotypes such as strategic behavior.
Intracellular Methamphetamine Prevents the Dopamine-induced Enhancement of Neuronal Firing*
Saha, Kaustuv; Sambo, Danielle; Richardson, Ben D.; Lin, Landon M.; Butler, Brittany; Villarroel, Laura; Khoshbouei, Habibeh
2014-01-01
The dysregulation of the dopaminergic system is implicated in multiple neurological and neuropsychiatric disorders such as Parkinson disease and drug addiction. The primary target of psychostimulants such as amphetamine and methamphetamine is the dopamine transporter (DAT), the major regulator of extracellular dopamine levels in the brain. However, the behavioral and neurophysiological correlates of methamphetamine and amphetamine administration are unique from one another, thereby suggesting these two compounds impact dopaminergic neurotransmission differentially. We further examined the unique mechanisms by which amphetamine and methamphetamine regulate DAT function and dopamine neurotransmission; in the present study we examined the impact of extracellular and intracellular amphetamine and methamphetamine on the spontaneous firing of cultured midbrain dopaminergic neurons and isolated DAT-mediated current. In dopaminergic neurons the spontaneous firing rate was enhanced by extracellular application of amphetamine > dopamine > methamphetamine and was DAT-dependent. Amphetamine > methamphetamine similarly enhanced DAT-mediated inward current, which was sensitive to isosmotic substitution of Na+ or Cl− ion. Although isosmotic substitution of extracellular Na+ ions blocked amphetamine and methamphetamine-induced DAT-mediated inward current similarly, the removal of extracellular Cl− ions preferentially blocked amphetamine-induced inward current. The intracellular application of methamphetamine, but not amphetamine, prevented the dopamine-induced increase in the spontaneous firing of dopaminergic neurons and the corresponding DAT-mediated inward current. The results reveal a new mechanism for methamphetamine-induced dysregulation of dopaminergic neurons. PMID:24962577
Galanin: A Role in Mesolimbic Dopamine-Mediated Instrumental Behavior?
Robinson, John K.; Brewer, Ariel
2008-01-01
ROBINSON, J.K. and Brewer, A. Galanin: A Role in Mesolimbic-Dopamine Mediated Instrumental Behavior? NEUROSCI BIOBEHAV REV XX(X) XXX-XXX, 2008. The involvement of the neuropeptide galanin in the consumption of the primary “commodities” of food and water is well established. However, the present review describes anatomical and behavioral evidence that suggests that galanin may also modulate ascending mesolimbic dopamine function and thereby play an inhibitory role in the systems by which instrumental behavior is energized toward acquiring primary commodities. General anatomical frameworks for this interaction are presented and future studies that could evaluate it are discussed. PMID:18632153
Monoamine Transporters as Ionotropic Receptors.
De Felice, Louis J
2017-04-01
It is well established that glutamate and GABA signal through both ionotropic and metabotropic receptors. Conversely, it is thought that, with one exception, monoamines (dopamine, serotonin, and norepinephrine) signal via metabotropic receptors. Given their capacity to generate fast-acting currents, I suggest that the monoamine transporters should be considered as ionotropic receptors. Copyright © 2017. Published by Elsevier Ltd.
The neuromodulator of exploration: A unifying theory of the role of dopamine in personality
DeYoung, Colin G.
2013-01-01
The neuromodulator dopamine is centrally involved in reward, approach behavior, exploration, and various aspects of cognition. Variations in dopaminergic function appear to be associated with variations in personality, but exactly which traits are influenced by dopamine remains an open question. This paper proposes a theory of the role of dopamine in personality that organizes and explains the diversity of findings, utilizing the division of the dopaminergic system into value coding and salience coding neurons (Bromberg-Martin et al., 2010). The value coding system is proposed to be related primarily to Extraversion and the salience coding system to Openness/Intellect. Global levels of dopamine influence the higher order personality factor, Plasticity, which comprises the shared variance of Extraversion and Openness/Intellect. All other traits related to dopamine are linked to Plasticity or its subtraits. The general function of dopamine is to promote exploration, by facilitating engagement with cues of specific reward (value) and cues of the reward value of information (salience). This theory constitutes an extension of the entropy model of uncertainty (EMU; Hirsh et al., 2012), enabling EMU to account for the fact that uncertainty is an innate incentive reward as well as an innate threat. The theory accounts for the association of dopamine with traits ranging from sensation and novelty seeking, to impulsivity and aggression, to achievement striving, creativity, and cognitive abilities, to the overinclusive thinking characteristic of schizotypy. PMID:24294198
Abraham, Antony D; Neve, Kim A; Lattal, K Matthew
2016-07-01
Dopamine is critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in appetitive tasks. A parallel and growing literature indicates that dopamine signaling is involved in consolidation of memories into stable representations in aversive tasks such as fear conditioning. Relatively little is known about how dopamine may modulate memories that form during extinction, when organisms learn that the relation between previously associated events is severed. We investigated whether fear and reward extinction share common mechanisms that could be enhanced with dopamine D1/5 receptor activation. Pharmacological activation of dopamine D1/5 receptors (with SKF 81297) enhanced extinction of both cued and contextual fear. These effects also occurred in the extinction of cocaine-induced conditioned place preference, suggesting that the observed effects on extinction were not specific to a particular type of procedure (aversive or appetitive). A cAMP/PKA biased D1 agonist (SKF 83959) did not affect fear extinction, whereas a broadly efficacious D1 agonist (SKF 83822) promoted fear extinction. Together, these findings show that dopamine D1/5 receptor activation is a target for the enhancement of fear or reward extinction.
Striatal dopamine release codes uncertainty in pathological gambling.
Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka; Møller, Arne; Doudet, Doris Jeanne; Gjedde, Albert
2012-10-30
Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain-striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [(11)C]raclopride to measure dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis of dopaminergic sensitivity toward uncertainty, and suggest that dopaminergic sensitivity to uncertainty is pronounced in pathological gambling, but not among non-gambling healthy controls. The findings have implications for understanding dopamine dysfunctions in pathological gambling and addictive behaviors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Adaptations of Presynaptic Dopamine Terminals Induced by Psychostimulant Self-Administration
2015-01-01
A great deal of research has focused on investigating neurobiological alterations induced by chronic psychostimulant use in an effort to describe, understand, and treat the pathology of psychostimulant addiction. It has been known for several decades that dopamine neurotransmission in the nucleus accumbens is integrally involved in the selection and execution of motivated and goal-directed behaviors, and that psychostimulants act on this system to exert many of their effects. As such, a large body of work has focused on defining the consequences of psychostimulant use on dopamine signaling in the striatum as it relates to addictive behaviors. Here, we review presynaptic dopamine terminal alterations observed following self-administration of cocaine and amphetamine, as well as possible mechanisms by which these alterations occur and their impact on the progression of addiction. PMID:25491345
Receptor recruitment: A mechanism for interactions between G protein-coupled receptors
Holtbäck, Ulla; Brismar, Hjalmar; DiBona, Gerald F.; Fu, Michael; Greengard, Paul; Aperia, Anita
1999-01-01
There is a great deal of evidence for synergistic interactions between G protein-coupled signal transduction pathways in various tissues. As two specific examples, the potent effects of the biogenic amines norepinephrine and dopamine on sodium transporters and natriuresis can be modulated by neuropeptide Y and atrial natriuretic peptide, respectively. Here, we report, using a renal epithelial cell line, that both types of modulation involve recruitment of receptors from the interior of the cell to the plasma membrane. The results indicate that recruitment of G protein-coupled receptors may be a ubiquitous mechanism for receptor sensitization and may play a role in the modulation of signal transduction comparable to that of the well established phenomenon of receptor endocytosis and desensitization. PMID:10377404
1990-01-01
dialysis: Direct evidence for the utility of 3-MT measurements as an index ofgenic effect of haloperidol and the ability of the drug to stim- dopamine...S. M. WUERTHELE and K. E. MOORE, Effects of dopaminergic antag- behavior to haloperidol : Possible involvement of prostaglandins. onists on striatal
Desai, Rajeev I.; Grandy, David K.; Lupica, Carl R.
2014-01-01
An N-butyl analog of benztropine, JHW007 [N-(n-butyl)-3α-[bis(4′-fluorophenyl)methoxy]-tropane], binds to dopamine transporters (DAT) but has reduced cocaine-like behavioral effects and antagonizes various effects of cocaine. The present study further examined mechanisms underlying these effects. Cocaine dose-dependently increased locomotion, whereas JHW007 was minimally effective but increased activity 24 hours after injection. JHW007 (3–10 mg/kg) dose-dependently and fully antagonized the locomotor-stimulant effects of cocaine (5–60 mg/kg), whereas N-methyl and N-allyl analogs and the dopamine (DA) uptake inhibitor GBR12909 [1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine dihydrochloride] stimulated activity and failed to antagonize effects of cocaine. JHW007 also blocked the locomotor-stimulant effects of the DAT inhibitor GBR12909 but not stimulation produced by the δ-opioid agonist SNC 80 [4-[(R)-[(2S,5R)-4-allyl-2,5-dimethylpiperazin-1-yl](3-methoxyphenyl)methyl]-N,N-diethylbenzamide], which increases activity through nondopaminergic mechanisms. JHW007 blocked locomotor-stimulant effects of cocaine in both DA D2- and CB1-receptor knockout and wild-type mice, indicating a lack of involvement of these targets. Furthermore, JHW007 blocked effects of cocaine on stereotyped rearing but enhanced stereotyped sniffing, suggesting that interference with locomotion by enhanced stereotypies is not responsible for the cocaine-antagonist effects of JHW007. Time-course data indicate that administration of JHW007 antagonized the locomotor-stimulant effects of cocaine within 10 minutes of injection, whereas occupancy at the DAT, as determined in vivo, did not reach a maximum until 4.5 hours after injection. The σ1-receptor antagonist BD 1008 [N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine dihydrobromide] blocked the locomotor-stimulant effects of cocaine. Overall, these findings suggest that JHW007 has cocaine-antagonist effects that are deviate from its DAT occupancy and that some other mechanism, possibly σ-receptor antagonist activity, may contribute to the cocaine-antagonist effect of JHW007 and like drugs. PMID:24194528
Schmitt, Kyle C; Mamidyala, Sreeman; Biswas, Swati; Dutta, Aloke K; Reith, Maarten E A
2010-03-01
Bivalent ligands--compounds incorporating two receptor-interacting moieties linked by a flexible chain--often exhibit profoundly enhanced binding affinity compared with their monovalent components, implying concurrent binding to multiple sites on the target protein. It is generally assumed that neurotransmitter sodium symporter (NSS) proteins, such as the dopamine transporter (DAT), contain a single domain responsible for recognition of substrate molecules. In this report, we show that molecules possessing two substrate-like phenylalkylamine moieties linked by a progressively longer aliphatic spacer act as progressively more potent DAT inhibitors (rather than substrates). One compound bearing two dopamine (DA)-like pharmacophoric 'heads' separated by an 8-carbon linker achieved an 82-fold gain in inhibition of [(3)H] 2beta-carbomethoxy-3beta-(4-fluorophenyl)-tropane (CFT) binding compared with DA itself; bivalent compounds with a 6-carbon linker and heterologous combinations of DA-, amphetamine- and beta-phenethylamine-like heads all resulted in considerable and comparable gains in DAT affinity. A series of short-chain bivalent-like compounds with a single N-linkage was also identified, the most potent of which displayed a 74-fold gain in binding affinity. Computational modelling of the DAT protein and docking of the two most potent bivalent (-like) ligands suggested simultaneous occupancy of two discrete substrate-binding domains. Assays with the DAT mutants W84L and D313N--previously employed by our laboratory to probe conformation-specific binding of different structural classes of DAT inhibitors--indicated a bias of the bivalent ligands for inward-facing transporters. Our results strongly indicate the existence of multiple DAT substrate-interaction sites, implying that it is possible to design novel types of DAT inhibitors based upon the 'multivalent ligand' strategy.
