Structural studies of lead lithium borate glasses doped with silver oxide.
Coelho, João; Freire, Cristina; Hussain, N Sooraj
2012-02-01
Silver oxide doped lead lithium borate (LLB) glasses have been prepared and characterized. Structural and composition characterization were accessed by XRD, FTIR, Raman, SEM and EDS. Results from FTIR and Raman spectra indicate that Ag(2)O acts as a network modifier even at small quantities by converting three coordinated to four coordinated boron atoms. Other physical properties, such as density, molar volume and optical basicity are also evaluated. Furthermore, they are also affected by the silver oxide composition. Copyright © 2011 Elsevier B.V. All rights reserved.
Synthesis and properties of silver nanoparticles in sodium bismuth borate glasses
NASA Astrophysics Data System (ADS)
Patwari, D. Rajeshree; Eraiah, B.
2018-04-01
Rare earth doped Sodium Bismuth Borate glass samples with silver chloride were prepared by melt quenching method. X-Ray diffraction pattern was used to confirm the amorphous nature of the samples. UV-Visible Spectra was recorded to study the optical properties. Surface plasmon resonance (SPR) peak was observed due to the formation of silver nanoparticles before and after heat treatment and the presence of silver nanoparticles were confirmed by UV-Visible Spectral studies and transmission electron microscopy. The surface plasmon resonance band became wider and red shifted after longer heat treatment.
Effect of silver ions and clusters on the luminescence properties of Eu-doped borate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Qing, E-mail: jiaoqing@nbu.edu.cn; Wang, Xi; Qiu, Jianbei
2015-12-15
Highlights: • Ag{sup +} and Ag clusters are investigated in the borate glasses via ion exchange method. • The aggregation of silver ions to the clusters was controlled by the ion exchange concentration. • Eu{sup 3+}/Eu{sup 2+} ions emission was enhanced with the sensitization of the silver species. • Energy transfer process from Ag ions and Ag clusters to Eu ions is identified by the lifetime measurements. - Abstract: Silver ions and clusters were applied to Eu{sup 3+}-doped borate glasses via the Ag{sup +}–Na{sup +} ion exchange method. Eu{sup 3+}/Eu{sup 2+} ion luminescence enhancement was achieved after silver ion exchange.more » Absorption spectra showed no band at 420 nm, which indicates that silver nanoparticles can be excluded as a silver state in the glass. Silver ion aggregation into clusters during the ion exchange process may be inferred. The effect of silver ions and clusters on rare earth emissions was investigated using spectral information and lifetime measurements. Significant luminescence enhancements were observed from the energy transfer of Ag{sup +} ions and clusters to Eu{sup 3+}/Eu{sup 2+} ions, companied with the silver ions aggregated into the clusters state. The results of this research may extend the current understanding of interactions between rare-earth ions and Ag species.« less
Zmojda, Jacek; Kochanowicz, Marcin; Miluski, Piotr; Baranowska, Agata; Pisarski, Wojciech A; Pisarska, Joanna; Jadach, Renata; Sitarz, Maciej; Dorosz, Dominik
2018-08-05
In the paper analysis of structural and luminescent properties of antimony-germanate-borate glasses and glass fiber co-doped with 0.6AgNO 3 /0.2Eu 2 O 3 are presented. Heat treatment of the fabricated glass and optical fiber (400 °C, 12 h) enabled to obtain Ag nanoparticles (NPs) with average size 30-50 nm on their surface. It has been proofed that silver ions migrate to the glass surface, where they are reduced to Ag 0 nanoparticles. Simultaneously, FTIR analysis showed that heat treatment of the glass and optical fiber increases the local symmetry of the Eu 3+ site. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kruempelmann, J.; Mariappan, C. R.; Schober, C.; Roling, B.
2010-12-01
We have measured potential-dependent interfacial capacitances of two Na-Ca-phosphosilicate glasses and of an AgI-doped silver borate glass between ion-blocking Pt electrodes. An asymmetric electrode configuration with highly dissimilar electrode areas on both faces of the glass samples allowed us to determine the capacitance at the small-area electrode. Using equivalent circuit fitting we extract potential-dependent double-layer capacitances. The potential-dependent anodic capacitance exhibits a weak maximum and drops strongly at higher potentials. The cathodic capacitance exhibits a more pronounced maximum, this maximum being responsible for the maximum in the total capacitance observed in measurements in a symmetrical electrode configuration. The capacitance maxima of the Na-Ca phosphosilicate glasses show up at higher electrode potentials than the maxima of the AgI-doped silver borate glass. Remarkably, for both types of glasses, the potential of the cathodic capacitance maximum is closely related to the activation energy of the bulk ion transport. We compare our results to recent theoretical predictions by Shklovskii and co-workers.
Synthesis and structural studies of praseodymium doped silver borate glasses
NASA Astrophysics Data System (ADS)
Jagadeesha Gowda, G. V.; Eraiah, B.
2013-02-01
Praseodymium doped silver borate glasses with nominal composition xPr6O11-(25-x)Ag2O-75B2O3 (x=0, 1, 2, 3, 4, 5) were prepared by melt quench technique. XRD pattern shows that there is no sharp peak it confirms the amorphous nature of the present glasses. The glass transition temperature (Tg) of this glass system have been studied using the Matac MBS-8000 Digital Signal Processing and Conventional Thermal Analysis (DTA) method. The Tg of these glasses increases with increase in concentration of Pr6O11 except at 0.2 mol%, Tg value is lower. 11B MAS-NMR shows the presence of sharp peak around 0.306 ppm. Chemical shift of these glasses decreases with mol% of rare earth oxide. FTIR spectra recorded in the region of 400 to 4000 cm-1. This studies revealed that the progressive addition Ag2O and Pr6O11 leads to modification of B2O3 into BO4 groups. Raman measurements of these glasses support the proposed interpretations of the experimental results.
Luminescence properties of erbium doped sodium barium borate glass with silver nanoparticles
NASA Astrophysics Data System (ADS)
Rajeshree Patwari, D.; Eraiah, B.
2018-02-01
Alteration in the absorption features of rare earth (RE) doped glasses with silver nanoparticles is ever-challenging in photonics. Erbium (Er3+) doped glasses with composition (60-x-y)B2O3-30Na2CO3-10BaO-xEr2O3-yAgCl where (x=0.5, 1.0 and y=1.0 mol %) are synthesized using melt-quenching method. The density is determined by Archimedes principle and molar volumes are calculated. Glass samples were characterized by XRD and UV-Visible spectroscopy. UV-Visible spectra shows eleven prominent absorption peaks centred around 366, 378, 408, 442, 452, 489, 521, 547, 652, 800 and 977 nm equivalent to the rare earth (Er3+) ion transitions. The sample without rare earth shows no peaks which specifies that rare earth ion plays a spirited role in the glass matrix. The glass samples with silver and without rare earth ion shows plasmon peak on heat treatment. The energy band gap values calculated for direct and indirect transitions are in the range of 3.126-3.440eV and 2.58-3.177eV respectively. The refractive indices and Urbach energies are also determined. Photoluminescence spectra are recorded and studied for excitation of the most intense peaks of wavelengths 378 and 521nm. The luminescence of erbium ion is enhanced by the presence of silver when the concentration of rare earth ion is less than that of silver.
Synthesis and study on the luminescence properties of cadmium borate phosphors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annalakshmi, O.; Jose, M.T., E-mail: mtjosein@yahoo.co.in; Venkatraman, B.
2014-02-01
Highlights: • Cadmium borate synthesized by solid state sintering technique. • Neutron sensitivity of the material ten times that of TLD-600. • Gamma sensitivity is found to be twice that of TLD-100. • Gamma response is linear from 0.1 to 10{sup 3} mGy. - Abstract: Cadmium borate compound prepared through wet chemical reaction from the starting chemicals followed by high temperature solid state synthesis below the melting point to get the final TL phosphor powder. Phase purity and bond details of cadmium borate crystals are characterized using X-ray diffraction technique and infrared spectroscopy. Feasibility of these materials for radiation dosimetrymore » applications was studied after gamma and neutron irradiation. Gamma irradiation of undoped phosphors show a single peak around 185 °C whereas doping with gadolinium and silver, new more intense peak observed at 290 °C. Irradiation to thermal neutrons revealed single peak around 170 °C for all the phosphors. TL emission spectra and photoluminescence (PL) studies were also carried out on the phosphors. These borate materials are found to be highly sensitive to neutrons and hence can be used for neutron detection. Neutron sensitivity of the material is about ten times that of TLD-600.« less
NASA Astrophysics Data System (ADS)
Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.
2018-04-01
As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.
Relaxation dynamics in AgI-doped silver vanadate superionic glasses.
Bhattacharya, S; Ghosh, A
2005-09-22
Relaxation dynamics of Ag+ ions in several series of AgI-Ag2O-V2O5 superionic glasses has been studied in the frequency range from 10 Hz to 2 MHz and in the temperature range from 93 to 323 K. The composition dependence of the dc conductivity and the activation energy of these glasses has been compared with those of AgI-doped silver phosphate and borate glasses. The frequency-dependent electrical data have been analyzed in the framework of conductivity formalism. We have obtained the mobile ion concentration and the power-law exponent from the analysis of the conductivity spectra. We have observed that the concentration of Ag+ ions is independent of temperature and the conductivity is primarily determined by the mobility. A fraction of the Ag+ ions in the glass compositions are involved in the dynamic process. We have also shown that the power-law exponent is independent of temperature. The results are also supported by the temperature and composition independence of the scaling of the conductivity spectra.
NASA Astrophysics Data System (ADS)
Kumar, Alesh; Mariappan, C. R.
2018-04-01
Bioactive glass-ceramics 45.8 mol% SiO- 45.8 CaO - 8.4 B2O3 doped with Ag2O were synthesized by sol-gel method. The glass-ceramic nature of samples was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. Fourier transform infrared (FT-IR) spectra reveal the probable stretching and bending vibration modes of silicate and borate groups. UV-Visible spectra reveal the presence of Ag+ ions and metallic Ag in the glass matrix for Ag2O doped ceramic sample. Biocompatibility of the glass nature of samples was studied by soaking of samples in Dulbecco's Modified Eagle's Medium (DMEM) with subsequent XRD studies. It was found that bone-like apatite formation on the glasses after soaked in DMEM. Antibacterial studies of glass ceramics powder against gram positive and negative microorganisms were carried out.
Thermal property of holmium doped lithium lead borate glasses
NASA Astrophysics Data System (ADS)
Usharani, V. L.; Eraiah, B.
2018-04-01
The new glass system of holmium doped lithium lead borate glasses were prepared by conventional melt quenching technique. The thermal stability of the different compositions of Ho3+ ions doped lithium lead borate glasses were studied by using TG-DTA. The Tg values are ranging from 439 to 444 °C with respect to the holmium concentration. Physical parameters like polaron radius(rp), inter-nuclear distance (ri), field strength (F) and polarizability (αm) of oxide ions were calculated using appropriate formulae.
Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons
NASA Astrophysics Data System (ADS)
Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.
2015-07-01
Undoped and dysprosium doped lithium borate glass system with empirical formula (70-x) B2O3-30 Li2O-(x) Dy2O3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5-5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy2O3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD).
1994-12-08
communication 2. S. A. Kutovi, V. V. Laptev and S. Yu. Matsnev, " Lanthanum scandoborate as a new highly efficient active medium of solid state lasers," Sov. J...34Noncritical detection of tunable C02 laser radiation into green by upconversion in silver thio- gallate ," Applied Physics B53, 19 (1991). 3. N.-H
Structural and Luminescent property of Holmium doped Borate Glasses
NASA Astrophysics Data System (ADS)
Usharani, V. L.; Eraiah, B.
2018-02-01
Holmium doped Lithium Lead Borate glasses of different compositions were prepared by melt quenching technique. Fourier transform infrared investigations on lithium lead borate glasses have been made to study the local order and vibrations of atoms in the glass network and it contains mainly BO3 and BO4 structural units. Photoluminescence techniques were employed to investigate the luminescent property of these glasses excited at 451nm. Blue emission have been observed from the transition 495 (5F3 → 5I8).
NASA Astrophysics Data System (ADS)
Klassen, Nikolay V.; Shmurak, Semion Z.; Shmyt'ko, Ivan M.; Strukova, Galina K.; Derenzo, Stephen E.; Weber, Marvin J.
2005-01-01
Lutetium and yttrium borates doped with europium, terbium, gadolinium, etc. have been synthesized by dissolving initial oxides and nitrates in ammonium nitrate melt and thermal decomposition of the solvent. Annealings in the range of 500-1100°C modified the dimensions of the grains from 2 to 3 nm to more than 100 nm. Significant dependence of the structure of lutetium borate on slight doping with rare earth ions has been found: terbium makes high-temperature vaterite phase preferential at room temperature, whereas europium stabilizes low-temperature calcite phase. Influence of the structure of the borates on the pattern of the luminescence spectra of europium dopant was observed. Possibilities for manufacturing of scintillating lutetium borate ceramics by means of this method of synthesis are discussed.
The new silver borate Ag{sub 3}B{sub 5}O{sub 9}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohr, Gerhard; Falkowski, Viktoria; Huppertz, Hubert, E-mail: hubert.huppertz@uibk.ac.at
2015-05-15
Single crystals of Ag{sub 3}B{sub 5}O{sub 9} were obtained via high-pressure synthesis at 3 GPa and 600 °C, using a Walker-type multianvil high-pressure device. Ag{sub 3}B{sub 5}O{sub 9} crystalizes with a=674.7(2), b=943.5(2), c=1103.5(2) pm, V=0.7025(2) nm{sup 3}, and Z=4 in the noncentrosymmetric space group P2{sub 1}2{sub 1}2{sub 1} (no. 19). The orthorhombic structure was refined from 3740 independent reflections with R1=0.0496 and wR2=0.587 (all data). It is built up from infinite corner-sharing chains of BO{sub 4} tetrahedra along the a axis, which are interconnected by BO{sub 3} groups to form a network. In the structure, three crystallographically independent sites aremore » occupied with Ag{sup +} cations exhibiting argentophillic interactions. The synthetic conditions as well as the results of the single crystal structure analysis are presented. - Graphical abstract: Noncentrosymmetric silver borate: During investigations in the system Ag–B–O, a new noncentrosymmetric silver borate Ag{sub 3}B{sub 5}O{sub 9} was discovered. The new structure type is built up from corner-sharing BO{sub 3} and BO{sub 4} groups, forming a network. Argentophillic interactions are clearly indicated by the Ag{sup +}⋯Ag{sup +} distances present in the structure. - Highlights: • A noncentrosymmetric borate Ag{sub 3}B{sub 5}O{sub 9} is accessible via high-pressure synthesis. • Ag{sub 3}B{sub 5}O{sub 9} is the second high-pressure silver borate. • Ag{sup +}⋯Ag{sup +} distances in Ag3B5O9 clearly indicate the presence of argentophillic interactions.« less
NASA Astrophysics Data System (ADS)
Hamzah, S. A.; Saeed, M. A.; Wagiran, H.; Hashim, I. H.
2017-10-01
This article reports TL response for different glass modifier and doping concentration. Alkali oxides (Na2O and Li2O) and alkali earth oxide (CaO) will be used as a glass modifier for strontium borate based glass. The samples were prepared by melt quenching technique. Dy2O3 concentrations ranging from 0.00 to 0.70 mol% and exposure doses of 1 to 9 Gy will be varied. All glass samples exhibit the prominent peak temperature positioned at 186 oC to 232 oC. From all the samples, one of the samples shows an excellent linearity dose response, higher TL and show good reproducibility after 5 cycles exposure which is sodium strontium borate doped with 0.1 mol% Dy2O3 (optimum concentration).
NASA Astrophysics Data System (ADS)
Olumoroti, Akinloluwa T.
Borate glasses have been widely studied due to their good optical and mechanical properties. Lead and bismuth (PbO/Bi2O 3:B2O3) borate glasses belong to a family of heavy metal oxide (HMO) glasses which are well known to be chemically durable, stable against atmospheric moisture, have low melting temperatures and good corrosion resistance. The first part of this work deals with lead borate glasses with silver nanoparticles (NPs) introduced into the glass matrix. Transmission electron microscopy characterization is done to verify the nucleation of NPs. Fluorescence and optical absorption experiments are then carried out after different heat treatment duration to investigate the influence of silver NPs on the optical properties of lead (Pb2+) by comparing with a glass sample without silver NPs. Optical absorption experiments show that a well-defined surface plasmon resonance (SPR) peak due to Ag NPs can be observed only for samples that were annealed for 36 hrs. Pb2+ fluorescence spectra reveal that the presence of silver NPs creates new emission centers for Pb2+ ions by altering their chemical environment. The second part of the work involves the use of samarium (a rare earth ion) as a dopant in lead and bismuth borate glasses. The concentration of samarium (Sm3+) is fixed and the base glass composition is varied. The goal is to investigate the compositional dependence of optical properties of samarium in the base glass (PbO/Bi2O3:B 2O3). Optical absorption spectra have been collected and the oscillator strength of each transition - including the hypersensitive - is obtained. The Optical absorption edge is found to shift toward lower energies with increasing PbO/Bi2O3 concentration. Both the oscillator strength and the peak position of the hypersensitive transition show significant variation with glass composition. Strong interaction between Sm3+ ions and Pb2+/Bi3+ ions can also be seen from the variations in the fluorescence emission properties of Sm3+ as a function of base glass composition. Studying the variation of these optical properties will help to create the optimum rare-earth ion-host configuration for possible technological applications. This is the thrust of our future investigations of these glass systems. Keywords: Borate glasses, nanoparticles, fluorescence, transmission electron microscopy, optical absorption, surface plasmon resonance, rare-earth (RE) ions, oscillator strength, hypersensitive transition (HST).
Exchange-mediated spin-lattice relaxation of Fe3+ ions in borate glasses.
Misra, Sushil K; Pilbrow, John R
2007-03-01
Spin-lattice relaxation times (T1) of two borate glasses doped with different concentrations of Fe2O3 were measured using the Electron Spin-Echo (ESE) technique at X-band (9.630 GHz) in the temperature range 2-6K. In comparison with a previous investigation of Fe3+-doped silicate glasses, the relaxation rates were comparable and differed by no more than a factor of two. The data presented here extend those previously reported for borate glasses in the 10-250K range but measured using the amplitude-modulation technique. The T1 values were found to depend on temperature (T) as T(n) with n approximately 1 for the 1% and 0.1% Fe2O3-doped glass samples. These results are consistent with spin-lattice relaxation as effected by exchange interaction of a Fe3+ spin exchange-coupled to another Fe3+ spin in an amorphous material.
Sathish, K; Thirumaran, S
2015-08-05
The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sathish, K.; Thirumaran, S.
2015-08-01
The present work describes the glass samples of composition (x% V2O5-(80-x)% B2O3-20% Na2CO3) VBS glass system and (x% MnO2-(80-x)% B2O3-20% Na2CO3) in MBS glass system with mol% ranging from x = 3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V2O5 doped glass system, (VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO2 doped glass system (VBS glass system). The present study critically observes the doping of V2O5 with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO2. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO3 or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na2CO3, V2O5 and MnO2 contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs.
Thermoluminescent properties of rare earth doped lithium strontium borate phosphors
NASA Astrophysics Data System (ADS)
Jakathamani, S.; Annalakshmi, O.; Jose, M. T.
2018-04-01
Thermoluminescence (TL) of borates is remarkable in the field of radiation dosimetry because they can detect both neutron and gamma radiations. Usually, the TL efficiency of pure borates is low and hence dopants have to be added to increase their TL output. Their sensitivity and thermal stability vary widely and depend strongly on the preparation method. In this study polycrystalline powders of different rare earth doped thermoluminescent phosphors of Lithium Strontium borate (LSB) were synthesized by solid state sintering technique. Among the different rare earth dopants, the phosphor doped with cerium was found to have a simple glow curve structure with a dosimetric peak at around 265°C for a heating rate of 5°C/s. In order to study the effect of dopant on the TL characteristics, LSB phosphor with different concentrations of Ce dopant was synthesized and the TL intensity was found to be maximum for a dopant concentration of 0.7 mol%. All other important dosimetric characteristics like dose response and fading were carried out for the LSB:Ce (0.7 mol%) phosphor. Kinetic parameters like trap depth and frequency factor were determined using Peak shape method from Chen's equation.
Thermoluminescence response of rare earth activated zinc lithium borate glass
NASA Astrophysics Data System (ADS)
Saidu, A.; Wagiran, H.; Saeed, M. A.; Obayes, H. K.; Bala, A.; Usman, F.
2018-03-01
New glasses of zinc lithium borate doped with terbium oxide were synthesized by high temperature solid-state reaction. The amorphous nature of the glasses was confirmed using x-ray diffraction analysis (XRD). Thermoluminescence (TL) response of pure zinc lithium borate (ZLB) and zinc lithium borate doped with terbium (ZLB: Tb) exposed to gamma radiation was measured and compared. There is significant enhancement in the TL yields of ZLB: Tb compared to that of pure ZLB. Effect of varying concentration of dopant (Tb4O7) on the TL response of zinc lithium borate was investigated. 0.3 mol% concentration of Tb exhibited strongest TL intensity. Thermoluminescence curve of the phosphor consist of single isolated peak. The TL response of the new materials to the exposed radiation is linear within 0.5-100 Gy range of dose with sublinearity at the lower region of the curve. High sensitivity was exhibited by the new amorphous materials. Reproducibility, thermal fading and energy response of the proposed TLD were investigated and shows remarkable result that made the phosphor suitable for radiation dosimetry.
Ytterbium-doped borate fluoride laser crystals and lasers
Schaffers, Kathleen I.; DeLoach, Laura D.; Payne, Stephen A.; Keszler, Douglas A.
1997-01-01
A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM'(BO.sub.3)F, where M, M' are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO.sub.3 F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator.
Ytterbium-doped borate fluoride laser crystals and lasers
Schaffers, K.I.; DeLoach, L.D.; Payne, S.A.; Keszler, D.A.
1997-10-14
A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM{prime}(BO{sub 3})F, where M, M{prime} are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO{sub 3}F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator. 6 figs.
NASA Astrophysics Data System (ADS)
Barakat, N. A. M.; Kim, H. Y.
2012-09-01
In this study, effect of sliver-doping on the crystal structure, the nanofibrous morphology and the photocatalytic activity of titanium oxide nanofibers have been investigated. Silver-doped TiO2 nanofibers having different silver contents were prepared by calcination of electrospun nanofiber mats consisting of silver nitrate, titanium isopropoxide and poly(vinyl acetate) at 600 °C. The results affirmed formation of silver-doped TiO2 nanofibers composed of anatase and rutile when the silver nitrate content in the original electrospun solution was more than 3 wt%. The rutile phase content was directly proportional with the AgNO3 concentration in the electrospun solution. Negative impact of the silver-doping on the nanofibrous morphology was observed as increase the silver content caused to decrease the aspect ratio, i.e. producing nanorods rather nanofibers. However, silver-doping leads to modify the surface roughness. Study of the photocatalytic degradation of methylene blue dye clarified that increase the silver content strongly enhances the dye oxidation process.
Optical and physical properties of samarium doped lithium diborate glasses
NASA Astrophysics Data System (ADS)
Hanumantharaju, N.; Sardarpasha, K. R.; Gowda, V. C. Veeranna
2018-05-01
Sm3+ doped lithium di-borate glasses with composition 30Li2O-60B2O3-(10-x) PbO, (where 0 < x < 2 mole. %) were prepared by melt quenching method. The addition of modifier oxide to vitreous B2O3 modifies the glass network by converting three coordinated trigonal boron units (BO3) to weaker anionic four coordinated tetrahedral borons (BO4). The decrease in density and increase in molar volume with samarium ion content indicates the openness of the glass structure. The gradual increase in average
Antibacterial properties of Ag-doped hydroxyapatite layers prepared by PLD method
NASA Astrophysics Data System (ADS)
Jelínek, Miroslav; Kocourek, Tomáš; Jurek, Karel; Remsa, Jan; Mikšovský, Jan; Weiserová, Marie; Strnad, Jakub; Luxbacher, Thomas
2010-12-01
Thin hydroxyapatite (HA), silver-doped HA and silver layers were prepared using a pulsed laser deposition method. Doped layers were ablated from silver/HA targets. Amorphous and crystalline films of silver concentrations of 0.06 at.%, 1.2 at.%, 4.4 at.%, 8.3 at.% and 13.7 at.% were synthesized. Topology was studied using scanning electron microscopy and atomic force microscopy. Contact angle and zeta potential measurements were conducted to determine the wettability, surface free energy and electric surface properties. In vivo measurement (using Escherichia coli cells) of antibacterial properties of the HA, silver-doped HA and silver layers was carried out. The best antibacterial results were achieved for silver-doped HA layers of silver concentration higher than 1.2 at.%.
In vitro evaluation of cytotoxicity of silver-containing borate bioactive glass.
Luo, Shi-Hua; Xiao, Wei; Wei, Xiao-Juan; Jia, Wei-Tao; Zhang, Chang-Qing; Huang, Wen-Hai; Jin, Dong-Xu; Rahaman, Mohamed N; Day, Delbert E
2010-11-01
The cytotoxicity of silver-containing borate bioactive glass was evaluated in vitro from the response of osteoblastic and fibroblastic cells in media containing the dissolution products of the glass. Glass frits containing 0-2 weight percent (wt %) Ag were prepared by a conventional melting and quenching process. The amount of Ag dissolved from the glass into a simulated body fluid (SBF), measured using atomic emission spectroscopy, increased rapidly within the first 48 h, but slowed considerably at longer times. Structural and microchemical analysis showed that the formation of a hydroxyapatite-like layer on the glass surface within 14 days of immersion in the SBF. The response of MC3T3-E1 and L929 cells to the dissolution products of the glass was evaluated using SEM observation of cell morphology, and assays of MTT hydrolysis, lactate dehydrogenase release, and alkaline phosphatase activity after incubation for up to 48 h. Cytotoxic effects were found for the borate glass containing 2 wt % Ag, but not for 0.75 and 1 wt % Ag. This borate glass containing up to ∼1 wt % Ag could provide a coating material for bacterial inhibition and enhanced bioactivity of orthopaedic implant materials such as titanium. © 2010 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Salama, E.; Soliman, H. A.
2018-07-01
In this paper, thermoluminescence glow curves of gamma irradiated magnesium borate glass doped with dysprosium were studied. The number of interfering peaks and in turn the number of electron trap levels are determined using the Repeated Initial Rise (RIR) method. At different heating rates (β), the glow curves were deconvoluted into two interfering peaks based on the results of RIR method. Kinetic parameters such as trap depth, kinetic order (b) and frequency factor (s) for each electron trap level is determined using the Peak Shape (PS) method. The obtained results indicated that, the magnesium borate glass doped with dysprosium has two electron trap levels with the average depth energies of 0.63 and 0.79 eV respectively. These two traps have second order kinetic and are formed at low temperature region. The obtained results due to the glow curve analysis could be used to explain some observed properties such as, high thermal fading and light sensitivity for such thermoluminescence material. In this work, systematic procedures to determine the kinetic parameters of any thermoluminescence material are successfully introduced.
ElBatal, H A; Abdelghany, A M; Ghoneim, N A; ElBatal, F H
2014-12-10
UV-visible and FT infrared spectra were measured for prepared samples before and after gamma irradiation. Base undoped barium borate glass of the basic composition (BaO 40%-B2O3 60mol.%) reveals strong charge transfer UV absorption bands which are related to unavoidable trace iron impurities (Fe(3+)) within the chemical raw materials. 3d transition metal (TM)-doped glasses exhibit extra characteristic absorption bands due to each TM in its specific valence or coordinate state. The optical spectra show that TM ions favor generally the presence in the high valence or tetrahedral coordination state in barium borate host glass. Infrared absorption bands of all prepared glasses reveal the appearance of both triangular BO3 units and tetrahedral BO4 units within their characteristic vibrational modes and the TM-ions cause minor effects because of the low doping level introduced (0.2%). Gamma irradiation of the undoped barium borate glass increases the intensity of the UV absorption together with the generation of an induced broad visible band at about 580nm. These changes are correlated with suggested photochemical reactions of trace iron impurities together with the generation of positive hole center (BHC or OHC) within the visible region through generated electrons and positive holes during the irradiation process. Copyright © 2014 Elsevier B.V. All rights reserved.
Red light emission from europium doped zinc sodium bismuth borate glasses
NASA Astrophysics Data System (ADS)
Hegde, Vinod; Viswanath, C. S. Dwaraka; Upadhyaya, Vyasa; Mahato, K. K.; Kamath, Sudha D.
2017-12-01
Zinc sodium bismuth borate (ZNBB) glasses doped with different concentrations of europium were prepared by conventional melt quenching method and characterized through the measurements of density, refractive index, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectra, optical absorption, luminescence and radiative lifetimes. FTIR spectra showed seven characteristic peaks of bismuth and borate functional groups in the range of 400-1600 cm-1. The optical band gap and bonding parameters have been calculated from absorption spectra. Photoluminescence spectra recorded in the visible region with 394 nm excitation are used to calculate the Judd-Ofelt (JO) intensity parameters (Ω2 and Ω4). The JO intensity parameters have been used to calculate the radiative parameters such as branching ratio (β), stimulated emission cross-section (σse), transition probability (A) for the fluorescent level of 5D0→7F2. Decay rates through single exponential are used to calculate the lifetime (τm) of the meta-stable state 5D0 of (Eu3+ ion) these glasses. The radiative parameters measured for all these glasses show 0.7 mol% europium doped zinc sodium bismuth borate glass 5D0→7F2 transition has the potential for red laser applications. The quality of the colour emitted by the present glasses are estimated quantitatively by CIE chromaticity coordinates, which confirms the suitability of these glasses as a red emitting material for field emission technologies and LEDs.
Pisarska, Joanna; Kos, Agnieszka; Pisarski, Wojciech A
2014-08-14
Lead borate glasses doubly doped with Dy(3)(+)-Tb(3+) and Tb(3+)-Eu(3+) were investigated using optical spectroscopy. Luminescence spectra of rare earths were detected under various excitation wavelengths. The main green emission band due to (5)D4→(7)F5 transition of Tb(3+) is observed under excitation of Dy(3+), whereas the main red emission band related to (5)D0→(7)F2 transition of Eu(3+) is successfully observed under direct excitation of Tb(3+). In both cases, the energy transfer processes from Dy(3+) to Tb(3+) and from Tb(3+) to Eu(3+) in lead borate glasses occur through a nonradiative processes with efficiencies up to 16% and 18%, respectively. The presence of energy transfer process was also confirmed by excitation spectra measurements. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahadur, A.; Yadav, R.S.; Yadav, R.V.
This paper reports the optical properties of Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method. The absorption spectrum of the Yb{sup 3+} doped LB glass contains intense NIR band centered at 976 nm due to {sup 2}F{sub 7/2}→{sup 2}F{sub 5/2} transition. The emission spectra of the prepared glasses have been monitored on excitation with 266, 355 and 976 nm. The Yb{sup 3+} doped glass emits a broad NIR band centered at 976 nm whereas the Tb{sup 3+} doped glass gives off visible bands on excitations with 266 and 355 nm. When the Tb{sup 3+} andmore » Yb{sup 3+} ions are co-doped together, the emission intensity in the visible region decreases whereas it increases in the NIR region significantly. The increase in the emission intensity in the NIR region is due to efficient cooperative energy transfer (CET) from Tb{sup 3+} to Yb{sup 3+} ions. The quantum cutting efficiency for Tb{sup 3+}/Yb{sup 3+} co-doped glass has been calculated and compared for 266 and 355 nm excitations. The quantum cutting efficiency is larger for 355 nm excitation (137%). The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass also emits upconverted visible bands on excitation with 976 nm. The mechanisms involved in the energy transfer have been discussed using schematic energy level diagram. The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may be used in the optical devices and in solar cell for solar spectral conversion and behaves as a multi-modal photo-luminescent material. - Graphical abstract: The Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method emits upconverted visible emissions through upconversion CET from Yb{sup 3+} to Tb{sup 3+} ions and quantum cutting emissions through downconversion CET from Tb{sup 3+} to Yb{sup 3+} ions. Therefore, the Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may find applications in optical devices and solar cell and behaves as a multi-modal photo-luminescent material. - Highlights: • The Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method. • The Tb{sup 3+}/Yb{sup 3+} co-doped glass gives QC emissions upon 266 and 355 nm excitations. • The Tb{sup 3+}/Yb{sup 3+} co-doped glass also emits intense green color on excitation with 976 nm. • The quantum cutting efficiency is larger for 355 nm excitation (137%). • The Tb{sup 3+}/Yb{sup 3+} co-doped glass may be used in solar cell and display devices.« less
Zhao, Shichang; Li, Le; Wang, Hui; Zhang, Yadong; Cheng, Xiangguo; Zhou, Nai; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing
2015-01-01
There is a need for better wound dressings that possess the requisite angiogenic capacity for rapid in situ healing of full-thickness skin wounds. Borate bioactive glass microfibers are showing a remarkable ability to heal soft tissue wounds but little is known about the process and mechanisms of healing. In the present study, wound dressings composed of borate bioactive glass microfibers (diameter = 0.4-1.2 μm; composition 6Na2O, 8K2O, 8MgO, 22CaO, 54B2O3, 2P2O5; mol%) doped with 0-3.0 wt.% CuO were created and evaluated in vitro and in vivo. When immersed in simulated body fluid, the fibers degraded and converted to hydroxyapatite within ∼7 days, releasing ions such as Ca, B and Cu into the medium. In vitro cell culture showed that the ionic dissolution product of the fibers was not toxic to human umbilical vein endothelial cells (HUVECs) and fibroblasts, promoted HUVEC migration, tubule formation and secretion of vascular endothelial growth factor (VEGF), and stimulated the expression of angiogenic-related genes of the fibroblasts. When used to treat full-thickness skin defects in rodents, the Cu-doped fibers (3.0 wt.% CuO) showed a significantly better capacity to stimulate angiogenesis than the undoped fibers and the untreated defects (control) at 7 and 14 days post-surgery. The defects treated with the Cu-doped and undoped fibers showed improved collagen deposition, maturity and orientation when compared to the untreated defects, the improvement shown by the Cu-doped fibers was not markedly better than the undoped fibers at 14 days post-surgery. These results indicate that the Cu-doped borate glass microfibers have a promising capacity to stimulate angiogenesis and heal full-thickness skin defects. They also provide valuable data for understanding the role of the microfibers in healing soft tissue wounds. Copyright © 2015 Elsevier Ltd. All rights reserved.
Influence of tellurite on lifetime for samarium doped lanthanum lead borate glass
NASA Astrophysics Data System (ADS)
Madhu, A.; Eraiah, B.
2018-04-01
Samarium substituted tellurium lanthanum lead borate glass is prepared using melt quenching technique. Luminescence spectra have been recorded upon excitation with 402 nm various transitions from 4G5/2 level, for samarium doped tellurite glasses are studied and also lifetime for all the samples exhibit single exponential behaviour of decay curve. Luminescence spectra of present glasses show quenching effect due to cross-relation channels of samarium ions. The lifetime of glass samples decrease as the tellurite concentration is decreased. So, it evidences that to attain longer lifetime for lasing material one can tune the host by selecting concentration of tellurite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A.
Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05 mol % ≤ y ≤ 0.7 mol % of dyprosium weremore » prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.« less
NASA Astrophysics Data System (ADS)
Tengku Kamarul Bahri, T. N. H.; Wagiran, H.; Hussin, R.; Saeed, M. A.; Hossain, I.; Ali, H.
2014-10-01
Germanium doped calcium borate glasses are investigated in term of thermoluminescence properties to seek their possibility to use as glass radiation dosimeter. The samples were exposed to 6 MV, and 10 MV photon beams in a dose range of 0.5-4.0 Gy. There is a single and broad thermoluminescence glow curve that exhibits its maximum intensity at about 300 °C. Linear dose response behavior has been found in this dose range for the both photon energies. Effective atomic number, TL sensitivity, and reproducibility have also been studied. It is found that the sensitivity of germanium doped sample at 6 MV is only 1.28% and it is superior to the sensitivity at 10 MV. The reproducibility of germanium doped sample is good with a percentage of relative error less than 10%. The results indicate that this glass has a potential to be used as a radiation dosimetry, especially for application in radiotherapy.
Venkatramu, V; Babu, P; Jayasankar, C K
2006-02-01
The influence of glass composition on the fluorescence properties of Eu3+ ions doped borate and fluoroborate glasses modified with Li+, Zn2+ and Pb2+ cations have been investigated. The magnitude of splittings of 7F1 levels are analyzed using crystal-field (CF) analysis. The relative intensities of 5D0 --> 7F2 to 5D0 --> 7F1 transitions, crystal-field strength parameters and decay times of the 5D0 level have been determined and are found to be lower for Pb based glasses than those of Zn/Li based glasses. The lifetimes of 5D0 level are found to increase when borate glasses are modified with pure fluorides than with oxides and oxyfluorides. The fluorescence decay of 5D0 level fits perfect single exponential in the Eu3+:glass systems studied which indicates the absence of energy transfer between Eu3+ ions in these glasses.
NASA Astrophysics Data System (ADS)
Salakhitdinov, Amritdin; Ibragimova, Elvira; Salakhitdinova, Maysara
2018-02-01
This work experimentally revealed, that 60Co-gamma-irradiation of potash-alumina-borate glasses doped with 1 and 2 mass% of iron oxide to the dose of 1.7 MR in the temperature range of 150-300 °C induced differential optical density changes within - 6 ≤ Δ D ≤ 0 in the wave length range of 300-350 nm, which is characteristic for meta-material. Calculations have shown that variation of optical refraction index within - 0.05 ≤ Δ n ω ≤ 0.05 due to microstructure transformation causes changes in the differential absorption index of the glass - 0.5 < Δ α ω < 0.55.
Spectroscopic and nonlinear optical studies of pure and Nd-doped lanthanum strontium borate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harde, G. B.; Department of Physics, Sant Gadge Baba Amravati University, Amravati, Maharashtra, India-444602; Muley, G. G., E-mail: gajananggm@yahoo.co.in
2016-05-06
Borate glasses of the system xNd{sub 2}O{sub 3}-(1-x) La{sub 2}O{sub 3}-SrCO{sub 3}-10H{sub 3}BO{sub 3} (with x = 0 and 0.05) were prepared by using a convectional melt quenching technique. The amorphous nature of the quenched glasses has been confirmed by powder X-ray diffraction analysis. In order to study the spectroscopic and nonlinear optical properties of fabricated glasses, ultraviolet-visible transmission spectroscopy and open aperture z-scan measurements have been employed. In Nd doped glasses, the transition {sup 4}I{sub 9/2} → {sup 4}G{sub 5/2} + {sup 2}G{sub 7/2} has found more prominent than the other transitions. Optical band gap energies of glasses havemore » been determined and found less for Nd doped glass.« less
Synthesis and photoluminescence properties of Pb2+ doped inorganic borate phosphor NaSr4(BO3)3
NASA Astrophysics Data System (ADS)
Chauhan, A. O.; Koparkar, K. A.; Bajaj, N. S.; Omanwar, S. K.
2016-05-01
A series of Inorganic borate phosphors NaSr4(BO3)3 doped with Pb2+ was successfully synthesized by modified solid state diffusion method. The crystal structure and the phase purity of sample were characterized by powder X-ray diffraction (XRD). The photoluminescence properties of synthesized materials were investigated using spectrofluorometer at room temperature. The phosphor show strong broad band emission spectra in UVA region maximum at 370 nm under the excitation of 289 nm. The dependence of the emission intensity on the Pb2+ concentration for the NaSr4(BO3)3 were studied in details. The concentration quenching of Pb2+ doped NaSr4(BO3)3 was observed at 0.02 mol. The Stokes shifts of NaSr4(BO3)3: Pb2+ phosphor was calculated to be 7574 cm-1.
2010-01-01
A new thermographic phosphor based on chromium(III)-doped yttrium aluminum borate (YAB) is obtained as single crystals by high temperature flux growth and as a microcrystalline powder via solution combustion synthesis. The phosphor is excitable both in the blue (λmax 422 nm) and in the red part of the spectrum (λmax 600 nm) and shows bright NIR emission. The brightness of the phosphor is comparable to that of a well-known lamp phosphor Mn(IV)-doped magnesium fluorogermanate. At ambient temperatures, the Cr(III)-doped YAB shows high temperature dependence of the luminescence decay time, which approaches 1% per deg. The material shows no decrease in luminescence intensity at higher temperatures. The new phosphor is particularly promising for applications in temperature-compensated optical chemosensors (including those based on NIR-emitting indicators) and in pressure-sensitive paints. PMID:20473368
Optical absorption and photoluminescence properties of Er3+ doped mixed alkali borate glasses.
Ratnakaram, Y C; Kumar, A Vijaya; Naidu, D Tirupathi; Rao, J L
2005-07-01
An investigations of the optical absorption and fluorescence spectra of 0.2 mol% Er2O3 in mixed alkali borate glasses of the type 67.8B2O3 x xLi2O(32-x)Na2O, 67.8B2O3 x xLi2O(32-x)K2O and 67.8B2O3 x xNa2O(32-x)K2O (where x = 8, 12, 16, 20 and 24) are presented. The glasses were obtained by quenching melts consisting of H3BO3, Li2CO3, Na2CO3, K2CO3 and Er2O3 (950-1100 degrees C, 1.5-2 h) between two brass plates. Spectroscopic parameters like Racah (E1, E2 and E3), spin-orbit (xi(4f)) and configuration interaction (alpha) parameters are deduced as function of x. Using Judd-Ofelt theory, Judd-Ofelt intensity parameters (omega2, omega4 and omega6) are obtained. Radiative and non-radiative transition rates (A(T) and W(MPR)), radiative lifetimes (tauR), branching ratios (beta) and integrated absorption cross-sections (sigma) have been computed for certain excited states of Er3+ in these mixed alkali borate glasses. Emission spectra have been studied for all the three Er3+ doped mixed alkali borate glasses. The present paper throws light on the trends observed in the intensity parameters, radiative lifetimes, branching ratios and emission cross-sections as a function of x in these borate glasses, keeping in view the effect of mixed alkalies in borate glasses.
Optical and physical properties of sodium lead barium borate glasses doped with praseodymium ion
NASA Astrophysics Data System (ADS)
Lenkennavar, Susheela K.; Madhu, A.; Eraiah, B.; Kokila, M. K.
2018-05-01
Praseodymium doped sodium lead barium borate glasses have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses using PekinElemer Lambda-35 Uv-Vis spectrometer in the range of 200 -1100 nm. The optical direct band gap energies were found to be in the range of 3.62 eV to 3.69 eV and indirect band gap energies were found to be in the range of 3.57 eV to 3.62eV. The refractive indices were measured by using Abbe refractometer the values are in the range of 1.620 to 1.625.
Doped biocompatible layers prepared by laser
NASA Astrophysics Data System (ADS)
Jelínek, M.; Weiserová, M.; Kocourek, T.; Jurek, K.; Strnad, J.
2010-03-01
The contribution deals with KrF laser synthesis and study of doped biocompatible materials with focus on diamond-like carbon (DLC) and hydroxyapatite (HA). Overview of materials used for dopation is given. Experimental results of study of HA layers doped with silver are presented. Films properties were characterized using profilometer, SEM, WDX, XRD and optical transmission. Content of silver in layers moved from 0.06 to 13.7 at %. The antibacterial properties of HA, silver and doped HA layers were studied in vivo using Escherichia coli cells.
X-ray-induced fluorescent centers formation in zinc- phosphate glasses doped with Ag and Cu ions
NASA Astrophysics Data System (ADS)
Klyukin, D. A.; Pshenova, A. S.; Sidorov, A. I.; Stolyarchuk, M. V.
2016-08-01
Fluorescent properties of silver and copper doped zinc-phosphate glasses were studied. By X-ray irradiation of silver and copper co-doped glasses we could create and identify new emission centers which do not exist in single-doped samples. Doping of the glass with both silver and copper ions leads to the increase of quantum yield by 2.7 times. The study was complemented by quantum chemical calculations using the time-dependent density functional theory. It was shown that fluorescence may be attributed to the formation of mixed Ag-Cu molecular clusters.
NASA Astrophysics Data System (ADS)
Suthanthirakumar, P.; Mariyappan, M.; Marimuthu, K.
2018-04-01
A new series of Lead telluro-borate glasses doped with different concentrations of Pr3+ ions (xPLTB) were prepared by melt quenching technique and their structural and spectroscopic properties were investigated by recording XRD, FTIR, optical absorption and luminescence spectral measurements. XRD measurements confirm the amorphous nature and the FTIR spectra reveal the presence of different vibrational modes of borate and tellurite networks in the prepared glasses. The bonding parameter values (δ) obtained from the absorption band positions indicates that the bonding between Pr3+ ions and their surrounding ligands is of ionic in nature. The optical band gap (Eopt) corresponding to the direct and indirect allowed transitions were determined with the framework of tauc's plot. From the luminescence spectra, important radiative parameters such as stimulated emission cross-section (σPE) , branching ratios (βR) and radiative lifetime (τR) were calculated for the dominant emission transition 3P0→3H4 (blue) in order to suggest the suitability of the studied glasses for suitable photonic applications.
Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method
Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela
2014-01-01
In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x Ag = 0.5 are effective against E. coli and S. aureus after 24 h. PMID:24523630
Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela
2014-01-01
In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x(Ag) = 0.5 are effective against E. coli and S. aureus after 24 h.
NASA Astrophysics Data System (ADS)
Tajuddin, H. A.; WanHassan, W. M. S.; Abdul Sani, S. F..; Shaharin, Nurul Syazlin
2017-10-01
This study presents the thermoluminescent (TL) dosimetric properties of calcium borate glass with various dopant concentration of dysprosium (Dy). Calcium borate glass is a new potential material to be used in radiation measurement with absorption coefficient that is close to human bone. A series of glasses based on chemical equation xCaO-(100-x) B2O3 system, x = 0.1, 0.2, 0.3, 0.4, 0.5 (0< x <100) % weight have been prepared by melt quenching method. The X-ray diffraction analysis of glass samples were carried out and the result showed a broad peak, which confirmed the amorphous nature of the glass. The 70B2O3-30CaO glass sample was found as the most stable among other glass samples studied. Present work focuses on 70B2O3-30CaO glass of (0.01-0.4) mol% Dy-doped in order to investigate the thermoluminescence (TL) properties, in particular, dose-response and fading. The glass samples were irradiated to dose range of 0.5-4.0 Gy subjected to 6MV photon irradiations of LINAC Primus MLC 3339. TL response of 0.3 mol% Dy-doped 70B2O3-30CaO glass was found to produce highest response, with good linear dose- response relationship.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, A. O., E-mail: abhi2718@gmail.com; Koparkar, K. A.; Omanwar, S. K.
2016-05-06
A series of Inorganic borate phosphors NaSr{sub 4}(BO{sub 3}){sub 3} doped with Pb{sup 2+} was successfully synthesized by modified solid state diffusion method. The crystal structure and the phase purity of sample were characterized by powder X-ray diffraction (XRD). The photoluminescence properties of synthesized materials were investigated using spectrofluorometer at room temperature. The phosphor show strong broad band emission spectra in UVA region maximum at 370 nm under the excitation of 289 nm. The dependence of the emission intensity on the Pb{sup 2+} concentration for the NaSr{sub 4}(BO{sub 3}){sub 3} were studied in details. The concentration quenching of Pb{sup 2+}more » doped NaSr{sub 4}(BO{sub 3}){sub 3} was observed at 0.02 mol. The Stokes shifts of NaSr{sub 4}(BO{sub 3}){sub 3}: Pb{sup 2+} phosphor was calculated to be 7574 cm{sup −1}.« less
Disinfection effects of undoped and silver-doped ceria powders of nanometer crystallite size
Tsai, Dah-Shyang; Yang, Tzu-Sen; Huang, Yu-Sheng; Peng, Pei-Wen; Ou, Keng-Liang
2016-01-01
Being endowed with an ability of capturing and releasing oxygen, the ceria surface conventionally assumes the role of catalyzing redox reactions in chemistry. This catalytic effect also makes possible its cytotoxicity toward microorganisms at room temperature. To study this cytotoxicity, we synthesized the doped and undoped ceria particles of 8–9 nm in size using an inexpensive precipitation method and evaluated their disinfecting aptitudes with the turbidimetric and plate count methods. Among the samples being analyzed, the silver-doped ceria exhibits the highest sterilization ability, yet the undoped ceria is the most intriguing. The disinfection effect of undoped ceria is moderate in magnitude, demanding a physical contact between the ceria surface and bacteria cell wall, or the redox catalysis that can damage the cell wall and result in the cell killing. Evidently, this effect is short-range and depends strongly on dispersion of the nanoparticles. In contrast, the disinfection effects of silver-doped ceria reach out several millimeters since it releases silver ions to poison the surrounding microorganisms. Additionally, the aliovalent silver substitution creates more ceria defects. The synergetic combination, silver poisoning and heterogeneous redox catalysis, lifts and extends the disinfecting capability of silver-doped ceria to a superior level. PMID:27330294
NASA Astrophysics Data System (ADS)
Ha, Chu T.; Lien, Nghiem T. Ha; Anh, Nguyen D.; Lam, Nguyen L.
2017-12-01
Anthocyanin belongs to a large group of phenolic compounds called flavonoids. It is found primarily in fruits, flowers, roots and other parts of higher plants. Within the black carrot, it has been found that the cyanidin component 1,2 diol was the major anthocyanine. Since the terminal thiols potentially display chemical interactions with borate additives, anthocyanin from the black carrot can act as a sensing material for detecting borate in the environment. As a natural dye, anthocyanin responds to pH change of the medium. Here, we present an application of black carrot dyes for pH sensing and for the detection of borate additives within meats. The dyes were encapsulated within a mesoporous silica (SiO2) matrix in order to prevent the sensing materials from dissolution into the aqueous medium. The encapsulation was done in situ during preparation of silica nanoparticles (size from 100 nm to 500 nm) following an advanced Stöber method. These anthocyanin-encapsulated silica nanoparticles show a clear color change from green in an aqueous solution free of borate to GRAY-red in the presence of borate additive and red (pH 2) to green (pH 10).
Prabhu, M; Ruby Priscilla, S; Kavitha, K; Manivasakan, P; Rajendran, V; Kulandaivelu, P
2014-01-01
Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications.
Prabhu, M.; Ruby Priscilla, S.; Kavitha, K.; Manivasakan, P.; Rajendran, V.; Kulandaivelu, P.
2014-01-01
Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications. PMID:25276834
Mirzaee, Majid; Vaezi, Mohammadreza; Palizdar, Yahya
2016-12-01
Silver-doped hydroxyapatite (Ca10-xAgx(PO4)6(OH)2-x) films were synthesized and deposited on anodized titanium (Ti) using electrophoretic. The influence of different silver-dopant contents (X=0, 0.02, 0.05, 0.08 and 0.1) on the phase formation and microstructure of the powders were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS), and Fourier transform infrared spectrum analysis (FT-IR). XRD analysis confirmed the formation of Hexagonal structure of hydroxyapatite (HAp) annealed at 600°C with a small shift in the major peak position toward lower angles with adding silver. FT-IR spectroscopy disclosed the presence of the different vibrational modes matching to phosphates and hydroxyl groups and the absence of any band characteristics to silver. XPS analysis showed that 75% and 23% of silver was in the chemical states of Ag(2+) and Ag(+), respectively. However, only about 2% of silver was in the Ag(0) state, resulting in the high quality of nanocomposite films. The anodization treatment improves the bond strength between the Ag doped HAp deposited layers on TiO2. HAp and silver doped HAp (X=0.05) are regarded to be hydrophilic due to a large number of -OH groups on the surface. The sample with content of silver (x=0.05) also showed excellent antimicrobial efficacy (>99% reduction in viable cells). Electrochemical reveals the passive current densities of the HAp coated anodized Ti are lower than those of silver doped HAp coated anodized Ti, leading to a slightly lower corrosion resistance. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of Chemically Doped Bioactive Borate Glass on Neuron Regrowth and Regeneration.
Gupta, Brinda; Papke, Jason B; Mohammadkhah, Ali; Day, Delbert E; Harkins, Amy B
2016-12-01
Peripheral nerve injuries present challenges to regeneration. Currently, the gold standard for nerve repair is an autograft that results in another region of the body suffering nerve damage. Previously, bioactive borate glass (BBG) has been studied in clinical trials to treat patients with non-healing wounds, and we have reported that BBG is conducive for soft tissue repair. BBG provides structural support, degrades in a non-cytotoxic manner, and can be chemically doped. Here, we tested a wide range of chemical compounds that are reported to have neuroprotective characteristics to promote regeneration of peripheral neurons after traumatic injury. We hypothesized that chemical dopants added in trace amounts to BBG would improve neuronal survival and neurite outgrowth from dorsal root ganglion (DRG) explants. We measured neurite outgrowth from whole DRG explants, and survival rates of dissociated neurons and support cells that comprise the DRG. Results show that chemically doped BBGs have differentially variable effects on neuronal survival and outgrowth, with iron, gallium, and zinc improving outgrowth of neurons, and iodine causing the most detriment to neurons. Because chemically doped BBGs support increased nerve regrowth and survival, they show promise for use in peripheral nerve regeneration.
Reflective Silvered Polyimide Films Via In Situ Thermal Reduction Silver (I) Complexes
NASA Technical Reports Server (NTRS)
Southward, Robin E. (Inventor); Thompson, David W. (Inventor); St.Clair, Anne K. (Inventor); Stoakley, Diane M. (Inventor)
2000-01-01
Self-metallizing. flexible polyimide films with highly reflective surfaces are prepared by an in situ self-metallization procedure involving thermally initiated reduction of polymer-soluble silver(I) complexes. Polyamic acid solutions are doped with silver(I) acetate and solubilizing agents. Thermally curing the silver(I) doped resins leads to flexible. metallized films which have reflectivities as high as 100%. abrasion-resistant surfaces. thermal stability and, in some cases, electrical conductivity, rendering them useful for space applications.
