An Organic Vertical Field-Effect Transistor with Underside-Doped Graphene Electrodes.
Kim, Jong Su; Kim, Beom Joon; Choi, Young Jin; Lee, Moo Hyung; Kang, Moon Sung; Cho, Jeong Ho
2016-06-01
High-performance vertical field-effect transistors are developed, which are based on graphene electrodes doped using the underside doping method. The underside doping method enables effective tuning of the graphene work function while maintaining the surface properties of the pristine graphene. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interaction of solid organic acids with carbon nanotube field effect transistors
NASA Astrophysics Data System (ADS)
Klinke, Christian; Afzali, Ali; Avouris, Phaedon
2006-10-01
A series of solid organic acids were used to p-dope carbon nanotubes. The extent of doping is shown to be dependent on the pKa value of the acids. Highly fluorinated carboxylic acids and sulfonic acids are very effective in shifting the threshold voltage and making carbon nanotube field effect transistors to be more p-type devices. Weaker acids like phosphonic or hydroxamic acids had less effect. The doping of the devices was accompanied by a reduction of the hysteresis in the transfer characteristics. In-solution doping survives standard fabrication processes and renders p-doped carbon nanotube field effect transistors with good transport characteristics.
Electrochemical doping for lowering contact barriers in organic field effect transistors
Schaur, Stefan; Stadler, Philipp; Meana-Esteban, Beatriz; Neugebauer, Helmut; Serdar Sariciftci, N.
2012-01-01
By electrochemically p-doping pentacene in the vicinity of the source-drain electrodes in organic field effect transistors the injection barrier for holes is decreased. The focus of this work is put on the influence of the p-doping process on the transistor performance. Cyclic voltammetry performed on a pentacene based transistor exhibits a reversible p-doping response. This doped state is evoked at the transistor injection electrodes. An improvement is observed when comparing transistor characteristics before and after the doping process apparent by an improved transistor on-current. This effect is reflected in the analysis of the contact resistances of the devices. PMID:23483101
Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Sriram; Xia, Zhanbo; Joishi, Chandan; Zhang, Yuewei; McGlone, Joe; Johnson, Jared; Brenner, Mark; Arehart, Aaron R.; Hwang, Jinwoo; Lodha, Saurabh; Rajan, Siddharth
2017-07-01
Modulation-doped heterostructures are a key enabler for realizing high mobility and better scaling properties for high performance transistors. We report the realization of a modulation-doped two-dimensional electron gas (2DEG) at the β-(Al0.2Ga0.8)2O3/Ga2O3 heterojunction by silicon delta doping. The formation of a 2DEG was confirmed using capacitance voltage measurements. A modulation-doped 2DEG channel was used to realize a modulation-doped field-effect transistor. The demonstration of modulation doping in the β-(Al0.2Ga0.8)2O3/Ga2O3 material system could enable heterojunction devices for high performance electronics.
NASA Astrophysics Data System (ADS)
Basak, Tista; Basak, Tushima
2018-02-01
In this paper, we demonstrate that the optical properties of finite-sized graphene quantum dots can be effectively controlled by doping it with different types of charge carriers (electron/hole). In addition, the role played by a suitably directed external electric field on the optical absorption of charge-doped graphene quantum dots have also been elucidated. The computations have been performed on diamond-shaped graphene quantum dot (DQD) within the framework of the Pariser-Parr-Pople (PPP) model Hamiltonian, which takes into account long-range Coulomb interactions. Our results reveal that the energy band-gap increases when the DQD is doped with holes while it decreases on doping it with electrons. Further, the optical absorption spectra of DQD exhibits red/blue-shift on doping with electrons/holes. Our computations also indicate that the application of external transverse electric field results in a substantial blue-shift of the optical spectrum for charge-doped DQD. However, it is observed that the influence of charge-doping is more prominent in tuning the optical properties of finite-sized graphene quantum dots as compared to externally applied electric field. Thus, tailoring the optical properties of finite-sized graphene quantum dots by manipulative doping with charge carriers and suitably aligned external electric field can greatly enhance its potential application in designing nano-photonic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Neha; Sharma, Suresh C.; Sharma, Rinku
A theoretical model describing the effect of doping on the plasma-assisted catalytic growth of graphene sheet has been developed. The model accounts the charging rate of the graphene sheet, kinetics of all the plasma species, including the doping species, and the growth rate of graphene nuclei and graphene sheet due to surface diffusion, and accretion of ions on the catalyst nanoparticle. Using the model, it is observed that nitrogen and boron doping can strongly influence the growth and field emission properties of the graphene sheet. The results of the present investigation indicate that nitrogen doping results in reduced thickness andmore » shortened height of the graphene sheet; however, boron doping increases the thickness and height of the graphene sheet. The time evolutions of the charge on the graphene sheet and hydrocarbon number density for nitrogen and boron doped graphene sheet have also been examined. The field emission properties of the graphene sheet have been proposed on the basis of the results obtained. It is concluded that nitrogen doped graphene sheet exhibits better field emission characteristics as compared to undoped and boron doped graphene sheet. The results of the present investigation are consistent with the existing experimental observations.« less
NASA Astrophysics Data System (ADS)
Tanaka, Takahisa; Uchida, Ken
2018-06-01
Band tails in heavily doped semiconductors are one of the important parameters that determine transfer characteristics of tunneling field-effect transistors. In this study, doping concentration and doing profile dependences of band tails in heavily doped Si nanowires were analyzed by a nonequilibrium Green function method. From the calculated band tails, transfer characteristics of nanowire tunnel field-effect transistors were numerically analyzed by Wentzel–Kramer–Brillouin approximation with exponential barriers. The calculated transfer characteristics demonstrate that the band tails induced by dopants degrade the subthreshold slopes of Si nanowires from 5 to 56 mV/dec in the worst case. On the other hand, surface doping leads to a high drain current while maintaining a small subthreshold slope.
Lüssem, Björn; Keum, Chang-Min; Kasemann, Daniel; Naab, Ben; Bao, Zhenan; Leo, Karl
2016-11-23
Organic field-effect transistors hold the promise of enabling low-cost and flexible electronics. Following its success in organic optoelectronics, the organic doping technology is also used increasingly in organic field-effect transistors. Doping not only increases device performance, but it also provides a way to fine-control the transistor behavior, to develop new transistor concepts, and even improve the stability of organic transistors. This Review summarizes the latest progress made in the understanding of the doping technology and its application to organic transistors. It presents the most successful doping models and an overview of the wide variety of materials used as dopants. Further, the influence of doping on charge transport in the most relevant polycrystalline organic semiconductors is reviewed, and a concise overview on the influence of doping on transistor behavior and performance is given. In particular, recent progress in the understanding of contact doping and channel doping is summarized.
Ichimura, Takashi; Fujiwara, Kohei; Tanaka, Hidekazu
2014-07-24
Controlling the electronic properties of functional oxide materials via external electric fields has attracted increasing attention as a key technology for next-generation electronics. For transition-metal oxides with metallic carrier densities, the electric-field effect with ionic liquid electrolytes has been widely used because of the enormous carrier doping capabilities. The gate-induced redox reactions revealed by recent investigations have, however, highlighted the complex nature of the electric-field effect. Here, we use the gate-induced conductance modulation of spinel ZnxFe₃₋xO₄ to demonstrate the dual contributions of volatile and non-volatile field effects arising from electronic carrier doping and redox reactions. These two contributions are found to change in opposite senses depending on the Zn content x; virtual electronic and chemical field effects are observed at appropriate Zn compositions. The tuning of field-effect characteristics via composition engineering should be extremely useful for fabricating high-performance oxide field-effect devices.
Khalil, Hafiz M W; Khan, Muhammad Farooq; Eom, Jonghwa; Noh, Hwayong
2015-10-28
The development of low resistance contacts to 2D transition-metal dichalcogenides (TMDs) is still a big challenge for the future generation field effect transistors (FETs) and optoelectronic devices. Here, we report a chemical doping technique to achieve low contact resistance by keeping the intrinsic properties of few layers WS2. The transfer length method has been used to investigate the effect of chemical doping on contact resistance. After doping, the contact resistance (Rc) of multilayer (ML) WS2 has been reduced to 0.9 kΩ·μm. The significant reduction of the Rc is mainly due to the high electron doping density, thus a reduction in Schottky barrier height, which limits the device performance. The threshold voltage of ML-WS2 FETs confirms a negative shift upon the chemical doping, as further confirmed from the positions of E(1)2g and A1g peaks in Raman spectra. The n-doped samples possess a high drain current of 65 μA/μm, with an on/off ratio of 1.05 × 10(6) and a field effect mobility of 34.7 cm(2)/(V·s) at room temperature. Furthermore, the photoelectric properties of doped WS2 flakes were also measured under deep ultraviolet light. The potential of using LiF doping in contact engineering of TMDs opens new ways to improve the device performance.
Hu, Yuanyuan; Rengert, Zachary D; McDowell, Caitlin; Ford, Michael J; Wang, Ming; Karki, Akchheta; Lill, Alexander T; Bazan, Guillermo C; Nguyen, Thuc-Quyen
2018-04-24
Solution-processed organic field-effect transistors (OFETs) were fabricated with the addition of an organic salt, trityl tetrakis(pentafluorophenyl)borate (TrTPFB), into thin films of donor-acceptor copolymer semiconductors. The performance of OFETs is significantly enhanced after the organic salt is incorporated. TrTPFB is confirmed to p-dope the organic semiconductors used in this study, and the doping efficiency as well as doping physics was investigated. In addition, systematic electrical and structural characterizations reveal how the doping enhances the performance of OFETs. Furthermore, it is shown that this organic salt doping method is feasible for both p- and n-doping by using different organic salts and, thus, can be utilized to achieve high-performance OFETs and organic complementary circuits.
Electrical tuning of spin splitting in Bi-doped ZnO nanowires
NASA Astrophysics Data System (ADS)
Aras, Mehmet; Kılıç, ćetin
2018-01-01
The effect of applying an external electric field on doping-induced spin-orbit splitting of the lowest conduction-band states in a bismuth-doped zinc oxide nanowire is studied by performing electronic structure calculations within the framework of density functional theory. It is demonstrated that spin splitting in Bi-doped ZnO nanowires could be tuned and enhanced electrically via control of the strength and direction of the applied electric field, thanks to the nonuniform and anisotropic response of the ZnO:Bi nanowire to external electric fields. The results reported here indicate that a single ZnO nanowire doped with a low concentration of Bi could function as a spintronic device, the operation of which is controlled by applied lateral electric fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pooth, Alexander, E-mail: a.pooth@bristol.ac.uk; IQE; Uren, Michael J.
2015-12-07
Charge trapping and transport in the carbon doped GaN buffer of a GaN-based hetero-structure field effect transistor (HFET) has been investigated under both positive and negative substrate bias. Clear evidence of redistribution of charges in the carbon doped region by thermally generated holes is seen, with electron injection and capture observed during positive bias. Excellent agreement is found with simulations. It is shown that these effects are intrinsic to the carbon doped GaN and need to be controlled to provide reliable and efficient GaN-based power HFETs.
NASA Astrophysics Data System (ADS)
Naderi, Ali
2017-12-01
In this paper, an efficient structure with lightly doped drain region is proposed for p-i-n graphene nanoribbon field effect transistors (LD-PIN-GNRFET). Self-consistent solution of Poisson and Schrödinger equation within Nonequilibrium Green’s function (NEGF) formalism has been employed to simulate the quantum transport of the devices. In proposed structure, source region is doped by constant doping density, channel is an intrinsic GNR, and drain region contains two parts with lightly and heavily doped doping distributions. The important challenge in tunneling devices is obtaining higher current ratio. Our simulations demonstrate that LD-PIN-GNRFET is a steep slope device which not only reduces the leakage current and current ratio but also enhances delay, power delay product, and cutoff frequency in comparison with conventional PIN GNRFETs with uniform distribution of impurity and with linear doping profile in drain region. Also, the device is able to operate in higher drain-source voltages due to the effectively reduced electric field at drain side. Briefly, the proposed structure can be considered as a more reliable device for low standby-power logic applications operating at higher voltages and upper cutoff frequencies.
P-type field effect transistor based on Na-doped BaSnO3
NASA Astrophysics Data System (ADS)
Jang, Yeaju; Hong, Sungyun; Park, Jisung; Char, Kookrin
We fabricated field effect transistors (FET) based on the p-type Na-doped BaSnO3 (BNSO) channel layer. The properties of epitaxial BNSO channel layer were controlled by the doping rate. In order to modulate the p-type FET, we used amorphous HfOx and epitaxial BaHfO3 (BHO) gate oxides, both of which have high dielectric constants. HfOx was deposited by atomic-layer-deposition and BHO was epitaxially grown by pulsed laser deposition. The pulsed laser deposited SrRuO3 (SRO) was used as the source and the drain contacts. Indium-tin oxide and La-doped BaSnO3 were used as the gate electrodes on top of the HfOx and the BHO gate oxides, respectively. We will analyze and present the performances of the BNSO field effect transistor such as the IDS-VDS, the IDS-VGS, the Ion/Ioff ratio, and the field effect mobility. Samsung Science and Technology Foundation.
Electronic properties of BN-doped bilayer graphene and graphyne in the presence of electric field
NASA Astrophysics Data System (ADS)
Majidi, R.; Karami, A. R.
2013-11-01
In the present paper, we have used density functional theory to study electronic properties of bilayer graphene and graphyne doped with B and N impurities in the presence of electric field. It has been demonstrated that a band gap is opened in the band structures of the bilayer graphene and graphyne by B and N doping. We have also investigated influence of electric field on the electronic properties of BN-doped bilayer graphene and graphyne. It is found that the band gaps induced by B and N impurities are increased by applying electric field. Our results reveal that doping with B and N, and applying electric field are an effective method to open and control a band gap which is useful to design carbon-based next-generation electronic devices.
Doped bottom-contact organic field-effect transistors
NASA Astrophysics Data System (ADS)
Liu, Shiyi; Billig, Paul; Al-Shadeedi, Akram; Kaphle, Vikash; Lüssem, Björn
2018-07-01
The influence of doping on doped bottom-gate bottom-contact organic field-effect transistors (OFETs) is discussed. It is shown that the inclusion of a doped layer at the dielectric/organic semiconductor layer leads to a significant reduction in the contact resistances and a fine control of the threshold voltage. Through varying the thickness of the doped layer, a linear shift of threshold voltage V T from ‑3.1 to ‑0.22 V is observed for increasing thickness of doped layer. Meanwhile, the contact resistance at the source and drain electrode is reduced from 138.8 MΩ at V GS = ‑10 V for 3 nm to 0.3 MΩ for 7 nm thick doped layers. Furthermore, an increase of charge mobility is observed for increasing thickness of doped layer. Overall, it is shown that doping can minimize injection barriers in bottom-contact OFETs with channel lengths in the micro-meter regime, which has the potential to increase the performance of this technology further.
Enhancement of Hc2 and Jc by carbon-based chemical doping
NASA Astrophysics Data System (ADS)
Yeoh, W. K.; Dou, S. X.
2007-06-01
In the past 5 years, various kinds of doping of MgB 2, including single elements (metal and non-metal), silicates, various carbon sources, and other compounds have been investigated and reported. Most nanoparticle doping leads to improvement of critical current density, Jc( H), and performance, but some types show a negative effect. In this paper, the effect of carbon doping on Jc and the upper critical field, Hc2, of MgB 2 is reviewed. Carbon substitution effects make two distinguishable contributions to the enhancement of Jc field performance: increase of Hc2 and improvement of flux pinning, both because carbon substitutes for boron in the MgB 2 lattice. Among all the carbon sources so far, nano-SiC has been confirmed to be the most effective dopant to enhance the Jc in magnetic fields and Hc2. An irreversibility field, Hirr, of 10 T has been achieved with nano-SiC doping at 20 K, exceeding Hirr of NbTi at 4.2 K. Besides that, Hc2 of carbon alloyed MgB 2 film has reached the value of 71 T. The significant enhancement in Jc( H) and Hc2 via carbon substitution has provided great potential for practical applications of MgB 2. The dual reaction model proposed by the authors’ group provides a comprehensive understanding of the mechanism of enhancement in Jc and Hc2 by chemical doping. Further improvement in self-field Jc performance while maintaining the already achieved in-field performance remains as a major challenge in the development of MgB 2.
A delta-doped amorphous silicon thin-film transistor with high mobility and stability
NASA Astrophysics Data System (ADS)
Kim, Pyunghun; Lee, Kyung Min; Lee, Eui-Wan; Jo, Younjung; Kim, Do-Hyung; Kim, Hong-jae; Yang, Key Young; Son, Hyunji; Choi, Hyun Chul
2012-12-01
Ultrathin doped layers, known as delta-doped layers, were introduced within the intrinsic amorphous silicon (a-Si) active layer to fabricate hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) with enhanced field-effect mobility. The performance of the delta-doped a-Si:H TFTs depended on the phosphine (PH3) flow rate and the distance from the n+ a-Si to the deltadoping layer. The delta-doped a-Si:H TFTs fabricated using a commercial manufacturing process exhibited an enhanced field-effect mobility of approximately ˜0.23 cm2/Vs (compared to a conventional a-Si:H TFT with 0.15 cm2/Vs) and a desirable stability under a bias-temperature stress test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassmi, M.; LMOP, El Manar University, Tunis 2092; Pointet, J.
2016-06-28
Dielectric spectroscopy is carried out for intrinsic and aluminum-doped TiO{sub 2} rutile films which are deposited on RuO{sub 2} by the atomic layer deposition technique. Capacitance and conductance are measured in the 0.1 Hz–100 kHz range, for ac electric fields up to 1 MV{sub rms}/cm. Intrinsic films have a much lower dielectric constant than rutile crystals. This is ascribed to the presence of oxygen vacancies which depress polarizability. When Al is substituted for Ti, the dielectric constant further decreases. By considering Al-induced modification of polarizability, a theoretical relationship between the dielectric constant and the Al concentration is proposed. Al doping drastically decreasesmore » the loss in the very low frequency part of the spectrum. However, Al doping has almost no effect on the loss at high frequencies. The effect of Al doping on loss is discussed through models of hopping transport implying intrinsic oxygen vacancies and Al related centers. When increasing the ac electric field in the MV{sub rms}/cm range, strong voltage non-linearities are evidenced in undoped films. The conductance increases exponentially with the ac field and the capacitance displays negative values (inductive behavior). Hopping barrier lowering is proposed to explain high-field effects. Finally, it is shown that Al doping strongly improves the high-field dielectric behavior.« less
Mott-metal transition in layered perovskite iridate thin films via field-effect doping
NASA Astrophysics Data System (ADS)
Cheema, Suraj; Turcaud, Jeremy; Nelson, Chris; Salahuddin, Sayeef; Ramesh, Ramamoorthy
We report on electrostatic gating of spin-orbit coupled Mott insulator Sr2IrO4 (Sr214) via ferroelectric field effect doping. Field effect doping has been used to modulate electronic phenomena in emerging 2D systems and strongly correlated oxides, but 5 d systems with large spin-orbit coupling have yet to be explored. Upon switching the polarization field of ferroelectric Pb(Zr20Ti80)O3 (PZT) to the down-poled (electron-accumulation) state, temperature-dependent resistivity measurements indicate extremely metallic behavior in the ultrathin Sr214 channel. This work successfully closes the Mott gap in Sr214 in a ''clean'' doping environment free of chemical disorder, thereby strengthening the link to the isostrucutral high-Tc cuprates, as Sr214 has been predicted to host d-wave superconductivity upon electron doping the parent antiferromagnetic insulating phase. Furthermore, the metallic behavior in Sr214 persists for thickness beyond the expected screening length, suggestive of a collective carrier delocalization mechanism. Electrostatically doped carriers prove to be a useful method for tuning the competition between spin-orbit and Coulomb interactions in order to trigger novel phase transitions, such as the Mott-metal crossover. This work was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231.
The fundamental science of nitrogen-doping of niobium superconducting cavities
NASA Astrophysics Data System (ADS)
Gonnella, Daniel Alfred
Doping of niobium superconducting RF cavities with impurities has been demonstrated to have the ability to significantly improve the cryogenic efficiency of the accelerating structures. Doping SRF cavities with nitrogen is a relatively simple additional step to cavity preparation that can make drastic improvements in a cavity's intrinsic quality factor, Q0. Nitrogen-doping consists of treating SRF cavities at high temperatures in a low nitrogen-atmosphere. This leads to two important effects: an improvement in Q0 at low fields, and the presence of an "anti-Q slope" in which the cryogenic efficiency of doped cavities actually improves at higher fields. After its initial discovery, nitrogen-doping showed real promise but many fundamental scientific questions remained about the process. Nitrogen-doped cavities consistently quenched at lower fields than un-doped cavities, cooling the cavities through their critical temperature slowly led to poor performance, and the mechanism behind the Q0 improvement was not well understood. This dissertation focuses on addressing these issues. Single-cell 1.3 GHz cavities were prepared with different nitrogen-dopings and their effects studied systematically. It was found that nitrogen-doping drastically lowers the mean free path of the RF penetration layer of the niobium, leading to a lowering of the temperature-dependent BCS resistance, RBCS, at low fields. Theoretical work to predict the anti-Q slope was compared with experimental results to more fundamentally understand the nature of the field dependence of RBCS. Nitrogen-doped cavities were found to have a much larger sensitivity of residual resistance from trapped magnetic flux than un-doped cavities. Fast cool downs with large spatial temperature gradients through Tc were found to more efficiently expel magnetic flux. The full dependence of this sensitivity to trapped magnetic flux was studied as a function of changing mean free path and found to be in good agreement with theoretical predictions. The nature of the low-field quench in nitrogen-doped cavities was also studied with high power pulsed measurements and found to be related to a lowering of the lower critical field, Bc1 due to lowering of the mean free path. Finally, five cryomodule tests were carried out on nitrogen-doped 9-cell cavities to understand how the cryomodule environment affects the performance of doped cavities. This is the first demonstration that environmental factors can be controlled to achieve high Q0 of more than 2.7x10 10 at 16 MV/m and 2.0 K in a cryomodule, meeting and exceeding the specification for LCLS-II. The work presented here represents a significant leap forward in the understanding of the underlying science behind nitrogen-doped cavities and demonstrates their readiness for use in future particle accelerators.
NASA Astrophysics Data System (ADS)
Nica, Emilian M.; Franz, Marcel
2018-02-01
Motivated by recent work on strain-induced pseudomagnetic fields in Dirac and Weyl semimetals, we analyze the possibility of analogous fields in two-dimensional nodal superconductors. We consider the prototypical case of a d -wave superconductor, a representative of the cuprate family, and find that the presence of weak, spatially varying strain leads to pseudomagnetic fields and Landau quantization of Bogoliubov quasiparticles in the low-energy sector. A similar effect is induced by the presence of generic, weak doping gradients. In contrast to genuine magnetic fields in superconductors, the strain- and doping-gradient-induced pseudomagnetic fields couple in a way that preserves time-reversal symmetry and is not subject to the screening associated with the Meissner effect. These effects can be probed by tuning weak applied supercurrents which lead to shifts in the energies of the Landau levels and hence to quantum oscillations in thermodynamic and transport quantities.
Doping- and irradiation-controlled pinning of vortices in BaFe 2 (As 1 - x P x ) 2 single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, L.; Jia, Y.; Schlueter, J. A.
We report on the systematic evolution of vortex pinning behavior in isovalent doped single crystals of BaFe 2 (As 1 - x P x ) 2 . Proceeding from optimal doped to overdoped samples, we find a clear transformation of the magnetization hysteresis from a fishtail behavior to a distinct peak effect, followed by a reversible magnetization and Bean-Livingston surface barriers. Strong point pinning dominates the vortex behavior at low fields whereas weak collective pinning determines the behavior at higher fields. In addition to doping effects, we show that particle irradiation by energetic protons can tune vortex pinning in thesemore » materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, L.; Jia, Y.; Schlueter, J. A.
We report on the systematic evolution of vortex pinning behavior in isovalent doped single crystals of BaFe{sub 2}(As{sub 1-x}P{sub x}){sub 2}. Proceeding from optimal doped to overdoped samples, we find a clear transformation of the magnetization hysteresis from a fishtail behavior to a distinct peak effect, followed by a reversible magnetization and Bean-Livingston surface barriers. Strong point pinning dominates the vortex behavior at low fields whereas weak collective pinning determines the behavior at higher fields. In addition to doping effects, we show that particle irradiation by energetic protons can tune vortex pinning in these materials.
NASA Astrophysics Data System (ADS)
Bai, Zikui; Xie, Changsheng; Hu, Mulin; Zhang, Shunping
2008-12-01
The sensors based on Ni-doped ZnO nanopowder with tetrapod-shape (T-ZnO) were fabricated by screen-printing technique with external magnetic field in different direction. The morphologies and crystal structures of the thick film were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. Gas-sensing property of sensors responded to 100 ppm formaldehyde was also detected. The results show that the direction of magnetic field has crucial effect on the sensor sensitivity. The sensors based on 5 wt% Ni-doped T-ZnO induced by magnetic field in parallel direction to the thick film surface, has the optimization sensitivity, the shortest response and recovery time, which are 10.6, 16 and 15 s, respectively. The magnetic-field induction model and the gas-sensing mechanism of the Ni-doped T-ZnO are proposed.
Ahmad, Mashkoor; Sun, Hongyu; Zhu, Jing
2011-04-01
Vertically oriented well-aligned Indium doped ZnO nanowires (NWs) have been successfully synthesized on Au-coated Zn substrate by controlled thermal evaporation. The effect of indium dopant on the optical and field-emission properties of these well-aligned ZnO NWs is investigated. The doped NWs are found to be single crystals grown along the c-axis. The composition of the doped NWs is confirmed by X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and X-ray photospectroscopy (XPS). The photoluminescence (PL) spectra of doped NWs having a blue-shift in the UV region show a prominent tuning in the optical band gap, without any significant peak relating to intrinsic defects. The turn-on field of the field emission is found to be ∼2.4 V μm(-1) and an emission current density of 1.13 mA cm(-2) under the field of 5.9 V μm(-1). The field enhancement factor β is estimated to be 9490 ± 2, which is much higher than that of any previous report. Furthermore, the doped NWs exhibit good emission current stability with a variation of less than 5% during a 200 s under a field of 5.9 V μm(-1). The superior field emission properties are attributed to the good alignment, high aspect ratio, and better crystallinity of In-doped NWs. © 2011 American Chemical Society
Effect of doping on the intersubband absorption in Si- and Ge-doped GaN/AlN heterostructures
NASA Astrophysics Data System (ADS)
Ajay, A.; Lim, C. B.; Browne, D. A.; Polaczyński, J.; Bellet-Amalric, E.; Bleuse, J.; den Hertog, M. I.; Monroy, E.
2017-10-01
In this paper, we study band-to-band and intersubband (ISB) characteristics of Si- and Ge-doped GaN/AlN heterostructures (planar and nanowires) structurally designed to absorb in the short-wavelength infrared region, particularly at 1.55 μm. Regarding the band-to-band properties, we discuss the variation of the screening of the internal electric field by free carriers, as a function of the doping density and well/nanodisk size. We observe that nanowire heterostructures consistently present longer photoluminescence decay times than their planar counterparts, which supports the existence of an in-plane piezoelectric field associated to the shear component of the strain tensor in the nanowire geometry. Regarding the ISB characteristics, we report absorption covering 1.45-1.75 μm using Ge-doped quantum wells, with comparable performance to Si-doped planar heterostructures. We also report similar ISB absorption in Si- and Ge-doped nanowire heterostructures indicating that the choice of dopant is not an intrinsic barrier for observing ISB phenomena. The spectral shift of the ISB absorption as a function of the doping concentration due to many body effects confirms that Si and Ge efficiently dope GaN/AlN nanowire heterostructures.
Comparing Hall Effect and Field Effect Measurements on the Same Single Nanowire.
Hultin, Olof; Otnes, Gaute; Borgström, Magnus T; Björk, Mikael; Samuelson, Lars; Storm, Kristian
2016-01-13
We compare and discuss the two most commonly used electrical characterization techniques for nanowires (NWs). In a novel single-NW device, we combine Hall effect and back-gated and top-gated field effect measurements and quantify the carrier concentrations in a series of sulfur-doped InP NWs. The carrier concentrations from Hall effect and field effect measurements are found to correlate well when using the analysis methods described in this work. This shows that NWs can be accurately characterized with available electrical methods, an important result toward better understanding of semiconductor NW doping.
Suppression of the Hall number due to charge density wave order in high-Tc cuprates
NASA Astrophysics Data System (ADS)
Sharma, Girish; Nandy, S.; Taraphder, A.; Tewari, Sumanta
2018-05-01
Understanding the pseudogap phase in hole-doped high-temperature cuprate superconductors remains a central challenge in condensed-matter physics. From a host of recent experiments there is now compelling evidence of translational-symmetry-breaking charge density wave (CDW) order in a wide range of doping inside this phase. Two distinct types of incommensurate charge order, bidirectional at zero or low magnetic fields and unidirectional at high magnetic fields close to the upper critical field Hc 2, have been reported so far in approximately the same doping range between p ≃0.08 and p ≃0.16 . In concurrent developments, recent high-field Hall experiments have also revealed two indirect but striking signatures of Fermi surface reconstruction in the pseudogap phase, namely, a sign change of the Hall coefficient to negative values at low temperatures in the intermediate range of hole doping and a rapid suppression of the positive Hall number without a change in sign near optimal doping p ˜0.19 . We show that the assumption of a unidirectional incommensurate CDW (with or without a coexisting weak bidirectional order) at high magnetic fields near optimal doping and the coexistence of both types of orders of approximately equal magnitude at high magnetic fields in the intermediate range of doping may help explain the striking behavior of the low-temperature Hall effect in the entire pseudogap phase.
Experimental identification of p-type conduction in fluoridized boron nitride nanotube
NASA Astrophysics Data System (ADS)
Zhao, Jing; Li, Wuxia; Tang, Chengchun; Li, Lin; Lin, Jing; Gu, Changzhi
2013-04-01
The transport properties of F-doped boron nitride nanotube (BNNT) top-gate field effect devices were investigated to demonstrate the realization of p-type BNNTs by F-doping. The drain current was found to increase substantially with the applied negative gate voltage, suggesting these devices persist significant field effect with holes predominated; it also suggests that F-doping remarkably modified the band gap with F atoms preferred to be absorbed on B sites. Parameters, including the resistivity, charge concentration, and mobility, were further retrieved from the I-V curves. Our results indicate that device characterization is an effective method to reveal the specific properties of BNNTs.
Shintani, Yukihiro; Kobayashi, Mikinori; Kawarada, Hiroshi
2017-05-05
A fluorine-terminated polycrystalline boron-doped diamond surface is successfully employed as a pH-insensitive SGFET (solution-gate field-effect transistor) for an all-solid-state pH sensor. The fluorinated polycrystalline boron-doped diamond (BDD) channel possesses a pH-insensitivity of less than 3mV/pH compared with a pH-sensitive oxygenated channel. With differential FET (field-effect transistor) sensing, a sensitivity of 27 mv/pH was obtained in the pH range of 2-10; therefore, it demonstrated excellent performance for an all-solid-state pH sensor with a pH-sensitive oxygen-terminated polycrystalline BDD SGFET and a platinum quasi-reference electrode, respectively.
NASA Astrophysics Data System (ADS)
Shao, D. F.; Xiao, R. C.; Lu, W. J.; Lv, H. Y.; Li, J. Y.; Zhu, X. B.; Sun, Y. P.
2016-09-01
The transition-metal dichalcogenide 1 T -TaS2 exhibits a rich set of charge-density-wave (CDW) orders. Recent investigations suggested that using light or an electric field can manipulate the commensurate CDW (CCDW) ground state. Such manipulations are considered to be determined by charge-carrier doping. Here we use first-principles calculations to simulate the carrier-doping effect on the CCDW in 1 T -TaS2 . We investigate the charge-doping effects on the electronic structures and phonon instabilities of the 1 T structure, and we analyze the doping-induced energy and distortion ratio variations in the CCDW structure. We found that both in bulk and monolayer 1 T -TaS2 , the CCDW is stable upon electron doping, while hole doping can significantly suppress the CCDW, implying different mechanisms of such reported manipulations. Light or positive perpendicular electric-field-induced hole doping increases the energy of the CCDW, so that the system transforms to a nearly commensurate CDW or a similar metastable state. On the other hand, even though the CCDW distortion is more stable upon in-plane electric-field-induced electron injection, some accompanied effects can drive the system to cross over the energy barrier from the CCDW to a nearly commensurate CDW or a similar metastable state. We also estimate that hole doping can introduce potential superconductivity with a Tc of 6-7 K. Controllable switching of different states such as a CCDW/Mott insulating state, a metallic state, and even a superconducting state can be realized in 1 T -TaS2 . As a result, this material may have very promising applications in future electronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Wen, E-mail: wenxiong@cqu.edu.cn; Chen, Wensuo
2013-12-21
The electronic structure of Mn and Co-doped CdSe nanowires are calculated based on the six-band k·p effective-mass theory. Through the calculation, it is found that the splitting energies of the degenerate hole states in Mn-doped CdSe nanowires are larger than that in Co-doped CdSe nanowires when the concentration of these two kinds of magnetic ions is the same. In order to analysis the magneto-optical spectrum of Mn and Co-doped CdSe nanowires, the four lowest electron states and the four highest hole states are sorted when the magnetic field is applied, and the 10 lowest optical transitions between the conduction subbandsmore » and the valence subbands at the Γ point in Mn and Co-doped CdSe nanowires are shown in the paper, it is found that the order of the optical transitions at the Γ point almost do not change although two different kinds of magnetic ions are doped in CdSe nanowires. Finally, the effective excitonic Zeeman splitting energies at the Γ point are found to increase almost linearly with the increase of the concentration of the magnetic ions and the magnetic field; meanwhile, the giant positive effective excitonic g factors in Mn and Co-doped CdSe nanowires are predicted based on our theoretical calculation.« less
Quantum oscillations from the reconstructed Fermi surface in electron-doped cuprate superconductors
NASA Astrophysics Data System (ADS)
Higgins, J. S.; Chan, M. K.; Sarkar, Tarapada; McDonald, R. D.; Greene, R. L.; Butch, N. P.
2018-04-01
We have studied the electronic structure of electron-doped cuprate superconductors via measurements of high-field Shubnikov–de Haas oscillations in thin films. In optimally doped Pr2‑x Ce x CuO4±δ and La2‑x Ce x CuO4±δ , quantum oscillations indicate the presence of a small Fermi surface, demonstrating that electronic reconstruction is a general feature of the electron-doped cuprates, despite the location of the superconducting dome at very different doping levels. Negative high-field magnetoresistance is correlated with an anomalous low-temperature change in scattering that modifies the amplitude of quantum oscillations. This behavior is consistent with effects attributed to spin fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uren, Michael J.; Cäsar, Markus; Kuball, Martin
2014-06-30
Temperature dependent pulsed and ramped substrate bias measurements are used to develop a detailed understanding of the vertical carrier transport in the buffer layers in a carbon doped GaN power heterojunction field effect transistor. Carbon doped GaN and multiple layers of AlGaN alloy are used in these devices to deliver an insulating and strain relieved buffer with high breakdown voltage capability. However, understanding of the detailed physical mechanism for its operation is still lacking. At the lowest electric fields (<10 MV/m), charge redistribution within the C doped layer is shown to occur by hole conduction in the valence band withmore » activation energy 0.86 eV. At higher fields, leakage between the two-dimensional electron gas and the buffer dominates occurring by a Poole-Frenkel mechanism with activation energy ∼0.65 eV, presumably along threading dislocations. At higher fields still, the strain relief buffer starts to conduct by a field dependent process. Balancing the onset of these leakage mechanisms is essential to allow the build-up of positive rather than negative space charge, and thus minimize bulk-related current-collapse in these devices.« less
NASA Astrophysics Data System (ADS)
Narayanan, Ananthakrishnan; Thakur, Mrinal
2009-03-01
Quadratic electro-optic effect in a novel nonconjugated conductive polymer, iodine-doped polynorbornene has been measured using field-induced birefringence at 633 nm. The electrical conductivity^1 of polynorbornene increases by twelve orders of magnitude to about 0.01 S/cm upon doping with iodine. The electro-optic measurement has been made in a film doped at the medium doping-level. The electro-optic modulation signal was recorded using a lock-in amplifier for various applied ac voltages (4 kHz) and the quadratic dependence of the modulation on the applied voltage was observed. A modulation of about 0.01% was observed for an applied electric field of 3 V/micron for a 100 nm thick film The Kerr coefficient as determined is about 1.77x10-11m/V^2. This exceptionally large quadratic electro-optic effect has been attributed to the confinement of this charge-transfer system within a sub-nanometer dimension. 1. A. Narayanan, A. Palthi and M. Thakur, J. Macromol. Sci. -- PAC, accepted.
Lv, Yong-an; Zhuang, Gui-lin; Wang, Jian-guo; Jia, Ya-bo; Xie, Qin
2011-07-21
To find an effective strategy for the capture and decomposition of nitrous oxide (N(2)O) is very important in order to protect the ozone layer and control the effects of global warming. Based on first-principles calculations, such a strategy is proposed by the systemic study of N(2)O interaction with pristine and Al (or Ga)-doped graphene, and N(2)O dissociation on the surface of Al (or Ga)-doped graphene in an applied electric field. The calculated adsorption energy value shows the N(2)O molecule more firmly adsorbs on the surface of Al (or Ga)-doped graphene than that of pristine graphene, deriving from a stronger covalent bond between the N(2)O molecule and the Al (or Ga) atom. Furthermore, our study suggests that N(2)O molecules can be easily decomposed to N(2) and O(2) with the appropriate electric field, which reveals that Al-doped graphene may be a new candidate for control of N(2)O. This journal is © the Owner Societies 2011
Quantum plasmons with optical-range frequencies in doped few-layer graphene
NASA Astrophysics Data System (ADS)
Shirodkar, Sharmila N.; Mattheakis, Marios; Cazeaux, Paul; Narang, Prineha; Soljačić, Marin; Kaxiras, Efthimios
2018-05-01
Although plasmon modes exist in doped graphene, the limited range of doping achieved by gating restricts the plasmon frequencies to a range that does not include the visible and infrared. Here we show, through the use of first-principles calculations, that the high levels of doping achieved by lithium intercalation in bilayer and trilayer graphene shift the plasmon frequencies into the visible range. To obtain physically meaningful results, we introduce a correction of the effect of plasmon interaction across the vacuum separating periodic images of the doped graphene layers, consisting of transparent boundary conditions in the direction perpendicular to the layers; this represents a significant improvement over the exact Coulomb cutoff technique employed in earlier works. The resulting plasmon modes are due to local field effects and the nonlocal response of the material to external electromagnetic fields, requiring a fully quantum mechanical treatment. We describe the features of these quantum plasmons, including the dispersion relation, losses, and field localization. Our findings point to a strategy for fine-tuning the plasmon frequencies in graphene and other two-dimensional materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanatar, Makariy A.; Liu, Yong; Jaroszynski, J.
In-plane resistivity measurements as a function of temperature and magnetic field up to 35 T with precise orientation within the crystallographic ac plane were used to study the upper critical field H c2 of the hole-doped iron-based superconductor Ba 1–xK xFe 2As 2. Compositions of the samples studied spanned from under- doped x=0.17 (T c=12 K) and x=0.22 (T c=20 K), both in the coexistence range of stripe magnetism and superconductivity, through optimal doping x=0.39 (T c=38.4 K) and x=0.47 (T c=37.2 K), to overdoped x=0.65 (T c=22 K) and x=0.83 (T c=10 K). Here, we find notable doping asymmetrymore » of the shapes of the anisotropic H c2(T), suggesting the important role of paramagnetic limiting effects in the H∥a configuration in overdoped compositions and multiband effects in underdoped compositions.« less
Tanatar, Makariy A.; Liu, Yong; Jaroszynski, J.; ...
2017-11-14
In-plane resistivity measurements as a function of temperature and magnetic field up to 35 T with precise orientation within the crystallographic ac plane were used to study the upper critical field H c2 of the hole-doped iron-based superconductor Ba 1–xK xFe 2As 2. Compositions of the samples studied spanned from under- doped x=0.17 (T c=12 K) and x=0.22 (T c=20 K), both in the coexistence range of stripe magnetism and superconductivity, through optimal doping x=0.39 (T c=38.4 K) and x=0.47 (T c=37.2 K), to overdoped x=0.65 (T c=22 K) and x=0.83 (T c=10 K). Here, we find notable doping asymmetrymore » of the shapes of the anisotropic H c2(T), suggesting the important role of paramagnetic limiting effects in the H∥a configuration in overdoped compositions and multiband effects in underdoped compositions.« less
Physics and material science of ultra-high quality factor superconducting resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vostrikov, Alexander
2015-08-01
The nitrogen doping into niobium superconducting radio frequency cavity walls aiming to improve the fundamental mode quality factor is the subject of the research in the given work. Quantitative nitrogen diffusion into niobium model calculating the concentration profile was developed. The model estimations were confirmed with secondary ion mass spectrometry technique measurements. The model made controlled nitrogen doping recipe optimization possible. As a result the robust reproducible recipe for SRF cavity walls treatment with nitrogen doping was developed. The cavities produced with optimized recipe met LCLS–II requirements on quality factor of 2.7 ∙ 10 10 at acceleration field of 16more » MV/m. The microscopic effects of nitrogen doping on superconducting niobium properties were studied with low energy muon spin rotation technique and magnetometer measurements. No significant effect of nitrogen on the following features was found: electron mean free path, magnetic field penetration depth, and upper and surface critical magnetic fields. It was detected that for nitrogen doped niobium samples magnetic flux starts to penetrate inside the superconductor at lower external magnetic field value compared to the low temperature baked niobium ones. This explains lower quench field of SRF cavities treated with nitrogen. Quality factor improvement of fundamental mode forced to analyze the high order mode (HOM) impact on the particle beam dynamics. Both resonant and cumulative effects caused by monopole and dipole HOMs respectively are found to be negligible within the requirements for LCLS–II.« less
Effect of Si-doping on InAs nanowire transport and morphology
NASA Astrophysics Data System (ADS)
Wirths, S.; Weis, K.; Winden, A.; Sladek, K.; Volk, C.; Alagha, S.; Weirich, T. E.; von der Ahe, M.; Hardtdegen, H.; Lüth, H.; Demarina, N.; Grützmacher, D.; Schäpers, Th.
2011-09-01
The effect of Si-doping on the morphology, structure, and transport properties of nanowires was investigated. The nanowires were deposited by selective-area metal organic vapor phase epitaxy in an N2 ambient. It is observed that doping systematically affects the nanowire morphology but not the structure of the nanowires. However, the transport properties of the wires are greatly affected. Room-temperature four-terminal measurements show that with an increasing dopant supply the conductivity monotonously increases. For the highest doping level the conductivity is higher by a factor of 25 compared to only intrinsically doped reference nanowires. By means of back-gate field-effect transistor measurements it was confirmed that the doping results in an increased carrier concentration. Temperature dependent resistance measurements reveal, for lower doping concentrations, a thermally activated semiconductor-type increase of the conductivity. In contrast, the nanowires with the highest doping concentration show a metal-type decrease of the resistivity with decreasing temperature.
Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x.
Sterpetti, Edoardo; Biscaras, Johan; Erb, Andreas; Shukla, Abhay
2017-12-12
The phase diagram of hole-doped high critical temperature superconductors as a function of doping and temperature has been intensively studied with chemical variation of doping. Chemical doping can provoke structural changes and disorder, masking intrinsic effects. Alternatively, a field-effect transistor geometry with an electrostatically doped, ultra-thin sample can be used. However, to probe the phase diagram, carrier density modulation beyond 10 14 cm -2 and transport measurements performed over a large temperature range are needed. Here we use the space charge doping method to measure transport characteristics from 330 K to low temperature. We extract parameters and characteristic temperatures over a large doping range and establish a comprehensive phase diagram for one-unit-cell-thick BSCCO-2212 as a function of doping, temperature and disorder.
NASA Astrophysics Data System (ADS)
Martínez-Orozco, J. C.; Rodríguez-Magdaleno, K. A.; Suárez-López, J. R.; Duque, C. A.; Restrepo, R. L.
2016-04-01
In this work we present theoretical results for the electronic structure as well as for the absorption coefficient and relative refractive index change for an asymmetric double δ-doped like confining potential in the active region of a Multiple Independent Gate Field Effect Transistor (MIGFET) system. We model the potential profile as a double δ-doped like potential profile between two Schottky (parabolic) potential barriers that are just the main characteristics of the MIGFET configuration. We investigate the effect of external electromagnetic fields in this kind of quantum structures, in particular we applied a homogeneous constant electric field in the growth direction z as well as a homogeneous constant magnetic field in the x-direction. In general we conclude that by applying electromagnetic fields we can modulate the resonant peaks of the absorption coefficient as well as their energy position. Also with such probes it is possible to control the nodes and amplitude of the relative refractive index changes related to resonant intersubband optical transitions.
Combined effects of dopants and electric field on interactions of dopamine with graphene
NASA Astrophysics Data System (ADS)
Wang, Qun; Wang, Meng-hao; Lu, Xiong; Wang, Ke-feng; Fang, Li-ming
2017-10-01
We utilized the density functional theory to study interactions in dopamine (DA)-graphene (G) systems. Graphene was modified with boron (B), nitrogen (N), calcium (Ca), and iron (Fe) atoms. Furthermore, an external electric field (E-field) between 0.005 and 0.020 au was applied between the DA and (Ca, Fe)-doped G. The study revealed that interactions can be modulated between the DA and doped G (especially the Ca- and Fe-doped G) due to the formation of metalsbnd O and Osbnd metalsbnd O covalent interactions. In addition, interactions are sensitive to the E-field applied to DA-Ca/Fe-G-lying models, there are the strongest interactions with the 0.015 au E-field.
Screening-Engineered Field-Effect Solar Cells
2012-01-01
virtually any semiconductor, including the promising but hard-to- dope metal oxides, sulfides, and phosphides.3 Prototype SFPV devices have been...MIS interface. Unfortu- nately, MIS cells, though sporting impressive efficiencies,4−6 typically have short operating lifetimes due to surface state...instability at the MIS interface.7 Methods aimed at direct field- effect “ doping ” of semiconductors, in which the voltage is externally applied to a gate
Polarization induced doped transistor
Xing, Huili; Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang
2016-06-07
A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.
A Moral Foundation for Anti-Doping: How Far Have We Progressed? Where Are the Limits?
Murray, Thomas H
2017-01-01
Clarity about the ethical justification of anti-doping is essential. In its absence, critics multiply and confusion abounds. Three broad reasons are typically offered in anti-doping's defense: to protect athletes' health; to promote fairness; and to preserve meaning and values in sport - what the World Anti-Doping Agency (WADA) Code refers to as the spirit of sport. Protecting health is itself an important value, but many sports encourage athletes to take significant risks. The case against doping is buttressed by concern for athletes' health, but it cannot be the sole foundation. Promoting fairness is vital in all sports as the metaphor of the level playing field attests. But playing fields can be leveled by providing performance-enhancing drugs to all competitors. When doping is prohibited, fairness is aided by effective anti-doping. But the fundamental justification for anti-doping is found in the meanings and values we pursue in and through sport. © 2017 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Pan, Dan-Feng; Zhou, Ming-Xiu; Lu, Zeng-Xing; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo
2016-06-01
Multiferroic La-doped BiFeO3 thin films have been prepared by a sol-gel plus spin-coating process, and the local magnetoelectric coupling effect has been investigated by the magnetic-field-assisted scanning probe microscopy connected with a ferroelectric analyzer. The local ferroelectric polarization response to external magnetic fields is observed and a so-called optimized magnetic field of ~40 Oe is obtained, at which the ferroelectric polarization reaches the maximum. Moreover, we carry out the magnetic-field-dependent surface conductivity measurements and illustrate the origin of local magnetoresistance in the La-doped BiFeO3 thin films, which is closely related to the local ferroelectric polarization response to external magnetic fields. This work not only provides a useful technique to characterize the local magnetoelectric coupling for a wide range of multiferroic materials but also is significant for deeply understanding the local multiferroic behaviors in the BiFeO3-based systems.
NASA Astrophysics Data System (ADS)
Yang, Yang; Xie, Yigao; Zhou, Xiaoqian; Zhong, Hui; Jiang, Qingzheng; Ma, Shengcan; Zhong, Zhenchen; Cui, Weibin; Wang, Qiang
2018-05-01
Interstitial effects of B and Li on the phase transition and magnetocaloric effect in Gd2In alloys had been studied. The antiferromagnetic (AFM) - ferromagnetic (FM) phase transition was found to be of first-order nature while ferromagnetic - paramagnetic (PM) phase transition was of second-order nature in B- or Li-doped Gd2In alloys. AFM-FM phase transition temperature was increased while FM-PM phase transition was decreased with more doping concentrations. During AFM-FM phase transition, the slope of temperature-dependent critical field (μ0Hcr) was increased by increased doping amounts. The magnetic entropy changes under small field change were enhanced by B and Li addition, which showed the beneficial effects of B and Li additions.
Relation between film thickness and surface doping of MoS2 based field effect transistors
NASA Astrophysics Data System (ADS)
Lockhart de la Rosa, César J.; Arutchelvan, Goutham; Leonhardt, Alessandra; Huyghebaert, Cedric; Radu, Iuliana; Heyns, Marc; De Gendt, Stefan
2018-05-01
Ultra-thin MoS2 film doping through surface functionalization with physically adsorbed species is of great interest due to its ability to dope the film without reduction in the carrier mobility. However, there is a need for understanding how the thickness of the MoS2 film is related to the induced surface doping for improved electrical performance. In this work, we report on the relation of MoS2 film thickness with the doping effect induced by the n-dopant adsorbate poly(vinyl-alcohol). Field effect transistors built using MoS2 films of different thicknesses were electrically characterized, and it was observed that the ION/OFF ratio after doping in thin films is more than four orders of magnitudes greater when compared with thick films. Additionally, a semi-classical model tuned with the experimental devices was used to understand the spatial distribution of charge in the channel and explain the observed behavior. From the simulation results, it was revealed that the two-dimensional carrier density induced by the adsorbate is distributed rather uniformly along the complete channel for thin films (<5.2 nm) contrary to what happens for thicker films.
Effect of Ti4+ doping on magnetic properties of charge ordered Bi0.3Ca0.7MnO3
NASA Astrophysics Data System (ADS)
Yadav, Kamlesh; Singh, M. P.; Razavi, F. S.; Varma, G. D.
2017-07-01
The effect of Ti doping in Bi0.3Ca0.7Mn1-x Ti x O3 (where x = 0.0, 0.015, 0.03, 0.05, 0.08, 0.12 and 0.16) on structural, magnetic and transport properties have been studied. The charge-ordering temperature (T CO) decreases gradually with increasing Ti doping content, and finally disappears completely for x = 0.12. The Neel temperature (T N) also decreases with increasing Ti doping content. A transition to a cluster glass like state is observed at T ⩽ T N. The zero field cooled/field cooled (ZFC/FC) magnetization decreases at high temperature (T > 200 K) with increasing Ti content, whereas an opposite trend is observed at low temperature (T < 200 K). Small exchange bias effect is also observed for x = 0.08 at 10 K. The resistivity increases with increasing Ti doping content. The disorder induced by Ti doping on the Mn site plays a key role in explaining the observed magnetic and electrical properties.
Personal and psychosocial predictors of doping use in physical activity settings: a meta-analysis.
Ntoumanis, Nikos; Ng, Johan Y Y; Barkoukis, Vassilis; Backhouse, Susan
2014-11-01
There is a growing body of empirical evidence on demographic and psychosocial predictors of doping intentions and behaviors utilizing a variety of variables and conceptual models. However, to date there has been no attempt to quantitatively synthesize the available evidence and identify the strongest predictors of doping. Using meta-analysis, we aimed to (i) determine effect sizes of psychological (e.g. attitudes) and social-contextual factors (e.g. social norms), and demographic (e.g. sex and age) variables on doping intentions and use; (ii) examine variables that moderate such effect sizes; and (iii) test a path analysis model, using the meta-analyzed effect sizes, based on variables from the theory of planned behavior (TPB). Articles were identified from online databases, by contacting experts in the field, and searching the World Anti-Doping Agency website. Studies that measured doping behaviors and/or doping intentions, and at least one other demographic, psychological, or social-contextual variable were included. We identified 63 independent datasets. Study information was extracted by using predefined data fields and taking into account study quality indicators. A random effects meta-analysis was carried out, correcting for sampling and measurement error, and identifying moderator variables. Path analysis was conducted on a subset of studies that utilized the TPB. Use of legal supplements, perceived social norms, and positive attitudes towards doping were the strongest positive correlates of doping intentions and behaviors. In contrast, morality and self-efficacy to refrain from doping had the strongest negative association with doping intentions and behaviors. Furthermore, path analysis suggested that attitudes, perceived norms, and self-efficacy to refrain from doping predicted intentions to dope and, indirectly, doping behaviors. Various meta-analyzed effect sizes were based on a small number of studies, which were correlational in nature. This is a limitation of the extant literature. This review identifies a number of important correlates of doping intention and behavior, many of which were measured via self-reports and were drawn from an extended TPB framework. Future research might benefit from embracing other conceptual models of doping behavior and adopting experimental methodologies that will test some of the identified correlates in an effort to develop targeted anti-doping policies and programs.
Correlation-Induced Self-Doping in the Iron-Pnictide Superconductor Ba2Ti2Fe2As4O
NASA Astrophysics Data System (ADS)
Ma, J.-Z.; van Roekeghem, A.; Richard, P.; Liu, Z.-H.; Miao, H.; Zeng, L.-K.; Xu, N.; Shi, M.; Cao, C.; He, J.-B.; Chen, G.-F.; Sun, Y.-L.; Cao, G.-H.; Wang, S.-C.; Biermann, S.; Qian, T.; Ding, H.
2014-12-01
The electronic structure of the iron-based superconductor Ba2Ti2Fe2As4O (Tconset=23.5 K ) has been investigated by using angle-resolved photoemission spectroscopy and combined local density approximation and dynamical mean field theory calculations. The electronic states near the Fermi level are dominated by both the Fe 3 d and Ti 3 d orbitals, indicating that the spacer layers separating different FeAs layers are also metallic. By counting the enclosed volumes of the Fermi surface sheets, we observe a large self-doping effect; i.e., 0.25 electrons per unit cell are transferred from the FeAs layer to the Ti2As2O layer, leaving the FeAs layer in a hole-doped state. This exotic behavior is successfully reproduced by our dynamical mean field calculations, in which the self-doping effect is attributed to the electronic correlations in the 3 d shells. Our work provides an alternative route of effective doping without element substitution for iron-based superconductors.
NASA Astrophysics Data System (ADS)
Hossain, M. S. A.; Motaman, A.; Çiçek, Ö.; Ağıl, H.; Ertekin, E.; Gencer, A.; Wang, X. L.; Dou, S. X.
2012-12-01
The effects of sintering temperature on the lattice parameters, full width at half maximum (FWHM), strain, critical temperature (Tc), critical current density (Jc), irreversibility field (Hirr), upper critical field (Hc2), and resistivity (ρ) of 10 wt.% silicone oil doped MgB2 bulk and wire samples are investigated in state of the art by this article. The a-lattice parameter of the silicone oil doped samples which were sintered at different temperatures was drastically reduced from 3.0864 Å to 3.0745 Å, compared to the un-doped samples, which indicates the substitution of the carbon (C) into the boron sites. It was found that sintered samples at the low temperature of 600 °C shows more lattice distortion by more C-substitution and higher strain, lower Tc, higher impurity scattering, and enhancement of both magnetic Jc and Hc2, compared to those sintered samples at high temperatures. The flux pinning mechanism has been analyzed based on the extended normalized pinning force density fp = Fp/Fp,max scaled with b = B/Bmax. Results show that surface pinning is the dominant pinning mechanism for the doped sample sintered at the low temperature of 600 °C, while point pinning is dominant for the un-doped sample. The powder in tube (PIT) MgB2 wire was also fabricated by using of this liquid doping and found that both transport Jc and n-factor increased which proves this cheap and abundant silicone oil doping can be a good candidate for industrial application.
Investigation of veritcal graded channel doping in nanoscale fully-depleted SOI-MOSFET
NASA Astrophysics Data System (ADS)
Ramezani, Zeinab; Orouji, Ali A.
2016-10-01
For achieving reliable transistor, we investigate an amended channel doping (ACD) engineering which improves the electrical and thermal performances of fully-depleted silicon-on-insulator (SOI) MOSFET. We have called the proposed structure with the amended channel doping engineering as ACD-SOI structure and compared it with a conventional fully-depleted SOI MOSFET (C-SOI) with uniform doping distribution using 2-D ATLAS simulator. The amended channel doping is a vertical graded doping that is distributed from the surface of structure with high doping density to the bottom of channel, near the buried oxide, with low doping density. Short channel effects (SCEs) and leakage current suppress due to high barrier height near the source region and electric field modification in the ACD-SOI in comparison with the C-SOI structure. Furthermore, by lower electric field and electron temperature near the drain region that is the place of hot carrier generation, we except the improvement of reliability and gate induced drain lowering (GIDL) in the proposed structure. Undesirable Self heating effect (SHE) that become a critical challenge for SOI MOSFETs is alleviated in the ACD-SOI structure because of utilizing low doping density near the buried oxide. Thus, refer to accessible results, the ACD-SOI structure with graded distribution in vertical direction is a reliable device especially in low power and high temperature applications.
Negative differential resistance in BN co-doped coaxial carbon nanotube field effect transistor
NASA Astrophysics Data System (ADS)
Shah, Khurshed A.; Parvaiz, M. Shunaid
2016-12-01
The CNTFETs are the most promising advanced alternatives to the conventional FETs due to their outstanding structure and electrical properties. In this paper, we report the I-V characteristics of zig-zag (4, 0) semiconducting coaxial carbon nanotube field effect transistor (CNTFET) using the non-equilibrium Green's function formalism. The CNTFET is co-doped with two, four and six boron-nitrogen (BN) atoms separately near the electrodes using the substitutional doping method and the I-V characteristics were calculated for each model using Atomistic Tool Kit software (version 13.8.1) and its virtual interface. The results reveal that all models show negative differential resistance (NDR) behavior with the maximum peak to valley current ratio (PVCR) of 3.2 at 300 K for the four atom doped model. The NDR behavior is due to the band to band tunneling (BTBT) in semiconducting CNTFET and decreases as the doping in the channel increases. The results are beneficial for next generation designing of nano devices and their potential applications in electronic industry.
Doped organic transistors operating in the inversion and depletion regime
Lüssem, Björn; Tietze, Max L.; Kleemann, Hans; Hoßbach, Christoph; Bartha, Johann W.; Zakhidov, Alexander; Leo, Karl
2013-01-01
The inversion field-effect transistor is the basic device of modern microelectronics and is nowadays used more than a billion times on every state-of-the-art computer chip. In the future, this rigid technology will be complemented by flexible electronics produced at extremely low cost. Organic field-effect transistors have the potential to be the basic device for flexible electronics, but still need much improvement. In particular, despite more than 20 years of research, organic inversion mode transistors have not been reported so far. Here we discuss the first realization of organic inversion transistors and the optimization of organic depletion transistors by our organic doping technology. We show that the transistor parameters—in particular, the threshold voltage and the ON/OFF ratio—can be controlled by the doping concentration and the thickness of the transistor channel. Injection of minority carriers into the doped transistor channel is achieved by doped contacts, which allows forming an inversion layer. PMID:24225722
Extinction of photoemission of Mn-Doped ZnS nanofluid in weak magnetic field
NASA Astrophysics Data System (ADS)
Vu, Anh-Tuan; Bui, Hong-Van; Pham, Van-Ben; Le, Van-Hong; Hoang, Nam-Nhat
2016-08-01
The observation of extinction of photoluminescence of Mn-doped ZnS nanofluid under applying of weak magnetic field is reported. At a constant field of 270 Gauss and above, the exponential decays of photoluminescent intensity was observed in disregard of field direction. About 50% extinction was achieved after 30 minute magnetization and a total extinction after 1 hour. The memory effect preserved for more than 2 hours at room temperature. This extinction was observed in a system with no clear ferromagnetic behavior.
First-principles studies of electric field effects on the electronic structure of trilayer graphene
NASA Astrophysics Data System (ADS)
Wang, Yun-Peng; Li, Xiang-Guo; Fry, James N.; Cheng, Hai-Ping
2016-10-01
A gate electric field is a powerful way to manipulate the physical properties of nanojunctions made of two-dimensional crystals. To simulate field effects on the electronic structure of trilayer graphene, we used density functional theory in combination with the effective screening medium method, which enables us to understand the field-dependent layer-layer interactions and the fundamental physics underlying band gap variations and the resulting band modifications. Two different graphene stacking orders, Bernal (or ABC) and rhombohedral (or ABA), were considered. In addition to confirming the experimentally observed band gap opening in ABC-stacked and the band overlap in ABA-stacked trilayer systems, our results reveal rich physics in these fascinating systems, where layer-layer couplings are present but some characteristics features of single-layer graphene are partially preserved. For ABC stacking, the electric-field-induced band gap size can be tuned by charge doping, while for ABA band the tunable quantity is the band overlap. Our calculations show that the electronic structures of the two stacking orders respond very differently to charge doping. We find that in the ABA stacking hole doping can reopen a band gap in the band-overlapping region, a phenomenon distinctly different from electron doping. The physical origins of the observed behaviors were fully analyzed, and we conclude that the dual-gate configuration greatly enhances the tunability of the trilayer systems.
NASA Astrophysics Data System (ADS)
Ahmadi, S.; Delir Kheirollahi Nezhad, P.; Hosseinian, A.; Vessally, E.
2018-06-01
We have inspected the effect of substituting a boron or nitrogen atom of a BN nanocone (BNNC) by two impurity atoms with lower and higher atomic numbers based on the density functional theory calculations. Our results explain the experimental observations in a molecular level. Orbital and partial density of states analyses show that the doping processes increase the electrical conductivity by creating new states within the gap of BNNC as follows: BeB > ON > CB > CN. The electron emission current from the surface of BNNC is improved after the CB and BeB dopings, and it is decreased by CN and ON dopings. The BeB and CN dopings make the BNNC a p-type semiconductor and the CB and ON dopings make it an n-type one in good agreement with the experimental results. The ON and BeB doping processes are suggested for the field emission current, and electrical conductivity enhancement, respectively.
Nonthermal Photocoercivity Effect in Low-Doped (Ga,Mn)As Ferromagnetic Semiconductor
NASA Astrophysics Data System (ADS)
Kiessling, T.; Astakhov, G. V.; Hoffmann, H.; Korenev, V. L.; Schwittek, J.; Schott, G. M.; Gould, C.; Ossau, W.; Brunner, K.; Molenkamp, L. W.
2011-12-01
We report a photoinduced change of the coercive field of a low doped Ga1-xMnxAs ferromagnetic semiconductor under very low intensity illumination. This photocoercivity effect (PCE) is local and reversible, which enables the controlled formation of localized magnetization domains. The PCE arises from a light induced lowering of the domain wall pinning energy as confirmed by test experiments on high doped, fully metallic ferromagnetic Ga1-xMnxAs.
Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping.
Yu, Woo Jong; Liao, Lei; Chae, Sang Hoon; Lee, Young Hee; Duan, Xiangfeng
2011-11-09
The bilayer graphene has attracted considerable attention for potential applications in future electronics and optoelectronics because of the feasibility to tune its band gap with a vertical displacement field to break the inversion symmetry. Surface chemical doping in bilayer graphene can induce an additional offset voltage to fundamentally affect the vertical displacement field and the band gap opening in bilayer graphene. In this study, we investigate the effect of chemical molecular doping on band gap opening in bilayer graphene devices with single or dual gate modulation. Chemical doping with benzyl viologen molecules modulates the displacement field to allow the opening of a transport band gap and the increase of the on/off ratio in the bilayer graphene transistors. Additionally, Fermi energy level in the opened gap can be rationally controlled by the amount of molecular doping to obtain bilayer graphene transistors with tunable Dirac points, which can be readily configured into functional devices, such as complementary inverters.
Nanoscale-SiC doping for enhancing Jc and Hc2 in superconducting MgB2
NASA Astrophysics Data System (ADS)
Dou, S. X.; Braccini, V.; Soltanian, S.; Klie, R.; Zhu, Y.; Li, S.; Wang, X. L.; Larbalestier, D.
2004-12-01
The effect of nanoscale-SiC doping of MgB2 was investigated in comparison with undoped, clean-limit, and Mg-vapor-exposed samples using transport and magnetic measurements. It was found that there are two distinguishable but related mechanisms that control the critical current-density-field Jc(H ) behavior: increase of upper critical field Hc2 and improvement of flux pinning. There is a clear correlation between the critical temperature Tc, the resistivity ρ, the residual resistivity ratio RRR =R(300K)/R(40K), the irreversibility field H*, and the alloying state in the samples. The Hc2 is about the same within the measured field range for both the Mg-vapor-treated and the SiC-doped samples. However, the Jc(H ) for the latter is higher than the former in a high-field regime by an order of magnitude. Mg vapor treatment induced intrinsic scattering and contributed to an increase in Hc2. SiC doping, on the other hand, introduced many nanoscale precipitates and disorder at B and Mg sites, provoking an increase of ρ(40K ) from 1μΩcm (RRR=15) for the clean-limit sample to 300μΩcm (RRR=1.75) for the SiC-doped sample, leading to significant enhancement of both Hc2 and H * with only a minor effect on Tc. Electron energy-loss spectroscope and transmission electron microscope analysis revealed impurity phases: Mg2Si, MgO, MgB4, BOx, SixByOz, and BC at a scale below 10nm and an extensive domain structure of 2-4-nm domains in the doped sample, which serve as strong pinning centers.
NASA Astrophysics Data System (ADS)
Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Bhansali, Unnat. S.; Alshareef, H. N.
2012-06-01
High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility of 8.7 cm2/Vs was obtained along with an Ion/Ioff ratio of 106. The ferroelectric thin film transistors showed a low sub-threshold swing value of 0.19 V/dec and a significantly reduced device operating voltage (±4 V) compared to the reported hetero-junction ferroelectric transistors, which is very promising for low-power non-volatile memory applications.
NASA Astrophysics Data System (ADS)
Li, Pei; Abraimov, Dmytro; Polyanskii, Anatolii; Kametani, Fumitake; Larbalestier, David
2015-03-01
The residual low-angle grain boundary (GB) network is still the most important current-limiting mechanism operating in biaxially textured rare-earth barium-copper-oxide (REBCO) coated conductors. While Ca doping is well established to improve supercurrent flow across low-angle GBs in weak fields at high temperatures, Ca doping also depresses Tc, making it so far impractical for high-temperature applications of REBCO coated conductors. On the other hand, high-field-magnet applications of REBCO require low temperatures. Here we systematically evaluate the effectiveness of Ca doping in improving the GB transparency, rGB=JcGB/ Jcgrain , of low-angle Y b1 -xC axBaCuO [001] tilt bicrystal films down to 10 K and with magnetic fields perpendicular and parallel to the film surfaces, while varying the Ca and oxygen doping level. Using low-temperature scanning laser microscopy and magneto-optical imaging, we found rGB to strongly depend on the angle between magnetic field and the GB plane and clearly identified regimes in which JcGB can exceed Jcgrain(rGB>1 ) where the GB pinning is optimized by the field being parallel to the GB dislocations. However, even in this favorable situation, we found that rGB became much smaller at lower temperatures. Calculations of the GB Ca segregation profile predict that the high-Jc channels between the GB dislocation cores are almost Ca free. It may be therefore that the positive effects of Ca doping seen by many authors near Tc are partly a consequence of the higher Tc of these Ca-free channels.