Rodriguez-Menchaca, Aldo A; Solis Jr, Ernesto; Cameron, Krasnodara; De Felice, Louis J
2012-01-01
BACKGROUND AND PURPOSE Wherever they are located, dopamine transporters (DATs) clear dopamine (DA) from the extracellular milieu to help regulate dopaminergic signalling. Exposure to amphetamine (AMPH) increases extracellular DA in the synaptic cleft, which has been ascribed to DAT reverse transport. Increased extracellular DA prolongs postsynaptic activity and reinforces abuse and hedonic behaviour. EXPERIMENTAL APPROACH Xenopus laevis oocytes expressing human (h) DAT were voltage-clamped and exposed to DA, R(-)AMPH, or S(+)AMPH. KEY RESULTS At -60mV, near neuronal resting potentials, S(+)AMPH induced a depolarizing current through hDAT, which after removing the drug, persisted for more than 30 min. This persistent leak in the absence of S(+)AMPH was in contrast to the currents induced by R(-)AMPH and DA, which returned to baseline immediately after their removal. Our data suggest that S(+)AMPH and Na+ carry the initial S(+)AMPH-induced current, whereas Na+ and Cl- carry the persistent leak current. We propose that the persistent current results from the internal action of S(+)AMPH on hDAT because the temporal effect was consistent with S(+)AMPH influx, and intracellular S(+)AMPH activated the effect. The persistent current was dependent on Na+ and was blocked by cocaine. Intracellular injection of S(+)AMPH also activated a DA-induced persistent leak current. CONCLUSIONS AND IMPLICATIONS We report a hitherto unknown action of S(+)AMPH on hDAT that potentially affects AMPH-induced DA release. We propose that internal S(+)AMPH acts as a molecular stent that holds the transporter open even after external S(+)AMPH is removed. Amphetamine-induced persistent leak currents are likely to influence dopaminergic signalling, DA release mechanisms, and amphetamine abuse. PMID:22014068
Kasture, Ameya; El-Kasaby, Ali; Szöllősi, Daniel; Asjad, H M Mazhar; Grimm, Alexandra; Stockner, Thomas; Hummel, Thomas; Freissmuth, Michael; Sucic, Sonja
2016-09-30
Folding-defective mutants of the human dopamine transporter (DAT) cause a syndrome of infantile dystonia/parkinsonism. Here, we provide a proof-of-principle that the folding deficit is amenable to correction in vivo by two means, the cognate DAT ligand noribogaine and the HSP70 inhibitor, pifithrin-μ. We examined the Drosophila melanogaster (d) mutant dDAT-G108Q, which leads to a sleepless phenotype in flies harboring this mutation. Molecular dynamics simulations suggested an unstable structure of dDAT-G108Q consistent with a folding defect. This conjecture was verified; heterologously expressed dDAT-G108Q and the human (h) equivalent hDAT-G140Q were retained in the endoplasmic reticulum in a complex with endogenous folding sensors (calnexin and HSP70-1A). Incubation of the cells with noribogaine (a DAT ligand selective for the inward-facing state) and/or pifithrin-μ (an HSP70 inhibitor) restored folding of, and hence dopamine transport by, dDAT-G108Q and hDAT-G140Q. The mutated versions of DAT were confined to the cell bodies of the dopaminergic neurons in the fly brain and failed to reach the axonal compartments. Axonal delivery was restored, and sleep time was increased to normal length (from 300 to 1000 min/day) if the dDAT-G108Q-expressing flies were treated with noribogaine and/or pifithrin-μ. Rescuing misfolded versions of DAT by pharmacochaperoning is of therapeutic interest; it may provide opportunities to remedy disorders arising from folding-defective mutants of human DAT and of other related SLC6 transporters. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Kasture, Ameya; El-Kasaby, Ali; Szöllősi, Daniel; Asjad, H. M. Mazhar; Grimm, Alexandra; Stockner, Thomas; Hummel, Thomas; Freissmuth, Michael; Sucic, Sonja
2016-01-01
Folding-defective mutants of the human dopamine transporter (DAT) cause a syndrome of infantile dystonia/parkinsonism. Here, we provide a proof-of-principle that the folding deficit is amenable to correction in vivo by two means, the cognate DAT ligand noribogaine and the HSP70 inhibitor, pifithrin-μ. We examined the Drosophila melanogaster (d) mutant dDAT-G108Q, which leads to a sleepless phenotype in flies harboring this mutation. Molecular dynamics simulations suggested an unstable structure of dDAT-G108Q consistent with a folding defect. This conjecture was verified; heterologously expressed dDAT-G108Q and the human (h) equivalent hDAT-G140Q were retained in the endoplasmic reticulum in a complex with endogenous folding sensors (calnexin and HSP70-1A). Incubation of the cells with noribogaine (a DAT ligand selective for the inward-facing state) and/or pifithrin-μ (an HSP70 inhibitor) restored folding of, and hence dopamine transport by, dDAT-G108Q and hDAT-G140Q. The mutated versions of DAT were confined to the cell bodies of the dopaminergic neurons in the fly brain and failed to reach the axonal compartments. Axonal delivery was restored, and sleep time was increased to normal length (from 300 to 1000 min/day) if the dDAT-G108Q-expressing flies were treated with noribogaine and/or pifithrin-μ. Rescuing misfolded versions of DAT by pharmacochaperoning is of therapeutic interest; it may provide opportunities to remedy disorders arising from folding-defective mutants of human DAT and of other related SLC6 transporters. PMID:27481941
Livingstone, Phil D; Srinivasan, Jayaraman; Kew, James N C; Dawson, Lee A; Gotti, Cecilia; Moretti, Milena; Shoaib, Mohammed; Wonnacott, Susan
2009-02-01
Nicotine enhances attentional and working memory aspects of executive function in the prefrontal cortex (PFC) where dopamine plays a major role. Here, we have determined the nicotinic acetylcholine receptor (nAChR) subtypes that can modulate dopamine release in rat PFC using subtype-selective drugs. Nicotine and 5-Iodo-A-85380 (beta2* selective) elicited [(3)H]dopamine release from both PFC and striatal prisms in vitro and dopamine overflow from medial PFC in vivo. Blockade by dihydro-beta-erythroidine supports the participation of beta2* nAChRs. However, insensitivity of nicotine-evoked [(3)H]dopamine release to alpha-conotoxin-MII in PFC prisms suggests no involvement of alpha6beta2* nAChRs, in contrast to the striatum, and this distinction is supported by immunoprecipitation of nAChR subunits from these tissues. The alpha7 nAChR-selective agonists choline and Compound A also promoted dopamine release from PFC in vitro and in vivo, and their effects were enhanced by the alpha7 nAChR-selective allosteric potentiator PNU-120596 and blocked by specific antagonists. DNQX and MK801 inhibited [(3)H]dopamine release evoked by choline and PNU-120596, suggesting crosstalk between alpha7 nAChRs, glutamate and dopamine in the PFC. In vivo, systemic (but not local) administration of PNU-120596, in the absence of agonist, facilitated dopamine overflow in the medial PFC, consistent with the activation of extracortical alpha7 nAChRs by endogenous acetylcholine or choline. These data establish that both beta2* and alpha7 nAChRs can modulate dopamine release in the PFC in vitro and in vivo. Through their distinct actions on dopamine release, these nAChR subtypes could contribute to executive function, making them specific therapeutic targets for conditions such as schizophrenia and attention deficit hyperactivity disorder.
Evaluation of the Dopamine Hypothesis of ADHD with PET Brain Imaging
Swanson, James
2018-01-24
The Dopamine (DA) Hypothesis of ADHD (Wender, 1971; Levy, 1990) suggests that abnormalities in the synaptic mechanisms of DA transmission may be disrupted, and specific abnormalities in DA receptors and DA transporters (DAT) have been proposed (see Swanson et al, 1998). Early studies with small samples (e.g., n = 6, Dougherty et al, 1999) used single photon emission tomography (SPECT) and the radioligand (123I Altropane) to test a theory that ADHD may be caused by an over expression of DAT and reported 'a 70% increase in age-corrected dopamine transporter density in patients with attention deficit hyperactivity disorder compared with healthy controls' and suggested that treatment with stimulant medication decreased DAT density in ADHD patients and corrected an underlying abnormality (Krause et al, 2000). The potential importance of these findings was noted by Swanson (1999): 'If true, this is a major finding and points the way for new investigations of the primary pharmacological treatment for ADHD (with the stimulant drugs - e.g., methylphenidate), for which the dopamine transporter is the primary site of action. The potential importance of this finding demands special scrutiny'. This has been provided over the past decade using Positron Emission Tomography (PET). Brain imaging studies were conducted at Brookhaven National Laboratory (BNL) in a relatively large sample of stimulant-naive adults assessed for DAT (11C cocaine) density and DA receptors (11C raclopride) availability. These studies (Volkow et al, 2007; Volkow et al, 2009) do not confirm the hypothesis of increased DAT density and suggest the opposite (i.e., decreased rather than increased DAT density), and follow-up after treatment (Wang et al, 2010) does not confirm the hypothesis that therapeutic doses of methylphenidate decrease DAT density and suggests the opposite (i.e., increased rather than decreased DAT density). The brain regions implicated by these PET imaging studies also suggest that a motivation deficit may contribute as much as an attention deficit to the manifestation of behaviors that underlie the symptoms of ADHD.
Dopamine modulates the neural representation of subjective value of food in hungry subjects.
Medic, Nenad; Ziauddeen, Hisham; Vestergaard, Martin D; Henning, Elana; Schultz, Wolfram; Farooqi, I Sadaf; Fletcher, Paul C
2014-12-10
Although there is a rich literature on the role of dopamine in value learning, much less is known about its role in using established value estimations to shape decision-making. Here we investigated the effect of dopaminergic modulation on value-based decision-making for food items in fasted healthy human participants. The Becker-deGroot-Marschak auction, which assesses subjective value, was examined in conjunction with pharmacological fMRI using a dopaminergic agonist and an antagonist. We found that dopamine enhanced the neural response to value in the inferior parietal gyrus/intraparietal sulcus, and that this effect predominated toward the end of the valuation process when an action was needed to record the value. Our results suggest that dopamine is involved in acting upon the decision, providing additional insight to the mechanisms underlying impaired decision-making in healthy individuals and clinical populations with reduced dopamine levels. Copyright © 2014 the authors 0270-6474/14/3416856-09$15.00/0.
Dopamine and anorexia nervosa.
Södersten, P; Bergh, C; Leon, M; Zandian, M
2016-01-01
We have suggested that reduced food intake increases the risk for anorexia nervosa by engaging mesolimbic dopamine neurons, thereby initially rewarding dieting. Recent fMRI studies have confirmed that dopamine neurons are activated in anorexia nervosa, but it is not clear whether this response is due to the disorder or to its resulting nutritional deficit. When the body senses the shortage of nutrients, it rapidly shifts behavior toward foraging for food as a normal physiological response and the mesolimbic dopamine neurons may be involved in that process. On the other hand, the altered dopamine status of anorexics has been suggested to result from a brain abnormality that underlies their complex emotional disorder. We suggest that the outcomes of the treatments that emerge from that perspective remain poor because they target the mental symptoms that are actually the consequences of the food deprivation that accompanies anorexia. On the other hand, a method that normalizes the disordered eating behavior of anorexics results in much better physiological, behavioral, and emotional outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bayersdorfer, Florian; Voigt, Aaron; Schneuwly, Stephan; Botella, José A
2010-10-01
Parkinson's disease has been found to be caused by both, genetic and environmental factors. Despite the diversity of causes involved, a convergent pathogenic mechanism might underlie the special vulnerability of dopaminergic neurons in different forms of Parkinsonism. In recent years, a number of reports have proposed dopamine as a common player responsible in the loss of dopaminergic neurons independent of its etiology. Using RNAi lines we were able to generate flies with drastically reduced dopamine levels in the dopaminergic neurons. Combining these flies with a chemically induced Parkinson model (rotenone) and a familial form of Parkinson (mutant alpha-synuclein) we were able to show a strong reduction of neurotoxicity and a protection of the dopaminergic neurons when cellular dopamine levels were reduced. These results show that dopamine homeostasis plays a central role for the susceptibility of dopaminergic neurons to environmental and genetic factors in in vivo models of Parkinson disease. (c) 2010 Elsevier Inc. All rights reserved.
2017-01-01
Midbrain dopamine neurons recorded in vivo pause their firing in response to reward omission and aversive stimuli. While the initiation of pauses typically involves synaptic or modulatory input, intrinsic membrane properties may also enhance or limit hyperpolarization, raising the question of how intrinsic conductances shape pauses in dopamine neurons. Using retrograde labeling and electrophysiological techniques combined with computational modeling, we examined the intrinsic conductances that shape pauses evoked by current injections and synaptic stimulation in subpopulations of dopamine neurons grouped according to their axonal projections to the nucleus accumbens or dorsal striatum in mice. Testing across a range of conditions and pulse durations, we found that mesoaccumbal and nigrostriatal neurons differ substantially in rebound properties with mesoaccumbal neurons displaying significantly longer delays to spiking following hyperpolarization. The underlying mechanism involves an inactivating potassium (IA) current with decay time constants of up to 225 ms, and small-amplitude hyperpolarization-activated currents (IH), characteristics that were most often observed in mesoaccumbal neurons. Pharmacological block of IA completely abolished rebound delays and, importantly, shortened synaptically evoked inhibitory pauses, thereby demonstrating the involvement of A-type potassium channels in prolonging pauses evoked by GABAergic inhibition. Therefore, these results show that mesoaccumbal and nigrostriatal neurons display differential responses to hyperpolarizing inhibitory stimuli that favors a higher sensitivity to inhibition in mesoaccumbal neurons. These findings may explain, in part, observations from in vivo experiments that ventral tegmental area neurons tend to exhibit longer aversive pauses relative to SNc neurons. SIGNIFICANCE STATEMENT Our study examines rebound, postburst, and synaptically evoked inhibitory pauses in subpopulations of midbrain dopamine neurons. We show that pauses in dopamine neuron firing, evoked by either stimulation of GABAergic inputs or hyperpolarizing current injections, are enhanced by a subclass of potassium conductances that are recruited at voltages below spike threshold. Importantly, A-type potassium currents recorded in mesoaccumbal neurons displayed substantially slower inactivation kinetics, which, combined with weaker expression of hyperpolarization-activated currents, lengthened hyperpolarization-induced delays in spiking relative to nigrostriatal neurons. These results suggest that input integration differs among dopamine neurons favoring higher sensitivity to inhibition in mesoaccumbal neurons and may partially explain in vivo observations that ventral tegmental area neurons exhibit longer aversive pauses relative to SNc neurons. PMID:28219982
Rogers, Robert D
2011-01-01
Neurophysiological experiments in primates, alongside neuropsychological and functional magnetic resonance investigations in humans, have significantly enhanced our understanding of the neural architecture of decision making. In this review, I consider the more limited database of experiments that have investigated how dopamine and serotonin activity influences the choices of human adults. These include those experiments that have involved the administration of drugs to healthy controls, experiments that have tested genotypic influences upon dopamine and serotonin function, and, finally, some of those experiments that have examined the effects of drugs on the decision making of clinical samples. Pharmacological experiments in humans are few in number and face considerable methodological challenges in terms of drug specificity, uncertainties about pre- vs post-synaptic modes of action, and interactions with baseline cognitive performance. However, the available data are broadly consistent with current computational models of dopamine function in decision making and highlight the dissociable roles of dopamine receptor systems in the learning about outcomes that underpins value-based decision making. Moreover, genotypic influences on (interacting) prefrontal and striatal dopamine activity are associated with changes in choice behavior that might be relevant to understanding exploratory behaviors and vulnerability to addictive disorders. Manipulations of serotonin in laboratory tests of decision making in human participants have provided less consistent results, but the information gathered to date indicates a role for serotonin in learning about bad decision outcomes, non-normative aspects of risk-seeking behavior, and social choices involving affiliation and notions of fairness. Finally, I suggest that the role played by serotonin in the regulation of cognitive biases, and representation of context in learning, point toward a role in the cortically mediated cognitive appraisal of reinforcers when selecting between actions, potentially accounting for its influence upon the processing salient aversive outcomes and social choice.
Regulation of bat echolocation pulse acoustics by striatal dopamine.
Tressler, Jedediah; Schwartz, Christine; Wellman, Paul; Hughes, Samuel; Smotherman, Michael
2011-10-01
The ability to control the bandwidth, amplitude and duration of echolocation pulses is a crucial aspect of echolocation performance but few details are known about the neural mechanisms underlying the control of these voice parameters in any mammal. The basal ganglia (BG) are a suite of forebrain nuclei centrally involved in sensory-motor control and are characterized by their dependence on dopamine. We hypothesized that pharmacological manipulation of brain dopamine levels could reveal how BG circuits might influence the acoustic structure of bat echolocation pulses. A single intraperitoneal injection of a low dose (5 mg kg(-1)) of the neurotoxin 1-methyl-4-phenylpyridine (MPTP), which selectively targets dopamine-producing cells of the substantia nigra, produced a rapid degradation in pulse acoustic structure and eliminated the bat's ability to make compensatory changes in pulse amplitude in response to background noise, i.e. the Lombard response. However, high-performance liquid chromatography (HPLC) measurements of striatal dopamine concentrations revealed that the main effect of MPTP was a fourfold increase rather than the predicted decrease in striatal dopamine levels. After first using autoradiographic methods to confirm the presence and location of D(1)- and D(2)-type dopamine receptors in the bat striatum, systemic injections of receptor subtype-specific agonists showed that MPTP's effects on pulse acoustics were mimicked by a D(2)-type dopamine receptor agonist (Quinpirole) but not by a D(1)-type dopamine receptor agonist (SKF82958). The results suggest that BG circuits have the capacity to influence echolocation pulse acoustics, particularly via D(2)-type dopamine receptor-mediated pathways, and may therefore represent an important mechanism for vocal control in bats.
