Science.gov

Sample records for doped materials

  1. Doping explosive materials for neutron radiographic enhancement.

    NASA Technical Reports Server (NTRS)

    Golliher, K. G.

    1971-01-01

    Discussion of studies relating to the selection of doping materials of high neutron absorption usable for enhancing the neutron radiographic imaging of explosive mixtures, without interfering with the proper chemical reaction of the explosives. The results of the studies show that gadolinium oxide is an excellent material for doping explosive mixtures to enhance the neutron radiographic image.

  2. Local doping of two-dimensional materials

    DOEpatents

    Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.

  3. Doped luminescent materials and particle discrimination using same

    SciTech Connect

    Doty, F. Patrick; Allendorf, Mark D; Feng, Patrick L

    2014-10-07

    Doped luminescent materials are provided for converting excited triplet states to radiative hybrid states. The doped materials may be used to conduct pulse shape discrimination (PSD) using luminescence generated by harvested excited triplet states. The doped materials may also be used to detect particles using spectral shape discrimination (SSD).

  4. Tungsten-doped thin film materials

    DOEpatents

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  5. Toward IFE Oriented Laser Chains: Cryogenically Cooled Ytterbium Doped Materials

    SciTech Connect

    Bourdet, G.; Casagrande, O.; Cardinali, V.; Deguil-Robin, N.; Le Garrec, B.

    2009-09-27

    With the aim to set up Inertial Fusion Energy (IFE) driver, we develop the properties of the Ytterbium doped materials and the problems met when designing such a system: essentially thermal management and ASE gain depletion. We after present the experimental results obtained using sesquioxide Yb{sup 3+} doped ceramics at cryogenic temperature. We also propose a solution for minimizing the ASE problem.

  6. Metal oxide charge transport material doped with organic molecules

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.

    2016-08-30

    Doping metal oxide charge transport material with an organic molecule lowers electrical resistance while maintaining transparency and thus is optimal for use as charge transport materials in various organic optoelectronic devices such as organic photovoltaic devices and organic light emitting devices.

  7. High capacity nickel battery material doped with alkali metal cations

    DOEpatents

    Jackovitz, John F.; Pantier, Earl A.

    1982-05-18

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  8. Non-hydroscopic vanilla doped dichromated gelatin holographic material

    NASA Astrophysics Data System (ADS)

    Pinto-Iguanero, B.; Olivares-Pérez, A.; Méndez-Alvarado, A. W.; Fuentes-Tapia, I.; Treviño-Palacios, C. G.

    2003-06-01

    Dichromate gelatins are well-known holographic materials. By doping this material with synthetic vanilla a change in the spectral response from regular dichromate gelatin is observed as an increase in optical density. This mixture presents an unusual high humidity resistance. It was possible to record holographic diffraction gratings using an argon ion laser ( λ=488 nm). These gratings exhibit good diffraction efficiency in transmission, on the order of 60% at Bragg angle, with more than 1700 lines/mm spatial resolution. The material development process consists simply of dipping it into using a solution of water and isopropyl alcohol. A hypothesis on the hydroscopic response of this new photosensitive material is also presented.

  9. Compositions of doped, co-doped and tri-doped semiconductor materials

    DOEpatents

    Lynn, Kelvin; Ciampi, Guido

    2011-12-06

    Semiconductor materials suitable for being used in radiation detectors are disclosed. A particular example of the semiconductor materials includes tellurium, cadmium, and zinc. Tellurium is in molar excess of cadmium and zinc. The example also includes aluminum having a concentration of about 10 to about 20,000 atomic parts per billion and erbium having a concentration of at least 10,000 atomic parts per billion.

  10. Ca2+-Doped CeBr3 Scintillating Materials

    SciTech Connect

    Guss, Paul; Foster, Michael E.; Wong, Bryan M.; Doty, F. Patrick; Shah, Kanai; Squillante, Michael R.; Shirwadkar, Urmila; Hawrami, Rastgo; Tower, Josh; Yuan, Ding

    2014-01-01

    Despite the outstanding scintillation performance characteristics of cerium tribromide (CeBr3) and cerium-activated lanthanum tribromide, their commercial availability and application are limited due to the difficulties of growing large, crack-free single crystals from these fragile materials. This investigation employed aliovalent doping to increase crystal strength while maintaining the optical properties of the crystal. One divalent dopant (Ca2+) was used as a dopant to strengthen CeBr3 without negatively impacting scintillation performance. Ingots containing nominal concentrations of 1.9% of the Ca2+ dopant were grown. Preliminary scintillation measurements are presented for this aliovalently doped scintillator. Ca2+-doped CeBr3 exhibited little or no change in the peak fluorescence emission for 371 nm optical excitation for CeBr3. The structural, electronic, and optical properties of CeBr3 crystals were studied using the density functional theory within the generalized gradient approximation. The calculated lattice parameters are in good agreement with the experimental data. The energy band structures and density of states were obtained. The optical properties of CeBr3, including the dielectric function, were calculated.

  11. Tetravalent chromium doped laser materials and NIR tunable lasers

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Petricevic, Vladimir (Inventor); Bykov, Alexey (Inventor)

    2008-01-01

    A method is described to improve and produce purer Cr.sup.4+-doped laser materials and lasers with reduced co-incorporation of chromium in any other valence states, such as Cr.sup.3+, Cr.sup.2+, Cr.sup.5+, and Cr.sup.6+. The method includes: 1) certain crystals of olivine structure with large cation (Ca) in octahedral sites such as Cr.sup.4+:Ca.sub.2GeO.sub.4, Cr.sup.4+:Ca.sub.2SiO.sub.4, Cr.sup.4+:Ca.sub.2Ge.sub.xSi.sub.1-xO.sub.4 (where 0doped laser materials are characterized by a relatively high concentration of Cr.sup.4+-lasing ion in crystalline host that makes these materials suitable for compact high power (thin disk/wedge) NIR laser applications.

  12. Synthesis of phthalocyanine doped sol-gel materials

    NASA Technical Reports Server (NTRS)

    Dunn, Bruce

    1993-01-01

    The synthesis of sol-gel silica materials doped with three different types of metallophthalocyanines has been studied. Homogeneous materials of good optical quality were prepared and the first optical limiting measurements of dyes in sol-gel hosts were carried out. The properties of these solid state limiters are similar to limiters based on phthalocyanine (Pc) in solution. Sol-gel silica materials containing copper, tin and germanium phthalocyanines were investigated. The initial step in all cases was to prepare silica sols by the sonogel method using tetramethoxy silane (TMOS), HCl and distilled water. Thereafter, the synthesis depended upon the specific Pc and its solubility characteristics. Copper phthalocyanine tetrasulfonic acid tetra sodium salt (CuPc4S) is soluble in water and various doping levels (1 x 10 (exp -4) M to 1 x 10 (exp -5) M) were added to the sol. The group IV Pc's, SnPc(OSi(n-hexyl)3)2 and GePc(OSi(n-hexyl)3)2, are insoluble in water and the process was changed accordingly. In these cases, the compounds were dissolved in THF and then added to the sol. The Pc concentration in the sol was 2 x 10(exp -5)M. The samples were then aged and dried in the standard method of making xerogel monoliths. Comparative nanosecond optical limiting experiments were performed on silica xerogels that were doped with the different metallophthalocyanines. The ratio of the net excited state absorption cross section (sigma(sub e)) to the ground state cross section (sigma(sub g)) is an important figure of merit that is used to characterize these materials. By this standard the SnPc sample exhibits the best limiting for the Pc doped sol-gel materials. Its cross section ratio of 19 compares favorably with the value of 22 that was measured in toluene. The GePc materials appear to not be as useful as those containing SnPc. The GePc doped solids exhibit a higher onset energy (2.5 mj and lower cross section ratio, 7. The CuPc4S sol-gel material has a still lower cross

  13. Terminal-level relaxation in ND-doped laser materials

    SciTech Connect

    Bibeau, C.; Payne, S.A.

    1996-06-01

    During the energy extraction of a 1-{mu}m pulse in a Nd-doped laser material, the Nd-ion population is transferred from the metastable {sup 4}F{sub 3/2} level into the terminal {sup 4}I{sub 11/2} level. The terminal-level lifetime, {tau}{sub 11/2}, is defined in this case as the time it takes the Nd-ion population to decay from the {sup 4}I{sub 11/2} level into the {sup 4}I{sub 9/2} ground state. Several experimental and theoretical approaches over the last three decades have been made to measure the terminal-level lifetime. However, an agreement in the results among the different approaches for a large sampling of laser materials has never been demonstrated. This article presents three independent methods (pump-probe, emission, and energy extraction) for measuring the terminal-level lifetime in Nd:phosphate glass LG-750. The authors find remarkable agreement among the data and determine the {tau}{sub 11/2} lifetime to be 253{+-}50 ps. They extend their studies to show that the results of the pump-probe and emission methods agree to within a factor of two for additional Nd-doped glases and crystals investigated, thus offering validation for the emission method, which is a simpler, indirect approach.

  14. Chemically active organically doped sol-gel materials: enzymatic sensors, chemical sensors, and photoactive materials

    NASA Astrophysics Data System (ADS)

    Avnir, David; Braun, S.; Lev, Ovadia; Ottolenghi, M.

    1992-12-01

    Organically-doped porous sol-gel matrices of optical grade have evolved in recent years into a wide class of materials with diverse applications. We review recent progress made in our laboratories in three domains of applications: the trapping of enzymes with the consequent design of (e.g. glucose) sensors; the development of chemical sensors; and the design of photoactive material for (solar) light energy conversion.

  15. Method of making molecularly doped composite polymer material

    DOEpatents

    Affinito, John D [Tucson, AZ; Martin, Peter M [Kennewick, WA; Graff, Gordon L [West Richland, WA; Burrows, Paul E [Kennewick, WA; Gross, Mark E. , Sapochak, Linda S.

    2005-06-21

    A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.

  16. Fe/Co doped molybdenum diselenide: a promising two-dimensional intermediate-band photovoltaic material.

    PubMed

    Zhang, Jiajia; He, Haiyan; Pan, Bicai

    2015-05-15

    An intermediate-band (IB) photovoltaic material is an important candidate in developing the new-generation solar cell. In this paper, we propose that the Fe-doped or the Co-doped MoSe2 just meets the required features in IB photovoltaic materials. Our calculations demonstrate that when the concentration of the doped element reaches 11.11%, the doped MoSe2 shows a high absorptivity for both infrared and visible light, where the photovoltaic efficiency of the doped MoSe2 is as high as 56%, approaching the upper limit of photovoltaic efficiency of IB materials. So, the Fe- or Co-doped MoSe2 is a promising two-dimensional photovoltaic material.

  17. Doping of inorganic materials in microreactors - preparation of Zn doped Fe3O4 nanoparticles.

    PubMed

    Simmons, M D; Jones, N; Evans, D J; Wiles, C; Watts, P; Salamon, S; Escobar Castillo, M; Wende, H; Lupascu, D C; Francesconi, M G

    2015-08-01

    Microreactor systems are now used more and more for the continuous production of metal nanoparticles and metal oxide nanoparticles owing to the controllability of the particle size, an important property in many applications. Here, for the first time, we used microreactors to prepare metal oxide nanoparticles with controlled and varying metal stoichiometry. We prepared and characterised Zn-substituted Fe3O4 nanoparticles with linear increase of Zn content (ZnxFe3-xO4 with 0 ≤ x ≤ 0.48), which causes linear increases in properties such as the saturation magnetization, relative to pure Fe3O4. The methodology is simple and low cost and has great potential to be adapted to the targeted doping of a vast array of other inorganic materials, allowing greater control on the chemical stoichiometry for nanoparticles prepared in microreactors. PMID:26099495

  18. Nitrogen-doped graphene materials for supercapacitor applications.

    PubMed

    Lu, Yanhong; Huang, Yi; Zhang, Mingjie; Chen, Yongsheng

    2014-02-01

    Development of advanced functional materials for energy conversion and storage technologies play a key role in solving the problems of the rapid depletion of fossil fuels and increasingly worsened environmental pollution caused by vast fossil-fuel consumption. Supercapacitors (SCs), also known as ultracapacitors, which store energy based on either ion adsorption or fast/reversible faradaic reactions, are supposed to be a promising candidate for alternative energy storage devices due to their high rate capability, pulse power supply, long cycle life, simple principles, high dynamics of charge propagation, and low maintenance cost. The performance of supercapacitors highly depends on the properties of electrode materials. Nitrogen-doped graphene (NG)-based materials exhibit great potential for application in supercapacitors because of their unique structure and excellent intrinsic physical properties, such as large surface area with appropriate pore structure, controllable two- or three-dimensional morphology, and extraordinarily electrical conductivity. In this review, we provide a brief summary of recent research progress on NG-based electrode materials for SCs, including the various synthesis methods and the mechanisms of electrochemical performance enhancement. PMID:24749417

  19. Cr/sup 3+/-doped colquiriite solid state laser material

    SciTech Connect

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Krupke, W.F.

    1989-03-07

    Chromium doped colquiriite, LiCaAlF/sub 6/:Cr/sup 3+/, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr/sup 3+/ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slope efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high-slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd/sup 3+/ or Tm/sup 3+/ for use in a multimegajoule single shot fusion research facility.

  20. Cr.sup.3+ -doped colquiriite solid state laser material

    DOEpatents

    Payne, Stephen A.; Chase, Lloyd L.; Newkirk, Herbert W.; Krupke, William F.

    1989-01-01

    Chromium doped colquiriite, LiCaAlF.sub.6 :Cr.sup.3+, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr.sup.3+ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slop efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd.sup.3+ or Tm.sup.3+ for use in a multimegajoule single shot fusion research facility.

  1. Cr/sup 3 +/-doped colquiriite solid state laser material

    DOEpatents

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Krupke, W.F.

    1988-03-31

    Chromium doped colquiriite, LiCaAlF/sub 6/:Cr/sup 3 +/, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr/sup 3 +/ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slope efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd/sup 3 +/ or Tm/sup 3 +/ for use in a multimegajoule single shot fusion research facility. 4 figs.

  2. Aerosol Route Synthesis and Applications of Doped Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Sahu, Manoranjan

    Nanotechnology presents an attractive opportunity to address various challenges in air and water purification, energy, and other environment issues. Thus, the development of new nanoscale materials in low-cost scalable synthesis processes is important. Furthermore, the ability to independently manipulate the material properties as well as characterize the material at different steps along the synthesis route will aide in product optimization. In addition, to ensure safe and sustainable development of nanotechnology applications, potential impacts need to be evaluated. In this study, nanomaterial synthesis in a single-step gas phase reactor to continuously produce doped metal oxides was demonstrated. Copper-doped TiO2 nanomaterial properties (composition, size, and crystal phase) were independently controlled based on nanoparticle formation and growth mechanisms dictated by process control parameters. Copper dopant found to significantly affect TiO2 properties such as particle size, crystal phase, stability in the suspension, and absorption spectrum (shift from UV to visible light absorption). The in-situ charge distribution characterization of the synthesized nanomaterials was carried out by integrating a tandem differential mobility analyzer (TDMA) set up with the flame reactor synthesis system. Both singly- and doubly- charged nanoparticles were measured, with the charged fractions dependent on particle mobility and dopant concentration. A theoretical calculation was conducted to evaluate the relative importance of the two charging mechanisms, diffusion and thermo-ionization, in the flame. Nanoparticle exposure characterization was conducted during synthesis as a function of operating condition, product recovery and handling technique, and during maintenance of the reactors. Strategies were then indentified to minimize the exposure risk. The nanoparticle exposure potential varied depending on the operating conditions such as precursor feed rate, working

  3. Bismuth Interfacial Doping of Organic Small Molecules for High Performance n-type Thermoelectric Materials.

    PubMed

    Huang, Dazhen; Wang, Chao; Zou, Ye; Shen, Xingxing; Zang, Yaping; Shen, Hongguang; Gao, Xike; Yi, Yuanping; Xu, Wei; Di, Chong-An; Zhu, Daoben

    2016-08-26

    Development of chemically doped high performance n-type organic thermoelectric (TE) materials is of vital importance for flexible power generating applications. For the first time, bismuth (Bi) n-type chemical doping of organic semiconductors is described, enabling high performance TE materials. The Bi interfacial doping of thiophene-diketopyrrolopyrrole-based quinoidal (TDPPQ) molecules endows the film with a balanced electrical conductivity of 3.3 S cm(-1) and a Seebeck coefficient of 585 μV K(-1) . The newly developed TE material possesses a maximum power factor of 113 μW m(-1)  K(-2) , which is at the forefront for organic small molecule-based n-type TE materials. These studies reveal that fine-tuning of the heavy metal doping of organic semiconductors opens up a new strategy for exploring high performance organic TE materials. PMID:27496293

  4. The influence of Fe doping on the surface topography of GaN epitaxial material

    NASA Astrophysics Data System (ADS)

    Lei, Cui; Haibo, Yin; Lijuan, Jiang; Quan, Wang; Chun, Feng; Hongling, Xiao; Cuimei, Wang; Jiamin, Gong; Bo, Zhang; Baiquan, Li; Xiaoliang, Wang; Zhanguo, Wang

    2015-10-01

    Fe doping is an effective method to obtain high resistivity GaN epitaxial material. But in some cases, Fe doping could result in serious deterioration of the GaN material surface topography, which will affect the electrical properties of two dimensional electron gas (2DEG) in HEMT device. In this paper, the influence of Fe doping on the surface topography of GaN epitaxial material is studied. The results of experiments indicate that the surface topography of Fe-doped GaN epitaxial material can be effectively improved and the resistivity could be increased after increasing the growth rate of GaN materials. The GaN material with good surface topography can be manufactured when the Fe doping concentration is 9 × 1019 cm-3. High resistivity GaN epitaxial material which is 1 × 109 Ω·cm is achieved. Project supported by the Knowledge Innovation Engineering of the Chinese Academy of Sciences (No. YYY-0701-02), the National Natural Science Foundation of China (Nos. 61204017, 61334002), the State Key Development Program for Basic Research of China, and the National Science and Technology Major Project.

  5. FinFET Doping; Material Science, Metrology, and Process Modeling Studies for Optimized Device Performance

    SciTech Connect

    Duffy, R.; Shayesteh, M.

    2011-01-07

    In this review paper the challenges that face doping optimization in 3-dimensional (3D) thin-body silicon devices will be discussed, within the context of material science studies, metrology methodologies, process modeling insight, ultimately leading to optimized device performance. The focus will be on ion implantation at the method to introduce the dopants to the target material.

  6. Design, synthesis, and characterization of materials for controlled line deposition, environmental remediation, and doping of porous manganese oxide material

    NASA Astrophysics Data System (ADS)

    Calvert, Craig A.

    This thesis covers three topics: (1) coatings formed from sol-gel phases, (2) environmental remediation, and (3) doping of a porous manganese oxide. Synthesis, characterization, and application were investigated for each topic. Line-formations were formed spontaneously by self-assembly from vanadium sol-gels and other metal containing solutions on glass substrates. The solutions were prepared by the dissolution of metal oxide or salt in water. A more straightforward method is proposed than used in previous work. Analyses using optical microscopy, atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and infrared spectroscopy showed discreet lines whose deposition could be controlled by varying the concentration. A mechanism was developed from the observed results. Microwave heating, the addition of graphite rods, and oxidants, can enhance HCB remediation from soil. To achieve remediation, a TeflonRTM vessel open to the atmosphere along with an oxidant, potassium persulfate (PerS) or potassium hydroxide, along with uncoated or aluminum oxide coated, graphite rods were heated in a research grade microwave oven. Microwave heating was used to decrease the heating time, and graphite rods were used to increase the absorption of the microwave energy by providing thermal centers. The results showed that the percent HCB removed was increased by adding graphite rods and oxidants. Tungsten, silver, and sulfur were investigated as doping agents for K--OMS-2. The synthesis of these materials was carried out with a reflux method. The doping of K--OMS-2 led to changes in the properties of a tungsten doped K--OMS-2 had an increased resistivity, the silver doped material showed improved epoxidation of trans-stilbene, and the addition of sulfur produced a paper-like material. Rietveld refinement of the tungsten doped K--OMS-2 showed that the tungsten was doped into the framework.

  7. Thermal and optical study of semiconducting CNTs-doped nematic liquid crystalline material

    NASA Astrophysics Data System (ADS)

    Vimal, T.; Singh, D. P.; Gupta, S. K.; Pandey, S.; Agrahari, K.; Manohar, R.

    2016-06-01

    We report the thermal and spectroscopic analysis of the carbon nanotubes (CNTs)-doped nematic liquid crystal (NLC) material. The CNTs have been oriented in the p-ethoxybenzylidene p-butylaniline NLC. The thermal study of the CNTs doped nematic mixtures shows a significant decrease in the isotropic to nematic phase transition temperature. However higher doping concentration of CNTs has led to the further increase in transition temperature. The UV-Visible spectroscopy has been attempted on the CNTs/NLC mixtures at room temperature. The investigated NLC present one absorption band corresponding to π-π* electronic transition. A red shift of λmax with the increasing concentration of CNTs in the mixture has been observed. The band gap of NLC has been found to decrease after the doping of CNTs. The absorbance was measured for the UV light, polarized parallel and perpendicular to the LC director in the planar aligned cell.

  8. A simple metal-insulator criterion for the doped Mott-Hubbard materials

    NASA Astrophysics Data System (ADS)

    Gavrichkov, Vladimir A.

    2015-04-01

    A simple metal-insulator criterion for doped Mott-Hubbard materials has been derived. Its readings are closely related to the orbital and spin nature of the ground states of the unit cell. The available criterion readings (metal or insulator) in the paramagnetic phase reveal the possibility of the insulator state of doped materials with the forbidden first removal electron states. According to its physical meaning, the result is similar to the Wilson's criterion in itinerant electron systems. The application of the criterion to high-Tc cuprates is discussed.

  9. PAF-derived nitrogen-doped 3D Carbon Materials for Efficient Energy Conversion and Storage.

    PubMed

    Xiang, Zhonghua; Wang, Dan; Xue, Yuhua; Dai, Liming; Chen, Jian-Feng; Cao, Dapeng

    2015-01-01

    Owing to the shortage of the traditional fossil fuels caused by fast consumption, it is an urgent task to develop the renewable and clean energy sources. Thus, advanced technologies for both energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) are being studied extensively. In this work, we use porous aromatic framework (PAF) as precursor to produce nitrogen-doped 3D carbon materials, i.e., N-PAF-Carbon, by exposing NH3 media. The "graphitic" and "pyridinic" N species, large surface area, and similar pore size as electrolyte ions endow the nitrogen-doped PAF-Carbon with outstanding electronic performance. Our results suggest the N-doping enhance not only the ORR electronic catalysis but also the supercapacitive performance. Actually, the N-PAF-Carbon obtains ~70 mV half-wave potential enhancement and 80% increase as to the limiting current after N doping. Moreover, the N-PAF-Carbon displays free from the CO and methanol crossover effect and better long-term durability compared with the commercial Pt/C benchmark. Moreover, N-PAF-Carbon also possesses large capacitance (385 F g(-1)) and excellent performance stability without any loss in capacitance after 9000 charge-discharge cycles. These results clearly suggest that PAF-derived N-doped carbon material is promising metal-free ORR catalyst for fuel cells and capacitor electrode materials.

  10. PAF-derived nitrogen-doped 3D Carbon Materials for Efficient Energy Conversion and Storage.

    PubMed

    Xiang, Zhonghua; Wang, Dan; Xue, Yuhua; Dai, Liming; Chen, Jian-Feng; Cao, Dapeng

    2015-01-01

    Owing to the shortage of the traditional fossil fuels caused by fast consumption, it is an urgent task to develop the renewable and clean energy sources. Thus, advanced technologies for both energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) are being studied extensively. In this work, we use porous aromatic framework (PAF) as precursor to produce nitrogen-doped 3D carbon materials, i.e., N-PAF-Carbon, by exposing NH3 media. The "graphitic" and "pyridinic" N species, large surface area, and similar pore size as electrolyte ions endow the nitrogen-doped PAF-Carbon with outstanding electronic performance. Our results suggest the N-doping enhance not only the ORR electronic catalysis but also the supercapacitive performance. Actually, the N-PAF-Carbon obtains ~70 mV half-wave potential enhancement and 80% increase as to the limiting current after N doping. Moreover, the N-PAF-Carbon displays free from the CO and methanol crossover effect and better long-term durability compared with the commercial Pt/C benchmark. Moreover, N-PAF-Carbon also possesses large capacitance (385 F g(-1)) and excellent performance stability without any loss in capacitance after 9000 charge-discharge cycles. These results clearly suggest that PAF-derived N-doped carbon material is promising metal-free ORR catalyst for fuel cells and capacitor electrode materials. PMID:26045229

  11. Controlling the stoichiometry and doping of semiconductor materials

    DOEpatents

    Albin, David; Burst, James; Metzger, Wyatt; Duenow, Joel; Farrell, Stuart; Colegrove, Eric

    2016-08-16

    Methods for treating a semiconductor material are provided. According to an aspect of the invention, the method includes annealing the semiconductor material in the presence of a compound that includes a first element and a second element. The first element provides an overpressure to achieve a desired stoichiometry of the semiconductor material, and the second element provides a dopant to the semiconductor material.

  12. Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials

    NASA Astrophysics Data System (ADS)

    Kamarulzaman, Norlida; Kasim, Muhd Firdaus; Rusdi, Roshidah

    2015-08-01

    Band gap change in doped ZnO is an observed phenomenon that is very interesting from the fundamental point of view. This work is focused on the preparation of pure and single phase nanostructured ZnO and Cu as well as Mn-doped ZnO for the purpose of understanding the mechanisms of band gap narrowing in the materials. ZnO, Zn0.99Cu0.01O and Zn0.99Mn0.01O materials were prepared using a wet chemistry method, and X-ray diffraction (XRD) results showed that all samples were pure and single phase. UV-visible spectroscopy showed that materials in the nanostructured state exhibit band gap widening with respect to their micron state while for the doped compounds exhibited band gap narrowing both in the nano and micron states with respect to the pure ZnO materials. The degree of band gap change was dependent on the doped elements and crystallite size. X-ray photoelectron spectroscopy (XPS) revealed that there were shifts in the valence bands. From both UV-visible and XPS spectroscopy, it was found that the mechanism for band gap narrowing was due to the shifting of the valance band maximum and conduction band minimum of the materials. The mechanisms were different for different samples depending on the type of dopant and dimensional length scales of the crystallites.

  13. Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials.

    PubMed

    Kamarulzaman, Norlida; Kasim, Muhd Firdaus; Rusdi, Roshidah

    2015-12-01

    Band gap change in doped ZnO is an observed phenomenon that is very interesting from the fundamental point of view. This work is focused on the preparation of pure and single phase nanostructured ZnO and Cu as well as Mn-doped ZnO for the purpose of understanding the mechanisms of band gap narrowing in the materials. ZnO, Zn0.99Cu0.01O and Zn0.99Mn0.01O materials were prepared using a wet chemistry method, and X-ray diffraction (XRD) results showed that all samples were pure and single phase. UV-visible spectroscopy showed that materials in the nanostructured state exhibit band gap widening with respect to their micron state while for the doped compounds exhibited band gap narrowing both in the nano and micron states with respect to the pure ZnO materials. The degree of band gap change was dependent on the doped elements and crystallite size. X-ray photoelectron spectroscopy (XPS) revealed that there were shifts in the valence bands. From both UV-visible and XPS spectroscopy, it was found that the mechanism for band gap narrowing was due to the shifting of the valance band maximum and conduction band minimum of the materials. The mechanisms were different for different samples depending on the type of dopant and dimensional length scales of the crystallites.

  14. On the use of doped polyethylene as an insulating material for HVDC cables

    SciTech Connect

    Khalil, M.S.

    1996-12-31

    The merits of HVDC cables with polymeric insulation are well recognized. However, the development of such cables is still hampered due to the problems resulting from the complicated dependence of the electrical conductivity of the polymer on the temperature and the dc electric field and the effects of space charge accumulation in this material. Different methods have been suggested to solve these problems yet none of these methods seem to give a conclusive solution. The present report provides, firstly a critical review of the previous works reported in the literature concerning the development of HVDC cables with polymeric insulation. Different aspects of those works are examined and discussed. Secondly, an account is given on an investigation using low density polyethylene (LDPE) doped with an inorganic additive as a candidate insulating material for HVDC cables. Preliminary results from measurements of dc breakdown strength and insulation resistivity of both the undoped and the doped materials are presented. It is shown that the incorporation of an inorganic additive into LDPE has improved the performance of the doped material under polarity reversal dc conditions at room temperature. Moreover, the dependency of the insulation resistivity on temperature for the doped material appears to be beneficially modified.

  15. Reactive Oxygen-Doped 3D Interdigital Carbonaceous Materials for Li and Na Ion Batteries.

    PubMed

    Fan, Ling; Lu, Bingan

    2016-05-01

    Carbonaceous materials as anodes usually exhibit low capacity for lithium ion batteries (LIBs) and sodium ion batteries (SIBs). Oxygen-doped carbonaceous materials have the potential of high capacity and super rate performance. However, up to now, the reported oxygen-doped carbonaceous materials usually exhibit inferior electrochemical performance. To overcome this problem, a high reactive oxygen-doped 3D interdigital porous carbonaceous material is designed and synthesized through epitaxial growth method and used as anodes for LIBs and SIBs. It delivers high reversible capacity, super rate performance, and long cycling stability (473 mA h g(-1) after 500 cycles for LIBs and 223 mA h g(-1) after 1200 cycles for SIBs, respectively, at the current density of 1000 mA g(-1) ), with a capacity decay of 0.0214% per cycle for LIBs and 0.0155% per cycle for SIBs. The results demonstrate that constructing 3D interdigital porous structure with reactive oxygen functional groups can significantly enhance the electrochemical performance of oxygen-doped carbonaceous material.

  16. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    DOEpatents

    Zidan, Ragaiy; Ritter, James A.; Ebner, Armin D.; Wang, Jun; Holland, Charles E.

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  17. Thermoelectric properties of Al doped Mg{sub 2}Si material

    SciTech Connect

    Kaur, Kulwinder Kumar, Ranjan; Rani, Anita

    2015-08-28

    In the present paper we have calculated thermoelectric properties of Al doped Mg{sub 2}Si material (Mg{sub 2−x}Al{sub x}Si, x=0.06) using Pseudo potential plane wave method based on DFT and Semi classical Boltzmann theory. The calculations showed n-type conduction, indicating that the electrical conduction are due to electron. The electrical conductivity increasing with increasing temperature and the negative value of Seebeck Coefficient also show that the conduction is due to electron. The thermal conductivity was increased slightly by Al doping with increasing temperature due to the much larger contribution of lattice thermal conductivity over electronic thermal conductivity.

  18. Ligand Doping on the Hybrid Thermoelectric Materials Based on Terthiophene-Capped Silicon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ashby, Shane P.; Bian, Tiezheng; Guélou, Gabin; Powell, Anthony V.; Chao, Yimin

    2016-03-01

    Over the past 2 years, silicon nanoparticles (SiNPs) functionalised with conjugated molecules have been shown to have potential as low-temperature thermoelectric materials. One key challenge with such materials relates to the introduction of charge carriers. There are two components of organic/silicon nanocomposite materials in which charge carriers can be introduced: the silicon nanoparticle or the organic ligand. Investigation into the effect of introducing charge carriers on the ligands via oxidation is another step towards understanding and optimising this kind of system. Terthiophene-capped SiNPs have been synthesised and characterised before and after doping. Using different ratios and the oxidant NOBF4 to dope the surface ligands, the electrical conductivity has been measured at ambient temperature. The ratio of oxidant to nanoparticles shows similar trends in electrical resistivity to that of conventional conductive polymers and shows significant improvements over the undoped material.

  19. Electrochemical properties of lithium polymer batteries with doped polyaniline as cathode material

    SciTech Connect

    Manuel, James; Kim, Jae-Kwang; Matic, Aleksandar; Jacobsson, Per; Chauhan, Ghanshyam S.; Ha, Jong Keun; Cho, Kwon-Koo; Ahn, Jou-Hyeon

    2012-10-15

    Graphical abstract: -- Abstract: Polyaniline (PANI) was doped with different lithium salts such as LiPF{sub 6} and LiClO{sub 4} and evaluated as cathode-active material for application in room-temperature lithium batteries. The doped PANI was characterized by FTIR and XPS measurements. In the FTIR spectra, the characteristic peaks of PANI are shifted to lower bands as a consequence of doping, and it is more shifted in the case of PANI doped with LiPF{sub 6}. The cathodes prepared using PANI doped with LiPF{sub 6} and LiClO{sub 4} delivered initial discharge capacities of 125 mAh g{sup −1} and 112 mAh g{sup −1} and stable reversible capacities of 114 mAh g{sup −1} and 81 mAh g{sup −1}, respectively, after 10 charge–discharge cycles. The cells were also tested using polymer electrolyte, which delivered highest discharge capacities of 142.6 mAh g{sup −1} and 140 mAh g{sup −1} and stable reversible capacities of 117 mAh g{sup −1} and 122 mAh g{sup −1} for PANI-LiPF{sub 6} and PANI-LiClO{sub 4}, respectively, after 10 cycles. The cathode prepared with LiPF{sub 6} doped PANI shows better cycling performance and stability as compared to the cathode prepared with LiClO{sub 4} doped PANI using both liquid and polymer electrolytes.

  20. Material and Doping Dependence of the Nodal and Antinodal Dispersion Renormalizations in Single- and Multilayer Cuprates

    DOE PAGESBeta

    Johnston, S.; Lee, W. S.; Chen, Y.; Nowadnick, E. A.; Moritz, B.; Shen, Z. -X.; Devereaux, T. P.

    2010-01-01

    We presenmore » t a review of bosonic renormalization effects on electronic carriers observed from angle-resolved photoemission spectra in the cuprates. Specifically, we discuss the viewpoint that these renormalizations represent coupling of the electrons to the lattice and review how materials dependence, such as the number of Cu O 2 layers, and doping dependence can be understood straightforwardly in terms of several aspects of electron-phonon coupling in layered correlated materials.« less

  1. Ti-doped isotropic graphite: A promising armour material for plasma-facing components

    NASA Astrophysics Data System (ADS)

    García-Rosales, C.; López-Galilea, I.; Ordás, N.; Adelhelm, C.; Balden, M.; Pintsuk, G.; Grattarola, M.; Gualco, C.

    2009-04-01

    Finely dispersed Ti-doped isotropic graphites with 4 at.% Ti have been manufactured using synthetic mesophase pitch 'AR' as raw material. These new materials show a thermal conductivity at room temperature of ˜200 W/mK and flexural strength close to 100 MPa. Measurement of the total erosion yield by deuterium bombardment at ion energies and sample temperatures for which pure carbon shows maximum values, resulted in a reduction of at least a factor of 4, mainly due to dopant enrichment at the surface caused by preferential erosion of carbon. In addition, ITER relevant thermal shock loads were applied with an energetic electron beam at the JUDITH facility. The results demonstrated a significantly improved performance of Ti-doped graphite compared to pure graphite. Finally, Ti-doped graphite was successfully brazed to a CuCrZr block using a Mo interlayer. These results let assume that Ti-doped graphite can be a promising armour material for divertor plasma-facing components.

  2. Polycrystalline silicon semiconducting material by nuclear transmutation doping

    DOEpatents

    Cleland, John W.; Westbrook, Russell D.; Wood, Richard F.; Young, Rosa T.

    1978-01-01

    A NTD semiconductor material comprising polycrystalline silicon having a mean grain size less than 1000 microns and containing phosphorus dispersed uniformly throughout the silicon rather than at the grain boundaries.

  3. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.

    PubMed

    Chen, Li-Feng; Zhang, Xu-Dong; Liang, Hai-Wei; Kong, Mingguang; Guan, Qing-Fang; Chen, Ping; Wu, Zhen-Yu; Yu, Shu-Hong

    2012-08-28

    Supercapacitors (also known as ultracapacitors) are considered to be the most promising approach to meet the pressing requirements of energy storage. Supercapacitive electrode materials, which are closely related to the high-efficiency storage of energy, have provoked more interest. Herein, we present a high-capacity supercapacitor material based on the nitrogen-doped porous carbon nanofibers synthesized by carbonization of macroscopic-scale carbonaceous nanofibers (CNFs) coated with polypyrrole (CNFs@polypyrrole) at an appropriate temperature. The composite nanofibers exhibit a reversible specific capacitance of 202.0 F g(-1) at the current density of 1.0 A g(-1) in 6.0 mol L(-1) aqueous KOH electrolyte, meanwhile maintaining a high-class capacitance retention capability and a maximum power density of 89.57 kW kg(-1). This kind of nitrogen-doped carbon nanofiber represents an alternative promising candidate for an efficient electrode material for supercapacitors.

  4. Optically and electrically controlled circularly polarized emission from cholesteric liquid crystal materials doped with semiconductor quantum dots.

    PubMed

    Bobrovsky, Alexey; Mochalov, Konstantin; Oleinikov, Vladimir; Sukhanova, Alyona; Prudnikau, Anatol; Artemyev, Mikhail; Shibaev, Valery; Nabiev, Igor

    2012-12-01

    Novel types of electro- and photoactive quantum dot-doped cholesteric materials have been engineered. UV-irradiation or electric field application allows one to control the degree of circular polarization and intensity of fluorescence emission by prepared quantum dot-doped liquid crystal films. PMID:22972420

  5. DNA based materials doped with praseodymium (III) hydroxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Lazar, Cosmina Andreea; Kajzar, François; Mihaly, Maria; Pirvu, Cristian; Petcu, Adina Roxana; Olteanu, Nicoleta Liliana; Rau, Ileana

    2016-06-01

    Lanthanide ions have attracted intense research interest for their luminescence properties, which make them interesting for applications such as bioactive probes for magnetic resonance and luminescence. We present here our study related to the interaction between DNA-CTMA (hexadecyltrimethylammonium chloride) and praseodymium. The new materials synthesized were investigated from photophysical properties and morphological point of view.

  6. Cobalt doped lanthanum chromite material suitable for high temperature use

    DOEpatents

    Ruka, R.J.

    1986-12-23

    A high temperature, solid electrolyte electrochemical cell, subject to thermal cycling temperatures of between about 25 C and about 1,200 C, capable of electronic interconnection to at least one other electrochemical cell and capable of operating in an environment containing oxygen and a fuel, is made; where the cell has a first and second electrode with solid electrolyte between them, where an improved interconnect material is applied along a portion of a supporting electrode; where the interconnect is made of a chemically modified lanthanum chromite, containing cobalt as the important additive, which interconnect allows for adjustment of the thermal expansion of the interconnect material to more nearly match that of other cell components, such as zirconia electrolyte, and is stable in oxygen containing atmospheres such as air and in fuel environments. 2 figs.

  7. Cobalt doped lanthanum chromite material suitable for high temperature use

    DOEpatents

    Ruka, Roswell J.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell, subject to thermal cycling temperatures of between about 25.degree. C. and about 1200.degree. C., capable of electronic interconnection to at least one other electrochemical cell and capable of operating in an environment containing oxygen and a fuel, is made; where the cell has a first and second electrode with solid electrolyte between them, where an improved interconnect material is applied along a portion of a supporting electrode; where the interconnect is made of a chemically modified lanthanum chromite, containing cobalt as the important additive, which interconnect allows for adjustment of the thermal expansion of the interconnect material to more nearly match that of other cell components, such as zirconia electrolyte, and is stable in oxygen containing atmospheres such as air and in fuel environments.

  8. Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries.

    PubMed

    Wang, Li; Zheng, Yaolin; Wang, Xiaohong; Chen, Shouhui; Xu, Fugang; Zuo, Li; Wu, Jiafeng; Sun, Lanlan; Li, Zhuang; Hou, Haoqing; Song, Yonghai

    2014-05-28

    A simple and industrially scalable approach to prepare porous carbon (PC) with high surface areas as well as abundant nitrogen element as anode supporting materials for lithium-ion batteries (LIBs) was developed. Herein, the N-doped PC was prepared by carbonizing crawfish shell, which is a kind of food waste with abundant marine chitin as well as a naturally porous structure. The porous structure can be kept to form the N-doped PC in the pyrolysis process. The N-doped PC-Co3O4 nanocomposites were synthesized by loading Co3O4 on the N-doped PC as anode materials for LIBs. The resulting N-doped PC-Co3O4 nanocomposites release an initial discharge of 1223 mA h g(-1) at a current density of 100 mA g(-1) and still maintain a high reversible capacity of 1060 mA h g(-1) after 100 cycles, which is higher than that of individual N-doped PC or Co3O4. Particularly, the N-doped PC-Co3O4 nanocomposites can be prepared in a large yield with a low cost because the N-doped PC is derived from abundant natural waste resources, which makes it a promising anode material for LIBs.

  9. Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material.

    PubMed

    Cheng, Zhi-Lin; Han, Shuai

    2016-01-01

    A novel composite electrode material based on a N-doped TiO2-loaded NaY zeolite membrane (N-doped TiO2/NaY zeolite membrane) for photoelectrocatalysis was presented. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-vis) and X-ray photoelectron spectroscopy (XPS) characterization techniques were used to analyze the structure of the N-doped TiO2/NaY zeolite membrane. The XRD and SEM results verified that the N-doped TiO2 nanoparticles with the size of ca. 20 nm have been successfully loaded on the porous stainless steel-supported NaY zeolite membrane. The UV-vis result showed that the N-doped TiO2/NaY zeolite membrane exhibited a more obvious red-shift than that of N-TiO2 nanoparticles. The XPS characterization revealed that the doping of N element into TiO2 was successfully achieved. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane composite electrode material was evaluated by phenol removal and also the effects of reaction conditions on the catalytic performance were investigated. Owing to exhibiting an excellent catalytic activity and good recycling stability, the N-doped TiO2/NaY zeolite membrane composite electrode material was of promising application for photoelectrocatalysis in wastewater treatment. PMID:26877029

  10. Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material.

    PubMed

    Cheng, Zhi-Lin; Han, Shuai

    2016-01-01

    A novel composite electrode material based on a N-doped TiO2-loaded NaY zeolite membrane (N-doped TiO2/NaY zeolite membrane) for photoelectrocatalysis was presented. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-vis) and X-ray photoelectron spectroscopy (XPS) characterization techniques were used to analyze the structure of the N-doped TiO2/NaY zeolite membrane. The XRD and SEM results verified that the N-doped TiO2 nanoparticles with the size of ca. 20 nm have been successfully loaded on the porous stainless steel-supported NaY zeolite membrane. The UV-vis result showed that the N-doped TiO2/NaY zeolite membrane exhibited a more obvious red-shift than that of N-TiO2 nanoparticles. The XPS characterization revealed that the doping of N element into TiO2 was successfully achieved. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane composite electrode material was evaluated by phenol removal and also the effects of reaction conditions on the catalytic performance were investigated. Owing to exhibiting an excellent catalytic activity and good recycling stability, the N-doped TiO2/NaY zeolite membrane composite electrode material was of promising application for photoelectrocatalysis in wastewater treatment.

  11. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    SciTech Connect

    Dong, Qiang; Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin; Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro; Sato, Tsugio

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  12. A novel approach to prepare optically active ion doped luminescent materials via electron beam evaporation into ionic liquids

    SciTech Connect

    Richter, K.; Lorbeer, C.; Mudring, A. -V.

    2014-11-10

    A novel approach to prepare luminescent materials via electron-beam evaporation into ionic liquids is presented which even allows doping of host lattices with ions that have a strong size mismatch. Thus, to prove this, MgF2 nanoparticles doped with Eu3+ were fabricated. The obtained nanoparticles featured an unusually high luminescence lifetime and the obtained material showed a high potential for application.

  13. A novel approach to prepare optically active ion doped luminescent materials via electron beam evaporation into ionic liquids

    DOE PAGESBeta

    Richter, K.; Lorbeer, C.; Mudring, A. -V.

    2014-11-10

    A novel approach to prepare luminescent materials via electron-beam evaporation into ionic liquids is presented which even allows doping of host lattices with ions that have a strong size mismatch. Thus, to prove this, MgF2 nanoparticles doped with Eu3+ were fabricated. The obtained nanoparticles featured an unusually high luminescence lifetime and the obtained material showed a high potential for application.

  14. Synthesis and characterization of Bi-doped Mg{sub 2}Si thermoelectric materials

    SciTech Connect

    Fiameni, S.; Battiston, S.; Boldrini, S.; Famengo, A.; Agresti, F.; Barison, S.; Fabrizio, M.

    2012-09-15

    The Mg{sub 2}Si-based alloys are promising candidates for thermoelectric energy conversion for the middle high range of temperature. They are very attractive as they could replace lead-based compounds due to their low cost and non toxicity. They could also result in thermoelectric generator weight reduction (a key feature for the automotive application field). The high value of thermal conductivity of the silicide-based materials could be reduced by increasing the phonon scattering in the presence of nanosized crystalline grains without heavily interfering with the electrical conductivity of the thermoelectric material. Nanostructured materials were obtained under inert atmosphere through ball milling, thermal treatment and spark plasma sintering processes. In particular, the role of several bismuth doping amounts in Mg{sub 2}Si were investigated (Mg{sub 2}Si:Bi=1:x for x=0.01, 0.02 and 0.04 M ratio). The morphology, the composition and the structure of the samples were characterized by FE-SEM, EDS and XRD analyses after each process step. Moreover, the Seebeck coefficient analyses at high temperature and the electrical and thermal conductivity of the samples are presented in this work. The nanostructuring processes were affect by the MgO amount increase which influenced the thermoelectric properties of the samples mainly by reducing the electrical conductivity. With the aim of further increasing the scattering phenomena by interface or boundary effect, carbon nanostructures named Single Wall Carbon Nanohorns were added to the Mg{sub 2}Si in order to produce a nanocomposite material. The influence of the nanostructured filler on the thermoelectric material properties is also discussed. - Graphical abstract: Figure of merit (ZT) of Bi-doped samples and undoped Mg{sub 2}Si. A maximum ZT value of 0.39 at 600 Degree-Sign C was obtained for the nanocomposite material obtained adding Single Wall Carbon Nanohorns to the Bi 0.02 at% doped silicide. Highlights: Black

  15. Internal temperature measurement of an ytterbium doped material under laser operation.

    PubMed

    Petit, J; Viana, B; Goldner, Ph

    2011-01-17

    Temperature of the pumped volume of an ytterbium doped material has been measured while laser action is taking place. This is achieved by recording green emissions at 530 and 550 nm from Er3+ impurities. These emissions result from energy transfer upconversion processes between Yb3+ and Er3+. Experiments performed on a Yb3+:CaGdAlO4 crystal show the effect of pump power and laser wavelength on the sample internal temperature. Temperature variation along the sample length has also been measured. This method can complement data obtained by thermal cameras which can only access surface temperatures in most laser materials.

  16. Doping in controlling the type of conductivity in bulk and nanostructured thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Fuks, D.; Komisarchik, G.; Kaller, M.; Gelbstein, Y.

    2016-08-01

    Doping of materials for thermoelectric applications is widely used nowadays to control the type of conductivity. We report the results of ab-initio calculations aimed at developing the consistent scheme for determining the role of impurities that may change the type of conductivity in two attractive thermoelectric classes of materials. It is demonstrated that alloying of TiNiSn with Cu makes the material of n-type, and alloying with Fe leads to p-type conductivity. Similar calculations for PbTe with small amount of Na substituting for Pb leads to p-type conductivity, while Cl substituting for Te makes PbTe an n-type material. It is shown also that for nano-grained materials the n-type conductivity should be observed. The effect of impurities segregating to the grain boundaries in nano-structured PbTe is also discussed.

  17. White emission materials from glass doped with rare Earth ions: A review

    NASA Astrophysics Data System (ADS)

    Yasaka, P.; Kaewkhao, J.

    2016-03-01

    Solid State Lighting (SSL) based devices are predicted to play a crucial role in the coming years. Development of W-LED, which have an edge over traditional lighting sources due to their compact size, higher reliability, shock resistance, interesting design possibilities, higher transparency and an extremely long lifetime. Over the fifteen trivalent lanthanide ions, Dy3+ ions doped glasses are most appropriate for white light generation because of the fact that it exhibits two intense emission bands corresponds to the 4F9/2→6H15/2 (magnetic dipole) and 4F9/2→6H13/2 (electric dipole) transitions at around 480-500 nm and 580-600 nm pertaining to blue and yellow regions respectively. In this work, the developments of Dy3+ doped in several glass structures for white emitting materials application have reviewed. Properties of Dy3+ doped in glasses were discussed for use as a solid state lighting materials application.

  18. Effect of silicon and sodium on thermoelectric properties of thallium doped lead telluride based materials

    SciTech Connect

    Zhang, Qinyong; Wang, H; Zhang, Qian; Liu, W.; Yu, Bo; Wang, H; Wang, D.; Ni, G; Chen, Gang; Ren, Z. F.

    2012-01-01

    Thallium (Tl)-doped lead telluride (Tl0.02Pb0.98Te) thermoelectric materials fabricated by ball milling and hot pressing have decent thermoelectric properties but weak mechanical strength. Addition of silicon (Si) nanoparticles strengthened the mechanical property by reducing the grain size and defect density but resulted in low electrical conductivity that was not desired for any thermoelectric materials. Fortunately, doping of sodium (Na) into the Si added Tl0.02Pb0.98Te brings back the high electrical conductivity and yields higher figure-of-merit ZT values of ~1.7 at 770 K. The ZT improvement by Si addition and Na doping in Tl0.02Pb0.98Te sample is the direct result of concurrent electron and phonon engineering by improving the power factor and lowering the thermal conductivity, respectively.

  19. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics

    DOE PAGESBeta

    Sachet, Edward; Shelton, Christopher T.; Harris, Joshua S.; Gaddy, Benjamin E.; Irving, Douglas L.; Curtarolo, Stefano; Donovan, Brian F.; Hopkins, Patrick E.; Sharma, Peter A.; Sharma, Ana Lima; et al

    2015-02-16

    The interest in plasmonic technologies surrounds many emergent optoelectronic applications, such as plasmon lasers, transistors, sensors and information storage. Although plasmonic materials for ultraviolet–visible and near-infrared wavelengths have been found, the mid-infrared range remains a challenge to address: few known systems can achieve subwavelength optical confinement with low loss in this range. With a combination of experiments and ab initio modelling, here we demonstrate an extreme peak of electron mobility in Dy-doped CdO that is achieved through accurate ‘defect equilibrium engineering’. In so doing, we create a tunable plasmon host that satisfies the criteria for mid-infrared spectrum plasmonics, and overcomesmore » the losses seen in conventional plasmonic materials. In particular, extrinsic doping pins the CdO Fermi level above the conduction band minimum and it increases the formation energy of native oxygen vacancies, thus reducing their populations by several orders of magnitude. The substitutional lattice strain induced by Dy doping is sufficiently small, allowing mobility values around 500 cm2 V–1 s–1 for carrier densities above 1020 cm–3. As a result, our work shows that CdO:Dy is a model system for intrinsic and extrinsic manipulation of defects affecting electrical, optical and thermal properties, that oxide conductors are ideal candidates for plasmonic devices and that the defect engineering approach for property optimization is generally applicable to other conducting metal oxides.« less

  20. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics.

    PubMed

    Sachet, Edward; Shelton, Christopher T; Harris, Joshua S; Gaddy, Benjamin E; Irving, Douglas L; Curtarolo, Stefano; Donovan, Brian F; Hopkins, Patrick E; Sharma, Peter A; Sharma, Ana Lima; Ihlefeld, Jon; Franzen, Stefan; Maria, Jon-Paul

    2015-04-01

    The interest in plasmonic technologies surrounds many emergent optoelectronic applications, such as plasmon lasers, transistors, sensors and information storage. Although plasmonic materials for ultraviolet-visible and near-infrared wavelengths have been found, the mid-infrared range remains a challenge to address: few known systems can achieve subwavelength optical confinement with low loss in this range. With a combination of experiments and ab initio modelling, here we demonstrate an extreme peak of electron mobility in Dy-doped CdO that is achieved through accurate 'defect equilibrium engineering'. In so doing, we create a tunable plasmon host that satisfies the criteria for mid-infrared spectrum plasmonics, and overcomes the losses seen in conventional plasmonic materials. In particular, extrinsic doping pins the CdO Fermi level above the conduction band minimum and it increases the formation energy of native oxygen vacancies, thus reducing their populations by several orders of magnitude. The substitutional lattice strain induced by Dy doping is sufficiently small, allowing mobility values around 500 cm(2) V(-1) s(-1) for carrier densities above 10(20) cm(-3). Our work shows that CdO:Dy is a model system for intrinsic and extrinsic manipulation of defects affecting electrical, optical and thermal properties, that oxide conductors are ideal candidates for plasmonic devices and that the defect engineering approach for property optimization is generally applicable to other conducting metal oxides.

  1. Improved thermal stability of N-doped Sb materials for high-speed phase change memory application

    NASA Astrophysics Data System (ADS)

    Hu, Yifeng; Zhu, Xiaoqin; Zou, Hua; Zhang, Jianhao; Yuan, Li; Xue, Jianzhong; Sui, Yongxing; Wu, Weihua; Song, Sannian; Song, Zhitang

    2016-05-01

    Compared with pure Sb, N-doped Sb material was proved to be a promising candidate for the phase change memory (PCM) use because of its higher crystallization temperature (˜250 °C), larger crystallization activation energy (3.53 eV), and better data retention ability (166 °C for 10 years). N-doping also broadened the band gap and refined grain size. The reversible resistance transition could be achieved by an electric pulse as short as 8 ns for the PCM cell based on N-doped Sb material. A lower operation power consumption (the energy for RESET operation 2.2 × 10-12 J) was obtained. In addition, N-doped Sb material showed a good endurance of 1.8 × 105 cycles.

  2. A combined experimental-computational study on nitrogen doped Cu2O as the wide-spectrum absorption material

    NASA Astrophysics Data System (ADS)

    Ping, Zhang; Yurong, Zhou; Qingbo, Yan; Fengzhen, Liu; Jingwen, Li; Gangqiang, Dong

    2014-10-01

    Highly-oriented Cu2O thin films were prepared by low temperature thermal oxidation of evaporated Cu thin films. The films were doped with different doses of nitrogen by ion implantation. An absorption peak appears below the absorption edge in the absorption spectrum of highly nitrogen doped Cu2O. The effect of nitrogen doping on the crystal structure, electronic structure and optical properties of Cu2O were investigated systematically by first-principles calculations. The calculation results indicate that an intermediate energy band exists in the forbidden gap of highly nitrogen doped Cu2O. The electron transition from the valence band to the intermediate band is consistent with the absorption peak by experimental observation. Experimental and computational results indicate that nitrogen doped Cu2O could be a suitable absorbing material candidate for wide-spectrum detectors or intermediate band solar cells.

  3. High valence transition metal doped strontium ferrites for electrode materials in symmetrical SOFCs

    NASA Astrophysics Data System (ADS)

    Fernández-Ropero, A. J.; Porras-Vázquez, J. M.; Cabeza, A.; Slater, P. R.; Marrero-López, D.; Losilla, E. R.

    2014-03-01

    In this paper we report the successful incorporation of high valence transition metals, i.e. Cr, Mo, W, V, Nb, Ti, Zr into SrFeO3-δ perovskite materials, for potential applications as symmetric electrode materials for Solid Oxide Fuel Cells. It is observed that the doping leads to a change from an orthorhombic structure (with partial ordering of oxygen vacancies) to a cubic one (with the oxygen vacancies disordered). These electrodes are chemically compatibles with Ce0.9Gd0.1O1.95 (CGO) and La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolytes at least up to 1100 °C. Thermal annealing experiments in 5% H2-Ar at 800 °C also show the stability of the doped samples in reducing conditions, suggesting that they may be suitable for both cathode and anode applications. In contrast, reduction of undoped SrFeO3-δ leads to the observation of extra peaks indicating the formation of the brownmillerite structure with the associated oxygen vacancy ordering. The performance of these electrodes was examined on dense electrolyte pellets of CGO and LSGM in air and 5% H2-Ar. In both atmospheres an improvement in the area specific resistances (ASR) values is observed for the doped samples with respect to the parent compound. Thus, the results show that high valence transition metals can be incorporated into SrFeO3-δ-based materials and can have a beneficial effect on the electrochemical performance, making them potentially suitable for use as cathode and anode materials in symmetrical SOFC.

  4. Spectroscopic analyses of trivalent rare-earth ions doped in different host materials

    NASA Astrophysics Data System (ADS)

    Chandrasekharan, Sreerenjini

    2011-12-01

    Trivalent rare-earth (RE3+) ions of 4f n electronic configurations are found to possess potential applications in the field of optoelectronic and biophotonic technologies owing to their unique optical properties. They have been used as optical activators in a large number of solid-state laser host materials due to their rich energy level structure. This work focuses on the spectroscopic study of two RE 3+ ions, namely, trivalent erbium and neodymium (Er3+ and Nd3+, respectively), embedded in some important single crystal and nanocrystalline host materials including yttrium orthoaluminate (YAlO3), erbium oxide (Er2O3), yttrium oxide (Y2O3) and a combined host system of Y2O 3 and a vinyl polymer named Polymethyl Methacrylate (PMMA). Each one of these host materials are known to be unique for their characteristic properties such as chemical durability, thermal stability, optical clarity, wide band gaps, biocompatibility, and success as phosphors in various optoelectronic devices. The complete material characterization has been performed through morphology analyses using advanced microscopy techniques and spectroscopic analyses of the characteristic absorption and emission spectra by applying phenomenological crystal-field splitting and Judd-Ofelt techniques. The important spectroscopic parameters such as line strengths, radiative decay rates, and branching ratios have been obtained for the intermanifold transitions from the upper multiplets to the corresponding lower-lying multiplet manifolds 2S+1LJ of RE3+ ions doped in various host systems. Using the radiative decay rates, radiative life times are obtained and the experimental analyses of the fluorescent spectra yield the measured lifetimes of emitting metastable states. Finally, the results are compared with the previously published set of values for the same ions doped in similar type of host systems. Detailed analyses of the spectroscopic properties show that the studied systems RE3+ doped single crystals and

  5. Synthesis and Characterization of Al-Doped Mg2Si Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Battiston, S.; Fiameni, S.; Saleemi, M.; Boldrini, S.; Famengo, A.; Agresti, F.; Stingaciu, M.; Toprak, M. S.; Fabrizio, M.; Barison, S.

    2013-07-01

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion for the middle to high range of temperature. These materials are very attractive for TE research because of the abundance of their constituent elements in the Earth's crust. Mg2Si could replace lead-based TE materials, due to its low cost, nontoxicity, and low density. In this work, the role of aluminum doping (Mg2Si:Al = 1: x for x = 0.005, 0.01, 0.02, and 0.04 molar ratio) in dense Mg2Si materials was investigated. The synthesis process was performed by planetary milling under inert atmosphere starting from commercial Mg2Si pieces and Al powder. After ball milling, the samples were sintered by means of spark plasma sintering to density >95%. The morphology, composition, and crystal structure of the samples were characterized by field-emission scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction analyses. Moreover, Seebeck coefficient analyses, as well as electrical and thermal conductivity measurements were performed for all samples up to 600°C. The resultant estimated ZT values are comparable to those reported in the literature for these materials. In particular, the maximum ZT achieved was 0.50 for the x = 0.01 Al-doped sample at 600°C.

  6. One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries

    PubMed Central

    Xing, Zheng; Ju, Zhicheng; Zhao, Yulong; Wan, Jialu; Zhu, Yabo; Qiang, Yinghuai; Qian, Yitai

    2016-01-01

    Nitrogen-doped (N-doped) graphene has been prepared by a simple one-step hydrothermal approach using hexamethylenetetramine (HMTA) as single carbon and nitrogen source. In this hydrothermal process, HMTA pyrolyzes at high temperature and the N-doped graphene subsequently self-assembles on the surface of MgO particles (formed by the Mg powder reacting with H2O) during which graphene synthesis and nitrogen doping are simultaneously achieved. The as-synthesized graphene with incorporation of nitrogen groups possesses unique structure including thin layer thickness, high surface area, mesopores and vacancies. These structural features and their synergistic effects could not only improve ions and electrons transportation with nanometer-scale diffusion distances but also promote the penetration of electrolyte. The N-doped graphene exhibits high reversible capacity, superior rate capability as well as long-term cycling stability, which demonstrate that the N-doped graphene with great potential to be an efficient electrode material. The experimental results provide a new hydrothermal route to synthesize N-doped graphene with potential application for advanced energy storage, as well as useful information to design new graphene materials. PMID:27184859

  7. One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Xing, Zheng; Ju, Zhicheng; Zhao, Yulong; Wan, Jialu; Zhu, Yabo; Qiang, Yinghuai; Qian, Yitai

    2016-05-01

    Nitrogen-doped (N-doped) graphene has been prepared by a simple one-step hydrothermal approach using hexamethylenetetramine (HMTA) as single carbon and nitrogen source. In this hydrothermal process, HMTA pyrolyzes at high temperature and the N-doped graphene subsequently self-assembles on the surface of MgO particles (formed by the Mg powder reacting with H2O) during which graphene synthesis and nitrogen doping are simultaneously achieved. The as-synthesized graphene with incorporation of nitrogen groups possesses unique structure including thin layer thickness, high surface area, mesopores and vacancies. These structural features and their synergistic effects could not only improve ions and electrons transportation with nanometer-scale diffusion distances but also promote the penetration of electrolyte. The N-doped graphene exhibits high reversible capacity, superior rate capability as well as long-term cycling stability, which demonstrate that the N-doped graphene with great potential to be an efficient electrode material. The experimental results provide a new hydrothermal route to synthesize N-doped graphene with potential application for advanced energy storage, as well as useful information to design new graphene materials.

  8. One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries.

    PubMed

    Xing, Zheng; Ju, Zhicheng; Zhao, Yulong; Wan, Jialu; Zhu, Yabo; Qiang, Yinghuai; Qian, Yitai

    2016-01-01

    Nitrogen-doped (N-doped) graphene has been prepared by a simple one-step hydrothermal approach using hexamethylenetetramine (HMTA) as single carbon and nitrogen source. In this hydrothermal process, HMTA pyrolyzes at high temperature and the N-doped graphene subsequently self-assembles on the surface of MgO particles (formed by the Mg powder reacting with H2O) during which graphene synthesis and nitrogen doping are simultaneously achieved. The as-synthesized graphene with incorporation of nitrogen groups possesses unique structure including thin layer thickness, high surface area, mesopores and vacancies. These structural features and their synergistic effects could not only improve ions and electrons transportation with nanometer-scale diffusion distances but also promote the penetration of electrolyte. The N-doped graphene exhibits high reversible capacity, superior rate capability as well as long-term cycling stability, which demonstrate that the N-doped graphene with great potential to be an efficient electrode material. The experimental results provide a new hydrothermal route to synthesize N-doped graphene with potential application for advanced energy storage, as well as useful information to design new graphene materials.

  9. One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries.

    PubMed

    Xing, Zheng; Ju, Zhicheng; Zhao, Yulong; Wan, Jialu; Zhu, Yabo; Qiang, Yinghuai; Qian, Yitai

    2016-01-01

    Nitrogen-doped (N-doped) graphene has been prepared by a simple one-step hydrothermal approach using hexamethylenetetramine (HMTA) as single carbon and nitrogen source. In this hydrothermal process, HMTA pyrolyzes at high temperature and the N-doped graphene subsequently self-assembles on the surface of MgO particles (formed by the Mg powder reacting with H2O) during which graphene synthesis and nitrogen doping are simultaneously achieved. The as-synthesized graphene with incorporation of nitrogen groups possesses unique structure including thin layer thickness, high surface area, mesopores and vacancies. These structural features and their synergistic effects could not only improve ions and electrons transportation with nanometer-scale diffusion distances but also promote the penetration of electrolyte. The N-doped graphene exhibits high reversible capacity, superior rate capability as well as long-term cycling stability, which demonstrate that the N-doped graphene with great potential to be an efficient electrode material. The experimental results provide a new hydrothermal route to synthesize N-doped graphene with potential application for advanced energy storage, as well as useful information to design new graphene materials. PMID:27184859

  10. X-ray Analysis of Erbium Doping in Group IV Nanocrystalline Materials

    NASA Astrophysics Data System (ADS)

    Meulenberg, Robert

    2005-03-01

    We have produced erbium-doped germanium nanoparticles using a new two cell physical vapor deposition system. Doped nanoparticles are fabricated using two methods: 1) by co-evaporation of Er and Ge and 2) by Er deposition on the surface of undoped Ge nanoparticles. Using elemental specific x-ray techniques [x-ray absorption (XAS) and photoemission (PES) spectroscopy], we are able to monitor band edge shifts as a function of both particle size and Er concentration. In addition, we have used XAS and PES to probe the chemical environment of Er in Ge nanoparticles. We find that large Er/Ge ratios lead to strong spectroscopic signatures in the core level PES spectra. Lower Er/Ge ratios show very little effects in the core level spectra; however, the valence band density of states is altered which allows PES to probe dilute concentrations of Er in Ge nanoparticles. Impact of Er doping on the Ge nanoparticle electronic structure will be discussed. This work was supported by the Division of Materials Sciences, Office of Basic Energy Science, and performed under the auspices of the U. S. DOE by LLNL under contract No. W-7405-ENG-48.

  11. Studies on Ca2+-Doped CeBr3 Scintillating Materials

    SciTech Connect

    Guss, P.; Foster, M. E.; Wong, B. M.; Doty, F. P.; Shah, K.; Squillante, M. R.; Shirwadkar, U.; Hawrami, R.; Tower, J.; Yuan, D.

    2013-09-01

    Despite the outstanding scintillation performance characteristics of cerium tribromide (CeBr3) and cerium-activated lanthanum tribromide (LaBr3:Ce), their commercial availability and application is limited due to the difficulties of growing large, crack-free single crystals from these fragile materials. The objective of this investigation was to employ aliovalent doping to increase crystal strength while maintaining the optical properties of the crystal. One divalent dopant (Ca2+) was investigated as a dopant to strengthen CeBr3 without negatively impacting scintillation performance. Ingots containing nominal concentrations of 1.9% of the Ca2+ dopant were grown. Preliminary scintillation measurements are presented for this aliovalently doped scintillator. Ca2+-doped CeBr3 exhibited little or no change in the peak fluorescence emission for 371 nm optical excitation for CeBr3. The structural, electronic, and optical properties of CeBr3 crystals were investigated using the density functional theory within generalized gradient approximation. The calculated lattice parameters are in good agreement with the experimental data. The energy band structures and density of states were obtained. The optical properties of CeBr3, including the dielectric function, were calculated.

  12. Studies on Ca2+-Doped CeBr3 Scintillating Materials

    SciTech Connect

    Guss, P.; Foster, M. E.; Wong, B. M.; Doty, F. P.; Shah, K.; Squillante, M.; Glodo, J.; Yuan, D.

    2013-07-03

    Despite the outstanding scintillation performance characteristics of cerium tribromide (CeBr3) and cerium-activated lanthanum tribromide (LaBr3:Ce), their commercial availability and application is limited due to the difficulties of growing large, crack-free single crystals from these fragile materials. The objective of this investigation was to employ aliovalent doping to increase crystal strength while maintaining the optical properties of the crystal. One divalent dopant (Ca2+) was investigated as a dopant to strengthen CeBr3 without negatively impacting scintillation performance. Ingots containing nominal concentrations of 1.9% of the Ca2+ dopant were grown. Preliminary scintillation measurements are presented for this aliovalently doped scintillator. Ca2+-doped CeBr3 exhibited little or no change in the peak fluorescence emission for 371 nm optical excitation for CeBr3. The structural, electronic, and optical properties of CeBr3 crystals were investigated using the density functional theory within generalized gradient approximation. The calculated lattice parameters are in good agreement with the experimental data. The energy band structures and density of states were obtained. The optical properties of CeBr3, including the dielectric function, were calculated.

  13. Evaluation of the acid properties of porous zirconium-doped and undoped silica materials

    SciTech Connect

    Fuentes-Perujo, D.; Santamaria-Gonzalez, J.; Merida-Robles, J.; Rodriguez-Castellon, E.; Jimenez-Lopez, A.; Maireles-Torres, P. . E-mail: maireles@uma.es; Moreno-Tost, R.

    2006-07-15

    A series of porous silica and Zr-doped silica molecular sieves, belonging to the MCM-41 and MSU families, were prepared and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and N{sub 2} adsorption at 77 K. Their acid properties have been evaluated by NH{sub 3}-TPD, adsorption of pyridine and deuterated acetonitrile coupled to FT-IR spectroscopy and the catalytic tests of isopropanol decomposition and isomerization of 1-butene. The acidity of purely siliceous solids were, in all cases, very low, while the incorporation of Zr(IV) into the siliceous framework produced an enhancement of the acidity. The adsorption of basic probe molecules and the catalytic behaviour revealed that Zr-doped MSU-type silica was more acidic than the analogous Zr-MCM-41 solid, with a similar Zr content. This high acidity observed in the case of Zr-doped silica samples is due to the presence of surface zirconium atoms with a low coordination, mainly creating Lewis acid sites. - Graphical abstract: The adsorption of basic probe molecules and the catalytic behaviour have revealed that MSU-type materials are more acidic than the analogous MCM-41 solids, mainly after the incorporation of zirconium into the silica framework.

  14. Mechanical Properties of Silicone Rubber Acoustic Lens Material Doped with Fine Zinc Oxide Powders for Ultrasonic Medical Probe

    NASA Astrophysics Data System (ADS)

    Yamamoto, Noriko; Yohachi; Yamashita; Itsumi, Kazuhiro

    2009-07-01

    The mechanical properties of high-temperature-vulcanization silicone (Q) rubber doped with zinc oxide (ZnO) fine powders have been investigated to develop an acoustic lens material with high reliability. The ZnO-doped Q rubber with an acoustic impedance (Z) of 1.46×106 kg·m-2·s-1 showed a tear strength of 43 N/mm and an elongation of 560%. These mechanical property values were about 3 times higher than those of conventional acoustic Q lens materials. The ZnO-doped Q rubbers also showed a lower abrasion loss. These superior characteristics are attributable to the microstructure with fewer origins of breaks; few pores and spherical fine ZnO powder. The high mechanical properties of ZnO-doped Q rubber acoustic lenses enable higher performance during long-life and safe operation during diagnosis using medical array probe applications.