Defect modes in silver-doped photonic crystals made by holography using dichromated gelatin
NASA Astrophysics Data System (ADS)
Dai, Rui; Chen, Shujing; Ren, Zhi; Wang, Zhaona; Liu, Dahe
2012-10-01
The defect mode in silver-doped photonic crystals is investigated. 1D and 3D photonic crystals were made by holography using dichromated gelatin mixed with silver nitrate. By controlling the concentration of the silver nitrate, the defect mode was observed in the bandgaps of the holographic photonic crystals. The numerical simulations were made, and the results showed the consistency with the experimental observations.
Framework influence of erbium doped oxyfluoride glasses on their optical properties
NASA Astrophysics Data System (ADS)
Środa, Marcin; Cholewa-Kowalska, Katarzyna; Różański, Marek; Nocuń, Marek
2011-01-01
Glasses of different matrix (phosphate, borate, silicate and lead-silicate) were studied for their optical properties. The effect of Er dopant on transmittance and luminescence properties was presented. The significant “red shift” and “blue shift” of UV edge absorption were discussed based on the changes in the framework of the borate and phosphate glasses, respectively. It was showed that the integral intensity of the two main optical absorption transitions monotonically increases with the order: phosphate < borate < silicate < lead-silicate. Ellipsometric measurement was applied to obtain the refractive index of the glasses. The correlation between the shift of edge absorption and the change of refractive index was presented. Effect of glassy matrix on luminescence of Er3+ was discussed.
Spectroscopy and energy transfer in lead borate glasses doubly doped with Tm3+ and Dy3+ ions
NASA Astrophysics Data System (ADS)
Górny, Agata; Sołtys, Marta; Pisarska, Joanna; Pisarski, Wojciech A.
2018-03-01
Lead borate glasses singly and doubly doped with Tm3+ and Dy3+ were prepared by traditional melt-quenching technique. The emission spectra of rare earths in studied glass systems were registered under different excitation wavelengths. The observed emission bands are located in the visible spectral region. They correspond to 1D2 → 3F4 (blue) and 1G4 → 3H6 (blue) transitions of Tm3+ as well as 4F9/2 → 6H15/2 (blue), 4F9/2 → 6H13/2 (yellow) and 4F9/2 → 6H11/2 (red) transitions of Dy3+. Moreover, the energy transfer process from Tm3+ to Dy3+ was observed. The luminescence bands originating to characteristic transitions of thulium and dysprosium ions are present on emission spectra under direct excitation of Tm3+. Luminescence lifetimes for the excited states of Tm3+ and Dy3+ ions in lead borate glass were also determined based on decay measurements. The luminescence intensities and lifetimes depend significantly on the relative concentrations of the optically active dopants.
Identification of ε-Fe2O3 nano-phase in borate glasses doped with Fe and Gd
NASA Astrophysics Data System (ADS)
Ivanova, O. S.; Ivantsov, R. D.; Edelman, I. S.; Petrakovskaja, E. A.; Velikanov, D. A.; Zubavichus, Y. V.; Zaikovskii, V. I.; Stepanov, S. A.
2016-03-01
A new type of magnetic nanoparticles was revealed in borate glasses co-doped with low contents of iron and gadolinium. Structure and magnetic properties of the particles differ essentially from that of the α-Fe2O3, γ-Fe2O3, or Fe3O4 nanoparticles which were detected earlier in similar glass matrices. Transmission electron microscopy including STEM-HAADF and EDX, synchrotron radiation-based XRD, static magnetic measurements, magnetic circular dichroism, and electron magnetic resonance studies allow referring the nanoparticles to the iron oxide phase-ε-Fe2O3. Analysis of the data set has shown that it is Gd atoms that govern the process of nanoparticles' nucleation and its incorporation into the particles in different proportions can be used to adjust their magnetic and magneto-optical characteristics.
NASA Astrophysics Data System (ADS)
Torimoto, Aya; Masai, Hirokazu; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki; Ohkubo, Takahiro
2017-10-01
The photoluminescence (PL) and X-ray induced luminescence properties of Ce-doped barium borate glasses prepared from different precursor materials have been investigated. Oxidation of Ce3+ takes place during the melting process performed using a pre-vitrified non-doped glass. Residual groups originated from the precursor materials, such as fluorine atoms and OH groups, are found to affect the optical and emission properties of the glasses. Moreover, both the PL and the X-ray induced luminescence properties of the glasses depend on the precursor materials used for their synthesis. Based on a thorough analysis of the emission properties, we conclude that the best synthesis conditions involve melting a batch containing Ce(CH3COO)3·H2O, BaCO3, and B2O3 in Ar atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P., E-mail: pkistaiah@yahoo.com
Iron ion doped lithium borate glasses with the composition 15RO-25Li{sub 2}O-59B{sub 2}O{sub 3}-1Fe{sub 2}O{sub 3} (where R= Ca, Sr and Ba) have been prepared by the conventional melt quenching technique and characterized to investigate the physical and optical properties using XRD, density, molar volume and UV-Visible spectroscopy. The optical absorption spectra exhibit a band at around 460 nm which is assigned to {sup 6}A{sub 1g}(S) → 4E{sub g} (G) of Fe{sup 3+} ions with distorted octahedral symmetry. From ultraviolet absorption edges, the optical band gap and Urbach energies have been evaluated. The effect of alkaline earths on these properties ismore » discussed.« less
Temperature evolution in silver nanoparticle doped PETN composite
NASA Astrophysics Data System (ADS)
Kameswari, D. P. S. L.; Kiran, P. Prem
2018-04-01
Optical absorption and the associated spatio-temporal evolution of temperature silver nanoparticles doped energetic material composite is presented. Silver nanoparticles of radii 10 - 150 nm are doped in Penta Erythrtol Tetra Nitrate (PETN), a secondary energetic material to form the composite materials. Of all the composites the ones doped with 35 nm sized nanoparticles have shown maximum absorption at excitation wavelength of 532 nm. The spatio-temporal evolution of temperature within these composites up on excitation with ns laser pulses of energy density 0.5 J/cm2 is studied. The role of particle sizes on the temperature of composites is studied and a maximum temperature of 2200 K at the nanoparticle interface is observed for 35 nm doped PETN composite.
Biomedical properties of laser prepared silver-doped hydroxyapatite
NASA Astrophysics Data System (ADS)
Jelínek, M.; Weiserová, M.; Kocourek, T.; Zezulová, M.; Strnad, J.
2011-07-01
Thin films of hydroxyapatite (HA) and silver-doped HA were synthesized using KrF excimer laser deposition. Material was ablated from one target composed from silver and HA segments. Layers properties as silver content, structure, color, FTIR spectra and antibacterial properties (Gram-positive Bacillus subtilis) were measured. Silver concentration in HA layers of 0.06, 0.3, 1.2, 4.4, 8.3, and 13.7 at % was detected. The antibacterial efficacy changed with silver dopation from 71.0 to 99.9%. The focus is on investigation of minimum Ag concentration needed to reach a high antibacterial efficacy.
Kose, Nusret; Çaylak, Remzi; Pekşen, Ceren; Kiremitçi, Abdurrahman; Burukoglu, Dilek; Koparal, Savaş; Doğan, Aydın
2016-02-01
Despite improvement in operative techniques and antibiotic therapy, septic complications still occur in open fractures. We developed silver ion containing ceramic nano powder for implant coating to provide not only biocompatibility but also antibacterial activity to the orthopaedic implants. We hypothesised silver ion doped calcium phosphate based ceramic nano-powder coated titanium nails may prevents bacterial colonisation and infection in open fractures as compared with uncoated nails. 33 rabbits divided into three groups. In the first group uncoated, in the second group hydroxyapatite coated, and in the third group silver doped hydroxyapatite coated titanium nails were inserted left femurs of animals from knee regions with retrograde fashion. Before implantation of nails 50 μl solution containing 10(6)CFU/ml methicillin resistance Staphylococcus aureus (MRSA) injected intramedullary canal. Rabbits were monitored for 10 weeks. Blood was taken from rabbits before surgery and on 2nd, 6th and 10th weeks. Blood was analysed for biochemical parameters, blood count, C-reactive protein and silver levels. At the end of the 10 weeks animals were sacrificed and rods were extracted in a sterile fashion. Swab cultures were taken from intramedullary canal. Bacteria on titanium rods were counted. Liver, heart, spleen, kidney and central nervous tissues samples were taken for determining silver levels. Histopathological evaluation of bone surrounding implants was also performed. No significant difference was detected between the groups from hematologic, biochemical, and toxicological aspect. Microbiological results showed that less bacterial growth was detected with the use of silver doped ceramic coated implants compared to the other two groups (p=0.003). Accumulation of silver was not detected. No cellular inflammation was observed around the silver coated prostheses. No toxic effect of silver on bone cells was seen. Silver ion doped calcium phosphate based ceramic nano powder coating to orthopaedic implants may prevents bacterial colonisation and infection in open fractures compared with those for implants without any coating. Copyright © 2015 Elsevier Ltd. All rights reserved.
Peetsch, Alexander; Greulich, Christina; Braun, Dieter; Stroetges, Christian; Rehage, Heinz; Siebers, Bettina; Köller, Manfred; Epple, Matthias
2013-02-01
Spherical silver-doped calcium phosphate nanoparticles were synthesized in a co-precipitation route from calcium nitrate/silver nitrate and ammonium phosphate in a continuous process and colloidally stabilized by carboxymethyl cellulose. Nanoparticles with 0.39 wt% silver content and a diameter of about 50-60 nm were obtained. The toxic effects toward mammalian and prokaryotic cells were determined by viability tests and determination of the minimal inhibitory and minimal bactericidal concentrations (MIC and MBC). Three mammalian cells lines, i.e. human mesenchymal stem cells (hMSC) and blood peripheral mononuclear cells (PBMC, monocytes and T-lymphocytes), and two prokaryotic strains, i.e. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were used. Silver-doped calcium phosphate nanoparticles and silver acetate showed similar effect toward mammalian and prokaryotic cells with toxic silver concentrations in the range of 1-3 μg mL(-1). Copyright © 2012 Elsevier B.V. All rights reserved.
Chen, Sisi; Yang, Qingbo; Brow, Richard K; Liu, Kun; Brow, Katherine A; Ma, Yinfa; Shi, Honglan
2017-04-01
Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. Copyright © 2016 Elsevier B.V. All rights reserved.
Optical absorption of Er3+ doped lithium lead borate glasses
NASA Astrophysics Data System (ADS)
Usharani, V. L.; Eraiah, B.
2018-05-01
A new glass system Lithium lead borate doped with erbium trioxide were perpared using conventional melt quenching method. The amorphous nature of the glass samples were confirmed by XRD spectrum. The density of these glass were measured using Archmides principle, the values lie in the range from 4.27 to 4.76 g/cm-3. The corresponding molar volumes are calculated and the values are in the range of 23.81 to 26.17 cm-3. Absorption spectra were recorded in the wavelength range of 200nm to 1100nm, for the prepared glass samples. The optical direct and indirect energy band gaps were measured, the values are in the range of 2.875 to 3.254 eV and 2.25 to 2.81 eV respectively. Photoluminescence technique was employed to study the luminescent property of the prepared glasses excited at 380nm, emission spectra were recorded and analyzed.
Electronic structure of silver doped As2S3
NASA Astrophysics Data System (ADS)
Kaur, Veerpal; Khatta, Swati; Tripathi, S. K.; Prakash, S.
2018-04-01
We have studied the band structure, density of states and partial density of states for pure arsenic trisulfide (As2S3) and silver (Ag) doped arsenic trisulfide (As2S3) using DFT based GGA approach. It is observed that with the introduction of silver in As2S3, some extra states are observed in the gap region hence modifying the semiconducting gap in As2S3. These extra states in the gap region are due to 4d-states of silver.
Characterisation and luminescence studies of Tm and Na doped magnesium borate phosphors.
Ekdal, E; Garcia Guinea, J; Karabulut, Y; Canimoglu, A; Harmansah, C; Jorge, A; Karali, T; Can, N
2015-09-01
In this study, structural and luminescence properties of magnesium borate of the form MgB4O7 doped with Tm and Na were investigated by X-ray diffraction (XRD), Raman spectroscopy and cathodoluminescence (CL). The morphologies of the synthetised compounds exhibit clustered granules and road-like materials. As doping trivalent ions into a host with divalent cations requires charge compensation, this effect is discussed. The CL spectra of undoped MgB4O7 shows a broad band emission centred around 350 nm which is postulated to be produced by self-trapped excitons and some other defects. From the CL emission spectrum, main emission bands centred at 360, 455, 475 nm due to the respective transitions of (1)D2→(3)H6,(1)D2→(3)F4 and (1)G4→(3)H6 suggest the presence of Tm(3+) ion in MgB4O7 lattice site. CL mechanism was proposed to explain the observed phenomena which are valuable in possibility of the developing new luminescent materials for different applications. In addition, the experimental Raman spectrum of doped and undoped MgB4O7 were reported and discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optical studies of Sm³⁺ ions doped zinc alumino bismuth borate glasses.
Swapna, K; Mahamuda, Sk; Srinivasa Rao, A; Shakya, S; Sasikala, T; Haranath, D; Vijaya Prakash, G
2014-05-05
Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of samarium (Sm(3+)) ions were prepared by using melt quenching technique and characterized for their lasing potentialities in visible region by using the techniques such as optical absorption, emission and emission decay measurements. Radiative properties for various fluorescent levels of Sm(3+) ions were estimated from absorption spectral information using Judd-Ofelt (JO) analysis. The emission spectra and con-focal photoluminescence images obtained by 410 nm laser excitation demonstrates very distinct and intense orange-red emission for all the doped glasses. The suitable concentration of Sm(3+) ions in these glasses to act as an efficient lasing material has been discussed by measuring the emission cross-section and branching ratios for the emission transitions. The quantum efficiencies were also been estimated from emission decay measurements recorded for the (4)G5/2 level of Sm(3+) ions. From the measured emission cross-sections, branching ratios, strong photoluminescence features and CIE chromaticity coordinates, it was found that 1 mol% of Sm(3+) ions doped ZnAlBiB glasses are most suitable for the development of visible orange-red lasers. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Song; Gururaj, Satwik; Xia, Wei; Engqvist, Håkan
2016-11-01
Developing dental restorations with enhanced antibacterial properties has been a constant quest for materials scientists. The aim of this study was to synthesize silver doped calcium phosphate particles and use them to improve antibacterial properties of conventional glass ionomer cement. The Ag doped monetite (Ag-DCPA) and hydroxyapatite (Ag-HA) were synthesized by precipitation method and characterized using X-ray diffraction, scanning electron microscope and X-ray fluorescence spectroscopy. The antibacterial properties of the cements aged for 1 day and 7 days were evaluated by direct contact measurement using staphylococcus epidermis Xen 43. Ion concentrations (F - and Ag + ) and pH were measured to correlate to the results of the antibacterial study. The compressive strength of the cements was evaluated with a crosshead speed of 1 mm/min. The glass ionomer cements containing silver doped hydroxyapatite or monetite showed improved antibacterial properties. Addition of silver doped hydroxyapatite or monetite did not change the pH and ion release of F - . Concentration of Ag + was under the detection limit (0.001 mg/L) for all samples. Silver doped hydroxyapatite or monetite had no effect on the compressive strength of glass ionomer cement.
NASA Astrophysics Data System (ADS)
Mohammad, A.; Mahmood, A.; Chin, K. T.; Danquah, M. K.; van Stratan, S.
2017-06-01
Conductive polymer had opened a new era of engineering for microelectronics and semiconductor applications. However, it is still a challenge for high voltage applications due to lower electrical conductivity compare to metals. This results tremendous energy losses during transmission and restricts its usage. In order to address such problem a novel method was investigated using nano silver particle doped iodothiophene since silver is the highest electrical conductive material. The experiments were carried out to study the organometallic diffusion behaviour of nanosilver doped iodothiophene with different concentration of iodothiophene. Five different mixing ratio between nanosilver and the solution of iodothiophene dissolved in diethyl ether were used which are 1:1.25, 1:1.5, 1:2.5, 1:3 and l:5. It was revealed that there is an effective threshold concentration of which the nano silver evenly distributed and there was no coagulation observed. These parameters laid the foundation of better doping process between the nano silver and the polymer significantly which would contribute developing conductive polymer towards high voltage application for industries that are vulnerable to corrosive environment.
The effect of MgO on the optical properties of lithium sodium borate doped with Cu+ ions
NASA Astrophysics Data System (ADS)
Alajerami, Yasser Saleh Mustafa; Hashim, Suhairul; Hassan, Wan Muhamad Saridan Wan; Ramli, Ahmad Termizi; Saleh, Muneer Aziz
2013-04-01
The current work presented the photoluminescence (PL) properties of a new glass system, which are reported for the first time. Based on the attractive properties of borate glass, a mixture of boric acid (70-x mol %) modified with lithium (20 mol %) and sodium carbonate (10 mol %) was prepared. The current study illustrated the effect of dopant and co-dopant techniques on the lithium sodium borate (LNB). Firstly, 0.1 mol % of copper ions doped with LNB was excited at 610 nm. The emission spectrum showed two prominent peaks in the violet region (403 and 440 nm). Then, we remarked the effect of adding different concentration of MgO on the optical properties of LNB. The results showed the great effect of magnesium oxide on the PL intensities (enhanced more than two times). Moreover, an obvious shifting has been defined toward the blue region (440 → 475 nm). The up-conversion optical properties were observed in all emission spectra. This enhancement is contributed to the energy transfer from MgO ions to monovalent Cu+ ion. It is well known that magnesium oxide alone generates weak emission intensity, but during this increment the MgO act as an activator (co-doped) for Cu+ ions. Finally, energy band gap, density, ion concentration, molar volume, Polaron radius and inter-nuclear distance all were measured for the current samples. The current samples were subjected to XRD for amorphous confirmation and IR for glass characterization before and after dopants addition. Finally, some of significant physical and optical parameters were also calculated.
Synthesis, characterization and optical properties of gelatin doped with silver nanoparticles.
Mahmoud, K H; Abbo, M
2013-12-01
In this study, silver nanoparticles were synthesized by chemical reduction of silver salt (AgNO3) solution. Formation of nanoparticles was confirmed by UV-visible spectrometry. The surface plasmon resonance peak is located at 430 nm. Doping of silver nanoparticles (Ag NPs) with gelatin biopolymer was studied. The silver content in the polymer matrix was in the range of 0.4-1 wt%. The formation of nanoparticles disappeared for silver content higher than 1 wt%. The morphology and interaction of gelatin doped with Ag NPs was examined by transmission electron microscopy and FTIR spectroscopy. The content of Ag NPs has a pronounced effect on optical and structural properties of gelatin. Optical parameters such as refractive index, complex dielectric constant were calculated. The dispersion of the refractive index was discussed in terms of the single--oscillator Wemple-DiDomenico model. Color properties of the prepared samples were discussed in the framework of CIE L(*)u(*)v(*) color space. Copyright © 2013 Elsevier B.V. All rights reserved.
Synthesis, characterization and optical properties of gelatin doped with silver nanoparticles
NASA Astrophysics Data System (ADS)
Mahmoud, K. H.; Abbo, M.
2013-12-01
In this study, silver nanoparticles were synthesized by chemical reduction of silver salt (AgNO3) solution. Formation of nanoparticles was confirmed by UV-visible spectrometry. The surface plasmon resonance peak is located at 430 nm. Doping of silver nanoparticles (Ag NPs) with gelatin biopolymer was studied. The silver content in the polymer matrix was in the range of 0.4-1 wt%. The formation of nanoparticles disappeared for silver content higher than 1 wt%. The morphology and interaction of gelatin doped with Ag NPs was examined by transmission electron microscopy and FTIR spectroscopy. The content of Ag NPs has a pronounced effect on optical and structural properties of gelatin. Optical parameters such as refractive index, complex dielectric constant were calculated. The dispersion of the refractive index was discussed in terms of the single - oscillator Wemple-DiDomenico model. Color properties of the prepared samples were discussed in the framework of CIE L*u*v* color space.
NASA Astrophysics Data System (ADS)
AbdelAziz, T. D.; EzzElDin, F. M.; El Batal, H. A.; Abdelghany, A. M.
2014-10-01
Combined optical and infrared absorption spectra of V2O5-doped cadmium borate glasses were investigated before and after gamma irradiation with a dose of 8 Mrad (=8 × 104 Gy). The undoped base cadmium borate glass reveals a spectrum consisting of strong charge transfer UV absorption bands which are related to the presence of unavoidable contaminated trace iron impurities (mainly Fe3+). The V2O5-doped glasses reveal an extra band at 380 nm and the high V2O5-content glass also shows a further band at about 420 nm. The observed optical spectrum indicates the presence of vanadium ions mainly in the pentavalent state (d0 configuration). The surplus band at 420 nm shows that some trivalent vanadium ions are identified at high V2O5 content. The optical spectra of the glasses after gamma irradiation show small decrease of the intensity of the UV absorption which are interpreted by assuming the transformation of some Fe3+ ions by photochemical reactions with the presence of high content (45 mol%) of heavy massive CdO causing some shielding behavior. FT infrared absorption spectra of the glasses show vibrational bands due to collective presence of triangular and tetrahedral borate groups in their specific wavenumbers. The FTIR spectra are observed to be slightly affected by both the V2O5-dopants being present in modifying low percent or gamma irradiation due to the presence of high content heavy CdO.
AbdelAziz, T D; EzzElDin, F M; El Batal, H A; Abdelghany, A M
2014-10-15
Combined optical and infrared absorption spectra of V2O5-doped cadmium borate glasses were investigated before and after gamma irradiation with a dose of 8 Mrad (=8×10(4) Gy). The undoped base cadmium borate glass reveals a spectrum consisting of strong charge transfer UV absorption bands which are related to the presence of unavoidable contaminated trace iron impurities (mainly Fe(3+)). The V2O5-doped glasses reveal an extra band at 380nm and the high V2O5-content glass also shows a further band at about 420nm. The observed optical spectrum indicates the presence of vanadium ions mainly in the pentavalent state (d(0) configuration). The surplus band at 420nm shows that some trivalent vanadium ions are identified at high V2O5 content. The optical spectra of the glasses after gamma irradiation show small decrease of the intensity of the UV absorption which are interpreted by assuming the transformation of some Fe(3+) ions by photochemical reactions with the presence of high content (45mol%) of heavy massive CdO causing some shielding behavior. FT infrared absorption spectra of the glasses show vibrational bands due to collective presence of triangular and tetrahedral borate groups in their specific wavenumbers. The FTIR spectra are observed to be slightly affected by both the V2O5-dopants being present in modifying low percent or gamma irradiation due to the presence of high content heavy CdO. Copyright © 2014 Elsevier B.V. All rights reserved.
Hu, Yuanyuan; Rengert, Zachary D; McDowell, Caitlin; Ford, Michael J; Wang, Ming; Karki, Akchheta; Lill, Alexander T; Bazan, Guillermo C; Nguyen, Thuc-Quyen
2018-04-24
Solution-processed organic field-effect transistors (OFETs) were fabricated with the addition of an organic salt, trityl tetrakis(pentafluorophenyl)borate (TrTPFB), into thin films of donor-acceptor copolymer semiconductors. The performance of OFETs is significantly enhanced after the organic salt is incorporated. TrTPFB is confirmed to p-dope the organic semiconductors used in this study, and the doping efficiency as well as doping physics was investigated. In addition, systematic electrical and structural characterizations reveal how the doping enhances the performance of OFETs. Furthermore, it is shown that this organic salt doping method is feasible for both p- and n-doping by using different organic salts and, thus, can be utilized to achieve high-performance OFETs and organic complementary circuits.
Thermally stable and high reflectivity Al-doped silver thin films deposited by magnetron sputtering
NASA Astrophysics Data System (ADS)
Loka, Chadrasekhar; Lee, Kwang; Joo, Sin Yong; Lee, Kee-Sun
2018-03-01
Thermally stable, high reflectance thin film coatings are indispensable in optoelectronic devices, especially as a potential back reflector for LEDs and solar cells. The silver has the drawback of agglomerating easily and poor thermal stability, which is limiting its application as a highly reflective coating in various optoelectronic applications. In this study, improved thermal stability by modification of the Ag film into an Ag/Al-doped Ag structure has been confirmed. In this paper, the surface morphology, optical reflectance, and thermal stability of the Ag/Al-doped Ag are investigated. The Ag/Al-doped Ag/sapphire films showed excellent thermal stability after annealing the films at 523 K with the highest reflectance about ∼86% as compared to the pure Ag films. The grain growth analysis results revealed that the Al-doping is effective to restrain the severe grain growth of silver films. The Auger electron spectroscopy results revealed that the outer diffusion of aluminum and the formation of Al-O bond at the outermost silver layer which is beneficial to retard the Ag grain growth.
NASA Astrophysics Data System (ADS)
Srinivas, G.; Ramesh, B.; Kumar, J. Siva; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.
2016-05-01
Spectroscopic and physical properties of V2O5 doped mixed alkali borate glasses are investigated. Borate glasses containing fixed concentrations of alkaline earth oxides (MgO and BaO) and alkali oxides (K2O and Na2O) were changes and are prepared by melt quenching technique. The values of ri, rp, Rm, αm molar volume and Λth increase and oxygen packing density, density and dopant ion concentration decrease with increasing of K2O content. As a result there shall be an increase in the disorder of the glass network. The optical band gap energies, Urbach energy, boron-boron separation,refractive index, dielectric constant, electronic polarizability and reflection loss values are varies nonlinearly with the K2O content which manifests the mixed alkali effect.
Ag-doped CdO nanocatalysts: Preparation, characterization and catechol oxidase activity
NASA Astrophysics Data System (ADS)
El-Kemary, Maged; El-Mehasseb, Ibrahim; El-Shamy, Hany
2018-06-01
Silver doped cadmium oxide (Ag/CdO) nanoparticles with an average size of 41 nm have been successfully synthesized via thermal decomposition and liquid impregnation technique. The structural characterization has been performed by using several spectroscopic techniques, e.g., X-ray diffraction (XRD), scanning electron microscopy (SEM) and fourier-transform infrared (FT-IR). The catechol oxidase has been studied by UV-visible absorption spectroscopy and fourier-transform infrared as well as the mechanism has been assured by cyclic voltammetry and fluorescence spectroscopy. The results indicate that the oxidation does not occur in the presence of unsupported cadmium oxide particles by silver and in the same time, the catechol oxidase activity of silver doped CdO nanoparticles were improved by about three orders of magnitude than silver ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Xiaoyan; Ohuchi, Fumio; Hatano, Hideki
2011-08-01
Visible light-induced polarization-dependent photochemical deposition of silver nanoparticles (AgNPs) has been demonstrated using Mn-doped congruent LiNbO{sub 3} (CLN) single crystals. Mn-doped CLN has a strong absorption over a wide region of the visible spectrum that allowed effective visible light irradiation for photochemical deposition. The AgNPs deposition on Mn-doped CLN was compared with that on non-doped congruent LiNbO{sub 3}, and together these further confirmed that the photochemical deposition on LiNbO{sub 3} is caused by the strong photogalvanic effect.
Kunkalekar, R K; Prabhu, M S; Naik, M M; Salker, A V
2014-01-01
Palladium, ruthenium and silver-doped MnO2 and silver doped Mn2O3 nanoparticles were synthesized by simple co-precipitation technique. SEM-TEM analysis revealed the nano-size of these synthesized samples. XPS data illustrates that Mn is present in 4+ and 3+ oxidation states in MnO2 and Mn2O3 respectively. Thermal analysis gave significant evidence for the phase changes with increasing temperature. Antibacterial activity of these synthesized nanoparticles on three Gram positive bacterial cultures (Staphylococcus aureus ATCC 6538, Streptococcus epidermis ATCC 12228, Bacillus subtilis ATCC 6633) and three Gram negative cultures (Escherichia coli ATCC 8739, Salmonella abony NCTC 6017 and Klebsiella pneumoniae ATCC 1003) was investigated using a disc diffusion method and live/dead assay. Only Ag-doped MnO2 and Ag-doped Mn2O3 nanoparticles showed antibacterial property against all six-test bacteria but Ag-doped MnO2 was found to be more effective than Ag-doped Mn2O3. Copyright © 2013 Elsevier B.V. All rights reserved.
Pauporté, Thierry; Lupan, Oleg; Zhang, Jie; Tugsuz, Tugba; Ciofini, Ilaria; Labat, Frédéric; Viana, Bruno
2015-06-10
Doping ZnO nanowires (NWs) by group IB elements is an important challenge for integrating nanostructures into functional devices with better and tuned performances. The growth of Ag-doped ZnO NWs by electrodeposition at 90 °C using a chloride bath and molecular oxygen precursor is reported. Ag acts as an electrocatalyst for the deposition and influences the nucleation and growth of the structures. The silver atomic concentration in the wires is controlled by the additive concentration in the deposition bath and a content up to 3.7 atomic % is reported. XRD analysis shows that the integration of silver enlarges the lattice parameters of ZnO. The optical measurements also show that the direct optical bandgap of ZnO is reduced by silver doping. The bandgap shift and lattice expansion are explained by first principle calculations using the density functional theory (DFT) on the silver impurity integration as an interstitial (Ag(i)) and as a substitute of zinc atom (Ag(Zn)) in the crystal lattice. They notably indicate that Ag(Zn) doping forms an impurity band because of Ag 4d and O 2p orbital interactions, shifting the Fermi level toward the valence band. At least, Ag-doped ZnO vertically aligned nanowire arrays have been epitaxially grown on GaN(001) substrate. The heterostructure has been inserted in a light emitting device. UV-blue light emission has been achieved with a low emission threshold of 5 V and a tunable red-shifted emission spectrum related to the bandgap reduction induced by silver doping of the ZnO emitter material.
Influence of silver doping on surface defect characteristics of TiO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, S. K., E-mail: surya@pu.ac.in; Rani, Mamta; Department of Physics, DAV University Jalandhar, - 144 001, Punjab
2015-08-28
In the present work, we proposed a novel silver doped TiO{sub 2} polyethylene conjugated films to improve the performance of DSSCs. Oxides nanoparticles dispersed in a semiconducting polymer form the active layer of a solar cell. Localized surface plasmon resonance effects associated with spatially dispersed silver (Ag) nanoparticles can be exploited to enhance the light-harvesting efficiency, the photocurrent density and the overall light-to electrical-energy-conversion efficiency of high-area DSSCs based TiO{sub 2} photoanodes. Silver doped titanium dioxide (TiO{sub 2}:Ag) is prepared by sol-gel technique and deposited on fluorine doped indium oxide (FTO) coated glass substrates by using doctor blade technique atmore » 550°C from aqueous solutions of titanium butoxide and silver nitrate precursors. The effect of Ag doping on electrical properties of films is studied. The Ag-TiO{sub 2} films are about 548 times more photosensitive as compare to the pure TiO{sub 2} sample. The presence of metallic Ag nanoparticles and oxygen vacancy on the surface of TiO{sub 2} nanoparticles promotes the separation of photogenerated electron-hole pairs and thus enhances the photosensitivity. Photoconduction mechanism of all prepared samples is investigated by performing transient photoconductivity measurements on TiO{sub 2} and Ag-TiO{sub 2} films keeping intensity of light constant.« less
NASA Astrophysics Data System (ADS)
Isaji, Tomoya; Wakasugi, Takashi; Fukumi, Kohei; Kadono, Kohei
2012-01-01
We investigated photochromic behavior, i.e. X-ray irradiation and post-heat-treatment-induced reversible redox and clusterization reactions of silver, in soda-lime silicate (74SiO2·16Na2O·8CaO·2Al2O3) and aluminosilicate ((75 - x)SiO2·25Na2O·xAl2O3 (x = 5-25)) glasses. Generation and annihilation of silver nanoparticles were observed for soda-lime silicate and x = 5 aluminosilicate glasses doped with 0.05 wt.% or less of Ag while no nanoparticles were formed for x = 15-25 aluminosilicate glasses even doped with 0.5 wt.% of Ag. These results were analyzed from the viewpoints of the reaction kinetics and network structures of the glasses.
Pisarski, W A; Pisarska, J; Mączka, M; Lisiecki, R; Grobelny, Ł; Goryczka, T; Dominiak-Dzik, G; Ryba-Romanowski, W
2011-08-15
Correlation between structure and optical properties of rare earth ions in lead borate glasses and glass-ceramics was evidenced by X-ray-diffraction, Raman, FT-IR and luminescence spectroscopy. The rare earths were limited to Eu(3+) and Er(3+) ions. The observed BO(3)↔BO(4) conversion strongly depends on the relative PbO/B(2)O(3) ratios in glass composition, giving important contribution to the luminescence intensities associated to (5)D(0)-(7)F(2) and (5)D(0)-(7)F(1) transitions of Eu(3+). The near-infrared luminescence and up-conversion spectra for Er(3+) ions in lead borate glasses before and after heat treatment were measured. The more intense and narrowing luminescence lines suggest partial incorporation of Er(3+) ions into the orthorhombic PbF(2) crystalline phase, which was identified using X-ray diffraction analysis. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vasileva, A. A.; Nazarov, I. A.; Olshin, P. K.; Povolotskiy, A. V.; Sokolov, I. A.; Manshina, A. A.
2015-10-01
Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium-phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass.
NASA Astrophysics Data System (ADS)
Verma, R. K.; Kumar, K.; Rai, S. B.
2010-10-01
Spherical silver nanoparticles have been synthesized using laser ablation in distilled water. These nanoparticles are embedded in Tb 3+-doped aluminosilicate glass through the sol-gel technique. The presence of these nanoparticles is seen to increase the emission intensity of the Tb 3+ ions by more than 100%. Energy transfer from the excited silver nanoparticles to Tb 3+ ions is the probable cause for this increase in emission intensity.
Visible properties of Sm{sup 3+} ions in chloro-fluoro-borate glasses for reddish - orange emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, K. Venkata, E-mail: drvenkataraok@gmail.com; Babu, S.; Ratnakaram, Y. C.
2016-05-23
Optical properties of different concentration (0.2, 0.4, 0.6, 0.8 and 1.0 mol %) of Sm{sup 3+} doped chloro-fluoro-borate glasses have been synthesized and discussed. Structural characterizations have been studied through XRD analysis. Spectroscopic analysis has done from absorption spectra, luminescence spectra and decay lifetime profiles. From the emission spectra, concentration quenching is observed, with increase of samarium concentration and discussed behind the phenomena. The nature of decay curve analysis was performed for the {sup 4}G{sub 5/2} level. These glasses are expected to give interesting application in the field of optics.
Effect of certain alkaline metals on Pr doped glasses to investigate spectroscopic studies
NASA Astrophysics Data System (ADS)
Lenkennavar Susheela, K.; Madhu, A.; Eraiah, B.; Kokila, M. K.
2018-02-01
Incorporation of different Alkaline earth metal like Barium, Calcium and strontium in sodium lead borate glass doped with Pr3+ is studied. Physical parameters such as density, molar volume, molar refractivity etc have been evaluated. Effect of different atomic size of alkaline metal using optical and physical parameters is analysed. XRD and FTIR were carried out to know the structural behaviour of the glasses. Absorption and Emission spectra are recorded at room temperature and the results were discussed.
Theoretical study of Ag doping-induced vacancies defects in armchair graphene
NASA Astrophysics Data System (ADS)
Benchallal, L.; Haffad, S.; Lamiri, L.; Boubenider, F.; Zitoune, H.; Kahouadji, B.; Samah, M.
2018-06-01
We have performed a density functional theory (DFT) study of the absorption of silver atoms (Ag,Ag2 and Ag3) in graphene using SIESTA code, in the generalized gradient approximation (GGA). The absorption energy, geometry, magnetic moments and charge transfer of Ag clusters-graphene system are calculated. The minimum energy configuration demonstrates that all structures remain planar and silver atoms fit into this plane. The charge transfer between the silver clusters and carbon atoms constituting the graphene surface is an indicative of a strong bond. The structure doped with a single silver atom has a magnetic moment and the two other are nonmagnetic.
Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material
NASA Astrophysics Data System (ADS)
Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di
2018-01-01
Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.
NASA Astrophysics Data System (ADS)
Mirzaee, Majid; Dolati, Abolghasem
2014-09-01
Silver-doped indium tin oxide thin films were synthesized using sol-gel dip-coating technique. The influence of different silver-dopant contents and annealing temperature on the electrical, optical, structural, and morphological properties of the films were characterized by means of four-point probe, UV-Vis spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscope (XPS). XRD analysis confirmed the formation of cubic bixbyte structure of In2O3 with silver nanoparticles annealed at 350 °C. XPS analysis showed that divalent tin transformed to tetravalent tin through oxidization, and silver nanoparticles embedded into ITO matrix covered with silver oxide shell, resulting in high quality nanocomposite thin films. The embedment of polyvinylpyrrolidone inhibited the growth of silver nanoparticles and ITO annealed at 350 °C. Delafossite structure of tin-doped AgInO2 was found at higher annealing temperatures. XRD analysis and FESEM micrographs showed that the optimum temperature to prevent the formation of AgInO2 is 350 °C. The embedment of silver particles (5-10 nm) from reduction of silver ion in ITO thin films improved the electrical conductivity and optical transmittance of ITO nanolayers. The lowest stable sheet resistance of 1,952 Ω/Sq for a 321 nm thick and an average optical transmittance of 91.8 % in the visible region with a band gap of 3.43 eV were achieved for silver-doping content of 0.04 M.
Characterization of silver nanoparticle-infused tissue adhesive for ophthalmic use.
Yee, William; Selvaduray, Guna; Hawkins, Benjamin
2015-03-01
In this work, we demonstrate the successful enhancement of breaking strength, adhesive strength, and antibacterial efficacy of ophthalmic tissue adhesive (2-octyl cyanoacrylate) by doping with silver nanoparticles, and investigate the effects of nanoparticle size and concentration. Recent work has shown that silver nanoparticles are a viable antibacterial additive to many compounds, but their efficacy in tissue adhesives was heretofore untested. Our results indicate that doping the adhesive with silver nanoparticles reduced bacterial growth by an order of magnitude or more; nanoparticle size and concentration had minimal influence in the range tested. Tensile breaking strength of polymerized adhesive samples and adhesive strength between a T-shaped support and excised porcine sclera were measured using a universal testing machine according to ASTM (formerly American Society for Testing and Materials) standard techniques. Both tests showed significant improvement with the addition of silver nanoparticles. The enhanced mechanical strength and antibacterial efficacy of the doped adhesive supports the use of tissue adhesives as a viable supplement or alternative to sutures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cai, Shaobo; Pourdeyhimi, Behnam; Loboa, Elizabeth G
2017-06-28
In this study, we report a high-throughput fabrication method at industrial pilot scale to produce a silver-nanoparticles-doped nanoclay-polylactic acid composite with a novel synergistic antibacterial effect. The obtained nanocomposite has a significantly lower affinity for bacterial adhesion, allowing the loading amount of silver nanoparticles to be tremendously reduced while maintaining satisfactory antibacterial efficacy at the material interface. This is a great advantage for many antibacterial applications in which cost is a consideration. Furthermore, unlike previously reported methods that require additional chemical reduction processes to produce the silver-nanoparticles-doped nanoclay, an in situ preparation method was developed in which silver nanoparticles were created simultaneously during the composite fabrication process by thermal reduction. This is the first report to show that altered material surface submicron structures created with the loading of nanoclay enables the creation of a nanocomposite with significantly lower affinity for bacterial adhesion. This study provides a promising scalable approach to produce antibacterial polymeric products with minimal changes to industry standard equipment, fabrication processes, or raw material input cost.
NASA Astrophysics Data System (ADS)
Marzouk, M.; ElBatal, H.; Eisa, W.
2016-07-01
This work reports the preparation of glasses of binary cadmium borate with the basic composition (mol% 45 CdO 55 B2O3) and samples of the same composition containing 0.2 wt% dopants of 3d transition metal (TM) oxides (TiO2 → CuO). The glasses have been investigated by combined optical and Fourier Transform infrared spectroscopic measurements before and after being subjected to gamma irradiation with a dose of 8 Mrad (8 × 104 Gy). Optical absorption of the undoped glass before irradiation reveals strong charge transfer UV absorption which is related to the presence of unavoidable contaminated trace iron impurities (mainly Fe3+) within the raw materials used for the preparation of the base cadmium borate glass. The optical spectra of the 3d TM ions exhibit characteristic bands which are related the stable oxidation state of the 3d TM ions within the host glass. Gamma irradiation produces some limited variations in the optical spectra due to the stability of the host glass containing high percent 45 mol% of heavy metal oxide (CdO) which causes some shielding effects towards irradiation. From the absorption edge data, the values of the optical band gap Eopt and Urbach energy (ΔE) have been calculated. The values of the optical energy gap are found to be dependent on the glass composition. Infrared absorption spectral measurements reveal characteristic absorption bands due to both triangular and tetrahedral borate groups with the BO3 units vibrations more intense than BO4 units due to the known limit value for the change of BO3 to BO4 groups. The introduction of 3d TM ions with the doping level (0.2 wt%) causes no changes in the number or position of the IR bands because of the presence of TM ions in modifying sites in the glass network. It is observed that gamma irradiation causes some limited changes in the FT-IR spectral bands due to the stability of the host heavy cadmium borate glass.
Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters
NASA Astrophysics Data System (ADS)
Ralević, Uroš; Isić, Goran; Anicijević, Dragana Vasić; Laban, Bojana; Bogdanović, Una; Lazović, Vladimir M.; Vodnik, Vesna; Gajić, Radoš
2018-03-01
The adsorption of thiacyanine dye molecules on citrate-stabilized silver nanoparticle clusters drop-cast onto freshly cleaved mica or highly oriented pyrolytic graphite surfaces is examined using colocalized surface-enhanced Raman spectroscopy and atomic force microscopy. The incidence of dye Raman signatures in photoluminescence hotspots identified around nanoparticle clusters is considered for both citrate- and borate-capped silver nanoparticles and found to be substantially lower in the former case, suggesting that the citrate anions impede the efficient dye adsorption. Rigorous numerical simulations of light scattering on random nanoparticle clusters are used for estimating the electromagnetic enhancement and elucidating the hotspot formation mechanism. The majority of the enhanced Raman signal, estimated to be more than 90%, is found to originate from the nanogaps between adjacent nanoparticles in the cluster, regardless of the cluster size and geometry.
Spectroscopic investigations on Pr³+ and Nd³+ doped strontium-lithium-bismuth borate glasses.
Rajesh, D; Balakrishna, A; Seshadri, M; Ratnakaram, Y C
2012-11-01
Spectroscopic investigations on different concentrations (0.1, 0.5, 1.0, 1.5 and 2.0mol%) of Pr(3+) and Nd(3+) doped strontium lithium bismuth borate glasses have been done. X-ray diffraction, SEM with EDS, absorption and luminescence spectra were recorded for all the glass matrices and analyzed. X-ray diffraction profiles and SEM images conformed amorphous nature of investigated glass samples. EDS spectra of host glass and Pr(3+)doped glass matrices gave information about the chemical composition of glass samples. From the absorption spectra of Pr(3+) and Nd(3+) ions, Judd-Ofelt (J-O) intensity parameters (Ω(λ),λ=2, 4 and 6) have been calculated and compared with other glass matrices. The emission characteristics such as radiative lifetimes (τ(R)), measured and calculated branching ratios (β) and stimulated emission cross-sections (σ(P)) have been obtained for the observed emission transitions of Pr(3+) and Nd(3+) ions in the above glass matrix for all the concentrations. From the emission spectra of Pr(3+) and Nd(3+) doped glass matrices, the effect of concentration on the quenching of intensity of (1)D(2)→(3)H(4) transition of Pr(3+) ion and (4)F(3/2)→(4)I(9/2), (4)I(11/2) and (4)I(13/2) transitions of Nd(3+) have been studied and discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
The Effects of Boron Doping on Residual Stress of Hfcvd Diamond Film for Mems Applications
NASA Astrophysics Data System (ADS)
Zhao, Tianqi; Wang, Xinchang; Sun, Fanghong
In this study, the residual stress of boron-doped diamond (BDD) films is investigated as a function of boron doping level using X-ray diffraction (XRD) analysis. Boron doping level is controlled from 1000ppm to 9000ppm by dissolving trimethyl borate into acetone. BDD films are deposited on silicon wafers using a bias-enhanced hot filament chemical vapor deposition (BE-HFCVD) system. Residual stress calculated by sin2 ψ method varies linearly from -2.4GPa to -1.1GPa with increasing boron doping level. On the BDD film of -1.75GPa, free standing BDD cantilevers are fabricated by photolithography and ICP-RIE processes, then tested by laser Doppler vibrometer (LDV). A cantilever with resonant frequency of 183KHz and Q factor of 261 in the air is fabricated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivas, G., E-mail: srinu123g@gmail.com; Ramesh, B.; Kumar, J. Siva
2016-05-23
Spectroscopic and physical properties of V{sub 2}O{sub 5} doped mixed alkali borate glasses are investigated. Borate glasses containing fixed concentrations of alkaline earth oxides (MgO and BaO) and alkali oxides (K{sub 2}O and Na{sub 2}O) were changes and are prepared by melt quenching technique. The values of r{sub i}, r{sub p}, R{sub m}, α{sub m} molar volume and Λ{sub th} increase and oxygen packing density, density and dopant ion concentration decrease with increasing of K{sub 2}O content. As a result there shall be an increase in the disorder of the glass network. The optical band gap energies, Urbach energy, boron-boronmore » separation,refractive index, dielectric constant, electronic polarizability and reflection loss values are varies nonlinearly with the K{sub 2}O content which manifests the mixed alkali effect.« less
Effect of RE (Nd3+, Sm3+) oxide on structural, optical properties of Na2O-Li2O-ZnO-B2O3 glass system
NASA Astrophysics Data System (ADS)
Hivrekar, Mahesh M.; Bhoyar, D. N.; Mande, V. K.; Dhole, V. V.; Solunke, M. B.; Jadhav, K. M.
2018-05-01
Zinc borate glass activated with rare earth oxide (Nd2O3, Sm2O3) of Na2O-Li2O-ZnO-B2O3 quaternary system has been prepared successfully by melt quenching method. The nucleation and growth of RE oxide were controlled temperature range 950-1000° C and rapid cooling at room temperature. The physical, structural and optical properties were characterized by using X-ray diffraction (XRD), SEM, Ultraviolet-visible spectroscopy (UV-Vis). XRD and SEM studies confirmed the amorphous nature, surface morphology of prepared zinc borate glass. The physical parameters like density, molar volume, molar mass of Nd3+, Sm3+ doped borate glass are summarized in the present article. The optical absorption spectra along with tauc's plot are presented. The optical energy band gap increases due to the addition of rare earth oxide confirming the role of network modifier.
NASA Astrophysics Data System (ADS)
Ravi, O.; Reddy, C. Madhukar; Reddy, B. Sudhakar; Deva Prasad Raju, B.
2014-02-01
Niobium containing tellurium calcium zinc borate (TCZNB) glasses doped with different concentrations of Dy3+ ions were prepared by the melt quenching method and their optical properties have been studied. The Judd-Ofelt (J-O) intensity parameters Ωt (t=2, 4 and 6) were calculated using the least square fit method. Based on the magnitude of Ω2 parameter the hypersensitivity of 6H15/2→6F11/2 has also been discussed. From the evaluated J-O intensity parameters as well as from the emission and lifetime measurements, radiative transition properties such as radiative transition probability rates and branching ratios were calculated for 4F9/2 excited level. It is found that for Dy3+ ion, the transition 4F9/2→6H13/2 shows highest emission cross-section at 1.0 mol% TCZNB glass matrix. From the visible luminescence spectra, yellow to blue (Y/B) intensity ratios and chromaticity color coordinates were also estimated. The TCZNB glasses exhibit good luminescence properties and are suitable for generation of white light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.
2013-02-05
Strontium lithium bismuth borate glasses (SLBiB) doped with various concentrations of Er{sup 3+} were prepared using conventional melt quench technique and investigated their optical properties. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction and SEM analysis. Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra at room temperature. Judd-Ofelt (J-O) theory has been applied for the f.f transitions of Er{sup 3+} ions to evaluate J-O intensity parameters, {Omega}{lambda} ({lambda} = 2, 4 and 6). Using the J-O intensity parameters, radiative properties such as transition probabilities (A{sub R}), branching ratios ({beta})more » and radiative lifetimes ({tau}) are estimated for certain transitions. From the emission spectra, peak emission-cross sections ({sigma}{sub p}) and products of stimulated emission cross-section and full width at half maximum ({sigma}{sub p} Multiplication-Sign FWHM) were calculated for the observed emission transition, {sup 4}I{sub 13/2}{yields}{sup 4}I{sub 15/2}.« less
Optical characterization of Eu3+ and Tb3+ ions doped zinc lead borate glasses.
Thulasiramudu, A; Buddhudu, S
2007-02-01
This paper reports on the spectral analysis of Eu3+ or Tb3+ ions (0.5 mol%) doped heavy metal oxide (HMO) based zinc lead borate glasses from the measurement of their absorption, emission spectra and also different physical properties. From the XRD, DSC profiles, the glass nature and glass thermal properties have been studied. The measured emission spectrum of Eu3+ glass has revealed five transitions (5D0-->7F0, 7F1, 7F2, 7F3 and 7F4) at 578, 591, 613, 654 and 702 nm, respectively, with lambdaexci=392 nm (7F0-->5L6). In the case of Tb3+:ZLB glass, four emission transitions such as (5D4-->7F6, 7F5, 7F4 and 7F3) that are located at 489, 542, 585 and 622 nm, respectively, have been measured with lambdaexci=374 nm. For all these emission bands decay curves have been plotted to evaluate their lifetimes and the emission processes that arise in the glasses have been explained in terms of energy level schemes.
Structure and luminescence properties of Dy 2O 3 doped bismuth-borate glasses
Mugoni, Consuelo; Gatto, C.; Pla-Dalmau, A.; ...
2017-07-05
In this study heavy bismuth-borate glasses were studied as host matrices of Dy 2O 3 rare earth, for potential application as scintillator materials in high energy physics experiments and in general radiation detection systems. Glass matrices were prepared from 20BaO-xBi 2O 3-(80-x)B 2O 3 (x = 20, 30, 40 mol%) ternary systems and synthesized by the melt-quenching method at different temperatures in order to obtain high density and high transparency in the UV/Vis range. Particularly, the glass manifesting the higher transparency and with sufficiently high density was doped with Dy 2O 3 (2.5 and 5 mol%) in order to inducemore » the luminescence characteristics. The effects of Bi 2O 3 and Dy 2O 3 on density, thermal behaviour, transmission as well as luminescence properties under UV excitation, were investigated. The experimental results show that the synthesized glasses can be considered promising candidate materials as dense scintillators, due to the Dy 3 + centres emission.« less
Predoi, Daniela; Popa, Cristina Liana; Chapon, Patrick; Groza, Andreea; Iconaru, Simona Liliana
2016-01-01
The inhibitory and antimicrobial effects of silver particles have been known since ancient times. In the last few years, a major health problem has arisen due to pathogenic bacteria resistance to antimicrobial agents. The antibacterial activities of new materials including hydroxyapatite (HAp), silver-doped hydroxyapatite (Ag:HAp) and various types of antibiotics such as tetracycline (T-HAp and T-Ag:HAp) or ciprofloxacin (C-HAp and C-Ag:HAp) have not been studied so far. In this study we reported, for the first time, the preparation and characterization of various thin films based on hydroxyapatite and silver-doped hydroxyapatite combined with tetracycline or ciprofloxacin. The structural and chemical characterization of hydroxyapatite and silver-doped hydroxyapatite thin films has been evaluated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The morphological studies of the HAp, Ag:HAp, T-HAp, T-Ag:HAp, C-HAp and C-Ag:HAp thin solid films were performed using scanning electron microscopy (SEM). In order to study the chemical composition of the coatings, energy dispersive X-ray analysis (EDX) and glow discharge optical emission spectroscopy (GDOES) measurements have been used, obtaining information on the distribution of the elements throughout the film. These studies have confirmed the purity of the prepared hydroxyapatite and silver-doped hydroxyapatite thin films obtained from composite targets containing Ca10−xAgx(PO4)6(OH)2 with xAg = 0 (HAp) and xAg = 0.2 (Ag:HAp). On the other hand, the major aim of this study was the evaluation of the antibacterial activities of ciprofloxacin and tetracycline in the presence of HAp and Ag:HAp thin layers against Staphylococcus aureus and Escherichia coli strains. The antibacterial activities of ciprofloxacin and tetracycline against Staphylococcus aureus and Escherichia coli test strains increased in the presence of HAp and Ag:HAp thin layers. PMID:28773899
Dielectric relaxation in AgI doped silver selenomolybdate glasses
NASA Astrophysics Data System (ADS)
Palui, A.; Shaw, A.; Ghosh, A.
2016-05-01
We report the study of dielectric properties of some silver ion conducting silver selenomolybdate mixed network former glasses in a wide frequency and temperature range. The experimental data have been analyzed in the framework of complex dielectric permittivity. The dielectric permittivity data have been well interpreted using the Cole-Cole function. The temperature dependence of relaxation time obtained from real part of dielectric permittivity data shows an Arrhenius behavior. The activation energy shows a decreasing trend with the increase of doping content. Values of stretched exponential parameter are observed to be independent of temperature and composition.
NASA Astrophysics Data System (ADS)
Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee
2018-03-01
Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.
NASA Astrophysics Data System (ADS)
Dousti, M. Reza; Poirier, Gael Y.; Amjad, Raja J.; de Camargo, Andrea S. S.
2016-10-01
We report on the influence of silver nanoparticles (NPs) on the luminescence behavior of trivalent rare earth (RE) ion doped tungsten-phosphate glasses. In order to induce the growth of NPs, the as-prepared glass samples containing silver atoms, are exposed to heat-treatment above the glass transition temperature. The surface plasmon resonance band of the Ag NPs is observed in the visible range around 420 and 537 nm in the glasses with low and high tungsten content, respectively. Such difference in spectral shift of the plasmon band is attributed to the difference in the refractive index of the two studied glass compositions. Heat-treatment results in the general increase in number of NPs, while in the case of glasses with low tungsten content, it also imposes a shift to the Ag plasmon band. The NPs size distribution (4-10 nm) was determined in good agreement with the values obtained by using Mie theory and by transmission electron microscopy. The observed quenching in the visible luminescence of glasses doped with Eu3+, Tb3+ or Er3+is attributed to energy transfer from the RE ions to Ag species, while an enhanced near-infrared emission in Er3+ doped glasses is discussed in terms of the chemical contribution of silver, rather than the most commonly claimed enhancement of localized field or energy transfer from silver species to Er3+. The results are supported by the lifetime measurements. We believe that this study gives further insight and in-depth exploration of the somewhat controversial discussions on the influence of metallic NPs plasmonic effects in RE-doped glasses.