NASA Astrophysics Data System (ADS)
Ko, Seung-Pil; Shin, Jong Mok; Jang, Ho Kyun; You, Min Youl; Jin, Jun-Eon; Choi, Miri; Cho, Jiung; Kim, Gyu-Tae
2018-02-01
Doping effects in devices based on two-dimensional (2D) materials have been widely studied. However, detailed analysis and the mechanism of the doping effect caused by encapsulation layers has not been sufficiently explored. In this work, we present experimental studies on the n-doping effect in WSe2 field effect transistors (FETs) with a high-k encapsulation layer (Al2O3) grown by atomic layer deposition. In addition, we demonstrate the mechanism and origin of the doping effect. After encapsulation of the Al2O3 layer, the threshold voltage of the WSe2 FET negatively shifted with the increase of the on-current. The capacitance-voltage measurements of the metal insulator semiconductor (MIS) structure proved the presence of the positive fixed charges within the Al2O3 layer. The flat-band voltage of the MIS structure of Au/Al2O3/SiO2/Si was shifted toward the negative direction on account of the positive fixed charges in the Al2O3 layer. Our results clearly revealed that the fixed charges in the Al2O3 encapsulation layer modulated the Fermi energy level via the field effect. Moreover, these results possibly provide fundamental ideas and guidelines to design 2D materials FETs with high-performance and reliability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, J. C.; Li, Z.; Xu, X.
We present a detailed investigation on the doping dependence of the upper critical field H{sub c2}(T) of FeSe{sub x}Te{sub 1−x} thin films (0.18 ≤ x ≤ 0.90) by measuring the electrical resistivity as a function of magnetic field. The H{sub c2}(T) curves exhibit a downturn behavior with decreasing temperature in all the samples, owing to the Pauli-limited effect (spin paramagnetic effect). The Pauli-limited effect on the upper critical field can be monotonically modulated by variation of the Se/Te composition. Our results show that Te-doping induced disorder and excess Fe atoms give rise to enhancement of the Pauli-limited effect.
NASA Astrophysics Data System (ADS)
Saedi, Leila; Soleymanabadi, Hamed; Panahyab, Ataollah
2018-05-01
Following an experimental work, we explored the effect of replacing an Al atom of an AlN nanocone by Si or Mg atom on its electronic and field emission properties using density functional theory calculations. We found that both Si-doping and Mg-doping increase the electrical conductivity of AlN nanocone, but their influences on the filed emission properties are significantly different. The Si-doping increases the electron concentration of AlN nanocone and results in a large electron mobility and a low work function, whereas Mg-doping leads to a high hole concentration below the conduction level and increases the work function in agreement with the experimental results. It is predicted that Si-doped AlN nanocones show excellent filed emission performance with higher emitted electron current density compared to the pristine AlN nanocone. But the Mg-doping meaningfully decreases the emitted electron current density from the surface of AlN nanocone. The Mg-doping can increase the work function about 41.9% and the Si-doping can decrease it about 6.3%. The Mg-doping and Si-doping convert the AlN nanocone to a p-type and n-type semiconductors, respectively. Our results explain in a molecular level what observed in the experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra, E-mail: varimalla@yahoo.com, E-mail: vrreddy@csr.res.in; Bag, Pallab
2014-09-15
Structural, dielectric, ferroelectric (FE), {sup 119}Sn Mössbauer, and specific heat measurements of polycrystalline BaTi{sub 1–x}Sn{sub x}O{sub 3} (x = 0% to 15%) ceramics are reported. Phase purity and homogeneous phase formation with Sn doping is confirmed from x-ray diffraction and {sup 119}Sn Mössbauer measurements. With Sn doping, the microstructure is found to change significantly. Better ferroelectric properties at room temperature, i.e., increased remnant polarization (38% more) and very low field switchability (225% less) are observed for x = 5% sample as compared to other samples and the results are explained in terms of grain size effects. With Sn doping, merging of all the phasemore » transitions into a single one is observed for x ≥ 10% and for x = 5%, the tetragonal to orthorhombic transition temperature is found close to room temperature. As a consequence better electro-caloric effects are observed for x = 5% sample and therefore is expected to satisfy the requirements for non-toxic, low energy (field) and room temperature based applications.« less
Kim, Tae-Young; Hong, Nguyen Hoa; Sugawara, T; Raghavender, A T; Kurisu, M
2013-05-22
Thin films of rare earth (RE)-doped BiFeO3 (where RE=Sm, Ho, Pr and Nd) were grown on LaAlO3 substrates by using the pulsed laser deposition technique. All the films show a single phase of rhombohedral structure with space group R3c. The saturated magnetization in the Ho- and Sm-doped films is much larger than the values reported in the literature, and is observed at quite a low field of 0.2 T. For Ho and Sm doping, the magnetization increases as the film becomes thinner, suggesting that the observed magnetism is mostly due to a surface effect. In the case of Nd doping, even though the thin film has a large magnetic moment, the mechanism seems to be different.
NASA Astrophysics Data System (ADS)
Miyagi, Kazuya; Namihira, Yoshinori; Kasamatsu, Yuho; Hossain, Md. Anwar
2013-07-01
We demonstrate dynamic control of the effective area ( A eff) of photonic crystal fibers (PCFs) in the range of 18.1-8.22 μm2 and the mode field diameter in the range of 4.78-3.42 μm. This control was realized by altering their structural properties and varying the germanium (Ge) doping rate, which changed the refractive index difference (Δ n Ge) between 1.0 and 3.0% relative to the refractive index of the silica cladding. This was achieved by adjusting the Ge doping rate in the core and changing the radius ( d core) of the doped region, i.e., by changing the equivalent refractive index, using numerical calculations. Numerical results were verified by comparison with experimental results for a fabricated Gedoped PCF obtained by far-field scanning based on the ITU-T Petermann II definition. The proposed approach will simultaneously decrease Aeff and achieves high light confinement and high nonlinearity in PCFs. It enables architectonics/controllability of highly nonlinear PCFs with passive optical devices in photonic networks and life science applications.
Ekimov, E A; Sidorov, V A; Bauer, E D; Mel'nik, N N; Curro, N J; Thompson, J D; Stishov, S M
2004-04-01
Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields. With these physical properties, diamond is attractive for electronic applications, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500-2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature T(c) approximately 4 K; superconductivity survives in a magnetic field up to Hc2(0) > or = 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.
Flux pinning in nanoparticle doped MgB 2/Cu tapes
NASA Astrophysics Data System (ADS)
Babić, E.; Kušević, I.; Husnjak, O.; Soltanian, S.; Wang, X. L.; Dou, S. X.
2007-09-01
The irreversibility fields Birr and critical current densities Jc of undoped and Si and SiC nanoparticle doped (5, 10 and 20 wt%) MgB2 tapes were measured in the temperature (T) range 2-38 K and in magnetic fields B ⩽ 16 T. Whereas Birr of undoped tapes varies smoothly with T, those of doped tapes show a change in slope around a crossover field Bcr which increases with nanoparticle content and also depends on their type. This indicates matching effect in vortex pinning, probably associated with Mg2Si nanoprecipitates formed during heat treatment. Indeed, Birr of doped tapes was enhanced in respect to that of undoped one with the highest enhancement for Birr ≈ Bcr, but the enhancement remained high ≈1.4 even for Birr ≫ Bcr (low temperatures). The variations of Jc and the pinning force density Fp = JcB with B and T support the above findings.
Mixed Carrier Conduction in Modulation-doped Field Effect Transistors
NASA Technical Reports Server (NTRS)
Schacham, S. E.; Haugland, E. J.; Mena, R. A.; Alterovitz, S. A.
1995-01-01
The contribution of more than one carrier to the conductivity in modulation-doped field effect transistors (MODFET) affects the resultant mobility and complicates the characterization of these devices. Mixed conduction arises from the population of several subbands in the two-dimensional electron gas (2DEG), as well as the presence of a parallel path outside the 2DEG. We characterized GaAs/AlGaAs MODFET structures with both delta and continuous doping in the barrier. Based on simultaneous Hall and conductivity analysis we conclude that the parallel conduction is taking place in the AlGaAs barrier, as indicated by the carrier freezeout and activation energy. Thus, simple Hall analysis of these structures may lead to erroneous conclusions, particularly for real-life device structures. The distribution of the 2D electrons between the various confined subbands depends on the doping profile. While for a continuously doped barrier the Shubnikov-de Haas analysis shows superposition of two frequencies for concentrations below 10(exp 12) cm(exp -2), for a delta doped structure the superposition is absent even at 50% larger concentrations. This result is confirmed by self-consistent analysis, which indicates that the concentration of the second subband hardly increases.
Nanowire Tunnel Field Effect Transistors: Prospects and Pitfalls
NASA Astrophysics Data System (ADS)
Sylvia, Somaia Sarwat
The tunnel field effect transistor (TFET) has the potential to operate at lower voltages and lower power than the field effect transistor (FET). The TFET can circumvent the fundamental thermal limit of the inverse subthreshold slope (S) by exploiting interband tunneling of non-equilibrium "cold" carriers. The conduction mechanism in the TFET is governed by band-to-band tunneling which limits the drive current. TFETs built with III-V materials like InAs and InSb can produce enough tunneling current because of their small direct bandgap. Our simulation results show that although they require highly degenerate source doping to support the high electric fields in the tunnel region, the devices achieve minimum inverse subthreshold slopes of 30 mV/dec. In subthreshold, these devices experience both regimes of voltage-controlled tunneling and cold-carrier injection. Numerical results based on a discretized 8-band k.p model are compared to analytical WKB theory. For both regular FETs and TFETs, direct channel tunneling dominates the leakage current when the physical gate length is reduced to 5 nm. Therefore, a survey of materials is performed to determine their ability to suppress the direct tunnel current through a 5 nm barrier. The tunneling effective mass gives the best indication of the relative size of the tunnel currents. Si gives the lowest overall tunnel current for both the conduction and valence band and, therefore, it is the optimum choice for suppressing tunnel current at the 5 nm scale. Our numerical simulation shows that the finite number, random placement, and discrete nature of the dopants in the source of an InAs nanowire (NW) TFET affect both the mean value and the variance of the drive current and the inverse subthreshold slope. The discrete doping model gives an average drive current and an inverse subthreshold slope that are less than those predicted from the homogeneous doping model. The doping density required to achieve a target drive current is higher in the discrete doping model compared to the homogeneous doping model. The relative variation in the ON current decreases as the average doping density and/or NW diameter increases. For the largest 8 nm NW studied, the coefficient of variation in the ON current is ˜15% at a doping density of 1.5 x 1020 cm--3. Results from full self-consistent non-equilibrium Green's function calculations and semi-classical calculations are compared.
The effect of nano-alumina on structural and magnetic properties of MgB2 superconductors
NASA Astrophysics Data System (ADS)
Ansari, Intikhab A.; Shahabuddin, M.; Ziq, Khalil A.; Salem, A. F.; Awana, V. P. S.; Husain, M.; Kishan, H.
2007-08-01
Nano-Al2O3 doped Mg1-xAlxB2 with 0<=x<=6% were synthesized by solid state reaction at 750 °C in Fe tube encapsulation under a vacuum of 10-5 Torr. Resistance measurement shows that the Tc decreases with x and zero resistivity for x = 0 and 6% are obtained at 38 and 35 K, respectively. XRD measurement shows that the lattice parameter and cell volume also decrease monotonically with increasing doping levels. From this we infer that the Al has been substituted in the lattice of MgB2 at Mg sites. Resistivity measurement shows a systematic decrease in Tc with doping which also confirms the substitution of Al. Magnetization studies in the temperature range from 4 to 35 K and in the magnetic field up to 9 T shows a significant increase in the irreversibility field (Hirr), critical current density (Jc) and remanent magnetization (MR) with increasing concentration of the Al2O3 nanoparticle. At low fields we have observed large vortex instabilities (known as a vortex avalanche) associated with all doped samples. The vortex-avalanche effect is reduced with increasing temperature and vanishes near 20 K. The results are discussed in terms of local-vortex instabilities caused by doping of Al2O3 nanoparticles.
NASA Astrophysics Data System (ADS)
Zhang, X. W.; Fan, W. J.; Li, S. S.; Xia, J. B.
2007-04-01
The electronic structure, electron g factor, and Stark effect of InAs1-xNx quantum dots are studied by using the ten-band k •p model. It is found that the g factor can be tuned to be zero by the shape and size of quantum dots, nitrogen (N) doping, and the electric field. The N doping has two effects on the g factor: the direct effect increases the g factor and the indirect effect decreases it. The Stark effect in quantum ellipsoids is high asymmetrical and the asymmetry factor may be 319.
NASA Astrophysics Data System (ADS)
Saini, Basant; Adhikari, Sonachand; Pal, Suchandan; Kapoor, Avinsahi
2017-07-01
The effectiveness of polarization matching layer (PML) between i-InGaN/p-GaN is studied numerically for Ga-face InGaN/GaN p-i-n solar cell at low p-GaN doping (∼5e17 cm-3). The simulations are performed for four InxGa1-xN/GaN heterostructures (x = 10%, 15%, 20% and 25%), thus investigating the impact of PML for low as well as high indium containing absorber regions. Use of PML presents a suitable alternative to counter the effects of polarization-induced electric fields arising at low p-GaN doping density especially for absorber regions with high indium (>10%). It is seen that it not only mitigates the negative effects of polarization-induced electric fields but also reduces the high potential barriers existing at i-InGaN/p-GaN heterojunction. The improvement in photovoltaic properties of the heterostructures even at low p-GaN doping validates this claim.
Persistent spin helix manipulation by optical doping of a CdTe quantum well
NASA Astrophysics Data System (ADS)
Passmann, F.; Anghel, S.; Tischler, T.; Poshakinskiy, A. V.; Tarasenko, S. A.; Karczewski, G.; Wojtowicz, T.; Bristow, A. D.; Betz, M.
2018-05-01
Time-resolved Kerr-rotation microscopy explores the influence of optical doping on the persistent spin helix in a [001]-grown CdTe quantum well at cryogenic temperatures. Electron spin-diffusion dynamics reveal a momentum-dependent effective magnetic field providing SU(2) spin-rotation symmetry, consistent with kinetic theory. The Dresselhaus and Rashba spin-orbit coupling parameters are extracted independently from rotating the spin helix with external magnetic fields applied parallel and perpendicular to the effective magnetic field. Most importantly, a nonuniform spatiotemporal precession pattern is observed. The kinetic-theory framework of spin diffusion allows for modeling of this finding by incorporating the photocarrier density into the Rashba (α) and the Dresselhaus (β3) parameters. Corresponding calculations are further validated by an excitation-density-dependent measurement. This work shows universality of the persistent spin helix by its observation in a II-VI compound and the ability to fine-tune it by optical doping.
Yu, Seong Hun; Kang, Boseok; An, Gukil; Kim, BongSoo; Lee, Moo Hyung; Kang, Moon Sung; Kim, Hyunjung; Lee, Jung Heon; Lee, Shichoon; Cho, Kilwon; Lee, Jun Young; Cho, Jeong Ho
2015-01-28
We investigated the heterojunction effects of perylene tetracarboxylic diimide (PTCDI) derivatives on the pentacene-based field-effect transistors (FETs). Three PTCDI derivatives with different substituents were deposited onto pentacene layers and served as charge transfer dopants. The deposited PTCDI layer, which had a nominal thickness of a few layers, formed discontinuous patches on the pentacene layers and dramatically enhanced the hole mobility in the pentacene FET. Among the three PTCDI molecules tested, the octyl-substituted PTCDI, PTCDI-C8, provided the most efficient hole-doping characteristics (p-type) relative to the fluorophenyl-substituted PTCDIs, 4-FPEPTC and 2,4-FPEPTC. The organic heterojunction and doping characteristics were systematically investigated using atomic force microscopy, 2D grazing incidence X-ray diffraction studies, and ultraviolet photoelectron spectroscopy. PTCDI-C8, bearing octyl substituents, grew laterally on the pentacene layer (2D growth), whereas 2,4-FPEPTC, with fluorophenyl substituents, underwent 3D growth. The different growth modes resulted in different contact areas and relative orientations between the pentacene and PTCDI molecules, which significantly affected the doping efficiency of the deposited adlayer. The differences between the growth modes and the thin-film microstructures in the different PTCDI patches were attributed to a mismatch between the surface energies of the patches and the underlying pentacene layer. The film-morphology-dependent doping effects observed here offer practical guidelines for achieving more effective charge transfer doping in thin-film transistors.
NASA Astrophysics Data System (ADS)
Tsai, Jung-Hui; Chen, Jeng-Shyan; Chu, Yu-Jui
2005-01-01
The influence of δ-doping channels on the performance of n +-GaAs/p +-InGaP/n-GaAs camel-gate field effect transistors is investigated by theoretical analysis and experimental results. The depleted pn junction of the camel gate and the existence of considerable conduction band discontinuity at the InGaP/GaAs heterojunction enhance the potential barrier height and the forward gate voltage. As the concentration-thickness products of the n-GaAs layer and δ-doping layer are fixed, the higher δ-doping device exhibits a higher potential barrier height, a larger drain current, and a broader gate voltage swing, whereas the transconductance is somewhat lower. For a n +=5.5×10 12 cm -2δ-doping device, the experimental result exhibits a maximum transconductance of 240 mS/mm and a gate voltage swing of 3.5 V. Consequently, the studied devices provide a good potential for large signal and linear circuit applications.
Structure and Magnetic Properties of Rare Earth Doped Transparent Alumina
NASA Astrophysics Data System (ADS)
Limmer, Krista; Neupane, Mahesh; Chantawansri, Tanya
Recent experimental studies of rare earth (RE) doped alumina suggest that the RE induced novel phase-dependent structural and magnetic properties. Motivated by these efforts, the effects of RE doping of alpha and theta alumina on the local structure, magnetic properties, and phase stability have been examined in this first principles study. Although a direct correlation between the magnetic field dependent materials properties observed experimentally and calculated from first principles is not feasible because of the applied field and the scale, the internal magnetic properties and other properties of the doped materials are evaluated. The RE dopants are shown to increase the substitutional site volume as well as increasingly distort the site structure as a function of ionic radii. Doping both the alpha (stable) and theta (metastable) phases enhanced the relative stability of the theta phase. The energetic doping cost and internal magnetic moment were shown to be a function of the electronic configuration of the RE-dopant, with magnetic moment directly proportional to the number of unpaired electrons and doping cost being inversely related.
Flux pinning and inhomogeneity in magnetic nanoparticle doped MgB2/Fe wires
NASA Astrophysics Data System (ADS)
Novosel, Nikolina; Pajić, Damir; Mustapić, Mislav; Babić, Emil; Shcherbakov, Andrey; Horvat, Joseph; Skoko, Željko; Zadro, Krešo
2010-06-01
The effects of magnetic nanoparticle doping on superconductivity of MgB2/Fe wires have been investigated. Fe2B and SiO2-coated Fe2B particles with average diameters 80 and 150 nm, respectively, were used as dopands. MgB2 wires with different nanoparticle contents (0, 3, 7.5, 12 wt.%) were sintered at temperature 750°C. The magnetoresistivity and critical current density Jc of wires were measured in the temperature range 2-40 K in magnetic field B <= 16 T. Both transport and magnetic Jc were determined. Superconducting transition temperature Tc of doped wires decreases quite rapidly with doping level (~ 0.5 K per wt.%). This results in the reduction of the irreversibility fields Birr(T) and critical current densities Jc(B,T) in doped samples (both at low (5 K) and high temperatures (20 K)). Common scaling of Jc(B,T) curves for doped and undoped wires indicates that the main mechanism of flux pinning is the same in both types of samples. Rather curved Kramer's plots for Jc of doped wires imply considerable inhomogeneity.
Effect of p-GaN layer doping on the photoresponse of GaN-based p-i-n ultraviolet photodetectors
NASA Astrophysics Data System (ADS)
Wang, Jun; Guo, Jin; Xie, Feng; Wang, Wanjun; Wang, Guosheng; Wu, Haoran; Wang, Tanglin; Song, Man
2015-08-01
We report on two-dimensional (2D) numerical simulations of photoresponse characteristics for GaN based p-i-n ultraviolet (UV) photodetectors. Effects of doping density of p-GaN layer on the photoresponse have been investigated. In order to accurately simulate the device performance, the theoretical calculation includes doping-dependent mobility degradation by Arora model and high field saturation model. Theoretical modeling shows that the doping density of p- GaN layer can significantly affect the photoresponse of GaN based p-i-n UV photodetectors, especially at schottky contact. We have to make a suitable choice of the doping in the device design according to the simulation results.
Analysis of epitaxial drift field N on P silicon solar cells
NASA Technical Reports Server (NTRS)
Baraona, C. R.; Brandhorst, H. W., Jr.
1976-01-01
The performance of epitaxial drift field silicon solar cell structures having a variety of impurity profiles was calculated. These structures consist of a uniformly doped P-type substrate layer, and a P-type epitaxial drift field layer with a variety of field strengths. Several N-layer structures were modeled. A four layer solar cell model was used to calculate efficiency, open circuit voltage and short circuit current. The effect on performance of layer thickness, doping level, and diffusion length was determined. The results show that peak initial efficiency of 18.1% occurs for a drift field thickness of about 30 micron with the doping rising from 10 to the 17th power atoms/cu cm at the edge of the depletion region to 10 to the 18th power atoms/cu cm in the substrate. Stronger drift fields (narrow field regions) allowed very high performance (17% efficiency) even after irradiation to 3x10 to the 14th power 1 MeV electrons/sq cm.
Synthesis and Characterization of Molybdenum Doped ZnO Thin Films by SILAR Deposition Method
NASA Astrophysics Data System (ADS)
Radha, R.; Sakthivelu, A.; Pradhabhan, D.
2016-08-01
Molybdenum (Mo) doped zinc oxide (ZnO) thin films were deposited on the glass substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) deposition method. The effect of Mo dopant concentration of 5, 6.6 and 10 mol% on the structural, morphological, optical and electrical properties of n-type Mo doped ZnO films was studied. The X-ray diffraction (XRD) results confirmed that the Mo doped ZnO thin films were polycrystalline with wurtzite structure. The field emission scanning electron microscopy (FESEM) studies shows that the surface morphology of the films changes with Mo doping. A blue shift of the optical band gap was observed in the optical studies. Effect of Mo dopant concentration on electrical conductivity was studied and it shows comparatively high electrical conductivity at 10 mol% of Mo doping concentration.
Study of Stark Effect in n-doped 1.55 μm InN0.92yP1-1.92yBiy/InP MQWs
NASA Astrophysics Data System (ADS)
Bilel, C.; Chakir, K.; Rebey, A.; Alrowaili, Z. A.
2018-05-01
The effect of an applied electric field on electronic band structure and optical absorption properties of n-doped InN0.92y P1-1.92y Bi y /InP multiple quantum wells (MQWs) was theoretically studied using a self-consistent calculation combined with the 16-band anti-crossing model. The incorporation of N and Bi atoms into an InP host matrix leads to rapid reduction of the band gap energy covering a large infrared range. The optimization of the well parameters, such as the well/barrier widths, N/Bi compositions and doping density, allowed us to obtain InN0.92y P1-1.92y Bi y /InP MQWs operating at the wavelength 1.55 μm. Application of the electric field causes a red-shift of the fundamental transition energy T 1 accompanied by a significant change in the spatial distribution of confined electron density. The Stark effect on the absorption coefficient of n-doped InN0.92y P1-1.92y Bi y /InP MQWs was investigated. The Bi composition of these MQWs was adjusted for each electric field value in order to maintain the wavelength emission at 1.55 μm.
Control of the inversion-channel MOS properties by Mg doping in homoepitaxial p-GaN layers
NASA Astrophysics Data System (ADS)
Takashima, Shinya; Ueno, Katsunori; Matsuyama, Hideaki; Inamoto, Takuro; Edo, Masaharu; Takahashi, Tokio; Shimizu, Mitsuaki; Nakagawa, Kiyokazu
2017-12-01
Lateral GaN MOSFETs on homoepitaxial p-GaN layers with different Mg doping concentrations ([Mg]) have been evaluated to investigate the impact of [Mg] on MOS channel properties. It is demonstrated that the threshold voltage (V th) can be controlled by [Mg] along with the theoretical curve. The field effect mobility also shows [Mg] dependence and a maximum field effect mobility of 123 cm2 V-1 s-1 is achieved on [Mg] = 6.5 × 1016 cm-3 layer with V th = 3.0 V. The obtained results indicate that GaN MOSFETs can be designed on the basis of the doping concentration of the p-GaN layer with promising characteristics for the realization of power MOSFETs.
NASA Astrophysics Data System (ADS)
Liu, Xiangyu; Hu, Huiyong; Wang, Bin; Wang, Meng; Han, Genquan; Cui, Shimin; Zhang, Heming
2017-02-01
In this paper, a novel junctionless Ge n-Tunneling Field-Effect Transistors (TFET) structure is proposed. The simulation results show that Ion = 5.5 × 10-5A/μm is achieved. The junctionless device structure enhances Ion effectively and increases the region where significant BTBT occurs, comparing with the normal Ge-nTEFT. The impact of the lightly doped drain (LDD) region is investigated. A comparison of Ion and Ioff of the junctionless Ge n-TFET with different channel doping concentration ND and LDD doping concentration NLDD is studied. Ioff is reduced 1 order of magnitude with the optimized ND and NLDD are 1 × 1018cm-3 and 1 × 1017 cm-3, respectively. To reduce the gate induced drain leakage (GIDL) current, the impact of the sloped gate oxide structure is also studied. By employing the sloped gate oxide structure, the below 60 mV/decade subthreshold swing S = 46.2 mV/decade is achieved at Ion = 4.05 × 10-5A/μm and Ion/Ioff = 5.7 × 106.
Effects of Contact-Induced Doping on the Behaviors of Organic Photovoltaic Devices
Wang, Jian; Xu, Liang; Lee, Yun -Ju; ...
2015-10-09
Substrates can significantly affect the electronic properties of organic semiconductors. In this paper, we report the effects of contact-induced doping, arising from charge transfer between a high work function hole extraction layer (HEL) and the organic active layer, on organic photovoltaic device performance. Employing a high work function HEL is found to increase doping in the active layer and decrease photocurrent. Combined experimental and modeling investigations reveal that higher doping increases polaron–exciton quenching and carrier recombination within the field-free region. Consequently, there exists an optimal HEL work function that enables a large built-in field while keeping the active layer dopingmore » low. This value is found to be ~0.4 eV larger than the pinning level of the active layer material. As a result, these understandings establish a criterion for optimal design of the HEL when adapting a new active layer system and can shed light on optimizing performance in other organic electronic devices.« less
Negative Photoconductance in Heavily Doped Si Nanowire Field-Effect Transistors.
Baek, Eunhye; Rim, Taiuk; Schütt, Julian; Baek, Chang-Ki; Kim, Kihyun; Baraban, Larysa; Cuniberti, Gianaurelio
2017-11-08
We report the first observation of negative photoconductance (NPC) in n- and p-doped Si nanowire field-effect transistors (FETs) and demonstrate the strong influence of doping concentrations on the nonconventional optical switching of the devices. Furthermore, we show that the NPC of Si nanowire FETs is dependent on the wavelength of visible light due to the phonon-assisted excitation to multiple conduction bands with different band gap energies that would be a distinct optoelectronic property of indirect band gap semiconductor. We attribute the main driving force of NPC in Si nanowire FETs to the photogenerated hot electrons trapping by dopants ions and interfacial states. Finally, comparing back- and top-gate modulation, we derive the mechanisms of the transition between negative and positive photoconductance regimes in nanowire devices. The transition is decided by the competition between the light-induced interfacial trapping and the recombination of mobile carriers, which is dependent on the light intensity and the doping concentration.
NASA Astrophysics Data System (ADS)
He, Yan Jing; Lv, Hong Liang; Tang, Xiao Yan; Song, Qing Wen; Zhang, Yi Meng; Han, Chao; Zhang, Yi Men; Zhang, Yu Ming
2017-03-01
A lightly doped P-well field-limiting rings (FLRs) termination on 4H-SiC vertical double-implanted metal-oxide-semiconductor field-effect transistors (VDMOSFETs) has been investigated. Based on the simulation, the proposed termination applied to 4H-SiC VDMOSFET could achieve an almost same breakdown voltage (BV) and have the advantage of lower ion-implantation damage comparing with P+ FLRs termination. Meanwhile, this kind of termination also reduces the difficulty and consumption of fabrication process. 4H-SiC VDMOSFETs with lightly doped P-well (FLRs) termination have been fabricated on 10 μm thick epi-layer with nitrogen doping concentration of 6.2 × 1015 cm-3. The maximum breakdown voltage of the 4H-SiC VDMOSFETs has achieved as high as 1610 V at a current of 15 μA, which is very close to the simulated result of 1643 V and about 90% of the plane parallel breakdown voltage of 1780 V. It is considered that P-well FLRs termination is an effective, robust and process-tolerant termination structure suitable for 4H-SiC VDMOSFET.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.
2008-02-05
Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform infrared analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for pyroelectric detector applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresismore » measurements reveal an increase of coercive field due to the formation of single domain pattern.« less
Evolution of structural, electronic and magneto-transport properties of Sr2Ir1-xTixO4 5d based oxide
NASA Astrophysics Data System (ADS)
Bhatti, Imtiaz Noor; Pramanik, A. K.
2018-05-01
To investigate the effect of chemical doping on structural and transport properties in Sr2IrO4, in this study we have doped Ti4+ (3d0) at Ir4+ (5d5) site. Thus Ti doping introduces hole in the electronic band moreover, it also weaken the spin orbital coupling (SOC) and enhance electronic correlation (U). We have prepared the polycrystalline samples of Sr2Ir1-xTixO4 with x = 0.0 0.05 and 0.10 with solid state reaction method. Single phase and chemically pure samples were obtained. All samples crystalizes in tetragonal structure and I41/acd symmetry. The structural analysis shows the evolution of lattice parameter with doping. The temperature dependent resistivity is measured using four probe technique down in the temperature range 5 K-300 K. The resistivity increases with Ti doping. Temperature dependency of resistivity is explained by thermal activated 2-dimensional Mott Variable Hopping range model. To further understand the transport behavior both temperature and field dependent magneto-resistance is also studied. Negative magneto-resistance (MR) has been observed for all samples at 50 K. The MR shows quadratic field dependence at high field, implies a relevance of a quantum interference effect in this spin orbital coupled insulator.
Enhancement of the in-field Jc of MgB2 via SiCl4 doping
NASA Astrophysics Data System (ADS)
Wang, Xiao-Lin; Dou, S. X.; Hossain, M. S. A.; Cheng, Z. X.; Liao, X. Z.; Ghorbani, S. R.; Yao, Q. W.; Kim, J. H.; Silver, T.
2010-06-01
We present the following results. (1) We introduce a doping source for MgB2 , liquid SiCl4 , which is free of C, to significantly enhance the irreversibility field (Hirr) , the upper critical field (Hc2) , and the critical current density (Jc) with a little reduction in the critical temperature (Tc) . (2) Although Si can not be incorporated into the crystal lattice, a significant reduction in the a -axis lattice parameter was found, to the same extent as for carbon doping. (3) Based on the first-principles calculation, it is found that it is reliable to estimate the C concentration just from the reduction in the a -lattice parameter for C-doped MgB2 polycrystalline samples that are prepared at high sintering temperatures, but not for those prepared at low sintering temperatures. Strain effects and magnesium deficiency might be reasons for the a -lattice reduction in non-C or some of the C-added MgB2 samples. (4) The SiCl4 -doped MgB2 shows much higher Jc with superior field dependence above 20 K compared to undoped MgB2 and MgB2 doped with various carbon sources. (5) We introduce a parameter, RHH (Hc2/Hirr) , which can clearly reflect the degree of flux-pinning enhancement, providing us with guidance for further enhancing Jc . (6) It was found that spatial variation in the charge-carrier mean free path is responsible for the flux-pinning mechanism in the SiCl4 treated MgB2 with large in-field Jc .
NASA Astrophysics Data System (ADS)
Fu, Y.; Wang, S.-M.; Wang, X.-D.; Larsson, A.
2005-08-01
We have studied theoretically the energy band structures and optical properties of highly strained dipole δ-doped In0.3Ga0.7As/GaAs single quantum wells. Including dopant diffusion effect, strain in the quantum well, spin-orbital interactions, and many-body effects, the self-consistent calculations of the eight-band k •p model and the Poisson equation show that the dipole δ doping induces an electric field across the In0.3Ga0.7As quantum well by the Stark effect so that both the interband transition energy and the wave-function overlap between the ground-state electrons and holes are reduced. Applying an external bias across the quantum well partially cancels the built-in electric field and reduces the wavelength redshift. The calculated material gain peak is close to the experimental lasing wavelength.
Noda, Kei; Wada, Yasuo; Toyabe, Toru
2015-10-28
Effects of contact-area-limited doping for pentacene thin-film transistors with a bottom-gate, top-contact configuration were investigated. The increase in the drain current and the effective field-effect mobility was achieved by preparing hole-doped layers underneath the gold contact electrodes by coevaporation of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), confirmed by using a thin-film organic transistor advanced simulator (TOTAS) incorporating Schottky contact with a thermionic field emission (TFE) model. Although the simulated electrical characteristics fit the experimental results well only in the linear regime of the transistor operation, the barrier height for hole injection and the gate-voltage-dependent hole mobility in the pentacene transistors were evaluated with the aid of the device simulation. This experimental data analysis with the simulation indicates that the highly-doped semiconducting layers prepared in the contact regions can enhance the charge carrier injection into the active semiconductor layer and concurrent trap filling in the transistor channel, caused by the mitigation of a Schottky energy barrier. This study suggests that both the contact-area-limited doping and the device simulation dealing with Schottky contact are indispensable in designing and developing high-performance organic thin-film transistors.
NASA Astrophysics Data System (ADS)
Ning, Shuai; Zhan, Peng; Wang, Wei-Peng; Li, Zheng-Cao; Zhang, Zheng-Jun
2014-12-01
Highly c-axis oriented un-doped zinc oxide (ZnO) thin films, each with a thickness of ~ 100 nm, are deposited on Si (001) substrates by pulsed electron beam deposition at a temperature of ~ 320 °C, followed by annealing at 650 °C in argon in a strong magnetic field. X-ray photoelectron spectroscopy (XPS), positron annihilation analysis (PAS), and electron paramagnetic resonance (EPR) characterizations suggest that the major defects generated in these ZnO films are oxygen vacancies. Photoluminescence (PL) and magnetic property measurements indicate that the room-temperature ferromagnetism in the un-doped ZnO film originates from the singly ionized oxygen vacancies whose number depends on the strength of the magnetic field applied in the thermal annealing process. The effects of the magnetic field on the defect generation in the ZnO films are also discussed.
n-Type Doping of Vapor-Liquid-Solid Grown GaAs Nanowires.
Gutsche, Christoph; Lysov, Andrey; Regolin, Ingo; Blekker, Kai; Prost, Werner; Tegude, Franz-Josef
2011-12-01
In this letter, n-type doping of GaAs nanowires grown by metal-organic vapor phase epitaxy in the vapor-liquid-solid growth mode on (111)B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations ND of GaAs nanowires are found to vary from 7 × 10(17) cm(-3) to 2 × 10(18) cm(-3). The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal-insulator-semiconductor field-effect transistor devices.
Magnetic quantum phase transition in Cr-doped Bi2(SexTe1-x)3 driven by the Stark effect
NASA Astrophysics Data System (ADS)
Zhang, Zuocheng; Feng, Xiao; Wang, Jing; Lian, Biao; Zhang, Jinsong; Chang, Cuizu; Guo, Minghua; Ou, Yunbo; Feng, Yang; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Yayu
2017-10-01
The recent experimental observation of the quantum anomalous Hall effect has cast significant attention on magnetic topological insulators. In these magnetic counterparts of conventional topological insulators such as Bi2Te3, a long-range ferromagnetic state can be established by chemical doping with transition-metal elements. However, a much richer electronic phase diagram can emerge and, in the specific case of Cr-doped Bi2(SexTe1-x)3, a magnetic quantum phase transition tuned by the actual chemical composition has been reported. From an application-oriented perspective, the relevance of these results hinges on the possibility to manipulate magnetism and electronic band topology by external perturbations such as an electric field generated by gate electrodes—similar to what has been achieved in conventional diluted magnetic semiconductors. Here, we investigate the magneto-transport properties of Cr-doped Bi2(SexTe1-x)3 with different compositions under the effect of a gate voltage. The electric field has a negligible effect on magnetic order for all investigated compositions, with the remarkable exception of the sample close to the topological quantum critical point, where the gate voltage reversibly drives a ferromagnetic-to-paramagnetic phase transition. Theoretical calculations show that a perpendicular electric field causes a shift in the electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and, in turn, a magnetic phase transition.
Top-gate organic depletion and inversion transistors with doped channel and injection contact
NASA Astrophysics Data System (ADS)
Liu, Xuhai; Kasemann, Daniel; Leo, Karl
2015-03-01
Organic field-effect transistors constitute a vibrant research field and open application perspectives in flexible electronics. For a commercial breakthrough, however, significant performance improvements are still needed, e.g., stable and high charge carrier mobility and on-off ratio, tunable threshold voltage, as well as integrability criteria such as n- and p-channel operation and top-gate architecture. Here, we show pentacene-based top-gate organic transistors operated in depletion and inversion regimes, realized by doping source and drain contacts as well as a thin layer of the transistor channel. By varying the doping concentration and the thickness of the doped channel, we control the position of the threshold voltage without degrading on-off ratio or mobility. Capacitance-voltage measurements show that an inversion channel can indeed be formed, e.g., an n-doped channel can be inverted to a p-type inversion channel with highly p-doped contacts. The Cytop polymer dielectric minimizes hysteresis, and the transistors can be biased for prolonged cycles without a shift of threshold voltage, indicating excellent operation stability.
1-kV vertical Ga2O3 field-plated Schottky barrier diodes
NASA Astrophysics Data System (ADS)
Konishi, Keita; Goto, Ken; Murakami, Hisashi; Kumagai, Yoshinao; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka
2017-03-01
Ga2O3 field-plated Schottky barrier diodes (FP-SBDs) were fabricated on a Si-doped n--Ga2O3 drift layer grown by halide vapor phase epitaxy on a Sn-doped n+-Ga2O3 (001) substrate. The specific on-resistance of the Ga2O3 FP-SBD was estimated to be 5.1 mΩ.cm2. Successful field-plate engineering resulted in a high breakdown voltage of 1076 V. A larger-than-expected effective barrier height of 1.46 eV, which was extracted from the temperature-dependent current-voltage characteristics, could be caused by the effect of fluorine atoms delivered in a hydrofluoric acid solution process.
Spectroscopic and crystal-field analysis of new Yb-doped laser materials
NASA Astrophysics Data System (ADS)
Haumesser, Paul-Henri; Gaumé, Romain; Viana, Bruno; Antic-Fidancev, Elisabeth; Vivien, Daniel
2001-06-01
Crystal-field effects are very important as far as laser performances of Yb-doped materials are concerned. In order to simplify the interpretation of low-temperature spectra, two tools derived from a careful examination of crystal-field interaction are presented. Both approaches are successfully applied in the case of new Yb-doped materials, namely Ca3Y2(BO3)4 (CYB), Ca3Gd2(BO3)4 (CaGB), Sr3Y(BO3)3 (SrYBO), Ba3Lu(BO3)3 (BLuB), Y2SiO5 (YSO), Ca2Al2SiO7 (CAS) and SrY4(SiO4)3O (SYS). The 2F7/2 splitting is particularly large in these materials and favourable to a quasi-three-level laser operating scheme. Calculations performed using the point charge electrostatic model for these compounds and using a consistent set of effective atomic charges confirm the experimental results. This should permit to use this model in a predictive approach.
The enhanced efficiency of graphene-silicon solar cells by electric field doping.
Yu, Xuegong; Yang, Lifei; Lv, Qingmin; Xu, Mingsheng; Chen, Hongzheng; Yang, Deren
2015-04-28
The graphene-silicon (Gr-Si) Schottky junction solar cell has been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the low Gr-Si Schottky barrier height largely limits the power conversion efficiency of Gr-Si solar cells. Here, we demonstrate that electric field doping can be used to tune the work function of a Gr film and therefore improve the photovoltaic performance of the Gr-Si solar cell effectively. The electric field doping effects can be achieved either by connecting the Gr-Si solar cell to an external power supply or by polarizing a ferroelectric polymer layer integrated in the Gr-Si solar cell. Exploration of both of the device architecture designs showed that the power conversion efficiency of Gr-Si solar cells is more than twice of the control Gr-Si solar cells. Our study opens a new avenue for improving the performance of Gr-Si solar cells.
Field-Theoretical Studies of a doped Mott Insulator
NASA Astrophysics Data System (ADS)
Juricic, Vladimir
2006-06-01
In this thesis, the magnetic and the transport properties of La(2-x)Sr(x)CuO(4) in the undoped and lightly doped regime are investigated. In Chapter 2, we consider the role of the Dzyaloshinskii-Moriya (DM) and the pseudodipolar (XY) interactions in determining the magnetic properties of the undoped material, La(2)CuO(4), motivated by recent experiments, which show a complete anisotropy in the magnetic susceptibility response. We start with the microscopic spin model, which, besides the Heisenberg superexchange interaction, contains the anisotropic DM and the XY interactions. We map this microscopic model into a corresponding field theory, which turns out to be a generalized nonlinear sigma model. The effect of the anisotropies is to introduce gaps for the spin excitations, which are responsible for the ground-state properties of the material. When a magnetic field is applied, the DM anisotropy leads to an unexpected linear coupling of the staggered magnetization to the magnetic field, which is responsible for a completely anisotropic magnetic susceptibility, in agreement with experiments. In Chapter 3, we investigate the effect of the DM and the XY anisotropies on the magnetism when Sr doping is introduced in La(2)CuO(4). Our starting point is the nonlinear sigma model, which includes these anisotropies, and also the dopant holes, represented via an effective dipole field which couples to the background magnetization current. In the antiferromagnetic phase, x<2%, the dipole-magnetization current coupling leads to a decrease of the spin gaps, in good agreement with recent experiments. The DM gap gives rise to the stability of the antiferromagnetic state up to the doping level x=2%, at which the dipole field acquires a nonzero expectation value, causing a change in the magnetic ground state of the system. Beyond this doping concentration, the spins rearrange to form an incommensurate helicoidal state, which gives rise to two incommensurate peaks in the spin-glass phase of La(2-x)Sr(x)CuO(4), as observed by neutron scattering experiments. The incommensurability is related to the doping and the XY gap in a way that allows us to explain the linear doping dependence of the incommensurability at higher doping, as well as the deviation from the linear behavior at the onset of the spin-glass phase. We propose a measurement of the doping dependence of the incommensurability in the magnetic field as a smoking-gun experiment that would discriminate between the helicoidal and the stripe scenarios in the spin-glass phase of La(2-x)Sr(x)CuO(4). In Chapter 4, we study the dynamics of topological defects of a frustrated spin system displaying helicoidal order. As a starting point we consider the SO(3) nonlinear sigma model to describe long-wavelength fluctuations around the noncollinear spin state. This model allows for vortex-like topological defects, associated with the change of chirality of the noncollinear state. We consider single vortices and vortex-antivortex pairs, and quantize them using the collective coordinate method, which allows us to represent the defect as a particle coupled to a bath of harmonic oscillators. As a result, the defect motion is damped due to the scattering by the magnons. Finally, motivated by recent experiments, we consider an application of the model for describing the transport in lightly doped La(2-x)Sr(x)CuO(4).
NASA Astrophysics Data System (ADS)
Jung, Soon-Gil; Shin, Soohyeon; Jang, Harim; Mikheenko, Pavlo; Johansen, Tom H.; Park, Tuson
2017-08-01
We investigate the effects of magnetic impurities on the upper critical field (μ 0 H c2) in La-doped CaFe2As2 (LaCa122) single crystals. The magnetic field dependency of the superconducting transition temperature (T c) for LaCa122 is rapidly suppressed at low fields up to ˜1 kOe despite its large μ 0 H c2(0) value on the order of tens of Tesla, resulting in a large positive curvature of μ 0 H c2(T) near T c. The magnetization hysteresis (M-H) loop at temperatures above T c shows a ferromagnetic-like signal and the M(H) value rapidly increases with increasing magnetic field up to ˜1 kOe. Taken together with the linear suppression of T c with the magnetization in the normal state, these results suggest that the large upward curvature of μ 0 H c2(T) near T c in La-doped CaFe2As2 mainly originates from the suppression of superconductivity due to the presence of magnetic impurities.
High-injection effects in near-field thermophotovoltaic devices.
Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe
2017-11-20
In near-field thermophotovoltaics, a substantial enhancement of the electrical power output is expected as a result of the larger photogeneration of electron-hole pairs due to the tunneling of evanescent modes from the thermal radiator to the photovoltaic cell. The common low-injection approximation, which considers that the local carrier density due to photogeneration is moderate in comparison to that due to doping, needs therefore to be assessed. By solving the full drift-diffusion equations, the existence of high-injection effects is studied in the case of a GaSb p-on-n junction cell and a radiator supporting surface polaritons. Depending on doping densities and surface recombination velocity, results reveal that high-injection phenomena can already take place in the far field and become very significant in the near field. Impacts of high injection on maximum electrical power, short-circuit current, open-circuit voltage, recombination rates, and variations of the difference between quasi-Fermi levels are analyzed in detail. By showing that an optimum acceptor doping density can be estimated, this work suggests that a detailed and accurate modeling of the electrical transport is also key for the design of near-field thermophotovoltaic devices.
Local switching of two-dimensional superconductivity using the ferroelectric field effect
NASA Astrophysics Data System (ADS)
Takahashi, K. S.; Gabay, M.; Jaccard, D.; Shibuya, K.; Ohnishi, T.; Lippmaa, M.; Triscone, J.-M.
2006-05-01
Correlated oxides display a variety of extraordinary physical properties including high-temperature superconductivity and colossal magnetoresistance. In these materials, strong electronic correlations often lead to competing ground states that are sensitive to many parameters-in particular the doping level-so that complex phase diagrams are observed. A flexible way to explore the role of doping is to tune the electron or hole concentration with electric fields, as is done in standard semiconductor field effect transistors. Here we demonstrate a model oxide system based on high-quality heterostructures in which the ferroelectric field effect approach can be studied. We use a single-crystal film of the perovskite superconductor Nb-doped SrTiO3 as the superconducting channel and ferroelectric Pb(Zr,Ti)O3 as the gate oxide. Atomic force microscopy is used to locally reverse the ferroelectric polarization, thus inducing large resistivity and carrier modulations, resulting in a clear shift in the superconducting critical temperature. Field-induced switching from the normal state to the (zero resistance) superconducting state was achieved at a well-defined temperature. This unique system could lead to a field of research in which devices are realized by locally defining in the same material superconducting and normal regions with `perfect' interfaces, the interface being purely electronic. Using this approach, one could potentially design one-dimensional superconducting wires, superconducting rings and junctions, superconducting quantum interference devices (SQUIDs) or arrays of pinning centres.
Unusual doping effect of non-magnetic ion on magnetic properties of CuFe1-xGaxO2
NASA Astrophysics Data System (ADS)
Shi, Liran; Jin, Zhao; Chen, Borong; Xia, Nianming; Zuo, Huakun; Wang, Yeshuai; Ouyang, Zhongwen; Xia, Zhengcai
2014-12-01
The structural and magnetic properties of nonmagnetic Ga3+ ion doped CuFe1-xGaxO2 (x=0, 0.02, 0.03, and 0.05) single crystal samples have been investigated. In pulsed high magnetic fields, the field-induced multi-step transitions were observed in all the samples. Compared with pure CuFeO2, the transition temperatures, critical magnetic fields decrease and the magnetic hysteresis of the doped samples become small, which may result from the partial release of the spin frustration and the changes of the magnetic coupling both inter- and intra-planes due to the Ga3+ dopant. The magnetization measurements show an abnormal dilution behavior, especially in a lower temperature region, the magnetic moment was enhanced due to the nonmagnetic Ga3+ ion doping, the enhancement becomes more obviously in the sample with the Ga3+ doping level of x=0.03. These results may connected with the substitution of nonmagnetic Ga3+ ions destroying the stability of ground state and affecting the stability of the ferroelectricity incommensurate phase. Based on the experimental results, a super-cell model and their magnetic diagram were assumed.
Phase-field model of insulator-to-metal transition in VO2 under an electric field
NASA Astrophysics Data System (ADS)
Shi, Yin; Chen, Long-Qing
2018-05-01
The roles of an electric field and electronic doping in insulator-to-metal transitions are still not well understood. Here we formulated a phase-field model of insulator-to-metal transitions by taking into account both structural and electronic instabilities as well as free electrons and holes in VO2, a strongly correlated transition-metal oxide. Our phase-field simulations demonstrate that in a VO2 slab under a uniform electric field, an abrupt universal resistive transition occurs inside the supercooling region, in sharp contrast to the conventional Landau-Zener smooth electric breakdown. We also show that hole doping may decouple the structural and electronic phase transitions in VO2, leading to a metastable metallic monoclinic phase which could be stabilized through a geometrical confinement and the size effect. This work provides a general mesoscale thermodynamic framework for understanding the influences of electric field, electronic doping, and stress and strain on insulator-to-metal transitions and the corresponding mesoscale domain structure evolution in VO2 and related strongly correlated systems.
Crystal field parameters and energy levels scheme of trivalent chromium doped BSO
NASA Astrophysics Data System (ADS)
Petkova, P.; Andreici, E.-L.; Avram, N. M.
2014-11-01
The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.
Crystal field parameters and energy levels scheme of trivalent chromium doped BSO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petkova, P.; Andreici, E.-L.; Avram, N. M., E-mail: n1m2marva@yahoo.com
The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of themore » crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.« less
Electrostatic modification of novel materials
NASA Astrophysics Data System (ADS)
Ahn, C. H.; Bhattacharya, A.; di Ventra, M.; Eckstein, J. N.; Frisbie, C. Daniel; Gershenson, M. E.; Goldman, A. M.; Inoue, I. H.; Mannhart, J.; Millis, Andrew J.; Morpurgo, Alberto F.; Natelson, Douglas; Triscone, Jean-Marc
2006-10-01
Application of the field-effect transistor principle to novel materials to achieve electrostatic doping is a relatively new research area. It may provide the opportunity to bring about modifications of the electronic and magnetic properties of materials through controlled and reversible changes of the carrier concentration without modifying the level of disorder, as occurs when chemical composition is altered. As well as providing a basis for new devices, electrostatic doping can in principle serve as a tool for studying quantum critical behavior, by permitting the ground state of a system to be tuned in a controlled fashion. In this paper progress in electrostatic doping of a number of materials systems is reviewed. These include structures containing complex oxides, such as cuprate superconductors and colossal magnetoresistive compounds, organic semiconductors, in the form of both single crystals and thin films, inorganic layered compounds, single molecules, and magnetic semiconductors. Recent progress in the field is discussed, including enabling experiments and technologies, open scientific issues and challenges, and future research opportunities. For many of the materials considered, some of the results can be anticipated by combining knowledge of macroscopic or bulk properties and the understanding of the field-effect configuration developed during the course of the evolution of conventional microelectronics. However, because electrostatic doping is an interfacial phenomenon, which is largely an unexplored field, real progress will depend on the development of a better understanding of lattice distortion and charge transfer at interfaces in these systems.
NASA Astrophysics Data System (ADS)
Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo; Peng, Yingquan
2013-12-01
Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs.
NASA Astrophysics Data System (ADS)
Swamy, R.; Vippa, P.; Rajagopalan, H.; Titus, J.; Thakur, M.; Sen, A.
2005-03-01
We report quadratic electro-optic effect and electroabsorption measurements in a novel nano-optical material based on the nonconjugated conductive polymer, iodine-doped poly(ethylenepyrrolediyl) derivative. Such effect has been recently reported in doped polyisoprene [1]. The measurement was made at 633 nm using field-induced birefringence. A modulation of 0.1% was observed for a field of 0.66 V/micron (film thickness 0.3 micron). The change in refractive index, δn, is 3.35x10-4 and the Kerr constant is 1.2x10-9 m/V^2 which is about 125 times that of nitrobenzene. Modulation due to electroabsorption was 0.05%. The exceptionally large electro-optic effect is most likely due to the specific structure and quantum confinement within a nanometer volume. In contrast, nonlinearity in a conjugated polymer is known to decrease upon iodine doping. [1] Thakur, Swamy and Titus, Macromolecules, Vol.37, 2677, (2004).
Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field
NASA Astrophysics Data System (ADS)
Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao
2017-03-01
External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.
NASA Astrophysics Data System (ADS)
Li, G.; Hauser, N.; Jagadish, C.; Antoszewski, J.; Xu, W.
1996-06-01
Si δ-doped GaAs grown by metal organic vapor phase epitaxy (MOVPE) is characterized using magnetotransport measurements in tilted magnetic fields. Angular dependence of the longitudinal magnetoresistance (Rxx) vs the magnetic field (B) traces in tilted magnetic fields is used to examine the existence of a quasi-two-dimensional electron gas. The subband electron densities (ni) are obtained applying fast Fourier transform (FFT) analysis to the Rxx vs B trace and using mobility spectrum (MS) analysis of the magnetic field dependent Hall data. Our results show that (1) the subband electron densities remain roughly constant when the tilted magnetic field with an angle <30° measured from the Si δ-doped plane normal is ramped up to 13 T; (2) FFT analysis of the Rxx vs B trace and MS analysis of the magnetic field dependent Hall data both give the comparable results on subband electron densities of Si δ-doped GaAs with low δ-doping concentration, however, for Si δ-doped GaAs with very high δ-doping concentration, the occupation of the lowest subbands cannot be well resolved in the MS analysis; (3) the highest subband electron mobility reported to date of 45 282 cm2/s V is observed in Si δ-doped GaAs at 77 K in the dark; and (4) the subband electron densities of Si δ-doped GaAs grown by MOVPE at 700 °C are comparable to those grown by MBE at temperatures below 600 °C. A detailed study of magnetotransport properties of Si δ-doped GaAs in the parallel magnetic fields is then carried out to further confirm the subband electronic structures revealed by FFT and MS analysis. Our results are compared to theoretical calculation previously reported in literature. In addition, influence of different cap layer structures on subband electronic structures of Si δ-doped GaAs is observed and also discussed.
Tailoring Thermal Radiative Properties with Doped-Silicon Nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhuomin
Aligned doped-silicon nanowire (D-SiNW) arrays form a hyperbolic metamaterial in the mid-infrared and have unique thermal radiative properties, such as broadband omnidirectional absorption, low-loss negative refraction, etc. A combined theoretical and experimental investigation will be performed to characterize D-SiNW arrays and other metamaterials for tailoring thermal radiative properties. Near-field thermal radiation between anisotropic materials with hyperbolic dispersions will also be predicted for potential application in energy harvesting. A new kind of anisotropic metamaterial with a hyperbolic dispersion in a broad infrared region has been proposed and demonstrated based on aligned doped-silicon nanowire (D-SiNW) arrays. D-SiNW-based metamaterials have unique thermal radiativemore » properties, such as broadband omnidirectional absorption whose width and location can be tuned by varying the filling ratio and/or doping level. Furthermore, high figure of merit (FOM) can be achieved in a wide spectral region, suggesting that D-SiNW arrays may be used as a negative refraction material with much less loss than other structured materials, such as layered semiconductor materials. We have also shown that D-SiNWs and other nanostructures can significantly enhance near-field thermal radiation. The study of near-field radiative heat transfer between closely spaced objects and the electromagnetic wave interactions with micro/nanostructured materials has become an emerging multidisciplinary field due to its importance in advanced energy systems, manufacturing, local thermal management, and high spatial resolution thermal sensing and mapping. We have performed extensive study on the energy streamlines involving anisotropic metamaterials and the applicability of the effective medium theory for near-field thermal radiation. Graphene as a 2D material has attracted great attention in nanoelectronics, plasmonics, and energy harvesting. We have shown that graphene can be used to tailor the transmittance, reflectance, and absorptance of nanostructured materials. Furthermore, graphene can be used to enhance near-field coupling to increase the phonon tunneling probability. We have performed analysis of near-field thermophotovoltaic devices with backside reflecting mirror and with tungsten gratings. We have predicted a large enhancement of electroluminescent refrigeration at a separation distance down to 10 nm due to near-field thermal radiation effect. A heat flux measurement system is developed to measure the near-field radiation in vacuum. We have fabricated doped Si plates separated by sparsely distributed posts to create a 200-800 nm vacuum gap. Our measurement results demonstrate that 11 times enhancement of near-field thermal radiation between parallel doped-Si plates with a lateral dimension 1 cm by 1 cm.« less
Preparation and electrical properties of electrospun tin-doped indium oxide nanowires
NASA Astrophysics Data System (ADS)
Lin, Dandan; Wu, Hui; Zhang, Rui; Pan, Wei
2007-11-01
Well-aligned tin-doped indium (ITO) nanowires have been prepared using the electrospinning process. The Sn doping mechanism and microstructure have been characterized by x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS). Devices for I-V measurement and field-effect transistors (FETs) were assembled using ITO nanowires with top contact configurations. The effect of Sn doping on the electrical conductivity was significant in that it enhanced the conductance by over 107 times, up to ~1 S cm-1 for ITO nanowires with an Sn content of 17.5 at.%. The nanowire FETs were operated in the depletion mode with an electron mobility of up to 0.45 cm2 V-1 s-1 and an on/off ratio of 103.
Electronic transport properties of graphene doped by gallium.
Mach, J; Procházka, P; Bartošík, M; Nezval, D; Piastek, J; Hulva, J; Švarc, V; Konečný, M; Kormoš, L; Šikola, T
2017-10-13
In this work we present the effect of low dose gallium (Ga) deposition (<4 ML) performed in UHV (10 -7 Pa) on the electronic doping and charge carrier scattering in graphene grown by chemical vapor deposition. In situ graphene transport measurements performed with a graphene field-effect transistor structure show that at low Ga coverages a graphene layer tends to be strongly n-doped with an efficiency of 0.64 electrons per one Ga atom, while the further deposition and Ga cluster formation results in removing electrons from graphene (less n-doping). The experimental results are supported by the density functional theory calculations and explained as a consequence of distinct interaction between graphene and Ga atoms in case of individual atoms, layers, or clusters.
Electronic transport properties of graphene doped by gallium
NASA Astrophysics Data System (ADS)
Mach, J.; Procházka, P.; Bartošík, M.; Nezval, D.; Piastek, J.; Hulva, J.; Švarc, V.; Konečný, M.; Kormoš, L.; Šikola, T.
2017-10-01
In this work we present the effect of low dose gallium (Ga) deposition (<4 ML) performed in UHV (10-7 Pa) on the electronic doping and charge carrier scattering in graphene grown by chemical vapor deposition. In situ graphene transport measurements performed with a graphene field-effect transistor structure show that at low Ga coverages a graphene layer tends to be strongly n-doped with an efficiency of 0.64 electrons per one Ga atom, while the further deposition and Ga cluster formation results in removing electrons from graphene (less n-doping). The experimental results are supported by the density functional theory calculations and explained as a consequence of distinct interaction between graphene and Ga atoms in case of individual atoms, layers, or clusters.
Disorder induced magnetism and electrical conduction in La doped Ca2FeMoO6 double perovskite
NASA Astrophysics Data System (ADS)
Poddar, Asok; Bhowmik, R. N.; Muthuselvam, I. Panneer
2010-11-01
We report the magnetism and electrical transport properties of La doped Ca2FeMoO6 double perovskite. Reduction in magnetic moment, nonmonotonic variation in magnetic ordering temperature (TC), increasing magnetic hardness, low temperature resistivity upturn, and loss of metallic conductivity are some of the major changes that we observed due to La doping induced disorder in double perovskite structure. The increase in magnetic disorder in La doped samples and its effect on TC is more consistent with the mean field theory. The modification in electronic band structure due to La doping is understood by establishing a correlation between the temperature dependence of electrical conductivity and thermoelectric power.
Seven-core neodymium-doped phosphate all-solid photonic crystal fibers
NASA Astrophysics Data System (ADS)
Wang, Longfei; He, Dongbing; Feng, Suya; Yu, Chunlei; Hu, Lili; Chen, Danping
2016-01-01
We demonstrate a single-mode seven-core Nd-doped phosphate photonic crystal fiber with all-solid structure with an effective mode field diameter of 108 μm. The multicore fiber is first theoretically investigated through the finite-difference time-domain method. Then the in-phase mode is selected experimentally by a far-field mode-filtering method. The obtained in-phase mode has 7 mrad mode field divergences, which approximately agrees with the predicted 5.6 mrad in seven-core fiber. Output power of 15.5 W was extracted from a 25 cm fiber with slope efficiency of 57%.
NASA Astrophysics Data System (ADS)
Kämpfer, F.; Bessire, B.; Wirz, M.; Hofmann, C. P.; Jiang, F.-J.; Wiese, U.-J.
2012-02-01
Based on a symmetry analysis of the microscopic Hubbard and t-J models, a systematic low-energy effective field theory is constructed for hole-doped antiferromagnets on the honeycomb lattice. In the antiferromagnetic phase, doped holes are massive due to the spontaneous breakdown of the SU(2)s symmetry, just as nucleons in Quantum Chromodynamics (QCD) pick up their mass from spontaneous chiral symmetry breaking. In the broken phase, the effective action contains a single-derivative term, similar to the Shraiman-Siggia term in the square lattice case. Interestingly, an accidental continuous spatial rotation symmetry arises at leading order. As an application of the effective field theory, we consider one-magnon exchange between two holes and the formation of two-hole bound states. As an unambiguous prediction of the effective theory, the wave function for the ground state of two holes bound by magnon exchange exhibits f-wave symmetry.
NASA Astrophysics Data System (ADS)
Wang, J. F.; Jiang, Y. C.; Chen, M. G.; Gao, J.
2013-12-01
Heterojunctions composed of La0.5Ca0.5MnO3 and Nb doped SrTiO3 were fabricated, and the effects of the Nb doping level on their electronic transport, photoelectric effect, and magnetoresistance were investigated. A lower doping concentration of Nb led to better rectifying properties and higher open circuit voltages. The I-V curves for La0.5Ca0.5MnO3/0.7 wt. % Nb-SrTiO3 showed a negligible response to magnetic fields for all temperatures, whereas La0.5Ca0.5MnO3/0.05 wt. % Nb-SrTiO3 exhibited distinct magnetoresistance, which depended on both the bias voltage and temperature. These results are discussed with the assistance of conventional semiconductor theories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yap, C.C.; Yahaya, M.; Salleh, M.M.
2011-01-15
The effect of organic salt, tetrabutylammonium hexafluorophosphate (TBAPF{sub 6}) doping on the performance of single layer bulk heterojunction organic solar cell with ITO/MEHPPV:PCBM/Al structure was investigated where indium tin oxide (ITO) was used as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) as donor, (6,6)-phenyl-C61 butyric acid methyl ester (PCBM) as acceptor and aluminium (Al) as cathode. In contrast to the undoped device, the electric field-treated device doped with TBAPF{sub 6} exhibited better solar cell performance under illumination with a halogen projector lamp at 100 mW/cm{sup 2}. The short circuit current density and the open circuit voltage of the doped device increased from 0.54 {mu}A/cm{supmore » 2} to 6.41 {mu}A/cm{sup 2} and from 0.24 V to 0.50 V, respectively as compared to those of the undoped device. The significant improvement was attributed to the increase of built-in electric field caused by accumulation of ionic species at the active layer/electrode interfaces. (author)« less
NASA Astrophysics Data System (ADS)
Karaya, Ryota; Baba, Ikki; Mori, Yosuke; Matsumoto, Tsubasa; Nakajima, Takashi; Tokuda, Norio; Kawae, Takeshi
2017-10-01
A B-doped diamond field-effect transistor (FET) with a ferroelectric vinylidene fluoride-trifluoroethylene (VDF-TrFE) copolymer gate insulator was fabricated. The VDF-TrFE film deposited on the B-doped diamond showed good insulating and ferroelectric properties. Also, a Pt/VDF-TrFE/B-doped diamond layered structure showed ideal behavior as a metal-ferroelectric-semiconductor (MFS) capacitor, and the memory window width was 11 V, when the gate voltage was swept from 20 to -20 V. The fabricated MFS-type FET structure showed the typical properties of a depletion-type p-channel FET and a maximum drain current density of 0.87 mA/mm at room temperature. The drain current versus gate voltage curves of the proposed FET showed a clockwise hysteresis loop owing to the ferroelectricity of the VDF-TrFE gate insulator. In addition, we demonstrated the logic inverter with the MFS-type diamond FET coupled with a load resistor, and obtained the inversion behavior of the input signal and a maximum gain of 18.4 for the present circuit.
NASA Astrophysics Data System (ADS)
Pamungkas, Mauludi Ariesto; Sobirin, Kafi; Abdurrouf
2018-04-01
Silicene is a material in which silicon atoms are packed in two-dimensional hexagonal lattice, similar to that of graphene. Compared to graphene, silicene has promising potential to be applied in microelectronic technology because of its compatibility with silicon comonly used in semiconducting devices. Natrium and chlorine are easy to extract and can be used as dopants in FET (Field Effect Transistor). In this work, the effects of adsorption energy and electronic structure of silicene to both natrium and chlorine atoms are calculated with Density Functional Theory (DFT). The results show that dopings of Na transform silicene which is initially semimetal into a metal. Then dopings of Cl Top-site transform silicene into a semiconducting material and doping of Na and Cl simultaneously transfoms silicene into a conducting material.
Mn-Site Doped CaMnO 3: Creation of the CMR Effect
NASA Astrophysics Data System (ADS)
Raveau, B.; Zhao, Y. M.; Martin, C.; Hervieu, M.; Maignan, A.
2000-01-01
The doping of CaMnO3-δ at Mn sites with pentavalent and hexavalent d0 elements - Nb, Ta, W, Mo - modifies the resistivity behavior of this phase, extending the insulating domain and increasing significantly the resistivity at low temperature as the doping element content increases. The higher valency of the doping element introduces electrons; i.e., Mn3+ species are formed in the Mn4+ matrix. Double exchange phenomena then allow ferromagnetic interactions, by application of external magnetic fields which are similar to those observed for electron-doped manganites Ca1-xLnxMnO3 (x≤0.15), but with smaller magnetic moments. Consequently, this Mn site doping induces CMR properties with resistivity ratios considerably larger than those for CaMnO3-δ.
Chemical Vapor Deposition Growth of Degenerate p-Type Mo-Doped ReS2 Films and Their Homojunction.
Qin, Jing-Kai; Shao, Wen-Zhu; Xu, Cheng-Yan; Li, Yang; Ren, Dan-Dan; Song, Xiao-Guo; Zhen, Liang
2017-05-10
Substitutional doping of transition metal dichalcogenide two-dimensional materials has proven to be effective in tuning their intrinsic properties, such as band gap, transport characteristics, and magnetism. In this study, we realized substitutional doping of monolayer rhenium disulfide (ReS 2 ) with Mo via chemical vapor deposition. Scanning transmission electron microscopy demonstrated that Mo atoms are successfully doped into ReS 2 by substitutionally replacing Re atoms in the lattice. Electrical measurements revealed the degenerate p-type semiconductor behavior of Mo-doped ReS 2 field effect transistors, in agreement with density functional theory calculations. The p-n diode device based on a doped ReS 2 and ReS 2 homojunction exhibited gate-tunable current rectification behaviors, and the maximum rectification ratio could reach up to 150 at V d = -2/+2 V. The successful synthesis of p-type ReS 2 in this study could largely promote its application in novel electronic and optoelectronic devices.
Growth and properties of electrodeposited transparent Al-doped ZnO nanostructures
NASA Astrophysics Data System (ADS)
Baka, O.; Mentar, L.; Khelladi, M. R.; Azizi, A.