  15. Continuous Synthesis of Doped Pyrochlore Materials by Spray Pyrolysis for Auto-thermal Reforming Applications

    NASA Astrophysics Data System (ADS)

    Yancey, Jonathan

    The use of a spray-pyrolysis method is studied for the continuous synthesis of refractory oxide reforming catalyst for the conversion of hydrocarbon fuels to H2 and CO at 900°C. Nickel- and rhodium-doped zirconate pyrochlore materials with the formulas La1.89Ni2.81Y 0.25Ca0.11Zr1.47 and La1.89Rh 1.09Y0.25Ca0.11Zr1.641 were synthesized using the spray pyrolysis method. Both Pechini and glycine-nitrate precursor solutions were used in order to control the particle morphology, crystallinity, and surface area of the catalyst powder. Samples synthesized by the Pechini solution required post-synthesis heat treatment to 1000 °C for 2 hours to form the fully-crystalline pyrochlore phase. Both the Ni- and Rh-doped compositions formed by the spray-pyrolysis method performed as reported elsewhere for powder produced by solid-state and Pechini bulk methods. The use of the glycine-nitrate precursor solution in the spray-pyrolysis resulted in the formation of fully crystalline pyrochlore catalyst for the Ni-doped composition without any additional high temperature treatment. The Rh-doped catalysts synthesized from the glycine-nitrate precursor did not form a fully crystalline material directly from the spray-pyrolysis process, but required a further thermal treatment to 800 °C for 8 hours to transform the powder and burn-off excess carbon remaining from the synthesis process. Rapid catalyst aging tests for the Rh-doped catalysts synthesized by spray-pyrolysis (using either the Pechini and glycine-nitrate precursor solutions) produced stable and active catalysts achieving equilibrium hydrogen yield of 90% for 15 hours. To conclude, the work showed that through proper chemical design of the precursor system, a high surface area, chemically active, and stable zirconate pyrochlore catalyst could be synthesized efficiently by the spray-pyrolysis method developed.

  16. N, S co-doped-TiO2/fly ash beads composite material and visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Lv, Jun; Sheng, Tong; Su, Lili; Xu, Guangqing; Wang, Dongmei; Zheng, Zhixiang; Wu, Yucheng

    2013-11-01

    Using TiCl4 as the titanium source, urea as the precipitating agent, nano-TiO2/fly ash beads composite materials were prepared by hydrolysis-precipitation method. Using (NH2)2CO and (NH2)2SC as the N and S source respectively, N and S co-doped TiO2/fly ash beads composite materials were prepared by grinding them together according to a certain proportion and calcined at 500 °C for 2 h. The composite materials were characterized by SEM, EDS, XPS, and UV-vis spectrophotometer methods. The UV-vis absorption spectra results show that the absorption edge of un-doped composites is 390 nm while that of doped composites red-shifts to 500 nm. The photocatalytic activity of composite materials was evaluated by degradation of methyl orange under visible light irradiation (halogen lamp, 250 W). The results showed that after irradiation for 1 h, degradation rate of N, S co-doped-TiO2/fly ash beads composite material can reach 65%, while the degradation rate of un-doped sample and P25 were just 10% and 6%, respectively. The composite material also showed excellent recycling properties.

  17. Study of Electromagnetic Scattering From Material Object Doped Randomly With Thin Metallic Wires Using Finite Element Method

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.

    2005-01-01

    A new numerical simulation method using the finite element methodology (FEM) is presented to study electromagnetic scattering due to an arbitrarily shaped material body doped randomly with thin and short metallic wires. The FEM approach described in many standard text books is appropriately modified to account for the presence of thin and short metallic wires distributed randomly inside an arbitrarily shaped material body. Using this modified FEM approach, the electromagnetic scattering due to cylindrical, spherical material body doped randomly with thin metallic wires is studied.

  18. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics

    SciTech Connect

    Sachet, Edward; Shelton, Christopher T.; Harris, Joshua S.; Gaddy, Benjamin E.; Irving, Douglas L.; Curtarolo, Stefano; Donovan, Brian F.; Hopkins, Patrick E.; Sharma, Peter A.; Sharma, Ana Lima; Ihlefeld, Jon; Franzen, Stefan; Maria, Jon -Paul

    2015-02-16

    The interest in plasmonic technologies surrounds many emergent optoelectronic applications, such as plasmon lasers, transistors, sensors and information storage. Although plasmonic materials for ultraviolet–visible and near-infrared wavelengths have been found, the mid-infrared range remains a challenge to address: few known systems can achieve subwavelength optical confinement with low loss in this range. With a combination of experiments and ab initio modelling, here we demonstrate an extreme peak of electron mobility in Dy-doped CdO that is achieved through accurate ‘defect equilibrium engineering’. In so doing, we create a tunable plasmon host that satisfies the criteria for mid-infrared spectrum plasmonics, and overcomes the losses seen in conventional plasmonic materials. In particular, extrinsic doping pins the CdO Fermi level above the conduction band minimum and it increases the formation energy of native oxygen vacancies, thus reducing their populations by several orders of magnitude. The substitutional lattice strain induced by Dy doping is sufficiently small, allowing mobility values around 500 cm2 V–1 s–1 for carrier densities above 1020 cm–3. As a result, our work shows that CdO:Dy is a model system for intrinsic and extrinsic manipulation of defects affecting electrical, optical and thermal properties, that oxide conductors are ideal candidates for plasmonic devices and that the defect engineering approach for property optimization is generally applicable to other conducting metal oxides.

  19. Boron-Doped Anatase TiO2 as a High-Performance Anode Material for Sodium-Ion Batteries.

    PubMed

    Wang, Baofeng; Zhao, Fei; Du, Guodong; Porter, Spencer; Liu, Yong; Zhang, Peng; Cheng, Zhenxiang; Liu, Hua Kun; Huang, Zhenguo

    2016-06-29

    Pristine and boron-doped anatase TiO2 were prepared via a facile sol-gel method and the hydrothermal method for application as anode materials in sodium-ion batteries (SIBs). The sol-gel method leads to agglomerated TiO2, whereas the hydrothermal method is conducive to the formation of highly crystalline and discrete nanoparticles. The structure, morphology, and electrochemical properties were studied. The crystal size of TiO2 with boron doping is smaller than that of the nondoped crystals, which indicates that the addition of boron can inhibit the crystal growth. The electrochemical measurements demonstrated that the reversible capacity of the B-doped TiO2 is higher than that for the pristine sample. B-doping also effectively enhances the rate performance. The capacity of the B-doped TiO2 could reach 150 mAh/g at the high current rate of 2C and the capacity decay is only about 8 mAh/g over 400 cycles. The remarkable performance could be attributed to the lattice expansion resulting from B doping and the shortened Li(+) diffusion distance due to the nanosize. These results indicate that B-doped TiO2 can be a good candidate for SIBs.

  20. Synthesis of Fluorophore-Doped Polystyrene Microspheres: Seed Material for Airflow Sensing.

    PubMed

    Wohl, Christopher J; Kiefer, Jacob M; Petrosky, Brian J; Tiemsin, Pacita I; Lowe, K Todd; Maisto, Pietro M F; Danehy, Paul M

    2015-09-23

    Kiton red 620 (KR620) doped polystyrene latex microspheres (PSLs) were synthesized via soap-free emulsion polymerization to be utilized as a relatively nontoxic, fluorescent seed material for airflow characterization experiments. Poly(styrene-co-styrenesulfonate) was used as the PSL matrix to promote KR620 incorporation. Additionally, a bicarbonate buffer and poly(diallyldimethylammonium chloride), polyD, cationic polymer were added to the reaction solution to stabilize the pH and potentially influence the electrostatic interactions between the PSLs and dye molecules. A design of experiments (DOE) approach was used to efficiently investigate the variation of these materials. Using a 4-factor, 2-level response surface design with a center point, a series of experiments were performed to determine the dependence of these factors on particle diameter, diameter size distribution, fluorescent emission intensity, and KR620 retention. Using statistical analysis, the factors and factor interactions that most significantly affect the outputs were identified. These particles enabled velocity measurements to be made much closer to walls and surfaces than previously. Based on these results, KR620-doped PSLs may be utilized to simultaneously measure the velocity and mixing concentration, among other airflow parameters, in complex flows. PMID:26322378

  1. Undoped and doped poly(tetraphenylbenzidine) as sensitive material for an impedimetric nitrogen dioxide gas dosimeter

    SciTech Connect

    Marr, I.; Moos, R.; Neumann, K.; Thelakkat, M.

    2014-09-29

    This article presents a nitrogen dioxide (NO{sub 2}) detecting gas dosimeter based on poly(tetraphenylbenzidine) poly(TPD) as nitrogen oxide (NO{sub x}) sensitive layer. Gas dosimeters are suitable devices to determine reliably low levels of analytes over a long period of time. During NO{sub x} exposure, the analyte molecules are accumulated irreversibly in the sensing layer of the dosimeter enhancing the conductivity of the hole conducting poly(TPD), which can be measured by impedance spectroscopy. Due to their possibility for low cost production by simple printing techniques and very good physical, photochemical, and electrochemical properties, poly(TPD)s are suitable for application in gas dosimeters operated at room temperature. We studied the effect of doping with a Co(III)-complex in combination with a conducting salt on the dosimeter behavior. Compared to the undoped material, a strong influence of the doping can be observed: the conductivity of the sensing material increases significantly, the noise of the signal decreases and an unwanted recovery of the sensor signal can be prevented, leading to a NO{sub x} detection limit <10 ppm.

  2. Undoped and doped poly(tetraphenylbenzidine) as sensitive material for an impedimetric nitrogen dioxide gas dosimeter

    NASA Astrophysics Data System (ADS)

    Marr, I.; Neumann, K.; Thelakkat, M.; Moos, R.

    2014-09-01

    This article presents a nitrogen dioxide (NO2) detecting gas dosimeter based on poly(tetraphenylbenzidine) poly(TPD) as nitrogen oxide (NOx) sensitive layer. Gas dosimeters are suitable devices to determine reliably low levels of analytes over a long period of time. During NOx exposure, the analyte molecules are accumulated irreversibly in the sensing layer of the dosimeter enhancing the conductivity of the hole conducting poly(TPD), which can be measured by impedance spectroscopy. Due to their possibility for low cost production by simple printing techniques and very good physical, photochemical, and electrochemical properties, poly(TPD)s are suitable for application in gas dosimeters operated at room temperature. We studied the effect of doping with a Co(III)-complex in combination with a conducting salt on the dosimeter behavior. Compared to the undoped material, a strong influence of the doping can be observed: the conductivity of the sensing material increases significantly, the noise of the signal decreases and an unwanted recovery of the sensor signal can be prevented, leading to a NOx detection limit <10 ppm.

  3. The effect of material composition of 3-dimensional graphene oxide and self-doped polyaniline nanocomposites on DNA analytical sensitivity.

    PubMed

    Yang, Tao; Chen, Huaiyin; Yang, Ruirui; Wang, Xinxing; Nan, Fuxin; Jiao, Kui

    2015-09-01

    Until now, morphology effects of 2-dimensional or 3-dimensional graphene nanocomposites and the effect of material composition on the biosensors have been rarely reported. In this paper, the various nanocomposites based on graphene oxide and self-doped polyaniline nanofibres for studying the effect of morphology and material composition on DNA sensitivity were directly reported. The isolation and dispersion of graphene oxide were realized via intercalated self-doped polyaniline and ultrasonication, where the ultrasonication prompts the aggregates of graphite oxide to break up and self-doped polyaniline to diffuse into the stacked graphene oxide. Significant electrochemical enhancement has been observed due to the existence of self-doped polyaniline, which bridges the defects for electron transfer and, in the mean time, increases the basal spacing between graphene oxide sheets. Different morphologies can result in different ssDNA surface density, which can further influence the hybridization efficiency. Compared with 2-dimensional graphene oxide, self-doped polyaniline and other morphologies of nanocomposites, 3-dimensional graphene oxide-self-doped polyaniline nanowalls exhibited the highest surface density and hybridization efficiency. Furthermore, the fabricated biosensors presented the broad detection range with the low detection limit due to the specific surface area, a large number of electroactive species, and open accessible space supported by nanowalls.

  4. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    SciTech Connect

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S.

    2015-01-15

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g{sup −1} at 100 mA g{sup −1} after 30th cycles. At high current density value of 1 A g{sup −1}, B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states.

  5. Extreme tunability in aluminum doped Zinc Oxide plasmonic materials for near-infrared applications

    PubMed Central

    Pradhan, A. K.; Mundle, R. M.; Santiago, Kevin; Skuza, J. R.; Xiao, Bo; Song, K. D.; Bahoura, M.; Cheaito, Ramez; Hopkins, Patrick E.

    2014-01-01

    Plasmonic materials (PMs), featuring large static or dynamic tunability, have significant impact on the optical properties due to their potential for applications in transformation optics, telecommunications, energy, and biomedical areas. Among PMs, the carrier concentration and mobility are two tunable parameters, which control the plasma frequency of a metal. Here, we report on large static and dynamic tunability in wavelengths up to 640 nm in Al-doped ZnO based transparent conducting degenerate semiconductors by controlling both thickness and applied voltages. This extreme tunability is ascribed to an increase in carrier concentration with increasing thickness as well as voltage-induced thermal effects that eventually diminish the carrier concentration and mobility due to complex chemical transformations in the multilayer growth process. These observations could pave the way for optical manipulation of this class of materials for potential transformative applications. PMID:25231513

  6. Multifunctional radical-doped polyoxometalate-based host-guest material: photochromism and photocatalytic activity.

    PubMed

    Liao, Jian-Zhen; Zhang, Hai-Long; Wang, Sa-Sa; Yong, Jian-Ping; Wu, Xiao-Yuan; Yu, Rongmin; Lu, Can-Zhong

    2015-05-01

    An effective strategy to synthesize multifunctional materials is the incorporation of functional organic moieties and metal oxide clusters via self-assembly. A rare multifunctional radical-doped zinc-based host-guest crystalline material was synthesized with a fast-responsive reversible ultraviolet visible light photochromism, photocontrolled tunable luminescence, and highly selective photocatalytic oxidation of benzylic alcohols as a result of blending of distinctively different functional components, naphthalenediimide tectons, and polyoxometalates (POMs). It is highly unique to link π-electron-deficient organic tectons and POMs by unusual POMs anion-π interactions, which are not only conducive to keeping the independence of each component but also effectively promoting the charge transfer or exchange among the components to realize the fast-responsive photochromism, photocontrolled tunable luminescence, and photocatalytic activity.

  7. Toward new fuel cell support materials: a theoretical and experimental study of nitrogen-doped graphene.

    PubMed

    Seo, Min Ho; Choi, Sung Mook; Lim, Eun Ja; Kwon, In Hye; Seo, Joon Kyo; Noh, Seung Hyo; Kim, Won Bae; Han, Byungchan

    2014-09-01

    Nano-scale Pt particles are often reported to be more electrochemically active and stable in a fuel cell if properly displaced on support materials; however, the factors that affect their activity and stability are not well understood. We applied first-principles calculations and experimental measurements to well-defined model systems of N-doped graphene supports (N-GNS) to reveal the fundamental mechanisms that control the catalytic properties and structural integrity of nano-scale Pt particles. DFT calculations predict thermodynamic and electrochemical interactions between N-GNS and Pt nanoparticles in the methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). Moreover, the dissolution potentials of the Pt nanoparticles supported on GNS and N-GNS catalysts are calculated under acidic conditions. Our results provide insight into the design of new support materials for enhanced catalytic efficiency and long-term stability.

  8. Multifunctional radical-doped polyoxometalate-based host-guest material: photochromism and photocatalytic activity.

    PubMed

    Liao, Jian-Zhen; Zhang, Hai-Long; Wang, Sa-Sa; Yong, Jian-Ping; Wu, Xiao-Yuan; Yu, Rongmin; Lu, Can-Zhong

    2015-05-01

    An effective strategy to synthesize multifunctional materials is the incorporation of functional organic moieties and metal oxide clusters via self-assembly. A rare multifunctional radical-doped zinc-based host-guest crystalline material was synthesized with a fast-responsive reversible ultraviolet visible light photochromism, photocontrolled tunable luminescence, and highly selective photocatalytic oxidation of benzylic alcohols as a result of blending of distinctively different functional components, naphthalenediimide tectons, and polyoxometalates (POMs). It is highly unique to link π-electron-deficient organic tectons and POMs by unusual POMs anion-π interactions, which are not only conducive to keeping the independence of each component but also effectively promoting the charge transfer or exchange among the components to realize the fast-responsive photochromism, photocontrolled tunable luminescence, and photocatalytic activity. PMID:25859742

  9. Tuned sensitivity towards H{sub 2}S and NH{sub 3} with Cu doped barium strontium titanate materials

    SciTech Connect

    Simion, C. E. Teodorescu, V. S.; Stănoiu, A.; Sackmann, A.; Ruşti, C. F.; Piticescu, R. M.

    2014-11-05

    The different amount of Cu-doped Barium Strontium Titanate (BST) thick film materials have been tested for their gas-sensing performances towards NH{sub 3} and H{sub 2}S under dry and 50% relative humidity (RH) background conditions. The optimum NH{sub 3} sensitivity was attained with 0.1mol% Cu-doped BST whereas the selective detection of H{sub 2}S was highlighted using 5mol% Cu-doped BST material. No cross-sensitivity effects to CO, NO{sub 2}, CH{sub 4} and SO{sub 2} were observed for all tested materials operated at their optimum temperature (200°C) under humid conditions (50% RH). The presence of humidity clearly enhances the gas sensitivity to NH{sub 3} and H{sub 2}S detection.

  10. Controlling Proton Conductivity with Light: A Scheme Based on Photoacid Doping of Materials.

    PubMed

    Haghighat, Shima; Ostresh, Sarah; Dawlaty, Jahan M

    2016-02-11

    Transducing light energy to changes in material properties is central to a large range of functional materials, including those used in light harvesting. In conventional semiconductors, photoconductivity arises due to generation of mobile electrons or holes with light. Here we demonstrate, to our knowledge for the first time, an analogue of this effect for protons in an organic polymer solution and in water. We show that when a material is doped with photoacids, light excitation generates extra mobile protons that change the low-frequency conductivity of the material. We measure such change both in poly(ethylene glycol) (PEG) and in water sandwiched between two transparent electrodes and doped with a well-known photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS). The complex impedance of the material is measured over a range of 0.1 Hz-1 MHz in both the presence and absence of light, and it is found that shining light changes the low frequency impedance significantly. We model the impedance spectra of the material with a minimal circuit composed of a diffusive impedance (Warburg element), a parallel capacitance, and a resistance. Fitting the light and dark impedance spectra to the model reveals that light reduces the low-frequency diffusive impedance of the material, which is consistent with generation of extra free carriers by light. We further suggest that the light-induced conductivity change arises mainly due to those photoreleased protons that manage to escape the zone of influence of the parent ion and avoid recapture. Such escape is more likely in materials with larger diffusion coefficient for protons and shorter electrostatic screening lengths for the parent ion. This explanation is consistent with our observed differences in the photoconductivity of solution of HPTS in water and in PEG. We anticipate that this scheme can be employed in protonic circuits where direct transduction of energy from light to protonic gradients or protonic currents is

  11. Characterization of in-situ doped poly-SiGe thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Namigo, Elistia Liza

    2016-03-01

    This paper presents characterizations of p-typed and n-typed polycrystalline silicon germanium (poly-SiGe) as key materials of thermoelectric generator for energy-scavenging application. Four key material properties - Seebeck coefficient, electrical resistivity, thermal conductivity and specific contact resistance- were measured to determine the figure-of-merit (ZT) as a performance measurement of the materials. Measured Seebeck coefficients are 34 µV/K for p-type and 185 µV/K for n-type. Thermal conductivity is around 3 W/mK. Contact resistance is still considerably high and there is no significant reduce on the value as annealing temperature increased from 375°C to 475°C for annealing time of 30 and 60 minutes. The value of ZTs for p-type and n-type material are 0,0086 and 0,063 respectively. From ZT value alone, it can be seen that ZT of p-SiGe should be improved. Since the value of total electrical resistance is determined by the material itself, further work on Ge and doping level variations is required as well as optimization of annealing temperature and time to reduce contact resistance.

  12. CO oxidation over gold supported on Cs, Li and Ti-doped cryptomelane materials.

    PubMed

    Carabineiro, Sónia A C; Santos, Vera P; Pereira, M Fernando R; Órfão, José J M; Figueiredo, José L

    2016-10-15

    Cryptomelane-type manganese oxides were synthesized by redox reaction under acid and reflux conditions. Different metals (cesium, lithium and titanium) were incorporated into the tunnel structure by the ion-exchange technique. Gold was loaded onto these materials (1wt%) by a double impregnation method. The obtained catalysts were characterized by high-resolution transmission electron microscopy, energy-dispersive X-ray spectrometry, scanning electron microscopy, X-ray diffraction and temperature-programmed reduction. The catalytic activity of these materials was evaluated in the oxidation of carbon monoxide. The incorporation of Cs, Li or Ti into cryptomelane was detrimental in terms of catalytic activity. Further addition of gold to cryptomelane doped materials significantly improved the catalytic performance, especially for Cs-K-OMS-2 and Li-K-OMS-2 (to a smaller extent). Addition of gold to the Ti containing material did not show a significant improvement. The observed trends are related to the effect of gold on samples reducibility and to the gold particle size. The lattice oxygen can also be considered accountable for the activity of the materials, since the most active cryptomelane catalysts are those with higher lattice oxygen donating ability for the oxidation of the CO molecule.

  13. CO oxidation over gold supported on Cs, Li and Ti-doped cryptomelane materials.

    PubMed

    Carabineiro, Sónia A C; Santos, Vera P; Pereira, M Fernando R; Órfão, José J M; Figueiredo, José L

    2016-10-15

    Cryptomelane-type manganese oxides were synthesized by redox reaction under acid and reflux conditions. Different metals (cesium, lithium and titanium) were incorporated into the tunnel structure by the ion-exchange technique. Gold was loaded onto these materials (1wt%) by a double impregnation method. The obtained catalysts were characterized by high-resolution transmission electron microscopy, energy-dispersive X-ray spectrometry, scanning electron microscopy, X-ray diffraction and temperature-programmed reduction. The catalytic activity of these materials was evaluated in the oxidation of carbon monoxide. The incorporation of Cs, Li or Ti into cryptomelane was detrimental in terms of catalytic activity. Further addition of gold to cryptomelane doped materials significantly improved the catalytic performance, especially for Cs-K-OMS-2 and Li-K-OMS-2 (to a smaller extent). Addition of gold to the Ti containing material did not show a significant improvement. The observed trends are related to the effect of gold on samples reducibility and to the gold particle size. The lattice oxygen can also be considered accountable for the activity of the materials, since the most active cryptomelane catalysts are those with higher lattice oxygen donating ability for the oxidation of the CO molecule. PMID:27399615

  14. Enhanced Conductivity and Electrochemical Performance of Electrode Material Based on Multifunctional Dye Doped Polypyrrole.

    PubMed

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-03-01

    Polypyrrole were prepared via in-situ chemical oxidative polymerization in the presence of multisulfonate acid dye (acid violet 19). In this work, acid violet 19 could play the role as dopant, surfactant and physical cross-linker for pyrrole polymerization, and had impact on the morphology, dispersion stability, thermal stability, electrical conductivity and electrochemical behavior of the samples. The thermal stability of the dye doped polypyrrole was enhanced than pure polypyrrole due to the strong interactions between polypyrrole and acid violet 19. The dispersion stability of the samples in water was also improved by incorporating an appropriate amount of acid violet 19. The sample with 20% of acid violet 19 showed granular morphology with the smallest diameter of -50 nm and possessed the maximum electrical conductivity of 39.09 S/cm. The as-prepared multifunctional dye doped polypyrrole samples were used to fabricate electrodes and exhibited a mass specific capacitance of 379-206 F/g in the current density range of 0.2-1.0 A/g. The results indicated that the multifunctional dye could improve the performances of polypyrrole as electrode material for supercapacitors. PMID:27455670

  15. Influence of hole transporter doping on electroluminescent property of novel fluorene molecular material

    NASA Astrophysics Data System (ADS)

    Qian, Jincheng; Yu, Junsheng; Lou, Shuangling; Jiang, Yadong; Zhang, Qing

    2009-05-01

    The luminescent characteristics of a novel small molecule fluorene material, 6,6'-(9H-fluoren-9,9-diyl)bis(2,3-bis(9,9-dihexyl-9H-fluoren-2-yl)quinoxaline) (BFLBBFLYQ) for organic light-emitting diode are systemically investigated, especially focusing on the effect of hole transporter doping concentration. Double-layer devices with a structure of indium tin oxide (ITO)/emissive layer (EML)/2,9-dimethyl-4,7-diphenyl-l,10-phenanthroline (BCP)/Mg:Ag are fabricated by spin-coating method, where EML is BFLBBFLYQ and blend of BFLBBFLYQ: N,N'-biphenyl-N,N'-bis-(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD), respectively. The results show that the performance of the device is improved two magnitudes by doping BFLBBFLYQ with TPD. In the electroluminescent (EL) spectra, the BFLBBFLYQ device show a blue light emission peaking at 485 nm, and the blend device exhibits a broad banded emission with 45 nm red-shifted peaking at 530 nm in green light area. The photoluminescent (PL) spectra of BFLBBFLYQ, TPD and BFLBBFLYQ: TPD blend in xylene solution and spin-coated film is also studied, yielding an evidence that exciplex maybe plays the role for low energy emission.

  16. Combinatorial optimization of La, Ce-co-doped pyrosilicate phosphors as potential scintillator materials.

    PubMed

    Wei, Qinhua; Wan, Jieqiong; Liu, Guanghui; Zhou, Zhenzhen; Yang, Hua; Wang, Jiacheng; Liu, Qian

    2015-04-13

    A combinatorial method was employed to rapidly screen the effects of La, Ce-co-doping on the luminescent properties of Gd2Si2O7 pyrosilicate using an 8 × 8 library. The candidate formulations (Gd1-x-yLax)2Si2O7:Ce2y were evaluated by luminescence pictures under ultraviolet excitation. The optimal composition was found to be (Gd0.89La0.1)2Si2O7:Ce0.02 after scaled-up preparation and detailed characterization of powder samples, which shows an excellent light output under both ultraviolet and X-ray excitation (about 5.43 times of commercial YAG:Ce powders). The XRD results indicate that the phase structure sequence is tetragonal-orthorhombic-triclinic for different calcination temperatures and doping ions. The (Gd0.89La0.1)2Si2O7:Ce0.02 powder sample also demonstrated excellent temperature stability of luminescence up to 200 °C and a short decay time of several tens of nanoseconds, suggesting that this may represent a new kind of scintillation material, such as single crystals, ceramics, glass, or phosphors.

  17. Role of Morphological Structure, Doping, and Coating of Different Materials in the Sensing Characteristics of Humidity Sensors

    PubMed Central

    Tripathy, Ashis; Pramanik, Sumit; Cho, Jongman; Santhosh, Jayasree; Osman, Noor Azuan Abu

    2014-01-01

    The humidity sensing characteristics of different sensing materials are important properties in order to monitor different products or events in a wide range of industrial sectors, research and development laboratories as well as daily life. The primary aim of this study is to compare the sensing characteristics, including impedance or resistance, capacitance, hysteresis, recovery and response times, and stability with respect to relative humidity, frequency, and temperature, of different materials. Various materials, including ceramics, semiconductors, and polymers, used for sensing relative humidity have been reviewed. Correlations of the different electrical characteristics of different doped sensor materials as the most unique feature of a material have been noted. The electrical properties of different sensor materials are found to change significantly with the morphological changes, doping concentration of different materials and film thickness of the substrate. Various applications and scopes are pointed out in the review article. We extensively reviewed almost all main kinds of relative humidity sensors and how their electrical characteristics vary with different doping concentrations, film thickness and basic sensing materials. Based on statistical tests, the zinc oxide-based sensing material is best for humidity sensor design since it shows extremely low hysteresis loss, minimum response and recovery times and excellent stability. PMID:25256110

  18. Role of morphological structure, doping, and coating of different materials in the sensing characteristics of humidity sensors.

    PubMed

    Tripathy, Ashis; Pramanik, Sumit; Cho, Jongman; Santhosh, Jayasree; Osman, Noor Azuan Abu

    2014-09-03

    The humidity sensing characteristics of different sensing materials are important properties in order to monitor different products or events in a wide range of industrial sectors, research and development laboratories as well as daily life. The primary aim of this study is to compare the sensing characteristics, including impedance or resistance, capacitance, hysteresis, recovery and response times, and stability with respect to relative humidity, frequency, and temperature, of different materials. Various materials, including ceramics, semiconductors, and polymers, used for sensing relative humidity have been reviewed. Correlations of the different electrical characteristics of different doped sensor materials as the most unique feature of a material have been noted. The electrical properties of different sensor materials are found to change significantly with the morphological changes, doping concentration of different materials and film thickness of the substrate. Various applications and scopes are pointed out in the review article. We extensively reviewed almost all main kinds of relative humidity sensors and how their electrical characteristics vary with different doping concentrations, film thickness and basic sensing materials. Based on statistical tests, the zinc oxide-based sensing material is best for humidity sensor design since it shows extremely low hysteresis loss, minimum response and recovery times and excellent stability.

  19. Graphene coated with controllable N-doped carbon layer by molecular layer deposition as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Gao, Zhe; Zhang, Bin; Zhao, Shichao; Qin, Yong

    2016-05-01

    In this work, graphene is coated with nitrogen-doped carbon layer, which is produced by a carbonization process of aromatic polyimide (PI) films deposited on the surfaces of graphene by molecular layer deposition (MLD). The utilization of MLD not only allows uniform coating of PI layers on the surfaces of pristine graphene without any surface treatment, but also enables homogenous dispersion of doped nitrogen atoms in the carbonized products. The as-prepared N-doped carbon layer coated graphene (NC-G) exhibited remarkable capacitance performance as electrode materials for supercapacitor, showing a high specific capacitance of 290.2 F g-1 at current density of 1 A g-1 in 6 M KOH aqueous electrolyte, meanwhile maintaining good rate performance and stable cycle capability. The NC-G synthesized by this way represents an alternative promising candidate as electrode material for supercapacitors.

  20. Temperature dependent absorption measurement of various transition metal doped laser materials

    NASA Astrophysics Data System (ADS)

    Horackova, Lucie; Šulc, Jan; Jelinkova, Helena; Jambunathan, Venkatesan; Lucianetti, Antonio; Mocek, Tomás.

    2015-05-01

    In recent years, there has been a vast development of high energy class lasers of the order of 100 J to kJ level which have potential applications in the field of science and technology. Many such systems use the gain media cooled at cryogenic temperatures which will help in enhancing the spectroscopic and thermo-optical properties. Nevertheless, parasitic effects like amplified spontaneous emission enhance and affect the overall efficiency. The best way to suppress this effect is to use cladding element attached to the gain material. Based on these facts, this work was focused on the systematic investigation of temperature dependent absorption of several materials doped with transition metals, which can be used as cladding, as laser gain material, or as passive Q-switching element. The Ti:sapphire, Cr:YAG, V:YAG, and Co:MALO samples were measured in temperature range from 80 K to 330 K by step of 50 K. Using Beer-Lambert law we estimated the absorption coefficient of these materials.

  1. Structural influence of the inorganic network in the laser performance of dye-doped hybrid materials

    NASA Astrophysics Data System (ADS)

    Costela, A.; García-Moreno, I.; García, O.; del Agua, D.; Sastre, R.

    2005-05-01

    We report a systematic study of the influence on the laser action of Rhodamine 6G (Rh6G) of the composition and structure of new hybrid matrices based on 2-hydroxyethyl methacrylate (HEMA) as organic monomer and different weight proportions of dimethyldiethoxysilane (DEOS) and tetraethoxysilane (TEOS) as inorganic part. We selected mixtures of di- and tetra-functionalized alkoxides trying to decrease, in a controlled way, the rigidity of the three-dimensional network by making use of the flexibility provided by the linear chains acting as a spacer of the inorganic domains. The organization of the molecular units in these nanomaterials was studied through a structural analysis by solid-state NMR. The different reactivity exhibited by di- and tetra-functionalized silanols generates a non-homogeneous tri-dimensional network. Thus, the laser performance in dye-doped hybrid materials is improved when the inorganic phase is composed of a unique alkoxide.

  2. Strontium-Doped Hematite as a Possible Humidity Sensing Material for Soil Water Content Determination

    PubMed Central

    Tulliani, Jean-Marc; Baroni, Chiara; Zavattaro, Laura; Grignani, Carlo

    2013-01-01

    The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prepared powder and subsequent firing in the 800–1,000 °C range. These sensors were first tested in a laboratory apparatus under humid air and then in an homogenized soil and finally in field. The results evidenced that the screen printed film was able to give a response for a soil matric potential from about 570 kPa, that is to say well below the wilting point in the used soil. PMID:24025555

  3. Crown ether-doped sol-gel materials for strontium(II) separation

    PubMed

    Yost; Fagan; Allain; Barnes; Dai; Sepaniak; Xue

    2000-11-01

    Hybrid organic/inorganic sol-gel materials containing an encapsulated crown ether ligand were found to selectively remove 91.4 +/- 1.3% of Sr2+ from a solution containing excess of competing ions such as Ca2+. The crown ether ligand, 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-bis(malonate) ligand (Na4oddm), with known high affinity for Sr2+ was encapsulated in hydrophilic SiO2 through a simple sol-gel process. Washing the Sr(2+)-loaded gel with acid or ethylenediaminetetraacetic acid disodium salt recovered the Sr2+ from the sol-gel sorbent and regenerated the doped gel for subsequent Sr2+ intake. The approach reported here is a new alternative to the use of crown ethers in metal ion separation through, for example, solvent extraction or the use of sorbents containing chemically grafted crown ether ligands. PMID:11080909

  4. Ce-doped α-FeOOH nanorods as high-performance anode material for energy storage

    NASA Astrophysics Data System (ADS)

    Zhai, Yanjun; Xu, Liqiang; Qian, Yitai

    2016-09-01

    Ce-doped α-FeOOH nanorods with high yields were conveniently prepared by a hydrothermal method followed by an acid-treatment process. It is found that Ce uniformly distributes in the α-FeOOH nanorod nanostructures through elemental mapping analysis. The 0.5 wt% Ce-doped α-FeOOH electrode displayed excellent cycling performance with a high discharge capacity of 830 mA h g-1 after 800 charge/discharge cycles at a high current of 2000 mA g-1. The enhanced electrochemical performance can be attributed to the improved electronic conductivity, Li-ion diffusion kinetics and structure stability after Ce doping. Furthermore, a 0.5 wt% Ce-doped α-FeOOH//LiFePO4 lithium ion cell with an initial discharge capacity of 580 mA h g-1 at 1000 mA g-1 based on the total weight of the anode material has been fabricated for the first time. The obtained 0.5 wt% Ce-doped α-FeOOH electrode as anode material for sodium-ion batteries also exhibits a high initial discharge capacity of 587 mA h g-1 at 100 mA g-1.

  5. Atomic scale insight into the amorphous structure of Cu doped GeTe phase-change material

    SciTech Connect

    Zhang, Linchuan; Sa, Baisheng; Zhou, Jian; Sun, Zhimei; Song, Zhitang

    2014-10-21

    GeTe shows promising application as a recording material for phase-change nonvolatile memory due to its fast crystallization speed and extraordinary amorphous stability. To further improve the performance of GeTe, various transition metals, such as copper, have been doped in GeTe in recent works. However, the effect of the doped transition metals on the stability of amorphous GeTe is not known. Here, we shed light on this problem for the system of Cu doped GeTe by means of ab initio molecular dynamics calculations. Our results show that the doped Cu atoms tend to agglomerate in amorphous GeTe. Further, base on analyzing the pair correlation functions, coordination numbers and bond angle distributions, remarkable changes in the local structure of amorphous GeTe induced by Cu are obviously seen. The present work may provide some clues for understanding the effect of early transition metals on the local structure of amorphous phase-change compounds, and hence should be helpful for optimizing the structure and performance of phase-change materials by doping transition metals.

  6. Ce-doped α-FeOOH nanorods as high-performance anode material for energy storage

    NASA Astrophysics Data System (ADS)

    Zhai, Yanjun; Xu, Liqiang; Qian, Yitai

    2016-09-01

    Ce-doped α-FeOOH nanorods with high yields were conveniently prepared by a hydrothermal method followed by an acid-treatment process. It is found that Ce uniformly distributes in the α-FeOOH nanorod nanostructures through elemental mapping analysis. The 0.5 wt% Ce-doped α-FeOOH electrode displayed excellent cycling performance with a high discharge capacity of 830 mA h g-1 after 800 charge/discharge cycles at a high current of 2000 mA g-1. The enhanced electrochemical performance can be attributed to the improved electronic conductivity, Li-ion diffusion kinetics and structure stability after Ce doping. Furthermore, a 0.5 wt% Ce-doped α-FeOOH//LiFePO4 lithium ion cell with an initial discharge capacity of 580 mA h g-1 at 1000 mA g-1 based on the total weight of the anode material has been fabricated for the first time. The obtained 0.5 wt% Ce-doped α-FeOOH electrode as anode material for sodium-ion batteries also exhibits a high initial discharge capacity of 587 mA h g-1 at 100 mA g-1.

  7. Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zegeye, Tilahun Awoke; Kuo, Chung-Feng Jeffrey; Wotango, Aselefech Sorsa; Pan, Chun-Jern; Chen, Hung-Ming; Haregewoin, Atetegeb Meazah; Cheng, Ju-Hsiang; Su, Wei-Nien; Hwang, Bing-Joe

    2016-08-01

    Herein, we design hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite (MC-Meso C-doped TiO2/S) as a positive electrode material for lithium-sulfur batteries. The hybrid MC-Meso C-doped TiO2 host material is produced by a low-cost, hydrothermal and annealing process. The resulting conductive material shows dual microporous and mesoporous behavior which enhances the effective trapping of sulfur and polysulfides. The hybrid MC-Meso C-doped TiO2/S composite material possesses rutile TiO2 nanotube structure with successful carbon doping while sulfur is uniformly distributed in the hybrid MC-Meso C-doped TiO2 composite materials after the melt-infusion process. The electrochemical measurement of the hybrid material also shows improved cycle stability and rate performance with high sulfur loading (61.04%). The material delivers an initial discharge capacity of 802 mAh g-1 and maintains it at 578 mAh g-1 with a columbic efficiency greater than 97.1% after 140 cycles at 0.1 C. This improvement is thought to be attributed to the unique hybrid nanostructure of the MC-Meso C-doped TiO2 host and the good dispersion of sulfur in the narrow pores of the MC spheres and the mesoporous C-doped TiO2 support.

  8. Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zegeye, Tilahun Awoke; Kuo, Chung-Feng Jeffrey; Wotango, Aselefech Sorsa; Pan, Chun-Jern; Chen, Hung-Ming; Haregewoin, Atetegeb Meazah; Cheng, Ju-Hsiang; Su, Wei-Nien; Hwang, Bing-Joe

    2016-08-01

    Herein, we design hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite (MC-Meso C-doped TiO2/S) as a positive electrode material for lithium-sulfur batteries. The hybrid MC-Meso C-doped TiO2 host material is produced by a low-cost, hydrothermal and annealing process. The resulting conductive material shows dual microporous and mesoporous behavior which enhances the effective trapping of sulfur and polysulfides. The hybrid MC-Meso C-doped TiO2/S composite material possesses rutile TiO2 nanotube structure with successful carbon doping while sulfur is uniformly distributed in the hybrid MC-Meso C-doped TiO2 composite materials after the melt-infusion process. The electrochemical measurement of the hybrid material also shows improved cycle stability and rate performance with high sulfur loading (61.04%). The material delivers an initial discharge capacity of 802 mAh g-1 and maintains it at 578 mAh g-1 with a columbic efficiency greater than 97.1% after 140 cycles at 0.1 C. This improvement is thought to be attributed to the unique hybrid nanostructure of the MC-Meso C-doped TiO2 host and the good dispersion of sulfur in the narrow pores of the MC spheres and the mesoporous C-doped TiO2 support.

  9. Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors.

    PubMed

    Sun, Li; Tian, Chungui; Fu, Yu; Yang, Ying; Yin, Jie; Wang, Lei; Fu, Honggang

    2014-01-01

    An advanced supercapacitor material based on nitrogen-doped porous graphitic carbon (NPGC) with high a surface area was synthesized by means of a simple coordination-pyrolysis combination process, in which tetraethyl orthosilicate (TEOS), nickel nitrate, and glucose were adopted as porogent, graphitic catalyst precursor, and carbon source, respectively. In addition, melamine was selected as a nitrogen source owing to its nitrogen-enriched structure and the strong interaction between the amine groups and the glucose unit. A low-temperature treatment resulted in the formation of a NPGC precursor by combination of the catalytic precursor, hydrolyzed TEOS, and the melamine-glucose unit. Following pyrolysis and removal of the catalyst and porogent, the NPGC material showed excellent electrical conductivity owing to its high crystallinity, a large Brunauer-Emmett-Teller surface area (SBET =1027 m(2)  g(-1) ), and a high nitrogen level (7.72 wt %). The unusual microstructure of NPGC materials could provide electrochemical energy storage. The NPGC material, without the need for any conductive additives, showed excellent capacitive behavior (293 F g(-1) at 1 A g(-1) ), long-term cycling stability, and high coulombic efficiency (>99.9 % over 5000 cycles) in KOH when used as an electrode. Notably, in a two-electrode symmetric supercapacitor, NPGC energy densities as high as 8.1 and 47.5 Wh kg(-1) , at a high power density (10.5 kW kg(-1) ), were achieved in 6 M KOH and 1 M Et4 NBF4 -PC electrolytes, respectively. Thus, the synthesized NPGC material could be a highly promising electrode material for advanced supercapacitors and other conversion devices.

  10. Persistent Luminescence Hole-Type Materials by Design: Transition-Metal-Doped Carbon Allotrope and Carbides.

    PubMed

    Qu, Bingyan; Zhang, Bo; Wang, Lei; Zhou, Rulong; Zeng, Xiao Cheng; Li, Liang

    2016-03-01

    Electron traps play a crucial role in a wide variety of compounds of persistent luminescence (PL) materials. However, little attention has been placed on the hole-trap-type PL materials. In this study, a novel hole-dominated persistent luminescence (PL) mechanism is predicted. The mechanism is validated in the night pearl diamond (NPD) composed of lonsdaleite with ultralong persistent luminescence (PL) (more than 72 h). The computed band structures suggest that the Fe ion dopant in lonsdaleite is responsible for the luminescence of NPD due to the desired defect levels within the band gap for electronic transition. Other possible impurity defects in lonsdaleite, such as K, Ca, Mg, Zn, or Tl dopants, or C vacancy can also serve as the hole-trap centers to enhance the PL. Among other 3d transition-metal-ion dopants considered, Cr and Mn ions are predicted to give rise to PL property. The predicted PL mechanism via transition-metal doping of lonsdaleite offers an exciting opportunity for engineering new PL materials by design.

  11. Performance improvement of Ge-Sb-Te material by GaSb doping for phase change memory

    SciTech Connect

    Lu, Yegang; Zhang, Zhonghua; Song, Sannian; Cheng, Limin; Song, Zhitang; Shen, Xiang; Wang, Guoxiang; Dai, Shixun

    2013-06-17

    Effects of GaSb doping on phase change characteristics of Ge-Sb-Te material are investigated by in situ resistance and x-ray diffraction measurement, optical spectroscopy, and x-ray photoelectron spectroscopy. The crystallization temperature and data retention of Ge-Sb-Te material increase significantly by the addition of GaSb, which results from the high thermal stability of amorphous GaSb. In addition, GaSb-doped Ge-Sb-Te material exhibits faster crystallization speed due to the change in electronic states as a result of the formation of chemical bonds with Ga element. Incorporation of GaSb is highly effective way to enhance the comprehensive performance of Ge-Sb-Te material for phase change memory.

  12. Self-induced transparency solitary waves in a doped nonlinear photonic band gap material

    NASA Astrophysics Data System (ADS)

    Aközbek, Neşet; John, Sajeev

    1998-09-01

    We derive the properties of self-induced transparency (SIT) solitary waves in a one-dimensional periodic structure doped uniformly with resonance two-level atoms. In our model, the electromagnetic field is treated classically and the dopant atoms are described quantum mechanically. The resulting solitary waves take the form of ultrashort (picosecond) laser pulses which propagate near the band edge of the nonlinear photonic band gap (PBG) material doped with rare-earth atoms such as erbium. Solitary wave formation involves the combined effects of group velocity dispersion (GVD), nonresonant Kerr nonlinearity, and resonant interaction with dopant atoms. We derive the general Maxwell-Bloch equations for a nonlinear PBG system and then demonstrate the existence of elementary solitary wave solutions for frequencies far outside the gap where GVD effects are negligible and for frequencies near the photonic band edge where GVD effects are crucial. We find two distinct new types of propagating SIT solitary wave pulses. Far from Bragg resonance, we recapture the usual McCall-Hahn soliton with hyperbolic secant profile when the nonlinear Kerr coefficient χ(3)=0. However, when the host nonresonant Kerr coefficient is nonzero, we obtain the first new type of soliton. In this case, the optical soliton envelope function deviates from the hyperbolic secant profile and pulse propagation requires nontrivial phase modulation (chirping). We derive the dependence of the solitary wave structure on the Kerr coefficient χ(3), the resonance impurity atom density, and the detuning of the average laser frequency from the atomic transition. When the laser frequency and the atomic transition frequencies are near the photonic band edge we obtain the second type of soliton. To illustrate the second type of soliton we consider two special cases. In the first case, GVD facilitates the propagation of an unchirped SIT-gap soliton moving at a velocity fixed by the material's parameters. The soliton

  13. Material and Doping Dependence of the Nodal and Anti-Nodal Dispersion Renormalizations in Single- and Multi-Layer Cuprates

    SciTech Connect

    Johnston, S.; Lee, W.S.; Nowadnick, E.A.; Moritz, B.; Shen, Z.-X.; Devereaux, T.P.; /Stanford U., Geballe Lab. /SLAC

    2010-02-15

    In this paper we present a review of bosonic renormalization effects on electronic carriers observed from angle-resolved photoemission spectra in the cuprates. Specifically, we discuss the viewpoint that these renormalizations represent coupling of the electrons to the lattice and review how materials dependence, such as the number of CuO{sub 2} layers, and doping dependence can be understood straightforwardly in terms of several aspects of electron-phonon coupling in layered correlated materials.

  14. The Effect of Boron Doping on Structure and Electrochemical Performance of Lithium-Rich Layered Oxide Materials.

    PubMed

    Liu, Jiatu; Wang, Shuangbao; Ding, Zhengping; Zhou, Ruiqi; Xia, Qingbing; Zhang, Jinfang; Chen, Libao; Wei, Weifeng; Wang, Peng

    2016-07-20

    Polyanion doping shows great potential to improve electrochemical performance of Li-rich layered oxide (LLO) materials. Here, by optimizing the doping content and annealing temperature, we obtained boron-doped LLO materials Li1.2Mn0.54Ni0.13Co0.13BxO2 (x = 0.04 and 0.06) with comprehensively improved performance (94% capacity retention after 100 cycles at 60 mA/g current density and a rate capability much higher compared to that of the pristine sample) at annealing temperatures of 750 and 650 °C, respectively, which are much lower than the traditional annealing temperature of similar material systems without boron. The scenario of the complex crystallization process was captured using Cs-corrected high-angle annular dark field scanning transmission electron microscopic (HAADF-STEM) imaging techniques. The existence of layered, NiO-type, and spinel-like structures in a single particle induced by boron doping and optimization of annealing temperature is believed to contribute to the remarkable improvement of cycling stability and rate capability. PMID:27337243

  15. Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries.

    PubMed

    Yu, Hong; Rui, Xianhong; Tan, Huiteng; Chen, Jing; Huang, Xin; Xu, Chen; Liu, Weiling; Yu, Denis Y W; Hng, Huey Hoon; Hoster, Harry E; Yan, Qingyu

    2013-06-01

    Hierarchical Cu doped vanadium pentoxide (V2O5) flowers were prepared via a simple hydrothermal approach followed by an annealing process. The flower precursors are self-assembled with 1D nanobelts surrounding a central core. The morphological evolution is investigated and a plausible mechanism is proposed. As the cathode material for lithium ion batteries, the Cu doped V2O5 samples exhibit improved electrochemical performance compared to the un-doped ones. Among them Cu0.02V1.98O5 delivered higher reversible specific capacities, better cycling stabilities and excellent rate capabilities, e.g. 97 mA h g(-1) at 20.0 C.

  16. Effects of sulfur doping on graphene-based nanosheets for use as anode materials in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yun, Young Soo; Le, Viet-Duc; Kim, Haegyeom; Chang, Sung-Jin; Baek, Seung Jae; Park, Sungjin; Kim, Byung Hoon; Kim, Yong-Hyun; Kang, Kisuk; Jin, Hyoung-Joon

    2014-09-01

    Graphene-based nanosheets (GNS) have been studied for use in electrochemical energy storage devices. A deeper understanding about the system is required for achieving enhanced power output and high energy storage. The effects of sulfur doping on the electrochemical properties of GNS are studied for their use as an anode material in lithium-ion batteries. Sulfur doping in GNS contributes to the high specific capacity by providing more lithium storage sites due to Faradaic reactions. In addition, superior rate performance of sulfur-doped GNS (S-GNS) is achieved through the improved electrical conductivity of S-GNS (1743 S m-1), which is two orders of magnitude higher than that of GNS (32 S m-1). In addition, good cyclic stability of S-GNS is maintained even after 500 cycles at a high current density of 1488 mA g-1 (4 C).

  17. Rational design of mixed ionic and electronic conducting perovskite oxides for solid oxide fuel cell anode materials: A case study for doped SrTiO3

    SciTech Connect

    Suthirakun, Suwit; Xiao, Guoliang; Ammal, Salai Cheettu; Chen, Fanglin; zur Loye, Hans-Conrad; Heyden, Andreas

    2014-01-01

    The effect of p- and n-type dopants on ionic and electronic conductivity of SrTiO3 based perovskites were investigated both computationally and experimentally. Specifically, we performed density functional theory (DFT) calculations of Na- and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 systems. Constrained ab initio thermodynamic calculations were used to evaluate the phase stability and reducibility of doped SrTiO3 under both oxidizing and reducing synthesis conditions, as well as under anodic solid oxide fuel cell (SOFC) conditions. The density of states (DOS) of these materials was analyzed to study the effects of p- and n-doping on the electronic conductivity. Furthermore, Na- and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 samples were experimentally prepared and the conductivity was measured to confirm our computational predictions. The experimental observations are in very good agreement with the theoretical predictions that doping n-doped SrTiO3 with small amounts of p-type dopants promotes both the ionic and electronic conductivity of the material. This doping strategy is valid independent of p- and n-doping site and permits the synthesis of perovskite based mixed ionic/electronic conductors.

  18. Calcium- and Cobalt-doped Yttrium Chromites as an Interconnect Material for Solid Oxide Fuel Cells

    SciTech Connect

    Yoon, Kyung J.; Cramer, Carolyn N.; Thomsen, Edwin C.; Coyle, Christopher A.; Coffey, Greg W.; Marina, Olga A.

    2010-04-23

    The structural, thermal and electrical characteristics of calcium- and cobalt-doped yttrium chromites were studied for a potential use as the interconnect material in high temperature solid oxide fuel cells (SOFCs) as well as other high temperature electrochemical and thermoelectric devices. The Y0.8Ca0.2Cr1-xCoxO3±δ (x=0, 0.1, 0.2, 0.3) compositions had single phase orthorhombic perovskite structures in the wide range of oxygen pressures. Sintering behavior was remarkably enhanced upon cobalt doping and densities 95% and 97% of theoretical density were obtained after sintering at 1300oC in air, when x was 0.2 and 0.3, respectively. The electrical conductivity in both oxidizing and reducing atmospheres was significantly improved with cobalt content, and values of 49 and 10 S/cm at 850oC and 55 and 14 S/cm at 950oC in air and forming gas, respectively, were reported for x=0.2. The conductivity increase was attributed to the charge carrier density increase upon cobalt substitution for chromium confirmed with Seebeck measurements. The thermal expansion coefficient (TEC) was increased with cobalt content and closely matched to that of an 8 mol% yttria-stabilized zirconia (YSZ) electrolyte for 0.1 ≤ x ≤ 0.2. The chemical compatibility between Y0.8Ca0.2Cr1-xCoxO3±δ and YSZ was evaluated firing the two at 1400oC and no reaction products were found if x value was kept lower than 0.2.

  19. Lasing properties of new Nd 3+-doped tungstate, molybdate, and fluoride materials under selective optical pumping

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínkova, Helena; Basiev, Tolstoban T.; Doroschenko, Maxim E.; Ivleva, Ludmila I.; Osiko, Vyacheslav V.; Zverev, Peter G.

    2006-02-01

    The purpose of this work was to determine the relative efficiencies of new Nd 3+-doped laser active/Raman - tungstate, molybdate, and fluoride - materials (SrWO 4, PbWO 4, BaWO 4, SrMoO 4, PbMoO 4, SrF II, and LaF 3) under selective longitudinal optical pumping by the alexandrite (~750nm), or diode (~800nm) laser. Crystals with various length, orientations and active ions concentrations were tested. To optimize the output of the tested lasers a set of input dichroic and output dielectric mirrors with different reflectivities were used. For realized lasers operating at pulsed free-running regime, threshold energy, slope efficiency, emission wavelength, and radiation polarization were determined. For each crystal, fluorescence lifetime and absorption coefficient under given pumping were established. The slope efficiency in case of Nd 3+:PbMoO 4 laser at wavelength 1054nm was measured to be 54.3% with total efficiency of 46% which is the best result obtained for all new tested crystals. For Nd 3+ doped SrWO 4, PbWO 4, and BaWO 4 crystals simultaneous laser and self-Raman emission were demonstrated in Q-switched regime. Thus newly proposed laser Raman crystals demonstrate high efficiency for Nd 3+ laser oscillations comparable with well known and widely used Nd:KGW crystal. Further improvement in the quality of tungstate and molybdate type crystals should result in further increase in lasing efficiency at 1.06μm wavelength. Self Raman frequency conversion of Nd 3+-laser oscillations in these crystals should result in high efficient pulse shortening, high peak power and new wavelengths in 1.2-1.5μm wavelength region.

  20. Doping, adsorption, and polarity of atomic-layer materials: A predictive theory from systematic first-principles study

    NASA Astrophysics Data System (ADS)

    Saito, Susumu; Fujimoto, Yoshitaka; Koretsune, Takashi

    2015-03-01

    Based on the extensive first-principles electronic-structure study of various doped hexagonal boron-nitride (h-BN) atomic layers as well as that of various doped graphene and carbon nanotubes, we propose a simple but predictive theory of polarity in doped atomic-layer materials. We first report the electronic structure of the pristine h-BN, h-BN layers with B and B3N vacancies which have been experimentally produced and observed frequently, and doped h-BN layers, and show that both p-type and n-type h-BN layers can be produced in a variety of ways. We next review the electronic structure of doped graphene and carbon nanotubes and the effect of the H adsorption which can even change the polarity of the system. Finally we propose a simple but predictive theory which is based on the number of valence electrons of each system, and can explain the polarities of all the h-BN, graphene, and nanotube-based systems studied so far. Supported by MEXT 25107005 and 25104711, JSPS 22740252 and 26390062, and MEST TIES project.

  1. Synthesis and characterization of rare earth doped novel optical materials and their potential applications

    NASA Astrophysics Data System (ADS)

    Pokhrel, Madhab

    There are many application of photonic materials but selection of photonic materials are always constrained by number of factors such as cost, availability of materials, thermal and chemical stability, toxicity, size and more importantly ease of synthesis and processing along with the efficient emission. For example, quantum dots are efficient emitter but they are significantly toxic, whereas dyes are also efficient emitters but they are chemically unstable. On the other hand, display and LED requires the micron size particles but bio application requires the nano-sized particles. On the other hand, laser gain media requires the ceramics glass or single crystal not the nanoparticles. So, realization of practical optical systems critically depends on suitable materials that offer specific combinations of properties. Solid-state powders such as rare-earth ions doped nano and micron size phosphors are one of the most promising candidates for several photonic applications discussed above. In this dissertation, we investigate the upconversion (UC) fluorescence characteristics of rare earth (RE) doped M2O2S (M = Y, Gd, La) oxysulphide phosphors, for near-infrared to visible UC. Both nano and micron size phosphors were investigated depending on their applications of interest. This oxysulphide phosphor possesses several excellent properties such as chemical stability, low toxicity and can be easily mass produced at low cost. Mainly, Yb3+, Er3+, and Ho3+ were doped in the host lattice, resulting in bright red, green, blue and NIR emissions under 980 nm and 1550 nm excitation at various excitation power densities. Maximum UC quantum yields (QY) up to 6.2 %, 5.8%, and 4.6% were respectively achieved in Yb3+/Er3+ :La2O2S, Y2O2S, and Gd2O 2S. Comparisons have been made with respect to reported most efficient upconverting phosphors beta-NaYF4:20 % Yb/ 2% Er. We believe that present phosphors are the most efficient and lower excitation threshold upconverting phosphors at 980 and

  2. Synthesis of LiNiO2 cathode materials with homogeneous Al doping at the atomic level

    SciTech Connect

    Liu, Zengcai; Zhen, Honghe; Kim, Yoongu; Liang, Chengdu

    2011-01-01

    Aluminum doped LiNiO2 cathode materials are synthesized by using Raney nickel as the starting material. The structure and composition are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with elemental mapping. The lithium deficiency is analyzed by Rieveld refinement. The initial capacity and retention of capacity are correlated to the lithium deficiency of the resulting cathode material. Using strong oxidant of Li2O2 in the synthesis results in materials with improved electrochemical cyclability. The improvement is related to the diminishing of lithium deficiency in strong oxidizing synthesis conditions.

  3. Influence of alkali ion doping on the electrochemical performances of tin-based composite materials

    NASA Astrophysics Data System (ADS)

    Aboulaich, A.; Conte, D. E.; Olivier-Fourcade, J.; Jordy, C.; Willmann, P.; Jumas, J. C.

    In this paper, we report an investigation of three tin-based composite materials as negative electrodes for lithium-ion batteries. Theses composites were synthesized by solid state reaction from dispersion of micrometric tin into BPO 4, Li-doped BPO 4 (LiBPO) and Na-substituted BPO 4 (NaBPO) matrix, respectively. We have investigated more particularly the influence of the two alkaline ions (Li +, Na +) introduced into the matrix on electrochemical performances. The morphology of powders was observed by SEM and the composition studied by EDX analysis. The conductivity measurements showed that the modified BPO 4 matrixes (Li or Na) exhibit improved conductivity (σ RT = 2 × 10 -11 S cm -1 for NaBPO). A focus of our interest was to relate the nature and structural composition of the composite interface between active tin and inactive matrix to the irreversible capacity in this type of composite materials. The electrochemical analysis shows a decrease of the irreversible capacity for the composite based on modified matrixes (around 150 and 190 mAh g -1 for SnNaBPO and SnLiBPO, respectively) with respect to the reference composite SnBPO (245 mAh g -1).

  4. Electric and dielectric properties of pure and doped CaCu 3Ti 4O 12 perovskite materials

    NASA Astrophysics Data System (ADS)

    Chiodelli, G.; Massarotti, V.; Capsoni, D.; Bini, M.; Azzoni, C. B.; Mozzati, M. C.; Lupotto, P.

    2004-10-01

    AC impedance spectroscopy (IS) measurements were performed in the 15-700 K temperature range on pure and Ni, Fe and Co doped CaCu 3Ti 4O 12 (CCTO) materials. Capacitance values were also confirmed by direct current measurements at room temperature. Thermoelectric power measurements showed that the electrons are involved in the conduction process of the semiconducting bulk region. The IS results evidenced a dielectric behaviour in the grain boundary region, giving a permittivity of about 3400 for the pure sample, so CCTO can be considered an internal barrier layer capacitance (IBLC) material. The giant permittivity of CCTO can be strongly increased to values of ˜150 000 by Co doping on Ti site. The IBLC behaviour, together with the giant permittivity and the opportunity to combine capacitance and resistance values in an R//C circuit, evidence the applicability of this material as an integrated resonant element for the electronic industry.

  5. Evolution of grain boundary conduction with increasing temperature in pure and Ti doped Co ferrite materials

    SciTech Connect

    Vaithyanathan, V.; Patro, L. N. E-mail: kkamalabharathi@gmail.com; Kodam, Ugendar; Tan, H.; Inbanathan, S. S. R.; Kamala Bharathi, K. E-mail: kkamalabharathi@gmail.com

    2015-09-21

    We report on the structural, temperature, and frequency dependent impedance studies of Ti doped cobalt ferrite material (CoFe{sub 1.95}Ti{sub 0.05}O{sub 4}) in comparison with the pure CoFe{sub 2}O{sub 4}. XRD and Raman spectroscopy studies confirm the inverse spinel crystallization of the materials with space group of Fd-3 m. Scanning electron microscope images shows the microcrystalline nature of the particles. Homogeneity, stoichiometry, and ionic states of the ions in the composition were confirmed by energy dispersive X-ray analysis and X-ray photoelectron spectroscopic studies. Temperature and frequency dependent real (Z′) and imaginary (Z″) part of the impedance shows the existence of relaxation processes and their distribution in CoFe{sub 2}O{sub 4} and CoFe{sub 1.95}Ti{sub 0.05}O{sub 4} materials. Complex impedance spectroscopy studies at low temperatures shows that the conductivity in these materials is predominantly due to the intrinsic bulk grains. With increasing the temperature, evolution of grain boundary conduction is clearly seen through the appearance of a second semi-circle in the complex impedance plots. Room temperature total dc conductivity of both CoFe{sub 2}O{sub 4} and CoFe{sub 1.95}Ti{sub 0.05}O{sub 4} materials is found to be 5.78 × 10{sup −8} and 1.61 × 10{sup −7} S/cm, respectively. Temperature variation of dc electrical conductivity follows the Arrhenius relationship and the activation energies for CoFe{sub 2}O{sub 4} corresponding to grain (0.55 eV for CoFe{sub 2}O{sub 4}), grain boundary (0.52 eV), and total conduction (0.54 eV) are discussed. Observation of well distinguishable grain and grain boundary conductions and the low conductivity values in CoFe{sub 2}O{sub 4} and CoFe{sub 1.95}Ti{sub 0.05}O{sub 4} materials indicates that these materials are promising candidates for the high frequency applications.

  6. Ce(3+) /Tb(3+) non-/single-/co-doped K-Lu-F materials: synthesis, optical properties, and energy transfer.

    PubMed

    Cao, Chunyan; Xie, An; Noh, Hyeon Mi; Jeong, Jung Hyun

    2016-08-01

    Using a hydrothermal method, Ce(3+) /Tb(3+) non-/single-/co-doped K-Lu-F materials have been synthesized. The X-ray diffraction (XRD) results suggest that the Ce(3+) and/or Tb(3+) doping had great effects on the crystalline phases of the final samples. The field emission scanning electron microscopy (FE-SEM) images indicated that the samples were in hexagonal disk or polyhedron morphologies in addition to some nanoparticles, which also indicated that the doping also had great effects on the sizes and the morphologies of the samples. The energy-dispersive spectroscopy (EDS) patterns illustrated the constituents of different samples. The enhanced emissions of Tb(3+) were observed in the Ce(3+) /Tb(3+) co-doped K-Lu-F materials. The energy transfer (ET) efficiency ηT were calculated based on the fluorescence yield. The ET mechanism from Ce(3+) to Tb(3+) was confirmed to be the dipole-quadrupole interaction inferred from the theoretical analysis and the experimental data. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Non-equilibrium Approach to Doping of Wide Bandgap materials by Molecular Beam Epitaxy. Final Report

    SciTech Connect

    Tamargo, M. C.; Neumark, G. F.

    2004-04-19

    It is well known that it has been difficult to obtain good bipolar doping in a wide bandgap semiconductors. Developed a new doping technique, involving use of a standard dopant, together with a ''co-dopant'' used to facilitate the introduction of the dopant, and have vastly alleviated this problem.

  8. A p → n transition for Sn-doped Cu(In,Ga)Se{sub 2} bulk materials

    SciTech Connect

    Monsefi, Mehrdad; Kuo, Dong-Hau

    2013-08-15

    Cu(In,Ga)Se{sub 2} (CIGSe) pellets at different Sn contents were fabricated by reactive liquid-phase sintering at 600–700 °C with the help of sintering aids of Sb{sub 2}S{sub 3} and Te. Powder preparation was based upon the molecular formula of Cu{sub 0.9}[(In{sub 0.7−x}Sn{sub x}Ga{sub 0.3}){sub 0.9}Sb{sub 0.1}](S{sub 0.15}Te{sub 0.2}Se{sub 1.65}) or Sn-x-CIGSe. Morphology, structure, and electrical property of Sn-doped CIGSe bulks were investigated. The composition of Sn-doped CIGSe is purposely designed for studying the doping effect on the CIGSe performance. The unexpected increase in hole concentration of CIGSe due to the donor doping is rationalized. A controllable n-type semiconductor is deliberately achieved for Sn-0.15-CIGSe and important for making a p/n homojunction in CIGSe solar cells. - Graphical abstract: The controls in defect type and electrical properties of Cu(In,Ga)Se{sub 2} by doping Sn{sup 4+} on the In{sup 3+} site. Highlights: • n-type Sn-CIGSe with n{sub e} of 6.4×10{sup 16} cm{sup −3} and μ{sub e} of 2.3 cm{sup 2}/V s was obtained. • This n-type Sn-CIGSe was obtained by material design and composition control. • The reported n-type CIGSe was obtained from the Zn/CIGSe and CdS/CIGSe bilayers. • Extrinsic donor doping was explored through the results of electrical properties. • A n/p homojunction with Sn-CIGSe and undoped one can be used for solar cell devices.

  9. Synthesis of hierarchical Mg-doped Fe3O4 micro/nano materials for the decomposition of hexachlorobenzene.

    PubMed

    Su, Guijin; Liu, Yexuan; Huang, Linyan; Lu, Huijie; Liu, Sha; Li, Liewu; Zheng, Minghui

    2014-03-01

    An ethylene-glycol (EG) mediated self-assembly process was firstly developed to synthesize micrometer-sized nanostructured Mg-doped Fe3O4 composite oxides to decompose hexachlorobenzene (HCB) at 300°C. The synthesized samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and inductively coupled plasma optical emission spectrometer. The morphology and composition of the composite oxide precursor were regulated by the molar ratio of the magnesium acetate and ferric nitrate as the reactants. Calcination of the precursor particles, prepared with different molar ratio of the metal salts, under a reducing nitrogen atmosphere, generated three kinds of Mg doped Fe3O4 composite oxide micro/nano materials. Their reactivity toward HCB decomposition was likely influenced by the material morphology and content of Mg dopants. Ball-like MgFe2O4-Fe3O4 composite oxide micro/nano material showed superior HCB dechlorination efficiencies when compared with pure Fe3O4 micro/nano material, prepared under similar experimental conditions, thus highlighting the benefits of doping Mg into Fe3O4 matrices.

  10. Synthesis of hierarchical Mg-doped Fe3O4 micro/nano materials for the decomposition of hexachlorobenzene.

    PubMed

    Su, Guijin; Liu, Yexuan; Huang, Linyan; Lu, Huijie; Liu, Sha; Li, Liewu; Zheng, Minghui

    2014-03-01

    An ethylene-glycol (EG) mediated self-assembly process was firstly developed to synthesize micrometer-sized nanostructured Mg-doped Fe3O4 composite oxides to decompose hexachlorobenzene (HCB) at 300°C. The synthesized samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and inductively coupled plasma optical emission spectrometer. The morphology and composition of the composite oxide precursor were regulated by the molar ratio of the magnesium acetate and ferric nitrate as the reactants. Calcination of the precursor particles, prepared with different molar ratio of the metal salts, under a reducing nitrogen atmosphere, generated three kinds of Mg doped Fe3O4 composite oxide micro/nano materials. Their reactivity toward HCB decomposition was likely influenced by the material morphology and content of Mg dopants. Ball-like MgFe2O4-Fe3O4 composite oxide micro/nano material showed superior HCB dechlorination efficiencies when compared with pure Fe3O4 micro/nano material, prepared under similar experimental conditions, thus highlighting the benefits of doping Mg into Fe3O4 matrices. PMID:24290299

  11. The preparation of sol-gel materials doped with ionic liquids and trialkyl phosphine oxides for yttrium(III) uptake.

    PubMed

    Liu, Yinghui; Sun, Xiaoqi; Luo, Fang; Chen, Ji

    2007-12-01

    A new material (IL923SGs) composed of ionic liquids and trialkyl phosphine oxides (Cyanex 923) for Y(III) uptake was prepared via a sol-gel method. The hydrophobic ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate (C8mim+ PF6(-)) was used as solvent medium and pore templating material. The extraction of Y(III) by IL923SGs was mainly due to the complexation of metal ions with Cyanex 923 doped in the solid silica. Ionic liquid was stably doped into the silica gel matrix providing a diffusion medium for Cyanex 923, and this will result in higher removal efficiencies and excellent stability for metal ions separation. IL923SGs were also easily regenerated and reused in the subsequent removal of Y(III) in four cycles.

  12. Experiments on a strongly correlated material: photoresponse, phase diagram and hydrogen doping of vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Kasirga, T. Serkan

    The metal-insulator transition (MIT) in vanadium dioxide (VO2) has attracted waves of attention after its rst observation by Morin in 1959. There are several reasons for the interest in this material. First, its metal-insulator transition is at an easily accessible temperature which allows investigators to study the eect of strong electronic correlations with little eort. Second reason is VO2 oers many applications, although most of them are mundane, a few may have signicant eects on dierent areas of technology. However, even after over half a century there is still a debate about the nature of the MIT and non of the applications proposed have been realized. The main culprit for this is the diculties in studying the bulk crystals of VO 2. In bulk crystals, defects in the crystal, impurities and domain structure causes irreproducible results. This combined with the theoretical challenges made studying VO2 and realization of applications impractical. However, recent discovery of the growth technique for growing the nano-scale crystals, revitalized the interest in VO2. In this dissertation I present the experimental studies that we performed on VO2. I discussed the ndings from three major studies we performed; photoresponse, finding the strain-temperature phase diagram and hydrogen doping of VO2. We used scanning photocurrent microscopy technique to reveal the light-matter interaction in VO2. Suspended nanobeam devices are used in the experiments and results revealed that photoresponse of VO2 is dominated by the thermal eects and there is no photovoltaic contribution. Results are published in Nature Nanotechnology in 2012 . In the second study, we determined the strain-temperature phase stability diagram of VO2. This is the first ever determination of the phase diagram of a solid state phase transition. Also our studies revealed that the triple point coincides with the critical point, which has important implications for both theoretical studies of the MIT in VO 2 and

  13. The microwave adsorption behavior and microwave-assisted heteroatoms doping of graphene-based nano-carbon materials

    NASA Astrophysics Data System (ADS)

    Tang, Pei; Hu, Gang; Gao, Yongjun; Li, Wenjing; Yao, Siyu; Liu, Zongyuan; Ma, Ding

    2014-08-01

    Microwave-assisted heating method is used to treat graphite oxide (GO), pyrolytic graphene oxide (PGO) and hydrogen-reduced pyrolytic graphene oxide (HPGO). Pure or doped graphene are prepared in the time of minutes and a thermal deoxygenization reduction mechanism is proposed to understand their microwave adsorption behaviors. These carbon materials are excellent catalysts in the reduction of nitrobenzene. The defects are believed to play an important role in the catalytic performance.