Changes in optical spectra of silver nanoparticles doped europium ions
NASA Astrophysics Data System (ADS)
Rasmagin, S. I.; Krasovskii, V. I.; Novikov, I. K.; Kryshtob, V. I.; Kazaryan, M. A.
2018-04-01
Colloidal solutions of Ag silver nanoparticles were studied in the presence of Eu3+ ions and in the absence of their. Silver nanoparticles were created by the method of green synthesis using an aqueous solution of mint. Optical and electronic spectroscopy have been used to explore the interaction of these ions with silver nanoparticles.
Photorefraction in the ultraviolet: Materials and effects
NASA Astrophysics Data System (ADS)
Laeri, F.; Jungen, R.; Angelow, G.; Vietze, U.; Engel, T.; Würtz, M.; Hilgenberg, D.
1995-10-01
Doped as well as nominally pure crystals of Lithium Niobate (LiNbO3), ι-Arginine Phosphate (LAP), Lithium Iodate (LiIO3), Potassium Dihydrogen Phosphate (KDP), Lithium Formate (LFM), Beta-Barium Borate (BBO), and lithium tetra borate were grown and investigated for photorefractive effects at ultraviolet wavelengths down to 333 nm. In nominally undoped LiNbO3 crystals strong beam coupling effects were observed. In contrast to the visible we revealed a diffusion-dominated charge transport mechanism based on holes, and a low photovoltaic field in the order of 550 V/cm. With such a crystal we investigated the modulation transfer function of a lensless image projection system based on a phase conjugation scheme. A spatial frequency response beyond 2800 line pairs per millimeter was observed. Photorefractive beam coupling was also obtained in LiIO3. Light-induced scattering was detected in iron-doped LiIO3 whereas as-grown LAP material did not exhibit any observable photorefractive effects. However, 100 kV X-ray irradiation seems to induce material defects which can lead to weak light-induced scattering at 351 nm. In all other above-mentioned materials, doped as well as undoped, light-induced scattering could not be observed. On the other hand, this is appreciated in all the applications where the crystals are used as nonlinear material for optical frequency conversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakrishna, A.; Rajesh, D.; Babu, S.
2015-06-24
Pr{sup 3+} (1.0 mol%) doped different modifier oxide based six lithium-fluoro-borate glasses with chemical composition of 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-20MO (where M= Mg, Ca, Cd and Pb), 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-10MgO-10CaO and 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-10CdO-10PbO were prepared by conventional melt quenching technique. Judd-Ofelt theory has been applied for evaluating the Judd-Ofelt intensity parameters for Pr{sup 3+} ion in these glass compositions and are in turn to used to predict radiative properties such as radiative transition probabilities (A{sub T}), branching ratios (β) and stimulated emission cross-section (σ{sub P}). Stimulated emission cross-section (σ{sub p}) of prominent emission transitions,more » {sup 3}P{sub 0}→{sup 3}H{sub 4} and {sup 1}D{sub 2}→{sup 3}H{sub 4} of Pr{sup 3+} ion in all lithium-fluoro-borate glasses were calculated. Among all the emission transitions, {sup 3}P{sub 0}→{sup 3}H{sub 4} posseses higher branching ratio and stimulated emission cross-section in Mg-Ca glass, which leads to the best laser excitation at 487 nm wavelength.« less
Preparation and characterization of Tb3+ ions doped zincborophosphate glasses for green emission
NASA Astrophysics Data System (ADS)
Bindu, S. Hima; Raju, D. Siva; Krishna, V. Vinay; Raju, Ch. Linga
2017-06-01
The present study reports the preparation of various concentrations of Tb3+ ions doped zincborophosphate glasses and analysis by XRD, FTIR, optical, emission and decay curve spectras. The effect of borate groups on the phosphate was evidenced by FTIR spectroscopy. The JO intensity parameters was calculated using Judd-Offlet theory. The fluroscence spectra of Tb3+ doped zincborophosphate glasses revealed the efficient blue and green emissions due to 5D3 and 5D4 excited levels to 7Fj ground state respectively. The decay curves exhibits single exponential curves for all the Tb3+ ion concentrations. Various radiative and fluorescence parameters are calculated using JO intensity parameters. Based on the results obtained in the present study, the Tb3+ ions doped zincborophosphate glasses behaves as a efficient laser active materials for highintensity emissions in the green region.
NASA Astrophysics Data System (ADS)
Murashov, Alexander A.; Sidorov, Alexander I.; Shakhverdov, Teimur A.; Stolyarchuk, Maxim V.
2017-11-01
It is shown, experimentally, that in silver- and copper-containing zinc-phosphate glasses, metal molecular clusters are formed during the glass synthesis. X-ray irradiation of these glasses led to the considerable increase of its luminescence in visible spectral range. This effect is caused by the transformation of the charged metal molecular clusters into the neutral state. Luminescence and excitation spectra of the glass, doped with silver and copper simultaneously, change significantly in comparison with the spectra of glasses doped with one metal. The reason for this can be the formation of hybrid AgnCum molecular clusters. The computer simulation of the structure and optical properties of such clusters by the time-dependent density functional theory method is presented. It is shown that the optimal luminescent material for photonics application, in comparison with other studied materials, is glass, containing hybrid molecular clusters.
Density functional theory and surface reactivity study of bimetallic AgnYm (n+m = 10) clusters
NASA Astrophysics Data System (ADS)
Hussain, Riaz; Hussain, Abdullah Ijaz; Chatha, Shahzad Ali Shahid; Hussain, Riaz; Hanif, Usman; Ayub, Khurshid
2018-06-01
Density functional theory calculations have been performed on pure silver (Agn), yttrium (Ym) and bimetallic silver yttrium clusters AgnYm (n + m = 2-10) for reactivity descriptors in order to realize sites for nucleophilic and electrophilic attack. The reactivity descriptors of the clusters, studied as a function of cluster size and shape, reveal the presence of different type of reactive sites in a cluster. The size and shape of the pure silver, yttrium and bimetallic silver yttrium cluster (n = 2-10) strongly influences the number and position of active sites for an electrophilic and/or nucleophilic attack. The trends of reactivities through reactivity descriptors are confirmed through comparison with experimental data for CO binding with silver clusters. Moreover, the adsorption of CO on bimetallic silver yttrium clusters is also evaluated. The trends of binding energies support the reactivity descriptors values. Doping of pure cluster with the other element also influence the hardness, softness and chemical reactivity of the clusters. The softness increases as we increase the number of silver atoms in the cluster, whereas the hardness decreases. The chemical reactivity increases with silver doping whereas it decreases by increasing yttrium concentration. Silver atoms are nucleophilic in small clusters but changed to electrophilic in large clusters.
Kashif, Ismail; Soliman, Ashia A; Sakr, Elham M; Ratep, Asmaa
2013-09-01
Glasses of various compositions in the system 90 Li2B4O7-10 Nb2O5 mixed with T.M ions (where T.M is the transition metal) were prepared by quenching technique. Heat-treatment of the parent glasses was performed at 540, 570 and 620 °C, for 5 and 16 h. The glass structure evolution during the controlled crystallization was examined by XRD and FT-IR spectroscopy analysis. The crystalline phases present in the glass ceramics were identified via X-ray diffraction as a function of heat treatment. The FT-IR data propose for these glasses and heat-treated glass network structures mainly built by: di-, tri-, tetra-, penta-and ortho-borate groups. It was found that the quantitative evolution of these various borate species in the glass structures is influenced by the transition metal. A detailed discussion relating to the N4 evolution with the T.M content was made. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zur, Lidia; Janek, Joanna; Pietrasik, Ewa; Sołtys, Marta; Pisarska, Joanna; Pisarski, Wojciech A.
2016-11-01
Series of Eu3+-doped lead-free germanate and borate glasses were synthesized. The MO glass modifiers (M = Ca, Sr or Ba) were partially or totally substituted by MF2 in chemical composition. In contrast to samples modified by CaO/CaF2 or SrO/SrF2, the germanate glass samples containing BaO and/or BaF2 are fully amorphous, while the lead-free borate glasses are fully amorphous, independently from glass modifiers. Effect of glass modifiers on spectroscopic properties of Eu3+ were systematically investigated. For that reason, excitation and emission spectra of Eu3+ ions in examined systems were registered. Based on the emission spectra, ratio of integrated luminescence intensity of the 5D0 → 7F2 transition to that of the 5D0 → 7F1 transition (R factor) was calculated. Moreover, the luminescence decay curves were collected and the luminescence lifetimes of the 5D0 excited state of Eu3+ ions were determined in function of MF2 concentration.
Study on silver doped and undoped ZnO thin films working as capacitive sensor
NASA Astrophysics Data System (ADS)
Kiran, S.; Kumar, N. Santhosh; Kumar, S. K. Naveen
2013-06-01
Nanomaterials have been found to exhibit interesting properties like good conductivity, piezoelectricity, high band gap etc. among those metal oxide family, Zinc Oxide has become a material of interest among scientific community. In this paper, we present a method of fabricating capacitive sensors, in which Silver doped ZnO and pure ZnO nanoparticles act as active layer. For the synthesis of the nanoparticle, we followed biosynthesis method and wet chemical method for Ag and Ag doped ZnO nanoparticles respectively. Characterization has been done for both the particles. The XRD pattern taken for the Ag Doped ZnO nanoparticles confirmed the average size of the particles to be 15nm. AFM image of the sample is taken by doping on Silicon wafer. Also we have presented the results of CV characteristics and IV characteristics of the capacitive sensor.
Structural and optical properties of lithium sodium borate glasses doped with Sm3+ ions
NASA Astrophysics Data System (ADS)
Dawaud, R. S. E. S.; Hashim, S.; Alajerami, Y. S. M.; Mhareb, M. H. A.; Maqableh, M. M.; Tamchek, N.
2014-07-01
Absorption and emission spectra of Sm3+ doped lithium sodium borate (LNB) have been reported. The samples were prepared by the melt-quenching technique and characterized by X-ray diffraction (XRD), diffraction thermal analysis (DTA), Fourier transforms infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FESEM). From the thermo-grams spectrum, glass transition (Tg), crystallization (Tc) and melting temperatures (Tm) have been evaluated. Direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. These glasses have shown strong nine absorption bands with hypersensitive transition at 1221 nm (6H5/2→4H3/2) and five emission bands for the transition at 4I7/2→6H13/2 (green color), 4I7/2→6H7/2 (orange color), 4I7/2→6H9/2 (orange color), 4I7/2→6H11/2 (red color) and 4I7/2→6H13/2 (red color) with performing an excitation of 400 nm. The oscillator strengths, refractive index, ions concentration, polaron radius and other parameters have been calculated for each dopant.
Sanghi, S; Pal, I; Agarwal, A; Aggarwal, M P
2011-12-01
Glasses with composition 20CdO·xBi(2)O(3)·(79.5-x)B(2)O(3) (15≤x≤35, x in mol%) containing 0.5 mol% of Er(3+) ions were prepared by melt-quench technique (1150°C in air). The amorphous nature of the glasses was confirmed by X-ray diffraction. The spectroscopic properties of the glasses were investigated using optical absorption spectra and fluorescence spectra. The phenomenological Judd-Ofelt intensity parameters Ω(λ) (λ=2, 4, 6) were determined from the spectral intensities of absorption bands in order to calculate the radiative transition probability (A(R)), radiative life time (τ(R)), branching ratios (β(R)) for various excited luminescent states. Using the near infrared emission spectra, full width at half maxima (FWHM), stimulated emission cross-section (σ(e)) and figure of merit (FOM) were evaluated and compared with other hosts. Especially, the numerical values of these parameters indicate that the emission transition (4)I(13/2)→(4)I(15/2) at 1.506 μm in Er(3+)-doped cadmium bismuth borate glasses may be useful in optical communication. Copyright © 2011 Elsevier B.V. All rights reserved.
Optical properties modification induced by laser radiation in noble-metal-doped glasses
NASA Astrophysics Data System (ADS)
Nedyalkov, N.; Stankova, N. E.; Koleva, M. E.; Nikov, R.; Atanasov, P.; Grozeva, M.; Iordanova, E.; Yankov, G.; Aleksandrov, L.; Iordanova, R.; Karashanova, D.
2018-03-01
We present results on laser-induced color changes in gold- and silver-doped glass. The doped borosilicate glass was prepared by conventional melt quenching. The study was focused on the change of the optical properties after irradiation of the glass by femtosecond laser pulses. Under certain conditions, the laser radiation induces defects associated with formation of color centers in the material. We studied this process in a broad range of laser radiation wavelengths – from UV to IR, and observed changes in the color of the irradiated areas after annealing of the processed glass samples, the color being red for the gold-doped glass red and yellow for the silver-doped glass. The structural and morphological analyses performed indicated that this effect is related to formation of metal nanoparticles inside the material. The results obtained show that femtosecond laser processing of noble-metal-doped glasses can be used for fabrication of 3D-nanoparticles systems in transparent materials with application as novel optical components.
Luminescence study and CIE diagram of certain alkaline sodium lead borate glass for LED applications
NASA Astrophysics Data System (ADS)
Lenkennavar, S. K.; Madhu, A.; Eraiah, B.; Kokila, M. K.
2018-04-01
In the present work, the glass composition 20Na2O -10PbO-10MO -60B2O3 doped with Praseodymium ions have been synthesised using muffle furnace by the conventional melt quenching technique and the effect of Pr3+ ions on optical properties of present glasses have been examined. The emission spectra were recorded in the wavelength range of 450-750nm upon excitation at 450 and 550nm. The Commission International deI'Eclairage (CIE) chromaticity coordinates are determined to estimate the emission colour of the Pr3+ incorporated barium/calcium/strontium sodium lead borate glasses. It is observed that blue LED and red LED applications can be expected by tuning the excitation wavelength applied to the same glass matrices.
Meyn, J P; Huber, G
1994-09-15
Neodymium-doped lanthanum scandium borate [Nd:LaSc(3)(BO(3))(4)] is a new material for efficient and compact diode-pumped solid-state lasers. A simple plane-plane 3-mm-long resonator is formed by a coated Nd(10%):LaSc(3)(BO(3))(4) crystal and a coated potassium titanyl phosphate (KTP) crystal. The second-harmonic output power at 531 nm is 522 mW at 2.05-W incident pump power of the diode laser. The corresponding optical efficiency is 25%, and the conversion efficiency from the fundamental to the second harmonic is 55%. The wellknown chaotic power fluctuations of intracavity frequency-doubled lasers (green problem) are avoided by use of a short KTP crystal, between 0.5 and 2 mm in length.
Scintillation properties of phosphate-borate-fluoride glass doped with Tb3+/Pr3+
NASA Astrophysics Data System (ADS)
Valiev, D.; Stepanov, S.; Polisadova, E.; Yao, G.
2018-06-01
Scintillation glass doped with Tb3+ and Pr3+ ions with different concentrations were prepared by the melt-quenching method. Optical, photoluminescence and decay kinetic characteristics of the pulse cathodoluminescence (PCL) were investigated. It was shown that the absorption coefficient of the induced absorption in the visible range of the spectrum decreases significantly with the increase of the Pr2O3 content starting from 0.2 to 1 wt%. There was the difference in the luminescence spectra of the glass at a selective and non-selective type of excitation. The "green" emission (λem= 542 nm, 5D4→7F5 radiative transition of Tb3+ ions) was excited an electron beam. The "red" emission (λem= 600 nm, 3P0→3H6 radiative transition of Pr3+ ion) was observed under selective excitation action (λexc= 450 nm). It was demonstrated that decreasing of intensity the main bands of Tb3+ ions at 487, 544, 622 nm connected with increases of concentration Pr3+ ions. The luminescence decay time of terbium ions at 487, 544, 622 nm emission bands depend on Pr3+ concentration. The tendency of reducing the luminescence decay time in the main luminescence bands of Tb3+ ions at increasing the Pr3+ concentration was presented. The results showed that Tb3+/ Pr3+ co-doped phosphate-borate-fluoride glasses are promising non-crystalline scintillation materials.
Active metal oxides and polymer hybrids as biomaterials
NASA Astrophysics Data System (ADS)
Jarrell, John D.
Bone anchored prosthetic attachments, like other percutaneous devices, suffer from poor soft tissue integration, seen as chronic inflammation, infection, epithelial downgrowth and regression. We looked at the use of metal oxides as bioactive agents that elicit different bioresponses, ranging from cell attachment, tissue integration and reduction of inflammation to modulation of cell proliferation, morphology and microbe killing. This study presents a novel method for creating titanium oxide and polydimethylsiloxane (PDMS) hybrid coated microplates for high throughput biological, bacterial and photocatalytic screening that overcomes several limitations of using bulk metal samples. Titanium oxide coatings were doped with silver, zinc, vanadium, aluminum, calcium and phosphorous, while PDMS was doped with titanium, vanadium and silver and subjected to hydrothermal heat treatment to determine the influence of chemistry and crystallinity on the viability, proliferation and adhesion of human fibroblasts, keratinocytes and Hela cells. Also explored was the influence of Ag and Zn doping on E. coli proliferation. We determined how titanium concentration in hybrids and silver doping influenced the photocatalytic degradation of methylene blue by coatings. A combined sub/percutaneous, polyurethane device was developed and implanted into the backs of CD hairless rats to investigate how optimized coatings influenced soft tissue integration in vivo. We demonstrate that the bioresponse of cells to coatings is controlled by elemental doping (V & Ag) and that planktonic bacterial growth was greatly reduced or stopped by Ag, but not Zn doping. Hydrothermal heat treatments (65 °C and 121 °C) did not greatly influence cellular bioresponse to coatings. We discovered a range of temperature resistant (up to 400 °C), solid state dispersions with enhanced ability to block full spectrum photon transmission and degrade methylene using medical x-rays, UV, visible and infrared photons. We show that silver doping improved the photoactivity of oxide coatings, but hindered activity of a specific hybrid. Doped titanium oxide and polymer hybrid coatings have potential for improving soft tissue integration of medical implants and wound healing by modulating cell proliferation, attachment, inflammation and providing controlled delivery of bioactive and antimicrobial compounds and photon induced electro-chemical activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fares, Hssen; Férid, Mokhtar; Elhouichet, Habib, E-mail: habib.elhouichet@fst.rnu.tn
Tellurite glasses doped Er³⁺ ions and containing Silver nanoparticles (Ag NPs) are prepared using melt quenching technique. The nucleation and growth of Ag NPs were controlled by a thermal annealing process. The X-ray diffraction pattern shows no sharp peak indicating an amorphous nature of the glasses. The presence of Ag NPs is confirmed from transmission electron microscopy micrograph. Absorption spectra show typical surface plasmon resonance (SPR) band of Ag NPs within the 510–550 nm range in addition to the distinctive absorption peaks of Er³⁺ ions. The Judd-Ofelt (J-O) intensity parameters, oscillator strengths, spontaneous transition probabilities, branching ratios, and radiative lifetimesmore » were successfully calculated based on the experimental absorption spectrum and the J-O theory. It was found that the presence of silver NPs nucleated and grown during the heat annealing process improves both of the photoluminescence (PL) intensity and the PL lifetime relative to the ⁴I 13/2 → ⁴I 15/2 transition. Optimum PL enhancement was obtained after 10 h of heat-treatment. Such enhancements are mainly attributed to the strong local electric field induced by SPR of silver NPs and also to energy transfer from the surface of silver NPs to Er³⁺ ions, whereas the quenching is ascribed to the energy transfer from Er³⁺ ions to silver NPs. Using the Mc Cumber method, absorption cross-section, calculated emission cross-section, and gain cross-section for the ⁴I 13/2 → ⁴I 15/2 transition were determined and compared for the doped and co-doped glasses. The present results indicate that the glass heat-treated for 10 h has good prospect as a gain medium applied for 1.53 μm band broad and high-gain erbium-doped fiber amplifiers.« less
Synthesis and characterization of γ-irradiated cadmium-borate glasses doped V2O5
NASA Astrophysics Data System (ADS)
Bahammam, S.; Abd El Al, S.; Ezz-Eldin, F. M.
In this work, we study the relationship between the optical and magnetic properties for the irradiated and unirradiated V2O5-doped cadmium borate glasses and examined their optical band energy that has compromise of non-bridging oxygen (NBO) and bridging oxygen (BO), V3+, V4+ and V5+, and BO3 units and BO4 units. The induced defects created by γ-rays were characterized by optical and EPR spectroscopy. The dependability of the defects and the tendency for recombination or conversion of the defects besides the environment of optically dynamic V centers was also discussed. It is concluded that the development of both optical and magnetic intensity is related to V4+ ions at tetrahedral sites whereas the decrease in their intensity is recognized to the ligand-metal charge transfer transitions of V4+ ions coupled to V5+. The optical band gap energy (Eg) has been observed to decrease with increasing either V2O5 content or γ-doses. High γ-dose reduces the values of the allowed direct optical band gap Eg of 0.5 Mol% V2O5 glass up to 45 kGy after which Eg increases, but remain lower than that of un-irradiated glass. Borate glasses under this study showed linear optical absorption response over the dose range of 5-80 kG. Fading under dark and room light in 2 h after exposure in the course of 30 days have been studied in detail and presented. Our results and findings indicate that, the investigated samples may be seemed to be a good candidate for radiation processing purposes.
Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment.
Liga, Michael V; Bryant, Erika L; Colvin, Vicki L; Li, Qilin
2011-01-01
Photocatalytic inactivation of viruses and other microorganisms is a promising technology that has been increasingly utilized in recent years. In this study, photocatalytic silver doped titanium dioxide nanoparticles (nAg/TiO(2)) were investigated for their capability of inactivating Bacteriophage MS2 in aqueous media. Nano-sized Ag deposits were formed on two commercial TiO(2) nanopowders using a photochemical reduction method. The MS2 inactivation kinetics of nAg/TiO(2) was compared to the base TiO(2) material and silver ions leached from the catalyst. The inactivation rate of MS2 was enhanced by more than 5 fold depending on the base TiO(2) material, and the inactivation efficiency increased with increasing silver content. The increased production of hydroxyl free radicals was found to be responsible for the enhanced viral inactivation. Copyright © 2010 Elsevier Ltd. All rights reserved.
Electronic structure and optical properties of CsI, CsI(Ag), and CsI(Tl)
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Zhao, Qiang; Li, Yang; Ouyang, Xiao-Ping
2016-05-01
The band structure, electronic density of states and optical properties of CsI and of CsI doped with silver or thallium are studied by using a first-principles calculation based on density functional theory (DFT). The exchange and the correlation potentials among the electrons are described by using the generalized gradient approximation (GGA). The results of our study show that the electronic structure changes somewhat when CsI is doped with silver or thallium. The band gaps of CsI(Ag) and CsI(Tl) are smaller than that of CsI, and the width of the conduction band of CsI is increased when CsI is doped with thallium or silver. Two peaks located in the conduction band of CsI(Ag) and CsI(Tl) are observed from their electronic densities of states. The absorption coefficients of CsI, CsI(Ag), and CsI(Tl) are zero when their photon energies are below 3.5 eV, 1.5 eV, and 3.1 eV, respectively. The results show that doping can improve the detection performance of CsI scintillators. Our study can explain why doping can improve the detection performance from a theoretical point of view. The results of our research provide both theoretical support for the luminescent mechanisms at play in scintillator materials when they are exposed to radiation and a reference for CsI doping from the point of view of the electronic structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Qing; Yu, Xue; Xu, Xuhui
2013-06-15
The reduction of Eu{sup 3+} to Eu{sup 2+} is realized efficiently in Eu{sub 2}O{sub 3}-doped borate glasses prepared under air condition by melting-quenching method. Luminescent spectra show an increasing tendency of Eu{sup 2+} emission with increasing Al{sub 2}O{sub 3} concentration in B{sub 2}O{sub 3}–Na{sub 2}O glasses. It is interesting that significant enhancement appeared of Eu{sup 2+} luminescence in the Al{sub 2}O{sub 3}-rich sample comparing to the samples of Al{sub 2}O{sub 3} less than 6 mol%. FTIR and Raman scattering measurements indicated that some new vibration modes assigned to the low-polymerized structure groups decomposed from the slight Al{sub 2}O{sub 3} dopantmore » samples. These results demonstrated that the polymerization of the glass structure decreased with increasing incorporation of Al{sub 2}O{sub 3} into the borate glasses, linking to the efficiency of Eu{sup 3+} self-reduction in air at high temperature. - graphical abstract: A novel europium valence reduction phenomenon occurred in Al{sub 2}O{sub 3} modified borate glasses, FTIR and Raman measurements revealed that high polymeric groups were destroyed to low polymery structures with Al{sub 2}O{sub 3} addition. - Highlights: • The efficient reduction of Eu{sup 3+} to Eu{sup 2+} is observed in the B{sub 2}O{sub 3}–Na{sub 2}O glasses. • Eu{sup 2+} luminescence is significant enhanced in the Al{sub 2}O{sub 3}-rich glasses. • The introduction of Al{sub 2}O{sub 3} changed the network structure of the borate glasses. • High polymeric borate groups in the glass matrix may be destroyed to the lower ones.« less
Ciobanu, C S; Groza, A; Iconaru, S L; Popa, C L; Chapon, P; Chifiriuc, M C; Hristu, R; Stanciu, G A; Negrila, C C; Ghita, R V; Ganciu, M; Predoi, D
2015-01-01
The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC-American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells.
Ciobanu, C. S.; Groza, A.; Iconaru, S. L.; Popa, C. L.; Chapon, P.; Chifiriuc, M. C.; Hristu, R.; Stanciu, G. A.; Negrila, C. C.; Ghita, R. V.; Ganciu, M.; Predoi, D.
2015-01-01
The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC—American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells. PMID:26504849
Effect of three ophthalmic solutions on chemical conjunctivitis in the neonate.
Yasunaga, S
1977-02-01
In an attempt to reduce chemical conjunctivitis after silver nitrate prophylaxis, three different ophthalmic solutions (sodium chloride, sterile water, and a boric acid-sodium borate solution) were used to irrigate the eyes immediately after prophylaxis in 450 neonates. Sterile water significantly reduced (P less than .02) the prevalence of chemical conjunctivitis when compared to the conventional sodium chloride rinse. A significantly greater prevalence of chemical irritation in low-birth-weight infants was also noted (P less than .02).
Atom probe tomography of lithium-doped network glasses.
Greiwe, Gerd-Hendrik; Balogh, Zoltan; Schmitz, Guido
2014-06-01
Li-doped silicate and borate glasses are electronically insulating, but provide considerable ionic conductivity. Under measurement conditions of laser-assisted atom probe tomography, mobile Li ions are redistributed in response to high electric fields. In consequence, the direct interpretation of measured composition profiles is prevented. It is demonstrated that composition profiles are nevertheless well understood by a complex model taking into account the electronic structure of dielectric materials, ionic mobility and field screening. Quantitative data on band bending and field penetration during measurement are derived which are important in understanding laser-assisted atom probe tomography of dielectric materials. Copyright © 2014 Elsevier B.V. All rights reserved.
Ag-doped manganite nanoparticles: new materials for temperature-controlled medical hyperthermia.
Melnikov, O V; Gorbenko, O Yu; Markelova, M N; Kaul, A R; Atsarkin, V A; Demidov, V V; Soto, C; Roy, E J; Odintsov, B M
2009-12-15
The purpose of this study was to introduce newly synthesized nanomaterials as an alternative to superparamagnetic ironoxide based particles (SPIO) and thus to launch a new platform for highly controllable hyperthermia cancer therapy and imaging. The new material that forms the basis for this article is lanthanum manganite particles with silver ions inserted into the perovskite lattice: La(1-x)Ag(x)MnO(3+delta). Adjusting the silver doping level, it is possible to control the Curie temperature (T(c)) in the hyperthermia range of interest (41-44 degrees C). A new class of nanoparticles based on silver-doped manganites La(1-x)Ag(x)MnO(3+delta) is suggested. New nanoparticles are stable, and their properties were not affected by the typical ambient conditions in the living tissue. It is possible to monitor the particle uptake and retention by MRI. When these particles are placed into an alternating magnetic field, their temperature increases to the definite value near T(c) and then remains constant if the magnetic field is maintained. During the hyperthermia procedure, the temperature can be restricted, thereby preventing the necrosis of normal tissue. A new class of nanoparticles based on silver-doped manganites La(1-x)Ag(x)MnO(3+delta) was suggested. Ag-doped perovskite manganites particles clearly demonstrated the effect of adjustable Curie temperature necessary for highly controllable cellular hyperthermia. The magnetic relaxation properties of the particles are comparable with that of SPIO, and so we were able to monitor the particle movement and retention by MRI. Thus, the new material combines the MRI contrast enhancement capability with targeted hyperthermia treatment.
Enhanced scintillation of Ba3In(B3O6)3 based on nitrogen doping
NASA Astrophysics Data System (ADS)
Wang, Z. X.; Pei, H.; Tao, X. M.; Cai, G. M.; Mao, R. H.; Jin, Z. P.
2018-02-01
Scintillating materials, as a class of luminescent materials, are highly demanded for practical use in the high-energy detection. However, the applications are often hampered by their low light yield (LY) or long decay time for many traditional scintillators. In this work, upon nitrogen anion doping, scintillation performance in layered borate Ba3In(B3O6)3 (BIB) has been excellently enhanced with high XEL intensity of ~3 times as large as that of commercial Bi4Ge3O12 (BGO) and ultra-fast fluorescent decay time of ~1.25 ns. To shed light on origins of the intrinsic violet-blue emission, we measured the in-situ vacuum ultraviolet excited (VUV) emission spectra of N-BIB ceramic. Combined with experiments and first principles calculations, the band-gap reduction and donor-acceptor density increasing by nitrogen (N) doping is responsible for the enhancement of scintillation performance for N-doped Ba3In(B3O6)3. Moreover, nitrogen anion doping rather than conventional cation doping is found to be also applicable to other intrinsic luminescent materials for enhancing performance.
NASA Astrophysics Data System (ADS)
Sohn, Hiesang; Woo, Yun Sung; Shin, Weonho; Yun, Dong-Jin; Lee, Taek; Kim, Felix Sunjoo; Hwang, Jinyoung
2017-10-01
We present hybrid transparent conducting films based on silver nanowires (Ag NWs) and doped graphene through novel dual co-doping method by applying various dopants (HNO3 or Au for p-doping and N2H4 for n-doping) on top and bottom sides of graphene. We systematically investigated the effect of dual-doping on their surface as well as electrical and optical properties of graphene and Ag NW/graphene hybrid films through the combination study with various dopant types (p/p, p/n, n/p, and n/n). We found that the p/p-type dual-doped (p-type dopant: HNO3) graphene and its hybrid formation with Ag NWs appeared to be the most effective in enhancing the electrical properties of conductor (doped graphene with ΔR/R0 = 84% and Ag NW/doped graphene hybrid with ΔR/R0 = 62%), demonstrating doped monolayer graphene with high optical transmittance (TT = 97.4%), and sheet resistance (Rs = 188 Ω/sq.). We also note that dual-doping improved such electrical properties without any significant debilitation of optical transparency of conductors (doped graphene with ΔTT = 0.1% and Ag NW/doped graphene hybrid with ΔTT = 0.4%). In addition, the enhanced conductivity of p-type dual-doped graphene allows a hybrid system to form co-percolating network in which Ag NWs can form a secondary conductive path at grain boundaries of polycrystalline graphene.
Roy, Mangal; Fielding, Gary A.; Beyenal, Haluk; Bandyopadhyay, Amit; Bose, Susmita
2012-01-01
Implant related infection is one of the key concerns in total joint hip arthroplasties. In order to reduce bacterial adhesion, silver (Ag) / silver oxide (Ag2O) doping was used in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0 and 6.0 wt% Ag, heat treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decomposition and amorphous phase formation in the HA coatings as evident by X-ray diffraction (XRD) study and Fourier transformed infrared spectroscopic (FTIR) analysis. Adhesive bond strength of more than 15 MPa ensured the mechanical integrity of the coatings. Resistance against bacterial adhesion of the coatings was determined by challenging them against Pseudomonas Aeruginosa (PAO1). Live/Dead staining of the adherent bacteria on the coating surfaces indicated a significant reduction in bacterial adhesion due to the presence of Ag. In vitro cell-material interactions and alkaline phosphatase (ALP) protein expressions were evaluated by culturing human fetal osteoblast cells (hFOB). Present results suggest that the plasma sprayed HA coatings doped with an optimum amount of Ag can have excellent antimicrobial property without altering mechanical property of the Ag doped HA coatings. PMID:22313742
Roy, Mangal; Fielding, Gary A; Beyenal, Haluk; Bandyopadhyay, Amit; Bose, Susmita
2012-03-01
Implant-related infection is one of the key concerns in total joint hip arthroplasties. To reduce bacterial adhesion, we used silver (Ag)/silver oxide (Ag(2)O) doping in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0, and 6.0 wt % Ag, heat-treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decomposition and amorphous phase formation in the HA coatings as evident by X-ray diffraction (XRD) study and Fourier transformed infrared spectroscopic (FTIR) analysis. Adhesive bond strength of more than 15 MPa ensured the mechanical integrity of the coatings. Resistance against bacterial adhesion of the coatings was determined by challenging them against Pseudomonas aeruginosa (PAO1). Live/dead staining of the adherent bacteria on the coating surfaces indicated a significant reduction in bacterial adhesion due to the presence of Ag. In vitro cell-material interactions and alkaline phosphatase (ALP) protein expressions were evaluated by culturing human fetal osteoblast cells (hFOB). Our results suggest that the plasma-sprayed HA coatings doped with an optimum amount of Ag can have excellent antimicrobial property without altering mechanical property of the Ag-doped HA coatings. © 2012 American Chemical Society
Genovese, Chiara; Schuster, Manfred E; Gibson, Emma K; Gianolio, Diego; Posligua, Victor; Grau-Crespo, Ricardo; Cibin, Giannantonio; Wells, Peter P; Garai, Debi; Solokha, Vladyslav; Krick Calderon, Sandra; Velasco-Velez, Juan J; Ampelli, Claudio; Perathoner, Siglinda; Held, Georg; Centi, Gabriele; Arrigo, Rosa
2018-03-05
The carbon-carbon coupling via electrochemical reduction of carbon dioxide represents the biggest challenge for using this route as platform for chemicals synthesis. Here we show that nanostructured iron (III) oxyhydroxide on nitrogen-doped carbon enables high Faraday efficiency (97.4%) and selectivity to acetic acid (61%) at very-low potential (-0.5 V vs silver/silver chloride). Using a combination of electron microscopy, operando X-ray spectroscopy techniques and density functional theory simulations, we correlate the activity to acetic acid at this potential to the formation of nitrogen-coordinated iron (II) sites as single atoms or polyatomic species at the interface between iron oxyhydroxide and the nitrogen-doped carbon. The evolution of hydrogen is correlated to the formation of metallic iron and observed as dominant reaction path over iron oxyhydroxide on oxygen-doped carbon in the overall range of negative potential investigated, whereas over iron oxyhydroxide on nitrogen-doped carbon it becomes important only at more negative potentials.
Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles
Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela
2013-01-01
The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures. PMID:23509801
Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles.
Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela
2013-01-01
The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca(10-x)Ag(x)(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against gram-positive and gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures.
Physico-chemical characteristics and antimicrobial studies of silver doped hydroxyapatite
NASA Astrophysics Data System (ADS)
Predoi, D.; Predoi, M. V.; Kettani, Moncef Ech Cherif El; Leduc, Damien; Iconaru, S. L.; Ciobanu, C. S.; Buton, N.; Petre, C. C.; Prodan, A. M.
2018-02-01
The present research is focused on the synthesis, structural and morphological characterization and antimicrobial evaluation of silver doped hydroxyapatite (AgHAp) in water. The preliminary ultrasonic characterizations of the AgHAp in water synthesized by an adapted co-precipitation method are also presented. X-ray diffraction result showed that silver ions were substituted in the hydroxyapatite structure. The lattice parameters increased when the silver substitution increased. The morphology of AgHAp were evaluated by Scanning Electron Microscopy (SEM). By EDX analysis the constituents elements of hydroxyapatite were detected in all analyzed samples. The silver was also found in the samples with xAg = 0.5 and 0.2. The colloidal properties of the resulted AgHAp (xAg = 0.0, 0.05 and 0.2) in water were analyzed by Dynamic Light Scattering (DLS) and zeta potential. On the other hand, the novelty of our research consists of preliminary ultrasonic measurements (US) conducted on AgHAp in water. Furthermore, the antimicrobial activity of AgHAp was evaluated and a decrease in the number of surviving cells was established.
Pisarski, Wojciech A; Goryczka, Tomasz; Pisarska, Joanna; Ryba-Romanowski, Witold
2007-03-15
Lead borate based glasses have been analyzed using Raman and infrared spectroscopy. The formation of different borate groups and the direction of BO3 <--> BO4 conversion strongly depends on the PbO- and/or PbF2-to-B2O3 ratio in chemical composition. PbF2-PbO-B2O3 based glasses containing Er3+ ions have been studied after annealing. The orthorhombic PbF2 crystallites are formed during thermal treatment, which was evidenced by X-ray diffraction analysis. Near-infrared luminescence at 1530 nm and green up-conversion at 545 nm have been registered for samples before and after annealing. The luminescence bands correspond to 4I13/2-4I15/2 and 4S3/2-4I15/2 transitions of Er3+ ions, respectively. In comparison to the precursor glasses, the luminescence intensities are higher in the studied transparent oxyfluoride glass ceramics. Simultaneously, the half-width of the luminescence lines slightly decreases. It can be the evidence that a small amount of the Er3+ ions is incorporated into the orthorhombic PbF2 phase.
Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivas, G., E-mail: srinu123g@gmail.com; Ramesh, B.; Shareefuddin, Md.
2016-05-06
The mixed alkali and alkaline earth oxide borate glass with the composition xK{sub 2}O - (25-x) Li{sub 2}O-12.5BaO-12.5MgO-50B{sub 2}O{sub 3} (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α{sub 0}2-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α{sub 0}2-), and (Λ) increases with increasing of K{sub 2}O content and electronicmore » polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K{sub 2}O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).« less
NASA Astrophysics Data System (ADS)
Cheng, Pan; Zhou, Yaxun; Zhou, Minghan; Su, Xiue; Zhou, Zizhong; Yang, Gaobo
2017-11-01
Pr3+-doped tellurite glasses containing metallic silver NPs were synthesized by the conventional melt-quenching technique. Structural, thermal and optical properties of the synthesized glass samples were characterized by X-Ray diffraction (XRD) curves, Raman spectra, differential scanning calorimeter (DSC) curves, transmission electron microscopy (TEM) images, UV/Vis/NIR absorption and near-infrared fluorescence emission spectra. The XRD curves confirmed the amorphous structural nature of the synthesized glasses, the Raman spectra identified the presence of different vibrational groups, the DSC curves verified the good thermal stability, and the TEM images revealed the nucleated silver NPs with average diameter about 10 nm dispersed in the glass matrix and its surface Plasmon resonance (SPR) absorption band was located at around 510 nm. Besides, Judd-Ofelt intensity parameters Ωt (t = 2, 4, 6) and other important spectroscopic parameters like transition probability, radiative lifetime, branching ratio were calculated to evaluate the radiative properties of Pr3+ levels from the measured optical absorption spectra. It was found that Pr3+-doped tellurite glasses could emit an ultra-broadband fluorescence extending from 1250 to 1650 nm under the 488 nm excitation, and this fluorescence emission increased further with the introduction of silver NPs. The enhanced fluorescence was mainly attributed to the increased local electric field around Pr3+ induced by silver NPs. The present results demonstrate that Pr3+-Ag codoped tellurite glass is a promising candidate for the near-infrared band ultra-broadband fiber amplifiers covering the expanded low-loss communication window.
NASA Astrophysics Data System (ADS)
Fatokun, Stephen O.
For the first part of this work, we prepared a series of Sm-doped lead borate (PbO-B2O3) glasses containing zinc selenide (ZnSe) and cadmium selenide (CdSe) nanoparticles (NPs) and studied the Sm 3+ fluorescence by varying the glass composition and size of the NPs. We have chosen these heavy metal oxide glasses to incorporate Sm3+ ions because they have large glass forming region, high refractive index, and good physical and thermal stability. Lead borate glasses with the following compositions xPbO:(96.5-x)B2O 3:0.5Sm2O3:3ZnSe/CdSe, x=36.5 and 56.5 mol%) are prepared using the melt-quenching method. Transmission electron microscopy characterization was done to confirm both nucleation and growth of the NPs for different annealing times. Fluorescence spectra of these samples are obtained with the excitation wavelengths at 403 and 477nm. Three fluorescence transitions are observed at 563 nm, 598 nm and 646 nm. The transition at 646 nm is a electric dipole (ED) transition that strongly depends on the covalency of the Sm-O bond and the asymmetry of the crystal field at the Sm3+ site. The 646 nm/598 nm fluorescence intensity ratio has been studied for different annealing times and PbO concentration for both ZnSe and CdSe samples. Longer annealing times tend to make the crystal field at the Sm3+ site more symmetric in nature for these glasses. The presence of CdSe NPs is seen to produce the greatest influence on the fluorescence intensity ratio. This is believed to be due to the larger size of the CdSe nanoparticles and its stronger influence on Sm3+ ions. The second part of this work was dedicated to the understanding of the optical band gap of samarium doped lead borate glasses with and without ZnSe/CdSe NPs. Optical absorption spectra for all these glass samples show their absorption edge in the ultraviolet region. Detailed analysis of the absorption edge was carried out using the Mott-Davis model and the optical band gap and the width of the tail in the band gap (Urbach edge) were obtained. Our glass samples show both direct and indirect transitions. For samples without the NPs, the optical band gap decreases with increasing PbO concentration. The presence of ZnSe NPs shows a similar trend. The introduction of CdSe NPs, however, shows an increase in the optical band gap with increase in PbO contents. Our results indicate that CdSe NPs show markedly different effect on the optical properties of lead borate glasses compared to ZnSe NPs. TEM characterization shows that CdSe NPs are considerably larger than ZnSe NPs. These size differences could produce significant differences in the electronic properties of these NPs and their interaction with the glass matrices.
VO2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques.
Prakash, P Giri; Rao, J Lakshmana
2005-09-01
Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.
In vitro study of improved wound-healing effect of bioactive borate-based glass nano-/micro-fibers.
Yang, Qingbo; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa
2015-10-01
Because of the promising wound-healing capability, bioactive glasses have been considered as one of the next generation hard- and soft-tissue regeneration materials. The lack of understanding of the substantial mechanisms, however, indicates the need for further study on cell-glass interactions to better interpret the rehabilitation capability. In the present work, three bioactive glass nano-/micro-fibers, silicate-based 45S5, borate-based 13-93B3 and 1605 (additionally doped with copper oxide and zinc oxide), were firstly compared for their in vitro soaking/conversion rate. The results of elemental monitoring and electron microscopic characterization demonstrated that quicker ion releasing and glass conversion occurred in borate-based fibers than that of silicate-based one. This result was also reflected by the formation speed of hydroxyapatite (HA). This process was further correlated with original boron content and surrounding rheological condition. We showed that an optimal fiber pre-soaking time (or an ideal dynamic flow rate) should exist to stimulate the best cell proliferation and migration ability. Moreover, 13-93B3 and 1605 fibers showed different glass conversion and biocompatibility properties as well, indicating that trace amount variation in composition can also influence fiber's bioactivity. In sum, our in vitro rheological module closely simulated in vivo niche environment and proved a potentially improved wound-healing effect by borate-based glass fibers, and the results shall cast light on future improvement in bioactive glass fabrication. Copyright © 2015 Elsevier B.V. All rights reserved.
Bowron, Daniel T; Booth, Jonathan; Barrow, Nathan S; Sutton, Patricia; Johnson, Simon R
2018-05-23
Low levels of transition metal oxides in alkali borosilicate glass systems can drastically influence crystallisation and phase separation properties. We investigated the non-monotonic effect of manganese doping on suppressing crystallisation, and the influence on optical properties by iron oxide doping, in terms of local atomic structure. Structural models based on empirical potential structure refinement were generated from neutron and X-ray scattering data, and compared against multinuclear solid-state NMR. This revealed that a 2.5% manganese doping had a disruptive effect on the entire glass network, supressing crystallisation of an undesired bismuth silicate phase, and that iron species preferentially locate near borate tetrahedra. Preventing phase separation and controlling crystallisation behaviour of glass are critical to the ultimate properties of automotive glass enamels.
Spectroscopic investigations of Nd3+ doped flouro- and chloro-borate glasses.
Mohan, Shaweta; Thind, Kulwant Singh; Sharma, Gopi; Gerward, Leif
2008-10-01
Spectroscopic and physical properties of Nd3+ doped sodium lead flouro- and chloro-borate glasses of the type 20NaX-30PbO-49.5B2O3-0.5Nd2O3 (X=F and Cl) have been investigated. Optical absorption spectra have been used to determine the Slater Condon (F2, F4, and F6), spin orbit xi4f and Racah parameters (E1, E2, and E3). The oscillator strengths and the intensity parameters Omega2, Omega4 and Omega6 have been determined by the Judd-Ofelt theory, which in turn provide the radiative transition probability (A), total transition probability (A(T)), radiative lifetime (tauR) and branching ratio (beta) for the fluorescent level 4F3/2. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Omega4/Omega6), the value of which is in the range of 0.2-1.5, typical for Nd3+ in different laser hosts. Nephelauxetic effect results in a red shift in the energy levels of Nd3+ for chloroborate glass. The radiative transition probability of the potential lasing transition 4F3/2-->4I11/2 of Nd3+ ions is found to be higher for flouroborate as compared to chloroborate glass.
Fluorescence properties of Yb3+-Er3+ co-doped phosphate glasses containing silver nanoparticles
NASA Astrophysics Data System (ADS)
Martínez Gámez, Ma A.; Vallejo H, Miguel A.; Kiryanov, A. V.; Licea-Jiménez, L.; Lucio M, J. L.; Pérez-García, S. A.
2018-04-01
Er3+-Yb3+ co-doped phosphate glasses containing silver nitrate (SN), were fabricated. Transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) analyses were used to evidence the nucleation and presence of silver nanoparticles (SNP). The basic parameters of the glasses were inspected by means of absorption and fluorescence spectra, and fluorescence lifetimes under excitation at 916 nm (in-band of Yb3+), and at 406 nm (in-band of surface plasmon resonance given by the presence of SNP). The spectra as well as estimates for the basic parameters defining the lasing/amplifying potential of the glasses were studied as a function of SN concentration. The experimental results indicate that by increasing the SN content an enhancement of Er3+/Yb3+ fluorescence takes place.
NASA Astrophysics Data System (ADS)
Yoo, Changhyeon
In the first part of this work, the atomic-scale structure around rare-earth (RE = Pr, Nd, Eu, Dy, and Er) cations (RE3+) in rare-earth sodium ultraphosphate (REUP) glasses were investigated using RE LIII -edge (RE = Nd, Er, Dy, and Eu) and K-edge (RE = Pr and Dy) Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. (RE2O 3)x(Na2O)y(P2O5) 1-x-y glasses in the compositional range 0 ≤ x ≤ 0.14 and 0.3 ≤ x + y ≤ 0.4 were studied. For the nearest oxygen shell, the RE-oxygen (RE-O) coordination number decreases from 10.8 to 6.5 with increasing RE content for Pr-, Nd-, Dy-, and Er-doped sodium ultraphosphate glasses. For Eu-doped samples, the Eu-O coordination number was between 7.5 and 8.8. Also, the RE-O mean distance ranges were between 2.43-2.45 A, 2.40-2.43 A, 2.36-2.38 A, 2.30-2.35 A, and 2.28-2.30 A for Pr-, Nd-, Eu-, Dy-, and Er-doped samples, respectively. In the second part, a series of Zr-doped (3-10 mol%) lithium silicate (ZRLS) glass-ceramics and their parent glasses and a series of Zr-doped (2-6 mol% ZrO2) lithium borate (ZRLB) glasses were investigated using Zr K-edge EXAFS and X-ray Absorption Near Edge Structure (XANES) spectroscopy. Immediate coordination environments of all ZRLS glasses are remarkably similar for different compositions. For the nearest oxygen shell, the Zr-O coordination number ranges were between 6.1 and 6.3 for nucleated and crystallized samples, respectively. Also, the Zr-O mean distance remains similar around 2.10 A. For these glasses, the composition dependence of structural parameters was small. Small changes in the coordination environment were observed for ZRLS glass-ceramics after thermal treatments. In contrast, Zr coordination environment in ZRLB glasses appear to depend appreciably on the Zr concentration. For the nearest oxygen shell, the Zr-O coordination number increased from 6.1 to 6.8 and the Zr-O distance decreased from 2.18 A to 2.14 A with decreasing ZrO2 content.
Investigations on silver/polyaniline electrodes for electrochemical supercapacitors.
Patil, Dipali S; Shaikh, J S; Pawar, S A; Devan, R S; Ma, Y R; Moholkar, A V; Kim, J H; Kalubarme, R S; Park, C J; Patil, P S
2012-09-14
Polyaniline (PANI) and silver doped polyaniline (Ag/PANI) thin films were deposited on stainless steel substrates by a dip coating technique. To study the effect of doping concentration of Ag on the specific capacitance of PANI the concentration of Ag was varied from 0.3 to 1.2 weight percent. Fourier transform-infrared and Fourier transform-Raman spectroscopy, and energy dispersion X-ray techniques were used for the phase identification and determination of the doping content in the PANI films, respectively. The surface morphology of the films was examined by Field Emission Scanning Electron Microscopy, which revealed a nanofiber like structure for PANI and nanofibers with bright spots of Ag particles for the Ag/PANI films. There was decrease in the room temperature electrical resistivity of the Ag/PANI films of the order of 10(2) with increasing Ag concentration. The supercapacitive behavior of the electrodes was tested in a three electrode system using 1.0 M H(2)SO(4) electrolyte. The specific capacitance increased from 285 F g(-1) (for PANI) to 512 F g(-1) for Ag/PANI at 0.9 weight percent doping of Ag, owing to the synergic effect of PANI and silver nanoparticles. This work demonstrates a simple strategy of improving the specific capacitance of polymer electrodes and may also be easily adopted for other dopants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egorov, V I; Sidorov, A I; Nashchekin, A V
It is shown that pulsed irradiation (a wavelength of 10.6 μm and an energy density of 0.6 – 8.5 J cm{sup -2}) of glass with a waveguide layer containing silver ion leads to the formation of a ring, surrounding the irradiated zone and consisting of silver nanoparticles deposited on the glass surface. The possible process of formation of silver nanoparticles under laser irradiation is discussed. (optics and technology of nanostructures)
2011-01-01
Synthesis of nanosized particle of Ag-doped hydroxyapatite with antibacterial properties is in the great interest in the development of new biomedical applications. In this article, we propose a method for synthesized the Ag-doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionized water. Other phase or impurities were not observed. Silver-doped hydroxyapatite nanoparticles (Ag:HAp) were performed by setting the atomic ratio of Ag/[Ag + Ca] at 20% and [Ca + Ag]/P as 1.67. The X-ray diffraction studies demonstrate that powders made by co-precipitation at 100°C exhibit the apatite characteristics with good crystal structure and no new phase or impurity is found. The scanning electron microscopy (SEM) observations suggest that these materials present a little different morphology, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O), and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) analysis. FT-IR and FT-Raman spectroscopies revealed that the presence of the various vibrational modes corresponds to phosphates and hydroxyl groups. The strain of Staphylococcus aureus was used to evaluate the antibacterial activity of the Ca10-xAgx(PO4)6(OH)2 (x = 0 and 0.2). In vitro bacterial adhesion study indicated a significant difference between HAp (x = 0) and Ag:HAp (x = 0.2). The Ag:Hap nanopowder showed higher inhibition. PMID:22136671
NASA Astrophysics Data System (ADS)
Ciobanu, Carmen Steluta; Massuyeau, Florian; Constantin, Liliana Violeta; Predoi, Daniela
2011-12-01
Synthesis of nanosized particle of Ag-doped hydroxyapatite with antibacterial properties is in the great interest in the development of new biomedical applications. In this article, we propose a method for synthesized the Ag-doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionized water. Other phase or impurities were not observed. Silver-doped hydroxyapatite nanoparticles (Ag:HAp) were performed by setting the atomic ratio of Ag/[Ag + Ca] at 20% and [Ca + Ag]/P as 1.67. The X-ray diffraction studies demonstrate that powders made by co-precipitation at 100°C exhibit the apatite characteristics with good crystal structure and no new phase or impurity is found. The scanning electron microscopy (SEM) observations suggest that these materials present a little different morphology, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O), and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) analysis. FT-IR and FT-Raman spectroscopies revealed that the presence of the various vibrational modes corresponds to phosphates and hydroxyl groups. The strain of Staphylococcus aureus was used to evaluate the antibacterial activity of the Ca10- x Ag x (PO4)6(OH)2 ( x = 0 and 0.2). In vitro bacterial adhesion study indicated a significant difference between HAp ( x = 0) and Ag:HAp ( x = 0.2). The Ag:Hap nanopowder showed higher inhibition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajesh, E-mail: rkkaushik06@gmail.com; Dept. of Physics, Vaish College of Engineering, Rohtak-124001, Haryana; Sharma, Ashwani
The present work deals with study of structural and optical properties of Silver (Ag) doped Cadmium oxide (CdO) nanostructured synthesized by Chemical Co-precipitation Techniques followed by calcinations at small temperature. The doping concentrations were changing from 0.1 to 10 at% respectively. Structural analysis study of these calcined materials is carried out by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The optical properties of calcined samples were investigating by Fourier transformation infrared (FTIR)spectroscopy, UV-Visible Spectroscopy (UV-Vis). The structural properties analysis results revels that crystallite size are in the range of nano region and TEM results aremore » quite in accordance with XRD results.« less
NASA Astrophysics Data System (ADS)
Ottomeyer, Megan
Bioactive glasses with antimicrobial properties can be implemented as coatings on medical devices and implants, as well as a treatment for tissue repair and prevention of common hospital-acquired infections such as MRSA. A borate-containing glass, B3, is also undergoing clinical trials to assess wound-healing properties. The sensitivities of various bacteria to B3, B3-Ag, B3-Ga, and B3-I bioactive glasses were tested. In addition, the mechanism of action for the glasses was studied by spectroscopic enzyme kinetics experiments, Live-Dead staining fluorescence microscopy, and luminescence assays using two gene fusion strains of Escherichia coli. It was found that gram-positive bacteria were more sensitive to all four glasses than gram negative bacteria, and that a single mechanism of action for the glasses is unlikely, as the rates of catalysis for metabolic enzymes as well as membrane permeability were altered after glass exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasileva, A.A., E-mail: anvsilv@gmail.com; Nazarov, I.A.; Olshin, P.K.
