Science.gov

Sample records for doped optical recording

  1. Ultrafast dynamics of Al-doped zinc oxide under optical excitation (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kinsey, Nathaniel; DeVault, Clayton T.; Kim, Jongbum; Ferrera, Marcello; Kildishev, Alexander V.; Shalaev, Vladimir M.; Boltasseva, Alexandra

    2015-09-01

    There is a continual need to explore new and promising dynamic materials to power next-generation switchable devices. In recent years, transparent conducting oxides have been shown to be vital materials for such systems, allowing for both optical and electrical tunability. Using a pump-probe technique, we investigate the optical tunability of CMOS-compatible, highly aluminum doped zinc oxide (AZO) thin films. The sample was pumped at 325 nm and probed with a weak beam at 1.3 μm to determine the timescale and magnitude of the changes by altering the temporal delay between the pulses with a delay line. For an incident fluence of 3.9 mJ/cm2 a change of 40% in reflection and 30% (max 6.3dB/μm modulation depth) in transmission is observed which is fully recovered within 1ps. Using a computational model, the experimental results were fitted for the given fluence allowing the recombination time and induced carrier density to be extracted. For a fluence of 3.9 mJ/cm2 the average excess carrier density within the material is 0.7×10^20cm-3 and the recombination time is 88fs. The ultrafast temporal response is the result of Auger recombination due to the extremely high carrier concentration present in our films, ~10^21 cm-3. By measuring and fitting the results at several incident fluence levels, the recombination time versus carrier density was determined and fitted with an Auger model resulting in an Auger coefficient of C = 1.03×10^20cm6/sec. Consequently, AZO is shown to be a unique, promising, and CMOS-compatible material for high performance dynamic devices in the near future.

  2. Optical sedimentation recorder

    DOEpatents

    Bishop, James K.B.

    2014-05-06

    A robotic optical sedimentation recorder is described for the recordation of carbon flux in the oceans wherein both POC and PIC particles are captured at the open end of a submersible sampling platform, the captured particles allowed to drift down onto a collection plate where they can be imaged over time. The particles are imaged using three separate light sources, activated in sequence, one source being a back light, a second source being a side light to provide dark field illumination, and a third source comprising a cross polarized light source to illuminate birefringent particles. The recorder in one embodiment is attached to a buoyancy unit which is capable upon command for bringing the sedimentation recorder to a programmed depth below the ocean surface during recordation mode, and on command returning the unit to the ocean surface for transmission of recorded data and receipt of new instructions. The combined unit is provided with its own power source and is designed to operate autonomously in the ocean for extended periods of time.

  3. Reversible optical doping of graphene

    PubMed Central

    Tiberj, A.; Rubio-Roy, M.; Paillet, M.; Huntzinger, J. -R.; Landois, P.; Mikolasek, M.; Contreras, S.; Sauvajol, J. -L.; Dujardin, E.; Zahab, A. -A.

    2013-01-01

    The ultimate surface exposure provided by graphene monolayer makes it the ideal sensor platform but also exposes its intrinsic properties to any environmental perturbations. In this work, we demonstrate that the charge carrier density of graphene exfoliated on a SiO2/Si substrate can be finely and reversibly tuned between hole and electron doping with visible photons. This photo-induced doping happens under moderate laser power conditions but is significantly affected by the substrate cleaning method. In particular, it requires hydrophilic substrates and vanishes for suspended graphene. These findings suggest that optically gated graphene devices operating with a sub-second time scale can be envisioned and that Raman spectroscopy is not always as non-invasive as generally assumed. PMID:23912707

  4. Erbium Doped Fiber Optic Gravimeter

    NASA Astrophysics Data System (ADS)

    Pérez-Sánchez, G. G.; Pérez-Torres, J. R.; Flores-Bravo, J. A.; Álvarez-Chávez, J. A.; Martínez-Piñón, F.

    2017-01-01

    Gravimeters are devices that can be used in a wide range of applications, such as mining, seismology, geodesy, archeology, geophysics and many others. These devices have great sensibility, which makes them susceptible to external vibrations like electromagnetic waves. There are several technologies regarding gravimeters that are of use in industrial metrology. Optical fiber is immune to electromagnetic interference, and together with long period gratings can form high sensibility sensors of small size, offering advantages over other systems with different technologies. This paper shows the development of an optical fiber gravimeter doped with Erbium that was characterized optically for loads going from 1 to 10 kg in a bandwidth between 1590nm to 1960nm, displaying a weight linear response against power. Later on this paper, the experimental results show that the previous described behavior can be modeled as characteristic function of the sensor.

  5. Optical properties of cerium doped oxyfluoroborate glass.

    PubMed

    Bahadur, A; Dwivedi, Y; Rai, S B

    2013-06-01

    Cerium doped oxyfluoroborate glasses have been prepared and its spectroscopic properties have been discussed. It is found that the absorption edge shifts towards the lower energy side for the higher concentration of cerium dopant. Optical band gap for these glasses have been calculated and it is found that the number of non-bridging oxygen increases with cerium content. The emission spectra of these glasses have been recorded using UV laser radiations (266 and 355 nm) and it is observed that these glasses show bright blue emission. On the basis of excitation and emission spectra we have reported the existence of at least two different emission centers of Ce(3+)ions.

  6. Optical Recording Media Primer

    NASA Astrophysics Data System (ADS)

    Kenny, Tom

    1987-01-01

    This presentation is intended to provide the listener with a general overview of the optical media market. It deals with the basic questions and concerns expressed by those who are about to become involved in optical storage. Areas touched upon include the various types of optical media available, their storage capacities, how they're made, how they are used, life expectancy of media, states of various standards efforts, current and projected pricing and availability, market trends, and growth projecting for the next five years.

  7. Compact all-fiber optical Faraday components using 65-wt%-terbium-doped fiber with a record Verdet constant of -32 rad/(Tm).

    PubMed

    Sun, L; Jiang, S; Marciante, J R

    2010-06-07

    A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4-cm-long, 65-wt%-terbium-doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be -32 rad/(Tm), which is 27 x larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystal used in bulk optics-based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion spliced all-fiber isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 +/- 4 degrees .

  8. Optical recording in hydrogenated semiconductors

    NASA Astrophysics Data System (ADS)

    Bosch, M. A.

    1982-01-01

    Optical information recording and storage is investigated in hydrogenated amorphous semiconductor films. The recording mechanisms are based on the evolution of hydrogen within the active layer. Three different processes are observed: (1) bulge (or bubble) formation, (2) spongelike microswelling, and (3) ablation without melting.

  9. Magneto-Optical Recording Materials

    NASA Astrophysics Data System (ADS)

    Gambino, Richard J.; Suzuki, Takao

    2003-05-01

    "As digital data storage technology undergoes enormous change, electrical engineers, physicists, and materials scientists need to keep pace with the materials requirements for recording media. Expert contributors -- together with world-class authorities Richard J. Gambino and Takao Suzuki -- bring you a practical, comprehensive guide to materials design and selection for magneto-optical storage media. This authoritative book explores multilayered thin films, exchanged coupled layers, materials used in current products, and materials of potential interest not yet available in practical applications. A detailed analysis concerning the physics of magneto-optical recording will help you make informed decisions about materials properties. You will also find an extensive discussion of systems and engineering design features for magneto-optical storage devices. This discussion will help you to understand how materials properties impact system performance. You will gain additional insight into this fast-developing field through in-depth coverage of these featured topics: Rare earth-transition metal amorphous alloys, multilayers, garnets, intermetallic compounds, and ferrites Basic principles of domain dynamics and recording physics Latest developments in exchange coupled layers, direct overwrite, and magnetic superresolution Minidisc, future high-density systems, and DVD format. MAGNETO-OPTICAL RECORDING MATERIALS is essential reading for anyone who needs to keep up-to-date with the latest advances in digital data storage technology."

  10. Optical absorption spectra of palladium doped gold cluster cations

    SciTech Connect

    Kaydashev, Vladimir E.; Janssens, Ewald Lievens, Peter

    2015-01-21

    Photoabsorption spectra of gas phase Au{sub n}{sup +} and Au{sub n−1}Pd{sup +} (13 ≤ n ≤ 20) clusters were measured using mass spectrometric recording of wavelength dependent Xe messenger atom photodetachment in the 1.9–3.4 eV photon energy range. Pure cationic gold clusters consisting of 15, 17, and 20 atoms have a higher integrated optical absorption cross section than the neighboring sizes. It is shown that the total optical absorption cross section increases with size and that palladium doping strongly reduces this cross section for all investigated sizes and in particular for n = 14–17 and 20. The largest reduction of optical absorption upon Pd doping is observed for n = 15.

  11. Erbium-doped aluminophosphosilicate optical fibres

    SciTech Connect

    Likhachev, M E; Bubnov, M M; Zotov, K V; Medvedkov, O I; Lipatov, D S; Yashkov, M V; Gur'yanov, Aleksei N

    2010-09-10

    We have studied the active properties of erbium-doped aluminophosphosilicate (APS) core fibres in wide ranges of erbia, alumina and phosphorus pentoxide concentrations. The absorption and luminescence spectra of the P{sub 2}O{sub 5}- or Al{sub 2}O{sub 3}-enriched erbium-doped APS fibres are shown to be similar to those of the erbium-doped fibres singly doped with phosphorus pentoxide or alumina, respectively. The formation of AlPO{sub 4} in APS fibres leads not only to a reduction in the refractive index of the glass but also to a marked increase in Er{sub 2}O{sub 3} solubility in silica. (optical fibres)

  12. Erbium-doped-fiber optical limiting amplifiers

    NASA Astrophysics Data System (ADS)

    Graydon, Oliver C.; Nickolaos Zervas, Michael; Laming, Richard I.

    1995-05-01

    A novel configuration of an erbium-doped-fiber optical output-limiting amplifier (OLA) is presented which is realized by simply introducing a differential lump-loss between the signal and the pump power at a particular point along the fiber. The OLA exhibits an input-power dynamic range in excess of 40 dB and the capacity to control optically the level of the constant-output signal.

  13. Rewriteable optical disk recorder development

    NASA Technical Reports Server (NTRS)

    Shull, Thomas A.; Rinsland, Pamela L.

    1991-01-01

    A NASA program to develop a high performance (high rate, high capability) rewriteable optical disk recorder for spaceflight applications is presented. An expandable, adaptable system concept is proposed based on disk Drive modules and a modular Controller. Drive performance goals are 10 gigabyte capacity are up to 1.8 gigabits per second rate with concurrent I/O, synchronous data transfer, and 2 to 5 years operating life in orbit. Technology developments, design concepts, current status, and future plans are presented.

  14. Novel digital optical tape recorder

    NASA Astrophysics Data System (ADS)

    Oakley, William S.

    1996-01-01

    A novel very high performance digital optical tape recorder is described. Linear tape motion at 4.2 meters per second and simultaneous writing of about 80 parallel bit tracks with a data density of three bits per micron per track enables a data rate of 1,000 Megabits per second, sufficient for a data rate of 100 megabytes per second with error correction. One micron track to track spacing gives a data capacity of one Terabyte (1,000 GB) in a single '3480' style tape cartridge shell. A single beam from a frequency doubled, laser diode pumped, solid state (2X- LDP-SS) laser is split into a multiplicity of like beams, each of which is then independently modulated at 12.5 MHz for recording.

  15. Spaceflight optical disk recorder development

    NASA Technical Reports Server (NTRS)

    Jurczyk, Stephen G.; Hines, Glenn D.; Shull, Thomas A.

    1992-01-01

    Mass memory systems based on rewriteable optical disk media are expected to play an important role in meeting the data system requirements for future NASA spaceflight missions. NASA has established a program to develop a high performance (high rate, large capacity) optical disk recorder focused on use aboard unmanned Earth orbiting platforms. An expandable, adaptable system concept is proposed based on disk drive modules and a modular controller. Drive performance goals are 10 gigabyte capacity, 300 megabit/s transfer rate, 10 exp -12 corrected bit error rate, and 150 millisec access time. This performance is achieved by writing eight data tracks in parallel on both sides of a 14 in. optical disk using two independent heads. System goals are 160 gigabyte capacity, 1.2 gigabits/s data rate with concurrent I/O, 250 millisec access time, and two to five year operating life on orbit. The system can be configured to meet various applications. This versatility is provided by the controller. The controller provides command processing, multiple drive synchronization, data buffering, basic file management, error processing, and status reporting. Technology developments, design concepts, current status including a computer model of the system and a Controller breadboard, and future plans for the Drive and Controller are presented.

  16. Carbon nanotube-doped polymer optical fiber.

    PubMed

    Uchida, Sho; Martinez, Amos; Song, Yong-Won; Ishigure, Takaaki; Yamashita, Shinji

    2009-10-15

    We present a method to fabricate graded-index multimode polymer optical fibers doped with carbon nanotubes (CNTs). Such fiber structures provide the means to fully utilize the exceptional optical properties of the CNTs. The core region of the fiber is composed of CNTs and polymethyl methacrylate (PMMA) with the addition of diphenyl sulfide (DPS), which acts as the dispersion stabilizer of CNTs in PMMA as well as the dopant to increase the refractive index of the core. Utilizing 2.5 cm of the fiber as a saturable absorber, passively mode-locked lasing with duration of 3.0 ps and repetition rate of 30.3 MHz was demonstrated.

  17. Compact All-Fiber Optical Faraday Components Using 65-wt%-Terbium-Doped Fiber with a Record Verdet Constant of -32 rad/(Tm)

    SciTech Connect

    Sun, L.; Jiang, S.; Maricante, J.R.

    2010-06-04

    A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4-cm-long, 65-wt%-terbium–doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be –32 rad/(Tm), which is 27 × larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystal used in bulk optics–based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion spliced all-fiber isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 ± 4°.

  18. Na-doped optical Germanium bulk crystals

    NASA Astrophysics Data System (ADS)

    Pekar, G. S.; Singaevsky, A. F.

    2012-09-01

    In an effort to develop a material for infrared (IR) optics with improved parameters, bulk crystals of optical germanium doped with Na have been first grown and studied. Single-crystalline and coarse-crystalline Ge:Na boules of different shapes and dimensions, up to 10 kg by weight, have been grown. Sodium was incorporated into the Ge crystal during the crystal growing from the melt. Despite the fact that Na contamination in the source material was not strictly controlled, the density of Na in the grown crystals determined by the neutron activation analysis as well as by the glow discharge mass spectrometry did not exceed 1015 cm-3. Just this value may be supposed to be close to the solubility limit of Na incorporated in Ge in the course of bulk crystal growth. A first demonstration of donor behavior of Na in bulk Ge crystals is made by means of a thermoelectric type of testing. An interstitial location of Na impurity has been verified by experiments on donor drift in the dc electric field. The crystals are grown with free electron density in the range from 5ṡ1013 to 4ṡ1014 cm-3 which is optimal for using Ge crystals as an optical material for fabricating passive elements of the IR technique. A comparison between the properties of Ge:Na crystals and Ge crystals doped with Sb, a conventional impurity in optical germanium, grown under the same technological conditions and from the same intrinsic Ge as a source material, revealed a number of advantages of Ge:Na crystals; among them, the higher transparency in the IR region, smaller radiation scattering and higher regular optical transmission, lower dislocation density, more uniform distribution of electrical and optical characteristics over the crystal volume, the identity of optical parameters in the single-crystalline, and coarse-crystalline boules. No degradation of optical elements fabricated from Ge:Na crystals was detected in the course of their commercial application, starting from 1998.

  19. Spaceflight optical disk recorder development

    NASA Technical Reports Server (NTRS)

    Shull, Thomas A.; Rinsland, Pamela L.

    1990-01-01

    A NASA program to develop a high performance (high rate, high capacity) rewriteable optical disk recorder for spaceflight applications is presented. An expandable, adaptable system concept is proposed based on disk drive modules and a modular controller. Drive performance goals are 10 Gbyte capacity, 300 Mb transfer rate, 10 to the -12th corrected bit-error rate, and 150 msec access time. The preliminary design for an expandable controller is presented. System goals are up to 160 Gbyte capacity at up to 1.8 Gb/sec rate with concurrent I/O, asynchronous data transfer, and 2-5-year operating life in orbit. Projected system environment and operational scenarios based on Polar Orbiting Platform applications are discussed.

  20. Nonlinear optical coupler using a doped optical waveguide

    DOEpatents

    Pantell, Richard H.; Sadowski, Robert W.; Digonnet, Michel J. F.; Shaw, Herbert J.

    1994-01-01

    An optical mode coupling apparatus includes an Erbium-doped optical waveguide in which an optical signal at a signal wavelength propagates in a first spatial propagation mode and a second spatial propagation mode of the waveguide. The optical signal propagating in the waveguide has a beat length. The coupling apparatus includes a pump source of perturbational light signal at a perturbational wavelength that propagates in the waveguide in the first spatial propagation mode. The perturbational signal has a sufficient intensity distribution in the waveguide that it causes a perturbation of the effective refractive index of the first spatial propagation mode of the waveguide in accordance with the optical Kerr effect. The perturbation of the effective refractive index of the first spatial propagation mode of the optical waveguide causes a change in the differential phase delay in the optical signal propagating in the first and second spatial propagation modes. The change in the differential phase delay is detected as a change in the intensity distribution between two lobes of the optical intensity distribution pattern of an output signal. The perturbational light signal can be selectively enabled and disabled to selectively change the intensity distribution in the two lobes of the optical intensity distribution pattern.

  1. Thermo optical study of nematic liquid crystal doped with ferrofluid

    NASA Astrophysics Data System (ADS)

    Jessy P., J.; Shalini, M.; Patel, Nainesh; Sarawade, Pradip; Radha, S.

    2017-05-01

    Liquid crystal composite materials with tunable physical properties are of great scientific interest because of optoelectronic and biomedical applications. We report our study of modified optical properties of 5CB Nematic Liquid Crystal (NLC) by doping with ferrofluid at low concentrations of 0.1% by the investigation of thermo optic behaviour. The observed sensitivity of optical response in ferrofluid doped NLC is expected to pave way for several thermo-optic applications.

  2. Linear and nonlinear optical properties of Gd3+ doped zinc borotellurite glasses for all-optical switching applications

    NASA Astrophysics Data System (ADS)

    Eevon, C.; Halimah, M. K.; Zakaria, A.; Azurahanim, C. A. C.; Azlan, M. N.; Faznny, M. F.

    In this work, linear and nonlinear optical parameters of zinc borotellurite glasses doped with Gd3+ have been studied for all-optical switching applications. A series of gadolinium zinc borotellurite glasses were synthesized by using conventional melt quenching technique. Optical absorption spectra were recorded by UV-vis spectroscopy. From the optical absorption spectra, the cut-off wavelength, optical band gap, Urbach energy and refractive index have been determined and are related to the structural changes in the glass systems. The nonlinear optical properties of Gd3+ doped glasses are investigated by using Z-scan technique. The values of nonlinear refractive index and absorption coefficient with closed and opened apertures of the Z-scan, respectively, were determined for proper utilization in nonlinear optical devices.

  3. Optical limiting behavior of disperse red 1 dye doped polymer

    NASA Astrophysics Data System (ADS)

    Zidan, M. D.; Ajji, Z.

    2011-07-01

    Measurements of optical limiting response in disperse red 1 dye doped into ethylene propylene diene polymethylene polymer (EPDM) are reported using 532 nm wavelength, 10 ns pulses from a frequency-doubled Nd-YAG laser. The optical limiting behavior of the dye doped polymer was studied by transmission measurement technique at various concentrations. The results reveal that the optical limiting efficiency is dependent on concentration.

  4. Digital optical recorder-reproducer system

    NASA Technical Reports Server (NTRS)

    Reddersen, Brad R. (Inventor); Zech, Richard G. (Inventor); Roberts, Howard N. (Inventor)

    1980-01-01

    A mass archival optical recording and reproduction system includes a recording light source such as a laser beam focussed and directed upon an acousto-optic linear modulator array (or page composer) that receives parallel blocks of data converted from a serial stream of digital data to be stored. The page composer imparts to the laser beam modulation representative of a plurality of parallel channels of data and through focussing optics downstream of the page composer parallel arrays of optical spots are recorded upon a suitable recording medium such as a photographic film floppy disc. The recording medium may be substantially frictionlessly and stably positioned for recording at a record/read station by an air-bearing platen arrangement which is preferably thermodynamically non-throttling so that the recording film may be positioned in the path of the information-carrying light beam in a static or dynamic mode. During readout, the page composer is bypassed and a readout light beam is focussed directly upon the recording medium containing an array of previously recorded digital spots, a sync bit, data positioning bits, and a tracking band. The readout beam which has been directed through the recording medium is then imaged upon a photodetector array, the output of which may be coupled to suitable electronic processing circuitry, such as a digital multiplexer, whereby the parallel spot array is converted back into the original serial data stream.

  5. Measurements of the magneto-optical properties of PbS-doped silica optical fiber

    NASA Astrophysics Data System (ADS)

    Dong, Weilong; Huang, Yi; Chen, Huangchao; Dong, Yanhua; Wen, Jianxiang; Wang, Tingyun

    2017-06-01

    The Verdet constants of PbS-doped silica optical fiber and single mode fiber (SMF-28e) have been investigated based on a magneto-optical effect measurement system at wavelengths between 660 and 1550 nm. The Verdet constant of PbS-doped fiber is 3.17 rad/Tm, 31.5% larger than that of SMF at 660 nm. The PbS-doped silica optical fiber can become a promising material for Faraday rotator.

  6. Optical limiting behavior of Sudan III dye doped polymer

    NASA Astrophysics Data System (ADS)

    Zidan, M. D.; Allaf, A. W.; Ajji, Z.; Allahham, A.

    2010-04-01

    The optical limiting performance of Sudan III dye doped into ethylene propylene diene polymethylene polymer (EPDM) is investigated using 532 nm, 10 ns pulses from a frequency-doubled Nd-YAG laser. The optical limiting behavior is investigated by transmission measurement through the sample at different concentrations. Our results show that the optical limiting efficiency is concentration dependent.

  7. Properties of infrared doped semiconductor Mie resonators (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lewi, Tomer; Iyer, Prasad P.; Butakov, Nikita A.; Schuller, Jon A.

    2015-09-01

    Dielectric optical antenna resonators have recently emerged as a viable alternative to plasmonic resonators for metamaterials and nanophotonic devices, due to their ability to support multipolar Mie resonances with low losses. In this work, we experimentally investigate the mid-infrared Mie resonances in Si and Ge subwavelength spherical particles. In particular, we leverage the electronic and optical properties of these semiconductors in the mid-infrared range to design and tune Mie resonators through free-carrier refraction. Si and Ge semiconductor spheres of varying sizes of 0.5-4 μm were fabricated using femtosecond laser ablation. Using single particle infrared spectroscopy, we first demonstrate size-dependent Si and Ge Mie resonances spanning the entire mid-infrared (2-16 μm) spectral range. Subsequently we show that the Mie resonances can be tuned by varying material properties rather than size or geometry. We experimentally demonstrate doping-dependent resonance frequency shifts that follow simple Drude models of free-carrier refraction. We show that Ge particles exhibit a stronger doping dependence than Si due to the smaller effective mass of the free carriers. Using the unique size and doping dispersion of the electric and magnetic dipole modes, we identify and demonstrate a size regime where these modes are spectrally overlapping. We also demonstrate the emergence of plasmonic resonances for high doping levels and long wavelengths. These findings demonstrate the potential for tuning infrared semiconductor Mie resonances by optically or electrically modulating charge carrier densities, thus providing an excellent platform for tunable electromagnetic metamaterials.

  8. Optical analysis of samarium doped sodium bismuth silicate glass

    NASA Astrophysics Data System (ADS)

    Thomas, V.; Sofin, R. G. S.; Allen, M.; Thomas, H.; Biju, P. R.; Jose, G.; Unnikrishnan, N. V.

    2017-01-01

    Samarium doped sodium bismuth silicate glass was synthesized using the melt quenching method. Detailed optical spectroscopic studies of the glassy material were carried out in the UV-Vis-NIR spectral range. Using the optical absorption spectra Judd-Ofelt (JO) parameters are derived. The calculated values of the JO parameters are utilized in evaluating the various radiative parameters such as electric dipole line strengths (Sed), radiative transition probabilities (Arad), radiative lifetimes (τrad), fluorescence branching ratios (β) and the integrated absorption cross- sections (σa) for stimulated emission from various excited states of Sm3 +‡ ion. The principal fluorescence transitions are identified by recording the fluorescence spectrum. Our analysis revealed that the novel glassy system has the optimum values for the key parameters viz. spectroscopic quality factor, optical gain, stimulated emission cross section and quantum efficiency, which are required for a high performance optical amplifier. Calculated chromaticity co-ordinates (0.61, 0.38) also confirm its application potential in display devices.

  9. Electrical and optical properties of gadolinium doped bismuth ferrite nanoparticles

    SciTech Connect

    Mukherjee, A. Banerjee, M. Basu, S.; Pal, M.

    2014-04-24

    Multiferroic bismuth ferrite (BFO) and gadolinium (Gd) doped bismuth ferrite had been synthesized by a sol-gel method. Particle size had been estimated by Transmission electron microscopy (TEM) and found to decrease with Gd doping. We studied the temperature and frequency dependence of impedance and electric modulus and calculated the grain and grain boundary resistance and capacitance of the investigated samples. We observed that electrical activation energy increases for all the doped samples. Optical band gap also increases for the doped samples which can be used in photocatalytic application of BFO.

  10. Electrical and optical properties of gadolinium doped bismuth ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Banerjee, M.; Basu, S.; Pal, M.

    2014-04-01

    Multiferroic bismuth ferrite (BFO) and gadolinium (Gd) doped bismuth ferrite had been synthesized by a sol-gel method. Particle size had been estimated by Transmission electron microscopy (TEM) and found to decrease with Gd doping. We studied the temperature and frequency dependence of impedance and electric modulus and calculated the grain and grain boundary resistance and capacitance of the investigated samples. We observed that electrical activation energy increases for all the doped samples. Optical band gap also increases for the doped samples which can be used in photocatalytic application of BFO.

  11. Polarization holographic recording in Disperse Red1 doped polyurethane polymer film

    NASA Astrophysics Data System (ADS)

    Aleksejeva, J.; Gerbreders, A.; Gertners, U.; Reinfelde, M.; Teteris, J.

    2011-06-01

    In this report holographic recording of polarisation and surface relief gratings in Disperse Red 1 (DR1) doped polyurethane polymer films was studied. In this material DR1 is chemically bounded to polyurethane polymer main chain. Polarization holographic recording was performed by two orthogonal circularly polarized 532 nm laser beams. Photoinduced birefringence is a precondition for polarization holograms recording, therefore a detailed study of a photoinduced birefringence and changes of optical properties was performed. The lasers with wavelengths of 375nm, 448nm, 532 nm and 632.8 nm were used as pumping beam for sample excitation. The photoinduced birefringence Δn was measured at 532 nm and 632.8 nm wavelengths. The photoinduced birefringence dependence on the pumping beam wavelength and intensity was investigated. Surface relief grating (SRG) formation was observed during polarization holographic recording process. A profile of SRG was studied by AFM. A relationship between SRG formation and photoinduced birefringence has been discussed.

  12. Optical method for the screening of doping substances

    NASA Astrophysics Data System (ADS)

    Lademann, J.; Shevtsova, J.; Patzelt, A.; Richter, H.; Gladkowa, N. D.; Gelikonov, V. M.; Gonchukov, S. A.; Sterry, W.; Blume-Peytavi, U.

    2008-12-01

    During the last years, an increased misuse of doping substances in sport has been observed. The action of doping substances characterized by the stimulation of blood flow and metabolic processes is also reflected in the hair structure. In the present study it was demonstrated that optical coherent tomography is well suited for the analysis of hair parameters influenced by doping. Analyzing 20 patients, systemically treated with steroids which also represent doping substances, it was found that in all cases a significant increase in the cross-section of the hairs could be detected. The results obtained in the study are not only important for the screening of doping substances but also for medical diagnostics and control of compliance of patients.

  13. Flat Ge-doped optical fibres for food irradiation dosimetry

    SciTech Connect

    Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull; Alawiah, A.; Bradley, D. A.

    2015-04-24

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.

  14. Flat Ge-doped optical fibres for food irradiation dosimetry

    NASA Astrophysics Data System (ADS)

    Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull; Alawiah, A.; Bradley, D. A.

    2015-04-01

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.

  15. Optical properties of Er3 +-doped oxyfluoride glasses

    NASA Astrophysics Data System (ADS)

    Feng, Li; Wu, Yinsu

    2016-02-01

    Er3 +-singly doped and Er3 +/Yb3 +-codoped 50SiO2-(50 - x)BaF2-xZnF2(SBZx) oxyfluoride glasses are prepared and the optical properties of Er3 +-singly doped glasses are investigated by using the Judd-Ofelt theory. Bright green and red upconversion luminescence of Er3 +/Yb3 +-codoped glasses is obtained under 980 nm excitation. Furthermore, factors affecting this phenomenon such as glass composition, doping concentration of Er3 + and Yb3 + ions, and pump power are discussed in details.

  16. Two-wave mixing by means of dynamic Bragg gratings recorded by saturation of absorption in erbium-doped fibers

    NASA Astrophysics Data System (ADS)

    Stepanov, S.; Hernández, E.; Plata, M.

    2004-06-01

    We present experimental results of two-wave mixing in single-mode Er-doped optical fibers for which dynamic Bragg reflectance gratings are formed as a result of saturation of fiber-optic absorption (i.e., by means of the effect of spatial hole burning). The gratings are probed by the same recording waves at lambda almost equal to 1549 nm and are detected as periodic changes of the intensity of light reflected from a Sagnac interferometer (with a piece of the doped fiber included) observed when periodic phase modulation is induced in one of the waves. Both rectangular and sinusoidal modulation were used, which permitted evaluation of the grating recording time (Tau_g almost equal to 3 ms for OFS-Fitel EDF-HG980 fiber) and the grating amplitude, which proved to be approximately 6-7 times lower than expected from measurements of saturation of fiber-optic absorption by one wave only.

  17. Two-wave mixing by means of dynamic Bragg gratings recorded by saturation of absorption in erbium-doped fibers.

    PubMed

    Stepanov, S; Hernández, E; Plata, M

    2004-06-15

    We present experimental results of two-wave mixing in single-mode Er-doped optical fibers for which dynamic Bragg reflectance gratings are formed as a result of saturation of fiber-optic absorption (i.e., by means of the effect of spatial hole burning). The gratings are probed by the same recording waves at lambda approximately = 1549 nm and are detected as periodic changes of the intensity of light reflected from a Sagnac interferometer (with a piece of the doped fiber included) observed when periodic phase modulation is induced in one of the waves. Both rectangular and sinusoidal modulation were used, which permitted evaluation of the grating recording time (tau(g) approximately = 3 ms for OFS-Fitel EDF-HG980 fiber) and the grating amplitude, which proved to be approximately 6-7 times lower than expected from measurements of saturation of fiber-optic absorption by one wave only.

  18. Thermo-optic quality assessment of doped optical ceramics

    NASA Astrophysics Data System (ADS)

    Willis, Christina C. C.; Bradford, Joshua D.; Maddox, Emily; Shah, Lawrence; Richardson, Martin

    2013-03-01

    The use of optical quality ceramics for laser applications is expanding, and with this expansion there is an increasing need for diagnostics to assess the quality of these materials. Ceramic material with flaws and contaminants yields significantly less efficient performance as laser gain media and can generate excessive amounts of waste heat. This is a concern that is especially relevant in high power laser applications where thermally induced damage can be catastrophic. In order to assess a set of ceramic and crystalline samples we induce and measure thermal lensing in order to produce a relative ranking based on the extent of the induced thermal lens. In these experiments thermal lensing is induced in a set of nine 10% Yb:YAG ceramic and single-crystal samples using a high power 940 nm diode, and their thermal response is measured using a Shack-Hartmann wavefront sensor. The materials are also ranked by their transmission in the visible region. Discrepancies between the two ranking methods reveal that transmission in the visible region alone is not adequate for an assessment of the overall quality of ceramic samples. The thermal lensing diagnostic technique proves to be a reliable and quick over-all assessment method of doped ceramic materials without requiring any a priori knowledge of material properties.

  19. The extreme of optical recording (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chu, Cheng Hung; Tseng, Ming Lun; Wang, Hsiang-Chu; Wu, Hui Jun; Tsai, Wei-Yi; Chen, Mu-Ku; Chen, Yi-Hao; Chen, Ching-Fu; Tsai, Din Ping

    2016-09-01

    Conventional optical data storage such as digital versatile disc (DVD) and Blu-ray disc (BD), provide us inexpensive and compact media for satisfying information storage requirement for decades. As the knowledge and information increase rapidly, the requirement cannot be already satisfied by current data storage systems. As far as we know, the size of recording mark, the critical storage density indicator, depends on recording energy, writing strategies, opto-thermal threshold plane and thermal conductivity. Readout is limited by optical resolution limit, the wavelength of readout laser and numerical aperture (N.A.) of objective lens. In this talk, I will introduce several means to increase the optical storage density. A powerful tool, conductive-tip atomic force microscopy (C-AFM), with the advantages of high spatial resolution, high contrast of conductivity and non-destructive method to help us better understand the formation of recording marks is also presented. Finally, I will show our recent efforts on realizing the extreme of recording mark.

  20. Optical absorption and emission of nitrogen-doped silicon nanocrystals.

    PubMed

    Pi, Xiaodong; Chen, Xiaobo; Ma, Yeshi; Yang, Deren

    2011-11-01

    Silicon nanocrystals (Si NCs) may be both unintentionally and intentionally doped with nitrogen (N) during their synthesis and processing. Since the importance of Si NCs largely originates from their remarkable optical properties, it is critical to understand the effect of N doping on the optical behavior of Si NCs. On the basis of theoretical calculations, we show that the doping of Si NCs with N most likely leads to the formation of paired interstitial N at the NC surface, which causes both the optical absorption and emission of Si NCs to redshift. But these redshifts are smaller than those induced by doubly bonded O at the NC surface. It is found that high radiative recombination rates can be reliably obtained for Si NCs with paired interstitial N at the NC surface. The current results not only help to understand the optical behavior of Si NCs synthesized and processed in N-containing environments, but also inspire intentional N doping as an additional means to control the optical properties of Si NCs.

  1. NASA spaceborne optical disk recorder development

    NASA Technical Reports Server (NTRS)

    Shull, Thomas A.; Holloway, Reginald M.; Conway, Bruce A.

    1988-01-01

    Spaceflight application of a high performance (high rate, high capacity) erasable optical disk recorder is discussed. An expandable modular system concept is proposed consisting of multiple drive modules and a modular system controller. A drive contains two 14-inch magneto-optic disks and four electro-optic heads, each containing a nine-diode solid state laser array (eight data tracks, one pilot track). The performance goals of the drive module are 20 gigabyte capacity, 300 megabit per second transfer rate, 10x(Exp-10) corrected BER, and 100 millisecond access time. The system goals are 120 gigabyte capacity at up to 1.8 gigabits per second rate, concurrent 1/0, varying data rates, reconfigurable architecture, and 2 to 5 year operating life in orbit. The system environment and operational scenarios are presented.

  2. OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES

    SciTech Connect

    Grant, C D; Zhang, J Z

    2007-09-28

    This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk materials. Linear, including absorption and luminescence, and nonlinear optical as well as dynamic properties of semiconductor nanoparticles are discussed with focus on their dependence on particle size, shape, and surface characteristics. Both doped and undoped semiconductor nanomaterials are highlighted and contrasted to illustrate the use of doping to effectively alter and probe nanomaterial properties. Some emerging applications of optical nanomaterials are discussed towards the end of the chapter, including solar energy conversion, optical sensing of chemicals and biochemicals, solid state lighting, photocatalysis, and photoelectrochemistry.

  3. Multimode laser emission from dye doped polymer optical fiber.

    PubMed

    Sheeba, Mavila; Thomas, Kannampuzha J; Rajesh, Mandamparambil; Nampoori, Vadakkedathu P N; Vallabhan, Chakkalakkal P G; Radhakrishnan, Padmanabhan

    2007-11-20

    Multimode laser emission is observed in a polymer optical fiber doped with a mixture of Rhodamine 6G (Rh 6G) and Rhodamine B (Rh B) dyes. Tuning of laser emission is achieved by using the mixture of dyes due to the energy transfer occurring from donor molecule (Rh 6G) to acceptor molecule (Rh B). The dye doped poly(methyl methacrylate)-based polymer optical fiber is pumped axially at one end of the fiber using a 532 nm pulsed laser beam from a Nd:YAG laser and the fluorescence emission is collected from the other end. At low pump energy levels, fluorescence emission is observed. When the energy is increased beyond a threshold value, laser emission occurs with a multimode structure. The optical feedback for the gain medium is provided by the cylindrical surface of the optical fiber, which acts as a cavity. This fact is confirmed by the mode spacing dependence on the diameter of the fiber.

  4. Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Morrell, B.; Okada, G.; Vahedi, S.; Koughia, C.; Edgar, A.; Varoy, C.; Belev, G.; Wysokinski, T.; Chapman, D.; Sammynaiken, R.; Kasap, S. O.

    2014-02-01

    Previous work has demonstrated that fluorophosphate (FP) glasses doped with trivalent samarium (Sm3+) can be used as a dosimetric detector in microbeam radiation therapy (MRT) to measure high radiation doses and large dose variations with a resolution in the micrometer range. The present work addresses the use of intense optical radiation at 405 nm to erase the recorded dose information in Sm3+-doped FP glass plates and examines the underlying physics. We have evaluated both the conversion and optical erasure of Sm3+-doped FP glasses using synchrotron-generated high-dose x-rays at the Canadian Light Source. The Sm-ion valency conversion is accompanied by the appearance of x-ray induced optical absorbance due to the trapping of holes and electrons into phosphorus-oxygen hole (POHC) and electron (POEC) capture centers. Nearly complete Sm2+ to Sm3+ reconversion (erasure) may be achieved by intense optical illumination. Combined analysis of absorbance and electron spin resonance measurements indicates that the optical illumination causes partial disappearance of the POHC and the appearance of new POEC. The suggested model for the observed phenomena is based on the release of electrons during the Sm2+ to Sm3+ reconversion process, the capture of these electrons by POHC (and hence their disappearance), or by PO groups, with the appearance of new and/or additional POEC. Optical erasure may be used as a practical means to erase the recorded data and permits the reuse of these Sm-doped FP glasses in monitoring dose in MRT.

  5. Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy

    SciTech Connect

    Morrell, B.; Okada, G.; Vahedi, S.; Koughia, C. Kasap, S. O.; Edgar, A.; Varoy, C.; Belev, G.; Wysokinski, T.; Chapman, D.; Sammynaiken, R.

    2014-02-14

    Previous work has demonstrated that fluorophosphate (FP) glasses doped with trivalent samarium (Sm{sup 3+}) can be used as a dosimetric detector in microbeam radiation therapy (MRT) to measure high radiation doses and large dose variations with a resolution in the micrometer range. The present work addresses the use of intense optical radiation at 405 nm to erase the recorded dose information in Sm{sup 3+}-doped FP glass plates and examines the underlying physics. We have evaluated both the conversion and optical erasure of Sm{sup 3+}-doped FP glasses using synchrotron-generated high-dose x-rays at the Canadian Light Source. The Sm-ion valency conversion is accompanied by the appearance of x-ray induced optical absorbance due to the trapping of holes and electrons into phosphorus-oxygen hole (POHC) and electron (POEC) capture centers. Nearly complete Sm{sup 2+} to Sm{sup 3+} reconversion (erasure) may be achieved by intense optical illumination. Combined analysis of absorbance and electron spin resonance measurements indicates that the optical illumination causes partial disappearance of the POHC and the appearance of new POEC. The suggested model for the observed phenomena is based on the release of electrons during the Sm{sup 2+} to Sm{sup 3+} reconversion process, the capture of these electrons by POHC (and hence their disappearance), or by PO groups, with the appearance of new and/or additional POEC. Optical erasure may be used as a practical means to erase the recorded data and permits the reuse of these Sm-doped FP glasses in monitoring dose in MRT.

  6. Erbium Doped GaN Lasers by Optical Pumping

    DTIC Science & Technology

    2016-07-13

    P.O. Box 12211 Research Triangle Park, NC 27709-2211 Er doped GaN, gain medium, high energy laser, optical pump REPORT DOCUMENTATION PAGE 11. SPONSOR...Nanophotonics Center, Texas Tech University Lubbock, TX 79409-3102 jingyu.lin@ttu.edu; hx.jiang@ttu.edu I. Summary of Progress High energy and...emerging technologies. The optical gain medium is the heart of a high energy laser (HEL) system. Comparing with the presently dominant gain material

  7. Nonlinear photoluminescence of fullerene-doped optical glasses

    SciTech Connect

    Zeng, Heping; Sun, Zhenrong; Segawa, Yusaburo; Lin, Fucheng; Mao, Sen; Xu, Zhizhan

    2001-06-01

    Strong broadband white photoluminescence was observed in fullerene-doped phosphate and fluorophosphate optical glasses irradiated by an ultraviolet laser. Microphotoluminescence measurements demonstrated the existence of microislands in those amorphous glasses, where fullerene dopants provided high photosensitivity and optical nonlinearity. Nonlinear photoluminescence was observed under ultralow continuous-wave laser excitations. The photoluminescence peak wavelengths were demonstrated to depend nonlinearly on the laser excitation power. {copyright} 2001 American Institute of Physics.

  8. Studies on optical properties of pure and Mg2+ doped ZTS single crystal

    NASA Astrophysics Data System (ADS)

    Sumithra Devi, M.; Arthi, A. P.; Thamizharasan, K.

    2014-09-01

    Single crystal of semiorganic nonlinear optical material of pure and Mg2+ doped ZTS were grown by slow evaporation technique from its aqueous solution. The grown crystal was characterized by single crystal XRD to determine the cell parameters. The Mg2+ doped was characterized by SEM and EDX spectrum. The chemical composition of both the pure ZTS and doped Mg2+ crystals were determined by Fourier transform infrared (FTIR). The optical absorption spectrum recorded in the wavelength was ranged from 200 to 2500 nm and its energy gap (Eg) for both pure ZTS is 4.47 eV and doped Mg2+ is 4.42 eV. The mechanical strength of the grown crystal was found from Vicker's microhardness measurements. It showed that pure and doped ZTS crystals are soft in nature. The dielectric measurement was carried out to study the different polarization mechanism and conductivity of the crystal. Photoconductivity studies revealed that the positive photoconductivity of the both were considered as grown crystals.

  9. Optical Recorder of the Lunar Sounder Experiment

    NASA Image and Video Library

    1972-11-22

    S72-49482 (November 1972) --- The Optical Recorder of the Lunar Sounder Experiment (S-209) which will be mounted in the SIM bay of the Apollo 17 Service Module. The three functional parts of the Lunar Sounder are the optical recorder, the coherent synthetic aperture radar, and the antennas, a retractable dipole for HF and a yagi for VHF. The Lunar Sounder will probe three-quarters of a mile below the moon's surface from the orbiting Apollo 17 spacecraft. Electronic data recorded on film will be retrieved by the crew during trans-Earth EVA. Geologic information on the lunar interior obtained by the sounder will permit scientific investigation of underground rock layers, lava flow patterns, rille (canyon) structures, mascon properties, and any areas containing water. A prototype lunar sounder has been flight tested in aircraft over selected Earth sites to confirm the equipment design and develop scientific analysis techniques. The Lunar Sounder Experiment was developed by North American Rockwell's (NR) Space Division for NASA's Manned Spacecraft Center to provide data for a scientific investigation team with representatives from the Jet Propulsion Laboratory, University of Utah, University of Michigan, U.S. Geological Survey, and NASA Ames Research Center.

  10. Quadratic electro-optic Kerr effect in doped graphene

    NASA Astrophysics Data System (ADS)

    Margulis, Vl A.; Muryumin, E. E.; Gaiduk, E. A.

    2017-06-01

    We theoretically investigate one of the third-order nonlinear optical (NLO) effects, namely, the quadratic electro-optic Kerr effect (EOKE), in doped graphene. To avoid the screening of an in-plane external dc electric field by the graphene’s electrons, we propose to use ‘low-amplitude’ (≲ 10 {kV} cm-1) terahertz radiation pulses focused onto the graphene sample collinearly with a normally incident optical beam of frequency ω. Using the Dirac cone approximation for the π-electron energy bands of graphene, we calculate the real part of the effective third-order NLO susceptibility {χ }(3)(-ω ;0,0,ω ), describing the EOKE in doped graphene under the above conditions. The results obtained show that a large electro-optic modulation of the graphene’s refractive index n (up to {{Δ }}n≈ 0.1) can be achieved by proper tuning the Fermi level {E}{{F}} of charge carriers in the graphene sample via electrostatic gating. Furthemore, a change of sign of the electro-optic Kerr coefficient of doped graphene can occur in the spectral range below the photon energy threshold value of 2{E}{{F}}, corresponding to the onset of the fundamental (single-photon) interband absorption in the graphene. These theoretical findings open up new opportunities for practical exploitation of the EOKE in graphene-based NLO devices.

  11. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, Bill R.; Ashley, Paul R.; Buchal, Christopher J.

    1989-01-01

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO.sub.3 crystals are implanted with high concentrations of Ti dopant at ion energies of about 350 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000.degree. C. produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality single crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguides properties.

  12. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, B.R.; Ashley, P.R.; Buchal, C.J.

    1987-03-24

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO/sub 3/ crystals are implanted with high concentrations of Ti dopant at ion energies of about 360 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000/degree/C produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguiding properties.

  13. Spacecraft optical disk recorder memory buffer control

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    1992-01-01

    The goal of this project is to develop an Application Specific Integrated Circuit (ASIC) for use in the control electronics of the Spacecraft Optical Disk Recorder (SODR). Specifically, this project is to design an extendable memory buffer controller ASIC for rate matching between a system Input/Output port and the SODR's device interface. The aforementioned goal can be partitioned into the following sub-goals: (1) completion of ASIC design and simulation (on-going via ASEE fellowship); (2) ASIC Fabrication (at ASIC manufacturer); and (3) ASIC Testing (NASA/LaRC, Christopher Newport University).

  14. Optical Properties of Al Doped ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Samuel, M. Soosen; Koshy, Jiji; Chandran, Anoop; George, K. C.

    2011-10-01

    Aluminium doped Zinc Oxide nanorods Zn(1-x)AlxO (x = 0,0.02,0.05,0.08) were synthesized by hydrothermal process. XRD, TEM, SEM-EDS and SAED pattern were used to characterise the crystalline structure, size and morphology of the samples. Results showed that the aluminium ions replace Zn2+ ions into the ZnO lattice without changing its wurtzite structure. The optical properties of as-synthesised Al doped ZnO nanorods were investigated in detail by UV-vis absorption, Photoluniniscence and Raman spectra. No apparent changes in the band gap energies were observed upto the doping concentration of 5 mol%. The Al doped ZnO nanorods with 8 mol% showed a strong exciton absorption peak at 360 nm and there was a sudden increase in the band gap energy. The perfect wurtzite structure of Al doped samples were verified by the intense E2 (high) Raman mode. The broad band in the range 535-545 cm-1 was associated with intrinsic lattice defects arised by the doping which was absent in the Raman spectra of pure ZnO nanorods. Because of the anharmonicity effect, some overtone and combination modes were observed besides the fundamental phonon modes. The PL spectra showed that the ratio of ultraviolet to visible emission peak (IUV/IVis) decreased till the doping concentration of 5 mol%. The strong ultraviolet emission and high IUV/IVis ratio were observed in the ZnO nanorods with doping concentration of 8 mol%.

  15. OPTICAL RECORDING AND COMMUNICATION: Optical recording of transient spatial structures in saturable three-level centres

    NASA Astrophysics Data System (ADS)

    Kucherenko, M. G.; Rusinov, A. P.

    2004-08-01

    Optical recording and decay of transient spatial structures is analysed in a system with a nonlinear response caused by incoherent saturation of three-level centres. The main attention is devoted to the thermal mechanism of phase recording in media with the temperature-independent heat conductivity. The relaxation of an inhomogeneous temperature field and the diffraction of a probe beam from the transient structure are studied.

  16. Potassium doping: Tuning the optical properties of graphene quantum dots

    SciTech Connect

    Qian, Fuli; Li, Xueming Lu, Chaoyu; Tang, Libin; Lai, Sin Ki; Lau, Shu Ping

    2016-07-15

    Doping with hetero-atoms is an effective way to tune the properties of graphene quantum dots (GQDs). Here, potassium-doped GQDs (K-GQDs) are synthesized by a one-pot hydrothermal treatment of sucrose and potassium hydroxide solution. Optical properties of the GQDs are altered as a result of K-doping. The absorption peaks exhibit a blue shift. Multiple photoluminescence (PL) peaks are observed as the excitation wavelength is varied from 380 nm to 620 nm. New energy levels are introduced into the K-GQDs and provide alternative electron transition pathways. The maximum PL intensity of the K-GQDs is obtained at an excitation wavelength of 480 nm which is distinct from the undoped GQDs (375 nm). The strong PL of the K-GQDs at the longer emission wavelengths is expected to make K-GQDs more suitable for bioimaging and optoelectronic applications.

  17. Influence of Lanthanum Doping on the Structural and Optical Properties of Hematite Nanopowders

    NASA Astrophysics Data System (ADS)

    Justus, J. Sharmila; Dharma Roy, S. Dawn; Raj, A. Moses Ezhil

    2016-10-01

    Rare-earth elements are an attractive class of dopant elements, as they give easily trivalent cations that possibly altering the structure and other properties of the parent nanoparticles and creating multifunctional materials because of their f-electronic configurations. Herein, experimental evidence has been given for a better understanding of the factors that dictate the interactions of La doping on the structure and optical properties of iron oxide nanoparticles. For that, lanthanum doped hematite (α-Fe2O3) nanoparticles were prepared by a facile solution method using iron (III) chloride (FeCl3) as starting precursor and sodium hydroxide (NaOH) as reducing agent without templates at low temperature. As-prepared powders were subsequently calcined in air for 3 hr at 800 °C. Xray diffraction (XRD) technique was used to study the nanocrystal formation of α-Fe2O3 and Fourier Transform Raman (FT-Raman) spectral information identified the chemical bond structure of the nanoparticles. Morphology study of the nanoparticles was identified using Scanning Electron Microscope (SEM) and the incorporated La content was recognized from the Energy Dispersive X-ray Spectroscopy (EDS) analysis. The optical absorption spectrum was recorded in the wavelength range of 200-2000 nm and the optical parameters such as absorption coefficient and optical band gap energy of pure and doped Fe2O3 nanoparticles were determined. Obtained results are interpreted by considering the impregnation of trivalent La cations that replaced Fe cations of the host structure.

  18. Investigation of Yb-doped LiLuF4 single crystals for optical cooling

    NASA Astrophysics Data System (ADS)

    Volpi, Azzurra; Cittadino, Giovanni; Di Lieto, Alberto; Cassanho, Arlete; Jenssen, Hans P.; Tonelli, Mauro

    2017-01-01

    Optical cooling of solids, relying on annihilation of lattice phonons via anti-Stokes fluorescence, is an emerging technology that is rapidly advancing. The development of high-quality Yb-doped fluoride single crystals definitely led to cryogenic and sub-100-K operations, and the potential for further improvements has not been exhausted by far. Among fluorides, so far the best results have been achieved with Yb-doped LiYF4 (YLF) single crystals, with a record cooling to 91 K of a stand-alone YLF:10%Yb. We report on preliminary investigation of optical cooling of an LiLuF4 (LLF) single crystal, an isomorph of YLF where yttrium is replaced by lutetium. Different samples of 5% Yb-doped LLF single crystals have been grown and optically characterized. Optical cooling was observed by exciting the Yb transition in single-pass at 1025 nm and the cooling efficiency curve has been measured detecting the heating/cooling temperature change as a function of pumping laser frequency.

  19. Structural and optical studies of undoped and copper doped zinc sulphide nanoparticles for photocatalytic application

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdeep; Sharma, Manoj; Pandey, O. P.

    2015-01-01

    Photocatalytic activity of semiconductor nanoparticles for their potential application in the area of photocatalysis provides clean source for degradation of organic pollutants. With the aim to utilize it efficiently in photocatalytic degradation of organic pollutants, zinc sulphide nanoparticles capped with thioglycerol and doped with copper (Zn1-xCuxS; x = 0, 0.01, 0.02, 0.03 and 0.04) were synthesized using simple chemical precipitation route. Structural studies were done using X-ray diffraction (XRD) technique. Morphological features of as prepared samples were recorded by high resolution transmission electron microscopy (HRTEM). Fourier transform infrared (FTIR) studies were done to confirm the presence of thioglycerol on the surface of doped ZnS. UV-Vis and photoluminescence studies were carried out to study the effect of doping on optical properties of synthesized material. Degradation of crystal violet has been carried out to investigate the effect of Cu doping on photocatalytic activity of ZnS. It is observed that Cu doping has enhanced the photocatalytic activity of ZnS. Further, UV irradiation study of thioglycerol capped ZnS NPs has been carried out to investigate its effect on photocatalytic performance of the material. The obtained results are interesting and may find applications in photocatalytic degradation of organic pollutants on large scale and also in other related areas.

  20. Bismuth-doped optical fibres: A new breakthrough in near-IR lasing media

    SciTech Connect

    Dianov, Evgenii M

    2012-09-30

    Recent results demonstrate that bismuth-doped optical fibres have considerable potential as near-IR active lasing media. This paper examines bismuth-doped fibres intended for the fabrication of fibre lasers and optical amplifiers and reviews recent results on the luminescence properties of various types of bismuth-doped fibres and the performance of bismuth-doped fibre lasers and optical amplifiers for the spectral range 1150 - 1550 nm. Problems are discussed that have yet to be solved in order to improve the efficiency of the bismuth lasers and optical amplifiers. (optical fibres, lasers and amplifiers. properties and applications)

  1. Temperature dependence of nonlinear optical properties in Li doped nano-carbon bowl material

    NASA Astrophysics Data System (ADS)

    Li, Wei-qi; Zhou, Xin; Chang, Ying; Quan Tian, Wei; Sun, Xiu-Dong

    2013-04-01

    The mechanism for change of nonlinear optical (NLO) properties with temperature is proposed for a nonlinear optical material, Li doped curved nano-carbon bowl. Four stable conformations of Li doped corannulene were located and their electronic properties were investigated in detail. The NLO response of those Li doped conformations varies with relative position of doping agent on the curved carbon surface of corannulene. Conversion among those Li doped conformations, which could be controlled by temperature, changes the NLO response of bulk material. Thus, conformation change of alkali metal doped carbon nano-material with temperature rationalizes the variation of NLO properties of those materials.

  2. Optical addressing in dye-doped cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Ko-Ting; Liu, Cheng-Kai; Ting, Chi-Lun; Fuh, Andy Ying-Guey

    2008-10-01

    This study investigates a method of optical addressing in dye-doped cholesteric liquid crystals (DDCLCs). Photo-induced randomly adsorbed dyes can change the CLC textures from planar to focal conic. Such patterning can be adopted to develop a display that is initially invisible, but becomes visible upon heating above the clearing temperature, followed by cooling to room temperature. The display can also become visible upon the application of a suitable voltage, and its rapid release. Additionally, the display is thermally erasable, optically rewritable and electrically switchable. It can be applied for use as a smart card.

  3. Photosensitivity of optical fibres doped with different impurities

    SciTech Connect

    Larionov, Yu V; Rybaltovsky, A A; Semenov, S L; Vartapetov, Sergei K; Kurzanov, M A; Obidin, Aleksei Z

    2004-02-28

    Photosensitivities of hydrogen-loaded silica fibres doped with germanium, phosphorus, antimony, and aluminium are estimated and compared. It is shown that although all the fibres can be pre-exposed, the degree of this effect is noticeably different for different fibres because the induction of the refractive index is determined by a combined contribution from a one-step photochemical reaction and a two-step reaction responsible for pre-exposure. One-step reactions dominate in more photosensitive optical fibres, while two-step reactions dominate in less photosensitive fibres. (optical fibres)

  4. Recent progresses in scintillating doped silica fiber optics

    NASA Astrophysics Data System (ADS)

    De Mattia, Cristina; Mones, Eleonora; Veronese, Ivan; Fasoli, Mauro; Chiodini, Norberto; Cantone, Marie Claire; Vedda, Anna

    2014-09-01

    The recent progresses in the development and characterization of doped silica fiber optics for dosimetry applications in the modern radiation therapy, and for high energy physics experiments, are presented and discussed. In particular, the main purpose was the production of scintillating fiber optics with an emission spectrum which can be easily and efficiently distinguished from that of other spurious luminescent signals originated in the fiber optic material as consequence of the exposition to ionizing radiations (e.g. Cerenkov light and intrinsic fluorescence phenomena). In addition to the previously investigated dopant (Ce), other rare earth elements (Eu and Yb) were considered for the scintillating fiber optic development. The study of the luminescent and dosimetric properties of these new systems was carried out by using X and gamma rays of different energies and field sizes.

  5. Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses

    NASA Astrophysics Data System (ADS)

    Shao, Chongyun; Xu, Wenbin; Ollier, Nadege; Guzik, Malgorzata; Boulon, Georges; Yu, Lu; Zhang, Lei; Yu, Chunlei; Wang, Shikai; Hu, Lili

    2016-10-01

    Yb3+/Al3+ co-doped silica glasses with different Ce2O3 contents were prepared using the sol-gel method combined with high-temperature sintering. Changes in refractive index, absorption, emission and fluorescence lifetime of these glasses caused by X-ray irradiation were recorded and analyzed systematically. It is found that co-doping with certain amount of Ce could greatly improve the radiation resistance without evident negative effects on the basic optical properties of the Yb3+ ions in the near-infrared region. The nature of the radiation-induced color centres and the mechanism by which Ce prevented the formation of these centres were studied using optical absorption, electron paramagnetic resonance (EPR), and X-ray photoelectron spectroscopy (XPS) methods. Direct evidence confirmed that trapped electron centres (Yb2+/Si-E'/Al-E') and trapped hole centres (Al-OHCs) were effectively inhibited by Ce doping, which was correlated to the coexistence of the redox couple Ce3+/Ce4+ in the glasses. These results are helpful to understand the micro-structural origin and the suppression mechanism by Ce co-doping of the photodarkening effect in Yb3+-doped silica fibers.

  6. Carbon laminates with RE doped optical fibre sensors

    NASA Astrophysics Data System (ADS)

    Miluski, Piotr; Kochanowicz, Marcin; Żmojda, Jacek; Silva, AbíLio P.; Reis, Paulo N. B.; Dorosz, Dominik

    2016-11-01

    A new type of luminescent optical fibre sensor for structural health monitoring of composite laminates (CFRP) is proposed. The Nd3+ doped multi-core doubleclad fibre incorporated in composite structure was used as a distributed temperature sensor. The change of luminescence intensity (Nd3+ ions) at the wavelength of 880 nm (4F3/2 → 4I9/2) and 1060 nm (4F3/2 → 4I11/2) was used for internal temperature monitoring. The special construction of optical fibre was used as it assures an efficient pumping mechanism and, at same time, it increases the measuring sensitivity. The linear response with relative sensitivity 0.015 K-1 was obtained for temperature range from 30 up to 75ºC. The manufacturing process of CFRP with embedded optical fibre sensor is also discussed.

  7. Physical and optical properties of sodium borate glasses doped with Dy3+ ions

    NASA Astrophysics Data System (ADS)

    Alajerami, Y. S. M.; Abushab, K. M.; Alagha, S. I.; Mhareb, M. H. A.; Saidu, A.; Kodeh, F. S.; Ramadan, Kh.

    2017-09-01

    The photoluminescence, optical and physical properties of sodium borate (NB) doped with different concentrations of Dy3+ were determined and well discussed. The samples were prepared by the melt-quenching technique and characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Photoluminescence and absorption spectra of NB glasses doped with different concentrations of Dy3+ are reported. Ten absorption bands with hypersensitive transition at 1272 nm (6F11/2 →6H 9/2) and two emission bands for the transitions at 4F 9/2 →6H 15/2 (blue color) and 4F 9/2 →6H 13/2 (yellow color) with an excitation of 330 nm have been recorded. A series of considerable physical properties (oscillator strengths, refractive index, ions concentration, polaron radius) was calculated for each dopant concentration.

  8. Two-wave mixing of orthogonally polarized waves via anisotropic dynamic gratings in erbium-doped optical fiber

    NASA Astrophysics Data System (ADS)

    Stepanov, Serguei; Hernández, Eliseo; Plata, Marcos

    2005-06-01

    We report on observations of transient two-wave mixing (TWM) of orthogonally polarized waves counterpropagating through an Er-doped single-mode optical fiber. Experiments were performed in a 2-m-long moderately birefringent (with beat length ~2 cm) Er-doped fiber without optical pumping at the laser wavelength 1549 nm. The transient TWM signal observed for crossed linear polarizations of the recording waves oriented along two orthogonal birefringence axes of the fiber (i.e., for the interference pattern with spatially modulated state of light polarization only) proved to be approximately half of that observed for parallel polarizations. Direct measurements of the transient polarization hole-burning effect (i.e., that observed for fast switching of the input light linear polarization between two orthogonal orientations of the doped fiber birefringence axes) allow us to attribute formation of the corresponding anisotropic dynamic grating to this effect.

  9. Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout.

    PubMed

    Taylor, Adam B; Kim, Jooho; Chon, James W M

    2012-02-27

    In a multilayered structure of absorptive optical recording media, continuous-wave laser operation is highly disadvantageous due to heavy beam extinction. For a gold nanorod based recording medium, the narrow surface plasmon resonance (SPR) profile of gold nanorods enables the variation of extinction through mulilayers by a simple detuning of the readout wavelength from the SPR peak. The level of signal extinction through the layers can then be greatly reduced, resulting more efficient readout at deeper layers. The scattering signal strength may be decreased at the detuned wavelength, but balancing these two factors results an optimal scattering peak wavelength that is specific to each layer. In this paper, we propose to use detuned SPR scattering from gold nanorods as a new mechanism for continuous-wave readout scheme on gold nanorod based multilayered optical storage. Using this detuned scattering method, readout using continuous-wave laser is demonstrated on a 16 layer optical recording medium doped with heavily distributed, randomly oriented gold nanorods. Compared to SPR on-resonant readout, this method reduced the required readout power more than one order of magnitude, with only 60 nm detuning from SPR peak. The proposed method will be highly beneficial to multilayered optical storage applications as well as applications using a continuous medium doped heavily with plasmonic nanoparticles.

  10. Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency.

    PubMed

    Dubinskii, M; Zhang, J; Ter-Mikirtychev, V

    2009-05-15

    We report the performance of a resonantly cladding-pumped, Yb-free, Er-doped fiber laser. We believe this is the first reported resonantly cladding-pumped fiber-Bragg-grating-based, Er-doped, large-mode-area (LMA) fiber laser. The laser, pumped by fiber-coupled InGaAsP/InP laser diode modules at 1,532.5 nm, delivers approximately 48 W of cw output at 1,590 nm. It is believed to be the highest power ever reported from a Yb-free Er-doped LMA fiber. This fully integrated laser also has the optical-to-optical efficiency of approximately 57%, to the best of our knowledge, the highest efficiency reported for cladding-pumped unidirectionally emitting Er-doped laser.