  14. The microwave adsorption behavior and microwave-assisted heteroatoms doping of graphene-based nano-carbon materials

    PubMed Central

    Tang, Pei; Hu, Gang; Gao, Yongjun; Li, Wenjing; Yao, Siyu; Liu, Zongyuan; Ma, Ding

    2014-01-01

    Microwave-assisted heating method is used to treat graphite oxide (GO), pyrolytic graphene oxide (PGO) and hydrogen-reduced pyrolytic graphene oxide (HPGO). Pure or doped graphene are prepared in the time of minutes and a thermal deoxygenization reduction mechanism is proposed to understand their microwave adsorption behaviors. These carbon materials are excellent catalysts in the reduction of nitrobenzene. The defects are believed to play an important role in the catalytic performance. PMID:25109492

  15. Direct Synthesis of Carbon-Doped TiO2-Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries.

    PubMed

    Goriparti, Subrahmanyam; Miele, Ermanno; Prato, Mirko; Scarpellini, Alice; Marras, Sergio; Monaco, Simone; Toma, Andrea; Messina, Gabriele C; Alabastri, Alessandro; De Angelis, Francesco; Manna, Liberato; Capiglia, Claudio; Zaccaria, Remo Proietti

    2015-11-18

    Carbon-doped TiO2-bronze nanowires were synthesized via a facile doping mechanism and were exploited as active material for Li-ion batteries. We demonstrate that both the wire geometry and the presence of carbon doping contribute to the high electrochemical performance of these materials. Direct carbon doping for example reduces the Li-ion diffusion length and improves the electrical conductivity of the wires, as demonstrated by cycling experiments, which evidenced remarkably higher capacities and superior rate capability over the undoped nanowires. The as-prepared carbon-doped nanowires, evaluated in lithium half-cells, exhibited lithium storage capacity of ∼306 mA h g(-1) (91% of the theoretical capacity) at the current rate of 0.1C as well as excellent discharge capacity of ∼160 mAh g(-1) even at the current rate of 10 C after 1000 charge/discharge cycles.

  16. Al-doped MgB2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bateni, Ali; Erdem, Emre; Repp, Sergej; Weber, Stefan; Somer, Mehmet

    2016-05-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB2. Above a certain level of Al doping, enhanced conductive properties of MgB2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  17. Study on preparation and microwave absorption property of the core-nanoshell composite materials doped with La.

    PubMed

    Wei, Liqiu; Che, Ruxin; Jiang, Yijun; Yu, Bing

    2013-12-01

    Microwave absorbing material plays a great role in electromagnetic pollution controlling, electromagnetic interference shielding and stealth technology, etc. The core-nanoshell composite materials doped with La were prepared by a solid-state reaction method, which is applied to the electromagnetic wave absorption. The core is magnetic fly-ash hollow cenosphere, and the shell is the nanosized ferrite doped with La. The thermal decomposition process of the sample was investigated by thermogravimetry and differential thermal analysis. The morphology and components of the composite materials were investigated by the X-ray diffraction analysis, the microstructure was observed by scanning electron microscope and transmission electron microscope. The results of vibrating sample magnetometer analysis indicated that the exchange-coupling interaction happens between ferrite of magnetic fly-ash hollow cenosphere and nanosized ferrite coating, which caused outstanding magnetic properties. The microwave absorbing property of the sample was measured by reflectivity far field radar cross section of radar microwave absorbing material with vector network analyzer. The results indicated that the exchange-coupling interaction enhanced magnetic loss of composite materials. Therefore, in the frequency of 5 GHz, the reflection coefficient can achieve -24 dB. It is better than single material and is consistent with requirements of the microwave absorbing material at the low-frequency absorption. PMID:25078834

  18. Study on preparation and microwave absorption property of the core-nanoshell composite materials doped with La.

    PubMed

    Wei, Liqiu; Che, Ruxin; Jiang, Yijun; Yu, Bing

    2013-12-01

    Microwave absorbing material plays a great role in electromagnetic pollution controlling, electromagnetic interference shielding and stealth technology, etc. The core-nanoshell composite materials doped with La were prepared by a solid-state reaction method, which is applied to the electromagnetic wave absorption. The core is magnetic fly-ash hollow cenosphere, and the shell is the nanosized ferrite doped with La. The thermal decomposition process of the sample was investigated by thermogravimetry and differential thermal analysis. The morphology and components of the composite materials were investigated by the X-ray diffraction analysis, the microstructure was observed by scanning electron microscope and transmission electron microscope. The results of vibrating sample magnetometer analysis indicated that the exchange-coupling interaction happens between ferrite of magnetic fly-ash hollow cenosphere and nanosized ferrite coating, which caused outstanding magnetic properties. The microwave absorbing property of the sample was measured by reflectivity far field radar cross section of radar microwave absorbing material with vector network analyzer. The results indicated that the exchange-coupling interaction enhanced magnetic loss of composite materials. Therefore, in the frequency of 5 GHz, the reflection coefficient can achieve -24 dB. It is better than single material and is consistent with requirements of the microwave absorbing material at the low-frequency absorption.

  19. Modeling and simulation of electronic structure, material interface and random doping in nano electronic devices

    PubMed Central

    Chen, Duan; Wei, Guo-Wei

    2010-01-01

    The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano scale. By optimization of the energy functional, we derive consistently-coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence

  20. Multifunctional zirconium oxide doped chitosan based hybrid nanocomposites as bone tissue engineering materials.

    PubMed

    Bhowmick, Arundhati; Jana, Piyali; Pramanik, Nilkamal; Mitra, Tapas; Banerjee, Sovan Lal; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2016-10-20

    This paper reports the development of multifunctional zirconium oxide (ZrO2) doped nancomposites having chitosan (CTS), organically modified montmorillonite (OMMT) and nano-hydroxyapatite (HAP). Formation of these nanocomposites was confirmed by various characterization techniques such as Fourier transform infrared spectroscopy and powder X-ray diffraction. Scanning electron microscopy images revealed uniform distribution of OMMT and nano-HAP-ZrO2 into CTS matrix. Powder XRD study and TEM study revealed that OMMT has partially exfoliated into the polymer matrix. Enhanced mechanical properties in comparison to the reported literature were obtained after the addition of ZrO2 nanoparticle into the nanocomposites. In rheological measurements, CMZH I-III exhibited greater storage modulus (G') than loss modulus (G″). TGA results showed that these nanocomposites are thermally more stable compare to pure CTS film. Strong antibacterial zone of inhibition and the lowest minimum inhibition concentration (MIC) value of these nanocomposites against bacterial strains proved that these materials have the ability to prevent bacterial infection in orthopedic implants. Compatibility of these nanocomposites with pH and blood of human body was established. It was observed from the swelling study that the swelling percentage was increased with decreasing the hydrophobic OMMT content. Human osteoblastic MG-63 cell proliferations were observed on the nanocomposites and cytocompatibility of these nanocomposites was also established. Moreover, addition of 5wt% OMMT and 5wt% nano-HAP-ZrO2 into 90wt% CTS matrix provides maximum tensile strength, storage modulus, aqueous swelling and cytocompatibility along with strong antibacterial effect, pH and erythrocyte compatibility. PMID:27474636

  1. Multifunctional zirconium oxide doped chitosan based hybrid nanocomposites as bone tissue engineering materials.

    PubMed

    Bhowmick, Arundhati; Jana, Piyali; Pramanik, Nilkamal; Mitra, Tapas; Banerjee, Sovan Lal; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2016-10-20

    This paper reports the development of multifunctional zirconium oxide (ZrO2) doped nancomposites having chitosan (CTS), organically modified montmorillonite (OMMT) and nano-hydroxyapatite (HAP). Formation of these nanocomposites was confirmed by various characterization techniques such as Fourier transform infrared spectroscopy and powder X-ray diffraction. Scanning electron microscopy images revealed uniform distribution of OMMT and nano-HAP-ZrO2 into CTS matrix. Powder XRD study and TEM study revealed that OMMT has partially exfoliated into the polymer matrix. Enhanced mechanical properties in comparison to the reported literature were obtained after the addition of ZrO2 nanoparticle into the nanocomposites. In rheological measurements, CMZH I-III exhibited greater storage modulus (G') than loss modulus (G″). TGA results showed that these nanocomposites are thermally more stable compare to pure CTS film. Strong antibacterial zone of inhibition and the lowest minimum inhibition concentration (MIC) value of these nanocomposites against bacterial strains proved that these materials have the ability to prevent bacterial infection in orthopedic implants. Compatibility of these nanocomposites with pH and blood of human body was established. It was observed from the swelling study that the swelling percentage was increased with decreasing the hydrophobic OMMT content. Human osteoblastic MG-63 cell proliferations were observed on the nanocomposites and cytocompatibility of these nanocomposites was also established. Moreover, addition of 5wt% OMMT and 5wt% nano-HAP-ZrO2 into 90wt% CTS matrix provides maximum tensile strength, storage modulus, aqueous swelling and cytocompatibility along with strong antibacterial effect, pH and erythrocyte compatibility.

  2. Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure

    DOEpatents

    Yang, Jihui; Shi, Xun; Bai, Shengqiang; Zhang, Wenqing; Chen, Lidong; Yang, Jiong

    2012-01-17

    A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.

  3. Modeling and simulation of electronic structure, material interface and random doping in nano electronic devices.

    PubMed

    Chen, Duan; Wei, Guo-Wei

    2010-06-20

    The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano scale. By optimization of the energy functional, we derive consistently-coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence

  4. Theoretical and experimental investigations of the properties of Ge2Sb2Te5 and indium-doped Ge2Sb2Te5 phase change material

    NASA Astrophysics Data System (ADS)

    Singh, Gurinder; Kaura, Aman; Mukul, Monika; Singh, Janpreet; Tripathi, S. K.

    2014-06-01

    We have carried out comprehensive computational and experimental study on the face-centered cubic Ge2Sb2Te5 (GST) and indium (In)-doped GST phase change materials. Structural calculations, total density of states and crystal orbital Hamilton population have been calculated using first-principle calculation. 5 at.% doping of In weakens the Ge-Te, Sb-Te and Te-Te bond lengths. In element substitutes Sb to form In-Te-like structure in the GST system. In-Te has a weaker bond strength compared with the Sb-Te bond. However, both GST and doped alloy remain in rock salt structure. It is more favorable to replace Sb with In than with any other atomic position. X-ray diffraction (XRD) analysis has been carried out on thin film of In-doped GST phase change materials. XRD graph reveals that In-doped phase change materials have rock salt structure with the formation of In2Te3 crystallites in the material. Temperature dependence of impedance spectra has been calculated for thin films of GST and doped material. Thickness of the as-deposited films is calculated from Swanepoel method. Absorption coefficient (α) has been calculated for amorphous and crystalline thin films of the alloys. The optical gap (indirect band gap) energy of the amorphous and crystalline thin films has also been calculated by the equation α hν = β (hν - E_{{g }} )2 . Optical contrast (C) of pure and doped phase change materials have also been calculated. Sufficient optical contrast has been found for pure and doped phase change materials.

  5. Nitrogen-doped carbon/graphene hybrid anode material for sodium-ion batteries with excellent rate capability

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Jia, Mengqiu; Cao, Bin; Chen, Renjie; Lv, Xinying; Tang, Renjie; Wu, Feng; Xu, Bin

    2016-07-01

    Nitrogen-doped carbon/graphene (NCG) hybrid materials were prepared by an in-situ polymerization and followed pyrolysis for sodium-ion batteries. The NCG has a large interlayer distance (0.360 nm) and a high nitrogen content of 7.54 at%, resulting in a high reversible sodium storage capacity of 336 mAh g-1 at 30 mA g-1. The NCG shows a sandwich-like structure, i.e. nitrogen-doped carbon nanosheets closely coated on both sides of graphene. The carbon nanosheets shorten the ion diffusion distance, while the sandwiched graphene with high electronic conductivity guarantees fast electron transport, making the NCG exhibit excellent rate capability (94 mAh g-1 at 5 A g-1). It also exhibits good cycle stability with a capacity retention of 89% after 200 cycles at 50 mA g-1.

  6. A Newly Designed Polyfluorene as an Efficient Host Material for Phosphorescent-Dye-Doped Polymer Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Ha, Soo-Hyun; Noh, Yong-Young

    2013-10-01

    A newly designed polyfluorene derivative, poly[2,7-(9,9-bis(5-cyanopentyl fluorene)-co-alt)-2,5-dimethyl-phenylene] (CNPFX), was synthesized for use as a host material for a phosphorescent dye, fac-tris(2-phenylpyridine) [Ir(ppy)3], in phosphorescent polymer light-emitting diodes. Efficient energy transfer to Ir(ppy)3 was achieved as a result of improved chemical compatibility via introduction of a polar unit, as well as increased spectrum overlap due to a blue-shift in the emission spectrum. Photo- and electro-luminescent spectra of Ir(ppy)3-doped CNPFX film showed clear green emission from Ir(ppy)3 due to efficient energy transfer, whereas those of Ir(ppy)3-doped poly(9,9-dihexylfluorene) (PF6) film showed blue emission from PF6. The CNPFX:Ir(ppy)3 (8 wt %) single layer device showed significantly improved performance.

  7. Facile synthesis of laminated graphene for advanced supercapacitor electrode material via simultaneous reduction and N-doping

    NASA Astrophysics Data System (ADS)

    Tian, Guiying; Liu, Ling; Meng, Qinghan; Cao, Bing

    2015-01-01

    The restacking-inhibited N-doped graphene (GN) is prepared for supercapacitor material based on the sol-gel method. Meanwhile, the graphene oxide (GO) is reduced and modified by melamine-resorcinol-formaldehyde (MRF). The reduced graphene oxide (RG) is characterized with the ultraviolet visible absorption spectrum, Raman spectra and X-ray diffraction. Moreover, the morphology of GN is measured by scanning electron microscopy, transmission electron microscopy and nitrogen adsorption. The doped N content is confirmed by elemental analysis and X-ray photoelectron spectroscopy. The result shows that GO is reduced by resorcinol derivatives. With the specific surface of 518 m2 g-1and N content of 9.77 wt%, laminated GN with 2.5 wt% GO exhibits the outstanding specific capacitance (245 F g-1), low charge-transfer resistance and superior cycle stability (94.8% retention after 2000 cycles).

  8. The influence of N-doped carbon materials on supported Pd: enhanced hydrogen storage and oxygen reduction performance.

    PubMed

    Kong, Xiang-Kai; Chen, Qian-Wang; Lun, Zheng-Yan

    2014-02-01

    N-doped graphene has become an important support for Pd in both hydrogen storage and catalytic reactions. The molecular orbitals of carbon materials (including graphene, fullerene, and small carbon clusters) and those of the supported Pd species will hybrid much stronger as N dopants are introduced, owing to the increased electrostatic attraction at the interface. This enhances the carbon substrates' catching force for the supported Pd, preventing its leaching and aggregation in many practical applications. The better dispersion and stabilization of Pd nanoparticles, which are induced by various carbon supports with N-doping, are pleasing to us and could increase their efficiency and facilitate their recycling during various reaction processes in several fields.

  9. Effect of bismuth doping on the ZnO nanocomposite material and study of its photocatalytic activity under UV-light

    SciTech Connect

    Chandraboss, V.L.; Natanapatham, L.; Karthikeyan, B.; Kamalakkannan, J.; Prabha, S.; Senthilvelan, S.

    2013-10-15

    Graphical abstract: The hetero-junctions that are formed between the ZnO and the Bi provide an internal electric field that facilitates separation of the electron-hole pairs and induces faster carrier migration. Thus they often enhanced photocatalytic reaction. - Highlights: • Bi-doped ZnO nanocomposite material was prepared by precipitation method. • Characterized by XRD, HR-SEM with EDX, UV–visible DRS and FT-RAMAN analysis. • Bi-doped ZnO nanocomposite material was used to photodegradation of Congo red. • Mechanism and photocatalytic effect of nanocomposite material have been discussed. - Abstract: Bismuth (Bi)-doped ZnO nanocomposite material was prepared by precipitation method with doping precursors of bismuth nitrate pentahydrate and oxalic acid, characterized by X-ray diffraction (XRD), High Resolution-Scanning Electron Microscopy (HR-SEM) with Energy Dispersive X-ray (EDX) analysis, UV–visible Diffuse Reflectance Spectroscopy (UV–visible DRS) and Fourier Transform-Raman (FT-RAMAN) analysis. The enhanced photocatalytic activity of the Bi-doped ZnO is demonstrated through photodegradation of Congo red under UV-light irradiation. The mechanism of photocatalytic effect of Bi-doped ZnO nanocomposite material has been discussed.

  10. Determination of component mobilities in bimineralic reaction rims using isotopically doped starting materials

    NASA Astrophysics Data System (ADS)

    Joachim, Bastian; Abart, Rainer; Höschen, Carmen; Heinrich, Wilhelm

    2013-04-01

    Rim growth experiments were performed between monticellite (CaMgSiO4) single crystals and wollastonite (CaSiO3) powder at 900° C and 1.2 GPa to produce bimineralic diopside (CaMgSi2O6) + merwinite (Ca3MgSi2O8) reaction rims. Symmetrical makeup of the internal rim microstructure implies that rims grow from the original interface towards both reactants at identical rates, indicating that solely MgO-diffusion controls overall rim growth with logD (MgO) = -16.3 ± 0.2 m2s-1 (Joachim et al. 2012). Presence of ppm-amounts of water significantly affects the internal rim microstructure. At "very dry" condition, a lamellar microstructure of alternating palisade-shaped diopside and merwinite grains elongated normal to the reaction front is generated, indicating that CaO and SiO2-mobilities are significantly smaller compared to the MgO-mobility. In presence of minute amounts of water a segregated multilayer microstructure with almost perfectly monomineralic merwinite - diopside - merwinite layers oriented parallel to the reaction front develops, indicating a sufficient additional mobility of either CaO or SiO2 compared to MgO. We used isotopically doped wollastonite (44Ca29SiO3) to identify, which component mobility, CaO or SiO2, is enhanced in presence of ppm amounts of water. Both, 44Ca stemming from the wollastonite as well as 40Ca stemming from the monticellite are distributed across the entire rim. In addition to that, small amounts of 40Ca are found within the wollastonite and substantial amounts of 44Ca are found in the monticellite starting material. In contrast to that, 28Si and 29Si remain in the regions that were originally occupied by their respective source materials monticellite and wollastonite, indicating that the SiO2-mobility is comparatively low. This suggests that the presence of small amounts of water significantly enhances the relative mobility of CaO. Consequently minute amounts of water may not only affect overall rim growth kinetics but also the

  11. New Mid-IR Lasers Based on Rare-Earth-Doped Sulfide and Chloride Materials

    SciTech Connect

    Nostrand, M

    2000-09-01

    Applications in remote-sensing and military countermeasures have driven a need for compact, solid-state mid-IR lasers. Due to multi-phonon quenching, non-traditional hosts are needed to extend current solid-state, room-temperature lasing capabilities beyond {approx} 4 {micro}m. Traditional oxide and fluoride hosts have effective phonon energies in the neighborhood of 1000 cm{sup -1} and 500 cm{sup -1}, respectively. These phonons can effectively quench radiation above 2 and 4 {micro}m, respectively. Materials with lower effective phonon energies such as sulfides and chlorides are the logical candidates for mid-IR (4-10 {micro}m) operation. In this report, laser action is demonstrated in two such hosts, CaGa{sub 2}S{sub 4} and KPb{sub 2}Cl{sub 5}. The CaGa{sub 2}S{sub 4}:Dy{sup 3+} laser operating at 4.3 {micro}m represents the first sulfide laser operating beyond 2 {micro}m. The KPb{sub 2}Cl{sub 5}:Dy{sup 3+} laser operating at 2.4 {micro}m represents the first operation of a chloride-host laser in ambient conditions. Laser action is also reported for CaGa{sub 2}S{sub 4}:Dy{sup 3+} at 2.4 {micro}m, CaGa{sub 2}S{sub 4}:Dy{sup 3+} at 1.4 {micro}m, and KPb{sub 2}Cl{sub 5}:Nd{sup 3+} at 1.06 {micro}m. Both host materials have been fully characterized, including lifetimes, absorption and emission cross sections, radiative branching ratios, and radiative quantum efficiencies. Radiative branching ratios and radiative quantum efficiencies have been determined both by the Judd-Ofelt method (which is based on absorption measurements), and by a novel method described herein which is based on emission measurements. Modeling has been performed to predict laser performance, and a new method to determine emission cross section from slope efficiency and threshold data is developed. With the introduction and laser demonstration of rare-earth-doped CaGa{sub 2}S{sub 4} and KPb{sub 2}Cl{sub 5}, direct generation of mid-IR laser radiation in a solid-state host has been demonstrated. In

  12. Rare-Earth Doped Wide Bandgap Oxide Semiconductor Materials and Devices

    NASA Astrophysics Data System (ADS)

    Wellenius, Ian Patrick

    Amorphous oxide semiconductors composed of indium gallium zinc oxide are transparent to visible light and have higher electron mobilities than conventional amorphous semiconductors, such as amorphous silicon. The advantages of higher switching speed, lack of dangling bonds leading to good electronic stability and visible spectrum transparency of amorphous oxide semiconductor devices are expected to lead to numerous applications, including transparent displays and flexible electronics. In this thesis the integration of transparent thin film transistors with transparent electroluminescent pixels was investigated. Compared with display technologies employing organic semiconductors that degrade with exposure to moisture and ultraviolet light, the all-oxide structure of this device is expected to be environmentally robust. This is believed to be the first demonstration of an integrated active matrix pixel using amorphous oxide semiconductor materials as both the light emitter and addressing circuit elements. The transparent active matrix pixel was designed, fabricated and characterized, that integrated amorphous indium gallium zinc oxide (IGZO) thin film transistors (TFTs) with a europium-doped IGZO thin film electroluminescent (TFEL) device. The integrated circuits were fabricated using room temperature pulsed laser deposition (PLD) of IGZO and ITO thin films onto substrates of Corning 7059 glass, sputter coated with an ITO back contact and subsequent atomic layer deposited ATO high-k dielectric. A second ITO layer is deposited by PLD as a contact and interconnect layer. All deposition steps were carried out at room temperature. In addition to the integration task, an important part of this thesis concerns the investigation of europium as a dopant in different oxide hosts including gallium oxide, gadolinium oxide, and amorphous IGZO. Amorphous IGZO was chosen for the integration task since it could be deposited at room temperature, however it was found that the

  13. Improved electrochemical performance of boron-doped SiO negative electrode materials in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Woo, Jihoon; Baek, Seong-Ho; Park, Jung-Soo; Jeong, Young-Min; Kim, Jae Hyun

    2015-12-01

    We introduce a one-step process that consists of thermal disproportionation and impurity doping to enhance the reversible capacity and electrical conductivity of silicon monoxide (SiO)-based negative electrode materials in Li-ion batteries. Transmission electron microscope (TEM) results reveal that thermally treated SiO at 900 °C (H-SiO) consists of uniformly dispersed nano-crystalline Si (nc-Si) in an amorphous silicon oxide (SiOx) matrix. Compared to that of prinstine SiO, the electrochemical performance of H-SiO shows improved specific capacity, due mainly to the increased reversible capacity by nc-Si and to the reduced volume expansion by thermally disproportionated SiOx matrix. Further electrochemical improvements can be obtained by boron-doping on SiO (HB-SiO) using solution dopant during thermal disproportionation. HB-SiO electrode without carbon coating exhibits significantly enhanced specific capacity superior to that of undoped H-SiO electrode, having 947 mAh g-1 at 0.5C rate and excellent capacity retention of 93.3% over 100 cycles. Electrochemical impedance spectroscopy (EIS) measurement reveals that the internal resistance of the HB-SiO electrode is significantly reduced by boron doping.

  14. Fabrication of Smart Chemical Sensors Based on Transition-Doped-Semiconductor Nanostructure Materials with µ-Chips

    PubMed Central

    Rahman, Mohammed M.; Khan, Sher Bahadar; Asiri, Abdullah M.

    2014-01-01

    Transition metal doped semiconductor nanostructure materials (Sb2O3 doped ZnO microflowers, MFs) are deposited onto tiny µ-chip (surface area, ∼0.02217 cm2) to fabricate a smart chemical sensor for toxic ethanol in phosphate buffer solution (0.1 M PBS). The fabricated chemi-sensor is also exhibited higher sensitivity, large-dynamic concentration ranges, long-term stability, and improved electrochemical performances towards ethanol. The calibration plot is linear (r2 = 0.9989) over the large ethanol concentration ranges (0.17 mM to 0.85 M). The sensitivity and detection limit is ∼5.845 µAcm−2mM−1 and ∼0.11±0.02 mM (signal-to-noise ratio, at a SNR of 3) respectively. Here, doped MFs are prepared by a wet-chemical process using reducing agents in alkaline medium, which characterized by UV/vis., FT-IR, Raman, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. The fabricated ethanol chemical sensor using Sb2O3-ZnO MFs is simple, reliable, low-sample volume (<70.0 µL), easy of integration, high sensitivity, and excellent stability for the fabrication of efficient I–V sensors on μ-chips. PMID:24454785

  15. Fabrication of smart chemical sensors based on transition-doped-semiconductor nanostructure materials with µ-chips.

    PubMed

    Rahman, Mohammed M; Khan, Sher Bahadar; Asiri, Abdullah M

    2014-01-01

    Transition metal doped semiconductor nanostructure materials (Sb2O3 doped ZnO microflowers, MFs) are deposited onto tiny µ-chip (surface area, ∼0.02217 cm(2)) to fabricate a smart chemical sensor for toxic ethanol in phosphate buffer solution (0.1 M PBS). The fabricated chemi-sensor is also exhibited higher sensitivity, large-dynamic concentration ranges, long-term stability, and improved electrochemical performances towards ethanol. The calibration plot is linear (r(2) = 0.9989) over the large ethanol concentration ranges (0.17 mM to 0.85 M). The sensitivity and detection limit is ∼5.845 µAcm(-2)mM(-1) and ∼0.11±0.02 mM (signal-to-noise ratio, at a SNR of 3) respectively. Here, doped MFs are prepared by a wet-chemical process using reducing agents in alkaline medium, which characterized by UV/vis., FT-IR, Raman, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. The fabricated ethanol chemical sensor using Sb2O3-ZnO MFs is simple, reliable, low-sample volume (<70.0 µL), easy of integration, high sensitivity, and excellent stability for the fabrication of efficient I-V sensors on μ-chips.

  16. Preparation and Characterization of Ni-Doped TiO2 Materials for Photocurrent and Photocatalytic Applications

    PubMed Central

    Ganesh, Ibram; Gupta, A. K.; Kumar, P. P.; Sekhar, P. S. C.; Radha, K.; Padmanabham, G.; Sundararajan, G.

    2012-01-01

    Different amounts of Ni-doped TiO2 (Ni = 0.1 to 10%) powders and thin films were prepared by following a conventional coprecipitation and sol-gel dip coating techniques, respectively, at 400 to 800°C, and were thoroughly characterized by means of XRD, FT-IR, FT-Raman, DRS, UV-visible, BET surface area, zeta potential, flat band potential, and photocurrent measurement techniques. Photocatalytic abilities of Ni-doped TiO2 powders were evaluated by means of methylene blue (MB) degradation reaction under simulated solar light. Characterization results suggest that as a dopant, Ni stabilizes TiO2 in the form of anatase phase, reduces its bandgap energy, and adjusts its flat band potentials such that this material can be employed for photoelectrochemical (PEC) oxidation of water reaction. The photocatalytic activity and photocurrent ability of TiO2 have been enhanced by doping of Ni in TiO2. The kinetic studies revealed that the MB degradation reaction follows the Langmuir-Hinshelwood first-order reaction relationship. PMID:22619580

  17. Effects of doping on transport properties in Cu-Bi-Se-based thermoelectric materials.

    PubMed

    Hwang, Jae-Yeol; Mun, Hyeon A; Kim, Sang Il; Lee, Ki Moon; Kim, Jungeun; Lee, Kyu Hyoung; Kim, Sung Wng

    2014-12-15

    The thermoelectric properties of Zn-, In-, and I-doped Cu1.7Bi4.7Se8 pavonite homologues were investigated in the temperature range from 300 to 560 K. On the basis of the comprehensive structural analysis using Rietveld refinement of synchrotron radiation diffraction for Cu(x+y)Bi(5-y)Se8 compounds with the inherently disordered crystallographic sites, we demonstrate a doping strategy that provides a simultaneous control for enhanced electronic transport properties by the optimization of carrier concentration and exceptionally low lattice thermal conductivity by the formation of point defects. Substituted Zn or In ions on Cu site was found to be an effective phonon scattering center as well as an electron donor, while doping on Bi site showed a moderate effect for phonon scattering. In addition, we achieved largely enhanced power factor in small amount of In doping on Cu site by increased electrical conductivity and moderately decreased Seebeck coefficient. Coupled with a low lattice thermal conductivity originated from intensified point defect phonon scattering by substituted In ions with host Cu ions, a thermoelectric figure of merit ZT of 0.24 at 560 K for Cu1.6915In0.0085Bi4.7Se8 was achieved, yielding 30% enhancement compared with that of a pristine Cu1.7Bi4.7Se8 at the same temperature.

  18. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor.

    PubMed

    Tan, Yueming; Xu, Chaofa; Chen, Guangxu; Liu, Zhaohui; Ma, Ming; Xie, Qingji; Zheng, Nanfeng; Yao, Shouzhuo

    2013-03-01

    Synthesis of nitrogen-doped carbons with large surface area, high conductivity, and suitable pore size distribution is highly desirable for high-performance supercapacitor applications. Here, we report a novel protocol for template synthesis of ultrathin nitrogen-doped graphitic carbon nanocages (CNCs) derived from polyaniline (PANI) and their excellent capacitive properties. The synthesis of CNCs involves one-pot hydrothermal synthesis of Mn3O4@PANI core-shell nanoparticles, carbonization to produce carbon coated MnO nanoparticles, and then removal of the MnO cores by acidic treatment. The CNCs prepared at an optimum carbonization temperature of 800 °C (CNCs-800) have regular frameworks, moderate graphitization, high specific surface area, good mesoporosity, and appropriate N doping. The CNCs-800 show high specific capacitance (248 F g(-1) at 1.0 A g(-1)), excellent rate capability (88% and 76% capacitance retention at 10 and 100 A g(-1), respectively), and outstanding cycling stability (~95% capacitance retention after 5000 cycles) in 6 M KOH aqueous solution. The CNCs-800 can also exhibit great pseudocapacitance in 0.5 M H2SO4 aqueous solution besides the large electrochemical double-layer capacitance. The excellent capacitance performance coupled with the facile synthesis of ultrathin nitrogen-doped graphitic CNCs indicates their great application potential in supercapacitors.

  19. Chloride molecular doping technique on 2D materials: WS2 and MoS2.

    PubMed

    Yang, Lingming; Majumdar, Kausik; Liu, Han; Du, Yuchen; Wu, Heng; Hatzistergos, Michael; Hung, P Y; Tieckelmann, Robert; Tsai, Wilman; Hobbs, Chris; Ye, Peide D

    2014-11-12

    Low-resistivity metal-semiconductor (M-S) contact is one of the urgent challenges in the research of 2D transition metal dichalcogenides (TMDs). Here, we report a chloride molecular doping technique which greatly reduces the contact resistance (Rc) in the few-layer WS2 and MoS2. After doping, the Rc of WS2 and MoS2 have been decreased to 0.7 kΩ·μm and 0.5 kΩ·μm, respectively. The significant reduction of the Rc is attributed to the achieved high electron-doping density, thus a significant reduction of Schottky barrier width. As a proof-of-concept, high-performance few-layer WS2 field-effect transistors (FETs) are demonstrated, exhibiting a high drain current of 380 μA/μm, an on/off ratio of 4 × 10(6), and a peak field-effect mobility of 60 cm(2)/(V·s). This doping technique provides a highly viable route to diminish the Rc in TMDs, paving the way for high-performance 2D nanoelectronic devices.

  20. Y-doped Li8ZrO6: A Li-Ion Battery Cathode Material with High Capacity.

    PubMed

    Huang, Shuping; Wilson, Benjamin E; Wang, Bo; Fang, Yuan; Buffington, Keegan; Stein, Andreas; Truhlar, Donald G

    2015-09-01

    We study--experimentally and theoretically--the energetics, structural changes, and charge flows during the charging and discharging processes for a new high-capacity cathode material, Li8ZrO6 (LZO), which we study both pure and yttrium-doped. We quantum mechanically calculated the stable delithiated configurations, the delithiation energy, the charge flow during delithiation, and the stability of the delithiated materials. We find that Li atoms are easier to extract from tetrahedral sites than octahedral ones. We calculate a large average voltage of 4.04 eV vs Li/Li(+) for delithiation of the first Li atom in a primitive cell, which is confirmed by galvanostatic charge/discharge cycling data. Energy calculations indicate that topotactic delithiation is kinetically favored over decomposition into Li, ZrO2, and O2 during the charging process, although the thermodynamic energy of the topotactic reaction is less favorable. When one or two lithium atoms are extracted from a primitive cell of LZO, its volume and structure change little, whereas extraction of the third lithium greatly distorts the layered structure. The Li6ZrO6 and Li5ZrO6 delithiation products can be thermodynamically metastable to release of O2. Experimentally, materials with sufficiently small particle size for efficient delithiation and relithiation were achieved within an yttrium-doped LZO/carbon composite cathode that exhibited an initial discharge capacity of at least 200 mAh/g over the first 10 cycles, with 142 mAh/g maintained after 60 cycles. Computations predict that during the charging process, the oxygen ion near the Li vacancy is oxidized for both pure LZO and yttrium-doped LZO, which leads to a small-polaron hole. PMID:26264394

  1. Linearity for Ca2+-Doped CeBr3 Scintillating Materials

    SciTech Connect

    Guss, Paul

    2014-02-03

    The Remote Sensing Laboratory (RSL) developed an aliovalently calcium-doped cerium tribromide (CeBr3:Ca2+) crystal with 3.2% resolution. RSL completed a crystal assessment, and Sandia National Laboratories calculated the predictive performance and physical characteristics using proven density functional theory (DFT) formalism. Results are reported for the work done to map the detector performance, characteristics, calcium doping concentration, and crystal strength. Preliminary scintillation measurements for this aliovalently calcium-doped CeBr3 scintillator exhibit a slight blue shift in fluorescence emission at 371 nm excitation for CeBr3. The structural, electronic, and optical properties of CeBr3 crystals were investigated using DFT within generalized gradient approximation. The calculated lattice parameters are in good agreement with the experimental data. The energy band structures and density of states were obtained. The optical properties of CeBr3, including the dielectric function, were calculated. Specifically, we report excellent linearity with the aliovalently calcium-doped CeBr3 crystal. Proportionality of light yield is one area of performance in which Ce-doped and Ce-based lanthanide halides excel. Maintaining proportionality is key to producing a strong, high-performance scintillator. Relative light yield proportionality was measured for both doped and undoped samples of CeBr3 to ensure no loss in performance was incurred during doping. The light output and proportionality, however, appear to be similar to CeBr3. There was a reduced yield at low energy. Relative light yield proportionality measurements suggest that dopants do not significantly affect proportionality at higher energies. RSL completed additional testing and evaluation of the new crystal and assessed benchmark spectroscopy measurements. Results, which present energy resolution as a function of energy, are summarized. Typical spectroscopy results using a 137Cs radiation source are shown

  2. (Indium, Aluminum) co-doped Zinc Oxide as a Novel Material System for Quantum-Well Multilayer Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Teehan, Sean

    Waste heat recovery from low efficiency industrial processes requires high performance thermoelectric materials to meet challenging requirements. The efficiency such a device is quantified by the dimensionless figure of merit ZT=S2sigmaT/kappa, where S is the Seebeck coefficient, sigma is the electrical conductivity, T is the absolute temperature and kappa is the thermal conductivity. For practical applications these devices are only cost-effective if the ZT is higher than 2. Theoretically it has been proven that by engineering nanostructures with lower dimensionality one can significantly increase ZT. A superlattice, or a system of 2-dimensional multilayer quantum wells has previously shown the potential to be used for thermoelectric structures. However, the use of conventional materials within these structures has only allowed this at low temperatures and has utilized cross-plane transport. This study focuses on both high temperature range operation and the in-plane transport properties of such structures, which benefit from both quantum confinement and an enhancement in density of states near EF. The n-type structures are fabricated by alternately sputtering barrier and well materials of Al-doped ZnO (AZO) and indium co-doped AZO, respectively. Samples investigated consist of 50 periods with targeted layer thicknesses of 10nm, which results in sufficient sampling material as well as quantum well effects. The indium doping level within the quantum well was controlled by varying the target power, and ultimately results in a 3x improvement in power factor (S 2sigma) over the parent bulk materials. The film characterization was determined by X-ray reflectometry, transmission electron microscopy, X-ray diffraction, auger electron spectroscopy, as well as other relevant techniques. In addition, process optimization was performed on material parameters such as layer thickness, interface roughness, and band-gap offset which all play a major role in determining the

  3. Optical amplifier operating at 1.3 microns useful for telecommunications and based on dysprosium-doped metal chloride host materials

    DOEpatents

    Page, R.H.; Schaffers, K.I.; Payne, S.A.; Krupke, W.F.; Beach, R.J.

    1997-12-02

    Dysprosium-doped metal chloride materials offer laser properties advantageous for use as optical amplifiers in the 1.3 {micro}m telecommunications fiber optic network. The upper laser level is characterized by a millisecond lifetime, the host material possesses a moderately low refractive index, and the gain peak occurs near 1.31 {micro}m. Related halide materials, including bromides and iodides, are also useful. The Dy{sup 3+}-doped metal chlorides can be pumped with laser diodes and yield 1.3 {micro}m signal gain levels significantly beyond those currently available. 9 figs.

  4. Optical amplifier operating at 1.3 microns useful for telecommunications and based on dysprosium-doped metal chloride host materials

    DOEpatents

    Page, Ralph H.; Schaffers, Kathleen I.; Payne, Stephen A.; Krupke, William F.; Beach, Raymond J.

    1997-01-01

    Dysprosium-doped metal chloride materials offer laser properties advantageous for use as optical amplifiers in the 1.3 .mu.m telecommunications fiber optic network. The upper laser level is characterized by a millisecond lifetime, the host material possesses a moderately low refractive index, and the gain peak occurs near 1.31 .mu.m. Related halide materials, including bromides and iodides, are also useful. The Dy.sup.3+ -doped metal chlorides can be pumped with laser diodes and yield 1.3 .mu.m signal gain levels significantly beyond those currently available.

  5. Role of Ce and In doping in the performance of LiFePO4 cathode material for Li ion Batteries

    NASA Astrophysics Data System (ADS)

    Mandal, Balaji; Nazri, Mariam; Vaishnava, Prem P.; Naik, Vaman M.; Nazri, Gholam A.; Naik, Ratna

    2012-02-01

    Recently, the olivine LiFePO4 has attracted attention as a promising cathode material for Li ion batteries. However, its poor electronic conductivity is a major challenge for its industrial applications. Different approaches have been taken to address this problem. Here, we report a method of improving its conductivity by doping In and Ce ions at the Fe site. We prepared the samples by sol-gel method followed by annealing at 650 C in Ar (95%) +H2(5%) atmosphere for 5 hrs. XRD and Raman spectroscopy confirm that the olivine structure remains unchanged upon doping with In and Ce up to 5 wt%. XRD analysis shows the values of the lattice parameters increase with doping as the ionic radii of Ce and In ions are larger than that of the Fe^2+ ion. This observation also suggests that both Ce and In ions replace Fe ions and not the Li ions in the material. Upon doping, ionic conductivity was found to increase from 10-9 to 10-4 Ohm-1cm-1. Interestingly, Ce doped LiFePO4 showed a higher conductivity than In doped LiFePO4. SEM measurements show a bigger grain size of ˜300-500 nm in doped LiFePO4 which decreased to ˜50 nm when the materials were synthesized using 0.25M lauric acid as a precursor. The electrochemical characteristics of the doped LiFePO4 along with conductivity and Raman data will be presented.

  6. The effect of 0.025 Al-doped in Li4Ti5O12 material on the performance of half cell lithium ion battery

    NASA Astrophysics Data System (ADS)

    Priyono, Slamet; Triwibowo, Joko; Prihandoko, Bambang

    2016-02-01

    The effect of 0.025 Al-doped Li4Ti5O12 as anode material for Lithium Ion battery had been studied. The pure and 0.025 Al-doped Li4Ti5O12 were synthesized through solid state process in air atmosphere. Physical characteristics of all samples were observed by XRD, FTIR, and PSA. The XRD analysis revealed that the obtained particle was highly crystalline and had a face-centered cubic spinel structure. The XRD pattern also showed that the 0.025 Al-doped on the Li4Ti5O12 did not change crystal structure of Li4Ti5O12. FTIR analysis confirmed that the spinel structure in fingerprint region was unchanged when the structure was doped by 0.025 Al. However the doping of 0.025 Al increased particle size significantly. The electrochemical performance was studied by using cyclic voltammetry (CV) and charge-discharge (CD) curves. Electrochemical analysis showed that pure Li4Ti5O12 has higher capacity than 0.025 Al-doped Li4Ti5O12 had. But 0.025 Al-doped Li4Ti5O12 possesses a better cycling stability than pure Li4Ti5O12.

  7. Study on the nitrogen-doped W-Sb-Te material for phase change memory application

    SciTech Connect

    Ren, Kun; Xia, Mengjiao; Ding, Keyuan; Ji, Xinglong; Rao, Feng Song, Zhitang; Wu, Liangcai; Liu, Bo; Feng, Songlin

    2014-04-28

    N doping is proposed to enlarge sensing margin of W{sub 0.08}(Sb{sub 2}Te){sub 0.92} based high-temperature phase-change memories (PCMs). The sensing margin is increased from 30 to 5 × 10{sup 3}, with an increase from 145 °C to 158 °C in data retention. The grain size is reduced to 10 nm. The PCM based on N-W{sub 0.08}(Sb{sub 2}Te){sub 0.92} shows the fast operation speed of 30 ns and good cycling ability of >10{sup 3}. By X-ray photoelectron spectroscopy and ab initio calculation, the W atoms are suggested to locate in the Sb positions and interstices of the lattice. The W atoms in interstice will bond to N atoms during N doping.

  8. Cr.sup.3+-doped laser materials and lasers and methods of making and using

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Bykov, Alexey (Inventor); Petricevic, Vladimir (Inventor); Sharonov, Mikhail (Inventor)

    2008-01-01

    A laser medium includes a single crystal of chromium-doped LiSc.sub.l-xIn.sub.xGe.sub.1-ySi.sub.yO.sub.4, where 0.ltoreq.x.ltoreq.1 and 0.ltoreq.y.ltoreq.1. Preferably, x and y are not both 0. A laser, such as a tunable near infrared laser, can contain the laser medium.

  9. Carbohydrazide-dependent reductant for preparing nitrogen-doped graphene hydrogels as electrode materials in supercapacitor

    NASA Astrophysics Data System (ADS)

    Jiang, Man; Xing, Ling-Bao; Zhang, Jing-Li; Hou, Shu-Fen; Zhou, Jin; Si, Weijiang; Cui, Hongyou; Zhuo, Shuping

    2016-04-01

    Three-dimensional (3D) nitrogen-doped graphene hydrogels (NGHs) are designed and synthesized in an efficient and fast way by using a strong reductant of carbohydrazide as reducing and doping agent in an aqueous solution of graphene oxide (GO). The transformation of GO suspension to the hydrogels can be completed in 1 h, which can be confirmed by X-ray powder diffraction (XRD), Raman spectroscopy, and Fourier transform infrared spectroscopy (FT-IR). With adding different amounts of carbohydrazide, the obtained NGHs behave different doping of N and unlike performances in supercapacitors, which can be demonstrated by elemental analysis and X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), N2 sorption experiments, and electrochemical measurements, respectively. According to the network architectures, the NGHs all exhibited high specific capacitance, NGHs-1, NGHs-2, NGHs-5 and NGHs-10 showed specific capacitance at 167.7, 156.8, 140.4 and 119.3 F g-1 at 1 A g-1 in KOH electrolyte. The specific capacitance can still be maintained for 80.5, 79.5, 80.3 and 78.6% with an increase of the discharging current density of 10 A g-1, respectively. More interestingly, the NGHs-1 based supercapacitor also exhibited good electrochemical stability and high degree of reversibility in the long-term cycling test (81.5% retention after 4000 cycles).

  10. Airplane dopes and doping

    NASA Technical Reports Server (NTRS)

    Smith, W H

    1919-01-01

    Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed.

  11. Nb doped TiO2 as a Cathode Catalyst Support Material for Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    O'Toole, Alexander W.

    In order to reduce the emissions of greenhouse gases and reduce dependence on the use of fossil fuels, it is necessary to pursue alternative sources of energy. Transportation is a major contributor to the emission of greenhouse gases due to the use of fossil fuels in the internal combustion engine. To reduce emission of these pollutants into the atmosphere, research is needed to produce alternative solutions for vehicle transportation. Low temperature polymer electrolyte membrane fuel cells are energy conversion devices that provide an alternative to the internal combustion engine, however, they still have obstacles to overcome to achieve large scale implementation. T he following work presents original research with regards to the development of Nb doped TiO2 as a cathode catalyst support material for low temperature polymer electrolyte membrane fuel cells. The development of a new process to synthesize nanoparticles of Nb doped TiO2 with controlled compositions is presented as well as methods to scale up the process and optimize the synthesis for the aforementioned application. In addition to this, comparison of both electrochemical activity and durability with current state of the art Pt on high surface area carbon black (Vulcan XC-72) is investigated. Effects of the strong metal-support interaction on the electrochemical behavior of these materials is also observed and discussed.

  12. Hydrogen storage studies on palladium-doped carbon materials (AC, CB, CNMs) @ metal-organic framework-5.

    PubMed

    Viditha, V; Srilatha, K; Himabindu, V

    2016-05-01

    Metal organic frameworks (MOFs) are a rapidly growing class of porous materials and are considered as best adsorbents for their high surface area and extraordinary porosity. The MOFs are synthesized by using various chemicals like triethylamine, terepthalic acid, zinc acetate dihydrate, chloroform, and dimethylformamide (DMF). Synthesized MOFs are intercalated with palladium/activated carbon, carbon black, and carbon nanomaterials by chemical reduction method for the purpose of enhancing the hydrogen adsorption capacities. We have observed that the palladium doped activated carbon on MOF-5 showed high hydrogen storage capacity. This may be due to the affinity of the palladium toward hydrogen molecule. The samples are characterized by X-ray diffraction, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. We have observed a clear decrease in the BET surface area and pore volume. The obtained results show a better performance for the synthesized sample. To our best knowledge, no one has reported the work on palladium-doped carbon materials (activated carbon, carbon black, carbon nanomaterials) impregnated to the metal-organic framework-5. We have attempted to synthesize carbon nanomaterials using indigenously fabricated chemical vapor deposition (CVD) unit as a support. We have observed an increase in the hydrogen storage capacities.

  13. Iron-rich nanoparticle encapsulated, nitrogen doped porous carbon materials as efficient cathode electrocatalyst for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Guolong; Zhu, Youlong; Lu, Lu; Xu, Kongliang; Wang, Heming; Jin, Yinghua; Jason Ren, Zhiyong; Liu, Zhenning; Zhang, Wei

    2016-05-01

    Developing efficient, readily available, and sustainable electrocatalysts for oxygen reduction reaction (ORR) in neutral medium is of great importance to practical applications of microbial fuel cells (MFCs). Herein, a porous nitrogen-doped carbon material with encapsulated Fe-based nanoparticles (Fe-Nx/C) has been developed and utilized as an efficient ORR catalyst in MFCs. The material was obtained through pyrolysis of a highly porous organic polymer containing iron(II) porphyrins. The characterizations of morphology, crystalline structure and elemental composition reveal that Fe-Nx/C consists of well-dispersed Fe-based nanoparticles coated by N-doped graphitic carbon layer. ORR catalytic performance of Fe-Nx/C has been evaluated through cyclic voltammetry and rotating ring-disk electrode measurements, and its application as a cathode electrocatalyst in an air-cathode single-chamber MFC has been investigated. Fe-Nx/C exhibits comparable or better performance in MFCs than 20% Pt/C, displaying higher cell voltage (601 mV vs. 591 mV), maximum power density (1227 mW m-2 vs. 1031 mW m-2) and Coulombic efficiency (50% vs. 31%). These findings indicate that Fe-Nx/C is more tolerant and durable than Pt/C in a system with bacteria metabolism and thus holds great potential for practical MFC applications.

  14. Rare earth-doped materials with enhanced thermoelectric figure of merit

    DOEpatents

    Venkatasubramanian, Rama; Cook, Bruce Allen; Levin, Evgenii M.; Harringa, Joel Lee

    2016-09-06

    A thermoelectric material and a thermoelectric converter using this material. The thermoelectric material has a first component including a semiconductor material and a second component including a rare earth material included in the first component to thereby increase a figure of merit of a composite of the semiconductor material and the rare earth material relative to a figure of merit of the semiconductor material. The thermoelectric converter has a p-type thermoelectric material and a n-type thermoelectric material. At least one of the p-type thermoelectric material and the n-type thermoelectric material includes a rare earth material in at least one of the p-type thermoelectric material or the n-type thermoelectric material.

  15. Influences of p- and n-Doped Czochralski Base Material on the Performance of Silicon Based Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Ziegler, Johannes; Montesdeoca-Santana, Amada; Platt, Dominik; Hohage, Stefan; Guerrero-Lemus, Ricardo; Borchert, Dietmar

    2012-10-01

    In this work we present a cell process for amorphous crystalline silicon heterojunction (SHJ) solar cells based on process steps well known in the photovoltaic industry. All amorphous silicon layers are deposited by plasma enhanced chemical vapor deposition (PECVD) in a one chamber direct plasma reactor working at a radio frequency of 13.56 MHz. The main focus of this work is to study the influence of p- and n-doped Czochralski (Cz) silicon base material with different surface morphology on the cell results of amorphous crystalline SHJ solar cells with intrinsic thin layers. Open circuit voltages Voc of up to 700 mV are obtained on n-type Cz based SHJ cells (area 100 cm2) with rough surfaces. On p-type Cz based SHJ cells open circuit voltages were limited by the minority carrier bulk lifetime of the used base material.

  16. Mechanical degradation under hydrogen of yttrium doped barium zirconate electrolyte material prepared with NiO additive

    NASA Astrophysics Data System (ADS)

    Ciria, D.; Ben Hassine, M.; Jiménez-Melendo, M.; Iakovleva, A.; Haghi-Ashtiani, P.; Aubin, V.; Dezanneau, G.

    2016-07-01

    Recently, a novel process was presented to fabricate dense yttrium-doped barium zirconate electrolytes with high proton conductivity. This process was based on the use of a NiO additive during reactive sintering. We show here that materials made from this process present a fast degradation of mechanical properties when put in hydrogen-rich conditions, while material made from conventional sintering without NiO aid remains intact in the same conditions. The fast degradation of samples made from reactive sintering, leading to sample failure under highly compressive conditions, is due to the reduction of NiO nanoparticles at grain boundaries as shown from structural and chemical analyses using Transmission Electron Microscopy. By the present study, we alert about the potential risk of cell failure due to this mechanical degradation.

  17. Kinetic lattice Monte Carlo model for oxygen vacancy diffusion in praseodymium doped ceria: Applications to materials design

    SciTech Connect

    Dholabhai, Pratik P.; Anwar, Shahriar; Adams, James B.; Crozier, Peter; Sharma, Renu

    2011-04-15

    Kinetic lattice Monte Carlo (KLMC) model is developed for investigating oxygen vacancy diffusion in praseodymium-doped ceria. The current approach uses a database of activation energies for oxygen vacancy migration, calculated using first-principles, for various migration pathways in praseodymium-doped ceria. Since the first-principles calculations revealed significant vacancy-vacancy repulsion, we investigate the importance of that effect by conducting simulations with and without a repulsive interaction. Initially, as dopant concentrations increase, vacancy concentration and thus conductivity increases. However, at higher concentrations, vacancies interfere and repel one another, and dopants trap vacancies, creating a 'traffic jam' that decreases conductivity, which is consistent with the experimental findings. The modeled effective activation energy for vacancy migration slightly increased with increasing dopant concentration in qualitative agreement with the experiment. The current methodology comprising a blend of first-principle calculations and KLMC model provides a very powerful fundamental tool for predicting the optimal dopant concentration in ceria related materials. -- graphical abstract: Ionic conductivity in praseodymium doped ceria as a function of dopant concentration calculated using the kinetic lattice Monte Carlo vacancy-repelling model, which predicts the optimal composition for achieving maximum conductivity. Display Omitted Research highlights: {yields} KLMC method calculates the accurate time-dependent diffusion of oxygen vacancies. {yields} KLMC-VR model predicts a dopant concentration of {approx}15-20% to be optimal in PDC. {yields} At higher dopant concentration, vacancies interfere and repel one another, and dopants trap vacancies. {yields} Activation energy for vacancy migration increases as a function of dopant content

  18. Doped Lanthanum Hafnates as Scintillating Materials for High-Energy Photon Detection

    NASA Astrophysics Data System (ADS)

    Wahid, Kareem; Pokhrel, Madhab; Mao, Yuanbing

    Recent years have seen the emergence of nanocrystalline complex oxide scintillators for use in X-ray and gamma-ray detection. In this study, we investigate the structural and optical properties of La2Hf2O7 nanoparticles doped with varying levels of Eu3+ or Ce3+ by use of X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and optical photoluminescence. In addition, scintillation response under X-ray and gamma-ray exposure is reported. The authors thank the support from the Defense Threat Reduction Agency (DTRA) of the U.S. Department of Defense (Award #HDTRA1-10-1-0114).

  19. Progress in the chemistry of chromium(V) doping agents used in polarized target materials

    SciTech Connect

    Krumpolc, M. ); Hill, D. ); Struhrmann, H.B. , Hamburg . Hamburger Synchrotronstrahlungslabor)

    1990-01-01

    We wish to report progress in two areas of the chromium (V)-based doping agents: Two commonly used chromium (V) complexes, I and II, have been synthesized in perdeuterated form (i.e., all hydrogens replaced by deuterium). They are sodium bis(2-ethyl-2-deuteroxy-butyrato)oxochromate(V)monodeuterate, IV, (acronym EDBA-Cr(V)), and sodium bis(2-deuteroxy-2-methylpropionato)oxochromate(V), III, (acronym DMPA-Cr(V)). A synthetic route leading to the preparation of stable, chromium(III)-free solutions of chromium(V) in diols (1,2-ethanediol/ethylene glycol/and 1,2-propanediol/propylene glycol/) has been outlined.

  20. Upconversion luminescence of lanthanide-doped mixed CaMoO4-CaWO4 micro-/nano-materials.

    PubMed

    Liu, Jing; Kaczmarek, Anna M; Billet, Jonas; Van Driessche, Isabel; Van Deun, Rik

    2016-08-14

    Uniform mixed CaMoO4-CaWO4 micro-/nano-materials have been successfully synthesised by a facile hydrothermal method. The morphology of these upconversion materials could be changed to different shapes and the size could also be decreased from the micro- to nano-scale by varying the type of surfactant used. It was observed that before heat treatment, the materials show relatively weak green light emission under excitation at 975 nm, whereas after heat treatment, the intensity of the upconversion luminescence increases dramatically while the intensity of the red component decreases relatively. By adjusting the molybdate/tungstate ratio, it was found that the samples with a higher molybdate content have stronger luminescence properties. XRD measurements have been done to investigate the structure of the mixed CaMoO4-CaWO4 upconversion materials. The effect of heat treatment at different temperatures on the emission spectra and XRD patterns has also been studied. TG-DTA was used to further confirm the most suitable temperature for heat treatment. The luminescence lifetimes and CIE coordinates for these samples were also determined. Additionally it was found that Gd(3+) co-doping could further increase the upconversion luminescence from these mixed CaMoO4-CaWO4 materials. Finally, monitoring the upconversion luminescence intensity as a function of laser pump power confirmed the upconversion process to be a two-photon absorption mechanism.

  1. Upconversion luminescence of lanthanide-doped mixed CaMoO4-CaWO4 micro-/nano-materials.

    PubMed

    Liu, Jing; Kaczmarek, Anna M; Billet, Jonas; Van Driessche, Isabel; Van Deun, Rik

    2016-08-14

    Uniform mixed CaMoO4-CaWO4 micro-/nano-materials have been successfully synthesised by a facile hydrothermal method. The morphology of these upconversion materials could be changed to different shapes and the size could also be decreased from the micro- to nano-scale by varying the type of surfactant used. It was observed that before heat treatment, the materials show relatively weak green light emission under excitation at 975 nm, whereas after heat treatment, the intensity of the upconversion luminescence increases dramatically while the intensity of the red component decreases relatively. By adjusting the molybdate/tungstate ratio, it was found that the samples with a higher molybdate content have stronger luminescence properties. XRD measurements have been done to investigate the structure of the mixed CaMoO4-CaWO4 upconversion materials. The effect of heat treatment at different temperatures on the emission spectra and XRD patterns has also been studied. TG-DTA was used to further confirm the most suitable temperature for heat treatment. The luminescence lifetimes and CIE coordinates for these samples were also determined. Additionally it was found that Gd(3+) co-doping could further increase the upconversion luminescence from these mixed CaMoO4-CaWO4 materials. Finally, monitoring the upconversion luminescence intensity as a function of laser pump power confirmed the upconversion process to be a two-photon absorption mechanism. PMID:27396395

  2. Electrical conductivity of zirconia and yttrium-doped zirconia from Indonesian local zircon as prospective material for fuel cells

    NASA Astrophysics Data System (ADS)

    Apriany, Karima; Permadani, Ita; Syarif, Dani G.; Soepriyanto, Syoni; Rahmawati, Fitria

    2016-02-01

    In this research, zirconium dioxide, ZrO2, was synthesized from high-grade zircon sand that was founded from Bangka Island, Sumatra, Indonesia. The zircon sand is a side product of Tin mining plant industry. The synthesis was conducted by caustic fusion method with considering definite stoichiometric mole at every reaction step. Yttrium has been doped into the prepared zirconia by solid state reaction. The prepared materials were then being analyzed by X-ray diffraction equipped with Le Bail refinement to study its crystal structure and cell parameters. Electrical conductivity was studied through impedance measurement at a frequency range of 20 Hz- 5 MHz. Morphological analysis was conducted through Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray (EDX) for elemental analysis. The results show that the prepared yttrium stabilized zirconia, YSZ, was crystallized in the cubic structure with a space group of P42/NMC. The sintered zirconia and yttrium stabilized zirconia at 8 mol% of yttrium ions (8YSZ) show dense surface morphology with a grain size less than 10 pm. Elemental analysis on the sintered zirconia and 8YSZ show that sintering at 1500°C could eliminate the impurities, and the purity became 81.30%. Impedance analysis shows that ZrO2 provide grain and grain boundary conductivity meanwhile 8YSZ only provide grain mechanism. The yttrium doping enhanced the conductivity up to 1.5 orders. The ionic conductivity of the prepared 8YSZ is categorized as a good material with conductivity reach 7.01 x10-3 at 700 °C. The ionic conductivities are still lower than commercial 8YSZ at various temperature. It indicates that purity of raw material might significantly contribute to the electrical conductivity.

  3. Facile synthesis of sewage sludge-derived in-situ multi-doped nanoporous carbon material for electrocatalytic oxygen reduction

    NASA Astrophysics Data System (ADS)

    Yuan, Shi-Jie; Dai, Xiao-Hu

    2016-06-01

    Developing efficient, low-cost, and stable carbon-based catalysts for oxygen reduction reaction (ORR) to replace the expensive platinum-based electrocatalysts remains a major challenge that hamper the practical application of fuel cells. Here, we report that N, Fe, and S co-doped nanoporous carbon material, derived via a facile one-step pyrolysis of sewage sludge, the major byproduct of wastewater treatment, can serve as an effective electrocatalyst for ORR. Except for the comparable catalytic activity with commercial 20% Pt/C via a nearly four-electron transfer pathway in both alkaline and acid medium, the as-synthesized co-doped electrocatalyst also exhibits excellent methanol crossover resistance and outstanding long-term operation stability. The organic compounds in sewage sludge act as the carbon source and the in-situ N and S dopant in the fabrication, while the inorganic compounds serve as the in-built template and the in-situ Fe dopant. Our protocol demonstrates a new approach in the economic and eco-friendly benign reuse of sewage sludge, and also provides a straightforward route for synthesizing excellent carbon-based electrocatalysts as promising candidates for ORR directly from a type of waste/pollution.

  4. Nitrogen-Doped Porous Carbons As Electrode Materials for High-Performance Supercapacitor and Dye-Sensitized Solar Cell.

    PubMed

    Wang, Lan; Gao, Zhiyong; Chang, Jiuli; Liu, Xiao; Wu, Dapeng; Xu, Fang; Guo, Yuming; Jiang, Kai

    2015-09-16

    Activated N-doped porous carbons (a-NCs) were synthesized by pyrolysis and alkali activation of graphene incorporated melamine formaldehyde resin (MF). The moderate N doping levels, mesopores rich porous texture, and incorporation of graphene enable the applications of a-NCs in surface and conductivity dependent electrode materials for supercapacitor and dye-sensitized solar cell (DSSC). Under optimal activation temperature of 700 °C, the afforded sample, labeled as a-NC700, possesses a specific surface area of 1302 m2 g(-1), a N fraction of 4.5%, and a modest graphitization. When used as a supercapacitor electrode, a-NC700 offers a high specific capacitance of 296 F g(-1) at a current density of 1 A g(-1), an acceptable rate capability, and a high cycling stability in 1 M H2SO4 electrolyte. As a result, a-NC700 supercapacitor delivers energy densities of 5.0-3.5 Wh kg(-1) under power densities of 83-1609 W kg(-1). Moreover, a-NC700 also demonstrates high electrocatalytic activity for I3- reduction. When employed as a counter electrode (CE) of DSSC, a power conversion efficiency (PCE) of 6.9% is achieved, which is comparable to that of the Pt CE based counterpart (7.1%). The excellent capacitive and photovoltaic performances highlight the potential of a-NCs in sustainable energy devices.

  5. The improved efficiency of low molecular weight organic solar cells doped with a Cu(I) triplet material

    NASA Astrophysics Data System (ADS)

    Su, Bin; Gao, Lin; Li, Xiuying; Che, Guangbo; Zhu, Enwei; Wang, Bo; Yan, Yongsheng

    2016-08-01

    We developed a method to improve the performance of the copper phthalocyanine (CuPc)/fullerene (C60) organic solar cells (OSCs) by doping CuPc with a long triplet lifetime material. By doping [Cu(bis[2-(diphenylphosphino)phenyl]ether)(benzo[i]dipyrido[3,2-a:2',3'-c]phenazine)]BF4 (CuDB) into CuPc, the enhanced short-circuit current density ( J SC) of 6.213 mA/cm2, open-circuit voltage ( V OC) of 0.39 V and a peak power conversion efficiency (PCE) of 0.92% compared to 0.79% of the standard CuPc/C60 OSCs are achieved under 1 sun AM 1.5 G illumination at an intensity of 100 mW/cm2. The performance improvement is mainly attributed to the long triplet lifetime of CuDB (τ = 70.05 μs) which leads to more effective exciton dissociation.

  6. Facile Synthesis of Boron-Doped rGO as Cathode Material for High Energy Li-O2 Batteries.

    PubMed

    Wu, Feng; Xing, Yi; Li, Li; Qian, Ji; Qu, Wenjie; Wen, Jianguo; Miller, Dean; Ye, Yusheng; Chen, Renjie; Amine, Khalil; Lu, Jun

    2016-09-14

    To improve the electrochemical performance of the high energy Li-O2 batteries, it is important to design and construct a suitable and effective oxygen-breathing cathode. Herein, a three-dimensional (3D) porous boron-doped reduction graphite oxide (B-rGO) material with a hierarchical structure has been prepared by a facile freeze-drying method. In this design, boric acid as the boron source helps to form the 3D porous structure, owing to its cross-linking and pore-forming function. This architecture facilitates the rapid oxygen diffusion and electrolyte penetration in the electrode. Meanwhile, the boron-oxygen functional groups linking to the carbon surface or edge serve as additional reaction sites to activate the ORR process. It is vital that boron atoms have been doped into the carbon lattices to greatly activate the electrons in the carbon π system, which is beneficial for fast charge under large current densities. Density functional theory calculation demonstrates that B-rGO exhibits much stronger interactions with Li5O6 clusters, so that B-rGO more effectively activates Li-O bonds to decompose Li2O2 during charge than rGO does. With B-rGO as a catalytic substrate, the Li-O2 battery achieves a high discharge capacity and excellent rate capability. Moreover, catalysts could be added into the B-rGO substrate to further lower the overpotential and enhance the cycling performance in future. PMID:27549204

  7. Facile synthesis of sewage sludge-derived in-situ multi-doped nanoporous carbon material for electrocatalytic oxygen reduction

    PubMed Central

    Yuan, Shi-Jie; Dai, Xiao-Hu

    2016-01-01

    Developing efficient, low-cost, and stable carbon-based catalysts for oxygen reduction reaction (ORR) to replace the expensive platinum-based electrocatalysts remains a major challenge that hamper the practical application of fuel cells. Here, we report that N, Fe, and S co-doped nanoporous carbon material, derived via a facile one-step pyrolysis of sewage sludge, the major byproduct of wastewater treatment, can serve as an effective electrocatalyst for ORR. Except for the comparable catalytic activity with commercial 20% Pt/C via a nearly four-electron transfer pathway in both alkaline and acid medium, the as-synthesized co-doped electrocatalyst also exhibits excellent methanol crossover resistance and outstanding long-term operation stability. The organic compounds in sewage sludge act as the carbon source and the in-situ N and S dopant in the fabrication, while the inorganic compounds serve as the in-built template and the in-situ Fe dopant. Our protocol demonstrates a new approach in the economic and eco-friendly benign reuse of sewage sludge, and also provides a straightforward route for synthesizing excellent carbon-based electrocatalysts as promising candidates for ORR directly from a type of waste/pollution. PMID:27273314

  8. Nano-structured composite of Si/(S-doped-carbon nanowire network) as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shao, Dan; Tang, Daoping; Yang, Jianwen; Li, Yanwei; Zhang, Lingzhi

    2015-11-01

    Novel nanostructured silicon composites, Si/Poly(3,4-ethylenedioxythiophene) nanowire network (Si/PNW) and Si/(S-doped-carbon nanowire network) (Si/S-CNW), are prepared by a soft-template polymerization of 3,4-ethylenedioxythiophene (EDOT) using sodium dodecyl sulfate (SDS) as surfactant with the presence of Si nanoparticles and a subsequent carbonization of Si/PNW, respectively. The presence of Si nanoparticles in the soft-template polymerization of EDOT plays a critical role in the formation of PEDOT nanowire network instead of 1D nanowire. After the carbonization of PEDOT, the S-doped-carbon nanowire network matrix shows higher electrical conductivity than PNW counterpart, which facilitates to construct robust conductive bridges between Si nanoparticles and provide large electrode/electrolyte interfaces for rapid charge transfer reactions. Thus, Si/S-CNW composite exhibits excellent cycling stability and rate capability as anode material, retaining a specific capacity of 820 mAh g-1 after 400 cycles with a very small capacity fade of 0.09% per cycle.

  9. Characterization of nanocrystalline cobalt doped TiO2 sol-gel material

    NASA Astrophysics Data System (ADS)

    Siddhapara, Kirit; Shah, Dimple

    2012-08-01

    Nanocrystalline 1%, 2% and 4% Cobalt-doped TiO2 were prepared by sol-gel technique, followed by freeze-drying treatment at -30 °C temperature for 12 h. The obtained gels were thermally treated at 200, 400, 600 and 800 °C. X-ray Powder Diffraction (XRD), Scanning Electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDAX) were used to study its structural properties. The XRD pattern shows the coexistence of anatase phase and minor brookite phase. UV-vis Spectroscopy and Photoluminescence (PL) were used to study its optical properties. Optical band gap was calculated with the incorporation of different concentrations of cobalt. UV-visible spectroscopy shows variation in band gap for the sample treated at different temperatures for same concentration. All Cobalt doped TiO2 nanostructures show an appearance of Red shift relative to the bulk TiO2. The determination of magnetic properties was also carried out by Gouy balance method.

  10. Nb-doped rutile TiO₂: a potential anode material for Na-ion battery.

    PubMed

    Usui, Hiroyuki; Yoshioka, Sho; Wasada, Kuniaki; Shimizu, Masahiro; Sakaguchi, Hiroki

    2015-04-01

    The electrochemical properties of the rutile-type TiO2 and Nb-doped TiO2 were investigated for the first time as Na-ion battery anodes. Ti(1-x)Nb(x)O2 thick-film electrodes without a binder and a conductive additive were prepared using a sol-gel method followed by a gas-deposition method. The TiO2 electrode showed reversible reactions of Na insertion/extraction accompanied by expansion/contraction of the TiO2 lattice. Among the Ti(1-x)Nb(x)O2 electrodes with x = 0-0.18, the Ti(0.94)Nb(0.06)O2 electrode exhibited the best cycling performance, with a reversible capacity of 160 mA h g(-1) at the 50th cycle. As the Li-ion battery anode, this electrode also attained an excellent rate capability, with a capacity of 120 mA h g(-1) even at the high current density of 16.75 A g(-1) (50C). The improvements in the performances are attributed to a 3 orders of magnitude higher electronic conductivity of Ti(0.94)Nb(0.06)O2 compared to that of TiO2. This offers the possibility of Nb-doped rutile TiO2 as a Na-ion battery anode as well as a Li-ion battery anode.

  11. Mechanism of Li-doping into Li 4Ti 5O 12 negative active material for Li-ion cells by new chemical method

    NASA Astrophysics Data System (ADS)

    Tabuchi, Toru; Yasuda, Hideo; Yamachi, Masanori

    Li 4+ XTi 5O 12 (X > 0) negative active material has been successfully synthesized by a new chemical method for Li-doping with the catalytic function of naphthalene in Li-organic complex solution of butylmethylether (BME) or dimethoxyethane (DME) solvent. The Li-doping reaction rate constant in BME was found to be greater than that of the case of DME and its value was 5.10 and 2.78 × 10 -4 S -1/2, respectively, by the calculation from the slope of distinct straight line in the relationship between ln(1/1 - Y) and √{ t } , where Y is molar fraction of Li-doping materials of Li 7Ti 5O 12.

  12. Li-doping process for Li xSiO-negative active material synthesized by chemical method for lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Tabuchi, Toru; Yasuda, Hideo; Yamachi, Masanori

    Li-doped SiO-negative active material (Li xSiO) has been successfully synthesized by chemical method with immersion in Li-organic complex solution obtained by dissolving naphthalene and metallic Li into butyl methyl ether (BME) solvent. The rest potential of resultant Li xSiO electrode drastically shifts to less noble value at the beginning of immersion and tends to be stable at around 0.21 V versus Li/Li +, which means the progress of Li-doping into SiO-negative active material. Furthermore, this chemical Li-doping process proceeds by the catalysis function of naphthalene and leads to reduce the irreversible capacity of SiO-negative electrode caused by consumption of Li sources provided from positive electrode.