Regulation of bat echolocation pulse acoustics by striatal dopamine
Tressler, Jedediah; Schwartz, Christine; Wellman, Paul; Hughes, Samuel; Smotherman, Michael
2011-01-01
SUMMARY The ability to control the bandwidth, amplitude and duration of echolocation pulses is a crucial aspect of echolocation performance but few details are known about the neural mechanisms underlying the control of these voice parameters in any mammal. The basal ganglia (BG) are a suite of forebrain nuclei centrally involved in sensory-motor control and are characterized by their dependence on dopamine. We hypothesized that pharmacological manipulation of brain dopamine levels could reveal how BG circuits might influence the acoustic structure of bat echolocation pulses. A single intraperitoneal injection of a low dose (5 mg kg–1) of the neurotoxin 1-methyl-4-phenylpyridine (MPTP), which selectively targets dopamine-producing cells of the substantia nigra, produced a rapid degradation in pulse acoustic structure and eliminated the bat's ability to make compensatory changes in pulse amplitude in response to background noise, i.e. the Lombard response. However, high-performance liquid chromatography (HPLC) measurements of striatal dopamine concentrations revealed that the main effect of MPTP was a fourfold increase rather than the predicted decrease in striatal dopamine levels. After first using autoradiographic methods to confirm the presence and location of D1- and D2-type dopamine receptors in the bat striatum, systemic injections of receptor subtype-specific agonists showed that MPTP's effects on pulse acoustics were mimicked by a D2-type dopamine receptor agonist (Quinpirole) but not by a D1-type dopamine receptor agonist (SKF82958). The results suggest that BG circuits have the capacity to influence echolocation pulse acoustics, particularly via D2-type dopamine receptor-mediated pathways, and may therefore represent an important mechanism for vocal control in bats. PMID:21900471
Rocchetti, Jill; Isingrini, Elsa; Dal Bo, Gregory; Sagheby, Sara; Menegaux, Aurore; Tronche, François; Levesque, Daniel; Moquin, Luc; Gratton, Alain; Wong, Tak Pan; Rubinstein, Marcelo; Giros, Bruno
2015-03-15
Dysfunctional mesocorticolimbic dopamine signaling has been linked to alterations in motor and reward-based functions associated with psychiatric disorders. Converging evidence from patients with psychiatric disorders and use of antipsychotics suggests that imbalance of dopamine signaling deeply alters hippocampal functions. However, given the lack of full characterization of a functional mesohippocampal pathway, the precise role of dopamine transmission in memory deficits associated with these disorders and their dedicated therapies is unknown. In particular, the positive outcome of antipsychotic treatments, commonly antagonizing D2 dopamine receptors (D2Rs), on cognitive deficits and memory impairments remains questionable. Following pharmacologic and genetic manipulation of dopamine transmission, we performed anatomic, neurochemical, electrophysiologic, and behavioral investigations to uncover the role of D2Rs in hippocampal-dependent plasticity and learning. Naïve mice (n = 4-21) were used in the different procedures. Dopamine modulated both long-term potentiation and long-term depression in the temporal hippocampus as well as spatial and recognition learning and memory in mice through D2Rs. Although genetic deletion or pharmacologic blockade of D2Rs led to the loss of long-term potentiation expression, the specific genetic removal of presynaptic D2Rs impaired long-term depression and performances on spatial memory tasks. Presynaptic D2Rs in dopamine fibers of the temporal hippocampus tightly modulate long-term depression expression and play a major role in the regulation of hippocampal learning and memory. This direct role of mesohippocampal dopamine input as uncovered here adds a new dimension to dopamine involvement in the physiology underlying deficits associated with neuropsychiatric disorders. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Dopamine Manipulation Affects Response Vigor Independently of Opportunity Cost.
Zénon, Alexandre; Devesse, Sophie; Olivier, Etienne
2016-09-14
Dopamine is known to be involved in regulating effort investment in relation to reward, and the disruption of this mechanism is thought to be central in some pathological situations such as Parkinson's disease, addiction, and depression. According to an influential model, dopamine plays this role by encoding the opportunity cost, i.e., the average value of forfeited actions, which is an important parameter to take into account when making decisions about which action to undertake and how fast to execute it. We tested this hypothesis by asking healthy human participants to perform two effort-based decision-making tasks, following either placebo or levodopa intake in a double blind within-subject protocol. In the effort-constrained task, there was a trade-off between the amount of force exerted and the time spent in executing the task, such that investing more effort decreased the opportunity cost. In the time-constrained task, the effort duration was constant, but exerting more force allowed the subject to earn more substantial reward instead of saving time. Contrary to the model predictions, we found that levodopa caused an increase in the force exerted only in the time-constrained task, in which there was no trade-off between effort and opportunity cost. In addition, a computational model showed that dopamine manipulation left the opportunity cost factor unaffected but altered the ratio between the effort cost and reinforcement value. These findings suggest that dopamine does not represent the opportunity cost but rather modulates how much effort a given reward is worth. Dopamine has been proposed in a prevalent theory to signal the average reward rate, used to estimate the cost of investing time in an action, also referred to as opportunity cost. We contrasted the effect of dopamine manipulation in healthy participants in two tasks, in which increasing response vigor (i.e., the amount of effort invested in an action) allowed either to save time or to earn more reward. We found that levodopa-a synthetic precursor of dopamine-increases response vigor only in the latter situation, demonstrating that, rather than the opportunity cost, dopamine is involved in computing the expected value of effort. Copyright © 2016 the authors 0270-6474/16/369516-10$15.00/0.
The mechanistic basis for noncompetitive ibogaine inhibition of serotonin and dopamine transporters.
Bulling, Simon; Schicker, Klaus; Zhang, Yuan-Wei; Steinkellner, Thomas; Stockner, Thomas; Gruber, Christian W; Boehm, Stefan; Freissmuth, Michael; Rudnick, Gary; Sitte, Harald H; Sandtner, Walter
2012-05-25
Ibogaine, a hallucinogenic alkaloid proposed as a treatment for opiate withdrawal, has been shown to inhibit serotonin transporter (SERT) noncompetitively, in contrast to all other known inhibitors, which are competitive with substrate. Ibogaine binding to SERT increases accessibility in the permeation pathway connecting the substrate-binding site with the cytoplasm. Because of the structural similarity between ibogaine and serotonin, it had been suggested that ibogaine binds to the substrate site of SERT. The results presented here show that ibogaine binds to a distinct site, accessible from the cell exterior, to inhibit both serotonin transport and serotonin-induced ionic currents. Ibogaine noncompetitively inhibited transport by both SERT and the homologous dopamine transporter (DAT). Ibogaine blocked substrate-induced currents also in DAT and increased accessibility of the DAT cytoplasmic permeation pathway. When present on the cell exterior, ibogaine inhibited SERT substrate-induced currents, but not when it was introduced into the cytoplasm through the patch electrode. Similar to noncompetitive transport inhibition, the current block was not reversed by increasing substrate concentration. The kinetics of inhibitor binding and dissociation, as determined by their effect on SERT currents, indicated that ibogaine does not inhibit by forming a long-lived complex with SERT, but rather binds directly to the transporter in an inward-open conformation. A kinetic model for transport describing the noncompetitive action of ibogaine and the competitive action of cocaine accounts well for the results of the present study.
The Mechanistic Basis for Noncompetitive Ibogaine Inhibition of Serotonin and Dopamine Transporters*
Bulling, Simon; Schicker, Klaus; Zhang, Yuan-Wei; Steinkellner, Thomas; Stockner, Thomas; Gruber, Christian W.; Boehm, Stefan; Freissmuth, Michael; Rudnick, Gary; Sitte, Harald H.; Sandtner, Walter
2012-01-01
Ibogaine, a hallucinogenic alkaloid proposed as a treatment for opiate withdrawal, has been shown to inhibit serotonin transporter (SERT) noncompetitively, in contrast to all other known inhibitors, which are competitive with substrate. Ibogaine binding to SERT increases accessibility in the permeation pathway connecting the substrate-binding site with the cytoplasm. Because of the structural similarity between ibogaine and serotonin, it had been suggested that ibogaine binds to the substrate site of SERT. The results presented here show that ibogaine binds to a distinct site, accessible from the cell exterior, to inhibit both serotonin transport and serotonin-induced ionic currents. Ibogaine noncompetitively inhibited transport by both SERT and the homologous dopamine transporter (DAT). Ibogaine blocked substrate-induced currents also in DAT and increased accessibility of the DAT cytoplasmic permeation pathway. When present on the cell exterior, ibogaine inhibited SERT substrate-induced currents, but not when it was introduced into the cytoplasm through the patch electrode. Similar to noncompetitive transport inhibition, the current block was not reversed by increasing substrate concentration. The kinetics of inhibitor binding and dissociation, as determined by their effect on SERT currents, indicated that ibogaine does not inhibit by forming a long-lived complex with SERT, but rather binds directly to the transporter in an inward-open conformation. A kinetic model for transport describing the noncompetitive action of ibogaine and the competitive action of cocaine accounts well for the results of the present study. PMID:22451652
Cameron, Courtney M.; Wightman, R. Mark; Carelli, Regina M.
2014-01-01
Electrophysiological studies show that distinct subsets of nucleus accumbens (NAc) neurons differentially encode information about goal-directed behaviors for intravenous cocaine versus natural (food/water) rewards. Further, NAc rapid dopamine signaling occurs on a timescale similar to phasic cell firing during cocaine and natural reward-seeking behaviors. However, it is not known whether dopamine signaling is reinforcer specific (i.e., is released during responding for only one type of reinforcer) within discrete NAc locations, similar to neural firing dynamics. Here, fast-scan cyclic voltammetry (FSCV) was used to measure rapid dopamine release during multiple schedules involving sucrose reward and cocaine self-administration (n=8 rats) and, in a separate group of rats (n = 6), during a sucrose/food multiple schedule. During the sucrose/cocaine multiple schedule, dopamine increased within seconds of operant responding for both reinforcers. Although dopamine release was not reinforcer specific, more subtle differences were observed in peak dopamine concentration [DA] across reinforcer conditions. Specifically, peak [DA] was higher during the first phase of the multiple schedule, regardless of reinforcer type. Further, the time to reach peak [DA] was delayed during cocaine-responding compared to sucrose. During the sucrose/food multiple schedule, increases in dopamine release were also observed relative to operant responding for both natural rewards. However, peak [DA] was higher relative to responding for sucrose than food, regardless of reinforcer order. Overall, the results reveal the dynamics of rapid dopamine signaling in discrete locations in the NAc across reward conditions, and provide novel insight into the functional role of this system in reward-seeking behaviors. PMID:25174553
Is sexual motivational state linked to dopamine release in the medial preoptic area?
Kleitz-Nelson, H K; Dominguez, J M; Cornil, C A; Ball, G F
2010-04-01
The medial preoptic area (mPOA) is a key site for the dopaminergic enhancement of male sexual behavior. Dopamine release increases in the rat mPOA with mating, supporting the critical stimulatory role played by preoptic dopamine on male sexual behavior. However, it has been questioned whether dopamine is specifically related to the occurrence of male sexual behavior and not simply involved in general arousal. To address this question, we asked whether dopamine release in the mPOA is linked to the production of male sexual behavior in Japanese quail (Coturnix japonica), a species that exhibits a much shorter temporal pattern of copulation than rats and does not have an intermittent organ, resulting in a very different topography of their sexual response. Extracellular samples from the mPOA of adult sexually experienced male quail were collected every 6 min before, during, and after exposure to a female using in vivo microdialysis and analyzed using high-performance liquid chromatography with electrochemical detection. Extracellular dopamine significantly increased in the presence of a female and returned to baseline after removal of the female. However, quail that failed to copulate did not display this increased release. These findings indicate that it is not solely the presence of a female that drives dopamine release in males, but how a male responds to her. Furthermore, in quail that copulated, dopamine release did not change in samples collected during periods of no copulation. Together, these findings support the hypothesis that dopamine action in the mPOA is specifically linked to sexual motivation and not only to copulatory behavior or physical arousal.
Sackett, Deirdre A; Saddoris, Michael P; Carelli, Regina M
2017-01-01
Effective decision-making requires organisms to predict reward values and bias behavior toward the best available option. The mesolimbic dopamine system, including the nucleus accumbens (NAc) shell and core, is involved in this process. Although studies support a role of the shell and core in specific aspects of decision-making (e.g., risk, effort, delay), no studies have directly compared dopamine release dynamics in these subregions to cues exclusively signaling the availability of different reward magnitudes. Here, fast-scan cyclic voltammetry was used to compare rapid dopamine release dynamics in the NAc subregions during a magnitude-based decision-making task. Rats learned that distinct cues signaled the availability of either a small or large reward (one or two sugar pellets), and then were given an opportunity to choose their preferred option. We found that peak dopamine release tracked the more preferred (higher-magnitude) option in both core and shell subregions. Critically, however, overall (i.e., global) dopamine release was significantly higher and longer lasting in the shell and tracked the preferred magnitude during the entire cue period. Further, in the shell (not core), dopamine signaling significantly declined immediately at the lever press for reward but increased during the period of reward consumption. Collectively, the results indicate that although dopamine release in both the core and shell are activated by cues signaling the opportunity to respond for rewards of different magnitudes, dopamine release in the shell plays a differential and unique role in tracking information related to the outcome value of reward.
Karrer, Teresa M; Josef, Anika K; Mata, Rui; Morris, Evan D; Samanez-Larkin, Gregory R
2017-09-01
Many theories of cognitive aging are based on evidence that dopamine (DA) declines with age. Here, we performed a systematic meta-analysis of cross-sectional positron emission tomography and single-photon emission-computed tomography studies on the average effects of age on distinct DA targets (receptors, transporters, or relevant enzymes) in healthy adults (N = 95 studies including 2611 participants). Results revealed significant moderate to large, negative effects of age on DA transporters and receptors. Age had a significantly larger effect on D1- than D2-like receptors. In contrast, there was no significant effect of age on DA synthesis capacity. The average age reductions across the DA system were 3.7%-14.0% per decade. A meta-regression found only DA target as a significant moderator of the age effect. This study precisely quantifies prior claims of reduced DA functionality with age. It also identifies presynaptic mechanisms (spared synthesis capacity and reduced DA transporters) that may partially account for previously unexplained phenomena whereby older adults appear to use dopaminergic resources effectively. Recommendations for future studies including minimum required samples sizes are provided. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Gotzes, F; Balfanz, S; Baumann, A
1994-01-01
Members of the superfamily of G-protein coupled receptors share significant similarities in sequence and transmembrane architecture. We have isolated a Drosophila homologue of the mammalian dopamine receptor family using a low stringency hybridization approach. The deduced amino acid sequence is approximately 70% homologous to the human D1/D5 receptors. When expressed in HEK 293 cells, the Drosophila receptor stimulates cAMP production in response to dopamine application. This effect was mimicked by SKF 38393, a specific D1 receptor agonist, but inhibited by dopaminergic antagonists such as butaclamol and flupentixol. In situ hybridization revealed that the Drosophila dopamine receptor is highly expressed in the somata of the optic lobes. This suggests that the receptor might be involved in the processing of visual information and/or visual learning in invertebrates.