  11. Structural, morphological, optical, and magnetic properties of Gd-doped and (Gd, Mn) co-doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Poornaprakash, B.; Chalapathi, U.; Babu, S.; Park, Si-Hyun

    2017-09-01

    Undoped, Gd doped, and (Gd, Mn) co-doped ZnO nanoparticles were fabricated via a hydrothermal method and their structural, morphological, optical, and magnetic properties were examined. X-ray diffraction and Raman spectroscopy studies confirmed that the Gd and Mn ions successfully entered the ZnO hexagonal lattice as substitute ions without changing the internal structure of the lattice. Morphology studies revealed that the synthesized nanoparticles were monodisperse and closely hexagonal shaped. The reflectance spectra showed a red shift of the absorption edge in both doped and co-doped samples. The diamagnetic ZnO sample was altered into a ferromagnetic material when doped with Gd ions, but this behavior was suppressed when Mn ions were co-doped into the matrix.

  12. Optically enhanced nuclear cross polarization in acridine-doped fluorene

    SciTech Connect

    Oshiro, C.M.

    1982-06-01

    The objective of this work has been to create large polarizations of the dilute /sup 13/C nuclei in the solid state. The idea was to create /sup 1/H polarizations larger than Boltzmann and to use the proton enhanced nuclear induction spectroscopy cross polarization technique to then transfer this large polarization to the /sup 13/C spin system. Optical Nuclear Polarization (ONP) of acridine-doped fluorene single crystals was studied. In addition, ONP of powdered samples of the acridine-doped fluorene was studied. In general, many compounds do not crystallize easily or do not form large crystals suitable for NMR experiments. Powdered, amorphous and randomly dispersed samples are generally far more readily available than single crystals. One objective of this work has been to (first) create large /sup 1/H polarizations. Although large optical proton polarizations in single crystals have been reported previously, optically generated polarizations in powdered samples have not been reported. For these reasons, ONP studies of powdered samples of the acridine-doped fluorene were also undertaken. Using ONP in combination with the proton enhanced nuclear induction spectroscopy experiment, large /sup 13/C polarizations have been created in fluorene single crystals. These large /sup 13/C polarizations have permitted the determination of the seven incongruent chemical shielding tensors of the fluorene molecule. Part 2 of this thesis describes the proton enhanced nuclear induction spectroscopy experiment. Part 3 describes the ONP experiment. Part 4 is a description of the experimental set-up. Part 5 describes the data analysis for the determination of the chemical shielding tensors. Part 6 presents the results of the ONP experiments performed in this work and the chemical shielding tensors determined.

  13. Nd-doped phosphate glass microstructured optical fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Luo, F. F.; Liu, X. F.; Dong, G. P.; Zhang, Q.; Lin, G.; Zhou, Q. L.; Qiu, J. R.; Hu, L. L.; Chen, D. P.

    2010-06-01

    We experimentally demonstrated a single-mode laser at 1056 nm with Nd-doped phosphate glass microstructured optical fiber (MOF), which was fabricated with conventional stack-and-draw method. The laser action was observed from a Fabry-Perot cavity formed by placing two dichroic mirrors of ˜100 and 85% reflectivity, to the two end facets of MOF. Pumped by CW laser diodes (LDs) at 808 nm, the MOF laser yielded a maximum output power of 8.5 mW and a slope efficiency of 2%.

  14. Optical branching in dye-doped polymeric waveguide

    NASA Astrophysics Data System (ADS)

    Sarkisov, Sergey; Taylor, Andre; Venkateswarlu, Putcha; Wilkosz, Aaron

    1998-01-01

    We demonstrate theoretically and experimentally that a single optical beam splits into multiple beams (branches) as a result of light induced permanent refractive index decrease in a dye-doped polymeric slab waveguide upon its upconverted photobleaching. The input Gaussian beam initially splits into two primary branches that grow in time moving out of the central axis and eventually collapse into numerous secondary branches. The proposed theoretical model is nonlocal in time and is based on a Shrödinger-type nonlinear propagation equation complemented by a rate equation for the decrease of the refractive index.

  15. Bulk optical damage thresholds for doped and undoped, crystalline and ceramic yttrium aluminum garnet.

    PubMed

    Do, Binh T; Smith, Arlee V

    2009-06-20

    We measured the bulk optical damage thresholds of pure and Nd-doped ceramic yttrium aluminum garnet (YAG), and of pure, Nd-doped, Cr-doped, and Yb-doped crystalline YAG. We used 9.9 ns, 1064 nm, single-longitudinal mode, TEM00 pulses, to determine that the breakdown thresholds are deterministic, with multiple-pulse thresholds ranging from 1.1 to 2.2 kJ/cm2.

  16. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.

    PubMed

    Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis

    2013-05-20

    This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.

  17. Recording and reconstruction of vector fields in a Fe-doped LiNbO₃ crystal.

    PubMed

    Qian, Sheng-Xia; Kong, Ling-Jun; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2014-04-01

    We propose a flexible method to record and reconstruct vector fields with space-variant polarization distribution in c-cut Fe-doped LiNbO3, based on photorefractive two-wave mixing. To our knowledge, this is the first approach for the reconstruction of vector fields without using the photoinduced anisotropy of the recording material.

  18. Interaction of nucleobases with silicon doped and defective silicon doped graphene and optical properties.

    PubMed

    Mudedla, Sathish Kumar; Balamurugan, Kanagasabai; Kamaraj, Manoharan; Subramanian, Venkatesan

    2016-01-07

    The interaction of nucleobases (NBs) with the surface of silicon doped graphene (SiGr) and defective silicon doped graphene (dSiGr) has been studied using electronic structure methods. A systematic comparison of the calculated interaction energies (adsorption strength) of NBs with the surface of SiGr and dSiGr with those of pristine graphene (Gr) has also been made. The doping of graphene with silicon increases the adsorption strength of NBs. The introduction of defects in SiGr further enhances the strength of interaction with NBs. The appreciable stability of complexes (SiGr-NBs and dSiGr-NBs) arises due to the partial electrostatic and covalent (Si···O(N)) interaction in addition to π-π stacking. The interaction energy increases with the size of graphene models. The strong interaction between dSiGr-NBs and concomitant charge transfer causes significant changes in the electronic structure of dSiGr in contrast to Gr and SiGr. Further, the calculated optical properties of all the model systems using time dependent density functional theory (TD-DFT) reveal that absorption spectra of SiGr and dSiGr undergo appreciable changes after adsorption of NBs. Thus, the significant variations in the HOMO-LUMO gap and absorption spectra of dSiGr after interaction with the NBs can be exploited for possible applications in the sensing of DNA nucleobases.

  19. Optical properties of in situ doped and undoped titania nanocatalysts and doped titania sol gel nanofilms

    NASA Astrophysics Data System (ADS)

    da Silva, A. Ferreira; Pepe, I.; Gole, James L.; Tomás, S. A.; Palomino, R.; de Azevedo, W. M.; da Silva, E. F.; Ahuja, R.; Persson, C.

    2006-05-01

    In this paper we present spectroscopic properties of doped and undoped titanium dioxide (TiO 2) as nanofilms prepared by the sol-gel process with rhodamine 6G doping and studied by photoacoustic absorption, excitation and emission spectroscopy. The absorption spectra of TiO 2 thin films doped with rhodamine 6G at very low concentration during their preparation show two absorption bands, one at 2.3 eV attributed to molecular dimmer formation, which is responsible for the fluorescence quenching of the sample and the other at 3.0 eV attributed to TiO 2 absorption, which subsequently yields a strong emission band at 600 nm. The electronic band structure and optical properties of the rutile phase of TiO 2 are calculated employing a fully relativistic, full-potential, linearized, augmented plane-wave (FPLAPW) method within the local density approximation (LDA). Comparison of this calculation with experimental data for TiO 2 films prepared for undoped sol-gels and by sputtering is performed.

  20. Rare earth transition metal alloys for magneto-optical recording

    NASA Astrophysics Data System (ADS)

    Daval, J.; Bechevet, B.

    1994-01-01

    Despite some drawbacks, RETM alloys in the form of amorphous thin films, have now proved their preeminence as rewritable recording media for magneto-optical data storage. Writing and read-out processes are described in terms of their magnetic, optical and structural properties. Future trends towards high storage densities are discussed through material and optics improvements and, therefrom, many possible applications for magneto-optical technology are considered.

  1. Structural and optical properties of Dy3+ doped calcium borotellurite glasses

    NASA Astrophysics Data System (ADS)

    Karthikeyan, P.; Mariyappan, M.; Marimuthu, K.

    2017-05-01

    Dy3+ doped calcium borotellurite glasses with the chemical composition (50-x)B2O3+20TeO2+20CaCO3 +10ZnF2+xDy2O3 (where x = 0.25, 0.5, 0.75 and 1 in wt %) have been prepared by melt quenching technique. The structural and optical properties of the prepared glasses have been studied through FTIR, optical absorption, luminescence and decay spectral measurements. The optical band gap energy and Urbach's energy values have been calculated from the absorption spectra. Luminescence spectra have been recorded for different concentrations of Dy3+ ions doped glasses by monitoring an excitation at 387 nm. The luminescence spectra exhibits two emission bands corresponding to the 4F9/2→6HJ (J = 13/2, 15/2) transitions of the Dy3+ ions. The emission intensity of the present glasses was found to increase from 0.25 to 0.75 wt% and beyond that concentration quenching has been observed. The decay profiles exhibit non-exponential nature for all the prepared glasses.

  2. Optical studies on Eu{sup 3+} doped boro-tellurite glasses

    SciTech Connect

    Maheshvaran, K.; Marimuthu, K.

    2012-06-05

    Eu{sup 3+} doped boro-tellurite glasses with the chemical composition (39-x)B{sub 2}O{sub 3}+30TeO{sub 2}+15MgO+15K{sub 2}O +xEu{sub 2}O{sub 3} (where x = 0.01, 0.1, 1, 2 and 3 wt%) have been prepared by following conventional melt quenching technique. Spectroscopic properties of the Eu{sup 3+} doped boro-tellurite glasses have been studied by recording the optical absorption and luminescence measurements. Through the optical absorption spectra, bonding parameters ({beta}-bar, {delta}) have been calculated to identify the ionic/covalent nature of the glasses. Judd-Ofelt (JO) analysis have been carried out using the luminescence spectra. The JO parameters ({Omega}{sub {lambda}}= 2, 4 and 6) were used to calculate the radiative properties for the {sup 5}D{sub 0}{yields}{sup 7}F{sub J} (J = 1, 2, 3 and 4) emission transitions of the Eu{sup 3+} ions. The change in optical properties with the variation of Eu{sup 3+} ion concentration have been studied and discussed with similar studies.

  3. Spectroscopic and fiber optic ethanol sensing properties Gd doped ZnO nanoparticles.

    PubMed

    Noel, J L; Udayabhaskar, R; Renganathan, B; Muthu Mariappan, S; Sastikumar, D; Karthikeyan, B

    2014-11-11

    We report the structural, optical and gas sensing properties of prepared pure and Gd doped ZnO nanoparticles through solgel method at moderate temperature. Structural studies are carried out by X-ray diffraction method confirms hexagonal wurtzite structure and doping induced changes in lattice parameters is observed. Optical absorption spectral studies shows red shift in the absorption peak corresponds to band-gap from 3.42 eV to 3.05 eV and broad absorption in the visible range after Gd doping is observed. Scanning electron microscopic studies shows increase in particle size where the particle diameters increase from few nm to micrometers after Gd doping. The clad modified ethanol fiber-optic sensor studies for ethanol sensing exhibits best sensitivity for the 3% Gd doped ZnO nanoparticles and the sensitivity get lowered incase of higher percentage of Gd doped ZnO sample.

  4. Electronic, optical and photocatalytic behavior of Mn, N doped and co-doped TiO2: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Ya Fei; Li, Can; Lu, Song; Liu, Ru Xi; Hu, Ji Yuan; Gong, Yin Yan; Niu, Leng Yuan

    2016-03-01

    The crystal phase structure, surface morphology, chemical states and optical properties of Mn, N mono-doped and co-doped TiO2 nanoparticles were investigated by X-ray powder diffractometry, Raman spectra, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. Meanwhile, geometry structures, formation energies, electronic and optical properties of all systems have been also analyzed by density functional theory. The results showed that the band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO2. The number and the carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light. Especially, the photocatalytic activity of Mn-2N co-doped TiO2 beyond three-fold than that of pure TiO2 under visible-light.

  5. Stable inverted small molecular organic solar cells using a p-doped optical spacer.

    PubMed

    Lee, Sang-Hoon; Seo, Ji-Won; Lee, Jung-Yong

    2015-01-07

    We report inverted small molecular organic solar cells using a doped window layer as an optical spacer. The optical spacer was used to shift the optical field distribution inside the active layers, generating more charge carriers from sunlight. In this report, N,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD) was doped with 2,2-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6-TCNNQ), a p-type dopant material. P-doped MeO-TPD was adopted as an optical spacer because it has a large energy band gap, and its conductivity can be increased by several orders of magnitude through a doping process. As a result, a power conversion efficiency of 4.15% was achieved with the doped window layer of optimized thickness. Lastly, we present significantly improved stability of the inverted devices with the MeO-TPD layer.

  6. Tailoring the optical bandgap and magnetization of cobalt ferrite thin films through controlled zinc doping

    NASA Astrophysics Data System (ADS)

    Sharma, Deepanshu; Khare, Neeraj

    2016-08-01

    In this report, the tuning of the optical bandgap and saturation magnetization of cobalt ferrite (CFO) thin films through low doping of zinc (Zn) has been demonstrated. The Zn doped CFO thin films with doping concentrations (0 to 10%) have been synthesized by ultrasonic assisted chemical vapour deposition technique. The optical bandgap varies from 1.48 to 1.88 eV and saturation magnetization varies from 142 to 221 emu/cc with the increase in the doping concentration and this change in the optical and magnetic properties is attributed to the change in the relative population of the Co2+ at the tetrahedral and octahedral sites. Raman study confirms the decrease in the population of Co2+ at tetrahedral sites with controlled Zn doping in CFO thin films. A quantitative analysis has been presented to explain the observed variation in the optical bandgap and saturation magnetization.

  7. Synthesis, linear optical, non-linear optical, thermal and mechanical characterizations of dye-doped semi-organic NLO crystals

    NASA Astrophysics Data System (ADS)

    Sesha Bamini, N.; Vidyalakshmy, Y.; Choedak, Tenzin; Kejalakshmy, N.; Muthukrishnan, P.; Ancy, C. J.

    2015-06-01

    Organic laser dyes Coumarin 485, Coumarin 540 and Rhodamine 590 Chloride were used to dope potassium acid phthalate crystals (KAP). Dye-doped KAP crystals with different dye concentrations such as 0.01 mM, 0.03 mM, 0.05 mM, 0.07 mM and 0.09 mM (in the KAP growth solution) were grown. The linear optical, non-linear optical, mechanical and thermal characterizations of dye-doped KAP crystals were studied and compared to understand the effect of dye and dye concentration on the KAP crystal. Absorption and emission studies of KAP and dye-doped KAP single crystals indicated the inclusion of the dye into the KAP crystal lattice. The effect of dye and its concentration on the SHG efficiency of the KAP crystal was studied using the Kurtz and Perry powder technique. It was observed that the absorption maximum wavelength and concentration of the dye used for doping the KAP single crystal decided the SHG efficiency of the dye-doped KAP single crystals. The mechanical hardness of the dye-doped and undoped (pure) KAP single crystals were studied using the Vickner’s microhardness test. It was observed that doping the KAP crystals with the laser dyes changed them from softer material to harder material. Etching studies showed an improvement in the optical quality of the KAP crystal after doping with laser dyes.

  8. Optical studies of Sm³⁺ ions doped zinc alumino bismuth borate glasses.

    PubMed

    Swapna, K; Mahamuda, Sk; Srinivasa Rao, A; Shakya, S; Sasikala, T; Haranath, D; Vijaya Prakash, G

    2014-05-05

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of samarium (Sm(3+)) ions were prepared by using melt quenching technique and characterized for their lasing potentialities in visible region by using the techniques such as optical absorption, emission and emission decay measurements. Radiative properties for various fluorescent levels of Sm(3+) ions were estimated from absorption spectral information using Judd-Ofelt (JO) analysis. The emission spectra and con-focal photoluminescence images obtained by 410 nm laser excitation demonstrates very distinct and intense orange-red emission for all the doped glasses. The suitable concentration of Sm(3+) ions in these glasses to act as an efficient lasing material has been discussed by measuring the emission cross-section and branching ratios for the emission transitions. The quantum efficiencies were also been estimated from emission decay measurements recorded for the (4)G5/2 level of Sm(3+) ions. From the measured emission cross-sections, branching ratios, strong photoluminescence features and CIE chromaticity coordinates, it was found that 1 mol% of Sm(3+) ions doped ZnAlBiB glasses are most suitable for the development of visible orange-red lasers.

  9. The shift of optical band gap in W-doped ZnO with oxygen pressure and doping level

    SciTech Connect

    Chu, J.; Peng, X.Y.; Dasari, K.; Palai, R.; Feng, P.

    2014-06-01

    Highlights: • CVD–PLD co-deposition technique was used. • Better crystalline of the ZnO samples causes the redshift of the optical band gap. • Higher W concentration induces blueshift of the optical band gap. - Abstract: Tungsten-doped (W-doped) zinc oxide (ZnO) nanostructures were synthesized on quartz substrates by pulsed laser and hot filament chemical vapor co-deposition technique under different oxygen pressures and doping levels. We studied in detail the morphological, structural and optical properties of W-doped ZnO by SEM, XPS, Raman scattering, and optical transmission spectra. A close correlation among the oxygen pressure, morphology, W concentrations and the variation of band gaps were investigated. XPS and Raman measurements show that the sample grown under the oxygen pressure of 2.7 Pa has the maximum tungsten concentration and best crystalline structure, which induces the redshift of the optical band gap. The effect of W concentration on the change of morphology and shift of optical band gap was also studied for the samples grown under the fixed oxygen pressure of 2.7 Pa.

  10. Optical and electronic structure description of metal-doped phthalocyanines.

    PubMed

    Leal, Luciano Almeida; da Cunha, Wiliam Ferreira; Ribeiro Junior, Luiz Antonio; Pereira, Tamires Lima; Blawid, Stefan Michael; de Sousa Junior, Rafael Timóteo; da Silva Filho, Demétrio Antonio

    2017-05-01

    Phthalocyanines represent a crucial class of organic compounds with high technological appeal. By doping the center of these systems with metals, one obtains the so-called metal-phthalocyanines, whose property of being an effective electron donor allows for potentially interesting uses in organic electronics. In this sense, investigating optical and electronic structure changes in the phthalocyanine profiles in the presence of different metals is of fundamental importance for evaluating the appropriateness of the resulting system as far as these uses are concerned. In the present work, we carry out this kind of effort for phthalocyanines doped with different metals, namely, copper, nickel, and magnesium. Density functional theory was applied to obtain the absorption spectra, and electronic and structural properties of the complexes. Our results suggest that depending on the dopant, a different level of change is achieved. Moreover, electrostatic potential energy mapping shows how the charge distribution can be affected by solar radiation. Our contribution is crucial in describing the best possible candidates for use in different organic photovoltaic applications. Graphical Abstract Representation of meta-phthalocyanine systems. All calculations of this work are based on varying metal position along z axis, considering the z-axis has its zero point matching with the center of phthalocyanine cavityconsidering.

  11. Structural and optical studies of Au doped titanium oxide films

    NASA Astrophysics Data System (ADS)

    Alves, E.; Franco, N.; Barradas, N. P.; Nunes, B.; Lopes, J.; Cavaleiro, A.; Torrell, M.; Cunha, L.; Vaz, F.

    2012-02-01

    Thin films of TiO 2 were doped with Au by ion implantation and in situ during the deposition. The films were grown by reactive magnetron sputtering and deposited in silicon and glass substrates at a temperature around 150 °C. The undoped films were implanted with Au fluences in the range of 5 × 10 15 Au/cm 2-1 × 10 17 Au/cm 2 with a energy of 150 keV. At a fluence of 5 × 10 16 Au/cm 2 the formation of Au nanoclusters in the films is observed during the implantation at room temperature. The clustering process starts to occur during the implantation where XRD estimates the presence of 3-5 nm precipitates. After annealing in a reducing atmosphere, the small precipitates coalesce into larger ones following an Ostwald ripening mechanism. In situ XRD studies reveal that Au atoms start to coalesce at 350 °C, reaching the precipitates dimensions larger than 40 nm at 600 °C. Annealing above 700 °C promotes drastic changes in the Au profile of in situ doped films with the formation of two Au rich regions at the interface and surface respectively. The optical properties reveal the presence of a broad band centered at 550 nm related to the plasmon resonance of gold particles visible in AFM maps.

  12. Slow and fast light via two-wave mixing in the rare-earth doped optical fibers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Stepanov, Serguei I.; Plata Sánchez, Marcos; Hernández, Eliseo

    2017-02-01

    Dynamic population Bragg gratings can be recorded in the rare-earth-doped (e.g. doped with erbium or ytterbium) optical fibers with mWatt-scale cw laser power. Two-wave mixing (TWM) via such gratings is utilized in single-frequency fiber lasers and in adaptive interferometric fiber sensors with automatic stabilization of the operation point. Slow and fast light propagation can also be observed in the vicinity of narrow ( 20-200Hz) spectral profile of stationary no-degenerate TWM. In particular, slow light propagation is observed for the purely amplitude grating, recorded in the erbium-doped fiber in spectral range 1510-1550nm. In its turn, in ytterbium-doped fibers at 1064nm (or in erbium-doped fiber at the wavelength below 1500nm) the dynamic grating has significant contribution of the phase component, the TWM profile has essentially asymmetric form, and both slow and fast (superluminal) light propagation is possible at different frequency off-sets between the counter-propagating interacting waves.

  13. Impurity-doped optical shock, detonation and damage location sensor

    DOEpatents

    Weiss, J.D.

    1995-02-07

    A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack. 8 figs.

  14. Impurity-doped optical shock, detonation and damage location sensor

    DOEpatents

    Weiss, Jonathan D.

    1995-01-01

    A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack.

  15. Optical emission from erbium-doped silica nanowires

    SciTech Connect

    Elliman, R. G.; Wilkinson, A. R.; Kim, T.-H.; Sekhar, P. K.; Bhansali, S.

    2008-05-15

    Infrared optical emission from erbium-doped silica nanowires is shown to have property characteristic of the material nanostructure and to provide the basis for the fabrication of integrated photonic devices and biosensors. Silica nanowires of approximately 150 nm diameter were grown on a silicon wafer by metal-induced growth using a thin (20 nm) sputter-deposited palladium layer as a catalyst. The resulting wires were then ion implanted with 110 keV ErO{sup -} ions and annealed at 900 deg. C to optically activate the erbium. These wires exhibited photoluminescence emission at 1.54 {mu}m, characteristic of the {sup 4}I{sub 15/2}-{sup 4}I{sub 13/2} transition in erbium; however, comparison to similarly implanted fused silica layers revealed stronger thermal quenching and longer luminescence lifetimes in the nanowire samples. The former is attributed to an increase in defect-induced quenching partly due to the large surface-volume ratio of the nanowires, while the latter is attributed to a reduction in the optical density of states associated with the nanostructure morphology. Details of this behavior are discussed together with the implications for potential device applications.

  16. Optical Imaging versus Paper Records Storage.

    ERIC Educational Resources Information Center

    Baldygo, Robert

    1999-01-01

    States that the maintenance and storage of paper documents has many inherent weaknesses, including hidden costs and attached risks. Asserts that document imaging is a viable, up-to-date technology that could eliminate many of these costs and risks. Describes the system benefits, scope, requirements, and costs and the legality of optically stored…

  17. Optical properties and ultrafast optical nonlinearity of Yb3+ doped sodium borate and bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Karthikeyan, B.; Suchand Sandeep, C. S.; Cha, Jaemine; Takebe, Hiromichi; Philip, Reji; Mohan, S.

    2008-05-01

    In this paper, we report the optical and ultrafast nonlinear optical properties of Yb3+ doped sodium borate and bismuthate glasses. The glasses have been prepared through the melt quench technique. Optical absorption measurements show compositional dependent absorption spectrum of Yb3+, which is due to the higher crystal field induced by Bi3+ ions. Local structure of the glasses has been identified by using Fourier transform infrared and Raman studies. From open aperture z-scan measurements done by using 100 fs laser pulses, the ultrafast optical nonlinearity in these materials is calculated at the nonresonant excitation wavelength of 800 nm. The measured three-photon absorption originates from the glass host, with contributions from the nonbridging oxygens and the nonlinear electronic polarization of the Bi3+ ions.

  18. Optical properties of quantum-dot-doped liquid scintillators

    NASA Astrophysics Data System (ADS)

    Aberle, C.; Li, J. J.; Weiss, S.; Winslow, L.

    2013-10-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.

  19. Optical properties of quantum-dot-doped liquid scintillators.

    PubMed

    Aberle, C; Li, J J; Weiss, S; Winslow, L

    2013-10-14

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.

  20. Optical properties of quantum-dot-doped liquid scintillators

    PubMed Central

    Aberle, C.; Li, J.J.; Weiss, S.; Winslow, L.

    2014-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO. PMID:25392711

  1. Electrical, optical and dielectric properties of HCl doped polyaniline nanorods

    NASA Astrophysics Data System (ADS)

    Chutia, P.; Kumar, A.

    2014-03-01

    In this report we have investigated the optical, electrical and dielectric properties of HCl doped polyaniline nanorods synthesized by the interfacial polymerization technique. High resolution transmission electron microscope (HRTEM) micrographs confirm the formation of nanorods. X-ray diffraction pattern shows the semicrystalline nature of polyaniline nanorods with a diameter distribution in the range of 10-22 nm. The chemical and electronic structures of the polyaniline nanorods are investigated by micro-Raman and UV-vis spectroscopy. Dielectric relaxation spectroscopy has been applied to study the dielectric permittivity, modulus formalism and ac conductivity as a function of frequency and temperature. The ac conductivity follows a power law with frequency. The variation of frequency exponent with temperature suggests that the correlated barrier hopping is the dominant charge transport mechanism. The existence of both polaron and bipolaron in the transport mechanism has been confirmed from the binding energy calculations.

  2. Anisotropic Optical-Response of Eu-doped Yttrium Orthosilicate

    NASA Technical Reports Server (NTRS)

    Liu, Huimin; Santiago, Miguel; Jia, Weiyi; Zhang, Shoudu

    1998-01-01

    Eu-doped yttrium orthosilicate (Eu(3+) : Y2SiO5) had been a subject being investigated for coherent time-domain optical memory and information processing applications since its ultraslow optical dephasing was discovered several years ago. In this crystal the weakly allowed (7)F0 - (5)D0 transition of europium ions exhibits a sufficient long dephasing time and no spectral difli.usion on a time scale of several hours at low temperature, thus an information pattern or data can be stored as a population grating in the ground state hyperfine levels. On the other hand, the study on photon-echo relaxation shows that the dephasing time T2 of Eu (3+) and other rare-earth ions doped YAG, YAlO3 strongly depends on the intensity of the excitation pulses. In Eu (3+) :YAlO3, an exponential decay of photon-echo with T2 = 53 microseconds if the excitation pulses are weak (5 vJ/pulse) was observed. However, when the excitation pulses are strong (80 pJ/pulse) they observed a much shortened T2 with a highly nonexponential decay pattern. The conclusion they derived is that the intensity-dependent dephasing rate effects are quite general, and it depends on how much the excitation intensity varies. In this paper we use transient grating formation technique showing that a temporal lattice distortion may only occur along crystal c axis, caused by EU (3+) excitation. At high excitation level the produced exciton in conduction band may also couple to the dynamical lattice relaxation process, giving rise to an apparently much shortened dephasing time.

  3. Anisotropic Optical-Response of Eu-doped Yttrium Orthosilicate

    NASA Technical Reports Server (NTRS)

    Liu, Huimin; Santiago, Miguel; Jia, Weiyi; Zhang, Shoudu

    1998-01-01

    Eu-doped yttrium orthosilicate (Eu(3+) : Y2SiO5) had been a subject being investigated for coherent time-domain optical memory and information processing applications since its ultraslow optical dephasing was discovered several years ago. In this crystal the weakly allowed (7)F0 - (5)D0 transition of europium ions exhibits a sufficient long dephasing time and no spectral difli.usion on a time scale of several hours at low temperature, thus an information pattern or data can be stored as a population grating in the ground state hyperfine levels. On the other hand, the study on photon-echo relaxation shows that the dephasing time T2 of Eu (3+) and other rare-earth ions doped YAG, YAlO3 strongly depends on the intensity of the excitation pulses. In Eu (3+) :YAlO3, an exponential decay of photon-echo with T2 = 53 microseconds if the excitation pulses are weak (5 vJ/pulse) was observed. However, when the excitation pulses are strong (80 pJ/pulse) they observed a much shortened T2 with a highly nonexponential decay pattern. The conclusion they derived is that the intensity-dependent dephasing rate effects are quite general, and it depends on how much the excitation intensity varies. In this paper we use transient grating formation technique showing that a temporal lattice distortion may only occur along crystal c axis, caused by EU (3+) excitation. At high excitation level the produced exciton in conduction band may also couple to the dynamical lattice relaxation process, giving rise to an apparently much shortened dephasing time.

  4. Fast optical recording media based on semiconductor nanostructures for image recording and processing

    SciTech Connect

    Kasherininov, P. G. Tomasov, A. A.

    2008-11-15

    Fast optical recording media based on semiconductor nanostructures (CdTe, GaAs) for image recording and processing with a speed to 10{sup 6} cycle/s (which exceeds the speed of known recording media based on metal-insulator-semiconductor-(liquid crystal) (MIS-LC) structures by two to three orders of magnitude), a photosensitivity of 10{sup -2}V/cm{sup 2}, and a spatial resolution of 5-10 (line pairs)/mm are developed. Operating principles of nanostructures as fast optical recording media and methods for reading images recorded in such media are described. Fast optical processors for recording images in incoherent light based on CdTe crystal nanostructures are implemented. The possibility of their application to fabricate image correlators is shown.

  5. Polarization holographic optical recording of a new photochromic diarylethene

    NASA Astrophysics Data System (ADS)

    Pu, Shouzhi; Miao, Wenjuan; Chen, Anyin; Cui, Shiqiang

    2008-12-01

    A new symmetrical photochromic diarylethene, 1,2-bis[2-methyl-5-(3-methoxylphenyl)-3-thienyl]perfluorocyclopentene (1a), was synthesized, and its photochromic properties were investigated. The compound exhibited good photochromism both in solution and in PMMA film with alternating irradiation by UV/VIS light, and the maxima absorption of its closed-ring isomer 1b are 582 and 599 nm, respectively. Using diarylethene 1b/PMMA film as recording medium and a He-Ne laser (633 nm) for recording and readout, four types of polarization and angular multiplexing holographic optical recording were performed perfectly. For different types of polarization recording including parallel linear polarization recording, parallel circular polarization recording, orthogonal linear polarization recording and orthogonal circular polarization recording,have been accomplished successfully. The results demonstrated that the orthogonal circular polarization recording is the best method for polarization holographic optical recording when this compound was used as recording material. With angular multiplexing recording technology, two high contrast holograms were recorded in the same place on the film with the dimension of 0.78 μm2.

  6. Optical properties of spirooxazine-doped PMMA fiber for new functional applications

    NASA Astrophysics Data System (ADS)

    Miluski, Piotr; Kochanowicz, Marcin; Zmojda, Jacek; Dorosz, Dominik

    2017-04-01

    Functional dyes allow optical applications of polymers in optical fiber technology. This paper presents a fabrication process and spectroscopic characterization of poly(methyl methacrylate) (PMMA) fiber doped by Spirooxazine (SO). The fabricated specimens at concentrations 0.4 to 0.8 wt. % have been characterized. The reversible absorption band with a maximum at 602 nm was observed under 365 nm exposition. The optical properties of PMMA-doped functional dye (photochromic and fluorescence) are presented in this paper. The kinetics of photochromic phenomenon is also investigated. The properties of polymeric fiber doped by SO are also presented since reabsorption effect changes the luminescence spectrum shape of SO.

  7. Highly doped polycrystalline silicon microelectrodes reduce noise in neuronal recordings in vivo.

    PubMed

    Saha, Rajarshi; Jackson, Nathan; Patel, Chetan; Muthuswamy, Jit

    2010-10-01

    The aims of this study are to 1) experimentally validate for the first time the nonlinear current-potential characteristics of bulk doped polycrystalline silicon in the small amplitude voltage regimes (0-200 μV) and 2) test if noise amplitudes ( 0-15 μV ) from single neuronal electrical recordings get selectively attenuated in doped polycrystalline silicon microelectrodes due to the above property. In highly doped polycrystalline silicon, bulk resistances of several hundred kilo-ohms were experimentally measured for voltages typical of noise amplitudes and 9-10 kΩ for voltages typical of neural signal amplitudes ( > 150-200 μV). Acute multiunit measurements and noise measurements were made in n=6 and n=8 anesthetized adult rats, respectively, using polycrystalline silicon and tungsten microelectrodes. There was no significant difference in the peak-to-peak amplitudes of action potentials recorded from either microelectrode (p > 0.10). However, noise power in the recordings from tungsten microelectrodes (26.36 ±10.13 pW) was significantly higher than the corresponding value in polycrystalline silicon microelectrodes (7.49 ±2.66 pW). We conclude that polycrystalline silicon microelectrodes result in selective attenuation of noise power in electrical recordings compared to tungsten microelectrodes. This reduction in noise compared to tungsten microelectrodes is likely due to the exponentially higher bulk resistances offered by highly doped bulk polycrystalline silicon in the range of voltages corresponding to noise in multiunit measurements.

  8. Aspheric wave-front recording optics for holographic gratings.

    PubMed

    Namioka, T; Koike, M

    1995-05-01

    The geometric theory of aspheric wave-front recording optics is extended to include the fourth-order groove parameters that correspond to the fourth-order holographic terms in the light-path function. We derived explicit expressions of the groove parameters by analytically following an exact ray-tracing procedure for a double-element optical system that consists of a point source, an ellipsoidal mirror, and an ellipsoidal grating blank. Design examples of holographic gratings for an in-plane Eagle-type vacuum-UV monochromator are given to demonstrate the capability of the present theory in the design of aspheric wave-front recording optics.

  9. Influence of Doping and Excitation Powers on Optical Thermometry in Yb3+-Er3+ doped CaWO4

    NASA Astrophysics Data System (ADS)

    Wang, Xiangfu; Wang, Yemin; Bu, Yanyan; Yan, Xiaohong; Wang, Jing; Cai, Peiqing; Vu, Thiquynh; Seo, Hyo Jin

    2017-02-01

    Optical thermometry has been widely studied to achieve an inaccessible temperature measurement in submicron scale and it has been reported that the temperature sensitivity depends mainly on host types. In this work, we propose a new method to improve the optical temperature sensitivity of Yb3+-Er3+ co-doped CaWO4 phosphors by doping with Li+, Sr2+, and Mg2+ ions and by controlling excitation powers of 980 nm laser. It is found that the thermometric parameters such as upconversion emission intensity, intensity ratio of green-to-red emission, fluorescence color, emission intensity ratios of thermally coupled levels (2H11/2/4S3/2), and relative and absolute temperature sensitivity can be effectively controlled by doping with Li+, Sr2+, and Mg2+ ions in the Yb3+-Er3+ co-doped CaWO4 system. Moreover, the relative sensitivity SR and the absolute sensitivity SA are proved to be dependent on the pump power of 980 nm laser. The sensitivities of SR and SA in Yb3+-Er3+ co-doped CaWO4 increase about 31.5% and 12%, respectively, by doping with 1 mol% Sr2+.

  10. Influence of Doping and Excitation Powers on Optical Thermometry in Yb3+-Er3+ doped CaWO4

    PubMed Central

    Wang, Xiangfu; Wang, Yemin; Bu, Yanyan; Yan, Xiaohong; Wang, Jing; Cai, Peiqing; Vu, Thiquynh; Seo, Hyo Jin

    2017-01-01

    Optical thermometry has been widely studied to achieve an inaccessible temperature measurement in submicron scale and it has been reported that the temperature sensitivity depends mainly on host types. In this work, we propose a new method to improve the optical temperature sensitivity of Yb3+-Er3+ co-doped CaWO4 phosphors by doping with Li+, Sr2+, and Mg2+ ions and by controlling excitation powers of 980 nm laser. It is found that the thermometric parameters such as upconversion emission intensity, intensity ratio of green-to-red emission, fluorescence color, emission intensity ratios of thermally coupled levels (2H11/2/4S3/2), and relative and absolute temperature sensitivity can be effectively controlled by doping with Li+, Sr2+, and Mg2+ ions in the Yb3+-Er3+ co-doped CaWO4 system. Moreover, the relative sensitivity SR and the absolute sensitivity SA are proved to be dependent on the pump power of 980 nm laser. The sensitivities of SR and SA in Yb3+-Er3+ co-doped CaWO4 increase about 31.5% and 12%, respectively, by doping with 1 mol% Sr2+. PMID:28240270

  11. Synthesis and study of optical properties of transition metals doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Ramasamy, V.; Praba, K.; Murugadoss, G.

    2012-10-01

    ZnS and transition metal (Mn, Co, Ni, Cu, Ag and Cd) doped ZnS were synthesized using chemical precipitation method in an air atmosphere. The structural and optical properties were studied using various techniques. The X-ray diffraction (XRD) analysis show that the particles are in cubic structure. The mean size of the nanoparticles calculated through Scherrer equation is in the range of 4-6.1 nm. Elemental dispersive (EDX) analysis of doped samples reveals the presence of doping ions. The scanning electron microscopic (SEM) and transmission electron microscopic (TEM) studies show that the synthesized particles are in spherical shape. Optical characterization of both undoped and doped samples was carried out by ultraviolet-visible (UV-Vis) and photoluminescence (PL) spectroscopy. The absorption spectra of all the samples are blue shifted from the bulk ZnS. An optimum doping level of the transition metals for enhanced PL properties are found through optical study.

  12. Compositional variations in optical characteristics of Mn doped spinel crystals

    NASA Astrophysics Data System (ADS)

    Katsumata, Toru; Mitomi, Hiromasa; Nagayama, Hijiri; Orihara, Yuka; Aoki, Mina; Yoshida, Ayaka; Shiratake, Kasumi; Minowa, Shunsuke; Sakuma, Takashi; Aizawa, Hiroaki; Komuro, Shuji

    2017-06-01

    Mn doped spinel (MgAl2O4) crystals have been grown by floating zone (FZ) techniques with various conditions of O2 concentrations in the growth atmosphere from 0 to 75 vol%, with a starting composition of molar ratio x=MgO/(MgO+Al2O3) from 0.3 to 1.0 and/or Mn concentrations from 1.0 to 6.0 at%. Optical absorption spectra and photoluminescence spectra were evaluated using crystals grown under various growth conditions. The color of the crystals is found to vary with their composition and the O2 concentration in the atmosphere. Crystals grown under a 100 vol% Ar atmosphere, were a pale green color and emitted a strong green luminescence at λ=520 nm. Colors of stoichiometric crystals, x=1.0, and Mg-poor crystals grown under an oxidizing atmosphere are yellow and red, respectively. Both optical absorption spectra and photoluminescence spectra of Mg-poor, x<1.0 crystals grown under an oxidizing (O2-Ar) atmosphere are found to vary greatly from those of the stoichiometric crystals.

  13. Spacecraft optical disk recorder memory buffer control

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    1993-01-01

    This paper discusses the research completed under the NASA-ASEE summer faculty fellowship program. The project involves development of an Application Specific Integrated Circuit (ASIC) to be used as a Memory Buffer Controller (MBC) in the Spacecraft Optical Disk System (SODR). The SODR system has demanding capacity and data rate specifications requiring specialized electronics to meet processing demands. The system is being designed to support Gigabit transfer rates with Terabit storage capability. The complete SODR system is designed to exceed the capability of all existing mass storage systems today. The ASIC development for SODR consist of developing a 144 pin CMOS device to perform format conversion and data buffering. The final simulations of the MBC were completed during this summer's NASA-ASEE fellowship along with design preparations for fabrication to be performed by an ASIC manufacturer.

  14. Fabrication of europium-doped silica optical fiber with high Verdet constant.

    PubMed

    Huang, Yi; Chen, Huangchao; Dong, Weilong; Pang, Fufei; Wen, Jianxiang; Chen, Zhenyi; Wang, Tingyun

    2016-08-08

    A europium-doped (Eu-doped) silica optical fiber is fabricated using modified chemical vapor deposition (MCVD) technology. Europium fluoride (EuF3) material is introduced into the fiber core with a high temperature vaporizing technique. Its concentration is approximately 0.11 at %. The outer and core diameters of doped fiber are approximately 122 and 9 μm, respectively. Refractive index difference (RID) between core and cladding is approximately 2%. A magneto-optical effect measurement system, which is based on the Stokes polarization parameters method, is set up to analyze its magneto-optical properties. The Verdet constant of the Eu-doped optical fiber is -4.563 rad T-1m-1, which is approximately double than that of single mode fiber (SMF) at 660 nm.

  15. Photonic bandgap single-mode optical fibre with ytterbium-doped silica glass core

    SciTech Connect

    Egorova, O N; Semenov, S L; Vel'miskin, V V; Dianov, Evgenii M; Salganskii, M Yu; Yashkov, M V; Gur'yanov, Aleksei N

    2011-01-24

    A photonic bandgap fibre with an ytterbium-doped silica glass core is fabricated and investigated. The possibility of implementing single-mode operation of such fibres in a wide spectral range at a large (above 20 {mu}m) mode field diameter makes them promising for fibre lasers and amplifiers. To ensure a high quality of the beam emerging from the fibre, particular attention is paid to increasing the optical homogeneity of the ytterbium-doped core glass. (optical fibres)

  16. Structural, optical and electronic properties of Fe doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Singh, Karmvir; Devi, Vanita; Dhar, Rakesh; Mohan, Devendra

    2015-09-01

    Fe doped ZnO thin films have been deposited by pulsed laser deposition technique on quartz substrate to study structural, optical and electronic structure using XRD, AFM, UV-visible and X-ray absorption spectroscopy. XRD study reveals that Fe doping has considerable effect on stress, strain, grain size and crystallinity of thin films. UV-visible study determines that band gap of pristine ZnO decreases with Fe doping, which can be directly correlated to transition tail width and grain size. Change in electronic structure with Fe doping has been examined by XAS study.

  17. Structural, optical and electronic structure studies of Al doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Devi, Vanita; Kumar, Manish; Shukla, D. K.; Choudhary, R. J.; Phase, D. M.; Kumar, Ravindra; Joshi, B. C.

    2015-07-01

    Structural, optical and electronic structure of Al doped ZnO thin films grown using pulsed laser deposition on glass substrate are investigated. X-ray diffraction measurements reveal that all the films are textured along the c-axis and have wurtzite structure. Al doping in ZnO films leads to increase in grain size due to relaxation in compressive stress. Enhancement in band gap of ZnO films with the Al doping is also noticed which can be ascribed to the Brustein-Moss shift. The changes in the electronic structure caused by Al in the doped thin film samples are understood through X-ray absorption measurements.

  18. Optical, phonon and efficient visible and infrared photocatalytic activity of Cu doped ZnS micro crystals

    NASA Astrophysics Data System (ADS)

    Prasad, Neena; Balasubramanian, Karthikeyan

    2017-02-01

    We report, the enhanced photocatalytic behaviour of Cu doped ZnS micro crystals. ZnS and different concentrations of Cu doped ZnS microcrystals were prepared. X-ray diffraction confirms the crystalline and phase of the particles. Morphology and sizes were studied using Scanning Electron Microscopy (SEM). Recorded optical absorption spectra show a band for around 365 nm for pure ZnS, but there is a broad band in the near infrared regime for the Cu-doped ZnS microcrystals which are attributed to the d-d transitions of Cu2 + ions. Phonon properties of as-prepared samples were investigated using Raman spectroscopy. Present work we investigate the potential of ZnS and Cu doped ZnS as a photocatalyst. For this from the degradation of methylene blue dye in aqueous media the photocatalytic activity of pure and highest doped ZnS samples with the irradiation of white light and infrared, enhanced photocatalytic activity were observed. Mechanism of white light an IR light based photocatalytic activity is explained based on the electron-hole pair production.

  19. Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers

    SciTech Connect

    Alessi, A. Girard, S.; Di Francesca, D.; Boukenter, A.; Ouerdane, Y.; Reghioua, I.; Fanetti, M.; Martin-Samos, L.; Agnello, S.; Cannas, M.; Marcandella, C.; Richard, N.

    2015-08-28

    We performed electron paramagnetic resonance (EPR) measurements on γ and X ray irradiated Ge doped and Ge/F co-doped optical fibers. We considered three different drawing conditions (speed and tension), and for each type of drawing, we studied Ge and Ge/F doped samples having Ge doping level above 4% by weight. The EPR data recorded for the γ ray irradiated fibers confirm that all the samples exhibit a very close radiation response regardless of the drawing conditions corresponding to values used for the production of specialty fibers. Furthermore, as for the X irradiated materials, in the γ ray irradiated F co-doped fibers, we observed that the Ge(1) and the Ge(2) defects generation is unchanged, whereas it was enhanced for the E'Ge. In the various fibers, the comparison of the γ and X-ray induced concentrations of these kinds of Ge related defects indicates that the two irradiations induce similar effects regardless of the different employed dose rates and sources. Confocal microscopy luminescence results show that the starting content of the Germanium Lone Pair Center (GLPC) is neither strongly affected by the Ge content nor by the drawing conditions, and we consider the similarity of the GLPC content as key factor in determining many of the above reported similarities.

  20. Irradiation temperature effects on the induced point defects in Ge-doped optical fibers.

    NASA Astrophysics Data System (ADS)

    Alessi, A.; Reghioua, I.; Girard, S.; Agnello, S.; Di Francesca, D.; Martin-Samos, L.; Marcandella, C.; Richard, N.; Cannas, M.; Boukenter, A.; Ouerdane, Y.

    2017-02-01

    We present an experimental investigation on the combined effects of temperature and irradiation on Ge-doped optical fibers. Our samples were X-ray (10 keV) irradiated up to 5 kGy with a dose rate of 50 Gy(SiO2)/s changing the irradiation temperature in the range 233-573 K. After irradiation we performed electron paramagnetic resonance (EPR) and confocal microscopy luminescence (CML) measurements. The recorded data prove the generation of different Ge related paramagnetic point defects and of a red emission, different from that of the Ge/Si Non-Bridging Oxygen Hole center. Furthermore, by comparing the behaviour of the EPR signal of the Ge(1) as a function of the irradiation temperature with the one of the red emission we can exclude that this emission is originated by the Ge(1).

  1. Structural, electronic and optical properties of Cu-doped ZnO: experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Horzum, S.; Torun, E.; Serin, T.; Peeters, F. M.

    2016-06-01

    Experiments are supplemented with ab initio density functional theory (DFT) calculations in order to investigate how the structural, electronic and optical properties of zinc oxide (ZnO) thin films are modified upon Cu doping. Changes in characteristic properties of doped thin films, that are deposited on a glass substrate by sol-gel dip coating technique, are monitored using X-ray diffraction (XRD) and UV measurements. Our ab initio calculations show that the electronic structure of ZnO can be well described by DFT+U/? method and we find that Cu atom substitutional doping in ZnO is the most favourable case. Our XRD measurements reveal that the crystallite size of the films decrease with increasing Cu doping. Moreover, we determine the optical constants such as refractive index, extinction coefficient, optical dielectric function and optical energy band gap values of the films by means of UV-Vis transmittance spectra. The optical band gap of ZnO the thin film linearly decreases from 3.25 to 3.20 eV at 5% doping. In addition, our calculations reveal that the electronic defect states that stem from Cu atoms are not optically active and the optical band gap is determined by the ZnO band edges. Experimentally observed structural and optical results are in good agreement with our theoretical results.

  2. Chalcogenide amorphous nanoparticles doped poly (methyl methacrylate) with high nonlinearity for optical waveguide

    NASA Astrophysics Data System (ADS)

    Xue, Xiaojie; Nagasaka, Kenshiro; Cheng, Tonglei; Deng, Dinghuan; Zhang, Lei; Liu, Lai; Suzuki, Takenobu; Ohishi, Yasutake

    2015-03-01

    Nonlinear optical polymers show promising potential applications in photonics, for example, electro-optical devices. Poly (methyl methacrylate) (PMMA) is widely used in optical waveguides, integrated optics and optical fibers. However, PMMA has not been used for nonlinear optical waveguides since it has a low nonlinear refractive index. We successfully prepared chalcogenide amorphous nanoparticles doped PMMA that had a high nonlinearity. The As3S7 bulk glass was dissolved in propylamine to form a cluster solution. Then the As3S7/propylamine solution was added into methyl methacrylate (MMA) containing photoinitiator Irgacure 184 about 0.5 wt%. After well mixing the As3S7 nanoparticle doped MMA was transparent. Under the irradiation by a 365 nm UV lamp, As3S7 nanoparticles doped PMMA was obtained with yellow color. The third-order nonlinear optical susceptibility of As3S7 nanoparticles doped PMMA was investigated. An optical waveguide array based on the As3S7 nanoparticles doped PMMA composite of high nonlinearity was fabricated.

  3. Page Data Multiplexing for Vector Wave Memories Having Polarization Recording Material Doped with Aromatic Ketone Derivative

    NASA Astrophysics Data System (ADS)

    Ando, Toshio; Masaki, Kazuyoshi; Shimizu, Takehiro

    2013-09-01

    We have developed a new polarization recording material doped with the photodegradative aromatic ketone derivative AK1-H, modified from our conventional material AK1 for vector wave memories (VWMs) to improve signal stability as well as recording characteristics. 10-multiplex page data recording was performed for the first time in VWMs with AK1-H, exhibiting a signal-to-noise ratio of 3 or higher and an estimated symbol error rate of 10-4 or lower for most pages, respectively. VWM media having AK1-H were also found to show a much higher signal stability than those having the conventional material AK1.

  4. First principles study of magneto-optical properties of Fe-doped ZnO

    NASA Astrophysics Data System (ADS)

    Shaoqiang, Guo; Qingyu, Hou; Zhenchao, Xu; Chunwang, Zhao

    2016-12-01

    Studies on optical band gaps and absorption spectra of Fe-doped ZnO have conflicting conclusions, such as contradictory redshifted and blueshifted spectra. To solve this contradiction, we constructed models of un-doped and Fe-doped ZnO using first-principles theory and optimized the geometry of the three models. Electronic structures and absorption spectra were also calculated using the GGA+U method. Higher doping content of Fe resulted in larger volume of doped system, and higher total energy resulted in lower stability. Higher formation energy also led to more difficult doping. Meanwhile, the band gaps broadened and the absorption spectra exhibited an evident blue shift. The calculations were in good agreement with the experimental results. Given the unipolar structure of ZnO, four possible magnetic coupling configurations for Zn14Fe2O16 were calculated to investigate the magnetic properties. Results suggest that Fe doping can improve ferromagnetism in the ZnO system and that ferromagnetic stabilization was mediated by p-d exchange interaction between Fe-3d and O-2p orbitals. Therefore, the doped system is expected to obtain high stability and high Curie temperature of diluted magnetic semiconductor material, which are useful as theoretical bases for the design and preparation of the Fe-doped ZnO system's magneto-optical properties.

  5. Read Data Transfer Rate Estimation in Optical Phase Multilevel Recording

    NASA Astrophysics Data System (ADS)

    Kikukawa, Atsushi; Mikami, Hideharu; Ide, Tatsuro; Osawa, Kentaro; Watanabe, Koichi

    2012-08-01

    The feasibility of increasing the read data transfer rate (DTR) by introducing optical phase multilevel recording technology was investigated using computer simulations. The signals read back from phase marks suffer from strong intersymbol interference (ISI) when the phase marks are recorded with a linear symbol density comparable to that of current optical disc systems; thus, the partial response most-likely (PRML) method is essential. The increase in the decoder size is a serious problem when applying the PRML method to multilevel signal decoding; however, it was shown that this can be resolved by applying run-length limited (RLL) modulations. With these, it was shown that it is possible to decode 4-ary phase-modulated signals with satisfactory performance using PRML. Therefore, we conclude that it is possible to at least double the read DTR by introducing the optical phase multilevel recording technology.

  6. Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications.

    PubMed

    Thomas, Jérémie; Myara, Mikhaël; Troussellier, Laurent; Burov, Ekaterina; Pastouret, Alain; Boivin, David; Mélin, Gilles; Gilard, Olivier; Sotom, Michel; Signoret, Philippe

    2012-01-30

    We demonstrate for the first time a radiation-resistant Erbium-Doped Fiber exhibiting performances that can fill the requirements of Erbium-Doped Fiber Amplifiers for space applications. This is based on an Aluminum co-doping atom reduction enabled by Nanoparticules Doping-Process. For this purpose, we developed several fibers containing very different erbium and aluminum concentrations, and tested them in the same optical amplifier configuration. This work allows to bring to the fore a highly radiation resistant Erbium-doped pure silica optical fiber exhibiting a low quenching level. This result is an important step as the EDFA is increasingly recognized as an enabling technology for the extensive use of photonic sub-systems in future satellites.

  7. Optical and photocatalytic properties of Mn doped flower-like ZnO hierarchical structures

    NASA Astrophysics Data System (ADS)

    Ma, Qun; Lv, Xiangzhou; Wang, Yongqian; Chen, Jieyu

    2016-10-01

    A novel Mn doped flower-like ZnO hierarchical structures were successfully synthesized with a facile ion-exchange method. Structural properties of the synthesized photocatalysis have been investigated with XRD, FESEM equipped with energy dispersive spectroscopy, while UV-vis and PL spectroscopy were employed to study their optical properties. The inner structure of doped ZnO hierarchical structure can be finely transformed from nanosheets to nanorods and to nanoparticles with the increasing of doping contents. All the synthesized Mn/ZnO samples exhibit strong blue-violet emission. Furthermore, the optical absorption towards visible light of ZnO was significantly enhanced due to the incorporation of Mn ions. The photocatalytic results indicate that photocatalytic activity of ZnO was enhanced with the doping of Mn and there is an optimum Mn doping level, leading to the highest photocatalytic performance.

  8. Energetic, electronic and optical properties of lanthanide doped TiO{sub 2}: An ab initio LDA+U study

    SciTech Connect

    Mulwa, Winfred M.; Ouma, Cecil N.M.; Onani, Martin O.; Dejene, Francis B.

    2016-05-15

    Substitutional energies, thermodynamic charge transition levels and optical properties of lanthanide doped anatase TiO{sub 2} has been investigated using local density approximation with the Hubbard U correction (LDA+U) within the density functional theory formalism. All the lanthanides apart from La introduced impurity states in the host band gap on doping. The calculated substitutional energies indicate that it is possible to dope TiO{sub 2} with lanthanide ions. The optimal doping percentage was predicted to be ~3% and dopant levels resulting from Ce, Nd, Sm, Gd and Tm doping were found to possess negative U characteristics. In addition the calculated thermodynamic transition levels predicted Lu as not having any possible charge transitions within the host band gap. The calculated optical absorption coefficients indicate that lanthanide doping led to optical absorption in the visible regime. - Graphical abstract: Crystal structure of doped Sm doped TiO{sub 2} (RHS). Calculated PDOS and absorption spectra of Sm doped TiO{sub 2}. - Highlights: • Lanthanide doping significantly improved the optical properties of anatase TiO{sub 2}. • Lanthanide doping led to emission in the visible regions of the optical spectrum. • La, Ce, Pm, Sm, Eu, Gd, Tm, Yb and Lu doping gave good photocatalytic properties. • The optimum doping concentration in anatase TiO{sub 2} was found to be 2.78%.

  9. Optical and electrical properties of undoped and boron doped zinc oxide synthesized by chemical route

    SciTech Connect

    Bhattacharjee, Snigdha; Basu, Moumita; Roy, Asim

    2015-08-28

    We have synthesized and studied the boron doped ZnO nanostructure thin films. The crystallinity of undoped and boron (B) doped ZnO (BZO) has been studied from XRD results. Using the Debye-Scherrer Formula, the grain size has been evaluated, which was found to decrease with increased doping concentration. The optical and electrical properties of (1, 3, 5 wt%) B-doped ZnO (BZO) has been investigated with reference to the undoped counterpart. The UV-VIS spectroscopic analysis revealed that the transmittance for undoped ZnO is maximum and it decreases with doping up to 3% but increases for 5% BZO. The dark as well as photo current–voltage (I–V) characteristics have been investigated in details and the changes occurred in the I-V characteristics with doping concentration as well as under illumination are also quite significant.

  10. Quantum-dot based nanothermometry in optical plasmonic recording media

    SciTech Connect

    Maestro, Laura Martinez; Zhang, Qiming; Li, Xiangping; Gu, Min; Jaque, Daniel

    2014-11-03

    We report on the direct experimental determination of the temperature increment caused by laser irradiation in a optical recording media constituted by a polymeric film in which gold nanorods have been incorporated. The incorporation of CdSe quantum dots in the recording media allowed for single beam thermal reading of the on-focus temperature from a simple analysis of the two-photon excited fluorescence of quantum dots. Experimental results have been compared with numerical simulations revealing an excellent agreement and opening a promising avenue for further understanding and optimization of optical writing processes and media.

  11. Permanent recording of light helicity on optically inactive metal surfaces.

    PubMed

    Wang, Jincheng; Guo, Chunlei

    2006-12-15

    We report on an unusual permanent recording of light helicity on optically achiral metals. Following a number of circularly polarized (CP) or elliptically polarized (EP) femtosecond laser pulses, well-defined periodic surface structures are found on metal surfaces. These surface structures show different orientation when formed by left CP/EP compared with right CP/EP light. The formation of these structures is attributed to the interference between the incident light and the excited surface plasmons. To our knowledge, this is the only phenomenon that can permanently record light helicity with an optically inactive material.

  12. Thermomagnetic recording and magnetic-optic playback system

    NASA Technical Reports Server (NTRS)

    Lewicki, G. W.; Guisinger, J. E. (Inventor)

    1971-01-01

    A magnetic recording and magneto-optic playback system is disclosed wherein thermomagnetic recording is employed. A transparent isotropic film is heated along a continuous path by a focused laser beam. As each successive area of the path is heated locally to the vicinity of its Curie point in the presence of an applied magnetic field, a magneto-optic density is established proportional to the magnetic field and fixed in place as the area cools once the laser beam moves on to an adjacent area. To play back the recorded data, the intensity of the laser beam is reduced to avoid reaching the vicinity of the Curie point of the film as it is scanned by the laser beam in the same manner as for recording. A Faraday effect analyzer and photo detector are employed as a transducer for producing an output signal.

  13. Optical properties of Sm3+-doped cadmium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Sailaja, S.; Nageswara Raju, C.; Adinarayana Reddy, C.; Deva Prasad Raju, B.; Jho, Young-Dahl; Sudhakar Reddy, B.

    2013-04-01

    This article reports on the optical properties of cadmium bismuth borate (CdBiB) glasses doped with various concentrations of Sm3+ ions. FT-IR spectra of Sm3+:CdBiB glasses have been used to identify the functional groups present in the composition of the glasses. The emission spectra of Sm3+:CdBiB glasses have shown an intense reddish-orange emission at 600 nm (4G5/2 → 6H7/2). From the absorption spectrum, the experimental oscillator strengths were determined and have been used to calculate the Judd-Ofelt (J-O) intensity parameters. By using the J-O intensity parameters, various radiative properties have been studied and computed for the various transitions of Sm3+:CdBiB glasses. Based on the values of stimulated emission cross section, radiative transition rate and the branching ratio of the emission transition 4G5/2 → 6H7/2, it is suggested that 1.0 mol% of Sm3+:CdBiB glass is the promising luminescent material towards lasing applications. The nature of luminescence decay curves of 4G5/2 level with different concentrations of Sm3+:CdBiB glasses are also reported.

  14. Solvothermal synthesis and study of nonlinear optical properties of nanocrystalline thallium doped bismuth telluride

    SciTech Connect

    Molli, Muralikrishna; Parola, Sowmendran; Avinash Chunduri, L.A.; Aditha, Saikiran; Sai Muthukumar, V; Mimani Rattan, Tanu; Kamisetti, Venkataramaniah

    2012-05-15

    Nanocrystalline Bismuth telluride and thallium (4 mol %) doped Bismuth telluride were synthesized through hydrothermal method. The as-prepared products were characterized using Powder X-ray Diffraction, High Resolution Transmission Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, UV-Visible spectroscopy and Fourier Transform Infrared Spectroscopy. Powder XRD results revealed the crystalline nature of the obtained phases. HRTEM showed the particle-like morphology of the products. The decrease in the absorption coefficient due to thallium doping was observed in FTIR spectra. The intensity dependent nonlinear optical properties of nanocrystalline bismuth telluride and thallium doped bismuth telluride were studied using the Z-scan technique in open-aperture configuration. Bismuth telluride doped with thallium showed enhanced nonlinear optical response compared to pristine bismuth telluride and hence could be used as a potential candidate for optical power limiting applications. - Graphical Abstract: Nonlinear transmission (Z-scan) curves of nanocrystalline bismuth telluride ({Delta}) and thallium doped bismuth telluride ({open_square}). Thallium doped bismuth telluride showed enhanced nonlinear absorption compared to bismuth telluride. Inset: TEM micrograph of bismuth telluride nanocrystallites. Highlights: Black-Right-Pointing-Pointer Synthesis of Nanocrystalline Bi{sub 2}Te{sub 3} and Thallium doped Bi{sub 2}Te{sub 3} through solvothermal method. Black-Right-Pointing-Pointer Reduced absorption coefficient due to thallium doping found from IR spectroscopy. Black-Right-Pointing-Pointer Open-aperture Z-scan technique for nonlinear optical studies. Black-Right-Pointing-Pointer Two photon absorption based model for theoretical fitting of Z-scan data. Black-Right-Pointing-Pointer Enhanced nonlinear absorption in Thallium doped Bi{sub 2}Te{sub 3} - potential candidate for optical power limiting applications.

  15. Optical Dispersion, Permittivity Spectrum and Thermal-Lensing Effect in Nickel-Doped Zinc Sulfide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Abbasi, F.; Koushki, E.; Majles Ara, M. H.; Sahraei, R.

    2017-07-01

    In this paper, Ni-doped ZnS (ZnS:Ni2+) nanoparticles (NPs) have been prepared through a chemical method. The average size of the particle is 45 nm. Thin films of the particles have been prepared by using the spin-coating method. The linear and nonlinear optical properties of Ni-doped ZnS thin films and the colloidal solution of them have been studied widely. Using a precise numerical method, the refractive index curve (dispersion curve), absorption coefficient and optical permittivity of Ni-doped ZnS film have been obtained. Using these values, the absorption coefficient of the colloidal solution of Ni-doped ZnS particles has been simulated and compared with experimental results. Finally, using the z-scan method at low laser irradiation, the thermo-optical effect has been studied and the nonlinear refractive index due to this effect has been reported.