2015-12-01
Al-doped zinc oxide (AZO) nanostructures were fabricated on fluorine-doped tin-oxide (FTO)- coated glass substrates by using electrodeposition. The effects of the doping concentration of Al on the morphological, microstructural, electrical and optical properties of the nanostructures were investigated. From the field emission scanning electron microscopy (FE-SEM) observation, when the amount of Al was increased in the solution, the grains size was observed to decreases. The observed changes in the morphology indicate that Al acts as nucleation centers in the vacancy sites of ZnO and destroys the crystalline structure at high doping level. Effectively, the X-ray diffraction (XRD) analysis indicated that the undoped and the doped ZnO nanostructures has a polycrystalline nature and a hexagonal wurtzite structure with a (002) preferential orientation. The photoluminescence (PL) room-temperature measurements showed that the incorporation of Al in the Zn lattice can improve the intensity of ultraviolet (UV) emission, thus suggesting its greater prospects for use in UV optoelectronic devices.
Li, Jianye; An, Lei; Lu, Chenguang; Liu, Jie
2006-02-01
We have observed that the hexagonal GaN nanowires grown from a simple chemical vapor deposition method using gallium metal and ammonia gas are usually gallium-doped. By annealing in air, the gallium-doped hexagonal GaN nanowires could be completely converted to beta-Ga(2)O(3) nanowires. Annealing the beta-Ga(2)O(3) nanowires in ammonia could convert them back to undoped hexagonal GaN nanowires. Field effect transistors based on these three kinds of nanowires were fabricated, and their performances were studied. Because of gallium doping, the as-grown GaN nanowires show a weak gating effect. Through the conversion process of GaN nanowires (gallium-doped) --> Ga(2)O(3) nanowires --> GaN nanowires (undoped) via annealing, the final undoped GaN nanowires display different electrical properties than the initial gallium-doped GaN nanowires, show a pronounced n-type gating effect, and can be completely turned off.
Magneto-Resistance in thin film boron carbides
NASA Astrophysics Data System (ADS)
Echeverria, Elena; Luo, Guangfu; Liu, J.; Mei, Wai-Ning; Pasquale, F. L.; Colon Santanta, J.; Dowben, P. A.; Zhang, Le; Kelber, J. A.
2013-03-01
Chromium doped semiconducting boron carbide devices were fabricated based on a carborane icosahedra (B10C2H12) precursor via plasma enhanced chemical vapor deposition, and the transition metal atoms found to dope pairwise on adjacent icosahedra site locations. Models spin-polarized electronic structure calculations of the doped semiconducting boron carbides indicate that some transition metal (such as Cr) doped semiconducting boron carbides may act as excellent spin filters when used as the dielectric barrier in a magnetic tunnel junction structure. In the case of chromium doping, there may be considerable enhancements in the magneto-resistance of the heterostructure. To this end, current to voltage curves and magneto-transport measurements were performed in various semiconducting boron carbide both in and out plane. The I-V curves as a function of external magnetic field exhibit strong magnetoresistive effects which are enhanced at liquid Nitrogen temperatures. The mechanism for these effects will be discussed in the context of theoretical calculations.
Carrier density control of magnetism and Berry phases in doped EuTiO3
NASA Astrophysics Data System (ADS)
Ahadi, Kaveh; Gui, Zhigang; Porter, Zach; Lynn, Jeffrey W.; Xu, Zhijun; Wilson, Stephen D.; Janotti, Anderson; Stemmer, Susanne
2018-05-01
In materials with broken time-reversal symmetry, the Berry curvature acts as a reciprocal space magnetic field on the conduction electrons and is a significant contribution to the magnetotransport properties, including the intrinsic anomalous Hall effect. Here, we report neutron diffraction, transport, and magnetization measurements of thin films of doped EuTiO3, an itinerant magnetic material, as a function of carrier density and magnetic field. These films are itinerant antiferromagnets at all doping concentrations. At low carrier densities, the magnetoresistance indicates a metamagnetic transition, which is absent at high carrier densities (>6 × 1020 cm-3). Strikingly, the crossover coincides with a sign change in the spontaneous Hall effects, indicating a sign change in the Berry curvature. We discuss the results in the context of the band structure topology and its coupling to the magnetic texture.
NASA Technical Reports Server (NTRS)
Alterovitz, S. A.; Sieg, R. M.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.
1991-01-01
Variable-angle spectroscopic ellipsometry was used to estimate the thicknesses of all layers within the optical penetration depth of InGaAs-based modulation doped field effect transistor structures. Strained and unstrained InGaAs channels were made by molecular beam epitaxy (MBE) on InP substrates and by metal-organic chemical vapor deposition on GaAs substrates. In most cases, ellipsometrically determined thicknesses were within 10% of the growth-calibration results. The MBE-made InGaAs strained layers showed large strain effects, indicating a probable shift in the critical points of their dielectric function toward the InP lattice-matched concentration.
NASA Technical Reports Server (NTRS)
Menkara, H. M.; Wagner, B. K.; Summers, C. J.
1996-01-01
The purpose of this study is to use both theoretical and experimental evidence to determine the impact of doping imbalance and symmetry on the physical and electrical characteristics of doped multiple quantum well avalanche photodiodes (APD). Theoretical models have been developed to calculate the electric field valence and conduction bands, capacitance-voltage (CV), and carrier concentration versus depletion depth profiles. The models showed a strong correlation between the p- and n-doping balance inside the GaAs wells and the number of depleted stages and breakdown voltage of the APD. A periodic doping imbalance in the wells has been shown to result in a gradual increase (or decrease) in the electric field profile throughout the device which gave rise to partially depleted devices at low bias. The MQW APD structures that we modeled consisted of a 1 micron top p(+)-doped (3 x 10(exp 18) cm(exp -3)) GaAs layer followed by a 1 micron region of alternating layers of GaAs (500 A) and Al(0.42)Ga(0.58)As (500 A), and a 1 micron n(+) back layer (3 x 10(exp 18) cm(exp -3)). The GaAs wells were doped with p-i-n layers placed at the center of each well. The simulation results showed that in an APD with nine doped wells, and where the 50 A p-doped layer is off by 10% (p = 1.65 x 10(exp 18) cm(exp -3), n = 1.5 x 10(exp 18) cm(exp -3)), almost half of the MQW stages were shown to be undepleted at low bias which was a result of a reduction in the electric field near the p(+) cap layer by over 50% from its value in the balanced structure. Experimental CV and IV data on similar MBE grown MQW structures have shown very similar depletion and breakdown characteristics. The models have enabled us to better interpret our experimental data and to determine both the extent of the doping imbalances in the devices as well as the overall p- or n-type doping characteristics of the structures.
Neutron Transmutation Doped (NTD) germanium thermistors for sub-mm bolometer applications
NASA Technical Reports Server (NTRS)
Haller, E. E.; Itoh, K. M.; Beeman, J. W.
1996-01-01
Recent advances in the development of neutron transmutation doped (NTD) semiconductor thermistors fabricated from natural and controlled isotopic composition germanium are reported. The near ideal doping uniformity that can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor preamplifiers led to the widespread acceptance of these thermal sensors in ground-based, airborne and spaceborne radio telescopes. These features made possible the development of efficient bolometer arrays.
1982-02-15
function of the doping density at 300 and 77 K for the classical Boltzmann statistics or depletion approximation (solid line) and for the approximate...Fermi-Dirac statistics (equation (19) dotted line)• This comparison demonstrates that the deviation from Boltzmann statistics is quite noticeable...tunneling Schottky barriers cannot be obtained at these doping levels. The dotted lines are obtained when Boltzmann statistics are used in the Al Ga
NASA Astrophysics Data System (ADS)
Cesaria, Maura; Caricato, Anna Paola; Leggieri, Gilberto; Luches, Armando; Martino, Maurizio; Maruccio, Giuseppe; Catalano, Massimo; Grazia Manera, Maria; Rella, Roberto; Taurino, Antonietta
2011-09-01
In this paper we report on the growth and structural characterization of very thin (20 nm) Cr-doped ITO films, deposited at room temperature by double-target pulsed laser ablation on amorphous silica substrates. The role of Cr atoms in the ITO matrix is carefully investigated with increasing doping content by transmission electron microscopy (TEM). Selected-area electron diffraction, conventional bright field and dark field as well as high-resolution TEM analyses, and energy dispersive x-ray spectroscopy demonstrate that (i) crystallization features occur despite the low growth temperature and small thickness, (ii) no chromium or chromium oxide secondary phases are detectable, regardless of the film doping levels, (iii) the films crystallize as crystalline flakes forming large-angle grain boundaries; (iv) the observed flakes consist of crystalline planes with local bending of the crystal lattice. Thickness and compositional information about the films are obtained by Rutherford back-scattering spectrometry. Results are discussed by considering the combined effects of growth temperature, smaller ionic radius of the Cr cation compared with the trivalent In ion, doping level, film thickness, the double-target doping technique and peculiarities of the pulsed laser deposition method.
NASA Astrophysics Data System (ADS)
Ananda, P.; Vedanayakam, S. Victor; Thyagarajan, K.; Nandakumar, N.
2018-05-01
A brief review of Titanium doped Aluminum film has many attractive properties such as thermal properties and 1/f noise is highlighted. The thin film devices of Titanium doped alluminium are specially used in aerospace technology, automotive, biomedical fields also in microelectronics. In this paper, we discus on 1/f noise and nonlinear effects in titanium doped alluminium thin films deposited on glass substrate using electron beam evaporation for different current densities on varying temperatures of the film. The plots are dawn for 1/f noise of the films at different temperatures ranging from 300°C to 450°C and the slopes are determined. The studies shows a higher order increment in FFT amplitude of low frequency 1/f noise in thin films at annealing temperature 400°C. In this technology used in aerospace has been the major field of application of titanium doped alluminium, being one of the major challenges of the development of new alloys with improved strength at high temperature, wide chord Titanium doped alluminium fan blades increases the efficiency while reducing 1/f noise. Structural properties of XRD is identified.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Avik; Mallik, Abhijit; Omura, Yasuhisa
2015-06-01
A gate-on-germanium source (GoGeS) tunnel field-effect transistor (TFET) shows great promise for low-power (sub-0.5 V) applications. A detailed investigation, with the help of a numerical device simulator, on the effects of variation in different structural parameters of a GoGeS TFET on its electrical performance is reported in this paper. Structural parameters such as κ-value of the gate dielectric, length and κ-value of the spacer, and doping concentrations of both the substrate and source are considered. A low-κ symmetric spacer and a high-κ gate dielectric are found to yield better device performance. The substrate doping influences only the p-i-n leakage floor. The source doping is found to significantly affect performance parameters such as OFF-state current, ON-state current and subthreshold swing, in addition to a threshold voltage shift. Results of the investigation on the gate length scaling of such devices are also reported in this paper.
NASA Astrophysics Data System (ADS)
Su, Wei-Jhih; Chang, Hsuan-Chen; Honda, Shin-ichi; Lin, Pao-Hung; Huang, Ying-Sheng; Lee, Kuei-Yi
2017-08-01
Chemical doping with hetero-atoms is an effective method used to change the characteristics of materials. Nitrogen doping technology plays a critical role in regulating the electronic properties of graphene. Nitrogen plasma treatment was used in this work to dope nitrogen atoms to modulate multilayer graphene electrical properties. The measured I-V multilayer graphene-base field-effect transistor characteristics (GFETs) showed a V-shaped transfer curve with the hole and electron region separated from the measured current-voltage (I-V) minimum. GFETs fabricated with multilayer graphene from chemical vapor deposition (CVD) exhibited p-type behavior because of oxygen adsorption. After using different nitrogen plasma treatment times, the minimum in I-V characteristic shifted into the negative gate voltage region with increased nitrogen concentration and the GFET channel became an n-type semiconductor. GFETs could be easily fabricated using this method with potential for various applications. The GFET transfer characteristics could be tuned precisely by adjusting the nitrogen plasma treatment time.
Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon
2016-06-09
We have successfully synthesized axially doped p- and n-type regions on a single Si nanowire (NW). Diodes and complementary metal-oxide-semiconductor (CMOS) inverter devices using single axial p- and n-channel Si NW field-effect transistors (FETs) were fabricated. We show that the threshold voltages of both p- and n-channel Si NW FETs can be lowered to nearly zero by effectively controlling the doping concentration. Because of the high performance of the p- and n-type Si NW channel FETs, especially with regard to the low threshold voltage, the fabricated NW CMOS inverters have a low operating voltage (<3 V) while maintaining a high voltage gain (∼6) and ultralow static power dissipation (≤0.3 pW) at an input voltage of ±3 V. This result offers a viable way for the fabrication of a high-performance high-density logic circuit using a low-temperature fabrication process, which makes it suitable for flexible electronics.
Competing exchange bias and field-induced ferromagnetism in La-doped BaFe O3
NASA Astrophysics Data System (ADS)
Fita, I.; Wisniewski, A.; Puzniak, R.; Iwanowski, P.; Markovich, V.; Kolesnik, S.; Dabrowski, B.
2017-04-01
An exchange bias (EB) effect was observed in mixed valent L axB a1 -xFe O3 (x =0.125 , 0.25, 0.33) perovskites exhibiting the antiferromagnetic (AFM) helical order among F e4 + ions coexisting with the ferromagnetic (FM) cluster phase in the ground state. The L a3 + ions for B a2 + site substitution, associated with increase in number of the AFM coupled F e3 + - F e4 + pairs as well as some F e3 + - F e3 + pairs, leads to strengthening of the AFM phase and consequently to the alteration of the EB characteristics, which depend on level of the La doping x . At low doping x ≤0.25 , an abnormal dependence of the EB field, HEB, on the cooling field, Hcool, was found. The HEB increases rapidly with increasing cooling field at low Hcool, but it falls suddenly at cooling fields higher than 20 kOe, reducing by an order of magnitude at 90 kOe. The suppression of EB is caused by the field-induced increased volume of the FM phase, due to the transformation of the AFM helical spin structure into the FM one. Thus, low-doped L axB a1 -xFe O3 demonstrates a competition of two alternate cooling-field-induced effects, one of which leads to the EB anisotropy and another one to the enhanced ferromagnetism. In contrast, the x =0.33 sample, having a strong AFM constituent, shows no field-induced FM and no drop in the EB field. Accordingly, the HEB vs Hcool dependence was found to be well explained in the framework of a model describing phase-separated AFM-FM systems, namely, the model assuming isolated FM clusters of size ˜4 nm embedded in the AFM matrix.
NASA Astrophysics Data System (ADS)
Martínez-Orozco, J. C.; Rojas-Briseño, J. G.; Rodríguez-Magdaleno, K. A.; Rodríguez-Vargas, I.; Mora-Ramos, M. E.; Restrepo, R. L.; Ungan, F.; Kasapoglu, E.; Duque, C. A.
2017-11-01
In this paper we are reporting the computation for the Nonlinear Optical Rectification (NOR) and the Second and Third Harmonic Generation (SHG and THG) related with electronic states of asymmetric double Si-δ-doped quantum well in a GaAs matrix when this is subjected to an in-plane (x-oriented) constant magnetic field effect. The work is performed in the effective mass and parabolic band approximations in order to compute the electronic structure for the system by a diagonalization procedure. The expressions for the nonlinear optical susceptibilities, χ0(2), χ2ω(2), and χ3ω(3), are those arising from the compact matrix density formulation and stand for the NOR, SHG, and THG, respectively. This asymmetric double δ-doped quantum well potential profile actually exhibits nonzero NOR, SHG, and THG responses which can be easily controlled by the in-plane (x-direction) externally applied magnetic field. In particular we find that for the chosen configuration the harmonic generation is in the far-infrared/THz region, thus and becoming suitable building blocks for photodetectors in this range of the electromagnetic spectra.
Suppression of ambipolar current in tunnel FETs using drain-pocket: Proposal and analysis
NASA Astrophysics Data System (ADS)
Garg, Shelly; Saurabh, Sneh
2018-01-01
In this paper, we investigate the impact of a drain-pocket (DP) adjacent to the drain region in Tunnel Field-Effect Transistors (TFETs) to effectively suppress the ambipolar current. Using calibrated two-dimensional device simulation, we examine the impact of DP in Double Gate TFET (DGTFET). We demonstrate the superiority of the DP technique over the existing techniques in controlling the ambipolar current. In particular, the addition of DP to a TFET is able to fully suppress the ambipolar current even when TFET is biased at high negative gate voltages and drain doping is kept as high as the source doping. Moreover, adding DP is complementary to the well-known technique of employ-ing source-pocket (SP) in a TFET since both need similar doping type and doping concentration.
Magnetic properties and magnetocaloric effect in Pt doped Ni-Mn-Ga
NASA Astrophysics Data System (ADS)
Singh, Sanjay; D'Souza, S. W.; Mukherjee, K.; Kushwaha, P.; Barman, S. R.; Agarwal, Sandeep; Mukhopadhyay, P. K.; Chakrabarti, Aparna; Sampathkumaran, E. V.
2014-06-01
Large magnetocaloric effect is observed in Ni1.8Pt0.2MnGa close to room temperature. The entropy change shows a crossover from positive to negative sign at the martensite transition. It is negative above 1.6 T and its magnitude increases linearly with magnetic field. An increase in the saturation magnetic moment is observed with Pt doping in Ni2MnGa. Ab initio theoretical calculations show that the increase in magnetic moment with Pt doping in Ni2MnGa is associated with increase in the Mn and Pt local moments in the ferromagnetic ground state. The Curie temperature calculated from the exchange interaction parameters is in good agreement with experiment, showing the absence of any antiferromagnetic correlation due to Pt doping.
Effect of Rare Earth Elements (Er, Ho) on Semi-Metallic Materials (ScN) in an Applied Electric Field
NASA Technical Reports Server (NTRS)
Kim, Hyunjung; Park, Yeonjoon; King, Glen C.; Lee, Kunik; Choi, Sang H.
2012-01-01
The development of materials and fabrication technology for field-controlled spectrally active optics is essential for applications such as membrane optics, filters for LIDARs, windows for sensors, telescopes, spectroscopes, cameras and flat-panel displays. The dopants of rare earth elements, in a host of optical systems, create a number of absorption and emission band structures and can easily be incorporated into many high quality crystalline and amorphous hosts. In wide band-gap semiconductors like ScN, the existing deep levels can capture or emit the mobile charges, and can be ionized with the loss or capture of the carriers which are the fundamental basis of concept for smart optic materials. The band gap shrinkage or splitting with dopants supports the possibility of this concept. In the present work, a semi-metallic material (ScN) was doped with rare earth elements (Er, Ho) and tested under an applied electric field to characterize spectral and refractive index shifts by either Stark or Zeeman Effect. These effects can be verified using the UV-Vis spectroscopy, the Hall Effect measurement and the ellipsometric spectroscopy. The optical band gaps of ScN doped with Er and doped with Ho were experimentally estimated as 2.33eV and 2.24eV ( 0.2eV) respectively. This is less than that of undoped ScN (2.5 0.2eV). The red-shifted absorption onset is a direct evidence for the decrease of band gap energy (Eg), and the broadening of valence band states is attributable to the doping cases. A decrease in refractive index with an applied field was observed as a small shift in absorption coefficient using a variable angle spectroscopic ellipsometer. In the presence of an electric field, mobile carriers are redistributed within the space charge region (SCR) to produce this electro-refractive effect. The shift in refractive index is also affected by the density and location of deep potential wells within the SCR. In addition, the microstructure change was observed by a TEM analysis. These results give an insight for future applications for the field-controlled spectrally active material systems.
Haisma, H J; de Hon, O
2006-04-01
Together with the rapidly increasing knowledge on genetic therapies as a promising new branch of regular medicine, the issue has arisen whether these techniques might be abused in the field of sports. Previous experiences have shown that drugs that are still in the experimental phases of research may find their way into the athletic world. Both the World Anti-Doping Agency (WADA) and the International Olympic Committee (IOC) have expressed concerns about this possibility. As a result, the method of gene doping has been included in the list of prohibited classes of substances and prohibited methods. This review addresses the possible ways in which knowledge gained in the field of genetic therapies may be misused in elite sports. Many genes are readily available which may potentially have an effect on athletic performance. The sporting world will eventually be faced with the phenomena of gene doping to improve athletic performance. A combination of developing detection methods based on gene arrays or proteomics and a clear education program on the associated risks seems to be the most promising preventive method to counteract the possible application of gene doping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Çataltepe, Ö. Aslan, E-mail: ozdenaslan@yahoo.com, E-mail: ozden.aslan@gedik.edu.tr; Özdemir, Z. Güven, E-mail: zguvenozdemir@yahoo.com; Onbaşlı, Ü., E-mail: phonon@doruk.net.tr
In this work, the effect of oxygen doping on the critical parameters of the mercury based superconducting sample such as critical transition temperature, T{sub c}, critical magnetic field, H{sub c}, critical current density, J{sub c}, has been investigated by the magnetic susceptibility versus temperature (χ-T) and magnetization versus applied magnetic field (M-H) measurements and, X-Ray Diffraction (XRD) patterns. It has been observed that regardless of the oxygen doping concentration, the mercury cuprate system possesses two intrinsic superconducting phases together, HgBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub 8+x} and HgBa{sub 2}CaCu{sub 2}O{sub 6+x}. However, the highest T{sub c} has been determined for the optimummore » oxygen doped sample. Moreover, it has been revealed that superconducting properties, crystal lattice parameters, coherent lengths, ξ{sub ab}, ξ{sub c} and the anisotropy factor γ etc. are very sensitive to oxygen doping procedures. Hence, the results presented this work enables one to obtain the mercury based superconductor with the most desirable criticals and other parameters for theoretical and technological applications by arranging the oxygen doping concentration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Renzhong; Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou 450002; Chen, Zhenping, E-mail: xrzbotao@163.com
2015-06-15
Graphical abstract: The dielectric constant decreases monotonically with reduced RE doping ion radius and is more frequency independent compared with that of pure CCTO sample. - Highlights: • The mean grain sizes decrease monotonically with reduced RE doping ionic radius. • Doping gives rise to the monotonic decrease of ϵ{sub r} with reduced RE ionic radius. • The nonlinear coefficient and breakdown field increase with RE ionic doping. • α of all the samples is associated with the potential barrier width rather than Φ{sub b}. - Abstract: Ca{sub 1–x}R{sub x}Cu{sub 3}Ti{sub 4}O{sub 12}(R = La, Nd, Eu, Gd, Er; xmore » = 0 and 0.005) ceramics were prepared by the conventional solid-state method. The influences of rare earth (RE) ion doping on the microstructure, dielectric and electrical properties of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramics were investigated systematically. Single-phase formation is confirmed by XRD analyses. The mean grain size decreases monotonically with reduced RE ion radius. The EDS results reveal that RE ionic doping reduces Cu-rich phase segregation at the grain boundaries (GBs). Doping gives rise to the monotonic decrease of dielectric constant with reduced RE ionic radius but significantly improves stability with frequency. The lower dielectric loss of doped samples is obtained due to the increase of GB resistance. In addition, the nonlinear coefficient and breakdown field increase with RE ionic doping. Both the fine grains and the enhancement of potential barrier at GBs are responsible for the improvement of the nonlinear current–voltage properties in doped CCTO samples.« less
Karthikeyan, G; Sahoo, S; Nayak, G C; Das, C K
2012-03-01
Polyaniline doped by Zn2+ ions was synthesized as nanocomposites with multiwalled carbon nanotubes (MWCNT) by in-situ oxidative polymerization and investigated as electrode material for supercapacitors. The uniform coating of polyaniline on MWCNT was characterized by field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). The effect of Zn2+ ions on nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. The electrochemical performances were investigated by cyclic voltammetry (CV), constant current charging/discharging cyclic test (CC) and electrochemical impedance spectroscopy (EIS) using a three-electrode system. The doped polyaniline composites show higher specific capacitance and better cyclic stability.
Rice, William D.; Liu, Wenyong; Baker, Thomas A.; ...
2015-11-23
Strong quantum confinement in semiconductors can compress the wavefunctions of band electrons and holes to nanometre-scale volumes, significantly enhancing interactions between themselves and individual dopants. In magnetically doped semiconductors, where paramagnetic dopants (such as Mn 2+, Co 2+ and so on) couple to band carriers via strong sp–d spin exchange, giant magneto-optical effects can therefore be realized in confined geometries using few or even single impurity spins. Importantly, however, thermodynamic spin fluctuations become increasingly relevant in this few-spin limit. In nanoscale volumes, the statistical √N fluctuations of N spins are expected to generate giant effective magnetic fields B eff, whichmore » should dramatically impact carrier spin dynamics, even in the absence of any applied field. In this paper, we directly and unambiguously reveal the large B eff that exist in Mn 2+-doped CdSe colloidal nanocrystals using ultrafast optical spectroscopy. At zero applied magnetic field, extremely rapid (300–600 GHz) spin precession of photoinjected electrons is observed, indicating B eff ~ 15-30 T for electrons. Precession frequencies exceed 2 THz in applied magnetic fields. Finally, these signals arise from electron precession about the random fields due to statistically incomplete cancellation of the embedded Mn 2+ moments, thereby revealing the initial coherent dynamics of magnetic polaron formation, and highlighting the importance of magnetization fluctuations on carrier spin dynamics in nanomaterials.« less
Pseudogap and electronic structure of electron-doped Sr2IrO4
NASA Astrophysics Data System (ADS)
Moutenet, Alice; Georges, Antoine; Ferrero, Michel
2018-04-01
We present a theoretical investigation of the effects of correlations on the electronic structure of the Mott insulator Sr2IrO4 upon electron doping. A rapid collapse of the Mott gap upon doping is found, and the electronic structure displays a strong momentum-space differentiation at low doping level: The Fermi surface consists of pockets centered around (π /2 ,π /2 ) , while a pseudogap opens near (π ,0 ) . Its physical origin is shown to be related to short-range spin correlations. The pseudogap closes upon increasing doping, but a differentiated regime characterized by a modulation of the spectral intensity along the Fermi surface persists to higher doping levels. These results, obtained within the cellular dynamical mean-field-theory framework, are discussed in comparison to recent photoemission experiments and an overall good agreement is found.
NASA Astrophysics Data System (ADS)
Zhang, Hongguang; Wang, Jianhua; Xie, Liang; Fu, Dexiang; Guo, Yanyan; Li, Yongtao
2017-11-01
We report the crystal and electronic structures and magnetic properties of non-magnetic Y3+ ion doped SmCrO3 crystals. Structural distortion and electronic structure variation are caused by cation disorder due to Y doping. Although the spin moment of Sm3+ is diluted by nonmagnetic Y ions, spin reorientation continues to exist, and the temperature-dependent magnetization reversal effect and the spontaneous exchange bias effect under zero field cooling are simultaneously induced below Neel temperature. Significantly, the method of doping promotes the achievement of temperature dependent tunable switching of magnetization and sign of a spontaneous exchange bias from positive to negative. Our work provides more tunable ways to the sign reversal of magnetization and exchange bias, which have potential application in designing magnetic random access memory devices, thermomagnetic switches and spin-valve devices.
Conductivity Modifications of Graphene by Electron Donative Organic Molecules
NASA Astrophysics Data System (ADS)
Masujima, Hiroaki; Mori, Takehiko; Hayamizu, Yuhei
2017-07-01
Graphene has been studied for the application of transparent electrodes in flexible electrical devices with semiconductor organics. Control of the charge carrier density in graphene is crucial to reduce the contact resistance between graphene and the active layer of organic semiconductor. Chemical doping of graphene is an approach to change the carrier density, where the adsorbed organic molecules donate or accept electrons form graphene. While various acceptor organic molecules have been demonstrated so far, investigation about donor molecules is still poor. In this work, we have investigated doping effect in graphene field-effect transistors functionalized by organic donor molecules such as dibenzotetrathiafulvalene (DBTTF), hexamethyltetrathiafulvalene (HMTTF), 1,5-diaminonaphthalene (DAN), and N, N, N', N'-tetramethyl- p-phenylenediamine (TMPD). Based on conductivity measurements of graphene transistors, the former three molecules do not have any significant effect to graphene transistors. However, TMPD shows effective n-type doping. The doping effect has a correlation with the level of highest occupied molecular orbital (HOMO) of each molecule, where TMPD has the highest HOMO level.
NASA Astrophysics Data System (ADS)
Tripathi, D.; Dey, T. K.
2018-05-01
The effect of nanoscale aluminum nitride (n-AlN) and carbon (n-C) co-doping on superconducting properties of polycrystalline bulk MgB2 superconductor has been investigated. Polycrystalline pellets of MgB2, MgB2 + 0.5 wt% AlN (nano), MgB_{1.99}C_{0.01} and MgB_{1.99}C_{0.01} + 0.5 wt% AlN (nano) have been synthesized by a solid reaction process under inert atmosphere. The transition temperature (TC) estimated from resistivity measurement indicates only a small decrease for C (nano) and co-doped MgB2 samples. The magnetic field response of investigated samples has been measured at 4, 10, and 20 K in the field range ± 6 T. MgB2 pellets co-doped with 0.5 wt% n-AlN and 1 wt% n-C display appreciable enhancement in critical current density (J_C) of MgB2 in both low (≥ 3 times), as well as, high-field region (≥ 15 times). J_C versus H behavior of both pristine and doped MgB2 pellets is well explained in the light of the collective pinning model. Further, the normalized pinning force density f_p(= F_p/F_{pmax}) displays a fair correspondence with the scaling procedure proposed by Eisterer et al. Moreover, the scaled data of the pinning force density (i.e., f_p{-}h data) of the investigated pellets at different temperature are well interpreted by a modified Dew-Hughes expression reported by Sandu and Chee.
Effect of magnetic field on the flux pinning mechanisms in Al and SiC co-doped MgB2 superconductor
NASA Astrophysics Data System (ADS)
Kia, N. S.; Ghorbani, S. R.; Arabi, H.; Hossain, M. S. A.
2018-07-01
MgB2 superconductor samples co-doped with 0.02 wt. Al2O3 and 0-0.05 wt. SiC were studied by magnetization - magnetic field (M-H) loop measurements at different temperatures. The critical current density has been calculated by the Bean model, and the irreversibility field, Hirr, has been obtained by the Kramer method. The pinning mechanism of the co-doped sample with 2% Al and 5% SiC was investigated in particular due to its having the highest Hirr. The normalized volume pinning force f = F/Fmax as a function of reduced magnetic field h = H/Hirr has been obtained, and the pinning mechanism was studied by the Dew-Houghes model. It was found that the normal point pinning (NPP), the normal surface pinning (NSP), and the normal volume pinning (NVP) mechanisms play the main roles. The magnetic field and temperature dependence of contributions of the NPP, NSP, and NVP pinning mechanisms were obtained. The results show that the contributions of the pinning mechanisms depend on the temperature and magnetic field. From the temperature dependence of the critical current density within the collective pinning theory, it was found that both the δl pinning due to spatial fluctuations of the charge-carrier mean free path and the δTc pinning due to randomly distributed spatial variations in the transition temperature coexist at zero magnetic field in co-doped samples. Yet, the charge-carrier mean-free-path fluctuation pinning (δl) is the only important pinning mechanism at non-zero magnetic fields.
Transport properties of Sb-doped Si nanowires
NASA Astrophysics Data System (ADS)
Nukala, Prathyusha; Sapkota, Gopal; Gali, Pradeep; Philipose, U.
2012-08-01
We present a safe and cost-effective approach for synthesis of n-type Sb-doped Si nanowires. The nanowires were synthesized at ambient pressure using SiCl4 as Si source and pure Sb as the dopant source. Structural and compositional characterization using electron microscopy and X-ray spectroscopy show crystalline nanowires with lengths of 30-40 μm and diameters of 40-100 nm. A 3-4 nm thick amorphous oxide shell covers the surface of the nanowire, post-growth. The composition of this shell was confirmed by Raman spectroscopy. Growth of Si nanowires, followed by low temperature annealing in Sb vapor, was shown to be an effective technique for synthesizing Sb-doped Si nanowires. The doping concentration of Sb was found to be dependent on temperature, with Sb re-evaporating from the Si nanowire at higher doping temperatures. Field effect transistors (FETs) were fabricated to investigate the electrical transport properties of these nanowires. The as-grown Si nanowires were found to be p-type with a channel mobility of 40 cm2 V-1 s-1. After doping with Sb, these nanowires exhibited n-type behavior. The channel mobility and carrier concentration of the Sb-doped Si nanowires were estimated to be 288 cm2 V-1 s-1 and 5.3×1018 cm-3 respectively.
Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun
2015-01-01
The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I–V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I–V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I–V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I–V behavior of (Nb + In) co-doped TiO2 ceramics. PMID:25656713
NASA Astrophysics Data System (ADS)
Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun
2015-02-01
The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I-V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I-V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I-V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I-V behavior of (Nb + In) co-doped TiO2 ceramics.
Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun
2015-02-06
The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I-V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I-V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I-V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I-V behavior of (Nb + In) co-doped TiO2 ceramics.
Spin tuning of electron-doped metal-phthalocyanine layers.
Stepanow, Sebastian; Lodi Rizzini, Alberto; Krull, Cornelius; Kavich, Jerald; Cezar, Julio C; Yakhou-Harris, Flora; Sheverdyaeva, Polina M; Moras, Paolo; Carbone, Carlo; Ceballos, Gustavo; Mugarza, Aitor; Gambardella, Pietro
2014-04-09
The spin state of organic-based magnets at interfaces is to a great extent determined by the organic environment and the nature of the spin-carrying metal center, which is further subject to modifications by the adsorbate-substrate coupling. Direct chemical doping offers an additional route for tailoring the electronic and magnetic characteristics of molecular magnets. Here we present a systematic investigation of the effects of alkali metal doping on the charge state and crystal field of 3d metal ions in Cu, Ni, Fe, and Mn phthalocyanine (Pc) monolayers adsorbed on Ag. Combined X-ray absorption spectroscopy and ligand field multiplet calculations show that Cu(II), Ni(II), and Fe(II) ions reduce to Cu(I), Ni(I), and Fe(I) upon alkali metal adsorption, whereas Mn maintains its formal oxidation state. The strength of the crystal field at the Ni, Fe, and Mn sites is strongly reduced upon doping. The combined effect of these changes is that the magnetic moment of high- and low-spin ions such as Cu and Ni can be entirely turned off or on, respectively, whereas the magnetic configuration of MnPc can be changed from intermediate (3/2) to high (5/2) spin. In the case of FePc a 10-fold increase of the orbital magnetic moment accompanies charge transfer and a transition to a high-spin state.
Effect of Electromechanical Properties in Mn-doped BaTiO3
NASA Astrophysics Data System (ADS)
Takenaka, Hiroyuki; Cohen, R. E.
Experimental studies reported that Mn doping in BaTiO3 could improve their electromechanical properties. In addition, ageing process gives rise to a significant reversible strain effect. Performing density functional theory (DFT) calculations, we find that Mn dopant with oxygen vacancy induces local electric field of 20 MV/m in 2x2x2 (39 atom) supercell. In order to understand effects of the electromechanical properties from phenomenological point of view, we optimize electric enthalpies in Landau-Devonshire model, parametrized from DFT results, under applying electric fields. We show dielectric constant and piezoelectric coefficients from the optimized polarization paths. supported by ONR, the ERC Advanced Grant ToMCaT, and the Carnegie Institution for Science.
NASA Astrophysics Data System (ADS)
Yang, Yisu; Zhuang, Linzhou; Lin, Rijia; Li, Mengran; Xu, Xiaoyong; Rufford, Thomas E.; Zhu, Zhonghua
2017-05-01
We report a novel magnetic field assisted chemical reduction method for the synthesis of boron-doped Ni/Fe nano-chains as promising catalysts for the oxygen evolution reaction (OER). The boron-doped Ni/Fe nano-chains were synthesised in a one step process at room temperature using NaBH4 as a reducing agent. The addition of boron reduced the magnetic moment of the intermediate synthesis products and produced nano-chains with a high specific surface area of 73.4 m2 g-1. The boron-doped Ni/Fe nano-chains exhibited catalytic performance superior to state-of-the-art Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and RuO2 noble metal oxide catalysts. The mass normalized activity of the boron-doped Ni/Fe nano-chains measured at an overpotential of 0.35 V was 64.0 A g-1, with a Tafel slope of only 40 mV dec-1. The excellent performance of the boron-doped Ni/Fe nano-chains can be attributed to the uniform elemental distribution and highly amorphous structure of the B-doped nano-chains. These results provide new insights into the effect of doping transition-metal based OER catalysts with non-metallic elements. The study demonstrates a facile approach to prepare transition metal nano-chains using magnetic field assisted chemical reduction method as cheap and highly active catalysts for electrochemical water oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarantini, C.; Sung, Z. -H.; Lee, P. J.
Nb 3Sn wires are now very close to their final optimization but despite its classical nature, detailed understanding of the role of Ta and Ti doping in the A15 is not fully understood. Long thought to be essentially equivalent in their influence on H c2, they were interchangeably applied. Here we show that Ti produces significantly more homogeneous chemical and superconducting properties. Despite Ta-doped samples having a slightly higher T c onset in zero-field, they always have a wider Tc-distribution. In particular, whereas the Ta-doped A15 has a T c-distribution extending from 18 down to 5-6 K (the lowest expectedmore » Tc for the binary A15 phase), the Ti-doped samples have no A15 phase with T c below ~12 K. The much narrower T c distribution in the Ti-doped samples has a positive effect on their in-field T c-distribution too, leading to an extrapolated μ0H c2(0) 2 Tesla larger than the Ta-doped one. Ti-doping also appears to be very homogeneous even when the Sn content is reduced in order to inhibit breakdown of the diffusion barriers in very high Jc conductors. As a result, the enhanced homogeneity of the Ti-doped samples appears to result from its assistance of rapid diffusion of Sn into the filaments and by its incorporation into the A15 phase interchangeably with Sn on the Sn sites of the A15 phase.« less
Characteristics of camel-gate structures with active doping channel profiles
NASA Astrophysics Data System (ADS)
Tsai, Jung-Hui; Lour, Wen-Shiung; Laih, Lih-Wen; Liu, Rong-Chau; Liu, Wen-Chau
1996-03-01
In this paper, we demonstrate the influence of channel doping profile on the performances of camel-gate field effect transistors (CAMFETs). For comparison, single and tri-step doping channel structures with identical doping thickness products are employed, while other parameters are kept unchanged. The results of a theoretical analysis show that the single doping channel FET with lightly doping active layer has higher barrier height and drain-source saturation current. However, the transconductance is decreased. For a tri-step doping channel structure, it is found that the output drain-source saturation current and the barrier height are enhanced. Furthermore, the relatively voltage independent performances are improved. Two CAMFETs with single and tri-step doping channel structures have been fabricated and discussed. The devices exhibit nearly voltage independent transconductances of 144 mS mm -1 and 222 mS mm -1 for single and tri-step doping channel CAMFETs, respectively. The operation gate voltage may extend to ± 1.5 V for a tri-step doping channel CAMFET. In addition, the drain current densities of > 750 and 405 mA mm -1 are obtained for the tri-step and single doping CAMFETs. These experimental results are inconsistent with theoretical analysis.
NASA Astrophysics Data System (ADS)
Wu, Ming-Chung; Chen, Wei-Cheng; Chan, Shun-Hsiang; Su, Wei-Fang
2018-01-01
Perovskite solar cell is a novel photovoltaic technology with the superior progress in efficiency and the simple solution processes. Develop lead-free or lead-reduced perovskite materials is a significant concern for high-performance perovskite solar cell. Among the alkaline earth metals, the Sr2+ and Ba2+ are suitable for Pb2+ replacement in perovskite film due to fitting Goldschmidt's tolerance factor. In this study, we adopted Ba-doped and Sr-doped perovskite structured materials with different doping levels, including 1.0, 5.0, and 10.0 mol%, to prepare perovskite solar cells. Both Ba-doped and Sr-doped perovskite structured materials have a related tendency in absorption behavior and surface morphology. At 10.0 mol% doping level, the power conversion efficiency (PCE) of Sr-doped perovskite solar cells is only ∼0.5%, but the PCE of Ba-doped perovskite solar cells can be achieved to ∼9.7%. Ba-doped perovskite solar cells showed the acceptable photovoltaic characteristics than Sr-doped perovskite solar cells. Ba dopant can partially replace the amount of lead in the perovskite solar cells, and it could be a potential candidate in the field of lead-free or lead-reduced perovskite energy materials.
NASA Astrophysics Data System (ADS)
Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki
2014-12-01
The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.
Tarantini, C.; Sung, Z. -H.; Lee, P. J.; ...
2016-01-25
Nb 3Sn wires are now very close to their final optimization but despite its classical nature, detailed understanding of the role of Ta and Ti doping in the A15 is not fully understood. Long thought to be essentially equivalent in their influence on H c2, they were interchangeably applied. Here we show that Ti produces significantly more homogeneous chemical and superconducting properties. Despite Ta-doped samples having a slightly higher T c onset in zero-field, they always have a wider Tc-distribution. In particular, whereas the Ta-doped A15 has a T c-distribution extending from 18 down to 5-6 K (the lowest expectedmore » Tc for the binary A15 phase), the Ti-doped samples have no A15 phase with T c below ~12 K. The much narrower T c distribution in the Ti-doped samples has a positive effect on their in-field T c-distribution too, leading to an extrapolated μ0H c2(0) 2 Tesla larger than the Ta-doped one. Ti-doping also appears to be very homogeneous even when the Sn content is reduced in order to inhibit breakdown of the diffusion barriers in very high Jc conductors. As a result, the enhanced homogeneity of the Ti-doped samples appears to result from its assistance of rapid diffusion of Sn into the filaments and by its incorporation into the A15 phase interchangeably with Sn on the Sn sites of the A15 phase.« less
NASA Astrophysics Data System (ADS)
Lin, Jyh‑Ling; Lin, Ming‑Jang; Lin, Li‑Jheng
2006-04-01
The superjunction lateral double diffusion metal oxide semiconductor field effect has recently received considerable attention. Introducing heavily doped p-type strips to the n-type drift region increases the horizontal depletion capability. Consequently, the doping concentration of the drift region is higher and the conduction resistance is lower than those of conventional lateral-double-diffusion metal oxide semiconductor field effect transistors (LDMOSFETs). These characteristics may increase breakdown voltage (\\mathit{BV}) and reduce specific on-resistance (Ron,sp). In this study, we focus on the electrical characteristics of conventional LDMOSFETs on silicon bulk, silicon-on-insulator (SOI) LDMOSFETs and superjunction LDMOSFETs after bias stress. Additionally, the \\mathit{BV} and Ron,sp of superjunction LDMOSFETs with different N/P drift region widths and different dosages are discussed. Simulation tools, including two-dimensional (2-D) TSPREM-4/MEDICI and three-dimensional (3-D) DAVINCI, were employed to determine the device characteristics.
NASA Astrophysics Data System (ADS)
Mirzaee, Majid; Dolati, Abolghasem
2015-03-01
We report on the preparation and characterization of high-purity chromium (0.5-2.5 at.%)-doped indium tin oxide (ITO, In:Sn = 90:10) films deposited by sol-gel-mediated dip coating. The effects of different Cr-doping contents on structural, morphological, optical and electrical properties of the films were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), UV-Vis spectroscopy and four-point probe methods. XRD showed high phase purity cubic In2O3 and indicated a contraction of the lattice with Cr doping. FESEM micrographs show that grain size decreased with increasing the Cr-doping content. A method to determine chromium species in the sample was developed through the decomposition of the Cr 2 p XPS spectrum in Cr6+ and Cr3+ standard spectra. Optical and electrical studies revealed that optimum opto-electronic properties, including minimum sheet resistance of 4,300 Ω/Sq and an average optical transmittance of 85 % in the visible region with a band gap of 3.421 eV, were achieved for the films doped with Cr-doping content of 2 at.%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandraboss, V.L.; Natanapatham, L.; Karthikeyan, B.
Graphical abstract: The hetero-junctions that are formed between the ZnO and the Bi provide an internal electric field that facilitates separation of the electron-hole pairs and induces faster carrier migration. Thus they often enhanced photocatalytic reaction. - Highlights: • Bi-doped ZnO nanocomposite material was prepared by precipitation method. • Characterized by XRD, HR-SEM with EDX, UV–visible DRS and FT-RAMAN analysis. • Bi-doped ZnO nanocomposite material was used to photodegradation of Congo red. • Mechanism and photocatalytic effect of nanocomposite material have been discussed. - Abstract: Bismuth (Bi)-doped ZnO nanocomposite material was prepared by precipitation method with doping precursors of bismuthmore » nitrate pentahydrate and oxalic acid, characterized by X-ray diffraction (XRD), High Resolution-Scanning Electron Microscopy (HR-SEM) with Energy Dispersive X-ray (EDX) analysis, UV–visible Diffuse Reflectance Spectroscopy (UV–visible DRS) and Fourier Transform-Raman (FT-RAMAN) analysis. The enhanced photocatalytic activity of the Bi-doped ZnO is demonstrated through photodegradation of Congo red under UV-light irradiation. The mechanism of photocatalytic effect of Bi-doped ZnO nanocomposite material has been discussed.« less
EUO-Based Multifunctional Heterostructures
2015-06-06
magnetoresistance and the metal -insulator transition resistance ratios of doped EuO by interfacing this semiconductor with niobium; the observed effect is...general and may be applied to any metal /semiconductor interface where the semiconductor shows large Zeeman splitting under magnetic field, (2...understanding the changes in electronic structure and Fermi-surface reconstruction that occur as doped EuO progresses through the ferromagnetic metal
NASA Astrophysics Data System (ADS)
Yoon, Young Jun; Seo, Jae Hwa; Kang, In Man
2018-04-01
In this work, we present a capacitorless one-transistor dynamic random-access memory (1T-DRAM) based on an asymmetric double-gate Ge/GaAs-heterojunction tunneling field-effect transistor (TFET) for DRAM applications. The n-doped boosting layer and gate2 drain-underlap structure is employed in the device to obtain an excellent 1T-DRAM performance. The n-doped layer inserted between the source and channel regions improves the sensing margin because of a high rate of increase in the band-to-band tunneling (BTBT) probability. Furthermore, because the gate2 drain-underlap structure reduces the recombination rate that occurs between the gate2 and drain regions, a device with a gate2 drain-underlap length (L G2_D-underlap) of 10 nm exhibited a longer retention performance. As a result, by applying the n-doped layer and gate2 drain-underlap structure, the proposed device exhibited not only a high sensing margin of 1.11 µA/µm but also a long retention time of greater than 100 ms at a temperature of 358 K (85 °C).
Magnetic and magnetocaloric properties of Ba and Ti co-doped SrRuO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Babusona; Dalal, Biswajit; Dev Ashok, Vishal
2014-12-28
Temperature evolution of magnetic properties in Ba and Ti doped SrRuO{sub 3} has been investigated to observe the effects of larger ionic radius Ba at Sr site and isovalent nonmagnetic impurity Ti at Ru site. Ionic radius mismatch and different electronic configuration in comparison with Ru modify Sr(Ba)-O and Ru(Ti)-O bond lengths and Ru-O-Ru bond angle. The apical and basal Ru-O-Ru bond angles vary significantly with Ti doping. Ferromagnetic Curie temperature decreases from 161 K to 149 K monotonically with Ba (10%) and Ti (10%) substitutions at Sr and Ru sites. The zero field cooled (ZFC) magnetization reveals a prominent peak whichmore » shifts towards lower temperature with application of magnetic field. The substitution of tetravalent Ti with localized 3d{sup 0} orbitals for Ru with more delocalized 4d{sup 4} orbitals leads to a broad peak in ZFC magnetization. A spontaneous ZFC magnetization becomes negative below 160 K for all the compositions. The occurrence of both normal and inverse magnetocaloric effects in Ba and Ti co-doped SrRuO{sub 3} makes the system more interesting.« less
Atmospheric pressure route to epitaxial nitrogen-doped trilayer graphene on 4H-SiC (0001) substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boutchich, M.; Arezki, H.; Alamarguy, D.
Large-area graphene film doped with nitrogen is of great interest for a wide spectrum of nanoelectronics applications, such as field effect devices, super capacitors, and fuel cells among many others. Here, we report on the structural and electronic properties of nitrogen doped trilayer graphene on 4H-SiC (0001) grown under atmospheric pressure. The trilayer nature of the growth is evidenced by scanning transmission electron microscopy. X-ray photoelectron spectroscopy shows the incorporation of 1.2% of nitrogen distributed in pyrrolic-N, and pyridinic-N configurations as well as a graphitic-N contribution. This incorporation causes an increase in the D band on the Raman signature indicatingmore » that the nitrogen is creating defects. Ultraviolet photoelectron spectroscopy shows a decrease of the work function of 0.3 eV due to the N-type doping of the nitrogen atoms in the carbon lattice and the edge defects. A top gate field effect transistor device has been fabricated and exhibits carrier mobilities up to 1300 cm{sup 2}/V s for holes and 850 cm{sup 2}/V s for electrons at room temperature.« less
Structural and critical current properties in Al-doped MgB 2
NASA Astrophysics Data System (ADS)
Zheng, D. N.; Xiang, J. Y.; Lang, P. L.; Li, J. Q.; Che, G. C.; Zhao, Z. W.; Wen, H. H.; Tian, H. Y.; Ni, Y. M.; Zhao, Z. X.
2004-08-01
A series of Al-doped Mg 1- xAl xB 2 samples have been fabricated and systematic study on structure and superconducting properties have been carried out for the samples. In addition to a structural transition observed by XRD, TEM micrographs showed the existence of a superstructure of double c-axis lattice constant along the direction perpendicular to the boron honeycomb sheet. In order to investigate the effect of Al doping on flux pinning and critical current properties in MgB 2, measurements on the superconducting transition temperature Tc, irreversible field Birr and critical current density Jc were performed too, for the samples with the doping levels lower than 0.15 in particular. These experimental observations were discussed in terms of Al doping induced changes in carrier concentration.
Effect of chromium doping on the correlated electronic structure of V2O3
NASA Astrophysics Data System (ADS)
Grieger, Daniel; Lechermann, Frank
2014-09-01
The archetypical strongly correlated Mott-phenomena compound V2O3 is known to show a paramagnetic metal-insulator transition driven by doping with chromium atoms and/or (negative) pressure. Via charge self-consistent density-functional theory+dynamical mean-field theory calculations we demonstrate that these two routes cannot be understood as equivalent. An explicit description of Cr-doped V2O3 by means of supercell calculations and the virtual crystal approximation is performed. Introducing chromium's additional electron to the system is shown to modify the overall many-body electronic structure substantially. Chromium doping increases electronic correlations which in addition induce charge transfers between Cr and the remaining V ions. Thereby the transition-metal orbital polarization is increased by the electron doping, in close agreement with experimental findings.
NASA Astrophysics Data System (ADS)
Zhang, Kecong; Song, Jiancheng; Wang, Min; Fang, Changshui; Lu, Mengkai
1987-04-01
TGS crystals doped with aniline-family dipolar molecules (aniline, 2-aminobenzoic acid, 3-aminobenzoic acid, 3-aminobenzene-sulphonic acid, 4-aminobenzenesulphonic acid and 4-nitroraniline) have been grown by the slow-cooling solution method. The influence of these dopants on the growth habits, crystal morphology pyroelectric properties, and structure parameters of TGS crystals has been systematically investigated. The effects of the domain structure of the seed crystal on the pyroelectric properties of the doped crystals have been studied. It is found that the spontaneous polarization (P), pyroelectric coefficient (lambda), and internal bias field of the doped crystals are slightly higher than those of the pure TGS, and the larger the dipole moment of the dopant molecule, the higher the P and lambda of the doped TGS crystal.
NASA Astrophysics Data System (ADS)
Abazari, M.; Akdoǧan, E. K.; Safari, A.
2008-05-01
Single phase, epitaxial, ⟨001⟩ oriented, undoped and 1mol% Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 thin films of 400nm thickness were synthesized on SrRuO3 coated SrTiO3. Such films exhibit well saturated hysteresis loops and have a spontaneous polarization (Ps) of 10μC /cm2, which is a 150% higher over the Ps of the undoped composition. The coercive field of 1mol% Mn doped films is 13kV/cm. Mn-doping results in three orders of magnitude decrease in leakage current above 50kV/cm electric field, which we attribute to the suppression of intrinsic p-type conductivity of undoped films by Mn donors.
NASA Astrophysics Data System (ADS)
Nigam, Kaushal; Pandey, Sunil; Kondekar, P. N.; Sharma, Dheeraj
2016-09-01
The conventional tunnel field-effect transistors (TFETs) have shown potential to scale down in sub-22 nm regime due to its lower sub-threshold slope and robustness against short-channel effects (SCEs), however, sensitivity towards temperature variation is a major concern. Therefore, for the first time, we investigate temperature sensitivity analysis of a polarity controlled electrostatically doped tunnel field-effect transistor (ED-TFET). Different performance metrics and analog/RF figure-of-merits were considered and compared for both devices, and simulations were performed using Silvaco ATLAS device tool. We found that the variation in ON-state current in ED-TFET is almost temperature independent due to electrostatically doped mechanism, while, it increases in conventional TFET at higher temperature. Above room temperature, the variation in ION, IOFF, and SS sensitivity in ED-TFET are only 0.11%/K, 2.21%/K, and 0.63%/K, while, in conventional TFET the variations are 0.43%/K, 2.99%/K, and 0.71%/K, respectively. However, below room temperature, the variation in ED-TFET ION is 0.195%/K compared to 0.27%/K of conventional TFET. Moreover, it is analysed that the incomplete ionization effect in conventional TFET severely affects the drive current and the threshold voltage, while, ED-TFET remains unaffected. Hence, the proposed ED-TFET is less sensitive towards temperature variation and can be used for cryogenics as well as for high temperature applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Shibin; College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061; Chang, Xueting, E-mail: xuetingchang@yahoo.cn
Cobalt-doped tungsten oxide mesocrystals with different morphologies have been successfully generated using a solvothermal method with tungsten hexachloride and cobalt chloride salts as precursors. The resulting mesocrystals were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmet-Teller analysis of nitrogen sorptometer, and UV-vis diffuse reflectance spectroscopy. The photocatalytic properties of the cobalt-doped tungsten oxide mesocrystals were evaluated on the basis of their ability to degrade methyl orange in an aqueous solution under simulated sunlight irradiation. Results showed that the cobalt doping had obvious effect on the morphologies of the final products, and lenticular and blocky cobalt-dopedmore » tungsten oxide mesocrystals could be obtained with 1.0 wt.% and 2.0 wt.% cobalt doping, respectively. The cobalt-doped tungsten oxides exhibited superior photocatalytic activities to that of the undoped tungsten oxide. - Graphical abstract: Schematic illustrations of the growth of the bundled nanowires, lenticular mesocrystals, and blocky mesocrystals. Highlights: Black-Right-Pointing-Pointer Co-doped W{sub 18}O{sub 49} mesocrystals were synthesized using a solvothermal method. Black-Right-Pointing-Pointer The Co doping has obvious effect on the morphology of the final mesocrystals. Black-Right-Pointing-Pointer The Co-doped W{sub 18}O{sub 49} exhibited superior photocatalytic activity to the undoped W{sub 18}O{sub 49}.« less
NASA Astrophysics Data System (ADS)
Maeda, Yasutaka; Hiroki, Mizuha; Ohmi, Shun-ichiro
2018-04-01
Nitrogen-doped (N-doped) LaB6 is a candidate material for the bottom-contact electrode of n-type organic field-effect transistors (OFETs). However, the formation of a N-doped LaB6 electrode affects the surface morphology of a pentacene film. In this study, the effects of surface treatments and a N-doped LaB6 interfacial layer (IL) were investigated to improve the pentacene film quality after N-doped LaB6 electrode patterning with diluted HNO3, followed by resist stripping with acetone and methanol. It was found that the sputtering damage during N-doped LaB6 deposition on a SiO2 gate insulator degraded the crystallinity of pentacene. The H2SO4 and H2O2 (SPM) and diluted HF treatments removed the damaged layer on the SiO2 gate insulator surface. Furthermore, the N-doped LaB6 IL improved the crystallinity of pentacene and realized dendritic grain growth. Owing to these surface treatments, the hole mobility improved from 2.8 × 10-3 to 0.11 cm2/(V·s), and a steep subthreshold swing of 78 mV/dec for the OFET with top-contact configuration was realized in air even after bottom-contact electrode patterning.
Microstructural and electrical characteristics of rare earth oxides doped ZnO varistor films
NASA Astrophysics Data System (ADS)
Jiao, Lei; Mei, Yunzhu; Xu, Dong; Zhong, Sujuan; Ma, Jia; Zhang, Lei; Bao, Li
2018-02-01
ZnO-Bi2O3 varistor films doped with two kinds of rare earth element oxides (Lu2O3 and Yb2O3) were prepared by the sol-gel method. The effects of Lu2O3/Yb2O3 doping on the microstructure and electrical characteristics of ZnO-Bi2O3 varistor films were investigated. All samples show a homogenized morphology and an improved nonlinear relationship between the electric field (E) and current density (I). Both Yb2O3 and Lu2O3 doping can decrease the grain size of ZnO-Bi2O3 varistor films and improve the electrical properties, which have a positive effect on the development of ZnO varistor ceramics. Yb2O3 doping significantly increases the dielectric constant at low frequency. 0.2 mol. % Yb2O3 doped ZnO-Bi2O3 varistor films exhibit the highest nonlinear coefficient (2.5) and the lowest leakage current (328 μA) among Lu2O3/Yb2O3 doped ZnO-Bi2O3 varistor films. Similarly, 0.1 mol. % Lu2O3 doping increases the nonlinear coefficient to 1.9 and decrease the leakage current to 462 μA.
NASA Astrophysics Data System (ADS)
Agarwal, Manish Baboo; Sharma, Akash; Malaidurai, M.; Thangavel, R.
2018-05-01
Undoped and Sn doped Zinc oxide nanorods were prepared by two step process: initially growth of seed layers by sol-gel spin coating technique and then zinc oxide nanorods by hydrothermal process using the precursors zinc nitrate hexahydrate, hexamine and tin chloride. The effects on the electrical, optical, mechanical and structural properties for various Sn concentrations were studied. The crystalline phase determination from X-ray diffraction (XRD) confirms that Sn doped ZnO nanorods have hexagonal wurtzite structure. The variations of stress and strain with different doping concentration of Sn in ZnO nanorods were studied. The doping effect on electrical properties and optical bandgap is estimated by current voltage characteristics and absorbance spectra respectively. The surface morphology was studied with field emission scanning electron microscope (FESEM), which shows that the formation of hexagonal nanorods arrays with increasing Sn concentration. The calculated value of Young's modulus of elasticity (Y) for all the samples remains same. These results can be used in optoelectronic devices.
Revealing Surface States in In-Doped SnTe Nanoplates with Low Bulk Mobility.
Shen, Jie; Xie, Yujun; Cha, Judy J
2015-06-10
Indium (In) doping in topological crystalline insulator SnTe induces superconductivity, making In-doped SnTe a candidate for a topological superconductor. SnTe nanostructures offer well-defined nanoscale morphology and high surface-to-volume ratios to enhance surface effects. Here, we study In-doped SnTe nanoplates, In(x)Sn(1-x)Te, with x ranging from 0 to 0.1 and show they superconduct. More importantly, we show that In doping reduces the bulk mobility of In(x)Sn(1-x)Te such that the surface states are revealed in magnetotransport despite the high bulk carrier density. This is manifested by two-dimensional linear magnetoresistance in high magnetic fields, which is independent of temperature up to 10 K. Aging experiments show that the linear magnetoresistance is sensitive to ambient conditions, further confirming its surface origin. We also show that the weak antilocalization observed in In(x)Sn(1-x)Te nanoplates is a bulk effect. Thus, we show that nanostructures and reducing the bulk mobility are effective strategies to reveal the surface states and test for topological superconductors.
NASA Astrophysics Data System (ADS)
Dou, S. X.; Pan, A. V.; Zhou, S.; Ionescu, M.; Wang, X. L.; Horvat, J.; Liu, H. K.; Munroe, P. R.
2003-08-01
We investigated the effect of SiC nanoparticle doping on the crystal lattice structure, critical temperature Tc, critical current density Jc, and flux pinning in MgB2 superconductor. A series of MgB2-x(SiC)x/2 samples with x=0-1.0 were fabricated using an in situ reaction process. The contraction of the lattice and depression of Tc with increasing SiC doping level remained rather small most likely due to the counterbalancing effect of Si and C co-doping. The high level Si and C co-doping allowed the creation of intragrain defects and highly dispersed nanoinclusions within the grains which can act as effective pinning centers for vortices, improving Jc behavior as a function of the applied magnetic field. The enhanced pinning is mainly attributable to the substitution-induced defects and local structure fluctuations within grains. A pinning mechanism is proposed to account for different contributions of different defects in MgB2-x(SiC)x/2 superconductors.
Modeling of Gate Bias Modulation in Carbon Nanotube Field-Effect-Transistor
NASA Technical Reports Server (NTRS)
Toshishige, Yamada; Biegel, Bryan A. (Technical Monitor)
2002-01-01
The threshold voltages of a carbon-nanotube (CNT) field-effect transistor (FET) are studied. The CNT channel is so thin that there is no voltage drop perpendicular to the gate electrode plane, and this makes the device characteristics quite unique. The relation between the voltage and the electrochemical potentials, and the mass action law for electrons and holes are examined in the context of CNTs, and inversion and accumulation threshold voltages (V(sub Ti), and V(sub Ta)) are derived. V(sub Ti) of the CNTFETs has a much stronger doping dependence than that of the metal-oxide- semiconductor FETs, while V(sub Ta) of both devices depends weakly on doping with the same functional form.
Enhanced field-dependent conductivity of magnetorheological gels with low-doped carbon nanotubes
NASA Astrophysics Data System (ADS)
Qu, Hang; Yu, Miao; Fu, Jie; Yang, Pingan; Liu, Yuxuan
2017-10-01
Magnetorheological gels (MRG) exhibit field-dependent conductivity and controllable mechanical properties. In order to extend their application field, filling a large number of traditional conductive materials is the most common means to enhance the poor conductivity of MRG. In this study, the conductivity of MRG is improved by low-doped carbon nanotubes (CNTs). The influence of CNTs on the magnetoresistance of MRG is discussed from two aspects—the improvement in electrical conductivity and the magnetic sensitivity of conductivity variation. The percolation threshold of CNTs in MRG should be between 1 wt% and 2 wt%. The conductivity of a 4 wt% CNT-doped sample increases more than 28 000 times compared with pure MRG. However, there is a cliff-like drop for the range and rate of conductivity variation when the doping amount of CNTs is between 3 wt% and 4 wt%. Therefore, it is concluded that the optimal mass fraction of CNTs is 3%, which can maintain a suitable variation range and a strong conductivity. Compared with pure MRG, its conductivity increases by at least two orders of magnitude. Finally, a sketch of particle motion simulation is developed to understand the improving mechanism and the effect of CNTs.
Fratino, L.; Charlebois, M.; Sémon, P.; ...
2017-12-19
Recent quantum-gas microscopy of ultracold atoms and scanning tunneling microscopy of the cuprates reveal new detailed information about doped Mott antiferromagnets, which can be compared with calculations. Using cellular dynamical mean-field theory, we map out the antiferromagnetic (AF) phase of the two-dimensional Hubbard model as a function of interaction strength U, hole doping δ, and temperature T . The Néel phase boundary is nonmonotonic as a function of U and δ. Frustration induced by second-neighbor hopping reduces Néel order more effectively at small U. The doped AF is stabilized at large U by kinetic energy and at small U bymore » potential energy. The transition between the AF insulator and the doped metallic AF is continuous. At large U, we find in-gap states similar to those observed in scanning tunneling microscopy. Finally, we predict that, contrary to the Hubbard bands, these states are only slightly spin polarized.« less
NASA Astrophysics Data System (ADS)
Fratino, L.; Charlebois, M.; Sémon, P.; Sordi, G.; Tremblay, A.-M. S.
2017-12-01
Recent quantum-gas microscopy of ultracold atoms and scanning tunneling microscopy of the cuprates reveal new detailed information about doped Mott antiferromagnets, which can be compared with calculations. Using cellular dynamical mean-field theory, we map out the antiferromagnetic (AF) phase of the two-dimensional Hubbard model as a function of interaction strength U , hole doping δ , and temperature T . The Néel phase boundary is nonmonotonic as a function of U and δ . Frustration induced by second-neighbor hopping reduces Néel order more effectively at small U . The doped AF is stabilized at large U by kinetic energy and at small U by potential energy. The transition between the AF insulator and the doped metallic AF is continuous. At large U , we find in-gap states similar to those observed in scanning tunneling microscopy. We predict that, contrary to the Hubbard bands, these states are only slightly spin polarized.
Doping Nitrogen in InGaZnO Thin Film Transistor with Double Layer Channel Structure.
Chang, Sheng-Po; Shan, Deng
2018-04-01
This paper presents the electrical characteristics of doping nitrogen in an amorphous InGaZnO thin film transistor. The IGZO:N film, which acted as a channel layer, was deposited using RF sputtering with a nitrogen and argon gas mixture at room temperature. The optimized parameters of the IGZO:N/IGZO TFT are as follows: threshold voltage is 0.5 V, field effect mobility is 14.34 cm2V-1S-1. The on/off current ratio is 106 and subthreshold swing is 1.48 V/decade. The positive gate bias stress stability of InGaZnO doping with nitrogen shows improvement compared to doping with oxygen.
Doping of germanium nanowires grown in presence of PH3
NASA Astrophysics Data System (ADS)
Tutuc, E.; Chu, J. O.; Ott, J. A.; Guha, S.
2006-12-01
The authors study the Au-catalyzed chemical vapor growth of germanium (Ge) nanowires in the presence of phosphine (PH3), used as a dopant precursor. The device characteristics of the ensuing nanowire field effect transistors (FETs) indicate n-type, highly doped nanowires. Using a combination of different nanowire growth sequences and their FET characteristics, the authors determine that phosphorus incorporates predominately via the conformal growth, which accompanies the acicular, nanowire growth. As such, the Ge nanowires grown in the presence of PH3 contain a phosphorus doped shell and an undoped core. The authors determine the doping level in the shell to be ≃(1-4)×1019cm-3.
NASA Astrophysics Data System (ADS)
Ahmadi, Elaheh; Koksaldi, Onur S.; Zheng, Xun; Mates, Tom; Oshima, Yuichi; Mishra, Umesh K.; Speck, James S.
2017-07-01
β-(Al x Ga1- x )2O3/β-Ga2O3 heterostructures were grown via plasma-assisted molecular beam epitaxy. The β-(Al x Ga1- x )2O3 barrier was partially doped by Ge to achieve a two-dimensional electron gas (2DEG) in Ga2O3. The formation of the 2DEG was confirmed by capacitance-voltage measurements. The impact of Ga-polishing on both the surface morphology and the reduction of the unintentionally incorporated Si at the growth interface was investigated using atomic force microscopy and secondary-ion mass spectrometry. Modulation doped field-effect transistors were fabricated. A maximum current density of 20 mA/mm with a pinch-off voltage of -6 V was achieved on a sample with a 2DEG sheet charge density of 1.2 × 1013 cm-2.
Theoretical Studies on InGaAs/InAlAs SAGCM Avalanche Photodiodes
NASA Astrophysics Data System (ADS)
Cao, Siyu; Zhao, Yue; ur Rehman, Sajid; Feng, Shuai; Zuo, Yuhua; Li, Chuanbo; Zhang, Lichun; Cheng, Buwen; Wang, Qiming
2018-05-01
In this paper, we provide a detailed insight on InGaAs/InAlAs separate absorption, grading, charge, and multiplication avalanche photodiodes (SAGCM APDs) and a theoretical model of APDs is built. Through theoretical analysis and two-dimensional (2D) simulation, the influence of charge layer and tunneling effect on the APDs is fully understood. The design of charge layer (including doping level and thickness) can be calculated by our predictive model for different multiplication thickness. We find that as the thickness of charge layer increases, the suitable doping level range in charge layer decreases. Compared to thinner charge layer, performance of APD varies significantly via several percent deviations of doping concentrations in thicker charge layer. Moreover, the generation rate ( G btt ) of band-to-band tunnel is calculated, and the influence of tunneling effect on avalanche field was analyzed. We confirm that avalanche field and multiplication factor ( M n ) in multiplication will decrease by the tunneling effect. The theoretical model and analysis are based on InGaAs/InAlAs APD; however, they are applicable to other APD material systems as well.