  13. An experimental investigation of surface roughness in the drilling of MWCNT doped carbon/epoxy polymeric composite material

    NASA Astrophysics Data System (ADS)

    Kumar, D.; Singh, K. K.

    2016-09-01

    The objective of this research is to investigate the effect of multi-walled carbon nanotube (MWCNT) loading on the surface roughness of drilled hole, in the drilling of MWCNT doped carbon/epoxy polymeric composite material. Root mean square roughness (Rq) was used to assess the effect of MWCNT. Rq was measured at the both side i.e. entrance and exit of hole. Experiment was performed using Box- Behnken Design to develop an empirical model to predict the surface roughness value at the entrance and exit. The developed model was accurate within the level of confidence. Due to loading of MWCNT in polymer matrix, surface roughness of hole at entrance and exit are improved.

  14. Boron-nitrogen doped carbon scaffolding: organic chemistry, self-assembly and materials applications of borazine and its derivatives.

    PubMed

    Bonifazi, Davide; Fasano, Francesco; Lorenzo-Garcia, M Mercedes; Marinelli, Davide; Oubaha, Hamid; Tasseroul, Jonathan

    2015-10-25

    Discovered by Stock and Pohland in 1926, borazine is the isoelectronic and isostructural inorganic analogue of benzene, where the C[double bond, length as m-dash]C bonds are substituted by B-N bonds. The strong polarity of such heteroatomic bonds widens the HOMO-LUMO gap of the molecule, imparting strong UV-emitting/absorption and electrical insulating properties. These properties make borazine and its derivatives valuable molecular scaffolds to be inserted as doping units in graphitic-based carbon materials to tailor their optoelectronic characteristics, and specifically their semiconducting properties. By guiding the reader through the most significant examples in the field, in this feature paper we describe the past and recent developments in the organic synthesis and functionalisation of borazine and its derivatives. These boosted the production of a large variety of tailored derivatives, broadening their use in optoelectronics, H2 storage and supramolecular functional architectures, to name a few.

  15. N-doped carbon networks: alternative materials tracing new routes for activating molecular hydrogen.

    PubMed

    Cortese, Remedios; Ferrante, Francesco; Roggan, Stefan; Duca, Dario

    2015-02-23

    The fragmentation of molecular hydrogen on N-doped carbon networks was investigated by using molecular (polyaromatic macrocycles) as well as truncated and periodic (carbon nanotubes) models. The computational study was focused on the ergonicity analysis of the reaction and on the properties of the transition states involved when constellations of three or four pyridinic nitrogen atom defects are present in the carbon network. Calculations show that whenever N-defects are embedded in species characterized by large conjugated π-systems, either in polyaromatic macrocycles or carbon nanotubes, the corresponding H2 bond cleavage is largely exergonic. The fragmentation Gibbs free energy is affected by the final arrangement of the hydrogen atoms on the defect and by the extension of the π-electron cloud, but it is not influenced by the curvature of the system.

  16. Photoconversion from UV-to-yellow in Mn doped zinc silicate nanophosphor material

    NASA Astrophysics Data System (ADS)

    El Mir, L.; Omri, K.

    2014-11-01

    A novel synthesis process of Mn doped β-Zn2SiO4 yellow nanophosphors based on sol-gel method is presented. These samples were prepared by a simple solid-phase reaction under natural atmosphere at 1500 °C after the incorporation of ZnO:Mn nanoparticles, in silica monolith. XRD showed the formation of zinc silicate β-phase, which shows yellow luminescence. In addition, the as-synthesized β-Zn2SiO4:Mn2+ nanophosphor exhibited intensive broad emission around 574 nm, which was attributed to the 4T1-6A1 transition in Mn2+ ions. An exponential fitting analysis has been employed to obtain the lifetime of this yellow emission (574 nm), the average lifetime was found to be 13 ms. The luminescence properties of our nanophosphors were characterized by excitation and emission spectra as well as luminescence decay.

  17. Rare Earth Doped Semiconductors and Materials Research Society Symposium Proceedings, Volume 301

    NASA Astrophysics Data System (ADS)

    Ballance, John

    1994-02-01

    The properties of rare earth ions in solids were studied in detail for decades, but until recently this work was restricted to dominantly ionic hosts such as fluorides and oxides, and to a lesser extent to more covalently bonded hosts, such as tetrahedral 2-6 semiconductors. The idea of rare earth elements incorporated into covalent semiconductors such as GaAs and Si may be traced to a short communication in 1963 by R.L. Bell (J. Appl. Phys. 34, 1563 (1963)) proposing a dc-pumped rare earth laser. At about the same time, three unpublished technical reports appeared as a result of U.S. Department of Defense sponsored research in rare earth doped Si, GaAs, and InP to fabricate LED's. Attempts by other researchers to identify sharp 4f specific emissions in these hosts essentially failed.

  18. Doping magnesium hydroxide with sodium nitrate: a new approach to tune the dehydration reactivity of heat-storage materials.

    PubMed

    Shkatulov, Alexandr; Krieger, Tamara; Zaikovskii, Vladimir; Chesalov, Yurii; Aristov, Yuri

    2014-11-26

    Thermochemical energy storage (TES) provides a challenging approach for improving the efficiency of various energy systems. Magnesium hydroxide, Mg(OH)2, is known as a suitable material for TES at temperature T>300 °C. In this work, the thermal decomposition of Mg(OH)2 in the absence and presence of sodium nitrate (NaNO3) is investigated to adapt this material for TES at T<300 °C. The most notable observations described for the doped Mg(OH)2 are (1) a significant reduction of the decomposition temperature Td that allows tuning the dehydration reactivity by varying the NaNO3 content. The Td decrease by 25 °C is revealed at a salt content Y≤2.0 wt %. The maximum Td depression of some 50 °C is observed at Y=15-20 wt %; (2) the NaNO3-doped Mg(OH)2 decomposes considerably faster under conditions typical for closed TES cycles (at T>300 °C in vapor atmosphere) than a pure Mg(OH)2; (3) the morphology of the dehydration product (MgO) dramatically changes. Differential scanning calorimetry, high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and vibrational spectroscopy (IR and Raman) are used to study the observed effects and to elucidate possible ways the NaNO3 influences the Mg(OH)2 dehydration and morphology of the dehydration product. The mechanism involving a chemical interaction between the salt and the hydroxide accompanied by nitrate embedding into brucite layers is discussed.

  19. Ball-milled sulfur-doped graphene materials contain metallic impurities originating from ball-milling apparatus: their influence on the catalytic properties.

    PubMed

    Chua, Chun Kiang; Sofer, Zdeněk; Khezri, Bahareh; Webster, Richard D; Pumera, Martin

    2016-07-21

    Graphene materials have found applications in a wide range of devices over the past decade. In order to meet the demand for graphene materials, various synthesis methods are constantly being improved or invented. Ball-milling of graphite to obtain graphene materials is one of the many versatile methods to easily obtain bulk quantities. In this work, we show that the graphene materials produced by ball-milling are spontaneously contaminated with metallic impurities originating from the grinding bowls and balls. Ball-milled sulfur-doped graphene materials obtained from two types of ball-milling apparatus, specifically made up of stainless steel and zirconium dioxide, were investigated. Zirconium dioxide-based ball-milled sulfur-doped graphene materials contain a drastically lower amount of metallic impurities than stainless steel-based ball-milled sulfur-doped graphene materials. The presence of metallic impurities is demonstrated by their catalytic effects toward the electrochemical catalysis of hydrazine and cumene hydroperoxide. The general impression toward ball-milling of graphite as a versatile method for the bulk production of 'metal-free' graphene materials without the need for post-processing and the selection of ball-milling tools should be cautioned. These findings would have wide-reaching implications for graphene research. PMID:27314607

  20. Ball-milled sulfur-doped graphene materials contain metallic impurities originating from ball-milling apparatus: their influence on the catalytic properties.

    PubMed

    Chua, Chun Kiang; Sofer, Zdeněk; Khezri, Bahareh; Webster, Richard D; Pumera, Martin

    2016-07-21

    Graphene materials have found applications in a wide range of devices over the past decade. In order to meet the demand for graphene materials, various synthesis methods are constantly being improved or invented. Ball-milling of graphite to obtain graphene materials is one of the many versatile methods to easily obtain bulk quantities. In this work, we show that the graphene materials produced by ball-milling are spontaneously contaminated with metallic impurities originating from the grinding bowls and balls. Ball-milled sulfur-doped graphene materials obtained from two types of ball-milling apparatus, specifically made up of stainless steel and zirconium dioxide, were investigated. Zirconium dioxide-based ball-milled sulfur-doped graphene materials contain a drastically lower amount of metallic impurities than stainless steel-based ball-milled sulfur-doped graphene materials. The presence of metallic impurities is demonstrated by their catalytic effects toward the electrochemical catalysis of hydrazine and cumene hydroperoxide. The general impression toward ball-milling of graphite as a versatile method for the bulk production of 'metal-free' graphene materials without the need for post-processing and the selection of ball-milling tools should be cautioned. These findings would have wide-reaching implications for graphene research.

  1. Growth and optical properties of novel doped and undoped group IV materials based on silicon, germanium, and tin

    NASA Astrophysics Data System (ADS)

    Cook, Candi S.

    The development of a new class of semiconductors in the silicon-germanium-tin system, based on novel deuterium-stabilized tin hydrides epitaxially grown on silicon substrates, provides a new low-temperature chemical vapor deposition route to a broad range of highly metastable compositions and structures that cannot be obtained by other methods. This research focuses on the continued synthesis, characterization, and performance evaluation of Ge1-xSn x binary and Ge1-x-ySixSny ternary semiconductors. The Ge1-xSnx alloys are grown as thin films directly on Si(100) via ultrahigh vacuum chemical vapor deposition (UHV-CVD) reactions of gaseous SnD4 and Ge2H6. The alloys display random diamond-cubic monocrystalline structures and unique morphological and optical properties such as atomically flat surfaces and tunable bandgaps. The large lattice mismatch of the layers and the Si substrates is accommodated by Lomer edge dislocations located at the interface. In this study a detailed determination of the Ge1- xSnx alloys optical properties is conducted via spectroscopic ellipsometry. The materials display a Ge like band gap structure with critical point energies (E 1, E1+Delta, E0, E2) that decrease monotonically with increasing Sn content from 1-20 at.%. Another aspect of this research is the use of the Ge1-xSnx alloys as buffer layers to grow Ge1-x-ySixSny ternaries. The ternaries demonstrate good crystallinity with low defect densities. Deep ultraviolet spectroscopic ellipsometry analysis of the materials yields dielectric functions consistent with crystalline alloys of cubic symmetry. The primary focus of this study is the growth of n-type doped Ge 1-xSnx alloys via in situ reactions of SnD4/Ge 2H6 with appropriate concentrations of the newly prepared As(GeH3)3 single source hydride. The thin films demonstrate excellent microstructural quality and high doping concentrations (10 19). The levels of activated As atoms incorporated in the Ge-Sn lattice are determined by

  2. Optical behavior of Pr3+-doped barium titanate-calcium titanate material prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan; Tang, Yanxue; He, Xiyun; Qiu, Pingsun; He, Qizhuang; Peng, Zifei; Sun, Dazhi

    2009-07-01

    Photoluminescence performances of Pr-doped alkaline-earth titanates (Ba,Ca)TiO3 (with rich barium) prepared by a solgel technique are investigated at room temperature. A relatively strong red luminescence is observed in (Ba0.80Ca0.20)TiO3 material when Pr-BaTiO3 material does not exhibit obvious red luminescence. The phenomenon is discussed with respect to the substitute of Ca and the two-photon luminescence effect. The red luminescence is enhanced by a fast thermal treatment. The wavelength range of luminescence near red and infrared light is broadened by the same process as well. These behaviors are ascribed to the randomization of distribution of Ca and Ba at A site in ABO3 perovskite structure. The experimental results provide not only a possible way to develop new materials with pastel visual impression, but also a potential technique to modify photoluminescence properties that can be controlled by external fields because the microscopic structure of BaTiO3, such as electric domains, can be changed by electric field, temperature, and so on.

  3. Surface etching mechanism of carbon-doped Ge2Sb2Te5 phase change material in fluorocarbon plasma

    NASA Astrophysics Data System (ADS)

    Shen, Lanlan; Song, Sannian; Song, Zhitang; Li, Le; Guo, Tianqi; Cheng, Yan; Lv, Shilong; Wu, Liangcai; Liu, Bo; Feng, Songlin

    2016-09-01

    Recently, carbon-doped Ge2Sb2Te5 (CGST) phase change material has been widely researched for being highly promising material for future phase change memory application. In this paper, the reactive-ion etching of CGST film in CF4/Ar plasma is studied. Compared with GST, the etch rate of CGST is relatively lower due to the existence of carbon which reduce the concentration of F or CF x reactive radicals. It was found that Argon plays an important role in defining the sidewall edge acuity. Compared with GST, more physical bombardment is required to obtain vertical sidewall of CGST. The effect of fluorocarbon gas on the damage of the etched CGST film was also investigated. A Ge- and Sb-deficient layer with tens of nanometers was observed by TEM combining with XPS analysis. The reaction between fluorocarbon plasma and CGST is mainly dominated by the diffusion and consumption of reactive fluorine radicals through the fluorocarbon layer into the CGST substrate material. The formation of damage layer is mainly caused by strong chemical reactivity, low volatility of reaction compounds and weak ion bombardment.

  4. Nitrogen-doped carbonaceous materials for removal of phenol from aqueous solutions.

    PubMed

    Hofman, Magdalena; Pietrzak, Robert

    2012-01-01

    Carbonaceous material (brown coal) modified by pyrolysis, activation, and enrichment in nitrogen, with two different factor reagents, have been used as adsorbent of phenol from liquid phase. Changes in the phenol content in the test solutions were monitored after subsequent intervals of adsorption with selected adsorbents prepared from organic materials. Significant effect of nitrogen present in the adsorbent material on its adsorption capacity was noted. Sorption capacity of these selected materials was found to depend on the time of use, their surface area, and pore distribution. A conformation to the most well-known adsorption isotherm models, Langmuir, and Freundlich ones, confirms the formation of mono- and heterolayer solute (phenol) coverage on the surface of the adsorbent applied herein. The materials proposed as adsorbents of the aqueous solution contaminants were proved effective, which means that the waste materials considered are promising activated carbon precursors for liquid phase adsorbents for the environmental protection. PMID:22593671

  5. Solid-state tunable lasers based on dye-doped sol-gel materials

    SciTech Connect

    Dunn, B.; Mackenzie, J.D.; Zink, J.I.; Stafsudd, O.M.

    1992-03-01

    The sol-gel process is a solution synthesis technique which provides a low temperature chemical route for the preparation of rigid transparent matrix materials. The luminescent organic dye molecules, rhodamine 6G and coumarin 540A have been incorporated, via the sol-gel method, into aluminosilicate and organically modified silicate host matrices. Synthesis, laser oscillation and photostability for these systems are reported. The improved photostability of these materials with respect to comparable polymeric host materials is discussed.

  6. A single-source precursor route to anisotropic halogen-doped zinc oxide particles as a promising candidate for new transparent conducting oxide materials.

    PubMed

    Lehr, Daniela; Wagner, Markus R; Flock, Johanna; Reparaz, Julian S; Sotomayor Torres, Clivia M; Klaiber, Alexander; Dekorsy, Thomas; Polarz, Sebastian

    2015-01-01

    Numerous applications in optoelectronics require electrically conducting materials with high optical transparency over the entire visible light range. A solid solution of indium oxide and substantial amounts of tin oxide for electronic doping (ITO) is currently the most prominent example for the class of so-called TCOs (transparent conducting oxides). Due to the limited, natural occurrence of indium and its steadily increasing price, it is highly desired to identify materials alternatives containing highly abundant chemical elements. The doping of other metal oxides (e.g., zinc oxide, ZnO) is a promising approach, but two problems can be identified. Phase separation might occur at the required high concentration of the doping element, and for successful electronic modification it is mandatory that the introduced heteroelement occupies a defined position in the lattice of the host material. In the case of ZnO, most attention has been attributed so far to n-doping via substitution of Zn(2+) by other metals (e.g., Al(3+)). Here, we present first steps towards n-doped ZnO-based TCO materials via substitution in the anion lattice (O(2-) versus halogenides). A special approach is presented, using novel single-source precursors containing a potential excerpt of the target lattice 'HalZn·Zn3O3' preorganized on the molecular scale (Hal = I, Br, Cl). We report about the synthesis of the precursors, their transformation into halogene-containing ZnO materials, and finally structural, optical and electronic properties are investigated using a combination of techniques including FT-Raman, low-T photoluminescence, impedance and THz spectroscopies. PMID:26665089

  7. A single-source precursor route to anisotropic halogen-doped zinc oxide particles as a promising candidate for new transparent conducting oxide materials

    PubMed Central

    Lehr, Daniela; Wagner, Markus R; Flock, Johanna; Reparaz, Julian S; Sotomayor Torres, Clivia M; Klaiber, Alexander; Dekorsy, Thomas

    2015-01-01

    Summary Numerous applications in optoelectronics require electrically conducting materials with high optical transparency over the entire visible light range. A solid solution of indium oxide and substantial amounts of tin oxide for electronic doping (ITO) is currently the most prominent example for the class of so-called TCOs (transparent conducting oxides). Due to the limited, natural occurrence of indium and its steadily increasing price, it is highly desired to identify materials alternatives containing highly abundant chemical elements. The doping of other metal oxides (e.g., zinc oxide, ZnO) is a promising approach, but two problems can be identified. Phase separation might occur at the required high concentration of the doping element, and for successful electronic modification it is mandatory that the introduced heteroelement occupies a defined position in the lattice of the host material. In the case of ZnO, most attention has been attributed so far to n-doping via substitution of Zn2+ by other metals (e.g., Al3+). Here, we present first steps towards n-doped ZnO-based TCO materials via substitution in the anion lattice (O2− versus halogenides). A special approach is presented, using novel single-source precursors containing a potential excerpt of the target lattice 'HalZn·Zn3O3' preorganized on the molecular scale (Hal = I, Br, Cl). We report about the synthesis of the precursors, their transformation into halogene-containing ZnO materials, and finally structural, optical and electronic properties are investigated using a combination of techniques including FT-Raman, low-T photoluminescence, impedance and THz spectroscopies. PMID:26665089

  8. Photoconversion from yellow-to-green in vanadium doped zinc silicate nanophosphor material

    NASA Astrophysics Data System (ADS)

    El Ghoul, J.; El Mir, L.

    2015-06-01

    We report a novel synthesis process of V doped β-Zn2SiO4 green nanophosphors based on sol-gel method. After the incorporation of ZnO:V nanoparticles in a silica monolith using a sol-gel method with supercritical drying of ethyl alcohol in two steps, it is heated in air at 1500 °C for 2 h. X-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to characterize the phase purity, particle size and morphology. In addition, photoluminescence (PL) is used for optical studies. XRD results indicate that pure phase of β-Zn2SiO4 with triclinic structure was obtained after thermal treatment at 1500 °C. The PL shows an new intensive luminescence band in the visible range centered at about 526 nm, attributed to vanadium in the interfaces between the Zn2SiO4 nanoparticles and the SiO2 host matrix.

  9. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Jiawei; Cai, Yurong; Zhong, Qiwei; Lai, Dongzhi; Yao, Juming

    2015-10-01

    The features of a carbon substrate are crucial for the electrochemical performance of lithium-sulfur (Li-S) batteries. Nitrogen doping of carbon materials is assumed to play an important role in sulfur immobilisation. In this study, natural silk fibroin protein is used as a precursor of nitrogen-rich carbon to fabricate a novel, porous, nitrogen-doped carbon material through facile carbonisation and activation. Porous carbon, with a reversible capacity of 815 mA h g-1 at 0.2 C after 60 cycles, serves as the cathode material in Li-S batteries. Porous carbon retains a reversible capacity of 567 mA h g-1, which corresponds to a capacity retention of 98% at 1 C after 200 cycles. The promising electrochemical performance of porous carbon is attributed to its mesoporous structure, high specific surface area and nitrogen doping into the carbon skeleton. This study provides a general strategy to synthesise nitrogen-doped carbons with a high specific surface area, which is crucial to improve the energy density and electrochemical performance of Li-S batteries.

  10. Preparation and electrical properties of Ca-doped La(2)NiO(4+δ) cathode materials for IT-SOFC.

    PubMed

    Shen, Yongna; Zhao, Hailei; Liu, Xiaotong; Xu, Nansheng

    2010-12-01

    Ca-doped La(2)NiO(4+δ) is synthesized via the nitrate-citrate route. The effects of Ca substitution for La on the sinterability, lattice structure and electrical properties of La(2)NiO(4+δ) are investigated. Ca-doping is unfavorable for the densification process of La(2-x)Ca(x)NiO(4+δ) materials. The introduction of Ca leads to the elongation of the La-O(2) bond length, which provides more space for the migration of oxygen ion in La(2)O(2) rock salt layers. The substitution of Ca increases remarkably the electronic conductivity of La(2-x)Ca(x)NiO(4+δ). With increasing Ca-doping level, both the excess oxygen concentration and the activation energy of oxygen ion migration decrease, resulting in an optimization where a highest ionic conductivity is presented. Ca-doping is charge compensated by the oxidation of Ni(2+) to Ni(3+) and the desorption of excess oxygen. The substitution of Ca enhances the structural stability of La(2)NiO(4+δ) material at high temperatures and renders the material a good thermal cycleability. La(1.7)Ca(0.3)NiO(4+δ) exhibits an excellent chemical compatibility with CGO electrolyte. La(2-x)Ca(x)NiO(4+δ) is a promising cathode alternative for solid oxide fuel cells. PMID:20967398

  11. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries.

    PubMed

    Zhang, Jiawei; Cai, Yurong; Zhong, Qiwei; Lai, Dongzhi; Yao, Juming

    2015-11-14

    The features of a carbon substrate are crucial for the electrochemical performance of lithium-sulfur (Li-S) batteries. Nitrogen doping of carbon materials is assumed to play an important role in sulfur immobilisation. In this study, natural silk fibroin protein is used as a precursor of nitrogen-rich carbon to fabricate a novel, porous, nitrogen-doped carbon material through facile carbonisation and activation. Porous carbon, with a reversible capacity of 815 mA h g(-1) at 0.2 C after 60 cycles, serves as the cathode material in Li-S batteries. Porous carbon retains a reversible capacity of 567 mA h g(-1), which corresponds to a capacity retention of 98% at 1 C after 200 cycles. The promising electrochemical performance of porous carbon is attributed to its mesoporous structure, high specific surface area and nitrogen doping into the carbon skeleton. This study provides a general strategy to synthesise nitrogen-doped carbons with a high specific surface area, which is crucial to improve the energy density and electrochemical performance of Li-S batteries.

  12. Nitrogen-doped graphene-decorated LiVPO4F nanocomposite as high-voltage cathode material for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Cui, Kai; Hu, Shuchun; Li, Yongkui

    2016-09-01

    In this study, nitrogen-doped graphene decorated LiVPO4F cathode material is firstly synthesized via a facile method. Well-dispersed LiVPO4F nanoparticles are embedded in nitrogen-doped graphene nanosheets, forming an effective conducting network. The added nitrogen-doped graphene nanosheets greatly enhance the electronic conductivity and Li-ion diffusion of LiVPO4F sample. When tested as cathode material for rechargeable lithium-ion batteries, the hybrid electrode exhibits superior high-rate performance and long-term cycling stability between 3.0 and 4.5 V. It delivers a large discharge capacity of 152.7 mAhg-1 at 0.1 C and shows a capacity retention of 97.8% after 60 cycles. Moreover, a reversible capacity of 90.1 mAhg-1 is maintained even after 500 cycles at a high rate of 20 C. The charge-transfer resistance of LiVPO4F electrode is also reduced in the nitrogen-doped graphene, revealing that its electrode-electrolyte complex reactions take place easily and thus improve the electrochemical performance. The above results provide a facile and effective strategy for the synthesis of LiVPO4F cathode material for high-performance lithium-ion batteries.

  13. The different roles of contact materials between oxidation interlayer and doping effect for high performance ZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Huang, Chun-Wei; Abliz, Ablat; Hua, Yang; Liao, Lei; Wu, Wen-Wei; Xiao, Xiangheng; Jiang, Changzhong; Liu, Wei; Li, Jinchai

    2015-02-01

    To improve the performance of ZnO thin film transistors (TFTs) by using appropriate metal contacts, the different roles of contact materials between oxidation interlayer and doping effect are investigated. With careful characterization, an oxidation interlayer has been verified at the interface between ZnO film and Al or Ti contact, which is suggested to be responsible for contact resistance and thermal reliability. On the other hand, it is observed that the doping effect is the main reason for the Sn or Cu contact characteristics. The superior contact using Sn is due to an oxidation-free interface, donor doping effect, and a low barrier height. By using a metal contact with a high Gibbs free energy, the metal layer would hardly consume oxygen from channel layer during sputtering and easily form no oxidation interlayer. Thus, choosing a metal contact is important when fabricating high-performance metal-oxide TFTs for flat-panel displays.

  14. High-performance colossal permittivity materials of (Nb + Er) co-doped TiO2 for large capacitors and high-energy-density storage devices.

    PubMed

    Tse, Mei-Yan; Wei, Xianhua; Hao, Jianhua

    2016-09-21

    The search for colossal permittivity (CP) materials is imperative because of their potential for promising applications in the areas of device miniaturization and energy storage. High-performance CP materials require high dielectric permittivity, low dielectric loss and relatively weak dependence of frequency- and temperature. In this work, we first investigate the CP behavior of rutile TiO2 ceramics co-doped with niobium and erbium, i.e., (Er0.5Nb0.5)xTi1-xO2. Excellent dielectric properties were observed in the materials, including a CP of up to 10(4)-10(5) and a low dielectric loss (tan δ) down to 0.03, which are lower than that of the previously reported co-doped TiO2 CP materials when measured at 1 kHz. Stabilities of frequency and temperature were also accomplished via doping Er and Nb. Valence states of the elements in the material were analyzed using X-ray photoelectron spectroscopy. The Er induced secondary phases were observed using elemental mapping and energy-dispersive spectrometry. Consequently, this work may provide comprehensive guidance to develop high-performance CP materials for fully solid-state capacitor and energy storage applications. PMID:27530725

  15. High-performance colossal permittivity materials of (Nb + Er) co-doped TiO2 for large capacitors and high-energy-density storage devices.

    PubMed

    Tse, Mei-Yan; Wei, Xianhua; Hao, Jianhua

    2016-09-21

    The search for colossal permittivity (CP) materials is imperative because of their potential for promising applications in the areas of device miniaturization and energy storage. High-performance CP materials require high dielectric permittivity, low dielectric loss and relatively weak dependence of frequency- and temperature. In this work, we first investigate the CP behavior of rutile TiO2 ceramics co-doped with niobium and erbium, i.e., (Er0.5Nb0.5)xTi1-xO2. Excellent dielectric properties were observed in the materials, including a CP of up to 10(4)-10(5) and a low dielectric loss (tan δ) down to 0.03, which are lower than that of the previously reported co-doped TiO2 CP materials when measured at 1 kHz. Stabilities of frequency and temperature were also accomplished via doping Er and Nb. Valence states of the elements in the material were analyzed using X-ray photoelectron spectroscopy. The Er induced secondary phases were observed using elemental mapping and energy-dispersive spectrometry. Consequently, this work may provide comprehensive guidance to develop high-performance CP materials for fully solid-state capacitor and energy storage applications.

  16. O-doped Si2Sb2Te5 nano-composite phase change material for application of chalcogenide random access memory.

    PubMed

    Zhang, Ting; Song, Zhitang; Liu, Bo; Wang, Feng; Feng, Songlin

    2009-02-01

    A method to prepare nano-composite phase change material was proposed and demonstrated by oxygen doping into Si2Sb2Te5 material. According to transmission electron microscope images, Si-Sb-Te-rich domains are separated from each other by SiOx-rich domains within the material. A proper dose of O-doping into Si2Sb2Te5 significantly reduces the grain size of the phase change material. Average size of Si-Sb-Te-rich domains is about 10 nm. Such separation will limit the phase-change to a relatively small volume. The reduction of grain size further results in the promotion of data retention and thermal stability of the material. Memory device based on O-doped Si2Sb2Te5 nano-composite phase change material, with a bottom electrode contact of 260 nm in diameter, was fabricated and characterized. The memory cell shows a better electrical performance compared with the Ge2Sb2Te5 based one.

  17. Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries

    DOE PAGESBeta

    Li, Hui; Yu, Xiqian; Bai, Ying; Wu, Feng; Wu, Chuan; Liu, Liang-Yu; Yang, Xiao-Qing

    2015-01-01

    Na3V2-xMgx(PO4)3/C composites with different Mg2+ doping contents (x=0, 0.01, 0.03, 0.05, 0.07 and 0.1) were prepared by a facile sol-gel method. The doping effects on the crystal structure were investigated by XRD, XPS and EXAFS. The results show that low dose doping Mg2+ does not alter the structure of the material, and magnesium is successfully substituted for vanadium site. The Mg doped Na3V2-xMgx(PO4)3/C composites exhibit significant improvements on the electrochemistry performances in terms of the rate capability and cycle performance, especially for the Na3V1.95Mg0.05(PO4)3/C. For example, when the current density increased from 1 C to 30 C, the specific capacitymore » only decreased from 112.5 mAh g-1 to 94.2 mAh g-1 showing very good rate capability. Moreover, even cycling at a high rate of 20 C, an excellent capacity retention of 81% is maintained from the initial value of 106.4 mAh g-1 to 86.2 mAh g-1 at the 50th cycle. Enhanced rate capability and cycle performance can be attributed to the optimized particle size, structural stability and enhanced ionic and electronic conductivity induced by Mg doping.« less

  18. Covalently Coupled Ultrafine H-TiO2 Nanocrystals/Nitrogen-Doped Graphene Hybrid Materials for High-Performance Supercapacitor.

    PubMed

    Yang, Shuhua; Lin, Yuan; Song, Xuefeng; Zhang, Peng; Gao, Lian

    2015-08-19

    Hydrogenated TiO2 (H-TiO2) are considered one of the most promising materials for supercapacitors given its low-cost, high conductivity, and enhanced electrochemical activity. However, the electrochemical performances of H-TiO2 due to lacking suitable structures is unsatisfactory, and thus how to design energetic H-TiO2-based electrode architectures still remains a great challenge. Herein, covalently coupled ultrafine H-TiO2 nanocrystals/nitrogen-doped graphene (H-TiO2/NG) hybrid materials were developed through a simple hydrothermal route followed by hydrogenation. Within this architecture, the strong interaction between H-TiO2 nanocrystals and NG sheets via covalent chemical bonding affords high structural stability inhibiting the aggregation of H-TiO2 nanocrystals. Meanwhile, the NG matrices function as an electrical highway and a mechanical backbone so that most of well-dispersed ultrafine H-TiO2 nanocrystals are electrochemically active but stable. As a result, the optimized H-TiO2/NG (H-TiO2/NG-B) exhibited high reversible specific capacity of 385.2 F g(-1) at 1 A g(-1), enhanced rate performance of 320.1 F g(-1) at a high current density of 10 A g(-1), and excellent cycling stability with 98.8% capacity retention.

  19. Sub-10 nm Ytterbium Oxide Nanopowder-doped Silicone Rubber Acoustic Lens Material for Medical Echo Array Probe

    NASA Astrophysics Data System (ADS)

    Yamashita, Yohachi (John); Hosono, Yasuharu; Itsumi, Kazuhiro

    2007-09-01

    The effects of 8-nm-Yb2O3-nanopowders dopant, on the physical and acoustical properties of high-temperature-vulcanization (HTV) silicone (Q) rubber have been investigated, to develop a low acoustic attenuation (α) lens material for medical array probes. A 35 wt % (6 vol %) Yb2O3-doped HTV Q rubber showed a sound velocity (c) = 867 m/s, an acoustic impedance (Z) = 1.36× 106 kg\\cdotm-2\\cdots-1, an acoustic attenuation α = 0.66 dB\\cdotmm-1\\cdotMHz-1, and an α-figure of merits (FOM) (α× c) = 574 at 37 °C. The α-FOM value with Z = 1.36× 106 kg\\cdotm-2\\cdots-1 for a Q rubber lens material is the lowest attenuation ever reported. Microstructure observation revealed that the low-α rubber showed a uniform Yb2O3 nanopowder distribution in the rubber matrix.

  20. Hole doping in Al-containing nickel oxide materials to improve electrochromic performance.

    PubMed

    Lin, Feng; Nordlund, Dennis; Weng, Tsu-Chien; Moore, Rob G; Gillaspie, Dane T; Dillon, Anne C; Richards, Ryan M; Engtrakul, Chaiwat

    2013-01-23

    Electrochromic materials exhibit switchable optical properties that can find applications in various fields, including smart windows, nonemissive displays, and semiconductors. High-performing nickel oxide electrochromic materials have been realized by controlling the material composition and tuning the nanostructural morphology. Post-treatment techniques could represent efficient and cost-effective approaches for performance enhancement. Herein, we report on a post-processing ozone technique that improves the electrochromic performance of an aluminum-containing nickel oxide material in lithium-ion electrolytes. The resulting materials were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy, and X-ray absorption spectroscopy (XAS). It was observed that ozone exposure increased the Ni oxidation state by introducing hole states in the NiO(6) octahedral unit. In addition, ozone exposure gives rise to higher-performing aluminum-containing nickel oxide films, relative to nickel oxide containing both Al and Li, in terms of switching kinetics, bleached-state transparency, and optical modulation. The improved performance is attributed to the decreased crystallinity and increased nickel oxidation state in aluminum-containing nickel oxide electrochromic films. The present study provides an alternative route to improve electrochromic performance for nickel oxide materials. PMID:23249159

  1. Enhanced rate performance of molybdenum-doped spinel LiNi0.5Mn1.5O4 cathode materials for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Yi, Ting-Feng; Chen, Bin; Zhu, Yan-Rong; Li, Xiao-Ya; Zhu, Rong-Sun

    2014-02-01

    The Mo-doped LiNi0.5Mn1.5O4 cathodes are successfully synthesized by citric acid-assisted sol-gel method. The result demonstrates that the Mo-doped LiMn1.4Ni0.55Mo0.05O4 cathodes present the improved electrochemical performance over pristine LiNi0.5Mn1.5O4. At the 2 C rate after 80 cycles, the discharge capacities are 68.5 mAh g-1 for the pristine LiNi0.5Mn1.5O4 material (53.9% of the capacity at 0.1 C), 107.4 mAh g-1 for the LiMn1.425Ni0.5Mo0.05O4 material (82.1% at 0.1 C), and 122.7 mAh g-1 for the LiMn1.4Ni0.55Mo0.05O4 material (90.5% at 0.1 C). Mo-doping is favorable for reducing the electrode polarization, suggesting that Mo-doped LiNi0.5Mn1.5O4 electrodes have faster lithium insertion/extraction kinetics during cycling. Mo-doped LiNi0.5Mn1.5O4 electrodes show lower charge-transfer resistance and higher lithium diffusion coefficients. In addition, LiMn1.4Ni0.55Mo0.05O4 cathode exhibits the smallest particle size, the lowest charge-transfer resistance and the highest lithium diffusion coefficient among all samples, indicating that it has a high reversibility and good rate capability.

  2. Enhancing the photoelectrochemical water splitting characteristics of titanium and tungsten oxide based materials via doping and sensitization

    NASA Astrophysics Data System (ADS)

    Gakhar, Ruchi

    To better utilize solar energy for clean energy production, efforts are needed to overcome the natural diurnal variation and the diffuse nature of sunlight. Photoelectrochemical (PEC) hydrogen generation by water splitting is a promising approach to harvest solar energy. Hydrogen gas is a clean and high energy capacity fuel. However, the solar-to-hydrogen conversion efficiency is determined mainly by the properties of the materials employed as photoanodes. Improving the power-conversion efficiency of PEC water splitting requires the design of inexpensive and efficient photoanodes that have strong visible light absorption, fast charge separation, and lower charge recombination rate. In the present study, PEC characteristics of various semiconducting photoelectrodes such as TiO2, WO3 and CuWO4 were investigated. Due to the inherent wide gap, such metal oxides absorb only ultraviolet radiation. Since ultraviolet radiation only composes of 4% of the sun's spectrum, the wide band gap results in lower charge collection and efficiency. Thusto improve optical absorption and charge separation, it is necessary to modify the band gap with low band gap materials.The two approaches followed for modification of band gap are doping and sensitization. Here, TiO2 and WO3 based photoanodes were sensitized with ternary quatum dots, while doping was the primary method utilized to investigate the modification of the band gap of CuWO4. The first part of this dissertation reports the synthesis of ternary quantum dot - sensitized titania nanotube array photoelectrodes. Ternary quantum dots with varying band gaps and composition (MnCdSe, ZnCdSe and CdSSe) were tethered to the surface of TiO2 nanotubes using succcessive ionic layer adsorption and reaction (SILAR) technique. The stoichiometry of ternary quantum dots was estimated to beMn0.095Cd0.95Se, Zn0.16Cd0.84Se and CdS0.54Se0.46. The effect of varying number of sensitization cycles and annealing temperature on optical and

  3. Rare-earth-doped materials with application to optical signal processing, quantum information science, and medical imaging technology

    NASA Astrophysics Data System (ADS)

    Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.

    2012-02-01

    Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.

  4. Gd-doped BiFeO3 nanoparticles - A novel material for highly efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lotey, Gurmeet Singh; Verma, N. K.

    2013-06-01

    This communication reports a novel idea on dye-sensitized solar cells (DSSCs) fabricated using Gd-doped BiFeO3 nanoparticles with particle size between 26 and 30 nm. The effect of Gd-doping and smaller size of synthesized nanoparticles on the structural, morphological, optical and photo-electrochemical properties have been investigated. The high energy-conversion efficiency, 3.85%, has been achieved for 12% Gd-doped BiFeO3 DSSCs, which is more than 100% higher than the undoped BiFeO3. The possible origin of the observed performance of DSSCs has been explained on the basis of smaller size of the synthesized nanoparticles, doping of Gd and structural transformation with doping in BiFeO3.

  5. Optimizing the Binding Energy of Hydrogen on Nanostructured Carbon Materials through Structure Control and Chemical Doping

    SciTech Connect

    Jie Liu

    2011-02-01

    The DOE Hydrogen Sorption Center of Excellence (HSCoE) was formed in 2005 to develop materials for hydrogen storage systems to be used in light-duty vehicles. The HSCoE and two related centers of excellence were created as follow-on activities to the DOE Office of Energy Efficiency and Renewable Energy’s (EERE’s) Hydrogen Storage Grand Challenge Solicitation issued in FY 2003. The Hydrogen Sorption Center of Excellence (HSCoE) focuses on developing high-capacity sorbents with the goal to operate at temperatures and pressures approaching ambient and be efficiently and quickly charged in the tank with minimal energy requirements and penalties to the hydrogen fuel infrastructure. The work was directed at overcoming barriers to achieving DOE system goals and identifying pathways to meet the hydrogen storage system targets. To ensure that the development activities were performed as efficiently as possible, the HSCoE formed complementary, focused development clusters based on the following four sorption-based hydrogen storage mechanisms: 1. Physisorption on high specific surface area and nominally single element materials 2. Enhanced H2 binding in Substituted/heterogeneous materials 3. Strong and/or multiple H2 binding from coordinated but electronically unsatruated metal centers 4. Weak Chemisorption/Spillover. As a member of the team, our group at Duke studied the synthesis of various carbon-based materials, including carbon nanotubes and microporous carbon materials with controlled porosity. We worked closely with other team members to study the effect of pore size on the binding energy of hydrogen to the carbon –based materials. Our initial project focus was on the synthesis and purification of small diameter, single-walled carbon nanotubes (SWNTs) with well-controlled diameters for the study of their hydrogen storage properties as a function of diameters. We developed a chemical vapor deposition method that synthesized gram quantities of carbon nanotubes with

  6. Design of low work function materials using alkali metal-doped transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Kim, Sol; Lee, Man Young; Lee, Seong; Jhi, Seung-Hoon

    Engineering the work function is a key issue in surface science. Particularly, discovering the materials that have work functions less than 1eV is essential for efficient thermionic energy conversion. The lowest work function of materials, reported so far, is in a range of about 1eV. To design low work function materials, we chose MX2 (M =Mo and W; X =S, Se and Te) as substrates and alkali metals (Li, Na, K, Rb and Cs) as dopants, and studied their electronic structures, charge transfer, induced surface dipole moment, and work function using first-principles calculations. We found that the charge transfer from alkali metals to MX2 substrates decreases as the atomic radius of alkali metals increases. Regardless of the amount of the charge transfer, K on WTe2 exhibits the biggest surface dipole moment, which consequently makes the surface work function the lowest. Also, we found a correlation between the binding distance and the work function.

  7. Determination of Judd-Ofelt intensity parameters from the excitation spectra for rare-earth doped luminescent materials.

    PubMed

    Luo, Wenqin; Liao, Jinsheng; Li, Renfu; Chen, Xueyuan

    2010-04-01

    By utilizing the proportional relationship between the excitation and absorption spectra for some special excited multiplets of rare-earth (RE) ions that are followed by a very fast nonradiative relaxation to the monitored level, we propose a new approach to determine the Judd-Ofelt (JO) intensity parameters that are crucial to the evaluation of laser and luminescent materials via excitation spectra. To validate this approach, the JO parameters of NaGd(WO(4))(2) : Er(3+) and YLiF(4) : Nd(3+) crystals are calculated and compared through both the excitation and absorption spectra. The JO parameters derived from this approach are in good agreement with that determined from the conventional method (absorption spectra). Furthermore, the JO intensity parameters of Y(2)O(3) : Er(3+) nanocrystals are derived from the excitation spectra by taking into account the nano-size effects, which are comparable to the values of the crystal counterpart. The proposed approach is of particular importance for those powders or nanophosphors with low RE doping concentration that their quantitative absorption spectra are difficult to measure.

  8. Excellent deep-blue emitting materials based on anthracene derivatives for non-doped organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Liu, Wei; Xu, Chen; Ji, Baoming; Zheng, Caijun; Zhang, Xiaohong

    2016-08-01

    Two deep-blue emitting materials 2-tert-butyl-9,10-bis(3,5-diphenylphenyl)anthracene (An-1) and 2-tert-butyl-9,10-bis(3,5-diphenylbiphenyl-4‧-yl)anthracene (An-2) were successfully synthesized by the Pd-catalyzed Suzuki coupling reaction. Both of these compounds have high thermal stabilities and show strong deep-blue emission as solid-state film as well as in n-hexane solution. Two non-doped electroluminescent devices employing An-1 and An-2 as emitting layers were fabricated by vacuum vapor deposition. These devices exhibited highly efficient and stable deep-blue emission with high color purity. The CIE coordinate and maximum EQE of An-1 based device are 4.2% and (0.16, 0.06), respectively. Device based on An-2 achieved a maximum EQE of 4.0% and a CIE coordinate of (0.16, 0.10).

  9. Magnetism tuned by the charge states of defects in bulk C-doped SnO2 materials.

    PubMed

    Lu, Ying-Bo; Ling, Z C; Cong, Wei-Yan; Zhang, Peng

    2015-10-21

    To analyze the controversial conclusions on the magnetism of C-doped SnO2 (SnO2:C) bulk materials between theoretical calculations and experimental observations, we propose the critical role of the charge states of defects in the geometric structures and magnetism, and carry out a series of first principle calculations. By changing the charge states, we can influence Bader charge distributions and atomic orbital occupancies in bulk SnO2:C systems, which consequently conduct magnetism. In all charged SnO2:C supercells, C-2px/py/pz electron occupancies are significantly changed by the charge self-regulation, and thus they make the C-2p orbitals spin polarized, which contribute to the dominant magnetic moment of the system. When the concentration of C dopant in the SnO2 supercell increases, the charge redistribution assigns extra electrons averagely to each dopant, and thus effectively modulates the magnetism. These findings provide an experimentally viable way for controlling the magnetism in these systems.

  10. Simultaneous observation of up/down conversion photoluminescence and colossal permittivity properties in (Er+Nb) co-doped TiO2 materials

    NASA Astrophysics Data System (ADS)

    Tse, Mei-Yan; Tsang, Ming-Kiu; Wong, Yuen-Ting; Chan, Yi-Lok; Hao, Jianhua

    2016-07-01

    We have investigated the optical and dielectric properties of rutile TiO2 doped with Nb and Er, i.e., (Er0.5Nb0.5)xTi1-xO2. The up/downconversion photoluminescence was observed in the visible and near-infrared region from the materials under 980 nm laser diode excitation. The upconversion emissions are attributed to the energy transfer between Er ions in the excited states. Moreover, the dielectric measurements indicate that the fabricated materials simultaneously present colossal permittivity properties with relatively low dielectric loss. Our work demonstrates the coexistence of both interesting luminescence and attractive dielectric characteristics in (Er+Nb) co-doped TiO2, showing the potential for multifunctional applications.

  11. Alternative p-doped hole transport material for low operating voltage and high efficiency organic light-emitting diodes

    SciTech Connect

    Murawski, Caroline Fuchs, Cornelius; Hofmann, Simone; Leo, Karl; Gather, Malte C.

    2014-09-15

    We investigate the properties of N,N′-[(Diphenyl-N,N′-bis)9,9,-dimethyl-fluoren-2-yl]-benzidine (BF-DPB) as hole transport material (HTL) in organic light-emitting diodes (OLEDs) and compare BF-DPB to the commonly used HTLs N,N,N′,N′-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD), 2,2′,7,7′-tetrakis(N,N′-di-p-methylphenylamino)-9,9′-spirobifluorene (Spiro-TTB), and N,N′-di(naphtalene-1-yl)-N,N′-diphenylbenzidine (NPB). The influence of 2,2′-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6-TCNNQ p-dopant) concentration in BF-DPB on the operation voltage and efficiency of red and green phosphorescent OLEDs is studied; best results are achieved at 4 wt. % doping. Without any light extraction structure, BF-DPB based red (green) OLEDs achieve a luminous efficacy of 35 .1 lm/W (74 .0 lm/W) at 1000 cd/m{sup 2} and reach a very high brightness of 10 000 cd/m{sup 2} at a very low voltage of 3.2 V (3.1 V). We attribute this exceptionally low driving voltage to the high ionization potential of BF-DPB which enables more efficient hole injection from BF-DPB to the adjacent electron blocking layer. The high efficiency and low driving voltage lead to a significantly lower luminous efficacy roll-off compared to the other compounds and render BF-DPB an excellent HTL material for highly efficient OLEDs.

  12. Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Chen, Xi'an; Chen, Xiaohua; Xu, Xin; Yang, Zhi; Liu, Zheng; Zhang, Lijie; Xu, Xiangju; Chen, Ying; Huang, Shaoming

    2014-10-01

    Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and much better methanol tolerance and durability, and to be a supercapacitor electrode material with a high specific capacitance of 343 F g-1, good rate capability and excellent cycling stability in aqueous electrolytes. The impressive performance for ORR and supercapacitors is believed to be due to the synergistic effect caused by sulfur-doping enhancing the electrochemical activity and 3D porous hollow nanosphere framework structures facilitating ion diffusion and electronic transfer.Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and

  13. Ce(3+)/Yb(3+)/Er(3+) triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers.

    PubMed

    Chu, Yushi; Ren, Jing; Zhang, Jianzhong; Peng, Gangding; Yang, Jun; Wang, Pengfei; Yuan, Libo

    2016-01-01

    Erbium doped bismuth borosilicate (BBS) glasses, possessing the broadest 1.55 μm near infrared (NIR) emission band among oxide glasses, stand out as excellent fiber material for optical fiber amplifiers. In this work, we demonstrate that both broadened and enhanced NIR emission of Er(3+) can be obtained by sensibly combining the effects such as mixed glass former effect, phonon-assisted energy transfer (PAET) and de-excitation effect induced by codopant. Specially, by codoping CeO2 in a controlled manner, it leads to not only much improved optical quality of the glasses, enhanced NIR emission, but also significantly suppressed energy transfer up-conversion (ETU) luminescence which is detrimental to the NIR emission. Cerium incorporated in the glasses exists overwhelmingly as the trivalent oxidation state Ce(3+) and its effects on the luminescence properties of Er(3+) are discussed. Judd-Ofelt analysis is used to evaluate gain amplification of the glasses. The result indicates that Ce(3+)/Yb(3+)/Er(3+) triply doped BBS glasses are promising candidate for erbium doped fiber amplifiers. The strategy described here can be readily extended to other rare-earth ions (REs) to improve the performance of REs doped fiber lasers and amplifiers. PMID:27646191

  14. Ce(3+)/Yb(3+)/Er(3+) triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers.

    PubMed

    Chu, Yushi; Ren, Jing; Zhang, Jianzhong; Peng, Gangding; Yang, Jun; Wang, Pengfei; Yuan, Libo

    2016-09-20

    Erbium doped bismuth borosilicate (BBS) glasses, possessing the broadest 1.55 μm near infrared (NIR) emission band among oxide glasses, stand out as excellent fiber material for optical fiber amplifiers. In this work, we demonstrate that both broadened and enhanced NIR emission of Er(3+) can be obtained by sensibly combining the effects such as mixed glass former effect, phonon-assisted energy transfer (PAET) and de-excitation effect induced by codopant. Specially, by codoping CeO2 in a controlled manner, it leads to not only much improved optical quality of the glasses, enhanced NIR emission, but also significantly suppressed energy transfer up-conversion (ETU) luminescence which is detrimental to the NIR emission. Cerium incorporated in the glasses exists overwhelmingly as the trivalent oxidation state Ce(3+) and its effects on the luminescence properties of Er(3+) are discussed. Judd-Ofelt analysis is used to evaluate gain amplification of the glasses. The result indicates that Ce(3+)/Yb(3+)/Er(3+) triply doped BBS glasses are promising candidate for erbium doped fiber amplifiers. The strategy described here can be readily extended to other rare-earth ions (REs) to improve the performance of REs doped fiber lasers and amplifiers.

  15. Porous γ-Fe2O3 spheres coated with N-doped carbon from polydopamine as Li-ion battery anode materials.

    PubMed

    Liang, Jin; Xiao, Chunhui; Chen, Xu; Gao, Ruixia; Ding, Shujiang

    2016-05-27

    Nitrogen doping has been demonstrated to play a crucial role in controlling the electronic properties of carbon-based composites. In this paper, nitrogen-doped carbon coated γ-Fe2O3 (NC@γ-Fe2O3) composite was successfully fabricated through a facile and high-yield strategy, including a hydrothermal reaction process for porous γ-Fe2O3 and a subsequent coating of nitrogen-doped carbon by using dopamine as precursor. The resulting composite combines the superior properties of porous Fe2O3 and heteroatom-doped conductive carbon layer derived from polydopamine. When used as the anode material of the lithium-ion battery, the as-prepared NC@γ-Fe2O3 composite exhibits excellent lithium storage properties in terms of high capacity, stable cycling performance (869.6 mAh g(-1) at the current density of 0.5 A g(-1) after 150 cycles) and excellent rate capability.

  16. Porous γ-Fe2O3 spheres coated with N-doped carbon from polydopamine as Li-ion battery anode materials

    NASA Astrophysics Data System (ADS)

    Liang, Jin; Xiao, Chunhui; Chen, Xu; Gao, Ruixia; Ding, Shujiang

    2016-05-01

    Nitrogen doping has been demonstrated to play a crucial role in controlling the electronic properties of carbon-based composites. In this paper, nitrogen-doped carbon coated γ-Fe2O3 (NC@γ-Fe2O3) composite was successfully fabricated through a facile and high-yield strategy, including a hydrothermal reaction process for porous γ-Fe2O3 and a subsequent coating of nitrogen-doped carbon by using dopamine as precursor. The resulting composite combines the superior properties of porous Fe2O3 and heteroatom-doped conductive carbon layer derived from polydopamine. When used as the anode material of the lithium-ion battery, the as-prepared NC@γ-Fe2O3 composite exhibits excellent lithium storage properties in terms of high capacity, stable cycling performance (869.6 mAh g‑1 at the current density of 0.5 A g‑1 after 150 cycles) and excellent rate capability.

  17. Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers

    PubMed Central

    Chu, Yushi; Ren, Jing; Zhang, Jianzhong; Peng, Gangding; Yang, Jun; Wang, Pengfei; Yuan, Libo

    2016-01-01

    Erbium doped bismuth borosilicate (BBS) glasses, possessing the broadest 1.55 μm near infrared (NIR) emission band among oxide glasses, stand out as excellent fiber material for optical fiber amplifiers. In this work, we demonstrate that both broadened and enhanced NIR emission of Er3+ can be obtained by sensibly combining the effects such as mixed glass former effect, phonon-assisted energy transfer (PAET) and de-excitation effect induced by codopant. Specially, by codoping CeO2 in a controlled manner, it leads to not only much improved optical quality of the glasses, enhanced NIR emission, but also significantly suppressed energy transfer up-conversion (ETU) luminescence which is detrimental to the NIR emission. Cerium incorporated in the glasses exists overwhelmingly as the trivalent oxidation state Ce3+ and its effects on the luminescence properties of Er3+ are discussed. Judd-Ofelt analysis is used to evaluate gain amplification of the glasses. The result indicates that Ce3+/Yb3+/Er3+ triply doped BBS glasses are promising candidate for erbium doped fiber amplifiers. The strategy described here can be readily extended to other rare-earth ions (REs) to improve the performance of REs doped fiber lasers and amplifiers. PMID:27646191

  18. Phosphorus and nitrogen dual-doped few-layered porous graphene: a high-performance anode material for lithium-ion batteries.

    PubMed

    Ma, Xinlong; Ning, Guoqing; Qi, Chuanlei; Xu, Chenggen; Gao, Jinsen

    2014-08-27

    Few-layered graphene networks composed of phosphorus and nitrogen dual-doped porous graphene (PNG) are synthesized via a MgO-templated chemical vapor deposition (CVD) using (NH4)3PO4 as N and P source. P and N atoms have been substitutionally doped in graphene networks since the doping takes place at the same time with the graphene growth in the CVD process. Raman spectra show that the amount of defects or disorders increases after P and N atoms are incorporated into graphene frameworks. The doping levels of P and N measured by X-ray photoelectron spectroscopy are 0.6 and 2.6 at %, respectively. As anodes for Li ion batteries (LIBs), the PNG electrode exhibits high reversible capacity (2250 mA h g(-1) at the current density of 50 mA g(-1)), excellent rate capability (750 mA h g(-1) at 1000 mA g(-1)), and satisfactory cycling stability (no capacity decay after 1500 cycles), showing much enhanced electrode performance as compared to the undoped few-layered porous graphene. Our results show that the PNG is a promising candidate for anode materials in high-rate LIBs.

  19. VUV spectroscopy of nominally pure and rare-earth ions doped LiCaAIF6 single crystals as promising materials for 157 nm photolithography

    NASA Astrophysics Data System (ADS)

    Cefalas, Alkiviadis C.; Sarantopoulou, Evangelia; Kollia, Z.; Abdulsabirov, R. Y.; Korableva, S. L.; Naumov, A. K.; Semashko, V. V.; Kobe, S.; McGuiness, P. J.

    2002-07-01

    Recently it was found that birefringence is induced in CaF2 crystals when they are illuminated with laser light at 157 nm. Taking into consideration that CaF2 is the only optical material used in 157 nm photolithography today, the possibility to use new wide band gap fluoride crystals as optical elements for 157 nm photolithography, even those of non-cubic symmetry, should be considered. Additionally fluoride dielectric crystals with wide band gaps doped with trivalent rare-earth (RE) ions can be used as passive or active optical elements int eh VUV. For doped crystals, applications depend on the structure of the energy level pattern of the 4fn-15d electronic configuration and RE ion concentration. In this work we are exploiting the use of wide band gap fluoride dielectric crystals doped with RE ions. The laser induced fluorescence spectrum at 157 nm, and the absorption spectra of the LiCaAlF6 crystals, pure and doped with RE ions, were investigated in the VUV region of the spectrum. A new m4tehod for monitoring RE concentration in wide band gap fluoride crystals, that is based on vibrating sample magnetometer measurement is presented as well.

  20. Aero dopes and varnishes

    NASA Technical Reports Server (NTRS)

    Britton, H T S

    1927-01-01

    Before proceeding to discuss the preparation of dope solutions, it will be necessary to consider some of the essential properties which should be possessed of a dope film, deposited in and on the surface of an aero fabric. The first is that it should tighten the material and second it should withstand weathering.

  1. Convenient and controllable preparation of a novel uniformly nitrogen doped porous graphene/Pt nanoflower material and its highly-efficient electrochemical biosensing.

    PubMed

    Ren, Shuang; Wang, Huan; Zhang, Yufan; Sun, Yuena; Li, Lanfen; Zhang, Hongyi; Shi, Zhihong; Li, Mingjie; Li, Meng

    2016-04-25

    By employing dopamine as a nitrogen source and reducing agent, the block copolymer P123 as a pore forming agent, and graphene oxide as a carbon precursor, we present, for the first time, a convenient and controllable approach to the preparation of a novel uniformly nitrogen doped porous graphene (N-PGR) material. Using the prepared N-PGR as the supporting material, a novel nitrogen doped porous graphene/Pt nanoflower material (Pt/N-PGR) was obtained by a green and simple method. The characterization results of scanning electron microscopy (SEM), element mapping, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) demonstrate that Pt nanoflowers are uniformly dispersed on nitrogen doped porous graphene. Electrochemical measurements show that Pt/N-PGR-900/GCE exhibits improved electrocatalytic activity towards H2O2 reduction and glucose oxidation. Linear responses are found for H2O2 and glucose in the range of 0.5-40 326 μM and 0.5-133.5 mM with the detection limit (S/N = 3) of 0.2 μM and 0.05 mM, respectively. In addition, Pt/N-PGR-900/GCE exhibits high sensitivity and good anti-interference ability. The superior catalytic activity and selectivity make Pt/N-PGR a promising nanomaterial for application in electrochemical biosensing studies.

  2. The electrical and optical studies of the KC1 doped PVA polymer electrolyte materials

    NASA Astrophysics Data System (ADS)

    Kamani, K. K.; Madhu, B. J.; Nethravathi, M.; Ashwini, S. T.

    2013-06-01

    In the recent years the greatest attention has been paid to determine the conductivity of different concentration solutions conducting polymers exhibit a wide range of novel electrochemical and chemical properties that has led to their use in a diverse array of applications including sensors PVA is fully degradable and dissolves quickly. PVA biodegradation is believed to be due to a random chain cleavage process. PVA molecular matrix and KC1 solutions were prepared with distilled water as solvent. The saturated solutions electric conductivity, pH values reveals the increase of ionic concentrations with increase of dopant weight fractions. Dielectric properties and UV visible studies of PVA and KC1 polymer complex experimental observations suggest the variations in the ionic nature electrolyte. Material. We are reporting the conducting properties of the PVA and KC1 polymer matrix and electrical nature of the PVA complex structure as electrolyte.

  3. Partially Hydrogenated Graphene Materials Exhibit High Electrocatalytic Activities Related to Unintentional Doping with Metallic Impurities.

    PubMed

    Jankovský, Ondřej; Libánská, Alena; Bouša, Daniel; Sedmidubský, David; Matějková, Stanislava; Sofer, Zdeněk

    2016-06-13

    Partially hydrogenated graphene materials, synthesized by the chemical reduction/hydrogenation of two different graphene oxides using zinc powder in acidic environment or aluminum powder in alkaline environment, exhibit high electrocatalytic activities, as well as electrochemical sensing properties. The starting graphene oxides and the resultant hydrogenated graphenes were characterized in detail. Their electrocatalytic activity was examined in the oxygen reduction reaction, whereas sensing properties towards explosives were tested by using picric acid as a redox probe. Findings indicate that the high electrocatalytic performance originates not only from the hydrogenation of graphene, but also from unintentional contamination of graphene with manganese and other metals during synthesis. A careful evaluation of the obtained data and a detailed chemical analysis are necessary to identify the origin of this anomalous electrocatalytic activity. PMID:27167069

  4. Temperature dependent measurement of absorption and emission cross sections for various Yb3+ doped laser materials

    NASA Astrophysics Data System (ADS)

    Körner, J.; Hein, J.; Kahle, M.; Liebetrau, H.; Lenski, M.; Kaluza, M.; Loeser, M.; Siebold, M.

    2011-06-01

    For laser performance simulations, optical properties of applied active materials have to be exactly known. Here we report on temperature dependent emission and absorption cross section measurements for Yb:YAG, Yb:CaF2 and Yb:FP15-glass. The temperature of the samples was aligned in steps of 20 K between 100 K and room temperature with a liquid nitrogen driven cryostat. Absorption spectra were obtained with a fiber coupled white light source and fluorescence spectra by excitation with a fiber coupled 10W laser diode at 970 nm. All spectral measurements were performed with a scanning spectrum analyzer, providing a spectral resolution down to 0.05 nm. By applying the McCumber relation in combination with the Fuchtbauer-Ladenburg method, we were able to obtain a valid emission cross section over the whole range of interest from the measured data.

  5. Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries.

    PubMed

    Wang, Shuangyin; Zhao, Xinsheng; Cochell, Thomas; Manthiram, Arumugam

    2012-08-16

    Nitrogen-doped carbon nanotubes have been grown, for the first time, on graphite felt (N-CNT/GF) by a chemical vapor deposition approach and examined as an advanced electrode for vanadium redox flow batteries (VRFBs). The unique porous structure and nitrogen doping of N-CNT/GF with increased surface area enhances the battery performance significantly. The enriched porous structure of N-CNTs on graphite felt could potentially facilitate the diffusion of electrolyte, while the N-doping could significantly contribute to the enhanced electrode performance. Specifically, the N-doping (i) modifies the electronic properties of CNT and thereby alters the chemisorption characteristics of the vanadium ions, (ii) generates defect sites that are electrochemically more active, (iii) increases the oxygen species on CNT surface, which is a key factor influencing the VRFB performance, and (iv) makes the N-CNT electrochemically more accessible than the CNT. PMID:26295765

  6. Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries.

    PubMed

    Wang, Shuangyin; Zhao, Xinsheng; Cochell, Thomas; Manthiram, Arumugam

    2012-08-16

    Nitrogen-doped carbon nanotubes have been grown, for the first time, on graphite felt (N-CNT/GF) by a chemical vapor deposition approach and examined as an advanced electrode for vanadium redox flow batteries (VRFBs). The unique porous structure and nitrogen doping of N-CNT/GF with increased surface area enhances the battery performance significantly. The enriched porous structure of N-CNTs on graphite felt could potentially facilitate the diffusion of electrolyte, while the N-doping could significantly contribute to the enhanced electrode performance. Specifically, the N-doping (i) modifies the electronic properties of CNT and thereby alters the chemisorption characteristics of the vanadium ions, (ii) generates defect sites that are electrochemically more active, (iii) increases the oxygen species on CNT surface, which is a key factor influencing the VRFB performance, and (iv) makes the N-CNT electrochemically more accessible than the CNT.

  7. The preparation of uranium-doped glass reference materials for environmental measurements

    NASA Astrophysics Data System (ADS)

    Raptis, K.; Ingelbrecht, C.; Wellum, R.; Alonso, A.; De Bolle, W.; Perrin, R.

    2002-03-01

    Seven different uranium glass powders containing 5 mass% uranium with 235U abundances from natural to highly enriched have been prepared for the IRMM support programme to the International Atomic Energy Agency (IAEA) and for the IRMM external NUSIMEP quality control programme (Nuclear Signatures Interlaboratory Measurement Evaluation Programme). The particles will be primarily used, blended with (inactive) matrix glass powder in various ratios to simulate environmental samples containing "hot" particles in order to assess the performance of various separation and measurement techniques. High-purity borosilicate glass was prepared by blending of powders, melting and grinding by ball milling and jet milling to a powder of about 12 μm. A quantity of this glass was then blended with U 3O 8, melted and milled to powder. Laser diffraction measurements were made to ensure that the particle size distribution of the uranium glass matched that of the matrix glass in order to ensure homogeneous blending. The final yield was 30-40 g of each uranium glass and 1 kg of matrix glass. The glasses have been certified as reference materials for isotope abundances of uranium.

  8. Oxygen-doped porous silicon carbide spheres as electrode materials for supercapacitors.

    PubMed

    Kim, Myeongjin; Ju, Hyun; Kim, Jooheon

    2016-01-28

    Oxygen-containing functional groups were introduced onto the surface of the micro- and meso-porous silicon carbide sphere (MMPSiC) in order to investigate the relationship between the electric double layer properties and pseudo-capacitive properties; the degree of oxidation of MMPSiC was also optimized. Although the oxygenated surface functionalities can lead to a decrease in the surface area of MMPSiC, the oxygen functional groups attached to the external surface can participate in the redox reaction, resulting in the enhancement of the total super-capacitive performance. The MMPSiC electrode oxidized for 24 h exhibits a high charge storage capacity with a specific capacitance of 301.1 F g(-1) at a scan rate of 5 mV s(-1), with 86.8% rate performance from 5 to 500 mV s(-1) in 1 M KCl aqueous electrolyte. This outstanding capacitive performance of the MMPSiC electrode oxidized for 24 h can be attributed to the harmonious synergistic effect between the electric double layer capacitive contribution of MMPSiC and the pseudo-capacitive contribution of the oxygen-containing functional groups. These encouraging results demonstrate that the MMPSiC electrode oxidized for 24 h is a promising candidate for high performance electrode materials for supercapacitors. PMID:26752728

  9. Towards molecular doping effect on the electronic properties of two-dimensional layered materials

    NASA Astrophysics Data System (ADS)

    Arramel; Wang, Q.; Zheng, Y.; Zhang, W.; Wee, A. T. S.

    2016-08-01

    In recent advancements of an atomically-thick, flat, and flexible two-dimensional (2D) material has attracted tremendous interest. Graphene and 2D layered semiconductors such as transition-metal dichalcogenides (TMDs) pave the way on the exploration of their unique layer-number dependent electronic and optical properties. The latter have a promising future on the microelectronics due to their sizeable bandgaps, i.e., the crossover from indirect-direct bandgap transition occurs as the thickness of TMDs is decreased to a monolayer. In this work, we systematically investigated the optimum growth parameter of chemical vapor deposition of MoS2 and WSe2, respectively. It turns out that the temperature and the duration growth plays role to produce a large area of TMDs monolayers. Our studies suggest that a well-controlled high quality of TMDs could serves as template and interlayer in the TMD-organic heterointerfaces. Thus it is potentially an attractive approach towards a wide-ranging application in optoelectronics, nanoelectronics and energy-harvesting applications.

  10. Magnetostructural transition behavior in Fe-doped Heusler Mn-Ni-In ribbon materials

    NASA Astrophysics Data System (ADS)

    Li, Hongwei; Fang, Yue; Feng, Shutong; Zhai, Qijie; Luo, Zhiping; Zheng, Hongxing

    2016-11-01

    In the present work, we investigated magnetostructural transition behavior in Mn-rich Heusler Mn50-xFexNi41In9 (x=0, 1, 2, 3 at%) ribbon materials. Microstructural observations showed that substituting Mn with Fe in Mn50Ni41In9 led to striking grain refinement from ∼50 μm to 5-10 μm, and formation of a secondary phase when Fe content was increased up to 2 at%. Differential scanning calorimetric and thermomagnetic measurements indicated that a paramagnetic→ferromagnetic transition in austenite occurred first, followed with a weak-magnetic martensitic transition upon cooling for the Mn50-xFexNi41In9 (x=0, 1, 2). In case of Mn47Fe3Ni41In9, the martensitic transformation happened between paramagnetic austenite and weak-magnetic martensite, without the presence of the magnetic transition in austenite. The effective refrigeration capacity of Mn49Fe1Ni41In9 reached 137.1 J kg-1 under a magnetic field change of 30 kOe.

  11. Thermoelectric and mechanical properties of multi-walled carbon nanotube doped Bi0.4Sb1.6Te3 thermoelectric material

    NASA Astrophysics Data System (ADS)

    Ren, Fei; Wang, Hsin; Menchhofer, Paul A.; Kiggans, James O.

    2013-11-01

    Since many thermoelectrics are brittle in nature with low mechanical strength, improving their mechanical properties is important to fabricate devices such as thermoelectric power generators and coolers. In this work, multiwalled carbon nanotubes (CNTs) were incorporated into polycrystalline Bi0.4Sb1.6Te3 through powder processing, which increased the flexural strength from 32 MPa to 90 MPa. Electrical and thermal conductivities were both reduced in the CNT containing materials, leading to unchanged figure of merit. Dynamic Young's and shear moduli of the composites were lower than the base material, while the Poisson's ratio was not affected by CNT doping.

  12. Improved electrochemical performance of nitrogen doped TiO2-B nanowires as anode materials for Li-ion batteries.

    PubMed

    Zhang, Yongquan; Fu, Qiang; Xu, Qiaoling; Yan, Xiao; Zhang, Rongyu; Guo, Zhendong; Du, Fei; Wei, Yingjin; Zhang, Dong; Chen, Gang

    2015-07-28

    N-doped TiO2-B nanowires are prepared by the solvothermal method using TiN nanoparticles as the starting material. X-ray photoelectron spectroscopy shows that the N dopants preferentially occupy the interstitial sites of TiO2-B up to a content of ∼0.55 at%. Above this critical value, the N dopants will substitute the oxygen atoms which improve the electronic conductivity of TiO2-B. The maximum proportion of substituted-N in the TiO2-B nanowires is ∼1.3 at%. Raman scattering shows that the substituted-N strengthens the Ti(1)-O1-Ti(2) and O1-Ti(1)-O3 bonds of TiO2-B. This improves the stability of the corresponding local structures, thus reducing the distortion of the Li(+) diffusion channel along the b-axis of TiO2-B. As a result, the substituted-N has more of an impact on the electrochemical properties of TiO2-B than the interstitial-N does. The TiO2-B nanowires containing substituted-N dopants exhibit a remarkably enhanced electrochemical performance compared to pure TiO2-B. They show a discharge capacity of 153 mA h g(-1) at the 20 C rate with a capacity retention of 76% after 1000 cycles. In addition, they can deliver a discharge capacity of 100 mA h g(-1) at an ultra-high rate of 100 C, indicating their great potential in high power lithium ion batteries.