  16. Bidirectional optical bistability in a dual-pumped erbium doped fiber ring laser.

    PubMed

    Lai, W J; Shum, P; Binh, L

    2004-11-15

    We investigate bidirectional optical wave propagations in a dual-pumped erbium doped fiber ring laser without isolator, and observe optical bistability behaviors. Consequently, we propose and construct a NOLM-NALM fiber ring laser to demonstrate and exploit this bidirectional optical bistability phenomenon in optical switching by introducing two tunable variable ratio couplers in the system. Numerical analyses based on the proposed laser structure have also been demonstrated corroborated with the experimental results.

  17. Enumerative Encoding of TMTR Codes for Optical Recording Channel

    NASA Astrophysics Data System (ADS)

    Tsai, Hui-Feng

    2010-12-01

    We propose a new time-varying maximum transition run (TMTR) code for DVD recording systems, which has a rate [InlineEquation not available: see fulltext.] higher than the EFMPlus code and a lower power spectral density (PSD) at low frequencies. An enumeration method for constructing the new TMTR code is presented. Computer simulations indicate that the proposed TMTR code outperforms the EFMPlus code in error performance when applied to partial response optical recording channels.

  18. Parametric frequency upconversion, optical fiber transmission, and streak camera recording

    SciTech Connect

    Lowry, M.E.; Rotter, M.D.

    1987-01-30

    The use of optical fiber for the transmission of information over relatively long distances is being recognized as the only viable solution to many data transmission problems, particularly those requiring high information density and faithful temporal content. This necessary reliance upon the optical carrier has meant that the image-tube based optical streak camera is often the instrument of choice for recording single-shot multi-parameter events with high temporal resolution. However, current photocathode technology is incompatible with the trend of the optical fiber industry toward the use of the 1300 to 1600 nm wavelength regime. To retain the advantages of optical streak-camera recording and optical fiber transmission, a way must be found to ''upconvert'' the optical carrier to higher energy. This report describes the use of an intense lazer pump beam coincident with the IR signal into a non-linear crystal (LiIO/sub 3/) to increase the signal's frequency. A beam splitter is used to separate the signal from the pump beam at the detector. The physical theory underlying this process is described. (JDH)

  19. Use of Ga Doping to Suppress Optical Damage in Near-Stoichiometric LiNbO3 Crystals

    NASA Astrophysics Data System (ADS)

    Nakamura, Masaru; Takekawa, Shunji; Liu, Yuowen; Kitamura, Kenji

    2009-02-01

    We investigated the effect of Ga doping on optical damage (photorefractive damage) in near-stoichiometric LiNbO3 (SLN) crystals. SLN crystals doped with Ga (Ga:SLN) were grown from a Li-rich solution by a top-seeded solution growth method. The optical damage resistance of the crystals was investigated at 532 nm. Crystals with a Ga doping concentration of at least 0.49 mol % showed no optical damage. The Ga doping shifted the OH- absorption peak position from 2.88 to 2.85 µm for crystals with a 0.49 mol % concentration. This concentration is lower than the 1 mol % Mg doping concentration required to suppress optical damage in SLN crystals. This attractive optical damage resistance characteristic makes Ga:SLN crystals another candidate as an optical damage resistant material, in addition to Sc-doped SLN crystals, for applications such as electrooptic devices and quasi-phase-matched frequency converters.

  20. Optical and electrochemical properties of optically transparent, boron-doped diamond thin films deposited on quartz.

    PubMed

    Stotter, Jason; Zak, Jerzy; Behler, Zack; Show, Yoshiuki; Swain, Greg M

    2002-12-01

    The optical and electrochemical properties of transparent, boron-doped diamond thin film, deposited on quartz, are discussed. The films were deposited by microwave-assisted chemical vapor deposition, for 1-2 h, using a 0.5% CH4/H2 source gas mixture at 45 Torr and 600 W of power. A high rate of diamond nucleation was achieved by mechanically scratching the quartz. This pretreatment leads to the formation of a continuous film, in a short period of time, which consists of nanometer-sized grains of diamond. The thin-film electrode was characterized by cyclic voltammetry, atomic force microscopy, and UV-visible absorption spectrophotometry. The film's electrochemical response was evaluated using Ru(NH3)6(3+/2+) in 1 M KCl, Fe(CN)6(3-/4-) in 1 M KCl, and chlorpromazine (CPZ) in 10 mM HClO4. The film exhibited a low voltammetric background current and a stable and active voltammetric response for all three redox systems. The optical transparency of the polycrystalline film in the visible region was near 50% and fairly constant between 300 and 800 nm. The optical and electrical properties were extremely stable during 48-h exposure tests in various aqueous (HNO3, NaOH) solutions and nonaqueous (e.g., chlorinated) solvents. The properties were also extremely stable during anodic and cathodic potential cycling in harsh aqueous environments. This stability is in stark contrast to what was observed for an indium-doped tin oxide thin film coated on quartz. The spectroelectrochemical response (transmission mode) for CPZ was studied in detail, using a thin-layer spectroelectrochemical cell. Thin-layer voltammetry, potential step/ absorption measurements, and detection analytical figures of merit are presented. The results demonstrate that durable, stable, and optically transparent diamond thin films, with low electrical resistivity (approximately 0.026 omega x cm) laterally through the film, can be deposited on quartz.

  1. Optical induction of Bessel-like lattices in methyl-red doped liquid crystal cells

    NASA Astrophysics Data System (ADS)

    Mantashyan, Paytsar; Drampyan, Rafael; Beeckman, Jeroen; Willekens, Oliver; Neyts, Kristiaan

    2015-03-01

    The optical induction of annular photonic lattices by a traveling Bessel beam has been investigated in Methyl-red (MR) doped nematic liquid crystal (LC). Non-diffracting Bessel beams were formed by an axicon. The induced Bessel-like lattice had a ~15 μm period in the radial direction. The lattice was tested by measuring the forward diffracted power of the recording Bessel beam. The dependency on the angle between the polarization of the laser beam and the director of the LC and on the axial position of the LC cell had been investigated. A diffraction efficiency of 14% had been obtained. Investigations have been performed for different MR dye doping concentrations. An erasure time of the lattice of 60 s has been determined by a 532 nm probe Gaussian beam of 2 mW in a LC cell with MR dye concentration of 1.15 wt%. The induced periodically varying refractive index in the LC medium is analogous to microstructured fibers and allows the study of light localization and soliton behavior in highly nonlinear waveguide arrays.

  2. Facile synthesis and improved optical activity in ZnO nanocrystallites doped with coinage metals

    NASA Astrophysics Data System (ADS)

    Sahu, Dojalisa; Panda, N. R.; Acharya, B. S.

    2015-06-01

    We report the growth of well-oriented rod and flower-like nanostructures of ZnO doped with copper, gold and silver synthesized by sonochemical method. The nanostructures were grown in a nutrient solution made of zinc nitrate (Zn(NO3)2 . 6H2O) and ammonia at low temperature with varying the dopant. XRD, TEM, UV-VIS, photoluminescence and FTIR spectra were recorded to study the crystallinity, microstructure and optical properties of the samples. XRD results show the formation of hexagonal wurtzite phase of ZnO with changing lattice parameters with doping. Both direct and indirect evidences were obtained from the XRD pattern confirming the incorporation of the dopant. Enhanced UV absorbance and PL emissions for ZnO has been observed and the role of Cu, Ag and Au in altering these properties has been investigated. Shift in UV band and evolution of new visible emission bands in the Pl spectra have been explained on the basis of incorporation of impurity occupying different states in the band gap of ZnO.

  3. Ellipsometric Characterization of Optical, Magneto - and Magnetic Recording Media.

    NASA Astrophysics Data System (ADS)

    Yan, Zheng

    This dissertation presents nondestructive optical characterization methods developed for thin films and bulk materials. These methods can be used to accurately measure polarization rotation and ellipticity, the reflection and transmission coefficients, the wavelength dependence of birefringence, Kerr rotation and ellipticity; the dielectric tensor of magneto-optical (MO) media, as well as the optical constants and thickness of thin film stacks. A series of optical, magneto-optical and magnetic recording media have been studied. A variable angle, multi-wavelength ellipsometer, and a MO Kerr spectrometer were used for these measurements. A general-purpose computer program has been used to analyze the experimental data. The in -plane and vertical birefringence of polycarbonate plastic substrates of optical disks have been measured for wavelengths between 360 nm and 860 nm, which covers the full range of interest for blue as well as for the current red and infrared recording. A dielectric tensor database for MO thin film materials of rm(BiDy)_3(FeGa) _5O_{12} garnet, MnBi, multilayered Co/Pt, amorphous TbFeCoTa, fcc cobalt, and Heusler alloy PtMnSb has been established in the wavelength range of 400-780 nm. These materials are then evaluated based on the intrinsic MO figure of merit. In the area of hard disk magnetic recording, the optical constants of nickel phosphorous (NiP) coated substrate, CoNi/NiP magnetic film on NiP coated substrate, and the carbon overcoating layer have been obtained at several wavelengths. The excellent agreement between theory and experiment has shown that this nondestructive method is a sensitive tool for the characterization of optical thin film stacks.

  4. Highly Doped Polycrystalline Silicon Microelectrodes Reduce Noise in Neuronal Recordings In Vivo

    PubMed Central

    Saha, Rajarshi; Jackson, Nathan; Patel, Chetan; Muthuswamy, Jit

    2013-01-01

    The aims of this study are to 1) experimentally validate for the first time the nonlinear current-potential characteristics of bulk doped polycrystalline silicon in the small amplitude voltage regimes (0–200 μV) and 2) test if noise amplitudes (0–15 μV) from single neuronal electrical recordings get selectively attenuated in doped polycrystalline silicon microelectrodes due to the above property. In highly doped polycrystalline silicon, bulk resistances of several hundred kilo-ohms were experimentally measured for voltages typical of noise amplitudes and 9–10 kΩ for voltages typical of neural signal amplitudes (>150–200 μV). Acute multiunit measurements and noise measurements were made in n = 6 and n = 8 anesthetized adult rats, respectively, using polycrystalline silicon and tungsten microelectrodes. There was no significant difference in the peak-to-peak amplitudes of action potentials recorded from either microelectrode (p > 0.10). However, noise power in the recordings from tungsten microelectrodes (26.36 ± 10.13 pW) was significantly higher (p < 0.001) than the corresponding value in polycrystalline silicon microelectrodes (7.49 ± 2.66 pW). We conclude that polycrystalline silicon microelectrodes result in selective attenuation of noise power in electrical recordings compared to tungsten microelectrodes. This reduction in noise compared to tungsten microelectrodes is likely due to the exponentially higher bulk resistances offered by highly doped bulk polycrystalline silicon in the range of voltages corresponding to noise in multiunit measurements. PMID:20667815

  5. Biochrome-reversing medium films for optical recording

    NASA Astrophysics Data System (ADS)

    Vsevolodov, N. N.; Ivanitskii, G. R.; Soskii, M. S.; Taranenko, V. B.

    1986-04-01

    The possibility of using photosensitive biological complexes as a photorecording material is demonstrated experimentally using bacteriorhodopsin as an example. The principal photoresponse characteristics of the bacteriorhodopsin films, referred to as BR biochrome films, are presented. It is shown that BR biochrome films can be used for bit mapping, polarization holograms and wavefront reversal recording, and studying polarization-induced changes and optical bistability effects.

  6. Effect of cobalt doping on structural, optical and redox properties cerium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ansari, Anees A.; Labis, J.; Alam, M.; Ramay, Shahid M.; Ahmad, N.; Mahmood, Asif

    2016-03-01

    Cobalt-doped ceria nanoparticles were synthesized using the polyol method under co-precipitation hydrolysis. The structural, morphological, optical and redox properties were observed to investigate the influence of different concentration of cobalt ion doping on the prepared CeO2 nanomaterials in terms of X-ray diffraction, field-emission transmission electron microscopy, thermogravimetric analysis, Fourier-transform infrared spectroscopy, UV/vis absorption spectroscopy and temperature program reduction techniques. The optical band gap energy was calculated from the optical absorption spectra for doped ceria nanoparticles, which have been found to be 2.68, 2.77, and 2.82 eV for the 2, 4, and 7 mol% Co ion-doped CeO2 nanoparticles, respectively. As observed, the band gap energies increases as the doping Co ion concentrations increased, which could be due to significant increased oxygen vacancies with Co doping. The synergistic interaction between Co and CeO2 was the main factor responsible for high catalytic activity of cobalt-doped CeO2 model catalysts.

  7. Optical Studies of Doping-Characteristics in Boron-Doped a-Si:H Films Prepared by the Photo-CVD Technique

    NASA Astrophysics Data System (ADS)

    Mizukawa, Satoshi; Sato, Katsuaki; Yasuhiro, Kazumichi; Isawa, Mikio; Kuroiwa, Koichi; Tarui, Yasuo

    1989-06-01

    We measured subgap optical absorption and photoluminescence spectra in boron-doped a-Si:H films prepared by photochemical vapor deposition (photo-CVD) techniques. We estimated the Urbach energy (E0) and the density of defect states (Ns) from the subgap optical absorption spectra; the value of Ns was estimated from PL spectra. We conclude that Ns is approximately proportional to a square root of the boron doping level (B2H6/SiH4) and that E0 increases linearly with an increase in the doping level. It is found that the doping mechanism proposed by Street applies to the photo-CVD films.

  8. Optical signal inverter of erbium-doped yttrium aluminum garnet with red shift of laser diodes.

    PubMed

    Maeda, Y

    1994-08-10

    An optical signal inverter was demonstrated in a simple structure that combined a laser diode with Er-doped YAG crystal. The optical signal inversion occurred at a response time of 7 ns and was caused by the decrease of transmission of Er:YAG against the red shift of the wavelength of the laser diode.

  9. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    PubMed

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.

  10. Study of optical properties of cerium ion doped barium aluminate phosphor

    NASA Astrophysics Data System (ADS)

    Lohe, P. P.; Omanwar, S. K.; Bajaj, N. S.; Belsare, P. D.

    2016-05-01

    In the recent years due to their various optical and technological applications aluminate materials have attracted attention of several researchers. When these materials are doped with rare earth ions they show properties favorable for many optical applications such as high quantum efficiencies. These materials are used in various applications such as lamp phosphors, optically and thermoluminescence dosimeter etc Barium aluminate BaAl2O4 doped with Ce is well known long lasting phosphor. This paper reports synthesis of BaAl2O4: Ce phosphor prepared by a simple combustion synthesis. The samples were characterized for the phase purity, chemical bonds and luminescent properties.

  11. Study of optical properties of cerium ion doped barium aluminate phosphor

    SciTech Connect

    Lohe, P. P.; Omanwar, S. K.; Bajaj, N. S.; Belsare, P. D.

    2016-05-06

    In the recent years due to their various optical and technological applications aluminate materials have attracted attention of several researchers. When these materials are doped with rare earth ions they show properties favorable for many optical applications such as high quantum efficiencies. These materials are used in various applications such as lamp phosphors, optically and thermoluminescence dosimeter etc Barium aluminate BaAl{sub 2}O{sub 4} doped with Ce is well known long lasting phosphor. This paper reports synthesis of BaAl{sub 2}O{sub 4}: Ce phosphor prepared by a simple combustion synthesis. The samples were characterized for the phase purity, chemical bonds and luminescent properties.

  12. Linear laser diode arrays for improvement in optical disk recording

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.

    1990-01-01

    The development of individually addressable laser diode arrays for multitrack magneto-optic recorders for space stations is discussed. Three multi-element channeled substrate planar (CSP) arrays with output power greater than 30 mW with linear light vs current characteristics and stable single mode spectra were delivered to NASA. These devices have been used to demonstrate for the first time the simultaneous recording of eight data tracks on a 14-inch magneto-optic erasable disk. The yield of these devices is low, mainly due to non-uniformities inherent to the LPE growth that was used to fabricate them. The authors have recently developed the inverted CSP, based on the much more uniform MOCVD growth techniques, and have made low threshold quantum well arrays requiring about three times less current than the CSP to deliver 30 mW CW in a single spatial mode. The inverted CSP is very promising for use in space flight recorder applications.

  13. Dibenzotetraaza [14] annulene materials for recordable blue laser optical disc

    NASA Astrophysics Data System (ADS)

    Bin, Yuejing; Zhao, Fuqun; Huang, Lei; Li, Zhongyu; Zhang, Fushi

    2008-03-01

    Phthalocyanine materials have successfully been applied in infrared ray optical disc systems. Seeking for the phthalocyanine-analogous materials with great conjugate macrocyclic π bond system is the key for new materials research of super high density blue laser optical storage. Dibenzotetraaza [14] annulene have the similar macrocyclic structure. It was used as a building block for the preparation of multi-component materials matched the requirement of recordable blue laser optical disc. Ester substituents have been generated with oxalyl dichloride (or phosgene) and appropriate HO-function-containing substrates. A range of new complexes equipped with ester groups derived from various alcohols and phenols have been prepared. The new products have been characterized by UV-Vis spectrometer, TGA, refractive index of the organic films. These kinds of materials have suitable light and thermal sensitivity, and it is a valuable material for blue laser optical storage.

  14. Single crystal EPR, optical absorption and superposition model study of Cr 3+ doped ammonium dihydrogen phosphate

    NASA Astrophysics Data System (ADS)

    Kripal, Ram; Pandey, Sangita

    2010-06-01

    The electron paramagnetic resonance (EPR) studies are carried out on Cr 3+ ion doped ammonium dihydrogen phosphate (ADP) single crystals at room temperature. Four magnetically inequivalent sites for chromium are observed. No hyperfine structure is obtained. The crystal-field and spin Hamiltonian parameters are calculated from the resonance lines obtained at different angular rotations. The zero field and spin Hamiltonian parameters of Cr 3+ ion in ADP are calculated as: | D| = (257 ± 2) × 10 -4 cm -1, | E| = (79 ± 2) × 10 -4 cm -1, g = 1.9724 ± 0.0002 for site I; | D| = (257 ± 2) × 10 -4 cm -1, | E| = (77 ± 2) × 10 -4 cm -1, g = 1.9727 ± 0.0002 for site II; | D| = (259 ± 2) × 10 -4 cm -1, | E| = (78 ± 2) × 10 -4 cm -1, g = 1.9733 ± 0.0002 for site III; | D| = (259 ± 2) × 10 -4 cm -1, | E| = (77 ± 2) × 10 -4 cm -1, g = 1.973 ± 0.0002 for site IV, respectively. The site symmetry of Cr 3+ doped single crystal is discussed on the basis of EPR data. The Cr 3+ ion enters the lattice substitutionally replacing the NH 4+ sites. The optical absorption spectra are recorded in 195-925 nm wavelength range at room temperature. The energy values of different orbital levels are determined. On the basis of EPR and optical data, the nature of bonding in the crystal is discussed. The calculated values of Racah interelectronic repulsion parameters ( B and C), cubic crystal-field splitting parameter ( Dq) and nephelauxetic parameters ( h and k) are: B = 640, C = 3070, Dq = 2067 cm -1, h = 1.44 and k = 0.21, respectively. ZFS parameters are also determined using Bkq parameters from superposition model.

  15. Thermal and optical properties of Tm3+ doped tellurite glasses.

    PubMed

    Ozen, G; Demirata, B; Oveçoğlu, M L; Genç, A

    2001-02-01

    Ultraviolet, visible (UV/VIS) and differential thermal analysis (DTA) measurements were carried out in order to investigate the optical and thermal properties of various 0.5 mol.% Tm2O3 containing (1 - x)TeO2 + xLiCl glasses in molar ratio. The samples were prepared by fusing the mixture of their respective reagent grade powders in a platinum cricuble at 750 degrees C for 30 min. DTA curves taken in the 23-600 degrees C temperature range with a heating rate of 10 degrees C/min reveal a change in the value of the glass transition temperature, Tg, while melting was not observed for the glasses containing LiCl content less than 50 mol.%. These glasses were found to be moisture-resistant. However, the glasses with LiCl content higher than 50 mol.%, in which a melting peak was observed at Tc = 401 degrees C, were moisture-sensitive. Absorption measurements in the UV/VIS region of the glasses without Tm2O3 content show that the Urbach cutoff occurs at about 320 nm and, is relatively independent of the LiCl content. Six absorption bands were observed in the Tm2O3 doped glasses corresponding to the absorption of the 1G4, 3F2, 3F3 and 3F4, 3H5 and 3H4 levels from the 3H6 ground level of Tm3+ ions. The spectra also show that the integrated absorption cross-section of each band depends on the glass composition. Judd-Ofelt theory was used to determine the Judd-Ofelt parameters as well as the radiative transition probabilities for the metastable levels of Tm3+ ions in (0.3)LiCl + (0.7) TeO2: 0.01 Tm2O3 glass which is moisture-resistant.

  16. Electrical and Optical Properties of Hydrogen Doped Aluminum-Doped Zinc Oxide Thin Films for Low Cost Applications.

    PubMed

    Park, Yong Seob; Park, Young; Kwon, Samyoung; Kim, Eung Kwon; Choi, Wonseok; Kim, Donguk; Kim, Minha; Lee, Jaehyeong

    2016-05-01

    Aluminum-doped zinc oxide (AZO) thin films were prepared on glass substrate using a magnetron sputtering system. In this work, a powder target was used as a source material for low cost applications, instead of a conventional sintered ceramic target. The effects of the hydrogen gas ratio on the electrical and optical properties of the AZO films. The hydrogen doped AZO (AZO:H) films had a hexagonal polycrystalline structure. A small amount of hydrogen gas deteriorated the electrical and optical properties of the AZO:H films. However, these properties improved, as the H2/(H2 + Ar) gas ratio increased. The AZO:H films grown at an H2/(H2+Ar) ratio of 10% showed good properties for low cost applications, such as a low resistivity of 1.35 x 10(-3) Ω-cm, high average transmittance of 83.1% in the visible range of light.

  17. Optical absorption and heating rate dependent glass transition in vanadyl doped calcium oxy-chloride borate glasses

    NASA Astrophysics Data System (ADS)

    Dahiya, M. S.; Khasa, S.; Agarwal, A.

    2015-04-01

    Some important results pertaining to optical and thermal properties of vanadyl doped oxy-halide glasses in the chemical composition CaCl2-CaO-B2O3 are discussed. These glasses have been prepared by conventional melt quench technique. From X-ray diffraction (XRD) profiles the amorphous nature of the doped glasses has been confirmed. The electronic polarizability is calculated and found to increase with increase in chloride content. The optical absorption spectra have been recorded in the frequency range of 200-3200 nm. Recorded spectra are analyzed to evaluate cut-off wavelength (λcut-off), optical band gap (Eg), band tailing (B), Urbach energy (ΔE) and refractive index (n). Thermal analysis has been carried out for the prepared glasses at three different heating rates viz. 5, 10 and 20 °C/min. The glass transition temperature (Tg) along with thermal activation energy (Ea) corresponding to each heating rate are evaluated from differential scanning calorimetry (DSC) thermographs. It is found that Ea decrease and Tg increase with increase in heating rate. The variation in Tg is also observed with the substitution of calcium chloride in place of calcium oxide. The increasing and higher values of Ea suggest that prepared glasses have good thermal stability. Variation in Tg and Eg suggests that Cl- anions enter into the voids of borate network at low concentrations (<5.0%) and contribute to the network formation at high concentration (>5.0%).

  18. Structural, morphological, optical and electrical properties of spray deposited lithium doped CdO thin films

    NASA Astrophysics Data System (ADS)

    Velusamy, P.; Babu, R. Ramesh; Ramamurthi, K.

    2016-05-01

    In the present work, CdO and Li doped CdO thin films were deposited on microscopic glass substrates at 300˚C by a spray pyrolysis experimental setup. The deposited CdO and Li doped CdO thin films were subjected to XRD, SEM, UV-VIS spectroscopy and Hall measurement analyses. XRD studies revealed the polycrystalline nature of the deposited films and confirmed that the deposited CdO and Li doped CdO thin films belong to cubic crystal system. The Scanning electron microscopy analysis revealed the information on shape of CdO and Li doped CdO films. Electrical study reveals the n-type semiconducting nature of CdO and the optical band gap is varied between 2.38 and 2.44 eV, depending on the Li doping concentrations.

  19. Structural, morphological, optical and electrical properties of spray deposited lithium doped CdO thin films

    SciTech Connect

    Velusamy, P.; Babu, R. Ramesh; Ramamurthi, K.

    2016-05-23

    In the present work, CdO and Li doped CdO thin films were deposited on microscopic glass substrates at 300°C by a spray pyrolysis experimental setup. The deposited CdO and Li doped CdO thin films were subjected to XRD, SEM, UV-VIS spectroscopy and Hall measurement analyses. XRD studies revealed the polycrystalline nature of the deposited films and confirmed that the deposited CdO and Li doped CdO thin films belong to cubic crystal system. The Scanning electron microscopy analysis revealed the information on shape of CdO and Li doped CdO films. Electrical study reveals the n-type semiconducting nature of CdO and the optical band gap is varied between 2.38 and 2.44 eV, depending on the Li doping concentrations.

  20. Optical nonlinearities of iron doped zinc sulphide quantum dots

    NASA Astrophysics Data System (ADS)

    Cinumon, K. V.; Prasanth, S.; Raj, D. Rithesh; Vineeshkumar, T. V.; Pillai, V. P. Mahadevan; Sudarsanakumar, C.

    2017-05-01

    Polyethylene glycol (PEG) capped pure and Fe doped ZnS nanoparticles were successfully synthesized by chemical precipitation method. Cubic zinc blende phase of the samples was confirmed from X-ray diffraction. The average grain size was found to be in the range of 2-3 nm and was confirmed with TEM. The undoped and doped ZnS samples show blue emission with emission wavelength at 360 nm. A rapid luminescence quenching with increasing dopant concentration was observed. The nonlinear absorption coefficients of the doped and undoped samples were calculated using Z-scan technique.

  1. Structural, optical and photocatalytic studies on pure and transition metal ion doped ZnO-graphene nanocomposites

    NASA Astrophysics Data System (ADS)

    Beura, Rosalin; Thangadurai, P.

    2017-05-01

    This work reports the structural, optical and photocatalytic properties of nanocomposites made with graphene and transition metal ion doped ZnO, the graphene-ZnO nanocomposite. The doped and the un-doped ZnO were prepared by chemical method and then the nanocomposites were made. Structural confirmation was done by XRD and Raman spectroscopy. Optical properties were studied by UV-Vis and PL spectroscopies. Photocatalytic activity on the degradation of an industrial dye was studied. It was observed that the nanocomposite with transition metal ion doped ZnO have a higher degradation efficiency compared to the same with un-doped ZnO.

  2. Effect of temperature on the active properties of erbium-doped optical fibres

    SciTech Connect

    Kotov, L V; Ignat'ev, A D; Bubnov, M M; Likhachev, M E

    2016-03-31

    We have studied the effect of heating on the performance of erbium-doped fibre based devices and determined temperaturedependent absorption and emission cross sections of the erbium ion in silica glass. The results demonstrate that heating of fibres in claddingpumped high-power (∼100 W) erbium-doped fibre lasers causes no significant decrease in their efficiency. In contrast, superluminescent sources operating in the long-wavelength region (1565 – 1610 nm) are extremely sensitive to temperature changes. (fiber optics)

  3. All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber

    SciTech Connect

    Sun, L.; Jiang, S.; Zuegel, J. D.; Marciante, J. R.

    2010-01-01

    An all-fiber isolator with 17 dB optical isolation is demonstrated. The fiber Faraday rotator uses 56 wt. % terbium (Tb)-doped silicate fiber, and the fiber polarizers are Corning SP1060 single-polarization fiber. Finally, the effective Verdet constant of the Tb-doped fiber is measured to be -24.5±1.0 rad/(Tm) at 1053 nm, which is 20 times larger than silica fiber and 22% larger than previously reported results.

  4. All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber.

    PubMed

    Sun, L; Jiang, S; Zuegel, J D; Marciante, J R

    2010-03-01

    An all-fiber isolator with 17 dB optical isolation is demonstrated. The fiber Faraday rotator uses 56 wt. % terbium (Tb)-doped silicate fiber, and the fiber polarizers are Corning SP1060 single-polarization fiber. The effective Verdet constant of the Tb-doped fiber is measured to be -24.5+/-1.0 rad/(Tm) at 1053 nm, which is 20 times larger than silica fiber and 22% larger than previously reported results.

  5. Optical properties of ZnS and Cu2+ doped ZnS nanostructures

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Chakrabarty, N.; Bera, S.; Chakraborty, A. K.

    2015-06-01

    Flower like ZnS and ZnS:Cu2+ nanostructures are developed by simple chemical route. Structural, morphological and optical characterizations are carried out by XRD, FESEM, UV-Visible absorption spectroscopy and FTIR. Analysis indicates successful incorporation of Cu2+ ions into ZnS lattice. Optical studies show that the copper doped ZnS enhances the optical property of pristine ZnS by harvesting more visible light.

  6. Optical voice recorder by off-axis digital holography.

    PubMed

    Matoba, Osamu; Inokuchi, Hiroki; Nitta, Kouichi; Awatsuji, Yasuhiro

    2014-11-15

    An optical voice recorder capable of recording and reproducing propagating sound waves by using off-axis digital holography, as well as quantitative visualization, is presented. Propagating sound waves temporally modulate the phase distribution of an impinging light wave via refractive index changes. This temporally modulated phase distribution is recorded in the form of digital holograms by a high-speed image sensor. After inverse propagation using Fresnel diffraction of a series of the recorded holograms, the temporal phase profile of the reconstructed object wave at each three-dimensional position can be used to reproduce the original sound wave. Experimental results using a tuning fork vibrating at 440 Hz and a human voice are presented to show the feasibility of the proposed method.

  7. Magnetic and optical properties of monosized Eu-doped ZnO nanocrystals from nanoemulsion

    NASA Astrophysics Data System (ADS)

    Yoon, Hayoung; Hua Wu, Jun; Hyun Min, Ji; Sung Lee, Ji; Ju, Jae-Seon; Keun Kim, Young

    2012-04-01

    We report the synthesis and characterization of monosized Eu-doped ZnO nanocrystals via a nanoemulsion process as a function of the doping ratio. The structure, optical, and magnetic properties of the nanocrystals are investigated by XRD, TEM, PL spectrometry, and physical property measurement system. The nanocrystals as prepared show high crystallinity and tight particle size distributions with the diameters of ˜ 10 nm. The doped samples clearly exhibit the 5D0→7FJ transition emission due to the presence of the Eu3+ ions. Meanwhile, the magnetic responses demonstrate the temperature dependence and change with dopant concentration.

  8. Theoretical investigation of optical and structural properties of Ba-doped ZnO material

    NASA Astrophysics Data System (ADS)

    Lacerda, L. H. S.; de Lazaro, S. R.; Ribeiro, R. A. P.

    2015-11-01

    The doping process is a technique widely used for improving the properties of semiconductors. Through insertion of doping controlled amount is possible change drastically the electronic, optical and structural properties of a material. This work focuses on effects of Ba atoms insertion on wurtzite-ZnO structure at 12.5% amount. The results showed that the presence of Ba in low quantity cause increase in the lattice parameters and decrease in band- gap in relation to the ZnO material. In the percentage of 12.5%, the doping is noted as a potential alternative for application in opt-electronic devices, electronic devices, solar cells and photocatalytic process.

  9. Frequency dependence of optical third-harmonic generation from doped graphene

    NASA Astrophysics Data System (ADS)

    Margulis, Vl. A.; Muryumin, E. E.; Gaiduk, E. A.

    2016-01-01

    In connection with the controversial question about the frequency dependence of the optical third-harmonic generation (THG) from doped graphene, which has recently been discussed in the literature, we develop an analytical theory for the THG susceptibility of doped graphene by using the original Genkin-Mednis nonlinear-conductivity-theory formalism including mixed intra- and interband terms. The theory is free of any nonphysical divergences at zero frequency, and it predicts the main resonant peak in the THG spectrum to be located at the photon energy ħω equal to two thirds of the Fermi energy EF of charge carriers in doped graphene.

  10. Enhanced photoelectrochemical and optical performance of ZnO films tuned by Cr doping

    NASA Astrophysics Data System (ADS)

    Salem, M.; Akir, S.; Massoudi, I.; Litaiem, Y.; Gaidi, M.; Khirouni, K.

    2017-04-01

    In this paper, pure and Cr-doped nanostructured Zinc oxide thin films were synthesized by simple and low cost co-precipitation and spin-coating method with Cr concentration varying between 0.5 and 5 at.%. Crystalline structure of the prepared films was investigated by X-ray diffraction (XRD) and Raman spectroscopy techniques. XRD analysis indicated that the films were indexed as the hexagonal phase of wurtzite-type structure and demonstrated a decrease in the crystallite size with increasing Cr doping content. Cr doping revealed a significant effect on the optical measurements such as transmission and photoluminescence properties. The optical measurements indicated that Cr doping decreases the optical band gap and it has been shifted from 3.41 eV for pure ZnO film to 3.31 eV for 5 at.% Cr-doped one. The photoelectrochemical (PEC) sensing characteristics of Cr-doped ZnO layers were investigated. Amongst all photo-anodes with different Cr dopant concentration, the 2 at.% Cr incorporated ZnO films exhibited fast response and higher photoconduction sensitivity.

  11. Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Rekha, K.; Nirmala, M.; Nair, Manjula G.; Anukaliani, A.

    2010-08-01

    Polycrystalline ZnO doped with Mn (5 and 10 at%) was prepared by the co-precipitation method. The effect of Mn doping on the photocatalytic, antibacterial activities and the influence of doping concentration on structural, optical properties of nanoparticles were studied. Structural and optical properties of the particles elucidated that the Mn 2+ ions have substituted the Zn 2+ ions without changing the Wurtzite structure of ZnO. The optical spectra showed a blue shift in the absorbance spectrum with increasing dopant concentration. The photocatalytic activities of ZnO powders were evaluated by measuring the degradation of methylene blue (MB) in water under the UV region. It was found that undoped ZnO bleaches MB much faster than manganese doped ZnO upon its exposure to the UV light. The potential toxicity of nanosized ZnO and Mn doped ZnO were investigated using both Gram positive and Gram negative bacteria as test organisms. The results showed that Mn doped ZnO nanoparticles enhanced the antibacterial activity than ZnO nanoparticles.

  12. Correlating optical infrared and electronic properties of low tellurium doped GaSb bulk crystals

    SciTech Connect

    Roodenko, K. Liao, P.-K.; Lan, D.; Clark, K. P.; Fraser, E. D.; Vargason, K. W.; Kuo, J.-M.; Kao, Y.-C.; Pinsukanjana, P. R.

    2016-04-07

    Control over the Te doping concentration is especially challenging in the mass-production of optically transparent, high-resistivity Te-doped GaSb crystals. Driven by the necessity to perform fast, robust, and non-destructive quality control of the Te doping homogeneity of the optically transparent large-diameter GaSb wafers, we correlated electronic and optical infrared properties of Te-doped GaSb crystals. The study was based on the experimental Hall and Fourier-Transform Infrared (FTIR) data collected from over 50 samples of the low-doped n-type material (carrier concentration of 6 × 10{sup 16} cm{sup −3} to 7 × 10{sup 17} cm{sup −3}) and the Te-doped p-type GaSb (4.6 × 10{sup 15} cm{sup −3} to 1 × 10{sup 16} cm{sup −3}). For the n-type GaSb, the analysis of the FTIR data was performed using free carrier absorption model, while for the p-type material, the absorption was modeled using inter-valence band absorption mechanism. Using the correlation between the Hall and the IR data, FTIR maps across the wafers allow a fast and reliable way to estimate carrier concentration profile within the wafer.

  13. Enhanced nonlinear optical characteristics of copper-ion-doped double crossover DNAs

    NASA Astrophysics Data System (ADS)

    Park, Byeongho; Lee, Byung Jic; Dugasani, Sreekantha Reddy; Cho, Youngho; Kim, Chulki; Seo, Minah; Lee, Taikjin; Jhon, Young Min; Choi, Jaebin; Lee, Seok; Park, Sung Ha; Jun, Seong Chan; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jae Hun

    2015-10-01

    The modification of deoxyribonucleic acid (DNA) samples by sequencing the order of bases and doping copper ions opens the possibility for the design of novel nanomaterials exhibiting large optical nonlinearity. We investigated the nonlinear characteristics of copper-ion doped double crossover DNA samples for the first time to the best of our knowledge by using Z-scan and four-wave mixing methods. To accelerate the nonlinear characteristics, we prepared two types of unique DNA nanostructures composed of 148 base pairs doped with copper ions with a facile annealing method. The outstanding third-order nonlinear optical susceptibility of the copper-ion-doped DNA solution, 1.19 × 10-12 esu, was estimated by the conventional Z-scan measurement, whereas the four-wave mixing experiment was also investigated. In the visible spectral range, the copper-ion-doped DNA solution samples provided competent four-wave mixing signals with a remarkable conversion efficiency of -4.15 dB for the converted signal at 627 nm. The interactions between DNA and copper ions contribute to the enhancement of nonlinearity due to structural and functional changes. The present study signifies that the copper-ion-doped double crossover DNA is a potential candidate as a highly efficient novel material for further nonlinear optical applications.

  14. EPR and optical absorption study of Cu 2+-doped lithium potassium sulphate single crystals

    NASA Astrophysics Data System (ADS)

    Kripal, Ram; Bajpai, Manisha; Maurya, Manju; Govind, Har

    2008-10-01

    EPR spectra of Cu 2+ ion doped in lithium potassium sulphate single crystal at room temperature are reported. The observed spectra are fitted to a spin Hamiltonian of orthorhombic symmetry with Cu 2+ (site I) g x=2.0930, g y=2.1421, g z=2.2900 (±0.0002) and A x=85, A y=89, A z=184 (±2×10 -4 cm -1); Cu 2+ (site II) g x=2.0795, g y=2.1580, g z=2.2876 (±0.0002) and A x=93, A y=95, A z=189 (±2×10 -4 cm -1); respective errors given in brackets. Copper enters the lattice substitutionally and is trapped at two magnetically inequivalent sites. The ground state wave function of the Cu 2+ ion in this lattice is determined as predominantly | x2- y2>. The g-factor anisotropy is calculated and compared with the experimental value. The optical absorption of the crystal at room temperature is also recorded. Further, with the help of the optical absorption and EPR data, the nature of bonding in the complex is discussed.

  15. Parallel optical evaluation of double-exposure records in optical metrology.

    PubMed

    Arnold, W; Hinsch, K D

    1989-02-15

    The evaluation of double-exposure records in optical metrology (speckle photography or particle image velocimetry) is simplified by using two-step optical processing that is performed on many interrogation areas simultaneously by a 2-D array of narrow focused light beams. A first application of this procedure to the original record, if dimensioned properly, produces an array of small nonoverlapping Young's fringe systems. The photographic record of these patterns is subjected to the same operation once more, each beam illuminating precisely one pattern. The resulting output is an array of autocorrelation functions that are a direct representation of the displacement field since the spacing of respective side peaks gives the displacement. A single whole-field interrogation of the array of fringe systems produces an optical representation of accumulated displacement values thus rendering the statistics of the displacement field. The required matrix of light beams is generated by holographic optical elements.

  16. Structural; morphological; optical and magnetic properties of Mn doped ferromagnetic ZnO thin film

    NASA Astrophysics Data System (ADS)

    Karmakar, R.; Neogi, S. K.; Banerjee, Aritra; Bandyopadhyay, S.

    2012-12-01

    The structural, optical and magnetic properties of the Zn1-xMnxO (0 < x < 0.05) thin films synthesized by sol-gel technique have been analyzed in the light of modification of the electronic structure and disorder developed in the samples due to Mn doping. The films are of single phase in nature; no formation of any secondary phase has been detected from structural analysis. Absence of magnetic impurity phase in these films has been confirmed from morphological study also. Increasing tendency of lattice parameters and unit cell volume has been observed with increasing Mn doping concentration. The incorporation of Mn2+ ions introduces disorder in the system. That also leads to slight degradation in crystalline quality of the films with increasing doping. The grain size reduces with increase in Mn doping proportion. The band gaps shows red shift with doping and the width of localized states shows an increasing tendency with doping concentration. It is due to the formation of impurity band and trapping of Mn atoms, which leads to the generation of the defect states within the forbidden band. Photoluminescence (PL) spectra show gradual decrease of intensity of exitonic and defect related peaks with increasing Mn doping. Defect mediated intrinsic ferromagnetism has been observed even at room temperature for 5 at% Mn doped ZnO film. The strong presence of antiferromagnetic (AFM) interaction reduces the observed ferromagnetic moments.

  17. Electronic structure and optical properties of doped gallium phosphide: A first-principles simulation

    NASA Astrophysics Data System (ADS)

    Lu, Xuefeng; Gao, Xu; Li, Cuixia; Ren, Junqiang; Guo, Xin; La, Peiqing

    2017-09-01

    Using DFT-GGA-PW91 calculations we investigate the electronic structures and optical properties of doped GaP. It is found that the lattice constants and volume increase slightly for Al, In, As and Sb doped systems and EG distinctly decrease after doping. The formation energies are 0.587 and 0.273 eV for As and Sb doped systems, respectively, and lower remarkably than those in other systems, indicating that the stability of the two systems is higher. The direct band gap transition occurs when doped with In, As and Sb elements. The charge density difference images reveal that electron loss near Al atom is observed accompanying the enhancement of covalent bond feature, and then electron enrichment is present around N atom demonstrating that the ionic bond characteristic is obvious. The Sb-doped system has the higher static dielectric constant illustrating the applications in semiconductor devices. The absorption peak value is located at 194.7 nm for Al-doped system and this shows that the system can absorb a large amount of light and displays ;Barrier-type; characteristics in UV region. In the visible region, the doped systems have lower reflectivity coefficient, indicating that the systems all have ;clear-type; properties. This is conducive to fundamentally insights to a tunable band gap semiconductor with enormous potential in device fields.

  18. The Electric and Optical Properties of Doped Small Molecular Organic Light-Emitting Devices

    SciTech Connect

    Cheon, Kwang-Ohk

    2003-01-01

    Organic light-emitting devices (OLEDs) constitute a new and exciting emissive display technology. In general, the basic OLED structure consists of a stack of fluorescent organic layers sandwiched between a transparent conducting-anode and metallic cathode. When an appropriate bias is applied to the device, holes are injected from the anode and electrons from the cathode; some of the recombination events between the holes and electrons result in electroluminescence (EL). Until now, most of the efforts in developing OLEDs have focused on display applications, hence on devices within the visible range. However some organic devices have been developed for ultraviolet or infrared emission. Various aspects of the device physics of doped small molecular OLEDs were described and discussed. The doping layer thickness and concentration were varied systematically to study their effects on device performances, energy transfer, and turn-off dynamics. Low-energy-gap DCM2 guest molecules, in either α-NPD or DPVBi host layers, are optically efficient fluorophores but also generate deep carrier trap-sites. Since their traps reduce the carrier mobility, the current density decreases with increased doping concentration. At the same time, due to efficient energy transfer, the quantum efficiency of the devices is improved by light doping or thin doping thickness, in comparison with the undoped neat devices. However, heavy doping induces concentration quenching effects. Thus, the doping concentration and doping thickness may be optimized for best performance.

  19. Spectral properties of thulium doped optical fibers for fiber lasers around 2 micrometers

    NASA Astrophysics Data System (ADS)

    Kamrádek, M.; Aubrecht, J.; Peterka, P.; Podrazký, O.; Honzátko, P.; Cajzl, J.; Mrázek, J.; Kubeček, V.; Kašik, I.

    2017-05-01

    Silica optical fibers doped with rare-earth elements are key components of high-power fiber lasers operating in near-infrared region up to 2.1 μm. In this contribution we deal with preparation and optical characterization of silica-based optical preforms and fibers doped with thulium for fiber lasers operating around 2 μm. A set of fibers with thulium concentration ranges 1000-5000 ppm was prepared by the MCVD solution doping method and characterized. A decrease of fluorescence lifetime of thulium from 487 μs to 378 μs was observed with increasing rare-earth concentration in fiber core. This phenomenon can be explained by energy transfer between ions and ion clustering. Fabricated fibers were suitable for use in fiber lasers.

  20. Electronic and optical properties of K-doped ZnO: Ab initio study

    NASA Astrophysics Data System (ADS)

    Aimouch, D. E.; Meskine, S.; Hayn, R.; Zaoui, A.; Boukortt, A.

    2016-08-01

    We present the results of ab initio calculations of K-doped ZnO in the wurtzite structure using a supercell of 32 atoms and density functional theory. A complete analysis of its electronic, optical and magnetic properties is provided. The local spin density approximation (LSDA) has been used to analyze the density of states and to understand the K influence at different concentration values. The material is revealed to become a p-type doped semiconductor. The optical constant or refractive index, the dielectric function, and the absorption coefficient were determined and show a good agreement with available experimental data. Potassium doping leads to an absorption peak at about 380 nm. That peak might improve the absorption characteristics of ZnO for solar cell or optical applications.

  1. Thermoluminescence responses of the Yb- and Yb-Tb-doped SiO2 optical fibers to 6-MV photons.

    PubMed

    Sahini, M H; Hossain, I; Wagiran, H; Saeed, M A; Ali, H

    2014-09-01

    Characteristics of the thermoluminescence (TL) responses of Yb- and Yb-Tb-doped optical fibers irradiated with 6MV photons are reported. The concentration of Yb in the Yb-doped optical fiber was 0.26mol%; the concentrations of Yb and Tb in the Yb-Tb-doped optical fiber were 0.62 and 0.2mol%, respectively. The TL dose responses are linear in the dose range 0.5-4Gy. The radiation sensitivity of the Yb-Tb material is almost two orders of magnitude higher than the sensitivity of the material doped with Yb alone.

  2. Thermo-optic tuning of whispering gallery mode lasing from a dye-doped hollow polymer optical fiber.

    PubMed

    Anand, V R; Mathew, S; Samuel, Boni; Radhakrishnan, P; Kailasnath, M

    2017-08-01

    We report temperature-induced tuning of whispering gallery mode (WGM) laser emission from a Rhodamine-B-doped polymethylmethacrylate hollow optical fiber. Lasing studies on dye-doped hollow fibers with different radii were carried out with optical pumping using a Q-switched Nd:YAG laser. The observed lasing modes were confirmed as WGM emission with a high quality factor of 7.58×10(3). The diameter-dependent variation in lasing spectra of these hollow fibers was investigated. A tuning range of 0.44 nm with a sensitivity of 0.011  nm/°C was obtained for the lasing modes by varying the temperature from 25°C to 60°C from a dye-doped polymethylmethacrylate hollow fiber of diameter 305 μm.

  3. Organo-metallic thin film for erasable optical recording medium

    NASA Astrophysics Data System (ADS)

    Shu, Juping; Zhou, Jian P.; Xu, Shi Z.

    1991-11-01

    An erasable optical recording medium was made by vacuum deposition of copper tetra cyanoquino dimethane organometallic materials writable and erasable with an He-Ne laser. With He-Ne laser output power of 13 mW at 632 nm, the threshold pulse width was 0.2 - 2 microsecond(s) . The readout signal contrast was 29%. The write-erase cycles were observed under optimum condition.

  4. Progress Toward Demonstrating a High Performance Optical Tape Recording Technology

    NASA Technical Reports Server (NTRS)

    Oakley, W. S.

    1996-01-01

    This paper discusses the technology developments achieved during the first year of a program to develop a high performance digital optical tape recording device using a solid state, diode pumped, frequency doubled green laser source. The goal is to demonstrate, within two years, useful read/write data transfer rates to at least 100 megabytes per second and a user capacity of up to one terabyte per cartridge implemented in a system using a '3480' style mono-reel tape cartridge.

  5. Development of erbium-doped silica sensor probe for fiber-optic fluorescence thermometer

    NASA Astrophysics Data System (ADS)

    Aizawa, H.; Takei, K.; Katsumata, T.; Komuro, S.; Morikawa, T.; Ishizawa, H.; Toba, E.

    2005-09-01

    A fabrication process of the erbium (Er)-doped silica sensor probe, in which the sensor head is directly coupled with silica glass fiber, has been developed for the fiber-optic thermometer application. In this fabrication process, a droplet of slurry of Er-doped silica powders are formed on the end of the silica glass fiber, and are dried, sintered, and then melted and solidified in a LPG-O2 gas furnace. The temperature dependence of the photoluminescence (PL) lifetime from the Er-doped silica senor probe with various dopant concentrations has been evaluated for the fiber-optic thermometer application. An Er-doped silica sensor probe with an Er density above 10000ppm and aluminum (Al) content about Al /Er=20 is considered to be suitable for a fiber-optic thermometer because of the strong PL intensity and long PL lifetime. The PL lifetimes of the Er sensor head decreases from 9.9msto8.1ms at temperatures from 273Kto473K. An Er-doped silica sensor probe, which is fabricated by a modified process, is considered to be potentially useful for a fiber-optic fluorescence thermometer.

  6. Optical modeling of media for heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Ghoreyshi, Ali; Victora, R. H.

    2016-02-01

    The validity of effective medium theory for modeling nanocomposite thin films interacting with a plasmonic nanoantenna has been investigated using an optical circuit model and finite-difference time-domain simulations. We show that in the regime where the size of the optical beam generated by the nanoantenna is comparable to the feature size inside the thin film, the effective medium theory is not valid anymore. We demonstrate that using effective medium theory can cause a dramatic error in the performance analysis of applications such as heat assisted magnetic recording that work at this regime. Therefore, we develop a theoretical framework based on circuit theory at optical frequencies to study and design nanocomposite thin films for these applications.

  7. Effects of induced optical tunable and ferromagnetic behaviors of Ba doped nanocrystalline LaB6.

    PubMed

    Bao, Lihong; Qi, Xiaoping; Tana; Chao, Lumen; Tegus, O

    2016-07-28

    Multiple nanocrystalline rare-earth hexaborides La1-xBaxB6 have been synthesized via a single step solid-state reaction. The Ba doping effects on crystal structure, grain morphology, magnetic and optical absorption properties were investigated using XRD, FESEM, HRTEM, SQUID magnetometry and optical measurements. The results show that all the Ba-doped hexaborides crystallize in the CsCl-type single phase, indicating the Ba atoms occupied the lattice sites of LaB6. The optical absorption results indicate that the absorption valleys of LaB6 are red-shifted from 622 nm to 780 nm when the Ba doping content increases to x = 0.8. The first-principle calculation results reveal that Ba doping reduces the total kinetic energy of the electrons of LaB6, which lead to the absorption valleys moving toward a higher wavelength. Meanwhile, the band gap of BaB6 obtained from optical absorption is in good agreement with the theoretical calculation results. The magnetic measurements results showed that Ba doping lead to room-temperature ferromagnetism of LaB6 due to the different ionic radii of La(3+) and Ba(2+) causing intrinsic crystal defects, which is directly observed experimentally by HRTEM. This is the first time that we have found the tunable optical and ferromagnetic behavior of Ba doped nanocrystalline LaB6. Thus, nanocrystalline La1-xBaxB6, as multi-functional materials, should open up a new route to extend the optical and magnetic applications of LaB6 nanopowder.

  8. Multifunctional plasmonic film for recording near-field optical intensity.

    PubMed

    Roxworthy, Brian J; Bhuiya, Abdul M; Inavalli, V V G Krishna; Chen, Hao; Toussaint, Kimani C

    2014-08-13

    We demonstrate the plasmonic equivalent of photographic film for recording optical intensity in the near field. The plasmonic structure is based on gold bowtie nanoantenna arrays fabricated on SiO2 pillars. We show that it can be employed for direct laser writing of image data or recording the polarization structure of optical vector beams. Scanning electron micrographs reveal a careful sculpting of the radius of curvature and height of the triangles composing the illuminated nanoantennas, as a result of plasmonic heating, that permits spatial tunability of the resonance response of the nanoantennas without sacrificing their geometric integrity. In contrast to other memory-dedicated approaches using Au nanorods embedded in a matrix medium, plasmonic film can be used in multiple application domains. To demonstrate this functionality, we utilize the structures as plasmonic optical tweezers and show sequestering of SiO2 microparticles into optically written channels formed between exposed sections of the film. The plasmonic film offers interesting possibilities for photonic applications including optofluidic channels "without walls," in situ tailorable biochemical sensing assays, and near-field particle manipulation and sorting.

  9. Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency.

    PubMed

    Zhang, Jun; Fromzel, Viktor; Dubinskii, Mark

    2011-03-14

    We report the results of our power scaling experiments with resonantly cladding-pumped Er-doped eye-safe large mode area (LMA) fiber laser. While using commercial off-the-shelf LMA fiber we achieved over 88 W of continuous-wave (CW) single transverse mode power at ~1590 nm while pumping at 1532.5 nm. Maximum observed optical-to-optical efficiency was 69%. This result presents, to the best of our knowledge, the highest power reported from resonantly-pumped Yb-free Er-doped LMA fiber laser, as well as the highest efficiency ever reported for any cladding-pumped Er-doped laser, either Yb-co-doped or Yb-free.

  10. Interplay of structural, optical and magnetic properties in Gd doped CeO{sub 2}

    SciTech Connect

    Soni, S.; Dalela, S.; Kumar, Sudish; Meena, R. S.; Vats, V. S.

    2015-06-24

    In this research wok systematic investigation on the synthesis, characterization, optical and magnetic properties of Ce{sub 1-x}Gd{sub x}O{sub 2} (where x=0.02, 0.04, 0.06, and 0.10) synthesized using the Solid-state method. Structural, Optical and Magnetic properties of the samples were investigated by X-ray diffraction (XRD), UV-VIS-NIR spectroscopy and VSM. Fluorite structure is confirmed from the XRD measurement on Gd doped CeO{sub 2} samples. Magnetic studies showed that the Gd doped polycrystalline samples display room temperature ferromagnetism and the ferromagnetic ordering strengthens with the Gd concentration.

  11. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.

    PubMed

    Egorova, O N; Semjonov, S L; Velmiskin, V V; Yatsenko, Yu P; Sverchkov, S E; Galagan, B I; Denker, B I; Dianov, E M

    2014-04-07

    We present a composite optical fiber with a Er/Yb co-doped phosphate-glass core in a silica glass cladding as well as cladding pumped laser. The fabrication process, optical properties, and lasing parameters are described. The slope efficiency under 980 nm cladding pumping reached 39% with respect to the absorbed pump power and 28% with respect to the coupled pump power. Due to high doping level of the phosphate core optimal length was several times shorter than that of silica core fibers.

  12. Record low temperature Mo doped V2O5 thermochromic thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Nazemiyan, M.; Jalili, Y. S.

    2013-11-01

    Thermochromic properties of polycrystalline molybdenum doped vanadium pentoxide thin films grown by the spray pyrolysis technique were investigated. Tetragonal thin film structures of this system are grown. The transmittance spectral analysis with temperature indicates a record semiconductor-metal transition temperature of < 50oC. This critical temperature is approximately 1/3 to 1/6 of magnitude expected for V2O5 thin films. The resistance of the thermochromic thin film also underwent a transition or phase change as expected, a reduction from more than few mega ohms to less than kilo ohm regime indicating potential applications in optoelectronics.

  13. Parallel Visualization of the optical pulse propagation through a doped optical fiber

    NASA Astrophysics Data System (ADS)

    Santos-Neto, Elizeu; Tenorio, Luiz; Fonseca, Eduardo; Cavalcanti, Solange; Hickmann, Jandir

    2001-06-01

    The numerical simulation of the simultaneous propagation of a pair of light pulses through a nonlinear doped optical fiber has recently provided many interesting results such as cloning, breakup and soliton interactions. This type of propagation is investigated within the framework of a pair of nonlinear Schrödinger equations together with a set of Bloch equations. The numerical simulations of these equations produce an enormous amount of data that are not easily interpreted depending on the resolution that these results are obtained. This problem is circumvented if one uses scientific visualization and the latter is significantly improved by using high performance computing. Therefore, in this work we have implemented an adaptation of both Visualization Tool Kit (VTK an open visualization library) and the Message Passing Interface (MPI) to run these applications on a cluster of computers. The basic idea is to produce a detailed visualization of the numerical data produced by the simulations of the propagation of a pair of optical pulses through nonlinear waveguide improving significantly the physical interpretation of the processes of cloning, breakup and soliton interactions.

  14. Optical and electrical properties of copper-doped nano-crystallite CdO thin films

    NASA Astrophysics Data System (ADS)

    Dakhel, A. A.

    2014-05-01

    Thin films of Cu-doped CdO (CdO:Cu) with different Cu% content were prepared in high vacuum on glass and Si substrates. The samples were characterised X-ray diffraction (XRD), optical spectroscopy, scanning electron microscope (SEM), and dc-electrical measurements. The XRD study reveals the formation of single crystalline phase CdO:Cu of CdO structure with a preferential [111] orientation. However, with increasing of Cu% content, the crystal structure was gradually deteriorated. SEM study shows formation of granular structure with rice shape grains of average size ˜500 nm. The optical study shows that Cu doping increased the films transparency with a slight blueshift for the bandgap. The calculated optical constants for pure and Cu-doped CdO were analysed with Forouhi-Bloomer (FB), Wemple-Didomenico (WD), and Spitzer-Fan (SF) models. Good agreements were obtained between electrical and optical (through SF model) measurements. The electrical measurements show that the utmost enhancement in mobility (82.5 cm2/V s) and conductivity (1428.6 S/cm) was found with 2.3% Cu sample. The optoelectronic study was analysed through the available BGW and BGN models that show close theoretical to the experimental results. In general, the films of CdO prepared with light Cu doping have optical and electrical characteristics suitable for various applications in material sciences and optoelectronic devices.

  15. Optical characterization of Eu3+ doped ZnO nanocomposites.

    PubMed

    Grandhe, Bhaskar Kumar; Bandi, Vengala Rao; Jang, Kiwan; Lee, Ho-Sueb; Shin, Dong-Soo; Yi, Soung-Soo; Jeong, Jung-Hyun

    2013-11-01

    A rare-earth metal ion (Eu3+) doped ZnO nanocomposites have been successfully synthesized by employing wet chemical procedure using multi-wall carbon nanotubes (MWCNT's) as removable template. The preparation was carried out by immersing empty and dried MWCNT's in a stoichiometric composition of zinc nitrate and europium nitrate solution followed by filtration and sintering. The synthesized Eu3+ doped ZnO nanocomposites were characterized by means of different characterization techniques namely XRD, SEM, EDS, FT-IR and Raman spectroscopy. The XRD profile of the Eu3+ doped ZnO nanocomposites indicated its hexagonal nature while the photoluminescent analysis reveals that the prepared nanocomposite exhibits a strong red emission peak at 619 nm due to 5D0 --> 7F2 forced electric dipole transition of Eu3+ ions. Such luminescent materials are expected to find potential applications in display devices.

  16. The thermoluminescence response of doped SiO2 optical fibres subjected to fast neutrons.

    PubMed

    Hashim, S; Bradley, D A; Saripan, M I; Ramli, A T; Wagiran, H

    2010-01-01

    This paper describes a preliminary study of the thermoluminescence (TL) response of doped SiO(2) optical fibres subjected to (241)AmBe neutron irradiation. The TL materials, which comprise Al- and Ge-doped silica fibres, were exposed in close contact with the (241)AmBe source to obtain fast neutron interactions through use of measurements obtained with and without a Cd filter (the filter being made to entirely enclose the fibres). The neutron irradiations were performed for exposure times of 1-, 2-, 3-, 5- and 7-days in a neutron tank filled with water. In this study, use was also made of the Monte Carlo N-particle (MCNP) code version 5 (V5) to simulate the neutron irradiations experiment. It was found that the commercially available Ge-doped and Al-doped optical fibres show a linear dose response subjected to fast neutrons from (241)AmBe source up to seven days of irradiations. The simulation performed using MCNP5 also exhibits a similar pattern, albeit differing in sensitivity. The TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre, the total absorption cross section for Ge in both the fast and thermal neutrons region being some ten times greater than that of Al.

  17. Influences of indium doping and annealing on microstructure and optical properties of cadmium oxide thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Yuankun; Lei, Pei; Zhu, Jiaqi; Han, Jiecai

    2016-04-01

    The influences of indium doping and subsequent annealing in nitrogen and air atmospheres on the microstructure and optical properties of cadmium oxide films were studied in detail with the aid of various characterizations. X-ray photoelectronic spectroscopy analysis shows that indium atom forms chemically oxidized bonds in Cd-O matrix. X-ray diffraction results demonstrate that CdO structure remains FCC structure with indium doping, whereas the preferential orientation transforms from (222) into (200) orientation. Indium doping prevents the large crystalline growth, and this role still works under both nitrogen and air annealing processes. Similarly, CdO films show rough surface under annealing conditions, but the force has been greatly weakened at high doping level. It is clear that refractive index and extinction coefficient are closely correlated with crystalline size for undoped films, whereas it turns to the doping level for doped films, which can be performed by the mechanism of indium atom substitution. This work provides a very useful guild for design and application of optical-electronic devices.

  18. Understanding the optical and electronic properties of Ga-doped graphene

    NASA Astrophysics Data System (ADS)

    Creange, N. C.; Constantin, C.; Zhu, J.-X.; Balatsky, A. V.; Haraldsen, J. T.

    2015-03-01

    We simulate the optical and electrical responses in gallium-doped graphene, using density functional theory with a local density approximation. We show the effects of impurity doping (0-3.91%) in the graphene sheet and for each doping percentage the change in electron density, refractive index, and optical conductivity are reported. Here, gallium atoms are placed randomly (using a 5-point average) throughout a 128-atom sheet of graphene. These calculations demonstrate the effects of hole doping due to direct atomic substitution, where we find a disruption in the electron density for small doping levels, which is due to impurity scattering of the electrons. However, there seems to be a doping percentage, above which we have calculated, at which the system transitions to produce metallic or semi-metallic behavior. These calculations are compared to a purely theoretical 100% Ga sheet for comparison of conductivity. Furthermore, we examine the change in the electronic band structure and density of states, where the introduction of gallium electronic bands produces a shift in the electron bands and dissolves the characteristic Dirac cone within graphene. We acknowledge support from the Center for Integrated Nanotechnologies User Program and the Institute for Materials Science.

  19. Quadratic nonlinear optical parameters of 7% MgO-doped LiNbO3 crystal

    NASA Astrophysics Data System (ADS)

    Kulyk, B.; Kapustianyk, V.; Figà, V.; Sahraoui, B.

    2016-06-01

    Pure and 7% MgO-doped lithium niobate (LiNbO3) single crystals were grown by the Czochralski technique. The shift of optical absorption edge in 7% MgO-doped crystal in direction of shorter wavelength compared to undoped crystal was observed. The second harmonic generation measurements of 7% MgO-doped LiNbO3 crystal were performed at room temperature by means of the rotational Maker fringe technique using Nd:YAG laser generating at 1064 nm in picoseconds regime. Experimentally obtained value of nonlinear optical coefficient d33 for 7% MgO-doped LiNbO3 was found to be less than for undoped crystal but higher than for 5% MgO-doped. I-type phase-matched second harmonic generation was achieved and the value of phase-matched angle was calculated. High quadratic nonlinearity together with tolerance to intensive laser irradiation makes 7% MgO-doped LiNbO3 crystal interesting for application in optoelectronics.