DOPAMINE AND FOOD ADDICTION: LEXICON BADLY NEEDED
Salamone, John D.; Correa, Mercè
2012-01-01
Over the last few years, the concept of food addiction has become a common feature in the scientific literature, as well as the popular press. Nevertheless, the use of the term “addiction” to describe pathological aspects of food intake in humans remains controversial, and even among those who affirm the validity of the concept, there is considerable disagreement about its utility for explaining the increasing prevalence of obesity throughout much of the world. An examination of the literature on food addiction indicates that mesolimbic and nigrostriatal dopamine systems often are cited as mechanisms that contribute to the establishment of food addiction. However, in reviewing this literature, it is important to have a detailed consideration of the complex nature of dopaminergic involvement in motivational processes. For example, although it is often stated that mesolimbic dopamine mediates “reward”, there is no standard or consistent technical meaning of this term. Moreover, there is a persistent tendency to link dopamine transmission with pleasure or hedonia, as opposed to other aspects of motivation or learning. The present paper provides a critical discussion of some aspects of the food addiction literature, viewed through the lens of recent findings and current theoretical views of dopaminergic involvement in food motivation. Furthermore, compulsive food intake and binge eating will be considered from an evolutionary perspective, in terms of the motivational subsystems that are involved in adaptive patterns of food consumption and seeking behaviors, and a consideration of how these could be altered in pathological conditions. PMID:23177385
Baumann, Otto; Dames, Petra; Kühnel, Dana; Walz, Bernd
2002-01-01
Background The cockroach salivary gland consists of secretory acini with peripheral ion-transporting cells and central protein-producing cells, an extensive duct system, and a pair of reservoirs. Salivation is controled by serotonergic and dopaminergic innervation. Serotonin stimulates the secretion of a protein-rich saliva, dopamine causes the production of a saliva without proteins. These findings suggest a model in which serotonin acts on the central cells and possibly other cell types, and dopamine acts selectively on the ion-transporting cells. To examine this model, we have analyzed the spatial relationship of dopaminergic and serotonergic nerve fibers to the various cell types. Results The acinar tissue is entangled in a meshwork of serotonergic and dopaminergic varicose fibers. Dopaminergic fibers reside only at the surface of the acini next to the peripheral cells. Serotonergic fibers invade the acini and form a dense network between central cells. Salivary duct segments close to the acini are locally associated with dopaminergic and serotonergic fibers, whereas duct segments further downstream have only dopaminergic fibers on their surface and within the epithelium. In addition, the reservoirs have both a dopaminergic and a serotonergic innervation. Conclusion Our results suggest that dopamine is released on the acinar surface, close to peripheral cells, and along the entire duct system. Serotonin is probably released close to peripheral and central cells, and at initial segments of the duct system. Moreover, the presence of serotonergic and dopaminergic fiber terminals on the reservoir indicates that the functions of this structure are also regulated by dopamine and serotonin. PMID:12095424
Baumann, Otto; Dames, Petra; Kühnel, Dana; Walz, Bernd
2002-06-24
The cockroach salivary gland consists of secretory acini with peripheral ion-transporting cells and central protein-producing cells, an extensive duct system, and a pair of reservoirs. Salivation is controlled by serotonergic and dopaminergic innervation. Serotonin stimulates the secretion of a protein-rich saliva, dopamine causes the production of a saliva without proteins. These findings suggest a model in which serotonin acts on the central cells and possibly other cell types, and dopamine acts selectively on the ion-transporting cells. To examine this model, we have analyzed the spatial relationship of dopaminergic and serotonergic nerve fibers to the various cell types. The acinar tissue is entangled in a meshwork of serotonergic and dopaminergic varicose fibers. Dopaminergic fibers reside only at the surface of the acini next to the peripheral cells. Serotonergic fibers invade the acini and form a dense network between central cells. Salivary duct segments close to the acini are locally associated with dopaminergic and serotonergic fibers, whereas duct segments further downstream have only dopaminergic fibers on their surface and within the epithelium. In addition, the reservoirs have both a dopaminergic and a serotonergic innervation. Our results suggest that dopamine is released on the acinar surface, close to peripheral cells, and along the entire duct system. Serotonin is probably released close to peripheral and central cells, and at initial segments of the duct system. Moreover, the presence of serotonergic and dopaminergic fiber terminals on the reservoir indicates that the functions of this structure are also regulated by dopamine and serotonin.
Lai, Yu-Ting; Tsai, Yen-Ping N; Cherng, Chianfang G; Ke, Jing-Jer; Ho, Ming-Che; Tsai, Chia-Wen; Yu, Lung
2009-04-01
Systemic lipopolysaccharide (LPS) treatment may affect methamphetamine (MA)-induced nigrostriatal dopamine (DA) depletion. This study was undertaken to determine the critical time window for the protective effects of LPS treatment and the underlying mechanisms. An LPS injection (1 mg/kg) 72 h before or 2 h after MA treatment [three consecutive, subcutaneous injections of MA (10 mg/kg each) at 2-h intervals] diminished the MA-induced DA depletion in mouse striatum. Such an LPS-associated effect was independent of MA-produced hyperthermia. TNF-alpha, IL-1beta, IL-6 expressions were all elevated in striatal tissues following a systemic injection with LPS, indicating that peripheral LPS treatment affected striatal pro-inflammatory cytokine expression. Striatal TNF-alpha expression was dramatically increased at 72 and 96 h after the MA treatment, while such TNF-alpha elevation was abolished by the LPS pretreatment protocol. Moreover, MA-produced activation of nuclear NFkappaB, a transcription factor following TNF-alpha activation, in striatum was abolished by the LPS (1 mg/kg) pretreatment. Furthermore, thalidomide, a TNF-alpha antagonist, treatment abolished the LPS pretreatment-associated protective effects. Pretreatment with mouse recombinant TNF-alpha in striatum diminished the MA-produced DA depletion. Finally, single LPS treatment caused a rapid down-regulation of dopamine transporter (DAT) in striatum. Taken together, we conclude that peripheral LPS treatment protects nigrostriatal DA neurons against MA-induced toxicity, in part, by reversing elevated TNF-alpha expression and subsequent signaling cascade and causing a rapid DAT down-regulation in striatum.
Psychoactive “bath salts”: not so soothing
Baumann, Michael H.; Partilla, John S.; Lehner, Kurt R.
2012-01-01
Recently there has been a dramatic rise in the abuse of so-called “bath salts” products that are purchased as legal alternatives to illicit drugs like cocaine and 3,4-methylenedioxymethamphetamine (MDMA). Baths salts contain one or more synthetic derivatives of the naturally-occurring stimulant cathinone. Low doses of bath salts produce euphoria and increase alertness, but high doses or chronic use can cause serious adverse effects such as hallucinations, delirium, hyperthermia and tachycardia. Owing to the risks posed by bath salts, the governments of many countries have made certain cathinones illegal, namely: 4-methylmethcathinone (mephedrone), 3,4-methylenedioxymethcathinone (methylone) and 3,4-methylenedioxypyrovalerone (MDPV). Similar to other psychomotor stimulants, synthetic cathinones target plasma membrane transporters for dopamine (i.e., DAT), norepinephrine (i.e., NET) and serotonin (i.e, SERT). Mephedrone and methylone act as non-selective transporter substrates, thereby stimulating non-exocytotic release of dopamine, norepinephrine and serotonin. By contrast, MDPV acts as a potent blocker at DAT and NET, with little effect at SERT. Administration of mephedrone or methylone to rats increases extracellular concentrations of dopamine and serotonin in the brain, analogous to the effects of MDMA. Not surprisingly, synthetic cathinones elicit locomotor activation in rodents. Stimulation of dopamine transmission by synthetic cathinones predicts a high potential for addiction and may underlie clinical adverse effects. As popular synthetic cathinones are rendered illegal, new replacement cathinones are appearing in the marketplace. More research on the pharmacology and toxicology of abused cathinones is needed to inform public health policy and develop strategies for treating medical consequence of bath salts abuse. PMID:23178799
SPECT neuroimaging and neuropsychological functions in different stages of Parkinson's disease.
Paschali, Anna; Messinis, Lambros; Kargiotis, Odysseas; Lakiotis, Velissarios; Kefalopoulou, Zinovia; Constantoyannis, Costantinos; Papathanasopoulos, Panagiotis; Vassilakos, Pavlos
2010-06-01
The present study investigated differences and associations between cortical perfusion, nigrostriatal dopamine pathway and neuropsychological functions in different stages of Parkinson's disease (PD). We recruited 53 non-demented PD patients divided into four groups according to the Hoehn and Yahr (HY) staging system and 20 healthy controls who were used in the comparison of the neuropsychological findings. Each patient underwent two separate brain single photon emission computed tomography (SPECT) studies (perfusion and dopamine transporter binding) as well as neuropsychological evaluation. Perfusion images of each patient were quantified and compared with a normative database provided by the NeuroGam software manufacturers. Mean values obtained from the cortical areas and neuropsychological measures in the different groups were also compared by analysis of covariance (ANCOVA) controlling for disease duration and educational level. We found cognitive deficits especially in the late PD stages (HY 3, 4 and 5) compared to the early stages (HY 1 and 2) and associations between cognitive decrements and cortical perfusion deterioration mainly in the frontal and posterior cortical areas. Compared with controls, PD patients showed impairments of cognition and cerebral perfusion that increased with clinical severity. Furthermore, we found a significant correlation between the performance on the phonemic fluency task and regional cerebral blood flow (rCBF) in the left frontal lobe. Dopamine transporter binding in the left caudate nucleus significantly correlated with blood flow in the left dorsolateral prefrontal cortex (DLPFC), but not with measures of executive functions. There are significant cognitive and perfusion deficits associated with PD progression, implying a multifactorial neurodegeneration process apart from dopamine depletion in the substantia nigra pars compacta (SNc).
Impulse control disorders in Parkinson's disease: decreased striatal dopamine transporter levels.
Voon, Valerie; Rizos, Alexandra; Chakravartty, Riddhika; Mulholland, Nicola; Robinson, Stephanie; Howell, Nicholas A; Harrison, Neil; Vivian, Gill; Ray Chaudhuri, K
2014-02-01
Impulse control disorders are commonly associated with dopaminergic therapy in Parkinson's disease (PD). PD patients with impulse control disorders demonstrate enhanced dopamine release to conditioned cues and a gambling task on [(11)C]raclopride positron emission tomography (PET) imaging and enhanced ventral striatal activity to reward on functional MRI. We compared PD patients with impulse control disorders and age-matched and gender-matched controls without impulse control disorders using [(123)I]FP-CIT (2β-carbomethoxy-3β-(4-iodophenyl)tropane) single photon emission computed tomography (SPECT), to assess striatal dopamine transporter (DAT) density. The [(123)I]FP-CIT binding data in the striatum were compared between 15 PD patients with and 15 without impulse control disorders using independent t tests. Those with impulse control disorders showed significantly lower DAT binding in the right striatum with a trend in the left (right: F(1,24)=5.93, p=0.02; left: F(1,24)=3.75, p=0.07) compared to controls. Our findings suggest that greater dopaminergic striatal activity in PD patients with impulse control disorders may be partly related to decreased uptake and clearance of dopamine from the synaptic cleft. Whether these findings are related to state or trait effects is not known. These findings dovetail with reports of lower DAT levels secondary to the effects of methamphetamine and alcohol. Although any regulation of DAT by antiparkinsonian medication appears to be modest, PD patients with impulse control disorders may be differentially sensitive to regulatory mechanisms of DAT expression by dopaminergic medications.
Impulse control disorders in Parkinson's disease: decreased striatal dopamine transporter levels
Voon, Valerie; Rizos, Alexandra; Chakravartty, Riddhika; Mulholland, Nicola; Robinson, Stephanie; Howell, Nicholas A; Harrison, Neil; Vivian, Gill; Ray Chaudhuri, K
2014-01-01
Objective Impulse control disorders are commonly associated with dopaminergic therapy in Parkinson's disease (PD). PD patients with impulse control disorders demonstrate enhanced dopamine release to conditioned cues and a gambling task on [11C]raclopride positron emission tomography (PET) imaging and enhanced ventral striatal activity to reward on functional MRI. We compared PD patients with impulse control disorders and age-matched and gender-matched controls without impulse control disorders using [123I]FP-CIT (2β-carbomethoxy-3β-(4-iodophenyl)tropane) single photon emission computed tomography (SPECT), to assess striatal dopamine transporter (DAT) density. Methods The [123I]FP-CIT binding data in the striatum were compared between 15 PD patients with and 15 without impulse control disorders using independent t tests. Results Those with impulse control disorders showed significantly lower DAT binding in the right striatum with a trend in the left (right: F(1,24)=5.93, p=0.02; left: F(1,24)=3.75, p=0.07) compared to controls. Conclusions Our findings suggest that greater dopaminergic striatal activity in PD patients with impulse control disorders may be partly related to decreased uptake and clearance of dopamine from the synaptic cleft. Whether these findings are related to state or trait effects is not known. These findings dovetail with reports of lower DAT levels secondary to the effects of methamphetamine and alcohol. Although any regulation of DAT by antiparkinsonian medication appears to be modest, PD patients with impulse control disorders may be differentially sensitive to regulatory mechanisms of DAT expression by dopaminergic medications. PMID:23899625
Optimizing the Temporal Resolution of Fast-Scan Cyclic Voltammetry
2012-01-01
Electrochemical detection with carbon-fiber microelectrodes has become an established method to monitor directly the release of dopamine from neurons and its uptake by the dopamine transporter. With constant potential amperometry (CPA), the measured current provides a real time view of the rapid concentration changes, but the method lacks chemical identification of the monitored species and markedly increases the difficulty of signal calibration. Monitoring with fast-scan cyclic voltammetry (FSCV) allows species identification and concentration measurements but often exhibits a delayed response time due to the time-dependent adsorption/desorption of electroactive species at the electrode. We sought to improve the temporal resolution of FSCV to make it more comparable to CPA by increasing the waveform repetition rate from 10 to 60 Hz with uncoated carbon-fiber electrodes. The faster acquisition led to diminished time delays of the recordings that tracked more closely with CPA measurements. The measurements reveal that FSCV at 10 Hz underestimates the normal rate of dopamine uptake by about 18%. However, FSCV collection at 10 and 60 Hz provide identical results when a dopamine transporter (DAT) blocker such as cocaine is bath applied. To verify further the utility of this method, we used transgenic mice that overexpress DAT. After accounting for the slight adsorption delay time, FSCV at 60 Hz adequately monitored the increased uptake rate that arose from overexpression of DAT and, again, was similar to CPA results. Furthermore, the utility of collecting data at 60 Hz was verified in an anesthetized rat by using a higher scan rate (2400 V/s) to increase sensitivity and the overall signal. PMID:22708011
Physical exercise-induced fatigue: the role of serotonergic and dopaminergic systems
Cordeiro, L.M.S.; Rabelo, P.C.R.; Moraes, M.M.; Teixeira-Coelho, F.; Coimbra, C.C.; Wanner, S.P.; Soares, D.D.