NASA Astrophysics Data System (ADS)
Goharrizi, A. Yazdanpanah; Sanaeepur, M.; Sharifi, M. J.
2015-09-01
Device performance of 10 nm length armchair graphene nanoribbon field effect transistors with 1.5 nm and 4 nm width (13 and 33 atoms in width respectively) are compared in terms of Ion /Ioff , trans-conductance, and sub-threshold swing. While narrow devices suffer from edge roughness wider devices are subject to more substrate surface roughness and reduced bandgap. Boron Nitride doping is employed to compensate reduced bandgap in wider devices. Simultaneous effects of edge and substrate surface roughness are considered. Results show that in the presence of both the edge and substrate surface roughness the 4 nm wide device with boron nitride doping shows improved performance with respect to the 1.5 nm one (both of which incorporate the same bandgap AGNR as channel material). Electronic simulations are performed via NEGF method along with tight-binding Hamiltonian. Edge and surface roughness are created by means of one and two dimensional auto correlation functions respectively. Electronic characteristics are averaged over a large number of devices due to statistic nature of both the edge and surface roughness.
Double gate graphene nanoribbon field effect transistor with single halo pocket in channel region
NASA Astrophysics Data System (ADS)
Naderi, Ali
2016-01-01
A new structure for graphene nanoribbon field-effect transistors (GNRFETs) is proposed and investigated using quantum simulation with a nonequilibrium Green's function (NEGF) method. Tunneling leakage current and ambipolar conduction are known effects for MOSFET-like GNRFETs. To minimize these issues a novel structure with a simple change of the GNRFETs by using single halo pocket in the intrinsic channel region, "Single Halo GNRFET (SH-GNRFET)", is proposed. An appropriate halo pocket at source side of channel is used to modify potential distribution of the gate region and weaken band to band tunneling (BTBT). In devices with materials like Si in channel region, doping type of halo and source/drain regions are different. But, here, due to the smaller bandgap of graphene, the mentioned doping types should be the same to reduce BTBT. Simulations have shown that in comparison with conventional GNRFET (C-GNRFET), an SH-GNRFET with appropriately halo doping results in a larger ON current (Ion), smaller OFF current (Ioff), a larger ON-OFF current ratio (Ion/Ioff), superior ambipolar characteristics, a reduced power-delay product and lower delay time.
NASA Technical Reports Server (NTRS)
Mui, D. S. L.; Patil, M. B.; Morkoc, H.
1989-01-01
Three double-heterojunction modulation-doped field-effect transistor structures with different channel composition are investigated theoretically. All of these transistors have an In(x)Ga(1-x)As channel sandwiched between two doped Al(0.3)Ga(0.7)As barriers with undoped spacer layers. In one of the structures, x varies from 0 from either heterojunction to 0.15 at the center of the channel quadratically; in the other two, constant values of x of 0 and 0.15 are used. The Poisson and Schroedinger equations are solved self-consistently for the electron wave function in all three cases. The results showed that the two-dimensional electron gas (2DEG) concentration in the channel of the quadratically graded structure is higher than the x = 0 one and slightly lower than the x = 0.15 one, and the mean distance of the 2DEG is closer to the center of the channel for this transistor than the other two. These two effects have important implications on the electron mobility in the channel.
High field charge order across the phase diagram of YBa2Cu3Oy
NASA Astrophysics Data System (ADS)
Laliberté, Francis; Frachet, Mehdi; Benhabib, Siham; Borgnic, Benjamin; Loew, Toshinao; Porras, Juan; Le Tacon, Mathieu; Keimer, Bernhard; Wiedmann, Steffen; Proust, Cyril; LeBoeuf, David
2018-03-01
In hole-doped cuprates there is now compelling evidence that inside the pseudogap phase, charge order breaks translational symmetry. In YBa2Cu3Oy charge order emerges in two steps: a 2D order found at zero field and at high temperature inside the pseudogap phase, and a 3D order that is superimposed below the superconducting transition Tc when superconductivity is weakened by a magnetic field. Several issues still need to be addressed such as the effect of disorder, the relationship between those charge orders and their respective impact on the Fermi surface. Here, we report high magnetic field sound velocity measurements of the 3D charge order in underdoped YBa2Cu3Oy in a large doping range. We found that the 3D charge order exists over the same doping range as its 2D counterpart, indicating an intimate connection between the two distinct orders. Moreover, our data suggest that 3D charge order has only a limited impact on low-lying electronic states of YBa2Cu3Oy.
NASA Astrophysics Data System (ADS)
Lawson, Bridget; Neubauer, Samuel; Chaudhry, Adeel; Hart, Cacie; Ferrone, Natalie; Houston, David; Yong, Grace; Kolagani, Rajeswari
Magnetoresistance properties of the epitaxial thin films of doped rare earth manganites are known to be influenced by the effect of bi-axial strain induced by lattice mismatch with the substrate. In hole-doped manganites, the effect of both compressive and tensile strain is qualitatively consistent with the expected changes in unit cell symmetry from cubic to tetragonal, leading to Jahn-Teller strain fields that affect the energy levels of Mn3 + energy levels. Recent work in our laboratory on CaMnO3 thin films has pointed out that tetragonal distortions introduced by tensile lattice mismatch strain may also have the effect of modulating the oxygen content of the films in agreement with theoretical models that propose such coupling between strain and oxygen content. Our research focuses on comparing the magneto-transport properties of hole-doped manganite LaCaMnO3 thin films with that of its electron doped counter parts, in an effort to delineate the effects of oxygen stoichiometry changes on magneto-transport from the effects of Jahn-Teller type strain. Towson University Office of Undergraduate Research, Fisher Endowment Grant and Undergraduate Research Grant from the Fisher College of Science and Mathematics, Seed Funding Grant from the School of Emerging technologies and the NSF Grant ECCS 112856.
Zhang, H G; Xie, L; Liu, X C; Xiong, M X; Cao, L L; Li, Y T
2017-09-20
The crystal structure, electronic structure and magnetic properties were systematically studied in a series of Fe-doped La 1.5 Sr 0.5 CoMnO 6 double perovskites. The X-ray diffraction patterns of the samples are all refined with a rhombohedral (R3[combining macron]c) structure. The parameters a and c continuously increase with increasing Fe doping concentration x. X-ray photoelectron spectroscopy (XPS) spectra of the Mn, Co, and Fe 2p core levels, consistent with the soft X-ray absorption spectroscopy (XAS) spectra of Mn, Co, and Fe L 2,3 edges, indicate that their valence states are Mn 3+ and Mn 4+ , Co 2+ and Co 3+ , and Fe 3+ , respectively. However, relative to samples with x ≤ 0.1, there is an abrupt change of photon energy in the Co- and Fe-2p XAS spectra for x ≥ 0.2, implying the spin state transition is from high to low. In addition, this is further confirmed by a comparison between the calculated effective spin moment from the paramagnetic data and the theoretical value. Interestingly, we demonstrate the reversal of both zero-field-cooling magnetization and the sign switching of the spontaneous exchange bias (SEB) with the doping concentration from magnetic measurements. The magnetization reverses from positive to negative with the temperature decreasing across the compensation temperature at the critical concentration x = 0.2. Meanwhile, the exchange bias field of the SEB reverses from large negative values to positive ones. Our findings allow us to propose that the spin state transition caused by inhomogeneity is considered to play an important role in the reversal of the magnetization and the SEB effect.
NASA Astrophysics Data System (ADS)
Liu, Linfei; Wang, Wei; Yao, Yanjie; Wu, Xiang; Lu, Saidan; Li, Yijie
2018-05-01
Improvement in the in-filed transport properties of REBa2Cu3O7-δ (RE = rare earth elements, REBCO) coated conductor is needed to meet the performance requirements for various practical applications, which can be accomplished by introducing artificial pinning centers (APCs), such as second phase dopant. However, with increasing dopant level the critical current density Jc at 77 K in zero applied magnetic field decreases. In this paper, in order to improve Jc we propose a seed layer technique. 5 mol% BaHfO3 (BHO) doped Y0.5Gd0.5Ba2Cu3O7-δ (YGBCO) epilayer with an inserted seed layer was grown on CeO2 buffered ion beam assisted deposition MgO (IBAD-MgO) tape by pulsed laser deposition. The effect of the conditions employed to prepare the seed layer, including tape moving speed and chemical composition, on the quality of 5 mol% BHO doped YGBCO epilayer was systematically investigated by X-ray diffraction (XRD) measurements and scanning electron microscopy (SEM) observations. It was found that all the samples with seed layer have higher Jc (77 K, self-field) than the 5 mol% BHO doped YGBCO film without seed layer. The seed layer could inhibit deterioration of the Jc at 77 K and self-filed. Especially, the self-seed layer (5 mol% BHO doped YGBCO seed layer) was more effective in improving the crystal quality, surface morphology and superconducting performance. At 4.2 K, the 5 mol% BHO doped YGBCO film with 4 nm thick self-seed layer had a very high flux pinning force density Fp of 860 GN/m3 for B//c under a 9 T field, and more importantly, the peak of the Fp curve was not observed.
Energy levels scheme simulation of divalent cobalt doped bismuth germanate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreici, Emiliana-Laura, E-mail: andreicilaura@yahoo.com; Petkova, Petya; Avram, Nicolae M.
The aim of this paper is to simulate the energy levels scheme for Bismuth Germanate (BGO) doped with divalent cobalt, in order to give a reliable explanation for spectral experimental data. In the semiempirical crystal field theory we first modeled the Crystal Field Parameters (CFPs) of BGO:Cr{sup 2+} system, in the frame of Exchange Charge Model (ECM), with actually site symmetry of the impurity ions after doping. The values of CFPs depend on the geometry of doped host matrix and by parameter G of ECM. First, we optimized the geometry of undoped BGO host matrix and afterwards, that of dopedmore » BGO with divalent cobalt. The charges effect of ligands and covalence bonding between cobalt cations and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the CFPs we simulate the energy levels scheme of cobalt ions, by diagonalizing the matrix of the doped crystal Hamiltonian. Obviously, energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison of obtained results with experimental data shows quite satisfactory, which justify the model and simulation schemes used for the title system.« less
NASA Astrophysics Data System (ADS)
Li, Jinchai; Yang, Weihuang; Li, Shuping; Chen, Hangyang; Liu, Dayi; Kang, Junyong
2009-10-01
The internal electric field is modified by using Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices (SLs). The first-principles simulation results show that the internal electric field in SL has been significantly intensified due to the charge transferring from Si-doped interface to Mg-doped interface. Accordingly, the Mg- and Si-δ-codoped p-type Al0.2Ga0.8N/GaN SLs are grown by metalorganic vapor phase epitaxy and higher hole concentration as much as twice of that in modulation-doped SL has been achieved, as determined by Hall effect measurements. Furthermore, by applying Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN SLs with high Al content as the p-type layers, we have fabricated deep ultraviolet light emitting diodes with superior current-voltage characteristics by lowering Mg-acceptor activation energy.
Magnetic field effect on pentacene-doped sexithiophene diodes
NASA Astrophysics Data System (ADS)
Pham, Song-Toan; Fayolle, Marine; Ohto, Tatsuhiko; Tada, Hirokazu
2017-11-01
We studied the effect of impurities on the magnetoresistance of sexithiophene-based diodes using impedance spectroscopy. The impurities were introduced by doping pentacene molecules into a sexithiophene film through a co-evaporation process. The pentacene molecules act as charge-scattering centers, which trigger the negative magnetoresistance of the device. This makes it possible to tune the value of magnetoresistance from positive to negative by increasing the applied voltage. The beneficial properties induced by impurities suggest a potential route to integrate additional functions into organic devices.
The Research Laboratory of Electronics Progress Report Number 133, January 1-December 1990
1990-12-31
4 6 Chapter 7 High-Frequency InAlAs/InGaAs Metal -Insulator-Doped Semiconductor...Epitaxy of Compound Semiconductors Chapter 7 High-Frequency InAlAs/InGaAs Metal -Insulator- Doped Semiconductor Field-Effect Transistors (MIDFETs) for...aligned silicided NMOS posed of refractory metals to allow a subsequentdevice fabrication. We have used cobalt deposi- high temperature anneal. This
NASA Astrophysics Data System (ADS)
Heczko, O.; Drahokoupil, J.; Straka, L.
2015-05-01
Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni50.0Mn28.5Ga21.5 single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.
Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12
NASA Astrophysics Data System (ADS)
Krohns, S.; Lu, J.; Lunkenheimer, P.; Brizé, V.; Autret-Lambert, C.; Gervais, M.; Gervais, F.; Bourée, F.; Porcher, É. F.; Loidl, A.
2009-11-01
The present work reports synthesis, as well as a detailed and careful characterization of structural, magnetic, and dielectric properties of differently tempered undoped and doped CaCu3Ti4O12 (CCTO) ceramics. For this purpose, neutron and X-ray powder diffraction, SQUID measurements, and dielectric spectroscopy have been performed. Mn-, Fe-, and Ni-doped CCTO ceramics were investigated in great detail to document the influence of low-level doping with 3d metals on the antiferromagnetic structure and dielectric properties. In the light of possible magnetoelectric coupling in these doped ceramics, the dielectric measurements were also carried out in external magnetic fields up to 7 T. At low temperatures the dielectric constant shows a minor but significant dependence on the applied magnetic field. Undoped CCTO is well-known for its colossal dielectric constant in a broad frequency and temperature range. With the present extended characterization of doped as well as undoped CCTO, we want to address the question why doping with only 1% Mn or 0.5% Fe decreases the room-temperature dielectric constant of CCTO by a factor of ~100 with a concomitant reduction of the conductivity, whereas 0.5% Ni doping changes the dielectric properties only slightly. In addition, diffraction experiments and magnetic investigations were undertaken to check for possible correlations of the magnitude of the colossal dielectric constants with structural details or with magnetic properties like the magnetic ordering, the Curie-Weiss temperatures, or the paramagnetic moment. It is revealed, that while the magnetic ordering temperature and the effective moment of all investigated CCTO ceramics are rather similar, there is a dramatic influence of doping and tempering time on the Curie-Weiss constant.
Stable doping of carbon nanotubes via molecular self assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, B.; Chen, Y.; Podzorov, V., E-mail: podzorov@physics.rutgers.edu
2014-10-14
We report a novel method for stable doping of carbon nanotubes (CNT) based on methods of molecular self assembly. A conformal growth of a self-assembled monolayer of fluoroalkyl trichloro-silane (FTS) at CNT surfaces results in a strong increase of the sheet conductivity of CNT electrodes by 60–300%, depending on the CNT chirality and composition. The charge carrier mobility of undoped partially aligned CNT films was independently estimated in a field-effect transistor geometry (~100 cm²V⁻¹s⁻¹). The hole density induced by the FTS monolayer in CNT sheets is estimated to be ~1.8 ×10¹⁴cm⁻². We also show that FTS doping of CNT anodesmore » greatly improves the performance of organic solar cells. This large and stable doping effect, easily achieved in large-area samples, makes this approach very attractive for applications of CNTs in transparent and flexible electronics.« less
Near-thermal limit gating in heavily doped III-V semiconductor nanowires using polymer electrolytes
NASA Astrophysics Data System (ADS)
Ullah, A. R.; Carrad, D. J.; Krogstrup, P.; Nygârd, J.; Micolich, A. P.
2018-02-01
Doping is a common route to reducing nanowire transistor on-resistance but it has limits. A high doping level gives significant loss in gate performance and ultimately complete gate failure. We show that electrolyte gating remains effective even when the Be doping in our GaAs nanowires is so high that traditional metal-oxide gates fail. In this regime we obtain a combination of subthreshold swing and contact resistance that surpasses the best existing p -type nanowire metal-oxide semiconductor field-effect transistors (MOSFETs). Our subthreshold swing of 75 mV/dec is within 25 % of the room-temperature thermal limit and comparable with n -InP and n -GaAs nanowire MOSFETs. Our results open a new path to extending the performance and application of nanowire transistors, and motivate further work on improved solid electrolytes for nanoscale device applications.
NASA Astrophysics Data System (ADS)
Zhang, Tong; Sun, Hao; Wang, Fengdi; Zhang, Wanqiao; Ma, Junmei; Tang, Shuwei; Gong, Hongwei; Zhang, Jingping
2018-01-01
Phosgene, one of the common chemicals in many industry areas, is extremely harmful to human and the environment. Thus, it is necessary to design the advanced materials to detect or remove phosgene effectively. In fact, detection or adsorption of some small gas molecules are not the most difficult to actualize. Whereas, one of the primary challenges is the gas molecules desorption from the adsorbent for the purpose of recycling of substrate materials since the small gas molecules interacts strongly with the substrates. In this work, the interaction between the phosgene molecule and pristine or Mn-doped graphene sheets with different electric field and charge state are investigated by using first-principles simulations. Our results show that the adsorption energy of phosgene on Mn-doped graphene is dramatically weakened by applying an external negative electric field but is obviously enhanced by introducing a positive electric field. These processes can be easily controlled by transform the direction of the electric field. Thus, introducing an external electric field or charge in the system may be an excellent method to control the phosgene molecule adsorption and desorption on Mn-doped graphene sheet. All energy needed is just a small quantity of electricity, which satisfies well the requirement of green chemistry and sustainable development. The mechanism and reason of reversible adsorption/desorption is also revealed in terms of energy, charge distribution and orbital analysis. Such spontaneous adsorption or desorption makes Mn-doped graphene to be used as an excellent reusable scavenger of phosgene.
Specific heat and Nernst effect of electron-doped cuprate superconductors
NASA Astrophysics Data System (ADS)
Balci, Hamza
This thesis consists of two separate studies on Pr2- xCexCuO4 (PCCO), a member of the electron-doped high temperature cuprate superconductor family: specific heat and the Nernst effect. We measured the specific heat of PCCO single crystals in order to probe the symmetry of the superconducting order parameter, to study the effect of oxygen reduction (annealing) on bulk properties of the crystals, and to determine proper ties like the condensation energy and the thermodynamic critical field. The order parameter symmetry has been established to be d-wave in the hole-doped cuprates. Experiments performed on electron-doped cuprates show conflicting results. Different experiments suggest s-wave symmetry, d-wave symmetry, or a transition from d-wave to s-wave symmetry with increasing cerium doping. However, most of these experiments are surface sensitive experiments. Specific heat, as a bulk method of probing the gap symmetry is essential in order to convincingly determine the gap symmetry. Our data proposes a way to reconcile all these conflicting results regarding the gap symmetry. In addition, prior specific heat measurements attempting to determine thermodynamic properties like the condensation energy were not successful due to inefficient methods of data analysis or poor sample quality. With improvements on sample quality and data analysis, we reliably determined these properties. The second part of this thesis is a study of the Nernst effect in PCCO thin films with different cerium dopings. We probed the superconducting fluctuations, studied transport phenomena in the normal state, and accurately measured H c2 by using the Nernst effect. After the discovery of the anomalous Nernst effect in the normal state of the hole-doped cuprates, many alternative explanations have been proposed. Vortex-like excitations above Tc, superconducting fluctuations, AFM fluctuations, and preformed Cooper pairs are some of these proposals. The electron-doped cuprates, due to their significant differences from the hole-doped cuprates in terms of coherence length and the phase stiffness temperature (a measure of superfluid density) are the ideal materials to test these ideas. Our data on the electron-doped cuprates does not show any anomalous Nernst effect, and hence it supports the superconducting fluctuations picture among the various proposals.
Enhanced blue responses in nanostructured Si solar cells by shallow doping
NASA Astrophysics Data System (ADS)
Cheon, Sieun; Jeong, Doo Seok; Park, Jong-Keuk; Kim, Won Mok; Lee, Taek Sung; Lee, Heon; Kim, Inho
2018-03-01
Optimally designed Si nanostructures are very effective for light trapping in crystalline silicon (c-Si) solar cells. However, when the lateral feature size of Si nanostructures is comparable to the junction depth of the emitter, dopant diffusion in the lateral direction leads to excessive doping in the nanostructured emitter whereby poor blue responses arise in the external quantum efficiency (EQE). The primary goal of this study is to find the correlation of emitter junction depth and carrier collection efficiency in nanostructured c-Si solar cells in order to enhance the blue responses. We prepared Si nanostructures of nanocone shape by colloidal lithography, with silica beads of 520 nm in diameter, followed by a reactive ion etching process. c-Si solar cells with a standard cell architecture of an Al back surface field were fabricated varying the emitter junction depth. We varied the emitter junction depth by adjusting the doping level from heavy doping to moderate doping to light doping and achieved greatly enhanced blue responses in EQE from 47%-92% at a wavelength of 400 nm. The junction depth analysis by secondary ion mass-spectroscopy profiling and the scanning electron microscopy measurements provided us with the design guide of the doping level depending on the nanostructure feature size for high efficiency nanostructured c-Si solar cells. Optical simulations showed us that Si nanostructures can serve as an optical resonator to amplify the incident light field, which needs to be considered in the design of nanostructured c-Si solar cells.
Low-Concentration Indium Doping in Solution-Processed Zinc Oxide Films for Thin-Film Transistors.
Zhang, Xue; Lee, Hyeonju; Kwon, Jung-Hyok; Kim, Eui-Jik; Park, Jaehoon
2017-07-31
We investigated the influence of low-concentration indium (In) doping on the chemical and structural properties of solution-processed zinc oxide (ZnO) films and the electrical characteristics of bottom-gate/top-contact In-doped ZnO thin-film transistors (TFTs). The thermogravimetry and differential scanning calorimetry analysis results showed that thermal annealing at 400 °C for 40 min produces In-doped ZnO films. As the In content of ZnO films was increased from 1% to 9%, the metal-oxygen bonding increased from 5.56% to 71.33%, while the metal-hydroxyl bonding decreased from 72.03% to 9.63%. The X-ray diffraction peaks and field-emission scanning microscope images of the ZnO films with different In concentrations revealed a better crystalline quality and reduced grain size of the solution-processed ZnO thin films. The thickness of the In-doped ZnO films also increased when the In content was increased up to 5%; however, the thickness decreased on further increasing the In content. The field-effect mobility and on/off current ratio of In-doped ZnO TFTs were notably affected by any change in the In concentration. Considering the overall TFT performance, the optimal In doping concentration in the solution-processed ZnO semiconductor was determined to be 5% in this study. These results suggest that low-concentration In incorporation is crucial for modulating the morphological characteristics of solution-processed ZnO thin films and the TFT performance.
Low-Concentration Indium Doping in Solution-Processed Zinc Oxide Films for Thin-Film Transistors
Zhang, Xue; Lee, Hyeonju; Kim, Eui-Jik; Park, Jaehoon
2017-01-01
We investigated the influence of low-concentration indium (In) doping on the chemical and structural properties of solution-processed zinc oxide (ZnO) films and the electrical characteristics of bottom-gate/top-contact In-doped ZnO thin-film transistors (TFTs). The thermogravimetry and differential scanning calorimetry analysis results showed that thermal annealing at 400 °C for 40 min produces In-doped ZnO films. As the In content of ZnO films was increased from 1% to 9%, the metal-oxygen bonding increased from 5.56% to 71.33%, while the metal-hydroxyl bonding decreased from 72.03% to 9.63%. The X-ray diffraction peaks and field-emission scanning microscope images of the ZnO films with different In concentrations revealed a better crystalline quality and reduced grain size of the solution-processed ZnO thin films. The thickness of the In-doped ZnO films also increased when the In content was increased up to 5%; however, the thickness decreased on further increasing the In content. The field-effect mobility and on/off current ratio of In-doped ZnO TFTs were notably affected by any change in the In concentration. Considering the overall TFT performance, the optimal In doping concentration in the solution-processed ZnO semiconductor was determined to be 5% in this study. These results suggest that low-concentration In incorporation is crucial for modulating the morphological characteristics of solution-processed ZnO thin films and the TFT performance. PMID:28773242
NASA Astrophysics Data System (ADS)
Presnov, Denis E.; Bozhev, Ivan V.; Miakonkikh, Andrew V.; Simakin, Sergey G.; Trifonov, Artem S.; Krupenin, Vladimir A.
2018-02-01
We present the original method for fabricating a sensitive field/charge sensor based on field effect transistor (FET) with a nanowire channel that uses CMOS-compatible processes only. A FET with a kink-like silicon nanowire channel was fabricated from the inhomogeneously doped silicon on insulator wafer very close (˜100 nm) to the extremely sharp corner of a silicon chip forming local probe. The single e-beam lithographic process with a shadow deposition technique, followed by separate two reactive ion etching processes, was used to define the narrow semiconductor nanowire channel. The sensors charge sensitivity was evaluated to be in the range of 0.1-0.2 e /√{Hz } from the analysis of their transport and noise characteristics. The proposed method provides a good opportunity for the relatively simple manufacture of a local field sensor for measuring the electrical field distribution, potential profiles, and charge dynamics for a wide range of mesoscopic objects. Diagnostic systems and devices based on such sensors can be used in various fields of physics, chemistry, material science, biology, electronics, medicine, etc.
NASA Astrophysics Data System (ADS)
Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck
2017-09-01
The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.
Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck
2017-09-15
The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.
Magnetic properties of Fe-doped organic-inorganic nanohybrids
NASA Astrophysics Data System (ADS)
Silva, N. J. O.; Amaral, V. S.; Carlos, L. D.; de Zea Bermudez, V.
2003-05-01
We present a magnetic study of Fe-doped diureasils (siloxane-based networks to which poly(ethylene oxide)-based chains are grafted by urea cross linkages doped with Fe(II) or Fe(III) ions. Structural studies show that the Fe(II) ions interact mainly with the organic chain, whereas the incorporation of Fe(III) leads to the formation of iron-based nanoclusters, with radius increasing from 20 to 40 Å. Fe(II)-doped samples behave as simple paramagnets, with μeff=5.32μB. Fe(III)-doped hybrids present antiferromagnetic interactions, with TN increasing with Fe(III) concentration up to 13.6 K for 6% doping. Thermal irreversibility was observed below ˜40 K and is stronger for higher concentrations. The coercive fields (HC) are of the order of 1000 Oe at 5 K. Hysteresis cycles are shifted to negative fields, revealing the presence of exchange anisotropy interactions with exchange fields (HE) of the order of 100 Oe. Both fields decrease rapidly with increasing temperature. We analyze this behavior in terms of the contribution of surface spin disorder to exchange anisotropy.
Why Sn doping significantly enhances the dielectric properties of Ba(Ti1-xSnx)O3
NASA Astrophysics Data System (ADS)
Shi, Tao; Xie, Lin; Gu, Lin; Zhu, Jing
2015-02-01
Through appropriate doping, the properties of BaTiO3-based ferroelectrics can be significantly enhanced. To determine the physical process induced by the doping of Sn atoms in Ba(Ti0.8Sn0.2)O3, we performed high-resolution scanning transmission electron microscopy experiments and observed that the regions with low Sn content formed polar nano regions (PNRs) embedded in the matrix in Ba(Ti0.8Sn0.2)O3. The interactions among Sn, Ti, Ba and O atoms were determined using first principles calculations. Based on the characteristics of the electronic structure and crystal lattice strain fields, the effects of doping with Sn were investigated. The Sn doping not only changed the electronic structure of the crystal but also increased the dielectric properties of the PNRs. Moreover, the Sn doping was also responsible for the diffuse phase transition of the Ba(Ti1-xSnx)O3 material. The effects mentioned in this paper are universal in lead-free ferroelectrics, and similar elements such as Sb, Mg, and Zr may have the same functions in other systems. Thus, these results provide guidance for the design of the doping process and new systems of ferroelectric or relaxor materials.
Why Sn doping significantly enhances the dielectric properties of Ba(Ti1-xSnx)O3
Shi, Tao; Xie, Lin; Gu, Lin; Zhu, Jing
2015-01-01
Through appropriate doping, the properties of BaTiO3-based ferroelectrics can be significantly enhanced. To determine the physical process induced by the doping of Sn atoms in Ba(Ti0.8Sn0.2)O3, we performed high-resolution scanning transmission electron microscopy experiments and observed that the regions with low Sn content formed polar nano regions (PNRs) embedded in the matrix in Ba(Ti0.8Sn0.2)O3. The interactions among Sn, Ti, Ba and O atoms were determined using first principles calculations. Based on the characteristics of the electronic structure and crystal lattice strain fields, the effects of doping with Sn were investigated. The Sn doping not only changed the electronic structure of the crystal but also increased the dielectric properties of the PNRs. Moreover, the Sn doping was also responsible for the diffuse phase transition of the Ba(Ti1-xSnx)O3 material. The effects mentioned in this paper are universal in lead-free ferroelectrics, and similar elements such as Sb, Mg, and Zr may have the same functions in other systems. Thus, these results provide guidance for the design of the doping process and new systems of ferroelectric or relaxor materials. PMID:25721479
Zhang, S J; Lin, S S; Li, X Q; Liu, X Y; Wu, H A; Xu, W L; Wang, P; Wu, Z Q; Zhong, H K; Xu, Z J
2016-01-07
Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron spectroscopy, was 0.13-0.25 eV larger than that of graphene. Moreover, when compared with the graphene/GaAs heterostructure, SiG/GaAs exhibits an enhanced performance. The performance of 3.4% silicon doped SiG/GaAs solar cell has been improved by 33.7% on average, which was attributed to the increased barrier height and improved interface quality. Our results suggest that silicon doping can effectively engineer the band gap of monolayered graphene and SiG has great potential in optoelectronic device applications.
Electrical Transport Ability of Nanostructured Potassium-Doped Titanium Oxide Film
NASA Astrophysics Data System (ADS)
Lee, So-Yoon; Matsuno, Ryosuke; Ishihara, Kazuhiko; Takai, Madoka
2011-02-01
Potassium-doped nanostructured titanium oxide films were fabricated using a wet corrosion process with various KOH solutions. The doped condition of potassium in TiO2 was confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Nanotubular were synthesized at a dopant concentration of <0.27% when the dopant concentration increased to >0.27%, these structures disappeared. To investigate the electrical properties of K-doped TiO2, pseudo metal-oxide-semiconductor field-effect transistor (MOSFET) samples were fabricated. The samples exhibited a distinct electrical behavior and p-type characteristics. The electrical behavior was governed by the volume of the dopant when the dopant concentration was <0.10% and the volume of the TiO2 phase when the dopant concentration was >0.18%.
Influence of iridium doping in MgB2 superconducting wires
NASA Astrophysics Data System (ADS)
Grivel, J.-C.
2018-04-01
MgB2 wires with iridium doping were manufactured using the in-situ technique in a composite Cu-Nb sheath. Reaction was performed at 700 °C, 800 °C or 900 °C for 1 h in argon atmosphere. A maximum of about 1.5 at.% Ir replaces Mg in MgB2. The superconducting transition temperature is slightly lowered by Ir doping. The formation of IrMg3 and IrMg4 secondary phase particles is evidenced, especially for a nominal stoichiometry with 2.0 at.% Ir doping. The critical current density and accommodation field of the wires are strongly dependent on the Ir content and are generally weakened in the presence of Ir, although the effect is less pronounced at lower temperatures.
Doped carbon nanostructure field emitter arrays for infrared imaging
Korsah, Kofi [Knoxville, TN; Baylor, Larry R [Farragut, TN; Caughman, John B [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN; Rack, Philip D [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN
2009-10-27
An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.
Magnetoresistance and charge transport in graphene governed by nitrogen dopants.
Rein, Markus; Richter, Nils; Parvez, Khaled; Feng, Xinliang; Sachdev, Hermann; Kläui, Mathias; Müllen, Klaus
2015-02-24
We identify the influence of nitrogen-doping on charge- and magnetotransport of single layer graphene by comparing doped and undoped samples. Both sample types are grown by chemical vapor deposition (CVD) and transferred in an identical process onto Si/SiO2 wafers. We characterize the samples by Raman spectroscopy as well as by variable temperature magnetotransport measurements. Over the entire temperature range, the charge transport properties of all undoped samples are in line with literature values. The nitrogen doping instead leads to a 6-fold increase in the charge carrier concentration up to 4 × 10(13) cm(-2) at room temperature, indicating highly effective doping. Additionally it results in the opening of a charge transport gap as revealed by the temperature dependence of the resistance. The magnetotransport exhibits a conspicuous sign change from positive Lorentz magnetoresistance (MR) in undoped to large negative MR that we can attribute to the doping induced disorder. At low magnetic fields, we use quantum transport signals to quantify the transport properties. Analyses based on weak localization models allow us to determine an orders of magnitude decrease in the phase coherence and scattering times for doped samples, since the dopants act as effective scattering centers.
NASA Astrophysics Data System (ADS)
Li, Jun; Fu, Yi-Zhou; Huang, Chuan-Xin; Zhang, Jian-Hua; Jiang, Xue-Yin; Zhang, Zhi-Lin
2016-04-01
This work presents a strategy of nitrogen anion doping to suppress negative gate-bias illumination instability. The electrical performance and negative gate-bias illumination stability of the ZnSnON thin film transistors (TFTs) are investigated. Compared with ZnSnO-TFT, ZnSnON-TFT has a 53% decrease in the threshold voltage shift under negative bias illumination stress and electrical performance also progresses obviously. The stability improvement of ZnSnON-TFT is attributed to the reduction in ionized oxygen vacancy defects and the photodesorption of oxygen-related molecules. It suggests that anion doping can provide an effective solution to the adverse tradeoff between field effect mobility and negative bias illumination stability.
NASA Technical Reports Server (NTRS)
Brandhorst, H. W., Jr. (Inventor)
1978-01-01
A solar cell is disclosed which comprises a first semiconductor material of one conductivity type with one face having the same conductivity type but more heavily doped to form a field region arranged to receive the radiant energy to be converted to electrical energy, and a layer of a second semiconductor material, preferably highly doped, of opposite conductivity type on the first semiconductor material adjacent the first semiconductor material at an interface remote from the heavily doped field region. Instead of the opposite conductivity layer, a metallic Schottky diode layer may be used, in which case no additional back contact is needed. A contact such as a gridded contact, previous to the radiant energy may be applied to the heavily doped field region of the more heavily doped, same conductivity material for its contact.
NASA Astrophysics Data System (ADS)
Duc, Tran Thien; Pozina, Galia; Amano, Hiroshi; Monemar, Bo; Janzén, Erik; Hemmingsson, Carl
2016-07-01
Deep levels in Mg-doped GaN grown by metal organic chemical vapor deposition (MOCVD), undoped GaN grown by MOCVD, and halide vapor phase epitaxy (HVPE)-grown GaN have been studied using deep level transient spectroscopy and minority charge carrier transient spectroscopy on Schottky diodes. One hole trap, labeled HT1, was detected in the Mg-doped sample. It is observed that the hole emission rate of the trap is enhanced by increasing electric field. By fitting four different theoretical models for field-assisted carrier emission processes, the three-dimensional Coulombic Poole-Frenkel (PF) effect, three-dimensional square well PF effect, phonon-assisted tunneling, and one-dimensional Coulombic PF effect including phonon-assisted tunneling, it is found that the one-dimensional Coulombic PF model, including phonon-assisted tunneling, is consistent with the experimental data. Since the trap exhibits the PF effect, we suggest it is acceptorlike. From the theoretical model, the zero field ionization energy of the trap and an estimate of the hole capture cross section have been determined. Depending on whether the charge state is -1 or -2 after hole emission, the zero field activation energy Ei 0 is 0.57 eV or 0.60 eV, respectively, and the hole capture cross section σp is 1.3 ×10-15c m2 or 1.6 ×10-16c m2 , respectively. Since the level was not observed in undoped GaN, it is suggested that the trap is associated with an Mg related defect.
Hetero-Material Gate Doping-Less Tunnel FET and Its Misalignment Effects on Analog/RF Parameters
NASA Astrophysics Data System (ADS)
Anand, Sunny; Sarin, R. K.
2018-03-01
In this paper, with the use of a hetero-material gate technique, a tunnel field-effect transistor (TFET) subject to charge plasma technique is proposed, named as hetero-material gate doping-less tunnel FET (HMG-DLTFET) and a brief study has been done on the effects due to misalignment of the bottom gate towards drain (GMAD) and towards source (GMAS). The proposed devices provide better performance as the drive current increased by three times as compared to conventional doping-less TFET (DLTFET). The results are then analyzed and compared with conventional doped hetero-material gate double-gate tunnel FET (HMG-DGTFET). The analog/radiofrequency (RF) performance has been studied for both devices and comparative analysis has been done for different parameters such as drain current (I D), transconductance (g m), output conductance (g d), total gate capacitance (C gg) and cutoff frequency (f T). Both devices performed similarly in different misalignment configurations. When the bottom gate is perfectly aligned, the best performance is observed for both devices, but the doping-less device gives slightly more freedom for fabrication engineers as the amount of tolerance for HMG-DLTFET is better than that of HMG-DGTFET.
NASA Astrophysics Data System (ADS)
Zhang, S. J.; Lin, S. S.; Li, X. Q.; Liu, X. Y.; Wu, H. A.; Xu, W. L.; Wang, P.; Wu, Z. Q.; Zhong, H. K.; Xu, Z. J.
2015-12-01
Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron spectroscopy, was 0.13-0.25 eV larger than that of graphene. Moreover, when compared with the graphene/GaAs heterostructure, SiG/GaAs exhibits an enhanced performance. The performance of 3.4% silicon doped SiG/GaAs solar cell has been improved by 33.7% on average, which was attributed to the increased barrier height and improved interface quality. Our results suggest that silicon doping can effectively engineer the band gap of monolayered graphene and SiG has great potential in optoelectronic device applications.Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron spectroscopy, was 0.13-0.25 eV larger than that of graphene. Moreover, when compared with the graphene/GaAs heterostructure, SiG/GaAs exhibits an enhanced performance. The performance of 3.4% silicon doped SiG/GaAs solar cell has been improved by 33.7% on average, which was attributed to the increased barrier height and improved interface quality. Our results suggest that silicon doping can effectively engineer the band gap of monolayered graphene and SiG has great potential in optoelectronic device applications. Electronic supplementary information (ESI) available: Synthetic process of the SiG sheet; UPS spectra of SiG and graphene; J-V curves for the SiG/GaAs and graphene/GaAs solar cells under dark conditions and AM1.5 illumination at 100 mW cm-2, respectively; Statistic PCE of SiG/GaAs solar cells with different Si doping levels; EQE of SiG/GaAs and graphene/GaAs solar cells; a comparison of the parameters between the SiG and graphene/GaAs solar cells. See DOI: 10.1039/c5nr06345k
NASA Astrophysics Data System (ADS)
Tang, Chao; Li, Qinwen; Zhang, Chunxiao; He, Chaoyu; Li, Jin; Ouyang, Tao; Li, Hongxing; Zhong, Jianxin
2018-06-01
Two dimensional (2D) tin selenium (SnSe) is an intriguing material with desired thermal and electric properties in nanoelectronics. In this paper, we carry on a density functional theory study on the stability and dilute magnetism of the 3d TM (Mn, Fe, and Co) doped 2D SnSe. Both the adsorption and substitution are in consideration here. We find that all the defects are electrically active and the cation substitutional doping (TM@Sn) is energetically favorable. The TM@Sn prefers to act as accepters and exhibits high-spin state with nonzero magnetic moment. The magnetic moment is mainly contributed by the spin-polarized charge density of the TM impurities. The magnetism is determined by the arrangement of the TM-3d orbitals, which is the result of the crystal field splitting and spin exchange splitting under specific symmetry. The magnetic and electronic properties of the TM@Sn are effectively modulated by external electric field (Eext) and charge doping. The Eext shifts the TM impurities relative to the SnSe host and then modifies the crystal field splitting. In particular, the magnetic moment is sensitive to the Eext in the Fe@Sn because the Eext induces distinct structure transformation. Based on the formation energy, doping electrons is a viable way to modulate the magnetic moment of TM@Sn. Doping electrons shift the 3d states towards low energy level, which induces the occupation of more 3d states and then the reduction of magnetism. These results render SnSe monolayer a promising 2D material for applications in future spintronics.
Photogeneration of refractive-index patterns in doped polyimide films.
Chakravorty, K K
1993-05-01
A photosensitive benzophenone tetracarboxylic dianhyride-alkylated diamine polyimide formulation has been evaluated for application in an optical interconnection area. The refractive-index patterns in this material were optically recorded by UV-assisted photodoping of sensitizers. The polyimide films were selectively doped with benzoin-type photosensitizers such as benzildimethylketal and benzoin ethyl ether, which cause a decrease in the refractive index. High-dose UV irradiation that causes cross linking of the polyimide chains was also employed for augmenting the refractive-index difference to 0.017 between the doped and undoped regions. Refractive-index variations and lightguiding properties were investigated as a function of doping concentrations and other processing conditions. The author utilized this technique for the fabrication of embedded polyimide channel waveguides. The two photosensitizers have different effects on the waveguiding characteristics of the polyimide films. Losses for benzoin ethyl ether remained low whereas doping with benzildimethylketal caused significant increase in the waveguiding loss at high doping concentrations. Near-field imaging of the output from such waveguides shows good confinement of 815-nm light.
Photogeneration of refractive-index patterns in doped polyimide films
NASA Astrophysics Data System (ADS)
Chakravorty, K. K.
1993-05-01
A photosensitive benzophenone tetracarboxylic dianhyride-alkylated diamine polyimide formulation has been evaluated for application in an optical interconnection area. The refractive-index patterns in this material were optically recorded by UV-assisted photodoping of sensitizers. The polyimide films were selectively doped with benzoin-type photosensitizers such as benzildimethylketal and benzoin ethyl ether, which cause a decrease in the refractive index. High-dose UV irradiation that causes cross linking of the polyimide chains was also employed for augmenting the refractive-index difference to 0.017 between the doped and undoped regions. Refractive-index variations and lightguiding properties were investigated as a function of doping concentrations and other processing conditions. The author utilized this technique for the fabrication of embedded polyimide channel waveguides. The two photosensitizers have different effects on the waveguiding characteristics of the polyimide films. Losses for benzoin ethyl ether remained low whereas doping with benzildimethylketal caused significant increase in the waveguiding loss at high doping concentrations. Near-field imaging of the output from such waveguides shows good confinement of 815-nm light.
Complementary p- and n-type polymer doping for ambient stable graphene inverter.
Yun, Je Moon; Park, Seokhan; Hwang, Young Hwan; Lee, Eui-Sup; Maiti, Uday; Moon, Hanul; Kim, Bo-Hyun; Bae, Byeong-Soo; Kim, Yong-Hyun; Kim, Sang Ouk
2014-01-28
Graphene offers great promise to complement the inherent limitations of silicon electronics. To date, considerable research efforts have been devoted to complementary p- and n-type doping of graphene as a fundamental requirement for graphene-based electronics. Unfortunately, previous efforts suffer from undesired defect formation, poor controllability of doping level, and subtle environmental sensitivity. Here we present that graphene can be complementary p- and n-doped by simple polymer coating with different dipolar characteristics. Significantly, spontaneous vertical ordering of dipolar pyridine side groups of poly(4-vinylpyridine) at graphene surface can stabilize n-type doping at room-temperature ambient condition. The dipole field also enhances and balances the charge mobility by screening the impurity charge effect from the bottom substrate. We successfully demonstrate ambient stable inverters by integrating p- and n-type graphene transistors, which demonstrated clear voltage inversion with a gain of 0.17 at a 3.3 V input voltage. This straightforward polymer doping offers diverse opportunities for graphene-based electronics, including logic circuits, particularly in mechanically flexible form.
Hernández-Díaz, Lorenzo; Hernández-Reta, Juan Carlos; Encinas, Armando; Nahmad-Molinari, Yuri
2010-05-19
We present a novel study on the effect of a magnetic field applied on a binary mixture doped with magnetic nanoparticles close to its demixing transition. Turbidity measurements in the Faraday configuration show that the effect of applying an external field produces changes in the critical opalescence of the mixture that allow us to track an aggregation produced by critical Casimir forces and a reversible aggregation due to the formation of chain-like flocks in response to the external magnetic field. The observation of a crossover of the aggregation curves through optical signals is interpreted as the evolution from low to high power dispersion nuclei due to an increase in the radius of the condensation seed brought about by Casimir or magnetic interactions. Finally, evidence of an enhanced magnetocaloric effect due to the coupling between mixing and ordering phase transitions is presented which opens up a nonsolid state approach of designing refrigerating cycles and devices.
NASA Astrophysics Data System (ADS)
Wang, Chao; Meng, You; Guo, Zidong; Shin, Byoungchul; Liu, Guoxia; Shan, Fukai
2018-05-01
One-dimensional metal oxide nanofibers have been regarded as promising building blocks for large area low cost electronic devices. As one of the representative metal oxide semiconducting materials, In2O3 based materials have attracted much interest due to their excellent electrical and optical properties. However, most of the field-effect transistors (FETs) based on In2O3 nanofibers usually operate in a depletion mode, which lead to large power consumption and a complicated integrated circuit design. In this report, gadolinium (Gd) doped In2O3 (InGdO) nanofibers were fabricated by electrospinning and applied as channels in the FETs. By optimizing the doping concentration and the nanofiber density, the device performance could be precisely manipulated. It was found that the FETs based on InGdO nanofibers, with a Gd doping concentration of 3% and a nanofiber density of 2.9 μm-1, exhibited the best device performance, including a field-effect mobility (μFE) of 2.83 cm2/V s, an on/off current ratio of ˜4 × 108, a threshold voltage (VTH) of 5.8 V, and a subthreshold swing (SS) of 2.4 V/decade. By employing the high-k ZrOx thin films as the gate dielectrics in the FETs, the μFE, VTH and SS can be further improved to be 17.4 cm2/V s, 0.7 V and 160 mV/decade, respectively. Finally, an inverter based on the InGdO nanofibers/ZrOx FETs was constructed and a gain of ˜11 was achieved.
NASA Astrophysics Data System (ADS)
Viana, Bruno; Lupan, Oleg; Pauporté, Thierry
2011-01-01
The electrochemical deposition technique was used for the preparation of Cu-doped ZnO-nanowire-based emitters. Nanowires of high structural and optical quality were epitaxially grown on p-GaN single crystalline film substrates. We found that the emission is directional with a wavelength that is tuned and redshifted toward the visible region by doping with Cu in nanowires. Furthermore, Cu-doped ZnO-nanowires show an enhancement of the transition probability under magnetic field.
Effect of Zn-doping on structural and magnetic properties of copper ferrite nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gautam, Nisha; Thirupathi, Gadipelly; Singh, Rajender
2016-05-23
The nanoparticles of CuFe{sub 2}O{sub 4} (CF) and Cu{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} (CZF) were synthesized using co-precipitation method to study the effect of Zn doping in Cu-ferrite. The X-ray diffraction (XRD) patterns were well fitted with two-phase structure using Rietveld analysis as Fd-3 m space group (spinel system) and C12/c1 space group (monoclinic system CuO-phase). The average crystallite size of the CF and CZF nanoparticles for spinel structure are 6 and 7 nm respectively. The spinel phase fraction is increased from 56% to 71% with Zn-doping of 20% in CF. The transmission electron micrograph analysis showed the narrow size distribution formore » CZF nanoparticles. The magnetization plots as a function of magnetic field (M (H)) of CF and CZF nanoparticles indicate superparamagnetic behavior. The magnetization is increased with Zn-doping in CF. The stable spinel Cu-ferrite can be obtained with Zn-doping in CF.« less
Cao, Chunyan; Xie, An; Noh, Hyeon Mi; Jeong, Jung Hyun
2016-08-01
Using a hydrothermal method, Ce(3+) /Tb(3+) non-/single-/co-doped K-Lu-F materials have been synthesized. The X-ray diffraction (XRD) results suggest that the Ce(3+) and/or Tb(3+) doping had great effects on the crystalline phases of the final samples. The field emission scanning electron microscopy (FE-SEM) images indicated that the samples were in hexagonal disk or polyhedron morphologies in addition to some nanoparticles, which also indicated that the doping also had great effects on the sizes and the morphologies of the samples. The energy-dispersive spectroscopy (EDS) patterns illustrated the constituents of different samples. The enhanced emissions of Tb(3+) were observed in the Ce(3+) /Tb(3+) co-doped K-Lu-F materials. The energy transfer (ET) efficiency ηT were calculated based on the fluorescence yield. The ET mechanism from Ce(3+) to Tb(3+) was confirmed to be the dipole-quadrupole interaction inferred from the theoretical analysis and the experimental data. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Laser doping of boron-doped Si paste for high-efficiency silicon solar cells
NASA Astrophysics Data System (ADS)
Tomizawa, Yuka; Imamura, Tetsuya; Soeda, Masaya; Ikeda, Yoshinori; Shiro, Takashi
2015-08-01
Boron laser doping (LD) is a promising technology for high-efficiency solar cells such as p-type passivated locally diffused solar cells and n-type Si-wafer-based solar cells. We produced a printable phosphorus- or boron-doped Si paste (NanoGram® Si paste/ink) for use as a diffuser in the LD process. We used the boron LD process to fabricate high-efficiency passivated emitter and rear locally diffused (PERL) solar cells. PERL solar cells on Czochralski Si (Cz-Si) wafers yielded a maximum efficiency of 19.7%, whereas the efficiency of a reference cell was 18.5%. Fill factors above 79% and open circuit voltages above 655 mV were measured. We found that the boron-doped area effectively performs as a local boron back surface field (BSF). The characteristics of the solar cell formed using NanoGram® Si paste/ink were better than those of the reference cell.
Ultrasonic synthesis of In-doped SnS nanoparticles and their physical properties
NASA Astrophysics Data System (ADS)
Jamali-Sheini, Farid; Cheraghizade, Mohsen; Yousefi, Ramin
2018-05-01
Indium (In)-doped Tin (II) Sulfide (SnS) nanoparticles (NPs) were synthesized by an ultra-sonication method and their optical, electrical, dielectric and photocatalytic properties were investigated. XRD patterns of the obtained NPs indicated formation of orthorhombic polycrystalline SnS. Field emission scanning electron microscopy exhibited flower-like NPs with particle sizes below 100 nm for both SnS and In-doped SnS samples. Optical analysis showed a decrease in energy band gap of SnS NPs upon In doping. In addition, electrical results demonstrated p-type nature of the synthesized SnS NPs and enhanced electrical conductivity of the NPs due to increased tin vacancy. Dielectric experiments on SnS NPs suggested an electronic polarizations effect to be responsible for changing dielectric properties of the particles, in terms of frequency. Finally, photocatalytic experiments revealed that high degradation power can be obtained using In-doped SnS NPs.
Shallow Heavily Doped n++ Germanium by Organo-Antimony Monolayer Doping.
Alphazan, Thibault; Díaz Álvarez, Adrian; Martin, François; Grampeix, Helen; Enyedi, Virginie; Martinez, Eugénie; Rochat, Névine; Veillerot, Marc; Dewitte, Marc; Nys, Jean-Philippe; Berthe, Maxime; Stiévenard, Didier; Thieuleux, Chloé; Grandidier, Bruno
2017-06-14
Functionalization of Ge surfaces with the aim of incorporating specific dopant atoms to form high-quality junctions is of particular importance for the development of solid-state devices. In this study, we report the shallow doping of Ge wafers with a monolayer doping strategy that is based on the controlled grafting of Sb precursors and the subsequent diffusion of Sb into the wafer upon annealing. We also highlight the key role of citric acid in passivating the surface before its reaction with the Sb precursors and the benefit of a protective SiO 2 overlayer that enables an efficient incorporation of Sb dopants with a concentration higher than 10 20 cm -3 . Microscopic four-point probe measurements and photoconductivity experiments show the full electrical activation of the Sb dopants, giving rise to the formation of an n++ Sb-doped layer and an enhanced local field-effect passivation at the surface of the Ge wafer.
Quasiparticle mass enhancement approaching optimal doping in a high-T c superconductor
Ramshaw, B. J.; Sebastian, S. E.; McDonald, R. D.; ...
2015-03-26
In the quest for superconductors with higher transition temperatures (T c), one emerging motif is that electronic interactions favorable for superconductivity can be enhanced by fluctuations of a broken-symmetry phase. In recent experiments it is suggested that the existence of the requisite broken-symmetry phase in the high-T c cuprates, but the impact of such a phase on the ground-state electronic interactions has remained unclear. Here, we used magnetic fields exceeding 90 tesla to access the underlying metallic state of the cuprate YBa 2Cu 3O 6+δ over a wide range of doping, and observed magnetic quantum oscillations that reveal a strongmore » enhancement of the quasiparticle effective mass toward optimal doping. Finally, this mass enhancement results from increasing electronic interactions approaching optimal doping, and suggests a quantum critical point at a hole doping of p crit ≈ 0.18.« less
Quasiparticle mass enhancement approaching optimal doping in a high-T c superconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramshaw, B. J.; Sebastian, S. E.; McDonald, R. D.
In the quest for superconductors with higher transition temperatures (T c), one emerging motif is that electronic interactions favorable for superconductivity can be enhanced by fluctuations of a broken-symmetry phase. In recent experiments it is suggested that the existence of the requisite broken-symmetry phase in the high-T c cuprates, but the impact of such a phase on the ground-state electronic interactions has remained unclear. Here, we used magnetic fields exceeding 90 tesla to access the underlying metallic state of the cuprate YBa 2Cu 3O 6+δ over a wide range of doping, and observed magnetic quantum oscillations that reveal a strongmore » enhancement of the quasiparticle effective mass toward optimal doping. Finally, this mass enhancement results from increasing electronic interactions approaching optimal doping, and suggests a quantum critical point at a hole doping of p crit ≈ 0.18.« less
Ramshaw, B J; Sebastian, S E; McDonald, R D; Day, James; Tan, B S; Zhu, Z; Betts, J B; Liang, Ruixing; Bonn, D A; Hardy, W N; Harrison, N
2015-04-17
In the quest for superconductors with higher transition temperatures (T(c)), one emerging motif is that electronic interactions favorable for superconductivity can be enhanced by fluctuations of a broken-symmetry phase. Recent experiments have suggested the existence of the requisite broken-symmetry phase in the high-T(c) cuprates, but the impact of such a phase on the ground-state electronic interactions has remained unclear. We used magnetic fields exceeding 90 tesla to access the underlying metallic state of the cuprate YBa2Cu3O(6+δ) over a wide range of doping, and observed magnetic quantum oscillations that reveal a strong enhancement of the quasiparticle effective mass toward optimal doping. This mass enhancement results from increasing electronic interactions approaching optimal doping, and suggests a quantum critical point at a hole doping of p(crit) ≈ 0.18. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Seema; Chauhan, Sudakar Singh
2018-05-01
In this paper, we demonstrate the double gate vertical tunnel field-effect transistor using homo/hetero dielectric buried oxide (HDB) to obtain the optimized device characteristics. In this concern, the existence of double gate, HDB and electrode work-function engineering enhances DC performance and Analog/RF performance. The use of electrostatic doping helps to achieve higher on-current owing to occurrence of higher tunneling generation rate of charge carriers at the source/epitaxial interface. Further, lightly doped drain region and high- k dielectric below channel and drain region are responsible to suppress the ambipolar current. Simulated results clarifies that proposed device have achieved the tremendous performance in terms of driving current capability, steeper subthreshold slope (SS), drain induced barrier lowering (DIBL), hot carrier effects (HCEs) and high frequency parameters for better device reliability.
Leakage current behavior in lead-free ferroelectric (K,Na)NbO3-LiTaO3-LiSbO3 thin films
NASA Astrophysics Data System (ADS)
Abazari, M.; Safari, A.
2010-12-01
Conduction mechanisms in epitaxial (001)-oriented pure and 1 mol % Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.1,Sb0.06)O3 (KNN-LT-LS) thin films on SrTiO3 substrate were investigated. Temperature dependence of leakage current density was measured as a function of applied electric field in the range of 200-380 K. It was shown that the different transport mechanisms dominate in pure and Mn-doped thin films. In pure (KNN-LT-LS) thin films, Poole-Frenkel emission was found to be responsible for the leakage, while Schottky emission was the dominant mechanism in Mn-doped thin films at higher electric fields. This is a remarkable yet clear indication of effect of 1 mol % Mn on the resistive behavior of such thin films.
NASA Astrophysics Data System (ADS)
Han, Dong-Suk; Moon, Yeon-Keon; Lee, Sih; Kim, Kyung-Taek; Moon, Dae-Yong; Lee, Sang-Ho; Kim, Woong-Sun; Park, Jong-Wan
2012-09-01
In this study, we fabricated phosphorus-doped zinc oxide-based thin-film transistors (TFTs) using direct current (DC) magnetron sputtering at a relatively low temperature of 100°C. To improve the TFT device performance, including field-effect mobility and bias stress stability, phosphorus dopants were employed to suppress the generation of intrinsic defects in the ZnO-based semiconductor. The positive and negative bias stress stabilities were dramatically improved by introducing the phosphorus dopants, which could prevent turn-on voltage ( V ON) shift in the TFTs caused by charge trapping within the active channel layer. The study showed that phosphorus doping in ZnO was an effective method to control the electrical properties of the active channel layers and improve the bias stress stability of oxide-based TFTs.
NASA Astrophysics Data System (ADS)
Park, Wug-Dong; Tanioka, Kenkichi
2016-07-01
Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) films have been used for highly sensitive imaging devices. To study a-Se HARP films for a solid-state image sensor, current-voltage, lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films are investigated. Also, to clarify a suitable Te-doped a-Se layer thickness in the a-Se photoconductor, we considered the effects of Te-doped layer thickness on the lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films. The threshold field, at which avalanche multiplication occurs in the a-Se HARP targets, decreases when the Te-doped layer thickness increases. The lag of 0.4-µm-thick a-Se HARP targets with Te-doped layers is higher than that of the target without Te doping. The lag of the targets with Te-doped layers is caused by the electrons trapped in the Te-doped layers within the 0.4-µm-thick a-Se HARP films. From the results of the spectral response measurement of about 15 min, the 0.4-µm-thick a-Se HARP targets with Te-doped layers of 90 and 120 nm are observed to be unstable owing to the electrons trapped in the Te-doped a-Se layer. From the light-transfer characteristics of 0.4-µm-thick a-Se HARP targets, as the slope at the operating point of signal current-voltage characteristics in the avalanche mode increases, the γ of the a-Se HARP targets decreases. Considering the effects of dark current on the lag and spectral response characteristics, a Te-doped layer of 60 nm is suitable for 0.4-µm-thick a-Se HARP films.
Correlated vortex pinning in Si-nanoparticle doped MgB 2
NASA Astrophysics Data System (ADS)
Kušević, I.; Babić, E.; Husnjak, O.; Soltanian, S.; Wang, X. L.; Dou, S. X.
2004-12-01
The magnetoresistivity and critical current density of well characterized Si-nanoparticle doped and undoped Cu-sheathed MgB 2 tapes have been measured at temperatures T≥28 K in magnetic fields B≤0.9 T. The irreversibility line Birr( T) for doped tape shows a stepwise variation with a kink around 0.3 T. Such Birr( T) variation is typical for high-temperature superconductors with columnar defects (a kink occurs near the matching field Bϕ) and is very different from a smooth Birr( T) variation in undoped MgB 2 samples. The microstructure studies of nanoparticle doped MgB 2 samples show uniformly dispersed nanoprecipitates, which probably act as a correlated disorder. The observed difference between the field variations of the critical current density and pinning force density of the doped and undoped tape supports the above findings.
Magneto-optical effects in semimetallic Bi 1–xSb x (x=0.015)
Dordevic, S. V.; Wolf, M. S.; Stojilovic, N.; ...
2012-09-12
We report the results of infrared and magneto-optical spectroscopy study on electrodynamic response of bismuth doped with 1.5% of antimony. The spectra are presented for temperatures down to 4.2 K, and in magnetic fields as high as 18 T. The results reveal strong magneto-optical activity, similar to pure bismuth, however there are some differences introduced by antimony doping. Analysis of optical functions reveals that the two type of charge carriers respond differently to external magnetic field. Finally, when the system enters the extreme quantum regime, both the inter- and intraband Landau Level transition are observed in the spectra.
NASA Astrophysics Data System (ADS)
Sang, Lina; Shabbir, Babar; Maheshwari, Pankaj; Qiu, Wenbin; Ma, Zongqing; Dou, Shixue; Cai, Chuanbing; Awana, V. P. S.; Wang, Xiaolin
2018-07-01
We performed a systematic study of the hydrostatic pressure (HP) effect on the supercon-ducting transition temperature (T c), critical current density (J c), irreversibility field (H irr), upper critical field (H c2), and flux pinning mechanism in un-doped and 3 at.% Co-doped FeSe0.5Te0.5 crystals. We found that T c is increased from 11.5 to 17 K as HP increases from 0 to 1.2 GPa. Remarkably, the J c is significantly enhanced by a factor of 3 to 100 for low and high temperature and field, and the H irr line is shifted to higher fields by HP up to 1.2 GPa. Based on the collective pinning model, the δl pinning associated with charge-carrier mean free path fluctuation is responsible for the pinning mechanism of Fe1-x Co x Se0.5Te0.5 samples with or without pressure. A comprehensive vortex phase diagram in the mixed state is constructed and analysed for the 3 at.% Co-doped sample.
Effect of temperature and magnetic field on disorder in semiconductor structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrinskaya, N. V., E-mail: nina.agrins@mail.ioffe.ru; Kozub, V. I.
We present the results of consistent theoretical analysis of various factors that may lead to influence of temperature and external magnetic field on disorder in semiconductor structures. Main attention is paid to quantum well (QW) structures in which only QWs or both QW and barriers are doped (the doping level is assumed to be close to the value corresponding to the metal–insulator transition). The above factors include (i) ionization of localized states to the region of delocalized states above the mobility edge, which is presumed to exist in the impurity band; (ii) the coexistence in the upper and lower Hubbardmore » bands (upon doping of QWs as well as barriers); in this case, in particular, the external magnetic field determines the relative contribution of the upper Hubbard band due to spin correlations at doubly filled sites; and (iii) the contribution of the exchange interaction at pairs of sites, in which the external magnetic field can affect the relation between ferromagnetic and antiferromagnetic configurations. All these factors, which affect the structure and degree of disorder, lead to specific features in the temperature dependence of resistivity and determine specific features of the magnetoresistance. Our conclusions are compared with available experimental data.« less
Evolution of magnetic properties of CaMn1-x Nb x O3 with Nb-doping
NASA Astrophysics Data System (ADS)
Markovich, V.; Fita, I.; Wisniewski, A.; Puzniak, R.; Martin, C.; Mogilyansky, D.; Jung, G.; Gorodetsky, G.
2015-08-01
Magnetic and structural properties of Nb-doped CaMnO3 have been studied and the effect of doping with 0.02 ⩽ x ⩽ 0.1 has been investigated. Substitution of Nb5+ ion for the Mn4+ site of the parent matrix causes one-electron doping with the chemical formula \\text{CaMn}1-2x4+\\text{Mn}x3+\\text{Nb}x5+{{\\text{O}}3} , accompanied by a monotonous increase of the lattice parameters, unit-cell volume, average Mn-O bond distance and a decrease in Mn-O-Mn bond angle, with increasing x. Low temperature magnetic ground state of CaMn1-x Nb x O3 has been found to be dependent on niobium doping level. The ground magnetic state evolves from mostly antiferromagnetic, with a weak ferromagnetic component for x = 0.02-0.08, to charge ordered C-type antiferromagnetic state at x = 0.1. Spontaneous magnetization increases sharply with increasing doping level, approaches a maximal value of 4.1 emu g-1 at T = 10 K for x = 0.08, and then decreases rapidly to reach a very small value of 0.2 emu g-1 for x = 0.1. Anomalous negative magnetization behavior below the magnetic transition temperature has been observed for the compound with x = 0.04 in the field cooled magnetization and remanent dc magnetization measurements. Vertical and horizontal shifts of the hysteresis loop of the field cooled sample have been observed for CaMn0.9Nb0.1O3 as possible signatures of the exchange bias effect. The effect of hydrostatic pressure on dc magnetization for the sample with x > 0.02 revealed a significant increase of the ferromagnetic phase volume under pressure, linked to progressive suppression of a negative magnetization in x = 0.04 sample.
Exploring DC-Kerr effect of impurity doped quantum dots under the aegis of noise
NASA Astrophysics Data System (ADS)
Arif, Sk. Md.; Bera, Aindrila; Ghosh, Anuja; Ghosh, Manas
2018-02-01
Present study performs an extensive exploration of the profiles of DC-Kerr effect (DCKE) of doped GaAs quantum dot (QD) under the control of Gaussian white noise. A large number of important physical parameters have been varied over a range and the resultant changes in the DCKE profiles have been thoroughly analyzed. The said physical parameters comprise of electric field, magnetic field, confinement potential, dopant location, dopant potential, noise strength, aluminium concentration (only for Alx Ga1 - x As alloy QD), carrier density, relaxation time, position-dependent effective mass (PDEM), position-dependent dielectric screening function (PDDSF), anisotropy, hydrostatic pressure (HP) and temperature. The particular physical quantity being varied, presence of noise and its pathway of application, in combination, lead to emergence of diverse features in the DCKE profiles. As a technologically significant aspect we often find maximization of DCKE for some typical combinations as mentioned above. Presence of multiplicative noise, in general, causes greater shift and greater augmentation of DCKE profiles from a noise-free condition than its additive counterpart. The outcomes of the study indicate ample scope of tailoring DCKE of doped QD systems in presence of noise by minute adjustment of several control parameters.
NASA Technical Reports Server (NTRS)
Mena, R. A.; Schacham, S. E.; Haugland, E. J.; Alterovitz, S. A.; Young, P. G.; Bibyk, S. B.; Ringel, S. A.
1995-01-01
The transport properties of channel delta-doped quantum well structures were characterized by conventional Hall effect and light-modulated Shubnikov-de Haas (SdH) effect measurements. The large number of carriers that become available due to the delta-doping of the channel, leads to an apparent degeneracy in the well. As a result of this degeneracy, the carrier mobility remains constant as a function of temperature from 300 K down to 1.4 K. The large amount of impurity scattering, associated with the overlap of the charge carriers and the dopants, resulted in low carrier mobilities and restricted the observation of the oscillatory magneto-resistance used to characterize the two-dimensional electron gas (2DEG) by conventional SdH measurements. By light-modulating the carriers, we were able to observe the SdH oscillation at low magnetic fields, below 1.4 tesla, and derive a value for the quantum scattering time. Our results for the ratio of the transport and quantum scattering times are lower than those previously measured for similar structures using much higher magnetic fields.
Downscaling ferroelectric field effect transistors by using ferroelectric Si-doped HfO2
NASA Astrophysics Data System (ADS)
Martin, Dominik; Yurchuk, Ekaterina; Müller, Stefan; Müller, Johannes; Paul, Jan; Sundquist, Jonas; Slesazeck, Stefan; Schlösser, Till; van Bentum, Ralf; Trentzsch, Martin; Schröder, Uwe; Mikolajick, Thomas
2013-10-01
Throughout the 22 nm technology node HfO2 is established as a reliable gate dielectric in contemporary complementary metal oxide semiconductor (CMOS) technology. The working principle of ferroelectric field effect transistors FeFET has also been demonstrated for some time for dielectric materials like Pb[ZrxTi1-x]O3 and SrBi2Ta2O9. However, integrating these into contemporary downscaled CMOS technology nodes is not trivial due to the necessity of an extremely thick gate stack. Recent developments have shown HfO2 to have ferroelectric properties, given the proper doping. Moreover, these doped HfO2 thin films only require layer thicknesses similar to the ones already in use in CMOS technology. This work will show how the incorporation of Si induces ferroelectricity in HfO2 based capacitor structures and finally demonstrate non-volatile storage in nFeFETs down to a gate length of 100 nm. A memory window of 0.41 V can be retained after 20,000 switching cycles. Retention can be extrapolated to 10 years.