  20. Multiferroic, magnetoelectric and optical properties of Mn doped BiFeO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Chauhan, Sunil; Kumar, Manoj; Chhoker, Sandeep; Katyal, S. C.; Singh, Hemant; Jewariya, Mukesh; Yadav, K. L.

    2012-03-01

    Mn doped BiFeO3 (5, 10 and 15 mol%) nanoparticles were synthesized using sol-gel technique. The influence of Mn doping on structural, dielectric, magnetic, magnetoelectric and optical properties of BiFeO3 was studied. Rietveld refinement of XRD patterns showed rhombohedral to orthorhombic phase transition for 15 mol% Mn doped BiFeO3 sample. Magnetic measurements revealed the enhancement of ferromagnetic property with increasing Mn doping in BiFeO3. The characteristic dielectric anomaly, expected in the vicinity of antiferromagnetic transition temperature TN (Neel temperature) was found in all Mn doped BiFeO3 samples. The magnetoelectric coupling was evidenced by the change in capacitance with the change in the applied magnetic field. On increasing Mn concentration from 5 to 15 mol% in BiFeO3, a change in magnetocapacitance from 1.46% to 2.6% showed the improvement of multiferroic properties. In order to explore the optical properties of Mn doped BiFeO3 nanoparticles, their photoluminescent properties were also investigated.

  1. Linear and nonlinear optical discussions of nanostructured Zn-doped CdO thin films

    NASA Astrophysics Data System (ADS)

    Yahia, I. S.; Salem, G. F.; Iqbal, Javed; Yakuphanoglu, F.

    2017-04-01

    Here, we report the doping effect of zinc (Zn) on the physical properties of cadmium oxide (CdO) at various concentrations (1, 2, 3 and 4 wt% of Zn). The studied samples were prepared using sol-gel in addition with sol gel spin coating technique. The structural, optical and dispersive properties were compared with the already reported work in the literature. The structural properties were observed by using atomic force microscopy (AFM). The AFM images show that the grain size decreases with increasing the concentration of Zn. The highest value of average cluster size (78. 71 nm) was found at 1% and the lowest (60.23 nm) when the doping concentration of Zn was 4%. Similar trend was observed in the roughness of the doped thin film when the Zn concentration was increased. The optical properties were examined using Shimadzu UV-Vis-NIR spectrophotometer and we found that the optical band gap of the un-doped CdO and the Zn-doped CdO thin films increases from 2.54 to 2.62 eV as the Zn concentration is increased from 1% to 4%. Also, the optical dispersion parameters (Eo, Ed, n2∞, λ0 and So) were calculated and discussed. We observed that the refractive index dispersion of undoped CdO and the Zn-doped CdO thin films follow the single oscillator model. Finally, spectroscopic method has been exploited to analyze the 3rd order non-linear optical susceptibility χ (3) and nonlinear refractive index n (2).

  2. Optical properties of Eu2+ doped antipervoskite fluoride single crystals

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Nithya, R.; Ramasamy, P.; Madhusoodanan, U.

    2013-02-01

    Single crystals of pure and Eu2+ doped LiBaF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Absorption and luminescence spectra for pure and rare-earth-doped LiBaF3 were studied. At ambient conditions the photoluminescence spectra consisted of sharp lines peaked at ˜359 nm attributed to the 6P7/2→8S7/2 transitions in the 4f7 electronic configuration of Eu2+ and a broad band extending between 370 and 450 nm attributed to Eu2+ trapped exciton recombination. The effect of 60Co gamma irradiation has also been investigated.

  3. Structural, optical and luminescence properties of Dy3+ doped bismuth phosphate glasses: Insights from 31P MAS NMR, absorption and photoluminescence

    NASA Astrophysics Data System (ADS)

    Damodaraiah, S.; Prasad, V. Reddy; Ratnakaram, Y. C.

    2017-05-01

    An investigation was carried out to observe structural and optical properties of 0.5 mol% Dy3+ doped different compositions of bismuth phosphate glasses (5, 10, 15 and 20 mol% Bi2O3). The structural characterization was accomplished by X-ray diffraction (XRD), 31P magic angle spin nuclear magnetic resonance (MAS NMR) spectroscopy. The optical properties were studied using absorption and photo luminescence (PL) spectroscopy. Judd-Ofelt intensity parameters Ωλ (λ=2, 4 and 6) were evaluated from absorption spectra. From photoluminescence spectra, experimental branching ratios (βexp) and stimulated emission cross-sections (σP) were calculated. The decay profiles for 4F9/2 level were recorded and were fit exponential. The obtained results show the prepared Dy3+ doped bismuth phosphate glasses might be useful as good optical material for yellow emission.

  4. Bulk growth of undoped and Nd3+ doped zinc thiourea chloride (ZTC) monocrystal: Exploring the remarkably enhanced structural, optical, electrical and mechanical performance of Nd3+ doped ZTC crystal for NLO device applications

    NASA Astrophysics Data System (ADS)

    Anis, Mohd; Muley, Gajanan. G.

    2017-05-01

    In current scenario good quality crystals are demanded for NLO device application hence present communication is aimed to grow bulk crystal and investigate the doping effect of rare earth element Nd3+ on structural, linear-nonlinear optical, luminescence, mechanical and dielectric properties of zinc thiourea chloride (ZTC) crystal. The ZTC crystal of dimension 21×10×8 mm3 and the Nd3+ doped ZTC crystal of dimension 27×17×5 mm3 have been grown from aqueous solution by slow evaporation technique. The elemental analysis of Nd3+ doped ZTC single crystal has been performed by means of energy dispersive spectroscopic technique. The powder X-ray diffraction technique has been employed to confirm the crystalline phase and identify the effect of Nd3+ doping on structural dimensions of ZTC crystal. The grown crystals have been characterized by UV-Vis-NIR study in the range of 190-1100 nm to ascertain the enhancement in optical transparency of ZTC crystal facilitated by dopant Nd3+. The recorded transmittance data has been utilized to investigate the vital optical constants of grown crystals. The second order nonlinear optical behavior of grown crystals has been evaluated by means of Kurtz-Perry test and the second harmonic generation efficiency of Nd3+ doped ZTC crystal is found to be 1.24 times higher than ZTC crystal. The luminescence analysis has been performed to examine the electronic purity and the color centered photoluminescence emission nature of pure and Nd3+ doped ZTC crystals. The influence of Nd3+ ion on mechanical behavior of ZTC crystal has been investigated by means of microhardness studies. The nature of dielectric constant and dielectric loss of pure and Nd3+ doped ZTC crystal has been examined in the range of 40-100 °C under dielectric study. The Z-scan technique has been employed using the He-Ne laser to investigate the third order nonlinear optical (TONLO) nature of Nd3+ doped ZTC single crystal. The magnitude of TONLO susceptibility, absorption

  5. Photoluminescence, ellipsometric, optical and morphological studies of sprayed Co-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Gençyılmaz, O.; Atay, F.; Akyüz, I.

    2016-06-01

    In this study, undoped and cobalt (Co)-doped zinc oxide (ZnO) films were successfully produced by ultrasonic spray pyrolysis (USP) technique at low temperature (350°C). The optical and surface properties were investigated as a function of Co content. The optical parameters (thickness, refractive index and extinction coefficient) were determined using spectroscopic ellipsometry (SE) and it was seen that the refractive index and extinction coefficient values of Co-doped ZnO films decreased slightly depending on the increasing of Co doping. For investigation, the transmittance and photoluminescence (PL) spectra of the films, UV-Vis spectrophotometer and PL spectroscopy were used at room temperature. The transmittance spectra show that transmittance values decreased and Co+2 ions substitute Zn+2 ions of ZnO lattice. The optical band gap values decreased from 3.26 eV to 2.85 eV with the changing of Co content. The results of PL spectra exhibit the position of the different emission peaks unchanged but the intensity of peaks increased with increasing Co doping. Also, the surface properties of the films were obtained by atomic force microscopy (AFM) and these results indicated that the surface morphology and roughness values were prominently changed with Co doping.

  6. Influence of Ag-doping on the microstructure and optical properties of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Xiong, Ting-ting; Li, Dong-mei; Shi, Wei-min; Wang, Lin-jun; Huang, Jian; Wang, Cen

    2009-07-01

    This work reported a preliminary study of doped ZnO nanoparticles by fine optical group-IB element Ag as the foundation to achieve p-type conduction of ZnO. Ag-doped ZnO nanoparticles were synthesized under lower temperature by annealing treatment in water-soluble silicone oil to the precursor [Zn(OH)4]2- with Ag+ prepared in a quaternary reverse micro-emulsion. The products were characterized by X-ray diffraction (XRD), Transmission Electron Microscope (TEM), UV-visible spectroscopy and photoluminescence spectra (PL). The influence of Ag doping level on the optical properties of ZnO nanoparticles was studied and the photoluminescence mechanism was analyzed. The origin of relative variety of near band edge emission (NBE) and deep level emission (DLE) of ZnO in virtue of incorporated Ag+ was discussed. The value of OH-/Zn2+ in precursor and annealing temperature also effected the optical properties of Ag doped ZnO. The optimum conditions were given for preparation of Ag-doping ZnO nanoparticles.

  7. Electrical and optical properties of Al doped Zno film prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Shrestha, Shankar Prasad; Basnet, Pradeep

    2008-04-01

    Transparent conducting thin films of zinc oxides and aluminum doped zinc oxide (AZO) were prepared by the spray pyrolysis technique using an aqueous solution of dehydrate zinc acetate (CH 3COOH. 2H IIO, pure- Merck A. R. grade) and hex hydrate aluminum chloride (AlCl 3 .6H IIO) on the micro glass slides. The prepared thin films are found to be highly adherent to the substrate and possess uniform conduction. The optical and electrical properties of the film were investigated in terms of different Al concentration in the starting solution and different substrate temperature. Four probe method in Van der pauw configuration was used for electrical resistivity measurements. The resistivity of Al doped film is observed to vary with doping concentration. The lowest resistivity is observed in the film doping with 2 at % [Al/Zn]. The Hall coefficient measurements show that both ZnO and AZO show the n-type conduction. The carrier concentration was observed to be highest at 2 at% of Al doping. The optical measurements of all the samples with aluminum concentrations was found to be >85 % showing the film to be highly transparent in nature. With increase in Al concentration, the optical band gap was observed increase from 3.27 eV to 3.41 eV.

  8. Enhanced optical, thermal and piezoelectric behavior in dye doped potassium acid phthalate (KAP) single crystal

    NASA Astrophysics Data System (ADS)

    Rao, G. Babu; Rajesh, P.; Ramasamy, P.

    2017-06-01

    Dye inclusion crystals have attracted researchers in the context of crystal growth for applications in solid state lasers. Pure and 0.1 mol% amaranth doped KAP single crystals, were grown from aqueous solutions by slow evaporation technique at room temperature. The grown crystals are up to the dimension of 12×10×3 mm3. Attempt is made to improve the growth rate, optical, piezoelectric and photoconductive properties of pure KAP single crystal with addition of amaranth dye as a dopant. Various characterization studies were made for both pure and dye doped KAP. Thermal stability of the crystals is tested from thermogravimetric and differential thermal analysis (TG/DTA). There is only one endothermic peak indicating decomposition point. Higher optical transparency for dye doped KAP crystal was identified from the UV-vis spectrum. Etching studies showed an improvement in the optical quality of the KAP crystal after doping with amaranth dye. The positive photoconductive nature is observed from both pure and amaranth doped KAP.

  9. Structural properties and optical characterization of flower-like Mg doped NiO

    NASA Astrophysics Data System (ADS)

    Allaedini, Ghazaleh; Aminayi, Payam; Tasirin, Siti Masrinda

    2015-07-01

    In this study, un-doped and Mg doped NiO nanoparticles have been synthesized through a simple sol-gel method. To investigate the effect of Mg-doping on the structure of NiO, the obtained nanoparticles were characterized using scanning electron microscopy (SEM). Flower/star like morphology was clearly observed in the SEM micrographs. The BET (Brunauer-Emmett-Teller) nitrogen absorption isotherm exhibits high specific surface area (˜37 m2 /g) for the Mg doped NiO nanoparticles. X-Ray diffraction (XRD) of the prepared Mg-NiO nanoparticles showed a face-centered cubic (f.c.c) structure, and the average particle size was estimated to be 32 nm using Scherrer's formula. Energy Dispersive X-Ray (EDX) confirms that the NiO particles are successfully doped with Mg. Photoluminescence (PL) and UV-Vis optical absorption characteristics of the prepared nanoparticles have also been investigated in this study. The PL emission response showed a blue shift when NiO was doped with Mg, which is indicative of interstitial oxygen. The UV-Vis results demonstrate a band gap increase as NiO nanoparticles are doped with Mg.

  10. Structural, morphological, optical and photocatalytic investigation of Ag-doped TiO2

    NASA Astrophysics Data System (ADS)

    Kundu, Virender Singh; Singh, Davender; Maan, A. S.; Tanwar, Amit

    2016-05-01

    The pure and Ag-doped TiO2 nanoparticles were prepared by using Titanium isoproxide (TTIP), silver nitrate sodium hydroxide and sodium hydroxide. The calcined nanoparticles at 400°C were characterized by means of X-ray diffraction (XRD). XRD analyses reveal that the nanoparticles of various doping concentration were having anatase phase. The particle size was calculated by Scherrer formula and was found 11.08 nm for pure TiO2 and 8.86 nm for 6 mol % Ag doped TiO2. The morphology and nature of nanoparticles was analyzed by using scanning electron microscope (SEM), the optical absorption spectra of pure TiO2 and Ag-doped TiO2 nanoparticles showed that absorption edge increases towards longer wavelength from 390 nm (pure) to 450 nm (doped), also band gap energy calculated from Tauc's plot decrease from 3.20eV to 2.92eV with increase in doing. The measurement of photocatalytic properties of pure TiO2 and Ag-doped TiO2 nanoparticles showed that Ag-doped TiO2 degrades MB dye more efficiently than pure TiO2.

  11. Structural, morphological, optical and photocatalytic investigation of Ag-doped TiO{sub 2}

    SciTech Connect

    Kundu, Virender Singh; Tanwar, Amit; Singh, Davender Maan, A. S.

    2016-05-06

    The pure and Ag-doped TiO{sub 2} nanoparticles were prepared by using Titanium isoproxide (TTIP), silver nitrate sodium hydroxide and sodium hydroxide. The calcined nanoparticles at 400°C were characterized by means of X-ray diffraction (XRD). XRD analyses reveal that the nanoparticles of various doping concentration were having anatase phase. The particle size was calculated by Scherrer formula and was found 11.08 nm for pure TiO{sub 2} and 8.86 nm for 6 mol % Ag doped TiO{sub 2}. The morphology and nature of nanoparticles was analyzed by using scanning electron microscope (SEM), the optical absorption spectra of pure TiO{sub 2} and Ag-doped TiO{sub 2} nanoparticles showed that absorption edge increases towards longer wavelength from 390 nm (pure) to 450 nm (doped), also band gap energy calculated from Tauc’s plot decrease from 3.20eV to 2.92eV with increase in doing. The measurement of photocatalytic properties of pure TiO{sub 2} and Ag-doped TiO{sub 2} nanoparticles showed that Ag-doped TiO{sub 2} degrades MB dye more efficiently than pure TiO{sub 2}.

  12. Structural and optical properties of chromium doped zinc oxide nanoparticles synthesized by sol-gel method

    SciTech Connect

    Naqvi, Syed Mohd. Adnan; Irshad, Kashif; Soleimani, Hassan E-mail: noorhana-yahya@petronas.com.my; Yahya, Noorhana E-mail: noorhana-yahya@petronas.com.my

    2014-10-24

    Nanosized Cr-doped ZnO nano particles were synthesized by facile sol-gel auto combustion method. The structural and optical properties of Cr-doped ZnO nanoparticles have been investigated by XRD and UV-Vis spectroscopy at room temperature for 0% to 8% concentration. X-ray diffraction analysis reveals that the Cr-doped ZnO crystallizes in a single phase polycrystalline nature with wurtzite lattice. With every % of doping, the peaks are shifting scarcely and doping of Cr is possible up to 7%. After that, the last peak vanishes, that signifies its structure is transmuted from 8% doping. The average crystallite size decreases with increase in Cr concentration (i.e. 28.9 nm for 0% to 25.8 nm for 8%). The UV-Vis spectra of the nanoparticles betoken an incrementation in the band gap energy from 3.401, 3.415, 3.431, 3.437,3.453, 3.514,3.521, 3.530 and 3.538 eV respectively, for 0,1, 2, 3, 4, 5, 6, 7 and 8 % doping concentration.

  13. Structural properties and optical characterization of flower-like Mg doped NiO

    SciTech Connect

    Allaedini, Ghazaleh Tasirin, Siti Masrinda; Aminayi, Payam

    2015-07-15

    In this study, un-doped and Mg doped NiO nanoparticles have been synthesized through a simple sol-gel method. To investigate the effect of Mg-doping on the structure of NiO, the obtained nanoparticles were characterized using scanning electron microscopy (SEM). Flower/star like morphology was clearly observed in the SEM micrographs. The BET (Brunauer-Emmett-Teller) nitrogen absorption isotherm exhibits high specific surface area (∼37 m{sup 2} /g) for the Mg doped NiO nanoparticles. X-Ray diffraction (XRD) of the prepared Mg-NiO nanoparticles showed a face-centered cubic (f.c.c) structure, and the average particle size was estimated to be 32 nm using Scherrer’s formula. Energy Dispersive X-Ray (EDX) confirms that the NiO particles are successfully doped with Mg. Photoluminescence (PL) and UV-Vis optical absorption characteristics of the prepared nanoparticles have also been investigated in this study. The PL emission response showed a blue shift when NiO was doped with Mg, which is indicative of interstitial oxygen. The UV-Vis results demonstrate a band gap increase as NiO nanoparticles are doped with Mg.

  14. Structural, spectral, optical and dielectric properties of copper and glycine doped LAHCl single crystals.

    PubMed

    Sangeetha, K; Babu, R Ramesh; Bhagavannarayana, G; Ramamurthi, K

    2011-09-01

    Cu2+ and glycine doped L-arginine monohydrochloride monohydrate (LAHCl) single crystals were grown by slow solvent evaporation technique. The grown single crystals were confirmed by X-ray diffraction study and the interaction of dopants with LAHCl molecule was identified in Fourier transform infrared spectra. The crystalline perfection of pure and doped crystals was analyzed by high resolution X-ray diffraction studies. Vickers microhardness and UV-visible spectroscopy were carried out respectively to study the mechanical stability and optical transmittance of pure and doped LAHCl single crystals. He-Ne laser of wavelength 632.8 nm was used to measure refractive index and birefringence of grown crystals. The second harmonic generation efficiency was also measured for pure and doped LAHCl single crystals using Nd:YAG laser.

  15. Effect of cobalt doping on structural, optical and dielectric properties of TiO{sub 2}

    SciTech Connect

    Stella, C. Prabhakar, Diva; Soundararajan, N.; Ramachandran, K.

    2016-05-23

    A diluted magnetic semiconductor (DMS) Co-doped TiO{sub 2} is studied here for dielectric properties. Undoped and Co-doped TiO{sub 2} samples were prepared by sol-gel method. The formation of anatase phase has been investigated by X-ray diffraction (XRD). UV-Vis absorption spectra show that the incorporation of Co into the TiO{sub 2} lattice leads to redshift in the optical response, as well as lowering the band gap energy. The defect oriented emissions were seen from photoluminescence (PL) study. The dielectric properties of pure and Co-doped TiO{sub 2} samples were studied in the frequency range of 10 Hz to 10 MHz at different temperatures. Doped sample exhibit low dielectric constant when compared with host system. Both dielectric constant and ac conductivity increases with temperature.

  16. Mode coupling in 340 μm GeO2 doped core-silica clad optical fibers

    NASA Astrophysics Data System (ADS)

    Djordjevich, Alexandar; Savović, Svetislav

    2017-03-01

    The state of mode coupling in 340 μm GeO2 doped core-silica clad optical fibers is investigated in this article using the power flow equation. The coupling coefficient in this equation was first tuned such that the equation could correctly reconstruct previously reported measured output power distributions. It was found that the GeO2 doped core-silica clad optical fiber showed stronger mode coupling than both, glass and popular plastic optical fibers. Consequently, the equilibrium as well as steady state mode distributions were achieved at shorter fiber lengths in GeO2 doped core-silica clad optical fibers.

  17. Optical Absorption and Luminescence Characteristics of LiCaB Glass Doped with Dy3+ and Sm3+

    NASA Astrophysics Data System (ADS)

    Srivastava, P.

    2017-07-01

    The glasses were prepared by a melt quenching technique and characterized by X-ray diffraction (XRD), optical absorption, and luminescence spectral studies. The XRD analysis indicates that the prepared samples are of fully amorphous nature. Optical absorption spectra have been investigated using the Judd-Ofelt theory. Radiative parameters such as transition probabilities, branching ratios, radiative lifetime, and stimulated emission cross section have been evaluated using Judd-Ofelt intensity parameters. The luminescence spectra of both of Dy3+- as well of Sm3+-doped glasses were recorded with the 476 nm line of an Ar+ laser. Based on the values of stimulated emission cross section, radiative transition rate, and branching ratio of the emission transition 4F9/2 → 6H13/2 of Dy3+, it is suggested that 2 mol.% of Dy3+ LiCaB glass is a promising luminescent material for lasing applications.

  18. Structural and nonlinear optical behavior of Ag-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Tan, Ming-Yue; Yao, Cheng-Bao; Yan, Xiao-Yan; Li, Jin; Qu, Shu-Yang; Hu, Jun-Yan; Sun, Wen-Jun; Li, Qiang-Hua; Yang, Shou-Bin

    2016-01-01

    We present the structural and nonlinear optical behavior of Ag-doped ZnO (AZO) films prepared by magnetron sputtering. The structural of AZO films are systematically investigated by X-ray diffraction (XRD) and scanning electronic microscopy (SEM), respectively. The results show that AZO films can still retain a wurtzite structure, although the c-axis as preferred orientation is decreased by Ag doping. As the amounts of the Ag dopant were increased, the crystallinity as well as the absorptivity and optical band gap were increased. Moreover, the nonlinear optical characterized of the AZO films was studied using Z-scan technique. These samples show self-defocusing nonlinearity and good nonlinear absorption behavior which increases with increasing Ag volume fraction. AZO is a potential nanocomposite material for the development of nonlinear optical devices with a relatively small limiting threshold.

  19. Structural, optical and photocatalytic activity of cerium doped zinc aluminate

    NASA Astrophysics Data System (ADS)

    Sumathi, Shanmugam; Kavipriya, A.

    2017-03-01

    Zinc aluminate and cerium-doped zinc aluminate nanoparticles are synthesised by co-precipitation method. Ammonium hydroxide is used as a precipitating agent. The synthesised compounds are characterised by powder X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FT-IR), Ultraviolet diffuse reflectance spectroscopy (UV-DRS), Thermogravimetric analysis (TGA), Scanning electron microscopy (SEM) and Surface area measurements. The photocatalytic activity of zinc aluminate and cerium doped zinc aluminate nanoparticles are studied under the UV light and visible light taking methylene blue as a model pollutant. The amount of catalyst, concentration of dye solution and time are optimised under UV-light. Degradation of methylene blue under the UV-light is found to be 99% in 20 min with 10 mg of cerium doped catalyst. Compared to visible light degradation, the degradation of dye under UV-light is higher. Cerium doping in zinc aluminate (ZnAl2O4:Ce3+) increased the photocatalytic activity of zinc aluminate.

  20. Optical properties of ZnO doped with Cobalt ions

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Yu; Zakrzewski, A. J.; Witkowski, B. S.; Godlewski, M.

    2016-09-01

    While doping with rare earth ions is used for emission activation, doping with transition metal ions is often used to get specific magnetic properties of a given host material. Recently investigations of transition metal doped materials focused on chances of achieving a room temperature ferromagnetic response. This is because carrier mediated room temperature ferromagnetic order was theoretically predicted for ZnO doped with Mn or Co ions. Such order is required for some of spintronics applications. To realize RT FM both Mn and Co should stay in 2+ charge state, expected when Mn/Co substitute zinc in ZnO. Both ZnMnO and ZnCoO alloys show a strong absorption band, which appears below ZnO band gap transitions. The origin of this absorption in ZnCoO is discussed in the present work. We show based on the results of photoluminescence and photo-ESR investigations that the broad absorption band is related to Co photo-ionization.

  1. Optically stimulated luminescence study in rare earth doped SrBPO5.

    PubMed

    Gaikwad, Sonali; Patil, R R; Kulkarni, M S; Moharil, S V

    2017-09-01

    Optically stimulated luminescence (OSL) was studied in rare earth doped SrBPO5 for the possible applications in radiation dosimetry using optically stimulated luminescence. The study shows that the sensitivity of the Eu doped SrBPO5 shows good OSL and the sensitivity is comparable to that of Al2O3:C. It is observed that annealing has a profound effect on the OSL sensitivity. Slowly cooled Eu doped sample shows highest sensitivity and is 77% compared to that Al2O3:C whereas lowest sensitivity is observed in the quenched sample. Other properties like good linearity and low fading will make this phosphor suitable for the applications in radiation dosimetry using OSL. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Optical properties of an indium doped CdSe nanocrystal: A density functional approach

    SciTech Connect

    Salini, K.; Mathew, Vincent; Mathew, Thomas

    2016-05-06

    We have studied the electronic and optical properties of a CdSe nanocrystal doped with n-type impurity atom. First principle calculations of the CdSe nanocrystal based on the density functional theory (DFT), as implemented in the Vienna Ab Initio Simulation Package (VASP) was used in the calculations. We have introduced a single Indium impurity atom into CdSe nanocrystal with 1.3 nm diameter. Nanocrystal surface dangling bonds are passivated with hydrogen atom. The band-structure, density of states and absorption spectra of the doped and undopted nanocrystals were discussed. Inclusion of the n-type impurity atom introduces an additional electron in conduction band, and significantly alters the electronic and optical properties of undoped CdSe nanocrystal. Indium doped CdSe nannocrystal have potential applications in optoelectronic devices.

  3. Co-doping as a tool for tuning the optical properties of singlewalled carbon nanotubes: A first principles study

    NASA Astrophysics Data System (ADS)

    Sharma, Deepa; Jaggi, Neena

    2017-07-01

    This paper presents a first principles study on the effect of co-doping on various optical spectra of a zigzag single-walled carbon nanotube (SWCNT). Optical spectra of a pristine SWCNT, SWCNT co-doped with Aluminum (Al) & Phosphorus (P) and another one co-doped with Al, P and Nitrogen (N) have been calculated using density functional theory (DFT).The theory has been implemented using the Cambridge sequential total energy package (CASTEP) code available as a userfriendly module with the software 'Material Studio'. Polarized and unpolarized light as well as light through polycrystalline media have been considered. The dependence of various spectra on the status of incident light presents a clear evidence of anisotropicity in the optical properties. Analysis of the simulated spectra involves calculation and comparison of different optical properties like dielectric function, reflectivity, refractive index, conductivity and loss function for the pristine and co-doped SWCNTs. Noticeable variations are observed in the optical properties on simultaneously doping the SWCNT with Al and P and then further introducing N atom into the structure so that it can be concluded that co-doping (simultaneous doping with different combinations of dopants) can be evolved as a novel and effective tool for tailoring the optical properties of SWCNTs as per the requirements while designing an optical device. It will prove to be highly significant for effective designing of SWCNT based sensitive optical devices for a variety of technological applications.

  4. Scintillation recording and playback in free-space optical links

    NASA Astrophysics Data System (ADS)

    Rabinovich, William S.; Mahon, Rita; Ferraro, Mike S.; Murphy, James L.; Moore, Christopher I.

    2016-11-01

    The performance of a free-space optical (FSO) communication system is strongly affected by optical scintillation. Scintillation fades can cause errors when the power on a detector falls below its noise floor while surges can overload a detector. The very long time scale of scintillation compared to a typical bit in an FSO link means that error-correcting protocols designed for fiber optic links are inappropriate for FSO links. Comparing the performance effects of different components, such as photodetectors or protocols, such as forward error correction, in the field is difficult because conditions are constantly changing. On the other hand, laboratory-based turbulence simulators may not really simulate the effects of long-range propagation through the atmosphere. We have investigated a different approach. Scintillation has been measured during field tests using FSO terminals by sending a continuous wave beam through the atmosphere. A high dynamic range photodetector was digitized at a 5-KHz rate and files of the intensity variations were saved. Many hours of scintillation data under different environmental conditions and at different sites have been combined into a library of data. A fiber-optic-based scintillation playback system was then used in the laboratory to test modems and protocols with the recorded irradiance files. This enabled comparisons using the same atmospheric conditions allowing optimization of such parameters as detector dynamic range. It also allowed comparison and optimization of different error correcting protocols.

  5. Nonlinear optical effects on the surface of acridine yellow-doped lead-tin fluorophosphate glass

    NASA Technical Reports Server (NTRS)

    He, K. X.; Bryant, William; Venkateswarlu, Putcha

    1991-01-01

    The second- and third-order nonlinear optical properties of acridine yellow-doped lead-tin fluorophosphate (LTF) glass have been directly studied by measurement of surface enhanced second harmonic generation and third harmonic generation. The three photon excitation fluorescence is also observed. Based on these results, the large nonlinearities of the acridine LTF system which is a new nonlinear optical material are experimentally demonstrated.

  6. Nonlinear optical effects on the surface of acridine yellow-doped lead-tin fluorophosphate glass

    NASA Technical Reports Server (NTRS)

    He, K. X.; Bryant, William; Venkateswarlu, Putcha

    1991-01-01

    The second- and third-order nonlinear optical properties of acridine yellow-doped lead-tin fluorophosphate (LTF) glass have been directly studied by measurement of surface enhanced second harmonic generation and third harmonic generation. The three photon excitation fluorescence is also observed. Based on these results, the large nonlinearities of the acridine LTF system which is a new nonlinear optical material are experimentally demonstrated.

  7. All-Fiber Optical Faraday Mirror Using 56-wt%-Terbium-Doped Fiber

    SciTech Connect

    Sun, L.; Jiang, S.; Marciante, J.R.

    2010-06-22

    An all-fiber optical Faraday mirror that consists of a fiber Faraday rotator and a fiber Bragg grating is demonstrated. The fiber Faraday rotator uses a 21-cm-long section of 56-wt%-terbium-doped silicate fiber. The polarization state of the reflected light is rotated 89 degrees +/- 2 degrees with a 16-dB polarization extinction ratio.

  8. Arsenic complexes optical signatures in As-doped HgCdTe

    SciTech Connect

    Gemain, F.; Robin, I. C.; Brochen, S.; Ballet, P.; Gravrand, O.; Feuillet, G.

    2013-04-08

    In this paper, the optical signatures of arsenic complexes in As-doped HgCdTe samples grown by molecular beam epitaxy are clearly identified using comparison between photoluminescence spectra, Extended X-Ray Absorption Fine Structure, and Hall measurements. The ionization energies of the different complexes are measured both by photoluminescence and Hall measurements.

  9. Gamma-radiation-induced degradation of actively pumped single-mode ytterbium-doped optical fibers

    NASA Astrophysics Data System (ADS)

    Singleton, B.; Petrosky, J.; Pochet, M.; Usechak, N. G.; Francis, S. A.

    2014-03-01

    The integration of optical components into the digital processing units of satellite subsystems has the potential to remove interconnect bottlenecks inherent to the volume, mass, complexity, reliability and crosstalk issues of copper-based interconnects. Assuming on-board high-bandwidth communications will utilize passive optical fibers as a communication channel, this work investigates the impact of gamma irradiation from a Co-60 source on both passive optical fibers and ytterbium-doped single-mode fibers operated as amplifiers for a 1060-nm light source. Standard optical patch cables were evaluated along with active Yb-doped double-clad fibers. Varied exposure times and signal transmission wavelengths were used to investigate the degradation of the fibers exposed to total doses above 100 krad (Si). The effect on the amplified signal gain was studied for the Yb-doped fibers. The increased attenuation in the fibers across a broad wavelength range in response to multiple levels of gamma radiation exposure along with the effect that the increased attenuation has on the actively pumped Yb-doped fiber amplifier performance, is discussed.

  10. Engineering of electronic and optical properties of PbS thin films via Cu doping

    NASA Astrophysics Data System (ADS)

    Touati, Baligh; Gassoumi, Abdelaziz; Dobryden, Illia; Natile, Marta Maria; Vomiero, Alberto; Turki, Najoua Kamoun

    2016-09-01

    Copper-doped PbS polycrystalline thin films were deposited by chemical bath deposition by adding small amount of Cu (ysolution = [Cu2+]/[Pb2+]) between 0.5 and 2 at%. The composition, structure, morphology, optical and electrical properties of the films were investigated by means of X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoemission spectroscopy (XPS), UV-visible-near infrared (UV-Vis-NIR) spectrophotometry and Hall effect measurements. The XRD studies showed that the undoped films have PbS face centered cubic structure with (111) preferential orientation, while preferential orientation changes to (200) plane with increasing Cu doping concentration. The AFM and SEM measurements indicated that the film surfaces consisted of nanosized grains with pyramidal shape. Optical band gap was blue shifted from 0.72 eV to 1.69 eV with the increase in Cu doping concentration. The film obtained with the [Cu2+]/[Pb2+] ratio equal to 1.5 at% Cu showed the minimum resistivity of 0.16 Ω cm at room temperature and optimum value of optical band gap close to 1.5 eV. 1.5 at% Cu-doped PbS thin films exhibit the best optical and electrical properties, suitable for solar cells applications.

  11. Optical properties of bismuth-doped KCl and SrF2 crystals

    NASA Astrophysics Data System (ADS)

    Firstov, S. V.; Zhao, M.; Su, L.; Yang, Q.; Iskhakova, L. D.; Firstova, E. G.; Alyshev, S. V.; Riumkin, K. E.; Dianov, E. M.

    2016-09-01

    Structural and spectroscopic properties of the pristine and γ-irradiated Bi-doped KCl and SrF2 crystals grown by the Bridgman technique were studied. New emission bands in the visible and near IR regions from the irradiated crystals were observed. An origin of optical centers responsible for near IR luminescence is discussed.

  12. Percentage of different aluminum doping influence the morphological and optical properties of ZnO nanostructured growth for sensor application

    SciTech Connect

    Mohamed, R.; Ismail, A. S.; Khusaimi, Z.; Mamat, M. H.; Alrokayan, Salman A. H. Khan, Haseeb A.; Rusop, M.

    2016-07-06

    In this work, Zinc Oxide (ZnO) with different aluminum (Al) doping percentage was synthesis by sol gel immersion method. Al doped ZnO at various doping percentage from 1, 2, 3, 4 and 5. It was found that with different Al percentage influence the morphological and optical properties of ZnO growth. Field Emission Scanning Electron Microscope (FESEM) image showed the use of different Al doping causes the difference in geometry and size of ZnO nanorods growth. Based on UV-Vis spectroscopy, the transmittance at 1% Al doping has the highest spectrum.

  13. Optically Recording Velocity Interferometer System: Applications and Challenges

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia

    2015-06-01

    The Optically Recording Velocity Interferometer System (ORVIS) is a useful variant of the single point Velocity Interferometer System Any Reflector (VISAR) for the measurement of spatially dependent surface motion. Despite being similar in name, the two systems fundamentally differ in terms of the light recombination afforded by the interferometer geometry and subsequent recording method of the fringe phase variations. While both techniques have long been established as useful measurement technologies in shock physics studies of homogeneous and heterogeneous materials, the number of researchers employing spatially resolved ORVIS remains small. The first part of this presentation will discuss the baseline system including data examples only possible with the diagnostic's ability for continuous spatial recording. Recent adaptations of the baseline system have extended capabilities to incorporate multiple interferometers and laser illumination sources for observations in multiple spatial dimensions and non-planar geometries. The second part of this presentation will discuss efforts to overcome noted practical challenges when fielding the diagnostic and post-processing of image data. Application to non-planar geometries and highly heterogeneous materials motivates an appreciation of the coupling between the target surface reflectance properties and the light collection optics which can be quantitatively assessed through the bidirectional reflectance distribution function (BRDF) of the reflector. Challenges of practically locating fringe jumps in post-processing are discussed in the context of appreciating the underlying quadrature relationships of the fringe records. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Recording of incoherent reflective volume Fourier holograms for optical correlators

    NASA Astrophysics Data System (ADS)

    Rodin, Vladislav G.; Starikov, Sergey N.

    2007-01-01

    The scheme of recording of reflective volume Fourier holograms in monochromatic light with partial spatial coherence is presented. The scheme contains posed on one optical axis an illuminated or self-luminous object, Fourier-objective, photosensitive medium and concave mirror. The light is proposed to be monochromatic with partial spatial coherence. The object is located in a front focal plane of the Fourier-objective. Photosensitive medium is placed in a back focal plane of the Fourier-objective, and the mirror is posed on a double focal length of the mirror from photosensitive medium. The light from input object is focused by the Fourier-objective in a volume of photosensitive medium, shaping a far field diffraction pattern of input object. This pattern is partial coherent analog of Fourier transform of input object. The light transmitted through the medium falls on the concave mirror and is reflected back, thus the mirror shapes the second copy of far field diffraction pattern of input object in the volume of photosensitive medium. Thus, these two light waves, propagating in the opposite directions, form the interference pattern in photosensitive medium, and a reflective volume Fourier hologram is recorded by monochromatic light with partial spatial coherence. The experiments on recording of these holograms and image reconstruction were realized. Patent by Russian Federation No2176099 on the device of recording of reflective volume holographic Fourier-filter in light with partial spatial coherence was taken out. Described reflective volume Fourier-holograms can be used in optical correlators as the spatial filters and spectral selectors at image recognition both in monochromatic and polychromatic light.

  15. Electrically actuatable doped polymer flakes and electrically addressable optical devices using suspensions of doped polymer flakes in a fluid host

    DOEpatents

    Trajkovska-Petkoska, Anka; Jacobs, Stephen D.; Marshall, Kenneth L.; Kosc, Tanya Z.

    2010-05-11

    Doped electrically actuatable (electrically addressable or switchable) polymer flakes have enhanced and controllable electric field induced motion by virtue of doping a polymer material that functions as the base flake matrix with either a distribution of insoluble dopant particles or a dopant material that is completely soluble in the base flake matrix. The base flake matrix may be a polymer liquid crystal material, and the dopants generally have higher dielectric permittivity and/or conductivity than the electrically actuatable polymer base flake matrix. The dopant distribution within the base flake matrix may be either homogeneous or non-homogeneous. In the latter case, the non-homogeneous distribution of dopant provides a dielectric permittivity and/or conductivity gradient within the body of the flakes. The dopant can also be a carbon-containing material (either soluble or insoluble in the base flake matrix) that absorbs light so as to reduce the unpolarized scattered light component reflected from the flakes, thereby enhancing the effective intensity of circularly polarized light reflected from the flakes when the flakes are oriented into a light reflecting state. Electro-optic devices contain these doped flakes suspended in a host fluid can be addressed with an applied electric field, thus controlling the orientation of the flakes between a bright reflecting state and a non-reflecting dark state.

  16. Breathing Monitor Using Dye-Doped Optical Fiber

    NASA Astrophysics Data System (ADS)

    Muto, Shinzo; Fukasawa, Akihiko; Ogawa, Takayuki; Morisawa, Masayuki; Ito, Hiroshi

    1990-08-01

    A new monitoring system of human breathing using umbelliferon dye-doped plastic fiber has been studied. Under UV light pumping, the fiber which was used as a sensor head generates blue fluorescence depending on human expiration. By converting the light signal to electronic pulses, the counting of breathing and real-time monitoring of abnormal breathing such as a heavy cough or a cloggy sputum have easily been obtained.

  17. Radiation Effects on Ytterbium-doped Optical Fibers

    DTIC Science & Technology

    2014-06-02

    14 Figure 5. Representative double- clad fiber cross section (n1>n2>n3). Rare earth-doped fiber amplifiers and lasers function on the...and signal intensity profile over the area of the inner cladding and core area are assumed to be uniform. 2.5 All fiber laser The potential uses for...was actively pumped during irradiation experienced decreased laser pulse width and output power for increasing dose. Before the end of irradiation

  18. Optical Response of Shocked Cerium-Doped Lutetium Oxyorthosilicate

    SciTech Connect

    G. D. Stevens

    2003-03-01

    Shock experiments were performed in order to characterize the triboluminescent signature of cerium-doped lutetium oxyorthosilicate (LSO:Ce). This material shows prompt, nano-second timescale light emission when driven by explosive detonation. When properly applied to a surface, it may be used as a shock arrival sensor, and also for imaging the propagation of a shock front. Triboluminescent rise times, spectral content, and spatial resolution measurements are presented.

  19. Beta2-Agonist Doping Control and Optical Isomer Challenges.

    PubMed

    Jacobson, Glenn A; Fawcett, J Paul

    2016-12-01

    The World Anti-Doping Agency (WADA) currently allows therapeutic use of the beta2-agonists salbutamol, formoterol and salmeterol when delivered via inhalation despite some evidence suggesting these anti-asthma drugs may be performance enhancing. Beta2-agonists are usually administered as 50:50 racemic mixtures of two enantiomers (non-superimposable mirror images), one of which demonstrates significant beta2-adrenoceptor-mediated bronchodilation while the other appears to have little or no pharmacological activity. For salbutamol and formoterol, urine thresholds have been adopted to limit supratherapeutic dosing and to discriminate between inhaled (permitted) and oral (prohibited) use. However, chiral switches have led to the availability of enantiopure (active enantiomer only) preparations of salbutamol and formoterol, which effectively doubles their urine thresholds and provides a means for athletes to take supratherapeutic doses for doping purposes. Given the availability of these enantiopure beta2-agonists, the analysis of these drugs using enantioselective assays should now become routine. For salmeterol, there is currently only a therapeutic dose threshold and adoption of a urinary threshold should be a high priority for doping control.

  20. Optical response of laser-doped silicon carbide for an uncooled midwave infrared detector.

    PubMed

    Lim, Geunsik; Manzur, Tariq; Kar, Aravinda

    2011-06-10

    An uncooled mid-wave infrared (MWIR) detector is developed by doping an n-type 4H-SiC with Ga using a laser doping technique. 4H-SiC is one of the polytypes of crystalline silicon carbide and a wide bandgap semiconductor. The dopant creates an energy level of 0.30  eV, which was confirmed by optical spectroscopy of the doped sample. This energy level corresponds to the MWIR wavelength of 4.21  μm. The detection mechanism is based on the photoexcitation of electrons by the photons of this wavelength absorbed in the semiconductor. This process modifies the electron density, which changes the refractive index, and, therefore, the reflectance of the semiconductor is also changed. The change in the reflectance, which is the optical response of the detector, can be measured remotely with a laser beam, such as a He-Ne laser. This capability of measuring the detector response remotely makes it a wireless detector. The variation of refractive index was calculated as a function of absorbed irradiance based on the reflectance data for the as-received and doped samples. A distinct change was observed for the refractive index of the doped sample, indicating that the detector is suitable for applications at the 4.21  μm wavelength.

  1. Effect of neodymium doping on structure, electrical and optical properties of nanocrystalline ZnO

    SciTech Connect

    Roy, B.; Chakrabarty, S.; Mondal, O.; Pal, M.; Dutta, A.

    2012-08-15

    In this paper, we report effect of Nd doping on structure, electrical and optical properties of nanocrystalline ZnO prepared through a modified ceramic route. The X-ray diffraction and transmission electron microscopy studies reveal that annealed samples are single phase, pure nanocrystalline ZnO. The optical band gap for different compositions, estimated from ultraviolet-visible spectroscopy study, shows a little increasing tendency while doped with Nd for the samples annealed at lower temperature. The dc electrical conductivity of the samples decreases with the increase in Nd concentration. The ac electrical measurements prove the hopping conduction as the dominant mechanism. The results are being explained on the basis of band structural change due to Nd doping in the host lattice and by Correlated Barrier Hopping model. - Highlights: Black-Right-Pointing-Pointer Particle size increases when it is doped (from XRD). Black-Right-Pointing-Pointer XRD peak shifted to lower angle when doped. Black-Right-Pointing-Pointer The dc conductivity decreases with the increase of Nd dopant concentrations. Black-Right-Pointing-Pointer The temperature dependent ac conductivity follows the universal power law.

  2. Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides

    NASA Astrophysics Data System (ADS)

    Kamisaka, Hideyuki; Adachi, Takahisa; Yamashita, Koichi

    2005-08-01

    The structure and optical properties of carbon-doped titanium oxides, TiO2, in the rutile and anatase forms have been investigated theoretically from first principles. Two possible doping sites were studied, carbon at an oxygen site (anion doping) and carbon at a titanium site (cation doping). The calculated structures suggest that cation-doped carbon atoms form a carbonate-type structure, whereas anion-doped carbon atoms do not invoke any significant structural change. A density-of-states analysis revealed three in-gap impurity states for anion doping. The optical properties of anion-doped cells qualitatively agree with the experimentally reported visible-light absorbance values. We ascribe part of the absorption to transitions from the valence band to one of the impurity states. These transitions should be able to promote photocatalytic reactions, because electron holes in the valence band are considered to be crucial for this process. Neither in-gap impurity states nor visible-light absorbance were observed in the case of cation doping. The effect of oxygen vacancies was also investigated. Introduction of oxygen vacancies into anion-doped TiO2 populates the impurity states and thus suppresses photocatalysis. The interaction of a doped carbon atom with an oxygen vacancy at a finite spatial separation was also carried out. The possibility of either a carbon-oxygen vacancy pair or higher carbon-oxygen vacancy complex existing is discussed.

  3. Optical detection of ultrasound using AFC-based quantum memory technique in cryogenic rare earth ion doped crystals

    NASA Astrophysics Data System (ADS)

    Taylor, Luke R.; McAuslan, David L.; Longdell, Jevon J.

    2013-03-01

    We present results of a novel and highly sensitive technique for the optical detection of ultrasound using the selective storage of frequency shifted photons in an inherently highly efficient and low noise atomic frequency comb (AFC) based quantum memory. The ultrasound `tagged' optical sidebands are absorbed within a pair of symmetric AFCs, generated via optical pumping in a Pr3+:Y2SiO5 sample (tooth separation Δ = 150 kHz, comb finesse fc ~ 2 and optical depth αL ~ 2), separated by twice the ultrasound modulation frequency (1.5 MHz) and centered on either side of a broad spectral pit (1.7 MHz width) allowing transmission of the carrier. The stored sidebands are recovered with 10-20% efficiency as a photon echo (as defined by the comb parameters), and we demonstrate a record 49 dB discrimination between the sidebands and the carrier pulse, high discrimination being important for imaging tissues at depth. We further demonstrate detector limited discrimination (~29 dB) using a highly scattered beam, confirming that the technique is immune to speckle decorrelation. We show that it also remains valid in the case of optically thin samples, and thus represents a significant improvement over other ultrasound detection methods based on rare-earth-ion-doped crystals. These results strongly suggest the suitability of our technique for high-resolution non-contact real-time imaging of biological tissues.

  4. Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium-zinc-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.

    2017-08-01

    The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.

  5. Infrared optical absorption in low-spin Fe(2+)-doped SrTiO3.

    PubMed

    Comes, Ryan B; Kaspar, Tiffany C; Heald, Steve M; Bowden, Mark E; Chambers, Scott A

    2016-01-27

    Band gap engineering in SrTiO3 and related titanate perovskites has long been explored due to the intriguing properties of the materials for photocatalysis and photovoltaic applications. A popular approach in the materials chemistry community is to substitutionally dope aliovalent transition metal ions onto the B site in the lattice to alter the valence band. However, in such a scheme there is limited control over the dopant valence, and compensating defects often form. Here we demonstrate a novel technique to controllably synthesize Fe(2+)- and Fe(3+)-doped SrTiO3 thin films without formation of compensating defects by co-doping with La(3+) ions on the A site. We stabilize Fe(2+)-doped films by doping with two La ions for every Fe dopant, and find that the Fe ions exhibit a low-spin electronic configuration, producing optical transitions in the near infrared regime and degenerate doping. The novel electronic states observed here offer a new avenue for band gap engineering in perovskites for photocatalytic and photovoltaic applications.

  6. Electrical and optical properties of Si-doped Ga2O3

    NASA Astrophysics Data System (ADS)

    Li, Yin; Yang, Chuanghua; Wu, Liyuan; Zhang, Ru

    2017-05-01

    The charge densities, band structure, density of states, dielectric functions of Si-doped β-Ga2O3 have been investigated based on the density functional theory (DFT) within the hybrid functional HSE06. The heavy doping makes conduction band split out more bands and further influences the band structure. It decreases the band gap and changes from a direct gap to an indirect gap. After doping, the top of the valence bands is mainly composed by the O-2p states, Si-3p states and Ga-4p states and the bottom of the conduction bands is almost formed by the Si-3s, Si-3p and Ga-4s orbits. The anisotropic optical properties have been investigated by means of the complex dielectric function. After the heavy Si doping, the position of absorption band edges did not change much. The slope of the absorption curve descends and indicates that the absorption became more slow for Si-doped β-Ga2O3 than undoped one due to the indirect gap of Si-doped β-Ga2O3.

  7. Effect of tellurium doping on the structural, optical, and electrical properties of CdO

    SciTech Connect

    Dakhel, A.A.

    2010-08-15

    Te-doped CdO thin-films (1%, 3%, and 5%) have been prepared by a vacuum evaporation method on glass and silicon-wafer substrates. The prepared films were characterised by X-ray fluorescence, X-ray diffraction, UV-VIS-NIR absorption spectroscopy, and dc-electrical measurements. Experimental data indicate that Te ions doping slightly stresses the host CdO crystalline structure and changes the optical and electrical properties. The bandgap of the host CdO was suddenly narrowed by about 23% due to a little (1%) doping with Te ions. This bandgap shrinkage was explained by effects of trap levels overlapping with conduction band. The electrical behaviours of the Te-doped CdO films show that they are degenerate semiconductors with a bandgap of 1.7-2.2 eV. The 1% Te-doped CdO film shows increase its mobility by about 5 times, conductivity by {proportional_to}140 times, and carrier concentration by {proportional_to}27 times, relative to undoped CdO film. From transparent-conducting-oxide point of view, Te is sufficiently effective for CdO doping. Finally, the absorption in the NIR spectral region was studied in the framework of the classical Drude theory. (author)

  8. Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles

    NASA Astrophysics Data System (ADS)

    Sreelekha, N.; Subramanyam, K.; Amaranatha Reddy, D.; Murali, G.; Ramu, S.; Rahul Varma, K.; Vijayalakshmi, R. P.

    2016-08-01

    Pristine and Co doped covellite CuS nanoparticles were synthesized in aqueous solution by facile chemical co-precipitation method with Ethylene Diamine Tetra Acetic Acid (EDTA) as a stabilizing agent. EDAX measurements confirmed the presence of Co in the CuS host lattice. Hexagonal crystal structure of pure and Co doped CuS nanoparticles were authenticated by XRD patterns. TEM images indicated that sphere-shape of nanoparticles through a size ranging from 5 to 8 nm. The optical absorption edge moved to higher energies with increase in Co concentration as indicated by UV-vis spectroscopy. Magnetic measurements revealed that bare CuS sample show sign of diamagnetic character where as in Co doped nanoparticles augmentation of room temperature ferromagnetism was observed with increasing doping precursor concentrations. Photocatalytic performance of the pure and Co doped CuS nanoparticles were assessed by evaluating the degradation rate of rhodamine B solution under sun light irradiation. The 5% Co doped CuS nanoparticles provide evidence for high-quality photocatalytic activity.

  9. Infrared Optical Absorption in Low-spin Fe2+-doped SrTiO3

    SciTech Connect

    Comes, Ryan B.; Kaspar, Tiffany C.; Heald, Steve M.; Bowden, Mark E.; Chambers, Scott A.

    2016-01-06

    Band gap engineering in SrTiO3 and related titanate perovskites has long been explored due to the intriguing properties of the materials for photocatalysis and photovoltaic applications. A popular approach in the materials chemistry community is to substitutionally dope aliovalent transition metal ions onto the B site in the lattice to alter the valence band. However, in such a scheme there is limited control over the dopant valence, and compensating defects often form. Here we demonstrate a novel technique to controllably synthesize Fe2+- and Fe3+-doped SrTiO3 thin films without formation of compensating defects by co-doping with La3+ ions on the A site. We stabilize Fe2+-doped films by doping with two La ions for every Fe dopant, and find that the Fe ions exhibit a low-spin electronic configuration, producing optical transitions in the near infrared regime and degenerate doping. The novel electronic states observed here offer a new avenue for band gap engineering in perovskites for photocatalytic and photovoltaic applications.

  10. Structure, morphology and optical studies of Li+ doped polyaniline composite

    NASA Astrophysics Data System (ADS)

    Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, Chapi, Sharanappa; Raghu, S.; Devendrappa, H.

    2017-05-01

    Conjugating Polyaniline (PANI) composites have many interesting optical property useful in optical device applications. The pure PANI and PANI-Lithium perchlorate composites (PL1 & PL10) were prepared by chemical reaction method. The composites are characterized with the help of FT-IR, SEM and UV-Vis to confirm the chemical interactions, change in surface morphology and optical changes respectively. The direct optical band gap was found decreased from 3.89 to 2.97eV with increasing the LiClO4. The obtained results suggesting these polymer composites are suitable candidates for optoelectronics display, electrode material and electrochromic devices.

  11. Effect of Mg and Fe Doping on Optical Absorption of LiNbO3 Crystal through First Principles Calculations

    NASA Astrophysics Data System (ADS)

    Huang, Duo-Hui; Yang, Jun-Sheng; Cao, Qi-Long; Wan, Ming-Jie; Li, Qiang; Sun, Liang; Wang, Fan-Hou

    2014-03-01

    Using first principles calculations, we investigate the structural, optical, and electronic properties of LiNbO3 (LN) and M doped LN (M=Mg, Fe). The density of states are calculated to analyze the effect of doping Mg and Fe ions on the absorption spectra and electronic properties of LN. The results show an ultraviolet shift in the optical absorption edge of Mg-doped LN compared with that of intrinsic LN. On the contrary, the absorption edge of Fe-doped LN crystal reveals a red shift. The optical absorption spectra show an improved optical response in the visible range for Mg-doped LN, which significantly differs from that obtained for Fe-doped LN. The electronic excitations from the valence band to the conduction band of LN leads to an improved optical absorption response in the visible region as observed experimentally. The obvious changes of the doped LN crystal are found in some cases, which provide a helpful guide for preparing doped LN crystal.

  12. Nonlinear optical studies on 1,3-disubstituent chalcones doped polymer films

    NASA Astrophysics Data System (ADS)

    Poornesh, P.; Shettigar, Seetharam; Umesh, G.; Manjunatha, K. B.; Prakash Kamath, K.; Sarojini, B. K.; Narayana, B.

    2009-04-01

    We report the measurements of the third-order nonlinear optical properties of recently synthesized and characterized two different 1,3-disubstituent chalcones doped PMMA films, with the prospective of reaching a good compromise between processability and high nonlinear optical properties. The measurements were done using nanosecond Z-scan at 532 nm. The Z-scan spectra reveal a large negative nonlinear refraction coefficient n2 of the order 10 -11 esu and the molecular two photon absorption cross section is 10 -46 cm 4 s/photon. The doped films exhibit good optical power limiting property under nanosecond regime and the two photon absorption (TPA) is the dominating process leading to the nonlinear behavior. The improvement in the nonlinear properties has been observed when methylenedioxy group is replaced by dimethoxy group due to increase in conjugation length. The observed nonlinear parameters of chalcone derivatives doped PMMA film is comparable with stilbazolieum derivatives, a well-known class of optical materials for photonics and biophotonics applications, which suggests that, these moieties have potential for the application of all-optical limiting and switching devices.

  13. Electro-Optical Imaging Microscopy of Dye-Doped Artificial Lipidic Membranes

    PubMed Central

    Hajj, Bassam; De Reguardati, Sophie; Hugonin, Loïc; Le Pioufle, Bruno; Osaki, Toshihisa; Suzuki, Hiroaki; Takeuchi, Shoji; Mojzisova, Halina; Chauvat, Dominique; Zyss, Joseph

    2009-01-01

    Artificial lipidic bilayers are widely used as a model for the lipid matrix in biological cell membranes. We use the Pockels electro-optical effect to investigate the properties of an artificial lipidic membrane doped with nonlinear molecules in the outer layer. We report here what is believed to be the first electro-optical Pockels signal and image from such a membrane. The electro-optical dephasing distribution within the membrane is imaged and the signal is shown to be linear as a function of the applied voltage. A theoretical analysis taking into account the statistical orientation distribution of the inserted dye molecules allows us to estimate the doped membrane nonlinearity. Ongoing extensions of this work to living cell membranes are discussed. PMID:19948120

  14. A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band

    PubMed Central

    Firstov, Sergei V.; Alyshev, Sergey V.; Riumkin, Konstantin E.; Khopin, Vladimir F.; Guryanov, Alexey N.; Melkumov, Mikhail A.; Dianov, Evgeny M.

    2016-01-01

    It is now almost twenty-five years since the first Erbium-Doped Fiber Amplifier (EDFA) was demonstrated. Currently, the EDFA is one of the most important elements widely used in different kinds of fiber-optic communication systems. However, driven by a constantly increasing demand, the network traffic, growing exponentially over decades, will lead to the overload of these systems (“capacity crunch”) because the operation of the EDFA is limited to a spectral region of 1530–1610 nm. It will require a search for new technologies and, in this respect, the development of optical amplifiers for new spectral regions can be a promising approach. Most of fiber-optic amplifiers are created using rare-earth-doped materials. As a result, wide bands in shorter (1150–1530 nm) and longer wavelength (1600–1750 nm) regions with respect to the gain band of Er-doped fibers are still uncovered. Here we report on the development of a novel fiber amplifier operating in a spectral region of 1640–1770 nm pumped by commercially available laser diodes at 1550 nm. This amplifier was realized using bismuth-doped high-germania silicate fibers fabricated by MCVD technique. PMID:27357592

  15. Effect of doping on structural and optical properties of ZnO nanoparticles: study of antibacterial properties

    NASA Astrophysics Data System (ADS)

    Maddahi, P.; Shahtahmasebi, N.; Kompany, A.; Mashreghi, M.; Safaee, S.; Roozban, F.

    2014-06-01

    Sol-gel method was successfully used for synthesis of ZnO nanoparticles doped with 10 % Mg or Cu. The structure, morphology and optical properties of the prepared nanoparticles were studied as a function of doping content. The synthesized ZnO:(Mg/Cu) samples were characterized using XRD, TEM, FTIR and UV-Vis spectroscopy techniques. The samples show hexagonal wurtzite structure, and the phase segregation takes place for Cu doping. Optical studies revealed that Mg doping increases the energy band gap while Cu incorporation results in decrease of the band gap. The antibacterial activities of the nanoparticles were tested against Escherichia coli (Gram negative bacteria) cultures. It was found that both pure and doped ZnO nanosuspensions show good antibacterial activity which increases with copper doping, and slightly decreases with adding Mg.

  16. Linear and nonlinear optical properties of gold nanoparticle-doped photonic crystal fiber.

    PubMed

    Bigot, L; El Hamzaoui, H; Le Rouge, A; Bouwmans, G; Chassagneux, F; Capoen, B; Bouazaoui, M

    2011-09-26

    We report on the production of air/silica photonic crystal fiber doped with gold nanoparticles. The stack-and-draw technique was used to combine a gold nanoparticles-doped silica core rod synthesized by the sol-gel route with capillaries drawn from commercially available silica tubes. The presence of nanoparticles in the core region was confirmed at the different steps of the process down to the fiber geometry, even after multiple drawings at ~2000 °C. Optical properties of the fiber were investigated and put in evidence the impact of gold nanoparticles on both linear and nonlinear transmission.

  17. Strain sensing based on radiative emission-absorption mechanism using dye-doped polymer optical fiber

    NASA Astrophysics Data System (ADS)

    Kamimura, S.; Furukawa, R.

    2017-08-01

    A stress sensor based on a dye-doped polymeric optical fiber is able to detect stress by simple comparison of two luminescence peaks from a pair of energy transfer organic dyes. Coumarin 540A (donor) and Rhodamine 6G (acceptor) were doped in the core and cladding of the fiber, respectively. For various laser wavelengths, the change in the near-field pattern and visible emission spectrum upon variation in the fiber bending diameter was evaluated. From a comparison with a low-numerical-aperture fiber, it is shown that the sensitivity of the sensor is controllable by optimization of the waveguide parameters.

  18. Properties of Eu3+ doped poly(methyl methacrylate) optical fiber

    NASA Astrophysics Data System (ADS)

    Miluski, Piotr; Kochanowicz, Marcin; Zmojda, Jacek; Dorosz, Dominik

    2017-02-01

    The proposition of trivalent europium as a luminescent dopant in poly(methyl methacrylate) (PMMA) host is presented. Optical characterization and fabrication technology of the Eu3+ doped polymeric fiber is shown. The proposed luminescent material exhibits an intense luminescence under 355- and 405-nm excitation. Additionally, the measured decay time (0.51 ms, D→F transition) at third harmonic Nd:YAG excitation showed low luminescence quenching in Eu3+ chelate doped PMMA. The luminescent properties and influence of spectral attenuations on the luminescence shape in fabricated fibers are also presented.

  19. Doping of TiO 2 Polymorphs for Altered Optical and Photocatalytic Properties

    DOE PAGES

    Nie, Xiliang; Zhuo, Shuping; Maeng, Gloria; ...

    2009-01-01

    Tmore » his paper reviews recent investigations of the influence of dopants on the optical properties of TiO 2 polymorphs.he common undoped polymorphs of TiO 2 are discussed and compared.he results of recent doping efforts are tabulated, and discussed in the context of doping by elements of the same chemical group. Dopant effects on the band gap and photocatalytic activity are interpreted with reference to a simple qualitative picture of the TiO 2 electronic structure, which is supported with first-principles calculations.« less

  20. Laser induced breakdown spectroscopy diagnosis of rare earth doped optical glasses

    SciTech Connect

    Dwivedi, Y.; Thakur, S. N.; Rai, S. B.

    2010-05-01

    In the present work, rare earth (Nd, Eu, Er, Ho) doped oxyfluoroborate glasses were studied using laser induced breakdown spectroscopy (LIBS) technique. It has been observed that rare earth elements other than the doped one also reveal their presence in the spectrum. In addition the spectral lines of elements constituting the glass matrix have also been observed. Different plasma parameters such as plasma temperature and electron density have been estimated. It is concluded that the LIBS is a potential technique to identify simultaneously the light elements (B, O, F) as well as the heavy elements (Fe, Ba, Ca, Eu, Nd, Ho, Er) present in optical glasses.