2017-01-01
Brain serotonin and dopamine are neurotransmitters related to fatigue, a feeling that leads to reduced intensity or interruption of physical exercises, thereby regulating performance. The present review aims to present advances on the understanding of fatigue, which has recently been proposed as a defense mechanism instead of a “physiological failure” in the context of prolonged (aerobic) exercises. We also present recent advances on the association between serotonin, dopamine and fatigue. Experiments with rodents, which allow direct manipulation of brain serotonin and dopamine during exercise, clearly indicate that increased serotoninergic activity reduces performance, while increased dopaminergic activity is associated with increased performance. Nevertheless, experiments with humans, particularly those involving nutritional supplementation or pharmacological manipulations, have yielded conflicting results on the relationship between serotonin, dopamine and fatigue. The only clear and reproducible effect observed in humans is increased performance in hot environments after treatment with inhibitors of dopamine reuptake. Because the serotonergic and dopaminergic systems interact with each other, the serotonin-to-dopamine ratio seems to be more relevant for determining fatigue than analyzing or manipulating only one of the two transmitters. Finally, physical training protocols induce neuroplasticity, thus modulating the action of these neurotransmitters in order to improve physical performance. PMID:29069229
α-synuclein and synapsin III cooperatively regulate synaptic function in dopamine neurons.
Zaltieri, Michela; Grigoletto, Jessica; Longhena, Francesca; Navarria, Laura; Favero, Gaia; Castrezzati, Stefania; Colivicchi, Maria Alessandra; Della Corte, Laura; Rezzani, Rita; Pizzi, Marina; Benfenati, Fabio; Spillantini, Maria Grazia; Missale, Cristina; Spano, PierFranco; Bellucci, Arianna
2015-07-01
The main neuropathological features of Parkinson's disease are dopaminergic nigrostriatal neuron degeneration, and intraneuronal and intraneuritic proteinaceous inclusions named Lewy bodies and Lewy neurites, respectively, which mainly contain α-synuclein (α-syn, also known as SNCA). The neuronal phosphoprotein synapsin III (also known as SYN3), is a pivotal regulator of dopamine neuron synaptic function. Here, we show that α-syn interacts with and modulates synapsin III. The absence of α-syn causes a selective increase and redistribution of synapsin III, and changes the organization of synaptic vesicle pools in dopamine neurons. In α-syn-null mice, the alterations of synapsin III induce an increased locomotor response to the stimulation of synapsin-dependent dopamine overflow, despite this, these mice show decreased basal and depolarization-dependent striatal dopamine release. Of note, synapsin III seems to be involved in α-syn aggregation, which also coaxes its increase and redistribution. Furthermore, synapsin III accumulates in the caudate and putamen of individuals with Parkinson's disease. These findings support a reciprocal modulatory interaction of α-syn and synapsin III in the regulation of dopamine neuron synaptic function. © 2015. Published by The Company of Biologists Ltd.
A Novel Perspective on Dopaminergic Processing of Human Addiction.
Badgaiyan, Rajendra D
2013-01-01
Converging evidence from clinical, animal, and neuroimaging experiments suggests that the addictive behavior is associated with dysregulated dopamine neurotransmission. The precise role of dopamine in establishment and maintenance of addiction however is unclear. In this context animal studies on the brain reward system and the associative memory processing provide a novel insight. It was shown that both processing involve dopamine neurotransmission and both are disrupted in addiction. These findings indicate that dysregulated dopamine neurotransmission alters the brain processing of not only the reward system but also that of the memory of association between an addictive substance and reward. These alterations lead to maladaptive motivational behavior leading to chemical dependency. This concept however is based mostly on the data obtained in laboratory animals because of the paucity of human data. Due to lack of a reliable technique to study neurotransmission in the live human brain, it has been a problem to study the role of dopamine in human volunteers. A recently developed dynamic molecular imaging technique however, provides an opportunity to study these concepts in human volunteers because the technique allows detection, mapping and measurement of dopamine released in the live human brain during task performance.
Weisel-Eichler, A; Libersat, F
2002-05-01
The venom of the parasitoid wasp Ampulex compressa induces long-lasting hypokinesia in the cockroach prey. Previous work indicates that the venom acts in the subesophageal ganglion to indirectly affect modulation of thoracic circuits for locomotion. However, the target of the venom in the subesophageal ganglion, and the mechanism by which the venom achieves its effects are as yet unknown. While the stung cockroaches appear generally lethargic, not all behaviors were affected, indicating that the venom targets specific motor systems and not behavior in general. Stung cockroaches were observed "freezing" in abnormal positions. Reserpine, which depletes monoamines, mimics the behavioral effects of the venom. We treated cockroaches with antagonists to dopamine and octopamine receptors, and found that the dopamine system is required for normal escape response. Dopamine injection induces prolonged grooming in normal cockroaches, but not in stung, suggesting that the venom is affecting dopamine receptors, or targets downstream of these receptors, in the subesophageal ganglion. This dopamine blocking effect fades slowly over the course of several weeks, similar to the time course of recovery from hypokinesia. The similarity in the time courses suggests that the mechanism underlying the hypokinesia may be the block of the dopamine receptors.
Individual differences and vulnerability to drug addiction: a focus on the endocannabinoid system.
Sagheddu, Claudia; Melis, Miriam
2015-01-01
Vulnerability to drug addiction depends upon the interactions between the biological makeup of the individual, the environment, and age. These interactions are complex and difficult to tease apart. Since dopamine is involved in the rewarding effects of drugs of abuse, it is postulated that innate differences in mesocorticolimbic pathway can influence the response to drug exposure. In particular, higher and lower expression of dopamine D2 receptors in the ventral striatum (i.e. a marker of dopamine function) has been considered a putative protective and a risk factor, respectively, that can influence one's susceptibility to continued drug abuse as well as the transition to addiction. This phenomenon, which is phylogenetically preserved, appears to be a compensatory change to increased impulse activity of midbrain dopamine neurons. Hence, dopamine neuronal excitability plays a fundamental role in the diverse stages of the drug addiction cycle. In this review, a framework for the evidence that modulation of dopamine neuronal activity plays in the context of vulnerability to drug addiction will be presented. Furthermore, since endogenous cannabinoids serve as retrograde messengers to shape afferent neuronal activity in a short- and long-lasting fashion, their role in individual differences and vulnerability to drug addiction will be discussed.
ERIC Educational Resources Information Center
Guzman-Ramos, Kioko; Moreno-Castilla, Perla; Castro-Cruz, Monica; McGaugh, James L.; Martinez-Coria, Hilda; LaFerla, Frank M.; Bermudez-Rattoni, Federico
2012-01-01
Previous findings indicate that the acquisition and consolidation of recognition memory involves dopaminergic activity. Although dopamine deregulation has been observed in Alzheimer's disease (AD) patients, the dysfunction of this neurotransmitter has not been investigated in animal models of AD. The aim of this study was to assess, by in vivo…
Ladenheim, B; Krasnova, I N; Deng, X; Oyler, J M; Polettini, A; Moran, T H; Huestis, M A; Cadet, J L
2000-12-01
Increasing evidence implicates apoptosis as a major mechanism of cell death in methamphetamine (METH) neurotoxicity. The involvement of a neuroimmune component in apoptotic cell death after injury or chemical damage suggests that cytokines may play a role in METH effects. In the present study, we examined if the absence of IL-6 in knockout (IL-6-/-) mice could provide protection against METH-induced neurotoxicity. Administration of METH resulted in a significant reduction of [(125)I]RTI-121-labeled dopamine transporters in the caudate-putamen (CPu) and cortex as well as depletion of dopamine in the CPu and frontal cortex of wild-type mice. However, these METH-induced effects were significantly attenuated in IL-6-/- animals. METH also caused a decrease in serotonin levels in the CPu and hippocampus of wild-type mice, but no reduction was observed in IL-6-/- animals. Moreover, METH induced decreases in [(125)I]RTI-55-labeled serotonin transporters in the hippocampal CA3 region and in the substantia nigra-reticulata but increases in serotonin transporters in the CPu and cingulate cortex in wild-type animals, all of which were attenuated in IL-6-/- mice. Additionally, METH caused increased gliosis in the CPu and cortices of wild-type mice as measured by [(3)H]PK-11195 binding; this gliotic response was almost completely inhibited in IL-6-/- animals. There was also significant protection against METH-induced DNA fragmentation, measured by the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeled (TUNEL) cells in the cortices. The protective effects against METH toxicity observed in the IL-6-/- mice were not caused by differences in temperature elevation or in METH accumulation in wild-type and mutant animals. Therefore, these observations support the proposition that IL-6 may play an important role in the neurotoxicity of METH.
Rasgrf2 controls dopaminergic adaptations to alcohol in mice.
Easton, Alanna C; Rotter, Andrea; Lourdusamy, Anbarasu; Desrivières, Sylvane; Fernández-Medarde, Alberto; Biermann, Teresa; Fernandes, Cathy; Santos, Eugenio; Kornhuber, Johannes; Schumann, Gunter; Müller, Christian P
2014-10-01
Alcohol abuse leads to serious health problems with no effective treatment available. Recent evidence suggests a role for ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) in alcoholism. Rasgrf2 is a calcium sensor and MAPK/ERK activating protein, which has been linked to neurotransmitter release and monoaminergic receptor adaptations. Rasgrf2 knock out (KO) mice do not develop a dopamine response in the nucleus accumbens after an alcohol challenge and show a reduced consumption of alcohol. The present study aims to further characterise the role of Rasgrf2 in dopaminergic activation beyond the nucleus accumbens following alcohol treatment. Using in vivo microdialysis we found that alcohol induces alterations in dopamine levels in the dorsal striatum between wildtype (WT) and Rasgrf2 KO mice. There was no difference in the expression of dopamine transporter (DAT), dopamine receptor regulating factor (DRRF), or dopamine D2 receptor (DRD2) mRNA in the brain between Rasgrf2 KO and WT mice. After sub-chronic alcohol treatment, DAT and DRRF, but not DRD2 mRNA expression differed between WT and Rasgrf2 KO mice. Brain adaptations were positively correlated with splenic expression levels. These data suggest that Rasgrf2 controls dopaminergic signalling and adaptations to alcohol also in other brain regions, beyond the nucleus accumbens. Copyright © 2014 Elsevier Inc. All rights reserved.
Angoa-Pérez, Mariana; Kane, Michael J.; Francescutti, Dina M.; Sykes, Katherine E.; Shah, Mrudang M.; Mohammed, Abiy M.; Thomas, David M.; Kuhn, Donald M.
2012-01-01
Mephedrone (4-methylmethcathinone) is a β-ketoamphetamine with close structural analogy to substituted amphetamines and cathinone derivatives. Abuse of mephedrone has increased dramatically in recent years and has become a significant public health problem in the US and Europe. Unfortunately, very little information is available on the pharmacological and neurochemical actions of mephedrone. In light of the proven abuse potential of mephedrone and considering its similarity to methamphetamine and methcathinone, it is particularly important to know if mephedrone shares with these agents an ability to cause damage to dopamine nerve endings of the striatum. Accordingly, we treated mice with a binge-like regimen of mephedrone (4X 20 or 40 mg/kg) and examined the striatum for evidence of neurotoxicity 2 or 7 days after treatment. While mephedrone caused hyperthermia and locomotor stimulation, it did not lower striatal levels of dopamine, tyrosine hydroxylase or the dopamine transporter under any of the treatment conditions used presently. Furthermore, mephedrone did not cause microglial activation in striatum nor did it increase glial fibrillary acidic protein levels. Taken together, these surprising results suggest that mephedrone, despite its numerous mechanistic overlaps with methamphetamine and the cathinone derivatives, does not cause neurotoxicity to dopamine nerve endings of the striatum. PMID:22191803
Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans
Root, David H.; Wang, Hui-Ling; Liu, Bing; Barker, David J.; Mód, László; Szocsics, Péter; Silva, Afonso C.; Maglóczky, Zsófia; Morales, Marisela
2016-01-01
The rodent ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) contain dopamine neurons intermixed with glutamate neurons (expressing vesicular glutamate transporter 2; VGluT2), which play roles in reward and aversion. However, identifying the neuronal compositions of the VTA and SNC in higher mammals has remained challenging. Here, we revealed VGluT2 neurons within the VTA and SNC of nonhuman primates and humans by simultaneous detection of VGluT2 mRNA and tyrosine hydroxylase (TH; for identification of dopamine neurons). We found that several VTA subdivisions share similar cellular compositions in nonhuman primates and humans; their rostral linear nuclei have a high prevalence of VGluT2 neurons lacking TH; their paranigral and parabrachial pigmented nuclei have mostly TH neurons, and their parabrachial pigmented nuclei have dual VGluT2-TH neurons. Within nonhuman primates and humans SNC, the vast majority of neurons are TH neurons but VGluT2 neurons were detected in the pars lateralis subdivision. The demonstration that midbrain dopamine neurons are intermixed with glutamate or glutamate-dopamine neurons from rodents to humans offers new opportunities for translational studies towards analyzing the roles that each of these neurons play in human behavior and in midbrain-associated illnesses such as addiction, depression, schizophrenia, and Parkinson’s disease. PMID:27477243
Preserved dopaminergic homeostasis and dopamine-related behaviour in hemizygous TH-Cre mice.