2015-10-15
Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium–phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. Themore » process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass. - Graphical abstract: Formation of silver NPs on the surface of 0.5Ag{sub 2}O–0.4P{sub 2}O{sub 5}–0,1Nb{sub 2}O{sub 5} glass induced by CW laser irradiation. - Highlights: • The structure of 0.5Ag{sub 2}O–0.1Nb{sub 2}O{sub 5}–0.4P{sub 2}O{sub 5} and 0.55Ag{sub 2}O–0.45P{sub 2}O{sub 5} glasses was investigated by Raman spectroscopy. • Fs laser writing induces formation of silver NPs in investigated glasses. • Surface plasmon resonance in the absorption spectra confirms the formation of NP. • The possibility of CW laser induced formation of silver NPs on the surface of sample with niobium is shown.« less
Quantum-splitting oxide-based phosphors, method of producing, and rules for designing the same
Setlur, Anant Achyut; Comanzo, Holly Ann; Srivastava, Alok Mani
2003-09-16
Strontium and strontium calcium aluminates and lanthanum and lanthanum magnesium borates activated with Pr.sup.3+ and Mn.sup.2+ exhibit characteristics of quantum-splitting phosphors. Improved quantum efficiency may be obtained by further doping with Gd.sup.3+. Refined rules for designing quantum-splitting phosphors include the requirement of incorporation of Gd.sup.3+ and Mn.sup.2+ in the host lattice for facilitation of energy migration.
Cr-doped scandium borate laser
Chai, Bruce H.; Lai, Shui T.; Long, Margaret N.
1989-01-01
A broadly wavelength-tunable laser is provided which comprises as the laser medium a single crystal of MBO.sub.3 :Cr.sup.3+, where M is selected from the group of Sc, In and Lu. The laser may be operated over a broad temperature range from cryogenic temperatures to elevated temperatures. Emission is in a spectral range from red to infrared, and the laser is useful in the fields of defense, communications, isotope separation, photochemistry, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afaah, A. N., E-mail: afaahabdullah@yahoo.com; Asib, N. A. M., E-mail: amierahasib@yahoo.com; Aadila, A., E-mail: aadilaazizali@gmail.com
2016-07-06
p-type ZnO films have been fabricated on ZnO-seeded glass substrate, using AgNO{sub 3} as a source of silver dopant by facile solution-immersion. Cleaned glass substrate were seeded with ZnO by mist-atomisation, and next the seeded substrates were immersed in Ag:ZnO solution. The effects of Ag doping concentration on the Ag-doped ZnO have been investigated. The substrates were immersed in different concentrations of Ag dopant with variation of 0, 1, 3, 5 and 7 at. %. The surface morphology of the films was characterized by field emission scanning electron microscope (FESEM). In order to investigate the electrical properties, the films weremore » characterized by Current-Voltage (I-V) measurement. FESEM micrographs showed uniform distribution of nanostructured ZnO and Ag:ZnO. Besides, the electrical properties of Ag-doped ZnO were also dependent on the doping concentration. The I-V measurement result indicated the electrical properties of 1 at. % Ag:ZnO thin film owned highest electrical conductivity.« less
NASA Astrophysics Data System (ADS)
Jing, W. X.; Shi, J. F.; Xu, Z. P.; Jiang, Z. D.; Wei, Z. Y.; Zhou, F.; Wu, Q.; Cui, Q. B.
2018-03-01
Batches of un-doped and Ag-doped ZnO nanowires (ZnONWs) were prepared hydrothermally on stainless steel wire sieves at varied Zn2+ concentrations of the growth solution and at different Ag+ concentrations of the silver nitrate solution. Methylene blue solution was degraded with these as-prepared ZnONWs in the presences of ultraviolet irradiation. It is found that both the processing parameters greatly affect the surface textures, wettability, and photo-activity of the ZnONWs. The latter synthesizing parameter is optimized only after the former one has been finely regulated. The un-doped and Ag-doped ZnONWs at Zn2+ concentration of 75 mM of the growth solution and at Ag+ concentration of3 mM of the silver nitrate solution both produce Gaussian rough surfaces and in each batch are most hydrophilic. Therefore, in the related batch the contacting surface area of the catalyst is the largest, the hydroxyl radicals attached on the top ends of corresponding ZnONWs the most, and the catalytic activity of these catalysts the optimal. Besides these, the latter synthesizing parameter affects the photo-activity of Ag-doped ZnONWs more significantly than the former one does that of un-doped ZnONWs.
Mostafa, Amany A; Oudadesse, Hassane; El Sayed, Mayyada M H; Kamal, Gehan; Kamel, Mohamed; Foad, Enas
2014-12-01
This work investigates the effect of adding silver nanoparticles (NPs) in ppm on the bioactivity of hydroxyapatite/polyvinyl alcohol nanocomposites (HAV). HAV prepared by an in situ biomimetic approach was doped with different concentrations of silver NPs (HAV-Ag), and the formed powder samples were characterized by different techniques such as Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-EOS), X-ray diffraction, transmission electron microscope, and Fourier Transform Infrared Spectroscopy. Bioactivity was evaluated in simulated body fluid through studying the kinetics of Ca and P uptake onto the different HAV-Ag nanocomposites. Uptake profiles of Ca and P were well described by a pseudo-second order kinetic model, and the obtained kinetic parameters confirmed that the highest uptake capacities were achieved by adding less than 0.001 ppm of silver NPs which is an amount not detectable by ICP. Furthermore, HAV-Ag nanocomposites were shown to be non-toxic as well as have a strong antibacterial effect. Silver NPs significantly enhanced the bioactivity of HAV nanocomposites and thus the developed nanocomposites promise to be excellent biomaterials for bone and reconstructive surgery applications. © 2014 Wiley Periodicals, Inc.
Silver doped catalysts for treatment of exhaust
Park, Paul Worn; Hester, Virgil Raymond; Ragle, Christie Susan; Boyer, Carrie L.
2009-06-02
A method of making an exhaust treatment element includes washcoating a substrate with a slurry that includes a catalyst support material. At least some of the catalyst support material from the slurry may be transferred to the substrate, and silver metal (Ag) is dispersed within the catalyst support material.
Effect of Silver Doping on Transport Properties of Bi2Se3: AgxBi2Se3 and Bi2-xAgxSe3
NASA Astrophysics Data System (ADS)
Zhang, Min; Wei, Zhan-Tao
2018-05-01
Ag-doped Bi2Se3 with the formula AgxBi2Se3 and Bi2-xAgxSe3 were prepared and their electrical and magnetic transport properties have been investigated to study the influence of silver doping on transport properties of Bi2Se3 with different Ag-doped method. All samples exhibited metallic resistivity and the resistivity increased with increasing Ag concentration. The lattice parameter c of Ag-substituted and Ag-intercalated samples displays a contrary change as the Ag concentration increased. For the Ag-intercalated samples, both the resistance upturn were observed in the curves of temperature dependent of resistivity and temperature dependent of magnetoresistance, respectively, indicating that the enhanced surface effect was obtained in those samples. Monotonously, field-induced MR peaks around 200 K were also observed in those samples. Similar behaviors were not observed in the Ag-substituted samples.
Recent Development of Nanomaterial-Doped Conductive Polymers
NASA Astrophysics Data System (ADS)
Asyraf, Mohammad; Anwar, Mahmood; Sheng, Law Ming; Danquah, Michael K.
2017-12-01
Conductive polymers (CPs) have received significant research attention in material engineering for applications in microelectronics, micro-scale sensors, electromagnetic shielding, and micro actuators. Numerous research efforts have been focused on enhancing the conductivity of CPs by doping. Various conductive materials, such as metal nanoparticles and carbon-based nanoparticles, and structures, such as silver nanoparticles and graphene nanosheets, have been converted into polypyrrole and polypyrrole compounds as the precursors to developing hybrids, conjugates, or crystal nodes within the matrix to enhance the various structural properties, particularly the electrical conductivity. This article reviews nanomaterial doping of conductive polymers alongside technological advancements in the development and application of nanomaterial-doped polymeric systems. Emphasis is given to conductive nanomaterials such as nano-silver particles and carbon-based nanoparticles, graphene nano-sheets, fullerene, and carbon nanotubes (CNT) as dopants for polypyrrole-based CPs. The nature of induced electrical properties including electromagnetic absorption, electrical capacitance, and conductivities of polypyrrole systems is also discussed. The prospects and challenges associated with the development and application of CPs are also presented.
NASA Astrophysics Data System (ADS)
Wang, Liang; Shen, Bin; Sun, Fanghong; Zhang, Zhiming
2014-04-01
Boron doped (B-doped) diamond films are deposited onto WC-Co inserts by HFCVD with the mixture of acetone, trimethyl borate (C3H9BO3) and H2. The as-deposited B-doped diamond films are characterized with scanning electron microscope (SEM), X-ray diffraction (XRD) spectroscopy, Raman spectroscopy, 3D surface topography based on white-light interferometry and Rockwell hardness tester. The effects of mechanical polishing on the friction behavior and cutting performance of B-doped diamond are evaluated by ball-on-plate type reciprocating tribometer and turning of aluminum alloy 7075 materials, respectively. For comparison, the same tests are also conducted for the bare WC-Co inserts with smooth surface. Friction tests suggest that the unpolished and polished B-doped diamond films possess relatively low fluctuation of friction coefficient than as-received bare WC-Co samples. The average stable friction coefficient for B-doped diamond films decreases apparently after mechanical polishing. The values for WC-Co sample, unpolished and polished B-doped diamond films are approximately 0.38, 0.25 and 0.11, respectively. The cutting results demonstrate that the low friction coefficient and high adhesive strength of B-doped diamond films play an essential role in the cutting performance enhancement of the WC-Co inserts. However, the mechanical polishing process may lower the adhesive strength of B-doped diamond films. Consequently, the polished B-doped diamond coated inserts show premature wear in the machining of adhesive aluminum alloy materials.
Nadhman, Akhtar; Sirajuddin, Muhammad; Nazir, Samina; Yasinzai, Masoom
2016-06-01
Recently, the authors reported newly synthesised polyethylene glycol (PEG)ylated silver (9%)-doped zinc oxide nanoparticle (doped semiconductor nanoparticle (DSN)) which has high potency for killing Leishmania tropica by producing reactive oxygen species on exposure to sunlight. The current report is focused on Leishmania DNA interaction and damage caused by the DSN. Here, we showed that the damage to Leishmania DNA was indirect, as the DSN was unable to interact with the DNA in intact Leishmania cell, indicating the incapability of PEGylated DSN to cross the nucleus barrier. The DNA damage was the result of high production of singlet oxygen on exposure to sunlight. The DNA damage was successfully prevented by singlet oxygen scavenger (sodium azide) confirming involvement of the highly energetic singlet oxygen in the DNA degradation process.
XRD and FTIR analysis heat treated lithium bismo-borate glasses doped with 1.0 mol% copper ferrite
NASA Astrophysics Data System (ADS)
Yadav, Arti; Narwal, P.; Dahiya, Manjeet S.; Dahiya, T.; Agarwal, A.; Khasa, S.
2018-05-01
Glasses of compositions of 20Li20 • xBi2O3• (79-x)B2O3 + (1.0 mol%) CuFe2O4, with 0 ≤ x ≤ 40 were prepared by melt-quench technique. To obtain the glass-ceramics the controlled heat treatment were given to the prepared glasses. Two nano crystalline phases, i.e., Li2B4O7 and LiB3O5 were observed from X-ray diffraction patterns of the prepared glass- ceramic samples. We investigated the change in coordination number of network formers B2O3 and Bi2O3 and network modifiers Bi2O3, Li2O and CuFe2O4. Crystallites size (lies in range ˜47-50nm) and lattice strain (ɛ) were calculated for major phases for all prepared samples. FT-IR study revealed the de-polymerization of borate groups that change with heat treatment and Bi2O3 content. Deconvolution of IR absorption spectra resolves the overlapped and hidden peaks in IR spectra. Sharp and more intense FTIR peaks confirm the vibrations due to crystallites Li2B4O7 and LiB3O5 and change in coordination of network forming borate units.
Electrical Characteristics of MnO2 Doped Bismuth Borate Glass Systems
NASA Astrophysics Data System (ADS)
Nissar, Umair; Ahmad, Javed; Rana, Anwar Manzoor; Bukhari, S. H.; Jamil, M. T.; Khan, J. Alam; Shakeel, R.; Nadeem, M. Y.
2018-02-01
Transparent glasses have a large number of applications in the industry of electronics as well as optical devices. xMnO2-(25- x) Bi2O3-75H3BO3 (0 ≤ x ≤ 1.5 mol.%) transparent glasses have been prepared via melt-quench technique and characterized using dc electrical measurements, and by analyzing x-ray diffraction and Fourier transform infrared (FTIR) spectra. These characteristics were examined to understand the role of modifier oxides, i.e., Bi2O3 and MnO2 in the B2O3 glass network. Adding MnO2 into a glass network causes structural changes, which are responsible for any variations in electrical characteristics of bismuth borate glasses. Manganese bismuth borate glasses (MBBG) show Ohmic conduction at low fields; however, glasses with higher manganese content seem to conduct through bulk limited Poole-Frenkel mechanism. FTIR spectroscopy analyses depict the presence of BO3 and BO4 groups along with B-O-B and Bi-O-Bi bonding vibrations. Glasses with higher MnO2 content also show Mn-O bond vibrations. The reduction of BO4 groups and increase of BO3 units lead to the formation of non-bridging oxygens (NBOs) which are responsible for the variations in the electrical properties of these glasses.
NASA Astrophysics Data System (ADS)
Naresh, V.; Gupta, Kiran; Parthasaradhi Reddy, C.; Ham, Byoung S.
2017-03-01
A promising energy transfer (Tm3 + → Tb3 + → Eu3 +) approach is brought forward to generate white light emission under ultraviolet (UV) light excitation for solid state lightening. Tm3 +/Tb3 +/Eu3 + ions are combinedly doped in zinc borate glass system in view of understanding energy transfer process resulting in white light emission. Zinc borate (host) glass displayed optical and luminescence properties due to formation of Zn(II)x-[O(- II)]y centres in the ZnB glass matrix. At 360 nm (UV) excitation, triply doped Tm3 +/Tb3 +/Eu3 +: ZnB glasses simultaneously shown their characteristic emission bands in blue (454 nm: 1D2 → 3F4), green (547 nm: 5D4 → 7F5) and red (616 nm: 5D0 → 7F2) regions. In triple ions doped glasses, energy transfer dynamics is discussed in terms of Forster-Dexter theory, excitation & emission profiles, lifetime curves and from partial energy level diagram of three ions. The role of Tb3 + in ET from Tm3 + → Eu3 + was discussed using branch model. From emission decay analysis, energy transfer probability (P) and efficiency (η) were evaluated. Colour tunability from blue to white on varying (Tb3 +, Eu3 +) content is demonstrated from Commission Internationale de L'Eclairage (CIE) chromaticity coordinates. Based on chromaticity coordinates, other colour related parameters like correlated colour temperature (CCT) and colour purity are also computed for the studied glass samples. An appropriate blending of such combination of rare earth ions could show better suitability as potential candidates in achieving multi-colour and warm/cold white light emission for white LEDs application in the field of solid state lightening.
Impact of Nd3+ ions on physical and optical properties of Lithium Magnesium Borate glass
NASA Astrophysics Data System (ADS)
Mhareb, M. H. A.; Hashim, S.; Ghoshal, S. K.; Alajerami, Y. S. M.; Saleh, M. A.; Dawaud, R. S.; Razak, N. A. B.; Azizan, S. A. B.
2014-11-01
Enhancing the up-conversion efficiency of borate glass via optimized doping of rare earth ions is an ever-ending quest in lasing glass. Neodymium (Nd3+) doped Lithium Magnesium Borate (LMB) glasses are prepared using the melt-quenching method. X-ray diffraction (XRD), Fourier transformed infrared (FTIR), UV-Vis-NIR absorption and Photoluminescence (PL) spectroscopic characterizations are made to examine the influence of Nd3+ concentration on physical properties and optical properties. Nd3+ contents dependent density, molar volume, refractive index, ion concentration, Polaron radius, inter nuclear distance, field strength, energy band gap and oscillator strength are calculated. XRD patterns confirm the amorphous nature of all glasses and the FTIR spectra reveal the presence of BO3 and BO4 functional groups. UV-Vis-IR spectra exhibit ten prominent bands centered at 871, 799, 741, 677, 625, 580, 522, 468, 426, 349 nm corresponding to the transitions from the ground state to 4F3/2, (4F5/2 + 2H9/2), (4F7/2 + 4S3/2), 4F9/2, 2H11/2, (4G5/2 + 2G7/2), (2K13/2 + 4G7/2 + 4G9/2), (2G9/2 + 2D3/2 + 2P3/2), (2P1/2 + 2D5/2), (4D3/2 + 4D5/2) excited states, respectively. A hyper-sensitive transition related to (4G5/2 + 2G7/2) level is evidenced at 580 nm. The room temperature up-conversion emission spectra at 800 nm excitation displays three peaks centered at 660, 610 and 540 nm. Glass with 0.5 mol% of Nd3+ showing an emission enhancement by a factor to two is attributed to the energy transfer between Mg2+ and Nd3+ ions. Our results suggest that these glasses can be nominated for solid state lasers and other photonic devices.
Bibliography of Soviet Laser Developments, Number 49, September-October 1980
1981-10-01
Shcherbakov ( 1 ). Synthesis and study of spectral-luminescent and lasing properties of aluminum borate crystals doped with chromium and neodymium. KE, no. 10...A ’IDST-2700Z4004- 1 LEVEt~ I i DEFENSEINTELLIGENCE / 7O AGENCY Bibliography of Soviet Laser Developments (U) September- October 1980 OCTOBER INI...DOCUMENTATION PAGE READ ISTRPUCTONSBEFORE COMPLETING FORM 1 . REPOR NUMN 2. GOVT ACCES SION O. L. RECIPIENT’S CATALOG NUM BER DST-2700Z-004-81 - ’.,) ___ _ _ 4
Ho3+-doped strontium-aluminium-bismuth-borate glasses for green light emission.
Rajesh, D; Dhamodhara Naidu, M; Ratnakaram, Y C; Balakrishna, A
2014-11-01
Strontium-aluminium-bismuth-borate glasses (SAlBiB) doped with different concentrations of Ho(3+) were prepared using conventional melt quenching technique and their structural and optical properties investigated. X-ray diffraction and scanning electron microscopy analysis were used to study the structural properties. Optical properties were studied by measuring the optical absorption and visible luminescence spectra. The Judd-Ofelt (J-O) theory was applied to evaluate J-O intensity parameters, Ω(λ) (λ = 2, 4 and 6). Using J-O intensity parameters, radiative properties such as spontaneous transition probabilities (A(R)), branching ratios (β(R)) and radiative lifetimes (τ(R)) were determined. From the emission spectra, a strong green emission nearly at 549 nm corresponding to the transition, (5)S2 ((5)F4)→(5)I(8) was observed. Emission peak positions (λ(P)), effective bandwidths (Δλ(eff)) and stimulated emission cross-sections (σ(p)) were calculated for the observed emission transitions, (5)F3 →(5)I(8), (5)S2((5)F4)→(5)I(8) and (5)F5 →(5)I(8) of Ho(3+) in all the glass matrices. Chromaticity color coordinates were calculated using the emission spectra. The experimental results suggest that SAlBiB glass matrix with 1.5 mol% of Ho(3+) has better emission properties. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Buzby, Scott Edward
Nanosized titanium dioxide has a variety of important applications in everyday life including a photocatalyst for pollution remediation, photovoltaic devices, sunscreen, etc. This study focuses on the various properties of titanium dioxide nanoparticles doped with various cation and anion species. Samples were produced by various methods including metalorganic chemical vapor deposition (MOCVD), plasma assisted metalorganic chemical vapor deposition (PA-MOCVD) and sol-gel. Numerous techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy both scanning (SEM) and transmission (TEM) were used for physical characterization. Photocatalytic properties were determined by the oxidation of methylene blue dye and 2-chlorophenol in water as well as gaseous formic acid with results analyzed by high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR) and ultra violet - visible spectroscopy (UV-VIS). For the purpose of enhancement of the photocatalytic activity of titanium dioxide nanoparticles, the effect of anion doping and the anatase-rutile phase ratio were studied. Although anatase, rutile and mixed crystallite phases all show some degree of activity in photocatalytic reactions, these results show that anatase is better suited for the degradation of organic compounds in an aqueous medium any advantage in photocatalytic activity gained through the enhancement in optical response from the smaller band gap by addition of rutile was overcome by the negatives associated with the rutile phase. Furthermore substitutional nitrogen doping showed significant improvement in UV photocatalysis as well as allowing for visible light activation of the catalyst. Further studies on the phase transitions in titanium dioxide nanoparticles were carried out by synthesizing various cation doped samples by sol-gel. Analysis of the phases by XRD showed an inverse relationship between dopant size and rutile percentage. Dopant ions with larger radii than titanium stress the crystal lattice promoting anatase formation, since it has a larger c/a ratio than rutile does. The cation dopants were also found to decrease the average particle size of the titanium dioxide nanoparticles. The defect sites caused by the doping prevent the nucleation and retard particle growth of titanium dioxide particles. Cation doping of titanium dioxide nanoparticles affect other properties of the nanoparticles besides the phase transitions. For example titanium dioxide doped with magnetic materials such as Fe, Ni, Co or Cr has been shown to display room temperature ferromagnetism which are currently being studied for use in spintronic devices. The antibacterial studies of silver doped titanium dioxide nanoparticles were carried out against Escherichia coli, both in nutrient solution and on agar-plates. Both studies show that while pure titanium dioxide has no antibacterial effect, when doped with as little as 0.72 atomic % silver becomes more effective than pure silver nanoparticles of similar size. It has been observed that with concentrations as low as 25mug/cm 2 of silver doped titanium dioxide, completely antibacterial surfaces may be synthesized.
Influence of Thermal Treatment on the Antimicrobial Activity of Silver-Doped Biological Apatite
NASA Astrophysics Data System (ADS)
Popa, Cristina Liana; Ciobanu, Carmen Steluta; Voicu, Georgeta; Vasile, Eugenia; Chifiriuc, Mariana Carmen; Iconaru, Simona Liliana; Predoi, Daniela
2015-12-01
In this paper, we report the structural and morphological properties of silver-doped hydroxyapatite (AgHAp) with a silver concentration x Ag = 0.5 before and after being thermal treated at 600 and 1000 °C. The results obtained by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy suggest that the structure of the samples changes gradually, from hydroxyapatite (AgHAp_40) to a predominant β-TCP structure (AgHAp_1000), achieved when the thermal treatment temperature is 1000 °C. In the AgHAp_600 sample, the presence of two phases, HAp and β-TCP, was highlighted. Also, scanning electron microscopy studies suggest that the shape and dimension of the nanoparticles begin to change when the temperature increases. The antimicrobial activity of the obtained compounds was evaluated against Klebsiella pneumoniae, Staphylococcus aureus, and Candida albicans strains.
Characterization of pure and composite resorcinol formaldehyde aerogels doped with silver
NASA Astrophysics Data System (ADS)
Attia, S. M.; Abdelfatah, M. S.; Mossad, M. M.
2017-07-01
A series of Resorcinol Formaldehyde (RF) aerogels composites with nanoparticles of sliver were prepared by the sol-gel method at different concentrations doped silver. FTIR spectra of pure and composite RF aerogels show six absorption bands attributed to -OH groups bonded to the benzene ring, stretching of -CH2- bonds and aromatic ring stretching. FTIR results ensured that sliver particles do not interact with aerogel network. UV-visible spectrum of pure silver show an absorbance peak at 420 nm attributed to the surface plasmon excitation of sliver Nano spheres. UV-visible spectral of pure and composite RF aerogels shows a steep decrease of absorption with wavelength after 500 nm, making sample’s color reddish brown. TEM and SEM images of pure and composite RF aerogels revealed that the textural arrangement of RF aerogels can be described as densely packed small nodules.
NASA Astrophysics Data System (ADS)
Anilkumar, T.; Naik, Adarsh Ajith; Ramesan, M. T.
2017-06-01
Here we report the preparation of nitromercurated styrene butadiene rubber (NMSBR)/silver doped zinc oxide nanocomposite by inexpensive and ecofriendly two roll mill mixing. The composites were characterized by UV, FTIR, XRD, SEM, TGA and conductivity measurements. UV and FTIR spectrum indicated the interfacial interaction between the polymer and nanoparticles.XRD and SEM images showed the uniform arrangement of nanoparticles within the macromolecular chain. TGA study indicated the better thermal resistance of the composite. The dielectric properties and AC conductivity ofnanocomposites were much greater than nitromercurated SBR and they may be used as multifunctional materials for nanoelectronic devices.
Effects of silver impurity on the structural, electrical, and optical properties of ZnO nanowires
2011-01-01
1, 3, and 5 wt.% silver-doped ZnO (SZO) nanowires (NWs) are grown by hot-walled pulsed laser deposition. After silver-doping process, SZO NWs show some change behaviors, including structural, electrical, and optical properties. In case of structural property, the primary growth plane of SZO NWs is switched from (002) to (103) plane, and the electrical properties of SZO NWs are variously measured to be about 4.26 × 106, 1.34 × 106, and 3.04 × 105 Ω for 1, 3, and 5 SZO NWs, respectively. In other words, the electrical properties of SZO NWs depend on different Ag ratios resulting in controlling the carrier concentration. Finally, the optical properties of SZO NWs are investigated to confirm p-type semiconductor by observing the exciton bound to a neutral acceptor (A0X). Also, Ag presence in ZnO NWs is directly detected by both X-ray photoelectron spectroscopy and energy dispersive spectroscopy. These results imply that Ag doping facilitates the possibility of changing the properties in ZnO NWs by the atomic substitution of Ag with Zn in the lattice. PMID:21985620
Fabrication and test of inorganic/organic separators. [for silver zinc batteries
NASA Technical Reports Server (NTRS)
Smatko, J. S.
1974-01-01
Completion of testing and failure analysis of MDC 40 Ahr silver zinc cells containing largely inorganic separators was accomplished. The results showed that the wet stand and cycle life objectives of the silver zinc cell development program were accomplished. Building, testing and failure analysis of two plate cells employing three optimum separators selected on the basis of extensive screening tests, was performed. The best separator material as a result of these tests was doped calcium zirconate.
NASA Astrophysics Data System (ADS)
Madaria, Anuj R.; Kumar, Akshay; Zhou, Chongwu
2011-06-01
The application of silver nanowire films as transparent conductive electrodes has shown promising results recently. In this paper, we demonstrate the application of a simple spray coating technique to obtain large scale, highly uniform and conductive silver nanowire films on arbitrary substrates. We also integrated a polydimethylsiloxane (PDMS)-assisted contact transfer technique with spray coating, which allowed us to obtain large scale high quality patterned films of silver nanowires. The transparency and conductivity of the films was controlled by the volume of the dispersion used in spraying and the substrate area. We note that the optoelectrical property, σDC/σOp, for various films fabricated was in the range 75-350, which is extremely high for transparent thin film compared to other candidate alternatives to doped metal oxide film. Using this method, we obtain silver nanowire films on a flexible polyethylene terephthalate (PET) substrate with a transparency of 85% and sheet resistance of 33 Ω/sq, which is comparable to that of tin-doped indium oxide (ITO) on flexible substrates. In-depth analysis of the film shows a high performance using another commonly used figure-of-merit, ΦTE. Also, Ag nanowire film/PET shows good mechanical flexibility and the application of such a conductive silver nanowire film as an electrode in a touch panel has been demonstrated.
In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery
Pokrowiecki, Rafał; Zaręba, Tomasz; Szaraniec, Barbara; Pałka, Krzysztof; Mielczarek, Agnieszka; Menaszek, Elżbieta; Tyski, Stefan
2017-01-01
The addition of an antibacterial agent to dental implants may provide the opportunity to decrease the percentage of implant failures due to peri-implantitis. For this purpose, in this study, the potential efficacy of nanosilver-doped titanium biomaterials was determined. Titanium disks were incorporated with silver nanoparticles over different time periods by Tollens reaction, which is considered to be an eco-friendly, cheap, and easy-to-perform method. The surface roughness, wettability, and silver release profile of each disc were measured. In addition, the antibacterial activity was also evaluated by using disk diffusion tests for bacteria frequently isolated from the peri-implant biofilm: Streptococcus mutans, Streptococcus mitis, Streptococcus oralis, Streptococcus sanguis, Porphyromonas gingivalis, Staphylococcus aureus, and Escherichia coli. Cytotoxicity was evaluated in vitro in a natural human osteoblasts cell culture. The addition of nanosilver significantly increased the surface roughness and decreased the wettability in a dose-dependent manner. These surfaces were significantly toxic to all the tested bacteria following a 48-hour exposure, regardless of silver doping duration. A concentration of 0.05 ppm was sufficient to inhibit Gram-positive and Gram-negative species, with the latter being significantly more susceptible to silver ions. However, after the exposure of human osteoblasts to 0.1 ppm of silver ions, a significant decrease in cell viability was observed by using ToxiLight™ BioAssay Kit after 72 hours. Data from the present study indicated that the incorporation of nanosilver may influence the surface properties that are important in the implant healing process. The presence of nanosilver on the titanium provides an antibacterial activity related to the bacteria involved in peri-implantitis. Finally, the potential toxicological considerations of nanosilver should further be investigated, as both the antibacterial and cytotoxic properties may be observed at similar concentration ranges. PMID:28652733
Ergonomic Synthesis Suitable for Industrial Production of Silver-Festooned Zinc Oxide Nanorods
NASA Astrophysics Data System (ADS)
Khan, G. R.; Khan, R. A.
2015-07-01
For maximizing productivity, minimizing cost, time-boxing process and optimizing human effort, a single-step, cost-effective, ultra-fast and environmentally benign synthesis suitable for industrial production of nanocrystalline ZnO, and Ag-doped ZnO has been reported in this paper. The synthesis based on microwave-supported aqueous solution method used zinc acetate dehydrate and silver nitrate as precursors for fabrication of nanorods. The synthesized products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and UV-Vis-NIR spectroscopy. The undoped and Ag-doped ZnO nanorods crystallized in a hexagonal wurtzite structure having spindle-like morphology. The blue shift occurred at absorption edge of Ag-doped ZnO around 260 nm compared to 365 nm of bulk ZnO. The red shift occurred at Raman peak site of 434 cm-1 compared to characteristic wurtzite phase peak of ZnO (437 cm-1). The bandgap energies were found to be 3.10 eV, 3.11 eV and 3.18 eV for undoped, 1% Ag-doped, and 3% Ag-doped ZnO samples, respectively. The TEM results provided average particle sizes of 17 nm, 15 nm and 13 nm for undoped, and 1% and 3% Ag-doped ZnO samples, respectively.
NASA Astrophysics Data System (ADS)
Tian, Baozhu; Shao, Zhimang; Ma, Yunfei; Zhang, Jinlong; Chen, Feng
2011-11-01
B-doped together with Ag-loaded mesoporous TiO2 (Ag/B-TiO2) was prepared by a two-step hydrothermal method in the presence of boric acid, triblock copolymer surfactant, and silver nitrate, followed by heat treatment. The obtained samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption. It was revealed that all samples consist of highly crystalline anatase with mesoporous structure. For Ag/B-TiO2, B was doped into TiO2 matrix in the form of both interstitial B and substitutional B while Ag was deposited on the surface of B-TiO2 in the form of metallic silver. Compared with the single B-doped or Ag-loaded TiO2 one, mesoporous Ag/B-TiO2 exhibits much higher visible light photocatalytic activity for the degradation of Rhodamine 6G, which can be ascribed to the synergistic effects of B doping and Ag loading by narrowing the band gap of the photocatalyst and preventing the fast recombination of the photogenerated charge carriers, respectively.
NASA Astrophysics Data System (ADS)
Moreira, L.; Falci, R. F.; Darabian, H.; Anjos, V.; Bell, M. J. V.; Kassab, L. R. P.; Bordon, C. D. S.; Doualan, J. L.; Camy, P.; Moncorgé, R.
2018-05-01
The research on Nd3+ doped new solid-state laser hosts with specific thermo-mechanical and optical properties is very active. Nd3+ doped tellurite glasses are suitable for these applications. They have high linear and nonlinear refraction index, wide transmittance range. The TeO2-ZnO (TZO) glass considered in the present work combines all those features and the nonlinear optical properties can be used for the development of Kerr-lens mode-locked sub picosecond lasers. Recently the laser performance of Nd3+ doped TZO glass and was reported and laser slope efficiency of 21% was observed. We investigate how the intensity variation and the silver nanoparticles codoping affects the nonlinear optical properties of Nd3+ doped TZO glasses. Intensity dependent nonlinear refraction indices coefficients at 750, 800 and 850 nm were observed. The nonlinear optical features were obtained through ultrafast single beam z-scan technique with excitations at 750, 800 and 850 nm and are up to two orders of magnitude higher than those reported in the literature.
NASA Astrophysics Data System (ADS)
Feng, Jun; Bao, Wenyuan; Li, Lijun; Cheng, Hao; Huang, Wenyi; Kong, Hongxing; Li, Yanqing
2018-03-01
We synthesized titanium dioxide (TiO2) and nitrogen-doped TiO2 nanoparticles (N-TiO2 NPs) via a sol-hydrothermal method using ammonium chloride (NH4Cl) as the nitrogen (N) source. Furthermore, an N-TiO2/4-mercaptobenzoic acid (4-MBA)/silver (Ag) nanocomplex served as an active substrate for surface-enhanced Raman scattering (SERS) and was prepared by self-assembly. During SERS, the Raman signals of 4-MBA of the N-TiO2/MBA/Ag nanocomplexes exhibited higher intensity and sensitivity than pure TiO2/MBA/Ag, with 1% N doping in N-TiO2, producing the strongest Raman signals. We characterized the N-TiO2 hybrid materials by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible diffuse reflectance spectra. N doping did not influence the phase of the TiO2 crystal. The doped N entered into the crystal lattice of the TiO2, replacing some oxygen (O) to form Ti-O-N or Ti-N-O linkage. The results indicated that an appropriate amount of N doping could enhance the SERS performance of the TiO2 SERS substrate via N substitution doping. These doping forms were beneficial to the molecular charge transfer (CT), and this resulted in improved SERS performance for N-doped TiO2 NPs. We attributed this improvement to the formation of N-doping energy levels that were beneficial to the process of TiO2 to MBA molecule CT. This work not only enriched the nonmetal-doped CT mechanism in SERS but also provided several reference values for practical applications. [Figure not available: see fulltext.
A facile route to synthesize nanogels doped with silver nanoparticles
NASA Astrophysics Data System (ADS)
Coll Ferrer, M. Carme; Ferrier, Robert C.; Eckmann, David M.; Composto, Russell J.
2013-01-01
In this study, we describe a simple method to prepare hybrid nanogels consisting of a biocompatible core-shell polymer host containing silver nanoparticles. First, the nanogels (NG, 160 nm) containing a lysozyme rich core and a dextran rich shell, are prepared via Maillard and heat-gelation reactions. Second, silver nanoparticles (Ag NPs, 5 nm) are synthesized "in situ" in the NG solution without requiring additional reducing agents. This approach leads to stable Ag NPs located in the NG. Furthermore, we demonstrate that the amount of Ag NPs in the NG can be tuned by varying silver precursor concentration. Hybrid nanogels with silver nanoparticles have potential in antimicrobial, optical, and therapeutic applications.
Research of green emitting rare-earth doped materials as potential quantum-cutter
NASA Astrophysics Data System (ADS)
Moine, Bernard; Beauzamy, Lena; Gredin, Patrick; Wallez, Gilles; Labeguerie, Jessica
2008-03-01
Because the energy of vacuum ultraviolet (VUV) photons emitted by xenon plasma discharge is more than twice that of visible photons, quantum cutting appears to be a promising process in rare-earth doped materials in order to obtain efficient phosphors for mercury free lighting devices as well as for plasma display panels. With an aim of application, it is important to take into account the emitting color of the developed new phosphors. Most of the time, this leads to use systems with at least two kinds of rare earth ions: one of them playing the role of energy sensitizer, and the other one being in charge of emitting the light of the suitable color. We focus our attention on green rare-earth doped materials. In order to get very efficient phosphors, it is not only necessary to get the highest possible quantum yield, but also to have a material characterized by a strong absorption in the VUV range. Borate and fluoride matrices doped with Dy 3+/Tb 3+ couples of ions are selected according to the position of the 5d band of dysprosium as green emitters.
Effect of embedded silver nanoparticles on refractive index of soda lime glass
NASA Astrophysics Data System (ADS)
Sonal, Sharma, Annu; Aggarwal, Sanjeev
2018-05-01
Silver glass nanocomposites were prepared by exposing silver doped soda lime glass slides obtained via ion-exchange reaction to a beam of 200 keV Argon ions (Ar+) at an off normal angle of 400 with doses of 5x1015 ions cm-2 and 1x1016 ions cm-2. These nanocomposites were further characterized using UV-visible spectrophotometer so as to study their transmission and reflection behavior and compute their refractive index and real and imaginary parts of dielectric function.
NASA Astrophysics Data System (ADS)
Li, Chunfang; Liu, Miao; Jiang, Nengkai; Wang, Chunlei; Lin, Weihong; Li, Dongxiang
2017-08-01
Optical limiters against femtosecond laser are essential for eye and sensor protection in optical processing system with femtosecond laser as light source. Anisotropic Ag nanoparticles are expected to develop into optical limiting materials for femtosecond laser pulses. Herein, silver nanoprisms are prepared and coated by silica layer, which are then doped into silicone rubber to obtain hybrid rubber sheets. The silver nanoprisms/silicone hybrid rubber sheets exhibit good optical limiting property to femtosecond laser mainly due to nonlinear optical absorption.
Nd/sup 3 +/ fluorescence quantum-efficiency measurements with photoacoustics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosencwaig, A.; Hildum, E.A.
1981-04-01
We have investigated the use of photoacoustic techniques for obtaining absolute values of fluorescence quantum efficiencies in lightly doped Nd/sup 3 +/ laser materials. We have found that surface absorptions play an important role in gas-microphone measurements, and that thermal profiles are important in piezoelectric measurements. We have obtained fluorescence quantum efficiencies for Nd/sup 3 +/ in yttrium aluminum garnet, and in silicate and borate glasses that are in good agreement with lifetime measurements and Judd-Ofelt calculations.
NASA Astrophysics Data System (ADS)
Díaz, Daniel; Molina, Alejandro; Hahn, David
2018-07-01
The influence of laser irradiance and wavelength on the analysis of gold and silver in ore and surrogate samples with laser-induced breakdown spectroscopy (LIBS) was evaluated. Gold-doped mineral samples (surrogates) and ore samples containing naturally-occurring gold and silver were analyzed with LIBS using 1064 and 355 nm laser wavelengths at irradiances from 0.36 × 109 to 19.9 × 109 W/cm2 and 0.97 × 109 to 4.3 × 109 W/cm2, respectively. The LIBS net, background and signal-to-background signals were analyzed. For all irradiances, wavelengths, samples and analytes the calibration curves behaved linearly for concentrations from 1 to 9 μg/g gold (surrogate samples) and 0.7 to 47.0 μg/g silver (ore samples). However, it was not possible to prepare calibration curves for gold-bearing ore samples (at any concentration) nor for gold-doped surrogate samples with gold concentrations below 1 μg/g. Calibration curve parameters for gold-doped surrogate samples were statistically invariant at 1064 and 355 nm. Contrary, the Ag-ore analyte showed higher emission intensity at 1064 nm, but the signal-to-background normalization reduced the effect of laser wavelength of silver calibration plots. The gold-doped calibration curve metrics improved at higher laser irradiance, but that did not translate into lower limits of detection. While coefficients of determination (R2) and limits of detection did not vary significantly with laser wavelength, the LIBS repeatability at 355 nm improved up to a 50% with respect to that at 1064 nm. Plasma diagnostics by the Boltzmann and Stark broadening methods showed that the plasma temperature and electron density did not follow a specific trend as the wavelength changed for the delay and gate times used. This research presents supporting evidence that the LIBS discrete sampling features combined with the discrete and random distribution of gold in minerals hinder gold analysis by LIBS in ore samples; however, the use of higher laser irradiances at 1064 nm increased the probability of sampling and detecting naturally-occurring gold.
Marini, M; De Niederhausern, S; Iseppi, R; Bondi, M; Sabia, C; Toselli, M; Pilati, F
2007-04-01
Silver-doped organic-inorganic hybrid coatings were prepared starting from tetraethoxysilane- and triethoxysilane-terminated poly(ethylene glycol)-block-polyethylene by the sol-gel process. They were applied as a thin layer (0.6-1.1 microm) to polyethylene (PE) and poly(vinyl chloride) (PVC) films and the antibacterial activity of the coated films was tested against Gram-negative (Escherichia coli ATCC 25922) and Gram-positive (Staphylococcus aureus ATCC 6538) bacteria. The effect of several factors (such as organic-inorganic ratio, type of catalyst, time of post-curing, silver ion concentration, etc.) was investigated. Measurements at different contact times showed a rapid decrease of the viable count for both tested strains. The highest antibacterial activity [more than 6 log reduction within 6 h starting from 106 colony-forming units (cfu) mL-1] was obtained for samples with an organic-inorganic weight ratio of 80:20 and 5 wt % silver salt with respect to the coating. For the coatings prepared by an acid-catalyzed process, a high level of permanence of the antibacterial activity of the coated films was demonstrated by repeatedly washing the samples in warm water or by immersion in physiological saline solution at 37 degrees C for 3 days. The release of silver ions per square meter of coating is very similar to that previously observed for polyamides filled with metallic silver nanoparticles; however, when compared on the basis of Ag content, the concentration of silver ions released from the coating is much higher than that released from 1 mm thick specimens of polyamide (PA) filled with silver nanoparticles. Transparency and good adhesion of the coating to PE and PVC plastic substrates without any previous surface treatment are further interesting features.
NASA Astrophysics Data System (ADS)
Marzouk, M. A.; ElBatal, F. H.; Ghoneim, N. A.
2018-02-01
Some multi-component borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5 were prepared. Multi-characterization techniques were carried out to investigate their bioactivity, corrosion weight loss after immersion in phosphate solution. Controlled thermal heat-treatment by two-step technique was done to convert the prepared glasses to their corresponding glass-ceramic derivatives. X-ray diffraction analysis was performed to identify the crystalline phases formed by thermal treatment. Infrared absorption of glasses and glass-ceramics reveal vibrational bands due to combined main triangular and tetrahedral borate groups in their specific wavenumbers besides some sharing of phosphate group. After immersion in the phosphate solution, two extra characteristic peaks are generated indicating the bioactivity of the studied glasses and glass-ceramics through the formation of calcium phosphate (hydroxyapatite). X-ray diffraction data indicate the formation of crystalline phases which are variable with the introduced dopants. The main crystalline phase identified is calcium borate together with some other phases some of which contain phosphate ions. These data indicate that the presence of CaO and P2O5 initiates phase separation and subsequent crystallization of the parent and doped glasses. Weight loss data indicate that glass-ceramics are obviously durable than the parent glasses. SEM micrographs of glass-ceramics before immersion show multiconstituent crystalline phases due to the basic chemical composition consisting of multicomponent mixed alkali and alkaline earth oxides beside P2O5 and with the main B2O3 constituent. After immersion, the crystalline phases are identified to be more distinct in different shapes because of the multi-composition involved.
Bi, Lianxiang; Rahaman, Mohamed N; Day, Delbert E; Brown, Zackary; Samujh, Christopher; Liu, Xin; Mohammadkhah, Ali; Dusevich, Vladimir; Eick, J David; Bonewald, Lynda F
2013-08-01
Borate bioactive glasses are biocompatible and enhance new bone formation, but the effect of their microstructure on bone regeneration has received little attention. In this study scaffolds of borate bioactive glass (1393B3) with three different microstructures (trabecular, fibrous, and oriented) were compared for their capacity to regenerate bone in a rat calvarial defect model. 12weeks post-implantation the amount of new bone, mineralization, and blood vessel area in the scaffolds were evaluated using histomorphometric analysis and scanning electron microscopy. The amount of new bone formed was 33%, 23%, and 15%, respectively, of the total defect area for the trabecular, oriented, and fibrous microstructures. In comparison, the percent new bone formed in implants composed of silicate 45S5 bioactive glass particles (250-300μm) was 19%. Doping the borate glass with copper (0.4 wt.% CuO) had little effect on bone regeneration in the trabecular and oriented scaffolds, but significantly enhanced bone regeneration in the fibrous scaffolds (from 15 to 33%). The scaffolds were completely converted to hydroxyapatite within the 12week implantation. The amount of hydroxyapatite formed, 22%, 35%, and 48%, respectively, for the trabecular, oriented, and fibrous scaffolds, increased with increasing volume fraction of glass in the as-fabricated scaffold. Blood vessels infiltrated into all the scaffolds, but the trabecular scaffolds had a higher average blood vessel area compared with the oriented and fibrous scaffolds. While all three scaffold microstructures were effective in supporting bone regeneration, the trabecular scaffolds supported more bone formation and may be more promising in bone repair. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
To utilize visible light, co-doped nano-TiO2 was prepared via “one pot” synthesis using mild reaction conditions and benign precursors. Synthesis was optimized using an appropriate experimental design taking into account silver content and calcination temperature. The optimized ...
Thermodynamic and nonstoichiometric behavior of the lead-doped Bi-2223 system
NASA Astrophysics Data System (ADS)
Tetenbaum, M.; Hash, M.; Tani, B. S.; Luo, J. S.; Maroni, V. A.
1994-12-01
Electromotive force (EMF) measurements of oxygen fugacities as a function of stoichiometry have been made in the lead-doped Bi-2223 superconducting system in the temperature range 700-815°C by means of an oxygen titration technique. The results of our studies indicate that processing or annealing lead-doped Bi-2223 at temperatures ranging from 700 to 815°C and at oxygen partial pressures ranging from ∼0.02 to 0.2 atm should tend to preserve Bi-2223 as essentially single-phase material. Thermodynamic assessments of partial molar quantities indicate that the plateau regions can be represented by the diphasic CuOCu 2O system. In accord with the EMF measurements, it was found that lead-doped Bi-2223 in a silver sheath is stable at 815°C for oxygen partial pressures between 0.02 and 0.13 atm. Long-duration post anneals of silver-clad Bi-2223 filaments at 825°C and an oxygen partial pressure of 0.075 atm eliminated Bi-2212 intergrowths with a concomitant increase in the superconducting transition sharpness.
Structural investigation of Zn doped sodium bismuth borate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatia, V., E-mail: vijetabhatia0712@gmail.com; Kumar, D.; Singh, D.
2016-05-06
A series of Bismuth Borate Oxide Glass samples with composition x(ZnO):(15-x)Na{sub 2}O:15Bi{sub 2}O{sub 3}:70B{sub 2}O{sub 3} (variation in x is from 6 to 12 mole %) have been prepared by conventional melt quenching technique. All the chemicals used were of Analytical Grade. In order to verify the amorphous nature of the prepared samples the X-Ray Diffraction (XRD) was done. The physical and structural properties have been explored by using the techniques such as density, molar volume and FTIR in order to understand the effect of alkali and transition metal ions on the structure of these glasses. The results obtained bymore » these techniques are in good agreement to one another and with literature as well. With the increase in the content of ZnO, the increase in density and some variations in structural coordination (ratio of BO{sub 3} & BO{sub 4} structural units) have been observed.« less
NASA Astrophysics Data System (ADS)
Santos, D. R. S.; Santos, C. N.; de Camargo, A. S. S.; Silva, W. F.; Santos, W. Q.; Vermelho, M. V. D.; Astrath, N. G. C.; Malacarne, L. C.; Li, M. S.; Hernandes, A. C.; Ibanez, A.; Jacinto, C.
2011-03-01
In this work we present a comprehensive study of the spectroscopic and thermo-optical properties of a set of samples with composition xNd2O3-(5-x)Y2O3-40CaO-55B2O3 (0 ≤ x ≤ 1.0 mol%). Their fluorescence quantum efficiency (η) values were determined using the thermal lens technique and the dependence on the ionic concentration was analyzed in terms of energy transfer processes, based on the Förster-Dexter model of multipolar ion-ion interactions. A maximum η = 0.54 was found to be substantially higher than for yttrium aluminoborate crystals and glasses with comparable Nd3+ content. As for the thermo-optical properties of yttrium calcium borate, they are comparable to other well-known laser glasses. The obtained energy transfer microparameters and the weak dependence of η on the Nd3+ concentration with a high optimum Nd3+ concentration put this system as a strong candidate for photonics applications.
NASA Astrophysics Data System (ADS)
Rottler, Andreas; Harland, Malte; Bröll, Markus; Klingbeil, Matthias; Ehlermann, Jens; Mendach, Stefan
2013-12-01
We experimentally demonstrate that hybrid plasmon-photon modes exist in a silver-coated glass bottle resonator. The bottle resonator is realized in a glass fiber with a smoothly varying diameter, which is subsequently coated with a rhodamine 800-dye doped acryl-glass layer and a 30 nm thick silver layer. We show by means of photoluminescence experiments supported by electromagnetic simulations that the rhodamine 800 photoluminescence excites hybrid plasmon-photon modes in such a bottle resonator, which provide a plasmon-type field enhancement at the outer silver surface and exhibit quality factors as high as 1000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paeng, Dongwoo; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu; Lee, Daeho
2014-08-18
In-situ optical probing has been performed to analyze and compare the characteristic coalescence time scales of silver ion-doped polyvinylalcohol nanocomposite (Ag-PVA NC) and polyvinylpyrrolidone-capped silver nanoparticle (Ag-PVP NP) films subjected to continuous wave laser irradiation. The Ag-PVA NC yielded conductive metallic patterns by photothermal reduction of PVA, formation of nanoparticles from silver ions and their subsequent coalescence. On the other hand, Ag-PVP NP thin films produced conductive patterns through only coalescence of nanoparticles. Upon laser irradiation, Ag-PVA NC and Ag-PVP NP films exhibited different coalescence characteristics.
Silver nanocluster catalytic microreactors for water purification
NASA Astrophysics Data System (ADS)
Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.
2016-07-01
A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.
Passive particle dosimetry. [silver halide crystal growth
NASA Technical Reports Server (NTRS)
Childs, C. B.
1977-01-01
Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.
Remineralization Property of an Orthodontic Primer Containing a Bioactive Glass with Silver and Zinc
Lee, Seung-Min; Kim, In-Ryoung; Park, Bong-Soo; Ko, Ching-Chang; Son, Woo-Sung; Kim, Yong-Il
2017-01-01
White spot lesions (WSLs) are irreversible damages in orthodontic treatment due to excessive etching or demineralization by microorganisms. In this study, we conducted a mechanical and cell viability test to examine the antibacterial properties of 0.2% and 1% bioactive glass (BAG) and silver-doped and zinc-doped BAGs in a primer and evaluated their clinical applicability to prevent WSLs. The microhardness statistically significantly increased in the adhesive-containing BAG, while the other samples showed no statistically significant difference compared with the control group. The shear bond strength of all samples increased compared with that of the control group. The cell viability of the control and sample groups was similar within 24 h, but decreased slightly over 48 h. All samples showed antibacterial properties. Regarding remineralization property, the group containing 0.2% of the samples showed remineralization properties compared with the control group, but was not statistically significant; further, the group containing 1% of the samples showed a significant difference compared with the control group. Among them, the orthodontic bonding primer containing 1% silver-doped BAG showed the highest remineralization property. The new orthodontic bonding primer used in this study showed an antimicrobial effect, chemical remineralization effect, and WSL prevention as well as clinically applicable properties, both physically and biologically. PMID:29088092
Cochis, A; Azzimonti, B; Della Valle, C; De Giglio, E; Bloise, N; Visai, L; Cometa, S; Rimondini, L; Chiesa, R
2016-02-01
Implant-related infection of biomaterials is one of the main causes of arthroplasty and osteosynthesis failure. Bacteria, such as the rapidly-emerging Multi Drug Resistant (MDR) pathogen Acinetobacter Baumannii, initiate the infection by adhering to biomaterials and forming a biofilm. Since the implant surface plays a crucial role in early bacterial adhesion phases, titanium was electrochemically modified by an Anodic Spark Deposition (ASD) treatment, developed previously and thought to provide osseo-integrative properties. In this study, the treatment was modified to insert gallium or silver onto the titanium surface, to provide antibacterial properties. The material was characterized morphologically, chemically, and mechanically; biological properties were investigated by direct cytocompatibility assay, Alkaline Phosphatase (ALP) activity, Scanning Electron Microscopy (SEM), and Immunofluorescent (IF) analysis; antibacterial activity was determined by counting Colony Forming Units, and viability assay. The various ASD-treated surfaces showed similar morphology, micrometric pore size, and uniform pore distribution. Of the treatments studied, gallium-doped specimens showed the best ALP synthesis and antibacterial properties. This study demonstrates the possibility of successfully doping the surface of titanium with gallium or silver, using the ASD technique; this approach can provide antibacterial properties and maintain high osseo-integrative potential. Copyright © 2015 Elsevier Ltd. All rights reserved.