  13. REACTIVE FORCE FIELDS FOR Y-DOPED BaZrO3 ELECTROLYTE AND NI-ANODE. POTENTIAL CATHODE MATERIALS FOR APPLICATION IN PROTON CERAMIC FUEL CELLS

    SciTech Connect

    Boris Merinov; Adri van Duin; Sossina Haile; William A. Goddard III

    2004-10-30

    Based on quantum mechanical data obtained for the Y-doped BaZrO{sub 3} electrolyte and Ni-anode Reactive Force Field parameters have been developed for further molecular dynamics simulations of the proton diffusion and electrode/electrolyte interfaces. Electronic and atomic structures of different terminations of the (001) BaZrO{sub 3} surface have been studied using first-principles calculations. Several potential cathode materials for the Y-doped BaZrO{sub 3} system were synthesized via glycine nitrate combustion method. Of the five potential cathode materials examined BaZr{sub 0.40}Pr{sub 0.40}Gd{sub 0.20}O{sub 3} and BaZr{sub 0.60}Y{sub 0.20}Co{sub 0.20}O{sub 3} appear to be the most promising for further applications in proton ceramic fuel cells. Fuel cell test of a Y-doped BaZrO{sub 3} thin film using platinum ink for both electrodes have been performed. The obtained results shows that a robust method for fabricating crack-free thin membranes, as well as methods for sealing anode and cathode chambers, have successfully been developed.

  14. A two-dimensional analytical model for channel potential and threshold voltage of short channel dual material gate lightly doped drain MOSFET

    NASA Astrophysics Data System (ADS)

    Shweta, Tripathi

    2014-11-01

    An analytical model for the channel potential and the threshold voltage of the short channel dual-material-gate lightly doped drain (DMG-LDD) metal—oxide—semiconductor field-effect transistor (MOSFET) is presented using the parabolic approximation method. The proposed model takes into account the effects of the LDD region length, the LDD region doping, the lengths of the gate materials and their respective work functions, along with all the major geometrical parameters of the MOSFET. The impact of the LDD region length, the LDD region doping, and the channel length on the channel potential is studied in detail. Furthermore, the threshold voltage of the device is calculated using the minimum middle channel potential, and the result obtained is compared with the DMG MOSFET threshold voltage to show the improvement in the threshold voltage roll-off. It is shown that the DMG-LDD MOSFET structure alleviates the problem of short channel effects (SCEs) and the drain induced barrier lowering (DIBL) more efficiently. The proposed model is verified by comparing the theoretical results with the simulated data obtained by using the commercially available ATLAS™ 2D device simulator.

  15. Multiscale anode materials in lithium ion batteries by combining micro- with nanoparticles: design of mesoporous TiO2 microfibers@nitrogen doped carbon composites

    NASA Astrophysics Data System (ADS)

    Cheng, Wei; Rechberger, Felix; Primc, Darinka; Niederberger, Markus

    2015-08-01

    TiO2 has been considered as a promising anode material for lithium ion batteries. However, its poor rate capability originating from the intrinsically low lithium ion diffusivity and its poor electronic conductivity hampers putting such an application into practice. Both issues can be addressed by nanostructure engineering and conductive surface coating. Herein, we report a template-assisted synthesis of micron sized TiO2 fibers consisting of a mesoporous network of anatase nanoparticles of about 7.5 nm and coated by N doped carbon. In a first step, an amorphous layer of TiO2 was deposited on cobalt silicate nanobelts and subsequently transformed into crystalline anatase nanoparticles by hydrothermal treatment. The N doped carbon coating was realized by in situ polymerization of dopamine on the crystalline TiO2 followed by annealing under N2. After removal of the template, we obtained the final mesoporous TiO2 fibers@N doped carbon composite. Electrochemical tests revealed that the composite electrode exhibited excellent electrochemical properties in terms of specific capacity, rate performance and long term stability.TiO2 has been considered as a promising anode material for lithium ion batteries. However, its poor rate capability originating from the intrinsically low lithium ion diffusivity and its poor electronic conductivity hampers putting such an application into practice. Both issues can be addressed by nanostructure engineering and conductive surface coating. Herein, we report a template-assisted synthesis of micron sized TiO2 fibers consisting of a mesoporous network of anatase nanoparticles of about 7.5 nm and coated by N doped carbon. In a first step, an amorphous layer of TiO2 was deposited on cobalt silicate nanobelts and subsequently transformed into crystalline anatase nanoparticles by hydrothermal treatment. The N doped carbon coating was realized by in situ polymerization of dopamine on the crystalline TiO2 followed by annealing under N2. After

  16. Efficient exfoliation N-doped graphene from N-containing bamboo-like carbon nanotubes for anode materials of Li-ion battery and Na-ion battery

    NASA Astrophysics Data System (ADS)

    Feng, Jian-Min; Dong, Lei; Han, Yan; Li, Xi-Fei; Li, De-Jun

    2015-08-01

    Nanosize N-doped graphene is prepared from N-containing carbon nanotubes (CNTs) by chemical exfoliation. The CNTs adopted for graphene are characterized by a discontinuous wall that consists of nanosize graphite layers, exhibiting a bamboo-like appearance. Take advantage of this characterization, the most time-consuming process of chemical oxidation that involves intercalation in graphene from CNT has been markedly reduced. The reduction in processing time is attributed to the diffusion distance of chemical oxidation intercalation into nanosize graphite composed of a bamboo-like carbon nanotube (BCNT) wall being far less than that of conventional chemical exfoliation into microsize graphite. The as-prepared nanosize N-doped graphene from BCNTs has shown an excellent electrochemical performance for Li-ion battery and Na-ion battery anode materials.

  17. Fabrication of boron-doped carbon fibers by the decomposition of B4C and its excellent rate performance as an anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Huiqi; Ma, Canliang; Yang, Xueteng; Han, Tao; Tao, Zechao; Song, Yan; Liu, Zhanjun; Guo, Quangui; Liu, Lang

    2015-03-01

    A facile route, for the first time, was developed to fabricate boron-doped carbon fibers (BDCFs). Boron was doped into mesosphere pitch-based carbon fibers (CFs) by exposing the CFs in a vapor of boron by the decomposition of boron carbide. The microstructure of BDCFs was characterized by SEM, TEM, XRD and Raman spectroscopy. When used as anode materials for the lithium-ion batteries, BDCFs electrode exhibits an improved performance. Concretely, the specific capacity of BDCFs still had a value of over 400 mAh g-1 after 100 cycles. Moreover, BDCFs exhibits better rate capability and less hysteresis in comparison to the pristine CFs. Such enhanced lithium storage capability can be attributed to the improvement of graphitization properties and the high amount of defects induced by boron.

  18. Core-shell nano-FeS2@N-doped graphene as an advanced cathode material for rechargeable Li-ion batteries.

    PubMed

    Tan, Rui; Yang, Jinlong; Hu, Jiangtao; Wang, Kai; Zhao, Yan; Pan, Feng

    2016-01-18

    We report the formation of core-shell nano-FeS2@N-doped graphene as a novel cathode material and its mechanism for use in rechargeable Li-ion batteries. A benefit of the amount of FeS2 nano-crystals as the core for Li-ion storage with high capacity and using coated N-doped graphene as the shell is that FeS2@N-graphene exhibits a remarkable specific energy (950 W h kg(-1) at 0.15 kW g(-1)) and higher specific power (543 W h kg(-1) at 2.79 kW g(-1)) than commercial rechargeable LIB cathodes, as well as stable cycling performance (∼600 W h kg(-1) at 0.75 kW g(-1) after 400 cycles).

  19. Cu-doped carbon nitride: Bio-inspired synthesis of H2-evolving electrocatalysts using graphitic carbon nitride (g-C3N4) as a host material

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoxin; Silva, Rafael; Goswami, Anandarup; Asefa, Tewodros

    2015-12-01

    Splitting water effectively to produce hydrogen (H2) requires the development of non-noble-metal electrocatalysts that are able to make this reaction feasible and energy efficient. Herein, we present a novel "structure upgrading" synthetic approach for the design and synthesis of bio-inspired hydrogen-evolving electrocatalysts based on earth-abundant elements. Using g-C3N4 - an inexpensive inorganic polymer material - as a host material for copper ions, novel Cu-doped g-C3N4 materials with supramolecular structure, efficient electrocatalytic activity and modest overpotentials for hydrogen evolution reaction (HER) are synthesized. Compared with most single-molecule analogs of hydrogenases that work only in organic media, the supramolecular Cu-doped g-C3N4 materials can serve as heterogeneous electrocatalysts with greater stability and good catalytic activity for HER in aqueous media. The materials afford a current density as high as 10 mA cm-2 at an overpotential as low as 390 mV, and work well in acidic media for, at least, 43 h.

  20. The effect of doping (Mn,B)3O4 materials as protective layers in different metallic interconnects for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Miguel-Pérez, Verónica; Martínez-Amesti, Ana; Nó, María Luisa; Larrañaga, Aitor; Arriortua, María Isabel

    2013-12-01

    Spinel oxides with the general formula of (Mn,B)3O4 (B = Co, Fe) were used as barrier materials between the cathode and the metallic interconnect to reduce the rate of cathode degradation by Cr poisoning. The effect of doping at the B position was investigated terms of microstructure and electrical conductivity to determine its behaviour and effectiveness as a protective layer in contact with three metallic materials (Crofer 22 APU, SS430 and Conicro 4023 W 188). The analysis showed that the use of these materials considerably decreased the reactivity and diffusion of Cr between the cathode and the metallic interconnects. The protective layer doped with Fe at the B position exhibited the least amount of reactivity with the interconnector and cathode materials. The worst results were observed for SS430 cells coated with a protective layer perhaps due to their low Cr content. The Crofer 22 APU and Conicro 4023 W 188 samples exhibited very similar conductivity results in the presence of the MnCo1.9Fe0.1O4 protective coating. As a result, these two material combinations are a promising option for use as bipolar plates in SOFC.

  1. Semiconductor systems utilizing materials that form rectifying junctions in both N and P-type doping regions, whether metallurgically or field induced, and methods of use

    DOEpatents

    Welch, James D.

    2000-01-01

    Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  2. Functionalization of nitrogen-doped carbon nanotubes with gallium to form Ga-CNx-multi-wall carbon nanotube hybrid materials

    NASA Astrophysics Data System (ADS)

    Simmons, Trevor J.; Hashim, Daniel P.; Zhan, Xiaobo; Bravo-Sanchez, Mariela; Hahm, Myung Gwan; López-Luna, Edgar; Linhardt, Robert J.; Ajayan, Pulickel M.; Navarro-Contreras, Hugo; Vidal, Miguel A.

    2012-08-01

    In an effort to combine group III-V semiconductors with carbon nanotubes, a simple solution-based technique for gallium functionalization of nitrogen-doped multi-wall carbon nanotubes has been developed. With an aqueous solution of a gallium salt (GaI3), it was possible to form covalent bonds between the Ga3+ ion and the nitrogen atoms of the doped carbon nanotubes to form a gallium nitride-carbon nanotube hybrid at room temperature. This functionalization was evaluated by x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy

  3. Development of hybrid organic-inorganic surface imprinted Mn-doped ZnS QDs and their application as a sensing material for target proteins.

    PubMed

    Tan, Lei; Huang, Cong; Peng, Rongfei; Tang, Youwen; Li, Weiming

    2014-11-15

    Applying molecular imprinting techniques to the surface of functionalized quantum dots (QDs) allows the preparation of molecularly imprinted polymers (MIPs) with accessible, surface exposed binding sites and excellent optical properties. This paper demonstrates a new strategy for producing such hybrid organic-inorganic imprinted Mn-doped ZnS QDs for specific recognition of bovine hemoglobin. The technique provides surface grafting imprinting in aqueous solutions using amino modified Mn-doped ZnS QDs as supports, acrylamide and methacrylic acid as functional monomers, γ-methacryloxypropyl trimethoxy silane as the grafting agent, and bovine hemoglobin as a template. The amino propyl functional monomer layer directs the selective occurrence of imprinting polymerization at the QDs surface through copolymerization of grafting agents with functional monomers, but also acts as an assistive monomer to drive the template into the formed polymer shells to create effective recognition sites. Using MIP-QDs composites as a fluorescence sensing material, trace amounts of bovine hemoglobin are signaled with high selectivity by emission intensity changes of Mn-doped ZnS QDs, which is embedded into the imprinted polymers.

  4. Multiscale anode materials in lithium ion batteries by combining micro- with nanoparticles: design of mesoporous TiO2 microfibers@nitrogen doped carbon composites.

    PubMed

    Cheng, Wei; Rechberger, Felix; Primc, Darinka; Niederberger, Markus

    2015-09-01

    TiO2 has been considered as a promising anode material for lithium ion batteries. However, its poor rate capability originating from the intrinsically low lithium ion diffusivity and its poor electronic conductivity hampers putting such an application into practice. Both issues can be addressed by nanostructure engineering and conductive surface coating. Herein, we report a template-assisted synthesis of micron sized TiO2 fibers consisting of a mesoporous network of anatase nanoparticles of about 7.5 nm and coated by N doped carbon. In a first step, an amorphous layer of TiO2 was deposited on cobalt silicate nanobelts and subsequently transformed into crystalline anatase nanoparticles by hydrothermal treatment. The N doped carbon coating was realized by in situ polymerization of dopamine on the crystalline TiO2 followed by annealing under N2. After removal of the template, we obtained the final mesoporous TiO2 fibers@N doped carbon composite. Electrochemical tests revealed that the composite electrode exhibited excellent electrochemical properties in terms of specific capacity, rate performance and long term stability.

  5. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Xu, Binghui; Liu, Tiefeng; Liu, Peng; Guo, Chenfeng; Wang, Shuo; Wang, Qiuming; Xiong, Zhigang; Wang, Dianlong; Zhao, X. S.

    2013-12-01

    In this work, mesoporous carbon-coated LiFePO4 nanocrystals further co-modified with graphene and Mg2+ doping (G/LFMP) were synthesized by a modified rheological phase method to improve the speed of lithium storage as well as cycling stability. The mesoporous structure of LiFePO4 nanocrystals was designed and realized by introducing the bead milling technique, which assisted in forming sucrose-pyrolytic carbon nanoparticles as the template for generating mesopores. For comparison purposes, samples modified only with graphene (G/LFP) or Mg2+ doping (LFMP) as well as pure LiFePO4 (LFP) were also prepared and investigated. Microscopic observation and nitrogen sorption analysis have revealed the mesoporous morphologies of the as-prepared composites. X-ray diffraction (XRD) and Rietveld refinement data demonstrated that the Mg-doped LiFePO4 is a single olivine-type phase and well crystallized with shortened Fe-O and P-O bonds and a lengthened Li-O bond, resulting in an enhanced Li+ diffusion velocity. Electrochemical properties have also been investigated after assembling coin cells with the as-prepared composites as the cathode active materials. Remarkably, the G/LFMP composite has exhibited the best electrochemical properties, including fast lithium storage performance and excellent cycle stability. That is because the modification of graphene provided active sites for nuclei, restricted the in situ crystallite growth, increased the electronic conductivity and reduced the interface reaction current density, while, Mg2+ doping improved the intrinsically electronic and ionic transfer properties of LFP crystals. Moreover, in the G/LFMP composite, the graphene component plays the role of ``cushion'' as it could quickly realize capacity response, buffering the impact to LFMP under the conditions of high-rate charging or discharging, which results in a pre-eminent rate capability and cycling stability.In this work, mesoporous carbon-coated LiFePO4 nanocrystals further co

  6. Preliminary Evaluation of Techniques to Fabricate Beryllium, Polyimide, and Ge-doped CH/CD Ablator Materials

    SciTech Connect

    Cook, B; Letts, S; Nikroo, A; Nobile, A; McElfresh, M; Cooley, J; Alexander, D

    2004-11-08

    This report including appendices provides information to complete this deliverable. It summarizes the important features of each ablator material, with particular focus to its usefulness for ignition capsules. More detailed discussions of each ablator type are in the Appendix. Included at the end of each separate discussion in the Appendix is a list of all published work with an ICF focus on that ablator type. This report is organized into Be based and polymer (C) based ablators. We summarize status, outstanding issues, and how we plan to address them. Details are in the Appendix. For Be there are two fabrication routes, one by machining bulk pieces into hemi-shells which are then bonded together, and the other by sputtering Be with Cu dopant onto spherical plastic mandrels to build up a wall. This method allows for radial variation in the Cu dopant concentration, while the machining approach is best suited to a uniform doping level. For plastic, we have already made a down select, eliminating polyimide because its performance as an ablator has been seen to be significantly different from that predicted by simulations. The other polymer, GDP (glow discharge polymer or sometimes called plasma polymer) comes in both a normal (hydrogenated) and deuterated form. There are differences between them (besides the H or D) and these will be detailed. The choice between them will be determined in part by cryogenic measurement of the IR absorption spectrum of DT scheduled to occur in the next few months. An initial list of specifications for ignition targets exists. However these specifications are continuing to evolve. This is due to evolving plans for NIF's deliverable energy and to more refined design simulations. Many requirements are not well specified due to lack of knowledge of the effect on the implosion. These requirements include: grain size and texture, fill hole size, fill tube size, bond joint thickness, allowable porosity (size and number), diameter and wall

  7. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries.

    PubMed

    Wang, Bo; Xu, Binghui; Liu, Tiefeng; Liu, Peng; Guo, Chenfeng; Wang, Shuo; Wang, Qiuming; Xiong, Zhigang; Wang, Dianlong; Zhao, X S

    2014-01-21

    In this work, mesoporous carbon-coated LiFePO4 nanocrystals further co-modified with graphene and Mg(2+) doping (G/LFMP) were synthesized by a modified rheological phase method to improve the speed of lithium storage as well as cycling stability. The mesoporous structure of LiFePO4 nanocrystals was designed and realized by introducing the bead milling technique, which assisted in forming sucrose-pyrolytic carbon nanoparticles as the template for generating mesopores. For comparison purposes, samples modified only with graphene (G/LFP) or Mg(2+) doping (LFMP) as well as pure LiFePO4 (LFP) were also prepared and investigated. Microscopic observation and nitrogen sorption analysis have revealed the mesoporous morphologies of the as-prepared composites. X-ray diffraction (XRD) and Rietveld refinement data demonstrated that the Mg-doped LiFePO4 is a single olivine-type phase and well crystallized with shortened Fe-O and P-O bonds and a lengthened Li-O bond, resulting in an enhanced Li(+) diffusion velocity. Electrochemical properties have also been investigated after assembling coin cells with the as-prepared composites as the cathode active materials. Remarkably, the G/LFMP composite has exhibited the best electrochemical properties, including fast lithium storage performance and excellent cycle stability. That is because the modification of graphene provided active sites for nuclei, restricted the in situ crystallite growth, increased the electronic conductivity and reduced the interface reaction current density, while, Mg(2+) doping improved the intrinsically electronic and ionic transfer properties of LFP crystals. Moreover, in the G/LFMP composite, the graphene component plays the role of "cushion" as it could quickly realize capacity response, buffering the impact to LFMP under the conditions of high-rate charging or discharging, which results in a pre-eminent rate capability and cycling stability.

  8. Preparation, characterization, and properties of PMMA-doped polymer film materials: a study on the effect of terbium ions on luminescence and lifetime enhancement.

    PubMed

    Zhang, Hui-Jie; Fan, Rui-Qing; Wang, Xin-Ming; Wang, Ping; Wang, Yu-Lei; Yang, Yu-Lin

    2015-02-14

    Poly(methylmethacrylate) (PMMA) doped with Tb-based imidazole derivative coordination polymer {[Tb(3)(L)(μ(3)-OH)(7)]·H(2)O}(n) (1) (L = N,N'-bis(acetoxy)biimidazole) was synthesized and its photophysical properties were studied. The L'(L' = N,N'-bis(ethylacetate)biimidazole) ligand was synthesized by an N-alkylation reaction process followed by ester hydrolysis to produce ligand L. Polymer 1 and ligand L' have been characterized by (1)H NMR and IR spectroscopy, elemental analysis, PXRD and X-ray single-crystal diffraction. Coordination polymer 1 is the first observation of a CdCl(2) structure constructed with hydroxy groups and decorated by ligand L in lanthanide N-heterocyclic coordination polymers. In the 2D layered structure of 1, each Tb3 metal center is connected with three Tb1 and three Tb2 metal centers by seven hydroxyl groups in different directions, resulting in a six-membered ring. After doping, not only the luminescence intensity and lifetime enhanced, but also their thermal stability was increased in comparison with 1. When 1 was doped into poly(methylmethacrylate) (1@PMMA), polymer film materials were formed with the PMMA polymer matrix (w/w = 2.5%-12.5%) acting as a co-sensitizer for Tb(3+) ions. The luminescence intensity of the Tb(3+) emission at 544 nm increases when the content of Tb(3+) was 10%. The lifetime of 1@PMMA (914.88 μs) is more than four times longer than that of 1 (196.24 μs). All τ values for the doped polymer systems are higher than coordination polymer 1, indicating that radiative processes are operative in all the doped polymer films. This is because PMMA coupling with the O-H oscillators from {[Tb(3)(L)(μ(3)-OH)(7)]·H(2)O}(n) can suppress multiphonon relaxation. According to the variable-temperature luminescence (VT-luminescence) investigation, 1@PMMA was confirmed to be a stable green luminescent polymer film material.

  9. Doped graphene supercapacitors

    NASA Astrophysics Data System (ADS)

    Ashok Kumar, Nanjundan; Baek, Jong-Beom

    2015-12-01

    Heteroatom-doped graphitic frameworks have received great attention in energy research, since doping endows graphitic structures with a wide spectrum of properties, especially critical for electrochemical supercapacitors, which tend to complement or compete with the current lithium-ion battery technology/devices. This article reviews the latest developments in the chemical modification/doping strategies of graphene and highlights the versatility of such heteroatom-doped graphitic structures. Their role as supercapacitor electrodes is discussed in detail. This review is specifically focused on the concept of material synthesis, techniques for electrode fabrication and metrics of performance, predominantly covering the last four years. Challenges and insights into the future research and perspectives on the development of novel electrode architectures for electrochemical supercapacitors based on doped graphene are also discussed.

  10. High Performance Ceramic Interconnect Material for Solid Oxide Fuel Cells (SOFCs): Ca- and Transition Metal-doped Yttrium Chromite

    SciTech Connect

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2011-10-15

    The effect of transition metal substitution on thermal and electrical properties of Ca-doped yttrium chromite was investigated in relation to use as a ceramic interconnect in high temperature solid oxide fuel cells (SOFCs). 10 at% Co, 4 at% Ni, and 1 at% Cu substitution on B-site of 20 at% Ca-doped yttrium chromite led to a close match of thermal expansion coefficient (TEC) with that of 8 mol% yttria-stabilized zirconia (YSZ), and a single phase Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 remained stable between 25 and 1100 degree C over a wide oxygen partial pressure range. Doping with Cu significantly facilitated densification of yttrium chromite. Ni dopant improved both electrical conductivity and dimensional stability in reducing environments, likely through diminishing the oxygen vacancy formation. Substitution with Co substantially enhanced electrical conductivity in oxidizing atmosphere, which was attributed to an increase in charge carrier density and hopping mobility. Electrical conductivity of Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 at 900 degree C is 57 S/cm in air and 11 S/cm in fuel (pO2=5×10^-17 atm) environments. Chemical compatibility of doped yttrium chromite with other cell components was verified at the processing temperatures. Based on the chemical and dimensional stability, sinterability, and thermal and electrical properties, Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 is suggested as a promising SOFC ceramic interconnect to potentially overcome technical limitations of conventional acceptor-doped lanthanum chromites.

  11. High performance ceramic interconnect material for solid oxide fuel cells (SOFCs): Ca- and transition metal-doped yttrium chromite

    NASA Astrophysics Data System (ADS)

    Yoon, Kyung Joong; Stevenson, Jeffrey W.; Marina, Olga A.

    2011-10-01

    The effect of transition metal substitution on thermal and electrical properties of Ca-doped yttrium chromite was investigated in relation to use as a ceramic interconnect in high temperature solid oxide fuel cells (SOFCs). 10 at.% Co, 4 at.% Ni, and 1 at.% Cu substitution on B-site of 20 at.% Ca-doped yttrium chromite led to a close match of thermal expansion coefficient (TEC) with that of 8 mol% yttria-stabilized zirconia (YSZ), and a single phase Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 remained stable between 25 and 1100 °C over a wide oxygen partial pressure range. Doping with Cu significantly facilitated densification of yttrium chromite. Ni dopant improved both electrical conductivity and dimensional stability in reducing environments, likely through diminishing the oxygen vacancy formation. Substitution with Co substantially enhanced electrical conductivity in oxidizing atmosphere, which was attributed to an increase in charge carrier density and hopping mobility. Electrical conductivity of Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 at 900 °C is 57 S cm-1 in air and 11 S cm-1 in fuel (pO2 = 5 × 10-17 atm) environments. Chemical compatibility of doped yttrium chromite with other cell components was verified at the processing temperatures. Based on the chemical and dimensional stability, sinterability, and thermal and electrical properties, Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 is suggested as a promising SOFC ceramic interconnect to potentially overcome technical limitations of conventional acceptor-doped lanthanum chromites.

  12. Sol-gel synthesis and characterization of pure and manganese doped TiO2 nanoparticles--a new NLO active material.

    PubMed

    Praveen, P; Viruthagiri, G; Mugundan, S; Shanmugam, N

    2014-01-01

    Pure and Manganese (4%, 8%, 12% and 16%) doped titanium di-oxide (Mn-TiO2) nanoparticles were synthesized by sol-gel technique. The preparation of pure and Mn doped TiO2 nanoparticles were achieved by tetra-isopropyl orthotitanate and 2-propanol as common starting materials and the products were annealed at 450°C and 750°C to get anatase and rutile phases, respectively. The prepared materials were characterized by X-ray diffraction analysis (XRD), Fourier transform infra-red spectroscopy (FT-IR), UV-VIS-Diffuse reflectance spectroscopy (DRS), Photoluminescence (PL) spectroscopy, Scanning electron microscopy (SEM) with Energy dispersive X-ray analysis (EDX) and Kurtz powder second harmonic generation (SHG) test. XRD patterns confirmed the crystalline nature and tetragonal structure of synthesized materials. The functional groups present in the samples were identified by FTIR study. The allowed direct and indirect band gap energies, as well as the crystallite sizes of obtained nanoparticles were calculated from DRS analysis. Microstructures and elemental identification were done by SEM with EDX analysis. The existence of SHG signals was observed using Nd: YAG laser with fundamental wavelength of 1064 nm. The products were found to be transparent in the entire visible region with cut-off wavelengths within the UV region confirms its suitability for device fabrications.

  13. Lanthanide Contraction Effect In Magnetic Thermoelectric Materials Of Rare Earth-doped Bi1.5Pb0.5Ca2Co2O8

    NASA Astrophysics Data System (ADS)

    Sutjahja, Inge Magdalena; Akbar, Taufik; Nugroho, Agung

    2010-12-01

    We report in this paper the result of synthesis and crystal structure characterization of magnetic thermoelectric materials of rare-earth-doped Bi1.5Pb0.5Ca2Co2O8, namely Bi1.5Pb0.5Ca1.9RE0.1Co2O8 (RE = La, Pr, Sm, Eu, Gd, Ho). Single phase samples have been prepared by solid state reaction process using precursors of Bi2O3, PbO, CaCO3, RE2O3, and Co3O4. The precursors were pulverized, calcinated, and sintered in air at various temperatures for several hours. Analysis of XRD data shows that Bi1.5Pb0.5Ca1.9RE0.1Co2O8 compound is a layered system consisting of an alternate stack of CoO2 layer and Bi2Sr2O4 block along the c-axis. The misfit structure along b-direction is revealed from the difference of the b-axis length belonging to two sublattices, namely hexagonal CdI2-type CoO2 layer and rock-salt (RS) NaCl-type Bi2Sr2O4 block, while they possess the common a- and c-axis lattice parameters and β angles. The overall crystal structure parameters (a, b, and c) increases with type of doping from La to Ho, namely by decreasing the ionic radii of rare-earth ion. We discuss this phenomenon in terms of the lanthanide contraction, an effect commonly found in the rare-earth compound, results from poor shielding of nuclear charge by 4f electrons. In addition, the values of b-lattice parameters in these rare-earth doped samples are almost the same with those belongs to undoped parent compound (Bi1.5Pb0.5Sr2Co2O8) and its related Y-doped (Bi1.5Pb0.5Ca1.9Y0.1Co2O8) samples, while the c-values reduced significantly in rare-earth doped samples, with opposite trend with those of variation of a-axis length. Morevover, the misfit degree in rare-earth doped compound is higher in compared to parent compound and Y-doped samples. We argue that these structural changes induced by rare-earth doping may provide information for the variation of electronic structure of Co-ions (Co3+ and Co4+), in particular their different spin states of low-spin, intermediate-spin, and high-spin. This, in

  14. Na(+) doping induced changes in the reduction and charge transport characteristics of Al2O3-stabilized, CuO-based materials for CO2 capture.

    PubMed

    Imtiaz, Q; Abdala, P M; Kierzkowska, A M; van Beek, W; Schweiger, S; Rupp, J L M; Müller, C R

    2016-04-28

    Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging CO2 capture technologies that could reduce appreciably the costs associated with the capture of CO2. In CLC and CLOU, the oxygen required to combust a hydrocarbon is provided by a solid oxygen carrier. Among the transition metal oxides typically considered for CLC and CLOU, copper oxide (CuO) stands out owing to its high oxygen carrying capacity, exothermic reduction reactions and fast reduction kinetics. However, the low Tammann (sintering) temperature of CuO is a serious drawback. In this context, it has been proposed to support CuO on high Tammann temperature and low cost alumina (Al2O3), thus, reducing the morphological changes occurring over multiple CLC or CLOU redox cycles and stabilizing, in turn, the high activity of CuO. However, in CuO-Al2O3 systems, phase stabilization and avoiding the formation of the CuAl2O4 spinel is key to obtaining a material with a high redox stability and activity. Here, we report a Na(+) doping strategy to phase stabilize Al2O3-supported CuO, yielding in turn an inexpensive material with a high redox stability and CO2 capture efficiency. We also demonstrate that doping CuO-Al2O3 with Na(+) improves the oxygen uncoupling characteristics and coke resistance of the oxygen carriers. Utilizing in situ and ex situ X-ray absorption spectroscopy (XAS), the local structure of Cu and the reduction pathways of CuO were determined as a function of the Na(+) content and cycle number. Finally, using 4-point conductivity measurements, we confirm that doping of Al2O3-supported CuO with Na(+) lowers the activation energy for charge transport explaining conclusively the improved redox characteristics of the new oxygen carriers developed. PMID:27080470

  15. Na(+) doping induced changes in the reduction and charge transport characteristics of Al2O3-stabilized, CuO-based materials for CO2 capture.

    PubMed

    Imtiaz, Q; Abdala, P M; Kierzkowska, A M; van Beek, W; Schweiger, S; Rupp, J L M; Müller, C R

    2016-04-28

    Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging CO2 capture technologies that could reduce appreciably the costs associated with the capture of CO2. In CLC and CLOU, the oxygen required to combust a hydrocarbon is provided by a solid oxygen carrier. Among the transition metal oxides typically considered for CLC and CLOU, copper oxide (CuO) stands out owing to its high oxygen carrying capacity, exothermic reduction reactions and fast reduction kinetics. However, the low Tammann (sintering) temperature of CuO is a serious drawback. In this context, it has been proposed to support CuO on high Tammann temperature and low cost alumina (Al2O3), thus, reducing the morphological changes occurring over multiple CLC or CLOU redox cycles and stabilizing, in turn, the high activity of CuO. However, in CuO-Al2O3 systems, phase stabilization and avoiding the formation of the CuAl2O4 spinel is key to obtaining a material with a high redox stability and activity. Here, we report a Na(+) doping strategy to phase stabilize Al2O3-supported CuO, yielding in turn an inexpensive material with a high redox stability and CO2 capture efficiency. We also demonstrate that doping CuO-Al2O3 with Na(+) improves the oxygen uncoupling characteristics and coke resistance of the oxygen carriers. Utilizing in situ and ex situ X-ray absorption spectroscopy (XAS), the local structure of Cu and the reduction pathways of CuO were determined as a function of the Na(+) content and cycle number. Finally, using 4-point conductivity measurements, we confirm that doping of Al2O3-supported CuO with Na(+) lowers the activation energy for charge transport explaining conclusively the improved redox characteristics of the new oxygen carriers developed.

  16. Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Ganesh, Ibram; Kumar, Polkampally P.; Annapoorna, Ibram; Sumliner, Jordan M.; Ramakrishna, Mantripragada; Hebalkar, Neha Y.; Padmanabham, Gade; Sundararajan, Govindan

    2014-02-01

    The Cu-doped TiO2 (Cu = 0-50 wt.%) powders and thin films were prepared by following a homogeneous co-precipitation method and sol-gel dip-coating technique, respectively, and were treated through 400-800 °C, and then thoroughly investigated by following various characterization techniques. The characterization results suggest that the pure TiO2 powder formed at 550 °C is in rutile phase, whereas the 0.1-10 wt.% Cu-doped TiO2 powders formed at 550 °C are mainly in anatase phase. These latter powders possess low band-gap energies (3.247-3.265 eV) and flat-band potentials amenable to water oxidation reaction. The 0.5-wt.% Cu-doped TiO2 thin film formed at 550 °C exhibited n-type semiconducting behavior and considerable photocurrent among various investigated powders. The CO2 reduction with a Faradaic efficiency of 82% and ˜ 96% CO selectivity in a two-compartment electrochemical cell was noted at -2500 mV (vs. Ag/Ag+) on pre-reduced (at -2000 mV vs. Ag/AgCl) 50 wt.% Cu-doped TiO2 thin film electrode in conjunction with an ionic liquid. The UV-light-induced TiO2 was found to be responsible for photocatalytic methylene blue (MB) degradation, and TiO2 is not sensitized by MB. The in situ formed compounds of TiO2 and CuO/Cu2O were found to absorb visible light, but showed little visible-light-induced photocatalytic activity.

  17. Novel Na(+) doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays.

    PubMed

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2015-05-01

    Pure and Na(+) -doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X-ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X-ray diffractogram exhibits well-resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium-doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3 , Na(+) enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242-457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na(+) is doped into Alq3 . Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light-emitting phosphors for organic light-emitting diodes, flat panel displays, solid-state lighting technology - a step towards the desire to reduce energy consumption and generate pollution free light.

  18. Novel Na(+) doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays.

    PubMed

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2015-05-01

    Pure and Na(+) -doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X-ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X-ray diffractogram exhibits well-resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium-doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3 , Na(+) enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242-457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na(+) is doped into Alq3 . Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light-emitting phosphors for organic light-emitting diodes, flat panel displays, solid-state lighting technology - a step towards the desire to reduce energy consumption and generate pollution free light. PMID:25045087

  19. Ge and B doped collapsed photonic crystal optical fibre, a potential TLD material for low dose measurements

    NASA Astrophysics Data System (ADS)

    Rozaila, Z. Siti; Alyahyawi, Amjad; Khandaker, M. U.; Amin, Y. M.; Bradley, D. A.; Maah, M. J.

    2016-09-01

    Offering a number of advantageous features, tailor-made silica-based fibres are attracting attention as thermoluminesence (TL) dosimeters. We have performed a detailed study of the TL properties of Ge-doped and Ge-B-doped collapsed photonic crystal fibres (PCFc), most particularly with regard to their potential use for the environmental and X-ray diagnostic dose monitoring. Extrinsic doping and defects generated by strain at the fused inner walls of the collapsed fibres result in the PCFc-Ge-B and PCFc-Ge fibres producing markedly greater TL response than that of the phosphor-based dosimeter TLD-100, by some 9 and 7×, respectively. The linearity of TL yield has been investigated for X-ray doses from 0.5 mGy to 10 mGy. For a dose of 1 Gy, the energy response of the PCFs and TLD-100 has been studied using X-rays generated at accelerating potentials from 20 kVp through to 200 kVp and for the 1.25 MeV mean gamma-ray energy from 60Co. The effective atomic number , Zeffof PCFc-Ge and PCFc-Ge-B was estimated to be 12.5 and 14.4, respectively. Some 35 days post-irradiation, fading of the stored TL signal from PCFc-Ge-B and PCFc-Ge were found to be ∼15% and 20% respectively, with mean loss in TL emission of 0.4-0.5% per day. The present doped-silica collapsed PCFs provide greatly improved TLD performance compared to that of previous fibre designs and phosphor-based TLD-100.

  20. Nano-sized Mn-doped activated carbon aerogel as electrode material for electrochemical capacitor: effect of activation conditions.

    PubMed

    Lee, Yoon Jae; Park, Hai Woong; Park, Sunyoung; Song, In Kyu

    2012-07-01

    Carbon aerogel (CA) was prepared by a sol-gel polymerization of resorcinol and formaldehyde, and a series of activated carbon aerogels (ACA-KOH-X, X = 0, 0.3, 0.7, 1, and 2) were then prepared by a chemical activation using different amount of potassium hydroxide (X represented weight ratio of KOH with respect to CA). Specific capacitances of activated carbon aerogels were measured by cyclic voltammetry and galvanostatic charge/discharge methods in 6 M KOH electrolyte. Among the samples prepared, ACA-KOH-0.7 showed the highest specific capacitance (149 F/g). In order to combine excellent electrochemical performance of activated carbon aerogel with pseudocapacitive property of manganese oxide, 7 wt% Mn was doped on activated carbon aerogel (Mn/ACA-KOH-0.7) by an incipient wetness impregnation method. For comparison, 7 wt% Mn was also impregnated on carbon aerogel (Mn/ACA-KOH-0) by the same method. It was revealed that 7 wt% Mn-doped activated carbon aerogel (Mn/ACA-KOH-0.7) showed higher specific capacitance than 7 wt% Mn-doped carbon aerogel (Mn/ACA-KOH-0) (178 F/g vs. 98 F/g). The enhanced capacitance of Mn/ACA-KOH-0.7 was attributed to the outstanding electric properties of activated carbon aerogel as well as the faradaic redox reactions of manganese oxide. PMID:22966708

  1. Influence of Sc3+ doping in B-site on electrochemical performance of Li4Ti5O12 anode materials for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Zhang, Yaoyao; Zhang, Chunming; Lin, Ye; Xiong, Ding-Bang; Wang, Dan; Wu, Xiaoyan; He, Dannong

    2014-03-01

    Anode materials Li4Ti5O12 (LTO) and Sc-doped Li4Ti4.95Sc0.05O12-δ (LTSO) for lithium-ion batteries are both successfully synthesized by the modified sol-gel method with ethylene diamine tetraacetic acid (EDTA) and citric acid (CA) as a bi-components chelating agent. The samples are characterized by XRD, BET, XPS, EDX and SEM. The dopant Sc totally enters into the 16d sites of the spinel structure of LTO, and then further affects its morphology and property. The LTSO powder exhibits a 3D network morphology and its grain size is about 200 nm. The LTSO electrode material exhibits an excellent initial discharge capacities of 174 and 94 mAh g-1 at 1 C and 40 C, respectively. The reversible capacities of LTSO at different current rates remain nearly 100% after 50 cycles, which are compared with the capacities of the second cycles. Sc3+ doping can greatly improve the electronic conductivity of LTO which is demonstrated by electrochemical impedance spectroscopy. Cyclic voltammetry measurements also reveal that LTSO has small polarization resistance due to the high electrical conductivity and Li-ion apparent diffusion rate.

  2. Fluorine-doped nanocrystalline SnO{sub 2} powders prepared via a single molecular precursor method as anode materials for Li-ion batteries

    SciTech Connect

    Ha, Hyung-Wook; Kim, Keon . E-mail: kkim@korea.ac.kr; Borniol, Mervyn de; Toupance, Thierry . E-mail: t.toupance@lcoo.u-bordeaux1.fr

    2006-03-15

    Fluorine-doped nanocrystalline tin dioxide materials (F:SnO{sub 2}) have been successfully prepared by the sol-gel process from a single molecular precursor followed by a thermal treatment at 450-650 deg. C. The resulting materials were characterized by FTIR spectroscopy, powder X-ray diffraction, nitrogen adsorption porosimetry (BET) and transmission electron microscopy (TEM). The mean particle size increased from 5 to 20 nm and the specific surface area decreased from 123 to 37 m{sup 2}/g as the temperature of heat treatment was risen from 450 to 650 deg. C. Fluorine-doped nanocrystalline SnO{sub 2} exhibited capacity of 560, 502, and 702 mA h/g with 48%, 50%, and 40% capacity retention after 25 cycles between 1.2 V and 50 mV at the rate of 25 mA/g, respectively. In comparison, commercial SnO{sub 2} showed an initial capacity of 388 mA h/g, with only 23% capacity retention after 25 cycles.

  3. Fluorine-doped nanocrystalline SnO 2 powders prepared via a single molecular precursor method as anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ha, Hyung-Wook; Kim, Keon; Borniol, Mervyn de; Toupance, Thierry

    2006-03-01

    Fluorine-doped nanocrystalline tin dioxide materials (F:SnO 2) have been successfully prepared by the sol-gel process from a single molecular precursor followed by a thermal treatment at 450-650 °C. The resulting materials were characterized by FTIR spectroscopy, powder X-ray diffraction, nitrogen adsorption porosimetry (BET) and transmission electron microscopy (TEM). The mean particle size increased from 5 to 20 nm and the specific surface area decreased from 123 to 37 m 2/g as the temperature of heat treatment was risen from 450 to 650 °C. Fluorine-doped nanocrystalline SnO 2 exhibited capacity of 560, 502, and 702 mA h/g with 48%, 50%, and 40% capacity retention after 25 cycles between 1.2 V and 50 mV at the rate of 25 mA/g, respectively. In comparison, commercial SnO 2 showed an initial capacity of 388 mA h/g, with only 23% capacity retention after 25 cycles.

  4. Earth Abundant Iron-Rich N-Doped Graphene Based Spacer and Cavity Materials for Surface Plasmon-Coupled Emission Enhancements.

    PubMed

    Srinivasan, Venkatesh; Vernekar, Dnyanesh; Jaiswal, Garima; Jagadeesan, Dinesh; Ramamurthy, Sai Sathish

    2016-05-18

    We demonstrate for the first time the use of Fe-based nanoparticles on N-doped graphene as spacer and cavity materials and study their plasmonic effect on the spontaneous emission of a radiating dipole. Fe-C-MF was produced by pyrolizing FeOOH and melamine formaldehyde precursor on graphene, while Fe-C-PH was produced by pyrolizing the Fe-phenanthroline complex on graphene. The use of the Fe-C-MF composite consisting of Fe-rich crystalline phases supported on N-doped graphene presented a spacer material with 116-fold fluorescence enhancements. On the other hand, the Fe-C-PH/Ag based cavity resulted in an 82-fold enhancement in Surface Plasmon-Coupled Emission (SPCE), with high directionality and polarization of Rhodamine 6G (Rh6G) emission owing to Casimir and Purcell effects. The use of a mobile phone as a cost-effective fluorescence detection device in the present work opens up a flexible perspective for the study of different nanomaterials as tunable substrates in cavity mode and spacer applications. PMID:27128348

  5. Characterizations and electrochemical performance of pure and metal-doped Li{sub 4}Ti{sub 5}O{sub 12} for anode materials of lithium-ion batteries

    SciTech Connect

    Jeong, Euh Duck; Han, Hyun Ju; Jung, Ok Sang; Ha, Myoung Gyu; Doh, Chil Hoon; Hwang, Min Ji; Yang, Ho-Soon; Hong, K.S.

    2012-10-15

    Pure and metal (Cu, Al, Sn, and V)-doped Li{sub 4}Ti{sub 5}O{sub 12} powders are prepared with solid-state reaction method. The effects of dopants on the physical and electrochemical properties are characterized by using TGA, XRD, and SEM. Compared with pure Li{sub 4}Ti{sub 5}O{sub 12}, metal-doped Li{sub 4}Ti{sub 5}O{sub 12} powders show structural stability and enhanced lithium ion diffusivity brought by doped metal ions. Voltage characteristics and initial charge–discharge characteristics according to the C rates in pure and metal-doped Li{sub 4}Ti{sub 5}O{sub 12} electrode materials are studied. Pure Li{sub 4}Ti{sub 5}O{sub 12} powder shows a relatively good discharge capacity of 164 mAh/g at a rate 0.2C, and some of metal-doped Li{sub 4}Ti{sub 5}O{sub 12} powders show higher discharge capacities. Metal-doped Li{sub 4}Ti{sub 5}O{sub 12} powders are promising candidates as anode materials for lithium-ion batteries.

  6. Preparation of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres as an efficient anode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Geng, Hongbo; Zhou, Qun; Pan, Yue; Gu, Hongwei; Zheng, Junwei

    2014-03-01

    Herein we report the design and synthesis of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres (h-Fe3O4@C/F) through mild heating of polyvinylidene fluoride (PVDF)-coated hollow Fe3O4 spheres. The spheres exhibit enhanced cyclic and rate performances. The as-prepared h-Fe3O4@C/F shows significantly improved electrochemical performance, with high reversible capacities of over 930 mA h g-1 at a rate of 0.1 C after 70 cycles, 800 mA h g-1 at a rate of 0.5 C after 120 cycles and 620 mA h g-1 at a rate of 1 C after 200 cycles. This improved lithium storage performance is mainly ascribed to the encapsulation of the spheres with fluorine-doped carbon, which not only improves the reaction kinetics and stability of the solid electrolyte interface film but also prevents aggregation and drastic volume change of the Fe3O4 particles. These spheres thus represent a promising anode material in lithium-ion battery applications.Herein we report the design and synthesis of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres (h-Fe3O4@C/F) through mild heating of polyvinylidene fluoride (PVDF)-coated hollow Fe3O4 spheres. The spheres exhibit enhanced cyclic and rate performances. The as-prepared h-Fe3O4@C/F shows significantly improved electrochemical performance, with high reversible capacities of over 930 mA h g-1 at a rate of 0.1 C after 70 cycles, 800 mA h g-1 at a rate of 0.5 C after 120 cycles and 620 mA h g-1 at a rate of 1 C after 200 cycles. This improved lithium storage performance is mainly ascribed to the encapsulation of the spheres with fluorine-doped carbon, which not only improves the reaction kinetics and stability of the solid electrolyte interface film but also prevents aggregation and drastic volume change of the Fe3O4 particles. These spheres thus represent a promising anode material in lithium-ion battery applications. Electronic supplementary information (ESI) available: Additional TGA, SEM, TEM, HRTEM, EDX spectra and elemental mapping, XRD and

  7. Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Karan, Sumanta Kumar; Mandal, Dipankar; Khatua, Bhanu Bhusan

    2015-06-01

    In this work, we report the superior piezoelectric energy harvester ability of a non-electrically poled Fe-doped reduced graphene oxide (Fe-RGO)/poly(vinylidene fluoride) (PVDF) nanocomposite film prepared through a simple solution casting technique that favors the nucleation and stabilization of ~99% relative proportion of polar γ-phase. The piezoelectric energy harvester was made with non-electrically poled Fe-RGO/PVDF nanocomposite film that gives an open circuit output voltage and short circuit current up to 5.1 V and 0.254 μA by repetitive human finger imparting. The improvement of the output performance is influenced by the generation of the electroactive polar γ-phase in the PVDF, due to the electrostatic interactions among the -CH2-/-CF2- dipoles of PVDF and the delocalized π-electrons and remaining oxygen functionalities of Fe-doped RGO via ion-dipole and/or hydrogen bonding interactions. Fourier transform infrared spectroscopy (FT-IR) confirmed the nucleation of the polar γ-phase of PVDF by electrostatic interactions and Raman spectroscopy also supported the molecular interactions between the dipoles of PVDF and the Fe-doped RGO nanosheets. In addition, the nanocomposite shows a higher electrical energy density of ~0.84 J cm-3 at an electric field of 537 kV cm-1, which indicates that it is appropriate for energy storage capabilities. Moreover, the surface of the prepared nanocomposite film is electrically conducting and shows an electrical conductivity of ~3.30 × 10-3 S cm-1 at 2 wt% loading of Fe-RGO.In this work, we report the superior piezoelectric energy harvester ability of a non-electrically poled Fe-doped reduced graphene oxide (Fe-RGO)/poly(vinylidene fluoride) (PVDF) nanocomposite film prepared through a simple solution casting technique that favors the nucleation and stabilization of ~99% relative proportion of polar γ-phase. The piezoelectric energy harvester was made with non-electrically poled Fe-RGO/PVDF nanocomposite film that gives

  8. Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester.

    PubMed

    Karan, Sumanta Kumar; Mandal, Dipankar; Khatua, Bhanu Bhusan

    2015-06-28

    In this work, we report the superior piezoelectric energy harvester ability of a non-electrically poled Fe-doped reduced graphene oxide (Fe-RGO)/poly(vinylidene fluoride) (PVDF) nanocomposite film prepared through a simple solution casting technique that favors the nucleation and stabilization of ≈99% relative proportion of polar γ-phase. The piezoelectric energy harvester was made with non-electrically poled Fe-RGO/PVDF nanocomposite film that gives an open circuit output voltage and short circuit current up to 5.1 V and 0.254 μA by repetitive human finger imparting. The improvement of the output performance is influenced by the generation of the electroactive polar γ-phase in the PVDF, due to the electrostatic interactions among the -CH2-/-CF2- dipoles of PVDF and the delocalized π-electrons and remaining oxygen functionalities of Fe-doped RGO via ion-dipole and/or hydrogen bonding interactions. Fourier transform infrared spectroscopy (FT-IR) confirmed the nucleation of the polar γ-phase of PVDF by electrostatic interactions and Raman spectroscopy also supported the molecular interactions between the dipoles of PVDF and the Fe-doped RGO nanosheets. In addition, the nanocomposite shows a higher electrical energy density of ≈0.84 J cm(-3) at an electric field of 537 kV cm(-1), which indicates that it is appropriate for energy storage capabilities. Moreover, the surface of the prepared nanocomposite film is electrically conducting and shows an electrical conductivity of ≈3.30 × 10(-3) S cm(-1) at 2 wt% loading of Fe-RGO. PMID:26030744

  9. Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester.

    PubMed

    Karan, Sumanta Kumar; Mandal, Dipankar; Khatua, Bhanu Bhusan

    2015-06-28

    In this work, we report the superior piezoelectric energy harvester ability of a non-electrically poled Fe-doped reduced graphene oxide (Fe-RGO)/poly(vinylidene fluoride) (PVDF) nanocomposite film prepared through a simple solution casting technique that favors the nucleation and stabilization of ≈99% relative proportion of polar γ-phase. The piezoelectric energy harvester was made with non-electrically poled Fe-RGO/PVDF nanocomposite film that gives an open circuit output voltage and short circuit current up to 5.1 V and 0.254 μA by repetitive human finger imparting. The improvement of the output performance is influenced by the generation of the electroactive polar γ-phase in the PVDF, due to the electrostatic interactions among the -CH2-/-CF2- dipoles of PVDF and the delocalized π-electrons and remaining oxygen functionalities of Fe-doped RGO via ion-dipole and/or hydrogen bonding interactions. Fourier transform infrared spectroscopy (FT-IR) confirmed the nucleation of the polar γ-phase of PVDF by electrostatic interactions and Raman spectroscopy also supported the molecular interactions between the dipoles of PVDF and the Fe-doped RGO nanosheets. In addition, the nanocomposite shows a higher electrical energy density of ≈0.84 J cm(-3) at an electric field of 537 kV cm(-1), which indicates that it is appropriate for energy storage capabilities. Moreover, the surface of the prepared nanocomposite film is electrically conducting and shows an electrical conductivity of ≈3.30 × 10(-3) S cm(-1) at 2 wt% loading of Fe-RGO.

  10. Heteroatomic SenS8-n Molecules Confined in Nitrogen-Doped Mesoporous Carbons as Reversible Cathode Materials for High-Performance Lithium Batteries.

    PubMed

    Sun, Fugen; Cheng, Hongye; Chen, Jianzhuang; Zheng, Nan; Li, Yongsheng; Shi, Jianlin

    2016-09-27

    A reversible cathode material in an ether-based electrolyte for high-energy lithium batteries was successfully fabricated by homogeneously confining heteroatomic SenS8-n molecules into nitrogen-doped mesoporous carbons (NMCs) via a facile melt-impregnation route. The resultant SenS8-n/NMC composites exhibit highly reversible electrochemical behavior, where selenium sulfides are recovered through the reversible conversion of polysulfoselenide intermediates during discharge-charge cycles. The recovery of selenium sulfide molecules endows the SenS8-n/NMC cathodes with the rational integration of S and Se cathodes. Density functional theory calculations further reveal that heteroatomic selenium sulfide molecules with higher polarizability could bind more strongly with NMCs than homoatomic sulfur molecules, which provides more efficient suppression of the shuttling phenomenon. Therefore, with further assistance of mesopore confinement of the nitrogen-doped carbons, the Se2S6/NMC composite with an optimal Se/S mole ratio of 2/6 presents excellent cycle stability with a high initial Coulombic efficiency of 96.5% and a high reversible capacity of 883 mAh g(-1) after 100 cycles and 780 mAh g(-1) after 200 cycles at 250 mA g(-1). These encouraging results suggest that the heteroatomization of chalcogen (such as S, Se, or Te) molecules in mesostructured carbon hosts is a promising strategy in enhancing the electrochemical performances of chalcogen/carbon-based cathodes for Li batteries. PMID:27522865

  11. Heteroatomic SenS8-n Molecules Confined in Nitrogen-Doped Mesoporous Carbons as Reversible Cathode Materials for High-Performance Lithium Batteries.

    PubMed

    Sun, Fugen; Cheng, Hongye; Chen, Jianzhuang; Zheng, Nan; Li, Yongsheng; Shi, Jianlin

    2016-09-27

    A reversible cathode material in an ether-based electrolyte for high-energy lithium batteries was successfully fabricated by homogeneously confining heteroatomic SenS8-n molecules into nitrogen-doped mesoporous carbons (NMCs) via a facile melt-impregnation route. The resultant SenS8-n/NMC composites exhibit highly reversible electrochemical behavior, where selenium sulfides are recovered through the reversible conversion of polysulfoselenide intermediates during discharge-charge cycles. The recovery of selenium sulfide molecules endows the SenS8-n/NMC cathodes with the rational integration of S and Se cathodes. Density functional theory calculations further reveal that heteroatomic selenium sulfide molecules with higher polarizability could bind more strongly with NMCs than homoatomic sulfur molecules, which provides more efficient suppression of the shuttling phenomenon. Therefore, with further assistance of mesopore confinement of the nitrogen-doped carbons, the Se2S6/NMC composite with an optimal Se/S mole ratio of 2/6 presents excellent cycle stability with a high initial Coulombic efficiency of 96.5% and a high reversible capacity of 883 mAh g(-1) after 100 cycles and 780 mAh g(-1) after 200 cycles at 250 mA g(-1). These encouraging results suggest that the heteroatomization of chalcogen (such as S, Se, or Te) molecules in mesostructured carbon hosts is a promising strategy in enhancing the electrochemical performances of chalcogen/carbon-based cathodes for Li batteries.

  12. Improved performance of dye sensitized solar cells using Cu-doped TiO2 as photoanode materials: Band edge movement study by spectroelectrochemistry

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Wei, Liguo; Yang, Yulin; Xia, Xue; Wang, Ping; Yu, Jia; Luan, Tianzhu

    2016-08-01

    Cu-doped TiO2 nanoparticles are prepared and used as semiconductor materials of photoanode to improve the performance of dye sensitized solar cells (DSSCs). UV-Vis spectroscopy and variable temperature spectroelectrochemistry study are used to characterize the influence of copper dopant with different concentrations on the band gap energies of TiO2 nanoparticles. The prepared Cu-doped TiO2 semiconductor has avoided the formation of CuO during hydrothermal process and lowered the conduction band position of TiO2, which contribute to increase the short circuit current density of DSSCs. At the optimum Cu concentration of 1.0 at.%, the short circuit current density increased from 12.54 to 14.98 mA cm-2, full sun solar power conversion efficiencies increased from 5.58% up to 6.71% as compared to the blank DSSC. This showed that the presence of copper in DSSCs leads to improvements of up to 20% in the conversion efficiency of DSSCs.

  13. Preparation of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres as an efficient anode material for Li-ion batteries.

    PubMed

    Geng, Hongbo; Zhou, Qun; Pan, Yue; Gu, Hongwei; Zheng, Junwei

    2014-04-01

    Herein we report the design and synthesis of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres (h-Fe3O4@C/F) through mild heating of polyvinylidene fluoride (PVDF)-coated hollow Fe3O4 spheres. The spheres exhibit enhanced cyclic and rate performances. The as-prepared h-Fe3O4@C/F shows significantly improved electrochemical performance, with high reversible capacities of over 930 mA h g(-1) at a rate of 0.1 C after 70 cycles, 800 mA h g(-1) at a rate of 0.5 C after 120 cycles and 620 mA h g(-1) at a rate of 1 C after 200 cycles. This improved lithium storage performance is mainly ascribed to the encapsulation of the spheres with fluorine-doped carbon, which not only improves the reaction kinetics and stability of the solid electrolyte interface film but also prevents aggregation and drastic volume change of the Fe3O4 particles. These spheres thus represent a promising anode material in lithium-ion battery applications. PMID:24598908

  14. Nitrogen-doped hierarchical lamellar porous carbon synthesized from the fish scale as support material for platinum nanoparticle electrocatalyst toward the oxygen reduction reaction.

    PubMed

    Liu, Haijing; Cao, Yinliang; Wang, Feng; Huang, Yaqin

    2014-01-22

    Novel hierarchical lamellar porous carbon (HLPC) with high BET specific surface area of 2730 m(2) g(-1) and doped by nitrogen atoms has been synthesized from the fish scale without any post-synthesis treatment, and applied to support the platinum (Pt) nanoparticle (NP) catalysts (Pt/HLPC). The Pt NPs could be highly dispersed on the porous surface of HLPC with a narrow size distribution centered at ca. 2.0 nm. The results of the electrochemical analysis reveal that the electrochemical active surface area (ECSA) of Pt/HLPC is larger than the Pt NP electrocatalyst supported on the carbon black (Pt/Vulcan XC-72). Compared with the Pt/Vulcan XC-72, the Pt/HLPC exhibits larger current density, lower overpotential, and enhanced catalytic activity toward the oxygen reduction reaction (ORR) through the direct four-electron pathway. The improved catalytic activity is mainly attributed to the high BET specific surface area, hierarchical porous structures and the nitrogen-doped surface property of HLPC, indicating the superiority of HLPC as a promising support material for the ORR electrocatalysts.

  15. Hierarchically porous nitrogen-doped graphene-NiCo(2)O(4) hybrid paper as an advanced electrocatalytic water-splitting material.

    PubMed

    Chen, Sheng; Qiao, Shi-Zhang

    2013-11-26

    In this work, we report a three-dimensional (3D) oxygen evolution reaction (OER) catalyst with hierarchical pores for water splitting. The remarkable features of well-developed in- and out-of-plane pores, 3D conductive networks, and N-doping have greatly promoted the transport in electrodes and assured high catalytic efficiency. The 3D hybrid paper of N-doped graphene-NiCo2O4 has shown a remarkable OER catalytic activity that was comparable to that of previously reported noble metal catalysts (IrO2). The catalytic process occurred with favorable kinetics and strong durability. The dual-active-site mechanism is responsible for the excellent performance of the hybrid catalyst; that is, the edges of NiCo2O4 and the N (O)-metal (Ni or Co) bonds are both active sites. This study affords a new strategy to achieve optimal performance in 3D catalysts, which may be extended to the preparation of other 3D hybrid materials for a broad range of technological applications.

  16. Preparation of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres as an efficient anode material for Li-ion batteries.

    PubMed

    Geng, Hongbo; Zhou, Qun; Pan, Yue; Gu, Hongwei; Zheng, Junwei

    2014-04-01

    Herein we report the design and synthesis of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres (h-Fe3O4@C/F) through mild heating of polyvinylidene fluoride (PVDF)-coated hollow Fe3O4 spheres. The spheres exhibit enhanced cyclic and rate performances. The as-prepared h-Fe3O4@C/F shows significantly improved electrochemical performance, with high reversible capacities of over 930 mA h g(-1) at a rate of 0.1 C after 70 cycles, 800 mA h g(-1) at a rate of 0.5 C after 120 cycles and 620 mA h g(-1) at a rate of 1 C after 200 cycles. This improved lithium storage performance is mainly ascribed to the encapsulation of the spheres with fluorine-doped carbon, which not only improves the reaction kinetics and stability of the solid electrolyte interface film but also prevents aggregation and drastic volume change of the Fe3O4 particles. These spheres thus represent a promising anode material in lithium-ion battery applications.

  17. Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, Xiwen; Zhang, Zhian; Qu, Yaohui; Lai, Yanqing; Li, Jie

    2014-06-01

    Two types of nitrogen-doped graphene sheets (NGS) synthesized by a facile hydrothermal method are used to immobilize sulfur via an in situ sulfur deposition route. The structure and composition of the prepared nitrogen doped graphene/sulfur (NGS/S) composites are confirmed with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Scanning electron microscope (SEM) and Transmission electron microscope (TEM) images shows the porous sulfur particles are well wrapped by NGS. Compared with graphene/sulfur (GS/S) composite, the NGS-1/S composite with high loading (80 wt%) of sulfur presents a remarkably higher reversible capacity (1356.8 mAh g-1 at 0.1 C) and long cycle stability (578.5 mAh g-1 remaining at 1 C up to 500 cycles). Pyridinic-N rich NGS-1/S exhibits a better electrochemical performance than pyrrolic-N enriched NGS-2/S. The improvement of electrochemical properties could be attributed to the chemical interaction between the nitrogen functionalities on the surface of NGS and polysulfide as well as the enhanced electronic conductivity of the carbon matrix.

  18. Double Rare-Earth Oxides Co-doped Strontium Zirconate as a New Thermal Barrier Coating Material

    NASA Astrophysics Data System (ADS)

    Ma, Wen; Wang, Dongxing; Dong, Hongying; Lun, Wenshan; He, Weiyan; Zheng, Xuebin

    2013-03-01

    Y2O3 and Yb2O3 co-doped strontium zirconate with chemistry of Sr(Zr0.9Y0.05Yb0.05)O2.95 (SZYY) was synthesized and had a minor second phase of Yb2O3. The SZYY showed good phase stability not only from room temperature to 1400 °C but also at high temperature of 1450 °C for a long period, analyzed by thermogravimetry-differential scanning calorimetry and x-ray diffraction, respectively. The coefficients of thermal expansion (CTEs) of the sintered bulk SZYY were recorded by a high-temperature dilatometer and revealed a positive influence on phase transitions of SrZrO3 by co-doping with Y2O3 and Yb2O3. The thermal conductivities of SZYY were at least ~30% lower in contrast to that of SrZrO3 and 8YSZ in the whole tested temperature range. Good chemical compatibility was observed for SZYY with 8YSZ or Al2O3 powders after a 24 h heat treatment at 1250 °C. The phase stability and the microstructure evolution of the as-sprayed SZYY coating during annealing at 1400 °C were also investigated.

  19. Fullerene-doped porous glasses

    NASA Astrophysics Data System (ADS)

    Joshi, M. P.; Kukreja, L. M.; Rustagi, K. C.

    We report the doping of C60 in porous glass by diffusion in solution phase at room temperature. The presence of C60 in the doped porous glass was confirmed spectroscopically. We also report the changes in optical absorption spectrum and intensity-dependent transmission of 30 ns laser pulses at 527 nm in these materials.

  20. Computational nano-materials design of self-organized nanostructures by spinodal nano-decomposition in Eu-doped GaN

    NASA Astrophysics Data System (ADS)

    Masago, Akira; Fukushima, Tetsuya; Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2016-07-01

    We propose that nanostructures spontaneously generated by spinodal decomposition can be used as an efficiently luminescent material. The doping of Eu into GaN beyond the solubility limit forms EuN nanostructures, whose forms depend on the crystal growth method and conditions. The three-dimensional crystal growth generates the Dairiseki phase constructed of EuN quantum dots. These nanostructures are suitable for emission of red light and laser. The two-dimensional layer-by-layer crystal growth leads to the Konbu phase consisting of nanorods. The Konbu phase can be applied to the bottom-up construction of distributed feedback semiconductor lasers, which is currently built by the top-down nanotechnology such as photolithography.

  1. Generalized formula for continuous-wave end-pumped Yb-doped material amplifier gain and laser output power in various pumping configurations.

    PubMed

    Bourdet, Gilbert L; Bartnicki, Eric

    2006-12-20

    We present a general formula fitted for computing the amplification and laser output power in a Yb-doped material under various quasi-end-pumping configurations. These configurations include single pass pumping, backreflection pumping in which the pump is reflected by a mirror set on the rear face of the amplifier medium, contrapropagation pumping where two pump beams are launched on both sides of the amplifier and, for every configuration, regenerative pumping in which the transmitted or reflected pump beam is recycled using the proper apparatus. We show that, with regenerative pumping, the efficiency is drastically improved and the optimum amplifier length leading to the maximum laser output power is shorter compared with the one obtained with conventional pumping. In this model, we do not take temperature effect into account. PMID:17151761

  2. Silicon, iron and titanium doped calcium phosphate-based glass reinforced biodegradable polyester composites as bone analogous materials

    NASA Astrophysics Data System (ADS)

    Shah Mohammadi, Maziar

    Bone defects resulting from disease or traumatic injury is a major health care problem worldwide. Tissue engineering offers an alternative approach to repair and regenerate bone through the use of a cell-scaffold construct. The scaffold should be biodegradable, biocompatible, porous with an open pore structure, and should be able to withstand the applied forces. Phosphate-based glasses (PGs) may be used as reinforcing agents in degradable composites since their degradation can be predicted and controlled through their chemistry. This doctoral dissertation describes the development and evaluation of PGs reinforced biodegradable polyesters for intended applications in bone augmentation and regeneration. This research was divided into three main objectives: 1) Investigating the composition dependent properties of novel PG formulations by doping a sodium-free calcium phosphate-based glass with SiO2, Fe2O3, and TiO2. Accordingly, (50P2 O5-40CaO- xSiO2-(10-x)Fe2O3, where x = 10, 5 and 0 mol.%) and (50P2O5-40CaO-xSiO 2-(10-x)TiO2 where x = 10, 7, 5, 3 and 0 mol.%) formulations were developed and characterised. SiO2 incorporation led to increased solubility, ion release, pH reduction, as well as hydrophilicity, surface energy, and surface polarity. In contrast, doping with Fe2O 3 or TiO2 resulted in more durable glasses, and improved cell attachment and viability. It was hypothesised that the presence of SiO 2 in the TiO2-doped formulations could up-regulate the ionic release from the PG leading to higher alkaline phosphatase activity of MC3T3-E1 cells. 2) Incorporating Si, Fe, and Ti doped PGs as fillers, either as particulates (PGPs) or fibres (PGFs), into biodegradable polyesters (polycaprolactone (PCL) and semi-crystalline and amorphous poly(lactic acid) (PLA and PDLLA)) with the aim of developing degradable bone analogous composites. It was found that PG composition and geometry dictated the weight loss, ionic release, and mechanical properties of the composites. It

  3. The multicomponent doping of surface layers of materials under the influence of ion beams with a broad energy spectrum

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Volkov, N. V.; Valikov, R. A.; Yashin, A. S.; Yakutkina, T. V.

    2016-04-01

    The paper discusses the various factors that influence the efficiency of ion mixing. It was found that in the base of penetration of atoms multilayer films in polycrystalline substrate is the process of energy transfer from ions and primary knocked-on atom (PKA) of films to subsequent displacement cascade. At the same time the penetration of implanted atoms to great depths determined by the density of defects, radiation-stimulated migration of interstitial atoms and their physico-chemical interaction with the atoms of the matrix, which can be described by the model of an isotropic mixing. It is shown that doping atoms of the multilayer films, possibly the formation of gradient layers, which are determined by radiation traces in the substrate implanted atoms and their migration under irradiation by the ion beam with a broad energy spectrum.

  4. Effect of light on the polarization of a banana-shaped achiral compound doped with a photoactive azobenzene material

    SciTech Connect

    Nair, Geetha G.; Prasad, S. Krishna; Hiremath, Uma S.; Yelamaggad, C. V.

    2001-07-01

    We report photoinduced effects on a liquid crystal comprising of bent-core molecules, doped with a photoactive azobenzene compound and exhibiting the recently discovered {open_quotes}banana{close_quotes} B{sub 2} mesophase. The photoisomerization of the azobenzene molecules, brought about by the UV radiation, hardly changes the B{sub 2}-isotropic transition temperatures, but has a significant influence on the spontaneous polarization (Ps) as well as the switching time in the B{sub 2} phase. The efficiency of this opto-polarization effect has been observed to be strongly dependent on the temperature at which the irradiation is carried out. A possible mechanism responsible for the observed phenomenon has been suggested. {copyright} 2001 American Institute of Physics.

  5. Spectral and lasing characteristics of dye-doped cholesteric liquid crystals as materials for laser projection screens

    NASA Astrophysics Data System (ADS)

    Ilchishin, Igor P.

    2004-07-01

    Absorbtion spectra, fluorescence spectra and quantum yields of dyes of various classes in cholesteric liquid crystals (CLC) and in isotropic solutions as well as the thresholds oftheir lasing in CLC were investigated. The increase ofquantum yields of dyes in concentrated CLC-solution in comparison with diluted isotropic ones are established for the first time. It has been shown that neutral phenolenone dyes with voluminose terminal groups which hinder aggregation of their molecules in concentrated solutions. The experimental investigations of the lasing efficiency of a distributed feedback laser (DFB) based on CLC from excitation intensity and optical density of dye in the active layer are presented. The thermal phase grating induced by laser radiation in doped CLC, as it is shown, the high << effective Q>> of the CLC layers are compensated and the lasing efficiency ofthis lasers are improved.

  6. Ca and In co-doped BaFeO3-δ as a cobalt-free cathode material for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Lam, Kwun Yu; Saccoccio, Mattia; Gao, Yang; Chen, Dengjie; Ciucci, Francesco

    2016-08-01

    We report Ba0·95Ca0·05Fe0·95In0·05O3-δ (BCFI), a novel cobalt-free perovskite, as a promising cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). We synthesize this new material, and systematically characterize its lattice structure, thermal stability, chemical composition, electrical conductivity, and oxygen reduction reaction (ORR) activity. The cubic phase of BaFeO3-δ is stabilized by light isovalent and lower-valence substitution, i.e., 5% Ca2+ in the Ba2+ site and 5% In3+ in the Fe3+/Fe4+ site, in contrast with the typical approach of substituting elements of higher valence. Without resorting to co-doping strategy, the phase of BaFe0·95In0·05O3-δ (BFI) is rhombohedral, while Ba0·95Ca0·05FeO3-δ (BCF) is a mixture of the cubic phase together with BaFe2O4 impurities. The structure of BCFI is cubic from room temperature up to 900 °C with a moderate thermal expansion coefficient of 23.2 × 10-6 K-1. Thanks to the large oxygen vacancy concentration and fast oxygen mobility, BCFI exhibits a favorable ORR activity, i.e., we observe a polarization resistance as small as 0.038 Ω cm2 at 700 °C. The significantly enhanced performance, compared with BFI and BCF, is attributed to the presence of the cubic phase and the large oxygen vacancies brought by the isovalent substitution in the A-site and lower-valence doping in the B-site.