Runegaard, Annika H; Jensen, Kathrine L; Fitzpatrick, Ciarán M; Dencker, Ditte; Weikop, Pia; Gether, Ulrik; Rickhag, Mattias
2017-01-01
Cre-driver mouse lines have been extensively used as genetic tools to target and manipulate genetically defined neuronal populations by expression of Cre recombinase under selected gene promoters. This approach has greatly advanced neuroscience but interpretations are hampered by the fact that most Cre-driver lines have not been thoroughly characterized. Thus, a phenotypic characterization is of major importance to reveal potential aberrant phenotypes prior to implementation and usage to selectively inactivate or induce transgene expression. Here, we present a biochemical and behavioural assessment of the dopaminergic system in hemizygous tyrosine hydroxylase (TH)-Cre mice in comparison to wild-type (WT) controls. Our data show that TH-Cre mice display preserved dopaminergic homeostasis with unaltered levels of TH and dopamine as well as unaffected dopamine turnover in striatum. TH-Cre mice also show preserved dopamine transporter expression and function supporting sustained dopaminergic transmission. In addition, TH-Cre mice demonstrate normal responses in basic behavioural paradigms related to dopaminergic signalling including locomotor activity, reward preference and anxiolytic behaviour. Our results suggest that TH-Cre mice represent a valid tool to study the dopamine system, though careful characterization must always be performed to prevent false interpretations following Cre-dependent transgene expression and manipulation of selected neuronal pathways. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Botanas, Chrislean Jun; Yoon, Seong Shoon; de la Peña, June Bryan; Dela Peña, Irene Joy; Kim, Mikyung; Custodio, Raly James; Woo, Taeseon; Seo, Joung-Wook; Jang, Choon-Gon; Yang, Ji Seul; Yoon, Yoon Mi; Lee, Yong Sup; Kim, Hee Jin; Cheong, Jae Hoon
2018-04-02
In recent years, there has been a marked increase in the use of recreational synthetic psychoactive substances, which is a cause of concern among healthcare providers and legal authorities. In particular, there have been reports on the misuse of 5-(2-aminopropyl)indole (5-API; 5-IT), a new synthetic drug, and of fatal and non-fatal intoxication. Despite these reports, little is known about its psychopharmacological effects and abuse potential. Here, we investigated the abuse potential of 5-IT by evaluating its rewarding and reinforcing effects through conditioned place preference (CPP) (1, 10, and 30 mg/kg, i.p.) in mice and self-administration test (0.1, 0.3, 1, and 3 mg/kg/inf., i.v.) in rats. We also examined whether 5-IT (1, 3, and 10 mg/kg, i.p.) induces locomotor sensitization in mice following a 7-day treatment and drug challenge. Then, we explored the effects of 5-IT (10 mg/kg, i.p.) on dopamine-related genes in the striatum, prefrontal cortex (PFC), and substantia nigra pars compacta (SNc)/ventral tegmental (VTA) of mice by quantitative real-time polymerase chain reaction. 5-IT produced CPP in mice but was not reliably self-administered by rats. 5-IT also induced locomotor sensitization following repeated administration and drug challenge. Moreover, 5-IT increased mRNA levels of dopamine D1 receptor in the striatum and PFC and dopamine transporter in the SNc/VTA of mice. These results indicate that 5-IT has psychostimulant and rewarding properties, which may be attributed to its ability to affect the dopaminergic system in the brain. These findings suggest that 5-IT poses a substantial risk for abuse and addiction in humans. Copyright © 2017 Elsevier B.V. All rights reserved.
O'Dell, S J; Gross, N B; Fricks, A N; Casiano, B D; Nguyen, T B; Marshall, J F
2007-02-09
Forced use of the forelimb contralateral to a unilateral injection of the dopaminergic neurotoxin 6-hydroxydopamine can promote recovery of motor function in that limb and can significantly decrease damage to dopamine terminals. The present study was conducted to determine (1) whether a form of voluntary exercise, wheel running, would improve motor performance in rats with such lesions, and (2) whether any beneficial effects of wheel running are attributable to ameliorating the dopaminergic damage. In experiment 1, rats were allowed to run in exercise wheels or kept in home cages for 2 1/2 weeks, then given stereotaxic infusions of 6-hydroxydopamine into the left striatum. The rats were replaced into their original environments (wheels or home cages) for four additional weeks, and asymmetries in forelimb use were quantified at 3, 10, 17, and 24 days postoperatively. After killing, dopaminergic damage was assessed by both quantifying 3 beta-(4-iodophenyl)tropan-2 beta-carboxylic acid methyl ester ([(125)I]RTI-55) binding to striatal dopamine transporters and counting tyrosine hydroxylase-positive cells in the substantia nigra. Exercised 6-hydroxydopamine-infused rats showed improved motor outcomes relative to sedentary lesioned controls, effects that were most apparent at postoperative days 17 and 24. Despite this behavioral improvement, 6-hydroxydopamine-induced loss of striatal dopamine transporters and tyrosine hydroxylase-positive nigral cells in exercised and sedentary groups did not differ. Since prior studies suggested that forced limb use improves motor performance by sparing nigrostriatal dopaminergic neurons from 6-hydroxydopamine damage, experiment 2 used a combined regimen of forced plus voluntary wheel running. Again, we found that the motor performance of exercised rats improved more rapidly than that of sedentary controls, but that there were no differences between these groups in the damage produced by 6-hydroxydopamine. It appears that voluntary exercise can facilitate recovery from partial nigrostriatal injury, but it does so without evident sparing of dopamine nerve terminals.
Rossi, Carlo; Genovesi, Dario; Marzullo, Paolo; Giorgetti, Assuero; Filidei, Elena; Corsini, Giovanni Umberto; Bonuccelli, Ubaldo; Ceravolo, Roberto
Several in vitro data have reported negative interference by dopamine-agonists on the expression of dopamine transporter (DAT), whereas the majority of imaging studies have shown that neither L-dopa nor dopamine-agonists interfere with DAT availability. As yet, there are no in vivo studies on DAT expression after treatment with rotigotine. We evaluated presynaptic nigrostriatal function in 8 patients with de novo Parkinson disease (age, 59 ± 6.2 years; male/female sex, 5/3) using 123-I- N-ω-fluoropropyl-2-β-carbomethoxy-3-β-(4-iodophenyl)nortropane (FP-CIT) single-photon emission computed tomography before and after 3 months of treatment with rotigotine (mean dose, 7.75 ± 1.98 mg). For data analysis, specific (left and right caudate, left and right putamen) to nonspecific (occipital cortex) binding ratios, putamen-to-caudate ratios, and asymmetry indices were calculated. After rotigotine, motor symptoms improved in all patients (Unified Parkinson Disease Rating Scale III mean score, 11.88 ± 2.59 vs 7.63 ± 1.92 on therapy; P = 0.0022). Striatal FP-CIT levels showed a significant improvement in every patient at the follow-up scan. Comparisons between before and after treatment in the whole group revealed a significant improvement in FP-CIT uptake in both caudate and putamen (P < 0.001 in each nucleus). Putamen-to-caudate ratio and asymmetry indices did not show any significant difference before and after treatment. Although the study population was small, we found DAT overexpression after chronic treatment with rotigotine, presumably related to its pharmacological profile. The DAT upregulation by rotigotine in an opposite direction with respect to early Parkinson disease compensatory mechanisms might reduce the risk of dyskinesia, but it could imply less motor benefit because of less stimulation by the dopamine itself on dopaminergic receptors.
Pira, Luigi; Mongeau, Raymond; Pani, Luca
2004-11-03
Quetiapine is a novel atypical antipsychotic drug with multi-receptorial affinity. Using in vivo microdialysis, we investigated if quetiapine modulates extracellular noradrenaline and dopamine in brain areas generally believed to be involved in the pathophysiology of schizophrenia and in the action of antipsychotic drugs. Quetiapine (5, 10 and 20 mg/kg, i.p.) increased levels of noradrenaline in both the prefrontal cortex and the caudate nucleus, while it increased dopamine levels mainly in the prefrontal cortex. It is argued that the marked increase of dopaminergic transmission in the prefrontal cortex induced by quetiapine might be relevant to its therapeutical action.
Association between alcoholism and the dopamine D4 receptor gene.
Muramatsu, T; Higuchi, S; Murayama, M; Matsushita, S; Hayashida, M
1996-01-01
A point mutation in the aldehyde dehydrogenase 2 gene (ALDH2(2) allele) is considered to be a genetic deterrent for alcoholism; however, 80 of 655 Japanese alcoholics had the mutant allele. Genotype factors that might increase susceptibility by overriding the deterrent showed a higher frequency of a five repeat allele of the dopamine D4 receptor 48 bp repeat polymorphism in alcoholics with ALDH2(2) than in 100 other alcoholics and 144 controls. Alcoholics with the five repeat allele also abused other drugs more often. These data suggest the involvement of the dopamine system in the development of alcoholism and other addictive behaviour. PMID:8929946
Stress responses and the mesolimbic dopamine system: social contexts and sex differences
Trainor, Brian C.
2011-01-01
Organisms react to threats with a variety of behavioral, hormonal, and neurobiological responses. The study of biological responses to stress has historically focused on the hypothalamic-pituitary-adrenal axis, but other systems such as the mesolimbic dopamine system are involved. Behavioral neuroendocrinologists have long recognized the importance of the mesolimbic dopamine system in mediating the effects of hormones on species specific behavior, especially aspects of reproductive behavior. There has been less focus on the role of this system in the context of stress, perhaps due to extensive data outlining its importance in reward or approach-based contexts. However, there is steadily growing evidence that the mesolimbic dopamine neurons have critical effects on behavioral responses to stress. Most of these data have been collected from experiments using a small number of animal model species under a limited set of contexts. This approach has led to important discoveries, but evidence is accumulating that mesolimbic dopamine responses are context dependent. Thus, focusing on a limited number of species under a narrow set of controlled conditions constrains our understanding of how the mesolimbic dopamine system regulates behavior in response to stress. Both affiliative and antagonistic social interactions have important effects on mesolimbic dopamine function, and there is preliminary evidence for sex differences as well. This review will highlight the benefits of expanding this approach, and focus on how social contexts and sex differences can impact mesolimbic dopamine stress responses. PMID:21907202
Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease.
Zucca, Fabio A; Segura-Aguilar, Juan; Ferrari, Emanuele; Muñoz, Patricia; Paris, Irmgard; Sulzer, David; Sarna, Tadeusz; Casella, Luigi; Zecca, Luigi
2017-08-01
There are several interrelated mechanisms involving iron, dopamine, and neuromelanin in neurons. Neuromelanin accumulates during aging and is the catecholamine-derived pigment of the dopamine neurons of the substantia nigra and norepinephrine neurons of the locus coeruleus, the two neuronal populations most targeted in Parkinson's disease. Many cellular redox reactions rely on iron, however an altered distribution of reactive iron is cytotoxic. In fact, increased levels of iron in the brain of Parkinson's disease patients are present. Dopamine accumulation can induce neuronal death; however, excess dopamine can be removed by converting it into a stable compound like neuromelanin, and this process rescues the cell. Interestingly, the main iron compound in dopamine and norepinephrine neurons is the neuromelanin-iron complex, since neuromelanin is an effective metal chelator. Neuromelanin serves to trap iron and provide neuronal protection from oxidative stress. This equilibrium between iron, dopamine, and neuromelanin is crucial for cell homeostasis and in some cellular circumstances can be disrupted. Indeed, when neuromelanin-containing organelles accumulate high load of toxins and iron during aging a neurodegenerative process can be triggered. In addition, neuromelanin released by degenerating neurons activates microglia and the latter cause neurons death with further release of neuromelanin, then starting a self-propelling mechanism of neuroinflammation and neurodegeneration. Considering the above issues, age-related accumulation of neuromelanin in dopamine neurons shows an interesting link between aging and neurodegeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rössler, Julian; Unterassner, Lui; Wyss, Thomas; Haker, Helene; Brugger, Peter; Rössler, Wulf; Wotruba, Diana
2018-06-07
The dopamine hypothesis of schizophrenia implies that alterations in the dopamine system cause functional abnormalities in the brain that may converge to aberrant salience attribution and eventually lead to psychosis. Indeed, widespread brain disconnectivity across the psychotic spectrum has been revealed by resting-state functional magnetic resonance imaging (rs-fMRI). However, the dopaminergic involvement in intrinsic functional connectivity (iFC) and its putative relationship to the development of psychotic spectrum disorders remains partly unclear-in particular at the low-end of the psychosis continuum. Therefore, we investigated dopamine-induced changes in striatal iFC and their modulation by psychometrically assessed schizotypy. Our randomized, double-blind placebo-controlled study design included 54 healthy, right-handed male participants. Each participant was assessed with the Schizotypal Personality Questionnaire (SPQ) and underwent 10 minutes of rs-fMRI scanning. Participants then received either a placebo or 200 mg of L-DOPA, a dopamine precursor. We analyzed iFC of 6 striatal seeds that are known to evoke modulation of dopamine-related networks. The main effect of L-DOPA was a significant functional decoupling from the right ventral caudate to both occipital fusiform gyri. This dopamine-induced decoupling emerged primarily in participants with low SPQ scores, while participants with high positive SPQ scores showed decoupling indifferently of the L-DOPA challenge. Taken together, these findings demonstrate that schizotypal traits may be the result of dopamine-induced striato-occipital decoupling.
Immunomodulatory Effects Mediated by Dopamine
Alvarez-Herrera, Samantha; Pérez-Sánchez, Gilberto; Becerril-Villanueva, Enrique; Cruz-Fuentes, Carlos; Flores-Gutierrez, Enrique Octavio; Quintero-Fabián, Saray
2016-01-01
Dopamine (DA), a neurotransmitter in the central nervous system (CNS), has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS) that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R) and D2-like receptors (D2R, D3R, and D4R). The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS), there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers. PMID:27795960
Clinical risk factors for the development of tardive dyskinesia.
Solmi, Marco; Pigato, Giorgio; Kane, John M; Correll, Christoph U
2018-06-15
Tardive dyskinesia (TD) is a severe condition that can affect almost 1 out of 4 patients on current or previous antipsychotic treatment, including both first-generation antipsychotics (FGAs) and second-generation antipsychotics (SGAs). While two novel vesicular monoamine transporter inhibitors, deutetrabenazine and valbenazine, have shown acute efficacy for TD, the majority of patients do not remit, and TD appears to recur once treatment is withdrawn. Hence, prevention of TD remains a crucial goal. We provide a clinically oriented overview of risk factors for TD, dividing them into patient-, illness- and treatment-related variables, as well as nonmodifiable and modifiable factors. Unmodifiable patient-related and illness-related risk factors for TD include older age, female sex, white and African descent, longer illness duration, intellectual disability and brain damage, negative symptoms in schizophrenia, mood disorders, cognitive symptoms in mood disorders, and gene polymorphisms involving antipsychotic metabolism and dopamine functioning. Modifiable comorbidity-related and treatment-related factors include diabetes, smoking, and alcohol and substance abuse, FGA vs SGA treatment, higher cumulative and current antipsychotic dose or antipsychotic plasma levels, early parkinsonian side effects, anticholinergic co-treatment, akathisia, and emergent dyskinesia. Clinicians using dopamine antagonists need to consider risk factors for TD to minimize TD and its consequences. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of acute millimeter wave exposure on dopamine metabolism of NGF-treated PC12 cells.