Simulation of hole-mobility in doped relaxed and strained Ge layers
NASA Astrophysics Data System (ADS)
Watling, Jeremy R.; Riddet, Craig; Chan, Morgan Kah H.; Asenov, Asen
2010-11-01
As silicon based metal-oxide-semiconductor field-effect transistors (MOSFETs) are reaching the limits of their performance with scaling, alternative channel materials are being considered to maintain performance in future complementary metal-oxide semiconductor technology generations. Thus there is renewed interest in employing Ge as a channel material in p-MOSFETs, due to the significant improvement in hole mobility as compared to Si. Here we employ full-band Monte Carlo to study hole transport properties in Ge. We present mobility and velocity-field characteristics for different transport directions in p-doped relaxed and strained Ge layers. The simulations are based on a method for over-coming the potentially large dynamic range of scattering rates, which results from the long-range nature of the unscreened Coulombic interaction. Our model for ionized impurity scattering includes the affects of dynamic Lindhard screening, coupled with phase-shift, and multi-ion corrections along with plasmon scattering. We show that all these effects play a role in determining the hole carrier transport in doped Ge layers and cannot be neglected.
Ni, Y.; Zhang, Z.; Nlebedim, I. C.; ...
2015-06-11
Hall-effect (HE) sensors based on high-quality Mn-doped Bi 2Te 3 topological insulator (TI) thin films have been systematically studied in this paper. Improvement of Hall sensitivity is found after doping the magnetic element Mn into Bi 2Te 3. The sensors with low Mn concentrations, Mn xBi 2-xTe 3, x = 0.01 and 0.08 show the linear behavior of Hall resistance with sensitivity about 5 Ω/T. And their Hall sensitivity shows weak dependence on temperature. For sensors with high Mn concentration (x = 0.23), the Hall resistance with respect to magnetic field shows a hysteretic behavior. Moreover, its sensitivity shows almostmore » eight times as high as that of the HE sensors with low Mn concentration. The highest sensitivity can reach 43 Ω/T at very low magnetic field. This increase of Hall sensitivity is caused by the occurrence of anomalous HE (AHE) after ferromagnetic phase transition. Our work indicates that the magnetic-element-doped TIs with AHE are good candidates for HE sensors.« less
NASA Astrophysics Data System (ADS)
Materlik, Robin; Künneth, Christopher; Falkowski, Max; Mikolajick, Thomas; Kersch, Alfred
2018-04-01
III-valent dopants have shown to be most effective in stabilizing the ferroelectric, crystalline phase in atomic layer deposited, polycrystalline HfO2 thin films. On the other hand, such dopants are commonly used for tetragonal and cubic phase stabilization in ceramic HfO2. This difference in the impact has not been elucidated so far. The prospect is a suitable doping to produce ferroelectric HfO2 ceramics with a technological impact. In this paper, we investigate the impact of Al, Y, and La doping, which have experimentally proven to stabilize the ferroelectric Pca21 phase in HfO2, in a comprehensive first-principles study. Density functional theory calculations reveal the structure, formation energy, and total energy of various defects in HfO2. Most relevant are substitutional electronically compensated defects without oxygen vacancy, substitutional mixed compensated defects paired with a vacancy, and ionically compensated defect complexes containing two substitutional dopants paired with a vacancy. The ferroelectric phase is strongly favored with La and Y in the substitutional defect. The mixed compensated defect favors the ferroelectric phase as well, but the strongly favored cubic phase limits the concentration range for ferroelectricity. We conclude that a reduction of oxygen vacancies should significantly enhance this range in Y doped HfO2 thin films. With Al, the substitutional defect hardly favors the ferroelectric phase before the tetragonal phase becomes strongly favored with the increasing concentration. This could explain the observed field induced ferroelectricity in Al-doped HfO2. Further Al defects are investigated, but do not favor the f-phase such that the current explanation remains incomplete for Al doping. According to the simulation, doping alone shows clear trends, but is insufficient to replace the monoclinic phase as the ground state. To explain this fact, some other mechanism is needed.
Vacancy-induced brittle to ductile transition of W-M co-doped Al3Ti (M=Si, Ge, Sn and Pb).
Zhu, Mingke; Wu, Ping; Li, Qiulin; Xu, Ben
2017-10-25
We investigated the effect of vacancy formation on brittle (D0 22 ) to ductile (L1 2 -like) transition in Al 3 Ti using DFT calculations. The well-known pseudogap on the density of states of Al 3 Ti migrates towards its Fermi level from far above, via a W - M co-doping strategy, where M is Si, Ge, Sn or Pb respectively. In particular, by a W - M co-doping the underline electronic structure of the pseudogap approaches an octahedral (L1 2 : t 2g , e g ) from the tetragonal (D0 22 : e g , b 2g , a 1g , b 1g ) crystal field. Our calculations demonstrated that (1) a W-doping is responsible for the close up of the energy gap between a 1g and b 1g so that they tend to merge into an e g symmetry, and (2) all M-doping lead to a narrower gap between e g and b 2g (moving towards a t 2g symmetry). Thus, a brittle to ductile transition in Al 3 Ti is possible by adopting this W - M co-doping strategy. We further recommend the use of W-Pb co-doped Al 3 Ti to replace the less anodic Al electrode in Al-battery, due to its improved ductility and high Al diffusivity. Finally this study opens a new field in physics to tailor mechanical properties by manipulating electron energy level(s) towards higher symmetry via vacancy optimization.
Hole transport characteristics in phosphorescent dye-doped NPB films by admittance spectroscopy
NASA Astrophysics Data System (ADS)
Wang, Ying; Chen, Jiangshan; Huang, Jinying; Dai, Yanfeng; Zhang, Zhiqiang; Liu, Su; Ma, Dongge
2014-05-01
Admittance spectroscopy is a powerful tool to determine the carrier mobility. The carrier mobility is a significant parameter to understand the behavior or to optimize the organic light-emitting diode or other organic semiconductor devices. Hole transport in phosphorescent dye, bis[2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1Hbenzoimidazol-N,C3] iridium(acetylacetonate [(fbi)2Ir(acac)]) doped into N,N-diphenyl-N,N-bis(1-naphthylphenyl)-1,1-biphenyl-4,4-diamine (NPB) films was investigated by admittance spectroscopy. The results show that doped (fbi)2Ir(acac) molecules behave as hole traps in NPB, and lower the hole mobility. For thicker films(≳300 nm), the electric field dependence of hole mobility is as expected positive, i.e., the mobility increases exponentially with the electric field. However, for thinner films (≲300 nm), the electric field dependence of hole mobility is negative, i.e., the hole mobility decreases exponentially with the electric field. Physical mechanisms behind the negative field dependence of hole mobility are discussed. In addition, three frequency regions were divided to analyze the behaviors of the capacitance in the hole-only device and the physical mechanism was explained by trap theory and the parasitic capacitance effect.
Doping-Based Stabilization of the M2 Phase in Free-Standing VO2 Nanostructures at Room Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strelcov, Evgheni; Tselev, Alexander; Ivanov, Ilia N
2012-01-01
A new high-yield method of doping VO2 nanostructures with aluminum is proposed, which renders possible stabilization of the monoclinic M2 phase in free-standing nanoplatelets in ambient conditions and opens an opportunity for realization of a purely electronic Mott Transition Field-Effect Transistor without an accompanying structural transition. The synthesized free-standing M2-phase nanostructures are shown to have very high crystallinity and an extremely sharp temperature-driven metal-insulator transition. A combination of x-ray microdiffraction, micro-Raman spectroscopy, Energy-Dispersive X-ray spectroscopy, and four-probe electrical measurements allowed thorough characterization of the doped nanostructures. Light is shed onto some aspects of the nanostructure growth, and the temperature-doping levelmore » phase diagram is established.« less
A DFT study of pure and lithium doped gold clusters
NASA Astrophysics Data System (ADS)
Rani, Babita
2018-05-01
First principles calculations on Aun and Aun-1Li (n=1-6) clusters are performed to understand the effect of size and composition on their structural and energy parameters. It has been found that binding energy increases continuously with increase in the size of pure Aun and doped Aun-1Li clusters and attains its maximum at n=6. Also, Li doping results in the improvement of relative stabilities of pure gold clusters, owing to higher bond strength (i.e. shorter bond length) of Au- Li bond as compared to Au-Au bonds. Moreover, Aun-1Li clusters are found to be more compact. Structural transformations are observed in case of gold clusters doped with Li atom which may affect their application in the field of catalysis.
NASA Astrophysics Data System (ADS)
Singleton, John; de La Cruz, Clarina; McDonald, R. D.; Li, Shiliang; Altarawneh, Moaz; Goddard, Paul; Franke, Isabel; Rickel, Dwight; Mielke, C. H.; Yao, Xin; Dai, Pengcheng
2010-02-01
We measure magnetic quantum oscillations in the underdoped cuprates YBa2Cu3O6+x with x=0.61, 0.69, using fields of up to 85 T. The quantum-oscillation frequencies and effective masses obtained suggest that the Fermi energy in the cuprates has a maximum at hole doping p≈0.11-0.12. On either side, the effective mass may diverge, possibly due to phase transitions associated with the T=0 limit of the metal-insulator crossover (low-p side), and the postulated topological transition from small to large Fermi surface close to optimal doping (high p side).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulbachinskii, V. A., E-mail: kulb@mig.phys.msu.ru; Kudryashov, A. A.; Kytin, V. G.
2015-06-15
The influence of doping with Tl on the Shubnikov-de Haas effect at T = 4.2 K in magnetic fields up to 38 T in p-Sb{sub 2−x}Tl{sub x}Te{sub 3} (x = 0, 0.005, 0.015, and 0.05) and n-Bi{sub 2−x}Tl{sub x}Se{sub 3} (x = 0, 0.01, 0.02, 0.04, and 0.06) single crystals is investigated. Extreme cross-sections of the Fermi surface in both materials decrease upon doping with Tl: the hole concentration decreases in Sb{sub 2−x}Tl{sub x}Te{sub 3} due to the donor effect of Tl and the electron concentration in n-Bi{sub 2−x}Tl{sub x}Se{sub 3} decreases due to the acceptor effect of Tl. Themore » temperature dependences of the Seebeck coefficient, electrical conductivity, thermal conductivity, and dimensionless thermoelectric figure of merit in a temperature range of 77–300 K are measured. The thermal conductivity and electrical conductivity decrease upon doping with Tl both in p-Sb{sub 2−x}Tl{sub x}Te{sub 3} and in n-Bi{sub 2−x}Tl{sub x}Se{sub 3}. The Seebeck coefficient increases in all compositions upon an increase in doping over the entire measured temperature range. The thermoelectric figure of merit increases upon doping with Tl.« less
NASA Astrophysics Data System (ADS)
Tripathi, D.; Dey, T. K.
2014-12-01
A series of MgB2 pellets with and without addition of carbon from different sources (viz. starch, polystyrene and carbon nanotubes) have been synthesized by solid state reaction under argon atmosphere. XRD analysis indicates a decrease in lattice parameters of MgB2 with addition of starch, polystyrene (PS) and MWCNT and confirms substitution of carbon in boron sites. The presence of nanosized carbon inclusions between the grain boundaries in the present set of samples is evident in TEM photographs. Resistivity data confirms a decrease in superconducting transition temperature (Tc0) for MgB2 doped with starch/PS/MWCNT. The effect of different field cooling heights (HIFC) at 20 K on maximum levitation force (FMLF) and maximum attractive force (FMAF) of pure MgB2 and MgB2 doped with starch/PS/MWCNT have been investigated. Except for MWCNT, doping of starch and PS in MgB2 is found to improve FMLF and FMAF and the best result is obtained for MgB2 doped with 1 wt.% PS. Levitation force measured as a function of decreasing initial field cooling height indicates exponential dependence of both maximum levitation force (FMLF) and maximum attractive force (FMAF). However, the gap distance between PM and the sample (H0AF and HMAF) corresponding to maximum attractive force (FMAF) and zero attractive force (F0AF) varies linearly and their difference remains constant. This constancy in (HMAF - H0AF) is understood in terms of constant reduction rate of magnetic flux density between H0AF and HMAF.
Observation of magnetization reversal behavior in Sm0.9Gd0.1Cr0.85Mn0.15O3 orthochromites
NASA Astrophysics Data System (ADS)
Panwar, Neeraj; Joby, Jostin P.; Kumar, Surendra; Coondoo, Indrani; Vasundhara, M.; Kumar, Nitu; Palai, Ratnakar; Singhal, Rahul; Katiyar, Ram S.
2018-05-01
Impact of co-doping (Gd and Mn) on the magnetic properties has been systematically investigated in SmCrO3 compound. For the synthesized compound Sm0.9Gd0.1Cr0.85Mn0.15O3 (SGCMO), below the Neel transition temperature and under low applied magnetic field, temperature induced magnetization reversal at 105 K (crossover temperature) was noticed in the field cooled magnetization curve. Magnetization reversal attained maximum value of -1.03 emu/g at 17 K where spin reorientation occurred. The magnetization reversal disappeared under higher applied field. From the M-H plots an enhancement in the magnetization was observed due to Gd doping. Magnetocaloric effect at low temperatures measured through the magnetic entropy change was found sixteen times higher for this compound as compared to pristine SmCrO3 and twice to that of SmCr0.85Mn0.15O3 compound. The study reveals the importance of co-doping in tailoring the magnetic properties of rare-earth chromites.
Demonstration of β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors
NASA Astrophysics Data System (ADS)
Zhang, Yuewei; Joishi, Chandan; Xia, Zhanbo; Brenner, Mark; Lodha, Saurabh; Rajan, Siddharth
2018-06-01
In this work, we demonstrate modulation-doped β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors. The maximum sheet carrier density for a two-dimensional electron gas (2DEG) in a β-(AlxGa1-x)2O3/Ga2O3 heterostructure is limited by the conduction band offset and parasitic channel formation in the barrier layer. We demonstrate a double heterostructure to realize a β-(AlxGa1-x)2O3/Ga2O3/(AlxGa1-x)2O3 quantum well, where electrons can be transferred from below and above the β-Ga2O3 quantum well. The confined 2DEG charge density of 3.85 × 1012 cm-2 was estimated from the low-temperature Hall measurement, which is higher than that achievable in a single heterostructure. Hall mobilities of 1775 cm2/V.s at 40 K and 123 cm2/V.s at room temperature were measured. Modulation-doped double heterostructure field effect transistors showed a maximum drain current of IDS = 257 mA/mm, a peak transconductance (gm) of 39 mS/mm, and a pinch-off voltage of -7.0 V at room temperature. The three-terminal off-state breakdown measurement on the device with a gate-drain spacing (LGD) of 1.55 μm showed a breakdown voltage of 428 V, corresponding to an average breakdown field of 2.8 MV/cm. The breakdown measurement on the device with a scaled gate-drain spacing of 196 nm indicated an average breakdown field of 3.2 MV/cm. The demonstrated modulation-doped β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistor could act as a promising candidate for high power and high frequency device applications.
Magnetic and electron spin resonance studies of W doped CoFe2O4 polycrystalline materials
NASA Astrophysics Data System (ADS)
Singamaneni, S. R.; Martinez, L. M.; Swadipta, R.; Ramana, C. V.
2018-05-01
We report the magnetic and electron spin resonance (ESR) properties of W doped CoFe2O4 polycrystalline materials, prepared by standard solid-state reaction method. W was doped (0-15%) in CFO lattice on Fe site. Isothermal magnetization measurements reveal that the coercive field (Hc) (1300-2200 Oe) and saturation magnetization MS (35-82 emu/g) vary strongly as a function of W doping at all the temperatures (4-300 K) measured. We believe that a strong decrease in magnetic anisotropy in CFO after doping with W could cause a decrease in Hc. Up on doping CFO with W in place of Fe, the process transforms part of Fe3+ into Fe2+ due to the creation of more oxygen vacancies. This hinders the super-exchange interaction between Fe3+ and Fe2+, which causes a decrease in MS. Zero-field cooled (ZFC) and field cooled (FC, 1000 Oe) magnetization responses measured at 4 K on 1% W doped CFO show no indication of exchange bias, inferring that there are no other microscopic secondary magnetic phases (no segregation). This observation is corroborated by ESR (9.398 GHz) measurements collected as a function of temperature (10-150 K) and W doping (0-15%). We find that ESR spectra did not change after doping with W above 0.5%. However, ESR spectra collected from 0.5% W doped CFO sample showed a strong temperature dependence. We observed several ESR signals from 0.5% W doped CFO sample that could be due to phase separation.
Ferromagnetism in doped or undoped spintronics nanomaterials
NASA Astrophysics Data System (ADS)
Qiang, You
2010-10-01
Much interest has been sparked by the discovery of ferromagnetism in a range of oxide doped and undoped semiconductors. The development of ferromagnetic oxide semiconductor materials with giant magnetoresistance (GMR) offers many advantages in spintronics devices for future miniaturization of computers. Among them, TM-doped ZnO is an extensively studied n-type wide-band-gap (3.36 eV) semiconductor with a tremendous interest as future mini-computer, blue light emitting, and solar cells. In this talk, Co-doped ZnO and Co-doped Cu2O semiconductor nanoclusters are successfully synthesized by a third generation sputtering-gas-aggregation cluster technique. The Co-doped nanoclusters are ferromagnetic with Curie temperature above room temperature. Both of Co-doped nanoclusters show positive magnetoresistance (PMR) at low temperature, but the amplitude of the PMRs shows an anomalous difference. For similar Co doping concentration at 5 K, PMR is greater than 800% for Co-doped ZnO but only 5% for Co-doped Cu2O nanoclusters. Giant PMR in Co-doped ZnO which is attributed to large Zeeman splitting effect has a linear dependence on applied magnetic field with very high sensitivity, which makes it convenient for the future spintronics applications. The small PMR in Co-doped Cu2O is related to its vanishing density of states at Fermi level. Undoped Zn/ZnO core-shell nanoparticle gives high ferromagnetic properties above room temperature due to the defect induced magnetization at the interface.
Infrared spectra of magnetoresistive ferromagnets in magnetic fields
NASA Astrophysics Data System (ADS)
Telegin, A. V.; Bessonova, V. A.; Sukhorukov, Yu. P.
2018-05-01
The influence of a magnetic field on reflection and transmission spectra of ferromagnetic manganites possessed the colossal magnetoresistance effect has been in the infrared range studied. It was shown that observed magnetotransmission and magnetoreflection of unpolarized light are an optical response to the colossal magnetoresistance in optimally doped manganites. Compared to crystals and multilayers the effects are the most pronounced and reach the magnitude of up to few tens of percent in single-layer thin films near the Curie temperature. A new low-temperature mechanism of magnetotransmission connected with the tunnel magnetoresistance was revealed far below the Curie point in Ba-doped manganite films with a variant structure. The observed magneto-optical effects in manganites can be described in the framework of the magnetorefractive effect theory. The observed effects are one or two orders of magnitude greater than the conventional IR magnetooptical phenomena in manganites. Being quite large, magnetoreflection and magnetotransmission effects in manganites structures could be successfully used in optoelectronics.
N-doping of organic semiconductors by bis-metallosandwich compounds
Barlow, Stephen; Qi, Yabing; Kahn, Antoine; Marder, Seth; Kim, Sang Bok; Mohapatra, Swagat K.; Guo, Song
2016-01-05
The various inventions disclosed, described, and/or claimed herein relate to the field of methods for n-doping organic semiconductors with certain bis-metallosandwich compounds, the doped compositions produced, and the uses of the doped compositions in organic electronic devices. Metals can be manganese, rhenium, iron, ruthenium, osmium, rhodium, or iridium. Stable and efficient doping can be achieved.
NASA Astrophysics Data System (ADS)
Nigam, Kaushal; Kondekar, Pravin; Sharma, Dheeraj; Raad, Bhagwan Ram
2016-10-01
For the first time, a distinctive approach based on electrically doped concept is used for the formation of novel double gate tunnel field effect transistor (TFET). For this, the initially heavily doped n+ substrate is converted into n+-i-n+-i (Drain-Channel-Source) by the selection of appropriate work functions of control gate (CG) and polarity gate (PG) as 4.7 eV. Further, the formation of p+ region for source is performed by applying -1.2 V at PG. Hence, the structure behave like a n+-i-n+-p+ gated TFET, whereas, the control gate is used to modulate the effective tunneling barrier width. The physical realization of delta doped n+ layer near to source region is a challenging task for improving the device performance in terms of ON current and subthreshold slope. So, the proposed work will provide a better platform for fabrication of n+-i-n+-p+ TFET with low cost and suppressed random dopant fluctuation (RDF) effects. ATLAS TCAD device simulator is used to carry out the simulation work.
NASA Astrophysics Data System (ADS)
Zhang, Jie; He, Yunteng; Lei, Lei; Alghamdi, Maha; Oswalt, Andrew; Kong, Wei
2017-08-01
In an effort to solve the crystallization problem in crystallography, we have been engaged in developing a method termed "serial single molecule electron diffraction imaging" (SS-EDI). The unique features of SS-EDI are superfluid helium droplet cooling and field-induced orientation: together the two features constitute a molecular goniometer. Unfortunately, the helium atoms surrounding the sample molecule also contribute to a diffraction background. In this report, we analyze the properties of a superfluid helium droplet beam and its doping statistics, and demonstrate the feasibility of overcoming the background issue by using the velocity slip phenomenon of a pulsed droplet beam. Electron diffraction profiles and pair correlation functions of ferrocene-monomer-doped droplets and iodine-nanocluster-doped droplets are presented. The timing of the pulsed electron gun and the effective doping efficiency under different dopant pressures can both be controlled for size selection. This work clears any doubt of the effectiveness of superfluid helium droplets in SS-EDI, thereby advancing the effort in demonstrating the "proof-of-concept" one step further.
Effect of Silver Doping on Transport Properties of Bi2Se3: AgxBi2Se3 and Bi2-xAgxSe3
NASA Astrophysics Data System (ADS)
Zhang, Min; Wei, Zhan-Tao
2018-05-01
Ag-doped Bi2Se3 with the formula AgxBi2Se3 and Bi2-xAgxSe3 were prepared and their electrical and magnetic transport properties have been investigated to study the influence of silver doping on transport properties of Bi2Se3 with different Ag-doped method. All samples exhibited metallic resistivity and the resistivity increased with increasing Ag concentration. The lattice parameter c of Ag-substituted and Ag-intercalated samples displays a contrary change as the Ag concentration increased. For the Ag-intercalated samples, both the resistance upturn were observed in the curves of temperature dependent of resistivity and temperature dependent of magnetoresistance, respectively, indicating that the enhanced surface effect was obtained in those samples. Monotonously, field-induced MR peaks around 200 K were also observed in those samples. Similar behaviors were not observed in the Ag-substituted samples.
NASA Astrophysics Data System (ADS)
Wang, Kai; Cross, Nick; Boulesbaa, Abdelaziz; Pudasaini, Pushpa R.; Tian, Mengkun; Mahjouri-Samani, Masoud; Oxley, Mark P.; Rouleau, Christopher M.; Puretzky, Alexander A.; Rack, Philip D.; Xiao, Kai; Yoon, Mina; Eres, Gyula; Duscher, Gerd; Geohegan, David B.
2017-02-01
Incorporating dopants in monolayer transition metal dichalcogenides (TMD) can enable manipulations of their electrical and optical properties. Previous attempts in amphoteric doping in monolayer TMDs have proven to be challenging. Here we report the incorporation of molybdenum (Mo) atoms in monolayer WS2 during growth by chemical vapor deposition, and correlate the distribution of Mo atoms with the optical properties including photoluminescence and ultrafast transient absorption dynamics. Dark field scanning transmission electron microscopy imaging quantified the isoelectronic doping of Mo in WS2 and revealed its gradual distribution along a triangular WS2 monolayer crystal, increasing from 0% at the edge to 2% in the center of the triangular WS2 triangular crystals. This agrees well with the Raman spectra data that showed two obvious modes between 360 cm-1 and 400 cm-1 that corresponded to MoS2 in the center. This in-plane gradual distribution of Mo in WS2 was found to account for the spatial variations in photoluminescence intensity and emission energy. Transition absorption spectroscopy further indicated that the incorporation of Mo in WS2 regulate the amplitude ratio of XA and XB of WS2. The effect of Mo incorporation on the electronic structure of WS2 was further elucidated by density functional theory. Finally, we compared the electrical properties of Mo incorporated and pristine WS2 monolayers by fabricating field-effect transistors. The isoelectronic doping of Mo in WS2 provides an alternative approach to engineer the bandgap and also enriches our understanding the influence of the doping on the excitonic dynamics.
Resistive switching effect of N-doped MoS2-PVP nanocomposites films for nonvolatile memory devices
NASA Astrophysics Data System (ADS)
Wu, Zijin; Wang, Tongtong; Sun, Changqi; Liu, Peitao; Xia, Baorui; Zhang, Jingyan; Liu, Yonggang; Gao, Daqiang
2017-12-01
Resistive memory technology is very promising in the field of semiconductor memory devices. According to Liu et al, MoS2-PVP nanocomposite can be used as an active layer material for resistive memory devices due to its bipolar resistive switching behavior. Recent studies have also indicated that the doping of N element can reduce the band gap of MoS2 nanosheets, which is conducive to improving the conductivity of the material. Therefore, in this paper, we prepared N-doped MoS2 nanosheets and then fabricated N-doped MoS2-PVP nanocomposite films by spin coating. Finally, the resistive memory [C. Tan et al., Chem. Soc. Rev. 44, 2615 (2015)], device with ITO/N-doped MoS2-PVP/Pt structure was fabricated. Study on the I-V characteristics shows that the device has excellent resistance switching effect. It is worth mentioning that our device possesses a threshold voltage of 0.75 V, which is much better than 3.5 V reported previously for the undoped counterparts. The above research shows that N-doped MoS2-PVP nanocomposite films can be used as the active layer of resistive switching memory devices, and will make the devices have better performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingtao; Zhang, Jincang, E-mail: jczhang@staff.shu.edu.cn; Materials Genome Institute, Shanghai University, Shanghai 200444
2014-11-10
We report a comparative study of the critical current density (J{sub c}) and vortex pinning among pure and Mn doped K{sub x}Fe{sub 2−y}Se{sub 2} single crystals. It is found that the J{sub c} values can be greatly improved by Mn doping and post-quenching treatment when comparing to pristine pure sample. In contrast to pure samples, an anomalous second magnetization peak (SMP) effect is observed in both 1% and 2% Mn doped samples at T = 3 K for H∥ab but not for H∥c. Referring to Dew-Hughes and Kramer's model, we performed scaling analyses of the vortex pinning force density vs magnetic field inmore » 1% Mn doped and quenched pristine crystals. The results show that the normal point defects are the dominant pinning sources, which probably originate from the variations of intercalated K atoms. We propose that the large nonsuperconducting K-Mn-Se inclusions may contribute to the partial normal surface pinning and give rise to the anomalous SMP effect for H∥ab in Mn doped crystals. These results may facilitate further understanding of the superconductivity and vortex pinning in intercalated iron-selenides superconductors.« less
Dissanayake, D. M. N. M.; Ashraf, A.; Dwyer, D.; ...
2016-02-12
Scalable and low-cost doping of graphene could improve technologies in a wide range of fields such as microelectronics, optoelectronics, and energy storage. While achieving strong p-doping is relatively straightforward, non-electrostatic approaches to n-dope graphene, such as chemical doping, have yielded electron densities of 9.5 × 10 12 e/cm 2 or below. Furthermore, chemical doping is susceptible to degradation and can adversely affect intrinsic graphene’s properties. Here we demonstrate strong (1.33 × 10 13 e/cm 2), robust, and spontaneous graphene n-doping on a soda-lime-glass substrate via surface-transfer doping from Na without any external chemical, high-temperature, or vacuum processes. Remarkably, the n-dopingmore » reaches 2.11 × 10 13 e/cm 2 when graphene is transferred onto a p-type copper indium gallium diselenide (CIGS) semiconductor that itself has been deposited onto soda-lime-glass, via surface-transfer doping from Na atoms that diffuse to the CIGS surface. Using this effect, we demonstrate an n-graphene/p-semiconductor Schottky junction with ideality factor of 1.21 and strong photo-response. As a result, the ability to achieve strong and persistent graphene n-doping on low-cost, industry-standard materials paves the way toward an entirely new class of graphene-based devices such as photodetectors, photovoltaics, sensors, batteries, and supercapacitors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chuan-Xin; Li, Jun, E-mail: SHUniverjunli@163.com; Fu, Yi-Zhou
2015-11-23
This study investigates the effect of hafnium doping on the density of states (DOSs) in HfZnSnO thin film transistors fabricated by dual-target magnetron co-sputtering system. The DOSs is extracted by temperature-dependent field-effect measurements, and they decrease from 1.1 × 10{sup 17} to 4.6 × 10{sup 16 }eV/cm{sup 3} with increasing the hafnium concentrations. The behavior of DOSs for the increasing hafnium concentration HfZnSnO thin film transistors can be confirmed by both the reduction of ΔV{sub T} under bias stress and the trapping charges calculated by capacitance voltage measurements. It suggests that the reduction in DOSs due to the hafnium doping is closely related with themore » bias stability and thermal stability.« less
Hall effect in quantum critical charge-cluster glass
Bozovic, Ivan; Wu, Jie; Bollinger, Anthony T.; ...
2016-04-04
Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La 2-xSr xCuO 4 (LSCO) samples doped near the quantum critical point at x ≈ 0.06. Dramatic fluctuations in the Hall resistance appear below T CG ≈ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is variedmore » in extremely fine steps, Δx ≈ 0.00008. Furthermore, we observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.« less
Hall effect in quantum critical charge-cluster glass
Wu, Jie; Bollinger, Anthony T.; Sun, Yujie; Božović, Ivan
2016-01-01
Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum critical point at x ∼ 0.06. Dramatic fluctuations in the Hall resistance appear below TCG ∼ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps, Δx ∼ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state. PMID:27044081
Hall effect in quantum critical charge-cluster glass.
Wu, Jie; Bollinger, Anthony T; Sun, Yujie; Božović, Ivan
2016-04-19
Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4(LSCO) samples doped near the quantum critical point atx∼ 0.06. Dramatic fluctuations in the Hall resistance appear belowTCG∼ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,Δx∼ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heczko, O., E-mail: heczko@fzu.cz; Drahokoupil, J.; Straka, L.
2015-05-07
Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni{sub 50.0}Mn{sub 28.5}Ga{sub 21.5} single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolutionmore » of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.« less
Campbell, K.M.; Root, R.; O'Day, P. A.; Hering, J.G.
2008-01-01
A gel probe equilibrium sampler has been developed to study arsenic (As) geochemistry and sorption behavior in sediment porewater. The gels consist of a hydrated polyacrylamide polymer, which has a 92% water content. Two types of gels were used in this study. Undoped (clear) gels were used to measure concentrations of As and other elements in sediment porewater. The polyacrylamide gel was also doped with hydrous ferric oxide (HFO), an amorphous iron (Fe) oxyhydroxide. When deployed in the field, HFO-doped gels introduce a fresh sorbent into the subsurface thus allowing assessment of in situ sorption. In this study, clear and HFO-doped gels were tested under laboratory conditions to constrain the gel behavior prior to field deployment. Both types of gels were allowed to equilibrate with solutions of varying composition and re-equilibrated in acid for analysis. Clear gels accurately measured solution concentrations (??1%), and As was completely recovered from HFO-doped gels (??4%). Arsenic speciation was determined in clear gels through chromatographic separation of the re-equilibrated solution. For comparison to speciation in solution, mixtures of As(III) and As(V) adsorbed on HFO embedded in gel were measured in situ using X-ray absorption spectroscopy (XAS). Sorption densities for As(III) and As(V) on HFO embedded in gel were obtained from sorption isotherms at pH 7.1. When As and phosphate were simultaneously equilibrated (in up to 50-fold excess of As) with HFO-doped gels, phosphate inhibited As sorption by up to 85% and had a stronger inhibitory effect on As(V) than As(III). Natural organic matter (>200 ppm) decreased As adsorption by up to 50%, and had similar effects on As(V) and As(III). The laboratory results provide a basis for interpreting results obtained by deploying the gel probe in the field and elucidating the mechanisms controlling As partitioning between solid and dissolved phases in the environment. ?? 2008 American Chemical Society.
NASA Astrophysics Data System (ADS)
Ni, Yi-Qiang; He, Zhi-Yuan; Yao, Yao; Yang, Fan; Zhou, De-Qiu; Zhou, Gui-Lin; Shen, Zhen; Zhong, Jian; Zheng, Yue; Zhang, Bai-Jun; Liu, Yang
2015-05-01
We report a novel structure of AlGaN/GaN heterostructure field effect transistors (HFETs) with a Si and Mg pair-doped interlayer grown on Si substrate. By optimizing the doping concentrations of the pair-doped interlayers, the mobility of 2DEG increases by twice for the conventional structure under 5 K due to the improved crystalline quality of the conduction channel. The proposed HFET shows a four orders lower off-state leakage current, resulting in a much higher on/off ratio (˜ 109). Further temperature-dependent performance of Schottky diodes revealed that the inhibition of shallow surface traps in proposed HFETs should be the main reason for the suppression of leakage current. Project supported by the National Natural Science Foundation of China (Grant Nos. 51177175 and 61274039), the National Basic Research Project of China (Grant Nos. 2010CB923200 and 2011CB301903), the Ph.D. Program Foundation of Ministry of Education of China (Grant No. 20110171110021), the International Sci. & Tech. Collaboration Program of China (Grant No. 2012DFG52260), the National High-tech R&D Program of China (Grant No. 2014AA032606), the Science and Technology Plan of Guangdong Province, China (Grant No. 2013B010401013), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2014KF17).
Seo, Jae Hwa; Yoon, Young Jun; Kang, In Man
2018-09-01
The Ge/GaAs-based heterojunction gate-all-around (GAA) arch-shaped tunneling field-effect transistor (A-TFET) have been designed and optimized using technology computer-aided design (TCAD) simulations. In our previous work, the silicon-based A-TFET was designed and demonstrated. However, to progress the electrical characteristics of A-TFET, the III-V compound heterojunction structures which has enhanced electrical properties must be adopted. Thus, the germanium with gallium arsenide (Ge/GaAs) is considered as key materials of A-TFET. The proposed device has a Ge-based p-doped source, GaAs-based i-doped channel and GaAs-based n-doped drain. Due to the critical issues of device performances, the doping concentration of source and channel region (Dsource, Dchannel), height of source region (Hsource) and epitaxially grown thickness of channel (tepi) was selected as design optimization variables of Ge/GaAs-based GAA A-TFET. The DC characteristics such as on-state current (ion), off-state current (ioff), subthreshold-swing (S) were of extracted and analyzed. Finally, the proposed device has a gate length (LG) of 90 nm, Dsource 5 × 1019 cm-3, Dchannel of 1018 cm-3, tepi of 4 nm, Hsource of 90 nm, R of 10 nm and demonstrate an ion of 2 mA/μm, S of 12.9 mV/dec.
NASA Astrophysics Data System (ADS)
Kim, Seonyeong; Shin, Somyeong; Kim, Taekwang; Du, Hyewon; Song, Minho; Kim, Ki Soo; Cho, Seungmin; Lee, Sang Wook; Seo, Sunae
2017-04-01
The modulation of charge carrier concentration allows us to tune the Fermi level (E F) of graphene thanks to the low electronic density of states near the E F. The introduced metal oxide thin films as well as the modified transfer process can elaborately maneuver the amounts of charge carrier concentration in graphene. The self-encapsulation provides a solution to overcome the stability issues of metal oxide hole dopants. We have manipulated systematic graphene p-n junction structures for electronic or photonic application-compatible doping methods with current semiconducting process technology. We have demonstrated the anticipated transport properties on the designed heterojunction devices with non-destructive doping methods. This mitigates the device architecture limitation imposed in previously known doping methods. Furthermore, we employed E F-modulated graphene source/drain (S/D) electrodes in a low dimensional transition metal dichalcogenide field effect transistor (TMDFET). We have succeeded in fulfilling n-type, ambipolar, or p-type field effect transistors (FETs) by moving around only the graphene work function. Besides, the graphene/transition metal dichalcogenide (TMD) junction in either both p- and n-type transistor reveals linear voltage dependence with the enhanced contact resistance. We accomplished the complete conversion of p-/n-channel transistors with S/D tunable electrodes. The E F modulation using metal oxide facilitates graphene to access state-of-the-art complimentary-metal-oxide-semiconductor (CMOS) technology.
Crystal-field effects in fluoride crystals for optical refrigeration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hehlen, Markus P
2010-01-01
The field of optical refrigeration of rare-earth-doped solids has recently seen an important breakthrough. The cooling of a YLiF{sub 4} (YLF) crystal doped with 5 mol% Yb3+ to 155 K by Seletskiy et al [NPhot] has surpassed the lowest temperatures ({approx}170 K for {approx}100 mW cooling capacity) that are practical with commercial multi-stage thermoelectric coolers (TEC) [Glaister]. This record performance has advanced laser cooling into an application relevant regime and has put first practical optical cryocoolers within reach. The result is also relevant from a material perspective since for the first time, an Yb3+-doped crystal has outperformed an Yb3+-doped glass.more » The record temperature of 208 K was held by the Yb3+-doped fluorozirconate glass ZBLAN. Advanced purification and glass fabrication methods currently under development are expected to also advance ZBLAN:Yb3+ to sub-TEC temperatures. However, recent achievements with YLF:Yb3+ illustrate that crystalline materials may have two potentially game-changing advantajes over glassy materials. First, the crystalline environment reduces the inhomogeneous broadening of the Yb3+ electronic transitions as compared to a glassy matrix. The respective sharpening of the crystal-field transitions increases the peak absorption cross section at the laser excitation wavelength and allows for more efficient pumping of the Yb3+ ions, particularly at low temperatures. Second, many detrimental impurities present in the starting materials tend to be excluded from the crystal during its slow growth process, in contrast to a glass where all impurities present in the starting materials are included in the glass when it is formed by temperature quenching a melt. The ultra high purity required for laser cooling materials [PRB] therefore may be easier to realize in crystals than in glasses. Laser cooling occurs by laser excitation of a rare-earth ion followed by anti-Stokes luminescence. Each such laser-cooling cycle extracts thermal energy from the solid and carries it away as high-entropy light, thereby cooling the material. In the ideal case, the respective laser-cooling power is given by the pump wavelength ({lambda}{sub p}), the mean fluorescence wavelength ({bar {lambda}}{sub L}), and the absorption coefficient (a{sub r}) of the pumped transition. These quantities are solely determined by crystal field interactions. On one hand, a large crystal-field splitting offers a favorably large difference of {lambda}{sub p} - {bar {lambda}}{sub L} and thus a high cooling efficiency {eta}{sub cool} = ({lambda}{sub p} - {bar {lambda}}{sub L})/{bar {lambda}}{sub L}. On the other hand, a small crystal-field splitting offers a high thermal population (n{sub i}) of the initial state of the pumped transition, giving a high pump absorption coefficient and thus high laser cooling power, particularly at low temperatures. A quantitative description of crystal-field interactions is therefore critical to the understanding and optimization of optical refrigeration. In the case of Yb3+ as the laser cooling ion, however, development of a crystal-field model is met with substantial difficulties. First, Yb3+ has only two 4/multiplets, {sup 2}F{sub 7/2} and {sup 2}F{sub 5/2}, which lead to at most 7 crystal-field levels. This makes it difficult, and in some cases impossible, to evaluate the crystal-field Hamiltonian, which has at least 4 parameters for any Yb3+ point symmety lower than cubic. Second, {sup 2}F{sub 7/2}{leftrightarrow}{sup 2}F{sub 5/2} transitions exhibit an exceptionally strong electron-phonon coupling compared to 4f transitions of other rare earths. This makes it difficult to distinguish electronic from vibronic transitions in the absorption and luminescence spectra and to reliably identify the crystal-field levels. Yb3+ crystal-field splittings reported in the literature should thus generally be viewed with caution. This paper explores the effects of crystal-field interactions on the laser cooling performance of Yb3+-doped fluoride crystals. It is shown that the total crystal-field splitting of the {sup 2}F{sub 7/2} and {sup 2}F{sub 5/2} multiplets of Yb3+ can be estimated from crystal-field splittings of other rare-earth-doped fluoride crystals. This approach takes advantage of an extensive body of experimental work from which Yb3+ doped fluoride crystals with favorable laser cooling properties might be identified. Section 2 reviews the crystal-field splitting of the 4f electronic states and introduces the crystal-field strength as a means to predict the total crystal-field splitting of the {sup 2}F{sub 7/2} and {sup 2}F{sub 5/2} multiplets. Section 3 illustrates the effect of the total {sup 2}F{sub 7/2} crystal field splitting on the laser cooling power. Finally, Section 4 compiles literature data on crystal-field splittings in fluoride crystals from which the {sup 2}F{sub 7/2} splitting is predicted.« less
NASA Astrophysics Data System (ADS)
Lee, W. Y.; Chien, J. Y.; Wang, D. P.; Huang, K. F.; Huang, T. C.
2002-04-01
Photoreflectance (PR) of surface-intrinsic-n+ type doped GaAs has been measured for various power densities of pump laser. The spectra exhibited many Franz-Keldysh oscillations, whereby the strength of electric field F in the undoped layer can be determined. The thus obtained Fs are subject to photovoltaic effect and are less than built-in field Fbi. In the previous work we have obtained the relation F≈Fbi-δF/2 when δF≪Fbi by using electroreflectance to simulate PR, where δF is the modulating field of the pump beam. In this work a method was devised to evaluate δF by using photoinduced voltages Vs and, hence, the relation can be verified by PR itself. The δFs obtained by Vs are also consistent with those of using imaginary part of fast Fourier transform of PR spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Proloy T., E-mail: dasproloy@phy.iitkgp.ernet.in; Nath, Tapan Kumar; Gupta, Kajal
2014-04-24
We report detailed field dependent electronic- (ρ-T) and magneto- transport (MR-H) studies of La{sub 1−x}Sm{sub x}Sr{sub 0.1}MnO{sub 3} (0.1≤x≤0.5) nanoparticles. Doping induced disorder at La site is observed in field dependent ρ-T measurements of the sample. At low doping side, nice metal to insulator transition (MIT) peak appears in ρ-T data whereas with increasing of Sm{sup +3} contents, metallic behavior is suppressed under the insulating background although a weak signature of MIT is found. Anomalous resistive nature of the samples with increasing of x can be explained in such a way that doping at nonmagnetic La site with magnetic Sm+3more » ion induces an extra magnetic coupling in the system which changes the long range ferromagnetic ordering to spin glass/cluster glass state in antiferromagnetic background. The field dependent magneto resistance (MR) mechanism at different temperatures is investigated using spin polarized tunneling model of conduction electrons between two adjacent grains at the grain boundaries. For the sample of x=0.5, maximum 83 % change in MR is found at 8 T near MIT which leads the colossal magneto resistance effect.« less
Phosphorous doped p-type MoS2 polycrystalline thin films via direct sulfurization of Mo film
NASA Astrophysics Data System (ADS)
Momose, Tomohiro; Nakamura, Atsushi; Daniel, Moraru; Shimomura, Masaru
2018-02-01
We report on the successful synthesis of a p-type, substitutional doping at S-site, MoS2 thin film using Phosphorous (P) as the dopant. MoS2 thin films were directly sulfurized for molybdenum films by chemical vapor deposition technique. Undoped MoS2 film showed n-type behavior and P doped samples showed p-type behavior by Hall-effect measurements in a van der Pauw (vdP) configuration of 10×10 mm2 area samples and showed ohmic behavior between the silver paste contacts. The donor and the acceptor concentration were detected to be ˜2.6×1015 cm-3 and ˜1.0×1019 cm-3, respectively. Hall-effect mobility was 61.7 cm2V-1s-1 for undoped and varied in the range of 15.5 ˜ 0.5 cm2V-1s-1 with P supply rate. However, the performance of field-effect transistors (FETs) declined by double Schottky barrier contacts where the region between Ni electrodes on the source/drain contact and the MoS2 back-gate cannot be depleted and behaves as a 3D material when used in transistor geometry, resulting in poor on/off ratio. Nevertheless, the FETs exhibit hole transport and the field-effect mobility showed values as high as the Hall-effect mobility, 76 cm2V-1s-1 in undoped MoS2 with p-type behavior and 43 cm2V-1s-1 for MoS2:P. Our findings provide important insights into the doping constraints for transition metal dichalcogenides.
Selenium doping NaCl-type superconductor: SnAs1-xSex (x=0-0.13)
NASA Astrophysics Data System (ADS)
He, Jianqiao; Zhang, Xian; Lai, Xiaofang; Huang, Fuqiang
2017-08-01
Selenium doped NaCl-type superconductor SnAs1-xSex (x=0-0.13) were made through solid state reaction. EDS results show that Se content increases with Se doping until over doped in SnAs0.9Se0.1 and SnAs0.87Se0.13 (around 2.7%). PXRD patterns confirmed the main phase of the six doped samples are SnAs. The cell parameters of doped SnAs were calculated using Rietveld refinements. Their cell parameters increase almost linearly with x until x reaches 13%. Single crystal diffraction measurement results show that there are no interstitial atom in doped SnAs. We conclude that Se atoms are substitutional atoms in SnAs. The superconducting onset temperatures (Tconset, under a magnetic field of 10 Oe) of SnAs increased from 3.8 K to 4.5 K by 10% Se doping. ρ-T curves of 1%, 5% and 10% Se doped samples show that all the three samples are metallic. Upper critical field Hc2(0) of 1%, 5% and 10% Se doped samples are 294 Oe, 649 Oe and 1011 Oe, respectively.
The effect of n- and p-type doping on coherent phonons in GaN.
Ishioka, Kunie; Kato, Keiko; Ohashi, Naoki; Haneda, Hajime; Kitajima, Masahiro; Petek, Hrvoje
2013-05-22
The effect of doping on the carrier-phonon interaction in wurtzite GaN is investigated by pump-probe reflectivity measurements using 3.1 eV light in near resonance with the fundamental band gap of 3.39 eV. Coherent modulations of the reflectivity due to the E2 and A1(LO) modes, as well as the 2A1(LO) overtone are observed. Doping of acceptor and donor atoms enhances the dephasing of the polar A1(LO) phonon via coupling with plasmons, with the effect of donors being stronger. Doping also enhances the relative amplitude of the coherent A1(LO) phonon with respect to that of the high-frequency E2 phonon, though it does not affect the relative intensity in Raman spectroscopic measurements. We attribute this enhanced coherent amplitude to the transient depletion field screening (TDFS) excitation mechanism, which, in addition to impulsive stimulated Raman scattering (ISRS), contributes to the generation of coherent polar phonons even for sub-band gap excitation. Because the TDFS mechanism requires photoexcitation of carriers, we argue that the interband transition is made possible at a surface with photon energies below the bulk band gap through the Franz-Keldysh effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahi, Prashant; Kumar, A.; Shukla, K. K.
2014-09-15
X-ray absorption near edge spectra (XANES) and magnetization of Zn doped MnV{sub 2}O{sub 4} have been measured and from the magnetic measurement the critical exponents and magnetocaloric effect have been estimated. The XANES study indicates that Zn doping does not change the valence states in Mn and V. It has been shown that the obtained values of critical exponents β, γ and δ do not belong to universal class and the values are in between the 3D Heisenberg model and the mean field interaction model. The magnetization data follow the scaling equation and collapse into two branches indicating that themore » calculated critical exponents and critical temperature are unambiguous and intrinsic to the system. All the samples show large magneto-caloric effect. The second peak in magneto-caloric curve of Mn{sub 0.95}Zn{sub 0.05}V{sub 2}O{sub 4} is due to the strong coupling between orbital and spin degrees of freedom. But 10% Zn doping reduces the residual spins on the V-V pairs resulting the decrease of coupling between orbital and spin degrees of freedom.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, H.; Liang, G.
2010-04-08
Fe-sheathed MgB{sub 2} wires doped with C and TiC nanoparticles in the formula MgB{sub 2-x}C{sub x}+yTiC(x = 0, 0.05, 0.1, 0.15, 0.2, and y = 0, 2.5 wt.%, 5 wt.%) were investigated. X-ray diffraction patterns indicate that the core materials in the wires contain small amount of Fe{sub 2}B and MgO impurity phases, and the peaks shift with the variation of doping amount. It is found that the critical temperature T{sub c} decreases with the increase of doping amount. Strong in-field current carrying capability enhancement was observed on MgB{sub 1.95}C{sub 0.05}+2.5 wt.% TiC.
Kim, Wonjae; Riikonen, Juha; Li, Changfeng; Chen, Ya; Lipsanen, Harri
2013-10-04
Using single-layer CVD graphene, a complementary field effect transistor (FET) device is fabricated on the top of separated back-gates. The local back-gate control of the transistors, which operate with low bias at room temperature, enables highly tunable device characteristics due to separate control over electrostatic doping of the channels. Local back-gating allows control of the doping level independently of the supply voltage, which enables device operation with very low VDD. Controllable characteristics also allow the compensation of variation in the unintentional doping typically observed in CVD graphene. Moreover, both p-n and n-p configurations of FETs can be achieved by electrostatic doping using the local back-gate. Therefore, the device operation can also be switched from inverter to voltage controlled resistor, opening new possibilities in using graphene in logic circuitry.
Accurate calculation of field and carrier distributions in doped semiconductors
NASA Astrophysics Data System (ADS)
Yang, Wenji; Tang, Jianping; Yu, Hongchun; Wang, Yanguo
2012-06-01
We use the numerical squeezing algorithm(NSA) combined with the shooting method to accurately calculate the built-in fields and carrier distributions in doped silicon films (SFs) in the micron and sub-micron thickness range and results are presented in graphical form for variety of doping profiles under different boundary conditions. As a complementary approach, we also present the methods and the results of the inverse problem (IVP) - finding out the doping profile in the SFs for given field distribution. The solution of the IVP provides us the approach to arbitrarily design field distribution in SFs - which is very important for low dimensional (LD) systems and device designing. Further more, the solution of the IVP is both direct and much easy for all the one-, two-, and three-dimensional semiconductor systems. With current efforts focused on the LD physics, knowing of the field and carrier distribution details in the LD systems will facilitate further researches on other aspects and hence the current work provides a platform for those researches.
NASA Astrophysics Data System (ADS)
Evans, D. R.; Saleh, M. A.; Allen, A. S.; Pottenger, T. P.; Bunning, T. J.; Guha, S.; Basun, S. A.; Cook, G.
2002-03-01
An instability on the order of 10 ns is observed while writing volume gratings in bulk crystals of iron-doped lithium niobate using contra-directional two-beam coupling along the c-axis. This instability is attributed to the quasi-breakdown of the uniform component of the photovoltaic field [1], which affects the uniform electric field formed inside the crystal causing a change in the refractive index through the electro-optic effect. A method to eliminate this instability by coating the z-surfaces of the crystal with a transparent conductive coating will be presented. [1] A. Krumins, Z. Chen, and T. Shiosaki, Opt. Comm. 117 (1995) 147-150.
NASA Astrophysics Data System (ADS)
Furutani, Sho; Okada, Susumu
2017-06-01
Electronic properties of electron-doped chemically decorated C60 fullerenes, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and silylmethylfullerene (SIMEF), by a planar electrode were studied using density functional theory combined with the effective screening medium method to simulate the heterointerface between the chemically decorated C60 and cationic counter materials. We find that the distribution of accumulated electrons and induced electric field depend on the molecular arrangement with respect to the external electric field of the electrode. We also show that the quantum capacitance of the molecule is sensitive to molecular arrangement owing to the asymmetric distribution of the accumulated electrons.
Xie, Yulin; Lu, Kai; Duan, Jiashun; Jiang, Youyu; Hu, Lin; Liu, Tiefeng; Zhou, Yinhua; Hu, Bin
2018-04-25
Electron and hole transport layers have critical impacts on the overall performance of perovskite solar cells (PSCs). Herein, for the first time, a solution-processed cobalt (Co)-doped NiO X film was fabricated as the hole transport layer in inverted planar PSCs, and the solar cells exhibit 18.6% power conversion efficiency. It has been found that an appropriate Co-doping can significantly adjust the work function and enhance electrical conductivity of the NiO X film. Capacitance-voltage ( C- V) spectra and time-resolved photoluminescence spectra indicate clearly that the charge accumulation becomes more pronounced in the Co-doped NiO X -based photovoltaic devices; it, as a consequence, prevents the nonradiative recombination at the interface between the Co-doped NiO X and the photoactive perovskite layers. Moreover, field-dependent photoluminescence measurements indicate that Co-doped NiO X -based devices can also effectively inhibit the radiative recombination process in the perovskite layer and finally facilitate the generation of photocurrent. Our work indicates that Co-doped NiO X film is an excellent candidate for high-performance inverted planar PSCs.
Origin of doping-induced suppression and reemergence of magnetism in LaFeAsO 1 - x H x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Chang-Youn; Park, Hyowon; Haule, Kristjan
We investigate the evolution of magnetic properties as a function of hydrogen doping in the iron-based superconductor LaFeAsO 1-xH x using dynamical mean-field theory combined with density-functional theory. We find that two independent consequences of doping, namely the increase of the electron occupation and the structural modification, have the opposite effects on the strength of electron correlation and magnetism, resulting in the minimum of the calculated magnetic moment around the intermediate doping level as a function of x. Our result provides a natural explanation for the recent, puzzling experimental discovery of two separated antiferromagnetic phases at low and high dopingmore » limits. Furthermore, the increase of the orbital occupation and correlation strength with doping results in reduced orbital polarization of d(xz/yz) orbitals and an enhanced role of the d(xy) orbital in the magnetism at high doping levels, and their possible implications on the superconductivity are discussed in line with the essential role of the magnetism.« less
Thermoelectric Properties in Fermi Level Tuned Topological Materials (Bi1-xSnx)2Te3
NASA Astrophysics Data System (ADS)
Lin, Chan-Chieh; Shon, Won Hyuk; Rathnam, Lydia; Rhyee, Jong-Soo
2018-03-01
We investigated the thermoelectric properties of Sn-doped (Bi1-xSnx)2Te3 (x = 0, 0.1, 0.3, 0.5, and 0.7%) compounds, which is known as topological insulators. Fermi level tuning by Sn-doping can be justified by the n- to p-type transition with increasing Sn-doping concentration, as confirmed by Seebeck coefficient and Hall coefficient. Near x = 0.3 and 0.5%, the Fermi level resides inside the bulk band gap, resulting in a low Seebeck coefficient and increase of electrical resistivity. The magnetoconductivity with applying magnetic field showed weak antilocalization (WAL) effect for pristine Bi2Te3 while Sn-doped compounds do not follow the WAL behavior of magneto-conductivity, implying that the topological surface Dirac band contribution in magneto-conductivity is suppressed with decreasing the Fermi level by Sn-doping. This research can be applied to the topological composite of p-type/n-type topological materials by Fermi level tuning via Sn-doping in Bi2Te3 compounds.
NASA Astrophysics Data System (ADS)
Schmidt, Sarah; Tavernaro, Isabella; Cavelius, Christian; Weber, Eva; Kümper, Alexander; Schmitz, Carmen; Fleddermann, Jana; Kraegeloh, Annette
2017-09-01
In this study, a novel approach for preparation of green fluorescent protein (GFP)-doped silica nanoparticles with a narrow size distribution is presented. GFP was chosen as a model protein due to its autofluorescence. Protein-doped nanoparticles have a high application potential in the field of intracellular protein delivery. In addition, fluorescently labelled particles can be used for bioimaging. The size of these protein-doped nanoparticles was adjusted from 15 to 35 nm using a multistep synthesis process, comprising the particle core synthesis followed by shell regrowth steps. GFP was selectively incorporated into the silica matrix of either the core or the shell or both by a one-pot reaction. The obtained nanoparticles were characterised by determination of particle size, hydrodynamic diameter, ζ-potential, fluorescence and quantum yield. The measurements showed that the fluorescence of GFP was maintained during particle synthesis. Cellular uptake experiments demonstrated that the GFP-doped nanoparticles can be used as stable and effective fluorescent probes. The study reveals the potential of the chosen approach for incorporation of functional biological macromolecules into silica nanoparticles, which opens novel application fields like intracellular protein delivery.
Nonthermal Photocoercivity Effect in a Low-Doped (Ga,Mn)As Ferromagnetic Semiconductor
NASA Astrophysics Data System (ADS)
Astakhov, G. V.; Hoffmann, H.; Korenev, V. L.; Kiessling, T.; Schwittek, J.; Schott, G. M.; Gould, C.; Ossau, W.; Brunner, K.; Molenkamp, L. W.
2009-05-01
We report a photoinduced change of the coercive field, i.e., a photocoercivity effect (PCE), under very low intensity illumination of a low-doped (Ga,Mn)As ferromagnetic semiconductor. We find a strong correlation between the PCE and the sample resistivity. Spatially resolved dynamics of the magnetization reversal rule out any role of thermal heating in the origin of this PCE, and we propose a mechanism based on the light-induced lowering of the domain wall pinning energy. The PCE is local and reversible, allowing writing and erasing of magnetic images using light.
Nonthermal photocoercivity effect in a low-doped (Ga,Mn)As ferromagnetic semiconductor.
Astakhov, G V; Hoffmann, H; Korenev, V L; Kiessling, T; Schwittek, J; Schott, G M; Gould, C; Ossau, W; Brunner, K; Molenkamp, L W
2009-05-08
We report a photoinduced change of the coercive field, i.e., a photocoercivity effect (PCE), under very low intensity illumination of a low-doped (Ga,Mn)As ferromagnetic semiconductor. We find a strong correlation between the PCE and the sample resistivity. Spatially resolved dynamics of the magnetization reversal rule out any role of thermal heating in the origin of this PCE, and we propose a mechanism based on the light-induced lowering of the domain wall pinning energy. The PCE is local and reversible, allowing writing and erasing of magnetic images using light.
Optimization design on breakdown voltage of AlGaN/GaN high-electron mobility transistor
NASA Astrophysics Data System (ADS)
Yang, Liu; Changchun, Chai; Chunlei, Shi; Qingyang, Fan; Yuqian, Liu
2016-12-01
Simulations are carried out to explore the possibility of achieving high breakdown voltage of GaN HEMT (high-electron mobility transistor). GaN cap layers with gradual increase in the doping concentration from 2 × 1016 to 5 × 1019 cm-3 of N-type and P-type cap are investigated, respectively. Simulation results show that HEMT with P-doped GaN cap layer shows more potential to achieve higher breakdown voltage than N-doped GaN cap layer under the same doping concentration. This is because the ionized net negative space charges in P-GaN cap layer could modulate the surface electric field which makes more contribution to RESURF effect. Furthermore, a novel GaN/AlGaN/GaN HEMT with P-doped GaN buried layer in GaN buffer between gate and drain electrode is proposed. It shows enhanced performance. The breakdown voltage of the proposed structure is 640 V which is increased by 12% in comparison to UID (un-intentionally doped) GaN/AlGaN/GaN HEMT. We calculated and analyzed the distribution of electrons' density. It is found that the depleted region is wider and electric field maximum value is induced at the left edge of buried layer. So the novel structure with P-doped GaN buried layer embedded in GaN buffer has the better improving characteristics of the power devices. Project supported by the National Basic Research Program of China (No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (No. 2015-0214.XY.K).
Colossal magnetocapacitive effect in differently synthesized and doped CdCr 2S 4
NASA Astrophysics Data System (ADS)
Krohns, S.; Schrettle, F.; Lunkenheimer, P.; Tsurkan, V.; Loidl, A.
2008-12-01
In the present work, we address the question of an impurity-related origin of the colossal magnetocapacitive effect in the spinel system CdCr 2S 4. We demonstrate that a strong variation in the dielectric constant below the magnetic transition temperature or in external magnetic fields also arises in crystals prepared without chlorine. This excludes that an inhomogeneous distribution of chlorine impurities at the surface or in the bulk material gives rise to the unusual effects in the spinel multiferroics. In addition, we show that the colossal magnetocapacitive effects can also be generated in chlorine-free ceramic samples of CdCr 2S 4, doped with indium.
NASA Astrophysics Data System (ADS)
Wang, Jun; Guo, Jin; Xie, Feng; Wang, Guosheng; Wu, Haoran; Song, Man; Yi, Yuanyuan
2016-10-01
This paper presents the comparative analysis of influence of doping level and doping profile of the active region on zero bias photoresponse characteristics of GaN-based p-i-n ultraviolet (UV) photodetectors operating at front- and back-illuminated. A two dimensional physically-based computer simulation of GaN-based p-i-n UV photodetectors is presented. We implemented GaN material properties and physical models taken from the literature. It is shown that absorption layer doping profile has notable impacts on the photoresponse of the device. Especially, the effect of doping concentration and distribution of the absorption layer on photoresponse is discussed in detail. In the case of front illumination, comparative to uniform n-type doping, the device with n-type Gaussian doping profiles at absorption layer has higher responsivity. Comparative to front illumination, back illuminated detector with p-type doping profiles at absorption layer has higher maximum photoresponse, while the Gaussian doping profiles have a weaker ability to enhance the device responsivity. It is demonstrated that electric field distribution, mobility degradation, and recombinations are jointly responsible for the variance of photoresponse. Our work enriches the understanding and utilization of GaN based p-i-n UV photodetectors.
Chemical-free n-type and p-type multilayer-graphene transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dissanayake, D. M. N. M., E-mail: nandithad@voxtel-inc.com; Eisaman, M. D.; Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York 11794
A single-step doping method to fabricate n- and p-type multilayer graphene (MG) top-gate field effect transistors (GFETs) is demonstrated. The transistors are fabricated on soda-lime glass substrates, with the n-type doping of MG caused by the sodium in the substrate without the addition of external chemicals. Placing a hydrogen silsesquioxane (HSQ) barrier layer between the MG and the substrate blocks the n-doping, resulting in p-type doping of the MG above regions patterned with HSQ. The HSQ is deposited in a single fabrication step using electron beam lithography, allowing the patterning of arbitrary sub-micron spatial patterns of n- and p-type doping.more » When a MG channel is deposited partially on the barrier and partially on the glass substrate, a p-type and n-type doping profile is created, which is used for fabricating complementary transistors pairs. Unlike chemically doped GFETs in which the external dopants are typically introduced from the top, these substrate doped GFETs allow for a top gate which gives a stronger electrostatic coupling to the channel, reducing the operating gate bias. Overall, this method enables scalable fabrication of n- and p-type complementary top-gated GFETs with high spatial resolution for graphene microelectronic applications.« less
Enhanced and continuous electrostatic carrier doping on the SrTiO3 surface
Eyvazov, A. B.; Inoue, I. H.; Stoliar, P.; Rozenberg, M. J.; Panagopoulos, C.
2013-01-01
Paraelectrical tuning of a charge carrier density as high as 1013 cm−2 in the presence of a high electronic carrier mobility on the delicate surfaces of correlated oxides, is a key to the technological breakthrough of a field effect transistor (FET) utilising the metal-nonmetal transition. Here we introduce the Parylene-C/Ta2O5 hybrid gate insulator and fabricate FET devices on single-crystalline SrTiO3, which has been regarded as a bedrock material for oxide electronics. The gate insulator accumulates up to ~1013cm−2 carriers, while the field-effect mobility is kept at 10 cm2/Vs even at room temperature. Further to the exceptional performance of our devices, the enhanced compatibility of high carrier density and high mobility revealed the mechanism for the long standing puzzle of the distribution of electrostatically doped carriers on the surface of SrTiO3. Namely, the formation and continuous evolution of field domains and current filaments.
Trajkovska-Petkoska, Anka; Jacobs, Stephen D.; Marshall, Kenneth L.; Kosc, Tanya Z.
2010-05-11
Doped electrically actuatable (electrically addressable or switchable) polymer flakes have enhanced and controllable electric field induced motion by virtue of doping a polymer material that functions as the base flake matrix with either a distribution of insoluble dopant particles or a dopant material that is completely soluble in the base flake matrix. The base flake matrix may be a polymer liquid crystal material, and the dopants generally have higher dielectric permittivity and/or conductivity than the electrically actuatable polymer base flake matrix. The dopant distribution within the base flake matrix may be either homogeneous or non-homogeneous. In the latter case, the non-homogeneous distribution of dopant provides a dielectric permittivity and/or conductivity gradient within the body of the flakes. The dopant can also be a carbon-containing material (either soluble or insoluble in the base flake matrix) that absorbs light so as to reduce the unpolarized scattered light component reflected from the flakes, thereby enhancing the effective intensity of circularly polarized light reflected from the flakes when the flakes are oriented into a light reflecting state. Electro-optic devices contain these doped flakes suspended in a host fluid can be addressed with an applied electric field, thus controlling the orientation of the flakes between a bright reflecting state and a non-reflecting dark state.
Characterization of n-Type and p-Type Long-Wave InAs/InAsSb Superlattices
NASA Astrophysics Data System (ADS)
Brown, A. E.; Baril, N.; Zuo, D.; Almeida, L. A.; Arias, J.; Bandara, S.
2017-09-01
The influence of dopant concentration on both in-plane mobility and minority carrier lifetime in long-wave infrared InAs/InAsSb superlattices (SLs) was investigated. Unintentially doped ( n-type) and various concentrations of Be-doped ( p-type) SLs were characterized using variable-field Hall and photoconductive decay techniques. Minority carrier lifetimes in p-type InAs/InAsSb SLs are observed to decrease with increasing carrier concentration, with the longest lifetime at 77 K determined to be 437 ns, corresponding to a measured carrier concentration of p 0 = 4.1 × 1015 cm-3. Variable-field Hall technique enabled the extraction of in-plane hole, electron, and surface electron transport properties as a function of temperature. In-plane hole mobility is not observed to change with doping level and increases with reducing temperature, reaching a maximum at the lowest temperature measured of 30 K. An activation energy of the Be-dopant is determined to be 3.5 meV from Arrhenius analysis of hole concentration. Minority carrier electrons populations are suppressed at the highest Be-doping levels, but mobility and concentration values are resolved in lower-doped samples. An average surface electron conductivity of 3.54 × 10-4 S at 30 K is determined from the analysis of p-type samples. Effects of passivation treatments on surface conductivity will be presented.
Drug policy in sport: hidden assumptions and inherent contradictions.
Smith, Aaron C T; Stewart, Bob
2008-03-01
This paper considers the assumptions underpinning the current drugs-in-sport policy arrangements. We examine the assumptions and contradictions inherent in the policy approach, paying particular attention to the evidence that supports different policy arrangements. We find that the current anti-doping policy of the World Anti-Doping Agency (WADA) contains inconsistencies and ambiguities. WADA's policy position is predicated upon four fundamental principles; first, the need for sport to set a good example; secondly, the necessity of ensuring a level playing field; thirdly, the responsibility to protect the health of athletes; and fourthly, the importance of preserving the integrity of sport. A review of the evidence, however, suggests that sport is a problematic institution when it comes to setting a good example for the rest of society. Neither is it clear that sport has an inherent or essential integrity that can only be sustained through regulation. Furthermore, it is doubtful that WADA's anti-doping policy is effective in maintaining a level playing field, or is the best means of protecting the health of athletes. The WADA anti-doping policy is based too heavily on principals of minimising drug use, and gives insufficient weight to the minimisation of drug-related harms. As a result drug-related harms are being poorly managed in sport. We argue that anti-doping policy in sport would benefit from placing greater emphasis on a harm minimisation model.
Pinned orbital moments in uncompensated antiferromagnetic Co doped ZnO
NASA Astrophysics Data System (ADS)
Buchner, Martin; Henne, Bastian; Ney, Verena; Lumetzberger, Julia; Wilhelm, Fabrice; Rogalev, Andrei; Hen, Amir; Ney, Andreas
2018-05-01
Low temperature Co K-edge x-ray magnetic circular dichroism spectra at different field cooling conditions were recorded to study the imprinted magnetization in antiferromagnetic (AFM) Co doped ZnO (Co:ZnO) films which manifests itself in a vertical exchange bias effect. Co:ZnO films with 50% and 60% doping concentrations were investigated to provide a high degree of pinned magnetic moments. The measurements reveal a change at the main absorption energy of the spectra, while the signal obtained at the pre-edge stays unaffected by the cooling conditions. Therefore, the pinned uncompensated AFM moments, resulting in an imprinted magnetization, are predominantly of orbital character and are independent of ferromagnetic layers.