  7. Ca and In co-doped BaFeO3-δ as a cobalt-free cathode material for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Lam, Kwun Yu; Saccoccio, Mattia; Gao, Yang; Chen, Dengjie; Ciucci, Francesco

    2016-08-01

    We report Ba0·95Ca0·05Fe0·95In0·05O3-δ (BCFI), a novel cobalt-free perovskite, as a promising cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). We synthesize this new material, and systematically characterize its lattice structure, thermal stability, chemical composition, electrical conductivity, and oxygen reduction reaction (ORR) activity. The cubic phase of BaFeO3-δ is stabilized by light isovalent and lower-valence substitution, i.e., 5% Ca2+ in the Ba2+ site and 5% In3+ in the Fe3+/Fe4+ site, in contrast with the typical approach of substituting elements of higher valence. Without resorting to co-doping strategy, the phase of BaFe0·95In0·05O3-δ (BFI) is rhombohedral, while Ba0·95Ca0·05FeO3-δ (BCF) is a mixture of the cubic phase together with BaFe2O4 impurities. The structure of BCFI is cubic from room temperature up to 900 °C with a moderate thermal expansion coefficient of 23.2 × 10-6 K-1. Thanks to the large oxygen vacancy concentration and fast oxygen mobility, BCFI exhibits a favorable ORR activity, i.e., we observe a polarization resistance as small as 0.038 Ω cm2 at 700 °C. The significantly enhanced performance, compared with BFI and BCF, is attributed to the presence of the cubic phase and the large oxygen vacancies brought by the isovalent substitution in the A-site and lower-valence doping in the B-site.

  8. IR-doped ruthenium oxide catalyst for oxygen evolution

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2012-01-01

    A method for preparing a metal-doped ruthenium oxide material by heating a mixture of a doping metal and a source of ruthenium under an inert atmosphere. In some embodiments, the doping metal is in the form of iridium black or lead powder, and the source of ruthenium is a powdered ruthenium oxide. An iridium-doped or lead-doped ruthenium oxide material can perform as an oxygen evolution catalyst and can be fabricated into electrodes for electrolysis cells.

  9. Fluorine-Doped Tin Oxide Nanocrystal/Reduced Graphene Oxide Composites as Lithium Ion Battery Anode Material with High Capacity and Cycling Stability.

    PubMed

    Xu, Haiping; Shi, Liyi; Wang, Zhuyi; Liu, Jia; Zhu, Jiefang; Zhao, Yin; Zhang, Meihong; Yuan, Shuai

    2015-12-16

    Tin oxide (SnO2) is a kind of anode material with high theoretical capacity. However, the volume expansion and fast capability fading during cycling have prevented its practical application in lithium ion batteries. Herein, we report that the nanocomposite of fluorine-doped tin oxide (FTO) and reduced graphene oxide (RGO) is an ideal anode material with high capacity, high rate capability, and high stability. The FTO conductive nanocrystals were successfully anchored on RGO nanosheets from an FTO nanocrystals colloid and RGO suspension by hydrothermal treatment. As the anode material, the FTO/RGO composite showed high structural stability during the lithiation and delithiation processes. The conductive FTO nanocrystals favor the formation of stable and thin solid electrolyte interface films. Significantly, the FTO/RGO composite retains a discharge capacity as high as 1439 mAhg(-1) after 200 cycles at a current density of 100 mAg(-1). Moreover, its rate capacity displays 1148 mAhg(-1) at a current density of 1000 mAg(-1). PMID:26606370

  10. Fluorine-Doped Tin Oxide Nanocrystal/Reduced Graphene Oxide Composites as Lithium Ion Battery Anode Material with High Capacity and Cycling Stability.

    PubMed

    Xu, Haiping; Shi, Liyi; Wang, Zhuyi; Liu, Jia; Zhu, Jiefang; Zhao, Yin; Zhang, Meihong; Yuan, Shuai

    2015-12-16

    Tin oxide (SnO2) is a kind of anode material with high theoretical capacity. However, the volume expansion and fast capability fading during cycling have prevented its practical application in lithium ion batteries. Herein, we report that the nanocomposite of fluorine-doped tin oxide (FTO) and reduced graphene oxide (RGO) is an ideal anode material with high capacity, high rate capability, and high stability. The FTO conductive nanocrystals were successfully anchored on RGO nanosheets from an FTO nanocrystals colloid and RGO suspension by hydrothermal treatment. As the anode material, the FTO/RGO composite showed high structural stability during the lithiation and delithiation processes. The conductive FTO nanocrystals favor the formation of stable and thin solid electrolyte interface films. Significantly, the FTO/RGO composite retains a discharge capacity as high as 1439 mAhg(-1) after 200 cycles at a current density of 100 mAg(-1). Moreover, its rate capacity displays 1148 mAhg(-1) at a current density of 1000 mAg(-1).

  11. Synthesis and spectroscopic properties of Yb3+ and Tb3+ co-doped GdBO3 materials showing down- and up-conversion luminescence.

    PubMed

    Grzyb, Tomasz; Kubasiewicz, Konrad; Szczeszak, Agata; Lis, Stefan

    2015-03-01

    Gadolinium orthoborates doped with Yb(3+) and Tb(3+) ions were synthesised by the sol-gel Pechini method. Materials annealed at 900 °C were composed of the monoclinic GdBO3 phase with micrometre-sized crystals. The structural properties of the products were analysed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The composition of the prepared materials was determined by inductively coupled plasma optical emission spectroscopy (ICP-OES). The materials showed intense ultraviolet (UV) or near infrared (NIR) excited green emission, which resulted from down- or up-conversion processes taking place in their structure. Spectroscopic properties were investigated on the basis of the measured excitation and emission spectra. Also, luminescence decays showing a short rise of emission with time after NIR excitation were measured. The dependence of the integral up-conversion intensity on the energy of the pumping laser was measured. The results indicated a two-photon process based on cooperative energy transfer (CET). The analysis of the synthesised series of samples allowed us to identify those with the best emission under a UV or NIR excitation source. PMID:25624052

  12. Novel Sol–Gel Precursors for Thin Mesoporous Eu3+-Doped Silica Coatings as Efficient Luminescent Materials.

    PubMed Central

    2012-01-01

    Europium(III) ions containing mesoporous silica coatings have been prepared via a solvent evaporation-induced self-assembly (EISA) approach of different single-source precursors (SSPs) in the presence of Pluronic P123 as a structure-directing agent, using the spin-coating process. A deliberate tailoring of the chemical composition of the porous coatings with various Si:Eu ratios was achieved by processing mixtures of tetraethylorthosilicate (TEOS) and Eu3+-coordinated SSPs. Small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) analyses demonstrate that the thin metal oxide-doped silica coatings consist of a porous network with a short-range order of the pore structure, even at high europium(III) loadings. Furthermore, luminescence properties were investigated at different temperatures and different degrees of Eu3+ contents. The photoluminescence spectra clearly show characteristic emission peaks corresponding to the 5D0 → 7FJ (J = 0–5) transitions resulting in a red luminescence visible by the eyes, although the films have a very low thickness (150–200 nm). PMID:23503160

  13. Optical bistability in a silicon nitride microring resonator with azo dye-doped liquid crystal as cladding material.

    PubMed

    Wang, Chun-Ta; Tseng, Chih-Wei; Yu, Jui-Hao; Li, Yuan-Cheng; Lee, Chun-Hong; Jau, Hung-Chang; Lee, Ming-Chang; Chen, Yung-Jui; Lin, Tsung-Hsien

    2013-05-01

    This investigation reports observations of optical bistability in a silicon nitride (SiN) micro-ring resonator with azo dye-doped liquid crystal cladding. The refractive index of the cladding can be changed by switching the liquid crystal between nematic (NLC) and photo-induced isotropic (PHI) states by. Both the NLC and the PHI states can be maintained for many hours, and can be rapidly switched from one state to the other by photo-induced isomerization using 532 nm and 408 nm addressing light, respectively. The proposed device exhibits optical bistable switching of the resonance wavelength without sustained use of a power source. It has a 1.9 nm maximum spectral shift with a Q-factor of over 10000. The hybrid SiN- LC micro-ring resonator possesses easy switching, long memory, and low power consumption. It therefore has the potential to be used in signal processing elements and switching elements in optically integrated circuits. PMID:23669955

  14. Modification of carbon nanotubes by CuO-doped NiO nanocomposite for use as an anode material for lithium-ion batteries

    SciTech Connect

    Mustansar Abbas, Syed; Tajammul Hussain, Syed; Ali, Saqib; Ahmad, Nisar; Ali, Nisar; Abbas, Saghir; Ali, Zulfiqar

    2013-06-15

    CuO-doped NiO (CuNiO) with porous hexagonal morphology is fabricated via a modified in-situ co-precipitation method and its nanocomposite is prepared with carbon nanotubes (CNTs). The electrochemical properties of CuNiO/CNT nanocomposite are investigated by cyclic voltammetry (CV), galvanostatic charge–discharge tests and electrochemical impedance spectroscopy (EIS). Since Cu can both act as conductor and a catalyst, the CuNiO/CNT nanocomposite exhibits higher initial coulombic efficiency (82.7% of the 2nd cycle) and better capacity retention (78.6% on 50th cycle) than bare CuNiO (78.9% of the 2nd cycle), CuO/CNT (76.8% of the 2nd cycle) and NiO/CNT (77.7% of the 2nd cycle) at the current density of 100 mA /g. This high capacity and good cycling ability is attributed to the partial substitution of Cu{sup +2} for Ni{sup +2}, resulting in an increase of holes concentration, and therefore improved p-type conductivity along with an intimate interaction with CNTs providing large surface area, excellent conduction, mechanical strength and chemical stability. - Graphical abstract: The porous CuNiO/CNT nanocomposite synthesized via a modified co-precipitation method in combination with subsequent calcination was applied in the negative electrode materials for lithium-ion batteries and exhibited high electrochemical performance. - Highlights: • CuO doped NiO/CNTs nano composite is achieved via a simple co-precipitation method. • Monodispersity, shape and sizes of sample particles is specifically controlled. • Good quality adhesion between CNTs and CuNiO is visible from TEM image. • High electrochemical performance is achieved. • Discharge capacity of 686 mA h/g after 50 cycles with coulombic efficiency (82.5%)

  15. Interface engineering to enhance the efficiency of conventional polymer solar cells by alcohol-/water-soluble C60 materials doped with alkali carbonates.

    PubMed

    Lai, Yu-Ying; Shih, Ping-I; Li, Yi-Peng; Tsai, Che-En; Wu, Jhong-Sian; Cheng, Yen-Ju; Hsu, Chain-Shu

    2013-06-12

    Two new C60-based n-type materials, EGMC-OH and EGMC-COOH, functionalized with hydrophilic triethylene glycol groups (TEGs), have been synthesized and employed in conventional polymer solar cells. With the assistance of the TEG-based surfactant, EGMC-OH and EGMC-COOH can be dissolved in highly polar solvents to implement the polar/nonpolar orthogonal solvent strategy, forming an electron modification layer (EML) without eroding the underlying active layer. Multilayer conventional solar cells on the basis of ITO/PEDOT:PSS/P3HT:PC61BM/EML/Ca/Al configuration with the insertion of the EGMC-OH and EGMC-COOH EML between the active layer and the electrode have thus been successfully realized by cost-effective solution processing techniques. Moreover, the electron conductivity of the EML can be improved by incorporating alkali carbonates into the EGMC-COOH EML. Compared to the pristine device with a PCE of 3.61%, the devices modified by the Li2CO3-doped EGMC-COOH EML achieved a highest PCE of 4.29%. Furthermore, we demonstrated that the formation of the EGMC-COOH EML can be utilized as a general approach in the fabrication of highly efficient multilayer conventional devices. With the incorporation of the EGMC-COOH doped with 40 wt % Li2CO3, the PCDCTBT-C8:PC71BM-based device exhibited a superior PCE of 4.51%, which outperformed the corresponding nonmodified device with a PCE of 3.63%.

  16. Coating of α-MoO3 on nitrogen-doped carbon nanotubes by electrodeposition as a high-performance cathode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Liu, Xiaojiang; Wang, Ruilin; Mi, Rui; Li, Shaomin; Cui, Yanhua; Deng, Yafeng; Mei, Jun; Liu, Hao

    2015-01-01

    In this work, α-MoO3 nanoparticles are grown on the surface of nitrogen doped carbon nanotubes (N-CNTs) via a facile electrodeposition method. The morphology of as-prepared nanocomposite shows that the interconnected α-MoO3 nanoparticles are homogeneously distributed on the surface of N-CNTs. When investigated as a cathode material for lithium ion batteries, the nanocomposite reveals a high reversible discharge capacity of 250 mA h g-1 at a current density of 30 mA g-1, simultaneously with good cycling performance and excellent rate capability compared with pristine MoO3 powder. Kinetics of this process is investigated by electrochemical impedance spectroscopy to understand the difference in electrochemical performance and the interface properties between the α-MoO3/N-CNTs nanocomposite and pristine MoO3 powder electrode. The correlation between the unique structural features of α-MoO3/N-CNTs nanocomposite and its excellent electrochemical performance is also discussed. The excellent performance makes the as-prepared α-MoO3/N-CNTs nanocomposite a promising cathode material for high-performance lithium ion batteries.

  17. Diacetylenes with Ionic-Liquid-Like Substituents: Associating a Polymerizing Cation with a Polymerizing Anion in a Single Precursor for the Synthesis of N-Doped Carbon Materials.

    PubMed

    Fahsi, Karim; Dumail, Xavier; Dutremez, Sylvain G; van der Lee, Arie; Vioux, André; Viau, Lydie

    2016-01-26

    Imidazolium- and benzimidazolium-substituted diacetylenes with bromide or nitrogen-rich dicyanamide and tricyanomethanide anions were synthesized and used as precursors for the preparation of N-doped carbon materials. On pyrolysis under argon at 800 °C both halide precursors afforded graphite-like structures with nitrogen contents of about 8.5%. When the dicyanamide and tricyanomethanide precursors were thermolyzed at the same temperature, graphite-like structures were obtained that exhibit nitrogen contents in the range 17-20 wt%; thereby, the benefit of associating a polymerizing cation with a polymerizing anion in a single precursor was demonstrated. On pyrolysis at 1100 °C the nitrogen contents of the latter pyrolysates remain high (ca. 6 wt%). Adsorption measurements with krypton at 77 K indicated that the materials are nonporous. The highest electrical conductivity was observed for a pyrolysate with one of the lowest nitrogen contents, which also has the highest degree of graphitization. Thus, the quest for N-rich carbons with high electrical conductivities should include both maximization of the nitrogen content and optimization of the degree of graphitization. Crystallographic investigation of the precursors and spectroscopic characterization of the pyrolysates prepared by heating at 220 °C indicate that construction of the final carbon framework does not involve the intermediate formation of a polydiacetylene. PMID:26695842

  18. The Voigt effects in the anisotropic photonic band gaps of three-dimensional magnetized plasma photonic crystals doped by the uniaxial material

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Liu, Shao-Bin; Li, Bing-Xiang

    2013-10-01

    In this paper, the properties of photonic band gaps (PBGs) for three-dimensional magnetized plasma photonic crystals (MPPCs) composed of anisotropic dielectric (the uniaxial material) spheres immersed in homogeneous magnetized plasma background with simple-cubic lattices are theoretically investigated by the plane wave expansion (PWE) method, as the Voigt effects of magnetized plasma are considered. The equations for calculating the anisotropic PBGs in the first irreducible Brillouin zone are theoretically deduced. The anisotropic PBGs and two flatband regions can be obtained. The effects of the ordinary-refractive index, extraordinary-refractive index, filling factor, plasma frequency and plasma cyclotron frequency on the characteristics of anisotropic PBGs for the three-dimensional MPPCs are studied in detail and some corresponding physical explanations are also given. The numerical results show that the anisotropy can open partial band gaps in simple-cubic lattices and the complete PBGs can be found compared to the conventional three-dimensional MPPCs doped by the isotropic material. The bandwidths of PBGs can be enlarged by introducing the magnetized plasma into three-dimensional PCs containing the uniaxial material. It is also shown that the anisotropic PBGs can be manipulated by the ordinary-refractive index, extraordinary-refractive index, filling factor, plasma frequency and plasma cyclotron frequency. The locations of flatband regions cannot be tuned by any parameters except for the plasma frequency and plasma cyclotron frequency. Introducing the uniaxial material in three-dimensional magnetized plasma-dielectric photonic crystals can enlarge the PBGs and also provide a way to obtain the complete PBGs as the three-dimensional MPPCs with high symmetry.

  19. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    PubMed

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  20. Hierarchically Flower-like N-Doped Porous Carbon Materials Derived from an Explosive 3-Fold Interpenetrating Diamondoid Copper Metal-Organic Framework for a Supercapacitor.

    PubMed

    Li, Zuo-Xi; Zou, Kang-Yu; Zhang, Xue; Han, Tong; Yang, Ying

    2016-07-01

    A peculiar copper metal-organic framework (Cu-MOF) was synthesized by a self-assembly method, which presents a 3-fold interpenetrating diamondoid net based on the square-planar Cu(II) node. Although it exhibits a high degree of interpenetration, the Cu-MOF still exhibits a one-dimensional channel, which provides a template for constructing porous materials through the "precursor" strategy. Furthermore, the explosive ClO4(-) ion, which resided in the channel, could induce the quick decomposition of organic ingredients and release a huge amount of gas, which is beneficial for the porosity of postsynthetic materials. Significantly, we first utilize this explosive MOF to prepare a series of Cu@C composites through the calcination-thermolysis method at different temperatures, which contain copper particles exhibiting various shapes and combinations with the carbon substrate. Considering the hole-forming effect of copper particles, Cu@C composites were etched by HCl to afford a sequence of hierarchically flower-like N-doped porous carbon materials (NPCs), which retain the original morphology of the Cu-MOF. Interestingly, NPC-900, originating from the calcination of the Cu-MOF at 900 °C, exhibits a more regular flower-like morphology, the largest specific surface area, abundant porosities, and multiple nitrogen functionalities. The remarkable specific capacitances are 138 F g(-1) at 5 mV s(-1) and 149 F g(-1) at 0.5 A g(-1) for the NPC-900 electrode in a 6 M potassium hydroxide aqueous solution. Moreover, the retention of capacitance remains 86.8% (125 F g(-1)) at 1 A g(-1) over 2000 cycles, which displays good chemical stability. These findings suggest that NPC-900 can be applied as a suitable electrode for a supercapacitor. PMID:27304095

  1. Hierarchically Flower-like N-Doped Porous Carbon Materials Derived from an Explosive 3-Fold Interpenetrating Diamondoid Copper Metal-Organic Framework for a Supercapacitor.

    PubMed

    Li, Zuo-Xi; Zou, Kang-Yu; Zhang, Xue; Han, Tong; Yang, Ying

    2016-07-01

    A peculiar copper metal-organic framework (Cu-MOF) was synthesized by a self-assembly method, which presents a 3-fold interpenetrating diamondoid net based on the square-planar Cu(II) node. Although it exhibits a high degree of interpenetration, the Cu-MOF still exhibits a one-dimensional channel, which provides a template for constructing porous materials through the "precursor" strategy. Furthermore, the explosive ClO4(-) ion, which resided in the channel, could induce the quick decomposition of organic ingredients and release a huge amount of gas, which is beneficial for the porosity of postsynthetic materials. Significantly, we first utilize this explosive MOF to prepare a series of Cu@C composites through the calcination-thermolysis method at different temperatures, which contain copper particles exhibiting various shapes and combinations with the carbon substrate. Considering the hole-forming effect of copper particles, Cu@C composites were etched by HCl to afford a sequence of hierarchically flower-like N-doped porous carbon materials (NPCs), which retain the original morphology of the Cu-MOF. Interestingly, NPC-900, originating from the calcination of the Cu-MOF at 900 °C, exhibits a more regular flower-like morphology, the largest specific surface area, abundant porosities, and multiple nitrogen functionalities. The remarkable specific capacitances are 138 F g(-1) at 5 mV s(-1) and 149 F g(-1) at 0.5 A g(-1) for the NPC-900 electrode in a 6 M potassium hydroxide aqueous solution. Moreover, the retention of capacitance remains 86.8% (125 F g(-1)) at 1 A g(-1) over 2000 cycles, which displays good chemical stability. These findings suggest that NPC-900 can be applied as a suitable electrode for a supercapacitor.

  2. Antimony-doped graphene nanoplatelets

    NASA Astrophysics Data System (ADS)

    Jeon, In-Yup; Choi, Min; Choi, Hyun-Jung; Jung, Sun-Min; Kim, Min-Jung; Seo, Jeong-Min; Bae, Seo-Yoon; Yoo, Seonyoung; Kim, Guntae; Jeong, Hu Young; Park, Noejung; Baek, Jong-Beom

    2015-05-01

    Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalysts.

  3. Antimony-doped graphene nanoplatelets

    PubMed Central

    Jeon, In-Yup; Choi, Min; Choi, Hyun-Jung; Jung, Sun-Min; Kim, Min-Jung; Seo, Jeong-Min; Bae, Seo-Yoon; Yoo, Seonyoung; Kim, Guntae; Jeong, Hu Young; Park, Noejung; Baek, Jong-Beom

    2015-01-01

    Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalysts. PMID:25997811

  4. Nucleation and crystallization of Ca doped basaltic glass for the production of a glass-ceramic material

    NASA Astrophysics Data System (ADS)

    Tarrago, Mariona; Royo, Irene; Garcia-Valles, Maite; Martínez, Salvador

    2016-04-01

    Sewage sludge from wastewater treatment plants is a waste with a composition roughly similar to that of a basalt. It may contain potentially toxic elements that can be inertized by vitrification. Using a glass-ceramic process, these elements will be emplaced in newly formed mineral phases. Glass-ceramic production requires an accurate knowledge of the temperatures of nucleation (TN) and crystal growth of the corresponding minerals. This work arises from the study of the addition of ions to a basaltic matrix in order to establish a model of vitrification of sewage sludge. In this case a glass-ceramic is obtained from a glass made with a basalt that has been doped with 16% CaO. Two glasses which underwent different cooling processes have been produced and compared. The first was annealed at 650oC (AG) and the second was quenched (QG). The chemical composition of the glasses is SiO2 36.11 wt%, Al2O312.19 wt%, CaO 24.44 wt%, FeO 10.06 wt%, MgO 9.19 wt%, Na2O 2.28 wt%, TiO2 2.02 wt%, K2O 1.12 wt%, P2O5 0.46 wt%. Glass transition temperature obtained by dilatometry varies from 640 oC (AG) to 700 oC (QG). The temperatures of nucleation and crystal growth of the glass have been determined by Differential Thermal Analysis (DTA). The phases formed after these treatments were identified by X-Ray Diffraction. The temperatures of exothermic and endothermic peaks measured in the quenched glass are, in average, 10 oC higher than those found for the annealed glass. The exothermic peaks provide crystallization temperatures for different phases: a first event at 857 oC corresponds to the growth of magnetite, pyroxene and nepheline, whereas a second event at 1030 oC is due to the crystallization of melilite from the reaction between previous minerals and a remaining amorphous phase. The complete melting of this system occurs at 1201 oC. This glass has been nucleated inside the DTA furnace (500-850° C/3 hours) and then heated up to 1300 oC using the fraction between 400-500μm. TN

  5. Fast fabrication of a novel transparent PMMA light scattering materials with high haze by doping with ordinary polymer.

    PubMed

    Liu, Xiao; Xiong, Ying; Shen, Jiabin; Guo, Shaoyun

    2015-07-13

    Poly(methyl methacrylate)(PMMA)/poly(ethylene terephthalate) (PET) light scattering materials are fabricated by a simple, low-cost approach of melt blending and compression molding. We find that the competing effects of particle diameter versus number concentration of the scattering particles is the controlling factor to tailoring the optical properties of the materials, which is analyzed according to Mie scattering theory. The results show that the transmittance kept decreasing in the PET concentration range 0-10 wt% followed by a constant level in the range 10-20 wt%; however, the transmittance experienced a significant increase in the range 20-35 wt% and plateaued again after PET content exceeded 35 wt%. Therefore, the application of ordinary polymer dopant makes preparing light scattering sheets with high haze but not decreasing transmittance possible.

  6. V-doped SnS2: a new intermediate band material for a better use of the solar spectrum.

    PubMed

    Wahnón, Perla; Conesa, José C; Palacios, Pablo; Lucena, Raquel; Aguilera, Irene; Seminovski, Yohanna; Fresno, Fernando

    2011-12-01

    Intermediate band materials can boost photovoltaic efficiency through an increase in photocurrent without photovoltage degradation thanks to the use of two sub-bandgap photons to achieve a full electronic transition from the valence band to the conduction band of a semiconductor structure. After having reported in previous works several transition metal-substituted semiconductors as able to achieve the electronic structure needed for this scheme, we propose at present carrying out this substitution in sulfides that have bandgaps of around 2.0 eV and containing octahedrally coordinated cations such as In or Sn. Specifically, the electronic structure of layered SnS(2) with Sn partially substituted by vanadium is examined here with first principles quantum methods and seen to give favourable characteristics in this respect. The synthesis of this material in nanocrystalline powder form is then undertaken and achieved using solvothermal chemical methods. The insertion of vanadium in SnS(2) is found to produce an absorption spectrum in the UV-Vis-NIR range that displays a new sub-bandgap feature in agreement with the quantum calculations. A photocatalytic reaction-based test verifies that this sub-bandgap absorption produces highly mobile electrons and holes in the material that may be used for the solar energy conversion, giving experimental support to the quantum calculations predictions. PMID:21996706

  7. Niobium doped lanthanum calcium ferrite perovskite as a novel electrode material for symmetrical solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kong, Xiaowei; Zhou, Xiaoliang; Tian, Yu; Wu, Xiaoyan; Zhang, Jun; Zuo, Wei

    2016-09-01

    Development of cost-effective and efficient electrochemical catalysts for the fuel cells electrode is of prime importance to emerging renewable energy technologies. Here, we report for the first time the novel La0.9Ca0.1Fe0.9Nb0.1O3-δ (LCFNb) perovskite with good potentiality for the electrode material of the symmetrical solid oxide fuel cells (SSOFC). The Sc0.2Zr0.8O2-δ (SSZ) electrolyte supported symmetrical cells with impregnated LCFNb and LCFNb/SDC (Ce0.8Sm0.2O2-δ) electrodes achieve relatively high power outputs with maximum power densities (MPDs) reaching up to 392 and 528.6 mW cm-2 at 850 °C in dry H2, respectively, indicating the excellent electro-catalytic activity of LCFNb towards both hydrogen oxidation and oxygen reduction. Besides, the MPDs of the symmetrical cells with LCFNb/SDC composite electrodes in CO and syngas (CO: H2 = 1:1) are almost identical to those in H2, implying that LCFNb material has similar catalytic activities to carbon monoxide compared with hydrogen. High durability in both H2, CO and syngas during the short term stability tests for 50 h are also obtained, showing desirable structure stability, and carbon deposition resistance of LCFNb based electrodes. The present results indicate that the LCFNb perovskite with remarkable cell performance is a promising electrode material for symmetrical SOFCs.

  8. V-doped SnS2: a new intermediate band material for a better use of the solar spectrum.

    PubMed

    Wahnón, Perla; Conesa, José C; Palacios, Pablo; Lucena, Raquel; Aguilera, Irene; Seminovski, Yohanna; Fresno, Fernando

    2011-12-01

    Intermediate band materials can boost photovoltaic efficiency through an increase in photocurrent without photovoltage degradation thanks to the use of two sub-bandgap photons to achieve a full electronic transition from the valence band to the conduction band of a semiconductor structure. After having reported in previous works several transition metal-substituted semiconductors as able to achieve the electronic structure needed for this scheme, we propose at present carrying out this substitution in sulfides that have bandgaps of around 2.0 eV and containing octahedrally coordinated cations such as In or Sn. Specifically, the electronic structure of layered SnS(2) with Sn partially substituted by vanadium is examined here with first principles quantum methods and seen to give favourable characteristics in this respect. The synthesis of this material in nanocrystalline powder form is then undertaken and achieved using solvothermal chemical methods. The insertion of vanadium in SnS(2) is found to produce an absorption spectrum in the UV-Vis-NIR range that displays a new sub-bandgap feature in agreement with the quantum calculations. A photocatalytic reaction-based test verifies that this sub-bandgap absorption produces highly mobile electrons and holes in the material that may be used for the solar energy conversion, giving experimental support to the quantum calculations predictions.

  9. Strontium-doped samarium manganite as cathode materials for oxygen reduction reaction in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Li, W.; Xiong, C. Y.; Jia, L. C.; Pu, J.; Chi, B.; Chen, X.; Schwank, J. W.; Li, J.

    2015-06-01

    SmxSr1-xMnO3 with x = 0.3, 0.5 and 0.8, denoted as SSM37, SSM55 and SSM82, respectively, have been prepared via a sol-gel route as materials for cathodes in solid oxide fuel cells. Their activities in the oxygen reduction reaction (ORR) have been evaluated in comparison with the state-of-the-art cathode material La0.8Sr0.2MnO3 (LSM82) by electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS) and thermogravimetry (TG). Among all the prepared cathodes, the SSM55 exhibits the lowest values, while the LSM82 exhibits the highest polarization resistance, at open circuit voltage (OCV) and temperatures from 650 to 800 °C. This result indicates that the prepared SmxSr1-xMnO3 is a promising replacement for LSM82 as cathode material for SOFCs, and the SSM55 represents the optimal concentration in SmxSr1-xMnO3 series. The remarkably high ORR activity of the SSM55 is ascribed to its high surface Mn4+/Mn3+ and Oad/Olattice ratios and fast surface oxygen exchange kinetics.

  10. Effect of Mg doping on the local structure of LiMgyCo1-yO2 cathode material investigated by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, J. H.; Pan, C. J.; Nithya, C.; Thirunakaran, R.; Gopukumar, S.; Chen, C. H.; Lee, J. F.; Chen, J. M.; Sivashanmugam, A.; Hwang, B. J.

    2014-04-01

    A higher capacity and better cyclability are apparent when magnesium is introduced into the structure of LiCoO2 (y = 0.15). XRD analysis of LiMgyCo1-yO2 (y = 0, 0.1, 0.15), synthesized at 800 °C using a microwave assisted method, shows that the material is in the R-3m space group and to have a slightly expanded unit cell that increases with greater magnesium doping. Structural analysis by X-ray absorption spectroscopy (XAS) at the Co K-edge, L-edge and O K-edge shows that the magnesium is located in the transition metal layer rather than in the lithium layer and the charge balance results from the formation of oxygen vacancies rather than Co4+, while cobalt remains in the 3+ oxidation state. Interestingly, oxygen is found to participate in the charge compensation. Both magnesium, in the transition metal layer, and the Co-defect structure are attributed to the contribution towards structural stabilization of LiCoO2, thereby resulting in its enhanced electrochemical performance.

  11. Cobalt-Doped FeS2 Nanospheres with Complete Solid Solubility as a High-Performance Anode Material for Sodium-Ion Batteries.

    PubMed

    Zhang, Kai; Park, Mihui; Zhou, Limin; Lee, Gi-Hyeok; Shin, Jeongyim; Hu, Zhe; Chou, Shu-Lei; Chen, Jun; Kang, Yong-Mook

    2016-10-01

    Considering that the high capacity, long-term cycle life, and high-rate capability of anode materials for sodium-ion batteries (SIBs) is a bottleneck currently, a series of Co-doped FeS2 solid solutions with different Co contents were prepared by a facile solvothermal method, and for the first time their Na-storage properties were investigated. The optimized Co0.5 Fe0.5 S2 (Fe0.5) has discharge capacities of 0.220 Ah g(-1) after 5000 cycles at 2 A g(-1) and 0.172 Ah g(-1) even at 20 A g(-1) with compatible ether-based electrolyte in a voltage window of 0.8-2.9 V. The Fe0.5 sample transforms to layered Nax Co0.5 Fe0.5 S2 by initial activation, and the layered structure is maintained during following cycles. The redox reactions of Nax Co0.5 Fe0.5 S2 are dominated by pseudocapacitive behavior, leading to fast Na(+) insertion/extraction and durable cycle life. A Na3 V2 (PO4 )3 /Fe0.5 full cell was assembled, delivering an initial capacity of 0.340 Ah g(-1) .

  12. Effect of tar fractions from coal gasification on nickel-yttria stabilized zirconia and nickel-gadolinium doped ceria solid oxide fuel cell anode materials

    NASA Astrophysics Data System (ADS)

    Lorente, E.; Berrueco, C.; Millan, M.; Brandon, N. P.

    2013-11-01

    The allowable tar content in gasification syngas is one of the key questions for the exploitation of the full potential of fuel cell concepts with integrated gasification systems. A better understanding of the interaction between tars and the SOFC anodes which leads to carbon formation and deposition is needed in order to design systems where the extent of gas cleaning operations is minimized. Model tar compounds (toluene, benzene, naphthalene) have been used in experimental studies to represent those arising from biomass/coal gasification. However, the use of toluene as a model tar overestimates the negative impact of a real gasification tar on SOFC anode degradation associated with carbon formation. In the present work, the effect of a gasification tar and its distillation fractions on two commercially available fuel cell anodes, Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium doped ceria), is reported. A higher impact of the lighter tar fractions was observed, in terms of more carbon formation on the anodes, in comparison with the whole tar sample. The characterization of the recovered tars after contact with the anode materials revealed a shift towards a heavier molecular weight distribution, reinforcing the view that these fractions have reacted on the anode.

  13. Facile preparation of Gd3+ doped carbon quantum dots: Photoluminescence materials with magnetic resonance response as magnetic resonance/fluorescence bimodal probes

    NASA Astrophysics Data System (ADS)

    Ren, X. Y.; Yuan, X. X.; Wang, Y. P.; Liu, C. L.; Qin, Y.; Guo, L. P.; Liu, L. H.

    2016-07-01

    There are a few bimodal molecular imaging probes constructed by gadolinium (3+) ions in combination with carbon quantum dots (CQDs), and the reported ones show such obvious drawbacks as low luminous efficiency and weak MRI contrast. In the paper, a kind of CQDs photoluminescence materials with magnetic resonance response was prepared by hydrothermal method and employing gadopentetate monomeglumine (GdPM) as a precusor. Here, the GdPM plays a role of not only carbon source, but also gadolinium (3+) sources. When the GdPM aqueous solution with a concentration of 4 mg mL-1 was pyrolyzed under 220 °C and 2.0 MPa for 8 h, an optimal CQDs was obtained which are doped with gadolinium (3+) ions in both chelates and Gd2O3 (named as Gd3+-CQDs). The average diameter of the Gd3+-CQDs is about 1.6 nm, which show a high photoluminescence quantum yield of 7.1%, as well as high longitudinal relaxivity (r1) of 9.87 mM-1 s-1. And owing to the unconspicuous cell toxicity, the Gd3+-CQDs show big possibility for clinical application in magnetic resonance/fluorescence bimodal molecular imaging.

  14. Impact of Ni doping on La0.7Sr0.3NixMn1-xO3 perovskite manganite materials

    NASA Astrophysics Data System (ADS)

    Thamilmaran, P.; Arunachalam, M.; Sankarrajan, S.; Sakthipandi, K.

    2015-12-01

    On-line ultrasonic measurements on La0.7Sr0.3Mn1-xNixO3 perovskite manganite material (x=0.01, 0.02 and 0.03) were performed on the samples synthesised by solid state reaction technique. The XRD studies on the samples confirm the crystalline nature with single phase rhombohedral structure having R3C space group. The average size of the particles determined using SEM images are 0.587, 0.412 and 0.356 μm for x=0.01, 0.02 and 0.03 respectively. The temperature dependent ultrasonic velocities and attenuation measurements on the samples were used to reveal the ferromagnetic to paramagnetic phase transition temperature (Curie temperature) 374, 358 and 342 K for the values of x=0.01, 0.02 and 0.03 respectively. In addition, ultrasonic measurements confirm that the increase in Ni doping concentration in La0.7Sr0.3Mn1-xNixO3 perovskites leads to a decrease in Curie temperature. The change in Mn3+/Mn4+ ratio with the phase transition temperature was explained on the basis of variation in amplitude of observed anomaly in ultrasonic measurements. The replacement of Mn4+ ion by Ni2+ ion leads to a change in the structural parameters and in the concentration of Mn3+ and Mn4+ ions.

  15. Electrochemical performance of potassium-doped wüstite nanoparticles supported on graphene as an anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Jung, Dong-Won; Jeong, Jae-Hoon; Han, Sang-Wook; Oh, Eun-Suok

    2016-05-01

    A graphene composite with potassium-doped FeO nanoparticles (K-FeO/graphene) is synthesized by the thermal diffusion of potassium into Fe2O3/graphene using polyol reduction. This is applied as anode material in lithium ion batteries in order to enhance the electrochemical performance of conventional iron oxides (hematite or magnetite). Rhombohedral Fe2O3 crystals are transformed into face-centered cubic FeO crystals, which show a broad d-spacing (5.2 Å) between their (111) crystal planes, by the calcination of potassium-added Fe2O3/graphene. Because of its structural characteristics, the K-FeO/graphene composite demonstrates an excellent discharge capacity of 1776 mA h g-1 at the 50th cycle at a current of 100 mA h g-1 with stable capacity retention. Even with the very high current density of 18.56 A g-1, its capacity remains at 851 mA h g-1 after 800 cycles.

  16. Structural and thermoelectric properties of pure and La, Y doped HoMnO3 for their use as alternative energy materials

    NASA Astrophysics Data System (ADS)

    Khan, Banaras; Rahnamaye Aliabad, H. A.; Razghandi, N.; Maqbool, M.; Jalali Asadabadi, S.; Ahmad, Iftikhar

    2015-02-01

    HoMnO3 and its La and Y doped compounds Ho0.67La0.33MnO3 and Ho0.67Y 0.33MnO3 are investigated for their structural and thermoelectric transport properties. Small bandgaps of these compounds, as investigated by first principles calculations, make them suitable for application in thermoelectric devices. It is found that the bandgap of pure HoMnO3 increases with La and Y dopants. Thermoelectric parameters such as Seebeck coefficient, electric conductivity and thermal conductivity are calculated and their dependences on chemical potential are reported. Electrical conductivity is found to be of the order of 1020 1/m Ω s, and thermal conductivity of the order of 1015 W/mKs for all these alloys. HoMnO3 in pure form and in the presence of La and Y dopants is very suitable for thermoelectric devices and as alternative energy materials.

  17. Cobalt-Doped FeS2 Nanospheres with Complete Solid Solubility as a High-Performance Anode Material for Sodium-Ion Batteries.

    PubMed

    Zhang, Kai; Park, Mihui; Zhou, Limin; Lee, Gi-Hyeok; Shin, Jeongyim; Hu, Zhe; Chou, Shu-Lei; Chen, Jun; Kang, Yong-Mook

    2016-10-01

    Considering that the high capacity, long-term cycle life, and high-rate capability of anode materials for sodium-ion batteries (SIBs) is a bottleneck currently, a series of Co-doped FeS2 solid solutions with different Co contents were prepared by a facile solvothermal method, and for the first time their Na-storage properties were investigated. The optimized Co0.5 Fe0.5 S2 (Fe0.5) has discharge capacities of 0.220 Ah g(-1) after 5000 cycles at 2 A g(-1) and 0.172 Ah g(-1) even at 20 A g(-1) with compatible ether-based electrolyte in a voltage window of 0.8-2.9 V. The Fe0.5 sample transforms to layered Nax Co0.5 Fe0.5 S2 by initial activation, and the layered structure is maintained during following cycles. The redox reactions of Nax Co0.5 Fe0.5 S2 are dominated by pseudocapacitive behavior, leading to fast Na(+) insertion/extraction and durable cycle life. A Na3 V2 (PO4 )3 /Fe0.5 full cell was assembled, delivering an initial capacity of 0.340 Ah g(-1) . PMID:27624365

  18. Computational materials design of negative effective U system in the hole-doped Delafossite of CuAlO2, AgAlO2 and AuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Fukushima, Tetsuya; Uede, Hiroki; Katayama-Yoshida, Hiroshi

    2015-03-01

    In order to realize the super-high-TC superconductors (TC>1,000K) based on the general design rules for the negative Ueff system, we have performed computational materials design for theUeff<0 system in the hole-doped two-dimensional (2D) Delafossite CuAlO2, AgAlO2 and AuAlO2 from the first principles. We find the interesting chemical trend of TC in 2D and 3D systems; where the TC increases exponentially in the weak coupling regime (|Ueff (-0.44eV)|< W(2eV), W is the band width) for hole-doped CuFeS2, then the TC goes through a maximum when |Ueff (-4.88eV, -4.14eV)| ~ W (2.8eV, 3.5eV) for hole-doped AgAlO2 and AuAlO2, and the TC decreases with increasing |Ueff|in strong coupling regime, where |Ueff (-4.53eV)|> W(1.7eV) for hole-doped CuAlO2

  19. Synthesis, phase evolution and optical properties of Tb(3+)-doped KF-YbF3 system materials.

    PubMed

    Cao, Chunyan; Cao, Renping; Guo, Siling; Xie, An; Noh, Hyeon Mi; Jeong, Jung Hyun

    2015-08-01

    KF-YbF3 system materials have been synthesized by a hydrothermal method without any surfactant or template. By controlling the reactant ratios of KF:Yb(3+), the hydrothermal temperature and the pH of the prepared solutions, the final products can evolve among the orthorhombic phase of YbF3, the cubic phase of KYb3F10 and the cubic phase of KYbF4. The X-ray diffraction (XRD) patterns of the samples prove the phase evolution of the final products. The morphologies of the samples were characterized using field emission scanning electron microscopy (FE-SEM) images and the evolution of the morphology is consistent with that of the crystalline phases. The optical properties of Tb(3+) in the samples were characterized by PL excitation and emission spectra, as well as luminescent decay curves.

  20. Study of the Durability of Doped Lanthanum Manganite and Cobaltite Cathode Materials under ''Real World'' Air Exposure Atmospheres

    SciTech Connect

    Singh, Prabhakar; Mahapatra, Manoj; Ramprasad, Rampi; Minh, Nguyen; Misture, Scott

    2014-11-30

    The overall objective of the program is to develop and validate mechanisms responsible for the overall structural and chemical degradation of lanthanum manganite as well as lanthanum ferrite cobaltite based cathode when exposed to “real world” air atmosphere exposure conditions during SOFC systems operation. Of particular interest are the evaluation and analysis of degradation phenomena related to and responsible for (a) products formation and interactions with air contaminants, (b) dopant segregation and oxide exolution at free surfaces, (c) cation interdiffusion and reaction products formation at the buried interfaces, (d) interface morphology changes, lattice transformation and the development of interfacial porosity and (e) micro-cracking and delamination from the stack repeat units. Reaction processes have been studied using electrochemical and high temperature materials compatibility tests followed by structural and chemical characterization. Degradation hypothesis has been proposed and validated through further experimentation and computational simulation.

  1. Investigation into the effect of Si doping on the cell symmetry and performance of Sr{sub 1−y}Ca{sub y}FeO{sub 3−δ} SOFC cathode materials

    SciTech Connect

    Porras-Vazquez, Jose M.; Smith, R.I.; Slater, Peter R.

    2014-05-01

    In this paper we report the successful incorporation of silicon into Sr{sub 1−y}Ca{sub y}FeO{sub 3−δ} perovskite materials for potential applications as electrode materials for Solid Oxide Fuel Cells. It is observed that Si doping leads to a change from a tetragonal or orthorhombic structure (with partial ordering of oxygen vacancies) to a cubic one (with the oxygen vacancies disordered). The structures of the phases, SrFe{sub 0.85}Si{sub 0.15}O{sub 3−δ}, Sr{sub 0.75}Ca{sub 0.25}Fe{sub 0.85}Si{sub 0.15}O{sub 3−δ} and Sr{sub 0.5}Ca{sub 0.5}Fe{sub 0.85}Si{sub 0.15}O{sub 3−δ}, were analysed using neutron powder diffraction. The data confirmed the cubic unit cell, with no long range oxygen vacancy ordering. Conductivity measurements showed an improvement in the conductivity on Si doping, especially for samples with high Ca content. Composite electrodes comprising 50% Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} and 50% Sr{sub 1−y}Ca{sub y}(Fe/Si)O{sub 3−δ} on dense Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} pellets were therefore examined in air. An improvement in the area specific resistances (ASR) values is observed for the Si-doped samples with respect to the undoped samples. Thus the results show that silicon can be incorporated into Sr{sub 1−y}Ca{sub y}FeO{sub 3−δ}-based materials and can have a beneficial effect on the performance, making them potentially suitable for use as cathode material in Solid Oxide Fuel Cells (SOFC). - Graphical abstract: X-ray diffraction patterns for: (left) Sr{sub 0.75}Ca{sub 0.25}Fe{sub 1−x}Si{sub x}O{sub 3−δ} (x=0, 0.05, 0.10 and 0.15) and (right) Sr{sub 0.25}Ca{sub 0.75}Fe{sub 1−x}Si{sub x}O{sub 3−δ} (x=0, 0.05, 0.10 and 0.15), showing the stabilization of the cubic form of these series through silicon doping. For the latter Sr{sub 0.25}Ca{sub 0.75}Fe{sub 1−x}Si{sub x}O{sub 3−δ} phase, the stabilisation is not quite complete at 15% Si doping. - Highlights: • In Sr{sub 1−y}Ca{sub y}Fe{sub 1−x}Si{sub x}O{sub 3

  2. Vanadium doped Sb2Te3 material with modified crystallization mechanism for phase-change memory application

    NASA Astrophysics Data System (ADS)

    Ji, Xinglong; Wu, Liangcai; Cao, Liangliang; Zhu, Min; Rao, Feng; Zheng, Yonghui; Zhou, Wangyang; Song, Zhitang; Feng, Songlin

    2015-06-01

    In this paper, V0.21Sb2Te3 (VST) has been proposed for phase-change memory applications. With vanadium incorporating, VST has better thermal stability than Sb2Te3 and can maintain in amorphous phase at room temperature. Two resistance steps were observed in temperature dependent resistance measurements. By real-time observing the temperature dependent lattice structure evolution, VST presents as a homogenous phase throughout the whole thermal process. Combining Hall measurement and transmission electron microscopy results, we can ascribe the two resistance steps to the unique crystallization mechanism of VST material. Then, the amorphous thermal stability enhancement can also be rooted in the suppression of the fast growth crystallization mechanism. Furthermore, the applicability of VST is demonstrated by resistance-voltage measurement, and the phase transition of VST can be triggered by a 15 ns electric pulse. In addition, endurance up to 2.7 × 10 4 cycles makes VST a promising candidate for phase-change memory applications.

  3. Chemical approaches for doping nanodevice architectures.

    PubMed

    O'Connell, John; Biswas, Subhajit; Duffy, Ray; Holmes, Justin D

    2016-08-26

    Advanced doping technologies are key for the continued scaling of semiconductor devices and the maintenance of device performance beyond the 14 nm technology node. Due to limitations of conventional ion-beam implantation with thin body and 3D device geometries, techniques which allow precise control over dopant diffusion and concentration, in addition to excellent conformality on 3D device surfaces, are required. Spin-on doping has shown promise as a conventional technique for doping new materials, particularly through application with other dopant methods, but may not be suitable for conformal doping of nanostructures. Additionally, residues remain after most spin-on-doping processes which are often difficult to remove. In situ doping of nanostructures is especially common for bottom-up grown nanostructures but problems associated with concentration gradients and morphology changes are commonly experienced. Monolayer doping has been shown to satisfy the requirements for extended defect-free, conformal and controllable doping on many materials ranging from traditional silicon and germanium devices to emerging replacement materials such as III-V compounds but challenges still remain, especially with regard to metrology and surface chemistry at such small feature sizes. This article summarises and critically assesses developments over the last number of years regarding the application of gas and solution phase techniques to dope silicon-, germanium- and III-V-based materials and nanostructures to obtain shallow diffusion depths coupled with high carrier concentrations and abrupt junctions. PMID:27418239

  4. Chemical approaches for doping nanodevice architectures

    NASA Astrophysics Data System (ADS)

    O’Connell, John; Biswas, Subhajit; Duffy, Ray; Holmes, Justin D.

    2016-08-01

    Advanced doping technologies are key for the continued scaling of semiconductor devices and the maintenance of device performance beyond the 14 nm technology node. Due to limitations of conventional ion-beam implantation with thin body and 3D device geometries, techniques which allow precise control over dopant diffusion and concentration, in addition to excellent conformality on 3D device surfaces, are required. Spin-on doping has shown promise as a conventional technique for doping new materials, particularly through application with other dopant methods, but may not be suitable for conformal doping of nanostructures. Additionally, residues remain after most spin-on-doping processes which are often difficult to remove. In situ doping of nanostructures is especially common for bottom-up grown nanostructures but problems associated with concentration gradients and morphology changes are commonly experienced. Monolayer doping has been shown to satisfy the requirements for extended defect-free, conformal and controllable doping on many materials ranging from traditional silicon and germanium devices to emerging replacement materials such as III–V compounds but challenges still remain, especially with regard to metrology and surface chemistry at such small feature sizes. This article summarises and critically assesses developments over the last number of years regarding the application of gas and solution phase techniques to dope silicon-, germanium- and III–V-based materials and nanostructures to obtain shallow diffusion depths coupled with high carrier concentrations and abrupt junctions.

  5. Chemical approaches for doping nanodevice architectures

    NASA Astrophysics Data System (ADS)

    O'Connell, John; Biswas, Subhajit; Duffy, Ray; Holmes, Justin D.

    2016-08-01

    Advanced doping technologies are key for the continued scaling of semiconductor devices and the maintenance of device performance beyond the 14 nm technology node. Due to limitations of conventional ion-beam implantation with thin body and 3D device geometries, techniques which allow precise control over dopant diffusion and concentration, in addition to excellent conformality on 3D device surfaces, are required. Spin-on doping has shown promise as a conventional technique for doping new materials, particularly through application with other dopant methods, but may not be suitable for conformal doping of nanostructures. Additionally, residues remain after most spin-on-doping processes which are often difficult to remove. In situ doping of nanostructures is especially common for bottom-up grown nanostructures but problems associated with concentration gradients and morphology changes are commonly experienced. Monolayer doping has been shown to satisfy the requirements for extended defect-free, conformal and controllable doping on many materials ranging from traditional silicon and germanium devices to emerging replacement materials such as III-V compounds but challenges still remain, especially with regard to metrology and surface chemistry at such small feature sizes. This article summarises and critically assesses developments over the last number of years regarding the application of gas and solution phase techniques to dope silicon-, germanium- and III-V-based materials and nanostructures to obtain shallow diffusion depths coupled with high carrier concentrations and abrupt junctions.

  6. Path integral Monte Carlo simulations of H2 adsorbed to lithium-doped benzene: A model for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Lindoy, Lachlan P.; Kolmann, Stephen J.; D'Arcy, Jordan H.; Crittenden, Deborah L.; Jordan, Meredith J. T.

    2015-11-01

    Finite temperature quantum and anharmonic effects are studied in H2-Li+-benzene, a model hydrogen storage material, using path integral Monte Carlo (PIMC) simulations on an interpolated potential energy surface refined over the eight intermolecular degrees of freedom based upon M05-2X/6-311+G(2df,p) density functional theory calculations. Rigid-body PIMC simulations are performed at temperatures ranging from 77 K to 150 K, producing both quantum and classical probability density histograms describing the adsorbed H2. Quantum effects broaden the histograms with respect to their classical analogues and increase the expectation values of the radial and angular polar coordinates describing the location of the center-of-mass of the H2 molecule. The rigid-body PIMC simulations also provide estimates of the change in internal energy, ΔUads, and enthalpy, ΔHads, for H2 adsorption onto Li+-benzene, as a function of temperature. These estimates indicate that quantum effects are important even at room temperature and classical results should be interpreted with caution. Our results also show that anharmonicity is more important in the calculation of U and H than coupling—coupling between the intermolecular degrees of freedom becomes less important as temperature increases whereas anharmonicity becomes more important. The most anharmonic motions in H2-Li+-benzene are the "helicopter" and "ferris wheel" H2 rotations. Treating these motions as one-dimensional free and hindered rotors, respectively, provides simple corrections to standard harmonic oscillator, rigid rotor thermochemical expressions for internal energy and enthalpy that encapsulate the majority of the anharmonicity. At 150 K, our best rigid-body PIMC estimates for ΔUads and ΔHads are -13.3 ± 0.1 and -14.5 ± 0.1 kJ mol-1, respectively.

  7. Path integral Monte Carlo simulations of H2 adsorbed to lithium-doped benzene: A model for hydrogen storage materials.

    PubMed

    Lindoy, Lachlan P; Kolmann, Stephen J; D'Arcy, Jordan H; Crittenden, Deborah L; Jordan, Meredith J T

    2015-11-21

    Finite temperature quantum and anharmonic effects are studied in H2-Li(+)-benzene, a model hydrogen storage material, using path integral Monte Carlo (PIMC) simulations on an interpolated potential energy surface refined over the eight intermolecular degrees of freedom based upon M05-2X/6-311+G(2df,p) density functional theory calculations. Rigid-body PIMC simulations are performed at temperatures ranging from 77 K to 150 K, producing both quantum and classical probability density histograms describing the adsorbed H2. Quantum effects broaden the histograms with respect to their classical analogues and increase the expectation values of the radial and angular polar coordinates describing the location of the center-of-mass of the H2 molecule. The rigid-body PIMC simulations also provide estimates of the change in internal energy, ΔUads, and enthalpy, ΔHads, for H2 adsorption onto Li(+)-benzene, as a function of temperature. These estimates indicate that quantum effects are important even at room temperature and classical results should be interpreted with caution. Our results also show that anharmonicity is more important in the calculation of U and H than coupling-coupling between the intermolecular degrees of freedom becomes less important as temperature increases whereas anharmonicity becomes more important. The most anharmonic motions in H2-Li(+)-benzene are the "helicopter" and "ferris wheel" H2 rotations. Treating these motions as one-dimensional free and hindered rotors, respectively, provides simple corrections to standard harmonic oscillator, rigid rotor thermochemical expressions for internal energy and enthalpy that encapsulate the majority of the anharmonicity. At 150 K, our best rigid-body PIMC estimates for ΔUads and ΔHads are -13.3 ± 0.1 and -14.5 ± 0.1 kJ mol(-1), respectively.

  8. Path integral Monte Carlo simulations of H2 adsorbed to lithium-doped benzene: A model for hydrogen storage materials.

    PubMed

    Lindoy, Lachlan P; Kolmann, Stephen J; D'Arcy, Jordan H; Crittenden, Deborah L; Jordan, Meredith J T

    2015-11-21

    Finite temperature quantum and anharmonic effects are studied in H2-Li(+)-benzene, a model hydrogen storage material, using path integral Monte Carlo (PIMC) simulations on an interpolated potential energy surface refined over the eight intermolecular degrees of freedom based upon M05-2X/6-311+G(2df,p) density functional theory calculations. Rigid-body PIMC simulations are performed at temperatures ranging from 77 K to 150 K, producing both quantum and classical probability density histograms describing the adsorbed H2. Quantum effects broaden the histograms with respect to their classical analogues and increase the expectation values of the radial and angular polar coordinates describing the location of the center-of-mass of the H2 molecule. The rigid-body PIMC simulations also provide estimates of the change in internal energy, ΔUads, and enthalpy, ΔHads, for H2 adsorption onto Li(+)-benzene, as a function of temperature. These estimates indicate that quantum effects are important even at room temperature and classical results should be interpreted with caution. Our results also show that anharmonicity is more important in the calculation of U and H than coupling-coupling between the intermolecular degrees of freedom becomes less important as temperature increases whereas anharmonicity becomes more important. The most anharmonic motions in H2-Li(+)-benzene are the "helicopter" and "ferris wheel" H2 rotations. Treating these motions as one-dimensional free and hindered rotors, respectively, provides simple corrections to standard harmonic oscillator, rigid rotor thermochemical expressions for internal energy and enthalpy that encapsulate the majority of the anharmonicity. At 150 K, our best rigid-body PIMC estimates for ΔUads and ΔHads are -13.3 ± 0.1 and -14.5 ± 0.1 kJ mol(-1), respectively. PMID:26590532

  9. Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries

    SciTech Connect

    Li, Hui; Yu, Xiqian; Bai, Ying; Wu, Feng; Wu, Chuan; Liu, Liang-Yu; Yang, Xiao-Qing

    2015-01-01

    Na3V2-xMgx(PO4)3/C composites with different Mg2+ doping contents (x=0, 0.01, 0.03, 0.05, 0.07 and 0.1) were prepared by a facile sol-gel method. The doping effects on the crystal structure were investigated by XRD, XPS and EXAFS. The results show that low dose doping Mg2+ does not alter the structure of the material, and magnesium is successfully substituted for vanadium site. The Mg doped Na3V2-xMgx(PO4)3/C composites exhibit significant improvements on the electrochemistry performances in terms of the rate capability and cycle performance, especially for the Na3V1.95Mg0.05(PO4)3/C. For example, when the current density increased from 1 C to 30 C, the specific capacity only decreased from 112.5 mAh g-1 to 94.2 mAh g-1 showing very good rate capability. Moreover, even cycling at a high rate of 20 C, an excellent capacity retention of 81% is maintained from the initial value of 106.4 mAh g-1 to 86.2 mAh g-1 at the 50th cycle. Enhanced rate capability and cycle performance can be attributed to the optimized particle size, structural stability and enhanced ionic and electronic conductivity induced by Mg doping.

  10. Sorption of Arsenic from Drinking Water to Mg(OH)2 Sorrel's Cements, and Zirconium Doped Materials

    SciTech Connect

    MOORE, ROBERT C.; ZHAO, HONGTING; SANCHEZ, CHARLES ANTHONY; HOLT, KATHLEEN C.; SALAS, FRED; HASAN, AHMED ALI MOHAMED; LUCERO, DANIEL A.

    2002-11-01

    It was discovered that MgO or Mg(OH){sub 2} when it reacts with water is a very strong sorbent for arsenic. Distribution constants, or K{sub d} values, are as high as 1 x 10{sup 6} L/mole. In this work, Mg(OH){sub 2} and other compounds have been investigated as sorbents for arsenic and other contaminants. This work has resulted in several major accomplishments including: (1) design, construction, and testing of a pressure sand filter to remove Mg(OH){sub 2} after it has sorbed arsenic from water, (2) stabilization of Mg(OH){sub 2} as a Sorrel's cement against reaction with carbonate that results in MgCO{sub 3} formation decreasing the efficiency of Mg(OH){sub 2} to sorb arsenic, and (3) the development of a new, very promising sorbent for arsenic based on zirconium. Zirconium is an environmentally benign material found in many common products such as toothpaste. It is currently used in water treatment and is very inexpensive. In this work, zirconium has been bonded to activated carbon, zeolites, sand and montmorillonite. Because of its high charge in ionic form (+6), zirconium is a strong sorbent for many anions including arsenic. In equilibrium experiments arsenic concentrations in water were reduced from 200 ppb to less than 1 ppb in less than 1 minute of contact time. Additionally, analytical methods for detecting arsenic in water have also been investigated. Various analytical techniques including HPLC, AA and ICP-MS are used for quantification of arsenic. Due to large matrix interferences HPLC and AA techniques are not very selective and are time consuming. ICP-MS is highly efficient, requires a low sample volume and has a high tolerance for interferences. All these techniques are costly and require trained staff, and with the exception of ICP-MS, these methods cannot be used at low ppb arsenic concentration without using a pre-concentration step. An alternative to these traditional techniques is to use a colorimetric method based on leucocrystal violet dye

  11. Improving the rate capability of high voltage lithium-ion battery cathode material LiNi0.5Mn1.5O4 by ruthenium doping

    NASA Astrophysics Data System (ADS)

    Kiziltas-Yavuz, Nilüfer; Bhaskar, Aiswarya; Dixon, Ditty; Yavuz, Murat; Nikolowski, Kristian; Lu, Li; Eichel, Rüdiger-A.; Ehrenberg, Helmut

    2014-12-01

    The citric acid-assisted sol-gel method was used to produce the high-voltage cathodes LiNi0.5Mn1.5O4 and LiNi0.4Ru0.05Mn1.5O4 at 800 °C and 1000 °C final calcination temperatures. High resolution powder diffraction using synchrotron radiation, inductively coupled plasma - optical emission spectroscopy and scanning electron microscopy analyses were carried out to characterize the structure, chemical composition and morphology. X-ray absorption spectroscopy studies were conducted to confirm Ru doping inside the spinel as well as to compare the oxidation states of transition metals. The formation of an impurity LixNi1-xO in LiNi0.5Mn1.5O4 powders annealed at high temperatures (T ≥ 800 °C) can be suppressed by partial substitution of Ni2+ by Ru4+ ion. The LiNi0.4Ru0.05Mn1.5O4 powder synthesized at 1000 °C shows the highest performance regarding the rate capability and cycling stability. It has an initial capacity of ∼139 mAh g-1 and capacity retention of 84% after 300 cycles at C/2 charging-discharging rate between 3.5 and 5.0 V. The achievable discharge capacity at 20 C for a charging rate of C/2 is ∼136 mAh g-1 (∼98% of the capacity delivered at C/2). Since the electrode preparation plays a crucial role on parameters like the rate capability, the influence of the mass loading of active materials in the cathode mixture is discussed.

  12. Gene doping.

    PubMed

    Harridge, Stephen D R; Velloso, Cristiana P

    2008-01-01

    Gene doping is the misuse of gene therapy to enhance athletic performance. It has recently been recognised as a potential threat and subsequently been prohibited by the World Anti-Doping Agency. Despite concerns with safety and efficacy of gene therapy, the technology is progressing steadily. Many of the genes/proteins which are involved in determining key components of athletic performance have been identified. Naturally occurring mutations in humans as well as gene-transfer experiments in adult animals have shown that altered expression of these genes does indeed affect physical performance. For athletes, however, the gains in performance must be weighed against the health risks associated with the gene-transfer process, whereas the detection of such practices will provide new challenges for the anti-doping authorities.

  13. Self-Activated Photostimulated Luminescence Properties and Stable Storage Capacity of Un-Doped Sr3Al2O5Cl2 Material for Potential Applications in Optical Storage.

    PubMed

    Zou, Zehua; Duan, Mingxiao; Li, Huihui; Zhang, Jiachi; Wang, Yuhua

    2015-09-01

    Un-doped Sr3Al2OCl2 material is synthesized by conventional solid state method in reducing atmosphere. It shows intense photostimulated luminescence and the emission band of spectrum covers in 420-800 nm under infrared laser (980 nm) stimulation. Both the emission centers and traps are related to oxygen-deficient defects. Moreover, thermoluminescence indicates that there are at least five types of traps levels in this material. The weak long lasting phosphorescence (30 s) implies the lack of the shallow traps. The deep traps are rich and their storage capacity can be influenced by the releasing progress of the shallow traps. When the shallow traps are completely emptied after 6 h, the stable storage capacity of deep traps is still as large as 51.5%. Also, this material show good photostimulated luminescence under irradiation by infrared laser. Therefore, the un-doped Sr3Al2O5Cl2 material synthesized in reducing atmosphere can be considered as a potential photostimulated material for optical storage. Accordingly, the influence mechanism of traps on photostimulated luminescence is proposed.

  14. Self-Activated Photostimulated Luminescence Properties and Stable Storage Capacity of Un-Doped Sr3Al2O5Cl2 Material for Potential Applications in Optical Storage.

    PubMed

    Zou, Zehua; Duan, Mingxiao; Li, Huihui; Zhang, Jiachi; Wang, Yuhua

    2015-09-01

    Un-doped Sr3Al2OCl2 material is synthesized by conventional solid state method in reducing atmosphere. It shows intense photostimulated luminescence and the emission band of spectrum covers in 420-800 nm under infrared laser (980 nm) stimulation. Both the emission centers and traps are related to oxygen-deficient defects. Moreover, thermoluminescence indicates that there are at least five types of traps levels in this material. The weak long lasting phosphorescence (30 s) implies the lack of the shallow traps. The deep traps are rich and their storage capacity can be influenced by the releasing progress of the shallow traps. When the shallow traps are completely emptied after 6 h, the stable storage capacity of deep traps is still as large as 51.5%. Also, this material show good photostimulated luminescence under irradiation by infrared laser. Therefore, the un-doped Sr3Al2O5Cl2 material synthesized in reducing atmosphere can be considered as a potential photostimulated material for optical storage. Accordingly, the influence mechanism of traps on photostimulated luminescence is proposed. PMID:26716302

  15. Scalable synthesis of core-shell structured SiOx/nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Lu; Wang, Weikun; Wang, Anbang; Yuan, Keguo; Jin, Zhaoqing; Yang, Yusheng

    2016-06-01

    In this work, a novel core-shell structured SiOx/nitrogen-doped carbon composite has been prepared by simply dispersing the SiOx particles, which are synthesized by a thermal evaporation method from an equimolar mixture of Si and SiO2, into the dopamine solution, followed by a carbonization process. The SiOx core is well covered by the conformal and homogeneous nitrogen-doped carbon layer from the pyrolysis of polydopamine. By contrast with the bare SiOx, the electrochemical performance of the as-prepared core-shell structured SiOx/nitrogen-doped carbon composite has been improved significantly. It delivers a reversible capacity of 1514 mA h g-1 after 100 cycles at a current density of 100 mA g-1 and 933 mA h g-1 at 2 A g-1, much higher than those of commercial graphite anodes. The nitrogen-doped carbon layer ensures the excellent electrochemical performance of the SiOx/C composite. In addition, since dopamine can self-polymerize and coat virtually any surface, this versatile, facile and highly efficient coating process may be widely applicable to obtain various composites with uniform nitrogen-doped carbon coating layer.

  16. Controllable synthesis of doped graphene and its applications.

    PubMed

    Xue, Yunzhou; Wu, Bin; Bao, Qiaoliang; Liu, Yunqi

    2014-08-13

    Graphene is a wonder material with the ultimate smallest thickness that is readily accessible to various approaches for engineering its excellent properties. Graphene doping is an efficient way to tailor its electric properties and expand its applications. This topic covers wide research fields and has been developing rapidly. This article presents a broad and comprehensive overview of the developments in the preparation and applications of doped graphene including doping methods, doping levels, doping effect and types of heteroatoms. Very recent advances are also presented. In addition, existing problems in terms of achieving greater control over and further developments of doped graphene are also discussed. PMID:24715648

  17. Superconductivity in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Bustarret, E.

    2015-07-01

    A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.

  18. Nitrogen-Doped Ordered Mesoporous Anatase TiO2 Nanofibers as Anode Materials for High Performance Sodium-Ion Batteries.

    PubMed

    Wu, Ying; Liu, Xiaowu; Yang, Zhenzhong; Gu, Lin; Yu, Yan

    2016-07-01

    Nitrogen-doped ordered mesoporous TiO2 nanofibers (N-MTO) have been fabricated by electrospinning and subsequent nitridation treatment. The N-doping in TiO2 leads to the formation of Ti(3+) , resulting in the improved electron conductivity of TiO2 . In addition, one-dimensional (1D) N-MTO nanostructure possesses very short diffusion length of Na(+) /e(-) in N-MTO, easy access of electrolyte, and high conductivity transport of electrons along the percolating fibers. The N-MTO shows excellent sodium storage performance.

  19. Energy Storage: Nitrogen-Doped Ordered Mesoporous Anatase TiO2 Nanofibers as Anode Materials for High Performance Sodium-Ion Batteries (Small 26/2016).

    PubMed

    Wu, Ying; Liu, Xiaowu; Yang, Zhenzhong; Gu, Lin; Yu, Yan

    2016-07-01

    On page 3522, Y. Yu and co-workers fabricate nitrogen-doped ordered mesoporous TiO2 nanofibers (denoted as N-MTO) by electrospinning and subsequent nitridation treatment. Nitrogen atoms are successfully doped into the TiO2 lattice, accompanied by the formation of Ti(3+) and oxygen vacancies, contributing to the improvement of electronic conductivity of TiO2 . When used as an anode for a sodium-ion battery, the N-MTO demonstrates excellent rate capability and superior long cycling performance. PMID:27383035

  20. Energy Storage: Nitrogen-Doped Ordered Mesoporous Anatase TiO2 Nanofibers as Anode Materials for High Performance Sodium-Ion Batteries (Small 26/2016).

    PubMed

    Wu, Ying; Liu, Xiaowu; Yang, Zhenzhong; Gu, Lin; Yu, Yan

    2016-07-01

    On page 3522, Y. Yu and co-workers fabricate nitrogen-doped ordered mesoporous TiO2 nanofibers (denoted as N-MTO) by electrospinning and subsequent nitridation treatment. Nitrogen atoms are successfully doped into the TiO2 lattice, accompanied by the formation of Ti(3+) and oxygen vacancies, contributing to the improvement of electronic conductivity of TiO2 . When used as an anode for a sodium-ion battery, the N-MTO demonstrates excellent rate capability and superior long cycling performance.

  1. Functionalization of nitrogen-doped carbon nanotubes with gallium to form Ga-CN(x)-multi-wall carbon nanotube hybrid materials.

    PubMed

    Simmons, Trevor J; Hashim, Daniel P; Zhan, Xiaobo; Bravo-Sanchez, Mariela; Hahm, Myung Gwan; López-Luna, Edgar; Linhardt, Robert J; Ajayan, Pulickel M; Navarro-Contreras, Hugo; Vidal, Miguel A

    2012-08-17

    In an effort to combine group III-V semiconductors with carbon nanotubes, a simple solution-based technique for gallium functionalization of nitrogen-doped multi-wall carbon nanotubes has been developed. With an aqueous solution of a gallium salt (GaI(3)), it was possible to form covalent bonds between the Ga(3+) ion and the nitrogen atoms of the doped carbon nanotubes to form a gallium nitride-carbon nanotube hybrid at room temperature. This functionalization was evaluated by x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy.

  2. Method of doping a semiconductor

    DOEpatents

    Yang, Chiang Y.; Rapp, Robert A.

    1983-01-01

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  3. Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Xuekun; Li, Zhaoqiang; Zhang, Zhiwei; Li, Qun; Guo, Enyan; Wang, Chengxiang; Yin, Longwei

    2015-02-01

    We designed a facile infiltration route to synthesize mesoporous hollow structured Mo doped SnO2 using silica spheres as templates. It is observed that Mo is uniformly incorporated into SnO2 lattice in the form of Mo6+. The as-prepared mesoporous Mo-doped SnO2 LIBs anodes exhibit a significantly improved electrochemical performance with good cycling stability, high specific capacity and high rate capability. The mesoporous hollow Mo-doped SnO2 sample with 14 at% Mo doping content displays a specific capacity of 801 mA h g-1 after 60 cycles at a current density of 100 mA g-1, about 1.66 times higher than that of the pure SnO2 hollow sample. In addition, even if the current density is as high as 1600 mA g-1 after 60 cycles, it could still retain a stable specific capacity of 530 mA h g-1, exhibiting an extraordinary rate capability. The greatly improved electrochemical performance of the Mo-doped mesoporous hollow SnO2 sample could be attributed to the following factors. The large surface area and hollow structure can significantly enhance structural integrity by acting as mechanical buffer, effectively alleviating the volume changes generated during the lithiation/delithiation process. The incorporation of Mo into the lattice of SnO2 improves charge transfer kinetics and results in a faster Li+ diffusion rate during the charge-discharge process.