  1. Ultrafast optical control of magnetization dynamics in polycrystalline bismuth doped iron garnet thin films

    SciTech Connect

    Deb, Marwan Vomir, Mircea; Rehspringer, Jean-Luc; Bigot, Jean-Yves

    2015-12-21

    Controlling the magnetization dynamics on the femtosecond timescale is of fundamental importance for integrated opto-spintronic devices. For industrial perspectives, it requires to develop simple growth techniques for obtaining large area magneto-optical materials having a high amplitude ultrafast Faraday or Kerr response. Here we report on optical pump probe studies of light induced spin dynamics in high quality bismuth doped iron garnet polycrystalline film prepared by the spin coating method. We demonstrate an ultrafast non-thermal optical control of the spin dynamics using both circularly and linearly polarized pulses.

  2. Ultrafast optical control of magnetization dynamics in polycrystalline bismuth doped iron garnet thin films

    NASA Astrophysics Data System (ADS)

    Deb, Marwan; Vomir, Mircea; Rehspringer, Jean-Luc; Bigot, Jean-Yves

    2015-12-01

    Controlling the magnetization dynamics on the femtosecond timescale is of fundamental importance for integrated opto-spintronic devices. For industrial perspectives, it requires to develop simple growth techniques for obtaining large area magneto-optical materials having a high amplitude ultrafast Faraday or Kerr response. Here we report on optical pump probe studies of light induced spin dynamics in high quality bismuth doped iron garnet polycrystalline film prepared by the spin coating method. We demonstrate an ultrafast non-thermal optical control of the spin dynamics using both circularly and linearly polarized pulses.

  3. Effects on the optical properties and conductivity of Ag-N co-doped ZnO

    NASA Astrophysics Data System (ADS)

    Xu, Zhenchao; Hou, Qingyu; Qu, Lingfeng

    2017-01-01

    Nowadays, the studies of the effects on the optical bandgap, absorption spectrum, and electrical properties of Ag-N co-doped ZnO have been extensively investigated. However, Ag and N atoms in doped systems are randomly doped, and the asymmetric structure of ZnO is yet to be explored. In this paper, the geometric structure, stability, density of states, absorption spectra and conductivity of pure and Ag-N co-doped Zn1-xAgxO1-xNx(x=0.03125, 0.0417 and 0.0625) in different orientations are calculated by using plane-wave ultrasoft pseudopotential on the basis of density functional theory with GGA+U method. Results show that the volume, equivalent total energy and formation energy of the doped system increase as the concentration of Ag-N co-doped Zn1-xAgxO1-xNx increases at the same doping mode. The doped systems also become unstable, and difficulty in doping. At the same concentration of Ag-N co-doped Zn1-xAgxO1-xNx, the systems with Ag-N along the c-axis orientation is unstable, and doping is difficult. The optical bandgap of Ag-N co-doped systems is narrower than that of the pure ZnO. At the same doping mode, the optical bandgap of the systems with Ag-N perpendicular to the c-axis orientation becomes narrow as the concentration of Ag-N co-doped Zn1-xAgxO1-xNx increases. The absorption spectra of the doped systems exhibit a red shift, and this red shift becomes increasingly significant as the concentration of Ag-N co-doped Zn1-xAgxO1-xNx increases. Under the same condition, the relative hole concentrations of the doped systems increases, the hole effective mass in valence band maximum decreases, the hole mobility decreases, the ionization energy decreases, Bohr radius increases, the conductance increases and the conductivity become better. Our results may be used as a basis for the designing and preparation of new optical and electrical materials for Ag-N co-doped ZnO applied in low temperature end of temperature difference battery.

  4. Optical characteristics of the Eu 3+- β-diketonate complex doped into epoxy resin

    NASA Astrophysics Data System (ADS)

    Parra, Duclerc F.; Mucciolo, Adriana; Brito, Hermi F.; Thompson, Larry C.

    2003-02-01

    Preparation of epoxy resins doped with triaquatris(acetylacetonate)europium(III) [Eu(ACAC) 3(H 2O) 3] at 1%, 5%, 10% and 15% and their luminescent properties in the solid state are reported. In addition, the catalytic properties of samples doped with [Eu(TTA) 3(H 2O) 2] (I) and [Eu(ACAC) 3(H 2O) 3] (II) have been compared to that of a physical mixture of epoxy resin containing dicyandiamide (III) in the DSC curing process under heating. It was verified that the product (I) was cured under the same conditions as (III), but that product (II) was not cured. The compounds were characterized by elemental analysis, thermogravimetry (TG), differential scanning calorimetry (DSC) and infrared spectroscopy. The emission spectra of the Eu 3+-ACAC complex doped in the epoxy resin recorded at 298 and 77 K exhibited the characteristic bands arising from the 5D0→ 7FJ transitions ( J=0-4). The experimental intensity parameter, Ω 2, indicated that the Eu 3+ ion in the precursor complex is in a more polarizable chemical environment than in the doped system. The emitter 5D0 level lifetimes for doped samples (1%, 5%, 10% and 15%) show the luminescence decay curve profiles as single exponentials. The Eu-doped system containing the TTA ligand presented a higher emission quantum efficiency than that with ACAC. The emission quantum efficiencies ( η) are also discussed.

  5. Quantitative magneto-optic field imaging of recording heads (abstract)

    NASA Astrophysics Data System (ADS)

    Heidmann, Juergen; Weller, Dieter

    1997-04-01

    With increasingly higher recording densities and narrowing track widths approaching 1 micron in particular it is getting more important to optimize the field distribution of the write head. The goal is to minimize side writing due to fringing fields at the pole edges as well as distortions of the write field contour along the track width emanating from gap saturation. The imaging of written transitions in a recording medium using a magnetic force microscope yields information only about the integral response of the head/medium magnetic system. We have developed a technique to measure the magnetic field distribution at the gap quantitatively using a transducer layer deposited directly on the air bearing surface. Other than an in-plane magnetized medium with hysteretic behavior the perpendicularly oriented Co/Pt multilayer shows reversible nonhysteretic rotation of magnetization when subjected to the in-plane component of the recording head. Consequently, a quantitative determination of the write field is possible that is not the 1,2 Y. The previously reported magneto-optic method's perpendicular component of magnetization is detected using the polar Kerr effect and the calibrated Kerr contrast is then translated into an in-plane-field contour. Magnetic properties of the sensing layer were tailored to the range of write fields to be measured with anisotropy and coercivity fields up to 60 and 8 kOe, respectively.

  6. Rare-earth-doped materials with application to optical signal processing, quantum information science, and medical imaging technology

    NASA Astrophysics Data System (ADS)

    Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.

    2012-02-01

    Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.

  7. Luminescence and photoinduced absorption in ytterbium-doped optical fibres

    SciTech Connect

    Rybaltovsky, A A; Aleshkina, S S; Likhachev, M E; Bubnov, M M; Umnikov, A A; Yashkov, M V; Gur'yanov, Aleksei N; Dianov, Evgenii M

    2011-12-31

    Photochemical reactions induced in the glass network of an ytterbium-doped fibre core by IR laser pumping and UV irradiation have been investigated by analysing absorption and luminescence spectra. We have performed comparative studies of the photoinduced absorption and luminescence spectra of fibre preforms differing in core glass composition: Al{sub 2}O{sub 3} : SiO{sub 2}, Al{sub 2}O{sub 3} : Yb{sub 2}O{sub 3} : SiO{sub 2}, and P{sub 2}O{sub 5} : Yb{sub 2}O{sub 3} : SiO{sub 2}. The UV absorption spectra of unirradiated preform core samples show strong bands peaking at 5.1 and 6.5 eV, whose excitation plays a key role in photoinduced colour centre generation in the glass network. 'Direct' UV excitation of the 5.1- and 6.5-eV absorption bands at 244 and 193 nm leads to the reduction of some of the Yb{sup 3+} ions to Yb{sup 2+}. The photodarkening of ytterbium-doped fibres by IR pumping is shown to result from oxygen hole centre generation. A phenomenological model is proposed for the IR-pumping-induced photodarkening of ytterbium-doped fibres. The model predicts that colour centre generation in the core glass network and the associated absorption in the visible range result from a cooperative effect involving simultaneous excitation of a cluster composed of several closely spaced Yb{sup 3+} ions.

  8. Optical properties of Si-doped and Be-doped InAlAs lattice-matched to InP grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lumb, M. P.; Yakes, M. K.; González, M.; Tischler, J. G.; Walters, R. J.

    2013-09-01

    In this paper, we determine the optical constants and carrier mobilities of Si-doped and Be-doped InAlAs lattice matched to InP. The samples were grown using molecular beam epitaxy and characterized using Hall measurements, variable angle spectroscopic ellipsometry, and room temperature photoluminescence spectroscopy. A Moss-Burstein shift in the fundamental absorption edge was observed in both Si-doped and Be-doped materials. We fitted a multiple-oscillator, critical point model to the dielectric function of the materials extracted using the spectroscopic ellipsometry. The tabulated input parameters of this model allow for accurate calculations of the dielectric function of doped InAlAs to be made, which is useful information for simulating a variety of InP-based optoelectronic devices.

  9. Optical properties of Er3+ ions doped in oxyfluoroborate glass.

    PubMed

    Kumar, Akshaya; Rai, D K; Rai, S B

    2002-12-01

    In this paper the Stark components of 4S(3/2), 2H(11/2) and 4I(15/2) levels of Er3+ ion doped in oxyfluoroborate glass have been resolved using laser excitation and fluorescence measurements. The lifetime of 4S(3/2) level as a function of Er3+ concentration in the glass host has also been measured. Concentration quenching due to interaction among rare earth ions and the mechanism responsible for the same has been elucidated. The Judd-Ofelt analysis of the absorption spectrum has also been carried out.

  10. Structural, optical and magnetic properties of Sn doped ZnS nano powders prepared by solid state reaction

    NASA Astrophysics Data System (ADS)

    Kumar, K. Chaitanya; Rao, N. Madhusudhana; Kaleemulla, S.; Rao, G. Venugopal

    2017-10-01

    Tin doped ZnS powders (Zn1-xSnxS, x = 0.00, 0.02, 0.05&0.08) were synthesized by a simple Solid state reaction and were characterized by Powder X-ray diffractometer (XRD), UV-Vis-NIR diffuse reflectance spectrophotometer, fluorescence spectrophotometer, scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The XRD studies revealed that no change in crystal structure was observed by the substitution of Sn into ZnS lattice. The crystallite size was calculated by Scherrer's formula and found that the crystallize size of Sn doped ZnS powders were in the range of 35-45 nm. From the diffused reflectance spectra, the band gap values of Zn1-xSnxS powders were estimated, and they were found to be in the range of 3.53-3.58 eV. The pure ZnS particles showed higher optical absorption in visible region than that of Sn doped ZnS nano particles. The Photoluminescence (PL) spectra of Zn1-xSnxS powders were recorded in the range of 400-700 nm with an excitation wavelength of 360 nm. The Zn1-xSnxS powders exhibited ferromagnetism at low temperature (100 K) and super paramagnetism at room temperature (300 K). The strength of magnetization increased with increase of Sn doping concentration from 0.015 emu/g to 0.18 emu/g, when x increased from 0.00-0.05.

  11. Effect of Al3+ co-doping on the dopant local structure, optical properties, and exciton dynamics in Cu+-doped ZnSe nanocrystals.

    PubMed

    Gul, Sheraz; Cooper, Jason Kyle; Glans, Per-Anders; Guo, Jinghua; Yachandra, Vittal K; Yano, Junko; Zhang, Jin Zhong

    2013-10-22

    The dopant local structure and optical properties of Cu-doped ZnSe (ZnSe:Cu) and Cu and Al co-doped ZnSe (ZnSe:Cu,Al) nanocrystals (NCs) were studied with an emphasis on understanding the impact of introducing Al as a co-dopant. Quantum-confined NCs with zinc blende crystal structure and particle size of 6 ± 0.6 Å were synthesized using a wet chemical route. The local structure of the Cu dopant, studied by extended X-ray absorption fine structure, indicated that Cu in ZnSe:Cu NCs occupies a site that is neither substitutional nor interstitial and is adjacent to a Se vacancy. Additionally, we estimated that approximately 25 ± 8% of Cu was located on the surface of the NC. Al(3+) co-doping aids in Cu doping by accounting for the charge imbalance originated by Cu(+) doping and consequently reduces surface Cu doping. The Cu ions remain distorted from the center of the tetrahedron to one of the triangular faces. The lifetime of the dopant-related photoluminescence was found to increase from 550 ± 60 to 700 ± 60 ns after Al co-doping. DFT calculations were used to obtain the density of states of a model system to help explain the optical properties and dynamics processes observed. This study demonstrates that co-doping using different cations with complementary oxidation states is an effective method to enhance optical properties of doped semiconductor NCs of interest for various photonics applications.

  12. Photon Irradiation Response on Ge and Al-Doped SiO{sub 2} Optical Fibres

    SciTech Connect

    Yaakob, Nor Haliza; Wagiran, Husin; Ramli, Ahmad Termizi; Asni, Hazila; Ali, Hassan

    2010-07-07

    Recently, research groups have reported a number of radiation effects on the applications of SiO{sub 2} optical fibres with possible use as dosimeter material because these optical fibre provide a good basis for medical radiation dosimetry. The objective of this study is to investigate the thermoluminescence response and fading characteristic for germanium and aluminium doped SiO{sub 2} optical fibres with photon irradiation. These optical fibres are placed in solid phantom and irradiated to 6 and 10 MV photon beam at dose ranging from 0.06 Gy to 0.24 Gy using Primus MLC 3339 linear accelerator at Hospital Sultan Ismail, Johor Bahru. In fading studies, the TL measurements were continued up to 14 days period. The optical fibres will produce glow curves whereby the information is then analyzed. Al and Ge-doped optical fibres have a linear dose-TL signal relationship that is proportionality between the TL signal and the doses. Comparison for TL response between different linear accelerator showed a good agreement because these optical fibres also have a linear dose-TL signal relationship even using different equipments.

  13. Photon Irradiation Response on Ge and Al-Doped SiO2 Optical Fibres

    NASA Astrophysics Data System (ADS)

    Yaakob, Nor Haliza; Wagiran, Husin; Ramli, Ahmad Termizi; Ali, Hassan; Asni, Hazila

    2010-07-01

    Recently, research groups have reported a number of radiation effects on the applications of SiO2 optical fibres with possible use as dosimeter material because these optical fibre provide a good basis for medical radiation dosimetry. The objective of this study is to investigate the thermoluminescence response and fading characteristic for germanium and aluminium doped SiO2 optical fibres with photon irradiation. These optical fibres are placed in solid phantom and irradiated to 6 and 10 MV photon beam at dose ranging from 0.06 Gy to 0.24 Gy using Primus MLC 3339 linear accelerator at Hospital Sultan Ismail, Johor Bahru. In fading studies, the TL measurements were continued up to 14 days period. The optical fibres will produce glow curves whereby the information is then analyzed. Al and Ge-doped optical fibres have a linear dose-TL signal relationship that is proportionality between the TL signal and the doses. Comparison for TL response between different linear accelerator showed a good agreement because these optical fibres also have a linear dose-TL signal relationship even using different equipments.

  14. Observation of Amorphous Recording Marks Using Reflection-Mode Near-Field Scanning Optical Microscope Supported by Optical Interference Method

    NASA Astrophysics Data System (ADS)

    Sakai, Masaru; Mononobe, Shuji; Yusu, Keiichiro; Tadokoro, Toshiyasu; Saiki, Toshiharu

    2005-09-01

    A signal enhancing technique for a reflection-mode near-field scanning optical microscope (NSOM) is proposed. Optical interference between the signal light, from an aperture at the tip of a tapered optical fiber, and the reflected light, from a metallic coating around the aperture, enhances the signal intensity. We used a rewritable high-definition digital versatile disc (HD DVD) with dual recording layers as a sample medium, and demonstrated observation of amorphous recording marks on the semitransparent (the first) recording layer. In spite of low optical contrast between the crystal region and the amorphous region on this layer, we successfully observed recording marks with good contrast.

  15. Applications of Non-Crystalline Materials — C. REAL TIME OPTICAL RECORDING ON THIN FILMS OF AMORPHOUS SEMICONDUCTORS

    NASA Astrophysics Data System (ADS)

    Mitkova, Maria

    The following sections are included: * Introduction * Amorphous Semiconductors as Optical Storage Medium * Principles and Results on Real-time Optical Recording * Digital optical recording * Digital optical recording due to ablation of the films by illumination with light * Digital optical recording due to coagulation of an island film * Digital optical recording due to phase transition * Digital optical recording due to photoinduced surface deposition of metallic silver * Principles of holographic recording * Recording and readout * Classification of the holograms * Diffraction efficiency * Results in holographic recording on chalcogenide glasses * Future Trends * Acknowledgments * References

  16. Study of structural and optical properties of Fe doped CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Rani, Poonam; Gupta, Ankita; Kaur, Sarabjeet; Singh, Vishal; Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Iron doped Copper oxide nanoparticles were synthesized by the co-precipitation method at different concentration (3%, 6%, 9%) at 300-400° C with Copper Acetate and Ferric Chloride as precursors in presence of Polyethylene Glycol and Sodium Hydroxide as stabilizing agent. Effect of doping on the structural and optical properties is studied. The obtained nanoparticles were characterized by X-Ray Diffraction and UV-Visible Spectroscopy for examining the size and the band gap respectively. The X-Ray Diffraction plots confirmed the monoclinic structure of Copper oxide suggesting the Cu atoms replaced by Fe atoms and no secondary phase was detected. The indirect band gap of Fe doped CuO nanoparticles is 2.4eV and increases to 3.4eV as the concentration of dopant increases. The majority of particle size is in range 8 nm to 35.55 nm investigated by X-ray diffractometer.

  17. Thermoluminescence and optically stimulated luminescence in various phases of doped Na2SO4

    NASA Astrophysics Data System (ADS)

    Gaikwad, S. U.; Patil, R. R.; Kulkarni, M. S.; Bhatt, B. C.; Moharil, S. V.

    2016-02-01

    The dependence of optically stimulated luminescence (OSL) and thermoluminescence (TL) response due to crystal phase in Cu and Cu,Mg-doped Na2SO4 was studied. Study shows that the slowly cooled samples which crystallize in phase V show good OSL sensitivity whereas the quenched samples of Na2SO4 which crystallize in phase III irrespective of doping show no OSL sensitivity. However, during storage when phase III samples get converted to phase V, samples show OSL sensitivity comparable to freshly prepared samples in phase V. Hence, it is observed that TL-OSL properties of doped Na2SO4 are phase dependent .This study will be helpful in developing OSL phosphors in which phase plays an important role in deciding the desired properties.

  18. Growth and optical properties of Nb-doped WS2 monolayers

    NASA Astrophysics Data System (ADS)

    Sasaki, Shogo; Kobayashi, Yu; Liu, Zheng; Suenaga, Kazutomo; Maniwa, Yutaka; Miyauchi, Yuhei; Miyata, Yasumitsu

    2016-07-01

    We report the chemical vapor deposition growth of Nb-doped WS2 monolayers and their characterization. Electron microscopy observations reveal that the Nb atom was substituted at the W site at a rate of approximately 0.5%. Unlike Mo doping, Nb-doped samples have photoluminescence (PL) peaks at 1.4-1.6 eV at room temperature. The peak energies are lower than the optical bandgap of 1.8 eV, and a saturation behavior of PL intensity is observed with the increase in excitation power. These results indicate that the observed PL peaks are assignable to the emission from impurity states generated by the substitution of Nb.

  19. Optical limiting behavior of C 60 doped ethylenepropylenediene polymethylene polymer

    NASA Astrophysics Data System (ADS)

    Zidan, M. D.; Ajji, Z.; Allaf, A. W.; Allahham, A.

    2010-06-01

    Optical limiting measurements on C 60 in toluene-ethylenepropylenediene polymethylene (EPDM) polymer blends and in EPDM polymer films at three different concentrations have been carried out. The measurements were undertaken using 532 nm wavelength, 10 ns pulses from a frequency-doubled Nd-YAG Laser. The results show that the optical limiting efficiency is concentration dependent and that the limiting efficiency for C 60 in toluene-EPDM polymer blends is better than in EPDM polymer film samples.

  20. Real-time dosimetry with Yb-doped silica optical fibres

    NASA Astrophysics Data System (ADS)

    Veronese, Ivan; Chiodini, Norberto; Cialdi, Simone; d'Ippolito, Eduardo; Fasoli, Mauro; Gallo, Salvatore; La Torre, Stefano; Mones, Eleonora; Vedda, Anna; Loi, Gianfranco

    2017-05-01

    Over the years, many efforts have been made to develop radiation detectors to handle the complex issues of small field dosimetry and achieve the increasing accuracy, precision and in vivo dose monitoring required by the new advanced treatment modalities. In this context, interest has surged in the development of sensors based on scintillating optical fibres. In this paper, the near-infrared radioluminescence and dosimetric properties of Yb-doped silica optical fibres, coupled with a laboratory prototype based on an avalanche photodiode, were studied by irradiating the fibres with photons and electron beams generated by a Varian Trilogy accelerator. The performance of the system in standard and small field sizes has also been investigated, comparing the output factor, percentage depth dose and off-axis ratio measurements of the prototypal detector with other commercial sensors, including the Exradin W1 scintillator. The results of this study demonstrate that the drawback due to the stem effect in Yb-doped silica optical fibres can be managed in a simple but effective way by optical filtering. The robustness of the system in complex dosimetric scenarios and the accuracy and precision achieved by Yb-doped fibres in relative dose assessments suggest an effective use of the system for real-time in vivo dosimetry applications.

  1. Nonlinear optical characterization of the Ag nanoparticles doped in polyvinyl alcohol films

    NASA Astrophysics Data System (ADS)

    Ghanipour, Mahshad; Dorranian, Davoud

    2015-06-01

    The effect of silver nanoparticles doped in polyvinyl alcohol (PVA) on the nonlinear optical properties of composite films is studied experimentally. Samples are PVA films of 0.14 mm thickness doped with different concentrations of silver nanoparticles. Nonlinear optical properties of doped polymer films are studied experimentally employing Z-scan techniques. Experiments are performed using the second harmonic of a continuous Nd-Yag laser beam at 532 nm wavelength and 45 mW power. The effect of nonlinear refractive index of samples is obtained by measuring the profile of propagated beam through the samples and their nonlinear refractive index is found to be negative. The nonlinear absorption coefficient is calculated using open aperture Z-scan data while its nonlinear refractive index is measured using the closed aperture Z-scan data, leads to measuring the third order susceptibility |χ(3)|. Real and imaginary parts of the third-order nonlinear optical susceptibility |χ(3)| are decrease with increasing the concentration of Ag nanoparticles in the films. The values of thermo-optic coefficient are determined at different concentrations of silver nanoparticles for samples.

  2. Real-time dosimetry with Yb-doped silica optical fibres.

    PubMed

    Veronese, Ivan; Chiodini, Norberto; Cialdi, Simone; D'Ippolito, Eduardo; Fasoli, Mauro; Gallo, Salvatore; La Torre, Stefano; Mones, Eleonora; Vedda, Anna; Loi, Gianfranco

    2017-03-02

    Over the years, many efforts have been done to develop radiation detectors to afford the complex issues of small field dosimetry and to fulfil the needs of increasing accuracy, precision and in-vivo dose monitoring required by the new advanced treatment modalities. In this context, a growing interest has surged in the development of sensors based on scintillating optical fibres. In this paper, the near-infrared radioluminescence and dosimetric properties of Yb-doped silica optical fibres, coupled with a laboratory prototype based on an avalanche photo-diode, were studied by irradiating the fibres with photons and electron beams generated by a Varian Trilogy accelerator. The performances of the system in standard and small field sizes have been also investigated comparing the output factor, percent depth dose and off axis ratio measurements of the prototypal detector with other commercial sensors, including the Exradin W1 scintillator. The results of this study demonstrated that the drawback due to the stem effect in Yb-doped silica optical fibres can be managed in a simple but effective way by optical filtering. The robustness of the system in complex dosimetric scenarios and the accuracy and the precision achieved by Yb-doped fibres in relative dose assessments suggest an effective use of the system for real time in-vivo dosimetry applications.

  3. First-Surface Far Field Magneto-Optical Recording

    NASA Astrophysics Data System (ADS)

    Verschuren, Coen A.; Rompaey, Bart van; Zijp, Ferry; Kesteren, Hans W. van

    2002-03-01

    Magnetic AMplifying Magneto Optical System (MAMMOS) is a promising technology for high storage densities. However, the laser power margin for correct readout is quite small. Based on the understanding of the readout process, recording and readout methods have been developed and tested to improve this margin. First results show that the increased margin allows correct readout of bit lengths as short as 75 nm, which corresponds to an increase in storage density by a factor 1.5 compared to conventional MAMMOS. No changes to the light path or the disk are required. Finally, we measured the rise time of the MAMMOS signal using a fast detector. The result shows that for a numerical aperture (NA)=0.85 and λ=405 nm MAMMOS is capable of data rates around 100 Mb/s.

  4. Enhanced optical absorption in nanopatterned Yb-doped thin films for solid state laser application

    NASA Astrophysics Data System (ADS)

    Cui, Wenda; Hua, Weihong; Wang, Hongyan; Kai, Han; Xu, Xiaojun

    2017-05-01

    The excitation and emission properties of optical materials can be adjusted by nanostructures and to achieve high optical efficiency in the optically pump laser with short absorption length and high threshold pump power, we present and theoretically investigate a Yb-doped thin film on a 1D grating structure in this paper. High reflectivity at the pump and emission wavelength are realized simultaneously and in terms of the guided-mode resonance theory, the local field of high reflected light is enhanced which will increase the absorption of associated laser wavelength. we analyze parameters of the nanostructure in detail based on rigorous coupled-wave theory and an appropriate structure is decided. We set up a simple quasi-three-level model and demonstrate that this designed structure can effectively improve the optical efficiency of optically pump solid state laser.

  5. Thermo-optical and polarized light studies of MWCNT doped PDLCs

    NASA Astrophysics Data System (ADS)

    Mahajan, Jyoti; Gupta, Sureshchandra J.; Saxena, S.; Swati, K.

    2016-05-01

    Optical properties of liquid crystals (LCs) are very essential in an understanding of the technological applications of the LCs. Polymer Dispersed Liquid Crystals (PDLCs) are prepared by dispersing the liquid crystal droplets in polymer matrix. Experiments to study thermo-optical properties and polarized light studies are considered in the present work. PDLCs used in the present work are composed of poly (methyl methacrylate) and cholestric liquid crystal namely cholesteryl propionate. These are further doped with Multi-walled carbon Nanotubes (MWCNTs). Thermo-optical study reveals that there is decrease in the nematic-isotropic phase transition temperature (Clearing point temperature i.e. CPT) with increase in the concentration of MWCNTs. The effect of polarized light is studied by means of change in polarization which is characteristic of the material properties. The optical constants graphs obtained from ellipsometry provides the possibility of the use of composite material for optical switching systems.

  6. Effects of time-temperature profiles on glow curves of germanium-doped optical fibre

    NASA Astrophysics Data System (ADS)

    Lam, S. E.; Alawiah, A.; Bradley, D. A.; Mohd Noor, N.

    2017-08-01

    The Germanium (Ge) doped silica optical fibres have demonstrated the great potential to be developed as a thermoluminescent (TL) dosimeter that can be used in various applications in radiotherapy, diagnostic radiology, UV dosimetry system and food irradiation industry. Different time-temperature profile (TTP) parameters of the TL reader have been employed by many researchers in various of TL studies. Nevertheless, none of those studies adequately addressed the effects of the reader's preheat temperature and heating rate on the kinetic parameters of the TL glow curve specifically, the Ge-doped silica optical fibres. This research addresses the issue of TTP parameters with special attention to the determination of the kinetic parameters of the glow curve. The glow curve responses were explored and the kinetic parameters were analyzed by the WinGCF software, to show the effect of the preheat temperature and heating rate of the reader on Ge-doped fibre irradiated with 18 Gy of 6 MV photons radiation. The effect of TTP parameters was discussed and compared against the commercial fibre and tailored made fibre of 6 mol% Ge-doped of flat and cylindrical shape. The deconvolution of glow peaks and the kinetic parameters were obtained by the WinGCF software. This enables to fit accurately (1.5%doped silica optical fibres.

  7. Optical and magnetic properties of zinc oxide quantum dots doped with cobalt and lanthanum.

    PubMed

    Yu, Shiyong; Zhao, Jing; Su, Hai-Quan

    2013-06-01

    Cobalt and Lanthanum-doped ZnO QDs are synthesized by a modified sol-gel method under atmospheric conditions. The as-prepared quantum dots are characterized by X-ray powder diffraction (XRD), energy dispersive X-ray (EDX) analysis and high resolution transmission electron microscopy (HRTEM). The optical properties of the products are studied by fluorescent spectroscopy. With a proper Co and La doping, these nanoparticles possess exceptionally small size and enhanced fluorescence. Hysteresis loops of un-doped ZnO QDs and Co and La-doped ZnO QDs indicate that both the samples show ferromagnetic behavior at room temperature. Finally, these nanoparticles can label the BGC 803 cells successfully in short time and present no evidence of toxicity or adverse affect on cell growth even at the concentration up to 1 mM. We expect that the as-prepared Co and La-doped ZnO QDs can provide a better reliability of the collected data and find promising applications in biological, medical and other fields.

  8. Electrical and Optical Characterization of Cobalt Doped Nanostructured ZnO/p-Si Heterojunctions

    NASA Astrophysics Data System (ADS)

    Kaphle, Amrit; Smith, Echo Adcock; Hari, Parameswar; Crunkleton, Daniel; Johannes, Tyler; Otanicar, Todd; Roberts, Kenneth

    In this study we investigated electrical and optical properties of heterojunctions made of cobalt doped ZnO nanorods and Boron doped silicon (p-Si). ZnO nanorods were grown on a seed layer of Zn sputtered on p-Si using a chemical bath deposition technique. Cobalt percentage in the ZnO were varied from 0-20%. Scanning Electron Microscope (SEM) images indicate that the diameter of ZnO nanorods increased with higher cobalt doping. Room temperature photoluminescence shows an increase in the defect peak at 550 nm with increasing doping. Band gap was measured using UV-VIS spectroscopy. In addition, we also performed current-voltage (I-V), capacitance-voltage(C-V) measurements on ZnO/p-Si samples under both dark and illumination conditions. I-V characteristics show good rectifying behavior under dark and illumination conditions. The saturation current, diode ideality factor, carrier concentrations, built in potential, and barrier height were calculated from I-V and C-V measurements. We will discuss the implications of the band gap, I-V, and C-V measurements with variations in cobalt doping concentrations in ZnO/p-Si heterojunctions.

  9. Effect of nickel doping on structural and optical properties of ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Sanjeev Kumar, R.; Veeravazhuthi, V.; Muthukumarasamy, N.; Thambidurai, M.; Vishnu Shankar, D.

    2015-10-01

    In the present work, solution based simple chemical precipitation method has been used to prepare undoped and Ni-doped ZnS nanoparticles. Zinc acetate, sodium sulfide, and nickel nitrate have been used as precursors for the preparation of Ni-doped ZnS nanoparticles. The X-ray diffraction results revealed that the undoped and Ni-doped ZnS nanoparticles exhibit hexagonal Structure. The average grain size of the prepared nanoparticles was found to lie in the range of 2.6-4.2 nm. The SEM images show that the particles have smooth surface and the formation of agglomerated nanoparticles. The compositional analysis results confirm the presence of Ni, Zn and S in the prepared samples. The optical properties of undoped and Ni-doped ZnS quantum dots have been studied using absorption spectra. HRTEM results show that undoped and Ni-doped ZnS nanoparticles exhibit a uniform size distribution with average grain size lying in the range of 2.3-3.6 nm. The synthesized nanoparticles exhibited an emission peak centered at around 612 nm in the PL spectrum.

  10. Effect of cobalt doping on structural and optical properties of ZnO nanoparticles

    SciTech Connect

    Singh, J.; Chanda, A. Gupta, S.; Shukla, P.; Chandra, V.

    2016-05-23

    Cobalt doped ZnO nanoparticles of uniform sizes were prepared by a chemical method using ZnCl{sub 2} and NaOH as the source materials. The formation of Co-doped ZnO nanoparticles was confirmed by transmission electron microscopy (TEM), high resolution TEM (HR-TEM) and selected area electron diffraction (SAED) studies. The optical properties of obtained products were examined using room temperature UV-visible and FTIR spectroscopy. SAED of cobalt doped ZnO nanoparticles shows homogeneous distribution of nanoparticles with hexagonal structure. The HRTEM image of the Co-doped ZnO nanoparticles reveals a clear lattice spacing of 0.52 nm corresponding to the interplanar spacing of wurtzite ZnO (002) plane. The absorption band at 857 cm{sup −1} in FTIR spectra confirmed the tetrahedral coordination of Zn and a shift of absorption peak to shorter wavelength region and decrease in absorbance with Co doping.is observed in UV-Visible spectra.

  11. Electronic and optical properties study on Fesbnd B co-doped anatase TiO2

    NASA Astrophysics Data System (ADS)

    Li, Xuechao; Shi, Jianhao; Chen, Hao; Wan, Rundong; Leng, Chongyan; Lei, Ying

    2016-09-01

    We investigate the density of states and optical properties for Fe, 2B and (Fe, 2B) doped TiO2 with DFT calculations. The calculated results reveal mono-doping introduces midgap states which are half-occupied and easy to become the recombination centers of charge carriers, thus inhibiting the enhancement of photocatalystic activity. The coupling of 2p-3d states in the (Fe, 2B) compensated co-doped TiO2 makes gap states couple with the valence bands edge, thus greatly causing the band gap narrowing and higher visible light absorption. Moreover, the gap states cannot become recombination centers of the photoexcited carriers, thus promoting the separation of electron-hole pairs, prolonging the lifetime of carriers. The analysis of electron density indicates more electrons from Fe transfer to adjacent B, realizing the charge compensation and forming a stronger Fesbnd B bond. Therefore, the (Fe, 2B) compensated co-doped TiO2 exhibits the higher visible-light photocatalystic activity than those of pure and solely doped TiO2.

  12. Optical Characteristics of La-Doped ZnS Thin Films Prepared by Chemical Bath Deposition

    NASA Astrophysics Data System (ADS)

    Xie, Hai-Qing; Chen, Yuan; Huang, Wei-Qing; Huang, Gui-Fang; Peng, Ping; Peng, Li; Wang, Tai-Hong; Zeng, Yun

    2011-02-01

    Undoped and La-doped ZnS thin films are prepared by chemical bath deposition (CBD) process through the co-precipitation reaction of inorganic precursors zinc sulfate, thiosulfate ammonia and La2O3. Composition of the films is analyzed using an energy-dispersive x-ray spectroscopy (EDS). Absorption spectra and spectral transmittances of the films are measured using a double beam UV-VIS spectrophotometer (TU-1901). It is found that significant red shifts in absorption spectra and decrease in absorptivity are obtained with increasing lanthanum. Moreover, optical transmittance is increased as La is doped, with a transmittance of more than 80% for wavelength above 360 nm in La-doped ZnS thin films. Compared to pure ZnS, the band gap decreases and flat-band potential positively shifts to quasi-metal for the La-doped ZnS. These results indicate that La-doped ZnS thin films could be valuably adopted as transparent electrodes.

  13. Effect of Zn doping on structural, optical and thermal properties of CeO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ramasamy, V.; Vijayalakshmi, G.

    2015-09-01

    The undoped and Zn doped CeO2 nanoparticles were synthesized by chemical precipitation method at room temperature. The undoped and Zn doped CeO2 nanoparticles have been characterized by X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), ultraviolet visible and photoluminescence (PL) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and thermogravimetry and differential thermal analysis (TG-DTA). The cubic fluorite structures of the CeO2 nanoparticles were determined by XRD. The influence of particle size on structural parameters such as lattice parameter (a), inter planar distance (d), dislocation density (δ), microstrain (ε), lattice strain (η) and texture co-efficient (TC) were also determined. The lattice strains were determined by Williamson-Hall plot method. The effect of Zn doping with shifting of the bands were observed by UV-Vis spectroscopy and also their optical band gap were determined. The emission spectra and energy band diagram of the undoped and Zn doped samples were derived from PL spectroscopy. The structural bond vibrations of undoped and Zn doped CeO2 nanoparticles were analyzed by FTIR spectroscopy. The thermal property (weight loss and decomposition) of the sample is observed by TG-DTA curve.

  14. Optical and electrical properties of TiOPc doped Alq3 thin films

    NASA Astrophysics Data System (ADS)

    Ramar, M.; Suman, C. K.; Tyagi, Priyanka; Srivastava, R.

    2015-06-01

    The Titanyl phthalocyanine (TiOPc) was doped in Tris (8-hydroxyquinolinato) aluminum (Alq3) with different concentration. The thin film of optimized doping concentration was studied extensively for optical and electrical properties. The optical properties, studied using ellipsometry, absorption and photoluminescence. The absorption peak of Alq3 and TiOPc was observed at 387 nm and 707 nm and the photo-luminescence intensity (PL) peak of doped thin film was observed at 517 nm. The DC and AC electrical properties of the thin film were studied by current density-voltage (J-V) characteristics and impedance over a frequency range of 100 Hz - 1 MHz. The electron mobility calculated from trap-free space-charge limited region (SCLC) is 0.17×10-5 cm2/Vs. The Cole-Cole plots shows that the TiOPc doped Alq3 thin film can be represented by a single parallel resistance RP and capacitance CP network with a series resistance RS (10 Ω). The value of RP and CP at zero bias was 1587 Ω and 2.568 nF respectively. The resistance RP decreases with applied bias whereas the capacitance CP remains almost constant.

  15. Optical and electrical properties of TiOPc doped Alq{sub 3} thin films

    SciTech Connect

    Ramar, M.; Suman, C. K. Tyagi, Priyanka; Srivastava, R.

    2015-06-24

    The Titanyl phthalocyanine (TiOPc) was doped in Tris (8-hydroxyquinolinato) aluminum (Alq3) with different concentration. The thin film of optimized doping concentration was studied extensively for optical and electrical properties. The optical properties, studied using ellipsometry, absorption and photoluminescence. The absorption peak of Alq{sub 3} and TiOPc was observed at 387 nm and 707 nm and the photo-luminescence intensity (PL) peak of doped thin film was observed at 517 nm. The DC and AC electrical properties of the thin film were studied by current density-voltage (J-V) characteristics and impedance over a frequency range of 100 Hz - 1 MHz. The electron mobility calculated from trap-free space-charge limited region (SCLC) is 0.17×10{sup −5} cm{sup 2}/Vs. The Cole-Cole plots shows that the TiOPc doped Alq{sub 3} thin film can be represented by a single parallel resistance R{sub P} and capacitance C{sub P} network with a series resistance R{sub S} (10 Ω). The value of R{sub P} and C{sub P} at zero bias was 1587 Ω and 2.568 nF respectively. The resistance R{sub P} decreases with applied bias whereas the capacitance C{sub P} remains almost constant.

  16. Broadband optical amplification with water-free hexagonal double-clad Bi doped silica fiber

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Takahashi, M.; Ohara, M.; Kondo, I.; Fujii, Yusuke

    2016-03-01

    1.3 - 1.55 micron optical amplifiers for the long distance up-stream and down-stream networks for a future increase of fiber access networks in telecommunications are attractive. A bismuth-doped silica glass has a potential of the broadband spectrum as lasers and amplifier applications at 1.3 -1.55 micron. The bismuth-doped fiber lasers and amplifiers were discussed by the MOCVD method. In this report optical amplification characteristics at 1.3 - 1.55 micron are presented with the water free hexagonal double-clad bismuth-doped silica fiber (HDC-BDF) made by the vertical axial vapor-phase deposition (VAD) method. The bismuth and aluminum ions were vapor-phase doped into the silicon and germanium oxide. Pumping into the HDC-BDF was performed by using the tilt-polished fiber from the hexagonal surface with the multimode fiber pigtail of the pumping LD. 2 dB amplified gain was obtained with less than -40 dBm CW input signal power at 1310nm.

  17. Optical, electrical, thermal properties of cadmium chloride doped PVA – PVP blend

    SciTech Connect

    Baraker, Basavarajeshwari M.; Hammannavar, Preeti B.; Lobo, Blaise

    2015-06-24

    Films of polyvinylalcohol (PVA) – polyvinylpyrrolidone (PVP) blend doped with Cadmium Chloride (CdCl{sub 2}) in the doping range 1 wt% to 40 wt% were prepared by solution casting technique. These films were characterized using optical/UV-Vis- NIR spectroscopy, Differential Scanning Calorimetry (DSC) and DC electrical measurements. The UV-Visible spectra were quantitatively analyzed to yield the optical parameters. The UV-Visible Spectra show intermediate absorption bands (before the final absorption edge) due to formation of energy bands in the forbidden gap of PVA-PVP. There is a prominent absorption band at 2.9 eV, from 0.5 wt% up to 1.8 wt% doping level (DL) caused by the dopant (CdCl{sub 2}). The DC electrical studies showed an increase in activation energy from 2.8 eV at 0.5 wt% DL up to 3.5 eV at 4.4 wt% DL, reaching a low of 2.4 eV at 11.2 wt% DL. DSC scans show evidence of formation of chain fragments, at doping levels beyond 8 wt%.

  18. Glass doped with semiconductor nanoparticles for optical devices

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Ponce, L.; Arronte, M.; de Posada, E.; Kellerman, G.; César, C. L.; Barbosa, L. C.

    2009-09-01

    We report the fabrication of glass multilayer doped with semiconductor nanoparticles. The glass matrix was fabricated by Plasma Enhanced Chemical Deposition (PECVD using tetramethoxysilane (TMOS) as precursor. The RF power was supplied by a RF-150 TOKYO HI-Power operating at 13.56 MHz and coupled to the RF electrodes through a matching box. The nanoparticles were grown by pulsed laser deposition (PLD) of a PbTe target using the second harmonic of a Q-Switched Quantel Nd:YAG laser in high purity inert gas atmosphere. The influence of gas and background pressure and in the nanoparticle size and size distribution is studied. The morphological properties of the nanostructured material were studied by means of High Resolution Transmission Electron Microscopy(HRTEM), grazing-incidence smallangleX-ray scattering (GISAXS).

  19. Cr(VI) and Fe(III) doped polymer systems as real-time holographic recording materials

    NASA Astrophysics Data System (ADS)

    Manivannan, Gurusamy; Changkakoti, Rupak; Lessard, Roger A.

    1992-12-01

    IL EXPERIMENTAL Cr(VI) [as (4)2271 and Fe(ffl) [as FeC1] doped Polyvinyl alcohol and Polyacrylic acid systems have been employed'' as real-time holographic recording materials. Holograms have been recorded in Dicbmmated Polyvinyl alcohol (DCPVA) Dichromated Polyacrylic acid (DCPAA) and Ferric chloride Polyvinyl alcohol (FePVA) films. Various chemical and physical parameters influencing the holographic performance have been optimized. L

  20. Optical Properties of Alkaline Earth Ions Doped Bismuth Borate Glasses

    SciTech Connect

    Kundu, Virender; Dhiman, R. L.; Maan, A. S.; Goyal, D. R.

    2011-07-15

    The optical properties of glasses with composition xLi{sub 2}O(30-x)Bi{sub 2}O{sub 3}-70B{sub 2}O{sub 3}; x = 0, 5, 10, 15 and 20 mol %, prepared by normal melt quench technique were investigated by means of UV-VIS measurement. It was observed that the optical band gap of the present glass system decreases with increasing Li{sub 2}O content up to 15 mol%, and with further increase in lithium oxide content i.e. x>15 mol% the optical band gap increases. It was also observed that the present glass system behaves as an indirect band gap semiconductor.

  1. Optical properties of antimony-doped p-type ZnO films fabricated by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Pan, X. H.; Guo, W.; Ye, Z. Z.; Liu, B.; Che, Y.; He, H. P.; Pan, X. Q.

    2009-06-01

    We investigated optical properties of Sb-doped p-type ZnO films grown on n-Si (100) substrates by oxygen plasma-assisted pulsed laser deposition. Two acceptor states, with the acceptor levels of 161 and 336 meV, are identified by well-resolved photoluminescence spectra. Under oxygen-rich conditions, the deep acceptor in Sb-doped ZnO film is Zn vacancy. The shallow acceptor is SbZn-2VZn complex induced by Sb doping. The origin of p-type behavior in Sb-doped ZnO has been ascribed to the formation of SbZn-2VZn complex.

  2. Thermoluminescent sensitivity of single clad neodymium doped SiO2 optical fibres measured with 6 MeV photons

    NASA Astrophysics Data System (ADS)

    Saeed, M. A.; Hossain, I.; Hida, N.; Wagiran, H.

    2013-10-01

    This study investigates the thermoluminescent sensitivity of neodymium doped SiO2 optical fibre with various dose ranges from 0.5 Gy to 4.0 Gy by 6 MeV photon irradiations. The TL responses of the neodymium doped silica fibres are compared with available TLD-100 dosimeter in order to determine the suitability as a TL material. We found that the TLD-100 and neodymium doped silica fibre have a significant linear signal to dose relationship. Neodymium doped fibres sensitivity is approximately 11% of TLD-100.

  3. Rietveld-refinement and optical study of the Fe doped ZnO thin film by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kumar, Arun; Dhiman, Pooja; Singh, M.

    2017-05-01

    Fe Doped ZnO Dilute Magnetic Semiconductor thin film prepared by RF magnetron sputtering on glass substrate and Influence of 3% Fe-doping on structural and Optical properties has been studied. The Rietveld-refinement analysis shows that Fe doping has a significant effect on crystalline structure, grain size and strain in the thin film. Two dimensional and three-dimensional atom probe tomography of the thin film shows that Fe ions are randomly distributed which is supported by Xray Diffraction (XRD). Fe-doping is found to effectively modify the band gap energy up to 3.5 eV.

  4. Theoretical and experimental study on the electronic structure and optical absorption properties of P-doped TiO 2

    NASA Astrophysics Data System (ADS)

    Xu, Ling; Tang, Chao-Qun; Qian, Jun; Huang, Zong-Bin

    2010-02-01

    Phosphorus-doped nanosized TiO 2 powders were prepared by a sol-gel technology. The optical absorption studies revealed that the spectral responses of phosphorus-doped (P-doped) TiO 2 powders shift to the visible light region. The optimum phosphorus (P) content in our experiments is 16.7% (mol), and the corresponding absorption edge shifts to 450 nm. Furthermore, our ab initio calculations support the conclusion that the doping of phosphorus can reduce the band gap by mixing the P 3p states with O 2p states. The theoretical lattice parameters and optimum phosphorus content are in agreement with the experimental results.

  5. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    SciTech Connect

    Sushama, D.

    2014-10-15

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er{sub 2}O{sub 3} doped TeO{sub 2}‐WO{sub 3}‐La{sub 2}O{sub 3} Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  6. Spectroscopic and nonlinear optical studies of pure and Nd-doped lanthanum strontium borate glasses

    NASA Astrophysics Data System (ADS)

    Harde, G. B.; Muley, G. G.

    2016-05-01

    Borate glasses of the system xNd2O3-(1-x) La2O3-SrCO3-10H3BO3 (with x = 0 and 0.05) were prepared by using a convectional melt quenching technique. The amorphous nature of the quenched glasses has been confirmed by powder X-ray diffraction analysis. In order to study the spectroscopic and nonlinear optical properties of fabricated glasses, ultraviolet-visible transmission spectroscopy and open aperture z-scan measurements have been employed. In Nd doped glasses, the transition 4I9/2 → 4G5/2 + 2G7/2 has found more prominent than the other transitions. Optical band gap energies of glasses have been determined and found less for Nd doped glass.

  7. Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding

    DOE PAGES

    Meng, Chao; Yu, Shao-Liang; Wang, Hong -Qing; ...

    2015-11-06

    Graphene-doped polymer nanofibers are fabricated by taper drawing of solvated polyvinyl alcohol doped with liquid-phase exfoliated graphene flakes. Nanofibers drawn this way typically have diameters measured in hundreds of nanometers and lengths in tens of millimeters; they show excellent uniformity and surface smoothness for optical waveguiding. Owing to their tightly confined waveguiding behavior, light–matter interaction in these subwavelength-diameter nanofibers is significantly enhanced. Using approximately 1350-nm-wavelength femto-second pulses, we demonstrate saturable absorption behavior in these nanofibers with a saturation threshold down to 0.25 pJ pulse-1 (peak power ~1.3 W). Additionally, using 1064-nm-wavelength nanosecond pulses as switching light, we show all-optical modulationmore » of a 1550-nm-wavelength signal light guided along a single nanofiber with a switching peak power of ~3.2 W.« less

  8. Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding

    SciTech Connect

    Meng, Chao; Yu, Shao-Liang; Wang, Hong -Qing; Cao, Yue; Tong, Li -Min; Liu, Wei -Tao; Shen, Yuen -Ron

    2015-11-06

    Graphene-doped polymer nanofibers are fabricated by taper drawing of solvated polyvinyl alcohol doped with liquid-phase exfoliated graphene flakes. Nanofibers drawn this way typically have diameters measured in hundreds of nanometers and lengths in tens of millimeters; they show excellent uniformity and surface smoothness for optical waveguiding. Owing to their tightly confined waveguiding behavior, light–matter interaction in these subwavelength-diameter nanofibers is significantly enhanced. Using approximately 1350-nm-wavelength femto-second pulses, we demonstrate saturable absorption behavior in these nanofibers with a saturation threshold down to 0.25 pJ pulse-1 (peak power ~1.3 W). Additionally, using 1064-nm-wavelength nanosecond pulses as switching light, we show all-optical modulation of a 1550-nm-wavelength signal light guided along a single nanofiber with a switching peak power of ~3.2 W.

  9. High-stability polymer optical fiber with Rhodamine-doped cladding for fiber light systems

    NASA Astrophysics Data System (ADS)

    Jaramillo-Ochoa, L.; Narro-García, R.; Ocampo, M. A.; Quintero-Torres, R.

    2016-09-01

    In this work, the photodegradation of a polymer optical fiber with Rhodamine doped cladding as a function of illumination time and excitation intensity is presented. To show the effect of photodegradation on different bulk geometries and environments, the photodegradation from a dye doped preform and a PMMA thick film is also evaluated. The reversible and the irreversible degradation of the florescent material were quantified under an established excitation scheme. To this purpose, a four-level system to model the photodegradation rates and its relation with the population of the states is presented and it is used to justify a possible underlying mechanism. The obtained results suggest an increase of one order of magnitude in the stability (lifetime) of the polymer optical fiber with respect to the preform or the thick film geometry stability.

  10. All-optical Mach-Zehnder modulator using a photochromic dye-doped polymer

    NASA Astrophysics Data System (ADS)

    Kang, Jae-Wook; Kim, Jang-Joo; Kim, Eunkyoung

    2002-03-01

    An all-optical Mach-Zehnder modulator is demonstrated which is composed of a polymer waveguide doped with a photochromic dye in the core and a thick light blocking metal layer on it. The metal layer was opened on one arm of the Mach-Zehnder modulator, so that only one arm of the modulator could be irradiated by modulation light, thus allowing a differential phase shift. The optical modulator exhibited an extinction ratio of about -12 dB at a wavelength of 1.55 μm. A simple kinetic model developed to delineate the refractive index change in the dye-doped polymer film was applied to predict the evolution of the modulation characteristics.

  11. Tailoring optical resonant cavity modes in SnO2 microstructures through doping and shape engineering

    NASA Astrophysics Data System (ADS)

    García-Tecedor, M.; Maestre, D.; Cremades, A.; Piqueras, J.

    2017-10-01

    Optical resonances are effectively tailored by engineering size, morphology and doping in tin oxide microstructures. The use of Cr shifts the light confinement to the near-infrared region, as compared to the undoped microstructures, while achieving good Q and F factors. Other issues, such as appropriate thickness to width ratio, allow the selection of Fabry–Pérot or Whispering Gallery modes, or the appearance of a combination of both kinds of resonances in the same microstructure. Morphology variability would contribute with flexibility in the design of systems for different applications, while combining the observed waveguiding behavior with the optical resonances in the same material is an advantage for applications based in a monolithic design. Refraction index of Cr doped tin oxide has been obtained.

  12. Optical absorption properties of dielectric composite films doped with metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Lu, Huiwen; Wang, Weitian

    2017-06-01

    Composite thin films formed by using nanometer-sized metal particles embedded in dielectric matrices were fabricated by using a pulsed laser deposition technique to co-deposit the metal and the ceramic targets. The optical absorption properties were measured at wavelength from 350 to 800 nm, and the absorption peak due to the surface plasmon resonance of the metal particles was found. The effects of different metal particles (Au, Ag, Fe, Co) and different embedding matrices (SrTiO3, Al2O3, and TiO2) on the optical absorption properties of dielectric composite films are discussed. Strong absorption peaks can be found in composite films doped with noble-metal particles while the composites doped with most transition-metal particles show ordinary absorption patterns. The dielectric properties of the metal particles and the refractive indices of the embedding matrices were responsible for the observed results.

  13. Spectroscopic and nonlinear optical studies of pure and Nd-doped lanthanum strontium borate glasses

    SciTech Connect

    Harde, G. B.; Muley, G. G.

    2016-05-06

    Borate glasses of the system xNd{sub 2}O{sub 3}-(1-x) La{sub 2}O{sub 3}-SrCO{sub 3}-10H{sub 3}BO{sub 3} (with x = 0 and 0.05) were prepared by using a convectional melt quenching technique. The amorphous nature of the quenched glasses has been confirmed by powder X-ray diffraction analysis. In order to study the spectroscopic and nonlinear optical properties of fabricated glasses, ultraviolet-visible transmission spectroscopy and open aperture z-scan measurements have been employed. In Nd doped glasses, the transition {sup 4}I{sub 9/2} → {sup 4}G{sub 5/2} + {sup 2}G{sub 7/2} has found more prominent than the other transitions. Optical band gap energies of glasses have been determined and found less for Nd doped glass.

  14. Chirped self-similar optical pulses in tapered centrosymmetric nonlinear waveguides doped with resonant impurities

    NASA Astrophysics Data System (ADS)

    He, J. R.; Xu, S. L.; Xue, L.

    2017-06-01

    Exact chirped self-similar optical pulses propagating in tapered centrosymmetric nonlinear waveguides doped with resonant impurities are reported. The propagation behaviors of the pulses are studied by tailoring of the tapering function. Numerical simulations and stability analysis reveal that the tapering can be used to postpone the wave dispersion and the addition of a small cubic self-focusing term to the governing equation could stabilize the chirped bright pulses. An example of possible experimental protocol that may generate the pulses in realistic waveguides is given. The obtained chirped self-similar optical pulses are particularly useful in the design of amplifying or attenuating pulse compressors for chirped solitary waves in tapered centrosymmetric nonlinear waveguides doped with resonant impurities.

  15. Non-doped and doped Mg stannide films on Si(111) substrates: Formation, optical, and electrical properties

    NASA Astrophysics Data System (ADS)

    Galkin, Nikolay G.; Galkin, Konstantin N.; Goroshko, Dmitrii L.; Chernev, Igor M.; Shevlyagin, Alexander V.; Dózsa, László; Osváth, Zoltán; Pécz, Béla

    2015-07-01

    Thin (45-50 nm) non-doped and doped (by Sb and Al) polycrystalline Mg stannide films consisting mainly of Mg2Sn semiconductor phase and containing small quantity of Mg2Si phase have been grown by multiple layer deposition at room temperature and single step annealing at 150 °C of the (Sn-Mg) bi-layers on Si(111) n-type wafers with 7.5 Ω·cm resistivity. Optical spectroscopy data have shown that the grown Mg stannide films is a semiconductor with direct band gap of 0.17 ± 0.03 eV, with second and third direct interband transitions at 0.34 ± 0.02 and 0.45 ± 0.04 eV. An undispersed refraction index: n0 = 3.78 ± 0.06 was calculated from phonon energy dependence of the refraction index of the grown films in the 0.12-0.20 eV energy range. Temperatures dependent Hall effect measurements have revealed about 0.28 eV electrical band gap value in the films.

  16. Dichromated agar: a promising doped biocopolymer for real time holographic recording

    NASA Astrophysics Data System (ADS)

    Bolte, Michèle; Israëli, Yaël; Rivaton, Agnès; Lessard, Roger A.

    2006-09-01

    Agar is a natural polysaccharide which, when doped with dichromate ammonium, can be considered as a promising light sensitive material used for real time hologram recording. The volume transmission gratings were recorded with a Kypton laser at 413 nm and they were read in real-time with a He/Ne laser at 632.8 nm contrary to dichromated gelatin. The so obtained holograms formed were phase holograms due to a refraction index modulation. The optimisation of chemical and physical parameters was investigated in order to form high quality holograms. It was demonstrated the crucial role played by the remaining water in the final film on the value of the diffraction efficiency. In the optimal conditions, a maximum diffraction efficiency of 37 % was attained. Both on-off experiments and the storage of the exposed materials at room temperature and in the dark reveal that the holograms were stable. An attempt to rationalize the set of results in terms of chemical structure of the polymeric matrix and of its ability to stabilize chromium (V) is presented.

  17. A 980 nm pseudomorphic single quantum well laser for pumping erbium-doped optical fiber amplifiers

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.

    1990-01-01

    The authors have fabricated ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs GRIN-SCH SQW (graded-index separate-confinement-heterostructure single-quantum-well) lasers, emitting at 980 nm, with a maximum output power of 240 mW from one facet and a 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. These lasers satisfy the requirements on efficient and compact pump sources for Er3+-doped fiber amplifiers.

  18. A 980 nm pseudomorphic single quantum well laser for pumping erbium-doped optical fiber amplifiers

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.

    1990-01-01

    The authors have fabricated ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs GRIN-SCH SQW (graded-index separate-confinement-heterostructure single-quantum-well) lasers, emitting at 980 nm, with a maximum output power of 240 mW from one facet and a 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. These lasers satisfy the requirements on efficient and compact pump sources for Er3+-doped fiber amplifiers.

  19. Ultrafast Frequency Agile Optical Materials: Organically Doped Sol-Gel Glasses

    DTIC Science & Technology

    1992-10-13

    Fabrication /Materials for Micro-Electro-Mechanical Systems Volume 276-F2, A.P. Jardine , A. Crowson, and RID. Beta Eds. (Materials Research Society...rotational dynamics of chromophores during the fabrication process from solution to gel to porous glass. Furthermore, picosecond photon echo...concentration) without aggregation effects. The highly doped solids result in very fast optical energy transfer rates and allow fabrication of thin glass

  20. Highly Efficient Optical Second Harmonic Generation in Poled Ti-Doped Silica Glasses

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsuhisa; Kashima, Kenichi; Hirao, Kazuyuki; Soga, Naohiro; Yamagata, Shigeru; Mito, Akihiro; Nasu, Hiroyuki

    1995-01-01

    Optical second harmonic intensity of poled Ti-doped silica glasses prepared by the Verneuil method has been measured. The second-order nonlinear coefficient, d33, of the glasses prepared from starting materials of TiO2 and SiO2 powders ranges from 0.2 to 0.5 pm/V. These values are one order of magnitude larger than that for silica glass without intentional dopants.

  1. Investigation of fluorine-doped tin oxide based optically transparent E-shaped patch antenna for terahertz communications

    SciTech Connect

    Anand, S. E-mail: darak.mayur@gmail.com Darak, Mayur Sudesh E-mail: darak.mayur@gmail.com Kumar, D. Sriram E-mail: darak.mayur@gmail.com

    2014-10-15

    In this paper, a fluorine-doped tin oxide based optically transparent E-shaped patch antenna is designed and its radiation performance is analyzed in the 705 – 804 GHz band. As optically transparent antennas can be mounted on optical display, they facilitate the reduction of overall system size. The proposed antenna design is simulated using electromagnetic solver - Ansys HFSS and its characteristics such as impedance bandwidth, directivity, radiation efficiency and gain are observed. Results show that the fluorine-doped tin oxide based optically transparent patch antenna overcomes the conventional patch antenna limitations and thus the same can be used for solar cell antenna used in satellite systems.

  2. Optical and spectroscopic study of erbium doped calcium borotellurite glasses

    NASA Astrophysics Data System (ADS)

    Gomes, J. F.; Lima, A. M. O.; Sandrini, M.; Medina, A. N.; Steimacher, A.; Pedrochi, F.; Barboza, M. J.

    2017-04-01

    In this study, 10CaF2 - (29.9-0.4x)CaO - (60-0.6x)B2O3 - xTeO2 - 0,1Er2O3 (x = 10, 16, 22, 30 and 50 mol %) glasses were synthesized, and their optical and spectroscopic properties were investigated. X-ray diffraction, density, glass transition temperature (Tg), crystallization temperature (Tx), refraction index, luminescence, radiative lifetime and optical absorption measurements were carried out. Molar volume (Vm), thermal stability (Tx-Tg), electronic polarizability (αm), optical bang gap energy (Eg) and Judd-Ofelt (JO) parameters Ωt (2,4,6) were also calculated. The results are discussed in terms of tellurium oxide content. The increase of TeO2 in the glasses composition increases density, refractive index and electronic polarizability. The optical band gap energy decreases varying from 3.37 to 2.71 eV for the glasses with 10 and 50 mol% of TeO2, respectively. The optical absorption coefficient spectra show characteristic bands of Er3+ ions. Furthermore, these spectra in NIR region show a decrease of hydroxyl groups as a function of TeO2 addition. Luminescence intensity and radiative lifetimes at 1530 nm show an increasing with the TeO2 content. The JO parameters of Er:CaBTeX glasses follow the trend Ω2 > Ω4 > Ω6 and the quality factor values (Ω4/Ω6) were between 1.37 and 3.07. By comparing the measured lifetime with the calculated radiative decay time, quantum efficiency was calculated. The luminescence emission intensity at 1530 nm decreases with the increase of temperature. The lifetime values show a slight trend to decrease with the temperature increase, from 300 to 420 K, for all the samples.

  3. Effect of Er concentration on surface and optical properties of K doped ZnO sol-gel thin films

    NASA Astrophysics Data System (ADS)

    Vettumperumal, R.; Kalyanaraman, S.; Thangavel, R.

    2015-07-01

    The K doped and (K, Er) codoped ZnO thin films were prepared on glass substrate by sol-gel method. The microstructures and optical properties of the doped and codoped films are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectra (EDX), atomic force microscope (AFM) and UV-Vis spectroscopy. All the doped and codoped films have polycrystalline nature with wurtzite structure and strong c-axis orientation. A decreases in particle size is observed with the increase of Er concentration in K doped ZnO films. The SEM and AFM images show wrinkle structure formation on the film surfaces and its width increases with respect to Er concentration. Observed average surface roughness of the K doped films is 9.79 nm and (K, Er) codoped film is 14.80 nm. The surface morphology properties of the films are analyzed by fractal dimension parameter. Doped and codoped elemental composition is confirmed from the EDX spectra. The observed average transmittance of doped and codoped films is around 85% and a blue shift of the band is observed after the Er doping in K doped ZnO films. The Urbach tail parameter and optical constants such as refractive index, extinction coefficient, and dielectric constants have been calculated for these films. The dispersion parameters such as single-oscillator energy and dispersive energy are discussed in terms of the single-oscillator Wemple-DiDomenico model.