NASA Astrophysics Data System (ADS)
Zhou, Gang; Duan, Wenhui
2007-03-01
Spin-polarized density functional calculations show that the substitutional doping of carbon (C) atom at the mouth changes the atomic and spin configurations of open armchair boron nitride nanotubes (BNNTs). The occupied/unoccupied deep gap states are observed with the significant spin-splitting. The structures and spin-polarized properties are basically stable under the considerable electric field, which is important for practical applications. The magnetization mechanism is attributed to the interactions of s, p states between the C and its neighboring B or N atoms. Ultimately, advantageous geometrical and electronic effects mean that C-doped open armchair BNNTs would have promising applications in nano-spintronic devices.
Controlling the ambipolarity and improvement of RF performance using Gaussian Drain Doped TFET
NASA Astrophysics Data System (ADS)
Nigam, Kaushal; Gupta, Sarthak; Pandey, Sunil; Kondekar, P. N.; Sharma, Dheeraj
2018-05-01
Ambipolar conduction in tunnel field-effect transistors (TFETs) has been occurred as an inherent issue due to drain-channel tunneling. It makes TFET less efficient and restricts its application in complementary digital circuits. Therefore, this manuscript reports the application of Gaussian doping profile on nanometer regime silicon channel TFETs to completely eliminate the ambipolarity. For this, Gaussian doping is used in the drain region of conventional gate-drain overlap TFET to control the tunneling of electrons from the valence band of channel to the conduction band of drain. As a result, barrier width at the drain/channel junction increases significantly leading to the suppression of an ambipolar current even when higher doping concentration (1 ? 10 ? cm ?) is considered in the drain region. However, significant improvement in terms of RF figure-of-merits such as cut-off frequency (f ?), gain bandwidth product (GBW), and gate-to-drain capacitance (C ?) is achieved with Gaussian doped gate on drain overlap TFET as compared to its counterpart TFET.
Temperature Effects in Varactors and Multipliers
NASA Technical Reports Server (NTRS)
East, J.; Mehdi, Imran
2001-01-01
Varactor diode multipliers are a critical part of many THz measurement systems. The power and efficiencies of these devices limit the available power for THz sources. Varactor operation is determined by the physics of the varactor device and a careful doping profile design is needed to optimize the performance. Higher doped devices are limited by junction breakdown and lower doped structures are limited by current saturation. Higher doped structures typically have higher efficiencies and lower doped structures typically have higher powers at the same operating frequency and impedance level. However, the device material properties are also a function of the operating temperature. Recent experimental evidence has shown that the power output of a multiplier can be improved by cooling the device. We have used a particle Monte Carlo simulation to investigate the temperature dependent velocity vs. electric field in GaAs. This information was then included in a nonlinear device circuit simulator to predict multiplier performance for various temperatures and device designs. This paper will describe the results of this analysis of temperature dependent multiplier operation.
Chee, Augustus K. W.
2016-01-01
Two-dimensional dopant profiling using the secondary electron (SE) signal in the scanning electron microscope (SEM) is a technique gaining impulse for its ability to enable rapid and contactless low-cost diagnostics for integrated device manufacturing. The basis is doping contrast from electrical p-n junctions, which can be influenced by wet-chemical processing methods typically adopted in ULSI technology. This paper describes the results of doping contrast studies by energy-filtering in the SEM from silicon p-n junction specimens that were etched in ammonium fluoride solution. Experimental SE micro-spectroscopy and numerical simulations indicate that Fermi level pinning occurred on the surface of the treated-specimen, and that the doping contrast can be explained in terms of the ionisation energy integral for SEs, which is a function of the dopant concentration, and surface band-bending effects that prevail in the mechanism for doping contrast as patch fields from the specimen are suppressed. PMID:27576347
Baiutti, F.; Logvenov, G.; Gregori, G.; Cristiani, G.; Wang, Y.; Sigle, W.; van Aken, P. A.; Maier, J.
2015-01-01
The exploitation of interface effects turned out to be a powerful tool for generating exciting material properties. Such properties include magnetism, electronic and ionic transport and even superconductivity. Here, instead of using conventional homogeneous doping to enhance the hole concentration in lanthanum cuprate and achieve superconductivity, we replace single LaO planes with SrO dopant planes using atomic-layer-by-layer molecular beam epitaxy (two-dimensional doping). Electron spectroscopy and microscopy, conductivity measurements and zinc tomography reveal such negatively charged interfaces to induce layer-dependent superconductivity (Tc up to 35 K) in the space-charge zone at the side of the planes facing the substrate, where the strontium (Sr) profile is abrupt. Owing to the growth conditions, the other side exhibits instead a Sr redistribution resulting in superconductivity due to conventional doping. The present study represents a successful example of two-dimensional doping of superconducting oxide systems and demonstrates its power in this field. PMID:26481902
Electron transport characteristics of silicon nanowires by metal-assisted chemical etching
NASA Astrophysics Data System (ADS)
Qi, Yangyang; Wang, Zhen; Zhang, Mingliang; Wang, Xiaodong; Ji, An; Yang, Fuhua
2014-03-01
The electron transport characteristics of silicon nanowires (SiNWs) fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage (I-V) characteristics. Asymmetric, rectifying and symmetric I-V curves were obtained. The diversity of the I-V curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the I-V curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process.
Back-gated Nb-doped MoS2 junctionless field-effect-transistors
NASA Astrophysics Data System (ADS)
Mirabelli, Gioele; Schmidt, Michael; Sheehan, Brendan; Cherkaoui, Karim; Monaghan, Scott; Povey, Ian; McCarthy, Melissa; Bell, Alan P.; Nagle, Roger; Crupi, Felice; Hurley, Paul K.; Duffy, Ray
2016-02-01
Electrical measurements were carried out to measure the performance and evaluate the characteristics of MoS2 flakes doped with Niobium (Nb). The flakes were obtained by mechanical exfoliation and transferred onto 85 nm thick SiO2 oxide and a highly doped Si handle wafer. Ti/Au (5/45 nm) deposited on top of the flake allowed the realization of a back-gate structure, which was analyzed structurally through Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). To best of our knowledge this is the first cross-sectional TEM study of exfoliated Nb-doped MoS2 flakes. In fact to date TEM of transition-metal-dichalcogenide flakes is extremely rare in the literature, considering the recent body of work. The devices were then electrically characterized by temperature dependent Ids versus Vds and Ids versus Vbg curves. The temperature dependency of the device shows a semiconductor behavior and, the doping effect by Nb atoms introduces acceptors in the structure, with a p-type concentration 4.3 × 1019 cm-3 measured by Hall effect. The p-type doping is confirmed by all the electrical measurements, making the structure a junctionless transistor. In addition, other parameters regarding the contact resistance between the top metal and MoS2 are extracted thanks to a simple Transfer Length Method (TLM) structure, showing a promising contact resistivity of 1.05 × 10-7 Ω/cm2 and a sheet resistance of 2.36 × 102 Ω/sq.
NASA Astrophysics Data System (ADS)
Shen, Shida; Williamson, Morgan; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim
2017-12-01
A non-destructive reversible resistive switching is demonstrated in single crystals of Cr-doped Mott insulator Ca2RuO4. An applied electrical bias was shown to reduce the DC resistance of the crystal by as much as 75%. The original resistance of the sample could be restored by applying an electrical bias of opposite polarity. We have studied this resistive switching as a function of the bias strength, applied magnetic field, and temperature. A combination of 2-, 3-, and 4-probe measurements provide a means to distinguish between bulk and interfacial contributions to the switching and suggests that the switching is mostly an interfacial effect. The switching was tentatively attributed to electric-field driven lattice distortions which accompany the impurity-induced Mott transition. This field effect was confirmed by temperature-dependent resistivity measurements which show that the activation energy of this material can be tuned by an applied DC electrical bias. The observed resistance switching can potentially be used for building non-volatile memory devices like resistive random access memory.
NASA Astrophysics Data System (ADS)
Li, Cong; Zhao, Xiaolong; Zhuang, Yiqi; Yan, Zhirui; Guo, Jiaming; Han, Ru
2018-03-01
L-shaped tunneling field-effect transistor (LTFET) has larger tunnel area than planar TFET, which leads to enhanced on-current ION . However, LTFET suffers from severe ambipolar behavior, which needs to be further optimized for low power and high-frequency applications. In this paper, both hetero-gate-dielectric (HGD) and lightly doped drain (LDD) structures are introduced into LTFET for suppression of ambipolarity and improvement of analog/RF performance of LTFET. Current-voltage characteristics, the variation of energy band diagrams, distribution of band-to-band tunneling (BTBT) generation and distribution of electric field are analyzed for our proposed HGD-LDD-LTFET. In addition, the effect of LDD on the ambipolar behavior of LTFET is investigated, the length and doping concentration of LDD is also optimized for better suppression of ambipolar current. Finally, analog/RF performance of HGD-LDD-LTFET are studied in terms of gate-source capacitance, gate-drain capacitance, cut-off frequency, and gain bandwidth production. TCAD simulation results show that HGD-LDD-LTFET not only drastically suppresses ambipolar current but also improves analog/RF performance compared with conventional LTFET.
NASA Astrophysics Data System (ADS)
Tsai, Jung-Hui
2014-01-01
DC performance of InP/InGaAs metamorphic co-integrated complementary doping-channel field-effect transistors (DCFETs) grown on a low-cost GaAs substrate is first demonstrated. In the complementary DCFETs, the n-channel device was fabricated on the InxGa1-xP metamorphic linearly graded buffer layer and the p-channel field-effect transistor was stacked on the top of the n-channel device. Particularly, the saturation voltage of the n-channel device is substantially reduced to decrease the VOL and VIH values attributed that two-dimensional electron gas is formed and could be modulated in the n-InGaAs channel. Experimentally, a maximum extrinsic transconductance of 215 (17) mS/mm and a maximum saturation current density of 43 (-27) mA/mm are obtained in the n-channel (p-channel) device. Furthermore, the noise margins NMH and NML are up to 0.842 and 0.330 V at a supply voltage of 1.5 V in the complementary logic inverter application.
NASA Astrophysics Data System (ADS)
Kumar, Virender; Singh, Kulwinder; Jain, Megha; Manju; Kumar, Akshay; Sharma, Jeewan; Vij, Ankush; Thakur, Anup
2018-06-01
We have carried out a systematic study to investigate the effect of Cu doping on the optical properties of SnO2 nanostructures synthesized by chemical route. Synthesized nanostructures were characterized using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), High resolution transmission electron microscopy (HR-TEM), Energy dispersive X-ray spectroscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, UV-visible and Photoluminescence (PL) spectroscopy. The Rietveld refinement analysis of XRD patterns of Cu-doped SnO2 samples confirmed the formation of single phase tetragonal rutile structure, however some localized distortion was observed for 5 mol% Cu-doped SnO2. Crystallite size was found to decrease with increase in dopant concentration. FE-SEM images indicated change in morphology of samples with doping. HR-TEM images revealed that synthesized nanostructures were nearly spherical and average crystallite size was in the range 12-21 nm. Structural defects, crystallinity and size effects on doping were investigated by Raman spectroscopy and results were complemented by FTIR spectroscopy. Optical band gap of samples was estimated from reflectance spectra. We have shown that band gap of SnO2 can be engineered from 3.62 to 3.82 eV by Cu doping. PL emission intensity increased as the doping concentration increased, which can be attributed to the development of defect states in the forbidden transition region of band gap of SnO2 with doping. We have also proposed a band model owing to defect states in SnO2 to explain the observed PL in Cu doped SnO2 nanostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansdah, J. S.; Sarun, P. M., E-mail: sarun.res@gmail.com
2015-03-21
The effect on crystal structure, critical temperature (T{sub C}), and critical current density (J{sub C}) of bulk MgB{sub 2} doped with nano-Ho{sub 2}O{sub 3} and naphthalene was studied. Among all the samples studied, the sample doped with 2.5 wt. % nano-Ho{sub 2}O{sub 3} have shown the best field dependent critical current density [J{sub C}(H)], i.e., 0.77 × 10{sup 5 }A/cm{sup 2} at 2 T and 10 K. While naphthalene doped MgB{sub 2} sample has shown the least J{sub C}(H) characteristics. The improved J{sub C}(H) characteristics in the nano-Ho{sub 2}O{sub 3} doped MgB{sub 2} samples are attributed to improved flux pinning properties due to the formation ofmore » HoB{sub 4} and in naphthalene doped MgB{sub 2} samples. The slight lower T{sub C} value (37.01 K) in naphthalene doped samples is attributed to the occurrence of lattice defect by the substitution of carbon at boron site of MgB{sub 2} superconductor. Lower ΔT{sub C} value implies the lesser anisotropy in all the synthesized samples. The flux pinning force density (F{sub P}/F{sub Pmax}) curves are theoretically analyzed using Dew-Hughes model. The result revealed that point pinning is the dominant pinning mechanism for nano-Ho{sub 2}O{sub 3} doped MgB{sub 2} samples, while, surface and grain boundary pinning become dominant with increasing naphthalene addition in nano-Ho{sub 2}O{sub 3} doped MgB{sub 2} samples.« less
Sonocatalytic degradation of humic acid by N-doped TiO2 nano-particle in aqueous solution.
Kamani, Hossein; Nasseri, Simin; Khoobi, Mehdi; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein
2016-01-01
Un-doped and N-doped TiO2 nano-particles with different nitrogen contents were successfully synthesized by a simple sol-gel method, and were characterized by X-ray diffraction, field emission scanning electron microscopy, Energy dispersive X-ray analysis and UV-visible diffuse reflectance spectra techniques. Then enhancement of sonocatalytic degradation of humic acid by un-doped and N-doped TiO2 nano-particles in aqueous environment was investigated. The effects of various parameters such as initial concentration of humic acid, N-doping, and the degradation kinetics were investigated. The results of characterization techniques affirmed that the synthesis of un-doped and N-doped TiO2 nano-particles was successful. Degradation of humic acid by using different nano-particles obeyed the first-order kinetic. Among various nano-particles, N-doped TiO2 with molar doping ratio of 6 % and band gap of 2.92 eV, exhibited the highest sonocatalytic degradation with an apparent-first-order rate constant of 1.56 × 10(-2) min(-1). The high degradation rate was associated with the lower band gap energy and well-formed anatase phase. The addition of nano-catalysts could enhance the degradation efficiency of humic acid as well as N-doped TiO2 with a molar ratio of 6 %N/Ti was found the best nano-catalyst among the investigated catalysts. The sonocatalytic degradation with nitrogen doped semiconductors could be a suitable oxidation process for removal of refractory pollutants such as humic acid from aqueous solution.
Zhou, Xiongtu; Lin, Tihang; Liu, Yuhui; Wu, Chaoxing; Zeng, Xiangyao; Jiang, Dong; Zhang, Yong-ai; Guo, Tailiang
2013-10-23
High-quality tetrapod-shaped Sn-doped ZnO (T-SZO) nanostructures have been successfully synthesized via the thermal evaporation of mixed Zn and Sn powder. The effects of the Sn dopant on the morphology, microstructure, optical, and field-emission (FE) properties of T-SZO were investigated. It was found that the growth direction of the legs of T-SZO is parallel to the [0001] crystal c-axis direction and that the incorporation of Sn in the ZnO matrix increases the aspect ratio of the tetrapods, leads to blue shift in the UV region, and considerably improves the FE performance. The results also show that tetrapod cathodes with around a 0.84 atom % Sn dosage have the best FE properties, with a turn-on field of 1.95 V/μm, a current density of 950 μA/cm2 at a field of 4.5 V/μm, and a field-enhancement factor as high as 9556.
Excitonic Effects and Optical Absorption Spectrum of Doped Graphene
NASA Astrophysics Data System (ADS)
Jornada, Felipe; Deslippe, Jack; Louie, Steven
2012-02-01
First-principles calculations based on the GW-Bethe-Salpeter Equation (GW-BSE) approach and subsequent experiments have shown large excitonic effects in the optical absorbance of graphene. Here we employ the GW-BSE formalism to probe the effects of charge carrier doping and of having an external electric field on the absorption spectrum of graphene. We show that the absorbance peak due to the resonant exciton exhibits systematic changes in both its position and profile when graphene is gate doped by carriers, in excellent agreement to very recent measurementsootnotetextTony F. Heinz, private communications.. We analyze the various contributions to these changes in the absorption spectrum, such as the effects of screening by carriers to the quasiparticle energies and electron-hole interactions. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and the U.S. DOD - Office of Naval Research under RTC Grant No. N00014-09-1-1066. Computer time was provided by NERSC.
1987-08-15
SUPPLEMENTARY NOTATION 17. COSATI CODES 18 SUBJECT TERMS (Corinue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Epitaxy GaAs 9...Zr leiK m I141’ FIGURES 1 . Effect of Growth Parameters on Residual Doping Type ................... 7 2. Photoluminescence Spectrum of a GaAs Epilayer... 1 3 Successful homoepitaxial growth of high purity, unintentionally doped GaAs epilayers by organometallic chemical vapor deposition (OMCVD) has
Seong, Kieun; Kim, Kyongjun; Park, Si Yun; Kim, Youn Sang
2013-04-07
Chemical imprinting was conducted on ZnO semiconductor films via a chemical reaction at the contact regions between a micro-patterned PDMS stamp and ZnO films. In addition, we applied the chemical imprinting on Li doped ZnO thin films for high performance TFTs fabrication. The representative micro-patterned Li doped ZnO TFTs showed a field effect mobility of 4.2 cm(2) V(-1) s(-1) after sintering at 300 °C.
Lifshitz topological transitions, induced by doping and deformation in single-crystal bismuth wires
NASA Astrophysics Data System (ADS)
Nikolaeva, A. A.; Konopko, L. A.; Huber, T. E.; Kobylianskaya, A. K.; Para, Gh. I.
2017-02-01
The features associated with the manifestation of Lifshitz electron topological transitions (ETT) in glass-insulated bismuth wires upon qualitative changes to the topology of the Fermi surface are investigated. The variation of the energy spectrum parameters was implemented by doping Bi with an acceptor impurity Sn and using elastic strain of up to 2%, relative to the elongation in the weakly-doped p-type Bi wires. Pure and doped glass-insulated single-crystal bismuth with different diameters and (1011) orientations along the axis were prepared by the Ulitovsky liquid phase casting method. For the first time, ETT-induced anomalies are observed along the temperature dependences of the thermoemf α(T) as triple-changes of the α sign (given heavy doping of Bi wires with an acceptor impurity Sn). The concentration and energy position of the Σ-band given a high degree of bismuth doping with Sn was assessed using the Shubnikov-de Haas effect oscillations, which were detected both from L-electrons and from T-holes in magnetic fields of up to 14 T. It is shown that the Lifshitz electron-topological transitions with elastic deformation of weakly-doped p-type Bi wires are accompanied by anomalies along the deformation dependences of the thermoemf at low temperatures. The effect is interpreted in terms of the formation of a selective scattering channel of L-carriers into the T-band with a high density of states, which is in good agreement with existing theoretical ETT models.
Effect of Al gate on the electrical behaviour of Al-doped Ta2O5 stacks
NASA Astrophysics Data System (ADS)
Skeparovski, A.; Novkovski, N.; Atanassova, E.; Paskaleva, A.; Lazarov, V. K.
2011-06-01
The electrical behaviour of Al-doped Ta2O5 films on nitrided silicon and implemented in Al-gated MIS capacitors has been studied. The dopant was introduced into the Ta2O5 through its surface by deposing a thin Al layer on the top of Ta2O5 followed by an annealing process. The HRTEM images reveal that the initial double-layer structure of the stacks composed of doped Ta2O5 and interfacial SiON layer undergoes changes during the formation of the Al gate and transforms into a three-layer structure with an additional layer between the Al electrode and the doped Ta2O5. This layer, being a result of reaction between the Al gate and the Al-doped Ta2O5, affects the overall electrical properties of the stacks. Strong charge trapping/detrapping processes have been established in the vicinity of the doped Ta2O5/SiON interface resulting in a large C-V hysteresis effect. The charge trapping also influences the current conduction in the layers keeping the current density level rather low even at high electric fields (J < 10-6 A cm-2 at 7 MV cm-1). By employing a three-layer model of the stack, the permittivity of both, the Al-doped Ta2O5 and the additional layer, has been estimated and the corresponding conduction mechanisms identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinello, M.; Aderhold, S.; Chandrasekaran, S. K.
The radio-frequency surface resistance of niobium resonators is incredibly reduced when nitrogen impurities are dissolved as interstitial in the material, conferring ultra-high Q-factors at medium values of accelerating field. This effect has been observed in both high and low temperature nitrogen treatments. As a matter of fact, the peculiar anti Q-slope observed in nitrogen doped cavities, i.e. the decreasing of the Q-factor with the increasing of the radio-frequency field, come from the decreasing of the BCS surface resistance component as a function of the field. Such peculiar behavior has been considered consequence of the interstitial nitrogen present in the niobiummore » lattice after the doping treatment. The study here presented show the field dependence of the BCS surface resistance of cavities with different resonant frequencies, such as: 650 MHz, 1.3 GHz, 2.6 GHz and 3.9 GHz, and processed with different state-of-the-art surface treatments. These findings show for the first time that the anti Q-slope might be seen at high frequency even for clean Niobium cavities, revealing useful suggestion on the physics underneath the anti Q-slope effect.« less
Rahman, M; Dang, B H Q; McDonnell, K; MacElroy, J M D; Dowling, D P
2012-06-01
The photocatalytic splitting of water into hydrogen and oxygen using a photoelectrochemical (PEC) cell containing titanium dioxide (TiO2) photoanode is a potentially renewable source of chemical fuels. However, the size of the band gap (-3.2 eV) of the TiO2 photocatalyst leads to its relatively low photoactivity toward visible light in a PEC cell. The development of materials with smaller band gaps of approximately 2.4 eV is therefore necessary to operate PEC cells efficiently. This study investigates the effect of dopant (C or N) and co-dopant (C+N) on the physical, structural and photoactivity of TiO2 nano thick coating. TiO2 nano-thick coatings were deposited using a closed field DC reactive magnetron sputtering technique, from titanium target in argon plasma with trace addition of oxygen. In order to study the influence of doping such as C, N and C+N inclusions in the TiO2 coatings, trace levels of CO2 or N2 or CO2+N2 gas were introduced into the deposition chamber respectively. The properties of the deposited nano-coatings were determined using Spectroscopic Ellipsometry, SEM, AFM, Optical profilometry, XPS, Raman, X-ray diffraction UV-Vis spectroscopy and tri-electrode potentiostat measurements. Coating growth rate, structure, surface morphology and roughness were found to be significantly influenced by the types and amount of doping. Substitutional type of doping in all doped sample were confirmed by XPS. UV-vis measurement confirmed that doping (especially for C doped sample) facilitate photoactivity of sputtered deposited titania coating toward visible light by reducing bandgap. The photocurrent density (indirect indication of water splitting performance) of the C-doped photoanode was approximately 26% higher in comparison with un-doped photoanode. However, coating doped with nitrogen (N or N+C) does not exhibit good performance in the photoelectrochemical cell due to their higher charge recombination properties.
NASA Astrophysics Data System (ADS)
Poornaprakash, B.; Chalapathi, U.; Purusottam Reddy, B.; Prabhakar Vattikuti, S. V.; Siva Pratap Reddy, M.; Park, Si-Hyun
2018-03-01
The sensible tuning of the structural, optical, and magnetic properties of ZnO nanoparticles (NPs) with suitable doping can enhance their applicability in diverse fields. In this study, we synthesized ZnO NPs with Er (0-4 at%) doping and their elemental, structural, optical, and magnetic properties were studied. Both field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) studies of the suspensions consist of hexagonal shaped NPs. All the prepared NPs exhibited hexagonal phase as demonstrated by powder x-ray diffraction studies. A blue shift was observed in the Er doped ZnO NPs compared to pure ZnO, indicating the increased optical bandgap. Vibrating sample magnetometer studies exhibited the pure ZnO NPs was typical diamagnetic feature whereas all the Er doped ZnO NPs were paramagnetic feature at 300 K. This is the first paramagnetic report on Er doped ZnO NPs.
Ahmad, J; Siddiqui, M A; Akhtar, M J; Alhadlaq, H A; Alshamsan, A; Khan, S T; Wahab, R; Al-Khedhairy, A A; Al-Salim, A; Musarrat, J; Saquib, Q; Fareed, M; Ahamed, M
2018-05-01
Physicochemical properties of titanium dioxide nanoparticles (TiO 2 NPs) can be tuned by doping with metals or nonmetals. Copper (Cu) doping improved the photocatalytic behavior of TiO 2 NPs that can be applied in various fields such as environmental remediation and nanomedicine. However, interaction of Cu-doped TiO 2 NPs with human cells is scarce. This study was designed to explore the role of Cu doping in cytotoxic response of TiO 2 NPs in human lung epithelial (A549) cells. Characterization data demonstrated the presence of both TiO 2 and Cu in Cu-doped TiO 2 NPs with high-quality lattice fringes without any distortion. The size of Cu-doped TiO 2 NPs (24 nm) was lower than pure TiO 2 NPs (30 nm). Biological results showed that both pure and Cu-doped TiO 2 NPs induced cytotoxicity and oxidative stress in a dose-dependent manner. Low mitochondrial membrane potential and higher caspase-3 enzyme (apoptotic markers) activity were also observed in A549 cells exposed to pure and Cu-doped TiO 2 NPs. We further observed that cytotoxicity caused by Cu-doped TiO 2 NPs was higher than pure TiO 2 NPs. Moreover, antioxidant N-acetyl cysteine effectively prevented the reactive oxygen species generation, glutathione depletion, and cell viability reduction caused by Cu-doped TiO 2 NPs. This is the first report showing that Cu-doped TiO 2 NPs induced cytotoxicity and oxidative stress in A549 cells. This study warranted further research to explore the role of Cu doping in toxicity mechanisms of TiO 2 NPs.
Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
Céspedes, Eva; Byrne, James M; Farrow, Neil; Moise, Sandhya; Coker, Victoria S; Bencsik, Martin; Lloyd, Jonathan R; Telling, Neil D
2014-11-07
Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are investigated that contain Co or Zn dopants to tune the magnetic anisotropy, saturation magnetization and nanoparticle sizes, enabling heating within clinical field constraints. The heating mechanisms specific to either Co or Zn doping are determined from frequency dependent specific absorption rate (SAR) measurements and innovative AC susceptometry simulations that use a realistic model concerning clusters of polydisperse nanoparticles in suspension. Whilst both particle types undergo magnetization relaxation and show heating effects in water under low AC frequency and field, only Zn doped particles maintain relaxation combined with hysteresis losses even when immobilized. This magnetic heating process could prove important in the biological environment where nanoparticle mobility may not be possible. Obtained SARs are discussed regarding clinical conditions which, together with their enhanced MRI contrast, indicate that biogenic Zn doped particles are promising for combined diagnostics and cancer therapy.
Bipolar Electrode Array Embedded in a Polymer Light-Emitting Electrochemical Cell.
Gao, Jun; Chen, Shulun; AlTal, Faleh; Hu, Shiyu; Bouffier, Laurent; Wantz, Guillaume
2017-09-20
A linear array of aluminum discs is deposited between the driving electrodes of an extremely large planar polymer light-emitting electrochemical cell (PLEC). The planar PLEC is then operated at a constant bias voltage of 100 V. This promotes in situ electrochemical doping of the luminescent polymer from both the driving electrodes and the aluminum discs. These aluminum discs function as discrete bipolar electrodes (BPEs) that can drive redox reactions at their extremities. Time-lapse fluorescence imaging reveals that p- and n-doping that originated from neighboring BPEs can interact to form multiple light-emitting p-n junctions in series. This provides direct evidence of the working principle of bulk homojunction PLECs. The propagation of p-doping is faster from the BPEs than from the positive driving electrode due to electric field enhancement at the extremities of BPEs. The effect of field enhancement and the fact that the doping fronts only need to travel the distance between the neighboring BPEs to form a light-emitting junction greatly reduce the response time for electroluminescence in the region containing the BPE array. The near simultaneous formation of multiple light-emitting p-n junctions in series causes a measurable increase in cell current. This indicates that the region containing a BPE is much more conductive than the rest of the planar cell despite the latter's greater width. The p- and n-doping originating from the BPEs is initially highly confined. Significant expansion and divergence of doping occurred when the region containing the BPE array became more conductive. The shape and direction of expanded doping strongly suggest that the multiple light-emitting p-n junctions, formed between and connected by the array of metal BPEs, have functioned as a single rod-shaped BPE. This represents a new type of BPE that is formed in situ and as a combination of metal, doped polymers, and forward-biased p-n junctions connected in series.
Superconducting properties of under- and over-doped BaxK1‑xBiO3 perovskite oxide
NASA Astrophysics Data System (ADS)
Szczȩśniak, D.; Kaczmarek, A. Z.; Szczȩśniak, R.; Turchuk, S. V.; Zhao, H.; Drzazga, E. A.
2018-06-01
In this study, we investigate the thermodynamic properties of the BaxK1‑xBiO3 (BKBO) superconductor in the under- (x = 0.5) and over-doped (x = 0.7) regime, within the framework of the Migdal-Eliashberg formalism. The analysis is conducted to verify that the electron-phonon pairing mechanism is responsible for the induction of the superconducting phase in the mentioned compound. In particular, we show that BKBO is characterized by the relatively high critical value of the Coulomb pseudopotential, which changes with doping level and does not follow the Morel-Anderson model. In what follows, the corresponding superconducting band gap size and related dimensionless ratio are estimated to increase with the doping, in agreement with the experimental predictions. Moreover, the effective mass of electrons is found to take on high values in the entire doping and temperature region. Finally, the characteristic dimensionless ratios for the superconducting band gap, the critical magnetic field and the specific heat for the superconducting state are predicted to exceed the limits set within the Bardeen-Cooper-Schrieffer theory, suggesting pivotal role of the strong-coupling and retardation effects in the analyzed compound. Presented results supplement our previous investigations and account for the strong-coupling phonon-mediated character of the superconducting phase in BKBO at any doping level.
Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaoyang; Frisbie, Daniel
2017-03-31
The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.
Lanthanide-doped upconverting phosphors for bioassay and therapy
NASA Astrophysics Data System (ADS)
Guo, Huichen; Sun, Shiqi
2012-10-01
Lanthanide-doped fluorescent materials have gained increasing attention in recent years due to their unique luminescence properties which have led to their use in wide-ranging fields including those of biological applications. Aside from being used as agents for in vivo imaging, lanthanide-doped fluorescent materials also present many advantages for use in bioassays and therapy. In this review, we summarize the applications of lanthanide-doped up-converting phosphors (UCPs) in protein and gene detection, as well as in photodynamic and gene therapy in recent years, and outline their future potential in biological applications. The current report could serve as a reference for researchers in relevant fields.
DC and analog/RF performance optimisation of source pocket dual work function TFET
NASA Astrophysics Data System (ADS)
Raad, Bhagwan Ram; Sharma, Dheeraj; Kondekar, Pravin; Nigam, Kaushal; Baronia, Sagar
2017-12-01
We investigate a systematic study of source pocket tunnel field-effect transistor (SP TFET) with dual work function of single gate material by using uniform and Gaussian doping profile in the drain region for ultra-low power high frequency high speed applications. For this, a n+ doped region is created near the source/channel junction to decrease the depletion width results in improvement of ON-state current. However, the dual work function of the double gate is used for enhancement of the device performance in terms of DC and analog/RF parameters. Further, to improve the high frequency performance of the device, Gaussian doping profile is considered in the drain region with different characteristic lengths which decreases the gate to drain capacitance and leads to drastic improvement in analog/RF figures of merit. Furthermore, the optimisation is performed with different concentrations for uniform and Gaussian drain doping profile and for various sectional length of lower work function of the gate electrode. Finally, the effect of temperature variation on the device performance is demonstrated.
Trap-state-dominated suppression of electron conduction in carbon nanotube thin-film transistors.
Qian, Qingkai; Li, Guanhong; Jin, Yuanhao; Liu, Junku; Zou, Yuan; Jiang, Kaili; Fan, Shoushan; Li, Qunqing
2014-09-23
The often observed p-type conduction of single carbon nanotube field-effect transistors is usually attributed to the Schottky barriers at the metal contacts induced by the work function differences or by the doping effect of the oxygen adsorption when carbon nanotubes are exposed to air, which cause the asymmetry between electron and hole injections. However, for carbon nanotube thin-film transistors, our contrast experiments between oxygen doping and electrostatic doping demonstrate that the doping-generated transport barriers do not introduce any observable suppression of electron conduction, which is further evidenced by the perfect linear behavior of transfer characteristics with the channel length scaling. On the basis of the above observation, we conclude that the environmental adsorbates work by more than simply shifting the Fermi level of the CNTs; more importantly, these adsorbates cause a poor gate modulation efficiency of electron conduction due to the relatively large trap state density near the conduction band edge of the carbon nanotubes, for which we further propose quantitatively that the adsorbed oxygen-water redox couple is responsible.
Solution-processed gadolinium doped indium-oxide thin-film transistors with oxide passivation
NASA Astrophysics Data System (ADS)
Lee, Seung-Hun; Kim, Taehun; Lee, Jihun; Avis, Christophe; Jang, Jin
2017-03-01
We studied the effect of Gd doping on the structural properties of solution processed, crystalline In2O3 for thin-film transistor (TFT) application. With increasing Gd in In2O3 up to 20%, the material structure changes into amorphous phase, and the oxygen vacancy concentration decreases from 15.4 to 8.4%, and M-OH bonds from 33.5 to 23.7%. The field-effect mobility for the Gd doped In2O3 TFTs decreases and threshold voltage shifts to the positive voltage with increasing Gd concentration. In addition, the stability of the solution processed TFTs can also be improved by increasing Gd concentration. As a result, the optimum Gd concentration is found to be ˜5% in In2O3 and the 5% Gd doped In2O3 TFTs with the Y2O3 passivation layer exhibit the linear mobility of 9.74 cm2/V s, the threshold voltage of -0.27 V, the subthreshold swing of 79 mV/dec., and excellent bias stability.
NASA Astrophysics Data System (ADS)
Edwards, Matthew; Guggilla, Padmaja; Reedy, Angela; Ijaz, Quratulann; Janen, Afef; Uba, Samuel; Curley, Michael
2017-08-01
Previously, we have reported measurements of temperature-dependent surface resistivity of pure and multi-walled carbon nanotube (MWNCT) doped amorphous Polyvinyl Alcohol (PVA) thin films. In the temperature range from 22 °C to 40 °C with humidity-controlled environment, we found the surface resistivity to decrease initially, but to rise steadily as the temperature continued to increase. Moreover, electric surface current density (Js) was measured on the surface of pure and MWCNT doped PVA thin films. In this regard, the surface current density and electric field relationship follow Ohm's law at low electric fields. Unlike Ohmic conduction in metals where free electrons exist, selected captive electrons are freed or provided from impurities and dopants to become conduction electrons from increased thermal vibration of constituent atoms in amorphous thin films. Additionally, a mechanism exists that seemingly decreases the surface resistivity at higher temperatures, suggesting a blocking effect for conducting electrons. Volume resistivity measurements also follow Ohm's law at low voltages (low electric fields), and they continue to decrease as temperatures increase in this temperature range, differing from surface resistivity behavior. Moreover, we report measurements of dielectric constant and dielectric loss as a function of temperature and frequency. Both the dielectric constant and dielectric loss were observed to be highest for MWCNT doped PVA compared to pure PVA and commercial paper, and with frequency and temperature for all samples.
A review of the growth, doping, and applications of β-Ga2O3 thin films
NASA Astrophysics Data System (ADS)
Razeghi, Manijeh; Park, Ji-Hyeon; McClintock, Ryan; Pavlidis, Dimitris; Teherani, Ferechteh H.; Rogers, David J.; Magill, Brenden A.; Khodaparast, Giti A.; Xu, Yaobin; Wu, Jinsong; Dravid, Vinayak P.
2018-03-01
β-Ga2O3 is emerging as an interesting wide band gap semiconductor for solar blind photo detectors (SBPD) and high power field effect transistors (FET) because of its outstanding material properties including an extremely wide bandgap (Eg 4.9eV) and a high breakdown field (8 MV/cm). This review summarizes recent trends and progress in the growth/doping of β-Ga2O3 thin films and then offers an overview of the state-of-the-art in SBPD and FET devices. The present challenges for β-Ga2O3 devices to penetrate the market in real-world applications are also considered, along with paths for future work.
Variations of thermoelectric performance by electric fields in bilayer MX2 (M = W, Mo; X = S, Se).
Wang, Rui-Ning; Dong, Guo-Yi; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Jiang-Long
2017-02-22
A gate electrode is usually used to controllably tune the carrier concentrations, further modulating the electrical conductivity and the Seebeck coefficient to obtain the optimum thermoelectric figure of merit (ZT) in two-dimensional materials. On the other hand, it is necessary to investigate how an electric field induced by a gate voltage affects the electronic structures, further determining the thermoelectric properties. Therefore, by using density functional calculations in combination with Boltzmann theory, the thermoelectric properties of bilayer MX 2 (M = W, Mo; X = S, Se) with or without a 1 V nm -1 perpendicular electric field are comparatively investigated. First of all, the variations of the electrical conductivity (σ), electron thermal conductivity and Seebeck coefficient (S) with the carrier concentration are studied. Due to the trade-off relationship between S and σ, there is an optimum concentration to obtain the maximum ZT, which increases with the temperature due to the enhancement of the Seebeck coefficient. Moreover, N-type bilayers have larger optimum ZTs than P-type bilayers. In addition, the electric field results in the increase of the Seebeck coefficient in low hole-doped MS 2 bilayers and high hole-doped MSe 2 bilayers, thus leading to similar variations in ZT. The optimum ZTs are reduced from 2.11 × 10 -2 , 3.19 × 10 -2 , 2.47 × 10 -2 , and 2.58 × 10 -2 to 1.57 × 10 -2 , 1.51 × 10 -2 , 2.08 × 10 -2 , and 1.43 × 10 -2 for the hole-doped MoS 2 , MoSe 2 , and WSe 2 bilayers, respectively. For N-type bilayers, the electric field shows a destructive effect, resulting in the obvious reduction of the Seebeck coefficient in the MSe 2 layers and the low electron-doped MS 2 bilayers. In electron-doped bilayers, the optimum ZTs will decrease from 3.03 × 10 -2 , 6.64 × 10 -2 , and 6.69 × 10 -2 to 2.81 × 10 -2 , 3.59 × 10 -2 , and 4.39 × 10 -2 for the MoS 2 , MoSe 2 , and WSe 2 bilayers, respectively.
NASA Astrophysics Data System (ADS)
Deligiannis, Dimitrios; van Vliet, Jeroen; Vasudevan, Ravi; van Swaaij, René A. C. M. M.; Zeman, Miro
2017-02-01
In this work, we use intrinsic hydrogenated amorphous silicon oxide layers (a-SiOx:H) with varying oxygen content (cO) but similar hydrogen content to passivate the crystalline silicon wafers. Using our deposition conditions, we obtain an effective lifetime (τeff) above 5 ms for cO ≤ 6 at. % for passivation layers with a thickness of 36 ± 2 nm. We subsequently reduce the thickness of the layers using an accurate wet etching method to ˜7 nm and deposit p- and n-type doped layers fabricating a device structure. After the deposition of the doped layers, τeff appears to be predominantly determined by the doped layers themselves and is less dependent on the cO of the a-SiOx:H layers. The results suggest that τeff is determined by the field-effect rather than by chemical passivation.
NASA Astrophysics Data System (ADS)
Lee, Sol Kyu; Seok, Ki Hwan; Chae, Hee Jae; Lee, Yong Hee; Han, Ji Su; Jo, Hyeon Ah; Joo, Seung Ki
2017-03-01
We report a novel method to reduce source and drain (S/D) resistances, and to form a lightly doped layer (LDL) of bottom-gate polycrystalline silicon (poly-Si) thin-film transistors (TFTs). For application in driving TFTs, which operate under high drain voltage condition, poly-Si TFTs are needed in order to attain reliability against hot-carriers as well as high field-effect mobility (μFE). With an additional doping on the p+ Si layer, sheet resistance on S/D was reduced by 37.5% and an LDL was introduced between the channel and drain. These results contributed to not only a lower leakage current and gate-induced drain leakage, but also high immunity of kink-effect and hot-carrier stress. Furthermore, the measured electrical characteristics exhibited a steep subthreshold slope of 190 mV/dec and high μFE of 263 cm2/Vs.
NASA Astrophysics Data System (ADS)
Errico, Leonardo A.; Rentería, Mario; Petrilli, Helena M.
2007-04-01
We perform an ab initio study of the electric field gradient (EFG) at the nucleus of Cd impurities at substitutional Sn sites in crystalline SnO. The full-potential linearized-augmented plane wave and the projector augmented wave methods used here allow us to treat the electronic structure of the doped system and the atomic relaxations introduced by the impurities in the host in a fully self-consistent way using a supercell approach in a state-of-the-art way. Effects of the impurity charge state on the electronic and structural properties are also discussed. Since the EFG is a very subtle quantity, its determination is very useful to probe ground-state properties such as the charge density. We show that the EFG is very sensitive to structural relaxations induced by the impurity. Our theoretical predictions are compared with available experimental results.
Thermal Transport in Nd-doped CeCoIn5
NASA Astrophysics Data System (ADS)
Kim, Duk Y.; Lin, Shi-Zeng; Weickert, Franziska; Rosa, P. F. S.; Bauer, Eric D.; Ronning, Filip; Thompson, J. D.; Movshovich, Roman
Heavy-fermion superconductor CeCoIn5 shows spin-density-wave (SDW) magnetic order in its superconducting state when a high magnetic field is applied. In this Q-phase, the antiferromagnetic order has a single ordering wave vector, and switches its orientation very sharply as magnetic field is rotated within the ab -plane around the [100] (anti-nodal) direction. This hypersensitivity induces a sharp jump of the thermal conductivity. Recently, the SDW with the same ordering wave vector was observed in Nd-doped CeCoIn5 in zero magnetic field. We have measured the thermal conductivity of 5% Nd-doped CeCoIn5 in the magnetic field rotating within the ab -plane. The anisotropy is significantly smaller in the doped material, and the switching transition is much broader. The superconducting transition near Hc 2 is first order, as for the pure CeCoIn5, which indicates the Pauli limited superconductivity. We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.
Strain induced atomic structure at the Ir-doped LaAlO3/SrTiO3 interface.
Lee, M; Arras, R; Warot-Fonrose, B; Hungria, T; Lippmaa, M; Daimon, H; Casanove, M J
2017-11-01
The structure of Ir-doped LaAlO 3 /SrTiO 3 (001) interfaces was investigated on the atomic scale using probe-corrected transmission electron microscopy in high-angle annular dark-field scanning mode (HAADF-STEM) and electron energy loss spectroscopy (EELS), combined with first-principles calculations. We report the evolution of the strain state experimentally measured in a 5 unit-cell thick LaAlO 3 film as a function of the Ir concentration in the topmost SrTiO 3 layer. It is shown that the LaAlO 3 layers remain fully elastically strained up to 3% of Ir doping, whereas a higher doping level seems to promote strain relaxation through enhanced cationic interdiffusion. The observed differences between the energy loss near edge structure (ELNES) of Ti-L 2,3 and O-K edges at non-doped and Ir-doped interfaces are consistent with the location of the Ir dopants at the interface, up to 3% of Ir doping. These findings, supported by the results of density functional theory (DFT) calculations, provide strong evidence that the effect of dopant concentrations on the properties of this kind of interface should not be analyzed without obtaining essential information from the fine structural and chemical analysis of the grown structures.
NASA Astrophysics Data System (ADS)
Yurasov, D. V.; Antonov, A. V.; Drozdov, M. N.; Yunin, P. A.; Andreev, B. A.; Bushuykin, P. A.; Baydakova, N. A.; Novikov, A. V.
2018-06-01
In this paper we report about the formation of ultra heavy doped n-Ge layers on Si(0 0 1) substrates by molecular beam epitaxy and their characterization by different independent techniques. Combined study of structural and electrical properties of fabricated layers using secondary ion mass spectroscopy, X-ray diffraction, Hall effect and reflection measurements was carried out and it has revealed the achievable charge carrier densities exceeding 1020 cm-3 without deterioration of crystalline quality of such doped layers. It was also shown that X-ray analysis can be used as a fast, reliable and non-destructive method for evaluation of the electrically active Sb concentration in heavy doped Ge layers. The appropriate set of doping density allowed to adjust the plasmonic resonance position in Ge:Sb layers in a rather wide range reaching the wavelength of 3.6 μm for the highest doping concentration. Room temperature photoluminescence confirmed the high crystalline quality of such doped layers. Our results indicated the attainability of high electron concentration in Ge:Sb layers grown on Si substrates without crystalline quality deterioration which may find potential applications in the fields of Si-based photonics and mid-IR plasmonics.
NASA Astrophysics Data System (ADS)
He, Guili; Xu, Minghan; Shu, Mengjun; Li, Xiaolin; Yang, Zhi; Zhang, Liling; Su, Yanjie; Hu, Nantao; Zhang, Yafei
2016-09-01
Recently, carbon dots (CDs) have been playing an increasingly important role in industrial production and biomedical field because of their excellent properties. As such, finding an efficient method to quickly synthesize a large scale of relatively high purity CDs is of great interest. Herein, a facile and novel microwave method has been applied to prepare nitrogen doped CDs (N-doped CDs) within 8 min using L-glutamic acid as the sole reaction precursor in the solid phase condition. The as-prepared N-doped CDs with an average size of 1.64 nm are well dispersed in aqueous solution. The photoluminescence of N-doped CDs is pH-sensitive and excitation-dependent. The N-doped CDs show a strong blue fluorescence with relatively high fluorescent quantum yield of 41.2%, which remains stable even under high ionic strength. Since the surface is rich in oxygen-containing functional groups, N-doped CDs can be applied to selectively detect Fe3+ with the limit of detection of 10-5 M. In addition, they are also used for cellular bioimaging because of their high fluorescent intensity and nearly zero cytotoxicity. The solid-phase microwave method seems to be an effective strategy to rapidly obtain high quality N-doped CDs and expands their applications in ion detection and cellular bioimaging.
Stamplecoskie, Kevin G; Ju, Ling; Farvid, Shokouh S; Radovanovic, Pavle V
2008-09-01
We report the first synthesis and characterization of cobalt- and chromium-doped GaN nanowires (NWs), and compare them to manganese-doped GaN NWs. Samples were synthesized by chemical vapor deposition method, using cobalt(II) chloride and chromium(III) chloride as dopant precursors. For all three impurity dopants hexagonal, triangular, and rectangular NWs were observed. The fraction of NWs having a particular morphology depends on the initial concentration of the dopant precursors. While all three dopant ions have the identical effect on GaN NW growth and faceting, Co and Cr are incorporated at much lower concentrations than Mn. These findings suggest that the doping mechanism involves binding of the transition-metal intermediates to specific NW facets, inhibiting their growth and causing a change in the NW morphology. We discuss the doping concentrations of Mn, Co, and Cr in terms of differences in their crystal-field stabilization energies (DeltaCFSE) in their gas-phase intermediates and in substitutionally doped GaN NWs. Using iron(III) chloride and cobalt(II) acetate as dopant precursors we show that the doping concentration dependence on DeltaCFSE allows for the prediction of achievable doping concentrations for different dopant ions in GaN NWs, and for a rational choice of a suitable dopant-ion precursor. This work further demonstrates a general and rational control of GaN NW growth using transition-metal impurities.
Enhanced strain effect of aged acceptor-doped BaTiO3 ceramics with clamping domain structures
NASA Astrophysics Data System (ADS)
Wang, Lei; Zhou, Zhiyong; Zhao, Xiaobo; Liu, Zhen; Liang, Ruihong; Dong, Xianlin
2017-03-01
A clamping domain structure is proposed to improve the amount of non-180° domain switching in BaTiO3 based piezoelectric ceramics. Experimental results show a large unipolar strain of 0.23% at 5 kV/mm in aged 0.5 mol. % Mn doped BaTiO3 ceramics with clamping domain structures, and the normalized strain (d33*= Smax/Emax) reaches 600 pm/V at low electric fields of 2 or 3 kV/mm. In contrast, pure BaTiO3 ceramics with clamping domain structures exhibit no clear polarization constriction or strain enhancement at 3 kV/mm. Electron paramagnetic resonance spectra verify the existence of titanium vacancies, Mn2+ and Mn4+, in 0.5 mol. % Mn doped BaTiO3 ceramics. These results indicate that the enhanced strain effect can be attributed to the combined effect of the clamping domain structure and stabilization of defect dipoles. This method provides a general way to obtain large strain in ferroelectrics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lingyan, E-mail: l.y.wang@mail.xjtu.edu.cn, E-mail: wren@mail.xjtu.edu.cn; Ren, Wei, E-mail: l.y.wang@mail.xjtu.edu.cn, E-mail: wren@mail.xjtu.edu.cn; Shi, Peng
Lead-free ferroelectric un-doped and doped K{sub 0.5}Na{sub 0.5}NbO{sub 3} (KNN) films with different amounts of manganese (Mn) were prepared by a chemical solution deposition method. The thicknesses of all films are about 1.6 μm. Their phase, microstructure, leakage current behavior, and electrical properties were investigated. With increasing the amounts of Mn, the crystallinity became worse. Fortunately, the electrical properties were improved due to the decreased leakage current density after Mn-doping. The study on leakage behaviors shows that the dominant conduction mechanism at low electric field in the un-doped KNN film is ohmic mode and that at high electric field is space-charge-limitedmore » and Pool-Frenkel emission. After Mn doping, the dominant conduction mechanism at high electric field of KNN films changed single space-charge-limited. However, the introduction of higher amount of Mn into the KNN film would lead to a changed conduction mechanism from space-charge-limited to ohmic mode. Consequently, there exists an optimal amount of Mn doping of 2.0 mol. %. The 2.0 mol. % Mn doped KNN film shows the lowest leakage current density and the best electrical properties. With the secondary ion mass spectroscopies and x-ray photoelectron spectroscopy analyses, the homogeneous distribution in the KNN films and entrance of Mn element in the lattice of KNN perovskite structure were also confirmed.« less
Willick, Stuart E; Miller, Geoffrey D; Eichner, Daniel
2016-03-01
Historical reports of doping in sports date as far back as the ancient Greek Olympic Games. The anti-doping community considers doping in sports to be cheating and a violation of the spirit of sport. During the past century, there has been an increasing awareness of the extent of doping in sports and the health risks of doping. In response, the anti-doping movement has endeavored to educate athletes and others about the health risks of doping and promote a level playing field. Doping control is now undertaken in most countries around the world and at most elite sports competitions. As athletes have found new ways to dope, however, the anti-doping community has endeavored to strengthen its educational and deterrence efforts. It is incumbent upon sports medicine professionals to understand the health risks of doping and all doping control processes. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Fabrication of doped TiO2 nanotube array films with enhanced photo-catalytic activity
NASA Astrophysics Data System (ADS)
Peighambardoust, Naeimeh-Sadat; Khameneh-asl, Shahin; Khademi, Adib
2018-01-01
In the present work, we investigate the N and Fe-doped TiO2 nanotube array film prepared by treating TiO2 nanotube array film with ammonia solution and anodizing in Fe(NO3)3 solution respectively. This method avoided the use of hazardous ammonia gas, or laborious ion implantation process. N and Fe-doped TiO2 nanotube arrays (TiO2 NTs) were prepared by electrochemical anodization process in 0.5 wt % HF aqueous solution. The anodization was performed at the conditions of 20 V and 20 min, Followed by a wet immersion in NH3.H2O (1M) for N-doping for 2 hr and annealing post-treatment at 450 °C. The morphology and structure of the nanotube films were characterized by field emission scanning electron microscope (FESEM) and EDX. UV-vis. illumination test were done to observe photo-enhanced catalysis. The effect of different annealing temperature on the structure and photo-absorption property of the TiO2-TNTs was investigated. The results showed that N-TNTs nanotubes exhibited higher photocatalytic activity compared whit the Fe-doped and pure TNTs, because doping N promoted the separation of the photogenerated electrons and holes.
Single Schottky junction FETs based on Si:P nanowires with axially graded doping
NASA Astrophysics Data System (ADS)
Barreda, Jorge; Keiper, Timothy; Zhang, Mei; Xiong, Peng
2015-03-01
Si nanowires (NWs) with a systematic axial increase in phosphorus doping have been synthesized via a vapor-liquid-solid method. Silane and phosphine precursor gases are utilized for the growth and doping, respectively. The phosphorous doping profile is controlled by the flow ratio of the precursor gases. After the as-grown product is ultrasonically agitated into a solution, the Si NWs are dispersed on a SiO2 substrate with a highly doped Si back gate. Individual NWs are identified for the fabrication of field-effect transistors (FETs) with multiple Cr/Ag contacts along the NW. Two-probe and four-probe measurements are taken systematically under vacuum conditions at room temperature and the contribution from each contact and each NW section between adjacent contacts is determined. The graded doping level, produced by a systematic reduction in dopant density along the length of the NWs, is manifested in the regular increases in the channel and contact resistances. Our Si NWs facilitate the fabrication of asymmetric FETs with one ohmic and one Schottky contact. A significant increase in gate modulation is obtained due to the single Schottky-barrier contact. Characterization details and the applicability for sensing purposes will be discussed.
NASA Astrophysics Data System (ADS)
Fink, J.; Rienks, E. D. L.; Thirupathaiah, S.; Nayak, J.; van Roekeghem, A.; Biermann, S.; Wolf, T.; Adelmann, P.; Jeevan, H. S.; Gegenwart, P.; Wurmehl, S.; Felser, C.; Büchner, B.
2017-04-01
Angle-resolved photoemission spectroscopy is used to study the scattering rates of charge carriers from the hole pockets near Γ in the iron-based high-Tc hole-doped superconductors KxBa1 -xFe2As2 , x =0.4 , and KxEu1 -xFe2As2 , x =0.55 , and the electron-doped compound Ba (Fe1-xCox) 2As2 , x =0.075 . The scattering rate for any given band is found to depend linearly on the energy, indicating a non-Fermi-liquid regime. The scattering rates in the hole-doped compound are considerably higher than those in the electron-doped compounds. In the hole-doped systems the scattering rate of the charge carriers of the inner hole pocket is about three times higher than the binding energy, indicating that the spectral weight is heavily incoherent. The strength of the scattering rates and the difference between electron- and hole-doped compounds signals the importance of Hund's exchange coupling for correlation effects in these iron-based high-Tc superconductors. The experimental results are in qualitative agreement with theoretical calculations in the framework of combined density functional dynamical mean-field theory.
NASA Astrophysics Data System (ADS)
Zhao, B. C.; Song, W. H.; Ma, Y. Q.; Ang, R.; Zhang, S. B.; Sun, Y. P.
2005-10-01
Single crystals of La1-x Pbx Mn1-y-z Cuy O3 ( x˜0.14 ; y=0 ,0.01,0.02,0.04,0.06; z=0.02 ,0.08,0.11,0.17,0.20) are grown by the flux growth technique. The effect of Cu doping at the Mn-site on magnetic and transport properties is studied. All studied samples undergo a paramagnetic-ferromagnetic transition. The Curie temperature TC decreases and the transition becomes broader with increasing Cu-doping level. The high-temperature insulator-metal (I-M) transition moves to lower temperature with increasing Cu-doping level. A reentrant M-I transition at the low temperature T* is observed for samples with y⩾0.02 . In addition, T* increases with increasing Cu-doping level and is not affected by applied magnetic fields. Accompanying the appearance of T* , there exists a large, almost constant magnetoresistance (MR) below T* except for a large MR peak near TC . This reentrant M-I transition is ascribed to charge carrier localization due to lattice distortion caused by the Cu doping at Mn sites.
Pair interactions of heavy vortices in quantum fluids
NASA Astrophysics Data System (ADS)
Pshenichnyuk, Ivan A.
2018-02-01
The dynamics of quantum vortex pairs carrying heavy doping matter trapped inside their cores is studied. The nonlinear classical matter field formalism is used to build a universal mathematical model of a heavy vortex applicable to different types of quantum mixtures. It is shown how the usual vortex dynamics typical for undoped pairs qualitatively changes when heavy dopants are used: heavy vortices with opposite topological charges (chiralities) attract each other, while vortices with the same charge are repelled. The force responsible for such behavior appears as a result of superposition of vortices velocity fields in the presence of doping substance and can be considered as a special realization of the Magnus effect. The force is evaluated quantitatively and its inverse proportionality to the distance is demonstrated. The mechanism described in this paper gives an example of how a light nonlinear classical field may realize repulsive and attractive interactions between embedded heavy impurities.
Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities
NASA Astrophysics Data System (ADS)
Luengo-Kovac, M.; Huang, S.; Del Gaudio, D.; Occena, J.; Goldman, R. S.; Raimondi, R.; Sih, V.
2017-11-01
The current-induced spin polarization and momentum-dependent spin-orbit field were measured in InxGa1 -xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbit coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.
Electrochemical CO 2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene
Zhang, Chenhao; Yang, Shize; Wu, Jingjie; ...
2018-03-25
Electrochemical reduction of CO 2 provides an opportunity to reach a carbon-neutral energy recycling regime, in which CO 2 emissions from fuel use are collected and converted back to fuels. The reduction of CO 2 to CO is the first step toward the synthesis of more complex carbon-based fuels and chemicals. Therefore, understanding this step is crucial for the development of high-performance electrocatalyst for CO 2 conversion to higher order products such as hydrocarbons. In this paper, atomic iron dispersed on nitrogen-doped graphene (Fe/NG) is synthesized as an efficient electrocatalyst for CO 2 reduction to CO. Fe/NG has a lowmore » reduction overpotential with high Faradic efficiency up to 80%. The existence of nitrogen-confined atomic Fe moieties on the nitrogen-doped graphene layer is confirmed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure analysis. The Fe/NG catalysts provide an ideal platform for comparative studies of the effect of the catalytic center on the electrocatalytic performance. Finally, the CO 2 reduction reaction mechanism on atomic Fe surrounded by four N atoms (Fe–N 4) embedded in nitrogen-doped graphene is further investigated through density functional theory calculations, revealing a possible promotional effect of nitrogen doping on graphene.« less
Electrochemical CO 2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chenhao; Yang, Shize; Wu, Jingjie
Electrochemical reduction of CO 2 provides an opportunity to reach a carbon-neutral energy recycling regime, in which CO 2 emissions from fuel use are collected and converted back to fuels. The reduction of CO 2 to CO is the first step toward the synthesis of more complex carbon-based fuels and chemicals. Therefore, understanding this step is crucial for the development of high-performance electrocatalyst for CO 2 conversion to higher order products such as hydrocarbons. In this paper, atomic iron dispersed on nitrogen-doped graphene (Fe/NG) is synthesized as an efficient electrocatalyst for CO 2 reduction to CO. Fe/NG has a lowmore » reduction overpotential with high Faradic efficiency up to 80%. The existence of nitrogen-confined atomic Fe moieties on the nitrogen-doped graphene layer is confirmed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure analysis. The Fe/NG catalysts provide an ideal platform for comparative studies of the effect of the catalytic center on the electrocatalytic performance. Finally, the CO 2 reduction reaction mechanism on atomic Fe surrounded by four N atoms (Fe–N 4) embedded in nitrogen-doped graphene is further investigated through density functional theory calculations, revealing a possible promotional effect of nitrogen doping on graphene.« less
Fang, Tommy; Watson, Jean-Luc; Goodman, Jordan; Dimkpa, Christian O; Martineau, Nicole; Das, Siddhartha; McLean, Joan E; Britt, David W; Anderson, Anne J
2013-02-22
Doping of ZnO nanoparticles (NPs) is being used to increase their commercialization in the optical and semiconductor fields. This paper addresses whether doping with Al alters how ZnO NPs at nonlethal levels modifies the metabolism of soil-borne pseudomonads which are beneficial in performing bioremediation or promoting plant growth. The differences in X-ray diffraction (XRD) patterns, observed between commercial ZnO and Al-doped ZnO NPs indicated the aluminum was present as Al NPs. Both particles aggregated in the bacterial growth medium and formed colloids of different surface charges. They had similar effects on bacterial metabolism: rapid, dose-dependent loss in light output indicative of temporary toxicity in a biosensor constructed in Pseudomonas putida KT2440; increased production of a fluorescent pyoverdine-type siderophore, and decreased levels of indole acetic acid and phenazines in Pseudomonas chlororaphis O6. Solubilization of Zn and Al from the NPs contributed to these responses to different extents. These findings indicate that Al-doping of the ZnO NPs did not reduce the ability of the NPs to alter bacterial metabolism in ways that could influence performance of the pseudomonads in their soil environment. Copyright © 2012. Published by Elsevier GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xuping, E-mail: wangxp@sdas.org; Liu, Bing; Yang, Yuguo
2014-08-04
An abnormal laser deflection phenomenon in a copper-doped KTa{sub 1−x}Nb{sub x}O{sub 3} (Cu:KTN) crystal is demonstrated in this Letter. A near-50 mrad beam deflection angle was observed when a voltage of 1.2 kV was applied to a Cu:KTN block with size of 2.8 mm × 1.2 mm × 7.5 mm at room temperature. The special features of this deflection phenomenon are that the laser beam deflection direction is perpendicular to the electric field direction, and the beam deflection angle remains unchanged when the electric field direction is reversed. The operating principle of the phenomenon is investigated and the origin of the deflection phenomenon is attributed to an interactionmore » between the graded refractivity effect and the quadratic electro-optic effect of the crystal.« less
Shimada, Kunio; Saga, Norihiko
2017-01-01
Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF) and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement. PMID:28208625
NASA Astrophysics Data System (ADS)
Md. Sadaf, Sharif; Mostafa Bourim, El; Liu, Xinjun; Hasan Choudhury, Sakeb; Kim, Dong-Wook; Hwang, Hyunsang
2012-03-01
We investigated the effect of a ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thin film on the generation of resistive switching in a stacked Pr0.7Ca0.3MnO3 (PCMO)/Nb-doped SrTiO3 (Nb:STO) heterostructure forming a p-n junction. To promote the ferroelectric effect, the thin PZT active layer was deposited on an epitaxially grown p-type PCMO film on a lattice-matched n-type Nb:STO single crystal. It was concluded that the observed resistive switching behavior in the all-perovskite Pt/PZT/PCMO/Nb:STO heterostructure was related to the modulation of PCMO/Nb:STO p-n junction's depletion width, which was caused either by the PZT ferroelectric polarization field effect, the electrochemical drift of oxygen ions under an electric field, or both simultaneously.
In operando evidence of deoxygenation in ionic liquid gating of YBa2Cu3O7-X
Perez-Muñoz, Ana M.; Schio, Pedro; Poloni, Roberta; Fernandez-Martinez, Alejandro; Rivera-Calzada, Alberto; Salas-Colera, Eduardo; Kinney, Joseph; Leon, Carlos; Santamaria, Jacobo; Garcia-Barriocanal, Javier; Goldman, Allen M.
2017-01-01
Field-effect experiments on cuprates using ionic liquids have enabled the exploration of their rich phase diagrams [Leng X, et al. (2011) Phys Rev Lett 107(2):027001]. Conventional understanding of the electrostatic doping is in terms of modifications of the charge density to screen the electric field generated at the double layer. However, it has been recently reported that the suppression of the metal to insulator transition induced in VO2 by ionic liquid gating is due to oxygen vacancy formation rather than to electrostatic doping [Jeong J, et al. (2013) Science 339(6126):1402–1405]. These results underscore the debate on the true nature, electrostatic vs. electrochemical, of the doping of cuprates with ionic liquids. Here, we address the doping mechanism of the high-temperature superconductor YBa2Cu3O7-X (YBCO) by simultaneous ionic liquid gating and X-ray absorption experiments. Pronounced spectral changes are observed at the Cu K-edge concomitant with the superconductor-to-insulator transition, evidencing modification of the Cu coordination resulting from the deoxygenation of the CuO chains, as confirmed by first-principles density functional theory (DFT) simulations. Beyond providing evidence of the importance of chemical doping in electric double-layer (EDL) gating experiments with superconducting cuprates, our work shows that interfacing correlated oxides with ionic liquids enables a delicate control of oxygen content, paving the way to novel electrochemical concepts in future oxide electronics. PMID:28028236
In operando evidence of deoxygenation in ionic liquid gating of YBa2Cu3O7-X.
Perez-Muñoz, Ana M; Schio, Pedro; Poloni, Roberta; Fernandez-Martinez, Alejandro; Rivera-Calzada, Alberto; Cezar, Julio C; Salas-Colera, Eduardo; Castro, German R; Kinney, Joseph; Leon, Carlos; Santamaria, Jacobo; Garcia-Barriocanal, Javier; Goldman, Allen M
2017-01-10
Field-effect experiments on cuprates using ionic liquids have enabled the exploration of their rich phase diagrams [Leng X, et al. (2011) Phys Rev Lett 107(2):027001]. Conventional understanding of the electrostatic doping is in terms of modifications of the charge density to screen the electric field generated at the double layer. However, it has been recently reported that the suppression of the metal to insulator transition induced in VO 2 by ionic liquid gating is due to oxygen vacancy formation rather than to electrostatic doping [Jeong J, et al. (2013) Science 339(6126):1402-1405]. These results underscore the debate on the true nature, electrostatic vs. electrochemical, of the doping of cuprates with ionic liquids. Here, we address the doping mechanism of the high-temperature superconductor YBa 2 Cu 3 O 7-X (YBCO) by simultaneous ionic liquid gating and X-ray absorption experiments. Pronounced spectral changes are observed at the Cu K-edge concomitant with the superconductor-to-insulator transition, evidencing modification of the Cu coordination resulting from the deoxygenation of the CuO chains, as confirmed by first-principles density functional theory (DFT) simulations. Beyond providing evidence of the importance of chemical doping in electric double-layer (EDL) gating experiments with superconducting cuprates, our work shows that interfacing correlated oxides with ionic liquids enables a delicate control of oxygen content, paving the way to novel electrochemical concepts in future oxide electronics.
Shih, Chih-Jen; Wang, Qing Hua; Son, Youngwoo; Jin, Zhong; Blankschtein, Daniel; Strano, Michael S
2014-06-24
Field-effect transistor (FET) devices composed of a MoS2-graphene heterostructure can combine the advantages of high carrier mobility in graphene with the permanent band gap of MoS2 for digital applications. Herein, we investigate the electron transfer, photoluminescence, and gate-controlled carrier transport in such a heterostructure. We show that the junction is a Schottky barrier, whose height can be artificially controlled by gating or doping graphene. When the applied gate voltage (or the doping level) is zero, the photoexcited electron-hole pairs in monolayer MoS2 can be split by the heterojunction, significantly reducing the photoluminescence. By applying negative gate voltage (or p-doping) in graphene, the interlayer impedance formed between MoS2 and graphene exhibits an 100-fold increase. For the first time, we show that the gate-controlled interlayer Schottky impedance can be utilized to modulate carrier transport in graphene, significantly depleting the hole transport, but preserving the electron transport. Accordingly, we demonstrate a new type of FET device, which enables a controllable transition from NMOS digital to bipolar characteristics. In the NMOS digital regime, we report a very high room temperature on/off current ratio (ION/IOFF ∼ 36) in comparison to graphene-based FET devices without sacrificing the field-effect electron mobilities in graphene. By engineering the source/drain contact area, we further estimate that a higher value of ION/IOFF up to 100 can be obtained in the device architecture considered. The device architecture presented here may enable semiconducting behavior in graphene for digital and analogue electronics.
Mott metal-insulator transition in the doped Hubbard-Holstein model
NASA Astrophysics Data System (ADS)
Kurdestany, Jamshid Moradi; Satpathy, S.