  4. Lanthanide doped strontium-barium cesium halide scintillators

    SciTech Connect

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  5. Energy transfer and downconversion near-infrared material of Tb3+ and Yb3+ doped Ca5(BO3)3F

    NASA Astrophysics Data System (ADS)

    Hou, Dejian; Li, Jin-Yan; Lin, Huihong; Zhang, Jingxiang

    2016-11-01

    Yb3+ and Tb3+ singly doped and Tb3+-Yb3+ co-doped Ca5(BO3)3F phosphors were prepared by a solid state reaction method. The luminescence emission and excitation spectra as well as the luminescence decay curves were investigated. The emission bands of Yb3+ ion are located around 1000 nm, matching well with the optimal response of Si-based solar cells. Tb3+ can be a sensitizer for Yb3+ in the host. The energy transfer from Tb3+ to Yb3+ was investigated, the energy transfer mechanism was proposed as cooperative energy transfer. Tb3+ concentration dependent quantum efficiency was calculated and the maximum efficiency approached 115.5%.

  6. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  7. Doping silicon nanocrystals and quantum dots.

    PubMed

    Oliva-Chatelain, Brittany L; Ticich, Thomas M; Barron, Andrew R

    2016-01-28

    The ability to incorporate a dopant element into silicon nanocrystals (NC) and quantum dots (QD) is one of the key technical challenges for the use of these materials in a number of optoelectronic applications. Unlike doping of traditional bulk semiconductor materials, the location of the doping element can be either within the crystal lattice (c-doping), on the surface (s-doping) or within the surrounding matrix (m-doping). A review of the various synthetic strategies for doping silicon NCs and QDs is presented, concentrating on the efficacy of the synthetic routes, both in situ and post synthesis, with regard to the structural location of the dopant and the doping level. Methods that have been applied to the characterization of doped NCs and QDs are summarized with regard to the information that is obtained, in particular to provide researchers with a guide to the suitable techniques for determining dopant concentration and location, as well as electronic and photonic effectiveness of the dopant.

  8. Doping silicon nanocrystals and quantum dots

    NASA Astrophysics Data System (ADS)

    Oliva-Chatelain, Brittany L.; Ticich, Thomas M.; Barron, Andrew R.

    2016-01-01

    The ability to incorporate a dopant element into silicon nanocrystals (NC) and quantum dots (QD) is one of the key technical challenges for the use of these materials in a number of optoelectronic applications. Unlike doping of traditional bulk semiconductor materials, the location of the doping element can be either within the crystal lattice (c-doping), on the surface (s-doping) or within the surrounding matrix (m-doping). A review of the various synthetic strategies for doping silicon NCs and QDs is presented, concentrating on the efficacy of the synthetic routes, both in situ and post synthesis, with regard to the structural location of the dopant and the doping level. Methods that have been applied to the characterization of doped NCs and QDs are summarized with regard to the information that is obtained, in particular to provide researchers with a guide to the suitable techniques for determining dopant concentration and location, as well as electronic and photonic effectiveness of the dopant.

  9. Doped semiconductor nanoparticles synthesized in gas-phase plasmas

    NASA Astrophysics Data System (ADS)

    Pereira, R. N.; Almeida, A. J.

    2015-08-01

    Crystalline nanoparticles (NPs) of semiconductor materials have been attracting huge research interest due to their potential use in future applications like photovoltaics and bioimaging. The important role that intentional impurity doping plays in semiconductor technology has ignited a great deal of research effort aiming at synthesizing semiconductor NPs doped with foreign impurities and at understanding their physical and chemical properties. In this respect, plasma-grown semiconductor NPs doped in situ during synthesis have been key in studies of doped NPs. This article presents a review of the advances in understanding the properties of doped semiconductor NPs synthesized by means of plasma methods and the role played by these NPs for our current understanding of doped NPs and the general behavior of doping in nanoscale materials.

  10. Electrical doping of organic molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Gao, Weiying

    2004-11-01

    Electrical doping is perceived as a key to enhance the performance and versatility of organic molecular devices. Understanding the doping mechanism and the impact of doping on interface electronic structures is very important for better control of the doping. We show that an efficient p-doping is a result of a good energy match between the host ionization energy and the dopant electron affinity, via a study of the electronic structure of host and dopant materials using direct and inverse photoemission spectroscopies (UPS/IPES). The hole transport materials zinc phthalocyanine (ZnPc) and N,N'-diphenyl-N,N '-bis(1-naphthyl)-1,1'-biphenyl-4,4 '-diamine (alpha-NPD) are used as the host materials, and the strong acceptor material tetrafluorotetracyanoquinodimethane (F4 -TCNQ) is the p-type dopant. In p-doped films, EF moves closer to the HOMO, analogous to inorganic semiconductors. The ultimate position of EF with respect to the HOMO in highly doped film is limited by the large polarization and relaxation in molecular solids, especially in 3-D molecules like alpha-NPD. The study of the impact of doping at metal-organic interfaces shows that the interface electronic structure, i.e. interface dipole, ionization energy and EF-HOMO, is nearly independent of doping, although the bulk EF-HOMO of the doped film is determined by the dopant concentration. A depletion region is formed at the interface with its width depending on the dopant concentration similarly as metal-inorganic semiconductor interfaces. This narrow space charge region greatly improves hole injection by several orders of magnitude via tunneling. The impact of doping on the energy alignment at organic-organic heterojunction interfaces is found to be different compared to MO interfaces. Interface dipoles are generally seen upon doping of one organic material at these weakly interacting OO interfaces, and the electron and hole barriers at the interface are correspondingly modified. The interface dipole is found

  11. Tc Enhancement in Electron-Doped Cuprate Heterostructures

    NASA Astrophysics Data System (ADS)

    Bach, P. L.; Jin, K.; Zhang, X. H.; Greene, R. L.; Grupel, U.; Zohar, E.; Diamant, E.; Dagan, Y.; Smadici, S.; Abbamonte, P.

    2011-03-01

    Multilayer thin films of La 2-x Ce x Cu O4 (LCCO) and Pr 2-x Ce x Cu O4 (PCCO) were fabricated as superlattices of different dopings. Pairing over-doped and under-doped (or un-doped) layers is found to increase Tc significantly above that of the single-phase films corresponding to the under- or over-doped layers. We report transport measurements on these mulitlayer films and discuss possible mechanisms for the Tc enhancement. This work was supported by the US-Israel Binational Science Foundation Grant #2006385 and the Center for Nanophysics and Advanced Materials (CNAM).

  12. Piezoresistance and hole transport in beryllium-doped silicon.

    NASA Technical Reports Server (NTRS)

    Littlejohn, M. A.; Robertson, J. B.

    1972-01-01

    The resistivity and piezoresistance of p-type silicon doped with beryllium have been studied as a function of temperature, crystal orientation, and beryllium doping concentration. It is shown that the temperature coefficient of resistance can be varied and reduced to zero near room temperature by varying the beryllium doping level. Similarly, the magnitude of the piezoresistance gauge factor for beryllium-doped silicon is slightly larger than for silicon doped with a shallow acceptor impurity such as boron, while the temperature coefficient of piezoresistance is about the same for material containing these two dopants. These results are discussed in terms of a model for the piezoresistance of compensated p-type silicon.

  13. Mn-doped ZnFe{sub 2}O{sub 4} nanoparticles with enhanced performances as anode materials for lithium ion batteries

    SciTech Connect

    Tang, Xiaoqin; Hou, Xianhua; Yao, Lingmin; Hu, Shejun; Liu, Xiang; Xiang, Liangzhong

    2014-09-15

    Highlights: • Mn-doped ZnFe{sub 2}O{sub 4} nanoparticles have been synthesized by hydrothermal method. • Zn{sub 0.96}Mn{sub 0.04}Fe{sub 2}O{sub 4} electrode shows the highest reversible capacity of 1157 mA h g{sup −1}. • The Zn{sub 0.96}Mn{sub 0.04}Fe{sub 2}O{sub 4} electrode shows promising cycling stability. - Abstract: Nanocrystalline Zn{sub 1−x}Mn{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) have been successfully synthesized by one-step hydrothermal method. The morphologies and electrochemical performance of Mn-doped ZnFe{sub 2}O{sub 4} in various proportions were investigated at room temperature, respectively. The Zn{sub 1−x}Mn{sub x}Fe{sub 2}O{sub 4} (x = 0.04) electrode in the as-synthesized samples showed the highest specific capacity of 1547 mA h g{sup −1} and 1157 mA h g{sup −1} in the initial discharge/charge process, with a coulombic efficiency of 74.8%. Additionally, excellent cycling stability was performed with a 1214 mA h g{sup −1} capacity retention at a current density of 100 mA g{sup −1} after 50 cycles. The corresponding mechanism was proposed which indicated that the Mn-doped ZnFe{sub 2}O{sub 4} nanoparticles experienced an aggregation thermochemical reaction among ZnO, MnO and Fe{sub 2}O{sub 3} subparticles.

  14. Electrocaloric effect and luminescence properties of lanthanide doped (Na{sub 1/2}Bi{sub 1/2})TiO{sub 3} lead free materials

    SciTech Connect

    Zannen, M.; Lahmar, A. E-mail: zdravko.kutnjak@ijs.si; Asbani, B.; El Marssi, M.; Khemakhem, H.; Kutnjak, Z. E-mail: zdravko.kutnjak@ijs.si; Es Souni, M.

    2015-07-20

    Polycrystalline lead-free Sodium Bismuth Titanate (NBT) ferroelectric ceramics doped with rare earth (RE) element are prepared using solid state reaction method. Optical, ferroelectric, and electrocaloric properties were investigated. The introduction of RE{sup 3+} ions in the NBT host lattice shows different light emissions over the wavelength range from visible to near infrared region. The ferroelectric P-E hysteresis loops exhibit an antiferroelectric-like character near room temperature indicating possible existence of a morphotropic phase boundary. The enhanced electrocaloric response was observed in a broad temperature range due to nearly merged phase transitions. Coexistence of optical and electrocaloric properties is very promising for photonics or optoelectronic device applications.

  15. Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Zhou, Yaxun; Cheng, Pan; Zhou, Zizhong; Li, Jun; Jin, Wei

    2016-10-01

    Tm3+/Yb3+ co-doped tellurite glasses with different silver nanoparticles (Ag NPs) concentrations were prepared using the conventional melt-quenching technique and characterized by the UV/Vis/NIR absorption spectra, 1.85 μm band fluorescence emission spectra, transmission electron microscopy (TEM) images, differential scanning calorimeter (DSC) curves and X-ray diffraction (XRD) patterns to investigate the effects of Ag NPs on the 1.85 μm band spectroscopic properties of Tm3+ ions, thermal stability and structural nature of glass hosts. Under the excitation of 980 nm laser diode (LD), the 1.85 μm band fluorescence emission of Tm3+ ions enhances significantly in the presence of Ag NPs with average diameter of ∼8 nm and local surface Plasmon resonance (LSPR) band of ∼590 nm, which is mainly attributed to the increased local electric field induced by Ag NPs at the proximity of doped rare-earth ions on the basis of energy transfer from Yb3+ to Tm3+ ions. An improvement by about 110% of fluorescence intensity is observed in the Tm3+/Yb3+ co-doped tellurite glass containing 0.5 mol% amount of AgNO3 while the prepared glass samples possess good thermal stability and amorphous structural nature. Meanwhile, the Judd-Ofelt intensity parameters Ωt (t = 2,4,6), spontaneous radiative transition probabilities, fluorescence branching ratios and radiative lifetimes of relevant excited levels of Tm3+ ions were determined based on the Judd-Ofelt theory to reveal the enhanced effects of Ag NPs on the 1.85 μm band spectroscopic properties, and the energy transfer micro-parameters and phonon contribution ratios were calculated based on the non-resonant energy transfer theory to elucidate the energy transfer mechanism between Yb3+ and Tm3+ ions. The present results indicate that the prepared Tm3+/Yb3+ co-doped tellurite glass with an appropriate amount of Ag NPs is a promising lasing media applied for 1.85 μm band solid-state lasers and amplifiers.

  16. Synthesize of N-doped Carbon nanotube according to gas flow rate by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Kim, J. B.; Kim, C. D.; Kong, S. J.; Kim, J. H.; Min, B. K.; Jung, W. S.; Lee, H. R.

    2011-12-01

    Nitrogen-doped (N-doped) Carbon nanotubes (CNTs) have been prepared by Thermal Chemical Vapor Deposition (CVD). As doping accompanies with the recombination of carbon atoms into CNTs in the CVD process, N atoms can be substitutionally doped into the CNTs lattice, which is hard to realize by other synthetic methods. The synthesis technique and the characteristic analysis of N-doped CNT will move up the industrialization and the basic study of CNT. We will elucidate the basic properties of CNT such as the structural characteristics of the N-doped CNT material and study for the industrial application of the N-doped CNTs to the electrode of fuel cell.

  17. Structure and electrochemistry of B doped Li(Li0.2Ni0.13Co0.13Mn0.54)1-xBxO2 as cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pan, Lingchao; Xia, Yonggao; Qiu, Bao; Zhao, Hu; Guo, Haocheng; Jia, Kai; Gu, Qingwen; Liu, Zhaoping

    2016-09-01

    Migration of transition metal (TM) ions to tetrahedral sites plays a crucial role on structural transformation and electrochemical behaviors for Li-rich layered oxides. Here, incorporating small B3+ in the tetrahedral interstice is employed to block the migration channel of TM ions and stabilize the crystal structure. Benefiting from their good structural stability, Li-rich layered materials with B-doped Li1.198Ni0.129Co0.129Mn0.535B0.01O2 and Li1.196Ni0.127Co0.127Mn0.529B0.02O2, exhibit excellent cycling performance and voltage stability. After 51 cycles at 0.2 C, 1 mol.% boron incorporated sample can deliver 211 mAh g-1 with capacity retention of 89.9%, which is much higher than that of the undoped sample of 177 mAh g-1 with the retention of 79.2%. Moreover, the declined voltage per cycle decreases from 3.6885 mV to 2.7530 mV after 2 mol.% boron doping. XRD patterns after extended cycling verified the suppression of the structural transformation by the incorporation of boron.

  18. Spectroscopic study performed on films of (3-trimethoxysilylpropyl) ethylenediamine and a dental material (acrylic resin) doped with the luminescent complexes Eu(fod) 3·2H 2O and Eu(fod) 3·terpy

    NASA Astrophysics Data System (ADS)

    de Farias, Robson F.; Alves, Severino; Belian, Mônica F.; Vieira, Magda R. S.; de Souza, Jucimar M.; Pedrosa, Gilmara G.; de Sá, Gilberto F.

    2002-10-01

    By using (3-trimethoxysilylpropyl) ethylenediamine (TSPED) and a dental material (acrylic resin) as precursors, self-standing films doped with the luminescent complexes Eu(fod) 3·2H 2O and Eu(fod) 3·terpy were prepared. The doped films were so studied from a spectroscopic point of view. Is verified that the film composition exerts remarkable effects on both, the intensity and lifetime of the emission process. Acrylic resin films reduces the intensity of the emission process, but increases the lifetime of a such process, in comparison with TSPED films, for which an opposite behavior is observed. The measured lifetimes for the emission process for the compounds Eu(fod) 3·2H 2O in TSPED and acrylic resin films are 306 and 369 μs, respectively. For the same film matrices, the measured lifetimes for the complex Eu(fod) 3·terpy gave the values 347 and 880 μs, respectively.

  19. A high-performance dual-function material: self-assembled super long α-Fe2O3 hollow tubes with multiple heteroatom (C-, N- and S-) doping.

    PubMed

    Li, Jiangfeng; Zhang, Wen; Zan, Guangtao; Wu, Qingsheng

    2016-08-01

    Novel heteroatom self-doped super long α-Fe2O3 hollow tubes have been synthesized by the combination of hydrothermal and calcination techniques using the chicken eggshell membrane as a template and a dopant. The obtained α-Fe2O3 super long hollow tubes are composed of closely arranged building blocks (α-Fe2O3 nanorods), which are connected to each other and provide a lot of grain boundaries. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy and nitrogen adsorption-desorption analysis were used to characterize the structure of the synthesized products. To demonstrate their potential applications, the as-synthesized samples were applied to ethanol (C2H5OH) gas sensors and supercapacitors. When applied as a gas sensor, the α-Fe2O3 material exhibits a high gas sensitivity, excellent recovery properties (9 s at 100 ppm C2H5OH concentration) and perfect selectivity to ethanol. As an electrode in a supercapacitor, α-Fe2O3 shows a high specific capacitance (330 F g(-1) at a current density of 0.5 A g(-1)) with good cycling stability (64% maintained over after 2000 cycles). The excellent sensing and supercapacitor performances could be attributed to the unique super long hollow tubes combined with the abundant pore volume and the small amount of heteroatom doping. PMID:27465700

  20. Study on blue organic light-emitting diodes doped with 4,4'-bis (9-ethyl-3carbazovinylene)-1,1'-biphenyl in various host materials

    NASA Astrophysics Data System (ADS)

    Du, Qianqian; Wang, Wenjun; Li, Shuhong; Zhang, Dong; Li, Wenlian; Zheng, Wanquan

    2016-05-01

    We have fabricated efficient blue organic light-emitting devices (OLEDs) with 4,4‧-bis (9-ethyl-3carbazovinylene)-1,1‧-biphenyl(BCzVBi) as the fluorescent emitter doped into 4,4‧-bis(carbazol-9-yl)biphenyl(CBP) and 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi), respectively, and the results show that luminance and luminous efficiency are greatly enhanced in the doped devices. Particularly, the optimized blue CBP-host device with a well-designed structure has a significantly higher luminous efficiency of 4.45 cd/A. The energy level structure of the BCzVBi molecules is obtained, which yields useful information on the light emission processes. We carry out a spectroscopic analysis based on Gaussian multi-peak fit for the electroluminescence (EL) emission spectra and present a theoretical explanation of the energy transfer mechanism in the host-guest system. These are expected to provide an effective strategy in enhancing high-efficiency blue OLEDs.

  1. Three-dimensional nitrogen-doped graphene frameworks anchored with bamboo-like tungsten oxide nanorods as high performance anode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gu, Xinyuan; Wu, Feilong; Lei, Bingbing; Wang, Jing; Chen, Ziliang; Xie, Kai; Song, Yun; Sun, Dalin; Sun, Lixian; Zhou, Huaiying; Fang, Fang

    2016-07-01

    Bamboo-like WO3 nanorods were anchored on three-dimensional nitrogen-doped graphene frameworks (r-WO3/3DNGF) by a facile one-step hydrothermal synthesis plus heating processes. There is a strong dependence of the obtained r-WO3/3DNGF nanostructures on the content of 3DNGF. The composite with 20 wt% 3DNGF content shows the most favorable structure where bamboo-like WO3 nanorods lie flat on the surface of fungus-like 3DNGF, and exhibits a high discharge capacity of 828 mAh g-1 over 100 cycles at 80 mA g-1 with the largest capacity retention of 73.9% for WO3 and excellent rate capacities of 719, 665, 573, 453 and 313 mAh g-1 at 80, 160, 400, 800 and 1600 mA g-1, respectively. The electrochemical performance is better than most of reported WO3-based carbonaceous composites, which can be attributed to the synergistic effects of the following actions: i) WO3 nanorods effectively shorten the diffusion path of Li+; ii) mechanically strong 3DNGF alleviates the huge volume change of WO3 upon Li+ intercalation/extraction; and iii) nitrogen-doping in 3D graphene frameworks improves electronic conductivity and provides large numbers of lithium ion diffusion channels.

  2. Y2O3 and Yb2O3 Co-doped Strontium Hafnate as a New Thermal Barrier Coating Material

    NASA Astrophysics Data System (ADS)

    Ma, Wen; Li, Peng; Dong, Hongying; Bai, Yu; Zhao, Jinlan; Fan, Xiaoze

    2014-01-01

    Y2O3 and Yb2O3 co-doped strontium hafnate powder with chemistry of Sr(Hf0.9Y0.05Yb0.05)O2.95 (SHYY) was synthesized by a solid-state reaction at 1450 °C. The SHYY showed good phase stability not only from 200 to 1400 °C but also at a high temperature of 1450 °C for a long period, analyzed by differential scanning calorimetry and x-ray diffraction, respectively. The coefficient of thermal expansion of the sintered bulk SHYY was recorded by a high-temperature dilatometer and revealed a positive influence on phase transitions of SrHfO3 by co-doping with Y2O3 and Yb2O3. The thermal conductivity of the bulk SHYY was approximately 16% lower in contrast to that of SrHfO3 at 1000 °C. Good chemical compatibility was observed for SHYY with 8YSZ or Al2O3 powders after a 24 h heat treatment at 1250 °C. The phase stability and the microstructure evolution of the as-sprayed SHYY coating during annealing at 1400 °C were also investigated.

  3. Negative Dielectric Constant Material Based on Ion Conducting Materials

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2014-01-01

    Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.

  4. Ultraviolet Lasers Realized via Electrostatic Doping Method

    PubMed Central

    Liu, X. Y.; Shan, C. X.; Zhu, H.; Li, B. H.; Jiang, M. M.; Yu, S. F.; Shen, D. Z.

    2015-01-01

    P-type doping of wide-bandgap semiconductors has long been a challenging issue for the relatively large activation energy and strong compensation of acceptor states in these materials, which hinders their applications in ultraviolet (UV) optoelectronic devices drastically. Here we show that by employing electrostatic doping method, hole-dominant region can be formed in wide bandgap semiconductors, and UV lasing has been achieved through the external injection of electrons into the hole-dominant region, confirming the applicability of the p-type wide bandgap semiconductors realized via the electrostatic doping method in optoelectronic devices. PMID:26324054

  5. Characterizing the effects of etch-induced material modification on the crystallization properties of nitrogen doped Ge{sub 2}Sb{sub 2}Te{sub 5}

    SciTech Connect

    Washington, J. S.; Lucovsky, G.; Paesler, M. A.; Joseph, E. A.; Raoux, S.; Jordan-Sweet, J. L.; Schrott, A. G.; Dasaka, R.; Zhang, Y.; Lam, C. H.; Miller, D.; Shelby, B.; Cheng, H.-Y.; Chen, C.-F.; Lung, H.-L.; Miotti, L.

    2011-02-01

    The chemical and structural effects of processing on the crystallization of nitrogen doped Ge{sub 2}Sb{sub 2}Te{sub 5} is examined via x-ray photoelectron spectroscopy (XPS), x-ray absorption spectroscopy (XAS), time resolved laser reflectivity, and time resolved x-ray diffraction (XRD). Time resolved laser reflectivity and XRD show that exposure to various etch and ash chemistries significantly reduces the crystallization speed while the transition temperature from the rocksalt to the hexagonal phase is increased. XPS and XAS attribute this to the selective removal and oxidization of N, Ge, Sb, and Te, thus altering the local bonding environment to the detriment of device performance.

  6. Growth and spectral characterization of ethylene diamine tetra acetic acid (EDTA) doped zinc sulphate hepta hydrate - a semi organic NLO material.

    PubMed

    Ramachandra Raja, C; Ramamurthi, K; Manimekalai, R

    2012-12-01

    Semi-organic non-linear optical single crystals of ethylene diamine tetra acetic acid (EDTA) doped zinc sulphate hepta hydrate crystals were grown by slow evaporation solution growth technique, at room temperature, using de-ionized water as solvent. The modes of vibrations of different molecular groups present in the grown crystal were identified by FT-IR technique. The optical absorbance/transmittance was recorded in the wavelength range of 190-1100 nm. Thermal properties of the grown crystal were studied by thermo gravimetric analysis and differential thermal analysis. The melting point of the grown crystal was estimated by differential scanning calorimetric analysis. The inclusion of the dopant (EDTA) was confirmed by colorimetric estimation method. The second harmonic generation efficiency is about 30% of potassium dihydrogen orthophosphate.

  7. Graphene-wrapped polyaniline nanowire arrays on nitrogen-doped carbon fabric as novel flexible hybrid electrode materials for high-performance supercapacitor.

    PubMed

    Yu, Pingping; Li, Yingzhi; Zhao, Xin; Wu, Lihao; Zhang, Qinghua

    2014-05-13

    We report the synthesis of reduced graphene oxide (RGO) sheet wrapped polyaniline (PANI) nanowire arrays grown on nitrogen-doped carbon fiber cloth (eCFC). The RGO coating layer is important to accommodate volume change and mechanical deformation of the coated PANI nanowires arrays during the long-term charge/discharge processes. The resulting hierarchical symmetric supercapacitor based on RGO/PANI/eCFC composites shows an enhanced capacitive behavior with a maximum energy density of 25.4 Wh kg(-1), a maximum power density of 92.2 kW kg(-1) and a specific capacitance of 1145 F g(-1), which is higher than that of PANI/eCFC (1050 F g(-1)) and GO/PANI/eCFC (940 F g(-1)). Moreover, the assembled supercapacitor exhibits excellent charge/discharge rates and a good cycling stability, retaining over 94% of its initial capacitance after 5000 cycles.

  8. Molecularly doped metals.

    PubMed

    Avnir, David

    2014-02-18

    The many millions of organic, inorganic, and bioorganic molecules represent a very rich library of chemical, biological, and physical properties that do not show up among the approximately 100 metals. The ability to imbue metals with any of these molecular properties would open up tremendous potential for the development of new materials. In addition to their traditional features and their traditional applications, metals would have new traits, which would merge their classical virtues such as conductivity and catalytic activity with the diverse properties of these molecules. In this Account, we describe a new materials methodology, which enables, for the first time, the incorporation and entrapment of small organic molecules, polymers, and biomolecules within metals. These new materials are denoted dopant@metal. The creation of dopant@metal yields new properties that are more than or different from the sum of the individual properties of the two components. So far we have developed methods for the doping of silver, copper, gold, iron, palladium, platinum, and some of their alloys, as well as Hg-Ag amalgams. We have successfully altered classical metal properties (such as conductivity), induced unorthodox properties (such as rendering a metal acidic or basic), used metals as heterogeneous matrices for homogeneous catalysts, and formed new metallic catalysts such as metals doped with organometallic complexes. In addition, we have created materials that straddle the border between polymers and metals, we have entrapped enzymes to form bioactive metals, we have induced chirality within metals, we have made corrosion-resistant iron, we formed efficient biocidal materials, and we demonstrated a new concept for batteries. We have developed a variety of methods for synthesizing dopant@metals including aqueous homogeneous and heterogeneous reductions of the metal cations, reductions in DMF, electrochemical entrapments, thermal decompositions of zerovalent metal carbonyls

  9. Molecularly doped metals.

    PubMed

    Avnir, David

    2014-02-18

    The many millions of organic, inorganic, and bioorganic molecules represent a very rich library of chemical, biological, and physical properties that do not show up among the approximately 100 metals. The ability to imbue metals with any of these molecular properties would open up tremendous potential for the development of new materials. In addition to their traditional features and their traditional applications, metals would have new traits, which would merge their classical virtues such as conductivity and catalytic activity with the diverse properties of these molecules. In this Account, we describe a new materials methodology, which enables, for the first time, the incorporation and entrapment of small organic molecules, polymers, and biomolecules within metals. These new materials are denoted dopant@metal. The creation of dopant@metal yields new properties that are more than or different from the sum of the individual properties of the two components. So far we have developed methods for the doping of silver, copper, gold, iron, palladium, platinum, and some of their alloys, as well as Hg-Ag amalgams. We have successfully altered classical metal properties (such as conductivity), induced unorthodox properties (such as rendering a metal acidic or basic), used metals as heterogeneous matrices for homogeneous catalysts, and formed new metallic catalysts such as metals doped with organometallic complexes. In addition, we have created materials that straddle the border between polymers and metals, we have entrapped enzymes to form bioactive metals, we have induced chirality within metals, we have made corrosion-resistant iron, we formed efficient biocidal materials, and we demonstrated a new concept for batteries. We have developed a variety of methods for synthesizing dopant@metals including aqueous homogeneous and heterogeneous reductions of the metal cations, reductions in DMF, electrochemical entrapments, thermal decompositions of zerovalent metal carbonyls

  10. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst.

    PubMed

    Yang, Hong Bin; Miao, Jianwei; Hung, Sung-Fu; Chen, Jiazang; Tao, Hua Bing; Wang, Xizu; Zhang, Liping; Chen, Rong; Gao, Jiajian; Chen, Hao Ming; Dai, Liming; Liu, Bin

    2016-04-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are critical to renewable energy conversion and storage technologies. Heteroatom-doped carbon nanomaterials have been reported to be efficient metal-free electrocatalysts for ORR in fuel cells for energy conversion, as well as ORR and OER in metal-air batteries for energy storage. We reported that metal-free three-dimensional (3D) graphene nanoribbon networks (N-GRW) doped with nitrogen exhibited superb bifunctional electrocatalytic activities for both ORR and OER, with an excellent stability in alkaline electrolytes (for example, KOH). For the first time, it was experimentally demonstrated that the electron-donating quaternary N sites were responsible for ORR, whereas the electron-withdrawing pyridinic N moieties in N-GRW served as active sites for OER. The unique 3D nanoarchitecture provided a high density of the ORR and OER active sites and facilitated the electrolyte and electron transports. As a result, the as-prepared N-GRW holds great potential as a low-cost, highly efficient air cathode in rechargeable metal-air batteries. Rechargeable zinc-air batteries with the N-GRW air electrode in a two-electrode configuration exhibited an open-circuit voltage of 1.46 V, a specific capacity of 873 mAh g(-1), and a peak power density of 65 mW cm(-2), which could be continuously charged and discharged with an excellent cycling stability. Our work should open up new avenues for the development of various carbon-based metal-free bifunctional electrocatalysts of practical significance. PMID:27152333

  11. Low temperature synthesis of N-doped TiO2 with rice-like morphology through peroxo assisted hydrothermal route: Materials characterization and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Bakar, Shahzad Abu; Ribeiro, Caue

    2016-07-01

    Nanorice-shaped N:TiO2 photocatalysts have been prepared by the peroxo assisted hydrothermal method using stabilized titanium complex as a precursor and urea as a N source. The N:TiO2 nanorices were characterised by XRD, FE-SEM, HRTEM, XPS, UV-vis spectroscopy, Raman spectroscopy and measurements of photocatalytic degradation of organic molecules (atrazine and RhB dye) under the UV and visible-light irradiation. XRD analyses showed that pristine TiO2 crystallizes into anatase polymorph and that the N-doping process at 5% introduced a degree of disorder on the TiO2 crystalline structure. XPS study revealed the successful incorporation of the nitrogen atoms at the interstitial sites of the TiO2 crystal lattice. Microscopy studies revealed that the particle size was in the range 50-80 nm for the pristine TiO2. The photocatalysts were assembled in the form of nanorices with a high surface area (102 m2 g-1). The successful incorporation of nitrogen atoms into the TiO2 crystal lattice is expected to be responsible for enhanced photocatalytic activity of the as-prepared samples for the degradation of pollutants (RhB and atrazine) under UV and visible light irradiation. The rate of rad OH radicals formation under visible-light irradiation was examined and found to be correlated with the photocatalytic activity per unit surface area. The N:TiO2 particles with nanorice morphology was efficient photocatalysts for decomposition of organic dyes under UV and visible-light exposure while pristine TiO2 photocatalyst did not show any significant photocatalytic activity when stimulated by visible-light. The 3% doped N:TiO2 sample exhibited the highest photocatalytic activity among all synthesized photocatalysts.

  12. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst

    PubMed Central

    Yang, Hong Bin; Miao, Jianwei; Hung, Sung-Fu; Chen, Jiazang; Tao, Hua Bing; Wang, Xizu; Zhang, Liping; Chen, Rong; Gao, Jiajian; Chen, Hao Ming; Dai, Liming; Liu, Bin

    2016-01-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are critical to renewable energy conversion and storage technologies. Heteroatom-doped carbon nanomaterials have been reported to be efficient metal-free electrocatalysts for ORR in fuel cells for energy conversion, as well as ORR and OER in metal-air batteries for energy storage. We reported that metal-free three-dimensional (3D) graphene nanoribbon networks (N-GRW) doped with nitrogen exhibited superb bifunctional electrocatalytic activities for both ORR and OER, with an excellent stability in alkaline electrolytes (for example, KOH). For the first time, it was experimentally demonstrated that the electron-donating quaternary N sites were responsible for ORR, whereas the electron-withdrawing pyridinic N moieties in N-GRW served as active sites for OER. The unique 3D nanoarchitecture provided a high density of the ORR and OER active sites and facilitated the electrolyte and electron transports. As a result, the as-prepared N-GRW holds great potential as a low-cost, highly efficient air cathode in rechargeable metal-air batteries. Rechargeable zinc-air batteries with the N-GRW air electrode in a two-electrode configuration exhibited an open-circuit voltage of 1.46 V, a specific capacity of 873 mAh g−1, and a peak power density of 65 mW cm−2, which could be continuously charged and discharged with an excellent cycling stability. Our work should open up new avenues for the development of various carbon-based metal-free bifunctional electrocatalysts of practical significance. PMID:27152333

  13. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  14. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  15. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  16. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  17. Molybdenum doped Pr0.5Ba0.5MnO3-δ (Mo-PBMO) double perovskite as a potential solid oxide fuel cell anode material

    NASA Astrophysics Data System (ADS)

    Sun, Yi-Fei; Zhang, Ya-Qian; Hua, Bin; Behnamian, Yashar; Li, Jian; Cui, Shao-Hua; Li, Jian-Hui; Luo, Jing-Li

    2016-01-01

    A layered Mo doped Pr0.5Ba0.5MnO3-δ (Mo-PBMO) double perovskite oxide was prepared by a modified sol-gel method and the properties of the fabricated material are characterized by various technologies. The results of X-ray diffraction (XRD), H2-temperature programmed reduction (H2-TPR), NH3-temperature programmed desorption (NH3-TPD), and thermogravimetric analysis (TGA) demonstrate that the treatment in reducing atmosphere at high temperature lead to a significant phase transformation of the material to a single cubic phase as well as with the Mo in multiple oxidized states. Such character leads to the production of large amount of oxygen deficiency with facilitated oxygen diffusion. The electrochemical performance tests of half-cell and single cell SOFCs exhibit the promoted effect of Mo on catalytic activity for the oxidation of H2 and CH4, indicating that Mo-PBMO could serve as an anode material candidate for SOFCs.

  18. Nanocrystal doped matrixes

    SciTech Connect

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  19. Magnetic N-doped carbon nanotubes: A versatile and efficient material for the determination of polycyclic aromatic hydrocarbons in environmental water samples.

    PubMed

    Menezes, Helvécio Costa; de Barcelos, Stella Maris Resende; Macedo, Damiana Freire Dias; Purceno, Aluir Dias; Machado, Bruno Fernades; Teixeira, Ana Paula Carvalho; Lago, Rochel Monteiro; Serp, Philippe; Cardeal, Zenilda Lourdes

    2015-05-11

    This paper describes a new, efficient and versatile method for the sampling and preconcentration of PAH in environmental water matrices using special hybrid magnetic carbon nanotubes. These N-doped amphiphilic CNT can be easily dispersed in any aqueous matrix due to the N containing hydrophilic part and at the same time show high efficiency for the adsorption of different PAH contaminants due to the very hydrophobic surface. After adsorption, the CNT can be easily removed from the medium by a simple magnetic separation. GC/MS analyses showed that the CNT method is more efficient than the use of polydimethylsiloxane (PDMS) with much lower solvent consumption, technical simplicity and time, showing good linearity (range 0.18-80.00 μg L(-1)) and determination coefficient (R(2) > 0.9810). The limit of detection ranged from 0.05 to 0.42 μg L(-1) with limit of quantification from 0.18 to 1.40 μg L(-1). Recovery (n=9) ranged from 80.50 ± 10 to 105.40 ± 12%. Intraday precision (RSD, n=9) ranged from 1.91 to 9.01%, whereas inter day precision (RSD, n=9) ranged from 7.02 to 17.94%. The method was applied to the analyses of PAH in four lake water samples collected in Belo Horizonte City, Brazil.

  20. Modification of carbon nanotubes by CuO-doped NiO nanocomposite for use as an anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mustansar Abbas, Syed; Tajammul Hussain, Syed; Ali, Saqib; Ahmad, Nisar; Ali, Nisar; Abbas, Saghir; Ali, Zulfiqar

    2013-06-01

    CuO-doped NiO (CuNiO) with porous hexagonal morphology is fabricated via a modified in-situ co-precipitation method and its nanocomposite is prepared with carbon nanotubes (CNTs). The electrochemical properties of CuNiO/CNT nanocomposite are investigated by cyclic voltammetry (CV), galvanostatic charge-discharge tests and electrochemical impedance spectroscopy (EIS). Since Cu can both act as conductor and a catalyst, the CuNiO/CNT nanocomposite exhibits higher initial coulombic efficiency (82.7% of the 2nd cycle) and better capacity retention (78.6% on 50th cycle) than bare CuNiO (78.9% of the 2nd cycle), CuO/CNT (76.8% of the 2nd cycle) and NiO/CNT (77.7% of the 2nd cycle) at the current density of 100 mA /g. This high capacity and good cycling ability is attributed to the partial substitution of Cu+2 for Ni+2, resulting in an increase of holes concentration, and therefore improved p-type conductivity along with an intimate interaction with CNTs providing large surface area, excellent conduction, mechanical strength and chemical stability.

  1. Doping-induced Charge-Density-Wave

    NASA Astrophysics Data System (ADS)

    Nomura, Atsushi; Yamaya, Kazuhiko; Takayanagi, Shigeru; Ichimura, Koichi; Matsuura, Toru; Tanda, Satoshi; Hokkaido University Team

    Doping is a useful method for searching new characters in solids, as we can see in the discoveries of impurity semiconductors and high-temperature superconductors. If a Charge-Density-Wave (CDW) is induced in materials which do not exhibit a CDW, new CDW properties might be brought there. TaSe3 exhibits no CDW transition but a superconductivity transition at about 2 K while it has a quasi-one-dimensional chain structure as well as typical CDW conductors, NbSe3, TaS3, and NbS3. Therefore, TaSe3 is one of the suitable materials for the induction of a CDW by doping, and we tried to induce a CDW in TaSe3 by doping Cu. Cu concentration was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The high Cu concentration was consistent with the high value of residual resistance (R (4 . 5 K) / (R (280 K) - R (4 . 5 K))). Single-crystal X-ray diffraction pattern (XRD) showed an expansion of the c-axis in Cu-doped TaSe3. The temperature dependence of the resistivity showed the anomaly at 80-100 K in Cu-doped TaSe3, which was never observed in pure TaSe3. These results suggest that the Cu-doping induces a CDW. We will discuss the relation between the resistivity anomaly and superconductivity.

  2. Stabilization of boron carbide via silicon doping.

    PubMed

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  3. Porous Allograft Bone Scaffolds: Doping with Strontium

    PubMed Central

    Zhao, Yantao; Guo, Dagang; Hou, Shuxun; Zhong, Hongbin; Yan, Jun; Zhang, Chunli; Zhou, Ying

    2013-01-01

    Strontium (Sr) can promote the process of bone formation. To improve bioactivity, porous allograft bone scaffolds (ABS) were doped with Sr and the mechanical strength and bioactivity of the scaffolds were evaluated. Sr-doped ABS were prepared using the ion exchange method. The density and distribution of Sr in bone scaffolds were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS). Controlled release of strontium ions was measured and mechanical strength was evaluated by a compressive strength test. The bioactivity of Sr-doped ABS was investigated by a simulated body fluid (SBF) assay, cytotoxicity testing, and an in vivo implantation experiment. The Sr molar concentration [Sr/(Sr+Ca)] in ABS surpassed 5% and Sr was distributed nearly evenly. XPS analyses suggest that Sr combined with oxygen and carbonate radicals. Released Sr ions were detected in the immersion solution at higher concentration than calcium ions until day 30. The compressive strength of the Sr-doped ABS did not change significantly. The bioactivity of Sr-doped material, as measured by the in vitro SBF immersion method, was superior to that of the Sr-free freeze-dried bone and the Sr-doped material did not show cytotoxicity compared with Sr-free culture medium. The rate of bone mineral deposition for Sr-doped ABS was faster than that of the control at 4 weeks (3.28±0.23 µm/day vs. 2.60±0.20 µm/day; p<0.05). Sr can be evenly doped into porous ABS at relevant concentrations to create highly active bone substitutes. PMID:23922703

  4. Porous allograft bone scaffolds: doping with strontium.

    PubMed

    Zhao, Yantao; Guo, Dagang; Hou, Shuxun; Zhong, Hongbin; Yan, Jun; Zhang, Chunli; Zhou, Ying

    2013-01-01

    Strontium (Sr) can promote the process of bone formation. To improve bioactivity, porous allograft bone scaffolds (ABS) were doped with Sr and the mechanical strength and bioactivity of the scaffolds were evaluated. Sr-doped ABS were prepared using the ion exchange method. The density and distribution of Sr in bone scaffolds were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS). Controlled release of strontium ions was measured and mechanical strength was evaluated by a compressive strength test. The bioactivity of Sr-doped ABS was investigated by a simulated body fluid (SBF) assay, cytotoxicity testing, and an in vivo implantation experiment. The Sr molar concentration [Sr/(Sr+Ca)] in ABS surpassed 5% and Sr was distributed nearly evenly. XPS analyses suggest that Sr combined with oxygen and carbonate radicals. Released Sr ions were detected in the immersion solution at higher concentration than calcium ions until day 30. The compressive strength of the Sr-doped ABS did not change significantly. The bioactivity of Sr-doped material, as measured by the in vitro SBF immersion method, was superior to that of the Sr-free freeze-dried bone and the Sr-doped material did not show cytotoxicity compared with Sr-free culture medium. The rate of bone mineral deposition for Sr-doped ABS was faster than that of the control at 4 weeks (3.28 ± 0.23 µm/day vs. 2.60 ± 0.20 µm/day; p<0.05). Sr can be evenly doped into porous ABS at relevant concentrations to create highly active bone substitutes. PMID:23922703

  5. Analysis of magneto-optical properties for three-dimensional photonic crystals in high-symmetry arrangement doped by metamaterials and uniaxial materials

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Li, Heming; Wang, Shenyun; Wan, Fayu; Ge, Junxiang

    2016-11-01

    In this paper, we use a modified plane wave expansion (PWE) method to investigate the properties of photonic band gaps (PBGs) for the extraordinary mode in the three-dimensional (3D) photonic crystals (PCs) which are composed of the anisotropic dielectric (the uniaxial materials) spheres immersed in the homogeneous metamaterials (epsilon-negative materials) background with high-symmetry (body-centered-cubic) lattices, as the magneto-optical Voigt effects are considered. The equations for calculating the PBGs in the first irreducible Brillouin zone are theoretically derived. It is numerically illustrated that the anisotropic PBGs and two flattened band regions can be achieved. The influences of the ordinary-refractive index, extraordinary-refractive index, filling factor of dielectric spheres, electronic plasma frequency and cyclotron frequency on the magneto-optical properties of such 3D PCs also are studied in detail, respectively, and some corresponding physical explanations are given. The numerical results demonstrate that the anisotropy can open partial band gaps in the proposed PCs, and the complete PBGs can be obtained compared with the conventional PCs only containing the isotropic material with similar structures. The bandwidths of PBGs can be tuned by introducing the epsilon-negative materials into such PCs containing the uniaxial materials. The anisotropic PBGs can be manipulated by the parameters as mentioned above. As the proposed PCs with high-symmetry lattices, the complete PBGs can be obtained by introducing the uniaxial materials.

  6. Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  7. Thermal diffusion boron doping of single-crystal natural diamond

    NASA Astrophysics Data System (ADS)

    Seo, Jung-Hun; Wu, Henry; Mikael, Solomon; Mi, Hongyi; Blanchard, James P.; Venkataramanan, Giri; Zhou, Weidong; Gong, Shaoqin; Morgan, Dane; Ma, Zhenqiang

    2016-05-01

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  8. Nitrogen-doped zirconia: A comparison with cation stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Sook; Lerch, Martin; Maier, Joachim

    2006-01-01

    The conductivity behavior of nitrogen-doped zirconia is compared with that of zirconia doped with lower-valent cations and discussed in the framework of defect-defect interactions. While nominally introducing the same number of vacancies as yttrium, nitrogen dopants introduced in the anion sublattice of zirconia lead to substantially different defect kinetics and energetics. Compared to the equivalent yttrium doping nitrogen doping in the Y-Zr-O-N system substantially increases the activation energy and correspondingly decreases the conductivity at temperatures below 500C in the vacancy range below 4 mol%. The comparison of N-doped zirconia and zirconia systems doped with size-matched cation stabilizers, such as Sc, Yb and Y, shows that elastically driven vacancy-vacancy ordering interactions can phenomenologically account for the temperature- and composition-dependence. It is striking that materials with superior high-temperature conductivities due to weak dopant-vacancy interactions undergo severe deterioration at low temperature due to the strong vacancy-ordering. The analysis also explains qualitatively similar effects of Y co-doping in Yb-, Sc-, and N-doped zirconia. Small amount of Y in N-doped zirconia as well as in Sc-doped zirconia appears to hinder the formation of the long-range ordered phase and thus enhance the conductivity substantially.

  9. Large difference between the magnetic properties of Ba and Ti co-doped BiFeO3 bulk materials and their corresponding nanoparticles prepared by ultrasonication

    NASA Astrophysics Data System (ADS)

    Ahmmad, Bashir; Kanomata, Kensaku; Koike, Kunihiro; Kubota, Shigeru; Kato, Hiroaki; Hirose, Fumihiko; Billah, Areef; Jalil, M. A.; Basith, M. A.

    2016-07-01

    The ceramic pellets of the nominal compositions Bi0.7Ba0.3Fe1‑x Ti x O3 (x  =  0.00–0.20) were prepared initially by standard solid state reaction technique. The pellets were then ground into micrometer-sized powders and mixed with isopropanol in an ultrasonic bath to prepare nanoparticles. The x-ray diffraction patterns demonstrate the presence of a significant number of impurity phases in bulk powder materials. Interestingly, these secondary phases were completely removed due to the sonication of these bulk powder materials for 60 minutes. The field and temperature dependent magnetization measurements exhibited significant difference between the magnetic properties of the bulk materials and their corresponding nanoparticles. We anticipate that the large difference in the magnetic behavior may be associated with the presence and absence of secondary impurity phases in the bulk materials and their corresponding nanoparticles, respectively. The leakage current density of the bulk materials was also found to suppress in the ultrasonically prepared nanoparticles compared to that of bulk counterparts.

  10. Effect of Chromium and Niobium Doping on the Morphology and Electrochemical Performance of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Material.

    PubMed

    Mao, Jing; Dai, Kehua; Xuan, Minjie; Shao, Guosheng; Qiao, Ruimin; Yang, Wanli; Battaglia, Vincent S; Liu, Gao

    2016-04-13

    Undoped, Cr-doped, and Nb-doped LiMn(1.5)Ni(0.5)O4 (LNMO) is synthesized via a PVP (polyvinylpyrrolidone)-combustion method by calcinating at 1000 °C for 6 h. SEM images show that the morphology of LNMO particles is affected by Cr and Nb doping. Cr doping results in sharper edges and corners and smaller particle size, and Nb doping leads to smoother edges and corners and more rounded and larger particles. The crystal and electron structure is investigated by XRD- and synchrotron-based soft X-ray absorption spectroscopy (sXAS). Cr doping and light Nb doping (LiNb(0.02)Ni(0.49)Mn(1.49)O4) improve the rate performance of LNMO. To explore the reason for rate-performance improvement, we conducted potential intermittent titration technique (PITT) and electrochemical impedance spectroscopy (EIS) tests. The Li(+) chemical diffusion coefficient at different state of charge (SOC) is calculated and suggests that both Cr and light Nb doping speeds up Li(+) diffusion in LNMO particles. The impedance spectra show that both R(SEI) and R(ct) are reduced by Cr and light Nb doping. The cycling performance is improved by Cr or Nb doping, and Cr doping increases both Coulombic efficiency and energy efficiency of LNMO at 1 C cycling. The LiCr(0.1)Ni(0.45)Mn(1.45)O4 remains at 94.1% capacity after 500 cycles at 1 C, and during the cycling, the Coulombic efficiency and energy efficiency remain at over 99.7% and 97.5%, respectively.

  11. Effect of Chromium and Niobium Doping on the Morphology and Electrochemical Performance of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Material.

    PubMed

    Mao, Jing; Dai, Kehua; Xuan, Minjie; Shao, Guosheng; Qiao, Ruimin; Yang, Wanli; Battaglia, Vincent S; Liu, Gao

    2016-04-13

    Undoped, Cr-doped, and Nb-doped LiMn(1.5)Ni(0.5)O4 (LNMO) is synthesized via a PVP (polyvinylpyrrolidone)-combustion method by calcinating at 1000 °C for 6 h. SEM images show that the morphology of LNMO particles is affected by Cr and Nb doping. Cr doping results in sharper edges and corners and smaller particle size, and Nb doping leads to smoother edges and corners and more rounded and larger particles. The crystal and electron structure is investigated by XRD- and synchrotron-based soft X-ray absorption spectroscopy (sXAS). Cr doping and light Nb doping (LiNb(0.02)Ni(0.49)Mn(1.49)O4) improve the rate performance of LNMO. To explore the reason for rate-performance improvement, we conducted potential intermittent titration technique (PITT) and electrochemical impedance spectroscopy (EIS) tests. The Li(+) chemical diffusion coefficient at different state of charge (SOC) is calculated and suggests that both Cr and light Nb doping speeds up Li(+) diffusion in LNMO particles. The impedance spectra show that both R(SEI) and R(ct) are reduced by Cr and light Nb doping. The cycling performance is improved by Cr or Nb doping, and Cr doping increases both Coulombic efficiency and energy efficiency of LNMO at 1 C cycling. The LiCr(0.1)Ni(0.45)Mn(1.45)O4 remains at 94.1% capacity after 500 cycles at 1 C, and during the cycling, the Coulombic efficiency and energy efficiency remain at over 99.7% and 97.5%, respectively. PMID:27008976

  12. Phase transitions and doping in semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Sahu, Ayaskanta

    Colloidal semiconductor nanocrystals are a promising technological material because their size-dependent optical and electronic properties can be exploited for a diverse range of applications such as light-emitting diodes, bio-labels, transistors, and solar cells. For many of these applications, electrical current needs to be transported through the devices. However, while their solution processability makes these colloidal nanocrystals attractive candidates for device applications, the bulky surfactants that render these nanocrystals dispersible in common solvents block electrical current. Thus, in order to realize the full potential of colloidal semiconductor nanocrystals in the next-generation of solid-state devices, methods must be devised to make conductive films from these nanocrystals. One way to achieve this would be to add minute amounts of foreign impurity atoms (dopants) to increase their conductivity. Electronic doping in nanocrystals is still very much in its infancy with limited understanding of the underlying mechanisms that govern the doping process. This thesis introduces an innovative synthesis of doped nanocrystals and aims at expanding the fundamental understanding of charge transport in these doped nanocrystal films. The list of semiconductor nanocrystals that can be doped is large, and if one combines that with available dopants, an even larger set of materials with interesting properties and applications can be generated. In addition to doping, another promising route to increase conductivity in nanocrystal films is to use nanocrystals with high ionic conductivities. This thesis also examines this possibility by studying new phases of mixed ionic and electronic conductors at the nanoscale. Such a versatile approach may open new pathways for interesting fundamental research, and also lay the foundation for the creation of novel materials with important applications. In addition to their size-dependence, the intentional incorporation of

  13. Measurements of free radical in vitamin E-doped ultra-high molecular weight polyethylene: Dependence on materials processing and irradiation environments

    NASA Astrophysics Data System (ADS)

    Ridley, M. D.; Jahan, M. S.

    2007-12-01

    Ultra-high molecular weight polyethylene (UHMWPE), doped with vitamin E (α-tocopherol (α-T)), was irradiated with gamma rays in nitrogen (N 2) or air, and the resulting free radicals were detected in air using an electron spin resonance (ESR) technique. Two groups of samples were investigated. In one group, samples were prepared from blends of α-T (20 wt%) and UHMWPE powder (PPE-α-T) and, in the other, from compression molded blocks (CMPE-α-T). The CMPE-α-T blocks contained 0% (control), 0.5%, 1.0%, 10.0%, 15.0%, 20.0% and 25.0% α-T by weight. When irradiation was performed in air, the ESR spectrum of powder samples showed the presence of only vitamin E radical (tocopheroxyl, α-T-O rad ), and there was no detectable signal due to PE radicals (alkyl/allyl). Most likely, all PE radicals were quenched by vitamin E during irradiation in air. However, when irradiation was performed in N 2, composite ESR spectra showed the presence of both PE and α-T-O rad radicals. Compared to the control (PPE, 0% α-T) PE radicals in PPE-20% α-T were found to be significantly reduced or quenched by α-T. The presence of α-T in powder samples, however, did not affect the long-term (71 days in this study) oxidation behavior of the PE radicals. Compression molded samples, with and without α-T, produced identical ESR spectra irrespective of their irradiation environment N 2 or air. However, radical concentration, measured immediately after irradiation, was found to be an order of magnitude less in CMPE-α-T than in the control (CMPE-0% α-T). They also evidenced identical structural changes in the respective ESR spectra during subsequent oxidation for 24 days in open air. These observations suggest that α-T can effectively quench a significant fraction of PE radicals during irradiation, but has no measurable effect on subsequent reactions. No significant difference was found in the ESR spectra of samples containing different α-T concentration.

  14. Thermoelectric and mechanical properties of multi-wall carbon nanotube doped Bi0.4Sb1.6Te3 thermoelectric material

    SciTech Connect

    Ren, Fei; Wang, Hsin; Menchhofer, Paul A; Kiggans, Jim

    2013-01-01

    Since many thermoelectrics are brittle in nature with low mechanical strength, improving their mechanical properties is important in fabrication of devices such as thermoelectric power generators and coolers. In this work, multiwall carbon nanotubes (CNTs) were incorporated into polycrystalline Bi0.4Sb1.6Te3 through powder processing, which increased the flexural strength from 32 MPa to 90 MPa. Electrical and thermal conductivities were both reduced in the CNT containing materials, leading to unchanged figure of merit. Dynamic Young s modulus and shear modulus of the composites were lower than the base material, which is likely related to the grain boundary scattering due to the CNTs.

  15. Doping against the native propensity of MoS₂: Degenerate hole doping by cation substitution

    SciTech Connect

    Suh, Joonki; Park, Tae-Eon; Lin, Der-Yuh; Fu, Deyi; Park, Joonsuk; Jung, Hee Joon; Chen, Yabin; Ko, Changhyun; Jang, Chaun; Sun, Yinghui; Sinclair, Robert; Chang, Joonyeon; Tongay, Sefaattin; Wu, Junqiao

    2014-12-10

    Layered transition metal dichalcogenides (TMDs) draw much attention as the key semiconducting material for two-dimensional electrical, optoelectronic, and spintronic devices. For most of these applications, both n- and p-type materials are needed to form junctions and support bipolar carrier conduction. However, typically only one type of doping is stable for a particular TMD. For example, molybdenum disulfide (MoS₂) is natively an n-type presumably due to omnipresent electron-donating sulfur vacancies, and stable/controllable p-type doping has not been achieved. The lack of p-type doping hampers the development of charge-splitting p–n junctions of MoS₂, as well as limits carrier conduction to spin-degenerate conduction bands instead of the more interesting, spin-polarized valence bands. Traditionally, extrinsic p-type doping in TMDs has been approached with surface adsorption or intercalation of electron-accepting molecules. However, practically stable doping requires substitution of host atoms with dopants where the doping is secured by covalent bonding. In this work, we demonstrate stable p-type conduction in MoS₂ by substitutional niobium (Nb) doping, leading to a degenerate hole density of ~3 × 10¹⁹ cm⁻³. Structural and X-ray techniques reveal that the Nb atoms are indeed substitutionally incorporated into MoS₂ by replacing the Mo cations in the host lattice. van der Waals p–n homojunctions based on vertically stacked MoS₂ layers are fabricated, which enable gate-tunable current rectification. A wide range of microelectronic, optoelectronic, and spintronic devices can be envisioned from the demonstrated substitutional bipolar doping of MoS₂. From the miscibility of dopants with the host, it is also expected that the synthesis technique demonstrated here can be generally extended to other TMDs for doping against their native unipolar propensity.

  16. The Anti-Doping Movement.

    PubMed

    Willick, Stuart E; Miller, Geoffrey D; Eichner, Daniel

    2016-03-01

    Historical reports of doping in sports date as far back as the ancient Greek Olympic Games. The anti-doping community considers doping in sports to be cheating and a violation of the spirit of sport. During the past century, there has been an increasing awareness of the extent of doping in sports and the health risks of doping. In response, the anti-doping movement has endeavored to educate athletes and others about the health risks of doping and promote a level playing field. Doping control is now undertaken in most countries around the world and at most elite sports competitions. As athletes have found new ways to dope, however, the anti-doping community has endeavored to strengthen its educational and deterrence efforts. It is incumbent upon sports medicine professionals to understand the health risks of doping and all doping control processes. PMID:26972261

  17. The Anti-Doping Movement.

    PubMed

    Willick, Stuart E; Miller, Geoffrey D; Eichner, Daniel

    2016-03-01

    Historical reports of doping in sports date as far back as the ancient Greek Olympic Games. The anti-doping community considers doping in sports to be cheating and a violation of the spirit of sport. During the past century, there has been an increasing awareness of the extent of doping in sports and the health risks of doping. In response, the anti-doping movement has endeavored to educate athletes and others about the health risks of doping and promote a level playing field. Doping control is now undertaken in most countries around the world and at most elite sports competitions. As athletes have found new ways to dope, however, the anti-doping community has endeavored to strengthen its educational and deterrence efforts. It is incumbent upon sports medicine professionals to understand the health risks of doping and all doping control processes.

  18. Polarization induced doped transistor

    DOEpatents

    Xing, Huili; Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang

    2016-06-07

    A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.

  19. Nitrogen doping study in ingot niobium cavities

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter; Myneni, Ganapati Rao; Makita, Junki

    2015-09-01

    Thermal diffusion of nitrogen in niobium superconducting radio frequency cavities at temperature ~800 °C has resulted in the increase in quality factor with a low-field Q-rise extending to Bp > 90 mT. However, the maximum accelerating gradient of these doped cavities often deteriorates below the values achieved by standard treatments prior to doping. Here, we present the results of the measurements on ingot niobium cavities doped with nitrogen at 800 °C. The rf measurements were carried out after the successive electropolishing to remove small amount of material from the inner surface layer. The result showed higher breakdown field with lower quality factor as material removal increases.

  20. The Influences of different cathode materials on Tris-(8-Hydroxyquinoline)- Aluminum Doped with CsNO3 in Organic Light emitting Devices

    NASA Astrophysics Data System (ADS)

    Chen, Mei-Hsin; Lu, Yin-Jui; Wu, Chung-Chih; Wu, Chih-I.

    2008-03-01

    This paper presents the investigations of interfacial interactions and electron-injection mechanisms between cesium nitrate (CsNO3) and different cathode materials. By using ultraviolet and x-ray photoemission spectroscopy, the properties of electronic structures and the interfacial chemistry are studied. According to our results, there exists a phenomenon of electron exchange at the interface results in changes of Aluminum 2s core level binding energy by 1 eV when aluminum was deposited on CsNO3. This means electrons transfer from cathode materials to the surface of CsNO3, forming a strong dipolar field at the interface and reduction of the electron injection barrier. But, in contract, there exists nearly no reaction between CsNO3 and silver cathode. The evidences show that CsNO3 is more effective only with aluminum cathode due to a reaction between Aluminum, Cesium and Nitrogen atoms.

  1. Superconductivity in doped fullerenes

    SciTech Connect

    Hebard, A.F. )

    1992-11-01

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C[sub 60], further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I[sub h], its high symmetry alone invites special attention. The publication in September 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C[sub 60] (and the higher fullerenes, such as C[sub 70] and C[sub 84]) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. 23 refs., 6 figs.

  2. Lead-free epitaxial ferroelectric material integration on semiconducting (100) Nb-doped SrTiO3 for low-power non-volatile memory and efficient ultraviolet ray detection

    NASA Astrophysics Data System (ADS)

    Kundu, Souvik; Clavel, Michael; Biswas, Pranab; Chen, Bo; Song, Hyun-Cheol; Kumar, Prashant; Halder, Nripendra N.; Hudait, Mantu K.; Banerji, Pallab; Sanghadasa, Mohan; Priya, Shashank

    2015-07-01

    We report lead-free ferroelectric based resistive switching non-volatile memory (NVM) devices with epitaxial (1-x)BaTiO3-xBiFeO3 (x = 0.725) (BT-BFO) film integrated on semiconducting (100) Nb (0.7%) doped SrTiO3 (Nb:STO) substrates. The piezoelectric force microscopy (PFM) measurement at room temperature demonstrated ferroelectricity in the BT-BFO thin film. PFM results also reveal the repeatable polarization inversion by poling, manifesting its potential for read-write operation in NVM devices. The electroforming-free and ferroelectric polarization coupled electrical behaviour demonstrated excellent resistive switching with high retention time, cyclic endurance, and low set/reset voltages. X-ray photoelectron spectroscopy was utilized to determine the band alignment at the BT-BFO and Nb:STO heterojunction, and it exhibited staggered band alignment. This heterojunction is found to behave as an efficient ultraviolet photo-detector with low rise and fall time. The architecture also demonstrates half-wave rectification under low and high input signal frequencies, where the output distortion is minimal. The results provide avenue for an electrical switch that can regulate the pixels in low or high frequency images. Combined this work paves the pathway towards designing future generation low-power ferroelectric based microelectronic devices by merging both electrical and photovoltaic properties of BT-BFO materials.

  3. Lead-free epitaxial ferroelectric material integration on semiconducting (100) Nb-doped SrTiO3 for low-power non-volatile memory and efficient ultraviolet ray detection.

    PubMed

    Kundu, Souvik; Clavel, Michael; Biswas, Pranab; Chen, Bo; Song, Hyun-Cheol; Kumar, Prashant; Halder, Nripendra N; Hudait, Mantu K; Banerji, Pallab; Sanghadasa, Mohan; Priya, Shashank

    2015-01-01

    We report lead-free ferroelectric based resistive switching non-volatile memory (NVM) devices with epitaxial (1-x)BaTiO3-xBiFeO3 (x = 0.725) (BT-BFO) film integrated on semiconducting (100) Nb (0.7%) doped SrTiO3 (Nb:STO) substrates. The piezoelectric force microscopy (PFM) measurement at room temperature demonstrated ferroelectricity in the BT-BFO thin film. PFM results also reveal the repeatable polarization inversion by poling, manifesting its potential for read-write operation in NVM devices. The electroforming-free and ferroelectric polarization coupled electrical behaviour demonstrated excellent resistive switching with high retention time, cyclic endurance, and low set/reset voltages. X-ray photoelectron spectroscopy was utilized to determine the band alignment at the BT-BFO and Nb:STO heterojunction, and it exhibited staggered band alignment. This heterojunction is found to behave as an efficient ultraviolet photo-detector with low rise and fall time. The architecture also demonstrates half-wave rectification under low and high input signal frequencies, where the output distortion is minimal. The results provide avenue for an electrical switch that can regulate the pixels in low or high frequency images. Combined this work paves the pathway towards designing future generation low-power ferroelectric based microelectronic devices by merging both electrical and photovoltaic properties of BT-BFO materials.

  4. Rapid and Energy-Saving Microwave-Assisted Solid-State Synthesis of Pr(3+)-, Eu(3+)-, or Tb(3+)-Doped Lu2O3 Persistent Luminescence Materials.

    PubMed

    Pedroso, Cássio C S; Carvalho, José M; Rodrigues, Lucas C V; Hölsä, Jorma; Brito, Hermi F

    2016-08-01

    Persistent luminescence materials Lu2O3:R(3+),M (Pr,Hf(IV); Eu; or Tb,Ca(2+)) were successfully and rapidly (22 min) prepared by microwave-assisted solid-state synthesis (MASS) using a carbon microwave susceptor and H3BO3 as flux. Reaction times are reduced by up to 93% over previous synthetic methods, without special gases application and using a domestic microwave oven. All materials prepared with H3BO3 flux exhibit LuBO3 impurities that were quantified by Rietveld refinement from synchrotron radiation X-ray powder diffraction patterns. The flux does not considerably affect the crystalline structure of the C-Lu2O3, however. Scanning electron micrographs suggest low surface area when H3BO3 flux is used in the materials' synthesis, decreasing the amount of surface hydroxyl groups in Lu2O3 and improving the luminescence intensity of the phosphors. The carbon used as the susceptor generates CO gas, leading to complete reduction of Tb(IV) to Tb(3+) and partial conversion of Pr(IV) to Pr(3+) present in the Tb4O7 and Pr6O11 precursors, as indicated by X-ray absorption near-edge structure data. Persistent luminescence spectra of the materials show the red/near-IR, reddish orange, and green emission colors assigned to the 4f(n) → 4f(n) transitions characteristics of Pr(3+), Eu(3+), and Tb(3+) ions, respectively. Differences between the UV-excited and persistent luminescence spectra can be explained by the preferential persistent luminescence emission of R(3+) ion in the S6 site rather than R(3+) in the C2 site. In addition, inclusion of Hf(IV) and Ca(2+) codopants in the Lu2O3 host increases the emission intensity and duration of persistent luminescence due to generation of traps caused by charge compensation in the lattice. Photonic materials prepared by MASS with H3BO3 flux show higher persistent luminescence performance than those prepared by the ceramic method or MASS without flux. Color tuning of persistent luminescence in Lu2O3:R(3+),M provides potential

  5. Rapid and Energy-Saving Microwave-Assisted Solid-State Synthesis of Pr(3+)-, Eu(3+)-, or Tb(3+)-Doped Lu2O3 Persistent Luminescence Materials.

    PubMed

    Pedroso, Cássio C S; Carvalho, José M; Rodrigues, Lucas C V; Hölsä, Jorma; Brito, Hermi F

    2016-08-01

    Persistent luminescence materials Lu2O3:R(3+),M (Pr,Hf(IV); Eu; or Tb,Ca(2+)) were successfully and rapidly (22 min) prepared by microwave-assisted solid-state synthesis (MASS) using a carbon microwave susceptor and H3BO3 as flux. Reaction times are reduced by up to 93% over previous synthetic methods, without special gases application and using a domestic microwave oven. All materials prepared with H3BO3 flux exhibit LuBO3 impurities that were quantified by Rietveld refinement from synchrotron radiation X-ray powder diffraction patterns. The flux does not considerably affect the crystalline structure of the C-Lu2O3, however. Scanning electron micrographs suggest low surface area when H3BO3 flux is used in the materials' synthesis, decreasing the amount of surface hydroxyl groups in Lu2O3 and improving the luminescence intensity of the phosphors. The carbon used as the susceptor generates CO gas, leading to complete reduction of Tb(IV) to Tb(3+) and partial conversion of Pr(IV) to Pr(3+) present in the Tb4O7 and Pr6O11 precursors, as indicated by X-ray absorption near-edge structure data. Persistent luminescence spectra of the materials show the red/near-IR, reddish orange, and green emission colors assigned to the 4f(n) → 4f(n) transitions characteristics of Pr(3+), Eu(3+), and Tb(3+) ions, respectively. Differences between the UV-excited and persistent luminescence spectra can be explained by the preferential persistent luminescence emission of R(3+) ion in the S6 site rather than R(3+) in the C2 site. In addition, inclusion of Hf(IV) and Ca(2+) codopants in the Lu2O3 host increases the emission intensity and duration of persistent luminescence due to generation of traps caused by charge compensation in the lattice. Photonic materials prepared by MASS with H3BO3 flux show higher persistent luminescence performance than those prepared by the ceramic method or MASS without flux. Color tuning of persistent luminescence in Lu2O3:R(3+),M provides potential

  6. Bismuth and niobium co-doped barium cobalt oxide as a promising cathode material for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    He, Shaofei; Le, Shiru; Guan, Lili; Liu, Tao; Sun, Kening

    2015-11-01

    Perovskite oxides BaBi0.05Co0.95-yNbyO3-δ (BBCNy, 0 ≤ y ≤ 0.2) are synthesized and evaluated as potential cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). Highly charged Nb5+ successfully stabilizes the cubic perovskite structure to room temperature with Nb substituting content y ≥ 0.1. The phase structure, thermal expansion behavior, electrical conductivity and electrochemical performance of BBCNy with cubic phase are systematically studied. The samples exhibit excellent chemical compatibility with GDC and have sufficiently high electrical conductivities. However, the thermal expansion coefficients of BBCNy samples are nearly twice those of the most commonly used electrolyte materials YSZ and GDC, which is a major drawback for application in IT-SOFCs. The polarization resistances of BBCNy with y = 0.10, 0.15 and 0.20 on GDC electrolyte are 0.086, 0.079 and 0.107 Ω cm2 at 700 °C, respectively. Even though the YSZ electrolyte membrane and GDC barrier layer are approximately 50 μm and 10 μm in thickness, the highest maximum power density (1.23 W cm-2) of the single cell Ni-YSZ|YSZ|GDC|BBCN0.15 is obtained at 750 °C. Good long-term stability of the single cell with BBCN0.15 cathode is also demonstrated. These results demonstrate that BBCNy perovskite oxides with cubic structure are very promising cathode materials for IT-SOFCs.

  7. Hierarchical Carbon with High Nitrogen Doping Level: A Versatile Anode and Cathode Host Material for Long-Life Lithium-Ion and Lithium-Sulfur Batteries.

    PubMed

    Reitz, Christian; Breitung, Ben; Schneider, Artur; Wang, Di; von der Lehr, Martin; Leichtweiss, Thomas; Janek, Jürgen; Hahn, Horst; Brezesinski, Torsten

    2016-04-27

    Nitrogen-rich carbon with both a turbostratic microstructure and meso/macroporosity was prepared by hard templating through pyrolysis of a tricyanomethanide-based ionic liquid in the voids of a silica monolith template. This multifunctional carbon not only is a promising anode candidate for long-life lithium-ion batteries but also shows favorable properties as anode and cathode host material owing to a high nitrogen content (>8% after carbonization at 900 °C). To demonstrate the latter, the hierarchical carbon was melt-infiltrated with sulfur as well as coated by atomic layer deposition (ALD) of anatase TiO2, both of which led to high-quality nanocomposites. TiO2 ALD increased the specific capacity of the carbon while maintaining high Coulombic efficiency and cycle life: the composite exhibited stable performance in lithium half-cells, with excellent recovery of low rate capacities after thousands of cycles at 5C. Lithium-sulfur batteries using the sulfur/carbon composite also showed good cyclability, with reversible capacities of ∼700 mA·h·g(-1) at C/5 and without obvious decay over several hundred cycles. The present results demonstrate that nitrogen-rich carbon with an interconnected multimodal pore structure is very versatile and can be used as both active and inactive electrode material in high-performance lithium-based batteries. PMID:26867115

  8. Lanthanide-doped upconverting phosphors for bioassay and therapy

    NASA Astrophysics Data System (ADS)

    Guo, Huichen; Sun, Shiqi

    2012-10-01

    Lanthanide-doped fluorescent materials have gained increasing attention in recent years due to their unique luminescence properties which have led to their use in wide-ranging fields including those of biological applications. Aside from being used as agents for in vivo imaging, lanthanide-doped fluorescent materials also present many advantages for use in bioassays and therapy. In this review, we summarize the applications of lanthanide-doped up-converting phosphors (UCPs) in protein and gene detection, as well as in photodynamic and gene therapy in recent years, and outline their future potential in biological applications. The current report could serve as a reference for researchers in relevant fields.