  4. Electrical and optical properties of Ti doped ZnO films grown on glass substrate by atomic layer deposition

    SciTech Connect

    Wan, Zhixin; Kwack, Won-Sub; Lee, Woo-Jae; Jang, Seung-II; Kim, Hye-Ri; Kim, Jin-Woong; Jung, Kang-Won; Min, Won-Ja; Yu, Kyu-Sang; Park, Sung-Hun; Yun, Eun-Young; Kim, Jin-Hyock; Kwon, Se-Hun

    2014-09-15

    Highlights: • Ti doped ZnO films were prepared on Corning XG glass substrate by ALD. • The electrical properties and optical properties were systematically investigated. • An optimized Ti doped ZnO films had low resistivity and excellent optical transmittance. - Abstract: Titanium doped zinc oxide (Ti doped ZnO) films were prepared by atomic layer deposition methods at a deposition temperature of 200 °C. The Ti content in Ti doped ZnO films was varied from 5.08 at.% to 15.02 at.%. X-ray diffraction results indicated that the crystallinity of the Ti doped ZnO films had degraded with increasing Ti content. Transmission electron microscopy was used to investigate the microstructural evolution of the Ti doped ZnO films, showing that both the grain size and crystallinity reduced with increasing Ti content. The electrical resistivity of the Ti doped ZnO films showed a minimum value of 1.6 × 10{sup −3} Ω cm with the Ti content of 6.20 at.%. Furthermore, the Ti doped ZnO films exhibited excellent transmittance.

  5. Thermoluminescence Responses of Photon and Electron Irradiated Ge- and Al-Doped SiO2 Optical Fibres

    NASA Astrophysics Data System (ADS)

    Wagiran, H.; Hossain, I.; D., Bradley; N. H. Yaakob, A.; Ramli, T.

    2012-02-01

    We carry out a comparison of the thermoluminescence (TL) response of photon and electron irradiated Ge- and Al-doped SiO2 optical fibres, as well as cross-comparison with that of TLD-100. Irradiation is made with 6 MeV electrons and 6 MV photons, for doses ranging from 0.2 Gy to 4.0 Gy. The commercially available Al- and Gedoped optical fibres produce a linear dose-TL response. The TL yield for both of the doped fibres and also for TLD-100 is greater for electron irradiation than for photon irradiation. The TL yield of the Al-doped fibres is a small fraction of that of Ge-doped fibres (by a factor of 25), the Ge-doped fibres offering a response of 59% of that of TLD-100.

  6. Mn-doped TiO2 thin films with significantly improved optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Lu, Liu; Xia, Xiaohong; Luo, J. K.; Shao, G.

    2012-12-01

    TiO2 thin films with various Mn doping contents were fabricated by reactive magnetron sputtering deposition at 550 °C and their structural, optical and electrical properties were characterized. All films were made of densely packed columnar grains with a fibrous texture along the normal direction of the substrate. The as-deposited structure in the pure TiO2 film consisted of anatase grains with the [1 0 1] texture. Mn incorporation stabilized the rutile phase and induced lattice contraction in the [1 0 0] direction. The texture in the Mn-doped films changed from [1 1 0] to [2 0 0] with increasing Mn content. The incorporation of Mn in the TiO2 lattice introduced intermediate bands into its narrowed forbidden gap, leading to remarkable red-shifts in the optical absorption edges, together with significantly improved electrical conductivity of the thin films. Hall measurement showed that the incorporation of Mn-induced p-type conductivity, with hole mobility in heavily doped TiO2 (˜40% Mn) being about an order higher than electron mobility in single-crystal rutile TiO2. Oxygen vacancies, on the other hand, interacted with substitutional Mn atoms to reduce its effect on optical and electrical properties.

  7. X-RAY ABSORPTION SPECTROSCOPY OF YB3+-DOPED OPTICAL FIBERS

    SciTech Connect

    Citron, Robert; Kropf, A.J.

    2008-01-01

    Optical fibers doped with Ytterbium-3+ have become increasingly common in fiber lasers and amplifiers. Yb-doped fibers provide the capability to produce high power and short pulses at specific wavelengths, resulting in highly effective gain media. However, little is known about the local structure, distribution, and chemical coordination of Yb3+ in the fibers. This information is necessary to improve the manufacturing process and optical qualities of the fibers. Five fibers doped with Yb3+ were studied using Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy and X-ray Absorption Near Edge Spectroscopy (XANES), in addition to Yb3+ mapping. The Yb3+ distribution in each fiber core was mapped with 2D and 1D intensity scans, which measured X-ray fluorescence over the scan areas. Two of the five fibers examined showed highly irregular Yb3+ distributions in the core center. In four of the five fibers Yb3+ was detected outside of the given fiber core dimensions, suggesting possible Yb3+ diffusion from the core, manufacturing error, or both. X-ray absorption spectroscopy (XAS) analysis has so far proven inconclusive, but did show that the fibers had differing EXAFS spectra. The Yb3+ distribution mapping proved highly useful, but additional modeling and examination of fiber preforms must be conducted to improve XAS analysis, which has been shown to have great potential for the study of similar optical fi bers.

  8. Noise-driven optical absorption coefficients of impurity doped quantum dots

    NASA Astrophysics Data System (ADS)

    Ganguly, Jayanta; Saha, Surajit; Pal, Suvajit; Ghosh, Manas

    2016-01-01

    We make an extensive investigation of linear, third-order nonlinear, and total optical absorption coefficients (ACs) of impurity doped quantum dots (QDs) in presence and absence of noise. The noise invoked in the present study is a Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been introduced to the system additively and multiplicatively. A perpendicular magnetic field acts as a source of confinement and a static external electric field has been applied. The AC profiles have been studied as a function of incident photon energy when several important parameters such as optical intensity, electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength take on different values. In addition, the role of mode of application of noise (additive/multiplicative) on the AC profiles has also been analyzed meticulously. The AC profiles often consist of a number of interesting observations such as one photon resonance enhancement, shift of AC peak position, variation of AC peak intensity, and bleaching of AC peak. However, presence of noise alters the features of AC profiles and leads to some interesting manifestations. Multiplicative noise brings about more complexity in the AC profiles than its additive counterpart. The observations indeed illuminate several useful aspects in the study of linear and nonlinear optical properties of doped QD systems, specially in presence of noise. The findings are expected to be quite relevant from a technological perspective.

  9. Ultraviolet radiation (UVR) dosimetry system and the use of Ge-doped silica optical fibres

    NASA Astrophysics Data System (ADS)

    Abdul Rahman, Ahmad Taufek; Abu Bakar, Noor Khairunnisa; Chandra Paul, Mukul; Bradley, D. A.

    2014-11-01

    Previous studies have shown that over exposure to ultraviolet radiation (UVR), either from sunlight or artificial sources, can cause severe biological effects including cataracts, photokeratitis and skin cancer. In this respect, there exists the need to introduce a sensitive UV dosimetric material capable of measuring radiation dose to high accuracy in order to deliver UVR safely and efficiently. Present study has focussed on the investigation of the potential thermoluminescent (TL) sensitivity of commercially available germanium (Ge)-doped silica (SiO2) optical fibres subjected to UVR. The main interest of this study is to find out whether these doped SiO2 optical fibres can be used as a sensible integrator of environmental UV exposures. In the present study, commercially available Ge-doped SiO2 optical fibres have been used with a core diameter of 11 μm (CorActive, Canada), 23 μm (Central Glass and Ceramic Research Institute Kolkata, India) and 50 μm (Central Glass and Ceramic Research Institute Kolkata, India) and a cladding diameter of 125±0.1 μm, irradiated over a wide range of UV dose. Results have shown that these fibres exhibit a linear dose response (with correlation coefficient better than 0.9852). The 50 μm fibre produces greater TL response than that obtained for 11- and 23 μm fibres. The TL results are compared with that of the well-established TL dosimeter material lithium fluoride.

  10. Structural and optical properties of melt quenched barium doped bismuth vanadate

    NASA Astrophysics Data System (ADS)

    Gupta, Sakshi; Singh, K.

    2013-12-01

    Bi4BaxV2-xO11-δ (0.0 ≤ x ≤ 0.15) is synthesized by melt quench technique followed by sintering. The structural and optical properties of these samples are investigated using X-ray diffraction, Fourier transform infra-red (FTIR) spectroscopy and UV/vis spectroscopy. The γ-phase stabilization occurs at lower dopant concentration than as reported earlier for similar systems. The optical band gap is observed in the range of 1.5-2.0 eV. It shows decreasing trend with increasing dopant amount. FTIR bands become broader with respect to Ba2+ doping concentration.

  11. Design of optical fiber cable television distribution systems using erbium-doped fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Guo; Sharma, A. B.; Ritthisoonthorn, Pichet

    1998-04-01

    Optical fiber distribution systems with intensity- modulation/direct-detection and erbium-doped fiber amplifiers are designed for cable television (CATV) applications. Two types of system configurations are considered, i.e., the passive power splitter with optically preamplified receivers (PPS-OPR) scheme and the hybrid passive-and-active power splitter (HPAPS) scheme. The receiver sensitivity is calculated for various system parameters. We compare both schemes through the number of CATV subscribers and show that the HPAPS scheme is superior to the PPS-OPR scheme for large- scale CATV distribution applications.

  12. Ultrafast Optical Beam Deflection in a Planar Waveguide for High Dynamic Range Recording at Picosecond Resolution

    SciTech Connect

    Sarantos, C H; Heebner, J E

    2008-07-02

    We report the latest performance of an ultrafast, all-optical beam deflector based on a prism array imprinted in a planar waveguide. The deflector enables single-shot, high dynamic range optical recording with picosecond resolution.

  13. Photo-written three-dimensional optical circuits in iron doped lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Zhao, Jianlin; Xu, Honglai; Ma, Yanghua; Yang, Dexing

    2006-02-01

    We present our experimental results on fabricating optical waveguides by laser micromachining, structure-light illuminating, and optical spatial dark solitons in iron doped lithium niobate (LiNbO 3:Fe) crystals. After that we propose a novel approach to fabricate three-dimensional (3-D) optical circuits in LiNbO 3 crystals by combining the three light-induction techniques listed above. By employing laser micromachining, a curved and a Y-branches waveguides are successfully fabricated. With binary and SLM-prepared optical masks, Y-branches and gradient planar waveguides are experimentally demonstrated. By utilizing one-dimensional (1-D) optical spatial dark solitons, planar, Y-branches, and square channel waveguides are formed. The results show that each of the three methods can be employed to write optical waveguides in LiNbO3 crystals. By combing the three methods, 3-D light circuits can be created in 45 °-cut bulk crystals by several procedures. Initially, a quasi-planar optical circuit is created in a thin layer of the crystal by structure-light illuminating with an optical mask. Then, a planar circuit is generated by utilizing a 1-D dark soltion. And then, form multi-layer planar circuits are formed by altering the positions of the crystal or writing beam. Finally, laser micromachining is used to link the different layers to form a 3-D light circuit. Furthermore, functional 3-D integrated optical system may be implemented by using the proposed approach.

  14. Effects of element doping on electronic structures and optical properties in cubic boron nitride from first-principles

    NASA Astrophysics Data System (ADS)

    Wei, Yin; Wang, Hongjie; Lu, Xuefeng; Fan, Xingyu; Wei, Heng

    2017-06-01

    Attractive potential applications of cubic boron nitride (c-BN) derive from the properties of semiconductors, widely used in optoelectronic and microelectronic devices. In this paper, the effects of element doping on the electronic structures and optical properties in cubic boron nitride are investigated. The Al- and Ga-doped systems have the lower bonding energies of -11.544 eV and -5.302 eV, respectively, indicating better stability. Difference charge density maps demonstrate that the electron loss increases after P doping and decreases after Al, Ga and As dopings, indicating that the covalent character of polar covalent bonds decreases by doping in the range of P, Al, Ga and As, which is in accordance with the calculated atom population values. The Al- and Ga-doped systems show lower dielectric loss, absorption and reflectivity in the lower energy region, displaying the “transparent-type” characteristic and their potential applications in electron devices.

  15. Microstructure, optical, and scintillation characteristics of Pr3+ doped Lu3Al5O12 optical ceramics

    NASA Astrophysics Data System (ADS)

    Shi, Yun; Nikl, Martin; Feng, Xiqi; Mares, Jiri A.; Shen, Yiqiang; Beitlerova, A.; Kucerkova, R.; Pan, Yubai; Liu, Qian

    2011-01-01

    0.5, 1.0, and 5.0 at. % Pr3+ doped Lu3Al5O12 (Pr:LuAG) optical ceramics are fabricated and compared with Bi4Ge3O12 (BGO) and Pr:LuAG single crystals as for their optical, luminescence and scintillation properties. Radio-luminescence intensity of the fast UV emission based on 5d1→4f Pr3+ transition reaches up to 20 times of that of BGO single crystal reference scintillator. Photoelectron yield of the best performing 0.5 at. % Pr:LuAG ceramic sample is about 1002 phels/MeV, about 30% lower than that of BGO reference sample and about 65% lower than that of Pr:LuAG single crystal. The trapping phenomena at grain boundaries and/or structural defects are proposed as the main cause of degradation of the scintillation response of the Pr:LuAG optical ceramics.

  16. Copper-doped inverted core/shell nanocrystals with "permanent" optically active holes.

    PubMed

    Viswanatha, Ranjani; Brovelli, Sergio; Pandey, Anshu; Crooker, Scott A; Klimov, Victor I

    2011-11-09

    We have developed a new class of colloidal nanocrystals composed of Cu-doped ZnSe cores overcoated with CdSe shells. Via spectroscopic and magneto-optical studies, we conclusively demonstrate that Cu impurities represent paramagnetic +2 species and serve as a source of permanent optically active holes. This implies that the Fermi level is located below the Cu(2+)/Cu(1+) state, that is, in the lower half of the forbidden gap, which is a signature of a p-doped material. It further suggests that the activation of optical emission due to the Cu level requires injection of only an electron without a need for a valence-band hole. This peculiar electron-only emission mechanism is confirmed by experiments in which the titration of the nanocrystals with hole-withdrawing molecules leads to enhancement of Cu-related photoluminescence while simultaneously suppressing the intrinsic, band-edge exciton emission. In addition to containing permanent optically active holes, these newly developed materials show unprecedented emission tunability from near-infrared (1.2 eV) to the blue (3.1 eV) and reduced losses from reabsorption due to a large Stokes shift (up to 0.7 eV). These properties make them very attractive for applications in light-emission and lasing technologies and especially for the realization of novel device concepts such as "zero-threshold" optical gain.

  17. Linear and nonlinear optical properties of Sb-doped GeSe2 thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Ying; Chen, Fen; Lu, Shun-Bin; Wang, Yong-Hui; Shen, Xiang; Dai, Shi-Xun; Nie, Qiu-Hua

    2015-06-01

    Sb-doped GeSe2 chalcogenide thin films are prepared by the magnetron co-sputtering method. The linear optical properties of as-deposited films are derived by analyzing transmission spectra. The refractive index rises and the optical band gap decreases from 2.08 eV to 1.41 eV with increasing the Sb content. X-ray photoelectron spectra further confirm the formation of a covalent Sb-Se bond. The third-order nonlinear optical properties of thin films are investigated under femtosecond laser excitation at 800 nm. The results show that the third-order nonlinear optical properties are enhanced with increasing the concentration of Sb. The nonlinear refraction indices of these thin films are measured to be on the order of 10-18 m2/W with a positive sign and the nonlinear absorption coefficients are obtained to be on the order of 10-10 m/W. These excellent properties indicate that Sb-doped Ge-Se films have a good prospect in the applications of nonlinear optical devices. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB722703), the National Natural Science Foundation of China (Grant No. 61377061), the Young Leaders of Academic Climbing Project of the Education Department of Zhejiang Province, China (Grant No. pd2013092), the Program for Innovative Research Team of Ningbo City, China (Grant No. 2009B217), and the K. C. Wong Magna Fund in Ningbo University, China.

  18. Re(I) complex doped nanofibers for oxygen optical sensing

    NASA Astrophysics Data System (ADS)

    Hong, He; Zhu, Long; Wang, Aofang; Lu, Hongwei

    2012-12-01

    In this paper, we design and synthesize a novel diamine ligand of PTO (2-(pyridin-2-yl)-5-p-tolyl-1,3,4-oxadiazole). The crystal structure, photophysical character and electronic nature of its corresponding Re(I) complex of Re(CO)3(PTO)Br have been investigated in detail. Experimental data and theoretical calculation suggest that Re(CO)3(PTO)Br owns a long-lived yellow phosphorescence which is sensitive towards molecular oxygen. By doping Re(CO)3(PTO)Br into a polymer matrix of polystyrene (PS), the emission response of the resulted composite nanofibers towards molecular oxygen is studied. The optimal sample with mean diameter of 600 nm shows a maximum sensitivity of 4.14 with short response time of 14 s (here sensitivity is defined as the ratio of emission intensity in pure N2 atmosphere to that in pure O2 atmosphere). The composite nanofibers are also found to be photostable enough to experience UV radiation.

  19. Re(I) complex doped nanofibers for oxygen optical sensing.

    PubMed

    Hong, He; Zhu, Long; Wang, Aofang; Lu, Hongwei

    2012-12-01

    In this paper, we design and synthesize a novel diamine ligand of PTO (2-(pyridin-2-yl)-5-p-tolyl-1,3,4-oxadiazole). The crystal structure, photophysical character and electronic nature of its corresponding Re(I) complex of Re(CO)(3)(PTO)Br have been investigated in detail. Experimental data and theoretical calculation suggest that Re(CO)(3)(PTO)Br owns a long-lived yellow phosphorescence which is sensitive towards molecular oxygen. By doping Re(CO)(3)(PTO)Br into a polymer matrix of polystyrene (PS), the emission response of the resulted composite nanofibers towards molecular oxygen is studied. The optimal sample with mean diameter of 600 nm shows a maximum sensitivity of 4.14 with short response time of 14s (here sensitivity is defined as the ratio of emission intensity in pure N(2) atmosphere to that in pure O(2) atmosphere). The composite nanofibers are also found to be photostable enough to experience UV radiation.

  20. Diffractive optical element embedded in silver-doped nanocomposite glass.

    PubMed

    Fleming, Lauren A H; Wackerow, Stefan; Hourd, Andrew C; Gillespie, W Allan; Seifert, Gerhard; Abdolvand, Amin

    2012-09-24

    A diffractive optical element is fabricated with relative ease in a glass containing spherical silver nanoparticles 30 to 40 nm in diameter and embedded in a surface layer of thickness ~10 μm. The nanocomposite was sandwiched between a mesh metallic electrode with a lattice constant 2 μm, facing the nanoparticle containing layer and acting as an anode, and a flat metal electrode as cathode. Applying moderate direct current electric potentials of 0.4 kV and 0.6 kV at an elevated temperature of 200 °C for 30 minutes across the nanocomposites led to the formation of a periodic array of embedded structures of metallic nanoparticles. The current-time dynamics of the structuring processes, optical analyses of the structured nanocomposites and diffraction pattern of one such fabricated element are presented.

  1. Multispeed rewritable optical-recording method with an initialization-free phase-change disk.

    PubMed

    Miao, Xiang Shui; Shi, Lu Ping; Tan, Pik Kee; Li, Jian Ming; Lim, Kian Guan; Hu, Xiang; Chong, Tow Chong

    2004-02-10

    A new method of multispeed rewritable optical recording is presented. An initialization-free phase-change optical disk is proposed as a candidate for multispeed rewritable optical recording. The simulated results of the initialization-free disk at different linear velocities show that the cooling rate increases from approximately 18.69% to 37.96%. A model that combines the crystallization acceleration effect due to the additional layers and the rapid cooling rate due to the initialization-free disk structure is proposed as the physical mechanism of the multispeed recording method with an initialization-free disk. The dynamic optical-recording properties of the initialization-free DVD-RAM disk at different recording speeds shows that the initialization-free phase-change optical-recording disk is compatible with a broad range of recording speeds from 3.49 to 12.21 m/s.

  2. Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.

    1989-01-01

    Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.

  3. Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.

    1990-01-01

    Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.

  4. Stress-induced birefringence in elastomers doped with ferrofluid magnetic particles: Mechanical and optical investigation

    NASA Astrophysics Data System (ADS)

    Sena, C.; Bailey, C.; Godinho, M. H.; Figueirinhas, J. L.; Palffy-Muhoray, P.; Figueiredo Neto, A. M.

    2006-05-01

    Magnetic nanoparticles from magnetic colloidal suspensions were incorporated in the urethane/urea elastomer (PU/PBDO) by adding to the prepolymers solution in toluene diverse amounts of magnetite grains. It is shown that ferrofluid grains can be efficiently incorporated into the elastomer according to this procedure. Mechanical and optical experiments performed show that the elastomer preparation procedure (casting) introduces a structural anisotropy on the optically isotropic sample. This fact is put in evidence by the measurements of the Young's moduli and orientation of the sample's optical axis under stress. The dependence of the phase shift of both the pure and ferrofluid-doped elastomer samples under strain is linear, and the strain-optic coefficient is show to be linear with the ferrofluid concentration.

  5. Optical limiting and excited-state absorption in fullerene solutions and doped glasses

    SciTech Connect

    McBranch, D.; Smilowitz, L.; Klimov, V.

    1995-09-01

    We report the ground state and excited state optical absorption spectra in the visible and near infrared for several substituted fullerenes and higher fullerenes in toluene solutions. Based on these measurements, broadband predictions of the optical limiting performance of these molecules can be deduced. These predictions are then tested at 532 to 700 nm in intensity-dependent transmission measurements. We observe optical limiting in all fullerenes measured; higher fullerenes show the greatest potential for limiting in the near infrared (650-1000 nm), while substituted C{sub 60} shows optimal limiting in the visible (450-700 nm). We observe dramatically reduced limiting for solid forms of C{sub 60} (thin films and C{sub 60}-doped porous glasses), indicating that efficient optical limiting in fullerenes requires true molecular solutions.

  6. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    SciTech Connect

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C.S.; Moura, Ana P. de; Freire, Poliana G.; Silva, Luis F. da; Longo, Elson; Munoz, Rodrigo A.A.; Lima, Renata C.

    2015-10-15

    We report for the first time a rapid preparation of Zn{sub 1−2x}Co{sub x}Ni{sub x}O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co{sup 2+} and Ni{sup 2+} into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide.

  7. Optical patterning of trapped charge in nitrogen-doped diamond

    NASA Astrophysics Data System (ADS)

    Jayakumar, Harishankar; Henshaw, Jacob; Dhomkar, Siddharth; Pagliero, Daniela; Laraoui, Abdelghani; Manson, Neil B.; Albu, Remus; Doherty, Marcus W.; Meriles, Carlos A.

    2016-08-01

    The nitrogen-vacancy (NV) centre in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge, which can be attained by optical excitation. Here, we use two-colour optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs, and to subsequently probe the corresponding redistribution of charge. We uncover the formation of spatial patterns of trapped charge, which we qualitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects. Further, by using the NV as a probe, we map the relative fraction of positively charged nitrogen on localized optical excitation. These observations may prove important to transporting quantum information between NVs or to developing three-dimensional, charge-based memories.

  8. Optical patterning of trapped charge in nitrogen-doped diamond

    NASA Astrophysics Data System (ADS)

    Dhomkar, Siddharth; Jayakumar, Harishankar; Pagliero, Daniela; Laraoui, Abdelghani; Albu, Remus; Manson, Neil; Doherty, Marcus; Henshaw, Jacob; Meriles, Carlos

    The nitrogen-vacancy (NV) center in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge state, which can be attained by optical illumination. Here we use two-color optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion, and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs and to subsequently probe the corresponding redistribution of charge. We uncover the formation of various spatial patterns of trapped charge, which we semi-quantitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects in the diamond lattice. Further, by using the NV as a local probe, we map the relative fraction of positively charged nitrogen upon localized optical excitation. These observations may prove important to various technologies, including the transport of quantum information between remote NVs and the development of three-dimensional, charge-based memories. We acknowledge support from the National Science Foundation through Grant NSF-1314205.

  9. Optical patterning of trapped charge in nitrogen-doped diamond

    PubMed Central

    Jayakumar, Harishankar; Henshaw, Jacob; Dhomkar, Siddharth; Pagliero, Daniela; Laraoui, Abdelghani; Manson, Neil B.; Albu, Remus; Doherty, Marcus W.; Meriles, Carlos A.

    2016-01-01

    The nitrogen-vacancy (NV) centre in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge, which can be attained by optical excitation. Here, we use two-colour optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs, and to subsequently probe the corresponding redistribution of charge. We uncover the formation of spatial patterns of trapped charge, which we qualitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects. Further, by using the NV as a probe, we map the relative fraction of positively charged nitrogen on localized optical excitation. These observations may prove important to transporting quantum information between NVs or to developing three-dimensional, charge-based memories. PMID:27573190

  10. Optical properties of undoped and Al-doped ZnO nanostructures grown from aqueous solution on glass substrate

    NASA Astrophysics Data System (ADS)

    Mazilu, M.; Tigau, N.; Musat, V.

    2012-09-01

    The paper presents the optical properties of undoped and aluminium-doped zinc oxide nanostructures grown on glass substrates using the hydrothermal method. The obtained ZnO-based nanostructures showed optical transmittance over 75% and low reflectance in the visible domain. The increasing of optical transmittance of Al-doped ZnO nanostructures with increased doping concentrations was observed. The optical constants such as index of refraction, extinction coefficient, dielectric constants and optical conductivity were determined using the transmission and the reflection at normal incidence of light in the wavelength range of 200-1100 nm. The band gap broadens with increasing dopant concentration from 2% to 4%. The obtained nanostructured layers with size in the range of subwavelength of visible light can act as anti-reflective coating that reduces reflectance based on the Moth Eye principle.

  11. Spectroscopy of a heated Yb-doped optical fiber with high aluminum content

    NASA Astrophysics Data System (ADS)

    Bacher, C.; Scheuner, J.; Pilz, S.; El Sayed, A.; Ryser, M.; Heidt, A.; Romano, V.

    2017-05-01

    The generation and amplification at wavelengths longer than 1100 nm is not straightforward when using Yb-doped optical fibers, since light emission of ytterbium occurs preferentially in the region of 1020 nm - 1100 nm with a maximum at 1030 nm. One well known approach is to heat the Yb-doped fiber up to temperatures above 100 °C. This increases the re-absorption in the lower emission band and also enhances at the same time the emission at longer wavelengths. Consequently, heating allows to extend the spectral gain-region of Yb-doped fibers by at least 60 nm up to 1160 nm. However, the drawback of this method is that it results in a shorter durability of the fiber, since heating damages the polymer-coating. Moreover, such a laser has a reduced overall efficiency, due to heating, isolation and heat removal issues. It has been reported, that at the presence of an aluminosilca host (silica doped with Al) efficient laser activity at around 1150 nm can be achieved by heating the Yb-doped fiber to only 60 °C. In this work we investigate the spectroscopy of a heated Yb-doped fiber with a high aluminum concentration. The fiber is drawn in our in-house fiber drawing tower. The preforms are produced by the sol-gel-based granulated silica method which allows us to vary the aluminum as well as the ytterbium concentrations within a large range. The fiber is investigated with respect to their spectroscopic data as well as their lasing performance.

  12. The structural, electrical, and optical properties of hydrogenated chromium-doped CdO films

    SciTech Connect

    Dakhel, A.A.; Hamad, H.

    2013-12-15

    Cadmium oxide thin films doped with different amounts of chromium and annealed in hydrogen atmosphere have been grown on glass substrates by means of physical vapour deposition (PVD) method. The structural, electrical, and optical properties of the prepared Cr-doped CdO (CdO:Cr–H) films were systematically studied. The structural investigations show that the incorporated Cr ions mainly occupied locations in interstitial positions of CdO lattice. The bandgap engineer by Cr incorporation and hydrogenation were studied. The variations of the electrical parameters of CdO:Cr–H films with Cr incorporation and hydrogenation were investigated. It was established that among the investigated samples, the largest mobility and conductivity were measured with 1.5%:Cr–H film. Therefore, hydrogenated CdO:Cr films can be effectively used in different applications of near infrared-transparent-conducting-oxide (NIR-TCO). - Graphical abstract: Optoelectronic properties of synthesised chromium-doped CdO thin films. It was established that the largest mobility (53.4 cm{sup 2}/V.s) and conductivity (2136.8 S/cm) were measured in 1.5%:Cr–H doped CdO film. Therefore, such films can be effectively used in near infrared-transparent-conducting-oxide (NIR-TCO). - Highlights: • The properties of CdO films annealed in H{sub 2} gas were systematically studied. • Cr{sup 3+} ions most likely occupied interstitial locations in CdO lattice and as donors. • Improvement of conductivity parameters with Cr doping and H annealing. • Bandgap narrowing observed with Cd-doping.

  13. Tensile-strain and doping enhanced direct bandgap optical transition of n{sup +} doped Ge/GeSi quantum wells

    SciTech Connect

    Fan, W. J.

    2013-11-14

    Band structures of tensile strained and n{sup +} doped Ge/GeSi quantum wells (QWs) are calculated by multiple-band k·p method. The energy dispersion curves of the Γ and L conduction subbands are obtained. The effects of tensile strain and n{sup +} doping in Ge on direct bandgap optical gain and spontaneous radiative recombination rate spectra are investigated including the electron leakage from Γ to L conduction subbands. Our results show that the optical gain and spontaneous radiative recombination rate can be significantly increased with the tensile strain, n-type doping concentration, and injection carrier density in the Ge QW. The free carrier absorption is calculated and cannot be ignored because of the heavily doped Ge. The pure TM mode polarized net optical gain up to 1153 cm{sup −1} can be achieved for the Ge/Ge{sub 0.986}Si{sub 0.014} QW with tensile strain of 1.61% and n-type doping concentration of 30 × 10{sup 18} cm{sup −3}.

  14. Thermoluminescence characteristics of Ge-doped optical fibers with different dimensions for radiation dosimetry.

    PubMed

    Begum, Mahfuza; Rahman, A K M Mizanur; Abdul-Rashid, H A; Yusoff, Z; Begum, Mahbuba; Mat-Sharif, K A; Amin, Y M; Bradley, D A

    2015-06-01

    Important thermoluminescence (TL) properties of five (5) different core sizes Ge-doped optical fibers have been studied to develop new TL material with better response. These are drawn from same preform applying different speed and tension during drawing phase to produce Ge-doped optical fibers with five (5) different core sizes. The results of the investigations are also compared with most commonly used standard TLD-100 chips (LiF:Mg,Ti) and commercial multimode Ge-doped optical fiber (Yangtze Optical Fiber, China). Scanning Electron Microscope (SEM) and EDX analysis of the fibers are also performed to map Ge distribution across the deposited region. Standard Gamma radiation source in Secondary Standard Dosimetry Lab (SSDL) was used for irradiation covering dose range from 1Gy to 10Gy. The essential dosimetric parameters that have been studied are TL linearity, reproducibility and fading. Prior to irradiation all samples ∼0.5cm length are annealed at temperature of 400°C for 1h period to standardize their sensitivities and background. Standard TLD-100 chips are also annealed for 1h at 400°C and subsequently 2h at 100°C to yield the highest sensitivity. TL responses of these fibers show linearity over a wide gamma radiation dose that is an important property for radiation dosimetry. Among all fibers used in this study, 100μm core diameter fiber provides highest response that is 2.6 times than that of smallest core (20μm core) optical fiber. These fiber-samples demonstrate better response than commercial multi-mode optical fiber and also provide low degree of fading about 20% over a period of fifteen days for gamma radiation. Effective atomic number (Zeff) is found in the range (13.25-13.69) which is higher than soft tissue (7.5) however within the range of human-bone (11.6-13.8). All the fibers can also be re-used several times as a detector after annealing. TL properties of the Ge-doped optical fibers indicate promising applications in ionizing radiation

  15. Depth map sensor based on optical doped lens with multi-walled carbon nanotubes of liquid crystal.

    PubMed

    Hui, Li; Fan, Pan; Yuntao, Wu; Yanduo, Zhang; Xiaolin, Xie

    2016-01-01

    In this paper, we present a novel design concept for determining the depth map of three-dimensional (3D) scenes based on an electrically controlled liquid crystal (LC) lens. The advantages of the proposed method are that it does not need any mechanical movements and a large amount of computations to acquire a depth map of a 3D scene in a relatively short amount of time. The tunable-focus LC lens doped with multi-walled carbon nanotubes is to become a key optical component for determining a depth map system. Sequenced two-dimensional images of slightly different perspectives are recorded in a short time, and the depth map of the 3D scene, according to a proposed depth estimation method and a focusing evaluation function, can be acquired in a simple way. This new method to acquire a depth map based on a doped LC lens maximizes the use of the proposed LC lens. The proposed system is novel in its compact, simple, and fast features, so we believe the proposed method can open a new creative dimension in image analysis and imaging systems and can also overcome the limitations of the conventional imaging mode.

  16. Rare-earth-doped optical-fiber core deposition using full vapor-phase SPCVD process

    NASA Astrophysics Data System (ADS)

    Barnini, A.; Robin, T.; Cadier, B.; Aka, G.; Caurant, D.; Gotter, T.; Guyon, C.; Pinsard, E.; Guitton, P.; Laurent, A.; Montron, R.

    2017-02-01

    One key parameter in the race toward ever-higher power fiber lasers remains the rare earth doped optical core quality. Modern Large Mode Area (LMA) fibers require a fine radial control of the core refractive index (RI) close to the silica level. These low RI are achieved with multi-component materials that cannot be readily obtained using conventional solution doping based Modified Chemical Vapor Deposition (MCVD) technology. This paper presents a study of such optical material obtained through a full-vapor phase Surface Plasma Chemical Vapor Deposition (SPCVD). The SPCVD process generates straight glassy films on the inner surface of a thermally regulated synthetic silica tube under vacuum. The first part of the presented results points out the feasibility of ytterbium-doped aluminosilicate fibers by this process. In the second part we describe the challenge controlling the refractive index throughout the core diameter when using volatile fluorine to create efficient LMA fiber profiles. It has been demonstrated that it is possible to counter-act the loss of fluorine at the center of the core by adjusting the core composition locally. Our materials yielded, when used in optical fibers with numerical apertures ranging from 0.07 to 0.09, power conversion efficiency up to 76% and low background losses below 20 dB/km at 1100nm. Photodarkening has been measured to be similar to equivalent MCVD based fibers. The use of cerium as a co-dopant allowed for a complete mitigation of this laser lifetime detrimental effect. The SPCVD process enables high capacity preforms and is particularly versatile when it comes to radial tailoring of both rare earth doping level and RI. Large core diameter preforms - up to 4mm - were successfully produced.

  17. The influence of different alkaline earth oxides on the structural and optical properties of undoped, Ce-doped, Sm-doped, and Sm/Ce co-doped lithium alumino-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Othman, H. A.; Arzumanyan, G. M.; Möncke, D.

    2016-12-01

    Undoped, singly Sm doped, Ce doped, and Sm/Ce co-doped lithium alumino-phosphate glasses with different alkaline earth modifiers were prepared by melt quenching. The structure of the prepared glasses was investigated by FT-IR and Raman, as well as by optical spectroscopy. The effect of the optical basicity of the host glass matrix on the added active dopants was studied, as was the effect doping had on the phosphate structural units. The optical edge shifts toward higher wavelengths with an increase in the optical basicity due to the increased polarizability of the glass matrix, but also with increasing CeO2 concentration as a result of Ce3+/Ce4+ inter valence charge transfer (IV-CT) absorption. The optical band gap for direct and indirect allowed transitions was calculated for the undoped glasses. The glass sample containing Mg2+ modifier ions is found to have the highest value (4.16 eV) for the optical band gap while Ba2+ has the lowest value (3.61 eV). The change in the optical band gap arises from the structural changes and the overall polarizability (optical basicity). Refractive index, molar refractivity Rm and molar polarizability αm values increase with increasing optical basicity of the glasses. The characteristic absorption peaks of Sm3+ were also investigated. For Sm/Ce co-doped glasses, especially at high concentration of CeO2, the absorption of Ce3+ hinders the high energy absorption of Sm3+ and this effect becomes more obvious with increasing optical basicity.

  18. Synthesis, structural and optical characterization of undoped, N-doped ZnO and co-doped ZnO thin films

    SciTech Connect

    Pathak, Trilok Kumar Kumar, R.; Purohit, L. P.

    2015-05-15

    ZnO, N-doped ZnO and Al-N co-doped ZnO thin films were deposited on ITO coated corning glass by spin coater using sol-gel method. The films were annealed in air at 450°C for one hour. The crystallographic structure and morphology of the films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The X-ray diffraction results confirm that the thin films are of wurtzite hexagonal with a very small distortion. The optical properties were investigated by transmission spectra of different films using spectrophotometer (Shimadzu UV-VIS-NIR 3600). The results indicate that the N doped ZnO thin films have obviously enhanced transmittance in visible region. Moreover, the thickness of the films has strong influences on the optical constants.

  19. Synthesis, structural and optical characterization of undoped, N-doped ZnO and co-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok Kumar; Kumar, R.; Purohit, L. P.

    2015-05-01

    ZnO, N-doped ZnO and Al-N co-doped ZnO thin films were deposited on ITO coated corning glass by spin coater using sol-gel method. The films were annealed in air at 450°C for one hour. The crystallographic structure and morphology of the films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The X-ray diffraction results confirm that the thin films are of wurtzite hexagonal with a very small distortion. The optical properties were investigated by transmission spectra of different films using spectrophotometer (Shimadzu UV-VIS-NIR 3600). The results indicate that the N doped ZnO thin films have obviously enhanced transmittance in visible region. Moreover, the thickness of the films has strong influences on the optical constants.

  20. Measurement of birefringence for optical recording disk substrates

    NASA Technical Reports Server (NTRS)

    Fu, Hong; Sugaya, S.; Erwin, J. K.; Goodman, T.; Yan, Z.; Tang, W. J.; Mansuripur, M.

    1993-01-01

    The birefringence of bare and coated substrates for magneto-optical recording is experimentally investigated using ellipsometry at the wavelengths of 632.8 nm and 780 nm. The rotation and ellipticity of the polarization state of the reflected or transmitted light is measured for different incident angles and different orientations of the incident linear polarization. The measured data is then fitted by a computer program which solves the Maxwell equations for the plane-wave propagation in a multilayer structure and minimizes the error between the measured and calculated data by adjusting the unknown parameters of the multilayer. This approach enables us to determine orientations of the three principal axes in the substrate and the corresponding refractive indices. A special feature of our ellipsometers is that a glass hemisphere is placed in contact with the substrate, which eliminates the refraction of the incident light and enables a maximum propagation angle of 70 degrees (with respect to the normal) in the substrate. This increases the sensitivity of the measurement. Certain anomalies were observed, which we believe are associated with the presence of grooves on these substrates.

  1. Multilevel optical information recording in silver-containing photosensitive glasses by UV laser pulses

    NASA Astrophysics Data System (ADS)

    Gorbiak, Veronika V.; Sidorov, Alexander I.; Vasilyev, Vladimir N.; Dubrovin, Viktor D.; Nikonorov, Nikolay V.

    2017-04-01

    It is experimentally shown that silver-containing silicate photosensitive glasses can be used for multilevel optical information recording using UV nanosecond laser pulses. Information can be recorded by the creation of luminescent centers, which are neutral silver molecular clusters, or silver nanoparticles with plasmon resonance using additional thermal treatment. It is shown that silver nanoparticles formed in glass have spheroidal shapes and have dielectric shells. Multilevel optical information recording can be performed by modulation of luminescence or absorption intensity varying UV laser irradiation dose. The effect of dopants (Ce, Sb, and Cl) on the recording process is shown. The described methods allow to record optical information in octal and hexadecimal number systems.

  2. Optical and electrochemical properties of Cu-doped NiO films prepared by electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Lili; Su, Ge; Liu, Wei; Cao, Lixin; Wang, Jing; Dong, Zheng; Song, Meiqin

    2011-02-01

    Cu-doped nickel oxide (NiO) thin films were prepared by electrochemial deposition (cathodic deposition) technique onto the fluorine doped tin oxide (F: SnO2; FTO) coated glass substrates from organic solutions. Effects of Cu content on the morphology, structure, optical and electrochromic properties of NiO films were investigated by means of scanning electron microscope (SEM), X-ray diffraction (XRD), ultraviolet-visible spectrophotometer (UV-vis) and cyclic voltammetry (CV), respectively. SEM images indicated the formation of nanorods after Cu was added. The films were formed with amorphous or short-range ordered NiO grains and a trace of face-centered cubic NixCu1-xO confirmed by XRD. The transmittances of both bleached state and colored state were significantly lowered when Cu was added. The NiO films doped with Cu (the molar ratio was 1/8) exhibited the optimum electrochromic behavior with a variation of transmittance (ΔT) up to ∼80% at the wavelength range of 350-600 nm. Cu doping reduces the response time for both the coloring and bleaching states, and the reversibility of the redox reaction was increased as well.

  3. Mechanical and optical characteristics of Al-doped C 60 films

    NASA Astrophysics Data System (ADS)

    Nishinaga, Jiro; Aihara, Tomoyuki; Yamagata, Hiroshi; Horikoshi, Yoshiji

    2005-05-01

    Al-doped C 60 films are grown on GaAs and quartz glass substrates by solid source molecular beam epitaxy. Mechanical and optical properties of the films are investigated by Vickers hardness test, absorption and reflectance spectra, and photoluminescence measurements. Vickers hardness of 250 HV is confirmed for the Al-doped C 60 films with the molecular ratio of Al to C 60 of 30, and the Al-doped C 60 films are found to be undissolved in organic solvents. The absorption spectra of pure C 60 films show some peaks caused by the electron transition among the C 60 molecular orbitals. These absorption peaks become less pronounced in Al-doped C 60 films, probably due to Al incorporation in C 60 matrix. In addition, new photoluminescence peaks appear around 1.75, 1.85 and 1.95 eV. The energy of 1.95 eV coincides well with the energy difference between HOMO and LUMO states. These results suggest that the parity forbidden transition is relieved by the molecular distortion due to the Al-C 60 bonding.

  4. Optical properties of Nd3+ doped bismuth zinc borate glasses.

    PubMed

    Shanmugavelu, B; Venkatramu, V; Ravi Kanth Kumar, V V

    2014-03-25

    Glasses with compositions of (100-x) (Bi2ZnOB2O6) -x Nd2O3 (where x=0.1, 0.3, 0.5, 1 and 2 mol%) were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements. Optical absorption spectra have been analyzed using Judd-Ofelt theory. The emission spectra exhibit three peaks at 919, 1063 and 1337 nm corresponding to (4)F3/2 to (4)I9/2, (4)I11/2 and (4)I13/2 transitions in the near infrared region. The emission intensity of the (4)F3/2 to (4)I11/2 transition increases with increase of Nd(3+) concentration up to 1 mol% and then concentration quenching is observed for 2 mol% of Nd(3+) concentration. The lifetimes for the (4)F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses. The decay curves of the glass up to 0.3 mol% of Nd(3+) exhibit single exponential nature and thereafter the curves become nonexponential nature (0.5, 1 and 2 mol%). The nonexponential curve has been fitted to the Inokuti-Hirayama model to understand the nature of energy transfer process.

  5. Optical properties of Nd3+ doped bismuth zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Shanmugavelu, B.; Venkatramu, V.; Ravi Kanth Kumar, V. V.

    2014-03-01

    Glasses with compositions of (100-x) (Bi2ZnOB2O6) - x Nd2O3 (where x = 0.1, 0.3, 0.5, 1 and 2 mol%) were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements. Optical absorption spectra have been analyzed using Judd-Ofelt theory. The emission spectra exhibit three peaks at 919, 1063 and 1337 nm corresponding to 4F3/2 to 4I9/2, 4I11/2 and 4I13/2 transitions in the near infrared region. The emission intensity of the 4F3/2 to 4I11/2 transition increases with increase of Nd3+ concentration up to 1 mol% and then concentration quenching is observed for 2 mol% of Nd3+ concentration. The lifetimes for the 4F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses. The decay curves of the glass up to 0.3 mol% of Nd3+ exhibit single exponential nature and thereafter the curves become nonexponential nature (0.5, 1 and 2 mol%). The nonexponential curve has been fitted to the Inokuti-Hirayama model to understand the nature of energy transfer process.

  6. Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber.

    PubMed

    Jain, D; Sidharthan, R; Moselund, P M; Yoo, S; Ho, D; Bang, O

    2016-11-14

    We demonstrate highly germania doped fibers for mid-infrared supercontinuum generation. Experiments ensure a highest output power of 1.44 W for a broadest spectrum from 700 nm to 3200 nm and 6.4 W for 800 nm to 2700 nm from these fibers, while being pumped by a broadband Erbium-Ytterbium doped fiber based master oscillator power amplifier. The effect of repetition frequency of pump source and length of germania-doped fiber has also been investigated. Further, germania doped fiber has been pumped by conventional supercontinuum source based on silica photonic crystal fiber supercontinuum source. At low power, a considerable broadening of 200-300 nm was observed. Further broadening of spectrum was limited due to limited power of pump source. Our investigations reveal the unexploited potential of germania doped fiber for mid-infrared supercontinuum generation. These measurements ensure the potential of germania based photonic crystal fiber or a step-index fiber supercontinuum source for high power ultra-broad band emission being by pumped a 1060 nm or a 1550 nm laser source. To the best of our knowledge, this is the record power, ultra-broadband, and all-fiberized supercontinuum light source based on silica and germania fiber ever demonstrated to the date.

  7. Er-doped and Er, Yb co-doped oxyfluoride glasses and glass-ceramics, structural and optical properties

    NASA Astrophysics Data System (ADS)

    Lisiecki, Radosław; Augustyn, Elżbieta; Ryba-Romanowski, Witold; Żelechower, Michał

    2011-09-01

    -ceramic fibers indicate that these optical systems may be considered as promising materials for Er-doped optical amplifiers operating within third telecommunication window.

  8. Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped inner cladding.

    PubMed

    Zou, Weiwen; He, Zuyuan; Hotate, Kazuo

    2008-07-07

    The numerical study of acoustic modal properties in w-shaped optical fibers with high-delta germanium-doped core and F-doped inner cladding (F-HDF) is demonstrated. The cutoff conditions of acoustic modes in the F-HDF show opposite behaviors in contrast with those of optical ones because F-doped inner cladding contributes differently to acoustic and optical waveguides. The acoustic dispersion characteristics vary to a great extent with respect to the location of the acoustic modes in the fiber's core or in the fiber's inner cladding. The resonance frequency spacing between neighboring acoustic modes is theoretically and experimentally found to have a quadratic relation to the core's germanium concentration. We also investigate the critical conditions to move high-order acoustic modes into the F-doped inner cladding and validate the optimal feasibility of employing L(01) and L(03) acoustic modes to fiber-optic Brillouin-based discriminative sensing of strain and temperature.

  9. Influence of doping with alkaline earth metals on the optical properties of thermochromic VO2

    NASA Astrophysics Data System (ADS)

    Dietrich, Marc K.; Kramm, Benedikt G.; Becker, Martin; Meyer, Bruno K.; Polity, Angelika; Klar, Peter J.

    2015-05-01

    Thin films of doped VO2 were deposited, analyzed, and optimized with regard to their solar energy transmittance (Tsol) and visible/luminous light transmittance (Tlum) which are important parameters in the context of smart window applications in buildings. The doping with alkaline earth metals (AEM) like Mg, Ca, Sr, or Ba increased both Tsol and Tlum due to a bandgap widening and an associated absorption edge blue-shift. Thereby, the brown-yellowish color impression of pure VO2 thin films, which is one major hindrance limiting the usage of VO2 as thermochromic window coating, was overcome. Transparent thin films with excellent switching behavior were prepared by sputtering. Highly doped V1-xMexO2 (Me = Ca, Sr, Ba) kept its excellent thermochromic switching behavior up to x(Me) = Me/(Me + V) = 10 at. % doping level, while the optical bandgap energy was increased from 1.64 eV for undoped VO2 to 2.38 eV for x(Mg) = 7.7 at. %, 1.85 eV for x(Ca) = 7.4 at. %, 1.84 eV for x(Sr) = 6.4 at. % and 1.70 eV for x(Ba) = 6.8 at. %, as well as the absorption edge is blue shifted by increasing AEM contents. Also, the critical temperature ϑc, at which the semiconductor-to-metal transition (SMT) occurs, was decreased by AEM doping, which amounted to about -0.5 K/at. % for all AEM on average. The critical temperature was determined by transmittance-temperature hysteresis measurements. Furthermore, Tsol and Tlum were calculated and were found to be significantly enhanced by AEM doping. Tlum increased from 32.0% in undoped VO2 to 43.4% in VO2 doped with 6.4 at. % Sr. Similar improvements were found for other AEM. The modulation of the solar energy transmittance ΔTsol, which is the difference of the Tsol values in the low and high temperature phase, was almost constant or even slightly increased when the doping level was increased up to about 10 at. % Ca, Sr, or Ba.

  10. Tm3+ Modified Optical Temperature Behavior of Transparent Er3+-Doped Hexagonal NaGdF4 Glass Ceramics

    NASA Astrophysics Data System (ADS)

    E, Chengqi; Bu, Yanyan; Meng, Lan; Yan, Xiaohong

    2017-06-01

    Er3+-doped and Er3+-Tm3+-co-doped transparent hexagonal NaGdF4 glass ceramics are fabricated via melt-quenching method. The emissions of Er3+-doped NaGdF4 glass ceramics are adjusted from the green to red by varying the concentration of Tm3+ ion under the excitation of 980 nm. The spectrum, thermal quenching ratio, fluorescence intensity ratios, and optical temperature sensitivity of the transparent glass ceramics are observed to be dependent on the pump power. The maximum value of relative sensitivity reaches 0.001 K-1 at 334 K in Er3+-doped NaGdF4, which shifts toward the lower temperature range by co-doping with Tm3+ ions, and has a maximum value of 0.00081 K-1 at 292 K. This work presents a method to improve the optical temperature behavior of Er3+-doped NaGdF4 glass ceramics. Moreover, the relative sensitivity SR is proved to be dependent on the pump power of 980-nm lasers in Er3+-doped NaGdF4 and Er3+-Tm3+-co-doped NaGdF4.

  11. Electrical and optical properties of molybdenum doped zinc oxide films prepared by reactive RF magnetron sputtering

    SciTech Connect

    Reddy, R. Subba; Sreedhar, A.; Uthanna, S.

    2015-08-28

    Molybdenum doped zinc oxide (MZO) films were deposited on to glass substrates held at temperatures in the range from 303 to 673 K by reactive RF magnetron sputtering method. The chemical composition, crystallographic structure and surface morphology, electrical and optical properties of the films were determined. The films contained the molybdenum of 2.7 at. % in ZnO. The films deposited at 303 K were of X-ray amorphous. The films formed at 473 K were of nanocrystalline in nature with wurtzite structure. The crystallite size of the films was increased with the increase of substrate temperature. The optical transmittance of the films was in the visible range was 80–85%. The molybdenum (2.7 at %) doped zinc oxide films deposited at substrate temperature of 573 K were of nanocrystalline with electrical resistivity of 7.2×10{sup −3} Ωcm, optical transmittance of 85 %, optical band gap of 3.35 eV and figure of merit 30.6 Ω{sup −1}cm{sup −1}.

  12. Er3+-doped phosphate glasses with improved gain characteristics for broadband optical amplifiers

    NASA Astrophysics Data System (ADS)

    Amarnath Reddy, A.; Surendra Babu, S.; Vijaya Prakash, G.

    2012-11-01

    Optical properties of Erbium-doped sodium aluminum telluro-phosphate glasses with compositions of 48P2O5-21Na2O-23Al2O3-(8-x)TeO2-(x)Er2O3 (where x=2-7) were investigated. From the measured optical absorption spectra, Judd-Ofelt (JO) analysis has been carried out to predict radiative properties of doped Er3+ ion luminescent levels. The estimated emission cross sections were found to be more than other commonly available short-length optical amplifier (aluminosilicate) glasses. Relative emission intensity enhancement with the increase of Er3+ ion concentration is observed for the laser transition, 4I13/2→4I15/2 (at 1.53 μm). Higher emission lifetimes (4.2-6.23 ms), higher quantum efficiencies (44-65%) relative at higher Er3+ ion concentrations, high gain bandwidth and gain per unit length at 1.5 μm are the most notable features of these glasses for future optical amplifier applications.

  13. Electrical and optical conductivities of hole gas in p-doped bulk III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Mawrie, Alestin; Halder, Pushpajit; Ghosh, Barun; Ghosh, Tarun Kanti

    2016-09-01

    We study electrical and optical conductivities of hole gas in p-doped bulk III-V semiconductors described by the Luttinger Hamiltonian. We provide exact analytical expressions of the Drude conductivity, inverse relaxation time for various impurity potentials, Drude weight, and optical conductivity in terms of the Luttinger parameters γ1 and γ2. The back scattering is completely suppressed as a result of the helicity conservation of the heavy and light hole states. The energy dependence of the relaxation time for the hole states is different from the Brooks-Herring formula for electron gas in n-doped semiconductors. We find that the inverse relaxation time of heavy holes is much less than that of the light holes for Coulomb-type and Gaussian-type impurity potentials and vice-versa for a short-range impurity potential. The Drude conductivity increases non-linearly with the increase in the hole density. The exponent of the density dependence of the conductivity is obtained in the Thomas-Fermi limit. The Drude weight varies linearly with the density even in the presence of the spin-orbit coupling. The finite-frequency optical conductivity goes as √{ ω} , and its amplitude strongly depends on the Luttinger parameters. The Luttinger parameters can be extracted from the optical conductivity measurement.

  14. Influence Al doped ZnO nanostructure on structural and optical properties

    SciTech Connect

    Ramelan, Ari Handono Wahyuningsih, Sayekti; Chasanah, Uswatul; Munawaroh, Hanik

    2016-04-19

    The preparation of Al-doped ZnO (AZO) thin films prepared by the spin-coating method was reported. Preparation of AZO was conducted by annealing treatment at a temperature of 700°C. While the spin-coating process of AZO thin films were done at 2000 and 3000 rpm respectively. The structural properties of ZnO were determined by X- ray diffraction (XRD) analysis. ZnOnanostructure was formed after annealed at atemperature of 400°C.The morphology of ZnO was determined by Scanning Electron Microscopy (SEM) showed the irregular morphology about 30-50µm in size. Al doped on ZnO influenced the optical properties of those material. Increasing Al contain on ZnO cause of shifting to the lower wavelength. The optical properties of the ZnO as well as AZO films showed that higher reflectance on the ultraviolet region so those materials were used as anti-reflecting agent.Al addition significantly enhance the optical transparency and induce the blue-shift in optical bandgap of ZnO films.

  15. Influence Al doped ZnO nanostructure on structural and optical properties

    NASA Astrophysics Data System (ADS)

    Ramelan, Ari Handono; Wahyuningsih, Sayekti; Chasanah, Uswatul; Munawaroh, Hanik

    2016-04-01

    The preparation of Al-doped ZnO (AZO) thin films prepared by the spin-coating method was reported. Preparation of AZO was conducted by annealing treatment at a temperature of 700°C. While the spin-coating process of AZO thin films were done at 2000 and 3000 rpm respectively. The structural properties of ZnO were determined by X- ray diffraction (XRD) analysis. ZnOnanostructure was formed after annealed at atemperature of 400°C.The morphology of ZnO was determined by Scanning Electron Microscopy (SEM) showed the irregular morphology about 30-50µm in size. Al doped on ZnO influenced the optical properties of those material. Increasing Al contain on ZnO cause of shifting to the lower wavelength. The optical properties of the ZnO as well as AZO films showed that higher reflectance on the ultraviolet region so those materials were used as anti-reflecting agent.Al addition significantly enhance the optical transparency and induce the blue-shift in optical bandgap of ZnO films.

  16. Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.

    2016-01-01

    We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.

  17. Synthesis and different optical properties of Gd2O3 doped sodium zinc tellurite glasses

    NASA Astrophysics Data System (ADS)

    Samanta, Buddhadev; Dutta, Dibakar; Ghosh, Subhankar

    2017-06-01

    A series of Gd2O3 doped sodium zinc tellurite [xGd2O3-(0.8-x) TeO2-0.1Na2O-0.1ZnO] glasses are prepared by the conventional melt quenching method and their optical properties have been studied. UV-vis spectrophotometric studies within the wavelength range from 230 nm-800 nm are carried out in the integrating sphere mode to study the effect of Gd2O3 doping on the optical band gap (Eg), refractive index (n), dielectric constant (εr) and susceptibility (χ). Other physical properties like molar volume, molar refraction, polarizability, metallization criterion, number density of rare-earth ions (N), polaron radius (rp), inter ionic distance (ri), molar cation polarizability (∑αi), number of oxide ions in chemical composition (NO2-), optical band gap based electronic oxide ion polarizability (αO2-) and optical basicity (Λ) of glass samples have been studied on the basis of UV-vis spectra and density profile of the different glasses.

  18. Structural and optical characteristics of Ce, Nd, Gd, and Dy-doped Al2O3 thin films

    NASA Astrophysics Data System (ADS)

    Varpe, Ashwini S.; Deshpande, Mrinalini D.

    2017-07-01

    We present the optical properties of rare earth (RE)-doped Al_2O_3 thin films and discuss their possible use in applications like gate dielectric material and in coating industry. Aluminum oxide films doped with RE elements such as Ce, Nd, Gd, and Dy are synthesized on glass substrate using ultrasonic spray pyrolysis technique at 400°C. The concentration of rare earth element is varied from 0.5 to 5 mol% in 0.1 M solution of Al2O3. The X-ray diffraction analysis indicates that the thin films deposited with and without rare earth doping have an amorphous structure. Further, the optical properties of RE-doped Al2O3 thin films are studied by using UV-visible spectroscopy and photoluminescence measurement. The band gap is found to be 4.06 eV for Al2O3 thin film. A small blue shift is seen in the optical spectra of RE-doped samples as compared to undoped Al2O3 film. Dielectric constant of alumina thin film increases with doping of Gd and Dy while it decreases with Ce and Nd doping. Concentration quenching effects are observed in the photoluminescence spectra of Ce, Nd, Gd, and Dy-doped Al_2O_3 films. Among all these RE-doped Al2O3 thin films, Gd and Dy-doped Al2O3 films exhibit a potential for the construction of dielectric gate in transistors or as a coating material in the semiconductor industry.

  19. Optical properties and dielectric relaxation of polyvinylidene fluoride thin films doped with gadolinium chloride

    NASA Astrophysics Data System (ADS)

    El-Sayed, Somyia

    2014-12-01

    In this study, the properties of pure and GdCl3-doped polyvinylidene fluoride (PVDF) films were investigated. X-ray diffraction revealed that the PVDF was composed of mixed α and β phases. Adding GdCl3 to PVDF decreased the crystallinity of the polymer matrix. At room temperature, in the ultraviolet-visible range both the absorbance (a) and extinction coefficient (k) of PVDF decreased with GdCl3 content, demonstrating that the optical response of the doped films improved because of increasing optical energy gap (Eg). We also measured the dielectric loss (ɛ″), electric modulus (M″), and ac conductivity (σac) at 300-450 K and 0.1-3000 kHz. The pure and doped PVDF exhibited different relaxation processes. The activation energy (Ea) of the αc relaxation decreased with increasing GdCl3 content, following an Arrhenius relationship. The behavior of the ac conductivity revealed that the conduction mechanism for studied films followed correlated barrier hopping model. The hopping distance (R) was calculated at different temperatures for all investigated samples.

  20. Continuous tuning of W-doped VO{sub 2} optical properties for terahertz analog applications

    SciTech Connect

    Karaoglan-Bebek, G.; Hoque, M. N. F.; Fan, Z.; Bernussi, A. A.; Holtz, M.

    2014-11-17

    Vanadium dioxide (VO{sub 2}), with its characteristic metal-insulator phase transition, is a prospective active candidate to realize tunable optical devices operating at terahertz (THz) frequencies. However, the abrupt phase transition restricts its practical use in analog-like continuous applications. Incorporation of tungsten is a feasible approach to alter the phase transition properties of thin VO{sub 2} films. We show that amplitude THz modulation depth of ∼65%, characteristic phase transition temperature of ∼40 °C, and tuning range larger than 35 °C can be achieved with W-doped VO{sub 2} films grown on sapphire substrates. W-doped VO{sub 2} films can also be used to suppress Fabry-Perot resonances at THz frequencies but at temperatures much lower than that observed for undoped VO{sub 2} films. The gradual phase transition temperature window allows for precise control of the W-doped VO{sub 2} optical properties for future analog based THz devices.

  1. Thermal, optical and structural properties of Dy3+ doped sodium aluminophosphate glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Singh, Anupinder; Thakur, Vanita; Singh, Lakhwant

    2016-03-01

    Trivalent Dysprosium doped sodium aluminophosphate glasses with composition 50P2O5-10Al2O3-(20-x)Na2O-20CaO-xDy2O3 (x varying from 0 to 5 mol%) were prepared by melt quench technique. The density of the prepared samples was measured using Archimedes principle and various physical properties like molar volume, rare earth ion concentration, polaron radius, inter nuclear distance and field strength were calculated using different formulae. The differential scanning calorimetry (DSC) was carried out to study the thermal stability of prepared glasses. The UV Visible absorption spectra of the dysprosium doped glasses were found to be comprised of ten absorption bands which correspond to transitions from ground state 6H15/2 to various excited states. The indirect optical band gap energy of the samples was calculated by Tauc's plot and the optical energy was found to be attenuated with Dy3+ ions. The photoluminescence spectrum revealed that Dy3+ doped aluminophosphate glasses have strong emission bands in the visible region. A blue emission band centred at 486 nm, a bright yellow band centred at 575 nm and a weak red band centred at 668 nm were observed in the emission spectrum due to excitation at 352 nm wavelength. Both FTIR and Raman spectra assert slight structural changes induced in the host glass network with Dy3+ ions.

  2. Effect of Doped Transition Metal Atoms on Structure and Nonlinear Optical Properties of Decaborane

    NASA Astrophysics Data System (ADS)

    Beigi, Motahareh Noormohammad; Shamlouei, Hamid Reza; Omidi, Masoome; Jalalvandi, Esmat

    2017-07-01

    In this study, electrical and nonlinear optical properties of decaborane (B10H14) were investigated using the density functional theory method when transition metal atoms (scandium, titanium and vanadium) were doped on the structure. Hydrogen and boron atoms in B10H14 were substituted by the transition metals. This doping process resulted in a drastic reduction in the energy gap of decaborane. First, the hyperpolarizability (β 0) of B10H14 dramatically increased in the presence of titanium (Ti) in the place of hydrogen atoms. The highest value of β 0 (≈ 98,387.90 a.u.) was obtained for B10TiH13 (in the S3 position) and calculated to be 1700 times larger than the β 0 value for B10H14 (≈57.82 a.u.). Therefore, the Ti-doped systems showed a significantly larger non-linear optical (NLO) response than the other studied transition metals, suggesting that its system might be useful as a promising NLO material.

  3. Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection.