2017-08-01
Motivated by the current interest in the understanding of the Mott insulators away from half-filling, observed in many perovskite oxides, we study the Mott metal-insulator transition in the doped Hubbard-Holstein model using the Hartree-Fock mean field theory. The Hubbard-Holstein model is the simplest model containing both the Coulomb and the electron-lattice interactions, which are important ingredients in the physics of the perovskite oxides. In contrast to the half-filled Hubbard model, which always results in a single phase (either metallic or insulating), our results show that away from half-filling, a mixed phase of metallic and insulating regions occurs. As the dopant concentration is increased, the metallic part progressively grows in volume, until it exceeds the percolation threshold, leading to percolative conduction. This happens above a critical dopant concentration δc, which, depending on the strength of the electron-lattice interaction, can be a significant fraction of unity. This means that the material could be insulating even for a substantial amount of doping, in contrast to the expectation that doped holes would destroy the insulating behavior of the half-filled Hubbard model. While effects of fluctuation beyond the mean field remain an open question, our results provide a starting point for the understanding of the density-driven metal-insulator transition observed in many complex oxides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gautam, Subodh K., E-mail: subodhkgtm@gmail.com, E-mail: fouran@gmail.com; Ojha, S.; Singh, Fouran, E-mail: subodhkgtm@gmail.com, E-mail: fouran@gmail.com
2015-12-15
The effect of Niobium doping and size of crystallites on highly transparent nano-crystalline Niobium doped Titanium Dioxide (NTO) thin films with stable anatase phase are reported. The Nb doping concentration is varied within the solubility limit in TiO{sub 2} lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb{sup +5} in the TiO{sub 2} lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Ramanmore » (MR) spectra of films with small size crystallites shows stiffening of about 4 cm{sup −1} for the E{sub g(1)} mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B{sub 1g} mode exhibits a large anomalous softening of 20 cm{sup −1} with asymmetrical broadening; which was not reported for the case of pure TiO{sub 2} crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb{sup 5+} doping induced reduction of Ti{sup 4+} ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure (NEXAFS) and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.« less
NASA Astrophysics Data System (ADS)
Abbasabadi, Majid; Sahrai, Mostafa
2018-01-01
We investigated the propagation of an electromagnetic pulse through a one-dimensional photonic crystal doped with quantum-dot (QD) molecules in a defect layer. The QD molecules behave as a three-level quantum system and are driven by a coherent probe laser field and an incoherent pump field. No coherent coupling laser fields were introduced, and the coherence was created by the interdot tunnel effect. Further studied was the effect of tunneling and incoherent pumping on the group velocity of the transmitted and reflected probe pulse.
Metal-to-insulator crossover in YBa2Cu3Oy probed by low-temperature quasiparticle heat transport.
Sun, X F; Segawa, Kouji; Ando, Yoichi
2004-09-03
It was recently demonstrated that in La2-xSrxCuO4 the magnetic-field (H) dependence of the low-temperature thermal conductivity kappa up to 16 T reflects whether the normal state under high magnetic field is a metal or an insulator. We measure the H dependence of kappa in YBa(2)Cu(3)O(y) (YBCO) at subkelvin temperatures for a wide doping range, and find that at low doping the kappa(H) behavior signifies the change in the ground state in this system as well. Surprisingly, the critical doping is found to be located deeply inside the underdoped region, about the hole doping of 0.07 hole/Cu; this critical doping is apparently related to the stripe correlations as revealed by the in-plane resistivity anisotropy.
Advanced p-MOSFET Ionizing-Radiation Dosimeter
NASA Technical Reports Server (NTRS)
Buehler, Martin G.; Blaes, Brent R.
1994-01-01
Circuit measures total dose of ionizing radiation in terms of shift in threshold gate voltage of doped-channel metal oxide/semiconductor field-effect transistor (p-MOSFET). Drain current set at temperature-independent point to increase accuracy in determination of radiation dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Liangzhi, E-mail: 15004110853@163.com; Liu, Qing
2016-12-15
Density Functional Theory (DFT) combines with grand canonical Monte Carlo (GCMC) simulations are performed to explore the effect of Li doping on the hydrogen storage capability of COF-320. The results show that the interaction energy between the H{sub 2} and the Li-doped COF-320 is about three times higher than that of pristine COF-320. GCMC simulations are employed to study the hydrogen uptake of Li-doped COF-320 at ambient temperature, further confirm that the lithium doping can improve the hydrogen uptake at ambient temperature. Our results demonstrate that Li-doped COFs have good potential in the field of hydrogen storage. - Graphical abstract:more » Fig. 1. The optimized cluster model used here to represent the COF-320 and possible adsorption sites (A, B, C) for adsorption of metals in the COF-320. The dangling bonds are terminated by H atoms. C, H, and N atoms are shown as gray, white, and blue colors, respectively. Fig. 2. The adsorption isotherm of H{sub 2} in the pristine and Li-doped COF-320 at 298 K. - Highlights: • The binding sites of single and two lithium atoms in COF-320 were studied. • The interaction energy between the H{sub 2} and the Li-doped COF-320 is about three times higher than that of pristine COF-320. • H{sub 2} uptakes on the Li-doped COFs obtain significant improvement at ambient temperature. • Lithium-doping is a successful strategy for improving hydrogen uptake.« less
NASA Technical Reports Server (NTRS)
Ho, C.-T.
1982-01-01
The results of experiments on the recombination lifetime in a phosphorus diffused N(+) layer of a silicon solar cell are reported. The cells studied comprised three groups of Czochralski grown crystals: boron doped to one ohm-cm, boron doped to 6 ohm-cm, and aluminum doped to one ohm-cm, all with a shunt resistance exceeding 500 kilo-ohms. The characteristic bulk diffusion length of a cell sample was determined from the short circuit current response to light at a wavelength of one micron. The recombination rates were obtained by measurement of the open circuit voltage as a function of the photogeneration rate. The recombination rate was found to be dependent on the photoinjection level, and is positive-field controlled at low photoinjection, positive-field influence Auger recombination at a medium photoinjection level, and negative-field controlled Auger recombination at a high photoinjection level.
Survival of Verwey transition in gadolinium-doped ultrasmall magnetite nanoparticles.
Yeo, Sunmog; Choi, Hyunkyung; Kim, Chul Sung; Lee, Gyeong Tae; Seo, Jeong Hyun; Cha, Hyung Joon; Park, Jeong Chan
2017-09-28
We have demonstrated that the Verwey transition, which is highly sensitive to impurities, survives in anisotropic Gd-doped magnetite nanoparticles. Transmission electron microscopy analysis shows that the nanoparticles are uniformly distributed. X-ray photoelectron spectroscopy and EDS mapping analysis confirm Gd-doping on the nanoparticles. The Verwey transition of the Gd-doped magnetite nanoparticles is robust and the temperature dependence of the magnetic moment (zero field cooling and field cooling) shows the same behaviour as that of the Verwey transition in bulk magnetite, at a lower transition temperature (∼110 K). In addition, irregularly shaped nanoparticles do not show the Verwey transition whereas square-shaped nanoparticles show the transition. Mössbauer spectral analysis shows that the slope of the magnetic hyperfine field and the electric quadrupole splitting change at the same temperature, meaning that the Verwey transition occurs at ∼110 K. These results would provide new insights into understanding the Verwey transition in nano-sized materials.
Highly Flexible and Conductive Glycerol-Doped PEDOT:PSS Films Prepared Under an Electric Field
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiroyuki; Aizawa, Kengo; Chonan, Yasunori; Komiyama, Takao; Aoyama, Takashi; Sakai, Eiichi; Qiu, Jianhui; Sato, Naoki
2018-06-01
Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) films doped with several sugar alcohols, viz. xylitol (XL), glycerol (GL), and polyglycerol (PG), at various levels have been synthesized and their thermoelectric properties studied. Among these specimens, 2.5 vol.% GL-doped films showed the best performance with electrical conductivity σ, Seebeck coefficient S, and power factor S 2 σ at room temperature reaching 1040 S/cm, 19 μV/K, and 37 μW/m-K2, respectively. Next, we synthesized films under an electric field E pr for the purpose of crystal growth. GL-doped films showed σ enhancement with increase of E pr. The highest σ value of 1300 S/cm was attained at E pr = 4 kV/cm. S and thermal conductivity κ values were almost independent of E pr. The ZT value was calculated to be between 0.017 and 0.101 at room temperature. We also examined film flexibility. High flexibility was achieved on GL doping, and it was not deteriorated when synthesized under an electric field.
Magnetic and dielectric study of Fe-doped CdSe nanoparticles
NASA Astrophysics Data System (ADS)
Das, Sayantani; Banerjee, Sourish; Bandyopadhyay, Sudipta; Sinha, Tripurari Prasad
2018-01-01
Nanoparticles of cadmium selenide (CdSe) and Fe (5% and 10%) doped CdSe have been synthesized by soft chemical route and found to have cubic structure. The magnetic field dependent magnetization measurement of the doped samples indicates the presence of anti-ferromagnetic order. The temperature dependent magnetization (M-T) measurement under zero field cooled and field cooled conditions has also ruled out the presence of ferromagnetic component in the samples at room temperature as well as low temperature. In order to estimate the anti-ferromagnetic coupling among the doped Fe atoms, an M-T measurement at 500 Oe has been carried out, and the Curie-Weiss temperature θ of the samples has been estimated from the inverse of susceptibility versus temperature plots. The dielectric relaxation peaks are observed in the spectra of imaginary part of dielectric constant. The temperature dependent relaxation time is found to obey the Arrhenius law having activation energy 0.4 eV for Fe doped samples. The frequency dependent conductivity spectra are found to obey the power law. [Figure not available: see fulltext.
Highly Flexible and Conductive Glycerol-Doped PEDOT:PSS Films Prepared Under an Electric Field
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiroyuki; Aizawa, Kengo; Chonan, Yasunori; Komiyama, Takao; Aoyama, Takashi; Sakai, Eiichi; Qiu, Jianhui; Sato, Naoki
2018-04-01
Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) films doped with several sugar alcohols, viz. xylitol (XL), glycerol (GL), and polyglycerol (PG), at various levels have been synthesized and their thermoelectric properties studied. Among these specimens, 2.5 vol.% GL-doped films showed the best performance with electrical conductivity σ, Seebeck coefficient S, and power factor S 2 σ at room temperature reaching 1040 S/cm, 19 μV/K, and 37 μW/m-K2, respectively. Next, we synthesized films under an electric field E pr for the purpose of crystal growth. GL-doped films showed σ enhancement with increase of E pr. The highest σ value of 1300 S/cm was attained at E pr = 4 kV/cm. S and thermal conductivity κ values were almost independent of E pr. The ZT value was calculated to be between 0.017 and 0.101 at room temperature. We also examined film flexibility. High flexibility was achieved on GL doping, and it was not deteriorated when synthesized under an electric field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landesman, Jean-Pierre, E-mail: jean-pierre.landesman@univ-rennes1.fr; Jiménez, Juan; Torres, Alfredo
The general objective is the investigation of the defects formed by dry etching tools such as those involved in the fabrication of photonic devices with III–V semiconductors. Emphasis is put on plasma exposures with chlorine-based chemistries. In addition to identifying these defects and describing their effects on the electro-optic and structural properties, the long-term target would be to predict the impact on the parameters of importance for photonic devices, and possibly include these predictions in their design. The work is first centered on explaining the experimental methodology. This methodology starts with the design and growth of a quantum well structuremore » on indium phosphide, including ternary indium arsenide/phosphide quantum wells with graded arsenic/phosphor composition. These samples have then been characterized by luminescence methods (photo- and cathodoluminescence), high-resolution transmission electron microscopy, and secondary ion mass spectrometry. As one of the parameters of importance in this study, the authors have also included the doping level. The samples have been exposed to the etching plasmas for “short” durations that do not remove completely the quantum wells, but change their optical signature. No masking layer with lithographic features was involved as this work is purely oriented to study the interaction between the plasma and the samples. A significant difference in the luminescence spectra of the as-grown undoped and doped samples is observed. A mechanism describing the effect of the built-in electric field appearing as a consequence of the doping profile is proposed. This mechanism involves quantum confined Stark effect and electric-field induced carrier escape from the quantum wells. In the following part, the effects of exposure to various chlorine-based plasmas were explored. Differences are again observed between the undoped and doped samples, especially for chemistries containing silicon tetrachloride. Secondary ion mass spectrometry indicates penetration of chlorine in the structures. Transmission electron microscopy is used to characterize the quantum well structure before and after plasma bombardment. By examining carefully the luminescence spectral properties, the authors could demonstrate the influence of the etching plasmas on the built-in electric field (in the case of doped samples), and relate it to some ionic species penetrating the structures. Etching plasmas involving both chlorine and nitrogen have also been studied. The etching rate for these chemistries is much slower than for some of the silicon tetrachloride based chemistries. Their effects on the samples are also very different, showing much reduced effect on the built-in electric field (for the doped samples), but significant blue-shifts of the luminescence peaks that the authors attributed to the penetration of nitrogen in the structures. Nitrogen, in interstitial locations, induces mechanical compressive stress that accounts for the blue-shifts. Finally, from the comparison between secondary ion mass spectrometry and luminescence spectra, the authors suggest some elements for a general mechanism involved in the etching by chloride-chemistries, in which a competition takes place between the species at the surface, active for the etching mechanism, and the species that penetrate the structure, lost for the etching process, but relevant in terms of impact on the electro-optic and structural features of the exposed materials.« less
NASA Astrophysics Data System (ADS)
Nusran, N. M.; Joshi, K. R.; Cho, K.; Tanatar, M. A.; Meier, W. R.; Bud’ko, S. L.; Canfield, P. C.; Liu, Y.; Lograsso, T. A.; Prozorov, R.
2018-04-01
Non-invasive magnetic field sensing using optically-detected magnetic resonance of nitrogen-vacancy centers in diamond was used to study spatial distribution of the magnetic induction upon penetration and expulsion of weak magnetic fields in several representative superconductors. Vector magnetic fields were measured on the surface of conventional, elemental Pb and Nb, and compound LuNi2B2C and unconventional iron-based superconductors Ba1‑x K x Fe2As2 (x = 0.34 optimal hole doping), Ba(Fe1‑x Co x )2As2 (x = 0.07 optimal electron doping), and stoichiometric CaKFe4As4, using variable-temperature confocal system with diffraction-limited spatial resolution. Magnetic induction profiles across the crystal edges were measured in zero-field-cooled and field-cooled conditions. While all superconductors show nearly perfect screening of magnetic fields applied after cooling to temperatures well below the superconducting transition, T c, a range of very different behaviors was observed for Meissner expulsion upon cooling in static magnetic field from above T c. Substantial conventional Meissner expulsion is found in LuNi2B2C, paramagnetic Meissner effect is found in Nb, and virtually no expulsion is observed in iron-based superconductors. In all cases, good correlation with macroscopic measurements of total magnetic moment is found.
Nusran, N. M.; Joshi, K. R.; Cho, K.; ...
2018-04-12
Non-invasive magnetic field sensing using optically-detected magnetic resonance of nitrogen-vacancy centers in diamond was used to study spatial distribution of the magnetic induction upon penetration and expulsion of weak magnetic fields in several representative superconductors. Vector magnetic fields were measured on the surface of conventional, elemental Pb and Nb, and compound LuNi 2B 2C and unconventional iron-based superconductors Ba 1-xK xFe 2As 2 (x = 0.34 optimal hole doping), Ba(Fe 1-xCo x)2As2 (x = 0.07 optimal electron doping), and stoichiometric CaKFe 4As 4, using variable-temperature confocal system with diffraction-limited spatial resolution. Magnetic induction profiles across the crystal edges were measuredmore » in zero-field-cooled and field-cooled conditions. While all superconductors show nearly perfect screening of magnetic fields applied after cooling to temperatures well below the superconducting transition, T c, a range of very different behaviors was observed for Meissner expulsion upon cooling in static magnetic field from above T c. Substantial conventional Meissner expulsion is found in LuNi 2B 2C, paramagnetic Meissner effect is found in Nb, and virtually no expulsion is observed in iron-based superconductors. In all cases, good correlation with macroscopic measurements of total magnetic moment is found.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nusran, N. M.; Joshi, K. R.; Cho, K.
Non-invasive magnetic field sensing using optically-detected magnetic resonance of nitrogen-vacancy centers in diamond was used to study spatial distribution of the magnetic induction upon penetration and expulsion of weak magnetic fields in several representative superconductors. Vector magnetic fields were measured on the surface of conventional, elemental Pb and Nb, and compound LuNi 2B 2C and unconventional iron-based superconductors Ba 1-xK xFe 2As 2 (x = 0.34 optimal hole doping), Ba(Fe 1-xCo x)2As2 (x = 0.07 optimal electron doping), and stoichiometric CaKFe 4As 4, using variable-temperature confocal system with diffraction-limited spatial resolution. Magnetic induction profiles across the crystal edges were measuredmore » in zero-field-cooled and field-cooled conditions. While all superconductors show nearly perfect screening of magnetic fields applied after cooling to temperatures well below the superconducting transition, T c, a range of very different behaviors was observed for Meissner expulsion upon cooling in static magnetic field from above T c. Substantial conventional Meissner expulsion is found in LuNi 2B 2C, paramagnetic Meissner effect is found in Nb, and virtually no expulsion is observed in iron-based superconductors. In all cases, good correlation with macroscopic measurements of total magnetic moment is found.« less
Magnetic field oscillations of the critical current in long ballistic graphene Josephson junctions
NASA Astrophysics Data System (ADS)
Rakyta, Péter; Kormányos, Andor; Cserti, József
2016-06-01
We study the Josephson current in long ballistic superconductor-monolayer graphene-superconductor junctions. As a first step, we have developed an efficient computational approach to calculate the Josephson current in tight-binding systems. This approach can be particularly useful in the long-junction limit, which has hitherto attracted less theoretical interest but has recently become experimentally relevant. We use this computational approach to study the dependence of the critical current on the junction geometry, doping level, and an applied perpendicular magnetic field B . In zero magnetic field we find a good qualitative agreement with the recent experiment of M. Ben Shalom et al. [Nat. Phys. 12, 318 (2016), 10.1038/nphys3592] for the length dependence of the critical current. For highly doped samples our numerical calculations show a broad agreement with the results of the quasiclassical formalism. In this case the critical current exhibits Fraunhofer-like oscillations as a function of B . However, for lower doping levels, where the cyclotron orbit becomes comparable to the characteristic geometrical length scales of the system, deviations from the results of the quasiclassical formalism appear. We argue that due to the exceptional tunability and long mean free path of graphene systems a new regime can be explored where geometrical and dynamical effects are equally important to understand the magnetic field dependence of the critical current.
NASA Astrophysics Data System (ADS)
Liu, Shiying; Peng, Sunjuan; Ma, Jun; Li, Guojian; Qin, Xuesi; Li, Mengmeng; Wang, Qiang
2017-04-01
This paper studies the effects of high magnetic field (HMF) on the structure, optical and thermoelectric properties of the doped ZnO thin films. The results show that both Al dopant and application of HMF can affect the crystal structure, surface morphology, elemental distribution and so on. The particles of the thin films become small and regular by doping Al. The ZnO films oxidized from the Au/Zn bilayer have needle structure. The ZnO films oxidized from the Au/Zn-Al bilayer transform to spherical from hexagonal due to the application of HMF. The transmittance decreases with doping Al because of the opaque of Al element and decreases with the application of HMF due to the dense structure obtained under HMF. Electrical resistivity (ρ) of the ZnO films without Al decreases with increasing measurement temperature (T) and is about 1.5 × 10-3 Ω·m at 210 °C. However, the ρ of the Al-doped ZnO films is less than 10-5 Ω·m. The Seebeck coefficient (S) of the films oxidized from the Au/Zn-Al films reduces with increasing T. The S values oxidized under 0 T and 12 T conditions are 2.439 μV/K and -3.415 μV/K at 210 °C, respectively. Power factor reaches the maximum value (3.198 × 10-4 W/m·K2) at 210 °C for the film oxidized under 12 T condition. These results indicate that the Al dopant and the application of HMF can be used to control structure and thermoelectric properties of doped ZnO films.
NASA Astrophysics Data System (ADS)
Undre, Pallavi G.; Birajdar, Shankar D.; Kathare, R. V.; Jadhav, K. M.
2018-05-01
In this work pure and Ni-doped ZnO nanoparticles have been prepared by sol-gel method. Influence of nickel doping on structural, morphological and magnetic properties of prepared nanoparticles was investigated by X-ray diffraction technique (XRD), Scanning electron microscopy (SEM) and Pulse field magnetic hysteresis loop. X-ray diffraction pattern shows the formation of a single phase with hexagonal wurtzite structure of both pure and Ni-doped ZnO nanoparticles. The lattice parameters `an' and `c' of Ni-doped ZnO is slightly less than that of pure ZnO nanoparticles. The crystalline size of prepared nanoparticles is found to be in 29 and 31 nm range. SEM technique used to examine the surface morphology of samples, SEM image confirms the nanocrystalline nature of present samples. From the pulse field hysteresis loop technique pure and Ni-doped ZnO nanoparticles show diamagnetic and ferromagnetic behavior at room temperature respectively.
Fluorine-doped NiO nanostructures: Structural, morphological and spectroscopic studies
NASA Astrophysics Data System (ADS)
Singh, Kulwinder; Kumar, Manjeet; Singh, Dilpreet; Singh, Manjinder; Singh, Paviter; Singh, Bikramjeet; Kaur, Gurpreet; Bala, Rajni; Thakur, Anup; Kumar, Akshay
2018-05-01
Nanostructured NiO has been prepared by co-precipitation method. In this study, the effect of fluorine doping (1, 3 and 5 wt. %) on the structural, morphological as well as optical properties of NiO nanostructures has been studied. X-ray diffraction (XRD) has employed for studying the structural properties. Cubic crystal structure of NiO was confirmed by the XRD analysis. Crystallite size increased with increase in doping concentration. Nelson-Riley factor (NRF) analysis indicated the presence of defect states in the synthesized samples. Field emission scanning electron microscopy showed the spherical morphology of the synthesized samples and also revealed that the particle size varied with dopant content. The optical properties were studied using UV-Visible Spectroscopy. The results indicated that the band gap energy of the synthesized nanostructures decreased with increase in doping concentration upto 3% but increased as the doping concentration was further raised to 5%. This can be ascribed to the defect states variations in the synthesized samples. The results suggested that the synthesized nanostructures are promising candidate for optoelectronic as well as gas sensing applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thi, Trinh Cham, E-mail: s1240009@jaist.ac.jp; Koyama, Koichi; Ohdaira, Keisuke
We improve the passivation property of n-type crystalline silicon (c-Si) surface passivated with a catalytic chemical vapor deposited (Cat-CVD) Si nitride (SiN{sub x}) film by inserting a phosphorous (P)-doped layer formed by exposing c-Si surface to P radicals generated by the catalytic cracking of PH{sub 3} molecules (Cat-doping). An extremely low surface recombination velocity (SRV) of 2 cm/s can be achieved for 2.5 Ω cm n-type (100) floating-zone Si wafers passivated with SiN{sub x}/P Cat-doped layers, both prepared in Cat-CVD systems. Compared with the case of only SiN{sub x} passivated layers, SRV decreases from 5 cm/s to 2 cm/s. The decrease in SRVmore » is the result of field effect created by activated P atoms (donors) in a shallow P Cat-doped layer. Annealing process plays an important role in improving the passivation quality of SiN{sub x} films. The outstanding results obtained imply that SiN{sub x}/P Cat-doped layers can be used as promising passivation layers in high-efficiency n-type c-Si solar cells.« less
Solution-based electrical doping of semiconducting polymer films over a limited depth
NASA Astrophysics Data System (ADS)
Kolesov, Vladimir A.; Fuentes-Hernandez, Canek; Chou, Wen-Fang; Aizawa, Naoya; Larrain, Felipe A.; Wang, Ming; Perrotta, Alberto; Choi, Sangmoo; Graham, Samuel; Bazan, Guillermo C.; Nguyen, Thuc-Quyen; Marder, Seth R.; Kippelen, Bernard
2017-04-01
Solution-based electrical doping protocols may allow more versatility in the design of organic electronic devices; yet, controlling the diffusion of dopants in organic semiconductors and their stability has proven challenging. Here we present a solution-based approach for electrical p-doping of films of donor conjugated organic semiconductors and their blends with acceptors over a limited depth with a decay constant of 10-20 nm by post-process immersion into a polyoxometalate solution (phosphomolybdic acid, PMA) in nitromethane. PMA-doped films show increased electrical conductivity and work function, reduced solubility in the processing solvent, and improved photo-oxidative stability in air. This approach is applicable to a variety of organic semiconductors used in photovoltaics and field-effect transistors. PMA doping over a limited depth of bulk heterojunction polymeric films, in which amine-containing polymers were mixed in the solution used for film formation, enables single-layer organic photovoltaic devices, processed at room temperature, with power conversion efficiencies up to 5.9 +/- 0.2% and stable performance on shelf-lifetime studies at 60 °C for at least 280 h.
The secret behind the success of doping nickel oxyhydroxide with iron.
Fidelsky, Vicky; Toroker, Maytal Caspary
2017-03-15
Discovering better catalysts for water splitting is the holy grail of the renewable energy field. One of the most successful water oxidation catalysts is nickel oxyhydroxide (NiOOH), which is chemically active only as a result of doping with Fe. In order to shed light on how Fe improves efficiency, we perform Density Functional Theory +U (DFT+U) calculations of water oxidation reaction intermediates of Fe substitutional doped NiOOH. The results are analyzed while considering the presence of vacancies that we use as probes to test the effect of adding charge to the surface. We find that the smaller electronegativity of the Fe dopant relative to Ni allows the dopant to have several possible oxidation states with less energy penalty. As a result, the presence of vacancies which alters local oxidation states does not affect the low overpotential of Fe-doped NiOOH. We conclude that the secret to the success of doping NiOOH with iron is the ability of iron to easily change oxidation states, which is critical during the chemical reaction of water oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afaah, A. N., E-mail: afaahabdullah@yahoo.com; Asib, N. A. M., E-mail: amierahasib@yahoo.com; Aadila, A., E-mail: aadilaazizali@gmail.com
2016-07-06
p-type ZnO films have been fabricated on ZnO-seeded glass substrate, using AgNO{sub 3} as a source of silver dopant by facile solution-immersion. Cleaned glass substrate were seeded with ZnO by mist-atomisation, and next the seeded substrates were immersed in Ag:ZnO solution. The effects of Ag doping concentration on the Ag-doped ZnO have been investigated. The substrates were immersed in different concentrations of Ag dopant with variation of 0, 1, 3, 5 and 7 at. %. The surface morphology of the films was characterized by field emission scanning electron microscope (FESEM). In order to investigate the electrical properties, the films weremore » characterized by Current-Voltage (I-V) measurement. FESEM micrographs showed uniform distribution of nanostructured ZnO and Ag:ZnO. Besides, the electrical properties of Ag-doped ZnO were also dependent on the doping concentration. The I-V measurement result indicated the electrical properties of 1 at. % Ag:ZnO thin film owned highest electrical conductivity.« less
Robak, Elżbieta; Coy, Emerson; Kotkowiak, Michał; Jurga, Stefan; Załęski, Karol; Drozdowski, Henryk
2016-04-29
Zinc oxide (ZnO) is a wide-bandgap semiconductor material with applications in a variety of fields such as electronics, optoelectronic and solar cells. However, much of these applications demand a reproducible, reliable and controllable synthesis method that takes special care of their functional properties. In this work ZnO and Cu-doped ZnO nanowires are obtained by an optimized hydrothermal method, following the promising results which ZnO nanostructures have shown in the past few years. The morphology of as-prepared and copper-doped ZnO nanostructures is investigated by means of scanning electron microscopy and high resolution transmission electron microscopy. X-ray diffraction is used to study the impact of doping on the crystalline structure of the wires. Furthermore, the mechanical properties (nanoindentation) and the functional properties (absorption and photoluminescence measurements) of ZnO nanostructures are examined in order to assess their applicability in photovoltaics, piezoelectric and hybrids nanodevices. This work shows a strong correlation between growing conditions, morphology, doping and mechanical as well as optical properties of ZnO nanowires.
Agarwal, Shilpi; Tyagi, Inderjeet; Gupta, Vinod Kumar; Sohrabi, Maryam; Mohammadi, Sanaz; Golikand, Ahmad Nozad; Fakhri, Ali
2017-01-01
Sol-gel and precipitation reaction methods were used to synthesize Un-doped and Fe-doped SnO 2 /Co 3 O 4 nanocomposites under UV light; the synthesized nanocomposites were applied for the photocatalytic degradation of metronidazole antibiotic. The developed photo catalyst was well characterized using energy dispersive X-ray spectrometer (EDX), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FE-SEM), UV-Visible and photoluminescence (PL) spectroscopy. Effective parameters such as pH, photocatalyst dose and contact time was optimized and well investigated. From the obtained facts it is clear that the 98.3% of MTZ was degraded with in 15min, pH6 and 0.1g catalyst when the Fe molar ratio was 1:1 at %. As compared to results obtained from un-doped SnO 2 /Co 3 O 4 nanocomposites Fe doped SnO 2 /Co 3 O 4 nanocomposites possess greater photocatalytic efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.
Characterization of Fe-doped SrTiO3/BaTiO3 multilayer films and their ethanol sensing applications
NASA Astrophysics Data System (ADS)
Supasai, Thidarat; Wisitsoraat, Anurat; Hodak, Satreerat
2010-03-01
Fe-doped SrTiO3/BaTiO3 multilayer films have been deposited on alumina substrate using a sol-gel spin coating technique. The field effect scanning electron microscope photographs revealed a mixture of round and facet-shaped crystals in the undoped films. This microstructure disappeared in Fe-doped films which adopted a more porous sponge-like structure. The grain size of the films decreased from 300 nm for undoped films to 100 nm and 70 nm with Fe doping concentrations of 4 and 8 wt%, respectively. The absorption edge energy for X-rays by Fe was found to be about 7121 eV consistent with Fe^2+ oxidation state. Interdigitated electrodes were applied on these films for ethanol gas sensing application. A sensitivity figure of merit based on the relative change in the resistance of the Fe-doped films 8 wt% film was found to be in the 1-3 range for ethanol doses of 100-1000 ppm when operating at 250 C and in the range of 3-10 when the operating temperature was 350 C.
High-field transport properties of a P-doped BaFe2As2 film on technical substrate
Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo
2017-01-01
High temperature (high-Tc) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-Tc Nb3Sn due probably to cost and processing issues. The recent discovery of a second class of high-Tc materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe2As2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, Hc2, moderate Hc2 anisotropy, and intermediate Tc. Here we report on in-field transport properties of P-doped BaFe2As2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport Jc of 105 A/cm2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field Jc over MgB2 and NbTi, and a comparable level to Nb3Sn above 20 T. By analysing the E − J curves for determining Jc, a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis. PMID:28079117
High-field transport properties of a P-doped BaFe2As2 film on technical substrate
NASA Astrophysics Data System (ADS)
Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo
2017-01-01
High temperature (high-Tc) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-Tc Nb3Sn due probably to cost and processing issues. The recent discovery of a second class of high-Tc materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe2As2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, Hc2, moderate Hc2 anisotropy, and intermediate Tc. Here we report on in-field transport properties of P-doped BaFe2As2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport Jc of 105 A/cm2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field Jc over MgB2 and NbTi, and a comparable level to Nb3Sn above 20 T. By analysing the E - J curves for determining Jc, a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis.
Unusually high critical current of clean P-doped BaFe2As2 single crystalline thin film
NASA Astrophysics Data System (ADS)
Kurth, F.; Tarantini, C.; Grinenko, V.; Hänisch, J.; Jaroszynski, J.; Reich, E.; Mori, Y.; Sakagami, A.; Kawaguchi, T.; Engelmann, J.; Schultz, L.; Holzapfel, B.; Ikuta, H.; Hühne, R.; Iida, K.
2015-02-01
Microstructurally clean, isovalently P-doped BaFe2As2 (Ba-122) single crystalline thin films have been prepared on MgO (001) substrates by molecular beam epitaxy. These films show a superconducting transition temperature (Tc) of over 30 K although P content is around 0.22, which is lower than the optimal one for single crystals (i.e., 0.33). The enhanced Tc at this doping level is attributed to the in-plane tensile strain. The strained film shows high transport self-field critical current densities (Jc) of over 6 MA/cm2 at 4.2 K, which are among the highest for Fe based superconductors (FeSCs). In-field Jc exceeds 0.1 MA/cm2 at μ 0 H = 35 T for H ‖ a b and μ 0 H = 18 T for H ‖ c at 4.2 K, respectively, in spite of moderate upper critical fields compared to other FeSCs with similar Tc. Structural investigations reveal no defects or misoriented grains pointing to strong pinning centers. We relate this unexpected high Jc to a strong enhancement of the vortex core energy at optimal Tc, driven by in-plane strain and doping. These unusually high Jc make P-doped Ba-122 very favorable for high-field magnet applications.
Magnetic and Magnetocaloric Properties of Ca0.97La0.03MnO3 Manganites
NASA Astrophysics Data System (ADS)
Gong, G. D.; Hu, P. F.; Li, Y.; Kim, D. H.; Liu, C. L.; Phan, T. L.; Ho, T. A.; Yu, S. C.; Telegin, A.; Naumov, S. V.
2016-07-01
In spite of many previous studies on electron-doped CaMnO3 perovskite manganites, detailed investigations into the influence of low-doping concentrations on their magnetic and magnetocaloric (MC) properties have not been carried out yet. Additionally, there is still the lack of the comparison between single-crystal (SC) and polycrystalline (PC) materials. Dealing with these problems, we prepared orthorhombic Ca0.97La0.03MnO3 SC and PC samples. Magnetization measurements versus the temperature and magnetic field revealed remarkable differences in the magnetic property, particularly around the antiferromagnetic/ferromagnetic-paramagnetic phase-transition region. The analyses of the magnetization versus magnetic field, M( H), data indicated a weak MC effect with magnetic-entropy changes less than 0.1 J kg-1 K-1 for an applied field interval H = 10 kOe because ferromagnetic interactions between Mn3+ and Mn4+ ions are insignificant. The differences in the magnetic and MC properties of the SC and PC samples are ascribed to the effects of grain boundary, magnetic anisotropy, and nonstoichiometry in oxygen.
Saboungi, Marie-Louis; Price, David C. L.; Rosenbaum, Thomas F.; Xu, Rong; Husmann, Anke
2001-01-01
The heavily-doped silver chalcogenides, Ag.sub.2+.delta. Se and Ag.sub.2+.delta. Te, show magnetoresistance effects on a scale comparable to the "colossal" magnetoresistance (CMR) compounds. Hall coefficient, magnetoconductivity, and hydrostatic pressure experiments establish that elements of narrow-gap semiconductor physics apply, but both the size of the effects at room temperature and the linear field dependence down to fields of a few Oersteds are surprising new features.
Upper critical and irreversibility fields in Ni- and Co-doped pnictide bulk superconductors
NASA Astrophysics Data System (ADS)
Nikolo, Martin; Singleton, John; Solenov, Dmitry; Jiang, Jianyi; Weiss, Jeremy; Hellstrom, Eric
2018-05-01
A comprehensive study of upper critical and irreversibility magnetic fields in Ba(Fe0.95Ni0.05)2As2 (large grain and small grain samples), Ba(Fe0.94Ni0.06)2As2, Ba(Fe0.92Co0.08)2As2, and Ba(Fe0.92Co0.09)2As2 polycrystalline bulk pnictide superconductors was made in pulsed fields of up to 65 T. The full magnetic field-temperature (H-T) phase diagrams, starting at 1.5 K, were measured. The higher temperature, upper critical field Hc2 data are well described by the one-band Werthamer, Helfand, and Hohenberg (WHH) model. At low temperatures, the experimental data depart from the fitted WHH curves, suggesting an emergence of a new phase that could be attributed to the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. The large values of the Maki fitting parameter α indicate that the Zeeman pair breaking dominates over the orbital pair breaking and spin-paramagnetic pair-breaking effect is significant in these materials. Possible multi-band structure of these materials is lumped into effective parameters of the single-band model. Table of measured physical parameters allows us to compare these pnictide superconductors for different Co- and Ni- doping levels and granularity.
Spectral tuning of near-field radiative heat transfer by graphene-covered metasurfaces
NASA Astrophysics Data System (ADS)
Zheng, Zhiheng; Wang, Ao; Xuan, Yimin
2018-03-01
When two gratings are respectively covered by a layer of graphene sheet, the near-field radiative heat transfer between two parallel gratings made of silica (SiO2) could be greatly improved. As the material properties of doped silicon (n-type doping concentration is 1020 cm-3, marked as Si-20) and SiO2 differ greatly, we theoretically investigate the near-field radiative heat transfer between two parallel graphene-covered gratings made of Si-20 to explore some different phenomena, especially for modulating the spectral properties. The radiative heat flux between two parallel bulks made of Si-20 can be enhanced by using gratings instead of bulks. When the two gratings are respectively covered by a layer of graphene sheet, the radiative heat flux between two gratings made of Si-20 can be further enhanced. By tuning graphene chemical potential μ and grating filling factor f, due to the interaction between surface plasmon polaritons (SPPs) of graphene sheets and grating structures, the spectral properties of the radiative heat flux between two parallel graphene-covered gratings can be effectively regulated. This work will develop and supplement the effects of materials on the near-field radiative heat transfer for this kind of system configuration, paving a way to modulate the spectral properties of near-field radiative heat transfer.
Model of electron pairs in electron-doped cuprates
NASA Astrophysics Data System (ADS)
Singh, R. J.; Khan, Shakeel
2016-07-01
In the order parameter of hole-doped cuprate superconductors in the pseudogap phase, two holes enter the order parameter from opposite sides and pass through various CuO2 cells jumping from one O2- to the other under the influence of magnetic field offered by the Cu2+ ions in that CuO2 cell and thus forming hole pairs. In the pseudogap phase of electron-doped cuprates, two electrons enter the order parameter at Cu2+ sites from opposite ends and pass from one Cu2+ site to the diagonally opposite Cu2+ site. Following this type of path, they are subjected to high magnetic fields from various Cu2+ ions in that cell. They do not travel from one Cu2+ site to the other along straight path but by helical path. As they pass through the diagonal, they face high to low to very high magnetic field. Therefore, frequency of helical motion and pitch goes on changing with the magnetic field. Just before reaching the Cu2+ ions at the exit points of all the cells, the pitch of the helical motion is enormously decreased and thus charge density at these sites is increased. So the velocity of electrons along the diagonal path is decreased. Consequently, transition temperature of electron-doped cuprates becomes less than that of hole-doped cuprates. Symmetry of the order parameter of the electron-doped cuprates has been found to be of 3dx2-y2 + iS type. It has been inferred that internal magnetic field inside the order parameter reconstructs the Fermi surface, which is requisite for superconductivity to take place. Electron pairs formed in the pseudogap phase are the precursors of superconducting order parameter when cooled below Tc.
NASA Astrophysics Data System (ADS)
Mao, Wei; Wang, Hai-Yong; Shi, Peng-Hao; Wang, Xiao-Fei; Du, Ming; Zheng, Xue-Feng; Wang, Chong; Ma, Xiao-Hua; Zhang, Jin-Cheng; Hao, Yue
2018-04-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61574112, 61334002, 61474091, and 61574110) and the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 605119425012).
Ritchie, Earl T; Hill, David J; Mastin, Tucker M; Deguzman, Panfilo C; Cahoon, James F; Atkin, Joanna M
2017-11-08
We report the use of infrared (IR) scattering-type scanning near-field optical microscopy (s-SNOM) as a nondestructive method to map free-carriers in axially modulation-doped silicon nanowires (SiNWs) with nanoscale spatial resolution. Using this technique, we can detect local changes in the electrically active doping concentration based on the infrared free-carrier response in SiNWs grown using the vapor-liquid-solid (VLS) method. We demonstrate that IR s-SNOM is sensitive to both p-type and n-type free-carriers for carrier densities above ∼1 × 10 19 cm -3 . We also resolve subtle changes in local conductivity properties, which can be correlated with growth conditions and surface effects. The use of s-SNOM is especially valuable in low mobility materials such as boron-doped p-type SiNWs, where optimization of growth has been difficult to achieve due to the lack of information on dopant distribution and junction properties. s-SNOM can be widely employed for the nondestructive characterization of nanostructured material synthesis and local electronic properties without the need for contacts or inert atmosphere.
Superconducting gap structure in the electron doped BiS2-based superconductor
NASA Astrophysics Data System (ADS)
Bhattacharyya, A.; Adroja, D. T.; Hillier, A. D.; Jha, R.; Awana, V. P. S.; Strydom, A. M.
2017-07-01
The influence of electron doping on semimetallic SrFBiS2 has been investigated by means of resistivity, zero and transverse - field (ZF/TF) muon spin relaxation/rotation (μSR) experiments. SrFBiS2 is semimetallic in its normal state and small amounts of La doping results in bulk superconductivity at 2.8 K, at ambient pressure. The temperature dependence of the superfluid density as determined by TF-μSR can be best modelled by an isotropic s - wave type superconducting gap. We have estimated the magnetic penetration depth {λL}(0)=1087 nm, superconducting carrier density {{n}s}=3.7× {{10}26} carriers m-3 and effective-mass enhancement m * = 1.558 m e. Additionally, there is no clear sign of the occurrence of spontaneous internal magnetic fields below {{T}\\mathbf{c}} , which implies that the superconducting state in this material can not be categorized by the broken time-reversal symmetry which is in agreement with the previous theoretical prediction.
Quantum effect on the energy levels of Eu2+ doped K2Ca2(SO4)3 nanoparticles.
Salah, Numan; Habib, Sami S; Khan, Zishan H
2010-09-01
Quantum confinement effect on the energy levels of Eu(2+) doped K(2)Ca(2)(SO(4))(3) nanoparticles has been observed. The broad photoluminescence (PL) emission band of Eu(2+) doped K(2)Ca(2)(SO(4))(3) microcrystalline sample observed at ∼436 nm is found to split into two narrow well resolved bands, located at 422 and 445 nm in the nanostructure form of this material. This has been attributed to the reduction in the crystal field strength of the nanomaterials, which results in widening the energy band gap and splitting the broad 4f(6)5d energy level of Eu(2+). Energy band gap values of the micro and nanocrystalline K(2)Ca(2)(SO(4))(3) samples were also determined by measuring the UV-visible absorption spectra. These values are 3.34 and 3.44 eV for the micro and nanocrystalline samples, respectively. These remarkable results suggest that activators having wide emission bands might be subjected to weak crystal strength via nanostructure materials to modify their electronic transitions. This might prove a powerful technique for producing new-advanced materials for use in the fields of solid state lasers and optoelectronic devises.
Magnetic properties of Zn1-xNixO
NASA Astrophysics Data System (ADS)
Mondal, A.; Giri, N.; Sarkar, S.; Ray, Ruma
2018-05-01
Ni doped ZnO (Zn1-xNixO for 0.01 ≤ x ≤ 0.11) have been prepared by chemical precipitation method. X-ray diffraction corroborates a hexagonal wurzite structure without any impurity phases upto 11% Ni doping. Morphology of the particles is investigated by FE-SEM which exhibits either rod or tube like structure depending on the dopant concentration. Magnetization of Zn1-xNixO for 0.03 ≤ x ≤ 0.11 measured at room temperature infers the paramagnetic behavior. Zero field cooled and field cooled magnetization for x = 0.11 follows Curie-Weiss behavior above 122 K with effective paramagnetic moment 3.9μB. The non-linear magnetic hysteresis loop at 2 K with a small coercivity (300 Oe) indicates signature of ferromagnetic ordering.
Enhancement of tunneling current in phosphorene tunnel field effect transistors by surface defects.
Lu, Juan; Fan, Zhi-Qiang; Gong, Jian; Chen, Jie-Zhi; ManduLa, Huhe; Zhang, Yan-Yang; Yang, Shen-Yuan; Jiang, Xiang-Wei
2018-02-21
The effects of the staggered double vacancies, hydrogen (H), 3d transition metals, for example cobalt, and semiconductor covalent atoms, for example, germanium, nitrogen, phosphorus (P) and silicon adsorption on the transport properties of monolayer phosphorene were studied using density functional theory and non-equilibrium Green's function formalism. It was observed that the performance of the phosphorene tunnel field effect transistors (TFETs) with an 8.8 nm scaling channel length could be improved most effectively, if the adatoms or vacancies were introduced at the source channel interface. For H and P doped devices, the upper limit of on-state currents of phosphorene TFETs were able to be quickly increased to 2465 μA μm -1 and 1652 μA μm -1 , respectively, which not only outperformed the pristine sample, but also met the requirements for high performance logic applications for the next decade in the International Technology Roadmap for Semiconductors (ITRS). It was proved that the defect-induced band gap states make the effective tunneling path between the conduction band (CB) and valence band (VB) much shorter, so that the carriers can be injected easily from the left electrode, then transfer to the channel. In this regard, the tunneling properties of phosphorene TFETs can be manipulated using surface defects. In addition, the effects of spin polarization on the transport properties of doped phosphorene TFETs were also rigorously considered, H and P doped TFETs could achieve a high ON current of 1795 μA μm -1 and 1368 μA μm -1 , respectively, which is closer to realistic nanodevices.
Electron Excess Doping and Effective Schottky Barrier Reduction on the MoS2/h-BN Heterostructure.
Joo, Min-Kyu; Moon, Byoung Hee; Ji, Hyunjin; Han, Gang Hee; Kim, Hyun; Lee, Gwanmu; Lim, Seong Chu; Suh, Dongseok; Lee, Young Hee
2016-10-12
Layered hexagonal boron nitride (h-BN) thin film is a dielectric that surpasses carrier mobility by reducing charge scattering with silicon oxide in diverse electronics formed with graphene and transition metal dichalcogenides. However, the h-BN effect on electron doping concentration and Schottky barrier is little known. Here, we report that use of h-BN thin film as a substrate for monolayer MoS 2 can induce ∼6.5 × 10 11 cm -2 electron doping at room temperature which was determined using theoretical flat band model and interface trap density. The saturated excess electron concentration of MoS 2 on h-BN was found to be ∼5 × 10 13 cm -2 at high temperature and was significantly reduced at low temperature. Further, the inserted h-BN enables us to reduce the Coulombic charge scattering in MoS 2 /h-BN and lower the effective Schottky barrier height by a factor of 3, which gives rise to four times enhanced the field-effect carrier mobility and an emergence of metal-insulator transition at a much lower charge density of ∼1.0 × 10 12 cm -2 (T = 25 K). The reduced effective Schottky barrier height in MoS 2 /h-BN is attributed to the decreased effective work function of MoS 2 arisen from h-BN induced n-doping and the reduced effective metal work function due to dipole moments originated from fixed charges in SiO 2 .
Microscopic effects of Dy doping in the topological insulator Bi2Te3
NASA Astrophysics Data System (ADS)
Duffy, L. B.; Steinke, N.-J.; Krieger, J. A.; Figueroa, A. I.; Kummer, K.; Lancaster, T.; Giblin, S. R.; Pratt, F. L.; Blundell, S. J.; Prokscha, T.; Suter, A.; Langridge, S.; Strocov, V. N.; Salman, Z.; van der Laan, G.; Hesjedal, T.
2018-05-01
Magnetic doping with transition metal ions is the most widely used approach to break time-reversal symmetry in a topological insulator (TI)—a prerequisite for unlocking the TI's exotic potential. Recently, we reported the doping of Bi2Te3 thin films with rare-earth ions, which, owing to their large magnetic moments, promise commensurately large magnetic gap openings in the topological surface states. However, only when doping with Dy has a sizable gap been observed in angle-resolved photoemission spectroscopy, which persists up to room temperature. Although disorder alone could be ruled out as a cause of the topological phase transition, a fundamental understanding of the magnetic and electronic properties of Dy-doped Bi2Te3 remained elusive. Here, we present an x-ray magnetic circular dichroism, polarized neutron reflectometry, muon-spin rotation, and resonant photoemission study of the microscopic magnetic and electronic properties. We find that the films are not simply paramagnetic but that instead the observed behavior can be well explained by the assumption of slowly fluctuating, inhomogeneous, magnetic patches with increasing volume fraction as the temperature decreases. At liquid helium temperatures, a large effective magnetization can be easily introduced by the application of moderate magnetic fields, implying that this material is very suitable for proximity coupling to an underlying ferromagnetic insulator or in a heterostructure with transition-metal-doped layers. However, the introduction of some charge carriers by the Dy dopants cannot be excluded at least in these highly doped samples. Nevertheless, we find that the magnetic order is not mediated via the conduction channel in these samples and therefore magnetic order and carrier concentration are expected to be independently controllable. This is not generally the case for transition-metal-doped topological insulators, and Dy doping should thus allow for improved TI quantum devices.
NASA Astrophysics Data System (ADS)
Kurose, Noriko; Matsumoto, Kota; Yamada, Fumihiko; Roffi, Teuku Muhammad; Kamiya, Itaru; Iwata, Naotaka; Aoyagi, Yoshinobu
2018-01-01
A method for laser-induced local p-type activation of an as-grown Mg-doped GaN sample with a high lateral resolution is developed for realizing high power vertical devices for the first time. As-grown Mg-doped GaN is converted to p-type GaN in a confined local area. The transition from an insulating to a p-type area is realized to take place within about 1-2 μm fine resolution. The results show that the technique can be applied in fabricating the devices such as vertical field effect transistors, vertical bipolar transistors and vertical Schottkey diode so on with a current confinement region using a p-type carrier-blocking layer formed by this technique.
NASA Astrophysics Data System (ADS)
Maitra, S.; Mitra, R.; Bera, K. P.; Nath, T. K.
2017-05-01
We have prepared cadmium doped CCTO (Ca1-xCdxCu3Ti4O12 where x = 0.01, 0.02, 0.03, 0.04, 0.05) by Molten Salt Synthesis technique. It has exhibited high level of crystallinity and a well defined micrometre sized grains with uniform cubic morphology, as confirmed by a combination of X-ray diffraction and field emission scanning electron microscopy. Thereby we have found the modulation of its semiconducting bandgap as a function of doping from recorded UV-Vis reflectance spectra using Kubelka Munk (KM) method where with increasing Cadmium doping content the bandgap is found to increase. We have also carried out investigation on the field emission properties of CCTO crystals and it has exhibited poor field emission characteristics. Finally, we have investigated the dielectric properties of CCTO as a function of temperature. It has exhibited a giant dielectric property with low loss over a considerable temperature regime (50-300°C) and is found to exhibit Maxwell Wagner type dielectric relaxation.
Electrically tunable magnetic configuration on vacancy-doped GaSe monolayer
NASA Astrophysics Data System (ADS)
Tang, Weiqing; Ke, Congming; Fu, Mingming; Wu, Yaping; Zhang, Chunmiao; Lin, Wei; Lu, Shiqiang; Wu, Zhiming; Yang, Weihuang; Kang, Junyong
2018-03-01
Group-IIIA metal-monochalcogenides with the enticing properties have attracted tremendous attention across various scientific disciplines. With the aim to satisfy the multiple demands of device applications, here we report a design framework on GaSe monolayer in an effort to tune the electronic and magnetic properties through a dual modulation of vacancy doping and electric field. A half-metallicity with a 100% spin polarization is generated in a Ga vacancy doped GaSe monolayer due to the nonbonding 4p electronic orbital of the surrounding Se atoms. The stability of magnetic moment is found to be determined by the direction of applied electric field. A switchable magnetic configuration in Ga vacancy doped GaSe monolayer is achieved under a critical electric field of 0.6 V/Å. Electric field induces redistribution of the electronic states. Finally, charge transfers are found to be responsible for the controllable magnetic structure in this system. The magnetic modulation on GaSe monolayer in this work offers some references for the design and fabrication of tunable two-dimensional spintronic device.
NASA Astrophysics Data System (ADS)
Alzate-Cardona, J. D.; Barco-Rios, H.; Restrepo-Parra, E.
2018-02-01
The magnetocaloric behavior of La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3 for x = 0.00, 0.02, 0.03, 0.05, 0.07, 0.08 and 0.10 under the influence of an external magnetic field was simulated and analyzed. Simulations were carried out using the Monte Carlo method and the classical Heisenberg model under the Metropolis algorithm. These mixed valence manganites are characterized by having three types of magnetic ions corresponding to Mn4+≤ft(S=\\frac{3}{2}\\right) , which are bonded with Ca2+ , and Mneg3+ and Mneg\\prime3+ (S=2) , related to La3+ . The Fe ions were randomly included, replacing Mn ions. With this model, the magnetic entropy change, Δ S , in an isothermal process was determined. -Δ Sm showed maximum peaks around the paramagnetic-ferromagnetic transition temperature, which depends on Fe doping. Relative cooling power was computed for different Fe concentrations varying the magnetic applied field. Our model and results show that the Fe doping decreases the magnetocaloric effect in the La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3, making this a bad candidate for magnetic refrigeration. The strong dependence of the magnetocaloric behavior on Fe doping and the external magnetic field in La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3 can boost these materials for the future technological applications.
Room temperature ferromagnetism in Fe-doped CuO nanoparticles.
Layek, Samar; Verma, H C
2013-03-01
The pure and Fe-doped CuO nanoparticles of the series Cu(1-x)Fe(x)O (x = 0.00, 0.02, 0.04, 0.06 and 0.08) were successfully prepared by a simple low temperature sol-gel method using metal nitrates and citric acid. Rietveld refinement of the X-ray diffraction data showed that all the samples were single phase crystallized in monoclinic structure of space group C2/c with average crystallite size of about 25 nm and unit cell volume decreases with increasing iron doping concentration. TEM micrograph showed nearly spherical shaped agglomerated particles of 4% Fe-doped CuO with average diameter 26 nm. Pure CuO showed weak ferromagnetic behavior at room temperature with coercive field of 67 Oe. The ferromagnetic properties were greatly enhanced with Fe-doping in the CuO matrix. All the doped samples showed ferromagnetism at room temperature with a noticeable coercive field. Saturation magnetization increases with increasing Fe-doping, becomes highest for 4% doping then decreases for further doping which confirms that the ferromagnetism in these nanoparticles are intrinsic and are not resulting from any impurity phases. The ZFC and FC branches of the temperature dependent magnetization (measured in the range of 10-350 K by SQUID magnetometer) look like typical ferromagnetic nanoparticles and indicates that the ferromagnetic Curie temperature is above 350 K.
NASA Astrophysics Data System (ADS)
Yan, B. X.; Luo, S. Y.; Mao, X. G.; Shen, J.; Zhou, Q. F.
2013-01-01
Mo-doped TiO2 multilayer thin films were prepared by RF magnetron co-sputtering. Microstructures, crystallite parameters and the absorption band were investigated with atomic force microscopy, X-ray diffraction and ultraviolet-visible spectroscopy. Internal carrier transport characteristics and the photoelectric property of different layer-assemble modes were examined on an electrochemical workstation under visible light. The result indicates that the double-layer structure with an undoped surface layer demonstrated a red-shifted absorption edge and a much stronger photocurrent compared to the uniformly doped sample, signifying that the electric field implanted at the interface between particles in different layers accelerated internal charge transfer effectively. However, a heavily doped layer implanted at the bottom of the three-layer film merely brought about negative effects on the photoelectric property, mainly because of the Schottky junction existing above the substrate. Nevertheless, this obstacle was successfully eliminated by raising the Mo concentration to 1020 cm-3, where the thickness of the depletion layer fell into the order of angstroms and the tunneling coefficient manifested a dramatic increase. Under this circumstance, the Schottky junction disappeared and the strongest photocurrent was observed in the three-layer film.
NASA Astrophysics Data System (ADS)
Yuping, Duan; Jia, Zhang; Hui, Jing; Shunhua, Liu
2011-05-01
Fe-doped MnO 2 with a hollow sea urchin-like ball chain shape was first synthesized under a high magnetic field of 10 T. The formation mechanism was investigated and discussed in detail. The synthesized samples were characterized by XRD, SEM, TEM, EMPA, and vector network analysis. By doping MnO 2 with Fe, the relative complex permittivity of MnO 2 and its corresponding loss tangent clearly decreases, but its relative complex permeability and its corresponding loss tangent markedly increases. Moreover, the theoretically calculated values of reflection loss show that with increasing the Fe content, the as-prepared Fe-doped MnO 2 exhibits good microwave absorption capability.
Ultrathin strain-gated field effect transistor based on In-doped ZnO nanobelts
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Du, Junli; Li, Bing; Zhang, Shuhao; Hong, Mengyu; Zhang, Xiaomei; Liao, Qingliang; Zhang, Yue
2017-08-01
In this work, we fabricated a strain-gated piezoelectric transistor based on single In-doped ZnO nanobelt with ±(0001) top/bottom polar surfaces. In the vertical structured transistor, the Pt tip of the AFM and Au film are used as source and drain electrode. The electrical transport performance of the transistor is gated by compressive strains. The working mechanism is attributed to the Schottky barrier height changed under the coupling effect of piezoresistive and piezoelectric. Uniquely, the transistor turns off under the compressive stress of 806 nN. The strain-gated transistor is likely to have important applications in high resolution mapping device and MEMS devices.
Magnetic quantum phase transition in Cr-doped Bi 2(Se xTe 1-x) 3 driven by the Stark effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zuocheng; Feng, Xiao; Wang, Jing
The interplay between magnetism and topology, as exemplified in the magnetic skyrmion systems, has emerged as a rich playground for finding novel quantum phenomena and applications in future information technology. Magnetic topological insulators (TI) have attracted much recent attention, especially after the experimental realization of quantum anomalous Hall effect. Future applications of magnetic TI hinge on the accurate manipulation of magnetism and topology by external perturbations, preferably with a gate electric field. In this work, we investigate the magneto transport properties of Cr doped Bi 2(Se xTe 1-x) 3 TI across the topological quantum critical point (QCP). We find thatmore » the external gate voltage has negligible effect on the magnetic order for samples far away from the topological QCP. However, for the sample near the QCP, we observe a ferromagnetic (FM) to paramagnetic (PM) phase transition driven by the gate electric field. Theoretical calculations show that a perpendicular electric field causes a shift of electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and consequently a magnetic phase transition. Finally, the in situ electrical control of the topological and magnetic properties of TI shed important new lights on future topological electronic or spintronic device applications.« less
Magnetic quantum phase transition in Cr-doped Bi 2(Se xTe 1-x) 3 driven by the Stark effect
Zhang, Zuocheng; Feng, Xiao; Wang, Jing; ...
2017-08-07
The interplay between magnetism and topology, as exemplified in the magnetic skyrmion systems, has emerged as a rich playground for finding novel quantum phenomena and applications in future information technology. Magnetic topological insulators (TI) have attracted much recent attention, especially after the experimental realization of quantum anomalous Hall effect. Future applications of magnetic TI hinge on the accurate manipulation of magnetism and topology by external perturbations, preferably with a gate electric field. In this work, we investigate the magneto transport properties of Cr doped Bi 2(Se xTe 1-x) 3 TI across the topological quantum critical point (QCP). We find thatmore » the external gate voltage has negligible effect on the magnetic order for samples far away from the topological QCP. However, for the sample near the QCP, we observe a ferromagnetic (FM) to paramagnetic (PM) phase transition driven by the gate electric field. Theoretical calculations show that a perpendicular electric field causes a shift of electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and consequently a magnetic phase transition. Finally, the in situ electrical control of the topological and magnetic properties of TI shed important new lights on future topological electronic or spintronic device applications.« less
Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Dong-Wook, E-mail: shindong37@skku.edu; Kim, Tae Sung; Yoo, Ji-Beom, E-mail: jbyoo@skku.edu
Highlights: • Substitution doping is a promising method for opening the energy band gap of graphene. • Substitution doping with phosphorus in the graphene lattice has numerous advantage such as high band gap, low formation energy, and high net charge density compared to nitrogen. • V{sub dirac} of Inductively coupled plasma (ICP) and triphenylphosphine (TPP) treated graphene was −57 V, which provided clear evidence of n-type doping. • Substitutional doping of graphene with phosphorus is verified by the XPS spectra of P 2p core level and EELS mapping of phosphorus. • The chemical bonding between P and graphene is verymore » stable for a long time in air (2 months). - Abstract: Graphene is considered a host material for various applications in next-generation electronic devices. However, despite its excellent properties, one of the most important issues to be solved as an electronic material is the creation of an energy band gap. Substitution doping is a promising method for opening the energy band gap of graphene. Herein, we demonstrate the substitutional doping of graphene with phosphorus using inductively coupled plasma (ICP) and triphenylphosphine (TPP) treatments. The electrical transfer characteristics of the phosphorus doped graphene field effect transistor (GFET) have a V{sub dirac} of ∼ − 54 V. The chemical bonding between P and C was clearly observed in XPS spectra, and uniform distribution of phosphorus within graphene domains was confirmed by EELS mapping. The capability for substitutional doping of graphene with phosphorus can significantly promote the development of graphene based electronic devices.« less
Chen, Min-Hua; Yoshioka, Tomohiko; Ikoma, Toshiyuki; Hanagata, Nobutaka; Lin, Feng-Huei; Tanaka, Junzo
2014-10-01
Theranostic nanoparticles currently have been regarded as an emerging concept of 'personalized medicine' with diagnostic and therapeutic dual-functions. Eu 3+ doped hydroxyapatite (HAp) has been regarded as a promising fluorescent probe for in vivo imaging applications. Additionally, substitution of Ca 2+ with Fe 3+ in HAp crystal may endow the capability of producing heat upon exposure to a magnetic field. Here we report a preliminary study of doping mechanism and photoluminescence of Eu 3+ and Fe 3+ doped HAp nanoparticles (Eu/Fe:HAp). HAp with varied concentration of Eu 3+ and Fe 3+ doping are presented as Eu(10 mol%):HAp, Eu(7 mol%)-Fe(3 mol%):HAp, Eu(5 mol%)-Fe(5 mol%):HAp, Eu(3 mol%)-Fe(7 mol%):HAp, and Fe(10 mol%):HAp in the study. The results showed that the HAp particles, in nano-size with rod-like morphology, were successfully doped with Eu 3+ and Fe 3+ , and the particles can be well suspended in cell culture medium. Photoluminescence analysis revealed that particles have prominent emissions at 536 nm, 590 nm, 615 nm, 650 nm and 695 nm upon excitation at a wavelength of 397 nm. Moreover, these Eu/Fe:HAp nanoparticles belonged to B-type carbonated HAp, which has been considered an effective biodegradable and biocompatible drug/gene carrier in biological applications.
NASA Astrophysics Data System (ADS)
Parrey, Khursheed; Warish, Mohd.; Devi, Nisha; Niazi, A.; Aziz, A.; Ansari, S. G.
2018-05-01
Doping of semiconductors in a controlled mannner have paramount technological importance as far as the optical and electronic properties of the devices are concerned. Hybrid organic-inorganic perovskites (HOPs) as intrinsic semiconductors have sensational properties required for both the solar photovoltaics and perovskite light emitting diodes. However, undoped and complexity in the dpoing process of HOPs have limited their exploitation in the field of elcronics. In this papper we present the synthesis of HOP semiconductor (CH3NH3PbI3) doped in Pb2+ position by Cd2+. We studied the effect of the incorporation of Cd2+ into the crystalline structure and analysed the changes in the properties like crystal structure, optical absorption and the surface morphology. The structure of HOPs confirmed by X-ray diffraction analysis is tetragonal perovskite type. It can be found that the crystallinity of the samples was enhanced with the doping concentration as the intensity of diffraction peaks were observed to increase with doping. The absorption spectra as obtained from UV-Visible spectrophotometry and Tauc plot analysis indicated that the band gap observed (1.73 eV) is direct type and gets reduced to 1.67 eV with the doping concentration. The red shift may be due to the increase in the size of nanocrystalline material with doping.
NASA Astrophysics Data System (ADS)
Chen, Min-Hua; Yoshioka, Tomohiko; Ikoma, Toshiyuki; Hanagata, Nobutaka; Lin, Feng-Huei; Tanaka, Junzo
2014-10-01
Theranostic nanoparticles currently have been regarded as an emerging concept of ‘personalized medicine’ with diagnostic and therapeutic dual-functions. Eu3+ doped hydroxyapatite (HAp) has been regarded as a promising fluorescent probe for in vivo imaging applications. Additionally, substitution of Ca2+ with Fe3+ in HAp crystal may endow the capability of producing heat upon exposure to a magnetic field. Here we report a preliminary study of doping mechanism and photoluminescence of Eu3+ and Fe3+ doped HAp nanoparticles (Eu/Fe:HAp). HAp with varied concentration of Eu3+ and Fe3+ doping are presented as Eu(10 mol%):HAp, Eu(7 mol%)-Fe(3 mol%):HAp, Eu(5 mol%)-Fe(5 mol%):HAp, Eu(3 mol%)-Fe(7 mol%):HAp, and Fe(10 mol%):HAp in the study. The results showed that the HAp particles, in nano-size with rod-like morphology, were successfully doped with Eu3+ and Fe3+, and the particles can be well suspended in cell culture medium. Photoluminescence analysis revealed that particles have prominent emissions at 536 nm, 590 nm, 615 nm, 650 nm and 695 nm upon excitation at a wavelength of 397 nm. Moreover, these Eu/Fe:HAp nanoparticles belonged to B-type carbonated HAp, which has been considered an effective biodegradable and biocompatible drug/gene carrier in biological applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuping, Duan, E-mail: duanyp@dlut.edu.c; Jia, Zhang; Hui, Jing
Fe-doped MnO{sub 2} with a hollow sea urchin-like ball chain shape was first synthesized under a high magnetic field of 10 T. The formation mechanism was investigated and discussed in detail. The synthesized samples were characterized by XRD, SEM, TEM, EMPA, and vector network analysis. By doping MnO{sub 2} with Fe, the relative complex permittivity of MnO{sub 2} and its corresponding loss tangent clearly decreases, but its relative complex permeability and its corresponding loss tangent markedly increases. Moreover, the theoretically calculated values of reflection loss show that with increasing the Fe content, the as-prepared Fe-doped MnO{sub 2} exhibits good microwavemore » absorption capability. -- Graphical Abstract: Fe-doped MnO{sub 2} with a hollow sea urchin-like ball chain shape was first synthesized in a high magnetic field of 10 T via a simple chemical process. Display Omitted Highlights: {yields} Fe-doped MnO{sub 2} with a hollow sea urchin-like ball chain shape was first synthesized. {yields} We investigated formation mechanism and electromagnetic properties of the Fe-doped MnO{sub 2}. {yields} By doping MnO{sub 2} with Fe, the electromagnetic properties are improved obviously.« less
Nitrogen doping, optical characterization, and electron emission study of diamond
NASA Astrophysics Data System (ADS)
Park, Minseo
Nitrogen-doped chemical vapor deposited (CVD) diamond films were synthesized with N2 (nitrogen) and C3H6N6 (melamine) as doping sources. More effective substitutional nitrogen doping was achieved with C3H6N6 than with N 2. Since a melamine molecule has an existing cyclic C-N bonded ring, it is expected that the incorporation of nitrogen on substitution diamond lattice should be facilitated. The diamond film doped with N2 contained a significant amount of non-diamond carbon phases. The samples were analyzed by scanning electron microscopy, Raman scattering, photoluminescence spectroscopy, and field emission measurements. The sample produced using N 2 exhibited a lower field emission turn-on field than the sample produced using C3H6N6. It is believed that the presence of the graphitic phases (or amorphous sp2 carbon) at the grain boundaries of the diamond and/or the nanocrystallinity (or microcrystallinity) of the diamond play a significant role in lowering the turn-on field of the film produced using N2. The nature of the nitrogen-related 1190 cm-1 Raman peak was investigated. Nitrogen is incorporated predominantly to the crystalline or amorphous sp2 phases when nitrogen is added to the growing diamond. Field emission characteristics from metallic field emitter coated with type Ia and Ib diamond powders were also investigated. No significant difference in electron emission characteristics were found in these samples. Voltage-dependent field emission energy distribution (V-FEED) measurement was performed to analyze the energy distribution of the emitted electrons. It is believed that substitutional nitrogen doping plays only a minor role in changing field emission characteristics in diamond. Discontinuous diamond films were deposited on silicon using a microwave plasma chemical vapor deposition (MPCVD) system. The diamond deposits were sharpened by argon ion beam etching. Raman spectroscopy was carried out to study the structural change of the diamond after ion beam bombardment. Field emission measurements were performed in-situ with an electron beam induced current (EBIC) probe inside the chamber of the scanning electron microscope. It was found that amorphous sp2 carbon is produced as the diamond is sputtered by the Ar ion beam. The field emission turn-on field was also significantly lowered after sharpening, which, it is speculated, is caused by field enhancement due to a change in geometry and/or structural changes (such as amorphization of crystalline diamond into graphitic or amorphous sp2 carbon) by Ar ion irradiation. Secondary electron emission patterning of single crystal diamond surfaces with hydrogen and oxygen plasma treatments was demonstrated. Hydrogen plasma treated regions were much brighter than the oxygen terminated regions. Results of atomic force microscopy confirmed that the observed contrast is not topographical. Several other possible negative electron affinity (or low positive electron affinity) materials such as chemical vapor deposited (CVD) diamond, aluminum nitride and tetrahedrally bonded amorphous carbon [tx a-C 1-x] were also investigated. Faint image contrast (patterning) was also observed from polycrystalline CVD diamond, single crystal aluminum nitride films, and polycrystalline aluminum nitride films; however, no contrast at all was obtained from tetrahedrally bonded amorphous carbon [tx a-C1-x] films.