Meng, Qingshi; Qin, Kaiqiang; Ma, Liying; He, Chunnian; Liu, Enzuo; He, Fang; Shi, Chunsheng; Li, Qunying; Li, Jiajun; Zhao, Naiqin
2017-09-13
A three-dimensional cross-linked porous silver network (PSN) is fabricated by silver mirror reaction using polymer foam as the template. The N-doped porous carbon nanofibers (N-PCNFs) are further prepared on PSN by chemical vapor deposition and treated by ammonia gas subsequently. The PSN substrate serving as the inner current collector will improve the electron transport efficiency significantly. The ammonia gas can not only introduce nitrogen doping into PCNFs but also increase the specific surface area of PCNFs at the same time. Because of its large surface area (801 m 2 /g), high electrical conductivity (211 S/cm), and robust structure, the as-constructed N-PCNFs/PSN demonstrates a specific capacitance of 222 F/g at the current density of 100 A/g with a superior rate capability of 90.8% of its initial capacitance ranging from 1 to 100 A/g while applied as the supercapacitor electrode. The symmetric supercapacitor device based on N-PCNFs/PSN displays an energy density of 8.5 W h/kg with power density of 250 W/kg and excellent cycling stability, which attains 103% capacitance retention after 10 000 charge-discharge cycles at a high current density of 20 A/g, which indicates that N-PCNFs/PSN is a promising candidate for supercapacitor electrode materials.
Molecular organic crystalline matrix for hybrid organic-inorganic (nano) composite materials
NASA Astrophysics Data System (ADS)
Stanculescu, A.; Tugulea, L.; Alexandru, H. V.; Stanculescu, F.; Socol, M.
2005-02-01
Metal-doped benzil crystals have been grown by thermal gradient solidification in a vertical transparent growth configuration to investigate the effect of metallic guest on the ordered organic host. We have identified the conditions for growing homogeneous, optically good crystals of benzil doped with sodium and silver, limiting the effect of supercooling, low thermal conductivity and anisotropy of the growth speed (temperature gradient at the liquid-solid interface: 10-25 °C, moving speed of the growth interface 2.0 mm/h). The nature and concentration of the dopant are parameters affecting, through the growth process, the crystalline perfection and the optical properties of the organic matrix. Bulk optical characterisation, by spectrophotometrical methods, has offered details on some intrinsic properties of the system metal particles/benzil crystalline matrix. Analytical processing of the experimental data emphasised that benzil is a wide optical band gap organic semiconductor Eg=2.65 eV. We also have investigated the effect of sodium and silver on the properties of benzil crystal as potential transparent semiconductor matrix for (nano)composite metal/molecular organic material. With the increase of sodium concentration from c=1 to 6 wt%, a small narrowing of the band gap has been remarked. The same behaviour has been found for benzil doped with silver (c=2 wt%) compared to pure benzil.
NASA Astrophysics Data System (ADS)
Jegatheeswaran, S.; Selvam, S.; Sri Ramkumar, V.; Sundrarajan, M.
2016-05-01
A novel green route has approached for the synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin composite by the assistance of fluorine-based ionic liquid. The selected [BMIM]BF4 ionic liquid for this work plays a dual role as fluoride source and templating agent. It helps to improve the crystalline structures and the shape of the composites. The crystallinity, surface morphology, topographical studies of the synthesized composite were validated. The XRD results of the composite show typical Ag reflection peaks at 38.1°, 44.2° and 63.4°. The ionic liquid assisted composite displayed the hexagonal shaped HA particles, which are surrounded by spherical nano-Ag particles and these particles are uniformly dispersed in the β-cyclodextrin matrix in both horizontal and cross sections from surface morphology observations. The Ionic liquid assisted silver doped fluor-hydroxyapatite/β-cyclodextrin composite exhibited very good antibacterial activities against Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Serratia liquefaciens pathogens. The antibacterial proficiencies were established using Confocal Laser Scanning Microscopic developed biofilms images and bacterial growth curve analysis. The cytotoxicity results of the ionic liquid assisted composite analyzed by cell proliferation in vitro studies using human osteosarcoma cell line (MG-63) and this study has shown excellent biocompatibility.
Li, Lei; Sahi, Sunil K; Peng, Mingying; Lee, Eric B; Ma, Lun; Wojtowicz, Jennifer L; Malin, John H; Chen, Wei
2016-02-10
We developed new optic devices - singly-doped luminescence glasses and nanoparticle-coated lenses that convert UV light to visible light - for improvement of visual system functions. Tb(3+) or Eu(3+) singly-doped borate glasses or CdS-quantum dot (CdS-QD) coated lenses efficiently convert UV light to 542 nm or 613 nm wavelength narrow-band green or red light, or wide-spectrum white light, and thereby provide extra visible light to the eye. In zebrafish (wild-type larvae and adult control animals, retinal degeneration mutants, and light-induced photoreceptor cell degeneration models), the use of Tb(3+) or Eu(3+) doped luminescence glass or CdS-QD coated glass lenses provide additional visible light to the rod and cone photoreceptor cells, and thereby improve the visual system functions. The data provide proof-of-concept for the future development of optic devices for improvement of visual system functions in patients who suffer from photoreceptor cell degeneration or related retinal diseases.
Sloufová, Ivana; Sisková, Karolína; Vlcková, Blanka; Stepánek, Josef
2008-04-28
Changes in morphology, surface reactivity and surface-enhancement of Raman scattering induced by modification of borate-stabilized Ag nanoparticles by adsorbed chlorides have been explored using TEM, EDX analysis and SERS spectra of probing adsorbate 2,2'-bipyridine (bpy) excited at 514.5 nm and evaluated by factor analysis. At fractional coverages of the parent Ag nanoparticles by adsorbed chlorides <0.6, the Ag colloid/Cl(-)/bpy systems were found to be constituted by fractal aggregates of Ag nanoparticles fairly uniform in size (10 +/- 2 nm) and SERS spectra of Ag(+)-bpy surface species were detected. The latter result was interpreted in terms of the presence of oxidized Ag(+) and/or Ag(n)(+) adsorption sites, which have been encountered also in systems with the chemically untreated Ag nanoparticles. At chloride coverages >0.6, a fusion of fractal aggregates into the compact aggregates of touching and/or interpenetrating Ag nanoparticles has been observed and found to be accompanied by the formation of another surface species, Ag-bpy, as well as by the increase of the overall SERS enhancement of bpy by factor of 40. The same Ag-bpy surface species has been detected under the strongly reducing conditions of reduction of silver nitrate by sodium borohydride in the presence of bpy. The formation of Ag-bpy is thus interpreted in terms of the stabilization of reduced Ag(0) adsorption sites by adsorbed bpy. The formation of reduced adsorption sites on Ag nanoparticle surfaces at chloride coverages >0.6 is discussed in terms of local changes in the work function of Ag. Finally, the SERS spectral detection of Ag-bpy species is proposed as a tool for probing the presence of reduced Ag(0) adsorption sites in systems with chemically modified Ag nanoparticles.
NASA Astrophysics Data System (ADS)
Deopa, Nisha; Rao, A. S.; Gupta, Mohini; Vijaya Prakash, G.
2018-01-01
Neodymium doped lithium lead alumino borate glasses were synthesized with the molar composition 10Li2Osbnd 10PbOsbnd (10-x) Al2O3sbnd 70B2O3sbnd x Nd2O3 (where, x = 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5 mol %) via conventional melt quenching technique to understand their lasing potentialities using the absorption, emission and photoluminescence decay spectral measurements. The oscillator strengths measured from the absorption spectra were used to estimate the Judd-Ofelt intensity parameters using least square fitting procedure. The emission spectra recorded for the as-prepared glasses under investigation exhibit two emission transitions 4F3/2 → 4I11/2 (1063 nm) and 4F3/2 → 4I9/2 (1350 nm) for which radiative parameters have been evaluated. The emission intensity increases with increase in Nd3+ ion concentration up to 1 mol % and beyond concentration quenching took place. The decay profile shows single exponential nature for lower Nd3+ ion concentration and non-exponential for higher concentration. To elucidate the nature of energy transfer process, the non-exponential decay curves were well fitted to Inokuti-Hirayama model. The relatively higher values of emission cross-sections, branching ratios and quantum efficiency values obtained for 1.0 mol% of Nd3+ ions in LiPbAlB glass suggests it's aptness in generating lasing action at 1063 nm in NIR region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suthanthirakumar, P.; Marimuthu, K., E-mail: emari-ram2000@yahoo.com
The Sm{sup 3+} doped novel boro-phosphate glasses containing silver nanoparticles (NPs) (SmBPxA) have been prepared following the melt quenching technique and their structural and spectroscopic behavior were studied through HR-TEM, optical absorption and photoluminescence spectral measurements. The TEM analysis validates the existence of Ag NPs with an average diameter of ~8 nm. The Surface plasmon resonance (SPR) band of silver NPs was found at around 600 nm from the absorption spectrum of the Sm{sup 3+} ions free glass sample. The optical band gap energy (E{sub opt}) corresponding to the direct and indirect allowed transitions and the Urbach energy (ΔE) valuesmore » were determined from the absorption spectral measurements. The luminescence intensity is found to get enhance when the Ag NPs were embedded along with the Sm{sup 3+} ions in the prepared glasses due to the local electric field effect around the rare earth (RE) ion site produced by the SPR of Ag NPs.« less
Silver doped catalysts for treatment of exhaust
Park, Paul Worn [Peoria, IL; Boyer, Carrie L [Shiloh, IL
2006-12-26
A method of making an exhaust treatment catalyst includes dispersing a metal-based material in a first solvent to form a first slurry and allowing polymerization of the first slurry to occur. Polymerization of the first slurry may be quenched and the first slurry may be allowed to harden into a solid. This solid may be redistributed in a second solvent to form a second slurry. The second slurry may be loaded with a silver-based material, and a silver-loaded powder may be formed from the second slurry.
Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light
Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou
2015-01-01
Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet–visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films. PMID:26156001
Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light
NASA Astrophysics Data System (ADS)
Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou
2015-07-01
Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet-visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.
NASA Astrophysics Data System (ADS)
Nair, Anju K.; Thazhe Veettil, Vineesh; Kalarikkal, Nandakumar; Thomas, Sabu; Kala, M. S.; Sahajwalla, Veena; Joshi, Rakesh K.; Alwarappan, Subbiah
2016-12-01
Metal nanowires exhibit unusually high catalytic activity towards oxygen reduction reaction (ORR) due to their inherent electronic structures. However, controllable synthesis of stable nanowires still remains as a daunting challenge. Herein, we report the in situ synthesis of silver nanowires (AgNWs) over boron doped graphene sheets (BG) and demonstrated its efficient electrocatalytic activity towards ORR for the first time. The electrocatalytic ORR efficacy of BG-AgNW is studied using various voltammetric techniques. The BG wrapped AgNWs shows excellent ORR activity, with very high onset potential and current density and it followed four electron transfer mechanism with high methanol tolerance and stability towards ORR. The results are comparable to the commercially available 20% Pt/C in terms of performance.
Pure silver ohmic contacts to N- and P- type gallium arsenide materials
Hogan, Stephen J.
1986-01-01
Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components an n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffused layer and the substrate layer, wherein the n-type layer comprises a substantially low doping carrier concentration.
Singh, Ram Kishore; Awasthi, Sharad; Dhayalan, Arunkumar; Ferreira, J M F; Kannan, S
2016-05-01
Pure and five silver-doped (0-5Ag) β-tricalcium phosphate [β-TCP, β-Ca3(PO4)2]/chitosan composite coatings were deposited on Titanium (Ti) substrates and their properties that are relevant for applications in hard tissue replacements were assessed. Silver, β-TCP and chitosan were combined to profit from their salient and complementary antibacterial and biocompatible features.The β-Ca3(PO4)2 powders were synthesized by co-precipitation. The characterization results confirmed the Ag(+) occupancy at the crystal lattice of β-Ca3(PO4)2. The Ag-dopedβ-Ca3(PO4)2/chitosan composite coatings deposited by electrophoresis showed good antibacterial activity and exhibited negative cytotoxic effects towards the human osteosarcoma cell line MG-63. The morphology of the coatings was observed by SEM and their efficiency against corrosion of metallic substrates was determined through potentiodynamic polarization tests. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Elsabawy, Khaled M.; Fallatah, Ahmed M.; Alharthi, Salman S.
2018-07-01
For the first time high energy Helium-Silver laser which belongs to the category of metal-vapor lasers applied as microstructure promoter for optimally Ir-doped-MgB2sample. The Ir-optimally doped-Mg0.94Ir 0.06B2 superconducting sample was selected from previously published article for one of authors themselves. The samples were irradiated by a three different doses 1, 2 and 3 h from an ultrahigh energy He-Ag-Laser with average power of 103 W/cm2 at distance of 3 cm. Superconducting measurements and micro-structural features were investigated as function of He-Ag Laser irradiation doses. Results indicated that irradiations via an ultrahigh energy He-Ag-Laser promoted grains to lower sizes and consequently measured Jc's values enhanced and increased. Furthermore Tc-offsets for all irradiated samples are better than non-irradiated Mg0.94Ir 0.06B2.
NASA Astrophysics Data System (ADS)
Li, Longji; Yang, Yong; Zhou, Dacheng; Yang, Zhengwen; Xu, Xuhui; Qiu, Jianbei
2013-05-01
The introduction of silver into the Sm3+-doped sodium-aluminosilicate glasses prepared by Ag+-Na+ ion exchange leads to the formation of different ionic silver species. Under 270 nm/250 nm excitation, effective enhancement of Sm3+ luminescence is ascribed to radiative energy transfer from isolated Ag+ to Sm3+. Under 355 nm excitation, white light emission was realized by combining red orange light emission of Sm3+ with green light emission of Ag+-Ag+ and blue light emission of (Ag2)+. Silver nanoparticles formed by further heat treatment are effective quenchers of luminescence from the corresponding excited states of Sm3+ ions.
Synthesis and optical properties of antimony oxide glasses doped with holmium trioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghunatha, S.; Eraiah, B., E-mail: eraiah@rediffmail.com
2016-05-06
Holmium doped lithium-antimony-lead borate glasses having 1 mol% AgNO{sub 3} with composition 50B{sub 2}O{sub 3}-20PbO-25Sb{sub 2}O{sub 3}-5Li{sub 2}O have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses. The optical direct band gap energies were found to be in the range of 3.10 eV to 3.31 eV and indirect band gap energies were found to be in the range of 2.28 eV to 3.00 eV. The refractive indexes have been calculated by using Lorentz-Lorenz formula and the calculated values in the range ofmore » 2.31 to 2.37.« less
NASA Astrophysics Data System (ADS)
Yang, Ruirui; Sun, Xiaorui; Jiang, Pengfei; Gao, Wenliang; Cong, Rihong; Yang, Tao
2018-02-01
Rare earth (RE) borates have been extensively studied as good photoluminescent materials, however, the target hosts were limited to "RE3BO6", REBO3, and REB3O6 in the RE2O3-B2O3 phase diagram until the recent discovery of rare earth pentaborate. For the first time, the sol-gel method was employed to synthesize β-LaB5O9 doped with Eu3+, Tb3+, Ce3+, Sm3+, Dy3+. In comparison to the previous synthetic methods, the sol-gel method possesses superiorities including easily-controllable doping concentration, high yield and emission efficiency. Solid solutions of phosphors were prepared and carefully analyzed by powder X-ray diffraction. Concentration quenching or saturation was observed in Eu3+, Tb3+ and Ce3+ doped phosphors at round 10 at%. Eu3+, Tb3+, Sm3+, and Dy3+ emit red, green, orange, and close-to-white light, respectively. The absolute emission efficiency of Ce3+ is high and in the UV range, suggesting the function of being sensitizer once combined with other activators.
Naresh, V; Gupta, Kiran; Parthasaradhi Reddy, C; Ham, Byoung S
2017-03-15
A promising energy transfer (Tm 3+ →Tb 3+ →Eu 3+ ) approach is brought forward to generate white light emission under ultraviolet (UV) light excitation for solid state lightening. Tm 3+ /Tb 3+ /Eu 3+ ions are combinedly doped in zinc borate glass system in view of understanding energy transfer process resulting in white light emission. Zinc borate (host) glass displayed optical and luminescence properties due to formation of Zn(II) x -[O(-II)] y centres in the ZnB glass matrix. At 360nm (UV) excitation, triply doped Tm 3+ /Tb 3+ /Eu 3+ : ZnB glasses simultaneously shown their characteristic emission bands in blue (454nm: 1 D 2 → 3 F 4 ), green (547nm: 5 D 4 → 7 F 5 ) and red (616nm: 5 D 0 → 7 F 2 ) regions. In triple ions doped glasses, energy transfer dynamics is discussed in terms of Forster-Dexter theory, excitation & emission profiles, lifetime curves and from partial energy level diagram of three ions. The role of Tb 3+ in ET from Tm 3+ →Eu 3+ was discussed using branch model. From emission decay analysis, energy transfer probability (P) and efficiency (η) were evaluated. Colour tunability from blue to white on varying (Tb 3+ , Eu 3+ ) content is demonstrated from Commission Internationale de L'Eclairage (CIE) chromaticity coordinates. Based on chromaticity coordinates, other colour related parameters like correlated colour temperature (CCT) and colour purity are also computed for the studied glass samples. An appropriate blending of such combination of rare earth ions could show better suitability as potential candidates in achieving multi-colour and warm/cold white light emission for white LEDs application in the field of solid state lightening. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of diamond-like carbon thin film coated acrylic resin on candida albicans biofilm formation.
Queiroz, José Renato Cavalcanti; Fissmer, Sara Fernanda; Koga-Ito, Cristiane Yumi; Salvia, Ana C R D; Massi, Marcos; Sobrinho, Argermiro Soares da Silva; Júnior, Lafayette Nogueira
2013-08-01
The purpose of this study was to evaluate the effect of diamond-like carbon thin films doped and undoped with silver nanoparticles coating poly(methyl methacrylate) (PMMA) on Candida albicans biofilm formation. The control of biofilm formation is important to prevent oral diseases in denture users. Forty-five PMMA disks were obtained, finished, cleaned in an ultrasonic bath, and divided into three groups: Gc, no surface coating (control group); Gdlc, coated with diamond-like carbon film; and Gag, coated with diamond-like carbon film doped with silver nanoparticles. The films were deposited using a reactive magnetron sputtering system (physical vapor deposition process). The specimens were characterized by optical profilometry, atomic force microscopy, and Rutherford backscattering spectroscopy analyses that determined differences in chemical composition and morphological structure. Following sterilization of the specimens by γ-ray irradiation, C. albicans (ATCC 18804) biofilms were formed by immersion in 2 ml of Sabouraud dextrose broth inoculated with a standardized fungal suspension. After 24 hours, the number of colony forming units (cfu) per specimen was counted. Data concerning biofilm formation were analyzed using ANOVA and the Tukey test (p < 0.05). C. albicans biofilm formation was significantly influenced by the films (p < 0.00001), reducing the number of cfu, while not affecting the roughness parameters (p > 0.05). The Tukey test showed no significant difference between Gdlc and Gag. Films deposited were extremely thin (∼50 nm). The silver particles presented a diameter between 60 and 120 nm and regular distribution throughout the film surface (to Gag). Diamond-like carbon films, doped or undoped with silver nanoparticles, coating the base of PMMA-based dentures could be an alternative procedure for preventing candidosis in denture users. © 2013 by the American College of Prosthodontists.
Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials
Hogan, S.J.
1983-03-13
Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.
Ciraldo, Francesca E.; Goldmann, Wolfgang H.
2018-01-01
Since they were first developed in 2004, mesoporous bioactive glasses (MBGs) rapidly captured the interest of the scientific community thanks to their numerous beneficial properties. MBGs are synthesised by a combination of the sol–gel method with the chemistry of surfactants to obtain highly mesoporous (pore size from 5 to 20 nm) materials that, owing to their high surface area and ordered structure, are optimal candidates for controlled drug-delivery systems. In this work, we synthesised and characterised a silver-containing mesoporous bioactive glass (Ag-MBG). It was found that Ag-MBG is a suitable candidate for controlled drug delivery, showing a perfectly ordered mesoporous structure ideal for the loading of drugs together with optimal bioactivity, sustained release of silver from the matrix, and fast and strong bacterial inhibition against both Gram-positive and Gram-negative bacteria. Silver-doped mesoporous glass particles were used in three electrospinning-based techniques to produce PCL/Ag-MBG composite fibres, to coat bioactive glass scaffolds (via electrospraying), and for direct sol electrospinning. The results obtained in this study highlight the versatility and efficacy of Ag-substituted mesoporous bioactive glass and encourage further studies to characterize the biological response to Ag-MBG-based antibacterial controlled-delivery systems for tissue-engineering applications. PMID:29710768
Zhang, Yadong; Cui, Xu; Zhao, Shichang; Wang, Hui; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing
2015-02-04
The development of a new generation of injectable bone cements that are bioactive and have enhanced osteogenic capacity for rapid osseointegration is receiving considerable interest. In this study, a novel injectable cement (designated Sr-BBG) composed of strontium-doped borate bioactive glass particles and a chitosan-based bonding phase was prepared and evaluated in vitro and in vivo. The bioactive glass provided the benefits of bioactivity, conversion to hydroxyapatite, and the ability to stimulate osteogenesis, while the chitosan provided a cohesive biocompatible and biodegradable bonding phase. The Sr-BBG cement showed the ability to set in situ (initial setting time = 11.6 ± 1.2 min) and a compressive strength of 19 ± 1 MPa. The Sr-BBG cement enhanced the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells in vitro when compared to a similar cement (BBG) composed of chitosan-bonded borate bioactive glass particles without Sr. Microcomputed tomography and histology of critical-sized rabbit femoral condyle defects implanted with the cements showed the osteogenic capacity of the Sr-BBG cement. New bone was observed at different distances from the Sr-BBG implants within eight weeks. The bone-implant contact index was significantly higher for the Sr-BBG implant than it was for the BBG implant. Together, the results indicate that this Sr-BBG cement is a promising implant for healing irregularly shaped bone defects using minimally invasive surgery.
Persistent magnetism in silver-doped BaF e 2 A s 2 crystals
Li, Li; Cao, Huibo; Parker, David S.; ...
2016-10-12
Here, we investigate the thermodynamic and transport properties of silver-substituted BaF e 2 A s 2 (122) crystals up to ~ 4.5 % . Similar to other transition-metal substitutions in 122, Ag diminishes the antiferromagnetic ( T N ) and structural ( T S ) transition temperatures, but unlike other electron-doped 122s, T N and T S coincide without splitting. Though magnetism drops precipitously to T N = 84 K at doping x = 0.029 , it only weakly changes above this x , settling at T N = 80 K at x = 0.045 . Compared to this persistentmore » magnetism in Ag-122, doping other group 11 elements of either Cu or Au in 122 diminished T N and induced superconductivity near T c = 2 K at x = 0.044 or 0.031, respectively. Ag-122 crystals show reflective surfaces with surprising thicker cross sections for x ≥ 0.019 , the appearance that is in contrast to the typical thin stacked layered feature seen in all other flux-grown x-122 and lower Ag-122. We found that this physical trait may be a manifest of intrinsic weak changes in c lattice and T N . Our theoretical calculations suggest that Ag doping produces strong electronic scattering and yet a relatively small disruption of the magnetic state, both of which preclude superconductivity in this system.« less
NASA Astrophysics Data System (ADS)
Fierro, Stéphane; Seishima, Ryo; Nagano, Osamu; Saya, Hideyuki; Einaga, Yasuaki
2013-11-01
This study presents the in vivo electrochemical monitoring of pH using boron doped diamond (BDD) microelectrode and silver needles for potential application in medical diagnosis. Accurate calibration curve for pH determination were obtained through in vitro electrochemical measurements. The increase induced in stomach pH by treatment with pantoprazole was used to demonstrate that it is possible to monitor the pH in vivo using the simple and noninvasive system proposed herein. Using the results of the in vivo and in vitro experiments, a quantitative analysis of the increase in stomach pH is also presented. It is proposed that the catheter-free pH monitoring system presented in this study could be potentially employed in any biological environment.
Fierro, Stéphane; Seishima, Ryo; Nagano, Osamu; Saya, Hideyuki; Einaga, Yasuaki
2013-11-19
This study presents the in vivo electrochemical monitoring of pH using boron doped diamond (BDD) microelectrode and silver needles for potential application in medical diagnosis. Accurate calibration curve for pH determination were obtained through in vitro electrochemical measurements. The increase induced in stomach pH by treatment with pantoprazole was used to demonstrate that it is possible to monitor the pH in vivo using the simple and noninvasive system proposed herein. Using the results of the in vivo and in vitro experiments, a quantitative analysis of the increase in stomach pH is also presented. It is proposed that the catheter-free pH monitoring system presented in this study could be potentially employed in any biological environment.
Nair, Anju K.; Thazhe veettil, Vineesh; Kalarikkal, Nandakumar; Thomas, Sabu; Kala, M. S.; Sahajwalla, Veena; Joshi, Rakesh K.; Alwarappan, Subbiah
2016-01-01
Metal nanowires exhibit unusually high catalytic activity towards oxygen reduction reaction (ORR) due to their inherent electronic structures. However, controllable synthesis of stable nanowires still remains as a daunting challenge. Herein, we report the in situ synthesis of silver nanowires (AgNWs) over boron doped graphene sheets (BG) and demonstrated its efficient electrocatalytic activity towards ORR for the first time. The electrocatalytic ORR efficacy of BG-AgNW is studied using various voltammetric techniques. The BG wrapped AgNWs shows excellent ORR activity, with very high onset potential and current density and it followed four electron transfer mechanism with high methanol tolerance and stability towards ORR. The results are comparable to the commercially available 20% Pt/C in terms of performance. PMID:27941954
Simm, Andrew O; Banks, Craig E; Ward-Jones, Sarah; Davies, Trevor J; Lawrence, Nathan S; Jones, Timothy G J; Jiang, Li; Compton, Richard G
2005-09-01
A novel boron-doped diamond (BDD) microelectrode array is characterised with electrochemical and atomic force microscopic techniques. The array consists of 40 micron-diameter sized BDD discs which are separated by 250 microns from their nearest neighbour in a hexagonal arrangement. The conducting discs can be electroplated to produce arrays of copper, silver or gold for analytical purposes in addition to operating as an array of BDD-microelectrodes. Proof-of-concept is shown for four separate examples; a gold plated array for arsenic detection, a copper plated array for nitrate analysis, a silver plated array for hydrogen peroxide monitoring and last, cathodic stripping voltammetry for lead at the bare BDD-array.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sontakke, Atul D., E-mail: sontakke.atul.55a@st.kyoto-u.ac.jp; Katayama, Yumiko; Tanabe, Setsuhisa
2015-03-30
A facile method to describe the electron transfer and energy transfer processes among lanthanide ions is presented based on the temperature dependent donor luminescence decay kinetics. The electron transfer process in Ce{sup 3+}-Yb{sup 3+} exhibits a steady rise with temperature, whereas the Ce{sup 3+}-Tb{sup 3+} energy transfer remains nearly unaffected. This feature has been investigated using the rate equation modeling and a methodology for the quantitative estimation of interaction parameters is presented. Moreover, the overall consequences of electron transfer and energy transfer process on donor-acceptor luminescence behavior, quantum efficiency, and donor luminescence decay kinetics are discussed in borate glass host.more » The results in this study propose a straight forward approach to distinguish the electron transfer and energy transfer processes between lanthanide ions in dielectric hosts, which is highly advantageous in view of the recent developments on lanthanide doped materials for spectral conversion, persistent luminescence, and related applications.« less
Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass
Masai, Hirokazu; Yamada, Yasuhiro; Suzuki, Yuto; Teramura, Kentaro; Kanemitsu, Yoshihiko; Yoko, Toshinobu
2013-01-01
Transparent inorganic luminescent materials have attracted considerable scientific and industrial attention recently because of their high chemical durability and formability. However, photoluminescence dynamics of ns2-type ions in oxide glasses has not been well examined, even though they can exhibit high quantum efficiency. We report on the emission property of Sn2+-doped strontium borate glasses. Photoluminescence dynamics studies show that the peak energy of the emission spectrum changes with time because of site distribution of emission centre in glass. It is also found that the emission decay of the present glass consists of two processes: a faster S1-S0 transition and a slower T1-S0 relaxation, and also that the energy difference between T1 and S1 states was found to be much smaller than that of (Sn, Sr)B6O10 crystals. We emphasize that the narrow energy gap between the S1 and T1 states provides the glass phosphor a high quantum efficiency, comparable to commercial crystalline phosphors. PMID:24345869
Wygladacz, Katarzyna; Radu, Aleksandar; Xu, Chao; Qin, Yu; Bakker, Eric
2005-08-01
An optical microsensor array is described for the rapid analysis of silver ions at low parts per trillion levels. Because the ionophore o-xylylenebis(N,N-diisobutyldithiocarbamate) (Cu-I) was reevaluated and shown to exhibit excellent selectivity for silver ions, ion-selective electrode (ISE) membranes were optimized and found to exhibit the lowest reported detection limit so far (3 x 10(-10) M). A corresponding Ag+-selective fluorescent optical microsensor array for the rapid sensing of trace level Ag+ was then developed. It was fabricated using plasticized PVC-based micrometer-scale fluorescent microspheres that were produced via a sonic particle casting device. They contained 156 mmol/kg Cu-I, 10 mmol/kg 9-(diethylamino)-5-[4-(15-butyl-1,13-dioxo-2,14-dioxanodecyl) phenylimino]benzo[a]phenoxazine (chromoionophore VII, ETH 5418), 2.3 mmol/kg 1,1' '-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (internal reference dye), and 14 mmol/kg sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate and were deposited onto the etched distal end of a 3200-microm-diameter optical fiber bundle. The microarray was characterized by fluorescence spectroscopy in samples containing 10(-12)-10(-8) M AgNO3 at pH 7.4, with selectivity characteristics comparable to the corresponding ISEs. The response time of the microsensor array was found to be less than 15 min for 10(-9) M AgNO3, which is drastically shorter than earlier data on optode films (8 h) and corresponding ISEs (30 min). A detection limit of 4 x 10(-11) M for Ag+ was observed, lower than any previously reported optode or silver-selective ISE. The microsensor array was applied for measurement of free silver levels in buffered pond water samples.
Infrared and Raman spectroscopic studies on alkali borate glasses: evidence of mixed alkali effect.
Padmaja, G; Kistaiah, P
2009-03-19
A lithium-potassium-borate glass system containing manganese and iron cations has been thoroughly investigated in order to obtain information about the mixed alkali effect and the structural role of both the manganese and iron in such glass hosts. Mixed alkali borate glasses of the (30 - x)Li(2)O - xK(2)O - 10CdO/ZnO - 59B(2)O(3) (x = 0, 10, 15, 20, and 30) doped with 1MnO(2)/1Fe(2)O(3) system were prepared by a melt quench technique. The amorphous phase of the prepared glass samples was confirmed from their X-ray diffraction. The spectroscopic properties of glass samples were studied using infrared (IR) and Raman spectroscopic techniques. The density of all the prepared glasses was measured using Archimedes principle. Molar volumes were estimated from the density data. IR spectra of these glasses revealed a dramatic variation of three- and four-coordinated boron structures as a function of mixed alkali concentration. The vibrations due to Li-O, K-O, and MnO(4)/FeO(4) arrangements are consistent in all the compositions and show a nonlinear variation in the intensity with alkali content. Raman spectra of different alkali combinations with CdO and ZnO present drastic changes in the intensity of various Raman bands. The observation of disappearance and reappearance of IR and Raman bands as a function of various alkali concentrations is an important result pertaining to the mixed alkali effect in borate glasses. Acting as complementary spectroscopic techniques, both types of measurements, IR and Raman, revealed that the network structure of the studied glasses is mainly based on BO(3) and BO(4) units placed in different structural groups, the BO(3) units being dominant. The measured IR and Raman spectra of different glasses are used to clarify the optical properties of the present glasses correlating them with their structure and composition.
Printed silver nanowire antennas with low signal loss at high-frequency radio
NASA Astrophysics Data System (ADS)
Komoda, Natsuki; Nogi, Masaya; Suganuma, Katsuaki; Kohno, Kazuo; Akiyama, Yutaka; Otsuka, Kanji
2012-05-01
Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those obtained using etched copper foil antennas, because their surfaces were much smoother than those of etched copper foil antennas. This was the case even though the resistivity of silver nanowire lines was 43-71 μΩ cm, which is much higher than that of etched copper foil (2 μΩ cm). When printed silver nanowire antennas were heated at 100 °C, they achieved signal losses that were much lower than those of silver paste antennas comprising microparticles, nanoparticles, and flakes. Furthermore, using a low temperature process, we succeeded in remotely controlling a commercialized radio-controlled car by transmitting a 2.45 GHz signal via a silver nanowire antenna printed on a polyethylene terephthalate film.Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those obtained using etched copper foil antennas, because their surfaces were much smoother than those of etched copper foil antennas. This was the case even though the resistivity of silver nanowire lines was 43-71 μΩ cm, which is much higher than that of etched copper foil (2 μΩ cm). When printed silver nanowire antennas were heated at 100 °C, they achieved signal losses that were much lower than those of silver paste antennas comprising microparticles, nanoparticles, and flakes. Furthermore, using a low temperature process, we succeeded in remotely controlling a commercialized radio-controlled car by transmitting a 2.45 GHz signal via a silver nanowire antenna printed on a polyethylene terephthalate film. Electronic supplementary information (ESI) available: Operation of R/C car with a silver nanowire monopole antenna. See DOI: 10.1039/c2nr30485f
Photon Interaction Parameters for Some Borate Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, Nisha; Kaur, Updesh; Singh, Tejbir
2010-11-06
Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.
NASA Astrophysics Data System (ADS)
Zhang, Li; Zhou, Jun; Zhang, Haopeng; Jiang, Tao; Lou, Cibo
2015-03-01
We proposed an efficient spaser based on gold-silver core-shell nanorods (NRs) encapsulated by an outer silica shell doped with a gain medium. The optical characteristics of the spaser were numerically simulated based on the finite element method (FEM). The results showed that the localized surface plasmon resonance (LSPR) amplification characteristics of the spaser strongly depend on the thickness of silver shell, the aspect ratio of the inner gold NRs, and the polarization direction of the incident light. And, the maximum absolute value of optical cross-section of the spaser can reach 21,824 μm2, which is about 1115, 523, and 18 times higher than that of spasers based on the gold NRs, the silver NRs, and the silver-gold core-shell NRs, respectively. The ultra-strong surface plasmon amplification characteristics of the spaser have potential applications in optical information storage, high sensitivity biochemical sensing, and medical engineering.
Laser-induced dewetting of silver-doped chalcogenide glasses
NASA Astrophysics Data System (ADS)
Douaud, Alexandre; Messaddeq, Sandra Helena; Boily, Olivier; Messaddeq, Younès
2018-07-01
We report the observation of laser-induced dewetting responsible for the formation of periodic relief structures in silver-based chalcogenide thin-films. By varying the concentration of silver in the Agx(As20S80)100-x system (with x = 0, 4, 9 and 36), different surface relief structures are formed. The evolution of the surface changes as a function of laser parameters (power density, duration of exposure, and polarisation) as well as film thickness and silver concentration has been investigated. The scanning electron microscopy and atomic force microscopy images of irradiated spots show periodic ripples aligned perpendicularly to the electric field of incident light. Our results show that addition of silver into sulphur-rich chalcogenide thin-films improves the dewetting when compared to pure As20S80 thin-films. The changes in surface morphology were attributable to photo-induced chemical modifications and a laser-driven molecular rearrangement.
Micro-Raman Spectroscopy of Silver Nanoparticle Induced Stress on Optically-Trapped Stem Cells
Bankapur, Aseefhali; Krishnamurthy, R. Sagar; Zachariah, Elsa; Santhosh, Chidangil; Chougule, Basavaraj; Praveen, Bhavishna; Valiathan, Manna; Mathur, Deepak
2012-01-01
We report here results of a single-cell Raman spectroscopy study of stress effects induced by silver nanoparticles in human mesenchymal stem cells (hMSCs). A high-sensitivity, high-resolution Raman Tweezers set-up has been used to monitor nanoparticle-induced biochemical changes in optically-trapped single cells. Our micro-Raman spectroscopic study reveals that hMSCs treated with silver nanoparticles undergo oxidative stress at doping levels in excess of 2 µg/ml, with results of a statistical analysis of Raman spectra suggesting that the induced stress becomes more dominant at nanoparticle concentration levels above 3 µg/ml. PMID:22514708
NASA Astrophysics Data System (ADS)
Zmojda, J.; Kochanowicz, M.; Miluski, P.; Baranowska, A.; Basa, A.; Jadach, R.; Sitarz, M.; Dorosz, D.
2018-05-01
A series of erbium doped SGS antimony-germanate glass embedding silver (Ag0) nanoparticles have been synthesized by a one-step melt-quench thermochemical reduction technique. The effect of NPs concentration and annealing time on the structural and photoluminescent (PL) properties were investigated. The Raman spectra as a function of temperature measured in-situ allow to determine the structural changes in vicinity of Ag+ ions and confirmed thermochemical reduction of Ag+ ions by Sb3+ ions. The surface plasmon resonance absorption band was evidenced near 450 nm. The impact of local field effect generated by Ag0 nanoparticles (NPs) and energy transfer from surface of silver NPs to trivalent erbium ions on near-infrared and up-conversion luminescence was described in terms of enhancement and quench phenomena.
NASA Astrophysics Data System (ADS)
Dal'Toé, Adrieli T. O.; Colpani, Gustavo Lopes; Padoin, Natan; Fiori, Márcio Antônio; Soares, Cíntia
2018-05-01
Lanthanum doped titanium dioxide decorated with silver plasmonic nanoparticles (Ag-La/TiO2 NPs) materials were prepared using a simple ultrasound-assisted wet impregnation method followed by silver photodeposition. The obtained photocatalysts with different Ag contents were characterized by XRD, FE-SEM, EDX, TEM, BET, XPS, DRS and PL techniques. Moreover, the size distribution of the nanoparticles aggregates was assessed. The characterization analysis revealed that La doping slightly changed the crystalline phase of TiO2, increased the amount of surface hydroxyl groups and interacted with TiO2 nanoparticles via Ti-O-La bond, while Ag photodeposition enhanced the absorption of visible light due to the effects of localized surface plamon resonance and significantly decreased electronic recombination rate by the Schottky junction. Furthermore, the combination of Ag-La induced the formation of oxygen vacancies, which increased the amount of adsorbed surface hydroxyl groups in Ag-La/TiO2. In addition, Ag-La possibly decreased the semiconductor surface energy, which acted positively in the reduction of NPs aggregation. These features along with better textural properties (greater surface areas) played a fundamental role in the enhancement of the photocatalytic activity of Ag-La/TiO2 composites for the decolorization of methylene blue under UV-visible irradiation compared to the mono-metallic (La/TiO2 and Ag/TiO2) modified photocatalysts. Finally, a mechanism for the transfer of charge carriers in Ag-La/TiO2 photocatalyst under UV-visible irradiation was proposed.
Saboungi, Marie-Louis; Price, David C. L.; Rosenbaum, Thomas F.; Xu, Rong; Husmann, Anke
2001-01-01
The heavily-doped silver chalcogenides, Ag.sub.2+.delta. Se and Ag.sub.2+.delta. Te, show magnetoresistance effects on a scale comparable to the "colossal" magnetoresistance (CMR) compounds. Hall coefficient, magnetoconductivity, and hydrostatic pressure experiments establish that elements of narrow-gap semiconductor physics apply, but both the size of the effects at room temperature and the linear field dependence down to fields of a few Oersteds are surprising new features.
Zinc oxide varistors and/or resistors
Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.
1993-07-27
Varistors and/or resistors are described that include doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.
Zinc oxide varistors and/or resistors
Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.
1993-01-01
Varistors and/or resistors that includes doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.
Electron magnetic resonance and magnetooptical studies of nanoparticle-containing borate glasses
NASA Astrophysics Data System (ADS)
Kliava, Janis; Edelman, Irina; Ivanova, Oxana; Ivantsov, Ruslan; Petrakovskaja, Eleonora; Hennet, Louis; Thiaudière, Dominique; Saboungi, Marie-Louise
2011-03-01
We report electron magnetic resonance (EMR) and magnetooptical studies of borate glasses of molar composition 22.5K 2O-22.5Al 2O 3-55B 2O 3 co-doped with low concentrations of Fe 2O 3 and MnO. In as-prepared samples the paramagnetic ions, as a rule, are in diluted state. However, in the case where the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles with characteristics close to those of manganese ferrite are formed already at the first stage of the glass preparation, as evidenced by both magnetic circular dichroism (MCD) and EMR. After thermal treatment all glasses show characteristic MCD and EMR spectra, attesting to the presence of magnetic nanoparticles, predominantly including iron ions. Preliminary EXAFS measurements at the Fe K-absorption edge show an emergence of nanoparticles with a structure close to MnFe 2O 4 after annealing the glasses at 560 °C. By computer simulating the EMR spectra at variable temperatures, a superparamagnetic nature of relatively broad size and shape distribution with the average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetic anisotropy in the nanoparticles. The formation of magnetic nanoparticles confers to the potassium-alumina-borate glasses magnetic and magneto-optical properties typical of magnetically ordered substances. At the same time, they remain transparent in a part of the visible and near infrared spectral range and display a high Faraday rotation value.
Sahoo, Chittaranjan; Gupta, Ashok K
2015-01-01
Commercially available microcrystalline TiO2 was doped with silver, ferrous and ferric ion (1.0 mol %) using silver nitrate, ferrous sulfate and ferric nitrate solutions following the liquid impregnation technology. The catalysts prepared were characterised by FESEM, XRD, FTIR, DRS, particle size and micropore analysis. The photocatalytic activity of the prepared catalysts was tested on the degradation of two model dyes, methylene blue (3,7-bis (Dimethylamino)-phenothiazin-5-ium chloride, a cationic thiazine dye) and methyl blue (disodium;4-[4-[[4-(4-sulfonatoanilino)phenyl]-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzene sulfonate, an anionic triphenyl methane dye) under irradiation by UV and visible light in a batch reactor. The efficiency of the photocatalysts under UV and visible light was compared to ascertain the light range for effective utilization. The catalysts were found to have the anatase crystalline structure and their particle size is in a range of 140-250 nm. In the case of Fe(2+) doped TiO2 and Fe(3+) doped TiO2, there was a greater shift in the optical absorption towards the visible range. Under UV light, Ag(+) doped TiO2 was the most efficient catalyst and the corresponding decolorization was more than 99% for both the dyes. Under visible light, Fe(3+) doped TiO2 was the most efficient photocatalyst with more than 96% and 90% decolorization for methylene blue and methyl blue, respectively. The kinetics of the reaction under both UV and visible light was investigated using the Langmuir-Hinshelwood pseudo-first-order kinetic model. Kinetic measurements confirmed that, Ag(+) doped TiO2 was most efficient in the UV range, while Fe(3+) doped TiO2 was most efficient in the visible range.
Kim, Taewoon; Lee, Seung-Kon; Lee, Suseung; Lee, Jun Sig; Kim, Sang Wook
2017-11-01
Removing radioactive iodine from solutions containing fission products is essential for nuclear facility decontamination, radioactive waste treatment, and medical isotope production. For example, the production of high-purity fission 99 Mo by irradiation of 235 U with neutrons involves the removal of iodine from an alkaline solution of the irradiated target (which contains numerous fission products and a large quantity of aluminate ions) using silver-based materials or anion-exchange resins. To be practically applicable, the utilized iodine adsorbent should exhibit a decontamination factor of at least 200. Herein, the separation of radioactive iodine from alkaline solutions was achieved using alumina doped with silver nanoparticles (Ag NPs). Ag NPs have a larger surface area than Ag powder/wires and can thus adsorb iodine more effectively and economically, whereas alumina is a suitable inert support that does not adsorb 99 Mo and is stable under basic conditions. The developed adsorbents with less impurities achieved iodine removal and recovery efficiencies of 99.7 and 62%, respectively, thus being useful for the production of 131 I, a useful medical isotope. Copyright © 2017. Published by Elsevier Ltd.
Effect of silver nanoparticles on the spectral luminescent properties of a gelatin film
NASA Astrophysics Data System (ADS)
Efendiev, T. Sh.; Kruchenok, J. V.; Rubinov, A. N.
2013-03-01
We studied the absorption and fluorescence spectra of a rhodamine 6G-activated gelatin film of thickness 10 μm, with and without silver nanoparticles. We observed that doping the film with nanoparticles of diameter 5 nm leads to an increase in the intensity of the absorption spectrum by a factor of 1.17 and its short-wavelength shift (~1.5 nm), while the intensity of the fluorescence spectrum increases by a factor of ~2.
NASA Astrophysics Data System (ADS)
Deopa, Nisha; Rao, A. S.
2017-10-01
Photoluminescence (PL) characterization of Lithium Lead Alumino Borate (LiPbAlB) glasses doped with Sm3+ ions at varying concentrations have been studied by using absorption, excitation, emission, time resolved and confocal image measurements. From the absorption spectra, Judd-Ofelt (J-O) intensity parameters were evaluated and in turn used to estimate various radiative parameters for the fluorescent levels of Sm3+ ion doped LiPbAlB glasses. The PL spectra of Sm3+ ions exhibit three emission bands corresponding to the transitions 4G5/2 → 6H5/2, 6H7/2 and 6H9/2, for which the emission cross-sections and branching ratios were evaluated to know the potentialities of these materials as visible luminescent devices. The decay spectral profiles measured for 4G5/2 → 6H7/2 transition level were used to estimate quantum efficiency of the as-prepared glasses. The non-exponential decay curves observed for higher Sm3+ ion concentrations were well fitted to Inokuti-Hirayama model to understand the predominant energy transfer mechanism involved in the as-prepared glasses. CIE chromaticity coordinates and correlated color temperatures (CCT) were evaluated to understand the utility of the titled glasses in cool white light generation. The confocal images captured under 405 nm CW laser excitation show intense reddish-orange color. From the evaluated radiative parameters, emission cross-sections, quantum efficiency, CIE co-ordinates, CCT temperatures and confocal images, it was observed that LiPbAlB glass with 0.5 mol% Sm3+ ions are more suitable for w-LEDs and reddish-orange luminescent device applications.
Li, Zhengjian; Sun, Zongzhao; Duan, Zhiqiang; Li, Rui; Yang, Yanli; Wang, Jingyi; Lv, Xiaoxia; Qi, Wei; Wang, Hua
2017-01-01
In the present work, a facile and efficient fabrication method has been developed for creating super-hydrophobic coatings of silver-doped TiO2@polycarbonate (TiO2 (Ag)@PC) on the substrates of different materials with photocatalytic self-cleaning performances simply by the “dipping and drying” process. The substrates were first patterned with glue and then deposited with the dopamine-capped TiO2 (Ag)@PC (DA-TiO2 (Ag)@PC) nanocomposites, followed by the further etching with dimethylbenzene. The so prepared super-hydrophobic E-DA-TiO2(Ag)@PC coatings could present the lotus leaf-like porous architectures, high adhesion stability, and especially the visible-light photocatalysis for organic contaminant degradation, thus promising the wide outdoor and indoor applications like water proofing, metal erosion protection, and surface self-cleaning. PMID:28218285
Dy3+ doped tellurite glasses containing silver nanoparticles for lighting devices
NASA Astrophysics Data System (ADS)
Hua, Chenxiao; Shen, Lifan; Pun, Edwin Yue Bun; Li, Desheng; Lin, Hai
2018-04-01
Efficient warm yellowish-white fluorescence emissions of Dy3+ were observed in heavy metal germanium tellurite (HGT) glasses under the excitation of 454 nm. Further, the luminescence intensity of Dy3+ is increased by ∼29% accompanying the introduction of Ag NPs with diameter ∼7 nm when compared with that of the silver-free case, which is caused by the existence of localized surface plasmon resonance (LSPR). The larger net emission power, the more net emission photon number and the higher quantum yield in Dy2O3 doped HGT glasses containing Ag NPs (HGT-Ag) confirm the availability of utilizing laser. Presupposed fluorescence color trace reveals that white luminescence can be achieved when the intensity ratio between residual laser and Dy3+ emission reaches the appropriate range. The productive transition emissions and the tunable white fluorescence illustrate tellurite glasses embodying noble-metal NPs are a potential candidate for high-quality lighting devices.
Li, Zhengjian; Sun, Zongzhao; Duan, Zhiqiang; Li, Rui; Yang, Yanli; Wang, Jingyi; Lv, Xiaoxia; Qi, Wei; Wang, Hua
2017-02-20
In the present work, a facile and efficient fabrication method has been developed for creating super-hydrophobic coatings of silver-doped TiO 2 @polycarbonate (TiO 2 (Ag)@PC) on the substrates of different materials with photocatalytic self-cleaning performances simply by the "dipping and drying" process. The substrates were first patterned with glue and then deposited with the dopamine-capped TiO 2 (Ag)@PC (DA-TiO 2 (Ag)@PC) nanocomposites, followed by the further etching with dimethylbenzene. The so prepared super-hydrophobic E-DA-TiO 2 (Ag)@PC coatings could present the lotus leaf-like porous architectures, high adhesion stability, and especially the visible-light photocatalysis for organic contaminant degradation, thus promising the wide outdoor and indoor applications like water proofing, metal erosion protection, and surface self-cleaning.
NASA Astrophysics Data System (ADS)
Li, Zhengjian; Sun, Zongzhao; Duan, Zhiqiang; Li, Rui; Yang, Yanli; Wang, Jingyi; Lv, Xiaoxia; Qi, Wei; Wang, Hua
2017-02-01
In the present work, a facile and efficient fabrication method has been developed for creating super-hydrophobic coatings of silver-doped TiO2@polycarbonate (TiO2 (Ag)@PC) on the substrates of different materials with photocatalytic self-cleaning performances simply by the “dipping and drying” process. The substrates were first patterned with glue and then deposited with the dopamine-capped TiO2 (Ag)@PC (DA-TiO2 (Ag)@PC) nanocomposites, followed by the further etching with dimethylbenzene. The so prepared super-hydrophobic E-DA-TiO2(Ag)@PC coatings could present the lotus leaf-like porous architectures, high adhesion stability, and especially the visible-light photocatalysis for organic contaminant degradation, thus promising the wide outdoor and indoor applications like water proofing, metal erosion protection, and surface self-cleaning.
NASA Astrophysics Data System (ADS)
Zhavoronkov, N.; Driben, R.; Bregadiolli, B. A.; Nalin, M.; Malomed, B. A.
2011-05-01
We demonstrate experimentally and support by a theoretical analysis an effect of asymmetric spectrum broadening, which results from doping of silver nanoparticles into a heavy-glass matrix, 90(0.5WO3-0.3SbPO4-0.2PbO)-10AgCl. The strong dispersion of the effective nonlinear coefficient of the composite significantly influences the spectral broadening via the self-phase modulation, and leads to a blue upshift of the spectrum. Further extension of the spectrum towards shorter wavelengths is suppressed by a growing loss caused by the plasmon resonance in the silver particles. The red-edge spectral broadening is dominated by the stimulated Raman scattering.
NASA Astrophysics Data System (ADS)
Dadras, Sedigheh; Davoudiniya, Masoumeh
2018-05-01
This paper sets out to investigate and compare the effects of Ag nanoparticles and carbon nanotubes (CNTs) doping on the mechanical properties of Y1Ba2Cu3O7-δ (YBCO) high temperature superconductor. For this purpose, the pure and doped YBCO samples were synthesized by sol-gel method. The microstructural analysis of the samples is performed using X-ray diffraction (XRD). The crystalline size, lattice strain and stress of the pure and doped YBCO samples were estimated by modified forms of Williamson-Hall analysis (W-H), namely, uniform deformation model (UDM), uniform deformation stress model (UDSM) and the size-strain plot method (SSP). These results show that the crystalline size, lattice strain and stress of the YBCO samples declined by Ag nanoparticles and CNTs doping.
George C. Chen
2004-01-01
N,N-dimethyl amino carbinol catechol borate(1). N,N-dimethyl amino carbinol-4-methyl catechol borate(2), N,N-dimethyl amino carbinol-4-t- butyl catechol borate(3). N,N-dimethyl amino carbinol-2,3-naphthyl borate 4) were synthesized by refluxing boric acid and diol in DMF(N,N-dimethyl formamide). The borates were characterized by NMR. Wood impregnated with borate 1,2 or...
NASA Astrophysics Data System (ADS)
García-Veigas, Javier; Helvacı, Cahit
2013-05-01
The Miocene boratiferous district of Kırka, in western Anatolia (Turkey), is the most important Na-borate (borax) resource in the world. Two separate deposits in the Kırka district are located near the villages of Sarıkaya and Göcenoluk (Eskişehir Province). Borax is intensively exploited in open-pit mines in the Sarıkaya deposit while only small quarries of colemanite are known in the Göcenoluk deposit. Recent exploratory drilling in the Göcenoluk area intersected a thick succession of dolostones, tuffs and three borate-bearing units (Lower, Intermediate and Upper Borate Units). In them, the most abundant borate mineral is ulexite (Ca-Na-borate) passing at depth to probertite. Borax (Na-borate) is only present in the Intermediate Borate Unit. Minor amounts of colemanite (Ca-borate) and hydroboracite (Ca-Mg-borate) occur at the base, and/or top, of each mineralized unit. Pyroclastic layers within the borate units show intense alteration by alkaline, boron-bearing waters and formation of diagenetic clay minerals (smectites), zeolites (analcime) and borosilicates (searlesite). The Göcenoluk succession is interpreted as a shallow, ephemeral, alkaline lake deposit in which carbonates formed as stromatolites and travertines. Borate precipitation in the Göcenoluk area took place interstitially within muddy and carbonate sediments in a lateral progression from marginal Ca-borates towards Na-Ca-borates and rarely to Na-borates in the center of the lake. Authigenic silicate mineral distribution shows parallel changes toward the center of the lake that reflect increasing pH gradient.