    PubMed

    Zheng, Wei; Huang, Ping; Tu, Datao; Ma, En; Zhu, Haomiao; Chen, Xueyuan

    2015-03-21

    Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted considerable interest due to their superior physicochemical features, such as large anti-Stokes shifts, low autofluorescence background, low toxicity and high penetration depth, which make them extremely suitable for use as alternatives to conventional downshifting luminescence bioprobes like organic dyes and quantum dots for various biological applications. A fundamental understanding of the photophysics of lanthanide-doped UCNPs is of vital importance for discovering novel optical properties and exploring their new applications. In this review, we focus on the most recent advances in the development of lanthanide-doped UCNPs as potential luminescent nano-bioprobes by means of our customized lanthanide photophysics measurement platforms specially designed for upconversion luminescence, which covers from their fundamental photophysics to bioapplications, including electronic structures (energy levels and local site symmetry of emitters), excited-state dynamics, optical property designing, and their promising applications for in vitro biodetection of tumor markers. Some future prospects and efforts towards this rapidly growing field are also envisioned.

  4. Magnetic and Optical Studies in Alkali-Metal Doped Fullerenes

    NASA Astrophysics Data System (ADS)

    Leong, Pak-Tak Patrick

    We report the observation of a new phase of superconducting K_3C_{60} and Rb_3C_{60} with anomalous magnetic properties which suggest the presence of p-state superconductivity. The samples are prepared by mixing stoichiometric amounts of the alkali -metal with C_{60} powder and then vacuum sealed in quartz tubes. These samples are then annealed at 500^circC for a few days before being quenched to room temperature. SQUID magnetometer measurements of the temperature dependence of the magnetic susceptibility _ {X}(T) of these samples at magnetic fields below ~1000 gauss show that both the field-cooled-cooling (FC-C) and the field-cooled-warming (FC-W) curves are more diamagnetic than the zero-field -cooled-warming (ZFC-W) curve. This observation is in contrast to the conventional flux pinning pattern of a typical type -II superconductor, where the ZFC-W curve is more diamagnetic than the FC-C and FC-W curves. We also observe three distinct superconducting transition temperature (T_ {c}) onsets corresponding to the ZFC-W, FC-C and FC-W curves. These T_{c} onsets are different from one another to within a few degrees Kelvin, but they are close to 19.6 and 30.6 K for K_3C_{60} and Rb_3C_{60 } respectively. In addition, a temperature hysteresis loop formed by the FC-C and the FC-W curves is observed in the _{X}(T) relationship of each sample. Also, a ferromagnetic ordering is found at magnetic fields very close to zero gauss. The Curie temperature is within 0.5 K from the superconducting transition temperature. Differential thermal analysis of pristine C _{60} in an argon atmosphere shows an energy liberation reaction starting off at 500 ^circC, suggesting that the C _{60} molecules may have become polymerized during the annealing at 500^ circC. Subsequent X-ray diffraction measurements of K_3rm C_{60} samples which have the anomalous magnetic properties indicate that the samples are a mixture of several potassium-doped C_{60} polymer phases. Raman scattering and

  5. Optical and electrical studies of vanadium pentoxide doped polyaniline composite

    NASA Astrophysics Data System (ADS)

    Niranjana, M.; Yesappa, L.; Ashokkumar, S. P.; Vijeth, H.; Chapi, Sharanappa; Raghu, S.; Devendrappa, H.

    2017-05-01

    Polyaniline and its composites at different compositions of Vanadium pentoxide (PCV3 and PCV5) were prepared by simple in-situ chemical polymerization method. The composites were characterized using UV/Vis spectrophotometer and impedance analyzer of frequency range from 20Hz to 1MHz at room temperature. The UV-Vis absorption exhibits the red shift in the visible region and direct optical band gap was found to decrease from 2.72eV to 2.65eV with increasing the V2O5 concentration. The electrical conductivity and dielectric constant results vary with frequency. The maximum electrical conductivity obtained is for PCV5 and these polymer composites are prominent candidates for super capacitor and optoelectronics display etc.

  6. An all-fiber vacuum sensor based on thermo-optics' effect in vanadium-doped fiber

    NASA Astrophysics Data System (ADS)

    Matjasec, Ziga; Donlagic, Denis

    2014-05-01

    This paper introduces an all-optical, fiber-optics vacuum sensor, which takes advantage of the thermo-optic effect within vanadium-co-doped fiber. This sensor utilizes a 980 nm pump-diode and a short section of highly absorbing vanadiumco- doped fiber produced by the flash vaporization process. The 980 nm source operates in pulse mode therefore the vanadium-co-doped fiber is periodically heated and self-cooled. The 980 nm pump-light is fully absorbed within the codoped fiber's core and relaxed as a heat, which changes the fiber's core refractive index. The heat-transfer between the heated fiber and surrounding gas depends on the gas pressure. Further, the doped-fiber is inserted into a Fabry-Perot interferometer which forms, in combination with a DFB laser diode at 1550 nm, a high coherence interferometer for optical path-length measurement. The time constant and absolute modulated optical path of the step response can be directly correlated with the gas pressure. The time constant is independent of the pump-diode's optical power, while the absolute modulated optical path also depends on the pump-diode's output of optical power and should thus be compensated. The vacuum sensor allows for a remote and fully dielectric measurement of the gas pressure and can be used in various industrial applications.

  7. Broadband erbium-doped fiber sources for the fiber-optic gyroscope

    SciTech Connect

    Wysocki, P.F.

    1992-01-01

    The sensitivity of early fiber-optic gyroscopes (FOG) fell short of the theoretical limit. The use of certain configurations, fiber components, and well designed optical sources can help the FOG reach this limit. Sources for the FOG must be broadband, spatially coherent and high power. They must produce a mean wavelength which is stable with respect to temperature and feedback from system components. Additionally, they must emit at long wavelengths, where silica fibers are insensitive to radiation induced losses. Two approaches to broadband, 1.55 [mu]m, erbium-doped fiber sources for the FOG are considered. The most promising approach is the superfluorescent fiber source (SFS), which utilizes amplification of spontaneous emission in a single pass or in two passes through the fiber, without a resonant cavity. Such sources have produced more than 50% conversion of pump photons near 980 nm or 1.48 [mu]m to source photons. Laser diode pumping in these pump bands is explored in detail. Depending on fiber length, pump power, pump wavelength, and SFS configuration, emission bandwidths between 8 and 27 nm are measured. The thermal coefficient of the mean wavelength of the SFS is consistently below 10 ppm/[degrees]C, and near 0 ppm/[degrees]C for certain design choices. The detrimental effects of feedback are reduced through optical isolation and the proper choice of FOG configuration. Issues such as the effect of multiple pump modes and loss mechanisms are treated by use of computer simulations. The broadband Er-doped wavelength-swept fiber laser (WSFL) is presented as an alternative to the SFS. This source utilizes an intracavity acousto-optic modulator to sweep the emission of an Er-doped laser across the gain curve of erbium. Theoretical and measured characteristics of such sources are discussed. The dynamic response of the WSFL and its coherence in an integrating system has been measured.

  8. Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass

    NASA Astrophysics Data System (ADS)

    Koike, Akio; Sugimoto, Naoki

    2006-02-01

    Temperature dependences of optical path length (dS/dT; calculated using the equation, dS/dT = dn/dT + na, where a is coefficient of thermal expansion, n is refractive index and dn/dT is temperature coefficient of refractive index) in various oxide glasses were investigated. The dS/dT is generally difficult to adjust by change of glass composition because dn/dT and a are interrelated. However, low dS/dT materials are desired for optical applications such as athermal devices, and high dS/dT materials can be used for thermo-optic devices. Pure silica glass is well-known as a typical low dS/dT material but still not sufficient. Fluorine-doped silica glass showed a lower dS/dT than that of pure silica glass. By fluorine-doping in silica glass, refractive index and dn/dT decreased but a near room temperature stayed at the same level. As a result, the dS/dT decreased with increasing fluorine concentration. On the other hand, bismuthate glass showed the highest dS/dT in this study. Most glasses having high a such as tellurite glass showed negative dn/dT. However, bismuthate glasses showed positive dn/dT in spite of high a. As a result, bismuthate glasses showed quite high dS/dT. These results indicate that dS/dT of the glass can be controllable and that fluorine doped silica glass and bismuthate glass are appropriate candidate materials for optical applications.

  9. Low-temperature preparation of rutile-type TiO2 thin films for optical coatings by aluminum doping

    NASA Astrophysics Data System (ADS)

    Ishii, Akihiro; Kobayashi, Kosei; Oikawa, Itaru; Kamegawa, Atsunori; Imura, Masaaki; Kanai, Toshimasa; Takamura, Hitoshi

    2017-08-01

    A rutile-type TiO2 thin film with a high refractive index (n), a low extinction coefficient (k) and small surface roughness (Ra) is required for use in a variety of optical coatings to improve the controllability of the reflection spectrum. In this study, Al-doped TiO2 thin films were prepared by pulsed laser deposition, and the effects of Al doping on their phases, optical properties, surface roughness and nanoscale microstructure, including Al distribution, were investigated. By doping 5 and 10 mol%Al, rutile-type TiO2 was successfully prepared under a PO2 of 0.5 Pa at 350-600 °C. The nanoscale phase separation in the Al-doped TiO2 thin films plays an important role in the formation of the rutile phase. The 10 mol%Al-doped rutile-type TiO2 thin film deposited at 350 °C showed excellent optical properties of n ≈ 3.05, k ≈ 0.01 (at λ = 400 nm) and negligible surface roughness, at Ra ≈ 0.8 nm. The advantages of the superior optical properties and small surface roughness of the 10 mol%Al-doped TiO2 thin film were confirmed by fabricating a ten-layered dielectric mirror.

  10. A comparative study of magnetic and optical properties of Mn-, Gd-, and Nd-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arup; Jong, Chol-Sam; Ganguli, Nirmal; Dasgupta, I.

    2017-01-01

    We present a comparative study of magnetism and optical properties for 3d transition metal (TM) (Mn)-doped and 4f rare-earth metals (Gd and Nd)-doped ultrathin ZnO nanowires using ab-initio density functional calculation. Our calculations indicate Nd-doped ZnO nanowires with oxygen vacancies are more favorable for ferromagnetism. Calculations including spin-orbit coupling for Nd-doped ZnO nanowires reveal not only giant anisotropy where magnetism parallel to the nanowire axis is found to be favorable but also stabilized ferromagnetism. We have calculated the absorption spectra for Mn-, Gd- and Nd-doped ZnO nanowires and found that the absorption intensity increases upon increasing the concentration of dopant ions. While Mn-doped ZnO nanowire allows absorption of light in the large energy window ranging from visible to ultraviolet, Gd- and Nd-doped systems absorb light primarily in the ultraviolet region. Our result indicates transition-metal-doped as well as rare-earth-doped ZnO nanowires may be ideal for spintronics and optoelectronic devices.

  11. Three-dimensional optical memory using photoluminescence change in Sm-doped sodium borate glass

    SciTech Connect

    Lim, Jinhyong; Lee, Myeongkyu; Kim, Eunkyoung

    2005-05-09

    The feasibility of three-dimensional (3D) optical memory has been demonstrated by utilizing the photoluminescence (PL) spectrum change in a Sm-doped fluoride glass [K. Miura, J. Qiu, S. Fujiwara, S. Sakasuchi, and K. Hirao, Appl. Phys. Lett. 80 2263 (2002)]. We here report on a femtosecond laser-induced PL change in a Sm-doped sodium borate glass that is easier to synthesize and its potential application to 3D memory. Irradiation with a femtosecond pulsed laser (800 nm, 1 kHz, 100 fs) induced a PL peak near 682 nm, resulting from the photoreduction of the Sm ions. A multilayer pattern (bit size=1 {mu}m,layer separation=8 {mu}m) formed by femtosecond laser irradiation was read out by a reflection-type fluorescent confocal microscope, which detected the emission at 682 nm as a signal. High-contrast pattern images were obtained without crosstalk.

  12. Physical and optical characterization of Er3+ doped lead-zinc-borate glass.

    PubMed

    Sooraj Hussain, N; Cardoso, P J; Hungerford, G; Gomes, M J M; Ali, Nasar; Santos, J D; Buddhudu, S

    2009-06-01

    This paper reports on the systematic optical characterization of Er3+ (1.0%) doped lead-zinc-borate glass from the measured absorption, luminescence and fluorescence lifetime decay curve profiles. By the application of the Judd-Ofelt theory, spectral intensities of the absorption bands have been analysed and these absorption results have been used in evaluating the luminescence properties of the Er3+ doped lead-zinc-borate glass. Stimulated emission cross-sections (sigmapE) of the measured emission transitions have been computed. Based on the measured glass density, and refractive indices, other related physical parameters have also been evaluated. Further, the structural and morphology of the glass material have also been investigated from X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy analysis.

  13. Electro-optic tunable Bragg gratings in chromophore doped polymer waveguides

    NASA Astrophysics Data System (ADS)

    Bogunovic, D.; Raymond, S. G.; Swanson, A.; Simpson, M. C.

    2016-09-01

    Tunable waveguide Bragg gratings were demonstrated in PYR-3 chromophore doped polymers. We report on the fabrication and the performance of the device. Polycarbonate thin films were doped with PYR-3 (2-{3- Cyano-4- [3-(1-decyl-1 H-pyridin-4-ylidene)-propenyl]-5,5-dimethyi-5 H-furan-2-ylidene}-malononitrile) chromophore, consisting of a dihydropyridinylidene donor and three carbon atoms in the conjugated linker between donor and acceptor. Ridge waveguides were laser micro-machined into the polycarbonate film with a JPSA micromachining system equipped with a KrF excimer laser at 248 nm. Bragg gratings were inscribed into the waveguide by permanently photobleaching the PYR-3 chromophores using a phase mask to achieve narrowband reflections at wavelengths around 1550 nm. Electro-optic properties were introduced by contact poling. Applying a static external electric field leads to the shift of the reflection peak.

  14. Effect of doping swelling polymer cladding with phthalocyanine dye in plastic optical fiber humidity sensors

    NASA Astrophysics Data System (ADS)

    Morisawa, Masayuki; Yokomori, Haruyuki

    2011-05-01

    We have developed and tested plastic optical fiber (POF)-type humidity sensors, which consist of a dye-doped swelling polymer cladding. POF-type humidity sensors consist of a hydroxyethyl cellulose or polyvinylpyrrolidone (PVP) cladding layer that surrounds a poly(methyl methacrylate) core. The operation of these sensors is based on the change in refractive index caused by swelling of the cladding layer. To improve the sensitivity of the humidity sensor, we have investigated the effect of doping the cladding polymer with phthalocyanine dye. The results indicate that the POF-type humidity sensor using PVP is three times more sensitive for relative humidities above 80% when the dyedoped swelling-polymer cladding is used.

  15. Optical down-conversion in doped ZnSe:Tb3+ nanocrystals.

    PubMed

    Das, Sandip; Mandal, Krishna C

    2013-02-07

    Rare earth (RE) Tb(3+)-doped high quality ZnSe nanocrystals (NCs) were synthesized by a facile chemical hot-injection method. ZnSe:Tb(3+) nanocrystals exhibited broadband absorption below the first excitonic absorption peak. Photoluminescence spectra showed Tb(3+) emission lines in the visible spectral window at room temperature when excited by UV radiation below the band-edge of the host ZnSe nanocrystals. Our experimental results indicate optical down-conversion in these Tb(3+)-doped Zn-chalcogenide nanocrystals via energy migration from host ZnSe to the Tb(3+) dopant. The host-dopant energy transfer mechanism for this ZnSe:Tb(3+) nanocrystal system is correlated with the emission spectra.

  16. Influence of Ce doping on optical and dielectric properties of TiO2

    NASA Astrophysics Data System (ADS)

    Naseem, Swaleha; Khan, Wasi; Naqvi, A. H.

    2016-05-01

    Rare earth ion (Ce) doped TiO2 and pure TiO2 nanostructured were prepared by sol gel acid modified technique and calcinated at 450°C. Microstructural studies and thermal analysis were carried by XRD and TGA respectively. The results of structural characterization show the formation of all samples in single phase without any impurity. Optical properties were studied by UV- visible spectroscopy and band gap energy was estimated 3.04 eV and 3.14 eV for pure and Ce doped TiO2 respectively. Room temperature dielectric constant (ɛ') decreases abruptly at lower frequencies owing to the charge transport relaxation. The observed behavior of the dielectric properties can be attributed on the basis of Koop's theory based on Maxwell-Wagner's two layer model in studied nanoparticles.

  17. Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core.

    PubMed

    Sáez-Rodríguez, D; Nielsen, K; Rasmussen, H K; Bang, O; Webb, D J

    2013-10-01

    In this Letter, we report the fabrication of a highly photosensitive, microstructured polymer optical fiber using benzyl dimethyl ketal as a dopant, as well as the inscription of a fiber Bragg grating in the fiber. A refractive index change in the core of at least 3.2×10(-4) has been achieved, providing a grating with a strong transmission rejection of -23 dB with an inscription time of only 13 min. The fabrication method has a big advantage compared to doping step index fiber since it enables doping of the fiber without using extra dopants to compensate for the index reduction in the core introduced by the photosensitive agent.

  18. Influence of Ce doping on optical and dielectric properties of TiO{sub 2}

    SciTech Connect

    Naseem, Swaleha; Khan, Wasi Naqvi, A. H.

    2016-05-06

    Rare earth ion (Ce) doped TiO{sub 2} and pure TiO{sub 2} nanostructured were prepared by sol gel acid modified technique and calcinated at 450°C. Microstructural studies and thermal analysis were carried by XRD and TGA respectively. The results of structural characterization show the formation of all samples in single phase without any impurity. Optical properties were studied by UV- visible spectroscopy and band gap energy was estimated 3.04 eV and 3.14 eV for pure and Ce doped TiO{sub 2} respectively. Room temperature dielectric constant (ε’) decreases abruptly at lower frequencies owing to the charge transport relaxation. The observed behavior of the dielectric properties can be attributed on the basis of Koop’s theory based on Maxwell-Wagner’s two layer model in studied nanoparticles.

  19. Optical properties of rare earth doped strontium aluminate (SAO) phosphors: A review

    NASA Astrophysics Data System (ADS)

    Kshatri, D. S.; Khare, A.

    2014-11-01

    After the first news on rare earth (RE) doped strontium aluminate (SAO) phosphors in late 1990s, researchers all over the world geared up to develop stable and efficient persistent phosphors. Scientists studied various features of long lasting phosphors (LLP) and tried to earmark appropriate mechanism. However, about two decades after the discovery of SrAl2O4: Eu2+, Dy3+, the number of persistent luminescent materials is not significant. In this review, we present an overview of the optical characteristics of RE doped SAO phosphors in terms of photoluminescence (PL), thermoluminescence (TL) and afterglow spectra. Also, we refresh the work undertaken to study diverse factors like dopant concentration, temperature, surface energy, role of activator, etc. Simultaneously, some of our important findings on SAO are reported and discussed in the end.

  20. Thermo-optical effects in Tm-doped large mode area photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Molardi, Carlo; Coscelli, Enrico; Cucinotta, Annamaria; Selleri, Stefano

    2014-03-01

    Designs of Tm-doped photonic crystal fibers for laser operation must take in account the strong thermo-optical effects due to the Tm quantum defect and the consequent corruption of the single mode guiding properties. A new fiber design with a ˜ 80 μm core diameter, based on the cladding mirror symmetry reduction is proposed and analyzed using a full-vector FEM-based modal solver. The thermal effects are investigated using a computationally efficient model. A large pitch fiber with similar core diameter, which represents the actual state-of-art of Tm-doped laser technology, has been investigated in order to have a basis of comparison. Optimizing some key parameters of the new symmetry free fiber, the possibility to achieve a wide band single mode operation under an heavy heat load of over 300 W/m is demonstrated. In particular a very high modal discrimination value larger than 0.5 is obtained.

  1. Permanent optical doping of amorphous metal oxide semiconductors by deep ultraviolet irradiation at room temperature

    SciTech Connect

    Seo, Hyungtak; Cho, Young-Je; Bobade, Santosh M.; Park, Kyoung-Youn; Choi, Duck-Kyun; Kim, Jinwoo; Lee, Jaegab

    2010-05-31

    We report an investigation of two photon ultraviolet (UV) irradiation induced permanent n-type doping of amorphous InGaZnO (a-IGZO) at room temperature. The photoinduced excess electrons were donated to change the Fermi-level to a conduction band edge under the UV irradiation, owing to the hole scavenging process at the oxide interface. The use of optically n-doped a-IGZO channel increased the carrier density to approx10{sup 18} cm{sup -3} from the background level of 10{sup 16} cm{sup -3}, as well as the comprehensive enhancement upon UV irradiation of a-IGZO thin film transistor parameters, such as an on-off current ratio at approx10{sup 8} and field-effect mobility at 22.7 cm{sup 2}/V s.

  2. Electronic structure and optical properties of Al-doped ZnO.

    PubMed

    Qu, Xiurong; Lü, Shuchen; Jia, Dechang; Fu, Shufang

    2011-11-01

    Impure ZnO materials are of great interest in optic and electronic applications. In this work, the effects of Al-doping on the electronic structures of ZnO system are investigated in detail. We find that the crystal structure strains significantly due to the introduction of Al impurity. On the other hand, the electronic band structures show that the position of the Fermi level moves upwards and the bands split near the band gap due to the introduction of Al. This is attributed to the interaction between Al3p and Zn4s orbital, which tend to drive the system towards semimetal. Photoluminescence (PL) studies indicate that the Al-doped ZnO samples have a high density of defects. This can be explained qualitatively by the above analysis on electronic structure.

  3. Isomerization and optical bistability of DR1 doped organic-inorganic sol-gel thin film

    NASA Astrophysics Data System (ADS)

    Gao, Tianxi; Que, Wenxiu; Shao, Jinyou

    2015-10-01

    To investigate the isomerization process of the disperse red 1 (DR1) doped TiO2/ormosil thin film, both the photo-isomerization and the thermal isomerization of the thin films were observed as a change of the absorption spectrum. Under a real-time heat treatment, the change of the linear refractive index shows a thermal stable working temperature range below Tg. The optical bistability (OB) effect of the DR1 doped thin films based on different matrices was studied and measured at a wavelength of 532 nm. Results indicate that the TiO2/ormosils based thin film presents a better OB-gain than that of the poly (methyl methacrylate) (PMMA) based thin film due to its more rigid network structure. Moreover, it is also noted that higher titanium content is helpful for enhancing the OB-gain of the as-prepared hybrid thin films.

  4. Enhancing optical gains in Si nanocrystals via hydrogenation and cerium ion doping

    SciTech Connect

    Wang, Dong-Chen; Li, Yan-Li; Song, Sheng-Chi; Guo, Wen-Ping; Lu, Ming; Chen, Jia-Rong

    2014-07-28

    We report optical gain enhancements in Si nanocrystals (Si-NCs) via hydrogenation and Ce{sup 3+} ion doping. Variable stripe length technique was used to obtain gains. At 0.3 W/cm{sup 2} pumping power density of pulsed laser, net gains were observed together with gain enhancements after hydrogenation and/or Ce{sup 3+} ion doping; gains after loss corrections were between 89.52 and 341.95 cm{sup −1}; and the photoluminescence (PL) lifetime was found to decrease with the increasing gain enhancement. At 0.04 W/cm{sup 2} power density, however, no net gain was found and the PL lifetime increased with the increasing PL enhancement. The results were discussed according to stimulated and spontaneous excitation and de-excitation mechanisms of Si-NCs.

  5. Optical and structural properties of sulfur-doped ELOG InP on Si

    NASA Astrophysics Data System (ADS)

    Sun, Yan-Ting; Junesand, Carl; Metaferia, Wondwosen; Kataria, Himanshu; Julian, Nick; Bowers, John; Pozina, Galia; Hultman, Lars; Lourdudoss, Sebastian

    2015-06-01

    Optical and structural properties of sulfur-doped epitaxial lateral overgrowth (ELOG) InP grown from nano-sized openings on Si are studied by room-temperature cathodoluminescence and cross-sectional transmission electron microscopy (XTEM). The dependence of luminescence intensity on opening orientation and dimension is reported. Impurity enhanced luminescence can be affected by the facet planes bounding the ELOG layer. Dark line defects formed along the [011] direction are identified as the facet planes intersected by the stacking faults in the ELOG layer. XTEM imaging in different diffraction conditions reveals that stacking faults in the seed InP layer can circumvent the SiO2 mask during ELOG and extend to the laterally grown layer over the mask. A model for Suzuki effect enhanced stacking fault propagation over the mask in sulfur-doped ELOG InP is constructed and in-situ thermal annealing process is proposed to eliminate the seeding stacking faults.

  6. Optical anisotropy of tungsten-doped ReS2 layered crystals

    NASA Astrophysics Data System (ADS)

    Hsu, H. P.; Lin, K. H.; Huang, Y. S.

    2016-12-01

    The optical anisotropy of tungsten-doped rhenium disulfide (ReS2:W) layered crystals have been studied by polarization and temperature dependent piezoreflectance (PzR) spectroscopy from 25 to 300 K. The direct band edge excitonic transitions E1ex feature at E∥b polarization and E2ex feature at E⊥b polarization of tungsten-doped ReS2 layered crystals were determined from a detailed line-shape fit of the PzR spectra. The PzR spectra reveal a slightly blue shifted of excitonic transition with the tungsten incorporation. The angular dependence of the excitonic feature amplitudes agrees with Malus' rule. The parameters that describe the temperature variation of the energies and broadening function of the excitonic transitions are determined and discussed.

  7. Optical properties of Cu and Ru doped BST thin films with additive glycerol and MESA surfactant

    NASA Astrophysics Data System (ADS)

    Pamungkas, N. G.; Dahrul, M.; Irzaman; Alatas, H.

    2017-05-01

    In this paper, barium strontium titanate (BST) thin films were deposited by chemical solution deposition (CSD) with addition glycerol and methyl ester sulfonic acid (MESA) surfactant as additive materials. The effect of variation spinning speed (5500 and 8000 rpm), different dopant (Cu and Ru dopants), and also additive materials on optical properties were studied by Spectrophotometer Vis-NIR. As a result, BST thin films with additive MESA have higher absorbance and similar spectrum pattern than additive glycerol. Generally, BST thin films with MESA surfactant had band gap smaller than glycerol of BST thin films. Absorption and extinction coefficient of BST with glycerol were observed and we reported Ru doped BST at spinning speed 5500 rpm had higher value than other films. On other hand, Cu doped BST at 8000 rpm had absorption and extinction coefficient higher than other films.

  8. Effect of copper and nickel doping on the optical and structural properties of ZnO

    NASA Astrophysics Data System (ADS)

    Muǧlu, G. Merhan; Sarıtaş, S.; ćakıcı, T.; Şakar, B.; Yıldırım, M.

    2017-02-01

    The present study is focused on the Cu doped ZnO and Ni doped ZnO dilute magnetic semiconductor thin films. ZnO:Cu and ZnO:Ni thin films were grown by Chemically Spray Pyrolysis (CSP) method on glass substrates. Optical analysis of the films was done spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. The structure, morphology, topology and elemental analysis of ZnO:Cu and ZnO:Ni dilute magnetic thin films were investigated by X-ray diffraction (XRD), Raman Analysis, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) techniques, respectively. Also The magnetic properties of the ZnO:Ni thin film was investigated by vibrating sample magnetometer (VSM) method. VSM measurements of ZnO:Ni thin film showed that the ferromagnetic behavior.

  9. Optical and structural properties of sulfur-doped ELOG InP on Si

    SciTech Connect

    Sun, Yan-Ting Junesand, Carl; Metaferia, Wondwosen; Kataria, Himanshu; Lourdudoss, Sebastian; Julian, Nick; Bowers, John; Pozina, Galia; Hultman, Lars

    2015-06-07

    Optical and structural properties of sulfur-doped epitaxial lateral overgrowth (ELOG) InP grown from nano-sized openings on Si are studied by room-temperature cathodoluminescence and cross-sectional transmission electron microscopy (XTEM). The dependence of luminescence intensity on opening orientation and dimension is reported. Impurity enhanced luminescence can be affected by the facet planes bounding the ELOG layer. Dark line defects formed along the [011] direction are identified as the facet planes intersected by the stacking faults in the ELOG layer. XTEM imaging in different diffraction conditions reveals that stacking faults in the seed InP layer can circumvent the SiO{sub 2} mask during ELOG and extend to the laterally grown layer over the mask. A model for Suzuki effect enhanced stacking fault propagation over the mask in sulfur-doped ELOG InP is constructed and in-situ thermal annealing process is proposed to eliminate the seeding stacking faults.

  10. Electronic and optical properties of antiferromagnetic iron doped NiO - A first principles study

    NASA Astrophysics Data System (ADS)

    Petersen, John E.; Twagirayezu, Fidele; Scolfaro, Luisa M.; Borges, Pablo D.; Geerts, Wilhelmus J.

    2017-05-01

    Antiferromagnetic NiO is a candidate for next generation high-speed and scaled RRAM devices. Here, electronic and optical properties of antiferromagnetic NiO: Fe 25% in the rock salt structure are studied and compared to intrinsic NiO. From density of states and complex dielectric function analysis, the first optical transition is found to be at lower frequency than intrinsic NiO due to an Fe impurity level being the valence band maximum. The resulting effects on refractive index, reflectivity, absorption, optical conductivity and loss function for Fe-doped NiO are compared to those of intrinsic NiO, and notable differences are analyzed. The electronic component of the static dielectric constant of NiO: Fe 25% is calculated to be about 2% less than that of intrinsic NiO.

  11. Water electrolysis-induced optical degradation of aluminum-doped zinc oxide films

    NASA Astrophysics Data System (ADS)

    Fang, Linggang; Fang, Guojia; Chen, Wanping; Li, Chun; Sheng, Su; Ma, Shuang; Zhao, Xingzhong

    2006-12-01

    A type of optical degradation of aluminium-doped zinc oxide (AZO) films due to water electrolysis-induced reduction reaction was reported. An experiment was designed in which AZO films were immersed in a 0.01 M NaOH aqueous solution as cathode to electrolyze water. Significant decreases in the optical transmission of the treated samples were observed. Studies by X-ray diffraction and scanning electron microscope showed that the degradation of AZO films was due to compositional and structural changes with the treatment of water electrolysis, which resulted from the reduction reaction of atomic hydrogen generated in the electrolysis of water. This optical degradation reflects the stability degradation of AZO films under water electrolysis environment.

  12. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures

    NASA Astrophysics Data System (ADS)

    Ferrera, M.; Razzari, L.; Duchesne, D.; Morandotti, R.; Yang, Z.; Liscidini, M.; Sipe, J. E.; Chu, S.; Little, B. E.; Moss, D. J.

    2008-12-01

    Photonic integrated circuits are a key component of future telecommunication networks, where demands for greater bandwidth, network flexibility, and low energy consumption and cost must all be met. The quest for all-optical components has naturally targeted materials with extremely large nonlinearity, including chalcogenide glasses and semiconductors, such as silicon and AlGaAs (ref. 4). However, issues such as immature fabrication technology for chalcogenide glass and high linear and nonlinear losses for semiconductors motivate the search for other materials. Here we present the first demonstration of nonlinear optics in integrated silica-based glass waveguides using continuous-wave light. We demonstrate four-wave mixing, with low (5 mW) continuous-wave pump power at λ = 1,550 nm, in high-index, doped silica glass ring resonators. The low loss, design flexibility and manufacturability of our device are important attributes for low-cost, high-performance, nonlinear all-optical photonic integrated circuits.

  13. High magneto-optical characteristics of Holmium-doped terbium gallium garnet crystal.

    PubMed

    Chen, Zhe; Yang, Lei; Wang, Xiangyong; Yin, Hang

    2016-06-01

    Magneto-optical characteristics of a new magneto-active material, (Tb(1-x)Hox)3Ga5O12 crystal, have been grown by the Czochralski (Cz) method. A high value of the Verdet constant was obtained at room temperature-namely, 214.9 and 77.8  rad·m-1 T-1 for 632.8 and 1064 nm, respectively. The Verdet constant of the Ho-doped terbium gallium garnet crystal at 1064 nm is about 2 times higher than that of terbium gallium garnet crystal. High value of magneto-optical figure-of-merit makes it an attractive next-generation magneto-optics material for high-power Faraday isolators.

  14. Optical Properties of Neodymium Oxide Nanoparticle-Doped Polyvinyl Alcohol Film

    NASA Astrophysics Data System (ADS)

    Keikhaei, Mansoureh; Motevalizadeh, Leili; Attaran-Kakhki, Ebrahim

    2016-04-01

    The structural and optical characteristics of polyvinyl alcohol (PVA) doped with different concentration of Nd2O3 nanoparticles to use an active media for polymer laser were studied. The PVA polymer was considered as the host and Nd2O3 nanoparticles as the active element. The media as a thin film was prepared using spin coating technique. Structural properties of layers were investigated by X-ray diffraction (XRD) pattern and atomic force microscope (AFM) technique. The effect of the concentrations of the neodymium source on the optical properties of Nd2O3/PVA thin films was investigated through UV-Vis absorption spectroscopy and their optical band gap was evaluated. Also, the FTIR and fluorescence spectra of the samples were detected. The fluorescence spectra of films showed that the maximum wavelength occurred at 568nm with no significant shift.

  15. Structural and optical characterization of ZnO doped PC/PS blend nanocomposites

    NASA Astrophysics Data System (ADS)

    Agarwal, Shalini; Saraswat, Vibhav K.

    2015-04-01

    PC50%/PS50% polymer blend nanocomposites, undoped and doped with different concentration of ZnO nanoparticles (1, 2, 3 wt%), have been prepared using solution casting method. Structural and optical studies have been performed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Ultraviolet-Visible spectroscopy (UV-Vis). ZnO nanoparticles have been synthesized by chemical route method. The nanostructure of the ZnO nanoparticles has been ascertained through X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Optical Absorption Spectra has been used to study optical constants of prepared blend nanocomposites. Energy band gap of PC/PS - ZnO blend nanocomposites have been calculated by using Tauc relation. The band gap of the nanocomposites decreases as ZnO wt% increases. Extinction coefficient, refractive index and real & imaginary part of dielectric constants increase with increase in ZnO nanoparticles wt%.

  16. Impact of rapid thermal annealing on structural, optical and electrical properties of DC sputtered doped and co-doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Gupta, Chandan Ashis; Mangal, Sutanu; Singh, Udai P.

    2014-01-01

    We report a crucial change in structural properties which dramatically modified optical and electrical properties in annealed aluminium-boron and gallium-aluminum co-doped ZnO thin films grown using DC magnetron sputtering. Under vacuum, ambient films were annealed at 600 °C for 2 min and it was found that the transmission of annealed samples improved compared to pristine, doped, and co-doped ZnO thin films. The X-ray diffraction (XRD) patterns of pristine films exhibits a preferable growth orientation in <002> phases, however, after annealing signature of other peaks became prominent. Moreover, slender increase in crystallite size was also observed from XRD analysis. The surface morphology was studied using scanning electron microscopy (SEM). The surface morphology exhibits different structure which depending on the growth temperature was discussed in detail. The electrical properties viz. resistivity, mobility, and carrier concentration of both pristine and annealed ZnO thin films were measured at room temperature. An enhancement in the electrical properties of doped and co-doped ZnO thin films was noted after annealing. More significantly, it was found that annealed thin films showed the resistivity of the order ∼10-4 ohm cm with the enhanced optical transmittance. Such a transparent and conducting zinc-oxide thin film can be used as a window layer in solar cell.

  17. Temperature-Dependent Morphology, Magnetic and Optical Properties of Li-Doped MgO

    SciTech Connect

    Myrach, Philipp; Niklas, Nilius; Levchenko, Sergey; Gonchar, Anastasia; Risse, Thomas; Klaus-Peter, Dinse; Boatner, Lynn A; Frandsen, Wiebke; Horn, Raimund; Hans-Joachim, Freund; Schlçgl, Robert; Scheffler, Matthias

    2010-01-01

    Li-doped MgO is a potential catalyst for the oxidative coupling of methane, whereby surface Li+ O centers are suggested to be the chemically active species. To elucidate the role of Li in the MgO matrix, two model systems are prepared and their morphological, optical and magnetic properties as a function of Li doping are investigated. The first is an MgO film deposited on Mo(001) and doped with various amounts of Li, whereas the second is a powder sample fabricated by calcination of Li and Mg precursors in an oxygen atmosphere. Scanning tunneling and transmission electron microscopy are performed to characterize the morphology of both samples. At temperatures above 700 K, Li starts segregating towards the surface and forms irregular Li-rich oxide patches. Above 1050 K, Li desorbs from the MgO surface, leaving behind a characteristic defect pattern. Traces of Li also dissolve into the MgO, as concluded from a distinct optical signature that is absent in the pristine oxide. No electron paramagnetic resonance signal that would be compatible with Li+O centers is detected in the two Li/ MgO samples. Density-functional theory calculations are used to determine the thermodynamic stability of various Li-induced defects in the MgO. The calculations clarify the driving forces for Li segregation towards the MgO surface, but also rationalize the absence of Li+O centers. From the combination of experimental and theoretical results, a detailed picture arises on the role of Li for the MgO properties, which can be used as a starting point to analyze the chemical behavior of the doped oxide in future.

  18. Electronic, optical and photocatalytic behavior of Mn, N doped and co-doped TiO{sub 2}: Experiment and simulation

    SciTech Connect

    Zhao, Ya Fei; Li, Can Lu, Song; Liu, Ru Xi; Hu, Ji Yuan; Gong, Yin Yan; Niu, Leng Yuan

    2016-03-15

    The crystal phase structure, surface morphology, chemical states and optical properties of Mn, N mono-doped and co-doped TiO{sub 2} nanoparticles were investigated by X-ray powder diffractometry, Raman spectra, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectroscopy. Meanwhile, geometry structures, formation energies, electronic and optical properties of all systems have been also analyzed by density functional theory. The results showed that the band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and the carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light. Especially, the photocatalytic activity of Mn-2N co-doped TiO{sub 2} beyond three-fold than that of pure TiO{sub 2} under visible-light. - Graphical abstract: The ILs formed by N-2p orbital in N single doped specimen lie above the VB, while the ILs formed by Mn-3d orbital in Mn single doped specimen appear below the CB. However, a large amount of ILs formed by N-2p orbital and Mn-3d orbital in N and Mn codoped specimens. The band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and the carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light.

  19. Visual Evoked Potential Recording in a Rat Model of Experimental Optic Nerve Demyelination.

    PubMed

    You, Yuyi; Gupta, Vivek K; Chitranshi, Nitin; Reedman, Brittany; Klistorner, Alexander; Graham, Stuart L

    2015-07-29

    The visual evoked potential (VEP) recording is widely used in clinical practice to assess the severity of optic neuritis in its acute phase, and to monitor the disease course in the follow-up period. Changes in the VEP parameters closely correlate with pathological damage in the optic nerve. This protocol provides a detailed description about the rodent model of optic nerve microinjection, in which a partial demyelination lesion is produced in the optic nerve. VEP recording techniques are also discussed. Using skull implanted electrodes, we are able to acquire reproducible intra-session and between-session VEP traces. VEPs can be recorded on individual animals over a period of time to assess the functional changes in the optic nerve longitudinally. The optic nerve demyelination model, in conjunction with the VEP recording protocol, provides a tool to investigate the disease processes associated with demyelination and remyelination, and can potentially be employed to evaluate the effects of new remyelinating drugs or neuroprotective therapies.

  20. Observation of Phase-Filling Singularities in the Optical Dielectric Function of Highly Doped n -Type Ge

    NASA Astrophysics Data System (ADS)

    Xu, Chi; Fernando, Nalin S.; Zollner, Stefan; Kouvetakis, John; Menéndez, José

    2017-06-01

    Phase-filling singularities in the optical response function of highly doped (>1019 cm-3 ) germanium are theoretically predicted and experimentally confirmed using spectroscopic ellipsometry. Contrary to direct-gap semiconductors, which display the well-known Burstein-Moss phenomenology upon doping, the critical point in the joint density of electronic states associated with the partially filled conduction band in n -Ge corresponds to the so-called E1 and E1+Δ1 transitions, which are two-dimensional in character. As a result of this reduced dimensionality, there is no edge shift induced by Pauli blocking. Instead, one observes the "original" critical point (shifted only by band gap renormalization) and an additional feature associated with the level occupation discontinuity at the Fermi level. The experimental observation of this feature is made possible by the recent development of low-temperature, in situ doping techniques that allow the fabrication of highly doped films with exceptionally flat doping profiles.

  1. Optical Properties of Mg, Fe, Co-Doped Near-Stoichiometric LiTaO3 Single Crystals

    PubMed Central

    Hsu, Wei Tse; Chen, Zhi Bin; Wu, Chien Cheng; Choubey, Ravi Kant; Lan, Chung Wen

    2012-01-01

    Mg, Fe co-doped near-stoichiometric lithium tantalite (SLT) single crystals were grown by employing the zone-leveling Czochralski (ZLCz) technique. The optical properties, holographic parameters, as well as the composition of the grown crystals were measured. It was found that the Li/Ta ratio decreased with the doping of Mg and Fe ions. A red shift was observed in absorption spectrum for the Mg, Fe co-doped crystals compared to the undoped and Mg-doped ones. The effect of the iron ions (Fe2+ and Fe3+) was further discussed based on the specified absorption bands. Moreover, the occupation mechanism for the defects was discussed by using the IR absorption spectrum, which was attributed to the FeTa3− defects in the highly Fe-doped crystal. In addition, the holographic parameters were also found to be improved with a higher Fe/Ta ratio in the crystals. PMID:28817041

  2. Optical properties of MgO doped near-stoichiometric LiTaO 3 single crystals

    NASA Astrophysics Data System (ADS)

    Hu, Pengchao; Zhang, Lianhan; Xiong, Jing; Yin, Jigang; Zhao, Chengchun; He, Xiaoming; Hang, Yin

    2011-09-01

    Comparative study of the optical properties of undoped and 1-3 mol% MgO doped near-stoichiometric LiTaO 3 (SLT) crystals were undertaken. It was observed that the red shift in the absorption edge occurred with the increasing MgO doping concentration. The infrared absorption spectrum of the OH-stretch-mode in SLT was measured for crystals of undoped and 1-3 mol% MgO doped compositions. The coercive field for the crystals was measured to be 0.913, 0.610 and 0.735 kV/mm for 1-3 mol% MgO doped SLT, respectively. Photorefractive damage of SLT single crystals with 1-3 mol% MgO doping levels was measured to be 136.29, 180.25 and 222.54 MW/cm 2.

  3. Study on the optical and electrical properties of tetracyanoethylene doped bilayer graphene stack for transparent conducting electrodes

    SciTech Connect

    Limbu, Tej B. Barrionuevo, Danilo; Katiyar, Ram S.; Morell, Gerardo; Mendoza, Frank; Carpena, Jennifer; Maruyama, Benji; Weiner, Brad R.

    2016-03-15

    We report the optical and electrical properties of chemically-doped bilayer graphene stack by tetracyanoethylene, a strong electron acceptor. The Tetracyanoethylene doping on the bilayer graphene via charge transfer was confirmed by Raman spectroscopy and Infrared Fourier transform spectroscopy. Doped graphene shows a significant increase in the sheet carrier concentration of up to 1.520 × 10{sup 13} cm{sup −2} with a concomitant reduction of the sheet resistance down to 414.1 Ω/sq. The high optical transmittance (ca. 84%) in the visible region in combination with the low sheet resistance of the Tetracyanoethylene-doped bilayer graphene stack opens up the possibility of making transparent conducting electrodes for practical applications.

  4. Doping effect of Ag+, Mn2+ ions on Structural and Optical Properties of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Sankara Reddy, B.; Venkatramana Reddy, S.; Venkateswara Reddy, P.; Koteeswara Reddy, N.; Vijayalakshmi, R. P.

    2015-02-01

    Pure ZnO and co-doped (Mn, Ag) ZnO nanoparticles have been successfully prepared by chemical co-precipitation method without using a capping agent. X-ray diffraction (XRD) studies confirms the presence of wurtzite (hexagonal) crystal structure similar to undoped ZnO, suggesting that doped Mn, Ag ions are substituted to the regular Zn sites. The morphology of the samples were studied by scanning electron microscopy (SEM). The chemical composition of pure and co-doped ZnO nanoparticles were characterized by energy dispersive X-ray analysis spectroscopy (EDAX). Optical absorption properties were determined by UV-vis Diffuse Reflectance Spectrophotometer. The incorporation of Ag+, Mn2+ in the place of Zn2+ provoked to decrease the size of nanocrystals as compared to pure ZnO. Optical absorption measurements indicates blue shift in the absorption band edge upon Ag, Mn ions doped ZnO nanoparticles.

  5. Sn-doped ZnO nanocrystalline thin films with enhanced linear and nonlinear optical properties for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Yahia, I. S.; AlFaify, S.; Shkir, Mohd.

    2017-01-01

    In the current work, nanocrystalline undoped and Sn doped ZnO thin films with different doping concentrations (1, 3, 5, 7 at%) have been deposited on glass substrate by low cost spin coating technique. The strong effect of Sn doping on structural, morphological, optical, nonlinear properties have been observed. X-ray diffraction study revealed that all the thin films are preferentially grown along (002) plane. The crystallite size is found to be increased with increasing the concentration of Sn, similar behavior was observed by atomic force microscopy analysis. Optical study shows that the prepared thin films are highly transparent. The direct optical band gap was calculate and found to be 3.16, 3.20, 3.22, 3.34, 3.18 eV for pure and doped films respectively. The refractive index, linear susceptibility, nonlinear absorption coefficient, nonlinear susceptibility and nonlinear refractive index were calculated. Furthermore, the third order nonlinear optical properties are investigated using Z-scan technique and their values are found to be -3.75×10-8 cm2/W, -3.76×10-3 cm/W and 0.65×10-3 esu for 7% Sn doped ZnO, respectively. There is a good correlation between theoretical and experimental third order nonlinear properties and higher values shows that the deposited films are may be applied in nonlinear optical applications.

  6. Investigation of Al doping concentration effect on the structural and optical properties of the nanostructured CdO thin film

    NASA Astrophysics Data System (ADS)

    Gencer Imer, Arife

    2016-04-01

    Nanostructured aluminium (Al) doped cadmium oxide (CdO) films with highly electrical conductivity and optical transparency have been deposited for the first time on soda-lime glass substrates preheated at 250 °C by ultrasonic spray coating technique. The aluminium dopant content in the CdO film was changed from 0 to 5 at%. The influencing of Al doping on the structural, morphological, electrical and optical properties of the CdO nanostructured films has been investigated. Atomic force microscopy study showed the grain size of the films is an order of nanometers, and it decreases with increase in Al dopant content. All the films having cubic structure with a lattice parameter 4.69 Å were determined via X ray diffraction analysis. The optical band gap value of the films, obtained by optical absorption, was found to increase with Al doping. Electrical studies exhibited mobility, carrier concentration and resistivity of the film strongly dependent on the doping content. It has been evaluated that optical band gap, and grain size of the nanostructured CdO film could be modified by Al doping.

  7. Electrothermal theory of photomodulated optical reflectance on active doping profiles in silicon

    NASA Astrophysics Data System (ADS)

    Bogdanowicz, Janusz; Dortu, Fabian; Clarysse, Trudo; Vandervorst, Wilfried; Salnik, Alex

    2010-11-01

    The electrical characterization of the source and drain extension regions of complementary metal oxide semiconductor (CMOS) transistors is highlighted in the international technology roadmap for semiconductors (ITRS) as a major challenge for future technology nodes. In practice, there is a clear need for techniques which are simultaneously accurate, nondestructive, fast, local, and highly reproducible. The photomodulated optical reflectance (PMOR) technique has shown to be a very promising candidate to solve this need. However, even though this technique has been widely studied on homogeneous bulk material and on as-implanted (i.e., unannealed) doping profiles, the extension toward active doping profiles requires a detailed investigation (due to the presence of a built-in electric field). In this paper, after performing an in-depth investigation of the optical and transport models involved in a PMOR experiment, we derive an analytical theory to explain the PMOR signal behavior observed on active doping profiles. In the optical model, we show that only the electrorefractive Drude and thermorefractive effects are to be considered for red and near-infrared wavelengths on Si. In the transport model, we begin the discussion with the study of homogeneous Si substrates. We show that, due to the high carrier injection induced by the lasers, the only important effects are, for the free carriers, the Auger recombinations, the (ambipolar) diffusion and the bandgap narrowing-induced quasidrift; the thermoelectric effects being negligible. Based on the results on homogeneous substrates and on the assumption that the quasi-Fermi levels are flat through the space-charge region, we derive an analytical formula for PMOR signals on active doping profiles. We discuss this formula based on experimental PMOR data measured on active doping profiles with a simple boxlike shape. This formula proves to be in good qualitative agreement with the experimental data both when the power of the

  8. Optical spectroscopy of rare earth ion-doped TiO2 nanophosphors.

    PubMed

    Chen, Xueyuan; Luo, Wenqin

    2010-03-01

    Trivalent rare-earth (RE3+) ion-doped TiO2 nanophosphors belong to one kind of novel optical materials and have attracted increasing attention. The luminescence properties of different RE3+ ions in various TiO2 nanomaterials have been reviewed. Much attention is paid to our recent progresses on the luminescence properties of RE3+ (RE = Eu, Er, Sm, Nd) ions in anatase TiO2 nanoparticles prepared by a sol-gel-solvothermal method. Using Eu3+ as a sensitive optical probe, three significantly different luminescence centers of Eu3+ in TiO2 nanoparticles were detected by means of site-selective spectroscopy at 10 K. Based on the crystal-field (CF) splitting of Eu3+ at each site, C2v and D2 symmetries were proposed for Eu3+ incorporated at two lattice sites. A structural model for the formation of multiple sites was proposed based on the optical behaviors of Eu3+ at different sites. Similar multi-site luminescence was observed in Sm(3+)- or Nd(3+)-doped TiO2 nanoparticles. In Eu(3+)-doped TiO2 nanoparticles, only weak energy transfer from the TiO2 host to the Eu3+ ions was observed at 10 K due to the mismatch of energy between the TiO2 band-gap and the Eu3+ excited states. On the contrary, efficient host-sensitized luminescences were realized in Sm(3+)- or Nd(3+)-doped anatase TiO2 nanoparticles due to the match of energy between TiO2 band-gap and the Sm3+ and Nd3+ excited states. The excitation spectra of both Sm(3+)- and Nd(3+)-doped samples exhibit a dominant broad peak centered at approximately 340 nm, which is associated with the band-gap of TiO2, indicating that sensitized emission is much more efficient than direct excitation of the Sm3+ and Nd3+ ions. Single lattice site emission of Er3+ in TiO2 nanocrystals can be achieved by modifying the experimental conditions. Upon excitation by a Ti: sapphire laser at 978 nm, intense green upconverted luminescence was observed. The characteristic emission of Er3+ ions was obtained both in the ultraviolet-visible (UV-vis) and

  9. Electrochemical doping and the optical properties of light-emitting polymer materials and devices

    NASA Astrophysics Data System (ADS)

    Leger, Janelle Maureen

    The first three chapters of this dissertation serve as an introduction to the field of light-emitting polymers and polymer-based devices including materials, device construction, and measurement techniques. In chapter one I discuss the physical models necessary to understand semiconductivity in conjugated polymers. Chapter two reviews the device physics of several important applications. In chapter three I introduce the experimental techniques used in the following studies. Two well established light-emitting polymer devices include the polymer LED and the polymer LEC. The LEC uses electrochemical doping to achieve the charge injection necessary for light emission, while the LED injects charge directly from contact electrodes. I use a technique employing simulations of interference effects in multilayered device structures, matching experimental device spectra to simulation in order to gain insight into the location of light emission within the device. In chapter four I use this technique to explore the thickness dependence of PLEDs. In chapter five I combine simulations of interference effects in LECs with studies of planar geometry devices, thereby providing information about the fundamental operating mechanism of these devices. Several polymer-based applications include light-emitting electrochemical cells (LEC), electrochromic devices (ECD), and actuators, for which the operating mechanism depends heavily on electrochemical doping. Unfortunately, the doping of light-emitting polymers is not well understood. In chapter six I study the basic electrochemical doping reactions of one common light-emitting polymer, MEH-PPV. I explore factors affecting the fundamental doping reaction through cyclic voltammetry. Further, I investigate the optical properties of doped films in order to gain insight into the structural changes and changes in the energy band structure induced by doping. Finally, I explore some unique functionalities of MEH-PPV, specifically electrochromic

  10. Studies on optical properties of antimony doped SnO2 films

    NASA Astrophysics Data System (ADS)

    Gürakar, Sibel; Serin, Tülay; Serin, Necmi

    2015-10-01

    Antimony doped tin oxide thin films were grown by spray method on microscope glass substrates. The antimony doping was varied from 0 to 4 at%. The structural properties of the films were investigated by X-ray diffraction method. The optical transmittances of thin films were measured with UV-Vis-NIR spectrometer in the 300-2000 nm wavelength range. A simple analysis according to Swanepoel's method was applied to derive the real and imaginary parts of the complex index of refraction plus film thickness. The dispersion of refractive index was investigated in terms of the single-oscillator Wemple and DiDomenico model and the important oscillating parameters such as the dispersion energy Ed, the oscillation energy Eo, the high frequency dielectric constant ɛ∞ were determined. The analysis of the refractive index has been carried out to calculate the lattice dielectric constant ɛL and the ratio of carrier concentration to the effective mass N/m*. The real and imaginary parts of the electronic dielectric constant and optical conductivity were analyzed. The optical band gap, Eg values of the films were obtained from the spectral dependence of the absorption coefficient, using the Tauc relation.

  11. Linear and nonlinear optical characteristics of Te nanoparticles-doped germanate glasses

    NASA Astrophysics Data System (ADS)

    Xu, Zhousu; Guo, Qiangbing; Liu, Chang; Ma, Zhijun; Liu, Xiaofeng; Qiu, Jianrong

    2016-10-01

    Te nanoparticles (NPs)-doped GeO2-MgO-B2O3-Al2O3-TeO2 glasses were prepared by the conventional melt-quenching method. Based on X-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscope observation, the coloration of the glass at high TeO2 concentration is ascribed to the precipitation of elemental Te NPs with a size of 5-10 nm in the germanate glass. Optical absorption spectra and nonlinear optical (NLO) properties of the glass samples were analyzed by UV-3600 spectrophotometry and Z-scan technique, respectively. The nonlinear absorption coefficient ( β) and the imaginary part of the third-order NLO susceptibility (Im χ (3)) were estimated to be 1.74 cm/GW and 1.142 × 10-12 esu for laser power of 95 μW, respectively. Due to the excellent NLO properties, the Te NPs-doped germanate glasses may have potential applications for ultrafast optical switch and photonics.

  12. Low power optical limiting studies of copper doped lithium tetraborate nanoparticles

    NASA Astrophysics Data System (ADS)

    Dhanuskodi, S.; Mohandoss, R.; Vinitha, G.; Pathinettam Padiyan, D.

    2015-04-01

    The copper doped lithium tetraborate (LTB:Cu) nanoparticles were synthesized by sol-gel method and characterized by XRD (tetragonal structure) and by FESEM (sphere-like nanoparticle). UV-Vis studies show that there is no strong absorption in the visible region. In the luminescence spectrum, the emission peak at 370 nm reveals the presence of Cu+ in LTB lattice. The relative powder second harmonic generation efficiency of pure and doped LTB is equal to the standard NLO material, KDP. The nonlinear optical parameters of LTB:Cu nanoparticles say, nonlinear refractive index, nonlinear absorption coefficient and third order nonlinear optical susceptibility were determined to be of the order of 10-8 cm2/W, 10-2 cm/W and 10-5 esu, respectively. The optical power limiting behavior of the samples were studied by Z-scan technique with (532 nm, 50 mW) Nd:YAG laser and the limiting threshold values are found to be 22.7 mW for 0.01 M and 24.9 mW for 0.03 and 0.05 M LTB:Cu nanoparticles.

  13. Optical Properties and Structure of Cobalt Chloride Doped Pva and its Blend with Pvp

    NASA Astrophysics Data System (ADS)

    Ahmed, R. M.

    2014-01-01

    Solution cast technique has been used to prepare films of PVA and its blend with PVP. Moreover, cobalt chloride (CoCl2) has been doped in PVA and also PVA/PVP 90/10 as a host matrix for it. Also, UV/VIS optical analysis has been used to drop more light on the structural modification that occurs due to doping CoCl2 with different levels in different polymeric matrixes. Indeed, UV-Vis spectra is a useful tool for studying the absorption spectra and estimating the values of absorption edge, Eg, and band tail, Eu, for all samples. The optical absorption measurements have been carried out in the wavelength region from 200 nm to 900 nm. In addition, the ligand field parameters and optical energy gaps have been calculated and discussed. X-ray diffraction (XRD) and fourier transform infrared (FTIR) spectroscopy have been used to characterize the studied samples which illustrates that PVA is strongly affected by mixed fillers.

  14. Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials

    NASA Astrophysics Data System (ADS)

    Thiel, C. W.; Macfarlane, R. M.; Sun, Y.; Böttger, T.; Sinclair, N.; Tittel, W.; Cone, R. L.

    2014-10-01

    A method is introduced for quantitatively analyzing photon echo decay measurements to characterize excitation-induced decoherence resulting from the phenomenon of instantaneous spectral diffusion. Detailed analysis is presented that allows fundamental material properties to be extracted that predict and describe excitation-induced decoherence for a broad range of measurements, applications and experimental conditions. Motivated by the need for a method that enables systematic studies of ultra-low decoherence systems and direct comparison of properties between optical materials, this approach employs simple techniques and analytical expressions that avoid the need for difficult to measure and often unknown material parameters or numerical simulations. This measurement and analysis approach is demonstrated for the 3H6 to 3H4 optical transition of three thulium-doped crystals, Tm3+:YAG, Tm3+:LiNbO3 and Tm3+:YGG, that are currently employed in quantum information and classical signal processing demonstrations where minimizing decoherence is essential to achieve high efficiencies and large signal bandwidths. These new results reveal more than two orders of magnitude variation in sensitivity to excitation-induced decoherence among the materials studied and establish that the Tm3+:YGG system offers the longest optical coherence lifetimes and the lowest levels of excitation-induced decoherence yet observed for any known thulium-doped material.

  15. Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Fu, Gang; Wang, Hui-Lin; Wang, Xue-Lin

    2013-07-01

    There is great interest in niobate crystals which belong to the tetragonal tungsten bronze (TTB) families owing to their intriguing properties. As one representative of such crystals, CBN (calcium barium niobate) has attracted rapidly growing attention. Because it has a higher Curie temperature than SBN (strontium barium niobate), possesses outstanding ferroelectric and it possesses optical properties. In addition, doped with sodium, CBN will show a higher Curie temperature than pure CBN. We report on the fabrication and characterization of optical planar waveguide in x-cut sodium-doped calcium barium niobate crystal by using C ion implantation. The guided-mode properties at the wavelength of 633 and 1539 nm are investigated through prism-coupling measurements, respectively. By applying direct end-face coupling arrangement, the near-field optical intensity distribution of waveguide modes is measured at 633 nm. For comparison, the modal profile of the same guided mode is also numerically calculated by the finite difference beam-propagation method via computer software BeamPROP. The transmission spectra of the waveguide before and after ion implantation treatments were investigated also. Our experiment results reveal that the waveguide could propagate light with transverse magnetic polarized direction only and it is assumed that the polarization selectivity of CBN crystal may responsible for this phenomenon.

  16. Refinement of Er3+-doped hole-assisted optical fiber amplifier.

    PubMed

    D'Orazio, A; De Sario, M; Mescia, L; Petruzzelli, V; Prudenzano, F

    2005-12-12

    This paper deals with design and refinement criteria of erbium doped hole-assisted optical fiber amplifiers for applications in the third band of fiber optical communication. The amplifier performance is simulated via a model which takes into account the ion population rate equations and the optical power propagation. The electromagnetic field profile of the propagating modes is carried out by a finite element method solver. The effects of the number of cladding air holes on the amplifier performance are investigated. To this aim, four different erbium doped hole-assisted lightguide fiber amplifiers having a different number of cladding air holes are designed and compared. The simulated optimal gain, optimal length, and optimal noise fig. are discussed. The numerical results highlight that, by increasing the number of air holes, the gain can be improved, thus obtaining a shorter amplifier length. For the erbium concentration NEr=1.8x1024 ions/m3, the optimal gain G(Lopt) increases up to ~2dB by increasing the number of the air holes from M=4 to M=10.

  17. Optical Features of Spherical Gold Nanoparticle-Doped Solid-State Dye Laser Medium

    NASA Astrophysics Data System (ADS)

    Hoa, D. Q.; Lien, N. T. H.; Duong, V. T. T.; Duong, V.; An, N. T. M.

    2016-05-01

    The development of a new laser medium based on gold nanoparticle/dye-doped polymethylmethacrylate (PMMA) has been investigated. In particular, gold nanoparticles with small (16 nm diameter) spherical shape strongly influenced the absorption and fluorescence emission spectra of [2-[2-[4-(dimethylamino)phenyl]ethenyl]-6-methyl-4 H-pyran-4-ylidene]-propanedinitrile (DCM) laser dye. Fluorescence quenching and enhancement of DCM emission were observed for various concentrations of gold nanoparticles (GNPs). Fluorescence intensity enhancement was recorded for the sample containing 1.5 × 1010 par/mL GNPs and doped with 3 × 10-5 mol/L DCM. Thermal photodegradation was significantly decreased by using low pump energy for laser emission.

  18. Synthesis of highly efficient antibacterial agent Ag doped ZnO nanorods: Structural, Raman and optical properties

    NASA Astrophysics Data System (ADS)

    Jan, Tariq; Iqbal, Javed; Ismail, Muhammad; Mahmood, Arshad

    2014-04-01

    Here, synthesis, structural, morphological, Raman, optical properties and antibacterial activity of undoped and Ag doped ZnO nanorods by chemical co-precipitation technique have been reported. Structural analysis has revealed that Ag doping cannot deteriorate the structure of ZnO and wurtzite phase is maintained. Lattice constants are found to be decreased with the Ag doping. Fourier transform infrared and Raman spectroscopy also confirm the X-ray diffraction results. Scanning electron microscopy results have demonstrated the formation of ZnO nanorods with average diameter and length of 96 nm and 700 nm, respectively. Raman spectroscopy results suggest that the Ag doping enhances the number of defects in ZnO crystal. It has been found from optical study that Ag doping results in positional shift of band edge absorption peak. This is attributed to the successful incorporation of Ag dopant into ZnO host matrix. The antibacterial activity of prepared nanorods has been determined by two different methods and compared to that of undoped ZnO nanorods. Ag doped ZnO nanorods exhibit excellent antibacterial activity as compared to that of undoped ZnO nanorods. This excellent antibacterial activity may be attributed to the presence of oxygen vacancies and Zn2+ interstitial defects. Our preliminary findings suggest that Ag doped ZnO nanorods can be used externally to control the spreading of infections related with tested bacterial strains.