Electrical properties of Mg doped ZnO nanostructure annealed at different temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, R., E-mail: ruziana12@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Rusop, M., E-mail: nanouitm@gmail.com
In this work, ZincOxide (ZnO) nanostructures doped with Mg were successfully grown on the glass substrate. Magnesium (Mg) metal element was added in the ZnO host which acts as a doping agent. Different temperature in range of 250°C to 500°C was used in order to investigate the effect of annealing temperature of ZnO thin films. Field Emission Scanning Electron Microscopy (FESEM) was used to investigate the physical characteristic of ZnO thin films. FESEM results have revealed that ZnO nanorods were grown vertically aligned. The structural properties were determined by using X-Ray Diffraction (XRD) analysis. XRD results showed Mg doped ZnOmore » thin have highest crystalinnity at 500°C annealing temperature. The electrical properties were investigating by using Current-Voltage (I-V) measurement. I-V measurement showed the electrical properties were varied at different annealing temperature. The annealing temperature at 500°C has the highest electrical conductance properties.« less
NASA Astrophysics Data System (ADS)
Wang, Zheng; Gaskell, Anthony Arthur; Dopita, Milan; Kriegner, Dominik; Tasneem, Nujhat; Mack, Jerry; Mukherjee, Niloy; Karim, Zia; Khan, Asif Islam
2018-05-01
We report the effects of lanthanum doping/alloying on antiferroelectric (AFE) properties of ZrO2. Starting with pure ZrO2, an increase in La doping leads to the narrowing of the AFE double hysteresis loops and an increase in the critical voltage/electric field for AFE → ferroelectric transition. At higher La contents, the polarization-voltage characteristics of doped/alloyed ZrO2 resemble that of a non-linear dielectric without any discernible AFE-type hysteresis. X-ray diffraction based analysis indicates that the increased La content while preserving the non-polar, parent AFE, tetragonal P42/nmc phase leads to a decrease in tetragonality and the (nano-)crystallite size and an increase in the unit cell volume. Furthermore, antiferroelectric behavior is obtained in the as-deposited thin films without requiring any capping metallic layers and post-deposition/-metallization anneals due to which our specific atomic layer deposition system configuration crystallizes and stabilizes the AFE tetragonal phase during growth.
NASA Astrophysics Data System (ADS)
Feng, Cheng; Zhang, Yijun; Qian, Yunsheng; Wang, Ziheng; Liu, Jian; Chang, Benkang; Shi, Feng; Jiao, Gangcheng
2018-04-01
A theoretical emission model for AlxGa1-xAs/GaAs cathode with complex structure based on photon-enhanced thermionic emission is developed by utilizing one-dimensional steady-state continuity equations. The cathode structure comprises a graded-composition AlxGa1-xAs window layer and an exponential-doping GaAs absorber layer. In the deduced model, the physical properties changing with the Al composition are taken into consideration. Simulated current-voltage characteristics are presented and some important factors affecting the conversion efficiency are also illustrated. Compared with the graded-composition and uniform-doping cathode structure, and the uniform-composition and uniform-doping cathode structure, the graded-composition and exponential-doping cathode structure can effectively improve the conversion efficiency, which is ascribed to the twofold built-in electric fields. More strikingly, this graded bandgap structure is especially suitable for photon-enhanced thermionic emission devices since a higher conversion efficiency can be achieved at a lower temperature.
Large linear magnetoresistance in heavily-doped Nb:SrTiO3 epitaxial thin films
Jin, Hyunwoo; Lee, Keundong; Baek, Seung-Hyub; Kim, Jin-Sang; Cheong, Byung-ki; Park, Bae Ho; Yoon, Sungwon; Suh, B. J.; Kim, Changyoung; Seo, S. S. A.; Lee, Suyoun
2016-01-01
Interaction between electrons has long been a focused topic in condensed-matter physics since it has led to the discoveries of astonishing phenomena, for example, high-Tc superconductivity and colossal magnetoresistance (CMR) in strongly-correlated materials. In the study of strongly-correlated perovskite oxides, Nb-doped SrTiO3 (Nb:SrTiO3) has been a workhorse not only as a conducting substrate, but also as a host possessing high carrier mobility. In this work, we report the observations of large linear magnetoresistance (LMR) and the metal-to-insulator transition (MIT) induced by magnetic field in heavily-doped Nb:STO (SrNb0.2Ti0.8O3) epitaxial thin films. These phenomena are associated with the interplay between the large classical MR due to high carrier mobility and the electronic localization effect due to strong spin-orbit coupling, implying that heavily Nb-doped Sr(Nb0.2Ti0.8)O3 is promising for the application in spintronic devices. PMID:27703222
Kakaei, Karim; Marzang, Kamaran
2016-01-15
Development of anode catalysts and catalyst supporting carbonaceous material containing non-precious metal have attracted tremendous attention in the field of direct ethanol fuel cells (DEFCs). Herein, we report the synthesis and electrochemical properties of nitrogen-doped reduced graphene oxide (NRGO) supported Co, Ni and NiCo nanocomposites. The metal NRGO nanocomposites, in which metal nanoparticles are embedded in the highly porous nitrogen-doped graphene matrix, have been synthesized by simply and one-pot method at a mild temperature using GO, urea choline chloride and urea as reducing and doping agent. The fabricated NiCo/NRGO exhibit remarkable electrocatalytic activity (with Tafel slope of 159.1mVdec(-1)) and high stability for the ethanol oxidation reaction (EOR). The superior performance of the alloy based NRGO is attributed to high surface area, well uniform distribution of high-density nitrogen, metal active sites and synergistic effect. Copyright © 2015 Elsevier Inc. All rights reserved.
Hybrid density functional theory band structure engineering in hematite
NASA Astrophysics Data System (ADS)
Pozun, Zachary D.; Henkelman, Graeme
2011-06-01
We present a hybrid density functional theory (DFT) study of doping effects in α-Fe2O3, hematite. Standard DFT underestimates the band gap by roughly 75% and incorrectly identifies hematite as a Mott-Hubbard insulator. Hybrid DFT accurately predicts the proper structural, magnetic, and electronic properties of hematite and, unlike the DFT+U method, does not contain d-electron specific empirical parameters. We find that using a screened functional that smoothly transitions from 12% exact exchange at short ranges to standard DFT at long range accurately reproduces the experimental band gap and other material properties. We then show that the antiferromagnetic symmetry in the pure α-Fe2O3 crystal is broken by all dopants and that the ligand field theory correctly predicts local magnetic moments on the dopants. We characterize the resulting band gaps for hematite doped by transition metals and the p-block post-transition metals. The specific case of Pd doping is investigated in order to correlate calculated doping energies and optical properties with experimentally observed photocatalytic behavior.
Characterization of N-doped multilayer graphene grown on 4H-SiC (0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arezki, Hakim, E-mail: hakim.arezki@lgep.supelec.fr; Jaffré, Alexandre; Alamarguy, David
Large-area graphene film doped with hetero-atoms is of great interest for a wide spectrum of nanoelectronics applications, such as field effect devices, super capacitors, fuel cells among many others. Here, we report the structural and electronic properties of nitrogen doped multilayer graphene on 4H-SiC (0001). The incorporation of nitrogen during the growth causes an increase in the D band on the Raman signature indicating that the nitrogen is creating defects. The analysis of micro-Raman mapping of G, D, 2D bands shows a predominantly trilayer graphene with a D band inherent to doping and inhomogeneous dopant distribution at the step edges.more » Ultraviolet photoelectron spectroscopy (UPS) indicates an n type work function (WF) of 4.1 eV. In addition, a top gate FET device was fabricated showing n-type I-V characteristic after the desorption of oxygen with high electron and holes mobilities.« less
Siarkowska, Agata; Chychłowski, Miłosz; Budaszewski, Daniel; Jankiewicz, Bartłomiej; Bartosewicz, Bartosz; Woliński, Tomasz R
2017-01-01
Thermo- and electro-optical properties of a photonic liquid crystal fiber (PLCF) enhanced by the use of dopants have been investigated. A 6CHBT nematic liquid crystal was doped with four different concentrations of gold nanoparticles (NPs), 0.1, 0.3, 0.5 and 1.0 wt %, for direct comparison of the influence of the dopant on the properties of the PLCF. The thermo-optical effects of the liquid crystal doped with gold NPs were compared in three setups, an LC cell, a microcapillary and within the PLCF, to determine if the observed responses to external factors are caused by the properties of the infiltration material or due to the setup configuration. The results obtained indicated that with increasing NP doping a significant reduction of the rise time under an external electric field occurs with a simultaneous decrease in the nematic-isotropic phase transition temperature, thus improving the thermo- and electro-optical properties of the PLCF.
Doped and codoped silicon nanocrystals: The role of surfaces and interfaces
NASA Astrophysics Data System (ADS)
Marri, Ivan; Degoli, Elena; Ossicini, Stefano
2017-12-01
Si nanocrystals have been extensively studied because of their novel properties and their potential applications in electronic, optoelectronic, photovoltaic, thermoelectric and biological devices. These new properties are achieved through the combination of the quantum confinement of carriers and the strong influence of surface chemistry. As in the case of bulk Si the tuning of the electronic, optical and transport properties is related to the possibility of doping, in a controlled way, the nanocrystals. This is a big challenge since several studies have revealed that doping in Si nanocrystals differs from the one of the bulk. Theory and experiments have underlined that doping and codoping are influenced by a large number of parameters such as size, shape, passivation and chemical environment of the silicon nanocrystals. However, the connection between these parameters and dopant localization as well as the occurrence of self-purification effects are still not clear. In this review we summarize the latest progress in this fascinating research field considering free-standing and matrix-embedded Si nanocrystals both from the theoretical and experimental point of view, with special attention given to the results obtained by ab-initio calculations and to size-, surface- and interface-induced effects.
NASA Astrophysics Data System (ADS)
Hymavathi, B.; Rajesh Kumar, B.; Subba Rao, T.
2018-01-01
Nanostructured Cr-doped CdO thin films were deposited on glass substrates by reactive direct current magnetron sputtering and post-annealed in vacuum from 200°C to 500°C. X-ray diffraction studies confirmed that the films exhibit cubic nature with preferential orientation along the (111) plane. The crystallite size, lattice parameters, unit cell volume and strain in the films were determined from x-ray diffraction analysis. The surface morphology of the films has been characterized by field emission scanning electron microscopy and atomic force microscopy. The electrical properties of the Cr-doped CdO thin films were measured by using a four-probe method and Hall effect system. The lowest electrical resistivity of 2.20 × 10-4 Ω cm and a maximum optical transmittance of 88% have been obtained for the thin films annealed at 500°C. The optical band gap of the films decreased from 2.77 eV to 2.65 eV with the increase of annealing temperature. The optical constants, packing density and porosity of Cr-doped CdO thin films were also evaluated from the transmittance spectra.
Magnetic refrigeration capabilities of magnetocaloric Ni2Mn:75Cu:25Ga
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Jenkins, C. A.; Dubenko, I.; Samanta, T.; Ali, N.; Roy, S.
2013-03-01
Doping-driven competition between energetically similar ground states leads to many exciting materials phenomena such as the emergence of high-Tc superconductivity, diluted magnetic semiconductors, and colossal magnetoresistance. Doped Ni2MnGa Heusler alloy, which is a multifunctional ferromagnetic alloy with various exotic physical properties demonstrates this notion of rich phenomenology via modified ground spin states. Adopting this generic concept, here we will present a novel doped Ni2Mn.75Cu.25Ga alloy that offers unprecedented co-existence of the magnetocaloric effect and fully controlled ferromagnetism at room temperature. Application of site engineering enables us to manipulate the ground spin state that leads to the decrease in magnetic transition temperature and also increases the delocalization of the Mn magnetism. SQUID magnetometery suggests that Cu doping enhances the saturation magnetization, coercive field and clarity of magnetic hysteresis loops. By exploiting x-ray absorption techniques and measuring element specific magnetic hysteresis loops, here we will describe the microscopic origin of enhnaced magnetocaloric properties and d-d interaction driven charge transfer effects in Ni2Mn.75Cu.25Ga This work was supported by DOE Grant No. DE-FG02-06ER46291
Reconfigurable Complementary Monolayer MoTe2 Field-Effect Transistors for Integrated Circuits.
Larentis, Stefano; Fallahazad, Babak; Movva, Hema C P; Kim, Kyounghwan; Rai, Amritesh; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K; Tutuc, Emanuel
2017-05-23
Transition metal dichalcogenides are of interest for next generation switches, but the lack of low resistance electron and hole contacts in the same material has hindered the development of complementary field-effect transistors and circuits. We demonstrate an air-stable, reconfigurable, complementary monolayer MoTe 2 field-effect transistor encapsulated in hexagonal boron nitride, using electrostatically doped contacts. The introduction of a multigate design with prepatterned bottom contacts allows us to independently achieve low contact resistance and threshold voltage tuning, while also decoupling the Schottky contacts and channel gating. We illustrate a complementary inverter and a p-i-n diode as potential applications.
NASA Astrophysics Data System (ADS)
Dou, S. X.; Soltanian, S.; Horvat, J.; Wang, X. L.; Zhou, S. H.; Ionescu, M.; Liu, H. K.; Munroe, P.; Tomsic, M.
2002-10-01
Doping of MgB2 by nano-SiC and its potential for the improvement of flux pinning were studied for MgB2-x)(SiCx/2 with x=0, 0.2, and 0.3 and for 10 wt % nano-SiC-doped MgB2 samples. Cosubstitution of B by Si and C counterbalanced the effects of single-element doping, decreasing Tc by only 1.5 K, introducing intragrain pinning centers effective at high fields and temperatures, and significantly enhancing Jc and Hirr. Compared to the undoped sample, Jc for the 10 wt % doped sample increased by a factor of 32 at 5 K and 8 T, 42 at 20 K and 5 T, and 14 at 30 K and 2 T. At 20 K and 2 T, the Jc for the doped sample was 2.4 x105 A/cm2, which is comparable to Jc values for the best Ag/Bi-2223 tapes. At 20 K and 4 T, Jc was twice as high as for the best MgB2 thin films and an order of magnitude higher than for the best Fe/MgB2 tapes. The magnetic Jc is consistent with the transport Jc which remains at 20 000 A/cm2 even at 10 T and 5 K for the doped sample, an order of magnitude higher than the undoped one. Because of such high performance, it is anticipated that the future MgB2 conductors will be made using a formula of MgBxSiyCz instead of pure MgB2.
NASA Technical Reports Server (NTRS)
Carlson, D. J.; Witt, A. F.
1992-01-01
Using near-IR transmission microscopy with computational absorption analysis, the effects of axial magnetic fields on micro- and macrosegregation during LP-LEC growth of GaAs were quantitatively investigated with a spatial resolution approaching 2 microns. Segregation inhomogeneities exceeding one order of magnitude are found to be related to fluid dynamics of the melt. The applicability of the BPS theory as well as the nonapplicability of the Cochran analysis are established.
EPR, optical absorption and luminescence studies of Cr3+-doped antimony phosphate glasses
NASA Astrophysics Data System (ADS)
De Vicente, F. S.; Santos, F. A.; Simões, B. S.; Dias, S. T.; Siu Li, M.
2014-12-01
Antimony phosphate glasses (SbPO) doped with 3 and 6 mol% of Cr3+ were studied by Electron Paramagnetic Resonance (EPR), UV-VIS optical absorption and luminescence spectroscopy. The EPR spectra of Cr3+-doped glasses showed two principal resonance signals with effective g values at g = 5.11 and g = 1.97. UV-VIS optical absorption spectra of SbPO:Cr3+ presented four characteristics bands at 457, 641, 675, and 705 nm related to the transitions from 4A2(F) to 4T1(F), 4T2(F), 2T1(G), and 2E(G), respectively, of Cr3+ ions in octahedral symmetry. Optical absorption spectra of SbPO:Cr3+ allowed evaluating the crystalline field Dq, Racah parameters (B and C) and Dq/B. The calculated value of Dq/B = 2.48 indicates that Cr3+ ions in SbPO glasses are in strong ligand field sites. The optical band gap for SbPO and SbPO:Cr3+ were evaluated from the UV optical absorption edges. Luminescence measurements of pure and Cr3+-doped glasses excited with 350 nm revealed weak emission bands from 400 to 600 nm due to the 3P1 → 1S0 electronic transition from Sb3+ ions. Cr3+-doped glasses excited with 415 nm presented Cr3+ characteristic luminescence spectra composed by two broad bands, one band centered at 645 nm (2E → 4A2) and another intense band from 700 to 850 nm (4T2 → 4A2).
Nanoscience and Nanotechnology
1992-05-05
Stanford has fabricated gate lengths down to 65 nm, and are entering into consortia to fabricate modulation doped field effect transistors (MODFETs...and from the substrate exposes the resist over a greater area than the beam xpot size. Correcting for these effects (where possible) is computationally...the lithographic pattern (proximity effects ). The push to smaller dimensions is concentrated on controlling and understanding these phenomena rather
Monolayer Contact Doping of Silicon Surfaces and Nanowires Using Organophosphorus Compounds
Hazut, Ori; Agarwala, Arunava; Subramani, Thangavel; Waichman, Sharon; Yerushalmi, Roie
2013-01-01
Monolayer Contact Doping (MLCD) is a simple method for doping of surfaces and nanostructures1. MLCD results in the formation of highly controlled, ultra shallow and sharp doping profiles at the nanometer scale. In MLCD process the dopant source is a monolayer containing dopant atoms. In this article a detailed procedure for surface doping of silicon substrate as well as silicon nanowires is demonstrated. Phosphorus dopant source was formed using tetraethyl methylenediphosphonate monolayer on a silicon substrate. This monolayer containing substrate was brought to contact with a pristine intrinsic silicon target substrate and annealed while in contact. Sheet resistance of the target substrate was measured using 4 point probe. Intrinsic silicon nanowires were synthesized by chemical vapor deposition (CVD) process using a vapor-liquid-solid (VLS) mechanism; gold nanoparticles were used as catalyst for nanowire growth. The nanowires were suspended in ethanol by mild sonication. This suspension was used to dropcast the nanowires on silicon substrate with a silicon nitride dielectric top layer. These nanowires were doped with phosphorus in similar manner as used for the intrinsic silicon wafer. Standard photolithography process was used to fabricate metal electrodes for the formation of nanowire based field effect transistor (NW-FET). The electrical properties of a representative nanowire device were measured by a semiconductor device analyzer and a probe station. PMID:24326774
Awaisu, Ahmed; Mottram, David; Rahhal, Alaa; Alemrayat, Bayan; Ahmed, Afif; Stuart, Mark; Khalifa, Sherief
2015-10-25
Objective. To assess pharmacy students' knowledge and perceptions of doping and anti-doping in sports and to explore the curricular needs for undergraduate pharmacy in the field of sports pharmacy. Methods. A cross-sectional, descriptive, web-based survey of pharmacy students was conducted at Qatar University College of Pharmacy from March to May 2014. Data were analyzed using descriptive and inferential statistics. Results. Eighty respondents completed the online survey (80% response rate). Sixty percent were unaware of the World Anti-Doping Agency, and 85% were unaware of the International Pharmaceutical Federation's statement on the pharmacist's role in anti-doping. Students' knowledge score regarding the prohibited status of drugs that may be used by athletes was around 50%. Fourth-year pharmacy students had significantly higher knowledge scores than the other groups of students. Respondents acknowledged the important role of health care professionals, including pharmacists, as advisors on the safe and effective use of drugs in sports. Ninety percent of the students supported the inclusion of sports pharmacy in the curriculum. Conclusion. Pharmacy students indicated a strong desire to play a role in doping prevention and ensure safe and rational use of drugs among athletes. They suggested requiring an education and training strategy for sports pharmacy in undergraduate pharmacy curricula.
High-field transport properties of a P-doped BaFe2As2 film on technical substrate.
Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo
2017-01-12
High temperature (high-T c ) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-T c Nb 3 Sn due probably to cost and processing issues. The recent discovery of a second class of high-T c materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe 2 As 2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, H c2 , moderate H c2 anisotropy, and intermediate T c . Here we report on in-field transport properties of P-doped BaFe 2 As 2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport J c of 10 5 A/cm 2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field J c over MgB 2 and NbTi, and a comparable level to Nb 3 Sn above 20 T. By analysing the E - J curves for determining J c , a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis.
Orlova, Anna; Blinder, Rémi; Kermarrec, Edwin; Dupont, Maxime; Laflorencie, Nicolas; Capponi, Sylvain; Mayaffre, Hadrien; Berthier, Claude; Paduan-Filho, Armando; Horvatić, Mladen
2017-02-10
By measuring the nuclear magnetic resonance (NMR) T_{1}^{-1} relaxation rate in the Br (bond) doped DTN compound, Ni(Cl_{1-x}Br_{x})_{2}-4SC(NH_{2})_{2}(DTNX), we show that the low-energy spin dynamics of its high magnetic field "Bose-glass" regime is dominated by a strong peak of spin fluctuations found at the nearly doping-independent position H^{*}≅13.6 T. From its temperature and field dependence, we conclude that this corresponds to a level crossing of the energy levels related to the doping-induced impurity states. Observation of the local NMR signal from the spin adjacent to the doped Br allowed us to fully characterize this impurity state. We have thus quantified a microscopic theoretical model that paves the way to better understanding of the Bose-glass physics in DTNX, as revealed in the related theoretical study [M. Dupont, S. Capponi, and N. Laflorencie, Phys. Rev. Lett. 118, 067204 (2017).PRLTAO0031-900710.1103/PhysRevLett.118.067204].
Improvement of high-frequency characteristics of Z-type hexaferrite by dysprosium doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu Chunhong; Liu Yingli; Song Yuanqiang
2011-06-15
Z-type hexaferrite has great potential applications as anti-EMI material for magnetic devices in the GHz region. In this work, Dy-doped Z-type hexaferrites with nominal stoichiometry of Ba{sub 3}Co{sub 2}Dy{sub x}Fe{sub 24-x}O{sub 41} (x 0.0, 0.05, 0.5, 1.0) were prepared by an improved solid-state reaction method. The effects of rare earth oxide (Dy{sub 2}O{sub 3}) addition on the phase composition, microstructure and electromagnetic properties of the ceramics were investigated. Structure and micromorphology characterizations indicate that certain content of Dy doping will cause the emergence of the second phase Dy{sub 3}Fe{sub 5}O{sub 12} at the grain boundaries of the majority phase Z-typemore » hexaferrite, due to which the straightforward result is the grain refinement during the successive sintering process. Permeability spectra measurements show that the initial permeability reaches its maximum of 17 at 300 MHz with x = 0.5, while the cutoff frequency keeps above 800 MHz. The apparent specific anisotropy field H{sub K} of Dy-doped Z-type hexaferrites decreases with x increasing. The relationships among phase composition, grain size, permeability spectra, and anisotropy are theoretically investigated, and according to the analysis, Dy doping effects on its magnetic properties can be well explained and understood.« less
On the dependence of structural and ammonia gas sensing properties of ZnO thin films on Mg doping
NASA Astrophysics Data System (ADS)
Goudarzi, Saeideh; Khojier, Kaykhosrow
2018-01-01
Ammonia is one of the most hazardous substances and it is extremely toxic if inhaled above the moderate level. Therefore, the detection of the ammonia at low concentration levels and at room temperature is one of the most challenging tasks. Among different methods to this goal, metal oxide semiconductors (MOSs) based vapor or gas sensors are mostly preferred because of their fast and high response, and cost effectiveness. This research reports the effect of Mg doping on structural and ammonia gas sensing properties of zinc oxide thin films. The spray pyrolysis technique was employed to deposit undoped and Mg-doped ZnO thin films on glass substrates. Doping concentration was varied from 0.003 to 0.009 M in steps of 0.002 M. The crystalline structure of the samples was confirmed by X-ray diffraction (XRD) analysis while a field emission scanning electron microscope (FESEM) was used to study the surface physical morphology of the samples. The sensitivity of the samples was investigated to ammonia gas with different concentrations in the range of 10 to 100 ppm at room temperature. The results reveal that the best sensitivity is attributed to the sample doped with 0.005 M Mg while an increase in Mg concentration results in a reduction in the sensitivity of the samples.
Nematic topological superconducting phase in Nb-doped Bi2Se3
NASA Astrophysics Data System (ADS)
Shen, Junying; He, Wen-Yu; Yuan, Noah Fan Qi; Huang, Zengle; Cho, Chang-woo; Lee, Seng Huat; Hor, Yew San; Law, Kam Tuen; Lortz, Rolf
2017-10-01
A nematic topological superconductor has an order parameter symmetry, which spontaneously breaks the crystalline symmetry in its superconducting state. This state can be observed, for example, by thermodynamic or upper critical field experiments in which a magnetic field is rotated with respect to the crystalline axes. The corresponding physical quantity then directly reflects the symmetry of the order parameter. We present a study on the superconducting upper critical field of the Nb-doped topological insulator NbxBi2Se3 for various magnetic field orientations parallel and perpendicular to the basal plane of the Bi2Se3 layers. The data were obtained by two complementary experimental techniques, magnetoresistance and DC magnetization, on three different single crystalline samples of the same batch. Both methods and all samples show with perfect agreement that the in-plane upper critical fields clearly demonstrate a two-fold symmetry that breaks the three-fold crystal symmetry. The two-fold symmetry is also found in the absolute value of the magnetization of the initial zero-field-cooled branch of the hysteresis loop and in the value of the thermodynamic contribution above the irreversibility field, but also in the irreversible properties such as the value of the characteristic irreversibility field and in the width of the hysteresis loop. This provides strong experimental evidence that Nb-doped Bi2Se3 is a nematic topological superconductor similar to the Cu- and Sr-doped Bi2Se3.
Flexible 2D RF Nanoelectronics based on Layered Semiconductor Transistor (NBIT III)
2016-11-11
Experimental and computational studies in multidisciplinary fields of electrical, mechanical engineering , and materials science were conducted to achieve...plan for this project. Experimental and computational studies in multidisciplinary fields of electrical, mechanical engineering , and materials...electrostatic or physisorption gating, defect engineering , and substitutional doping during the growth. These methods result in uniform doping or composition
The t J model for the oxide high-Tc superconductors
NASA Astrophysics Data System (ADS)
Ogata, Masao; Fukuyama, Hidetoshi
2008-03-01
A theoretical review is given on high temperature superconductivity in copper oxides (cuprates) by focusing on the hole doping cases based on the view that it is realized in carrier doped Mott insulators, as noted by Anderson in the initial stage. From the detailed knowledge of electronic states deduced from experiments that showed the undoped parent case is Mott insulators (charge transfer type insulators, to be precise) and that the hole doping is mainly on oxygen sites, the t-J model, as derived by Zhang and Rice, is shown to be a canonical model for hole doped cuprates and values of various parameters of the model have been assessed. Results of many different numerical methods so far obtained for this t-J model, especially the variational Monte Carlo method, have clearly indicated the stability of the \\rmd_{x^2-y^2} -wave superconductivity at absolute zero for the parameter region of actual experimental interest and the particular doping dependences of the condensation energy of superconductivity reflecting particular features of doped Mott insulators. For finite temperatures, on the other hand, the field theoretical slave-boson approximation based on the spin (spinons) and charge (holons) separations and the gauge fields as a glue combining them predicts qualitatively particular features of the existence of characteristic crossover temperatures of the spin singlet of the resonating valence bond (RVB) state, TRVB and the onset of Bose condensation of holons, TB, triggering coherent motion of electrons as convoluted particles of spinons and holons. The considerations based on the gauge field indicate that the onset temperature of superconductivity, Tc, is the lower one of these two, i.e. either TB (overdoped cases) or TRVB (underdoped cases), respectively. These characteristic features of the 'phase diagram' at finite temperatures are in overall agreement with various experimental observations, especially with the existence of spin-gap or pseudo-gap phases. In more detailed examinations of the underdoped region, the antiferromagnetic long-range order and superconductivity show a very intricate relationship at low temperatures depending on the system; they coexist as clarified in the inner layer of Hg-1245 but spin glass states intervene between them in La2-xSrxCuO4 (LSCO). It is argued that these differences can be attributed to the different degrees of disorder. Actually, theories based on the t-J model have also predicted the coexistence of antiferromagnetism and superconductivity in the ground state of clean systems. On the other hand, interesting experimental findings of large Nernst effect and 'Fermi arc' in LSCO and impurity effects in YBCO have prompted the necessity of theoretical investigations of electronic states of lightly doped Mott insulators in the presence of strong disorder.
The Influence of CuFe2O4 Nanoparticles on Superconductivity of MgB2
NASA Astrophysics Data System (ADS)
Novosel, Nikolina; Pajić, Damir; Skoko, Željko; Mustapić, Mislav; Babić, Emil; Zadro, Krešo; Horvat, Joseph
The influence of CuFe2O4 nanoparticle doping on superconducting properties of Fe-sheated MgB2 wires has been studied. The wires containing 0, 3 and 7.5 wt.% of monodisperse superparamagnetic nanoparticles (˜7 nm) were sintered at 650°C or 750°C for 1 hour in the pure argon atmosphere. X-ray diffraction patterns of doped samples showed very small maxima corresponding to iron boride and an increase in the fraction of MgO phase indicating some interaction of nanoparticles with Mg and B. Both magnetic and transport measurements (performed in the temperature range 2-42 K and magnetic field up to 16 T) showed strong deterioration of the superconducting properties upon doping with CuFe2O4. The transition temperatures, Tc, of doped samples decreased for about 1.4 K per wt.% of CuFe2O4. Also, the irreversibility fields Birr(T) decreased progressively with increasing doping. Accordingly, also the suppression of Jc with magnetic field became stronger. The observed strong deterioration of superconducting properties of MgB2 wires is at variance with reported enhancement of critical currents at higher temperatures (determined from magnetization) in bulk MgB2 samples doped with Fe3O4 nanoparticles. The probable reason for this discrepancy is briefly discussed
Macroscopic behavior and microscopic magnetic properties of nanocarbon
NASA Astrophysics Data System (ADS)
Lähderanta, E.; Ryzhov, V. A.; Lashkul, A. V.; Galimov, D. M.; Titkov, A. N.; Matveev, V. V.; Mokeev, M. V.; Kurbakov, A. I.; Lisunov, K. G.
2015-06-01
Here are presented investigations of powder and glass-like samples containing carbon nanoparticles, not intentionally doped and doped with Ag, Au and Co. The neutron diffraction study reveals an amorphous structure of the samples doped with Au and Co, as well as the magnetic scattering due to a long-range FM order in the Co-doped sample. The composition and molecular structure of the sample doped with Au is clarified with the NMR investigations. The temperature dependence of the magnetization, M (T), exhibits large irreversibility in low fields of B=1-7 mT. M (B) saturates already above 2 T at high temperatures, but deviates from the saturation behavior below 50 (150 K). Magnetic hysteresis is observed already at 300 K and exhibits a power-law temperature decay of the coercive field, Bc (T). The macroscopic behavior above is typical of an assembly of partially blocked magnetic nanoparticles. The values of the saturation magnetization, Ms, and the blocking temperature, Tb, are obtained as well. However, the hysteresis loop in the Co-doped sample differs from that in other samples, and the values of Bc and Ms are noticeably increased.
Enhanced magnetic moment in ultrathin Fe-doped CoFe2O4 films
NASA Astrophysics Data System (ADS)
Moyer, J. A.; Vaz, C. A. F.; Kumah, D. P.; Arena, D. A.; Henrich, V. E.
2012-11-01
The effect of film thickness on the magnetic properties of ultrathin Fe-doped cobalt ferrite (Co1-xFe2+xO4) grown on MgO (001) substrates is investigated by superconducting quantum interference device magnetometry and x-ray magnetic linear dichroism, while the distribution of the Co2+ cations between the octahedral and tetrahedral lattice sites is studied with x-ray absorption spectroscopy. For films thinner than 10 nm, there is a large enhancement of the magnetic moment; conversely, the remanent magnetization and coercive fields both decrease, while the magnetic spin axes of all the cations become less aligned with the [001] crystal direction. In particular, at 300 K the coercive fields of the thinnest films vanish. The spectroscopy data show that no changes occur in the cation distribution as a function of film thickness, ruling this out as the origin of the enhanced magnetic moment. However, the magnetic measurements all support the possibility that these ultrathin Fe-doped CoFe2O4 films are transitioning into a superparamagnetic state, as has been seen in ultrathin Fe3O4. A weakening of the magnetic interactions at the antiphase boundaries, leading to magnetically independent domains within the film, could explain the enhanced magnetic moment in ultrathin Fe-doped CoFe2O4 and the onset of superparamagnetism at room temperature.
Stabilized nonlinear optical chromophore alignment in high-? guest - host polycarbonates
NASA Astrophysics Data System (ADS)
Healy, D.; Bloor, D.; Gray, D.; Cross, G. H.
1997-11-01
Electric-field-poling studies of two polycarbonates doped with 2-(N,N dimethylamino)-5-nitroacetanilide revealed a long-term room-temperature alignment stability. This stability at room temperature is compared with that of similarly doped poly(methyl methacrylate) (PMMA) which displays short-term relaxation. Despite several previous suggestions that hydrogen bonding between guest and host plays a major role in these effects, infra-red spectroscopic studies refuted the idea that stronger hydrogen bond formation in the polycarbonate rather than in PMMA is the dominant influence. Rather we show, using an examination of the poling currents during poling, that the re-orientation dynamics in the polycarbonate systems are markedly different. In the case of PMMA-doped films, the deposited surface charge is compensated by poling currents at a rate at least comparable to the rate of deposition of corona charge. The compensation rate for polycarbonate-doped systems was markedly lower, however, suggesting that polar re-orientation is slower. Studies of the second-order optical nonlinearities of poled thin films using second-harmonic generation revealed an apparent enhancement of the second-harmonic coefficient compared with the predictions of conventional theories. However, we note that the use of microscopic parameters (the dipole moment and the first hyperpolarizability) obtained from measurements in non-dipolar media may give rise to the apparent anomaly since high reaction fields in polycarbonate films may act to modify these parameters.
Chen, Chih-Jung; Chiang, Ray-Kuang; Kamali, Saeed; Wang, Sue-Lein
2015-09-14
Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ∼4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (H(E)), an enhanced coercivity field (H(C)), and a pronounced vertical shift, thus indicating the presence of a strong exchange bias coupling effect. More importantly, the onset temperature of H(E) was found to be higher than 200 K, which suggests that cobalt doping increases the Néel temperature (T(N)) of the CWT core. In general, the results show that the homogeneous dispersion of Co in iron precursors improves the stability of the final CWT nanoparticles. Moreover, the CoFe2O4 shells formed following oxidation increase the oxidation resistance of the CWT cores and enhance their anisotropy energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, R., E-mail: ruziana12@gmail.com; NANO-SciTech Centre, Institue of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor; Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, 26400 Bandar Tun Razak Jengka, Pahang
In this work, Zinc Oxide (ZnO) with different aluminum (Al) doping percentage was synthesis by sol gel immersion method. Al doped ZnO at various doping percentage from 1, 2, 3, 4 and 5. It was found that with different Al percentage influence the morphological and optical properties of ZnO growth. Field Emission Scanning Electron Microscope (FESEM) image showed the use of different Al doping causes the difference in geometry and size of ZnO nanorods growth. Based on UV-Vis spectroscopy, the transmittance at 1% Al doping has the highest spectrum.
Breznay, Nicholas P.; Hayes, Ian M.; Ramshaw, B. J.; ...
2016-09-16
In this work, we study magnetotransport properties of the electron-doped superconductor Pr 2-xCe xCuO 4±δ with x = 0.14 in magnetic fields up to 92 T, and observe Shubnikov-de Haas magnetic quantum oscillations. The oscillations display a single frequency F = 255 ± 10 T, indicating a small Fermi pocket that is ~1 % of the two-dimensional Brillouin zone and consistent with a Fermi surface reconstructed from the large holelike cylinder predicted for these layered materials. Despite the low nominal doping, all electronic properties including the effective mass and Hall effect are consistent with overdoped compounds. In conclusion, our studymore » demonstrates that the exceptional chemical control afforded by high quality thin films will enable Fermi surface studies deep into the overdoped cuprate phase diagram.« less
Quadratic Electro-optic Effect in a Novel Nano-optical Polymer (iodine-doped polyisoprene)
NASA Astrophysics Data System (ADS)
Swamy, Rajendra; Titus, Jitto; Thakur, Mrinal
2004-03-01
In this report, exceptionally large quadratic electro-optic effect in a novel nano-optical polymer will be discussed. The material involved is cis-1,4-polyisoprene or natural rubber which is a nonconjugated conductive polymer[1,2].Upon doping with an acceptor such as iodine, an electron is transferred from its isolated double bond to the dopant leading to a charge-transfer complex. The positive charge (hole) thus created is localized around the double-bond site, within a nanometer dimension - thus, forming a nano-optical material. The quadratic electro-optic measurement on the doped polyisoprene film was made using field-induced birefringence method. The measured Kerr coefficient is about sixty six times that of nitrobenzene at 632 nm. Significant electroabsorption was also observed in this material at 632 nm. 1. M. Thakur, J. Macromol. Sci. - PAC, 2001, A38(12), 1337. 2. M. Thakur, S. Khatavkar and E.J. Parish, J. Macromol. Sci. - PAC, 2003, A40 (12), 1397.
NASA Astrophysics Data System (ADS)
Izrael'yants, K. R.; Orlov, A. P.; Ormont, A. B.; Chirkova, E. G.
2017-04-01
The effect of cesium and potassium atoms deposited onto multiwalled carbon nanotubes grown in an electrical arc on their emission characteristics was studied. The current-voltage characteristics of the field electron emission of specimens with cesium or potassium doped multiwalled carbon nanotubes of this type were revealed to retain their linear character in the Fowler-Nordheim coordinates within several orders of magnitude of change in the emission current. The deposition of cesium and potassium atoms was shown to lead to a considerable increase in the emission current and a decrease in the work function φ of studied emitters with multiwalled nanotubes. The work function was established to decrease to φ 3.1 eV at an optimal thickness of coating with cesium atoms and to φ 2.9 eV in the case of doping with potassium atoms. Cesium and potassium deposition conditions optimal for the attainment of a maximum emission current were found.
NASA Astrophysics Data System (ADS)
Jin, Feng; Feng, Qiyuan; Guo, Zhuang; Lan, Da; Wang, Lingfei; Gao, Guanyin; Xu, Haoran; Chen, Binbin; Chen, Feng; Lu, Qingyou; Wu, Wenbin
2017-11-01
Epitaxial strain and chemical doping are two different methods that are commonly used to tune the physical properties of epitaxial perovskite oxide films, but their cooperative effects are less addressed. Here we try to tune the phase separation (PS) in (La1-xP rx) 2 /3C a1 /3Mn O3 (0 ≤x ≤0.4 , LPCMO) films via cooperatively controlling the anisotropic epitaxial strain (AES) and the Pr doping. These films are grown simultaneously on NdGa O3(110 ) ,(LaAlO3) 0.3(SrAl0.5Ta0.5O3 ) 0.7(001 ) , and NdGa O3(001 ) substrates with progressively increased in-plane AES, and probed by x-ray diffraction, magnetotransport, and magnetic force microscopy (MFM) measurements. Although it is known that for x =0 the AES can enhance the orthorhombicity of the films yielding a phase diagram with the antiferromagnetic charge-ordered insulator (AF-COI) state induced, which is quite different from the bulk one, we illustrate that the Pr doping can further drive the films towards a more robust COI state. This cooperative effect is reflected by the increasing magnetic fields needed to melt the COI phase as a function of AES and the doping level. More strikingly, by directly imaging the phase competition morphology of the LPCMO /NdGa O3(001 ) films via MFM, we find that during COI melting the PS domain structure is subject to both AES and the quenched disorder. However, in the reverse process, as the magnetic field is decreased, the COI phase reappears and the AES dominates leaving a crystalline-orientation determined self-organized microstructure. This finding suggests that the PS states and the domain configurations can be selectively controlled by the AES and/or the quenched disorder, which may shed some light on the engineering of PS domains for device fabrications.
Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Shisheng, E-mail: shishenglin@zju.edu.cn; Chen, Hongsheng; State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027
2015-11-09
We report a type of solar cell based on graphene/CdTe Schottky heterostructure, which can be improved by surface engineering as graphene is atomic thin. By coating a layer of ultrathin CdSe quantum dots onto graphene/CdTe heterostructure, the power conversion efficiency is increased from 2.08% to 3.10%. Photo-induced doping is mainly accounted for this enhancement, as evidenced by field effect transport, Raman, photoluminescence, and quantum efficiency measurements. This work demonstrates a feasible way of improving the performance of graphene/semiconductor heterostructure solar cells by combining one dimensional with two dimensional materials.
Investigation of the effect of temperature on aging behavior of Fe-doped lead zirconate titanate
NASA Astrophysics Data System (ADS)
Promsawat, Napatporn; Promsawat, Methee; Janphuang, Pattanaphong; Marungsri, Boonruang; Luo, Zhenhua; Pojprapai, Soodkhet
The aging degradation behavior of Fe-doped Lead zirconate titanate (PZT) subjected to different heat-treated temperatures was investigated over 1000h. The aging degradation in the piezoelectric properties of PZT was indicated by the decrease in piezoelectric charge coefficient, electric field-induced strain and remanent polarization. It was found that the aging degradation became more pronounced at temperature above 50% of the PZT’s Curie temperature. A mathematical model based on the linear logarithmic stretched exponential function was applied to explain the aging behavior. A qualitative aging model based on polar macrodomain switchability was proposed.
Absorption, fluorescence and second harmonic generation in Cr3+-doped BiB3O6 glasses
NASA Astrophysics Data System (ADS)
Kuznik, W.; Fuks-Janczarek, I.; Wojciechowski, A.; Kityk, I. V.; Kiisk, V.; Majchrowski, A.; Jaroszewicz, L. R.; Brik, M. G.; Nagy, G. U. L.
2015-06-01
Synthesis, spectral properties and photoinduced nonlinear optical effects of chromium-doped BiB3O6 glass are studied in the present paper. Absorption, excitation and time resolved luminescence spectra are presented and luminescence decay behavior is discussed. Detailed analysis of the obtained spectra (assignment of the most prominent spectral features in terms of the corresponding Cr3+ energy levels, crystal field strength Dq, Racah parameters B and C) was performed. A weak photostimulated second harmonic generation signal was found to increase drastically due to poling by proton implantation in the investigated sample.
Heavy doping effects in high efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Neugroschel, A.
1985-01-01
The use of a (silicon)/(heavily doped polysilicon)/(metal) structure to replace the conventional high-low junction (or back-surface-field, BSF) structure of silicon solar cells was examined. The results of an experimental study designed to explore both qualitatively and quantitatively the mechanism of the improved current gain in bipolar transistors with polysilicon emitter contact are presented. A reciprocity theorem is presented that relates the short circuit current of a device, induced by a carrier generation source, to the minority carrier Fermi level in the dark. A method for accurate measurement of minority-carrier diffusion coefficients in silicon is described.
NASA Astrophysics Data System (ADS)
Das, Soma; Dey, T. K.
2006-08-01
The magnetocaloric effect (MCE) in fine grained perovskite manganites of the type La1-xKxMnO3 (0
Gim, Y.; Sethi, A.; Zhao, Q.; ...
2016-01-11
A major focus of experimental interest in Sr 2IrO 4 has been to clarify how the magnetic excitations of this strongly spin-orbit coupled system differ from the predictions of an isotropic 2D spin-1/2 Heisenberg model and to explore the extent to which strong spin-orbit coupling affects the magnetic properties of iridates. Here, we present a high-resolution inelastic light (Raman) scattering study of the low energy magnetic excitation spectrum of Sr 2IrO 4 and doped Eu-doped Sr 2IrO 4 as functions of both temperature and applied magnetic field. We show that the high-field (H > 1.5 T) in-plane spin dynamics ofmore » Sr 2IrO 4 are isotropic and governed by the interplay between the applied field and the small in-plane ferromagnetic spin components induced by the Dzyaloshinskii-Moriya interaction. However, the spin dynamics of Sr 2IrO 4 at lower fields (H < 1.5 T) exhibit important effects associated with interlayer coupling and in-plane anisotropy, including a spin-flop transition at Hc in Sr 2IrO 4 that occurs either discontinuously or via a continuous rotation of the spins, depending upon the in-plane orientation of the applied field. Furthermore, these results show that in-plane anisotropy and interlayer coupling effects play important roles in the low-field magnetic and dynamical properties of Sr 2IrO 4.« less
Competing phases in a model of Pr-based cobaltites
NASA Astrophysics Data System (ADS)
Sotnikov, A.; Kuneš, J.
2017-12-01
Motivated by the physics of Pr-based cobaltites, we study the effect of the external magnetic field in the hole-doped two-band Hubbard model close to instabilities toward the excitonic condensation and ferromagnetic ordering. Using the dynamical mean-field theory we observe a field-driven suppression of the excitonic condensate. The onset of a magnetically ordered phase at the fixed chemical potential is accompanied by a sizable change of the electron density. This leads us to predict that Pr3 + abundance increases on the high-field side of the transition.
NASA Astrophysics Data System (ADS)
Hu, Chia-Ren
2004-03-01
We present classical macroscopic, microscopic, and quantum mechanical arguments to show that in a metallic or electron/hole-doped semiconducting sheet thinner than the screening length, a displacement current applied normal to it can induce a spinomotive force along it. The magnitude is weak but clearly detectable. The classical arguments are purely electromagnetic. The quantum argument, based on the Dirac equation, shows that the predicted effect originates from the spin-orbit interaction, but not of the usual kind. That is, it relies on an external electric field, whereas the usual S-O interaction involves the electric field generated by the ions. Because the Dirac equation incorporatesThomas precession, which is due to relativistic kinematics, the quantum prediction is a factor of two smaller than the classical prediction. Replacing the displacement current by a charge current, and one obtains a new source for the spin-Hall effect. Classical macroscopic argument also predicts its existence, but the other two views are controversial.
Motion of Doped-Polymer-Cholesteric Liquid Crystal Flakes in a Direct-Current Electric Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trajkovska Petkoska, A.; Kosc, T.Z.; Marshall, K.L.
The behavior of polymer cholesteric liquid crystal (PCLC) flakes suspended in silicone oil host fluids has been explored in the presence of a direct-current electric field. In addition to “neat” (undoped) flakes, the PCLC material was doped with either conductive, carbon-based particles or highly dielectric inorganic particles to modify the dielectric properties of the resulting PCLC flakes. Doping with conductive particles produced flakes with a net charge, and they exhibited either translational or rotational motion depending on both the distribution of dopant within the flake and the dielectric characteristics of the host fluid. Flakes doped with titania (TiO2) particles reorientedmore » 90º when suspended in a host fluid with a differing dielectric permittivity« less
Microstructure and dielectric properties of (Nb + In) co-doped rutile TiO2 ceramics
NASA Astrophysics Data System (ADS)
Li, Jinglei; Li, Fei; Zhuang, Yongyong; Jin, Li; Wang, Linghang; Wei, Xiaoyong; Xu, Zhuo; Zhang, Shujun
2014-08-01
The (Nb + In) co-doped TiO2 ceramics recently attracted considerable attention due to their colossal dielectric permittivity (CP) (˜100,000) and low dielectric loss (˜0.05). In this research, the 0.5 mol. % In-only, 0.5 mol. % Nb-only, and 0.5-7 mol. % (Nb + In) co-doped TiO2 ceramics were synthesized by standard conventional solid-state reaction method. Microstructure studies showed that all samples were in pure rutile phase. The Nb and In ions were homogeneously distributed in the grain and grain boundary. Impedance spectroscopy and I-V behavior analysis demonstrated that the ceramics may compose of semiconducting grains and insulating grain boundaries. The high conductivity of grain was associated with the reduction of Ti4+ ions to Ti3+ ions, while the migration of oxygen vacancy may account for the conductivity of grain boundary. The effects of annealing treatment and bias filed on electrical properties were investigated for co-doped TiO2 ceramics, where the electric behaviors of samples were found to be susceptible to the annealing treatment and bias field. The internal-barrier-layer-capacitance mechanism was used to explain the CP phenomenon, the effect of annealing treatment and nonlinear I-V behavior for co-doped rutile TiO2 ceramics. Compared with CaCu3Ti4O12 ceramics, the high activation energy of co-doped rutile TiO2 (3.05 eV for grain boundary) was thought to be responsible for the low dielectric loss.
Mohammadi, Sanaz; Sohrabi, Maryam; Golikand, Ahmad Nozad; Fakhri, Ali
2016-08-01
In this study, pure, Zn, Cu, Zn,Cu co-doped WO3 nanoparticles samples were prepared by precipitation and co-precipitation methods. These nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDX), Dynamic light scattering (DLS), UV-visible and photoluminescence (PL) spectroscopy. The synthesized pure, Zn, Cu, Zn,Cu co-doped WO3 nanoparticles have smart optical properties and average sizes with 3.2, 3.12, 3.08 and 2.97eV of band-gap, 18.1, 23.2, 25.7 and 30.2nm, respectively. Photocatalytic activity of four nanoparticles was studying towards degradation of gentamicin antibiotic under ultraviolet and visible light irradiation. The result showed that Zn,Cu co-doped WO3 possessed high photocatalytic activity. The photocatalytic activity of WO3 nanoparticles could be remarkably increased by doping the Zn and Cu impurity. This can be attributed to the fact that the red shift of absorption edge and the trapping effect of the mono and co-doped WO3 nanoparticles. The research result presents a general and effective way to prepare different photocatalysts with enhanced visible and UV light-driven photocatalytic performance. Antibacterial activity of four different WO3 nanoparticles against Escherichia coli bacterium has been assessed by the agar disc method under light irradiation and dark medium. It is concluded from the present findings that WO3 nanoparticles can be used as an efficient antibacterial agent. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Li; Ren, Fengzhagn; Feng, Qigao; Xu, Guangri; Li, Xiaobo; Li, Yuanchao; Zhao, Erqing; Ma, Jignjign; Fan, Shumin
2018-04-01
The structural and electrochemical performance of Cu-doped, Li[Ni1/3-xCo1/3 Mn1/3Cux]O2 (x = 0-0.1) cathode materials obtained by means of the sol-gel method are discussed; we used critic acid as gels and spent mixed batteries as the raw materials. The effects of the sintering time, sintering temperature, and Cu doping ratio on the phase structure, morphology, and element composition and the behavior in a galvanostatical charge/discharge test have been systemically studied. The results show that the Cu-doped material exhibits better galvanostatic charge/discharge cycling performance. At 0.2 C, its original discharge specific capacity is 180.4 mAh g-1 and its Coulomb efficiency is 90.3%. The Cu-doped material demonstrate an outstanding specific capacity at 0.2 C, 0.5 C, and 2.0 C. In comparison with the original capacities of 178 mAh g-1, 159.5 mAh g-1, and 119.4 mAh g-1, the discharge capacity after 50 cycles is 160.8 mAh g-1, 143.4 mAh g-1, and 90.1 mAh g-1, respectively. This obvious improvement relative to bare Li[Ni1/3Co1/3Mn1/3]O2 cathode materials arises from an enlarged Li layer spacing and a reduced degree of cation mixing. Therefore, Cu-doped cathode materials have obvious advantages in the field of lithium-ion batteries and their applications.
NASA Astrophysics Data System (ADS)
Yang, Li; Ren, Fengzhagn; Feng, Qigao; Xu, Guangri; Li, Xiaobo; Li, Yuanchao; Zhao, Erqing; Ma, Jignjign; Fan, Shumin
2018-07-01
The structural and electrochemical performance of Cu-doped, Li[Ni1/3-xCo1/3 Mn1/3Cux]O2 ( x = 0-0.1) cathode materials obtained by means of the sol-gel method are discussed; we used critic acid as gels and spent mixed batteries as the raw materials. The effects of the sintering time, sintering temperature, and Cu doping ratio on the phase structure, morphology, and element composition and the behavior in a galvanostatical charge/discharge test have been systemically studied. The results show that the Cu-doped material exhibits better galvanostatic charge/discharge cycling performance. At 0.2 C, its original discharge specific capacity is 180.4 mAh g-1 and its Coulomb efficiency is 90.3%. The Cu-doped material demonstrate an outstanding specific capacity at 0.2 C, 0.5 C, and 2.0 C. In comparison with the original capacities of 178 mAh g-1, 159.5 mAh g-1, and 119.4 mAh g-1, the discharge capacity after 50 cycles is 160.8 mAh g-1, 143.4 mAh g-1, and 90.1 mAh g-1, respectively. This obvious improvement relative to bare Li[Ni1/3Co1/3Mn1/3]O2 cathode materials arises from an enlarged Li layer spacing and a reduced degree of cation mixing. Therefore, Cu-doped cathode materials have obvious advantages in the field of lithium-ion batteries and their applications.
Affinity-based biosensors as promising tools for gene doping detection.
Minunni, Maria; Scarano, Simona; Mascini, Marco
2008-05-01
Innovative bioanalytical approaches can be foreseen as interesting means for solving relevant emerging problems in anti-doping control. Sport authorities fear that the newer form of doping, so-called gene doping, based on a misuse of gene therapy, will be undetectable and thus much less preventable. The World Anti-Doping Agency has already asked scientists to assist in finding ways to prevent and detect this newest kind of doping. In this Opinion article we discuss the main aspects of gene doping, from the putative target analytes to suitable sampling strategies. Moreover, we discuss the potential application of affinity sensing in this field, which so far has been successfully applied to a variety of analytical problems, from clinical diagnostics to food and environmental analysis.
NASA Astrophysics Data System (ADS)
Shariati, Mohsen; Khosravinejad, Fariba
The gas nanosensor of indium oxide nanowires in laser assisted approach, doped with tin and zinc for gas sensing and 1D growth purposes respectively, was reported. The nanowires were very sensitive to H2S gas in low concentration of 20ppb gas at room temperature. The fast dynamic intensive and sensitive response to gas was in a few seconds with an on/off sensitivity ratio of around 10. The square cross-section indium oxide nanowires were fabricated through physical vapor deposition (PVD) mechanism and annealing approach. The field emission scanning electron microscopy (FESEM) observations indicated that the annealing temperature was vital in nanostructures’ morphology. The fabricated nanowires for the optimized annealing temperature in applied growth technique were around 60nm in diameter.
NASA Astrophysics Data System (ADS)
Chien, Feng-Tso; Chen, Jian-Liang; Chen, Chien-Ming; Chen, Chii-Wen; Cheng, Ching-Hwa; Chiu, Hsien-Chin
2017-11-01
In this paper, a novel step gate-overlapped lightly doped drain (GOLDD) with raised source/drain (RSD) structure (SGORSD) is proposed for TFT electronic device application. The new SGORSD structure could obtain a low electric field at channel near the drain side owing to a step GOLDD design. Compared to the conventional device, the SGORSD TFT exhibits a better kink effect and higher breakdown performance due to the reduced drain electric field (D-EF). In addition, the leakage current also can be suppressed. Moreover, the device stability, such as the threshold voltage shift and drain current degradation under a high gate bias, is improved by the design of SGORSD structure. Therefore, this novel step GOLDD structure can be a promising design to be used in active-matrix flat panel electronics.
Synergistic effect of indium and gallium co-doping on the properties of RF sputtered ZnO thin films
NASA Astrophysics Data System (ADS)
Shaheera, M.; Girija, K. G.; Kaur, Manmeet; Geetha, V.; Debnath, A. K.; Karri, Malvika; Thota, Manoj Kumar; Vatsa, R. K.; Muthe, K. P.; Gadkari, S. C.
2018-04-01
ZnO thin films were synthesized using RF magnetron sputtering, with simultaneous incorporation of Indium (In) and Gallium (Ga). The structural, optical, chemical composition and surface morphology of the pure and co-doped (IGZO) thin films were characterized by X-Ray diffraction (XRD), UV-visible spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Raman spectroscopy. XRD revealed that these films were oriented along c-axis with hexagonal wurtzite structure. The (002) diffraction peak in the co-doped sample was observed at 33.76° with a slight shift towards lower 2θ values as compared to pure ZnO. The surface morphology of the two thin films was observed to differ. For pure ZnO films, round grains were observed and for IGZO thin films round as well as rod type grains were observed. All thin films synthesized show excellent optical properties with more than 90% transmission in the visible region and band gap of the films is observed to decrease with co-doping. The co doping of In and Ga is therefore expected to provide a broad range optical and physical properties of ZnO thin films for a variety of optoelectronic applications.
Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films.
Yang, C-H; Seidel, J; Kim, S Y; Rossen, P B; Yu, P; Gajek, M; Chu, Y H; Martin, L W; Holcomb, M B; He, Q; Maksymovych, P; Balke, N; Kalinin, S V; Baddorf, A P; Basu, S R; Scullin, M L; Ramesh, R
2009-06-01
Many interesting materials phenomena such as the emergence of high-Tc superconductivity in the cuprates and colossal magnetoresistance in the manganites arise out of a doping-driven competition between energetically similar ground states. Doped multiferroics present a tantalizing evolution of this generic concept of phase competition. Here, we present the observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelectric BiFeO3 through Ca doping. Application of electric field enables us to control and manipulate this electronic transition to the extent that a p-n junction can be created, erased and inverted in this material. A 'dome-like' feature in the doping dependence of the ferroelectric transition is observed around a Ca concentration of approximately 1/8, where a new pseudo-tetragonal phase appears and the electric modulation of conduction is optimized. Possible mechanisms for the observed effects are discussed on the basis of the interplay of ionic and electronic conduction. This observation opens the door to merging magnetoelectrics and magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom already present in the multiferroic BiFeO3.
Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films
NASA Astrophysics Data System (ADS)
Yang, C.-H.; Seidel, J.; Kim, S. Y.; Rossen, P. B.; Yu, P.; Gajek, M.; Chu, Y. H.; Martin, L. W.; Holcomb, M. B.; He, Q.; Maksymovych, P.; Balke, N.; Kalinin, S. V.; Baddorf, A. P.; Basu, S. R.; Scullin, M. L.; Ramesh, R.
2009-06-01
Many interesting materials phenomena such as the emergence of high-Tc superconductivity in the cuprates and colossal magnetoresistance in the manganites arise out of a doping-driven competition between energetically similar ground states. Doped multiferroics present a tantalizing evolution of this generic concept of phase competition. Here, we present the observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelectric BiFeO3 through Ca doping. Application of electric field enables us to control and manipulate this electronic transition to the extent that a p-n junction can be created, erased and inverted in this material. A `dome-like' feature in the doping dependence of the ferroelectric transition is observed around a Ca concentration of ~1/8, where a new pseudo-tetragonal phase appears and the electric modulation of conduction is optimized. Possible mechanisms for the observed effects are discussed on the basis of the interplay of ionic and electronic conduction. This observation opens the door to merging magnetoelectrics and magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom already present in the multiferroic BiFeO3.
Unusual Kondo-hole effect and crystal-field frustration in Nd-doped CeRhIn 5
Rosa, Priscila Ferrari Silveira; Oostra, Aaron; Thompson, Joe David; ...
2016-07-05
In this research, we investigate single crystals of Ce 1₋xNd xRhIn 5 by means of x-ray-diffraction, microprobe, magnetic susceptibility, heat capacity, and electrical resistivity measurements. Our data reveal that the antiferromagnetic transition of CeRhIn 5, at Tmore » $$Ce\\atop{N}$$=3.8 K, is linearly suppressed with x Nd. We associate this effect with the presence of a “Kondo hole” created by Nd substitution. The extrapolation of T$$Ce\\atop{N}$$ to zero temperature, however, occurs at x c~0.3, which is below the two-dimensional percolation limit found in Ce 1₋xLa xRhIn 5. This result strongly suggests the presence of a crystal-field induced magnetic frustration. Near x Nd~0.2, the Ising antiferromagnetic order from Nd 3+ ions is stabilized and T$$Nd\\atop{N}$$ increases up to 11 K in NdRhIn 5. Finally, our results shed light on the effects of magnetic doping in heavy-fermion antiferromagnets and stimulate the study of such systems under applied pressure.« less
NASA Astrophysics Data System (ADS)
Wang, D. P.; Huang, K. M.; Shen, T. L.; Huang, K. F.; Huang, T. C.
1998-01-01
The electroreflectance (ER) spectra of an undoped-n+ type doped GaAs has been measured at various amplitudes of modulating fields (δF). Many Franz-Keldysh oscillations were observed above the band gap energy, thus enabling the electric field (F) in the undoped layer to be determined. The F is obtained by applying fast Fourier transformation to the ER spectra. When δF is small, the power spectrum can be clearly resolved into two peaks, which corresponds to heavy- and light-hole transitions. When δF is less than ˜1/8 of the built-in field (Fbi˜77 420 V/cm), the F deduced from the ER is almost independent of δF. However, when larger than this, F is increased with δF. Also, when δF is increased to larger than ˜1/8 of Fbi, a shoulder appears on the right side of the heavy-hole peak of the power spectrum. The separation between the main peak and the shoulder of the heavy-hole peak becomes wider as δF becomes larger.
A Combined Molecular Dynamics and Experimental Study of Doped Polypyrrole.
Fonner, John M; Schmidt, Christine E; Ren, Pengyu
2010-10-01
Polypyrrole (PPy) is a biocompatible, electrically conductive polymer that has great potential for battery, sensor, and neural implant applications. Its amorphous structure and insolubility, however, limit the experimental techniques available to study its structure and properties at the atomic level. Previous theoretical studies of PPy in bulk are also scarce. Using ab initio calculations, we have constructed a molecular mechanics force field of chloride-doped PPy (PPyCl) and undoped PPy. This model has been designed to integrate into the OPLS force field, and parameters are available for the Gromacs and TINKER software packages. Molecular dynamics (MD) simulations of bulk PPy and PPyCl have been performed using this force field, and the effects of chain packing and electrostatic scaling on the bulk polymer density have been investigated. The density of flotation of PPyCl films has been measured experimentally. Amorphous X-ray diffraction of PPyCl was obtained and correlated with atomic structures sampled from MD simulations. The force field reported here is foundational for bridging the gap between experimental measurements and theoretical calculations for PPy based materials.
Results From Cs Activated GaN Photocathode Development for MCP Detector Systems at GSFC
NASA Technical Reports Server (NTRS)
Norton, Tim; Woodgate, Bruce; Stock, Joe; Hilton, George; Ulmer, Mel; Aslam, Shahid; Vispute, R. D.
2003-01-01
We describe the development of high quantum efficiency W photocathodes for use in large area two dimensional microchannel plate based detector arrays to enable new W space astronomy missions. Future W missions will require improvements in detector sensitivity, which has the most leverage for cost-effective improvements in overall telescope/instrument sensitivity. We use new materials such as p-doped GaN, AIGaN, ZnMgO, Sic and diamond. We have currently obtained QE values > 40 % at 185 nm with Cesiated GaN, and hope to demonstrate higher values in the future. By using controlled internal fields and nano-structuring of the surfaces, we plan to provide field emission assistance for photoelectrons while maintaining their energy distinction from dark noise electrons. We will transfer these methods from GaN to ZnMgO, a new family of wide band-gap materials more compatible with microchannel plates. We also are exploring technical parameters such as doping profiles, internal and external field strengths, angle of incidence, field emission assistance, surface preparation, etc.
Magnetic properties in polycrystalline and single crystal Ca-doped LaCoO3
NASA Astrophysics Data System (ADS)
Zeng, R.; Debnath, J. C.; Chen, D. P.; Shamba, P.; Wang, J. L.; Kennedy, S. J.; Campbell, S. J.; Silver, T.; Dou, S. X.
2011-04-01
Polycrystalline (PC) and single crystalline (SC) Ca-doped LaCoO3 (LCCO) samples with the perovskite structure were synthesized by conventional solid-state reaction and the floating-zone growth method. We present the results of a comprehensive investigation of the magnetic properties of the LCCO system. Systematic measurements have been conducted on dc magnetization, ac susceptibility, exchange-bias, and the magnetocaloric effect. These findings suggest that complex structural phases, ferromagnetic (FM), and spin-glass/cluster-spin-glass (CSG), and their transitions exist in PC samples, while there is a much simpler magnetic phase in SC samples. It was also of interest to discover that the CSG induced a magnetic field memory effect and an exchange-bias-like effect, and that a large inverse irreversible magnetocaloric effect exists in this system.
NASA Astrophysics Data System (ADS)
Margiani, N. G.; Mumladze, G. A.; Adamia, Z. A.; Kuzanyan, A. S.; Zhghamadze, V. V.
2018-05-01
In this paper, the combined effects of B4C-doping and planetary ball milling on the phase evolution, microstructure and transport properties of Bi1.7Pb0.3Sr2Ca2Cu3Oy(B4C)x HTS with x = 0 ÷ 0.125 were studied through X-ray diffraction (XRD), scanning electron microscopy (SEM), resistivity and critical current density measurements. Obtained results have shown that B4C additive leads to the strong acceleration of high-Tc phase formation and substantial enhancement in Jc. High-energy ball milling seems to produce a more homogeneous distribution of refined doped particles in the (Bi,Pb)-2223 HTS which results in an improved intergranular flux pinning and better self-field Jc performance.
Superior Cathode Performance of Nitrogen-Doped Graphene Frameworks for Lithium Ion Batteries.
Xiong, Dongbin; Li, Xifei; Bai, Zhimin; Shan, Hui; Fan, Linlin; Wu, Chunxia; Li, Dejun; Lu, Shigang
2017-03-29
Development of alternative cathode materials is of highly desirable for sustainable and cost-efficient lithium-ion batteries (LIBs) in energy storage fields. In this study, for the first time, we report tunable nitrogen-doped graphene with active functional groups for cathode utilization of LIBs. When employed as cathode materials, the functionalized graphene frameworks with a nitrogen content of 9.26 at% retain a reversible capacity of 344 mAh g -1 after 200 cycles at a current density of 50 mA g -1 . More surprisingly, when conducted at a high current density of 1 A g -1 , this cathode delivers a high reversible capacity of 146 mAh g -1 after 1000 cycles. Our current research demonstrates the effective significance of nitrogen doping on enhancing cathode performance of functionalized graphene for LIBs.
NASA Astrophysics Data System (ADS)
Marsilius, Mie; Granzow, Torsten; Jones, Jacob L.
2011-02-01
The superior piezoelectric properties of all polycrystalline ferroelectrics are based on the extent of non-180° domain wall motion under electrical and mechanical poling loads. To distinguish between 180° and non-180° domain wall motion in a soft-doped and a hard-doped lead zirconate titanate (PZT) ceramic, domain texture measurements were performed using x-ray and neutron diffraction after different loading procedures. Comparing the results to measurements of the remanent strain and piezoelectric coefficient allowed the differentiation between different microstructural contributions to the macroscopic parameters. Both types of ceramic showed similar behavior under electric field, but the hard-doped material was more susceptible to mechanical load. A considerable fraction of the piezoelectric coefficient originated from poling by the preferred orientation of 180° domains.