Mhareb, M H A; Hashim, S; Ghoshal, S K; Alajerami, Y S M; Saleh, M A; Razak, N A B; Azizan, S A B
2015-12-01
We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters. Copyright © 2015 John Wiley & Sons, Ltd.
Singh, Vandana; Ahmed, Shakeel
2012-03-01
An effective carrier matrix for diastase alpha amylase immobilization has been fabricated by gum acacia-gelatin dual templated polymerization of tetramethoxysilane. Silver nanoparticle (AgNp) doping to this hybrid could significantly enhance the shelf life of the impregnated enzyme while retaining its full bio-catalytic activity. The doped nanohybrid has been characterized as a thermally stable porous material which also showed multipeak photoluminescence under UV excitation. The immobilized diastase alpha amylase has been used to optimize the conditions for soluble starch hydrolysis in comparison to the free enzyme. The optimum pH for both immobilized and free enzyme hydrolysis was found to be same (pH=5), indicating that the immobilization made no major change in enzyme conformation. The immobilized enzyme showed good performance in wide temperature range (from 303 to 323 K), 323 K being the optimum value. The kinetic parameters for the immobilized, (K(m)=10.30 mg/mL, V(max)=4.36 μmol mL(-1)min(-1)) and free enzyme (K(m)=8.85 mg/mL, V(max)=2.81 μmol mL(-1)min(-1)) indicated that the immobilization improved the overall stability and catalytic property of the enzyme. The immobilized enzyme remained usable for repeated cycles and did not lose its activity even after 30 days storage at 40°C, while identically synthesized and stored silver undoped hybrid lost its ~31% activity in 48 h. Present study revealed the hybrids to be potentially useful for biomedical and optical applications. Copyright © 2011 Elsevier B.V. All rights reserved.
Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN)
NASA Astrophysics Data System (ADS)
Mantion, Alexandre; Graf, Philipp; Florea, Ileana; Haase, Andrea; Thünemann, Andreas F.; Mašić, Admir; Ersen, Ovidiu; Rabu, Pierre; Meier, Wolfgang; Luch, Andreas; Taubert, Andreas
2011-12-01
Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er2O3 particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell.Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er2O3 particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell. Electronic supplementary information (ESI) available: Figures S1 to S12, Tables S1 and S2. See DOI: 10.1039/c1nr10930h
Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells
NASA Astrophysics Data System (ADS)
Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua
2015-12-01
Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process.
Zhu, Dong; Li, Wei; Wen, Hong-Mei; Yu, Sheng; Miao, Zhao-Yi; Kang, An; Zhang, Aihua
2015-12-15
A silver nanoparticles (AgNPs)-enhanced time-resolved fluorescence (TR-FL) sensor based on long-lived fluorescent Mn-doped ZnS quantum dots (QDs) is developed for the sensitive detection of vascular endothelial growth factor-165 (VEGF165), a predominant cancer biomarker in cancer angiogenesis. The aptamers bond with the Mn-doped ZnS QDs and the BHQ-2 quencher-labelling strands hybridized in duplex are coupled with streptavidin (SA)-functionalized AgNPs to form the AgNPs-enhanced TR-FL sensor, showing lower fluorescence intensity in the duplex state due to the fluorescence resonance energy transfer (FRET) between the Mn-doped ZnS QDs and quenchers. Upon the addition of VEGF165, the BHQ-2 quencher-labelling strands of the duplex are displaced, leading to the disruption of the FRET. As a result, the fluorescence of the Mn-doped QDs within the proximity of the AgNPs is recovered. The FL signal can be measured free of the interference of short-lived background by setting appropriate delay time and gate time, which offers a signal with high signal-to-noise ratio in photoluminescent biodetection. Compared with the bare TR-FL sensor, the AgNPs-based TR-FL sensor showed a huge improvement in fluorescence based on metal-enhanced fluorescence (MEF) effect, and the sensitivity increased 11-fold with the detection limit of 0.08 nM. In addition, the sensor provided a wide range of linear detection from 0.1 nM to 16 nM. Copyright © 2015 Elsevier B.V. All rights reserved.
Printed silver nanowire antennas with low signal loss at high-frequency radio.
Komoda, Natsuki; Nogi, Masaya; Suganuma, Katsuaki; Kohno, Kazuo; Akiyama, Yutaka; Otsuka, Kanji
2012-05-21
Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those obtained using etched copper foil antennas, because their surfaces were much smoother than those of etched copper foil antennas. This was the case even though the resistivity of silver nanowire lines was 43-71 μΩ cm, which is much higher than that of etched copper foil (2 μΩ cm). When printed silver nanowire antennas were heated at 100 °C, they achieved signal losses that were much lower than those of silver paste antennas comprising microparticles, nanoparticles, and flakes. Furthermore, using a low temperature process, we succeeded in remotely controlling a commercialized radio-controlled car by transmitting a 2.45 GHz signal via a silver nanowire antenna printed on a polyethylene terephthalate film.
Irreversible Phase-Changes in Nanophase RE-doped M2O3 and their Optical Signatures
2015-12-01
T.; Eilers, H. Synthesis of silver /SiO2/Eu:Lu2O3 core- shell nanoparticles and their polymer nanocomposites. Powder Technol. 2011, 210, 157-166...Schwartz, J. Surface modification of Y2O3 nanoparticles . Langmuir 2007, 23, 9158-9161 (11) Imanaka, N.; Masui, T.; Mayama, Y.; Koyabu, K. Synthesis ... Synthesis and luminescence characteristics of Eu3+-doped ZrO2 nanoparticles . J. Lumin. 2007, 122, 855-857 (32) Ray, J. C.; Park, D. W.; Ahn, W. S
NASA Astrophysics Data System (ADS)
Slamet, Bachtiar, B. M.; Wulan, P. P. D. K.; Setiadi, Sari, D. P.
2017-05-01
The development of Ti6Al4V based anti bacterial dental implant, modified with dopanted silver metal (Ag) TiO2 nanotube arrays (TiNTAs), is studied in this research. The condition inside the mouth is less foton energy, the dental implant material need to be modified with silver metal (Ag) dopanted TiNTAs. Modified TiNTAs used silver metal dopanted with Photo Assisted Deposition (PAD) method can be used as an electron trapper and produced hydroxyl radical, therefore it has antibacterial properties. The verification of antibacterial properties developed with biofilm static test using Streptococcus mutans bacteria model within 3 and 16 hours incubation, was characterized with XRD and SEM-EDX. Properties test result that resisting the biofilm growth effectively is TiNTAs/Ag/0,15, with 97,62 % disinfection bacteria sampel.
Crowley, J.K.
1996-01-01
Efflorescent crusts at the Eagle Borax spring in Death Valley, California, contain an array of rare Mg and K borate minerals, several of which are only known from one or two other localities. The Mg- and/or K-bearing borates include aristarainite, hydroboracite, kaliborite, mcallisterite, pinnoite, rivadavite, and santite. Ulexite and probertite also occur in the area, although their distribution is different from that of the Mg and K borates. Other evaporite minerals in the spring vicinity include halite, thenardite, eugsterite, gypsum-anhydrite, hexahydrite, and bloedite. Whereas the first five of these minerals are found throughout Death Valley, the last two Mg sulfates are more restricted in occurrence and are indicative of Mg-enriched ground water. Mineral associations observed at the Eagle Borax spring, and at many other borate deposits worldwide, can be explained by the chemical fractionation of borate-precipitating waters during the course of evaporative concentration. The Mg sulfate and Mg borate minerals in the Eagle Borax efflorescent crusts point to the fractionation of Ca by the operation of a chemical divide involving Ca carbonate and Na-Ca borate precipitation in the subsurface sediments. At many other borate mining localities, the occurrence of ulexite in both Na borate (borax-kernite) and Ca borate (ulexite-colemanite) deposits similarly reflects ulexite's coprecipitation with Ca carbonate at an early concentration stage. Such ulexite may perhaps be converted to colemanite by later reaction with the coexisting Ca carbonate - the latter providing the additional Ca2+ ions needed for the conversion. Mg and Ca-Mg borates are the expected late-stage concentration products of waters forming ulexite-colemanite deposits and are therefore most likely to occur in the marginal zones or nearby mud facies of ulexite-colemanite orebodies. Under some circumstances, Mg and Ca-Mg borates might provide a useful prospecting guide for ulexite-colemanite deposits, although the high solubility of Mg borate minerals may prevent their formation in lacustrine settings and certainly inhibits their geologic preservation. The occurrence of Mg borates in borax-kernite deposits is also related to fractionation processes and points to the operation of an Mg borate chemical divide, characterized by Mg borate precipitation ahead of Mg carbonate. All of these considerations imply that Mg is a significant chemical component of many borate-depositing ground waters, even though Mg borate minerals may not be strongly evident in borate orebodies. The Eagle Borax spring borates and other evaporite minerals were studied using spectroscopic and X-ray powder diffraction methods, which were found to be highly complementary. Spectral reflectance measurements provide a sensitive means for detecting borates present in mixtures with other evaporites and can be used to screen samples rapidly for X-ray diffraction analysis. The apparently limited occurrence of Mg and K borate minerals compared to Ca and Na borates may stem partly from the inefficiency of X-ray diffraction methods for delineating the mineralogy of large and complex deposits. Spectral reflectance measurements can be made in the laboratory, in the field, on the mine face, and even remotely. Reflectance data should have an important role in studies of existing deposit mineralogy and related chemical fractionation processes, and perhaps in the discovery of new borate mineral resources.
Metal-Doped Silver Oxide Films as a Mask Layer for the Super-RENS Disk
NASA Astrophysics Data System (ADS)
Shima, Takayuki; Buechel, Dorothea; Mihalcea, Christophe; Kim, Jooho; Atoda, Nobufumi; Tominaga, Junji
Various kinds of metal (Co, Pd, Pt and Au) were doped into Ag2O and AgO sputtered films to study its effect on the thermal decomposition process. The oxygen composition ratio was evaluated by the X-ray fluorescence spectroscopy method after annealing up to 260,oC. The optical transmittance change was measured during heating of the film to 600,oC. Noble metal doping was found to modify the AgO decomposition process, and the oxygen content decreased gradually compared to the undoped case. Super-RENS disks with a metal-doped AgO mask were prepared, and the laser power necessary for super-resolutional readout was evaluated. It slightly shifted to the higher-power side when the noble metal was doped, and this agrees with the modification of the decomposition process.Japan Science and Technology Corporation, Domestic Research Fellow
Lin, Chun Che; Liu, Yun-Ping; Xiao, Zhi Ren; Wang, Yin-Kuo; Cheng, Bing-Ming; Liu, Ru-Shi
2014-06-25
Single-composition white-emitting phosphors with superior intrinsic properties upon excitation by ultraviolet light-emitting diodes are important constituents of next-generation light sources. Borate-based phosphors, such as NaSrBO3:Ce(3+) and NaCaBO3:Ce(3+), have stronger absorptions in the near-ultraviolet region as well as better chemical/physical stability than oxides. Energy transfer effects from sensitizer to activator caused by rare-earth ions are mainly found in the obtained photoluminescence spectra and lifetime. The interactive mechanisms of multiple dopants are ambiguous in most cases. We adjust the doping concentration in NaSrBO3:RE (RE = Ce(3+), Tb(3+), Mn(2+)) to study the energy transfer effects of Ce(3+) to Tb(3+) and Mn(2+) by comparing the experimental data and theoretical calculation. The vacuum-ultraviolet experimental determination of the electronic energy levels for Ce(3+) and Tb(3+) in the borate host regarding the 4f-5d and 4f-4f configurations are described. Evaluation of the Ce(3+)/Mn(2+) intensity ratios as a function of Mn(2+) concentration is based on the analysis of the luminescence dynamical process and fluorescence lifetime measurements. The results closely agree with those directly obtained from the emission spectra. Density functional calculations are performed using the generalized gradient approximation plus an on-site Coulombic interaction correction scheme to investigate the forbidden mechanism of interatomic energy transfer between the NaSrBO3:Ce(3+) and NaSrBO3:Eu(2+) systems. Results indicate that the NaSrBO3:Ce(3+), Tb(3+), and Mn(2+) phosphors can be used as a novel white-emitting component of UV radiation-excited devices.
Silver-Doping Effects and Photostructural Transformation in Evaporated AS2S3 Thin Films.
1982-02-16
ELECTROCHEMICAL STUDT OF THE SILVER INJECTION INTO As2S3 FILMS IN THE DARK . . . . . . . . . . . . . . . 143 5.1 Voltametry Studies of The As2S3...experimental results. The modeling and analysis of experimental data will be given in the subsequent sections. 5.1 VOLTAMETRY STUDIES OF THE As S3 FILMS...and forth between -100 mv and +20 mv at a sweep rate of 2 mv/sec several times until a stable surface was reached. First the As2S3 electrode was
Francesko, Antonio; Blandón, Lucas; Vázquez, Mario; Petkova, Petya; Morató, Jordi; Pfeifer, Annett; Heinze, Thomas; Mendoza, Ernest; Tzanov, Tzanko
2015-05-13
Laccase-assisted assembling of hybrid biopolymer-silver nanoparticles and cork matrices into an antimicrobial material with potential for water remediation is herein described. Amino-functional biopolymers were first used as doping agents to stabilize concentrated colloidal dispersions of silver nanoparticles (AgNP), additionally providing the particles with functionalities for covalent immobilization onto cork to impart a durable antibacterial effect. The solvent-free AgNP synthesis by chemical reduction was carried out in the presence of chitosan (CS) or 6-deoxy-6-(ω-aminoethyl) aminocellulose (AC), leading to simultaneous AgNP biofunctionalization. This approach resulted in concentrated hybrid NP dispersion stable to aggregation and with hydrodynamic radius of particles of about 250 nm. Moreover, laccase enabled coupling between the phenolic groups in cork and amino moieties in the biopolymer-doped AgNP for permanent modification of the material. The antibacterial efficiency of the functionalized cork matrices, aimed as adsorbents for wastewater treatment, was evaluated against Escherichia coli and Staphylococcus aureus during 5 days in conditions mimicking those in constructed wetlands. Both intrinsically antimicrobial CS and AC contributed to the bactericidal effect of the enzymatically grafted on cork AgNP. In contrast, unmodified AgNP were easily washed off from the material, confirming that the biopolymers potentiated a durable antibacterial functionalization of the cork matrices.
Stability enhancement of Cu2S against Cu vacancy formation by Ag alloying
NASA Astrophysics Data System (ADS)
Barman, Sajib K.; Huda, Muhammad N.
2018-04-01
As a potential solar absorber material, Cu2S has proved its importance in the field of renewable energy. However, almost all the known minerals of Cu2S suffer from spontaneous Cu vacancy formation in the structure. The Cu vacancy formation causes the structure to possess very high p-type doping that leads the material to behave as a degenerate semiconductor. This vacancy formation tendency is a major obstacle for this material in this regard. A relatively new predicted phase of Cu2S which has an acanthite-like structure was found to be preferable than the well-known low chalcocite Cu2S. However, the Cu-vacancy formation tendency in this phase remained similar. We have found that alloying silver with this structure can help to reduce Cu vacancy formation tendency without altering its electronic property. The band gap of silver alloyed structure is higher than pristine acanthite Cu2S. In addition, Cu diffusion in the structure can be reduced with Ag doped in Cu sites. In this study, a systematic approach is presented within the density functional theory framework to study Cu vacancy formation tendency and diffusion in silver alloyed acanthite Cu2S, and proposed a possible route to stabilize Cu2S against Cu vacancy formations by alloying it with Ag.
Stability enhancement of Cu2S against Cu vacancy formation by Ag alloying.
Barman, Sajib K; Huda, Muhammad N
2018-04-25
As a potential solar absorber material, Cu 2 S has proved its importance in the field of renewable energy. However, almost all the known minerals of Cu 2 S suffer from spontaneous Cu vacancy formation in the structure. The Cu vacancy formation causes the structure to possess very high p-type doping that leads the material to behave as a degenerate semiconductor. This vacancy formation tendency is a major obstacle for this material in this regard. A relatively new predicted phase of Cu 2 S which has an acanthite-like structure was found to be preferable than the well-known low chalcocite Cu 2 S. However, the Cu-vacancy formation tendency in this phase remained similar. We have found that alloying silver with this structure can help to reduce Cu vacancy formation tendency without altering its electronic property. The band gap of silver alloyed structure is higher than pristine acanthite Cu 2 S. In addition, Cu diffusion in the structure can be reduced with Ag doped in Cu sites. In this study, a systematic approach is presented within the density functional theory framework to study Cu vacancy formation tendency and diffusion in silver alloyed acanthite Cu 2 S, and proposed a possible route to stabilize Cu 2 S against Cu vacancy formations by alloying it with Ag.
Penetration of boron from topically applied borate solutions
Stan T. Lebow; Patricia K. Lebow; Steven A. Halverson
2010-01-01
Borate penetration relies on diffusion when borate and glycol-borate preservatives are applied to the surface of wood. This study evaluated the extent of borate penetration in framing lumber as a function of preservative formulation, wood moisture content, and diffusion time after treatment. In Phase I of the study, end-matched specimens were conditioned to target...
Bardin, Vadim V; Shabalin, Anton Yu; Adonin, Nicolay Yu
2015-01-01
Small differences in the reactivity of weakly nucleophilic potassium aryltrifluoroborates are revealed in the silver-assisted Pd-catalyzed cross-coupling of K[4-RC6F4BF3] (R = H, Bu, MeO, EtO, PrO, iPrO, BuO, t-BuO, CH2=CHCH2O, PhCH2O, PhCH2CH2O, PhO, F, pyrazol-1-yl, pyrrol-1-yl, and indol-1-yl) with ArX (4-BrC6H4CH3, 4-IC6H4F and 3-IC6H4F). An assumed role of silver(I) compounds Ag m Y (Y = O, NO3, SO4, BF4, F) consists in polarization of the Pd-X bond in neutral complex ArPdL n X with the generation of the related transition state or formation of [ArPdL n ][XAg m Y] with a highly electrophilic cation and subsequent transmetallation with the weakly nucleophilic borate. Efficiency of Ag m Y as a polarizing agent decreases in order Ag2O > AgNO3 ≈ Ag2SO4 > Ag[BF4] > AgF. No clear correlation between the reactivity of K[4-RC6F4BF3] and substituent electron parameters, σI and σR°, of the aryl group 4-RC6F4 was found.
Bardin, Vadim V; Shabalin, Anton Yu
2015-01-01
Summary Small differences in the reactivity of weakly nucleophilic potassium aryltrifluoroborates are revealed in the silver-assisted Pd-catalyzed cross-coupling of K[4-RC6F4BF3] (R = H, Bu, MeO, EtO, PrO, iPrO, BuO, t-BuO, CH2=CHCH2O, PhCH2O, PhCH2CH2O, PhO, F, pyrazol-1-yl, pyrrol-1-yl, and indol-1-yl) with ArX (4-BrC6H4CH3, 4-IC6H4F and 3-IC6H4F). An assumed role of silver(I) compounds AgmY (Y = O, NO3, SO4, BF4, F) consists in polarization of the Pd–X bond in neutral complex ArPdLnX with the generation of the related transition state or formation of [ArPdLn][XAgmY] with a highly electrophilic cation and subsequent transmetallation with the weakly nucleophilic borate. Efficiency of AgmY as a polarizing agent decreases in order Ag2O > AgNO3 ≈ Ag2SO4 > Ag[BF4] > AgF. No clear correlation between the reactivity of K[4-RC6F4BF3] and substituent electron parameters, σI and σR°, of the aryl group 4-RC6F4 was found. PMID:26124862
Effect of silver doping on the elastic properties of CdS nanoparticles
NASA Astrophysics Data System (ADS)
Dey, P. C.; Das, R.
2018-05-01
CdS and Ag doped CdS (CdS/Ag) nanoparticles have been prepared via chemical method from a Cadmium acetate precursor and Thiourea. The synthesized CdS and CdS/Ag nanoparticles have been characterized by the X-ray Diffraction and High Resolution Transmission Electron Microscope. Here, these nanoparticles have been synthesized at room temperature and all the characterization have also been done at room temperature only. The XRD results reveal that the products are crystalline with cubic zinc blende structure. HRTEM images show that the prepared nanoparticles are nearly spherical in shape. Williamson-Hall method and Size-Strain Plot (SSP) have been used to study the individual contribution of crystalline sizes and lattice strain on the peak broadening of the CdS and CdS/Ag nanoparticles. The different modified model of Williamson-Hall method such as, uniform deformation model, uniform stress deformation model and uniform energy density deformation model and SSP method have been used to calculate the different physical parameter such as lattice strain, stress and energy density for all diffraction peaks of the XRD, corresponding to the CdS and silver doped CdS (CdS/Ag). The obtained results reveal that the average particle size of the prepared CdS and CdS/Ag nanoparticles estimated from the HRTEM images, Williamson-Hall analysis and SSP method are highly correlated with each other. Further, all these result confirms that doping of Ag significantly affects the elastic properties of CdS.
NASA Astrophysics Data System (ADS)
Sadu, Rakesh Babu
Dependency of technology has been increasing radically through cellular phones for communication, data storage devices for education, drinking water purifiers for healthiness, antimicrobial-coated textiles for cleanliness, nanomedicines for deadliest diseases, solar cells for natural power, nanorobots for engineering and many more. Nanotechnology develops many unprecedented products and methodologies with its adroitness in this modern scientific world. Syntheses of nanomaterials play a significant role in the development of technology. Solution combustion and hydrothermal syntheses produce many nanomaterials with different structures and pioneering applications. Nanometal oxides, like titania, silver oxide, manganese oxide and iron oxide have their unique applications in engineering, chemistry and biochemistry. Likewise, this study talks about the syntheses and applications of nanomaterials such as magnetic graphene nanoplatelets (M-Gras) decorated with uniformly dispersed NPs, manganese doped titania nanotubes (Mn-TNTs), and silver doped titania nanopartcles (nAg-TNPs) and their polyurethane based polymer nanocomposite coating (nAg-TiO2 /PU). Basically, M-Gras, and Mn-TNTs were applied for the treatment of arsenic contaminated water, and nAg- TiO2/PU applied for antimicrobial coatings on textiles. Adsorption of arsenic over Mn- TNTs, and M-Gras was discussed while considering all the regulations of arsenic contamination in drinking water and oxidation of arsenic over Mn-TNTs also discussed with the possible surface reactions. Silver doped titania and its polyurethane nanocomposite was coated on polyester fabric and examined the coated fabric for bactericidal activity for gram-negative (E. coli) and gram-positive ( S. epidermidis) bacteria. This study elucidates the development of suitable nanomaterials and their applications to treat or rectify the environmental hazards while following the scientific standards and regulations.
Silver-Doped Calcium Phosphate Bone Cements with Antibacterial Properties
Rau, J. V.; Fosca, M.; Graziani, V.; Egorov, A. A.; Zobkov, Yu. V.; Fedotov, A. Yu.; Ortenzi, M.; Caminiti, R.; Baranchikov, A. E.; Komlev, V. S.
2016-01-01
Calcium phosphate bone cements (CPCs) with antibacterial properties are demanded for clinical applications. In this study, we demonstrated the use of a relatively simple processing route based on preparation of silver-doped CPCs (CPCs-Ag) through the preparation of solid dispersed active powder phase. Real-time monitoring of structural transformations and kinetics of several CPCs-Ag formulations (Ag = 0 wt %, 0.6 wt % and 1.0 wt %) was performed by the Energy Dispersive X-ray Diffraction technique. The partial conversion of β-tricalcium phosphate (TCP) phase into the dicalcium phosphate dihydrate (DCPD) took place in all the investigated cement systems. In the pristine cement powders, Ag in its metallic form was found, whereas for CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, CaAg(PO3)3 was detected and Ag (met.) was no longer present. The CPC-Ag 0 wt % cement exhibited a compressive strength of 6.5 ± 1.0 MPa, whereas for the doped cements (CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt %) the reduced values of the compressive strength 4.0 ± 1.0 and 1.5 ± 1.0 MPa, respectively, were detected. Silver-ion release from CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, measured by the Atomic Emission Spectroscopy, corresponds to the average values of 25 µg/L and 43 µg/L, respectively, rising a plateau after 15 days. The results of the antibacterial test proved the inhibitory effect towards pathogenic Escherichia coli for both CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, better performances being observed for the cement with a higher Ag-content. PMID:27096874
Wang, Yanying; Yang, Yan; Liu, Wei; Ding, Fang; Zhao, Qingbiao; Zou, Ping; Wang, Xianxiang; Rao, Hanbing
2018-05-04
A dual-read detection system is described for non-enzymatic and non-aggregation based analysis of uric acid (UA). Silver triangular nanoprisms (AgTNPs) were used as colorimetric probes, while the reduction in the fluorescence of nitrogen-doped carbon quantum dots (N-CQDs) served as the fluorometric readout. The absorption band of the AgTNPs overlaps the emission band of N-CQDs (with a peak at 440 nm). Therefore, fluorescence is reduced owing to an inner filter effect. The AgTNPs are etched if exposed to H 2 O 2 , and round nanodiscs are formed. In the presence of UA, etching of the AgTNPs is suppressed because the facets of the AgTNPs are coated with UA. The absorbance, best measured at 683 nm, increases with the concentration of the pre-added UA. The colorimetric assay works in the 0.1-45 μM UA concentration range, and the fluorometric assay between 1 and 42 μM of UA. The respective detection limits are 50 and 200 nM, respectively. The probe can be used for direct visualization of UA. The method was successfully applied to the determination of UA in urine samples. Graphical abstract The fluorescence of nitrogen-doped carbon quantum dots (N-CQDs) is quenched by AgTNPs (silver triangular nanoprisms). As the AgTNPs are etched by H 2 O 2 , fluorescence recovers in the system after H 2 O 2 is added, and also undergoes a color change. Uric acid (UA) protects the AgTNPs from etching because the facets of the AgTNPs are coated with UA. The fluorescence of N-CQDs decreases. Thus, a dual-read probe is developed for determination of UA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wibowo, Singgih, E-mail: singgih@st.fisika.undip.ac.id; Sutanto, Heri, E-mail: herisutanto@undip.ac.id
2016-02-08
Double layer (DL) thin films of zinc oxide and silver-doped zinc oxide (ZnO/ZnO:Ag) were deposited on glass substrate by sol-gel spray coating technique. The prepared thin films were subjected for optical and photocatalytic studies. UV-visible transmission spectra shows that the subtitution of Ag in ZnO leads to band gap reduction. The influence of Ag doping on the photocatalytic activity of ZnO for the degradation of methylene blue dye was studied under solar radiation. The light absorption over an extended visible region by Ag ion doping in ZnO film contributed equally to improve the photocatalytic activity up to 98.29%.
Fan, Jiqiang; Song, Yongbo; Chai, Jinsong; Yang, Sha; Chen, Tao; Rao, Bo; Yu, Haizhu; Zhu, Manzhou
2016-08-18
We report the observation of new doping behavior in Au36-xAgx(SR)24 nanoclusters (NCs) with x = 1 to 8. The atomic arrangements of Au and Ag atoms are determined by X-ray crystallography. The new gold-silver bimetallic NCs share the same framework as that of the homogold counterpart, i.e. possessing an fcc-type Au28 kernel, four dimeric AuAg(SR)3 staple motifs and twelve simple bridging SR ligands. Interestingly, all the Ag dopants in the Au36-xAgx(SR)24 NCs are selectively incorporated into the surface motifs, which is in contrast to the previously reported Au-Ag alloy structures with the Ag dopants preferentially displacing the core gold atoms. This distinct doping behavior implies that the previous assignments of an fcc Au28 core with four dimers and 12 bridging thiolates for Au36(SR)24 are more justified than other assignments of core vs. surface motifs. The UV-Vis adsorption spectrum of Au36-xAgx(SR)24 is almost the same as that of Au36(SR)24, indicating that the Ag dopants in the motifs do not change the optical properties. The similar UV-Vis spectra are further confirmed by TD-DFT calculations. DFT also reveals that the energies of the HOMO and LUMO of the motif-doped AuAg alloy NC are comparable to those of the homogold Au36 NC, indicating that the electronic structure is not disturbed by the motif Ag dopants. Overall, this study reveals a new silver-doping mode in alloy NCs.
NASA Astrophysics Data System (ADS)
Amano, Fumiaki; Tosaki, Ryosuke; Sato, Kyosuke; Higuchi, Yamato
2018-02-01
Crystalline defects of photocatalyst particles may be considered to be the recombination center of photoexcited electrons and holes. In this study, we investigated the photocatalytic activity of cation-doped rutile TiO2 photocatalysts for O2 evolution from an aqueous silver nitrate solution under ultraviolet light irradiation. The photocatalytic activity of rutile TiO2 was enhanced by donor doping of Ta5+ and Nb5+ with a valence higher than that of Ti4+, regardless of increased density of electrons and Ti3+ species (an electron trapped in Ti4+ sites). Conversely, acceptor doping of lower valence cations such as In3+ and Ga3+ decreased photocatalytic activity for O2 evolution by water oxidation. The doping of equal valence cations such as Sn4+ and Ge4+ hardly changed the activity of non-doped TiO2. This study demonstrates that Ti3+ species, which is a crystalline defect, enhanced the photocatalytic activity of semiconductor oxides, for example rutile TiO2 with large crystalline size.
Pulse-Shape Analysis of Neutron-Induced Scintillation Light in Ni-doped 6LiF/ZnS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowles, Christian C.; Behling, Richard S.; Imel, G. R.
Abstract–Alternatives to 3He are being investigated for gamma-ray insensitive neutron detection applications, including plutonium assay. One promising material is lithium-6 fluoride with silver activated zinc sulfide 6LiF/ZnS(Ag) in conjunction with a wavelength shifting plastic. Doping the 6LiF/ZnS(Ag) with nickel (Ni) has been proposed as a means of reducing the decay time of neutron signal pulses. This research performed a pulse shape comparison between Ni-doped and non-doped 6LiF/ZnS(Ag) neutron pulses. The Ni-doped 6LiF/ZnS(Ag) had a 32.7% ± 0.3 increase in neutron pulse height and a 32.4% ± 0.3 decrease in neutron pulse time compared to the non-doped 6LiF/ZnS(Ag). Doping 6LiF/ZnS(Ag) withmore » nickel may allow neutron detector operation with improved signal to noise ratios, and reduced pulse pileup affects, increasing the accuracy and range of source activities with which such a detector could operate.« less
Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells
Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua
2015-01-01
Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504
Femtosecond laser direct writing of monocrystalline hexagonal silver prisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vora, Kevin; Kang, SeungYeon; Moebius, Michael
Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundredsmore » of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.« less
Soda-based glass fabricated from Thailand quartz sands doped with silver compound
NASA Astrophysics Data System (ADS)
Won-in, Krit; Dararutana, Pisutti
2012-10-01
Yellow colored glass which used for luxury art glass in ancient time was fabricated by the addition of silver compound into the molten glass. It was proved that it was actually silver nanoparticle technology. In this work, the SiO2-(Na2O,K2O)-CaO-B2O3-Al2O3-MgO glass system was prepared in the laboratory scale based on local quartz sands from Trat Province, eastern area of Thailand as the silica raw material. Various concentrations of silver nitrate were added. After the complete conventional melting process, the bubble-free yellow glasses were yielded. Physical and optical properties such as density, refractive index and optical absorption spectra were measured. Scanning electron microscope coupled with energy dispersive spectroscopy was carried out to study their morphology. The refractive indices and densities were increased as the increase of the silver contents. Electron micrographs showed the presence of silver nanoparticle in the glass matrix. UV-VIS spectra were in good agreement with that found from SEM measurements and corresponded with the universally accepted. It was also showed that the more brilliance on the surface of the glass products was obtained after firing with a gas torch.
Pham, Thanh-Dong; Lee, Byeong-Kyu
2014-01-01
This study investigated the feasibility of using Ag-TiO2 photocatalyst supported on glass fiber (Ag-TiO2/GF) prepared by a sol-gel method as an indoor air germicide. An experimental model was designed to investigate the bacterial disinfection efficiency of Staphylococcus (Staph), the most popular bacterium in hospitals in Korea, by the Ag-TiO2/GF photocatalyst. The silver content in Ag/TiO2 was altered from 1 to 10% to investigate the optimal ratio of Ag doped on TiO2/glass fiber (TiO2/GF) for photocatalytic disinfection of Staph. This study confirmed that Ag in Ag-TiO2/GF could work as an electron sink or donor to increase photocatalytic activity and promote the charge separation of electron-hole pairs generated from TiO2 after photon absorption. Ag also acts as an intermediate agent for the transfer of photo-generated electrons from the valence band of TiO2 to an acceptor (O2 gas) to promote photo-oxidation processes. The photocatalytic disinfection activity of Ag-TiO2/GF under visible light increased with the increase in silver content up to 7.5% and then slightly decreased with further increasing silver content. The highest disinfection efficiency and disinfection capacity of Staph using 7.5% Ag-TiO2/GF were 75.23% and 20 (CFU∙s−1∙cm−2) respectively. The medium level of humidity of 60% ± 5% showed better photocatalytic disinfection than the lower (40% ± 5%) or higher (80% ± 5%) levels. PMID:24658408
Novel biosynthesis of Ag-hydroxyapatite: Structural and spectroscopic characterization
NASA Astrophysics Data System (ADS)
Ruíz-Baltazar, Álvaro de Jesús; Reyes-López, Simón Yobanny; Silva-Holguin, Pamela Nair; Larrañaga, Daniel; Estévez, Miriam; Pérez, Ramiro
2018-06-01
Silver-doped hydroxyapatite (Ag-HAP) was obtained by green synthesis route. The dopant silver nanoparticles (AgNPs) were obtained by biosynthesis based on Melissa officinalis extract. This research is focused on the characterization and the use of the nontoxic and environment-friendly Ag-HAP nanocomposite. The structural and morphological characterization of Ag-HAP nanocomposite was carried out by scanning electron microscopy (SEM), X-ray diffraction, Fourier-transform infrared (FT-IR) and Raman spectroscopy. The obtained nanoparticles exhibited a great interaction with the HAP matrix, performing an Ag-HAP nanocomposite. Changes in the structure of the Ag-HAP nanocomposite were corroborated by the different characterization techniques. Additionally, a homogeneous distribution of the AgNPs on the HAP structure was observed. The heterogeneous nucleation process employed to doping the HAP, offer a functional route to obtain a green composite with potentials applications in multiple fields, such as tissue engineering, bone repair as well as protein. These properties can be evaluated in subsequent studies.
NASA Astrophysics Data System (ADS)
Roy, Nitish; Hirano, Yuiri; Kuriyama, Haruo; Sudhagar, Pitchaimuthu; Suzuki, Norihiro; Katsumata, Ken-Ichi; Nakata, Kazuya; Kondo, Takeshi; Yuasa, Makoto; Serizawa, Izumi; Takayama, Tomoaki; Kudo, Akihiko; Fujishima, Akira; Terashima, Chiaki
2016-11-01
Competitive hydrogen evolution and multiple proton-coupled electron transfer reactions limit photoelectrochemical CO2 reduction in aqueous electrolyte. Here, oxygen-terminated lightly boron-doped diamond (BDDL) thin films were synthesized as a semiconductor electron source to accelerate CO2 reduction. However, BDDL alone could not stabilize the intermediates of CO2 reduction, yielding a negligible amount of reduction products. Silver nanoparticles were then deposited on BDDL because of their selective electrochemical CO2 reduction ability. Excellent selectivity (estimated CO:H2 mass ratio of 318:1) and recyclability (stable for five cycles of 3 h each) for photoelectrochemical CO2 reduction were obtained for the optimum silver nanoparticle-modified BDDL electrode at -1.1 V vs. RHE under 222-nm irradiation. The high efficiency and stability of this catalyst are ascribed to the in situ photoactivation of the BDDL surface during the photoelectrochemical reaction. The present work reveals the potential of BDDL as a high-energy electron source for use with co-catalysts in photochemical conversion.
Lin, Song; Wang, Run-Ze; Yi, Ying; Wang, Zheng; Hao, Li-Mei; Wu, Jin-Hui; Hu, Guo-Han; He, Hua
2014-01-01
Submicrometer-scale poly(vinyl alcohol) (PVA) nanofibrous mats loaded with aligned and narrowly dispersed silver nanoparticles (AgNPs) are obtained via the electrospinning process from pure water. This facile and green procedure did not need any other chemicals or organic solvents. The doped AgNPs are narrowly distributed, 4.3±0.7 nm and their contents on the nanofabric mats can be easily tuned via in situ ultraviolet light irradiation or under preheating conditions, but with different particle sizes and size distributions. The morphology, loading concentrations, and dispersities of AgNPs embedded within PVA nanofiber mats are characterized by transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet-visible spectra, X-ray photoelectron spectroscopy, and X-ray diffraction, respectively. Moreover, the biocidal activities and cytotoxicity of the electrospun nanofiber mats are determined by zone of inhibition, dynamic shaking method, and cell counting kit (CCK)-8 assay tests.
NASA Astrophysics Data System (ADS)
Wei, Ying; Yao, Kai; Wang, Xiaofeng; Jiang, Yihua; Liu, Xueyuan; Zhou, Naigen; Li, Fan
2018-01-01
In this paper, we demonstrate the high-performance inverted planar heterojunction perovskite solar cells (PeSCs) based on the novel inorganic hole-transporting layer (HTL) of silver (Ag)-doped NiOx (Ag:NiOx). Density-functional theory (DFT) calculation reveals that Ag prefers to occupy the substitutional Ni site (AgNi) and behaves as an acceptor in NiO lattice. Compared with the pristine NiOx films, appropriate Ag doping can increase the optical transparency, work function, electrical conductivity and hole mobility of NiOx films. Moreover, the CH3NH3PbI3 perovskite films grown on Ag:NiOx exhibit better crystallinity, higher coverage and smoother surface with densely packed larger grains than those grown on the pristine NiOx film. Consequently, the Ag:NiOx HTL boosts the efficiency of the inverted planar heterojunction PeSCs from 13.46% (for the pristine NiOx-based device) to 16.86% (for the 2 at.% Ag:NiOx-based device). Furthermore, the environmental stability of PeSCs based on Ag:NiOx HTL is dramatically improved compared to devices based on organic HTLs and pristine NiOx HTLs. This work provides a simple and effective HTL material system for high-efficient and stable PeSCs.
Critical current and flux dynamics in Ag-doped FeSe superconductor
NASA Astrophysics Data System (ADS)
Galluzzi, A.; Polichetti, M.; Buchkov, K.; Nazarova, E.; Mancusi, D.; Pace, S.
2017-02-01
The measurements of DC magnetization as a function of the temperature M(T), magnetic field M(H), and time M(t) have been performed in order to compare the superconducting and pinning properties of an undoped FeSe0.94 sample and a silver doped FeSe0.94 + 6 wt% Ag sample. The M(T) curves indicate an improvement of the superconducting critical temperature and a reduction of the non-superconducting phase Fe7Se8 due to the silver doping. This is confirmed by the field and temperature dependent critical current density Jc(H,T) extracted from the superconducting hysteresis loops at different temperatures within the Bean critical state model. Moreover, the combined analysis of the Jc(T) and of the pinning force Fp(H/Hirr) indicate that the pinning mechanisms in both samples can be described in the framework of the collective pinning theory. The U*(T, J) curves show a pinning crossover from an elastic creep regime of intermediate size flux bundles, for low temperatures, to a plastic creep regime at higher temperatures for both the samples. Finally, the vortex hopping attempt time has been evaluated for both samples and the results are comparable with the values reported in the literature for high Tc materials.
One-step preparation of antimicrobial silver nanoparticles in polymer matrix
NASA Astrophysics Data System (ADS)
Lyutakov, O.; Kalachyova, Y.; Solovyev, A.; Vytykacova, S.; Svanda, J.; Siegel, J.; Ulbrich, P.; Svorcik, V.
2015-03-01
Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV-Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications.
Optical characterization of Nd (3+):AgBr.
Bunimovich, D; Nagli, L; Katzir, A
1997-10-20
The luminescence of silver bromide crystals, doped with neodymium, was investigated over the visible and near-infrared spectral ranges. The emission, excitation, and absorption spectra were measured over a broad temperature range. The absolute luminescence quantum yield was estimated by comparing the luminescence with that of a neodymium-doped phosphate glass, for which the manufacturer gives a value of 0.4. The Judd-Ofelt analysis was applied to both materials, and transition rates, branching ratios, and quantum efficiencies were calculated for all the observed bands. Good agreement was obtained between theory and experiment.
Effects of copper on the preparation and characterization of Na-Ca-P borate glasses.
Shailajha, S; Geetha, K; Vasantharani, P; Sheik Abdul Kadhar, S P
2015-03-05
Glasses in the system Na2O-CaO-B2O3-P2O5: CuO have been prepared by melt quenching at 1200°C and rapidly cooling at room temperature. The structural, optical and thermal properties have been investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectroscopy, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform infrared (FTIR) spectroscopy, high resolution scanning electron microscopy (HRSEM) with energy dispersive X-ray (EDX) spectroscopy and high resolution transmission electron microscope (HRTEM) with energy dispersive X-ray (EDAX). The amorphous and crystalline nature of these samples was verified by XRD. Glass transition, crystallization and thermal stability were determined by TG-DTA investigations. Direct optical energy band gaps before and after doping with different percents of copper oxide were evaluated from 4.81eV to 2.99eV indicated the role of copper in the glassy matrix by UV spectra. FTIR spectrum reveals characteristic absorption bands due to various groups of triangular and tetrahedral borate network. Due to the amorphous nature, the particles like agglomerates on the glass surface were investigated by the HRSEM analysis. The crystalline nature of the samples in XRD is confirmed by SAED pattern using HRTEM. Copyright © 2014 Elsevier B.V. All rights reserved.
Amount of leachant and water absorption levels of wood treated with borates and water repellents.
Baysal, Ergun; Sonmez, Abdullah; Colak, Mehmet; Toker, Hilmi
2006-12-01
Wood protection efficacy of borates against biological agents, flame retardancy, and suitability to the environment is well known. Since borates can be applied to timber as water based solutions, they are preferred economically as well. Even though they are highly mobile in wood, boron compounds are widely used in timber preservation. Borates migrate in liquid and increase the hygroscopicity of wood in damp conditions. This study deals with the physical restriction of water access in wood by impregnating water repellent agents into wood to limit amount of leachant and water absorption levels of wood after boron treatment. Borates were incorporated with polyethylene glycol-400 (PEG-400) their bulking effect in wood was considered. Results indicated that the amount of leachates from wood treated with borates in PEG-400 was remarkably higher compared to those of wood treated with the aqueous solutions of borates. Water absorption (WA) levels of wood treated with aqueous solutions of borates were higher than those of their treated samples with the solutions in PEG-400. Secondary treatments of wood with the water repellent (WR) chemicals following borate impregnation reduced the leaching of chemicals from wood in water and also WA of the specimens were less than those of the wood treated with only borates from aqueous and PEG solutions. Styrene (St) was the most effective monomer among the other agents used in terms of immobility effect on borates and WA.
Combined effects of lithium and borate ions on the hydration of calcium sulfoaluminate cement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr; Dhoury, Mélanie; Champenois, Jean-Baptiste
This work investigates the combined influence of borate and lithium ions on the hydration of two calcium sulfoaluminate (CSA) cements containing 0 or 10 wt% gypsum. On the one hand, borates are known to retard CSA cement hydration due to the rapid precipitation of ulexite. On the other hand, lithium ions accelerate CSA cement hydration thanks to the fast precipitation of Li-containing aluminum hydroxide. When borates and lithium are present simultaneously, these two mechanisms are superimposed. With a gypsum-free cement, a third process is additionally observed: lithium promotes the initial precipitation of a borated AFm phase which is later convertedmore » into a borated AFt phase when hydration accelerates. Lithium salts can counteract the retardation by sodium borate. However, their influence is limited once a sufficient amount of Li-containing Al(OH){sub 3} seeds is formed. For the CSA cements under investigation, the threshold lithium concentration is close to 0.03 mmol/g of cement and similar with or without borate.« less
Crangle, R.D.
2013-01-01
Four minerals represent 90 percent of the borates used by industry worldwide — the sodium borates (tincal and kernite), calcium borate (colemanite) and the sodium-calcium borate (ulexite). Borax is a white crystalline substance, chemically known as sodium tetraborate decahydrate, and is found naturally as the mineral tincal. Boric acid is a colorless crystalline solid sold in technical, national formulary and special quality grades as granules or powder and marketed most often as anhydrous boric acid. Deposits of borates are associated with volcanic activity and arid climates, with the largest economically viable deposits located in the Mojave Desert of the United States near Boron, CA, the Alpide belt in southern Asia and the Andean belt of South America.
Method of recycling lithium borate to lithium borohydride through methyl borate
Filby, Evan E.
1977-01-01
This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a methyl borate intermediate to complete the recycle scheme.
Mesoporous silica-based bioactive glasses for antibiotic-free antibacterial applications.
Kaya, Seray; Cresswell, Mark; Boccaccini, Aldo R
2018-02-01
Bioactive glasses (BGs) are being used in several biomedical applications, one of them being as antibacterial materials. BGs can be produced via melt-quenching technique or sol-gel method. Bactericidal silver-doped sol-gel derived mesoporous silica-based bioactive glasses were reported for the first time in 2000, having the composition 76SiO 2 -19CaO-2P 2 O 5 -3Ag 2 O (wt%) and a mean pore diameter of 28nm. This review paper discusses studies carried out exploring the potential antibacterial applications of drug-free mesoporous silica-based BGs. Bioactive glasses doped with metallic elements such as silver, copper, zinc, cerium and gallium are the point of interest of this review, in which SiO 2 , SiO 2 -CaO and SiO 2 -CaO-P 2 O 5 systems are included as the parent glass compositions. Key findings are that silica-based mesoporous BGs offer a potential alternative to the systemic delivery of antibiotics for prevention against infections. The composition dependent dissolution rate and the concentration of the doped elements affect the antibacterial efficacy of BGs. A balance between antibacterial activity and biocompatibility is required, since a high dose of metallic ion addition can cause cytotoxicity. Typical applications of mesoporous BGs doped with antibacterial ions include bone tissue regeneration, multifunctional ceramic coatings for orthopedic devices and orbital implants, scaffolds with enhanced angiogenesis potential, osteostimulation and antibacterial properties for the treatment of large bone defects as well as in wound healing. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
40 CFR 721.10631 - Mixed metal borate (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal borate (generic). 721... Substances § 721.10631 Mixed metal borate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal borate (PMN P-12-64...
40 CFR 721.10631 - Mixed metal borate (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal borate (generic). 721... Substances § 721.10631 Mixed metal borate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal borate (PMN P-12-64...
Zr-doped TiO2 as a thermostabilizer in plasmon-enhanced dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Pasche, Anastasia; Grohe, Bernd; Mittler, Silvia; Charpentier, Paul A.
2017-07-01
Harvesting solar energy is a promising solution toward meeting the world's ever-growing energy demand. Dye-sensitized solar cells (DSSCs) are hybrid organic-inorganic solar cells with tremendous potential for commercial application, but they are plagued by inefficiency due to their poor sunlight absorption. Plasmonic silver nanoparticles (AgNPs) have been shown to enhance the absorptive properties of DSSCs, but their plasmonic resonance can cause thermal damage resulting in cell deterioration. Hence, the influence of Zr-doped TiO2 on the efficiency of plasmon-enhanced DSSCs was studied, showing that 5 mol.% Zr-doping of the photoactive TiO2 material can improve the photovoltaic performance of DSSCs by 44%. By examining three different DSSC designs, it became clear that the efficiency enhancing effect of Zr strongly depends on the proximity of the Zr-doped material to the plasmonic AgNPs.
Resonant excited UV luminescence of the Gd3+ centres in borate glasses, co-doped with Gd and Ag
NASA Astrophysics Data System (ADS)
Padlyak, B. V.; Drzewiecki, A.; Padlyak, T. B.; Adamiv, V. T.; Teslyuk, I. M.
2018-05-01
The Li2B4O7:Gd, CaB4O7:Gd, LiCaBO3:Gd, and Li2B4O7:Gd, Ag glasses of high optical quality, obtained by standard technology, have been investigated by electron paramagnetic resonance (EPR) and optical spectroscopy at room temperature. The Gd impurity was added in the raw materials as Gd2O3 oxide in amounts 0.5 and 1.0 mol.%. The Ag impurity was introduced into the Li2B4O7 composition as AgNO3 and as highly dispersed metallic Ag in amount 2.0 mol.%. In all Gd-doped glasses was observed typical for glasses EPR U-spectrum of the Gd3+ (8S7/2, 4f7) ions. In the Gd-doped glasses upon the 273 nm excitation was observed weak UV emission line at 311 nm that is attributed to the 6P7/2 → 8S7/2 intraconfiguration 4f - 4f transition of the Gd3+ ions. In the Li2B4O7:Gd, Ag glass has been observed significant (∼100 times) increasing of peak intensity of the Gd3+ emission line at 311 nm in comparison with this line in CaB4O7:Gd glass. In luminescence excitation spectra of the CaB4O7:Gd and Li2B4O7:Gd, Ag glasses are observed characteristic groups of lines corresponding to the 8S7/2 → 6IJ, 6DJ transitions of the Gd3+ ions. Significant increasing of the Gd3+ emission line at 311 nm in the Li2B4O7:Gd, Ag glass is explained by energy transfer from Ag+ (4d10) to Gd3+ (4f7) upon 273 nm excitation that is resonant for 4d10 → 4d9 5s1 (1S0 → 1D2) and 8S7/2 → 6IJ transitions of the Ag+ and Gd3+ ions. Luminescence kinetics of the Gd3+ and Ag+ centres was investigated and analysed. Obtained results show that the borate glasses, co-activated by Gd3+ and Ag+, can be promising materials for effective UVB light sources for biomedical applications.
NASA Astrophysics Data System (ADS)
Rudowicz, Czesław; Gnutek, Paweł; Açıkgöz, Muhammed
2015-08-01
In this study, the crystal field analysis for Cr3+ and Mn2+ ions doped into yttrium aluminum borate YAl3(BO3)4, for short YAB, crystal has been carried out to complement earlier study of the zero-field splitting (ZFS) parameters (ZFSPs). This analysis utilizes data on the distortion models obtained from analysis of the ZFSPs obtained experimentally by EMR for Cr3+ and Mn2+ ions at the Y3+ and Al3+ sites in YAB. This approach enables to verify and enhance reliability of the ZFSP modeling based on superposition model (SPM) analysis and the distortion models predicted previously. Subsequently, modeling of the crystal field parameters (CFPs) based on SPM analysis is carried out for Cr3+ and Mn2+ ions located at possible cation sites in YAB. The SPM predicted CFP values serve as input for the Crystal Field Analysis (CFA) package to calculate the CF energy levels. The predicted physical ZFS of the ground spin state, i.e. the 4A2 state for Cr3+ ion and the 6S state Mn2+ ions, enable calculation of the theoretical ZFSP values, D and D & (a-F), respectively, using the microscopic spin Hamiltonian (MSH) module in the CFA package. In this way, data on the distortions around the Cr3+ centers in YAB (and to a certain extent also for Mn2+ centers) obtained using the ZFSP data from EMR measurements may be correlated with data on the CF energy levels measured by optical spectroscopy. This modeling approach uncovers certain incompatibilities in the existing data for Cr3+:YAB, which call for reanalysis of the previous assignments of the energy levels observed in optical spectra and more accurate experimental data.
Optical and spectroscopic properties of neodymium doped cadmium-sodium borate glasses
NASA Astrophysics Data System (ADS)
Mohan, Shaweta; Thind, Kulwant Singh
2017-10-01
Neodymium doped cadmium sodium borate glasses having composition xCdO-(40-x) Na2CO3-59.5H3BO3-0.5Nd2O3; x = 10, 20 and 30 mol% were prepared by conventional melt-quenching technique. X-ray diffraction studies confirmed the amorphous nature of the prepared glasses. Conventional methods were used to determine the physical properties such as density, molar volume, refractive index, and rare earth ion concentration. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. The calculated intensity parameters were further used to predict the radiative transition probability (A), radiative lifetime (τR) and branching ratio (βR) for the various fluorescent levels of Nd3+ ion in the prepared glass series. The effect of the compositional changes on the spectroscopic characteristics of Nd3+ ions have been studied and reported. The value of Ω2 is found to decrease with the decrease in the sodium content and the corresponding increase in the cadmium content. This can be ascribed to the changes in the asymmetry of the ligand field at the rare earth ion site and the change in rare earth oxygen (RE-O) covalency. Florescence spectra has been used to determine the peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σp) for the 4F3/2 → 4I9/2,4I11/2,4I13/2 transitions of the Nd3+ ion. The reasonably higher values of branching ratios and stimulated emission cross-section for the prepared glasses points towards the efficacy of these glasses as laser host materials. However, the glass with more sodium content is found to show better lasing properties.
Jia, Yonggao; Chen, Chao; Jia, Dan; Li, Shuxin; Ji, Shulin; Ye, Changhui
2016-04-20
The uniformity of the sheet resistance of transparent conductive films is one of the most important quality factors for touch panel applications. However, the uniformity of silver nanowire transparent conductive films is far inferior to that of indium-doped tin oxide (ITO). Herein, we report a dynamic heating method using infrared light to achieve silver nanowire transparent conductive films with high uniformity. This method can overcome the coffee ring effect during the drying process and suppress the aggregation of silver nanowires in the film. A nonuniformity factor of the sheet resistance of the as-prepared silver nanowire transparent conductive films could be as low as 6.7% at an average sheet resistance of 35 Ω/sq and a light transmittance of 95% (at 550 nm), comparable to that of high-quality ITO film in the market. In addition, a mechanical study shows that the sheet resistance of the films has little change after 5000 bending cycles, and the film could be used in touch panels for human-machine interactive input. The highly uniform and mechanically stable silver nanowire transparent conductive films meet the requirement for many significant applications and could play a key role in the display market in a near future.