  19. Synthesis of highly efficient antibacterial agent Ag doped ZnO nanorods: Structural, Raman and optical properties

    SciTech Connect

    Jan, Tariq; Iqbal, Javed; Ismail, Muhammad; Mahmood, Arshad

    2014-04-21

    Here, synthesis, structural, morphological, Raman, optical properties and antibacterial activity of undoped and Ag doped ZnO nanorods by chemical co-precipitation technique have been reported. Structural analysis has revealed that Ag doping cannot deteriorate the structure of ZnO and wurtzite phase is maintained. Lattice constants are found to be decreased with the Ag doping. Fourier transform infrared and Raman spectroscopy also confirm the X-ray diffraction results. Scanning electron microscopy results have demonstrated the formation of ZnO nanorods with average diameter and length of 96 nm and 700 nm, respectively. Raman spectroscopy results suggest that the Ag doping enhances the number of defects in ZnO crystal. It has been found from optical study that Ag doping results in positional shift of band edge absorption peak. This is attributed to the successful incorporation of Ag dopant into ZnO host matrix. The antibacterial activity of prepared nanorods has been determined by two different methods and compared to that of undoped ZnO nanorods. Ag doped ZnO nanorods exhibit excellent antibacterial activity as compared to that of undoped ZnO nanorods. This excellent antibacterial activity may be attributed to the presence of oxygen vacancies and Zn{sup 2+} interstitial defects. Our preliminary findings suggest that Ag doped ZnO nanorods can be used externally to control the spreading of infections related with tested bacterial strains.

  20. Growth of optical-quality anthracene crystals doped with dibenzoterrylene for controlled single photon production

    SciTech Connect

    Major, Kyle D. Lien, Yu-Hung; Polisseni, Claudio; Grandi, Samuele; Kho, Kiang Wei; Clark, Alex S.; Hwang, J.; Hinds, E. A.

    2015-08-15

    Dibenzoterrylene (DBT) molecules within a crystalline anthracene matrix show promise as quantum emitters for controlled, single photon production. We present the design and construction of a chamber in which we reproducibly grow doped anthracene crystals of optical quality that are several mm across and a few μm thick. We demonstrate control of the DBT concentration over the range 6–300 parts per trillion and show that these DBT molecules are stable single-photon emitters. We interpret our data with a simple model that provides some information on the vapour pressure of DBT.

  1. Thulium-doped fiber amplifier for optical communications at 2 µm.

    PubMed

    Li, Z; Heidt, A M; Daniel, J M O; Jung, Y; Alam, S U; Richardson, D J

    2013-04-22

    We report the first experimental realization and detailed characterization of thulium doped fiber amplifiers (TDFAs) specifically designed for optical communications providing high gain (>35 dB), noise figure as low as 5 dB, and over 100 nm wide bandwidth around 2 µm. A maximum saturated output power of 1.2 W was achieved with a slope efficiency of 50%. The gain dynamics of the amplifier were also examined. Our results show that TDFAs are well qualified as high performance amplifiers for possible future telecommunication networks operating around 2 µm.

  2. EPR and optical absorption study of Cu2+ doped lithium sulphate monohydrate (LSMH) single crystals

    NASA Astrophysics Data System (ADS)

    Sheela, K. Juliet; Krishnan, S. Radha; Shanmugam, V. M.; Subramanian, P.

    2016-05-01

    EPR study of Cu2+ doped NLO active Lithium Sulphate monohydrate (Li2SO4.H2O) single crystals were grown successfully by slow evaporation method at room temperature. The principal values of g and A tensors indicate existence of orthorhombic symmetry around the Cu2+ ion. From the direction cosines of g and A tensors, the locations of Cu2+ in the lattice have been identified as interstitial site. Optical absorption confirms the rhombic symmetry and ground state wave function of the Cu2+ ion in a lattice as dx2-y2.

  3. Doped, porous iron oxide films and their optical functions and anodic photocurrents for solar water splitting

    SciTech Connect

    Kronawitter, Coleman X.; Mao, Samuel S.; Antoun, Bonnie R.

    2011-02-28

    The fabrication and morphological, optical, and photoelectrochemical characterization of doped iron oxide films is presented. The complex index of refraction and absorption coefficient of polycrystalline films are determined through measurement and modeling of spectral transmission and reflection data using appropriate dispersion relations. Photoelectrochemical characterization for water photo-oxidation reveals that the conversion efficiencies of electrodes are strongly influenced by substrate temperature during their oblique-angle physical vapor deposition. These results are discussed in terms of the films' morphological features and the known optoelectronic limitations of iron oxide films for application in solar water splitting devices.

  4. Influence of Al doping on optical properties of CdS/PVA nanocomposites: Theory and experiment

    SciTech Connect

    Bala, Vaneeta Tripathi, S. K. Kumar, Ranjan

    2014-04-24

    In the present work theoretical and experimental studies of aluminium doped cadmium sulphide polyvinyl alcohol (Al:CdS/PVA) nanocomposites have been carried out. Tetrahedral cluster AlCd{sub 9}S{sub 2}(SH){sub 18}]{sup 1−} has been encapsulated by small segments of polyvinyl alcohol (PVA) chains in order to simulate experimental environment of nanocomposites. Density functional theory (DFT) using local density approximation (LDA) functionals is employed to study the broadening of band gap upon ligation of nanoclusters. We have used in situ chemical route to synthesize nanocomposites. Optical band gap has been calculated from both experimental and theoretical approach.

  5. Planar Fresnel lens photoimprinted in a germanium-doped silica optical waveguide.

    PubMed

    Albert, J; Huttunen, J; Saarinen, J

    1995-05-15

    A gradient-thickness Fresnel lens was photoimprinted in the germanium-doped core layer of a single-mode planar waveguide on silica by exposure to ultraviolet light through a mask, which increases the refractive index in the lens region by approximately 5 x 10(-3). The lens is used to collimate the output of a standard single-mode optical fiber butt coupled to the waveguide at a wavelength of 1.3 microm. The method is applicable to the mass production of complex diffractive elements in a planar waveguide geometry.

  6. Nano-engineered optical properties of iodine doped poly(methyl methacrylate)

    SciTech Connect

    Mehta, Sheetal Das, Kallol; Keller, Jag Mohan

    2016-05-23

    Poly (methyl methacrylate) (PMMA) and Iodine hybrid matrixes have been prepared and characterized. The optical properties of the prepared I-PMMA hybrid composites were characterized by linear absorption studies and these composites have been found to contain embedded Iodine nanoparticles. The size of the nanoparticles was found to be a function of the Iodine content of PMMA. Refractive index measurements were undertaken for different wavelengths. The results showed that the refractive index of the composite is dependent on thermal annealing and also varies nonlinearly with the doping concentration at low Iodine concentration or in the region of nanoparticles formation.

  7. Fibercore AstroGain fiber: multichannel erbium doped fibers for optical space communications

    NASA Astrophysics Data System (ADS)

    Hill, Mark; Gray, Rebecca; Hankey, Judith; Gillooly, Andy

    2014-03-01

    Fibercore have developed AstroGainTM fiber optimized for multichannel amplifiers used in optical satellite communications and control. The fiber has been designed to take full advantage of the photo-annealing effect that results from pumping in the 980nm region. The proprietary trivalent structure of the core matrix allows optimum recovery following radiation damage to the fiber, whilst also providing a market leading Erbium Doped Fiber Amplifier (EDFA) efficiency. Direct measurements have been taken of amplifier efficiency in a multichannel assembly, which show an effective photo-annealing recovery of up to 100% of the radiation induced attenuation through excitation of point defects.

  8. Carbon dioxide detection using a co-doped Tm-Ho optical fiber

    NASA Astrophysics Data System (ADS)

    Morse, Theodore F.; Oh, Kyunghwan; Reinhart, Lawrence J.

    1995-09-01

    A Tm-Ho co-doped optical fiber laser exhibits significant fluorescence between 1.6 and 2.1 micrometers . Such a fiber can from the basis of a gas detection system, since many gases of interest have overtone absorption bands in this wavelength region: in particular, carbon dioxide, methane, arsine, replacement gases for refrigerants, and nitrous oxide. Using this fiber we have demonstrated a simple shceme for the detection of overtone absorption bands of carbon dioxide in the 2 micrometers region. The detection sensitivity for carbon dioxide with this present method is of the order of 1%.

  9. Thin film optical nonlinear waveguides made of Corning 7059 glass doped with CdS microcrystallites

    NASA Astrophysics Data System (ADS)

    Chenard, Francois; Jerominek, Hubert; Larochelle, Sophie; Tremblay, Real; Delisle, Claude A.

    1989-03-01

    The technology for the fabrication of semiconductor-doped glass film by co-sputtering of Coming 7059 and a CdS powder or pellet is described. The presence of semiconductor microcrystallites was verified by using Raman spectroscopy. XPS measurements show that CdS content of the films varies from 3 to 20% by weight depending on the kind of target used and the RF power supplied to the sputtering system. Nonlinear coefficient n2 of the films is about 10-10 m2/W. The nonlinearity is probably of thermal origin. All-optical beam deflection experiment based on nonlinear properties of the deposited films is described.

  10. Optical properties of titanium-doped lithium niobate from time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Friedrich, Michael; Schmidt, W. G.; Schindlmayr, Arno; Sanna, Simone

    2017-08-01

    The optical properties of pristine and titanium-doped LiNbO3 are modeled from first principles. The dielectric functions are calculated within time-dependent density-functional theory, and a model long-range contribution is employed for the exchange-correlation kernel in order to account for the electron-hole binding. Our study focuses on the influence of substitutional titanium atoms on lithium sites. We show that an increasing titanium concentration enhances the values of the refractive indices and the reflectivity.

  11. Optically-tunable beam steering grating based n azobenzene doped cholesteric liquid crystal.

    PubMed

    Jau, Hung-Chang; Lin, Tsung-Hsien; Fung, Ri-Xin; Huang, San-Yi; Liu, J-H; Fuh, Andy Y-G

    2010-08-02

    This work proposes an optically controllable beam-steering device, fabricated using cholesteric liquid crystals (CLCs) that are doped with azobenzene. The trans-cis photoisomerization of azobenzene changes the pitch of the CLC fingerprint structure and shifts the diffraction angle. The diffraction angle increases when the cell is irradiated with UV light, and restored when it is irradiated with green light. Combining the photoisomerization effect with electrical effect, the CLC beam-steering device provides a steering angle of approximately 19 degrees. The tuning is continuous and could be completed within a few seconds.

  12. Nonlinear optical conductivity of a generic two-band system with application to doped and gapped graphene

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh; Bolotin, Kirill I.; Ghosh, Saikat; Agarwal, Amit

    2017-04-01

    We present a general formulation to calculate the dynamic interband optical conductivity, beyond the linear response regime, of any electronic system whose quasiparticle dispersion is described by a two-band model. Our formulation is based on the optical Bloch equations with phenomenological damping constants. In the nonlinear steady state regime it yields an analytic solution for the population inversion and the interband coherence, which are nonlinear in the optical field intensity, including finite doping and temperature effects. We explicitly show that the optical nonlinearities are controlled by a single dimensionless parameter which is directly proportional to the incident field strength and inversely proportional to the optical frequency. This identification leads to a unified way to study the dynamical conductivity and the differential transmission spectrum across a wide range of optical frequencies and optical field strengths. We use our formalism to analytically calculate the nonlinear interband optical conductivity of doped and gapped graphene, deriving the well known universal ac conductivity of σ0=e2/4 ℏ in the linear response regime of low optical intensities and nonlinear deviations from it which appear at high laser intensities including the impact of finite doping and band-gap opening.

  13. Tailoring complex optical fields via anisotropic microstructures (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lu, Yan-Qing; Hu, Wei; Cui, Guo-Xin

    2015-10-01

    In recent years, complex optical fields with spatially inhomogeneous phases, polarizations and optical singularities have drawn many research interests. Many novel effects have been predicted and demonstrated for light beams with these unconventional states in both linear and nonlinear optics regimes. Although local optical phase could be controlled directly or through hologram structures in isotropic materials such as glasses, optical anisotropy is still required for manipulating polarization states and wavelengths. The anisotropy could be either intrinsic such as in crystals/liquid crystals (LCs) or the induced birefringence from dielectric or metallic structures. In this talk, we will briefly review some of our attempts in tailoring complex optical fields via anisotropic microstructures. We developed a micro-photo-patterning system that could generate complex micro-images then further guides the arbitrary local LC directors. Due to the electro-optically (EO) tunable anisotropy of LC, various reconfigurable complex optical fields such as optical vortices (OVs), multiplexed OVs, OV array, Airy beams and vector beams are obtained. Different LC modes such as homogeneous alignment nematic, hybrid alignment nematic and even blue phase LCs are adopted to optimize the static and dynamic beam characteristics depending on application circumstances. We are also trying to extend our approaches to new wavelength bands, such as mid-infrared and even THz ranges. Some preliminary results are obtained. In addition, based on our recently developed local poling techniques for ferroelectric crystals, we will also discuss and demonstrate the nonlinear complex optical field conversion in Lithium Niobate wafers with patterned ferroelectric domain structures.

  14. Magnetic, electronic, optical, and photocatalytic properties of nonmetal- and halogen-doped anatase TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Fadlallah, M. M.

    2017-05-01

    The structure stability, magnetic, electronic, optical, and photocatalytic properties of nonmetal (B, C, N, P, and S), and halogen (F, Cl, Br, and I)-doped anatase TiO2 nanotubes (TNTs) have been investigated using spin polarized density functional theory. The N- and F-doped TNTs are the most stable among other doped TNTs. It is found that the magnetic moment of doped TNT is the difference between the number of the valence electrons of the dopant and host anion. All dopants decrease the band gap of TNT. The decrease in the band gap of nonmetal (C, N, P, and S)-doped TNTs, in particular N and P, is larger than that of halogen-doped TNTs due to the created states of the nonmetal dopant in the band gap. There is a good agreement between the calculation results and the experimental observations. Even though C-, N-, and P-doped TNTs have the lowest band gap, they cannot be used as a photocatalysis for water splitting. The B-, S-, and I-doped TiO2 nanotubes are of great potential as candidates for water splitting in the visible light range.

  15. Studies on thermal analysis and optical parameters of Cu doped poly(vinyl acetate)/polyindole composites

    NASA Astrophysics Data System (ADS)

    Bhagat, D. J.; Dhokane, G. R.

    2015-05-01

    This article reports investigation on optical parameters and thermal analysis of Cu doped poly(vinyl acetate)/polyindole composites using cupric chloride as an oxidant. The study's complex optical parameters were determined through ultraviolet-visible (UV-vis) spectroscopy. Thermal analysis was done through thermo gravimetric analysis (TGA) and differential thermal analysis (DTA). The optical band gap values were found in the range 3.4381-4.8646 eV that reflects that synthesized composites have the potential to have application in optical devices and solar cells. The optical conductivity of composites is calculated to be 1.608 × 107 S-1.

  16. Holographic recording in a doubly doped lithium niobate crystal with two wavelengths: a blue laser diode and a green laser

    NASA Astrophysics Data System (ADS)

    Komori, Yuichi; Ishii, Yukihiro

    2010-08-01

    A doubly-doped LiNbO3 (LN) crystal has been well used as a nonvolatile two-wavelength recording material. By using two levels of the crystal, two-kind holograms can be recorded on one crystal; a hologram is recorded with a 405-nm blue laser diode (LD) for a deep Mn level, and another hologram is with a 532-nm green laser for a shallow Fe level. The recording capacity doubles. A 780-nm LD is non-volatile reconstructing source since the LD line is insensitive to both levels. Multiplexed reconstructed images are demonstrated by using a sharp angular selectivity of a volume LN crystal keeping Bragg condition with spherical reconstructions.

  17. Exploration of metastability and hidden phases in correlated electron crystals visualized by femtosecond optical doping and electron crystallography.

    PubMed

    Han, Tzong-Ru T; Zhou, Faran; Malliakas, Christos D; Duxbury, Phillip M; Mahanti, Subhendra D; Kanatzidis, Mercouri G; Ruan, Chong-Yu

    2015-06-01

    Characterizing and understanding the emergence of multiple macroscopically ordered electronic phases through subtle tuning of temperature, pressure, and chemical doping has been a long-standing central issue for complex materials research. We report the first comprehensive studies of optical doping-induced emergence of stable phases and metastable hidden phases visualized in situ by femtosecond electron crystallography. The electronic phase transitions are triggered by femtosecond infrared pulses, and a temperature-optical density phase diagram is constructed and substantiated with the dynamics of metastable states, highlighting the cooperation and competition through which the macroscopic quantum orders emerge. These results elucidate key pathways of femtosecond electronic switching phenomena and provide an important new avenue to comprehensively investigate optical doping-induced transition states and phase diagrams of complex materials with wide-ranging applications.

  18. Study on structural, optical properties of solvothermally synthesized Ni doped CdS nanorods

    SciTech Connect

    Kaur, Kamaldeep Verma, N. K.

    2015-05-15

    Undoped and alkali metal i.e Ni doped CdS nanorods (Cd{sub x}Ni{sub 1-x}S) with (x = 0.0, 0.3,) has been synthesized by using a convenient solvothermal technique. In order to confirm the structure of the synthesized nanorods X-ray diffraction (XRD) has been done which reveals the formation of hexagonal phase of the dilute magnetic semiconducting nanorods having size of undoped 27.79nm and doped 17.49nm. Energy dispersive X-ray analysis depicts the presence of elements Cd, Ni and S in their stoichiometric ratio. Optical behavior of undoped and doped nanorods has been investigated. UV-visible spectra show the blue shift in the band gap, as compared to the bulk CdS which may be due the quantum confinement occurs in the nanostructures. Morphological analysis has been done with the help of Transmission electron microscope which confirms the polycrystalline nature of the synthesized nanorods.

  19. Facile synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties

    SciTech Connect

    Iqbal, Javed E-mail: javed.suggau@iiu.edu.pk; Jan, Tariq E-mail: javed.suggau@iiu.edu.pk; Ul-Hassan, Sibt; Umair Ali, M.; Abbas, Fazal; Ahmed, Ishaq; Mansoor, Qaisar; Ismail, Muhammad

    2015-12-15

    Zn{sub x}Cu{sub 1−x}O (where x= 0, 0.01, 0.03, 0.05, 0.07 and 0.1 mol%) hierarchical nanostructures have been prepared via soft chemical route. X-ray diffraction (XRD) results of the synthesized samples reveal the monoclinic structure of CuO without any impurity related phases. The micro-structural parameters such as crystallite size and microstrain have been strongly influenced by Zn doping. Scanning electron microscope (SEM) analyses depict the formation of hierarchical nanostructures having average particle size in the range of 26-43 nm. The surface area of CuO nanostructures has been reduced systematically with the increase in Zn content which is linked with the variations in particle size. An obvious decrease in the optical band gap energy of the synthesized CuO hierarchical nanostructures has been observed with Zn doping which is assigned to the formation of shallow levels in the band gap of CuO and combined transition from oxygen 2p states to d sates of Cu and Zn ions. The bactericidal potency of the CuO hierarchical nanostructures have been found to be enhanced remarkably with Zn doping.

  20. Study of structural and optical properties of Fe doped CuO nanoparticles

    SciTech Connect

    Rani, Poonam; Gupta, Ankita; Kaur, Sarabjeet; Kumar, Sacheen Kumar, Dinesh; Singh, Vishal

    2016-05-06

    Iron doped Copper oxide nanoparticles were synthesized by the co-precipitation method at different concentration (3%, 6%, 9%) at 300-400° C with Copper Acetate and Ferric Chloride as precursors in presence of Polyethylene Glycol and Sodium Hydroxide as stabilizing agent. Effect of doping on the structural and optical properties is studied. The obtained nanoparticles were characterized by X-Ray Diffraction and UV-Visible Spectroscopy for examining the size and the band gap respectively. The X-Ray Diffraction plots confirmed the monoclinic structure of Copper oxide suggesting the Cu atoms replaced by Fe atoms and no secondary phase was detected. The indirect band gap of Fe doped CuO nanoparticles is 2.4eV and increases to 3.4eV as the concentration of dopant increases. The majority of particle size is in range 8 nm to 35.55 nm investigated by X-ray diffractometer.

  1. Electric-field-induced optical second-harmonic generation in doped graphene

    NASA Astrophysics Data System (ADS)

    Margulis, Vl. A.; Muryumin, E. E.; Gaiduk, E. A.

    2016-11-01

    A graphene layer interacting with an incident electromagnetic wave of frequency ω will produce dipole radiation at frequency 2 ω in the presence of an in-plane electric field breaking the spatial inversion symmetry of the graphene. Here, we develop a theory that describes such electric-field-induced second-harmonic generation (EFISHG) from doped graphene. We derive an analytic expression for the relevant third-order nonlinear optical (NLO) susceptibility χ (3)(- 2 ω ; ω , ω , 0) and numerically evaluate the absolute magnitude of the χ (3) for various values of the system's parameters. We find that the |χ (3) | spectrum is dominated by the resonant peak structure located at the incident photon energy ℏω equal to the Fermi energy EF of charge carriers in the doped graphene. We also show that the possibility to tune the doping level of graphene by an external gate voltage allows one to maximize the radiated EFISHG power at ℏω =EF , which may be of practical interest for the designs of the NLO devices based on employing a SHG-signal.

  2. Effect of La doping on optical and electrical transport properties of nanocrystalline YCrO3

    NASA Astrophysics Data System (ADS)

    Sinha, R.; Kundu, S.; Basu, S.; Meikap, A. K.

    2016-10-01

    In this work we have reported the synthesis and characterization of La doped YCrO3 nanoparticles following sol-gel method. The optical band gap of the investigated samples decreases with the increase of doping content. Photoluminescence spectra show distinct red light emission in the visible range around 630 nm. Dielectric permittivity is measured within the temperature range 298 K-523 K and in the frequency range 20 Hz - 1 MHz following the power law ε'(f) ∝Tp , which shows that the temperature exponent p increases with the decreasing frequency and its values varies from 11.4 to 17 for 1 MHz to 100 KHz frequency variation. The ac impedance analysis shows that grain boundary contribution is dominating over grain contribution. The dc conductivity of the investigated samples follows semiconductor behavior. The analysis of both the dc and ac conductivity shows that the activation energy decreases and the conductivity increases with the increase of doping concentration which is very much important for its application as interconnect material in Solid Oxide Fuel Cells (SOFCs).

  3. Structural, optical and magnetic properties of Cu and V co-doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Huilian; Cheng, Xin; Liu, Hongbo; Yang, Jinghai; Liu, Yang; Liu, Xiaoyan; Gao, Ming; Wei, Maobin; Zhang, Xu; Jiang, Yuhong

    2013-01-01

    Zn0.98-xCuxV0.02O (x=0, 0.01, 0.02 and 0.03) samples were synthesized by the sol-gel technology to dope up to 3% Cu in ZnO. Investigations of structural, optical and magnetic properties of the samples have been done. The results of X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) indicated that the V and Cu ions were incorporated into the crystal lattices of ZnO. With Cu doping concentration increasing up to 2 at%, the XRD results showed that all diffraction peaks corresponded to the wurtzite structure of ZnO. Photoluminescence (PL) measurements showed that Zn0.98-xCuxV0.02O powders exhibited that the position of the ultraviolet (UV) emission peak of the samples showed an obvious red-shift and the green emission peak enhanced significantly with Cu doping in ZnVO nanoparticle. Magnetic measurements indicated that room temperature ferromagnetism (RTFM) of Zn0.98-xCuxV0.02O was an intrinsic property when Cu concentration was less than 3 at%. The saturation magnetization (Ms) of Zn0.98-xCuxV0.02O (x=0, 0.01 and 0.02) increased with the increase of the Cu concentration.

  4. Second-order optical susceptibility in doped III-V piezoelectric semiconductors in the presence of a magnetostatic field

    NASA Astrophysics Data System (ADS)

    Lal, B.; Aghamkar, P.; Kumar, S.; Kashyap, M. K.

    2011-02-01

    A detailed analytical investigation of second-order optical susceptibility has been made in moderately doped III-V weakly piezoelectric semiconductor crystal, viz. n-InSb, in the absence and presence of an external magnetostatic field, using the coupled mode theory. The second-order optical susceptibility arises from the nonlinear interaction of a pump beam with internally generated density and acoustic perturbations. The effect of doping concentration, magnetostatic field and pump intensity on second-order optical susceptibility of III-V semiconductors has been studied in detail. The numerical estimates are made for n-type InSb crystals duly shined by pulsed 10.6 μm CO2 laser and efforts are made towards optimising the doping level, applied magnetostatic field and pump intensity to achieve a large value of second-order optical susceptibility and change of its sign. The enhancement in magnitude and change of sign of second-order optical susceptibility, in weakly piezoelectric III-V semiconductor under proper selection of doping concentration and externally applied magnetostatic field, confirms the chosen nonlinear medium as a potential candidate material for the fabrication of nonlinear optical devices. In particular, at B 0 = 14.1 T, the second-order susceptibility was found to be 3.4 × 10-7 (SI unit) near the resonance condition.

  5. Structural and optical properties of highly crystalline Ce, Eu and co-doped ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Murugadoss, G.; Jayavel, R.; Rajesh Kumar, M.

    2015-06-01

    Different concentrations of europium (Eu), cerium (Ce) doped and co-doped ZnO:Eu (1%), Ce (1%) nanorods were successfully synthesized by chemical method using Polyvinylpyrrolidone as a surfactant. Crystalline phase, morphology, functional groups, optical absorption, emission and thermal properties of prepared samples were investigated by X-ray diffraction (XRD), X-ray photoelectron spectrometer (XPS), Scanning electron microscopy (SEM), High-resolution transmission electron microscopy (HR-TEM), Fourier transform infra-red (FT-IR), UV-visible, Photoluminescence (PL) spectrophotometer and thermogravimetry (TG) and differential thermal analysis (DTA) analysis. The XRD study showed high crystalline nature of the products with nanoscale regime. Optical study showed shifting the absorption and emission spectra toward higher wavelength side when increasing the doping concentrations. Mainly, this is first time observed a red emission peak at 660 nm for Ce (3%) doped ZnO. Additionally, co-doped ZnO:Eu (1%), Ce (1%) nanorods were synthesized and studied their optical properties. This work demonstrates that simply modified their optical absorption and emission of ZnO by introducing rare earth ions can be used as an effective electrode material in solar cell applications, optoelectronic devices and photocatalysis analysis.

  6. Influence of dose history on thermoluminescence response of Ge-doped silica optical fibre dosimeters

    NASA Astrophysics Data System (ADS)

    Moradi, F.; Mahdiraji, G. A.; Dermosesian, E.; Khandaker, M. U.; Ung, N. M.; Mahamd Adikan, F. R.; Amin, Y. M.

    2017-05-01

    Nowadays, silica based optical fibres show enough potential to be used as TL dosimeters in different applications. Reuse of optical fibre as a practical dosimeter demands to complete removal of accumulated doses via previous irradiations. This work investigates the existence and/or effect of remnant doses in fibre dosimeter from the previous irradiations, and proposes a method to control this artifact. A single mode Ge-doped optical fibre is used as TL radiation sensor, while a well calibrated Gammacell with 60Co source is used for irradiations. The effect of irradiation history on the TL response of optical fibres is surveyed extensively for doses ranged from 1 to 1000 Gy. The results show that the absorbed dose history in a fibre affects its response in the next irradiation cycles. It is shown that a dose history of around 100 Gy can increase the response of optical fibre by a factor of 1.72. The effect of annealing at higher temperatures on stabilizing the fibre response is also examined and results revealed that another alteration in the structure of trapping states occurs in glass medium which can change the sensitivity of fibres. Preservation of the sensitivity during successive irradiation cycles can be achieved by a proper annealing procedure accompanied by a pre-dose treatment.

  7. A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Cheng, Tonglei; Liao, Meisong; Xue, Xiaojie; Li, Jiang; Gao, Weiqing; Li, Xia; Chen, Danping; Zheng, Shupei; Pan, Yubai; Suzuki, Takenobu; Ohishi, Yasutake

    2016-03-01

    We design and fabricate a silica optical fiber doped with yttrium aluminosilicate (YAS, Y2O3-Al2O3-SiO2) nanoparticles in the core. The optical fiber is drawn directly from a silica tube with YAG (Y3Al5O12) ceramics and silica powders (the molar ratio 1:18) in the core at the temperature of ∼1950 °C. The YAS nanoparticles are formed during the optical fiber drawing process. Supercontinuum (SC) generation in the optical fiber is investigated at different pump wavelength. At the pump wavelength of ∼1750 nm which is in the deep anomalous dispersion region, SC spectrum evolution is mainly due to multiple solitons and dispersive waves (DWs), and three pairs of multiple optical solitons and DWs are observed. When the pump wavelength shifts to ∼1500 nm which is close to the zero-dispersion wavelength (ZDW), flattened SC spectrum with ±7 dB uniformity is obtained at the wavelength region of ∼990-1980 nm, and only one obvious soliton and DW are observed. At the pump wavelength of ∼1100 nm, a narrow SC spectrum from ∼1020 to 1180 nm is obtained in the normal dispersion region due to self-phase modulation (SPM) effect.

  8. Axially substituted phthalocyanine/naphthalocyanine doped in glass matrix: an approach to the practical use for optical limiting material.

    PubMed

    Yuan, Hua; Chen, Jun; Zhang, Tao; Wang, Shuangqing; Hu, Rui; Li, Shayu; Yang, Guoqiang

    2016-05-02

    A novel glass matrix doped with phthalocyanine or naphthalocyanine is prepared by a modified sol-gel technique. The photophysical and optical limiting properties of the phthalocyanine compounds both in glass matrix and in THF solution were investigated. The obtained glass matrix is homogeneous and transparent, as well as mechanically and thermodynamically stable enough to withstand very high laser fluence; the optical limiting performances of these compound samples are better than that of benchmark materials like C60 in toluene, carbon black in water, and graphene oxide in water or ethanol under nanosecond pulsed laser at 532 nm. Two prototypes of optical limiters doped in the glass matrix have very good optical limiting performances, which may provide potential practical use for optical limiting materials in a near future.

  9. Optical characterization of Mg-doped ZnO thin films deposited by RF magnetron sputtering technique

    SciTech Connect

    Singh, Satyendra Kumar; Tripathi, Shweta; Hazra, Purnima; Chakrabarti, P.

    2016-05-06

    This paper reports the in-depth analysis on optical characteristics of magnesium (Mg) doped zinc oxide (ZnO) thin films grown on p-silicon (Si) substrates by RF magnetron sputtering technique. The variable angle ellipsometer is used for the optical characterization of as-deposited thin films. The optical reflectance, transmission spectra and thickness of as-deposited thin films are measured in the spectral range of 300-800 nm with the help of the spectroscopic ellipsometer. The effect of Mg-doping on optical parameters such as optical bandgap, absorption coefficient, absorbance, extinction coefficient, refractive Index and dielectric constant for as-deposited thin films are extracted to show its application in optoelectronic and photonic devices.

  10. The effects of cerium doping on the size, morphology, and optical properties of α-hematite nanoparticles for ultraviolet filtration

    SciTech Connect

    Cardillo, Dean; Konstantinov, Konstantin; Devers, Thierry

    2013-11-15

    Highlights: • Possible application of cerium-doped α-hematite as ultraviolet filter. • Nanoparticles obtained through co-precipitation technique using various cerium doping levels followed by annealing. • Comprehensive materials characterisation utilizing XRD, DSC/TGA, STEM, UV–vis spectroscopy. • Increasing cerium content reduces particle sizing and alters morphology. • Solubility of cerium in hematite seen between 5 and 10% doping, 10% cerium doping greatly enhances attenuation in ultraviolet region and increases optical bandgap. - Abstract: Metal oxide nanoparticles have potential use in energy storage, electrode materials, as catalysts and in the emerging field of nanomedicine. Being able to accurately tailor the desirable properties of these nanoceramic materials, such as particle size, morphology and optical bandgap (E{sub g}) is integral in the feasibility of their use. In this study we investigate the altering of both the structure and physical properties through the doping of hematite (α-Fe{sub 2}O{sub 3}) nanocrystals with cerium at a range of concentrations, synthesised using a one-pot co-precipitation method. This extremely simple synthesis followed by thermal treatment results in stable Fe{sub 2−x}Ce{sub x}O{sub y} nanoceramics resulting from the burning of any unreacted precursors and transformation of goethite-cerium doped nanoparticle intermediate. The inclusion of Ce into the crystal lattice of these α-Fe{sub 2}O{sub 3} nanoparticles causes a significantly large reduction in mean crystalline size and alteration in particle morphology with increasing cerium content. Finally we report an increase optical semiconductor bandgap, along with a substantial increase in the ultraviolet attenuation found for a 10% Ce-doping concentration which shows the potential application of cerium-doped hematite nanocrystals to be used as a pigmented ultraviolet filter for cosmetic products.

  11. Synthesis and optical properties of antimony oxide glasses doped with holmium trioxide

    NASA Astrophysics Data System (ADS)

    Raghunatha, S.; Eraiah, B.

    2016-05-01

    Holmium doped lithium-antimony-lead borate glasses having 1mol% AgNO3 with composition 50B2O3-20PbO-25Sb2O3-5Li2O have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses. The optical direct band gap energies were found to be in the range of 3.10 eV to 3.31 eV and indirect band gap energies were found to be in the range of 2.28 eV to 3.00 eV. The refractive indexes have been calculated by using Lorentz-Lorenz formula and the calculated values in the range of 2.31 to 2.37.

  12. Optical excitation of trapping states in Fe doped InP

    NASA Astrophysics Data System (ADS)

    Giessner, J.

    1983-06-01

    The knowledge that defect states affect the performance and speed of semiconductors is well known. Defect and trapping states are categorized according to their sex (hole or electron trap), energy in the gap and capture cross sections. The Deep Level Transient Spectroscopy (DLTS) technique that is useful for electrical pulsing, becomes increasingly profitable using optical pulsing. The optical pulsing was accomplished using a simple, but efficient, infrared light emitting diode (LED). The LED had the fortunate property that with decreasing temperature, the average energy output of the LED stayed about equal to the bandgap for the 3-5 semiconductor InP. Because of these findings, emphasis was put on Fe-doped Inp using LED excitation. These particular samples are being studied by Naval Research Labs (NRL) in connection with lasing that results from Fe transitions. Models were set up for both the p+n junction and Fe transitions to help explain experimental results obtained.

  13. Optical amplifier based on an Er:MgO-doped near stoichiometric lithium niobate waveguide

    NASA Astrophysics Data System (ADS)

    Ma, Linan; Tan, Yang; Chen, Feng

    2017-07-01

    We report on an optical signal amplifier based on an Er:MgO-doped near stoichiometric lithium niobate (Er:MgO:SLN) waveguide. The Er:MgO:SLN waveguide was fabricated using swift carbon ion irradiation combined with precision diamond blade dicing. Under 980 nm laser pumping, the waveguide provides a 2.13 dB/cm gain at 1536 nm, 1.49 dB/cm gain at 1552 nm, and 1.37 dB/cm gain at 1565 nm, with the pumping power of 99.5 mW. This work demonstrates the potential application of swift ion irradiated Er:MgO:SLN waveguides for the optical amplifiers in the C communication band.

  14. Terahertz properties of Dirac fermions in HgTe films with optical doping

    NASA Astrophysics Data System (ADS)

    Dziom, V.; Shuvaev, A.; Mikhailov, N. N.; Pimenov, A.

    2017-06-01

    Terahertz properties of mercury telluride (HgTe) films with critical thickness are presented and discussed. The density of the charge carriers is controlled using contact-free optical doping by visible light. In the magneto-optical response of HgTe the contribution of two types of carriers (electrons and holes) can be identified. The density of the electrons can be modified by light illumination by more than one order of magnitude. As the hole density is roughly illumination-independent, the terahertz response of the illuminated samples becomes purely electronic. In some cases, light illumination may switch the qualitative electrodynamic response from hole-like to the electron-like. The cyclotron mass of the electrons could be extracted from the data and shows a square root dependence upon the charge concentration in the broad range of parameters. This can be interpreted as a clear proof of a linear dispersion relations, i.e. Dirac-type charge carriers.

  15. χ(3) Measurement and optical power limiting behavior of manganese doped lithium tetraborate nanoparticles.

    PubMed

    Mohandoss, R; Dhanuskodi, S; Vinitha, G

    2015-02-05

    Manganese doped Li2B4O7 nano crystallites were prepared by chemical method and characterized by XRD, FTIR, UV and fluorescence spectra. FESEM reveals that the particles are coagulated and the particle size is in the range of 50-107 nm. Bands appear at 682-769 cm(-1) corresponds to the bending of B-O linkage in borate network. Nonradiative energy transfer process is observed from fluorescence spectrum. UV-Vis studies show the samples are completely transparent in the visible region and having absorption peaks (234 and 276 nm) in UV regime. The measured second harmonic generation values are 0.9 times KDP. The nonlinear optical parameters such as nonlinear refractive index, n2 (10(-8) cm(2)/W), nonlinear absorption, β (10(-2) cm/W) and nonlinear optical susceptibility, χ(3) (10(-5) esu) are estimated using a Nd:YAG laser (532 nm, 50 mW).

  16. Synthesis and optical properties of antimony oxide glasses doped with holmium trioxide

    SciTech Connect

    Raghunatha, S.; Eraiah, B.

    2016-05-06

    Holmium doped lithium-antimony-lead borate glasses having 1 mol% AgNO{sub 3} with composition 50B{sub 2}O{sub 3}-20PbO-25Sb{sub 2}O{sub 3}-5Li{sub 2}O have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses. The optical direct band gap energies were found to be in the range of 3.10 eV to 3.31 eV and indirect band gap energies were found to be in the range of 2.28 eV to 3.00 eV. The refractive indexes have been calculated by using Lorentz-Lorenz formula and the calculated values in the range of 2.31 to 2.37.

  17. Optical absorption by free holes in heavily doped GaAs

    NASA Technical Reports Server (NTRS)

    Huberman, M. L.; Ksendzov, A.; Larsson, A.; Terhune, R.; Maserjian, J.

    1991-01-01

    Optical absorption in p-type GaAs with hole concentrations between 10 exp 19 and 10 exp 20/cu cm has been measured for wavelengths between 2 and 20 microns and compared with results of theoretical calculations. In contrast to previous measurements at lower doping levels, the occupied hole states are far from the zone center, where the heavy- and light-hole bands become parallel. This gives rise to a large joint density of states for optical transitions. It is found that the overall magnitude of the observed absorption is explained correctly by the theory, with both the free-carrier (indirect) and the inter-valence-band (direct) transitions contributing significantly to the total absorption. The strength of the absorption (a about 20,000/cm for N(A) = 5 x 10 exp 19/cu cm) is attractive for long-wavelength infrared-detector applications.

  18. Structure-dependent optical and electrical transport properties of nanostructured Al-doped ZnO.

    PubMed

    Gondoni, P; Ghidelli, M; Di Fonzo, F; Carminati, M; Russo, V; Li Bassi, A; Casari, C S

    2012-09-14

    The structure-property relation of nanostructured Al-doped ZnO thin films has been investigated in detail through a systematic variation of structure and morphology, with particular emphasis on how they affect optical and electrical properties. A variety of structures, ranging from compact polycrystalline films to mesoporous, hierarchically organized cluster assemblies, are grown by pulsed laser deposition at room temperature at different oxygen pressures. We investigate the dependence of functional properties on structure and morphology and show how the correlation between electrical and optical properties can be studied to evaluate energy gap, conduction band effective mass and transport mechanisms. Understanding these properties opens up opportunities for specific applications in photovoltaic devices, where optimized combinations of conductivity, transparency and light scattering are required.

  19. Optical absorption by free holes in heavily doped GaAs

    NASA Astrophysics Data System (ADS)

    Huberman, M. L.; Ksendzov, A.; Larsson, A.; Terhune, R.; Maserjian, J.

    1991-07-01

    Optical absorption in p-type GaAs with hole concentrations between 10 exp 19 and 10 exp 20/cu cm has been measured for wavelengths between 2 and 20 microns and compared with results of theoretical calculations. In contrast to previous measurements at lower doping levels, the occupied hole states are far from the zone center, where the heavy- and light-hole bands become parallel. This gives rise to a large joint density of states for optical transitions. It is found that the overall magnitude of the observed absorption is explained correctly by the theory, with both the free-carrier (indirect) and the inter-valence-band (direct) transitions contributing significantly to the total absorption. The strength of the absorption (a about 20,000/cm for N(A) = 5 x 10 exp 19/cu cm) is attractive for long-wavelength infrared-detector applications.

  20. χ(3) measurement and optical power limiting behavior of manganese doped lithium tetraborate nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohandoss, R.; Dhanuskodi, S.; Vinitha, G.

    2015-02-01

    Manganese doped Li2B4O7 nano crystallites were prepared by chemical method and characterized by XRD, FTIR, UV and fluorescence spectra. FESEM reveals that the particles are coagulated and the particle size is in the range of 50-107 nm. Bands appear at 682-769 cm-1corresponds to the bending of B-O linkage in borate network. Nonradiative energy transfer process is observed from fluorescence spectrum. UV-Vis studies show the samples are completely transparent in the visible region and having absorption peaks (234 and 276 nm) in UV regime. The measured second harmonic generation values are 0.9 times KDP. The nonlinear optical parameters such as nonlinear refractive index, n2 (10-8 cm2/W), nonlinear absorption, β (10-2 cm/W) and nonlinear optical susceptibility, χ(3) (10-5 esu) are estimated using a Nd:YAG laser (532 nm, 50 mW).

  1. Luminescence, optical and laser Raman scattering studies on γ -irradiated terbium-doped potassium iodide crystals

    NASA Astrophysics Data System (ADS)

    Bangaru, S.

    2011-02-01

    This paper reports the thermoluminescence (TL), optical absorption and other laser Raman scattering studies performed on terbium-doped KI crystals γ-irradiated at room temperature. Photoluminescence studies confirm the presence of terbium ions in the KI matrix in their trivalent form. Formation of V3- and Z1-centres on F-bleaching of γ-irradiated crystals was observed. The characteristic emission due to Tb3+ ions in the spectral distribution under optically stimulated emission and TL emission confirms the participation of the Tb3+ ions in the recombination process. The Raman bands were identified as the totally symmetric vibration modes of f.c.c. species KI:Tb3+.

  2. Comparison of different fiber amplifiers in Yb-doped fiber femtosecond optical frequency combs

    NASA Astrophysics Data System (ADS)

    Liu, H.; Cao, S.; Lin, B.; Fang, Z.

    2016-12-01

    Recently, Yb-doped fiber femtosecond optical frequency combs (Yb-FOFCs) have obtained high repetition rates and high power outputs, and the wavelengths can cover the visible region by using a photonic crystal fiber to broaden the spectrum. In this paper, f0 (carrier-envelope offset frequency) with a signal-to-noise ratio (SNR) of 40 dB is generated in an Yb-FOFC by adopting a scheme which includes the three processes of amplifying, broadening the spectrum and detecting f0, and optimizing the system parameters. The effects of two types of amplifiers which employ direct optical pulse amplification and self-similar amplification, respectively, on the output parameters of the amplifiers, minimal output power of the octave spectrum meeting f0 detection requirements, and the SNR of f0 are compared and analyzed in detail.

  3. Hidden possibilities in controlling optical soliton in fiber guided doped resonant medium

    NASA Astrophysics Data System (ADS)

    Kundu, Anjan

    2011-06-01

    Fiber guided optical signal propagating in a Erbium doped nonlinear resonant medium is known to produce cleaner solitonic pulse, described by the self induced transparency (SIT) coupled to nonlinear Schrödinger equation. We discover two new possibilities hidden in its integrable structure, for amplification and control of the optical pulse. Using the variable soliton width permitted by the integrability of this model, the broadening pulse can be regulated by adjusting the initial population inversion of the dopant atoms. The effect can be enhanced by another innovative application of its constrained integrable hierarchy, proposing a system of multiple SIT media. These theoretical predictions are workable analytically in details, correcting a well known result.

  4. Optical Temperature Sensor Through Upconversion Emission from the Er3+ Doped SrBi8Ti7O27 Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Zou, Hua; Wang, Xusheng; Hu, Yifeng; Zhu, Xiaoqing; Sui, Yongxing; Song, Zhitang

    2016-06-01

    Er doped SrBi8Ti7O27 (SBT) ferroelectric ceramics were prepared by a solid-state reaction technique. By Er doping, the intensive green upconversion emissions were recorded under 980 nm diode laser excitation with 20 mW. The fluorescence spectrum was investigated in the temperature range of 150-580 K. By the fluorescence intensity ratio technique, the green emission band was studied as a function of temperature with a maximum sensing sensitivity of 0.0028 at 510 K. These results indicate that the Er doped SBT ferroelectric ceramics are promising multifunctional sensing materials.

  5. Er/Yb co-doped oxy-fluoride glass-ceramics core/polymer cladding optical fibers

    NASA Astrophysics Data System (ADS)

    Czerska, E.; Świderska, M.

    2014-11-01

    Erbium/ytterbium co-doped glasses can be applied as NIR laser sources (1.55 μm) or optical amplifiers in this range. About hundred meters of Er/Yb co-doped oxy-fluoride glass-ceramics fibers have been drawn from a glass preform followed by controlled annealing. Processing temperatures (drawing and annealing) were selected upon thermal analysis results (DTA/DSC plots). Glass-ceramic structure was confirmed by the XRD measurements. Obtained fibers show good optical properties. As a cladding material polymer material (acrylic resin) is considered due to its low deposition temperature and suitable value of refractive index.

  6. Multiwavelength Erbium-doped fiber laser employing nonlinear polarization rotation in a symmetric nonlinear optical loop mirror.

    PubMed

    Tian, Jiajun; Yao, Yong; Sun, Yunxu; Yu, Xuelian; Chen, Deying

    2009-08-17

    A new multiwavelength Erbium-doped fiber laser is proposed and demonstrated. The intensity-dependent loss induced by nonlinear polarization rotation in a power-symmetric nonlinear optical loop mirror (NOLM) suppresses the mode competition of an Erbium-doped fiber and ensures stable multiwavelength operation at room temperature. The polarization state and its evolution conditions for stable multiwavelength operation in the ring laser cavity are discussed. The number and spectra region of output wavelength can be controlled by adjusting the work states of NOLM. (c) 2009 Optical Society of America

  7. Combined optical/MCD/ODMR investigations of photochromism in doubly-doped Bi12GeO20

    NASA Astrophysics Data System (ADS)

    Briat, B.; Borowiec, M. T.; Rjeily, H. B.; Ramaz, F.; Hamri, A.; Szymczak, H.

    Electron paramagnetic resonance is detected optically via the change of magnetic circular dichroism under microwaves at 35 GHz. The technique is applied to Bi12GeO20 samples co-doped with vanadium and a second transition metal (Cr, Mn, Co, Cu). The optical and magnetic properties of several paramagnetic defects (V-Ge(4+) and Cr-Ge(4+)) are directly correlated. The basic photochromic processes occuring in samples doped with V, Mn, and Mn+V are explained. The V-Ge(4+/5+) level is positioned roughly 2.2 eV above the valence band.

  8. Investigation of rare earth-doped barium titanate thin films and their optical properties

    NASA Astrophysics Data System (ADS)

    Teren, Andrew R.

    Rare-earth-doped barium titanate thin films were studied for potential use as an optical amplification medium. Factors determining their luminescence efficiency and emission linewidth were investigated since these parameters govern the optical gain. Metal-organic chemical vapor deposition was used to prepare BaTiO3 films on different oxide substrates using a liquid barium precursor, Ba(hfa)2•PEB. The phase purity, degree of crystallinity, and epitaxy were determined by x-ray diffraction. The films were in-situ doped with the rare-earth erbium to concentrations as high as nine atomic percent. The luminescent properties of the 1,540 nm emission were studied as a function of growth temperature and Er concentration with photoluminescence spectroscopy and transient photoluminescence. The intensity was linearly dependent on Er concentration up to 1 atomic percent, above which it saturated. The lowering of the emission lifetime from 8 msec to 3 msec indicated concentration quenching was partly responsible for the saturation. Vacuum annealing reduced the PL intensity by as much as 50 times, whereas oxygen annealing restored it, indicating the oxygen stoichiometry affects the luminescence efficiency and may be involved in concentration quenching. Upconversion was investigated as a potential gain-limiting process. Visible emissions at 550 nm and 664 nm were observed with 980 nm pumping. From measurements of a bulk Er-doped BaTiO3 crystal with two atomic percent Er, it was determined the green emission was 20 times stronger than the 1,540 nm emission, indicating upconversion is a strong gain-limiting factor. The effect of temperature and strain on the emission linewidth was investigated. Thermal broadening due to ion-phonon interaction was the dominant line broadening mechanism. The 1,540 nm Stark transition width increased from 1 nm at 40K to 8 nm at 295K. A model incorporating direct and Raman phonon processes was used to describe the thermal broadening. The room

  9. Optical and impedance studies of pure and Ba-doped ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Firdous, Arfat; Baba, M. Aslam; Singh, D.; Bhat, Abdul Hamid

    2015-02-01

    Chemical precipitation method using a high-boiling solvent is used to synthesize ZnS and Ba-doped ZnS quantum dots. The presence of organic ligands in the prepared nanostructures is verified using Fourier transform infra-red spectroscopic studies. The samples have been analysed using X-ray diffraction analysis confirming nanocrystallinity of the as-prepared quantum dots (QD). The mean crystal size obtained by full width half maxima analysis is 3.2 nm for ZnS and 3.9, 4.2 nm for ZnS:Ba (2, 4 mM). TEM micrographs also reveal nanosized particles of ZnS and Ba-doped ZnS. An optical absorption study conducted in UV-Vis range 150-600 nm reveals the transparency of these quantum dots in entire visible range but not in ultraviolet range. The results based on optical analysis yield band gap values as 4.88 eV for ZnS and 4.69, 4.43 eV for ZnS:Ba (2, 4 mM) quantum dots. Impedance analysis of the samples was carried out to reveal the variation of impedance with frequency at room temperature. These results show the capacitive admittance associated with the quantum dots and hence nanostructure ZnS and Ba-doped ZnS can have potential applications in electronics as nano-tuned devices in which resonant frequency can be adjusted by controlling the size and shape of the quantum dots.

  10. Erbium-doped silicon-oxycarbide materials for advanced optical waveguide amplifiers

    NASA Astrophysics Data System (ADS)

    Gallis, Spyros

    As a novel silicon based material, amorphous silicon oxycarbide (a-SiC xOyHz) has found many important applications (e.g. as a low-k material for interconnects) in Si microelectronics. This Ph.D. thesis work has explored another potential application of amorphous silicon oxycarbide: as a silicon-based host material for planar erbium-doped waveguide amplifiers (EDWAs) that operate at the telecommunications wavelength of 1540 nm. Such EDWAs are an important component of planar photonic integrated circuits being developed for implementation of the fiber-to-the-home (FTTH) technology. Furthermore, these Si-based EDWAs could be combined with other Si photonic devices (e.g. light sources, detectors, modulators) for achieving opto-electronic integration on Si chips, or silicon micro/nanophotonics. This thesis will start with basics about Er-doped systems and material challenges in the design of EDWAs. A detailed study of the structural and optical properties of a-SiCxOyHz materials under various deposition and processing conditions, concerning several aspects, such as thin film composition, chemical bonding, refractive index and optical gap, will be presented and discussed. Lastly, this work will focus on the photoluminescence (PL) properties of erbium-doped amorphous silicon oxycarbides (a-SiCxOyHz:Er). Results of both Er-related (near infrared ˜1540 nm) and matrix-related (visible) luminescence properties will be presented, and mechanisms leading to efficient excitation of Er ions in the materials will be discussed. This work indicates that a-SiC xOyHz:Er can be a promising matrix for realizing high-performance EDWAs using inexpensive broadband light sources.

  11. Comprehensive size effect on PbSe quantum dot-doped liquid-core optical fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhang, Bing; Ning, Lina; Li, Shuai; Zheng, Youjin

    2017-01-01

    We have theoretically studied a comprehensive size effect on the spectra of PbSe quantum dot (QD)-doped liquid-core optical fiber, including PbSe QD's particle size and particle number effect, and fiber length and fiber diameter effect. The doping concentration, pump intensity and wavelength were fixed at proper values for comparison. The red shift of emission spectral peak increased with QD diameter, QD number, fiber length and fiber diameter, and reached up to saturation with increasingly QD number which was explained in detail. The evolutions of spectral intensity with the four size parameters were gained, and the related "optimal" (under the certain other parameters) fiber length, diameter and QD number were observed for PbSe QDs of different size as the dopant. Furthermore, each kind of the "optimal" value changed with the other three size parameters. These four size parameters restricted each other, and affected the spectral features together. The calculating results fitted well to the experimental data. This research might be a theoretical basis in the design of optical fiber-based device.

  12. Optical and spectroscopic properties of Eu2O3 doped CaBAl glasses

    NASA Astrophysics Data System (ADS)

    Melo, G. H. A.; Dias, J. D. M.; Lodi, T. A.; Barboza, M. J.; Pedrochi, F.; Steimacher, A.

    2016-04-01

    Eu2O3 doped CaBAL glasses (x Eu2O3) - (25-x) CaO - (50) B2O3 - (15) Al2O3 - (10) CaF2 (x = 0, 5, 1, 2, 3, 4, 5, 10 wt%) were prepared by using conventional melt-quenching and studied by means of density measurements, refractive index, optical absorption, luminescence and radiative lifetime. The results are discussed in terms of Eu2O3 content. The incorporation of Eu2O3 leads to an increase in the electronic polarizability and the refractive index. A linear increase with Eu2O3 content was observed in the optical absorption coefficient at 394 nm. The luminescence spectra present typical Eu3+ emission and do not present quenching up to 10 wt%. The luminescence ratio R/O I(5D0 → 7F2)/I(5D0 → 7F1) presents an increase with Eu2O3 doping; it indicates a reduction in local symmetry around the Eu3+ ions. The CIE 1931 diagram presents a red shift and an increase of color purity with Eu2O3 addition. The luminescence as a function of temperature shows an increase of 25% in the luminescence intensity for the Eu0.5 sample, at 592 nm. The radiative lifetime at 614 nm shows an exponential decay due to the reduction of the interionic distance Eu3+ - Eu3+ and the increase of the ion-ion interaction.

  13. Helical core optical fibre made of Nd3+/Yb3+-doped oxyfluoride silicate glass

    NASA Astrophysics Data System (ADS)

    Dorosz, D.; Kochanowicz, M.; Zmojda, J.; Dorosz, J.

    2010-05-01

    The properties of helical-core optical fibre made by authors from Nd3+/Yb3+-doped oxyfluoride silicate glass are presented. The construction and forming conditions of the helical-core optical fibre enabled to obtain the helix pitch from several mm and the off-set ranging from 10 μm to 200 μm. The paper also presents optimisation of Nd3+/Yb3+ ratio to enhance the emission bandwidth at 1 μm. In consequence of matching the values of the emission cross-section σem(Nd)and the absorption cross-section σabs(Yb) in the glass doped with 0.15Nd3+:0.45Yb3+ a broad (Δλ = 100nm) luminescence band in the vicinity of 1μm was obtained, which was the result of overlapping emission transitions: 2F5/2-->2F7/2 in ytterbium and 4F3/2-->4I11/2 in neodymium.

  14. Laser damage threshold of gelatin and a copper phthalocyanine doped gelatin optical limiter

    SciTech Connect

    Brant, M.C.; McLean, D.G.; Sutherland, R.L.

    1996-12-31

    The authors demonstrate optical limiting in a unique guest-host system which uses neither the typical liquid or solid host. Instead, they dope a gelatin gel host with a water soluble Copper (II) phthalocyaninetetrasulfonic acid, tetrasodium salt (CuPcTs). They report on the gelatin`s viscoelasticity, laser damage threshold, and self healing of this damage. The viscoelastic gelatin has mechanical properties quite different than a liquid or solid. The authors` laser measurements demonstrate that the single shot damage threshold of the undoped gelatin host increases with decreasing gelatin concentration. The gelatin also has a much higher laser damage threshold than a stiff acrylic. Unlike brittle solids, the soft gelatin self heals from laser induced damage. Optical limiting test also show the utility of a gelatin host doped with CuPcTs. The CuPcTs/gelatin matrix is not damaged at incident laser energies 5 times the single shot damage threshold of the gelatin host. However, at this high laser energy the CuPcTs is photo bleached at the beam waist. The authors repair photo bleached sites by annealing the CuPcTs/gelatin matrix.

  15. Local structure and optical absorption characteristic investigation on Fe doped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhao, Tian-Xing; Feng, Ya-Juan; Huang, Jun-Heng; He, Jin-Fu; Liu, Qing-Hua; Pan, Zhi-Yun; Wu, Zi-Yu

    2015-02-01

    The local structures and optical absorption characteristics of Fe doped TiO2 nanoparticles synthesized by the sol-gel method were characterized by X-ray diffraction (XRD), X-ray absorption fine structure spectroscopy (XAFS) and ultraviolet-visible absorption spectroscopy (UV-Vis). XRD patterns show that all Fe-doped TiO2 samples have the characteristic anatase structure. Accurate Fe and Ti K-edge EXAFS analysis further reveal that all Fe atoms replace Ti atoms in the anatase lattice. The analysis of UV-Vis data shows a red shift to the visible range. According to the above results, we claim that substitutional Fe atoms lead to the formation of structural defects and new intermediate energy levels appear, narrowing the band gap and extending the optical absorption edge towards the visible region. Supported by National Basic Research Program of China (2012CB825801), Science Fund for Creative Research Groups of NSFC (11321503), National Natural Science Foundation of China (11321503, 11179004) and Guangdong Natural Science Foundation (S2011040003985)

  16. Structural and Optical Properties of Group III Doped Hydrothermal ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Mughal, Asad J.; Carberry, Benjamin; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.

    2017-01-01

    In this work, we employ a simple two-step growth technique to deposit impurity doped heteroepitaxial thin films of (0001) ZnO onto (111) MgAl2O4 spinel substrates through a combination of atomic layer deposition (ALD) and hydrothermal growth. The hydrothermal layer is doped with Al, Ga, and In through the addition of their respective nitrate salts. We evaluated the effect that varying the concentrations of these dopants has on both the structural and optical properties of these films. It was found that the epitaxial ALD layer created a < 111rangle_{{{{MgAl}}2 {{O}}4 }} | {< 0001rangle_{{ZnO}} } out-of-plane orientation and a < bar{1}bar{1}2rangle_{{{{MgAl}}2 {{O}}4 }} | {< 01bar{1}0rangle_{{ZnO}} } in-plane orientation between the film and substrate. The rocking curve line widths ranged between 0.75° and 1.80° depending on dopant concentration. The optical bandgap determined through the Tauc method was between 3.28 eV and 3.39 eV and showed a Burstein-Moss shift with increasing dopant concentration.

  17. Synthesis, characterization and optical properties of gelatin doped with silver nanoparticles.

    PubMed

    Mahmoud, K H; Abbo, M

    2013-12-01

    In this study, silver nanoparticles were synthesized by chemical reduction of silver salt (AgNO3) solution. Formation of nanoparticles was confirmed by UV-visible spectrometry. The surface plasmon resonance peak is located at 430 nm. Doping of silver nanoparticles (Ag NPs) with gelatin biopolymer was studied. The silver content in the polymer matrix was in the range of 0.4-1 wt%. The formation of nanoparticles disappeared for silver content higher than 1 wt%. The morphology and interaction of gelatin doped with Ag NPs was examined by transmission electron microscopy and FTIR spectroscopy. The content of Ag NPs has a pronounced effect on optical and structural properties of gelatin. Optical parameters such as refractive index, complex dielectric constant were calculated. The dispersion of the refractive index was discussed in terms of the single--oscillator Wemple-DiDomenico model. Color properties of the prepared samples were discussed in the framework of CIE L(*)u(*)v(*) color space. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films

    SciTech Connect

    Banerjee, P; Lee, W. J.; Bae, K. R.; Lee, Sang Bok; Rubloff, Gary W

    2010-01-01

    Al-doped ZnO (AZO) films of ~100nm thickness with various Aldoping were prepared at 150°C by atomic layer deposition on quartz substrates. At low Aldoping, the films were strongly textured along the [100] direction, while at higher Aldoping the films remained amorphous. Atomic force microscopy results showed that Al–O cycles when inserted in a ZnOfilm, corresponding to a few atomic percent Al, could remarkably reduce the surface roughness of the films. Hall measurements revealed a maximum mobility of 17.7cm{sup 2} /Vs . Film resistivity reached a minima of 4.4×10{sup -3} Ωcm whereas the carrier concentration reached a maxima of 1.7×10{sup 20} cm{sup -3} , at 3 at.% Al. The band gap of AZO films varied from 3.23 eV for undoped ZnOfilms to 3.73 eV for AZO films with 24.6 at.% Al. Optical transmittance over 80% was obtained in the visible region. The detrimental impact of increased Al resulting in decreased conductivity due to doping past 3.0 at.% is evident in the x-ray diffraction data, as an abrupt increase in the optical band gap and as a deviation from the Burstein–Moss effect.

  19. Fabrication and mechanical behavior of dye-doped polymer optical fiber

    NASA Astrophysics Data System (ADS)

    Jiang, Changhong; Kuzyk, Mark G.; Ding, Jow-Lian; Johns, William E.; Welker, David J.

    2002-07-01

    The purpose of this article is to study the materials physics behind dye-doped polymethyl metharcylate (PMMA) that is important for the optical fiber drawing process. We report effects of the fabrication process on the mechanical properties of the final fiber. The qualitative degree of polymer chain alignment is found to increase with the drawing force, which in turn decreases with the drawing temperature and increases with the drawing ratio. The chain alignment relaxes when the fibers are annealed at 95 degC with a commensurate decrease in fiber length and increase in diameter. The annealed fiber has higher ductility but lower strength than the unannealed fiber. Both the yield and tensile strengths are dependent on the strain rate. The relationship between tensile strength, sigmab, and fiber diameter, d, is found empirically to be sigmab[is proportional to]d-0.5. The yield strength appears to be less sensitive to the fiber diameter than the tensile strength. For PMMA doped with disperse red 1 azo dye, the yield strength, tensile strength, and Young's modulus peak at a dye concentration of 0.0094 wt %. These results are useful for designing polymer optical fibers with well-defined mechanical properties.

  20. Optical investigations of Be doped ZnO films grown by molecular beam epitaxy

    SciTech Connect

    Chen, Mingming; Zhu, Yuan; Chen, Anqi; Shen, Zhen; Tang, Zikang

    2016-06-15

    Highlights: • The optical properties of Be doped ZnO films were investigated. • Low temperature photoluminescence spectrum was dominated by D°X and DAP emissions. • Shallow acceptor state with ionization energy of 116 meV was found in ZnO:Be films. • It is suggested that the incorporated Be atom might favor formation of Zn vacancies defects. • This work demonstrates that N doping BeZnO might be suitable for fabricating reliable p-type ZnO materials. - Abstract: In this article, the optical properties of ZnO:Be films grown by plasma-assisted molecular beam epitaxy were investigated by the excitation density-dependent and temperature-dependent photoluminescence measurements. The low temperature photoluminescence spectra showed a dominant excitons bound to neutral donors (D°X) emission centered at 3.3540 eV and strong donor-acceptor pair (DAP) transitions at 3.3000 eV. In addition, it showed that the intensity ratio of the DAP and D°X peaks changed with background electron concentration. Furthermore, a shallow acceptor state with ionization energy of 116 meV was found and attributed to Zn vacancy. The present study further suggests that Be and N codoping ZnO might be suitable for fabricating reliable p-type ZnO materials.