  9. [Doping and sports].

    PubMed

    Lippi, G; Guidi, G

    1999-09-01

    Doping is widely known as the use of banned substances and practices by athletes in an attempt to improve sporting performances. The term doping likely derives from "dope", an ancient expression referred to a primitive alcoholic drink that was used as a stimulant in South African ceremonial dances; gradually, the term was extended and finally adopted his current significance. There are at least two essential reasons to support the fight against doping: the potential harmful effects on athletes and the depth corruption of the fair competition. An exhaustive list of banned substances and methods has been drawn by the International Olympic Committee and further accepted by other International Sport Authorities and Federations. This list, regularly updated, is basically divided into doping substances (stimulants, narcotic analgesics, anabolic agents, diuretics, peptide and glycoprotein hormones and analogues), doping methods (blood doping, pharmacological, chemical and physical manipulation) and drugs subjected to certain restrictions (alcohol, marijuana, local anesthetics, corticosteroids and beta-blockers). Although there might be some medical conditions, which could legitimate the need of these substances or methods, there is no place for their use in sport. Thus, an athlete's consume of any of these substances or methods will result in disqualification. Aim of the present review is to provide a synthetic description of both the desirable effects and the potentially harmful consequences of the use of some of the major doping substances and methods.

  10. Facile Synthesis of Mn-Doped ZnO Porous Nanosheets as Anode Materials for Lithium Ion Batteries with a Better Cycle Durability

    NASA Astrophysics Data System (ADS)

    Wang, Linlin; Tang, Kaibin; Zhang, Min; Xu, Jingli

    2015-07-01

    Porous Zn1 - x Mn x O ( x = 0.1, 0.2, 0.44) nanosheets were prepared by a low-cost, large-scale production and simple approach, and the applications of these nanosheets as an anode material for Li-ion batteries (LIBs) were explored. Electrochemical measurements showed that the porous Zn0.8Mn0.2O nanosheets still delivered a stable reversible capacity of 210 mA h g-1 at a current rate of 120 mA g-1 up to 300 cycles. These results suggest that the facile synthetic method of producing porous Zn0.8Mn0.2O nanostructure can realize a better cycle durability with stable reversible capacity.

  11. A novel nanoporous Fe-doped lithium manganese phosphate material with superior long-term cycling stability for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zuo, Pengjian; Wang, Liguang; Zhang, Wei; Yin, Geping; Ma, Yulin; Du, Chunyu; Cheng, Xinqun; Gao, Yunzhi

    2015-07-01

    Here, we prepared LiMn0.8Fe0.2PO4 microspheres with an open three-dimensional nanoporous structure by a facile ion-exchange solvothermal method. The micro/nano-structured material exhibits an ultralong cycle life, and retains a reversible capacity of 105 mA h g-1 after 1000 cycles at 5 C, corresponding to the capacity retention of 94.0% and only 0.0068 mA h g-1 loss per cycle.Here, we prepared LiMn0.8Fe0.2PO4 microspheres with an open three-dimensional nanoporous structure by a facile ion-exchange solvothermal method. The micro/nano-structured material exhibits an ultralong cycle life, and retains a reversible capacity of 105 mA h g-1 after 1000 cycles at 5 C, corresponding to the capacity retention of 94.0% and only 0.0068 mA h g-1 loss per cycle. Electronic supplementary information (ESI) available: SEM images of Li3PO4 obtained at different pH values. SEM images of Li3PO4 obtained for different times. A SEM image of nano-LMFP/C/G. The intensity maps of HRTEM images. A nitrogen sorption isotherm and pore size distribution of nano-LMFP/C/G. TG curves of HNM-LMFP/C/G and nano-LMFP/C/G. The first three cycles' cyclic voltammetry (CV) curves of HNM-LMFP/C/G. The initial charge/discharge curves of nano-LMFP/C/G. See DOI: 10.1039/c5nr01881a

  12. Laser doping for high-efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Jäger, Ulrich; Wolf, Andreas; Steinhauser, Bernd; Benick, Jan; Nekarda, Jan; Preu, Ralf

    2012-10-01

    Selective laser doping is a versatile tool for the local adaption of doping profiles in a silicon substrate. By adjusting the laser fluence as well as the pulse width the maximum melt depth in the silicon can be controlled. Longer pulses lead to lower temperatures in the material and can help to enlarge the process window as ablation sets in at higher fluencies. For the fabrication of highly efficient silicon solar cells, laser doping can be used for efficiency improvement and process simplification. In passivated emitter and rear cells (PERC), selective laser doping can be used for selective emitter formation. Employing such a process, an efficiency boost of Δ ƞ= 0.4%abs was observed on commercial Cz-Si material. Laser doping was also used for process simplification for the fabrication of locally doped point contacts at the rear of a solar cell. A simple approach employing a doped passivation layer and a laser doping process allows for efficiencies beyond 22% on high quality n-type silicon.

  13. Chrome doped gallium arsenide evaluation

    SciTech Connect

    Pocha, M.D.; Morse, J.D.; Brazes, W.F.

    1987-10-10

    We received, for free, two sets of Chrome doped Gallium Arsenide (GaAs:Cr) wafers, one from Cominco Electronic Materials, Inc., and the other from Furakawa Electric Co., for the purpose of evaluation as potential material for high speed photoconductive detectors. In return for the free material we promised to give the two manufacturers feed back on our evaluation of these wafers. The primary purpose of this report is to present the results of our evaluation of these wafers and conclusions regarding the usefulness of heavily doped GaAs:Cr for photoconductive detectors. We have found that response times of less than 100 ps (FWHM) are possible with GaAs:Cr detectors, but that there are several time constants to the decay which result in very long ''tails'' to the impulse response of these detectors. These long tails are unacceptable for most detector applications, but there may be some special cases where GaAs:Cr could be used. 5 figs., 1 tab.

  14. Vanadium doped Sb{sub 2}Te{sub 3} material with modified crystallization mechanism for phase-change memory application

    SciTech Connect

    Ji, Xinglong; Zheng, Yonghui; Zhou, Wangyang; Wu, Liangcai Cao, Liangliang; Zhu, Min; Rao, Feng; Song, Zhitang; Feng, Songlin

    2015-06-15

    In this paper, V{sub 0.21}Sb{sub 2}Te{sub 3} (VST) has been proposed for phase-change memory applications. With vanadium incorporating, VST has better thermal stability than Sb{sub 2}Te{sub 3} and can maintain in amorphous phase at room temperature. Two resistance steps were observed in temperature dependent resistance measurements. By real-time observing the temperature dependent lattice structure evolution, VST presents as a homogenous phase throughout the whole thermal process. Combining Hall measurement and transmission electron microscopy results, we can ascribe the two resistance steps to the unique crystallization mechanism of VST material. Then, the amorphous thermal stability enhancement can also be rooted in the suppression of the fast growth crystallization mechanism. Furthermore, the applicability of VST is demonstrated by resistance-voltage measurement, and the phase transition of VST can be triggered by a 15 ns electric pulse. In addition, endurance up to 2.7×10{sup 4} cycles makes VST a promising candidate for phase-change memory applications.

  15. Structural and optical properties of In doped Se-Te phase-change thin films: A material for optical data storage

    NASA Astrophysics Data System (ADS)

    Pathak, H. P.; Shukla, Nitesh; Kumar, Vipin; Dwivedi, D. K.

    2016-02-01

    Se75-xTe25Inx (x = 0, 3, 6, & 9) bulk glasses were obtained by melt quench technique. Thin films of thickness 400 nm were prepared by thermal evaporation technique at a base pressure of 10-6 Torr onto well cleaned glass substrate. a-Se75-xTe25Inx thin films were annealed at different temperatures for 2 h. As prepared and annealed films were characterized by X-ray diffraction and UV-Vis spectroscopy. The X-ray diffraction results show that the as-prepared films are of amorphous nature while it shows some poly-crystalline structure in amorphous phases after annealing. The optical absorption spectra of these films were measured in the wavelength range 400-1100 nm in order to derive the extinction and absorption coefficient of these films. It was found that the mechanism of optical absorption follows the rule of allowed non-direct transition. The optical band gap of as prepared and annealed films as a function of photon energy has been studied. The optical band gap is found to decrease with increase in annealing temperature in the present glassy system. It happens due to crystallization of amorphous films. The decrease in optical band gap due to annealing is an interesting behavior for a material to be used in optical storage. The optical band gap has been observed to decrease with the increase of In content in Se-Te glassy system.

  16. Effect of (Li,Ce) doping in Aurivillius phase material Na0.25K0.25Bi2.5Nb2O9

    NASA Astrophysics Data System (ADS)

    Gai, Zhi-Gang; Wang, Jin-Feng; Wang, Chun-Ming

    2007-01-01

    The effect of (Li,Ce) substitution for A site on the properties of Na0.25K0.25Bi2.5Nb2O9-based ceramics was investigated. The piezoelectric activity of Na0.25K0.25Bi2.5Nb2O9-based ceramics is significantly improved by the modification of lithium and cerium. The Curie temperature (TC) gradually increases from 668to684°C with increasing the (Li,Ce) modification. The piezoelectric coefficient d33 of the [(Na0.5K0.5)Bi]0.44(LiCe)0.03[]0.03Bi2Nb2O9 ceramic was found to be 28pC/N, the highest value among the Na0.25K0.25Bi2.5Nb2O9-based ceramics and also almost 50% higher than the reported d33 values of other bismuth layer-structured ferroelectric systems (˜5-19pC/N). The planar coupling factors kp and kt were found to be 8.0% and 23.0%, together with the high TC (˜670°C) and stable piezoelectric properties, demonstrating that the (Li,Ce) modified Na0.25K0.25Bi2.5Nb2O9-based material a promising candidate for high temperature applications.

  17. The composite capacitive behaviors of the N and S dual doped ordered mesoporous carbon with ultrahigh doping level

    NASA Astrophysics Data System (ADS)

    Zhang, Deyi; Lei, Longyan; Shang, Yonghua; Wang, Kunjie; Wang, Yi

    2016-01-01

    Heteroatoms doping provides a promising strategy for improving the energy density of supercapacitors based on the carbon electrodes. In this paper, we present a N and S dual doped ordered mesoporous carbon with ultrahigh doping level using dimethylglyoxime as pristine precursor. The N doping content of the reported materials varies from 6.6 to 15.6 at.% dependent on the carbonization temperature, and the S doping content varies from 0.46 to 1.01 at.%. Due to the ultrahigh heteroatoms doping content, the reported materials exhibit pronounced pseudo-capacitance. Meanwhile, the reported materials exhibit high surface areas (640-869 m2 g-1), large pore volume (0.71-1.08 cm2 g-1) and ordered pore structure. The outstanding textual properties endow the reported materials excellent electrical double-layer capacitance (EDLC). By effectively combining the pseudo-capacitance with EDLC, the reported materials exhibit a surprising energy storage/relax capacity with the highest specific capacitance of 565 F g-1, which value is 3.3 times higher than that of pristine CMK-3, and can compete against some conventional pseudo-capacitance materials.

  18. Computational discovery of lanthanide doped and Co-doped Y{sub 3}Al{sub 5}O{sub 12} for optoelectronic applications

    SciTech Connect

    Choudhary, Kamal; Chernatynskiy, Aleksandr; Phillpot, Simon R.; Sinnott, Susan B.; Mathew, Kiran; Bucholz, Eric W.; Hennig, Richard G.

    2015-09-14

    We systematically elucidate the optoelectronic properties of rare-earth doped and Ce co-doped yttrium aluminum garnet (YAG) using hybrid exchange-correlation functional based density functional theory. The predicted optical transitions agree with the experimental observations for single doped Ce:YAG, Pr:YAG, and co-doped Er,Ce:YAG. We find that co-doping of Ce-doped YAG with any lanthanide except Eu and Lu lowers the transition energies; we attribute this behavior to the lanthanide-induced change in bonding environment of the dopant atoms. Furthermore, we find infrared transitions only in case of the Er, Tb, and Tm co-doped Ce:YAG and suggest Tm,Ce:YAG and Tb,Ce:YAG as possible functional materials for efficient spectral up-conversion devices.

  19. Self-activating and doped tantalate phosphors.

    SciTech Connect

    Nyman, May Devan; Rohwer, Lauren Elizabeth Shea

    2011-01-01

    An ideal red phosphor for blue LEDs is one of the biggest challenges for the solid-state lighting industry. The appropriate phosphor material should have good adsorption and emission properties, good thermal and chemical stability, minimal thermal quenching, high quantum yield, and is preferably inexpensive and easy to fabricate. Tantalates possess many of these criteria, and lithium lanthanum tantalate materials warrant thorough investigation. In this study, we investigated red luminescence of two lithium lanthanum tantalates via three mechanisms: (1) Eu-doping, (2) Mn-doping and (3) self-activation of the tantalum polyhedra. Of these three mechanisms, Mn-doping proved to be the most promising. These materials exhibit two very broad adsorption peaks; one in the UV and one in the blue region of the spectrum; both can be exploited in LED applications. Furthermore, Mn-doping can be accomplished in two ways; ion-exchange and direct solid-state synthesis. One of the two lithium lanthanum tantalate phases investigated proved to be a superior host for Mn-luminescence, suggesting the crystal chemistry of the host lattice is important.

  20. Gene doping in sports.

    PubMed

    Unal, Mehmet; Ozer Unal, Durisehvar

    2004-01-01

    Gene or cell doping is defined by the World Anti-Doping Agency (WADA) as "the non-therapeutic use of genes, genetic elements and/or cells that have the capacity to enhance athletic performance". New research in genetics and genomics will be used not only to diagnose and treat disease, but also to attempt to enhance human performance. In recent years, gene therapy has shown progress and positive results that have highlighted the potential misuse of this technology and the debate of 'gene doping'. Gene therapies developed for the treatment of diseases such as anaemia (the gene for erythropoietin), muscular dystrophy (the gene for insulin-like growth factor-1) and peripheral vascular diseases (the gene for vascular endothelial growth factor) are potential doping methods. With progress in gene technology, many other genes with this potential will be discovered. For this reason, it is important to develop timely legal regulations and to research the field of gene doping in order to develop methods of detection. To protect the health of athletes and to ensure equal competitive conditions, the International Olympic Committee, WADA and International Sports Federations have accepted performance-enhancing substances and methods as being doping, and have forbidden them. Nevertheless, the desire to win causes athletes to misuse these drugs and methods. This paper reviews the current status of gene doping and candidate performance enhancement genes, and also the use of gene therapy in sports medicine and ethics of genetic enhancement.

  1. Path integral Monte Carlo simulations of H{sub 2} adsorbed to lithium-doped benzene: A model for hydrogen storage materials

    SciTech Connect

    Lindoy, Lachlan P.; Kolmann, Stephen J.; D’Arcy, Jordan H.; Jordan, Meredith J. T.; Crittenden, Deborah L.

    2015-11-21

    Finite temperature quantum and anharmonic effects are studied in H{sub 2}–Li{sup +}-benzene, a model hydrogen storage material, using path integral Monte Carlo (PIMC) simulations on an interpolated potential energy surface refined over the eight intermolecular degrees of freedom based upon M05-2X/6-311+G(2df,p) density functional theory calculations. Rigid-body PIMC simulations are performed at temperatures ranging from 77 K to 150 K, producing both quantum and classical probability density histograms describing the adsorbed H{sub 2}. Quantum effects broaden the histograms with respect to their classical analogues and increase the expectation values of the radial and angular polar coordinates describing the location of the center-of-mass of the H{sub 2} molecule. The rigid-body PIMC simulations also provide estimates of the change in internal energy, ΔU{sub ads}, and enthalpy, ΔH{sub ads}, for H{sub 2} adsorption onto Li{sup +}-benzene, as a function of temperature. These estimates indicate that quantum effects are important even at room temperature and classical results should be interpreted with caution. Our results also show that anharmonicity is more important in the calculation of U and H than coupling—coupling between the intermolecular degrees of freedom becomes less important as temperature increases whereas anharmonicity becomes more important. The most anharmonic motions in H{sub 2}–Li{sup +}-benzene are the “helicopter” and “ferris wheel” H{sub 2} rotations. Treating these motions as one-dimensional free and hindered rotors, respectively, provides simple corrections to standard harmonic oscillator, rigid rotor thermochemical expressions for internal energy and enthalpy that encapsulate the majority of the anharmonicity. At 150 K, our best rigid-body PIMC estimates for ΔU{sub ads} and ΔH{sub ads} are −13.3 ± 0.1 and −14.5 ± 0.1 kJ mol{sup −1}, respectively.

  2. Conductivity of Doped Two-Leg Ladders

    SciTech Connect

    Kim, Eugene H.

    2001-02-12

    Recently, conductivity measurements were performed on the hole-doped two-leg ladder material Sr{sub 14-x} Ca{sub x}Cu {sub 24}O{sub 41} . In this work, we calculate the conductivity for doped two-leg ladders using a model of hole pairs forming a strongly correlated liquid. Quantum interference effects are handled using renormalization group methods. We find that our model can account for the low-energy features of the experiments. However, at higher energies there are deviations from the predictions of this model. Using the results of our calculations as well as results on the ground state of doped two-leg ladders, we suggest a scenario to explain the experimental results.

  3. Thermoelectric materials and methods for synthesis thereof

    DOEpatents

    Ren, Zhifeng; Zhang, Qinyong; Zhang, Qian; Chen, Gang

    2015-08-04

    Materials having improved thermoelectric properties are disclosed. In some embodiments, lead telluride/selenide based materials with improved figure of merit and mechanical properties are disclosed. In some embodiments, the lead telluride/selenide based materials of the present disclosure are p-type thermoelectric materials formed by adding sodium (Na), silicon (Si) or both to thallium doped lead telluride materials. In some embodiments, the lead telluride/selenide based materials are formed by doping lead telluride/selenides with potassium.

  4. Low temperature coefficient of resistance and high gage factor in beryllium-doped silicon

    NASA Technical Reports Server (NTRS)

    Robertson, J. B.; Littlejohn, M. A.

    1974-01-01

    The gage factor and resistivity of p-type silicon doped with beryllium was studied as a function of temperature, crystal orientation, and beryllium doping concentration. It was shown that the temperature coefficient of resistance can be varied and reduced to zero near room temperature by varying the beryllium doping level. Similarly, the magnitude of the piezoresistance gage factor for beryllium-doped silicon is slightly larger than for silicon doped with a shallow acceptor impurity such as boron, whereas the temperature coefficient of piezoresistance is about the same for material containing these two dopants. These results are discussed in terms of a model for the piezoresistance of compensated p-type silicon.

  5. Magnetism in transition-metal-doped silicon nanotubes.

    PubMed

    Singh, Abhishek Kumar; Briere, Tina M; Kumar, Vijay; Kawazoe, Yoshiyuki

    2003-10-01

    Using first-principles density functional calculations, we show that hexagonal metallic silicon nanotubes can be stabilized by doping with 3d transition metal atoms. Finite nanotubes doped with Fe and Mn have high local magnetic moments, whereas Co-doped nanotubes have low values and Ni-doped nanotubes are mostly nonmagnetic. The infinite Si24Fe4 nanotube is found to be ferromagnetic with nearly the same local magnetic moment on each Fe atom as in bulk iron. Mn-doped nanotubes are antiferromagnetic, but a ferrromagnetic state lies only 0.03 eV higher in energy with a gap in the majority spin bands near the Fermi energy. These materials are interesting for silicon-based spintronic devices and other nanoscale magnetic applications.

  6. Effect of doping on electronic properties of HgSe

    NASA Astrophysics Data System (ADS)

    Nag, Abhinav; Sastri, O. S. K. S.; Kumar, Jagdish

    2016-05-01

    First principle study of electronic properties of pure and doped HgSe have been performed using all electron Full Potential Linearized Augmented Plane Wave (FP-LAPW) method using ELK code. The electronic exchange and co-relations are considered using Generalized Gradient Approach (GGA). Lattice parameter, Density of States (DOS) and Band structure calculations have been performed. The total energy curve (Energy vs Lattice parameter), DOS and band structure calculations are in good agreement with the experimental values and those obtained using other DFT codes. The doped material is studied within the Virtual Crystal Approximation (VCA) with doping levels of 10% to 25% of electrons (hole) per unit cell. Results predict zero band gap in undopedHgSe and bands meet at Fermi level near the symmetry point D. For doped HgSe, we found that by electron (hole) doping, the point where conduction and valence bands meet can be shifted below (above) the fermi level.

  7. Hazardous Doping for Photo-Electrochemical Conversion: The Case of Nb-Doped Fe₂O₃ from First Principles.

    PubMed

    Yatom, Natav; Toroker, Maytal Caspary

    2015-01-01

    The challenge of improving the efficiency of photo-electrochemical devices is often addressed through doping. However, this strategy could harm performance. Specifically, as demonstrated in a recent experiment, doping one of the most widely used materials for water splitting, iron (III) oxide (Fe₂O₃), with niobium (Nb) can still result in limited efficiency. In order to better understand the hazardous effect of doping, we use Density Functional Theory (DFT)+U for the case of Nb-doped Fe₂O₃. We find a direct correlation between the charge of the dopant, the charge on surface of the Fe₂O₃ material, and the overpotential required for water oxidation reaction. We believe that this work contributes to advancing our understanding of how to select effective dopants for materials. PMID:26556324

  8. Isoelectronic co-doping

    DOEpatents

    Mascarenhas, Angelo

    2004-11-09

    Isoelectronic co-doping of semiconductor compounds and alloys with deep acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, N and Bi, to customize solar cells, thermal voltaic cells, light emitting diodes, photodetectors, and lasers on GaP, InP, GaAs, Ge, and Si substrates. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  9. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    DOE PAGESBeta

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explainmore » that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.« less

  10. Detonation nanodiamonds for doping Kevlar.

    PubMed

    Comet, Marc; Pichot, Vincent; Siegert, Benny; Britz, Fabienne; Spitzer, Denis

    2010-07-01

    This paper reports on the first attempt to enclose diamond nanoparticles--produced by detonation--into a Kevlar matrix. A nanocomposite material (40 wt% diamond) was prepared by precipitation from an acidic solution of Kevlar containing dispersed nanodiamonds. In this material, the diamond nanoparticles (Ø = 4 nm) are entirely wrapped in a Kevlar layer about 1 nm thick. In order to understand the interactions between the nanodiamond surface and the polymer, the oxygenated surface functional groups of nanodiamond were identified and titrated by Boehm's method which revealed the exclusive presence of carboxyl groups (0.85 sites per nm2). The hydrogen interactions between these groups and the amide groups of Kevlar destroy the "rod-like" structure and the classical three-dimensional organization of this polymer. The distortion of Kevlar macromolecules allows the wrapping of nanodiamonds and leads to submicrometric assemblies, giving a cauliflower structure reminding a fractal object. Due to this structure, the macroscopic hardness of Kevlar doped by nanodiamonds (1.03 GPa) is smaller than the one of pure Kevlar (2.31 GPa). To our knowledge, this result is the first illustration of the change of the mechanical properties induced by doping the Kevlar with nanoparticles.

  11. Methods for Doping Detection.

    PubMed

    Ponzetto, Federico; Giraud, Sylvain; Leuenberger, Nicolas; Boccard, Julien; Nicoli, Raul; Baume, Norbert; Rudaz, Serge; Saugy, Martial

    2016-01-01

    Over the past few years, the World Anti-Doping Agency (WADA) has focused its efforts on detecting not only small prohibited molecules, but also larger endogenous molecules such as hormones, in the view of implementing an endocrinological module in the Athlete Biological Passport (ABP). In this chapter, the detection of two major types of hormones used for doping, growth hormone (GH) and endogenous anabolic androgenic steroids (EAASs), will be discussed: a brief historical background followed by a description of state-of-the-art methods applied by accredited anti-doping laboratories will be provided and then current research trends outlined. In addition, microRNAs (miRNAs) will also be presented as a new class of biomarkers for doping detection. PMID:27348309

  12. Photoluminescence of Mn+ doped GaAs

    NASA Astrophysics Data System (ADS)

    Zhou, Huiying; Qu, Shengchun; Liao, Shuzhi; Zhang, Fasheng; Liu, Junpeng; Wang, Zhanguo

    2010-10-01

    Photoluminescence is one of the most useful techniques to obtain information about optoelectronic properties and defect structures of materials. In this work, the room-temperature and low temperature photoluminescence of Mn-doped GaAs were investigated, respectively. Mn-doped GaAs structure materials were prepared by Mn+ ion implantation at room temperature into GaAs. The implanted samples were subsequently annealed at various temperatures under N2 atmosphere to recrystallize the samples and remove implant damage. A strong peak was found for the sample annealed at 950 °C for 5 s. Transitions near 0.989 eV (1254 nm), 1.155 eV (1074 nm) and 1.329 eV (933 nm) were identified and formation of these emissions was analyzed for all prepared samples. This structure material could have myriad applications, including information storage, magnet-optical properties and energy level engineering.

  13. [Blood doping: 2].

    PubMed

    Cristani, Alessandro; Boldrini, Elena; Amateis, Elisa; Arioli, Dimitriy

    2005-01-01

    Blood Doping has recently obtained a large diffusion between professional and nonprofessional athletes, in particular for endurance sports it has almost become a necessary way to warrant best performance. Seven years after the publication of our article "Blood Doping", this second installment was born to emphasize the way the biomedical research supplies (often unintentionally) new drugs and new technology to improve athletic performance and, on the other hand, to underline the antidoping strategies.

  14. Hydrogen adsorption on sulphur-doped SiC nanotubes

    NASA Astrophysics Data System (ADS)

    Sevak Singh, Ram

    2016-07-01

    Hydrogen (H2) is an energy carrier and clean fuel that can be used for a broad range of applications that include fuel cell vehicles. Therefore, development of materials for hydrogen storage is demanded. Nanotubes, in this context, are appropriate materials. Recently, silicon carbide nanotube (SiCNTs) have been predicted as potential nanomaterials for hydrogen storage, and atomic doping into the nanotubes improves the H2 adsorption. Here, we report H2 adsorption properties of sulphur-doped (S-doped) SiCNTs using first-principles calculations based on density functional theory. The H2 adsorption properties are investigated by calculations of energy band structures, density of states (DOS), adsorption energy and Mulliken charge population analysis. Our findings show that, compared to the intrinsic SiCNT, S-doped SiCNT is more sensitive to H2 adsorption. H2 gas adsorption on S-doped C-sites of SiCNT brings about significant modulation of the electronic structure of the nanotube, which results in charge transfer from the nanotube to the gas, and dipole-dipole interactions cause chemisorptions of hydrogen. However, in the case of H2 gas adsorption on S-doped Si-sites of the nanotube, lesser charge transfer from the nanotube to the gas results in physisorptions of the gas. The efficient hydrogen sensing properties of S-doped SiCNTs, studied here, may have potential for its practical realization for hydrogen storage application.

  15. Hydrogen adsorption on sulphur-doped SiC nanotubes

    NASA Astrophysics Data System (ADS)

    Sevak Singh, Ram

    2016-07-01

    Hydrogen (H2) is an energy carrier and clean fuel that can be used for a broad range of applications that include fuel cell vehicles. Therefore, development of materials for hydrogen storage is demanded. Nanotubes, in this context, are appropriate materials. Recently, silicon carbide nanotube (SiCNTs) have been predicted as potential nanomaterials for hydrogen storage, and atomic doping into the nanotubes improves the H2 adsorption. Here, we report H2 adsorption properties of sulphur-doped (S-doped) SiCNTs using first-principles calculations based on density functional theory. The H2 adsorption properties are investigated by calculations of energy band structures, density of states (DOS), adsorption energy and Mulliken charge population analysis. Our findings show that, compared to the intrinsic SiCNT, S-doped SiCNT is more sensitive to H2 adsorption. H2 gas adsorption on S-doped C-sites of SiCNT brings about significant modulation of the electronic structure of the nanotube, which results in charge transfer from the nanotube to the gas, and dipole–dipole interactions cause chemisorptions of hydrogen. However, in the case of H2 gas adsorption on S-doped Si-sites of the nanotube, lesser charge transfer from the nanotube to the gas results in physisorptions of the gas. The efficient hydrogen sensing properties of S-doped SiCNTs, studied here, may have potential for its practical realization for hydrogen storage application.

  16. Thermoelectric transport in indium and aluminum-doped lead selenide

    NASA Astrophysics Data System (ADS)

    Evola, E. G.; Nielsen, M. D.; Jaworski, C. M.; Jin, H.; Heremans, J. P.

    2014-02-01

    We present galvanomagnetic and thermomagnetic properties of bulk PbSe doped by substituting the donor elements In and Al for Pb. Although prominent resonant level effects are not seen, lightly doped samples display a high thermoelectric figure of merit (zT) in excess of 1.2 at 600 K, a temperature corresponding well to automotive waste heat recovery applications. This material's high zT is achieved without the use of nanostructuring or the relatively rare element Te. Phonon drag contributions to thermopower appear at temperatures below 30 K in Al-doped samples.

  17. Thermoelectric transport in indium and aluminum-doped lead selenide

    SciTech Connect

    Evola, E. G.; Nielsen, M. D.; Jaworski, C. M.; Jin, H.; Heremans, J. P.

    2014-02-07

    We present galvanomagnetic and thermomagnetic properties of bulk PbSe doped by substituting the donor elements In and Al for Pb. Although prominent resonant level effects are not seen, lightly doped samples display a high thermoelectric figure of merit (zT) in excess of 1.2 at 600 K, a temperature corresponding well to automotive waste heat recovery applications. This material's high zT is achieved without the use of nanostructuring or the relatively rare element Te. Phonon drag contributions to thermopower appear at temperatures below 30 K in Al-doped samples.

  18. Atomic hydrogen doping in single-crystal vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Ji, Heng; Hardy, Will; Wei, Jiang; Lin, Jian; Paik, Hanjong; Schlom, Darrell; Natelson, Douglas

    2014-03-01

    Vanadium dioxide is a strongly correlated material with a bulk metal-to-insulator transition (MIT) near 340 K. Previous experiments in single-crystal nanowires (J. Wei et al., Nature Nano. 7, 357-362 (2012)) have shown that catalytic doping with atomic hydrogen can stabilize the high temperature metallic state. In this experiment, we used a hot filament source to split hydrogen molecules and directly dope atomic hydrogen into VO2 material, including epitaxial films and nanowires, without any catalyst. From observations of the wire samples, we infer the relative diffusion rates of H in the monoclinic and rutile crystal structures. Transport measurements of the doped film samples show no temperature-driven transition, but rather a conducting state down to 2K. We present Hall and magnetoresistance measurements on macroscale and mesoscale devices fabricated from the doped films.

  19. A new vision of photodarkening in Yb3+-doped fibers

    NASA Astrophysics Data System (ADS)

    Peretti, Romain; Gonnet, Cédric; Jurdyc, Anne-Marie

    2012-02-01

    Yb3+-doped fiber is one of the most promising hosts for high-power fiber lasers [1]. However, in the late 1990s, photodarkening effect, i.e., the creation of color centers induced by light, was observed and reported [2]. Like in other rare-earth-doped materials, a broad visible and near infrared absorption band appears during laser operation, which strongly lowers the laser efficiency. We have shown how thulium impurities, present at the parts-per-billion weights (ppb) level in the raw doping material, can induce UV emission which in turn creates defects responsible for photodarkening in ytterbium-doped continuous-wave fiber lasers [3]. This new vision is not in contradiction with others but it gives for the first time a possible explanation for UV defect creation by an infrared beam.

  20. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.

    PubMed

    Laycock, Christian J; Staniforth, John Z; Ormerod, R Mark

    2011-05-28

    Numerous investigations have been carried out into the conversion of biogas into synthesis gas (a mixture of H(2) + CO) over Ni/YSZ anode cermet catalysts. Biogas is a variable mixture of gases consisting predominantly of methane and carbon dioxide (usually in a 2 : 1 ratio, but variable with source), with other constituents including sulfur-containing gases such as hydrogen sulfide, which can cause sulfur poisoning of nickel catalysts. The effect of temperature on carbon deposition and sulfur poisoning of 90 : 10 mol% Ni/YSZ under biogas conversion conditions has been investigated by carrying out a series of catalytic reactions of methane-rich (2 : 1) CH(4)/CO(2) mixtures in the absence and presence of H(2)S over the temperature range 750-1000 °C. The effect of ceria-doping on carbon dioxide reforming, carbon deposition and sulfur tolerance has also been investigated by carrying out a similar series of reactions over ceria-doped Ni/YSZ. Ceria was doped at 5 mol% of the nickel content to give an anode catalyst composition of 85.5 : 4.5 : 10 mol% Ni/CeO(2)/YSZ. Reactions were followed using quadrupolar mass spectrometry (QMS) and the amount of carbon deposition was analysed by subjecting the reacted catalyst samples to a post-reaction temperature programmed oxidation (TPO). On undoped Ni/YSZ, carbon deposition occurred predominantly through thermal decomposition of methane. Ceria-doping significantly suppressed methane decomposition and at high temperatures simultaneously promoted the reverse Boudouard reaction, significantly lowering carbon deposition. Sulfur poisoning of Ni/YSZ occurred in two phases, the first of which caused the most activity loss and was accelerated on increasing the reaction temperature, while the second phase had greater stability and became more favourable with increasing reaction temperature. Adding H(2)S significantly inhibited methane decomposition, resulting in much less carbon deposition. Ceria-doping significantly increased the sulfur

  1. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.

    PubMed

    Laycock, Christian J; Staniforth, John Z; Ormerod, R Mark

    2011-05-28

    Numerous investigations have been carried out into the conversion of biogas into synthesis gas (a mixture of H(2) + CO) over Ni/YSZ anode cermet catalysts. Biogas is a variable mixture of gases consisting predominantly of methane and carbon dioxide (usually in a 2 : 1 ratio, but variable with source), with other constituents including sulfur-containing gases such as hydrogen sulfide, which can cause sulfur poisoning of nickel catalysts. The effect of temperature on carbon deposition and sulfur poisoning of 90 : 10 mol% Ni/YSZ under biogas conversion conditions has been investigated by carrying out a series of catalytic reactions of methane-rich (2 : 1) CH(4)/CO(2) mixtures in the absence and presence of H(2)S over the temperature range 750-1000 °C. The effect of ceria-doping on carbon dioxide reforming, carbon deposition and sulfur tolerance has also been investigated by carrying out a similar series of reactions over ceria-doped Ni/YSZ. Ceria was doped at 5 mol% of the nickel content to give an anode catalyst composition of 85.5 : 4.5 : 10 mol% Ni/CeO(2)/YSZ. Reactions were followed using quadrupolar mass spectrometry (QMS) and the amount of carbon deposition was analysed by subjecting the reacted catalyst samples to a post-reaction temperature programmed oxidation (TPO). On undoped Ni/YSZ, carbon deposition occurred predominantly through thermal decomposition of methane. Ceria-doping significantly suppressed methane decomposition and at high temperatures simultaneously promoted the reverse Boudouard reaction, significantly lowering carbon deposition. Sulfur poisoning of Ni/YSZ occurred in two phases, the first of which caused the most activity loss and was accelerated on increasing the reaction temperature, while the second phase had greater stability and became more favourable with increasing reaction temperature. Adding H(2)S significantly inhibited methane decomposition, resulting in much less carbon deposition. Ceria-doping significantly increased the sulfur

  2. Charge Compensated (Al, N) Co-Doped Zinc Oxide (ZnO) Films for Photlelectrochemical Application

    SciTech Connect

    Shet, S.

    2012-01-01

    ZnO thin films with significantly reduced bandgaps were synthesized by doping N and co-doping Al and N at 100oC. All the films were synthesized by radio-frequency magnetron sputtering on F-doped tin-oxide-coated glass. We found that co-doped ZnO:(Al,N) thin films exhibited significantly enhanced crystallinity as compared to ZnO doped solely with N, ZnO:N, at the same growth conditions. Furthermore, annealed ZnO:(Al,N) thin films exhibited enhanced N incorporation over ZnO:N films. As a result, ZnO:(Al,N) films exhibited improved photocurrents than ZnO:N films grown with pure N doping, suggesting that charge-compensated donor-acceptor co-doping could be a potential method for bandgap reduction of wide-bandgap oxide materials to improve their photoelectrochemical performance.

  3. Transparent conductivity modulation of ZnO by group-IVA doping

    NASA Astrophysics Data System (ADS)

    Liu, J.; Fan, X. F.; Sun, C. Q.; Zhu, W.

    2016-04-01

    We examined the effect of group-IVA doping on the electronic structure and transmittance of ZnO using first-principle calculations. All these doped ZnO materials are found to perform n-type conductive behavior. Si-doped ZnO and Pb-doped ZnO are found to have larger optical band gap than those of Ge-doped ZnO and Sn-doped ZnO. The transmittance of Si-doped ZnO is found to be high in both UV and visible region. The enhancement of UV region transmittance can be attributed to the enhanced optical band gap, while the reduction of visible region transmittance is due to the intraband optical transition.

  4. Gene doping in sport - perspectives and risks.

    PubMed

    Brzeziańska, E; Domańska, D; Jegier, A

    2014-12-01

    In the past few years considerable progress regarding the knowledge of the human genome map has been achieved. As a result, attempts to use gene therapy in patients' management are more and more often undertaken. The aim of gene therapy is to replace defective genes in vivo and/or to promote the long-term endogenous synthesis of deficient protein. In vitro studies improve the production of human recombinant proteins, such as insulin (INS), growth hormone (GH), insulin-like growth factor-1 (IGF-1) and erythropoietin (EPO), which could have therapeutic application. Unfortunately, genetic methods developed for therapeutic purposes are increasingly being used in competitive sports. Some new substances (e.g., antibodies against myostatin or myostatin blockers) might be used in gene doping in athletes. The use of these substances may cause an increase of body weight and muscle mass and a significant improvement of muscle strength. Although it is proven that uncontrolled manipulation of genetic material and/or the introduction of recombinant proteins may be associated with health risks, athletes are increasingly turning to banned gene doping. At the same time, anti-doping research is undertaken in many laboratories around the world to try to develop and refine ever newer techniques for gene doping detection in sport. Thanks to the World Anti-Doping Agency (WADA) and other sports organizations there is a hope for real protection of athletes from adverse health effects of gene doping, which at the same time gives a chance to sustain the idea of fair play in sport.

  5. Structural and magnetic analysis of the transformation of Sn-doped magnetite to Sn-doped hematite by mechanical milling

    SciTech Connect

    Widatallah, H.M.; Gismelseed, A.M.; Yousif, A.A.; Al-Rawas, A.D.; Al-Omari, I.A.; Al-Tai, S.; Elzain, M.E.; Johnson, C.

    2005-05-15

    Spinel-related Sn-doped Fe{sub 3}O{sub 4} has been ball milled for different times up to 35 h. Milling was found to transform the material to corundum-related Sn-doped {alpha}-Fe{sub 2}O{sub 3}. The influence of the milling time, the crystallite size, and the cationic distribution on transformation process is being analyzed with x-ray diffraction, Moessbauer spectroscopy, and magnetic measurements. The relatively fast spinel-to-corundum structural transformation observed is associated with more Fe{sup 3+} ions being reduced to Fe{sup 2+} due to doping with Sn{sup 4+} ions.

  6. Engineering and design properties of thallium-doped sodium iodide and selected properties of sodium-doped cesium iodide

    NASA Technical Reports Server (NTRS)

    Forrest, K.; Haehner, C.; Heslin, T.; Magida, M.; Uber, J.; Freiman, S.; Hicho, G.; Polvani, R.

    1984-01-01

    Mechanical and thermal properties, not available in the literature but necessary to structural design, using thallium doped sodium iodide and sodium doped cesium iodide were determined to be coefficient of linear thermal expansion, thermal conductivity, thermal shock resistance, heat capacity, elastic constants, ultimate strengths, creep, hardness, susceptibility to subcritical crack growth, and ingot variation of strength. These properties were measured for single and polycrystalline materials at room temperature.

  7. [Point of view on doping].

    PubMed

    Naeije, R; Pagnamenta, A

    1999-06-01

    Doping is defined as the administration of or use by competing athletes of any substance foreign to the body or of any physiological substance taken in abnormal quantity or taken by an abnormal route of entry into the body with the sole intention of increasing in an artificial and unfair manner his/her performance in competition. The prevalence of doping has been estimated by rigorous methods to be 5-15%. The only two dopings of established efficacy are: anabolic steroids for resistive performance, and blood doping for endurance performance. Although medical control of athletes is reputably poor, reported accidents attributable to doping have been until now very rare. Doping is unfair, and must as such be banned from competitions. Medicalized doping is unethical. More studies are required to improve knowledge of doping as a public health issue. Sports medicine is in need of scientific and moral revalorization.

  8. Electrostatic doping in oxide heterostructures.

    NASA Astrophysics Data System (ADS)

    Demkov, Alexander A.; Lee, Jaekwang; Sai, Na

    2009-03-01

    Recent experiments on perovskite heterostructures grown by methods ranging from molecular beam epitaxy to pulsed laser deposition suggest the existence of two dimensional electron gas of high mobility at the oxide/oxide interface, and even a possibility of a superconducting state. Both p-type and n-type interfaces have been reported. However, the origin of charge in these insulating materials is still under debate. We report a first-principles study of several heterostructures where we employ the internal filed in a polar oxide LaAlO3 to demonstrate the possibility of the electrostatic doping, an effect similar to a well known polar catastrophe in e.g., III-V semiconductors. We use density functional theory at the LDA+U level. We mainly focus on the electronic structure of the oxide/oxide junctions. The results of our calculations suggest that once the critical thickness of the aluminate layer is reached the internal electric field is sufficient to produce the electrostatic doping. We will discuss simple estimates for the temperature of the superconducting transition and the role of oxygen-related defects such as vacancies in the electronic structure and thermodynamic stability of these fascinating oxide structures.

  9. Doping-assisted defect control in compound semiconductors

    DOEpatents

    Specht, Petra; Weber, Eicke R.; Weatherford, Todd Russell

    2006-07-11

    The present invention relates to the production of thin film epilayers of III–V and other compounds with acceptor doping wherein the acceptor thermally stabilizes the epilayer, stabilize the naturally incorporated native defect population and therewith maintain the epilayer's beneficial properties upon annealing among other advantageous effects. In particular, balanced doping in which the acceptor concentration is similar to (but does not exceed) the antisite defects in the as-grown material is shown to be particularly advantageous in providing thermal stability, high resistivity and ultrashort trapping times. In particular, MBE growth of LT-GaAs epilayers with balanced Be doping is described in detail. The growth conditions greatly enhance the materials reproducibility (that is, the yield in processed devices). Such growth techniques can be transferred to other III–V materials if the growth conditions are accurately reproduced. Materials produced herein also demonstrate advantages in reproducibility, reliability and radiation hardening.

  10. Plasmon-induced doping of graphene.

    PubMed

    Fang, Zheyu; Wang, Yumin; Liu, Zheng; Schlather, Andrea; Ajayan, Pulickel M; Koppens, Frank H L; Nordlander, Peter; Halas, Naomi J

    2012-11-27

    A metallic nanoantenna, under resonant illumination, injects nonequilibrium hot electrons into a nearby graphene structure, effectively doping the material. A prominent change in carrier density was observed for a plasmonic antenna-patterned graphene sheet following laser excitation, shifting the Dirac point, as determined from the gate-controlled transport characteristic. The effect is due to hot electron generation resulting from the decay of the nanoantenna plasmon following resonant excitation. The effect is highly tunable, depending on the resonant frequency of the plasmonic antenna, as well as on the incident laser power. Hot electron-doped graphene represents a new type of hybrid material that shows great promise for optoelectronic device applications. PMID:22998468

  11. Control of Rewriteable Doping Patterns in Graphene/Boron Nitride Heterostructures

    NASA Astrophysics Data System (ADS)

    Kahn, Salman; Velasco, Jairo, Jr.; Wong, Dillon; Lee, Juwon; Tsai, Hsin Zon; Ju, Long; Jiang, Lili; Shi, Zhiwen; Ashby, Paul; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Crommie, Michael

    Spatial control of charge doping in 2D materials is a promising technique for designing future electronic devices and understanding novel physics. Electrostatic gating and chemical doping are common methods to achieve control of charge doping in 2D materials. However, these approaches suffer from complicated fabrication processes that introduce impurities, change material properties irreversibly, and lack flexibility. Here, we introduce a new method for patterning rewriteable doping profiles with local interface charge transfer from defects in a tunable BN substrate into an adjacent layer of graphene. We characterize these spatial doping patterns through local probe and transport techniques. This technique enables many novel device designs for 2D materials, including atomically thin p-n junctions and rewriteable memory devices.

  12. Rebound effect of IMT properties by different doping form in Si-doped vanadium dioxide films

    NASA Astrophysics Data System (ADS)

    Wu, Xuefei; Wu, Zhiming; Liu, Zhijun; Ji, Chunhui; Huang, Zehua; Su, Yuanjie; Gou, Jun; Wang, Jun; Jiang, Yadong

    2016-09-01

    Vanadium dioxide is a promising material for THz modulations due to its remarkable insulator-to-metal transition (IMT) properties. Silicon-doped VO2 films, exhibiting excellent IMT properties with giant modulation amplitude and tunable phase transition temperature, greatly adapt in this area. In this paper, we report on a rebound effect of the IMT in Si-doped VO2 films. As the silicon dopants are increasingly introduced into VO2 films, the IMT is first tuned to lower temperature and then is anomalously shifted to higher temperature. This rebound effect is confirmed by crystal structure, valence concentration, and surface morphology. We attribute this rebound behavior to the interstitial and substitutive doping of Si atoms. Due to their distinct impactions on the crystallite, IMT properties of the VO2 films are depressed initially and recovered later.

  13. a Novel Method to Synthesize N-DOPED CNTs Arrays via Chemical Modifying Porous Alumina Membrane

    NASA Astrophysics Data System (ADS)

    Li, Chengyong; He, Lei

    2014-01-01

    N-doped carbon nanotubes (CNTs) arrays were fabricated via simply chemical modifying porous alumina membrane (PAM) with dopamine. The diameter of N-doped CNTs is about 60-70 nm. The N/C atomic ratio is calculated to be 0.05 and the main functionality is pyridone/pyrrole N. This chemical modifying method can be used to fabricate mass of N-doped CNTs arrays in one step with single raw material.

  14. Notes on the plasma resonance peak employed to determine doping in SiC

    DOE PAGESBeta

    Engelbrecht, J. A. A.; van Rooyen, I. J.; Henry, A.; Janzen, E.; Sephton, B.

    2015-07-23

    In this study, the doping level of a semiconductor material can be determined using the plasma resonance frequency to obtain the carrier concentration associated with doping. This paper provides an overview of the procedure for the three most common polytypes of SiC. Results for 3C-SiC are presented and discussed. In phosphorus doped samples analysed, it is submitted that the 2nd plasma resonance cannot be detected due to high values of the free carrier damping constant γ.

  15. Observation of a Burstein-Moss shift in rhenium-doped MoS2 nanoparticles.

    PubMed

    Sun, Qi-C; Yadgarov, Lena; Rosentsveig, Rita; Seifert, Gotthard; Tenne, Reshef; Musfeldt, Janice L

    2013-04-23

    We investigated the optical properties of rhenium-doped MoS2 nanoparticles and compared our findings with the pristine and bulk analogues. Our measurements reveal that confinement softens the exciton positions and reduces spin-orbit coupling, whereas doping has the opposite effect. We model the carrier-induced exciton blue shift in terms of the Burstein-Moss effect. These findings are important for understanding doping and finite length scale effects in low-dimensional nanoscale materials.

  16. Doping-Induced Tunable Wettability and Adhesion of Graphene.

    PubMed

    Ashraf, Ali; Wu, Yanbin; Wang, Michael Cai; Yong, Keong; Sun, Tao; Jing, Yuhang; Haasch, Richard T; Aluru, Narayana R; Nam, SungWoo

    2016-07-13

    We report that substrate doping-induced charge carrier density modulation leads to the tunable wettability and adhesion of graphene. Graphene's water contact angle changes by as much as 13° as a result of a 300 meV change in doping level. Upon either n- or p-type doping with subsurface polyelectrolytes, graphene exhibits increased hydrophilicity. Adhesion force measurements using a hydrophobic self-assembled monolayer-coated atomic force microscopy probe reveal enhanced attraction toward undoped graphene, consistent with wettability modulation. This doping-induced wettability modulation is also achieved via a lateral metal-graphene heterojunction or subsurface metal doping. Combined first-principles and atomistic calculations show that doping modulates the binding energy between water and graphene and thus increases its hydrophilicity. Our study suggests for the first time that the doping-induced modulation of the charge carrier density in graphene influences its wettability and adhesion. This opens up unique and new opportunities for the tunable wettability and adhesion of graphene for advanced coating materials and transducers.

  17. Theoretical investigation of superconductivity in doped fullerenes. Final report

    SciTech Connect

    Jishi, R.A.

    1995-03-01

    The aim of the research the authors are conducting is to understand the phenomenon of superconductivity in the fullerene system. Towards achieving this goal they have conducted a series of studies and have published several papers quite recently. They have developed a force-constant model for the C60 molecule which accounts for all measured frequencies in C60. The model employs four bond-stretching and four angle-bending force constants that were doped to reproduce the correct values of the frequencies of the Raman-active vibrational modes. The model was successfully applied to higher fullerenes, such as C70 and the effect of doping by alkali metal atoms on the phonon modes in C60 and in C70 was considered. The study of the phonon spectrum in doped C60 and doped C70 is an important step in view of the fact that while doped C60 is superconducting, doped C70 is not. The studies the authors have carried out, combined with studies on the electronic states in doped C70, could elucidate the difference in the electrical properties between these two materials.

  18. Electronic interaction between nitrogen atoms in doped graphene.

    PubMed

    Tison, Yann; Lagoute, Jérôme; Repain, Vincent; Chacon, Cyril; Girard, Yann; Rousset, Sylvie; Joucken, Frédéric; Sharma, Dimpy; Henrard, Luc; Amara, Hakim; Ghedjatti, Ahmed; Ducastelle, François

    2015-01-27

    Many potential applications of graphene require either the possibility of tuning its electronic structure or the addition of reactive sites on its chemically inert basal plane. Among the various strategies proposed to reach these objectives, nitrogen doping, i.e., the incorporation of nitrogen atoms in the carbon lattice, leads in most cases to a globally n-doped material and to the presence of various types of point defects. In this context, the interactions between chemical dopants in graphene have important consequences on the electronic properties of the systems and cannot be neglected when interpreting spectroscopic data or setting up devices. In this report, the structural and electronic properties of complex doping sites in nitrogen-doped graphene have been investigated by means of scanning tunneling microscopy and spectroscopy, supported by density functional theory and tight-binding calculations. In particular, based on combined experimental and simulation works, we have systematically studied the electronic fingerprints of complex doping configurations made of pairs of substitutional nitrogen atoms. Localized bonding states are observed between the Dirac point and the Fermi level in contrast with the unoccupied state associated with single substitutional N atoms. For pyridinic nitrogen sites (i.e., the combination of N atoms with vacancies), a resonant state is observed close to the Dirac energy. This insight into the modifications of electronic structure induced by nitrogen doping in graphene provides us with a fair understanding of complex doping configurations in graphene, as it appears in real samples.

  19. Krypton irradiation damage in Nd-doped zirconolite and perovskite

    NASA Astrophysics Data System (ADS)

    Davoisne, C.; Stennett, M. C.; Hyatt, N. C.; Peng, N.; Jeynes, C.; Lee, W. E.

    2011-08-01

    Understanding the effect of radiation damage and noble gas accommodation in potential ceramic hosts for plutonium disposition is necessary to evaluate their long-term behaviour during geological disposal. Polycrystalline samples of Nd-doped zirconolite and Nd-doped perovskite were irradiated ex situ with 2 MeV Kr + at a dose of 5 × 10 15 ions cm -2 to simulate recoil of Pu nuclei during alpha decay. The feasibility of thin section preparation of both pristine and irradiated samples by Focused Ion Beam sectioning was demonstrated. After irradiation, the Nd-doped zirconolite revealed a well defined amorphous region separated from the pristine material by a thin (40-60 nm) damaged interface. The zirconolite lattice was lost in the damaged interface, but the fluorite sublattice was retained. The Nd-doped perovskite contained a defined irradiated layer composed of an amorphous region surrounded by damaged but still crystalline layers. The structural evolution of the damaged regions is consistent with a change from orthorhombic to cubic symmetry. In addition in Nd-doped perovskite, the amorphisation dose depended on crystallographic orientation and possibly sample configuration (thin section or bulk). Electron Energy Loss Spectroscopy revealed Ti remained in the 4+ oxidation state but there was a change in Ti coordination in both Nd-doped perovskite and Nd-doped zirconolite associated with the crystalline to amorphous transition.

  20. Manipulating electrochemical performance through doping beyond the solubility limit.

    PubMed

    Yatom, Natav; Toroker, Maytal Caspary

    2016-06-28

    Improving water splitting efficiency has been the holy grail of hydrogen fuel production. Major efforts have been invested in an attempt to enhance efficiency of a common water oxidation catalyst, α-Fe2O3, through doping and alloying. Recent experiments show that higher efficiency is achieved when niobium (Nb) is added beyond the solubility limit to generate a mixture of two phases: Nb-doped and Nb-alloyed α-Fe2O3. In order to understand why adding high concentrations of Nb is beneficial, we provide a thorough first principles study of the bulk and the surface of pure, Nb-doped, and Nb-alloyed α-Fe2O3 with several surface facets and terminations. We find that the addition of Nb changes the band edge and Fermi level positions. Therefore, we propose a mechanism by which having different Nb doping levels within and above the solubility limit has an advantage: electrons and holes could separate better between doped and alloyed regions that have different band edge positions or between regions with different doping concentrations. Furthermore, the holes' driving force to oxidize water can be increased by placing on the surface the undoped or alloyed phases, since they have a lower valence band maximum. We suggest that obtaining two material phases or gradual doping can be used as a design strategy for next generation catalysts. PMID:27080975

  1. Structural transformation in nickel doped zinc oxide nanostructures

    SciTech Connect

    Goswami, Navendu; Sahai, Anshuman

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► A systematic study of 1–10% Ni doped ZnO nanostructures (Ni:ZnO NS). ► Effect of Ni concentration on properties of Ni:ZnO NS was intensively investigated. ► Structural transformation in Ni:ZnO NS demonstrated through characterizations. ► Alteration in vibrational modes of Ni:ZnO NS were meticulously analyzed. ► Intricacies of structural evolution, from particles to rods, were comprehended. -- Abstract: In this article, structural transformation in nickel doped zinc oxide nanostructures is reported. The ZnO nanostructures are synthesized with 1–10% of nickel doping through a chemical precipitation method. The undoped and doped nanostructures were systematically investigated employing X-ray diffraction (XRD), transmission and scanning electron microscopy (TEM/SEM), Fourier transform infrared (FTIR) and micro-Raman spectroscopy (μRS). The wurtzite phase of the material and associated lattice parameters were ascertained through XRD analysis. TEM/SEM images reveal the structural transformation of ZnO nanostructures with variation in nickel doping. The study of vibrational modes of nanostructures at different stages of structural transformation, as performed through FTIR and Raman spectroscopy, assist in deciphering the pivotal role of doping concentration in gradual evolution of nickel doped ZnO structure from nanoparticles to nanorods.

  2. JPL lithium doped solar cell development program

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1972-01-01

    One of the most significant problems encountered in the use of silicon solar cells in space is the sensitivity of the device to electron and proton radiation exposure. The p-diffused-into-n-base solar cells were replaced with the more radiation tolerant n-diffused-into-p-base solar cells. Another advancement in achieving greater radiation tolerance was the discovery that the addition of lithium to n-base silicon resulted in what appeared to be annealing of radiation-induced defects. This phenomenon is being exploited to develop a high efficiency radiation resistant lithium-doped solar cell. Lithium-doped solar cells fabricated from oxygen-lean and oxygen-rich silicon were obtained with average initial efficiencies of 11.9% at air mass zero and 28 C, as compared to state-of-the-art n-p cells fabricated from 10 ohm cm silicon with average efficiencies of 11.3% under similar conditions. Lithium-doped cells demonstrated the ability to withstand three to five times the fluence of 1-MeV electrons before degrading to a power equivalent to state-of-the-art solar cells. The principal investigations are discussed with respect to fabrication of high efficiency radiation resistant lithium-doped cells, including starting material, p-n junction diffusion, lithium source introduction, and lithium diffusion.

  3. Nanoparticle doping for improved Er-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Baker, Colin C.; Friebele, E. Joseph; Askins, Charles G.; Hunt, Michael P.; Marcheschi, Barbara A.; Fontana, Jake; Peele, John R.; Kim, Woohong; Sanghera, Jasbinder; Zhang, Jun; Pattnaik, Radha K.; Merkle, Larry D.; Dubinskii, Mark; Chen, Youming; Dajani, Iyad A.; Mart, Cody

    2016-03-01

    A nanoparticle (NP) doping technique was used for making erbium-doped fibers (EDFs) for high energy lasers. The nanoparticles were doped into the silica soot of preforms, which were drawn into fibers. The Er luminescence lifetimes of the NP-doped cores are longer than those of corresponding solution-doped silica, and substantially less Al is incorporated into the NP-doped cores. Optical-to-optical slope efficiencies of greater than 71% have been measured. Initial investigations of stimulated Brillouin scattering (SBS) have indicated that SBS suppression is achieved by NP doping, where we observed a low intrinsic Brillouin gain coefficient, of ~1× 10-11 m/W and the Brillouin bandwidth was increased by 2.5x compared to fused silica.

  4. Transparent Nd doped YAG ceramics

    NASA Astrophysics Data System (ADS)

    Stanciu, Catalina-Andreea; Dascalu, Traian; Stanciu, George; Pavel, Nicolaie

    2016-08-01

    The reasearch main objective is to obtain ceramic laser materials based on pure YAG (Y3Al5O12) and Nd doped YAG (Y3-xNdxAl5O12, with × = 0.5 and 1.0 at. %), by conventional solid state reaction method. Stoichiometric compositions of Y3Al5O12 (YAG), Y2.985Nd0.015Al5O12 (0.5 at.% Nd:YAG) and Y2.97Nd0.03Al5O12 (1.0 at.% Nd:YAG) were prepared using high purity Y2O3 (99.999%), Al2O3 (99.999%) and Nd2O3 (99.999%) nanopowders. Green bodies were sintered at 1750 °C for 16 h under vacuum (1.0 × 10-3 Pa) and then annealed at 1450 °C for 10 h in the air.

  5. Theoretical and experimental investigation of doping M in ZnSe (M = Cd, Mn, Ag, Cu) clusters: optical and bonding characteristics.

    PubMed

    Xu, Shuhong; Xu, Xiaojing; Wang, Chunlei; Zhao, Zengxia; Wang, Zhuyuan; Cui, Yiping

    2016-03-01

    The optical and bonding characteristics of doping ZnSe quantum dots (QDs) were investigated. Cd-, Mn-, Ag- and Cu-doped ZnSe were synthesized in aqueous solution. Theoretically, the intensity of the Cd-Se bond was similar to that of the Zn-Se bond, which illustrates that Cd can be doped into ZnSe materials at any ratio. We found that Mn-Se bonding was stronger than Zn-Se bonding. Ag-doped ZnSe nanoclusters show the same bonding and configuration as Cu-doped ZnSe. Moreover, Cd can be doped into ZnSe using both the substitution- and vacancy-doping method. For Mn-doped ZnSe clusters, small amounts of Mn impurity lead to stronger bonding with Se, but larger amounts of Mn impurity led to the formation of a Mn-Mn metal bond. The theoretical results show that it is difficult to form a vacancy-doping cluster for Mn-doped ZnSe materials. In experiments, the absorption and photoluminescence (PL) spectral wavelengths of Mn-doped ZnSe nanocrystals were the same as those of pure ZnSe nanocrystals, showing that the Mn impurity is not doped into ZnSe nanocrystals. Ag- and Cu-doped ZnSe nanocrystals have the same PL characteristics. The doping of an impurity is related to the solubility product, and not the bonding intensity.

  6. Homogeneity of doping with paramagnetic ions by NMR.

    PubMed

    Li, Wenyu; Celinski, Vinicius R; Weber, Johannes; Kunkel, Nathalie; Kohlmann, Holger; Schmedt auf der Günne, Jörn

    2016-04-14

    In NMR, paramagnetic dopants change the relaxation behavior and the chemical shift of the nuclei in their immediate environment. Based on the concept that the "immediate environment" in a diamagnetic host material can be described as a sphere with radius r0, we developed a function for the fraction of unperturbed nuclei (the fraction of nuclei outside the sphere) which gives a link between the effective radius and the doping concentration. In the case of a homogeneous doping scenario a characteristic dependence is observed in both theory and experiment. We validated the model on a sample series where paramagnetic Eu(II) ions are doped into crystalline SrH2. The fraction of unperturbed nuclei was determined from the (1)H NMR signal and follows the predicted curve for a homogeneous doping scenario where the radius r0 is 17 Å. PMID:27003194

  7. Strain engineering of magnetic state in vacancy-doped phosphorene

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Zhang, Chunxiao; Li, Jin; Guo, Zhixin; Xiao, Huaping; Zhong, Jianxin

    2016-09-01

    Inducing and manipulating the magnetism in two-dimensional materials play an important role for the development of the next-generation spintronics. In this letter, the effects of the biaxial strain on magnetic properties of vacancy-doped phosphorene are investigated using first-principles calculation. We find although only SV956 doping induces magnetism for unstrained phosphorene, the biaxial strain induces nonzero magnetic moment for SV5566 and DVa doped phosphorene. The biaxial strain also modulates the magnetic state for SV956, SV5566 and DVa doped phosphorene. The local magnetic moment derives from the spin polarization of the dangling bonds near the vacancy. The biaxial strain influences the local bonding configuration near the vacancy which determines the presence of dangling bonds, and then modulates the magnetic state. Our findings promise the synergistic effect of strain engineering and vacancy decoration is an effective method for the operation of phosphorene-based spintronic devices.

  8. Dope, Fiends, and Myths.

    ERIC Educational Resources Information Center

    Reasons, Charles E.

    Since the social reality of the drug problem has largely emanated from the diffuse conceptions of the drug user, an analysis of the history of the "dope fiend" mythology is presented in this paper in an attempt to assess the manner in which certain publics are informed about the problem. A content analysis of drug-related imagery was made from…

  9. Doped zinc oxide microspheres

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  10. Doped zinc oxide microspheres

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  11. Coating of calcia-doped ceria with amorphous silica shell by seeded polymerization technique

    SciTech Connect

    El-Toni, Ahmed Mohamed . E-mail: el-toni@mail.tagen.tohoku.ac.jp; Yin, Shu; Yabe, Shinryo; Sato, Tsugio

    2005-07-12

    Calcia-doped ceria is of potential interest as an ultraviolet (UV) radiation blocking material in personal care products. However, its high catalytic ability for oxidation of organic materials makes it difficult to use as a sunscreen material. Therefore, calcia-doped ceria was coated with amorphous silica by means of seeded polymerization technique in order to depress its oxidation catalytic ability. The catalytic ability as well as UV-shielding ability was investigated for coated particles.

  12. Alternate deposition and hydrogen doping technique for ZnO thin films

    NASA Astrophysics Data System (ADS)

    Myong, Seung Yeop; Lim, Koeng Su

    2006-08-01

    We propose an alternate deposition and hydrogen doping (ADHD) technique for polycrystalline hydrogen-doped ZnO thin films, which is a sublayer-by-sublayer deposition based on metalorganic chemical vapor deposition and mercury-sensitized photodecomposition of hydrogen doping gas. Compared to conventional post-deposition hydrogen doping, the ADHD process provides superior electrical conductivity, stability, and surface roughness. Photoluminescence spectra measured at 10 K reveal that the ADHD technique improves ultraviolet and violet emissions by suppressing the green and yellow emissions. Therefore, the ADHD technique is shown to be very promising aid to the manufacture of improved transparent conducting electrodes and light emitting materials.

  13. Synthesis and catalytic activity of heteroatom doped metal-free single-wall carbon nanohorns.

    PubMed

    Wu, Xiaohui; Cui, Longbin; Tang, Pei; Hu, Ziqi; Ma, Ding; Shi, Zujin

    2016-04-01

    Boron-, phosphorus-, nitrogen-doped and co-doped single-wall carbon nanohorns were produced using an arc-vaporization method. These as-prepared doped materials consist of uniform isolated nanohorns and exhibit greatly enhanced catalytic capabilities in the reduction reaction of nitrobenzene and a volcano-shape trend between their activities with a B dopant content is found. Moreover, the B-C3 and P-C3 species in doped nanohorns might act as the acidic and basic sites to promote this reaction. PMID:27006980

  14. Characterisation of active dopants in boron-doped self-assembled silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Puthen Veettil, Binesh; Zhang, Tian; Chin, Robert Lee; Jia, Xuguang; Nomoto, Keita; Yang, Terry Chien-Jen; Lin, Ziyun; Wu, Lingfeng; Rexiati, Reyifate; Gutsch, Sebastian; Conibeer, Gavin; Perez-Würfl, Ivan

    2016-10-01

    Doping of silicon nanocrystals has become an important topic due to its potential to enable the fabrication of environmentally friendly and cost-effective optoelectronic and photovoltaic devices. However, doping of silicon nanocrystals has been proven difficult and most of the structural and electronic properties are still not well understood. In this work, the intrinsic and boron-doped self-assembled silicon nanocrystals were prepared and mainly characterised by the transient current method to study the behaviour of charge carriers in these materials. Our experiments quantified the amount of electrically active boron dopants that contributed to charge transport. From this, the boron doping efficiency in the nanocrystal superlattice was estimated.

  15. NH{sub 3} sensor based on CSA doped PANi-SnO{sub 2} nanohybrid

    SciTech Connect

    Khuspe, G. D.; Navale, S. T.; Chougule, M. A.; Mulik, R. N.; Godse, P. R.; Patil, V. B.; Sen, Shashwati

    2014-04-24

    The PANi-SnO{sub 2} hybrid nanocomposite based thin films doped with 10–50 wt % CSA were deposited on the glass substrates using the spin coating technique. The sensor response in relation to the CSA doping concentration and the gas concentration has been systematically studied. A significant sensitivity (91%) towards 100 ppm NH{sub 3} operating at room temperature is observed for the 30 wt % CSA doped PANi-SnO2 nanohybrid. The sensing mechanism of CSA doped PANi-SnO{sub 2} materials to NH{sub 3} was presumed to be the effect of p–n heterojunctions.

  16. Electrical property studies on chemically processed polypyrolle/aluminum doped ZnO based hybrid heterostructures

    NASA Astrophysics Data System (ADS)

    Mohan Kumar, G.; Ilanchezhiyan, P.; Madhan Kumar, A.; Yuldashev, Sh. U.; Kang, T. W.

    2016-04-01

    A hybrid structure based on p-type polypyrolle (PPy) and n-type aluminum (Al) doped ZnO nanorods was successfully constructed. The effect of Al doping on material properties of wurtzite structured ZnO were studied using several analytical techniques. To establish the desired hybrid structure, pyrrole monomers were polymerized on hydrothermally grown Al doped ZnO nanorods by chemical polymerization. The current-voltage characteristics on the fabricated PPy/Al doped ZnO heterostructures were found to exhibit excellent rectifying characteristics under dark and illumination conditions. The obtained results augment the prescribed architecture to be highly suitable for high-sensitivity optoelectronic applications.

  17. The mechanism and process of spontaneous boron doping in graphene in the theoretical perspective

    NASA Astrophysics Data System (ADS)

    Deng, Xiaohui; Zeng, Jing; Si, Mingsu; Lu, Wei

    2016-10-01

    A theoretical model is presented that reveals the mechanism of spontaneous boron doping of graphene and is consistent with the microwave plasma experiment choosing trimethylboron as the doping source (Tang et al. (2012) [19]). The spontaneous boron doping originates from the synergistic effect of B and other groups (C, H, CH, CH2 or CH3) decomposing from trimethylboron. This work successfully explains the above experimental phenomenon and proposes a novel and feasible method aiming at B doping of graphene. The mechanism presented here may be also suitable for other two-dimensional carbon-based materials.

  18. Synthesis and Characterization of Rutile TiO2Nanopowders Doped with Iron Ions

    PubMed Central

    2009-01-01

    Titanium dioxide nanopowders doped with different amounts of Fe ions were prepared by coprecipitation method. Obtained materials were characterized by structural (XRD), morphological (TEM and SEM), optical (UV/vis reflection and photoluminescence, and Raman), and analytical techniques (XPS and ICP-OES). XRD analysis revealed rutile crystalline phase for doped and undoped titanium dioxide obtained in the same manner. Diameter of the particles was 5–7 nm. The presence of iron ions was confirmed by XPS and ICP-OES. Doping process moved absorption threshold of TiO2into visible spectrum range. Photocatalytic activity was also checked. Doped nanopowders showed normal and up-converted photoluminescence. PMID:20596442

  19. Photochromism of spirooxazine-doped polymers studied by monitoring dynamics of holographic gratings

    NASA Astrophysics Data System (ADS)

    Xie, Xin; Zheng, Meiling; Fu, Shencheng; Shi, Feng; Wang, Xiuli; Zhan, Naiyan

    2015-03-01

    As an organic photochromic material, spirooxazine attracted widespread attention because of its high fatigue resistance and thermal stability. In this paper, the photochromism of spirooxazine was studied by monitoring the dynamics of holographic gratings in spirooxazine-doped polymer films. A theoretical description for the transformation of spirooxazine and merocyanine molecules was carried out, which agrees well with the experimental results. The photochromism of spirooxazine-doped different matrixes were studied, the photochromic rate and fatigue resistance of spirooxazine-doped SiO2 films were found to be better than spirooxazine-doped PMMA films.

  20. Doping-dependent charge order correlations in electron-doped cuprates.

    PubMed

    da Silva Neto, Eduardo H; Yu, Biqiong; Minola, Matteo; Sutarto, Ronny; Schierle, Enrico; Boschini, Fabio; Zonno, Marta; Bluschke, Martin; Higgins, Joshua; Li, Yangmu; Yu, Guichuan; Weschke, Eugen; He, Feizhou; Le Tacon, Mathieu; Greene, Richard L; Greven, Martin; Sawatzky, George A; Keimer, Bernhard; Damascelli, Andrea

    2016-08-01

    Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2-x Ce x CuO4 and Nd2-x Ce x CuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2-x Ce x CuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates. PMID:27536726