Haas, Alexis J; Le Page, Yann; Zhadobov, Maxim; Sauleau, Ronan; Dréan, Yves Le; Saligaut, Christian
2017-07-01
Several forthcoming wireless telecommunication systems will use electromagnetic frequencies at millimeter waves (MMWs), and technologies developed around the 60-GHz band will soon know a widespread distribution. Free nerve endings within the skin have been suggested to be the targets of MMW therapy which has been used in the former Soviet Union. So far, no studies have assessed the impact of MMW exposure on neuronal metabolism. Here, we investigated the effects of a 24-h MMW exposure at 60.4 GHz, with an incident power density (IPD) of 5 mW/cm², on the dopaminergic turnover of NGF-treated PC12 cells. After MMW exposure, both intracellular and extracellular contents of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were studied using high performance liquid chromatography. Impact of exposure on the dopamine transporter (DAT) expression was also assessed by immunocytochemistry. We analyzed the dopamine turnover by assessing the ratio of DOPAC to DA, and measuring DOPAC accumulation in the medium. Neither dopamine turnover nor DAT protein expression level were impacted by MMW exposure. However, extracellular accumulation of DOPAC was found to be slightly increased, but not significantly. This result was related to the thermal effect, and overall, no evidence of non-thermal effects of MMW exposure were observed on dopamine metabolism. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling.
Gelband, C H; Sumners, C; Lu, D; Raizada, M K
1997-10-31
The objective of this review is to examine the role of neuronal angiotensin II (Ang II) receptors in vitro. Two types of G protein-coupled Ang II receptors have been identified in cardiovascularly relevant areas of the brain: the AT1 and the AT2. We have utilized neurons in culture to study the signaling mechanisms of AT1 and AT2 receptors. Neuronal AT1 receptors are involved in norepinephrine (NE) neuromodulation. NE neuromodulation can be either evoked or enhanced. Evoked NE neuromodulation involves AT1 receptor-mediated, losartan-dependent, rapid NE release, inhibition of K+ channels and stimulation of Ca2+ channels. AT1 receptor-mediated enhanced NE neuromodulation involves the Ras-Raf-MAP kinase cascade and ultimately leads to an increase in NE transporter, tyrosine hydroxylase and dopamine beta-hydroxylase mRNA transcription. Neuronal AT2 receptors signal via a Gi protein and are coupled to activation of PP2A and PLA2 and stimulation of K+ channels. Finally, putative cross-talk pathways between AT1 and AT2 receptors will be discussed.
Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling.
Gelband, C H; Sumners, C; Lu, D; Raizada, M K
1998-02-27
The objective of this review is to examine the role of neuronal angiotensin II (Ang II) receptors in vitro. Two types of G protein-coupled Ang II receptors have been identified in cardiovascularly relevant areas of the brain: the AT1 and the AT2. We have utilized neurons in culture to study the signaling mechanisms of AT1 and AT2 receptors. Neuronal AT1 receptors are involved in norepinephrine (NE) neuromodulation. NE neuromodulation can be either evoked or enhanced. Evoked NE neuromodulation involves AT1 receptor-mediated, losartan-dependent, rapid NE release, inhibition of K+ channels and stimulation of Ca2+ channels. AT1 receptor-mediated enhanced NE neuromodulation involves the Ras-Raf-MAP kinase cascade and ultimately leads to an increase in NE transporter, tyrosine hydroxylase and dopamine beta-hydroxylase mRNA transcription. Neuronal AT2 receptors signal via a Gi protein and are coupled to activation of PP2A and PLA2 and stimulation of K+ channels. Finally, putative cross-talk pathways between AT1 and AT2 receptors will be discussed.
Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Takahashi, Reinaldo N; Bertoglio, Leandro J; Cunha, Rodrigo A; Prediger, Rui D
2016-08-01
The dorsolateral striatum (DLS) processes motor and non-motor functions and undergoes extensive dopaminergic degeneration in Parkinson's disease (PD). The nigrostriatal dopaminergic degeneration also affects other brain areas including the pre-frontal cortex (PFC), which has been associated with the appearance of anhedonia and depression at pre-motor phases of PD. Using behavioral, neurochemical, and electrophysiological approaches, we investigated the temporal dissociation between the role of the DLS and PFC in the appearance of anhedonia and defense behaviors relevant to depression in rats submitted to bilateral DLS lesions with 6-hydroxydopamine (6-OHDA; 10 μg/hemisphere). 6-OHDA induced partial dopaminergic nigrostriatal damage with no gross motor impairments. Anhedonic-like behaviors were observed in the splash and sucrose consumption tests only 7 days after 6-OHDA lesion. By contrast, defense behaviors relevant to depression evaluated in the forced swimming test and social withdrawal only emerged 21 days after 6-OHDA lesion when anhedonia was no longer present. These temporally dissociated behavioral alterations were coupled to temporal- and structure-dependent alterations in dopaminergic markers such as dopamine D1 and D2 receptors and dopamine transporter, leading to altered dopamine sensitivity in DLS and PFC circuits, evaluated electrophysiologically. These results provide the first demonstration of a dissociated involvement of the DLS and PFC in anhedonic-like and defense behaviors relevant to depression in 6-OHDA-lesioned rats, which was linked with temporal fluctuations in dopaminergic receptor density, leading to altered dopaminergic system sensitivity in these two brain structures. This sheds new light to the duality between depressive and anhedonic symptoms in PD.
Morrow, Bret A.; Roth, Robert H.; Redmond, D. Eugene; Elsworth, John D.
2011-01-01
Methamphetamine is a CNS stimulant with limited therapeutic indications, but is widely abused. Short-term exposure to higher doses, or long-term exposure to lower doses, of methamphetamine induces lasting damage to nigrostriatal dopamine neurons in man and animals. Strong evidence indicates that the mechanism for this detrimental effect on dopamine neurons involves oxidative stress exerted by reactive oxygen species. This study investigates the relative susceptibility of dopamine neurons in mid-gestation, young, and adult (not aged) monkeys to 4 treatments with methamphetamine over 2 days. Primate dopamine neurons undergo natural cell death at mid-gestation, and we hypothesized that during this event they are particularly vulnerable to oxidative stress. The results indicated that at mid-gestation and in adults, dopamine neurons were susceptible to methamphetamine-induced damage, as indicated by loss of striatal TH immunoreactivity and dopamine concentration. However, dopamine neurons in young animals appeared totally resistant to the treatment, despite this group having higher brain levels of methamphetamine 3 hours after administration than the adults. As a possible explanation for the protection, striatal GDNF levels were elevated in young animals 1-week after treatment, but not in adults following methamphetamine treatment. Implications of these primate studies are: 1) the susceptibility of dopamine neurons at mid-gestation to methamphetamine warns against the risk of exposing pregnant women to the drug or oxidative stressors, and supports the hypothesis of Parkinson's disease being associated with oxidative stress during development, 2) elucidation of the mechanism of resistance of dopamine neurons in the young animals to methamphetamine-induced oxidative stress may provide targets for slowing or preventing age- or disease-related loss of adult nigrostriatal DA neurons, and 3) the increased striatal production of GDNF in young animals, but not in adults, in response to methamphetamine, suggests the possibility of an age-related change in the neurotrophic capacity of the striatal dopamine system. PMID:21640165
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovtun, Oleg; Ross, Emily J.; Tomlinson, Ian D.
Here we present the development and validation of a flow cytometry-based dopamine transporter (DAT) binding assay that uses antagonist-conjugated quantum dots (QDs). Our anticipation is that our QD-based assay is of immediate value to the high throughput screening of novel DAT modulators.
Booij, Jan; de Bruin, Kora; de Win, Maartje M L; Lavini, Cristina; den Heeten, Gerard J; Habraken, Jan B A
2003-08-01
A recently developed pinhole high-resolution SPECT system was used to measure striatal to non-specific binding ratios in rats (n = 9), after injection of the dopamine transporter ligand (123)I-FP-CIT, and to assess its test/retest reproducibility. For co-alignment purposes, the rat brain was imaged on a 1.5 Tesla clinical MRI scanner using a specially developed surface coil. The SPECT images showed clear striatal uptake. On the MR images, cerebral and extra-cerebral structures could be easily delineated. The mean striatal to non-specific [(123)I]FP-CIT binding ratios of the test/retest studies were 1.7 +/- 0.2 and 1.6 +/- 0.2, respectively. The test/retest variability was approximately 9%. We conclude that the assessment of striatal [(123)I]FP-CIT binding ratios in rats is highly reproducible.
Lawal, Hakeem O.; Chang, Hui-Yun; Terrell, Ashley N.; Brooks, Elizabeth S.; Pulido, Dianne; Simon, Anne F.; Krantz, David E.
2010-01-01
Dopamine is cytotoxic and may play a role in the development of Parkinson’s disease. However, its interaction with environmental risk factors such as pesticides remains poorly understood. The vesicular monoamine transporter (VMAT) regulates intracellular dopamine content, and we have tested the neuroprotective effects of VMAT in vivo using the model organism Drosophila melanogaster. We find that Drosophila VMAT (dVMAT) mutants contain fewer dopaminergic neurons than wild type, consistent with a developmental effect, and that dopaminergic cell loss in the mutant is exacerbated by the pesticides rotenone and paraquat. Over-expression of DVMAT protein does not increase the survival of animals exposed to rotenone, but blocks the loss of dopaminergic neurons caused by this pesticide. These results are the first to demonstrate an interaction between a VMAT and pesticides in vivo, and provide an important model to investigate the mechanisms by which pesticides and cellular DA may interact to kill dopaminergic cells. PMID:20472063
Jichao, Sun; Xinmin, Han; Xianguo, Ren; Dongqi, Yin; Rongyi, Zhou; Shuang, Lei; Yue, You; Yuchen, Song; Jingnan, Ying
2017-01-01
The disturbed dopamine availability and brain-derived neurotrophic factor (BDNF) expression are due in part to be associated with attention deficit hyperactivity disorder (ADHD). In this study, we investigated the therapeutical effect of saikosaponin a (SSa) isolated from Bupleurum Chinese DC, against spontaneously hypertensive rat (SHR) model of ADHD. Methylphenidate and SSa were orally administered for 3 weeks. Activity was assessed by open-field test and Morris water maze test. Dopamine (DA) and BDNF were determined in specific brain regions. The mRNA or protein expression of tyrosine hydroxylase (TH), dopamine transporter (DAT), and vesicles monoamine transporter (VMAT) was also studied. Both MPH and SSa reduced hyperactivity and improved the spatial learning memory deficit in SHRs. An increased DA concentration in the prefrontal cortex (PFC) and striatum was also observed after treating with the SSa. The increased DA concentration may partially be attributed to the decreased mRNA and protein expression of DAT in PFC while SSa exhibited no significant effects on the mRNA expression of TH and VMAT in PFC of SHRs. In addition, BDNF expression in SHRs was also increased after treating with SSa or MPH. The obtained result suggested that SSa may be a potential drug for treating ADHD.
Rukavina Mikusic, Natalia L; Kouyoumdzian, Nicolás M; Del Mauro, Julieta S; Cao, Gabriel; Trida, Verónica; Gironacci, Mariela M; Puyó, Ana M; Toblli, Jorge E; Fernández, Belisario E; Choi, Marcelo R
2018-01-01
Insulin resistance induced by a high-fructose diet has been associated to hypertension and renal damage. The aim of this work was to assess alterations in the urinary L-dopa/dopamine ratio over three time periods in rats with insulin resistance induced by fructose overload and its correlation with blood pressure levels and the presence of microalbuminuria and reduced nephrin expression as markers of renal structural damage. Male Sprague-Dawley rats were randomly divided into six groups: control (C) (C4, C8 and C12) with tap water to drink and fructose-overloaded (FO) rats (FO4, FO8 and FO12) with a fructose solution (10% w/v) to drink for 4, 8 and 12 weeks. A significant increase of the urinary L-dopa/dopamine ratio was found in FO rats since week 4, which positively correlated to the development of hypertension and preceded in time the onset of microalbuminuria and reduced nephrin expression observed on week 12 of treatment. The alteration of this ratio was associated to an impairment of the renal dopaminergic system, evidenced by a reduction in renal dopamine transporters and dopamine D1 receptor expression, leading to an overexpression and overactivation of the enzyme Na + , K + -ATPase with sodium retention. In conclusion, urinary L-dopa/dopamine ratio alteration in rats with fructose overload positively correlated to the development of hypertension and preceded in time the onset of renal structural damage. This is the first study to propose the use of the urinary L-dopa/dopamine index as marker of renal dysfunction that temporarily precedes kidney structural damage induced by fructose overload. Copyright © 2017 Elsevier Inc. All rights reserved.
Groman, S.M.; Lee, B.; Seu, E.; James, A.S.; Feiler, K.; Mandelkern, M.A.; London, E.D.; Jentsch, J.D.
2012-01-01
Compulsive drug-seeking and drug-taking are important substance-abuse behaviors that have been linked to alterations in dopaminergic neurotransmission and to impaired inhibitory control. Evidence supports the notions that abnormal D2 receptor-mediated dopamine transmission and inhibitory control may be heritable risk factors for addictions, and that they also reflect drug-induced neuroadaptations. To provide a mechanistic explanation for the drug-induced emergence of inhibitory-control deficits, this study examined how a chronic, escalating-dose regimen of methamphetamine administration affected dopaminergic neurochemistry and cognition in monkeys. Dopamine D2-like receptor and dopamine transporter (DAT) availability and reversal-learning performance were measured before and after exposure to methamphetamine (or saline), and brain dopamine levels were assayed at the conclusion of the study. Exposure to methamphetamine reduced dopamine D2-like receptor and DAT availability, and produced transient, selective impairments in the reversal of a stimulus-outcome association. Furthermore, individual differences in the change in D2-like receptor availability in the striatum were related to the change in response to positive feedback. These data provide evidence that chronic, escalating-dose methamphetamine administration alters the dopamine system in a manner similar to that observed in methamphetamine-dependent humans. They also implicate alterations in positive-feedback sensitivity associated with D2-like receptor dysfunction as the mechanism by which inhibitory control deficits emerge in stimulant-dependent individuals. Finally, a significant degree of neurochemical and behavioral variation in response to methamphetamine was detected, indicating that individual differences affect the degree to which drugs of abuse alter these processes. Identification of these factors ultimately may assist in the development of individualized treatments for substance dependence. PMID:22539846
Groman, Stephanie M; Lee, Buyean; Seu, Emanuele; James, Alex S; Feiler, Karen; Mandelkern, Mark A; London, Edythe D; Jentsch, J David
2012-04-25
Compulsive drug-seeking and drug-taking are important substance-abuse behaviors that have been linked to alterations in dopaminergic neurotransmission and to impaired inhibitory control. Evidence supports the notions that abnormal D₂ receptor-mediated dopamine transmission and inhibitory control may be heritable risk factors for addictions, and that they also reflect drug-induced neuroadaptations. To provide a mechanistic explanation for the drug-induced emergence of inhibitory-control deficits, this study examined how a chronic, escalating-dose regimen of methamphetamine administration affected dopaminergic neurochemistry and cognition in monkeys. Dopamine D₂-like receptor and dopamine transporter (DAT) availability and reversal-learning performance were measured before and after exposure to methamphetamine (or saline), and brain dopamine levels were assayed at the conclusion of the study. Exposure to methamphetamine reduced dopamine D₂-like receptor and DAT availability and produced transient, selective impairments in the reversal of a stimulus-outcome association. Furthermore, individual differences in the change in D₂-like receptor availability in the striatum were related to the change in response to positive feedback. These data provide evidence that chronic, escalating-dose methamphetamine administration alters the dopamine system in a manner similar to that observed in methamphetamine-dependent humans. They also implicate alterations in positive-feedback sensitivity associated with D₂-like receptor dysfunction as the mechanism by which inhibitory control deficits emerge in stimulant-dependent individuals. Finally, a significant degree of neurochemical and behavioral variation in response to methamphetamine was detected, indicating that individual differences affect the degree to which drugs of abuse alter these processes. Identification of these factors ultimately may assist in the development of individualized treatments for substance dependence.