Kosović, Marin; Balarin, Maja; Ivanda, Mile; Đerek, Vedran; Marciuš, Marijan; Ristić, Mira; Gamulin, Ozren
2015-12-01
Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Virender Singh; Tanwar, Amit; Singh, Davender, E-mail: Davender-kadian@rediffmail.com
The pure and Ag-doped TiO{sub 2} nanoparticles were prepared by using Titanium isoproxide (TTIP), silver nitrate sodium hydroxide and sodium hydroxide. The calcined nanoparticles at 400°C were characterized by means of X-ray diffraction (XRD). XRD analyses reveal that the nanoparticles of various doping concentration were having anatase phase. The particle size was calculated by Scherrer formula and was found 11.08 nm for pure TiO{sub 2} and 8.86 nm for 6 mol % Ag doped TiO{sub 2}. The morphology and nature of nanoparticles was analyzed by using scanning electron microscope (SEM), the optical absorption spectra of pure TiO{sub 2} and Ag-doped TiO{sub 2} nanoparticlesmore » showed that absorption edge increases towards longer wavelength from 390 nm (pure) to 450 nm (doped), also band gap energy calculated from Tauc’s plot decrease from 3.20eV to 2.92eV with increase in doing. The measurement of photocatalytic properties of pure TiO{sub 2} and Ag-doped TiO{sub 2} nanoparticles showed that Ag-doped TiO{sub 2} degrades MB dye more efficiently than pure TiO{sub 2}.« less
Loaded Ce-Ag organic-inorganic hybrids and their antibacterial activity.
Truffault, Laurianne; Rodrigues, Danilo Fernando; Salgado, Hérida Regida Nunes; Santilli, Celso Valentim; Pulcinelli, Sandra Helena
2016-11-01
There are requirements for surfaces with antibacterial properties in various technological fields. U-PEO hybrids with antibacterial properties were synthesized by the sol-gel process, incorporating combinations of cerium and silver salts at different silver molar fractions (0, 0.02, 0.05, 0.10, and 1) relative to the total amount of doped cations. The loaded hybrids were characterized by TGA, XRD, and Raman spectroscopy. Release tests were performed using UV-vis spectroscopy, and the antibacterial properties of the hybrids were studied in agar tests and turbidimetry assays. The nanostructural evolution of the hybrids during the release of the antibacterial agents was investigated by in situ SAXS. XRD results showed the presence of the AgCl crystalline phase in the loaded hybrids from a silver molar fraction of 0.05. Raman spectroscopy evidenced the interaction of silver cations with the polymeric part of the hybrid. SAXS results confirmed these interactions and showed that cerium species interacted with both organic and inorganic parts of the hybrids. The loaded U-PEO hybrids were found to release all the incorporated cerium in 1h, while the hybrid containing 100% of silver released only 78% of the incorporated silver. All the loaded hybrids displayed antibacterial activity against the Pseudomonas aeruginosa bacterium. The antibacterial activity was found to increase with silver molar fraction. Due to its high antibacterial activity and low silver molar fraction, the loaded hybrid with silver molar fraction of 0.10 seemed to be a good compromise between efficiency, esthetic transparency, and photostability. Copyright © 2016 Elsevier B.V. All rights reserved.
Godoy-Gallardo, Maria; Rodríguez-Hernández, Ana G; Delgado, Luis M; Manero, José M; Javier Gil, F; Rodríguez, Daniel
2015-10-01
The aim of this study was to determine the antibacterial properties of silver-doped titanium surfaces prepared with a novel electrochemical anodizing process. Titanium samples were anodized with a pulsed process in a solution of silver nitrate and sodium thiosulphate at room temperature with stirring. Samples were processed with different electrolyte concentrations and treatment cycles to improve silver deposition. Physicochemical properties were determined by X-ray photoelectron spectroscopy, contact angle measurements, white-light interferometry, and scanning electron microscopy. Cellular cytotoxicity in human fibroblasts was studied with lactate dehydrogenase assays. The in vitro effect of treated surfaces on two oral bacteria strains (Streptococcus sanguinis and Lactobacillus salivarius) was studied with viable bacterial adhesion measurements and growth curve assays. Nonparametric statistical Kruskal-Wallis and Mann-Whitney U-tests were used for multiple and paired comparisons, respectively. Post hoc Spearman's correlation tests were calculated to check the dependence between bacteria adhesion and surface properties. X-ray photoelectron spectroscopy results confirmed the presence of silver on treated samples and showed that treatments with higher silver nitrate concentration and more cycles increased the silver deposition on titanium surface. No negative effects in fibroblast cell viability were detected and a significant reduction on bacterial adhesion in vitro was achieved in silver-treated samples compared with control titanium. Silver deposition on titanium with a novel electrochemical anodizing process produced surfaces with significant antibacterial properties in vitro without negative effects on cell viability. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
21 CFR 872.3400 - Karaya and sodium borate with or without acacia denture adhesive.
Code of Federal Regulations, 2010 CFR
2010-04-01
... denture adhesive. 872.3400 Section 872.3400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... and sodium borate with or without acacia denture adhesive. (a) Identification. A karaya and sodium borate with or without acacia denture adhesive is a device composed of karaya and sodium borate with or...
Slack, J.F.; Palmer, M.R.; Stevens, B.P.J.
1989-01-01
IDENTIFYING the palaeogeographic setting and mode of origin of stratabound ore deposits can be difficult in high-grade metamorphic terranes, where the effects of metamorphism may obscure the nature of the protoliths. Here we report boron isotope data for tourmalines from the early Proterozoic Broken Hill block, in Australia, which hosts giant lead-zinc-silver sulphide deposits. With one exception the 11B/10B ratios are lower than those for all other tourmalines from massive sulphide deposits and tour-malinites elsewhere in the world. We propose that these low ratios reflect leaching of boron from non-marine evaporitic borates by convecting hydrothermal fluids associated with early Proterozoic continental rifting. A possible modern analogue is the Salton Sea geothermal field in California. ?? 1989 Nature Publishing Group.
Effect of 120 MeV Ag9+ ion irradiation of YCOB single crystals
NASA Astrophysics Data System (ADS)
Arun Kumar, R.; Dhanasekaran, R.
2012-09-01
Single crystals of yttrium calcium oxy borate (YCOB) grown from boron-tri-oxide flux were subjected to swift heavy ion irradiation using silver Ag9+ ions from the 15 UD Pelletron facility at Inter University Accelerator Center, New Delhi. The crystals were irradiated at 1 × 1013, 5 × 1013 and 1 × 1014 ions/cm2 fluences at room temperature and with 5 × 1013 ions/cm2 fluence at liquid nitrogen temperature. The pristine and the irradiated samples were characterized by glancing angle X-ray diffraction, UV-Vis-NIR and photoluminescence studies. From the characterization studies performed on the samples, it is inferred that the crystals irradiated at liquid nitrogen temperature had fewer defects compared to the crystals irradiated at room temperature and the defects increased when the ion fluence was increased at room temperature.
Matsuoka, Ken
2013-01-01
In Arabidopsis the borate transporter BOR1, which is located in the plasma membrane, is degraded in the presence of excess boron by an endocytosis-mediated mechanism. A similar mechanism was suggested in rice as excess boron decreased rice borate transporter levels, although in this case whether the decrease was dependent on an increase in degradation or a decrease in protein synthesis was not elucidated. To address whether the borate-dependent degradation mechanism is conserved among plant cells, we analyzed the fate of GFP-tagged BOR1 (BOR1-GFP) in transformed tobacco BY-2 cells. Cells expressing BOR1-GFP displayed GFP fluorescence at the plasma membrane, especially at the membrane between two attached cells. The plasma membrane signal was abolished when cells were incubated in medium with a high concentration of borate (3 to 5 mM). This decrease in BOR1-GFP signal was mediated by a specific degradation of the protein after internalization by endocytosis from the plasma membrane. Pharmacological analysis indicated that the decrease in BOR1-GFP largely depends on the increase in degradation rate and that the degradation was mediated by a tyrosine-motif and the actin cytoskeleton. Tyr mutants of BOR1-GFP, which has been shown to inhibit borate-dependent degradation in Arabidopsis root cells, did not show borate-dependent endocytosis in tobacco BY-2 cells. These findings indicate that the borate-dependent degradation machinery of the borate transporter is conserved among plant species. PMID:24715955
Yamauchi, Noboru; Gosho, Tadashi; Asatuma, Satoru; Toyooka, Kiminori; Fujiwara, Toru; Matsuoka, Ken
2013-01-01
In Arabidopsis the borate transporter BOR1, which is located in the plasma membrane, is degraded in the presence of excess boron by an endocytosis-mediated mechanism. A similar mechanism was suggested in rice as excess boron decreased rice borate transporter levels, although in this case whether the decrease was dependent on an increase in degradation or a decrease in protein synthesis was not elucidated. To address whether the borate-dependent degradation mechanism is conserved among plant cells, we analyzed the fate of GFP-tagged BOR1 (BOR1-GFP) in transformed tobacco BY-2 cells. Cells expressing BOR1-GFP displayed GFP fluorescence at the plasma membrane, especially at the membrane between two attached cells. The plasma membrane signal was abolished when cells were incubated in medium with a high concentration of borate (3 to 5 mM). This decrease in BOR1-GFP signal was mediated by a specific degradation of the protein after internalization by endocytosis from the plasma membrane. Pharmacological analysis indicated that the decrease in BOR1-GFP largely depends on the increase in degradation rate and that the degradation was mediated by a tyrosine-motif and the actin cytoskeleton. Tyr mutants of BOR1-GFP, which has been shown to inhibit borate-dependent degradation in Arabidopsis root cells, did not show borate-dependent endocytosis in tobacco BY-2 cells. These findings indicate that the borate-dependent degradation machinery of the borate transporter is conserved among plant species.
Reactive belite stabilization mechanisms by boron-bearing dopants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuesta, Ana; Losilla, Enrique R.; Aranda, Miguel A.G.
2012-04-15
Belite-rich cements hold promise for reduced energy consumption and CO{sub 2} emissions, but their use is hindered by the slow hydration rates of ordinary belites. This drawback may be overcome by activation of belite by doping. Here, the doping mechanism of B and Na/B in belites is reported. For B-doping, three solid solutions have been tested: Ca{sub 2-x/2{open_square}x/2}(SiO{sub 4}){sub 1-x}(BO{sub 3}){sub x}, Ca{sub 2}(SiO{sub 4}){sub 1-x}(BO{sub 3}){sub x}O{sub x/2} and Ca{sub 2-x}B{sub x}(SiO{sub 4}){sub 1-x}(BO{sub 4}){sub x}. The experimental results support the substitution of silicate groups by tetrahedral borate groups with the concomitant substitution of calcium by boron for chargemore » compensation, Ca{sub 2-x}B{sub x}(SiO{sub 4}){sub 1-x}(BO{sub 4}){sub x}. Otherwise, the coupled Na/B-doping of belite has also been investigated and Ca{sub 2-x}Na{sub x}(SiO{sub 4}){sub 1-x}(BO{sub 3}){sub x} series is confirmed to exist for a large range of x values. Along this series, {alpha}'{sub H}-C{sub 2}S is the main phase (for x {>=} 0.10) and is single phase for x = 0.25. Finally, a new structural description for borax doping in belite has been developed for {alpha}'{sub H}-Ca{sub 1.85}Na{sub 0.15}(SiO{sub 4}){sub 0.85}(BO{sub 3}){sub 0.15}, which fits better borax activated belite cements in Rietveld mineralogical analysis.« less
NASA Astrophysics Data System (ADS)
Zhang, Qi; Tan, Shengwei; Ren, Mengyuan; Yang, Hsiwen; Tang, Dian; Chen, Kongfa; Zhang, Teng; Jiang, San Ping
2018-04-01
Boron volatility is one of the most important properties of borosilicate-based glass sealants in solid oxide fuel cells (SOFCs), as boron contaminants react with lanthanum-containing cathodes, forming LaBO3 and degrading the activity of SOFCs. Here, we report that the reaction between the volatile boron and a La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode during polarization can be significantly reduced by doping aluminoborosilicate glass with Gd2O3. Specifically, the Gd cations in glass with 2 mol.% Gd2O3 dissolve preferentially in the borate-rich environment to form more Gd-metaborate structures and promote the formation of calcium metaborate (CaB2O4); they also condense the B-O network after heat treatment, which suppresses poisoning by boron contaminants on the LSCF cathode. The results provide insights into design and development of a reliable sealing glass for SOFC applications.
NASA Astrophysics Data System (ADS)
Gao, Zhiwen; Deng, Huajuan; Xue, Na; Jeong, Jung Hyun; Yu, Ruijin
2018-01-01
Eu2+-doped borate fluoride Ba2GaB4O9Cl was synthesized by the conventional high-temperature solid-state reaction. The crystal structure and luminescence properties of the phosphors, as well as their thermal luminescence quenching capabilities and CIE chromaticity coordinates were systematically investigated. Under the excitation at 340 nm, the phosphor exhibited an asymmetric broad-band blue emission with a peak at 445 nm, which is ascribed to the 4f-5d transition of Eu2+. It was further proved that energy transfer among the nearest neighbor ions is the major mechanism for concentration quenching of Eu2+ in Ba2-xGaB4O9Cl:xEu2+ phosphors. The luminescence quenching temperature is 432 K. The CIE color coordinates are very close to those of BaMgAl10O17:Eu2+ (BAM). All the properties indicated that the blue-emitting Ba2GaB4O9Cl:Eu2+ phosphor has potential application in white LEDs.
Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia Magna
Scanlan, Leona D.; Reed, Robert B.; Loguinov, Alexandre V.; Antczak, Philipp; Tagmount, Abderrahmane; Aloni, Shaul; Nowinski, Daniel Thomas; Luong, Pauline; Tran, Christine; Karunaratne, Nadeeka; Pham, Don; Lin, Xin Xin; Falciani, Francesco; Higgins, Chris P.; Ranville, James F.; Vulpe, Chris D.; Gilbert, Benjamin
2013-01-01
Nanowires (NWs), high-aspect-ratio nanomaterials, are increasingly used in technological materials and consumer products and may have toxicological characteristics distinct from nanoparticles. We carried out a comprehensive evaluation of the physico-chemical stability of four silver nanowires (AgNWs) of two sizes and coatings and their toxicity to Daphnia magna. Inorganic aluminum-doped silica coatings were less effective than organic poly(vinyl pyrrolidone) coatings at preventing silver oxidation or Ag+ release and underwent a significant morphological transformation within one-hour following addition to low ionic strength Daphnia growth media. All AgNWs were highly toxic to D. magna but less toxic than ionic silver. Toxicity varied as a function of AgNW dimension, coating and solution chemistry. Ag+ release in the media could not account for observed AgNW toxicity. Single-particle inductively coupled plasma mass spectrometry (spICPMS) distinguished and quantified dissolved and nanoparticulate silver in microliter-scale volumes of Daphnia magna hemolymph with a limit of detection of approximately 10 ppb. The silver levels within the hemolymph of Daphnia exposed to both Ag+ and AgNW met or exceeded the initial concentration in the growth medium, indicating effective accumulation during filter feeding. Silver-rich particles were the predominant form of silver in hemolymph following exposure to both AgNWs and Ag+. Scanning electron microscopy (SEM) imaging of dried hemolymph found both AgNWs and silver precipitates that were not present in the AgNW stock or the growth medium. Both organic and inorganic coatings on the AgNW were transformed during ingestion or absorption. Pathway, gene ontology and clustering analyses of gene expression response indicated effects of AgNWs distinct from ionic silver on Daphnia magna. PMID:24099093
Photodegradation of Eosin Y Using Silver-Doped Magnetic Nanoparticles
Alzahrani, Eman
2015-01-01
The purification of industrial wastewater from dyes is becoming increasingly important since they are toxic or carcinogenic to human beings. Nanomaterials have been receiving significant attention due to their unique physical and chemical properties compared with their larger-size counterparts. The aim of the present investigation was to fabricate magnetic nanoparticles (MNPs) using a coprecipitation method, followed by coating with silver (Ag) in order to enhance the photocatalytic activity of the MNPs by loading metal onto them. The fabricated magnetic nanoparticles coated with Ag were characterised using different instruments such as a scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDAX) spectroscopy, and X-ray diffraction (XRD) analysis. The average size of the magnetic nanoparticles had a mean diameter of about 48 nm, and the average particle size changed to 55 nm after doping. The fabricated Ag-doped magnetic nanoparticles were used for the degradation of eosin Y under UV-lamp irradiation. The experimental results revealed that the use of fabricated magnetic nanoparticles coated with Ag can be considered as reliable methods for the removal of eosin Y since the slope of evaluation of pseudo-first-order rate constant from the slope of the plot between ln(C o/C) and the irradiation time was found to be linear. Ag-Fe3O4 nanoparticles would be considered an efficient photocatalyst to degrade textile dyes avoiding the tedious filtration step. PMID:26617638
Minguzzi, Alessandro; Longoni, Gianluca; Cappelletti, Giuseppe; Pargoletti, Eleonora; Di Bari, Chiara; Locatelli, Cristina; Marelli, Marcello; Rondinini, Sandra; Vertova, Alberto
2016-01-06
Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO₂ nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD), energy dispersive X-ray (EDX)), morphological (SEM, high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM)/TEM), surface (Brunauer Emmet Teller (BET)-Barrett Joyner Halenda (BJH) method) and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed. The GDE performances are evaluated by chronopotentiometric measurements to highlight the effects induced by the adopted materials. The best combination, hollow core mesoporous shell carbon (HCMSC) with 1.0% Ag-doped hydrothermal MnO₂ (M_hydro_1.0%Ag) allows reaching very high specific capacity close to 1400 mAh·g -1 . Considerably high charge retention through cycles is also observed, due to the presence of silver as a dopant for the electrocatalytic MnO₂ nanoparticles.
Minguzzi, Alessandro; Longoni, Gianluca; Cappelletti, Giuseppe; Pargoletti, Eleonora; Di Bari, Chiara; Locatelli, Cristina; Marelli, Marcello; Rondinini, Sandra; Vertova, Alberto
2016-01-01
Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO2 nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD), energy dispersive X-ray (EDX)), morphological (SEM, high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM)/TEM), surface (Brunauer Emmet Teller (BET)-Barrett Joyner Halenda (BJH) method) and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed. The GDE performances are evaluated by chronopotentiometric measurements to highlight the effects induced by the adopted materials. The best combination, hollow core mesoporous shell carbon (HCMSC) with 1.0% Ag-doped hydrothermal MnO2 (M_hydro_1.0%Ag) allows reaching very high specific capacity close to 1400 mAh·g−1. Considerably high charge retention through cycles is also observed, due to the presence of silver as a dopant for the electrocatalytic MnO2 nanoparticles. PMID:28344267
Lim, Su Pei; Pandikumar, Alagarsamy; Lim, Hong Ngee; Ramaraj, Ramasamy; Huang, Nay Ming
2015-01-01
A silver nanoparticle-decorated N,S-co-doped TiO2 nanocomposite was successfully prepared and used as an efficient photoanode in high-performance dye-sensitized solar cells (DSSCs) with N719 dye. The DSSCs assembled with the N,S-TiO2@Ag-modified photoanode demonstrated an enhanced solar-to-electrical energy conversion efficiency of 8.22%, which was better than that of a DSSC photoanode composed of unmodified TiO2 (2.57%) under full sunlight illumination (100 mWcm−2, AM 1.5 G). This enhanced efficiency was mainly attributed to the reduced band gap energy, improved interfacial charge transfer, and retarded charge recombination process. The influence of the Ag content on the overall efficiency was also investigated, and the optimum Ag content with N,S-TiO2 was found to be 20 wt%. Because of the enhanced solar energy conversion efficiency of the N,S-TiO2@Ag nanocomposite, it should be considered as a potential photoanode for high-performance DSSCs. PMID:26146362
NASA Astrophysics Data System (ADS)
Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.
2017-08-01
The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.
NASA Astrophysics Data System (ADS)
Lakshminarayana, G.; Kaky, Kawa M.; Baki, S. O.; Lira, A.; Caldiño, U.; Kityk, I. V.; Mahdi, M. A.
2017-10-01
By using melt quenching technique, good optical quality singly doped Dy3+ or Tb3+ and Dy3+/Tb3+-codoped borate glasses were synthesized and studied by optical absorption, excitation, emission and decay lifetimes curve analysis. Following the absorption spectrum, the evaluated Judd-Ofelt (J-O) intensity parameters (Ωλ (λ = 2, 4 and 6)) were used to calculate the transition probability (AR), the branching ratio (βR), and the radiative lifetime (τR) for different luminescent transitions such as 4I15/2 → 6H15/2, 4F9/2 → 6H15/2, 4F9/2 → 6H13/2, 4F9/2 → 6H11/2 and 4F9/2 → 6H9/2,6F11/2 for the 0.5 mol % singly Dy3+-doped glass. The βR calculated (65%) indicates that for lasing applications, 4F9/2 → 6H13/2 emission transition is highly suitable. For all the Dy3+/Tb3+-codoped glasses, Tb3+: 5D3→7F6 emission decay lifetime curves are found to be non-exponential in nature for different concentrations of Dy3+ codoping. Using the Inokuti-Hirayama model, these nonexponential decay curves were analyzed to identify the nature of the energy transfer (ET) processes and here the electric dipole-dipole interaction is dominant for the ET. Based on the excitation and emission spectra and decay lifetimes curve analysis, the cross relaxation and ET processes between Dy3+ and Tb3+ were confirmed. For the 0.5 mol % Tb3+ and 2.0 mol % Dy3+-codoped glass, the evaluated Tb3+→Dy3+ ET efficiency (η) is found to be 45% under 369 nm excitation. Further, for Tb3+/Dy3+ -codoped glasses, an enhancement of Tb3+ green emission is observed up to 1.5 mol % Dy3+ codoping, and this is due to the non-radiative resonant ET from Dy3+ to Tb3+ upon 395 nm excitation. For singly 0.5 mol % Dy3+ or 0.5 mol % Tb3+-doped glass, the calculated color coordinates (x,y) and correlated color temperatures (CCT) represent the neutral white or warm white light regions, whereas Dy3+/Tb3+-codoped glasses (x,y) and CCT values fall in the yellowish green region with respect to the different Dy3+ concentrations under 350 and 395 nm excitations. Following the analyzed optical data, the singly Dy3+ or Tb3+-doped and Dy3+/Tb3+-codoped glasses could be suggested as promising materials for their applications in solid state light emitting diodes and luminescent display devices.
Role of oxygen on the optical properties of borate glass doped with ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Baki, Manal; El-Diasty, Fouad, E-mail: fdiasty@yahoo.com
2011-10-15
Lithium tungsten borate glass (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0{<=}x{<=}0.1 mol%) is prepared by the melt quenching technique for photonic applications. Small relative values of ZnO are used to improve the glass optical dispersion and to probe as well the role of oxygen electronic polarizability on its optical characteristics. The spectroscopic properties of the glass are determined in a wide spectrum range (200-2500 nm) using a Fresnel-based spectrophotometric technique. Based on the Lorentz-Lorenz theory, as ZnO content increases on the expense of B{sub 2}O{sub 3} the glass molar polarizability increased due to an enhanced unshared oxide ion 2p electron density,more » which increases ionicity of the chemical bonds of glass. The role of oxide ion polarizability is explained in accordance with advanced measures and theories such as optical basicity, O 1s binding energy, the outer most cation binding energy in Yamashita-Kurosawa's interionic interaction parameter and Sun's average single bond strength. FT-IR measurements confirm an increase in bridging oxygen bonds, as a result of replacement of ZnO by B{sub 2}O{sub 3}, which increase the UV glass transmission window and transmittance. - Graphical abstract: O1s, Yamashita-Kurosawa's parameter and average single bond strength of charge overlapping between electronic shells are used to explain enhanced oxide ion 2p electron density, which increases refractive index of glasses. Highlights: > New borate glass for photonic application is prepared. > The dispersion property of the glass is effectively controlled using small amounts of ZnO. > ZnO is used to probe the glass structure and investigate the role of oxygen on the obtained optical properties of the glasses. > Modern theories are used to explain enhanced unshared oxide ion 2p electron density, which increases ionicity of chemical bonds of the glass.« less
Compact cladding-pumped planar waveguide amplifier and fabrication method
Bayramian, Andy J.; Beach, Raymond J.; Honea, Eric; Murray, James E.; Payne, Stephen A.
2003-10-28
A low-cost, high performance cladding-pumped planar waveguide amplifier and fabrication method, for deployment in metro and access networks. The waveguide amplifier has a compact monolithic slab architecture preferably formed by first sandwich bonding an erbium-doped core glass slab between two cladding glass slabs to form a multi-layer planar construction, and then slicing the construction into multiple unit constructions. Using lithographic techniques, a silver stripe is deposited and formed at a top or bottom surface of each unit construction and over a cross section of the bonds. By heating the unit construction in an oven and applying an electric field, the silver stripe is then ion diffused to increase the refractive indices of the core and cladding regions, with the diffusion region of the core forming a single mode waveguide, and the silver diffusion cladding region forming a second larger waveguide amenable to cladding pumping with broad area diodes.
Wiglusz, Rafal J; Kedziora, Anna; Lukowiak, Anna; Doroszkiewicz, Wlodzimierz; Strek, Wieslaw
2012-08-01
Hydroxyapatites (Ca10(PO4)6(OH)2 and Eu3+:Ca10(PO4)6(OH)2) were synthesized by aqueous synthesis route. Hydroxyapatites were impregnated with silver ions that were subsequently reduced. XRD, TEM, and SAED measurements were used in order to determine the crystal structure and morphology of the final products. The results showed the well crystallized hydroxyapatite grains with diameter of about 35 nm and with silver nanoparticles on their surface. The antimicrobial activity of the nanoparticles against: Staphylococcus aureus ATCC 6538 as model of the Gram-positive bacteria, Escherichia coli ATCC 11229, and Klebsiella pneumoniae ATCC 4352 as model of Gram-negative bacteria, were shown with the best activity against K. pneumoniae. These nanocomposite powders can be a promising antimicrobial agent and a fluorescent material for biodetection due to their optical and bioactive properties.
Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics
NASA Astrophysics Data System (ADS)
Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.
1994-07-01
The Table of Contents for the full book PDF is as follows: * Preface * I. INVITED PAPERS * Diffusion of Cations and Anions in Solid Electrolytes * Silver Ion Conductors in the Crystalline State * NMR Studies of Superionic Conductors * Hall Effect and Thermoelectric Power in High Tc Hg-Ba-Ca-Cu-O Ceramics * Solid Electrolyte Materials Prepared by Sol-Gel Chemistry * Preparation of Proton-Conducting Gel Films and their Application to Electrochromic Devices * Thin Film Fuel Cells * Zirconia based Solid Oxide Ion Conductors in Solid Oxide Fuel Cells * The Influence of Anion Substitution on Some Phosphate-based Ion Conducting Glasses * Lithium Intercalation in Carbon Electrodes and its Relevance in Rocking Chair Batteries * Chemical Sensors using Proton Conducting Ceramics * NMR/NQR Studies of Y-Ba-Cu-O Superconductors * Silver Molybdate Glasses and Battery Systems * New Highly Conducting Polymer Ionics and their Application in Electrochemical Devices * Study of Li Electrokinetics on Oligomeric Electrolytes using Microelectrodes * Calculation of Conductivity for Mixed-Phase Electrolytes PEO-MX-Immiscible Additive by Means of Effective Medium Theory * II. CONTRIBUTED PAPERS * Phase Relationship and Electrical Conductivity of Sr-V-O System with Vanadium Suboxide * Amorphous Li+ Ionic Conductors in Li2SO4-Li2O-P2O5 System * Fast Ion Transport in KCl-Al2O3 Composites * The Effect of the Second Phase Precipitation on the Ionic Conductivity of Zr0.85Mg0.15O1.85 * Conductivity Measurements and Phase Relationships in CaCl2-CaHCl Solid Electrolyte * Relationships Between Crystal Structure and Sodium Ion Conductivity in Na7Fe4(AsO4)6 and Na3Al2(AsO4)3 * Electrical Conductivity and Solubility Limit of Ti4+ Ion in Na1+x TiyZr2-ySixP3-xO12 System * Study on Sodium Fast Ion Conductors of Na1+3xAlxTi2-xSi2xP3-2xO12 System * Influences of Zirconia on the Properties of β''-Alumina Ceramics * Decay of Luminescence from Cr3+ Ions in β-Alumina * Lithium Ion Conductivity in the Li4XO4-Li2SO4 (X=Si, Ge, Ti) Systems * A DSC and Conductivity Study of the Influence of Cesium Ion on the Beta-Alpha Transition in Silver Iodide * Phase Diagrams, Stoichiometries and Properties of Bi4V2O11:M2+ Solid Electrolytes * Physical Properties of Electrodeposited Silver Chromotungstate * Pseudopotential Study of Bonding in the Superionic Material AgI: The Effect of Statistical Distribution of Mobile Ions * Cubic Phase Dominant Region in Submicron BaTiO3 Particles * The Crystallization of CoZr Amorphous Alloys via Electrical Resistivity * Cation Ratio Related Properties of Synthetic Mg/Al Layered Double Hydroxide and it's Nanocomposite * DC Conductivity of Nano-Particles of Silver Iodide * Effect of Anomalous Diffusion on Quasielastic Scattering in Superionic Conductors * Computer Simulation Study of Conductivity Enhancement in Superionic-Insulator Composites * Dynamics of Superionic Silver and Copper Iodide Salt Melts * Influence of Dopant Salt AgI, Glass Modifier Ag2O and Glass Formers (SeO3 + MoO3) on Electrical Conductivity in Quaternary Glassy System * Fast Ion Conductivity in the Presence of Competitive Network Formers * Role of Alkali Ions in Borate Glasses * Inelastic Light Scattering in Cadmium Borate Glasses * Investigation on Transport Properties of Mixed Glass System 0.75 [0.75AgI:0.25AgCl]. 0.25[Ag2O:CrO3] * Conduction Mechanism in Lithium Tellurite Glasses * Optimized Silver Tungstoarsenate Glass Electrolyte * Stabilized Superfine Zirconia Powder Prepared by Sol-Gel Process * Study of New PAN-based Electrolytes * Electrical and Thermal Characterization of PVA based Polymer Electrolytes * Conductive Electroactive Polymers: Versatile Solid State Ionic Materials * The Role of Ag2O Addition on the Superconducting Properties of Y-124 Compound * Absorption Spectra Studies of the C60 Films on Transition Metal Film Substrates * Effect of Alumina Dispersal on the Conductivity and Crystallite Size of Polymer Electrolyte * New Mixed Galss-Polymer Solid Electrolytes * The Sputtered La0.5Sr0.5MnO3-Yttria Stabilized Zirconia Composite Electrode in Solid Oxide Fuel Cells * A Solid Electrochemical Ferro Sensor for Molten Matte * SnO2-based Sensor for H2S Monitoring-Electrical Conductivity Measurements and Device Testing * Humidity Sensor using Potassium Tungsten Bronze Synthesized from Peroxo-Polytungstic Acid * Study on Li/LiClO4/V6O13 Test Cells * Fabrication and Characterisation of Some Solid Electrolyte Cells Containing CuI and Silver Oxysalts * Solid State Battery of Proton Conducting Sodium Thiosulphate Pentahydrate * Low Temperature Synthesis of LiMn2O4 for Secondary Lithium Batteries * Effect of Different Cathode Active Materials on Battery Performance with Silver Molybdate Electrolyte Partially Substituted with Zinc Oxide * Fabrication and Characterization of Electrochemical Cells based on Silver Molybdoarsenate and Silver Tungstoarsenate Glass Electrolytes * Lorentz Force Dependence of Dissipation in a Granular Superconductor * Late Entry (Invited paper) * Simultaneous Voltammetry and Spectroscopy of Polyaniline in Propylene Carbonate * Author Index * Tentative List of Participants
Alajerami, Y S M; Hashim, S; Ramli, A T; Saleh, M A; Saripan, M I; Alzimami, K; Min Ung, Ngie
2013-08-01
New glasses Li2CO3-K2CO3-H3BO3 (LKB) co-doped with CuO and MgO, or with TiO2 and MgO, were synthesized by the chemical quenching technique. The thermoluminescence (TL) responses of LKB:Cu,Mg and LKB:Ti,Mg irradiated with 6 MV photons or 6 MeV electrons were compared in the dose range 0.5-4.0 Gy. The standard commercial dosimeter LiF:Mg,Ti (TLD-100) was used to calibrate the TL reader and as a reference in comparison of the TL properties of the new materials. The dependence of the responses of the new materials on (60)Co dose is linear in the range of 1-1000 Gy. The TL yields of both of the co-doped glasses and TLD-100 are greater for electron irradiation than for photon irradiation. The TL sensitivity of LKB:Ti,Mg is 1.3 times higher than the sensitivity of LKB:Cu,Mg and 12 times less than the sensitivity of TLD-100. The new TL dosimetric materials have low effective atomic numbers, good linearity of the dose responses, excellent signal reproducibility, and a simple glow curve structure. This combination of properties makes them suitable for radiation dosimetry. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamal, Dambar B.
For solar environmental remediation, a new generation of nanosized (< 10 nm) titanium dioxide photocatalysts codoped with metals and nonmetals, or metals only were prepared by the xero-gel and aero-gel methods. For silver or cobalt-based xero-gel titanium dioxide photocatalysts, photoactivities tests revealed that codoping of titanium dioxide with a metal (1% Ag or 2% Co) and nonmetals (carbon and sulfur) is necessary to achieve high-activities for acetaldehyde degradation under visible light (wavelength > 420 nm). It was concluded that high visible-light-activities for acetaldehyde degradation over codoped titanium dioxide were attributed to an interplay of anatase crystallinity, high-surface area, reduced band-gap (< 3.0 eV), uniform dispersion of doped metal ions, and suppressed recombination rate of photogenerated electronhole pairs. Moreover, the nature and amount of codoped metals play a significant role in visible-light-induced photocatalysis. Metals (Al, Ga, and In) doped/codoped titanium dioxide photocatalysts were prepared by the aero-gel method. The photocatalytic studies showed that activities of metal doped/codoped photocatalysts under UV light (wavelength < 400 nm) were found to be dependent on pollutants. Indium demonstrated beneficial effects in both textural and photocatalytic properties. Gallium and indium codoped titanium dioxide photocatalysts displayed even better performance in the CO oxidation reaction under UV light. Notably, titanium dioxide codoped with Ga, In, and Pt, exhibited unique photoactivities for the CO oxidation under both UV and visible light irradiation, indicating that this system could have promise for the water-gas shift reaction for hydrogen production. Silver-based nanostructured titanium dioxide samples were developed for killing human pathogens (Escherichia coli cells and Bacillus subtilis spores). Biocidal tests revealed that silver, carbon, and sulfur codoped titanium dioxide nanoparticles (< 10 nm) possess very strong antimicrobial actions on both E. coli (logarithmic kill > 8) and B. subtilis spores (logarithmic kill > 5) for 30 minute exposures in dark conditions compared with Degussa P25. It was believed that the carbon and sulfur codoped titanium dioxide support and Ag species acted synergistically during deactivation of both E. coli and B. subtilis spores. Thus, titanium dioxide codoped with silver, carbon, sulfur can serve as a multifunctional generic biocide and a visible-light-active photocatalyst.
Ternary borate-nucleoside complex stabilization by Ribonuclease A demonstrates phosphate mimicry
Gabel, Scott A.; London, Robert E.
2010-01-01
Phosphate esters play a central role in cellular energetics, biochemical activation, signal transduction and conformational switching. The structural homology of the borate anion with phosphate, combined with its ability to spontaneously esterify hydroxyl groups, suggested that phosphate-ester recognition sites on proteins might exhibit significant affinity for non-enzymatically formed borate esters. 11B NMR studies and activity measurements on ribonuclease A in the presence of borate and several cytidine analogs demonstrate the formation of a stable ternary RNase A•3′-deoxycytidine-2′-borate ternary complex that mimics the complex formed between RNase A and a 2′-cytidine monophosphate (2′-CMP) inhibitor. Alternatively, no slowly exchanging borate resonance is observed for a ternary RNase A, borate, 2′-deoxycytidine mixture, demonstrating the critical importance of the 2′-hydroxyl group for complex formation. Titration of the ternary complex with 2′-CMP shows that it can displace the bound borate ester with a binding constant that is close to the reported inhibition constant of RNase A by 2′CMP. RNase A binding of a cyclic cytidine-2′,3′-borate ester, which is a structural homolog of the cytidine-2′,3′-cyclic phosphate substrate, could also be demonstrated. The apparent dissociation constant for the cytidine-2′,3′-borate•RNase A complex is 0.8 mM, which compares with a Michaelis constant of 11 mM for cCMP at pH 7, indicating considerably stronger binding. However, the value is 1000-fold larger than the reported dissociation constant of the RNase A complex with uridine-vanadate. These results are consistent with recent reports suggesting that in situ formation of borate esters that mimic the corresponding phosphate esters support enzyme catalysis. PMID:17957392
NASA Astrophysics Data System (ADS)
Geyer, Nadine; Wollschläger, Nicole; Fuhrmann, Bodo; Tonkikh, Alexander; Berger, Andreas; Werner, Peter; Jungmann, Marco; Krause-Rehberg, Reinhard; Leipner, Hartmut S.
2015-06-01
A systematic method to control the porosity of silicon nanowires is presented. This method is based on metal-assisted chemical etching (MACE) and takes advantage of an HF/H2O2 etching solution and a silver catalyst in the form of a thin patterned film deposited on a doped silicon wafer. It is found that the porosity of the etched nanowires can be controlled by the doping level of the wafer. For low doping concentrations, the wires are primarily crystalline and surrounded by only a very thin layer of porous silicon (pSi) layer, while for highly doped silicon, they are porous in their entire volume. We performed a series of controlled experiments to conclude that there exists a well-defined critical doping concentration separating the crystalline and porous regimes. Furthermore, transmission electron microscopy investigations showed that the pSi has also a crystalline morphology on a length scale smaller than the pore size, determined from positron annihilation lifetime spectroscopy to be mesoscopic. Based on the experimental evidence, we devise a theoretical model of the pSi formation during MACE and apply it for better control of the nanowire morphology.
Influence of oxygen doping on resistive-switching characteristic of a-Si/c-Si device
NASA Astrophysics Data System (ADS)
Zhang, Jiahua; Chen, Da; Huang, Shihua
2017-12-01
The influence of oxygen doping on resistive-switching characteristics of Ag/a-Si/p+-c-Si device was investigated. By oxygen doping in the growth process of amorphous silicon, the device resistive-switching performances, such as the ON/OFF resistance ratios, yield and stability were improved, which may be ascribed to the significant reduction of defect density because of oxygen incorporation. The device I-V characteristics are strongly dependent on the oxygen doping concentration. As the oxygen doping concentration increases, the Si-rich device gradually transforms to an oxygen-rich device, and the device yield, switching characteristics, and stability may be improved for silver/oxygen-doped a-Si/p+-c-Si device. Finally, the device resistive-switching mechanism was analyzed. Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY17F040001), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. KF2015_02), the Open Project Program of National Laboratory for Infrared Physics, Chinese Academy of Sciences (No. M201503), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).
Silver doped TiO2 nano crystallites for dye-sensitized solar cell (DSSC) applications
NASA Astrophysics Data System (ADS)
Sakthivel, T.; Ashok Kumar, K.; Ramanathan, Rajajeyaganthan; Senthilselvan, J.; Jagannathan, K.
2017-12-01
This communication deals with the synthesis of Ag doped TiO2 nanoparticles with different doping concentrations prepared by reduction method for the possible usage of photo anode material in DSSC. The prepared nanoparticles are characterized by x-ray diffraction to study their structural properties which confirms the formation of mixed anatase-rutile crystalline phases. The particulate size, shape and surface morphology are examined using FESEM which indicates agglomerated nanostructures with the average particle size of 20-25 nm. The UV-visible absorption spectra showed enhanced absorption in the visible range in accordance with the doping concentration of Ag with a red shift in their absorption edge. The interfacial charge transport phenomena of the DSSCs are determined by electrochemical impedance spectroscopy (EIS) and the corresponding efficiencies are calculated using J-V curve. In the present work, the UV active TiO2 and Ag doped TiO2 nanoparticles are employed as photoanode for the fabrication of DSSCs based on N3 dye and maximum power conversion efficiency of 1.544% is realized.
NASA Astrophysics Data System (ADS)
Stanić, Vojislav; Radosavljević-Mihajlović, Ana S.; Živković-Radovanović, Vukosava; Nastasijević, Branislav; Marinović-Cincović, Milena; Marković, Jelena P.; Budimir, Milica D.
2015-05-01
Silver doped fluorapatite nanopowders were synthesised by neutralization method, which consists of dissolving Ag2O in solution of HF and H3PO4 and addition to suspension of Ca(OH)2. The powder XRD, SEM and FTIR studies indicated the formation of a fluorapatite nanomaterials with average length of the particles is about 80 nm and a width of about 15 nm. The FTIR studies show that carbonate content in samples is very small and carbonte ions substitute both phosphate and hydroxyl groups in the crystal structure of samples, forming AB-type fluorapatite. Antibacterial studies have demonstrated that all Ag+-doped fluorapatite samples exhibit bactericidal effect against pathogens: Staphylococcus aureus, Micrococcus luteus and Kllebsiela pneumoniae. Antibacterial activity increased with the increase of Ag+ in the samples. The atomic force microscopy studies revealed extensive damage to the bacterial cell envelops in the presence of Ag+-doped fluorapatite particles which may lead to their death. The synthesized Ag+-doped fluorapatite nanomaterials are promising as antibacterial biomaterials in orthopedics and dentistry.
A crystal-chemical classification of borate structures with emphasis on hydrated borates
Christ, C.L.; Clark, J.R.
1977-01-01
The rules governing formation of hydrated borate polyanions that were proposed by C.L. Christ in 1960 are critically reviewed and new rules added on the basis of recent crystal structure determinations. Principles and classifications previously published by others are also critically reviewed briefly. The fundamental building blocks from which borate polyanions can be constructed are defined on the basis of the number n of boron atoms, and the fully hydrated polyanions are illustrated. Known structures are grouped accordingly, and a shorthand notation using n and symbols ?? = triangle, T = tetrahedron is introduced so that the polyanions can be easily characterized. For example, 3:??+2T describes [B3O3(OH)5]2-. Correct structural formulas are assigned borates with known structures whereas borates of unknown structure are grouped separately. ?? 1977 Springer-Verlag.
Sasaki, Keiko; Hayashi, Yoshikazu; Toshiyuki, Kenta; Guo, Binglin
2018-09-01
The treatment of the geothermal water discharged through mining activity is a critical issue because the rate of discharge is 12,000 m 3 per day and the discharge contains high concentrations of borate (>20 mg/L) and arsenate (ca. 0.4 mg/L) as well as silicate and carbonate. The simultaneous reduction of borate and arsenate concentrations to acceptable levels was successfully performed by co-precipitation with hydroxyapatite (HAp). Although the coexisting high concentrations of carbonate act as a disturbing element, the co-precipitation equilibrium of borate was shifted to lower values by adjusting the P/Ca molar ratio, and the removal rate of borate was accelerated by using Al 3+ additives, resulting in the efficient reduction of borate within 1 h. The initially immobilized boron in HAp is in the tetragonal form, which probably occupies the hydroxyl sites in HAp, gradually transforming into the trigonal form in the solid state, as interpreted by 1 H NMR and 11 B-NMR. The coexisting silicate was also immobilized in an ellestadite form, as confirmed by 29 Si-NMR measurements. Arsenate and silicate were immobilized before borate in geothermal water. A dissolution assay of borate in the solid residues after co-precipitation with HAp verified the acceptable stability of borate, which is independent of the amount of added Al 3+ . Copyright © 2018 Elsevier Ltd. All rights reserved.
Angulo, M.A.
2011-01-01
The article discusses the latest developments in the borates industry, particularly in the U.S., as of June 2011. It claims that the biggest economically feasible deposits of borates are seen in the U.S.' Mojave Desert, the Alpide belt in southern Asia and the Andean belt of South America. Turkish state-owned mining firm Eti Maden AS reported that borates were mainly used in the manufacture of glass, ceramics, fertilizer and detergent in 2009.
Joly, B; Cluzel, R
1975-01-01
The authors have studied 116 Gram-negative strains, 27 of which were sensitive to antibiotics and 89 showed multiple resistance. The MIC of mercury chloride, mercuric nitrate and of an aqueous solution of mercuresceine were much higher in the case of the sensitive strains. The transfer of resistance to mercury, which has been achieved in 56% of cases, was always accompanied by transfer of resistance to the antibiotics. The MIC of phenylmercury borate, mercurothiolic acid and other heavy metals (such as: cobaltous nitrate, silver nitrate, cadmium nitrate, nickel nitrate, zinc nitrate, copper sulphate and sodium arsenate) are approximatively the same for all strains. The normal concentrations of mercury in nature are lower than the rate of microbial selection. But in areas of accumulation, particularly in biological chains or in hospitals, the mercury compounds could play a part in the selection of antibiotic resistant Gram-negative bacteria.
2012-01-01
Silver and aluminum-co-doped zinc oxide (SAZO) nanowires (NWs) of 1, 3, and 5 at.% were grown on sapphire substrates. Low-temperature photoluminescence (PL) was studied experimentally to investigate the p-type behavior observed by the exciton bound to a neutral acceptor (A0X). The A0X was not observed in the 1 at.% SAZO NWs by low-temperature PL because 1 at.% SAZO NWs do not have a Ag-O chemical bonding as confirmed by XPS measurement. The activation energies (Ea) of the A0X were calculated to be about 18.14 and 19.77 meV for 3 and 5 at.% SAZO NWs, respectively, which are lower than the activation energy of single Ag-doped NW which is about 25 meV. These results indicate that Ag/Al co-doping method is a good candidate to make optically p-type ZnO NWs. PMID:22647319
George C. Chen
2008-01-01
N-methyl amino catechol borate (1), N-methyl amino-4-methyl catechol borate (2), N-methyl amino-4-t-butyl catechol borate (3), and N-methyl amino-2, 3-naphthyl borate (4) were synthesized by reflux of boric acid with a diol in solvent N,N-dimethyl formamide. The aminoborates were characterized by proton nuclear magnetic resonance spectroscopy, FTIR spectroscopy and...
NASA Astrophysics Data System (ADS)
Naraginti, Saraschandra; Stephen, Finian Bernard; Radhakrishnan, Adhithya; Sivakumar, A.
2015-01-01
Catalytic activity of Zr and Ag co-doped TiO2 nanoparticles on the reduction of 4-nitrophenol, degradation of methylene blue and methyl orange was studied using sodium borohydride as reducing agent. The nanoparticles were characterized using X-ray diffraction, energy dispersive X-ray, high resolution transmission electron microscopy, selected area electron diffraction and UV-Vis spectroscopy. The rate of the reduction/degradation was found to increase with increasing amount of the photocatalyst which could be attributed to higher dispersity and small size of the nanoparticles. The catalytic activity of Zr and Ag co-doped TiO2 nanoparticles showed no significant difference even after recycling the catalyst four times indicating a promising potential for industrial application of the prepared photocatalyst.
NASA Astrophysics Data System (ADS)
Polius, Jemilia R.
This thesis reports measurements of the temperature-dependent surface resistivity of multi-wall carbon nanotube doped polyvinyl alcohol (PVA) thin films. In the temperature range from 22°C to 40°C in a humidity controlled environment, it was found that the surface resistivity decreased initially but raised as the temperature continued to increase. I report surface resistivity measurements as a function of temperature of both multiwall and single-wall carbon nanotube doped PVA thin films, with comparison of the similarities and differences between the two types of film types. This research was conducted using the combined instrumentation of the KEITHLEY Model 6517 Electrometer and the KEITHLEY Model 8009 resistivity test fixture using both commercial and in-house produced organic thin films.
Silver nanoparticle-doped zirconia capillaries for enhanced bacterial filtration.
Wehling, Julia; Köser, Jan; Lindner, Patrick; Lüder, Christian; Beutel, Sascha; Kroll, Stephen; Rezwan, Kurosch
2015-03-01
Membrane clogging and biofilm formation are the most serious problems during water filtration. Silver nanoparticle (Agnano) coatings on filtration membranes can prevent bacterial adhesion and the initiation of biofilm formation. In this study, Agnano are immobilized via direct reduction on porous zirconia capillary membranes to generate a nanocomposite material combining the advantages of ceramics being chemically, thermally and mechanically stable with nanosilver, an efficient broadband bactericide for water decontamination. The filtration of bacterial suspensions of the fecal contaminant Escherichia coli reveals highly efficient bacterial retention capacities of the capillaries of 8 log reduction values, fulfilling the requirements on safe drinking water according to the U.S. Environmental Protection Agency. Maximum bacterial loading capacities of the capillary membranes are determined to be 3×10(9)bacterialcells/750mm(2) capillary surface until back flushing is recommendable. The immobilized Agnano remain accessible and exhibit strong bactericidal properties by killing retained bacteria up to maximum bacterial loads of 6×10(8)bacterialcells/750mm(2) capillary surface and the regenerated membranes regain filtration efficiencies of 95-100%. Silver release is moderate as only 0.8% of the initial silver loading is leached during a three-day filtration experiment leading to average silver contaminant levels of 100μg/L. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthesis and characterization of Ag-doped TiO2 nanotubes on Ti-6Al-4V and Ti-6Al-7Nb alloy
NASA Astrophysics Data System (ADS)
Ulfah, Ika Maria; Bachtiar, Boy M.; Murnandityas, Arnita Rut; Slamet
2018-05-01
The present paper is focused on comparative behavior of nanotubes growth on Ti-6Al-4V and Ti-6Al-7Nb alloy using electrochemical anodization method. These alloys were anodized in electrolytes solution containing glycerol, water and 0.5wt.% of NH4F. Silver-doped TiO2 nanotubes were synthesized using photo-assisted deposition (PAD) at various Ag loading concentration in 0.05 M, 0.10 M, and 0.15 M. The phase composition and morphological characteristics were investigated by XRD and FESEM/EDX, respectively. The surface wettability was measured by contact angle meter. The results showed that TiO2 nanotubes can be grown on these surface alloys. XRD profiles revealed crystal formation of anatase, rutile and Ag on these surface alloys. According to FESEM images, the average nanotube diameter of Ti-6Al-4V alloy and Ti-6Al-7Nb alloy are 134 nm and 120 nm, respectively. EDX-Mapping analysis showed that Ag desposited over surface of TiO2 nanotubes. The surface wettability indicated hydrophilicity properties on Ti-4Al-4V alloy and Ti-6Al-7Nb alloy surface. This study may contribute to the development of silver-doped TiO2 nanotubes on Ti-6Al-4V alloy and Ti-6Al-7Nb alloy can be considered in various photocatalytic applications such as biomedical devicesdue to photocatalytic mechanism and antibacterial ability.
Tris-borate is a poor counterion for RNA: a cautionary tale for RNA folding studies
Buchmueller, Karen L.; Weeks, Kevin M.
2004-01-01
Native polyacrylamide gel electrophoresis is a powerful approach for visualizing RNA folding states and folding intermediates. Tris-borate has a high-buffering capacity and is therefore widely used in electrophoresis-based investigations of RNA structure and folding. However, the effectiveness of Tris-borate as a counterion for RNA has not been systematically investigated. In a recirculated Hepes/KCl buffer, the catalytic core of the bI5 group I intron RNA undergoes a conformational collapse characterized by a bulk transition midpoint, or Mg1/2, of ∼3 mM, consistent with extensive independent biochemical experiments. In contrast, in Tris-borate, RNA collapse has a much smaller apparent Mg1/2, equal to 0.1 mM, because in this buffer the RNA undergoes a different, large amplitude, folding transition at low Mg2+ concentrations. Analysis of structural neighbors using a short-lived, RNA-tethered, photocrosslinker indicates that the global RNA structure eventually converges in the two buffer systems, as the divalent ion concentration approaches ∼1 mM Mg2+. The weak capacity of Tris-borate to stabilize RNA folding may reflect relatively unfavorable interactions between the bulky Tris-borate ion and RNA or partial coordination of RNA functional groups by borate. Under some conditions, Tris-borate is a poor counterion for RNA and its use merits careful evaluation in RNA folding studies. PMID:15601995
Möncke, D; Kamitsos, E I; Palles, D; Limbach, R; Winterstein-Beckmann, A; Honma, T; Yao, Z; Rouxel, T; Wondraczek, L
2016-09-28
A series of transition and post-transition metal ion (Mn, Cu, Zn, Pb, Bi) binary borate glasses was studied with special consideration of the cations impact on the borate structure, the cations cross-linking capacity, and more generally, structure-property correlations. Infrared (IR) and Raman spectroscopies were used for the structural characterization. These complementary techniques are sensitive to the short-range order as in the differentiation of tetrahedral and trigonal borate units or regarding the number of non-bridging oxygen ions per unit. Moreover, vibrational spectroscopy is also sensitive to the intermediate-range order and to the presence of superstructural units, such as rings and chains, or the combination of rings. In order to clarify band assignments for the various borate entities, examples are given from pure vitreous B 2 O 3 to meta-, pyro-, ortho-, and even overmodified borate glass compositions. For binary metaborate glasses, the impact of the modifier cation on the borate speciation is shown. High field strength cations such as Zn 2+ enhance the disproportionation of metaborate to polyborate and pyroborate units. Pb 2+ and Bi 3+ induce cluster formation, resulting in PbO n - and BiO n -pseudophases. Both lead and bismuth borate glasses show also a tendency to stabilize very large superstructural units in the form of diborate polyanions. Far-IR spectra reflect on the bonding states of modifier cations in glasses. The frequency of the measured cation-site vibration band was used to obtain the average force constant for the metal-oxygen bonding, F M-O . A linear correlation between glass transition temperature (T g ) and F M-O was shown for the metaborate glass series. The mechanical properties of the glasses also correlate with the force constant F M-O , though for cations of similar force constant the fraction of tetrahedral borate units (N 4 ) strongly affects the thermal and mechanical properties. For paramagnetic Cu- and Mn-borate glasses, N 4 was determined from the IR spectra after deducing the relative absorption coefficient of boron tetrahedral versus boron trigonal units, α = α 4 /α 3 , using NMR literature data of the diamagnetic glasses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Baki, Manal; Abdel-Wahab, Fathy A.; El-Diasty, Fouad
Lithium tungsten borate glass of the composition (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0 {<=}x{<=} 0.1 mol. %) is prepared for photonics applications. The glass is doped with ZnO to tune the glass absorption characteristics in a wide spectrum range (200-2500 nm). Chemical bond approach, including chemical structure, electronegativity, bond ionicity, nearest-neighbor coordination, and other chemical bonding aspect, is used to analyze and to explain the obtained glass properties such as: transmittance, absorption, electronic structure parameters (bandgap, Fermi level, and Urbach exciton-phonon coupling), Wannier free excitons excitation (applying Elliott's model), and two-photon absorption coefficient as a result of replacement of B{submore » 2}O{sub 3} by ZnO.« less
NASA Astrophysics Data System (ADS)
Rong, Qian; Zhang, Yumin; Lv, Tianping; Shen, Kaiyuan; Zi, Baoye; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju
2018-04-01
Silver-doped LaFeO3 molecularly imprinted polymers (SLMIPs) were synthesized by a sol-gel method combined with molecularly imprinted technology as precursors. The precursors were then used to prepare SLMIPs cage (SLM-cage) and SLMIPs core-shell (SLM-core-shell) structures by using a carbon sphere as the template and hydrothermal synthesis, respectively. The structures, morphologies, and surface areas of these materials were determined, as well as their gas-sensing properties and related mechanisms. The SLM-cage and SLM-core-shell samples exhibited good responses to methanol gas, with excellent selectivity. The response and optimum working temperature were 16.98 °C and 215 °C, 33.7 °C and 195 °C, respectively, with corresponding response and recovery times of 45 and 50 s (SLM-cage) and 42 and 57 s (SLM-core-shell) for 5 ppm methanol gas. Notably, the SLM-cage and SLM-core-shell samples exhibited lower responses (≤5 and ≤7, respectively) to other gases, including ethanol, ammonia, benzene, acetone, and toluene. Thus, these materials show potential as practical methanol detectors.