Dopamine in the medial amygdala network mediates human bonding.
Atzil, Shir; Touroutoglou, Alexandra; Rudy, Tali; Salcedo, Stephanie; Feldman, Ruth; Hooker, Jacob M; Dickerson, Bradford C; Catana, Ciprian; Barrett, Lisa Feldman
2017-02-28
Research in humans and nonhuman animals indicates that social affiliation, and particularly maternal bonding, depends on reward circuitry. Although numerous mechanistic studies in rodents demonstrated that maternal bonding depends on striatal dopamine transmission, the neurochemistry supporting maternal behavior in humans has not been described so far. In this study, we tested the role of central dopamine in human bonding. We applied a combined functional MRI-PET scanner to simultaneously probe mothers' dopamine responses to their infants and the connectivity between the nucleus accumbens (NAcc), the amygdala, and the medial prefrontal cortex (mPFC), which form an intrinsic network (referred to as the "medial amygdala network") that supports social functioning. We also measured the mothers' behavioral synchrony with their infants and plasma oxytocin. The results of this study suggest that synchronous maternal behavior is associated with increased dopamine responses to the mother's infant and stronger intrinsic connectivity within the medial amygdala network. Moreover, stronger network connectivity is associated with increased dopamine responses within the network and decreased plasma oxytocin. Together, these data indicate that dopamine is involved in human bonding. Compared with other mammals, humans have an unusually complex social life. The complexity of human bonding cannot be fully captured in nonhuman animal models, particularly in pathological bonding, such as that in autistic spectrum disorder or postpartum depression. Thus, investigations of the neurochemistry of social bonding in humans, for which this study provides initial evidence, are warranted.
Belda, Xavier; Armario, Antonio
2009-10-01
Whereas the role of most biogenic amines in the control of the hypothalamus-pituitary-adrenal (HPA) response to stress has been extensively studied, the role of dopamine has not. We studied the effect of different dopamine receptor antagonists on HPA response to a severe stressor (immobilization, IMO) in adult male Sprague-Dawley rats. Haloperidol administration reduced adrenocorticotropin hormone and corticosterone responses to acute IMO, particularly during the post-IMO period. This effect cannot be explained by a role of dopamine to maintain a sustained activation of the HPA axis as haloperidol did not modify the response to prolonged (up to 6 h) IMO. Administration of more selective D1 and D2 receptor antagonists (SCH23390 and eticlopride, respectively) also resulted in lower and/or shorter lasting HPA response to IMO. Dopamine, acting through both D1 and D2 receptors, exerts a stimulatory role on the activation of the HPA axis in response to a severe stressor. The finding that dopamine is involved in the maintenance of post-stress activation of the HPA axis is potentially important because the actual pathological impact of HPA activation is likely to be related to the area under the curve of plasma glucocorticoid levels, which is critically dependent on how long after stress high levels of glucocorticoid are maintained.
Szabo, S
1986-01-01
This brief review presents the evolution of the concept of cytoprotection which was originally described by Robert (1979) to represent prevention of chemically induced hemorrhagic gastric erosions without inhibiting acid secretion. Prostaglandins (PG) and sulfhydryls (SH) protect only against deep hemorrhagic necrosis in the mucosa without altering the initial damage to surface epithelial cells. Organ integrity and function are thus maintained (i.e., organoprotection) despite the loss of several layers of mucosal cells. While both PG and SH are natural products it must be stressed that only SH compounds can enter directly into protective reactions (e.g., free radical scavenging, modification of receptor SH groups, oxidation of certain structural and enzyme proteins). In addition, SH compounds also stimulate PG synthesis. A major target of gastroprotection by either PG or SH is the preservation of mucosal microvasculature to maintain blood flow for rapid restitution and cell proliferation. Dopamine-related compounds are reviewed because of their possible role in duodenal ulceration. Dopamine and dopamine agonists are antiulcerogens in duodenal ulcer models. Dopamine antagonists are proulcerogens and the dopamine neurotoxin MPTP causes duodenal ulcer in experimental animals. The mechanism of duodenal antiulcerogenic effect involves inhibition of gastric acid and pepsin secretion, stimulation of duodenal bicarbonate secretion, correction of duodenal dysmotility, and maybe increased blood flow. Because of their multiple beneficial effects, SH compounds and dopamine drugs are good models for gastroenteroprotection.
Tosh, Dilip K; Janowsky, Aaron; Eshleman, Amy J; Warnick, Eugene; Gao, Zhan-Guo; Chen, Zhoumou; Gizewski, Elizabeth; Auchampach, John A; Salvemini, Daniela; Jacobson, Kenneth A
2017-04-13
We have repurposed (N)-methanocarba adenosine derivatives (A 3 adenosine receptor (AR) agonists) to enhance radioligand binding allosterically at the human dopamine (DA) transporter (DAT) and inhibit DA uptake. We extended the structure-activity relationship of this series with small N 6 -alkyl substitution, 5'-esters, deaza modifications of adenine, and ribose restored in place of methanocarba. C2-(5-Halothien-2-yl)-ethynyl 5'-methyl 9 (MRS7292) and 5'-ethyl 10 (MRS7232) esters enhanced binding at DAT (EC 50 ∼ 35 nM) and at the norepinephrine transporter (NET). 9 and 10 were selective for DAT compared to A 3 AR in the mouse but not in humans. At DAT, the binding of two structurally dissimilar radioligands was enhanced; NET binding of only one radioligand was enhanced; SERT radioligand binding was minimally affected. 10 was more potent than cocaine at inhibiting DA uptake (IC 50 = 107 nM). Ribose analogues were weaker in DAT interaction than the corresponding bicyclics. Thus, we enhanced the neurotransmitter transporter activity of rigid nucleosides while reducing A 3 AR affinity.
Byrnes, Elizabeth M; Rigero, Beth A; Bridges, Robert S
2002-11-01
Brief contact with pups at parturition enables the female rat to establish and retain the full repertoire of maternal behaviors, allowing her to respond rapidly to pups in the future. To determine whether the dopamine system is involved in the retention of maternal behavior, females were continuously infused with dopamine antagonists during the periparturitional period and then allowed either a brief interaction period with pups (3 h) or no interaction with pups (pups removed as they were born). Females were exposed to either the D1-like antagonist SCH 23390 (0.1 or 1.0 mg/kg/day) or the D2-like antagonist clebopride (0.5 or 1.0 mg/kg/day). The high dose of either DA antagonist resulted in significant attenuation of maternal care immediately postpartum. When tested for the retention of maternal behavior 7 days later, however, only the females exposed to the D2 antagonist displayed a delayed response to shown full maternal behavior (FMB) towards donor pups. Thus, while both dopamine receptor subtypes appear necessary for the full and rapid expression of maternal behavior during the early postpartum period, only the D2 receptor subtype appears to be involved in the retention of this behavior.
ROLE OF NRF2 IN THE OXIDATIVE STRESS-DEPENDENT HYPERTENSION ASSOCIATED WITH THE DEPLETION OF DJ-1
Cuevas, Santiago; Yang, Yu; Konkalmatt, Prasad; Asico, Laureano; Feranil, Jun; Jones, John; Villar, Van Anthony; Armando, Ines; Jose, Pedro A.
2015-01-01
Renal dopamine 2 receptor dysfunction is associated with oxidative stress and high blood pressure. We have reported that DJ-1, an oxidative stress response protein, is positively regulated by dopamine 2 receptor in the kidney. The transcription factor Nrf2 regulates the expression of several antioxidant genes. We tested the hypothesis that Nrf2 is involved in the renal DJ-1-mediated inhibition of reactive oxygen species production. We have reported that silencing dopamine 2 receptor in mouse renal proximal tubule cells decreases the expression of DJ-1. We now report that silencing DJ-1 or dopamine 2 receptor in mouse proximal tubule cells and mouse kidneys, decreases Nrf2 expression and activity and increases reactive oxygen species production; blood pressure is also increased in mice in which renal DJ-1 or dopamine 2 receptor is silenced. DJ-1−/− mice have decreased renal Nrf2 expression and activity, and increased nitro-tyrosine levels an dopamine 2 receptor d blood pressure. Silencing Nrf2 in mouse proximal tubule cells does not alter the expression of DJ-1 or dopamine 2 receptor, indicating that Nrf2 is downstream of dopamine 2 receptor and DJ-1. A Nrf2 inducer, bardoxolone, normalizes the systolic blood pressure and renal malondialdehyde levels in DJ-1−/− mice without affecting them in their wild-type littermates. Because Nrf2 ubiquitination is increased in DJ-1−/− mice, we conclude that the protective effect of DJ-1 on renal oxidative stress is mediated, in part, by preventing Nrf2 degradation. Moreover, renal dopamine 2 receptor and DJ-1 are necessary for normal Nrf2 activity to keep a normal redox balance and blood pressure. PMID:25895590
Radl, Daniela; Chiacchiaretta, Martina; Lewis, Robert G; Brami-Cherrier, Karen; Arcuri, Ludovico; Borrelli, Emiliana
2018-01-02
The dopamine D2 receptor (D2R) is a major component of the dopamine system. D2R-mediated signaling in dopamine neurons is involved in the presynaptic regulation of dopamine levels. Postsynaptically, i.e., in striatal neurons, D2R signaling controls complex functions such as motor activity through regulation of cell firing and heterologous neurotransmitter release. The presence of two isoforms, D2L and D2S, which are generated by a mechanism of alternative splicing of the Drd2 gene, raises the question of whether both isoforms may equally control presynaptic and postsynaptic events. Here, we addressed this question by comparing behavioral and cellular responses of mice with the selective ablation of either D2L or D2S isoform. We establish that the presence of either D2L or D2S can support postsynaptic functions related to the control of motor activity in basal conditions. On the contrary, absence of D2S but not D2L prevents the inhibition of tyrosine hydroxylase phosphorylation and, thereby, of dopamine synthesis, supporting a major presynaptic role for D2S. Interestingly, boosting dopamine signaling in the striatum by acute cocaine administration reveals that absence of D2L, but not of D2S, strongly impairs the motor and cellular response to the drug, in a manner similar to the ablation of both isoforms. These results suggest that when the dopamine system is challenged, D2L signaling is required for the control of striatal circuits regulating motor activity. Thus, our findings show that D2L and D2S share similar functions in basal conditions but not in response to stimulation of the dopamine system.
Rogers, Tiffany D.; Dickson, Price E.; McKimm, Eric; Heck, Detlef H.; Goldowitz, Dan; Blaha, Charles D.; Mittleman, Guy
2013-01-01
Imaging, clinical and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area [VTA] and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50% in wildtype and 20-30% in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15% in wildtype and 40% in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways. PMID:23436049
Rogers, Tiffany D; Dickson, Price E; McKimm, Eric; Heck, Detlef H; Goldowitz, Dan; Blaha, Charles D; Mittleman, Guy
2013-08-01
Imaging, clinical, and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area (VTA) and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50 % in wildtype and 20-30 % in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15 % in wildtype and 40 % in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways.
Bossong, Matthijs G; Mehta, Mitul A; van Berckel, Bart N M; Howes, Oliver D; Kahn, René S; Stokes, Paul R A
2015-08-01
Elevated dopamine function is thought to play a key role in both the rewarding effects of addictive drugs and the pathophysiology of schizophrenia. Accumulating epidemiological evidence indicates that cannabis use is a risk factor for the development of schizophrenia. However, human neurochemical imaging studies that examined the impact of ∆9-tetrahydrocannabinol (THC), the main psychoactive component in cannabis, on striatal dopamine release have provided inconsistent results. The objective of this study is to assess the effect of a THC challenge on human striatal dopamine release in a large sample of healthy participants. We combined human neurochemical imaging data from two previous studies that used [(11)C]raclopride positron emission tomography (PET) (n = 7 and n = 13, respectively) to examine the effect of THC on striatal dopamine neurotransmission in humans. PET images were re-analysed to overcome differences in PET data analysis. THC administration induced a significant reduction in [(11)C]raclopride binding in the limbic striatum (-3.65 %, from 2.39 ± 0.26 to 2.30 ± 0.23, p = 0.023). This is consistent with increased dopamine levels in this region. No significant differences between THC and placebo were found in other striatal subdivisions. In the largest data set of healthy participants so far, we provide evidence for a modest increase in human striatal dopamine transmission after administration of THC compared to other drugs of abuse. This finding suggests limited involvement of the endocannabinoid system in regulating human striatal dopamine release and thereby challenges the hypothesis that an increase in striatal dopamine levels after cannabis use is the primary biological mechanism underlying the associated higher risk of schizophrenia.
Could Dopamine Agonists Aid in Drug Development for Anorexia Nervosa?
Frank, Guido K. W.
2014-01-01
Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways. PMID:25988121
Cameron, Courtney M; Wightman, R Mark; Carelli, Regina M
2014-11-01
Electrophysiological studies show that distinct subsets of nucleus accumbens (NAc) neurons differentially encode information about goal-directed behaviors for intravenous cocaine versus natural (food/water) rewards. Further, NAc rapid dopamine signaling occurs on a timescale similar to phasic cell firing during cocaine and natural reward-seeking behaviors. However, it is not known whether dopamine signaling is reinforcer specific (i.e., is released during responding for only one type of reinforcer) within discrete NAc locations, similar to neural firing dynamics. Here, fast-scan cyclic voltammetry (FSCV) was used to measure rapid dopamine release during multiple schedules involving sucrose reward and cocaine self-administration (n = 8 rats) and, in a separate group of rats (n = 6), during a sucrose/food multiple schedule. During the sucrose/cocaine multiple schedule, dopamine increased within seconds of operant responding for both reinforcers. Although dopamine release was not reinforcer specific, more subtle differences were observed in peak dopamine concentration [DA] across reinforcer conditions. Specifically, peak [DA] was higher during the first phase of the multiple schedule, regardless of reinforcer type. Further, the time to reach peak [DA] was delayed during cocaine-responding compared to sucrose. During the sucrose/food multiple schedule, increases in dopamine release were also observed relative to operant responding for both natural rewards. However, peak [DA] was higher relative to responding for sucrose than food, regardless of reinforcer order. Overall, the results reveal the dynamics of rapid dopamine signaling in discrete locations in the NAc across reward conditions, and provide novel insight into the functional role of this system in reward-seeking behaviors. Copyright © 2014 Elsevier Ltd. All rights reserved.