Blaker, J J; Nazhat, S N; Boccaccini, A R
2004-01-01
A novel silver-doped bioactive glass powder (AgBG) was used to coat resorbable Vicryl (polyglactin 910) and non-resorbable Mersilk surgical sutures, thereby imparting bioactive, antimicrobial and bactericidal properties to the sutures. Stable and homogeneous coatings on the surface of the sutures were achieved using an optimised aqueous slurry-dipping technique. Dynamic mechanical analysis (DMA) was used to investigate the viscoelastic parameters of storage modulus and tandelta and thermal transitions of the as-received and composite (coated) sutures. The results generally showed that the bioactive glass coating did not affect the dynamic mechanical and thermal properties of the sutures. The in vitro bioactivity of the sutures was tested by immersion in simulated body fluid (SBF). After only 3 days of immersion in SBF, bonelike hydroxyapatite formed on the coated suture surfaces, indicating their enhanced bioactive behaviour. Resorbable sutures with bioactive coatings as fabricated here, in conjunction with 3-D textile technology, may provide attractive materials for producing 3-D scaffolds with controlled porosities for tissue engineering applications. The bactericidal properties imparted by the Ag-containing glass coating open also new opportunities for use of the composite sutures in wound healing and body wall repair.
Antibacterial and remineralization effects of orthodontic bonding agents containing bioactive glass
Kim, Dong-Hyun; Song, Chang Weon; Yoon, Seog-Young; Kim, Se-Yeon; Na, Hee Sam; Chung, Jin
2018-01-01
Objective The aim of this study was to evaluate the mechanical and biological properties of orthodontic bonding agents containing silver- or zinc-doped bioactive glass (BAG) and determine the antibacterial and remineralization effects of these agents. Methods BAG was synthesized using the alkali-mediated solgel method. Orthodontic bonding agents containing BAG were prepared by mixing BAG with flowable resin. Transbond™ XT (TXT) and Charmfil™ Flow (CF) were used as controls. Ion release, cytotoxicity, antibacterial properties, the shear bond strength, and the adhesive remnant index were evaluated. To assess the remineralization properties of BAG, micro-computed tomography was performed after pH cycling. Results The BAG-containing bonding agents showed no noticeable cytotoxicity and suppressed bacterial growth. When these bonding agents were used, demineralization after pH cycling began approximately 200 to 300 µm away from the bracket. On the other hand, when CF and TXT were used, all surfaces that were not covered by the adhesive were demineralized after pH cycling. Conclusions Our findings suggest that orthodontic bonding agents containing silver- or zinc-doped BAG have stronger antibacterial and remineralization effects compared with conventional orthodontic adhesives; thus, they are suitable for use in orthodontic practice. PMID:29732302
Rong, Qian; Zhang, Yumin; Lv, Tianping; Shen, Kaiyuan; Zi, Baoye; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju
2018-04-06
Silver-doped LaFeO 3 molecularly imprinted polymers (SLMIPs) were synthesized by a sol-gel method combined with molecularly imprinted technology as precursors. The precursors were then used to prepare SLMIPs cage (SLM-cage) and SLMIPs core-shell (SLM-core-shell) structures by using a carbon sphere as the template and hydrothermal synthesis, respectively. The structures, morphologies, and surface areas of these materials were determined, as well as their gas-sensing properties and related mechanisms. The SLM-cage and SLM-core-shell samples exhibited good responses to methanol gas, with excellent selectivity. The response and optimum working temperature were 16.98 °C and 215 °C, 33.7 °C and 195 °C, respectively, with corresponding response and recovery times of 45 and 50 s (SLM-cage) and 42 and 57 s (SLM-core-shell) for 5 ppm methanol gas. Notably, the SLM-cage and SLM-core-shell samples exhibited lower responses (≤5 and ≤7, respectively) to other gases, including ethanol, ammonia, benzene, acetone, and toluene. Thus, these materials show potential as practical methanol detectors.
Yang, Lifei; Yu, Xuegong; Hu, Weidan; Wu, Xiaolei; Zhao, Yan; Yang, Deren
2015-02-25
Graphene-silicon (Gr-Si) heterojunction solar cells have been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the high sheet resistance of chemical vapor deposited (CVD) Gr films is still the most important limiting factor for the improvement of the power conversion efficiency of Gr-Si solar cells, especially in the case of large device-active area. In this work, we have fabricated a novel transparent conductive film by hybriding a monolayer Gr film with silver nanowires (AgNWs) network soldered by the graphene oxide (GO) flakes. This Gr-AgNWs hybrid film exhibits low sheet resistance and larger direct-current to optical conductivity ratio, quite suitable for solar cell fabrication. An efficiency of 8.68% has been achieved for the Gr-AgNWs-Si solar cell, in which the AgNWs network acts as buried contacts. Meanwhile, the Gr-AgNWs-Si solar cells have much better stability than the chemically doped Gr-Si solar cells. These results show a new route for the fabrication of high efficient and stable Gr-Si solar cells.
Dosimetric characteristics of LKB:Cu,P solid TL detector
NASA Astrophysics Data System (ADS)
Hashim, S.; Alajerami, Y. S. M.; Ghoshal, S. K.; Saleh, M. A.; Saripan, M. I.; Kadir, A. B. A.; Bradley, D. A.; Alzimami, K.
2014-11-01
The dosimetric characteristics of newly developed borate glass dosimeter modified with lithium and potassium carbonate (LKB) and co-doped with CuO and NH4H2PO4 are reported. Broad peaks in the absence of any sharp peak confirms the amorphous nature of the prepared glass. A simple glow curve of Cu doped sample is observed with a single prominent peak (Tm) at 220 °C. The TL intensity response shows an enhancement of ~100 times due to the addition of CuO (0.1 mol%) to LKB compound. A further enhancement of the intensity by a factor of 3 from the addition of 0.25 mol% NH4H2PO4 as a co-dopant impurity is attributed to the creation of extra electron traps with consequent increase in energy transfer of radiation recombination centers. The TL yield performance of LKB:Cu,P with Zeff ≈8.92 is approximately seventeen times less sensitive compared to LiF:Mg,Ti (TLD-100). The proposed dosimeter shows good linearity up to 103 Gy, minimal fading and photon energy independence. These attractive features offered by our dosimeter is expected to pave the way towards dosimetric applications.
Effect of B2O3 on luminescence of erbium doped tellurite glasses.
Shen, Xiang; Nie, Qiuhua; Xu, Tiefeng; Dai, Shixun; Wang, Xunsi
2007-02-01
The B2O3 was introduced into the Er3+ doped TeO2-ZnO-Na2O glass to increase the phonon energy of the host. The effect of B2O3 on the non-radiative rate of the 4I11/2-->4I13/2 transition of Er3+, the lifetime of the 4I11/2 and 4I13/2 levels, the green and red upconversion emissions intensity, and the 4I13/2-->4I15/2 emission intensity was discussed. The results show that the phonon energy of boro-tellurite glass is close to that of germanate glass and is quite smaller than that of borate glass. The lifetime of 4I11/2 level and the upconversion emissions decrease with increasing B2O3 concentration. The higher OH group concentration presented in the boro-tellurite glass may shorten the lifetime of 4I13/2 level and also reduce the quantum efficiency of 4I13/2-->4I15/2 emission. The future dehydrating procedures are suggested to enhance the efficiency of amplification at 1.5 microm band.
NASA Astrophysics Data System (ADS)
Mahajan, Dhiraj S.; Deshpande, Tushar; Bari, Mahendra L.; Patil, Ujwal D.; Narkhede, Jitendra S.
2018-04-01
In the present study, we prepared zinc borates using aqueous phase synthesis under moderate pressures (MP) (<150 psi) with ethanol as a co-solvent in the presence of a quaternary ammonium surfactant-Cetyltrimethylammonium bromide (CTAB). 3D morphologies of self-assembled zinc borate (Zn(H2O)B2O4 · 0.12 H2O, Zn3B6O12 · 3.5H2O, ZnB2O4) resembling flower-like structures were obtained by varying temperature under moderate pressure conditions. Synthesized zinc borates’ florets were morphologically characterized by Field Emission Scanning Electron Microscopy. The x-ray diffractions of borate species reveal rhombohydra, monoclinic and cubic phases of zinc borate crystals as a function of process temperature. Additionally, thermal analysis confirms excellent dehydration/degradation behavior for the zinc borate crystals synthesized at moderate pressures and elevated temperatures and could be utilized as potential flame retardant fillers in the polymer matrices.
Bioactive borate glass coatings for titanium alloys.
Peddi, Laxmikanth; Brow, Richard K; Brown, Roger F
2008-09-01
Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na(2)O-CaO-B(2)O(3) system, modified by additions of SiO(2), Al(2)O(3), and P(2)O(5), were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid for 2 weeks at 37 degrees C; similar layers form on 45S5 Bioglass((R)) exposed to the same conditions. Assays with MC3T3-E1 pre-osteoblastic cells show the borate glasses exhibit in vitro biocompatibility similar to that of the 45S5 Bioglass((R)). An enameling technique was developed to form adherent borate glass coatings on Ti6Al4V alloy, with adhesive strengths of 36 +/- 2 MPa on polished substrates. The results show these new borate glasses to be promising candidates for forming bioactive coatings on titanium substrates.
Stabilization of superionic α-Agl at room temperature in a glass matrix
NASA Astrophysics Data System (ADS)
Tatsumisago, Masahiro; Shinkuma, Yoshikane; Minami, Tsutomu
1991-11-01
SINCE the discovery1 that the high-temperature phase of silver iodide (α-AgI) has an ionic conductivity comparable to that of the best liquid electrolytes, solid electrolytes have attracted wide interest. Possible applications of these materials range from solid-state batteries to electrochromic displays and sensors2. Although α-AgI displays conductivities of more than 10 S cm-1 (ref. 3), owing to the almost liquid-like mobility of Ag+ ions, the crystal transforms below 147 °C to the β-phase with a conductivity of only ~10-5 S cm-1 at room temperature. Efforts to achieve good conductivities at lower temperatures have focused on the addition of a second component to AgI to form solid solutions or new compounds such as RbAg4I5 and Ag2HgI4 (refs 4-7). Here we report our success in depressing the α-->β transformation temperature so as to stabilize α-AgI itself at room temperature. We use a melt-quenching technique to prepare crystallites of α-AgI frozen into a silver borate glass matrix. The quenched material showed diffraction peaks characteristic of α-AgI and displayed ionic conductivities of about 10-1 S cm-1. Further development of these glass/crystal composites may make the high ionic conductivity of α-AgI available for room-temperature solid-state applications.
NASA Astrophysics Data System (ADS)
Bociaga, Dorota; Komorowski, Piotr; Batory, Damian; Szymanski, Witold; Olejnik, Anna; Jastrzebski, Krzysztof; Jakubowski, Witold
2015-11-01
The formation of bacteria biofilm on the surface of medical products is a major clinical issue nowadays. Highly adaptive ability of bacteria to colonize the surface of biomaterials causes a lot of infections. This study evaluates samples of the AISI 316 LVM with special nanocomposite silver-doped (by means of ion implantation) diamond-like carbon (DLC) coating prepared by hybrid RF/MS PACVD (radio frequency/magnetron sputtering plasma assisted chemical vapour deposition) deposition technique in order to improve the physicochemical and biological properties of biomaterials and add new features such as antibacterial properties. The aim of the following work was to evaluate antimicrobial efficacy and biocompatibility of gradient a-C:H/Ti + Ag coatings in relation to the physiochemical properties of the surface and chemical composition of coating. For this purpose, samples were tested in live/dead test using two cell strains: human endothelial cells (Ea.hy926) and osteoblasts-like cells (Saos-2). For testing bactericidal activity of the coatings, an exponential growth phase of Escherichia coli strain DH5α was used as a model microorganism. Surface condition and its physicochemical properties were investigated using SEM, AFM and XPS. Examined coatings showed a uniformity of silver ions distribution in the amorphous DLC matrix, good biocompatibility in contact with mammalian cells and an increased level of bactericidal properties. What is more, considering very good mechanical parameters of these Ag including gradient a-C:H/Ti coatings, they constitute an excellent material for biomedical application in e.g. orthopedics or dentistry.
Janković, A; Eraković, S; Ristoscu, C; Mihailescu Serban, N; Duta, L; Visan, A; Stan, G E; Popa, A C; Husanu, M A; Luculescu, C R; Srdić, V V; Janaćković, Dj; Mišković-Stanković, V; Bleotu, C; Chifiriuc, M C; Mihailescu, I N
2015-01-01
We report on thin film deposition by matrix-assisted pulsed laser evaporation of simple hydroxyapatite (HA) or silver (Ag) doped HA combined with the natural biopolymer organosolv lignin (Lig) (Ag:HA-Lig). Solid cryogenic target of aqueous dispersions of Ag:HA-Lig composite and its counterpart without silver (HA-Lig) were prepared for evaporation using a KrF* excimer laser source. The expulsed material was assembled onto TiO2/Ti substrata or silicon wafers and subjected to physical-chemical investigations. Smooth, uniform films adherent to substratum were observed. The chemical analyses confirmed the presence of the HA components, but also evidenced traces of Ag and Lig. Deposited HA was Ca deficient, which is indicative of a film with increased solubility. Recorded X-ray Diffraction patterns were characteristic for amorphous films. Lig presence in thin films was undoubtedly proved by both X-ray Photoelectron and Fourier Transform Infra-Red Spectroscopy analyses. The microbiological evaluation showed that the newly assembled surfaces exhibited an inhibitory activity both on the initial steps of biofilm forming, and on mature bacterial and fungal biofilm development. The intensity of the anti-biofilm activity was positively influenced by the presence of the Lig and/or Ag, in the case of Staphylococcus aureus, Pseudomonas aeruginosa and Candida famata biofilms. The obtained surfaces exhibited a low cytotoxicity toward human mesenchymal stem cells, being therefore promising candidates for fabricating implantable biomaterials with increased biocompatibility and resistance to microbial colonization and further biofilm development.
de Luna, Mark Daniel G; Laciste, Maricris T; Tolosa, Nolan C; Lu, Ming-Chun
2018-03-20
The present study investigates the influence of calcination temperature on the properties and photoactivity of multi-element doped TiO 2 . The photocatalysts were prepared by incorporating silver (Ag), fluorine (F), nitrogen (N), and tungsten (W) into the TiO 2 structure via the sol-gel method. Spectroscopic techniques were used to elucidate the correlation between the structural and optical properties of the doped photocatalyst and its photoactivity. XRD results showed that the mean crystallite size increased for undoped photocatalysts and decreased for the doped photocatalysts when calcination was done at higher temperatures. UV-Vis spectra showed that the absorption cut-off wavelength shifted towards the visible light region for the as-synthesized photocatalysts and band gap narrowing was attributed to multi-element doping and calcination. FTIR spectra results showed the shifting of OH-bending absorption bands towards increasing wave numbers. The activity of the photocatalysts was evaluated in terms of gaseous formaldehyde removal under visible light irradiation. The highest photocatalytic removal of gaseous formaldehyde was found at 88%. The study confirms the effectiveness of multi-element doped TiO 2 to remove gaseous formaldehyde in air by visible light photocatalysis and the results have a lot of potential to extend the application to other organic air contaminants.
NASA Astrophysics Data System (ADS)
Mohammed, Al-B. F. A.; Lakshminarayana, G.; Baki, S. O.; Halimah, M. K.; Kityk, I. V.; Mahdi, M. A.
2017-11-01
Dy3+-doped borate glasses with nominal composition (60-x) B2O3-10 ZnO-10 PbO-10 Na2O-10 CaO-(x) Dy2O3 (x = 0, 0.1, 0.2, 0.5, 0.75, 1.0, 1.5 and 2.0 mol%) were prepared by the melt quenching technique. The XRD and SEM confirm the amorphous nature of the glasses and through EDAX, all the related elements were found in the synthesized glasses. The vibrations of metal cations such as Pb2+ and Zn2+, B-O-B bond bending vibrations from pentaborate groups, bending vibrations of BO3 triangles, and stretching vibrations of tetrahedral BO4- units etc. are identified from the respective FTIR and Raman spectra including the non-hygroscopic nature of the synthesized glasses. The TGA and DSC measurements were performed to study thermal properties, where ΔT >100 °C (ΔT = Tx - Tg) for all the glasses. Among all the Dy3+-doped glasses, the 0.75 mol% Dy3+-doped glass shows the highest PL intensity with four emissions, where the two transitions corresponding to 4F9/2 → 6H15/2 (blue) and 4F9/2 → 6H13/2 (yellow) are observed more intense than the others. The CIE chromaticity (x,y) coordinates for BZPNCDy 0.1 mol% glass are (0.398, 0.430), close to the white light region in the CIE 1931 chromaticity diagram. The dielectric properties of the 0.75 mol% Dy3+-doped glass such as dielectric constant, dielectric loss and AC conductivity were studied in the various frequencies and temperature.
Plasmon-Assisted Efficiency Enhancement of Eu3+-Doped Tellurite Glass-Covered Solar Cells
NASA Astrophysics Data System (ADS)
Lima, Bismarck C.; Gómez-Malagón, L. A.; Gomes, A. S. L.; Garcia, J. A. M.; Kassab, L. R. P.
2017-12-01
Rare-earth-doped tellurite glass containing metallic nanoparticles can be exploited to manage the solar spectrum in order to increase solar cell efficiency. It is therefore possible to modify the incident solar spectrum profile to the spectrum that optimizes the solar cell recombination process by covering the solar cell with plasmonic luminescent downshifting layers. With this approach, the losses due to thermalization are minimized and the efficiency is increased. Due to the down-conversion process that couples the plasmon resonance of the metallic nanoparticles and the rare-earth electronic energy levels, it is possible to convert photons from the ultraviolet region to the visible and near-band-gap region of the semiconductor. It is demonstrated here that plasmon-assisted efficiency enhancements of 14.0% and 34.5% can be obtained for commercial Si and GaP solar cells, respectively, covered with Eu3+-doped TeO2-ZnO glass containing silver nanoparticles.
Dos Santos, Andreia Betina Kreuser; Claro, Elis Marina Turini; Montagnolli, Renato Nallin; Cruz, Jaqueline Matos; Lopes, Paulo Renato Matos; Bidoia, Ederio Dino
2017-12-15
Electrochemically assisted photocatalysis (by electronic drainage) is a highly promising method for disinfection of water. In this research, the efficiency of photolytic oxidation using UV-A radiation and electrochemically assisted photocatalysis (with electric potential of 1.5 V) was studied by using electrodes prepared by thermal treatment and doped with silver, for inactivation of Escherichia coli and Staphylococcus aureus. The Chick-Watson microorganism inactivation model was applied and the electrical energy consumption of the process was calculated. It was observed no significant inactivation of microorganisms when UV-A light or electric potential were applied separately. However, the electrochemically assisted photocatalytic process, with Ag-doped electrode completely inactivated the microbial population after 10 (E. coli) and 60 min (S. aureus). The best performing non-doped electrodes achieved 52.74% (E. coli) and 44.09% (S. aureus) inactivation rates after 60 min. Thus, electrochemically assisted photocatalytic activity was not only effective for the inactivation of microorganisms, but also notably low on electrical energy consumption during the treatment due to small current and low electric potential applied. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodionov, Ilya A.; Baburin, Alexander S.; Zverev, Alexander V.; Philippov, Ivan A.; Gabidulin, Aidar R.; Dobronosova, Alina A.; Ryzhova, Elena V.; Vinogradov, Alexey P.; Ivanov, Anton I.; Maklakov, Sergey S.; Baryshev, Alexander V.; Trofimov, Igor V.; Merzlikin, Alexander M.; Orlikovsky, Nikolay A.; Rizhikov, Ilya A.
2017-08-01
During last 20 years, great results in metamaterials and plasmonic nanostructures fabrication were obtained. However, large ohmic losses in metals and mass production compatibility still represent the most serious challenge that obstruct progress in the fields of metamaterials and plasmonics. Many recent research are primarily focused on developing low-loss alternative materials, such as nitrides, II-VI semiconductor oxides, high-doped semiconductors, or two-dimensional materials. In this work, we demonstrate that our perfectly fabricated silver films can be an effective low-loss material system, as theoretically well-known. We present a fabrication technology of plasmonic and metamaterial nanodevices on transparent (quartz, mica) and non-transparent (silicon) substrates by means of e-beam lithography and ICP dry etch instead of a commonly-used focused ion beam (FIB) technology. We eliminate negative influence of litho-etch steps on silver films quality and fabricate square millimeter area devices with different topologies and perfect sub-100 nm dimensions reproducibility. Our silver non-damage fabrication scheme is tested on trial manufacture of spasers, plasmonic sensors and waveguides, metasurfaces, etc. These results can be used as a flexible device manufacture platform for a broad range of practical applications in optoelectronics, communications, photovoltaics and biotechnology.
NASA Astrophysics Data System (ADS)
Eremenko, A. M.; Petrik, I. S.; Smirnova, N. P.; Rudenko, A. V.; Marikvas, Y. S.
2016-01-01
Effective method of obtaining of the bactericidal bandage materials by impregnation of cotton fabric by aqueous solutions of silver and copper salts followed by a certain regime of heat treatment is developed. The study of obtained materials by methods of optical spectroscopy, electron microscopy, and X-ray phase analysis showed the formation of crystalline silver nanoparticles (NPs) and bimetallic Ag/Cu composites with the corresponding surface plasmon resonance (SPR) bands in the absorption spectra. High antimicrobial and antimycotic properties of tissues with low concentrations of Ag and Ag/Cu nanoparticles (Ag/Cu NPs) (in the range 0.06-0.25 weight percent (wt%) for Ag and 0.015-0.13 wt% for Ag/Cu) is confirmed in experiments with a wide range of multidrug-resistant bacteria and fungi: Escherichia coli, Enterobacter aerogenes, Proteus mirabilis, Klebsiella pneumoniae, Candida albicans yeasts, and micromycetes . Textile materials with Ag NPs demonstrate high antibacterial activity, while fabrics doped with bimetallic composite Ag/Cu have pronounced antimycotic properties. Bactericidal and antifungal properties of the obtained materials do not change after a washing. Production of such materials is extremely fast, convenient, and cost-effective.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...
76 FR 74831 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-01
... exposed to treated borated water. In response to a request from the Nuclear Energy Institute (NEI), the... NUCLEAR REGULATORY COMMISSION [NRC-2011-0256] Aging Management of Stainless Steel Structures and Components in Treated Borated Water AGENCY: Nuclear Regulatory Commission. ACTION: Draft interim staff...
Angiogenic effects of borate glass microfibers in a rodent model.
Lin, Yinan; Brown, Roger F; Jung, Steven B; Day, Delbert E
2014-12-01
The primary objective of this research was to evaluate the use of bioactive borate-based glass microfibers for angiogenesis in soft tissue repair applications. The effect of these fibers on growth of capillaries and small blood vessels was compared to that of 45S5 silica glass microfibers and sham implant controls. Compressed mats of three types of glass microfibers were implanted subcutaneously in rats and tissues surrounding the implant sites histologically evaluated 2-4 weeks post surgery. Bioactive borate glass 13-93B3 supplemented with 0.4 wt % copper promoted extensive angiogenesis as compared to silica glass microfibers and sham control tissues. The angiogenic responses suggest the copper-containing 13-93B3 microfibers may be effective for treating chronic soft tissue wounds. A second objective was to assess the possible systemic cytotoxicity of dissolved borate ions and other materials released from implanted borate glass microfibers. Cytotoxicity was assessed via histological evaluation of kidney tissue collected from animals 4 weeks after subcutaneously implanting high amounts of the borate glass microfibers. The evaluation of the kidney tissue from these animals showed no evidence of chronic histopathological changes in the kidney. The overall results indicate the borate glass microfibers are safe and effective for soft tissue applications. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Agarwal, A.; Khasa, S.; Seth, V. P.; Sanghi, S.; Arora, M.
2014-02-01
Alkali molybdo-borate glasses having composition xMoO3·(30 - x)M2O·70B2O3 and xMoO3·(70 - x)B2O3·30M2O (M = Li, Na, K) with 0 ⩽ x ⩽ 15 (mol%) doped with 2.0 mol% of V2O5 have been prepared in order to study the influence of MoO3 on electrical conductivity, electron paramagnetic resonance (EPR) and optical spectra. From EPR studies it is observed that V4+ ions in these samples exist as VO2+ ions in octahedral coordination with a tetragonal compression and belong to C4V symmetry. The tetragonal nature and octahedral symmetry of V4+O6 complex increase as well as decrease depending upon the composition of glasses with increase in MoO3 but 3dxy orbit of unpaired electron in the VO2+ ion expands in all the glasses. The decrease in optical band gap suggests that there is an increase in the concentration of non-bridging oxygen's. From the study of optical transmission spectra it is observed that for all the glasses the degree of covalency of the σ-bonding decreases with increase in MoO3 content and the degree of covalency of the π-bonding also varies. These results based on optical spectroscopy are in agreement with EPR findings. It is found that dc conductivity decreases and activation energy increases with increase in MoO3:M2O (M = Li, Na, K) ratio in MoO3·M2O·B2O3 glasses, whereas the conductivity increases and activation energy decreases with increase in MoO3:B2O3 ratio in xMoO3·B2O3·M2O glasses, which is governed by the increase in nonbridging oxygen's. The variation in theoretical optical basicity, Λth is also studied.
NASA Astrophysics Data System (ADS)
Vijayalakshmi, L.; Naveen Kumar, K.; Rao, K. Srinivasa; Hwang, Pyung
2018-03-01
Various concentrations of Er3+ (0.3, 0.5, 1.0 and 1.5 mol %) doped lithium fluoro zinc borate glasses were synthesized by a traditional melt quenching method. XRD, FTIR and FESEM have been employed to analyze the structural, compositional and morphological analysis respectively. Judd-Ofelt theory has been employed to analyze the intensity parameters (Ωλ, λ = 2, 4 and 6) which can be used to estimate the radiative properties of fluorescent levels of Er3+. We have been observed a strong NIR emission peak at 1.53 μm (4I13/2 → 4I15/2) under the excitation of 980 nm from Er3+: LBZ glasses. Nevertheless, the NIR emission is remarkably enhanced by increasing the Er3+ ions concentration until the optimized concentration of 0.5 mol%. The lifetime of the excited level of 4I13/2 in the NIR emission transition is evaluated and it is found to be1.22 ms from the decay analysis of 0.5 mol% Er3+: LBZ glass. Apart from the NIR emission, a bright up-conversion green emission is observed at 544 nm (4S3/2 → 4I15/2) along with an intense red emission at 659 nm (4F9/2 → 4I15/2) and a weak blue emission (2H9/2 → 4I15/2) under the excitation of 980 nm. Up-conversion emission features were significantly enhanced with increasing the Er3+ concentration up to 1.0 mol%. The combination of the obtained up-conversion emission colors of green, red and blue could generate white light emission. The cool white-light emission from the optimized glass sample has been confirmed from the Commission International de I'Echairage (CIE) 1931 chromaticity diagram analysis and their correlated color temperature (CCT) values. Based on the NIR and up-conversion emission features, Er3+: LBZ glasses could be suggested as promising candidates for optical amplifiers, optical telecommunication windows and white light photonic applications.
Structural and luminescence properties of samarium doped lead alumino borate glasses
NASA Astrophysics Data System (ADS)
Mohan, Shaweta; Kaur, Simranpreet; Singh, D. P.; Kaur, Puneet
2017-11-01
The study reports the effect of samarium concentration on the physical, structural and spectroscopic characteristics of samarium doped lead alumino borate glasses having composition 20PbO-(10-x)Al2O3-70B2O3-xSm2O3; x = 0.1, 0.5, 1.0 and 2.0 mol %. The glasses were fabricated by conventional melt-quenching technique and then characterized by XRD, FTIR, optical absorption and fluorescence spectra. X-ray diffraction studies confirmed the amorphous nature of the prepared glasses. FTIR spectra indicate the presence of BO3, BO4, AlO6 and a few other structural groups. Various physical properties such as density, molar volume, refractive index, rare earth ion concentration, boron-boron distance and polarizability etc. were determined using conventional methods and standard formulae. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. The value of Ω2 was found to be highest for glass with 1 mol% Sm2O3 and attributed to the asymmetry of the ligand field at the rare earth ion site and the rare earth oxygen (Sm-O) covalency. The calculated intensity parameters and fluorescence spectra were further used to predict the radiative transition probability (A), radiative lifetime (τR), branching ratio (βR), peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σ) for the characteristic 4G5/2 → 6H5/2, 6H7/2 and 6H9/2 transitions of the Sm3+ ion. Concentration quenching was observed for 2 mol% concentration of Sm2O3 and ascribed to energy transfer through various cross-relaxation channels between Sm3+ ions. Reasonably high values of branching ratios and stimulated emission cross-section for the prepared glasses points towards their utility in the development of visible lasers emitting in the reddish-orange spectral region. However, the glass with 1 mol% Sm2O3 was found to show better radiative properties.
Development of economical improved thick film solar cell contact
NASA Technical Reports Server (NTRS)
Ross, B.
1979-01-01
Metal screened electrodes were investigated with base metal pastes and silver systems being focused upon. Contact resistance measurements were refined. A facility allowing fixing in hydrogen and other atmospheres was acquired. Several experiments were made applying screenable pastes to solar cells. Doping investigations emphasized eutectic alloys reduced to powders. Metal systems were reviewed and base metal experiments were done with nickel and copper using lead and tin as the frit metals. Severe adhesion problems were experienced with hydrogen atmospheres in all metal systems. A two step firing schedule was devised. Aluminum-silicon and aluminum-germanium eutectic doping additions to copper pastes were tried on 2 1/4 in diameter solar cell back contacts, both with good results.
Fabrication of Gamma Detectors Based on Magnetic Ag:Er Microcalorimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrich, Stephan; Boyd, Stephen; Cantor, Robin
2016-05-06
This report discusses the photolithographic fabrication of ultra-high resolution gamma-ray detectors based on magnetic microcalorimeters (MMCs). The MMC uses a novel Er-doped silver sensor (Ag:Er) that is expected to have higher sensitivity than the Er-doped gold (Au:Er) sensors currently in use. The MMC also integrates the first-stage SQUID preamplifier on the same chip as the MMC gamma detector to increase its signal-to-noise ratio. In addition, the MMC uses a passive Ta-Nb heat switch to replace one of the common long-term failure points in earlier detectors. This report discusses the fabrication process we have developed to implement the proposed improvements.
Fabrication of Gamma Detectors Based on Magnetic Ag:Er Microcalorimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrich, Stephan; Boyd, Stephen; Cantor, Robin
2015-11-25
This report discusses the photolithographic fabrication of ultra-high resolution gamma-ray detectors based on magnetic microcalorimeters (MMCs). The MMC uses a novel Er-doped silver sensor (Ag:Er) that is expected to have higher sensitivity than the Er-doped gold (Au:Er) sensors currently in use. The MMC also integrates the first-stage SQUID preamplifier on the same chip as the MMC gamma detector to increase its signal-to-noise ratio. In addition, the MMC uses a passive Ta-Nb heat switch to replace one of the common long-term failure points in earlier detectors. This report discusses the fabrication process we have developed to implement the proposed improvements.
p-n Heterojunction of doped graphene films obtained by pyrolysis of biomass precursors.
Latorre-Sánchez, Marcos; Primo, Ana; Atienzar, Pedro; Forneli, Amparo; García, Hermenegildo
2015-02-25
Nitrogen-doped graphene [(N)G] obtained by pyrolysis at 900 °C of nanometric chitosan films exhibits a Hall effect characteristic of n-type semiconductors. In contrast, boron-doped graphene [(B)G] obtained by pyrolysis of borate ester of alginate behaves as a p-type semiconductor based also on the Hall effect. A p-n heterojunction of (B)G-(N)G films is built by stepwise coating of a quartz plate using a mask. The heterojunction is created by the partial overlapping of the (B)G-(N)G films. Upon irradiation with a xenon lamp of aqueous solutions of H(2) PtCl(6) and MnCl(2) in contact with the heterojunction, preferential electron migration from (B)G to (N)G with preferential location of positive holes on (B)G is established by observation in scanning electron microscopy of the formation of Pt nanoparticles (NP) on (N)G and MnO(2) NP on (B)G. The benefits of the heterojunction with respect to the devices having one individual component as a consequence of the electron migration through the p-n heterojunction are illustrated by measuring the photocurrent in the (B)G-(N)G heterojunction (180% current enhancement with respect to the dark current) and compared it to the photocurrent of the individual (B)G (15% enhancement) and (N)G (55% enhancement) components. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optical and Physical Investigations of Lanthanum Bismuth Borate glasses doped with Ho2O3
NASA Astrophysics Data System (ADS)
Ramesh, P.; Jagannath, G.; Eraiah, B.; Kokila, M. K.
2018-02-01
Holmium doped 10La2O3-15Bi2O3-(75-x) B2O3 (Ho3+: LBB) glasses have been prepared by melt quench technique and the impact of holmium ions concentration on optical and physical properties of present glasses have been examined. Ho3+ dependent density, molar volume, refractive index, rare earth ion concentration, polaron radius, inter ionic distance, field strength and energy band gap are calculated and tabulated. Amorphous nature of the all glasses has been confirmed by XRD patterns. The room temperature (RT) Uv-Vis absorption spectrum doped with 1 mol% of Ho2O3 exhibit eight prominent bands centred at 895, 641, 537, 486, 472, 467, 451 and 416 due to transition between ground state to various excited states. The results show that, the density is increases and molar volume of the glasses is decreases with an increase in Ho2O3 concentration and consequently generate more non-bridging oxygen (NBOs) in the glass matrix. The Urbach energy is increases with holmium concentration which exemplifies the degree of disorder present in the LBB glasses. The considerable increase in field strength observed in present glasses is attributed to occurrence of strong bridge between Ho3+ and B- ions and this strong bridge is possibly due to the displacement between Ho3+ and oxygen atoms which are generated from the conversion BO3-BO4 units.
Aspects of forming metal-clad melt-processed Y-Ba-Cu-O tapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlowski, G.; Oberly, C.E.; Ho, J.
1991-03-01
This paper reports on melt-processing of Y-Ba-Cu-O superconductor in a usable form for magnet winding which requires the development of a cladding with demanding properties. Numerous recent efforts in cold forming Bi-based superconductor tapes have been successful because a silver tube can be used to constrain the ceramic material, which is sintered at much lower temperature than the Y-Ba-Cu-O. Typical high temperature metals which can be used to encase Y-Ba-Cu-O during sintering do not permit ready diffusion of oxygen as silver does. Recently, the full or partial recovery of superconductivity has been achieved in transition-metal- doped Y-Ba-Cu-O due to themore » partial-melt processing.« less
Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material
NASA Astrophysics Data System (ADS)
Huang, Bo; Zhou, Yaxun; Cheng, Pan; Zhou, Zizhong; Li, Jun; Jin, Wei
2016-10-01
Tm3+/Yb3+ co-doped tellurite glasses with different silver nanoparticles (Ag NPs) concentrations were prepared using the conventional melt-quenching technique and characterized by the UV/Vis/NIR absorption spectra, 1.85 μm band fluorescence emission spectra, transmission electron microscopy (TEM) images, differential scanning calorimeter (DSC) curves and X-ray diffraction (XRD) patterns to investigate the effects of Ag NPs on the 1.85 μm band spectroscopic properties of Tm3+ ions, thermal stability and structural nature of glass hosts. Under the excitation of 980 nm laser diode (LD), the 1.85 μm band fluorescence emission of Tm3+ ions enhances significantly in the presence of Ag NPs with average diameter of ∼8 nm and local surface Plasmon resonance (LSPR) band of ∼590 nm, which is mainly attributed to the increased local electric field induced by Ag NPs at the proximity of doped rare-earth ions on the basis of energy transfer from Yb3+ to Tm3+ ions. An improvement by about 110% of fluorescence intensity is observed in the Tm3+/Yb3+ co-doped tellurite glass containing 0.5 mol% amount of AgNO3 while the prepared glass samples possess good thermal stability and amorphous structural nature. Meanwhile, the Judd-Ofelt intensity parameters Ωt (t = 2,4,6), spontaneous radiative transition probabilities, fluorescence branching ratios and radiative lifetimes of relevant excited levels of Tm3+ ions were determined based on the Judd-Ofelt theory to reveal the enhanced effects of Ag NPs on the 1.85 μm band spectroscopic properties, and the energy transfer micro-parameters and phonon contribution ratios were calculated based on the non-resonant energy transfer theory to elucidate the energy transfer mechanism between Yb3+ and Tm3+ ions. The present results indicate that the prepared Tm3+/Yb3+ co-doped tellurite glass with an appropriate amount of Ag NPs is a promising lasing media applied for 1.85 μm band solid-state lasers and amplifiers.
Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity
Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa
2011-01-01
Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12–3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO3. The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller–Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications. PMID:21383858
Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity.
Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa
2011-01-01
Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12-3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO(3). The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller-Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications.
Method for producing a borohydride
Kong, Peter C [Idaho Falls, ID
2008-09-02
A method for producing a borohydride is described and which includes the steps of providing a source of borate; providing a material which chemically reduces the source of the borate to produce a borohydride; and reacting the source of borate and the material by supplying heat at a temperature which substantially effects the production of the borohydride.
Method for producing a borohydride
Kong, Peter C.
2010-06-22
A method for producing a borohydride is described that includes the steps of providing a source of borate; providing a material that chemically reduces the source of the borate to produce a borohydride; and reacting the source of the borate and the material by supplying heat at a temperature that substantially effects the production of the borohydride.
Analysis of Zinc Oxide Thin Films Synthesized by Sol-Gel via Spin Coating
NASA Astrophysics Data System (ADS)
Wolgamott, Jon Carl
Transparent conductive oxides are gaining an increasingly important role in optoelectronic devices such as solar cells. Doped zinc oxide is a candidate as a low cost and nontoxic alternative to tin doped indium oxide. Lab results have shown that both n-type and p-type zinc oxide can be created on a small scale. This can allow zinc oxide to be used as either an electrode as well as a buffer layer to increase efficiency and protect the active layer in solar cells. Sol-gel synthesis is emerging as a low temperature, low cost, and resource efficient alternative to producing transparent conducting oxides such as zinc oxide. For sol-gel derived zinc oxide thin films to reach their potential, research in this topic must continue to optimize the known processing parameters and expand to new parameters to tighten control and create novel processing techniques that improve performance. The processing parameters of drying and annealing temperatures as well as cooling rate were analyzed to see their effect on the structure of the prepared zinc oxide thin films. There were also preliminary tests done to modify the sol-gel process to include silver as a dopant to produce a p-type thin film. The results from this work show that the pre- and post- heating temperatures as well as the cooling rate all play their own unique role in the crystallization of the film. Results from silver doping show that more work needs to be done to create a sol-gel derived p-type zinc oxide thin film.
NASA Astrophysics Data System (ADS)
Tetenbaum, M.; Hash, M.; Tani, B. S.; Luo, J. S.; Maroni, V. A.
1995-02-01
Electromotive-force (EMF) measurements of oxygen fugacities as a function of stoichiometry have been made in the lead-doped Bi-2223 superconducting system in the temperature range 700-815°C by means of an oxygen titration technique that employs an yttria-stabilized zirconia electrolyte. The results of our studies indicate that processing or annealing lead-doped Bi-2223 at temperatures ranging from 750 to 815°C and at oxygen partial pressures ranging from ∼ 0.02 to 0.2 atm should preserve Bi-2223 as essentially single-phase material. Thermodynamic assessments of the partial molar quantities ΔS¯( O2) andΔH¯( O2) indicate that the plateau regions in the plot of oxygen partial pressure versus oxygen stoichiometry ( x) can be represented by the diphasic CuOCu 2O system. In accord with the EMF measurements, it was found that lead-doped Bi-2223 in a silver sheath is stable at 815°C for oxygen partial pressures between 0.02 and 0.13 atm.
Valappil, Sabeel P; Coombes, Marc; Wright, Lucy; Owens, Gareth J; Lynch, Richard J M; Hope, Christopher K; Higham, Susan M
2012-05-01
Phosphate-based glasses (PBGs) are excellent controlled delivery agents for antibacterial ions such as silver and gallium. The aim of this study was to assess the potential utility of novel PBGs combining both gallium and silver for use in periodontal therapy. To this end, an in vitro biofilm model with the putative periodontal pathogen, Porphyromonas gingivalis, and an initial colonizer, Streptococcus gordonii, was established. The effect of increasing calcium content in gallium-silver-doped PBG on the susceptibility of P. gingivalis was examined. A decrease in degradation rates (30.34, 25.19, 21.40 μg mm(-2) h(-1)) with increasing PBG calciumcontent (10, 11, 12 mol.% respectively) was observed, correlating well with gallium and silver ion release and antimicrobial activity against planktonic P. gingivalis (approximately 5.4log(10) colony-forming units (CFU) reduction after 24h by the C10 glass compared with controls) and S. gordonii (total growth inhibition after 32h by C10, C11 and C12 glasses compared with controls). The most potent PBG (C10) was evaluated for its ability to inhibit the biofilm growth of P. gingivalis in a newly established constant-depth film fermentor model. The simultaneous release of silver and gallium from the glass reduced P. gingivalis biofilm growth with a maximum effect (1.92log(10) CFU reduction) after 168 h. Given the emergence of antibiotic-resistant bacteria and dearth of new antibiotics in development, the glasses, especially C10, would offer effective alternatives to antibiotics or may complement current therapies through controlled, localized delivery of gallium and silver ions at infected sites in the oral cavity. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
First Observations of Boron on Mars and Implications for Gale Crater Geochemistry
NASA Astrophysics Data System (ADS)
Gasda, P. J.; Haldeman, E. B.; Wiens, R. C.; Rapin, W.; Frydenvang, J.; Maurice, S.; Clegg, S. M.; Delapp, D.; Sanford, V.; McInroy, R.
2016-12-01
Borates are potentially important precursor materials for the origin of life on Earth. It has been shown that borates are required to stabilize ribose, a component of RNA, when produced by the formose reaction, a prebiotically plausible mechanism to produce ribose from formaldehyde. Evaporites, including borates, also shed light on the history of aqueous activity on Mars. The ChemCam instrument onboard the NASA Curiosity rover provides quantitative elemental compositions of targets in Gale Crater, Mars, using laser-induced breakdown spectroscopy (LIBS). Laboratory observations of Fe-free targets indicate that a LIBS emission line is visible with as little as 10 ppm B. We have observed B lines in 23 calcium sulfate veins in Gale Crater: 3 in Yellowknife Bay and 20 in the Murray lacustrine mudstone and the Stimson eolian sandstone units since sol 727, as Curiosity arrived at the base of Mt. Sharp, a 5 km sedimentary mound in the center of Gale Crater. To calibrate these observations, samples composed of borates diluted with Hawaiian basalt have been analyzed using the LANL ChemCam engineering model. Preliminary results show that the Gale Crater veins have between 10-100 ppm B. One possible explanation for borates in veins is that Gale Lake evaporated, depositing evaporites, including borates. Later, Gale Crater was partially buried and its lacustrine and overlying eolian units were lithified and fractured. Water flowed through the evaporite-rich layers, partially dissolving them. Fluid moved through the fractures, re-precipitating the borates and sulfates as veins. ChemCam cannot directly determine mineralogy, but B is likely present as borax as the dominate borate phase in these veins, based on previous estimates of vein fluid temperature. Borates forming in this environment tend to precipitate from mildly alkaline fluids. The fluid temperature and pH implies these veins were potentially habitable environments.
Improved synthesis of fine zinc borate particles using seed crystals
NASA Astrophysics Data System (ADS)
Gürhan, Deniz; Çakal, Gaye Ö.; Eroğlu, İnci; Özkar, Saim
2009-03-01
Zinc borate is a flame retardant additive used in polymers, wood applications and textile products. There are different types of zinc borate having different chemical compositions and structures. In this study, the production of zinc borate having the molecular formula of 2ZnO·3B 2O 3·3.5H 2O was reexamined by studying the effects of reaction parameters on the properties of product as well as the reaction kinetics. Production of zinc borate from the reaction of boric acid and zinc oxide in the presence of seed crystals was performed in a continuously stirred, temperature-controlled batch reactor having a volume of 1.5 L. Samples taken in regular time intervals during the experiments were analyzed for the concentration of zinc oxide and boron oxide in the solid as well as for the conversion of zinc oxide to zinc borate versus time. The zinc borate production reaction was fit to the logistic model. The reaction rate, reaction completion time, composition and particle size distribution of zinc borate product were determined by varying the following parameters: the boric acid to zinc oxide ratio (H 3BO 3:ZnO=3:1, 3.5:1, 5:1 and 7:1), the particle size of zinc oxide (10 and 25 μm), stirring rate (275, 400, 800 and 1600 rpm), temperature (75, 85 and 95 °C) and the size of seed crystals (10 and 2 μm). The products were also analyzed for particle size distribution. The experimental results showed that the reaction rate increases with the increase in H 3BO 3:ZnO ratio, particle size of zinc oxide, stirring rate and temperature. Concomitantly, the reaction completion time is decreased by increasing the H 3BO 3:ZnO ratio, stirring rate and temperature. The average particle sizes of the zinc borate products are in the range 4.3-16.6 μm (wet dispersion analysis).
Pham, Thanh-Dong; Lee, Byeong-Kyu
2014-08-15
Ag doped TiO2/glass fibers (Ag-TiO2/GF) were prepared and used for photocatalytic disinfection of Escherichia coli (E. coli) in an indoor air environment. The prepared photocatalysts were characterized using scanning electron microscope (SEM) for morphology, X-ray diffraction (XRD) for microstructure, UV-Visible diffuse reflectance spectra (DRS) for optical properties and X-ray photoelectron spectroscopy (XPS) to determine elemental state. The optimized weight fraction of TiO2 in the TiO2/glass fiber (TiO2/GF) was 3%. The silver content in Ag/TiO2 was altered from 1% to 10% to investigate the optimal ratio of Ag doped on the TiO2/GF for the photocatalytic disinfection of E. coli. Doped Ag enhanced the electron-hole separation as well as charge transfer efficiency between the valance band and the conduction band of TiO2. The generated electron-hole pairs reacted with water and molecular oxygen to form strong oxidative radicals, which participated in the oxidation of organic components of E. coli, resulting in bacterial death. The photocatalytic disinfection activity under visible light increased with the increase in silver content up to 7.5% and then decreased slightly with further increasing Ag content. Among the three humidity conditions used in this study (40±5%, 60±5%, 80±5%), the highest disinfection ratio of E. coli by the photocatalytic system was observed in the intermediate humidity level followed by the high humidity level. Using the 7.5% Ag-TiO2/GF and the intermediate level of humidity (60±5%), the highest disinfection ratio and disinfection capacity of E. coli were 93.53% and 26 (CFU/s cm(2)), respectively. Copyright © 2014 Elsevier Inc. All rights reserved.
Structural investigation and optical properties of xMnO2-25Li2O-5Na2O-15Bi2O3-(55-x)B2O3 glasses
NASA Astrophysics Data System (ADS)
Kulkarni, Shilpa; Jali, V. M.
2018-02-01
This paper deals with the new mixed system of glass compositions Lithium sodium bismuth borate glasses doped with transition metal oxide. The technique used to prepare a sample is by melt quenching. The XRD profile pattern confirmed the amorphous phase of the present glass system. The network structure is based on BO3, BO4 units and BiO6 octahedral units. No boroxyl rings observed in the glass structure. The addition of MnO2 in small amount does not account for major structural changes. Optical band gap lies in the range 1.89 to 0.96 eV. Density, molar volume, oxygen packing density, Tg, direct optical band gap and refractive index show anomalous behavior.
40 CFR 721.1880 - Borate(1-), tris(acetato-.kappa.O)hydro-, sodium, (T-4)-.
Code of Federal Regulations, 2010 CFR
2010-07-01
...)hydro-, sodium, (T-4)-. 721.1880 Section 721.1880 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.1880 Borate(1-), tris(acetato-.kappa.O)hydro-, sodium... substance identified as borate(1-), tris(acetato-.kappa.O)hydro-, sodium, (T-4)- (PMN P-00-0922; CAS No...
40 CFR 721.1880 - Borate(1-), tris(acetato-.kappa.O)hydro-, sodium, (T-4)-.
Code of Federal Regulations, 2011 CFR
2011-07-01
...)hydro-, sodium, (T-4)-. 721.1880 Section 721.1880 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.1880 Borate(1-), tris(acetato-.kappa.O)hydro-, sodium... substance identified as borate(1-), tris(acetato-.kappa.O)hydro-, sodium, (T-4)- (PMN P-00-0922; CAS No...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride), sodium borate and sodium metaborate; exemptions from the requirement of a tolerance. 180.1121 Section 180.1121 Protection of Environment ENVIRONMENTAL PROTECTION...
Influence of sodium borate on the early age hydration of calcium sulfoaluminate cement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Champenois, Jean-Baptiste; Dhoury, Mélanie; Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr
Calcium sulfoaluminate (CSA) cements are potential candidates for the conditioning of radioactive wastes with high sodium borate concentrations. This work thus investigates early age hydration of two CSA cements with different gypsum contents (0 to 20%) as a function of the mixing solution composition (borate and NaOH concentrations). Gypsum plays a key role in controlling the reactivity of cement. When the mixing solution is pure water, increasing the gypsum concentration accelerates cement hydration. However, the reverse is observed when the mixing solution contains sodium borate. Until gypsum exhaustion, the pore solution pH remains constant at ~ 10.8, and a poorlymore » crystallized borate compound (ulexite) precipitates. A correlation is established between this transient precipitation and the hydration delay. Decreasing the gypsum content in the binder, or increasing the sodium content in the mixing solution, are two ways of reducing the stability of ulexite, thus decreasing the hydration delay.« less
Preservation of tissue specimens during transport to mycobacteriology laboratories.
Richards, W D; Wright, H S
1983-01-01
Chloramine-T and sodium borate solutions were evaluated for their effectiveness in preserving Mycobacterium bovis and controlling the growth of non-mycobacterial contaminants on tissue specimens during transport to laboratories. The number of culturable M. bovis cells in suspension was reduced by 5.1 log10 upon exposure to chloramine-T solution and by less than 1 log10 upon exposure to sodium borate solution for 7 days. Reinoculation of laboratory media (because of overgrowth by non-mycobacterial contaminants) was required for 52.6% of 190 routine bovine tissue specimens shipped refrigerated in chloramine-T solution and for 6.1% of 520 specimens shipped unrefrigerated in sodium borate solution. M. bovis was isolated from bovine tissue stored in sodium borate solution at 23 degrees C for 17 weeks and at 4 degrees C for 25 weeks. Unrefrigerated sodium borate solution has been used successfully to ship tissue specimens to our laboratory for the past 11 years. PMID:6341397
Highly sensitive ethanol chemical sensor based on Ni-doped SnO₂ nanostructure materials.
Rahman, Mohammed M; Jamal, Aslam; Khan, Sher Bahadar; Faisal, M
2011-10-15
Due to potential applications of semiconductor transition doped nanostructure materials and the important advantages of synthesis in cost-effective and environmental concerns, a significant effort has been consummated for improvement of Ni-doped SnO(2) nanomaterials using hydrothermal technique at room conditions. The structural and optical properties of the low-dimensional (average diameter, 52.4 nm) Ni-doped SnO(2) nanostructures were demonstrated using various conventional techniques such as UV/visible spectroscopy, FT-IR spectroscopy, X-ray powder diffraction (XRD), and Field-emission scanning electron microscopy (FE-SEM). The calcined doped material is an attractive semiconductor nanoparticle for accomplishment in chemical sensing by simple I-V technique, where toxic chemical (ethanol) is used as a target chemical. Thin-film of Ni-doped SnO(2) nanostructure materials with conducting coating agents on silver electrodes (AgE, surface area, 0.0216 cm(2)) revealed higher sensitivity and repeatability. The calibration plot is linear (R, 0.8440) over the large dynamic range (1.0 nM-1.0 mM), where the sensitivity is approximately 2.3148 μA cm(-2) mM(-1) with a detection limit of 0.6 nM, based on signal/noise ratio in short response time. Consequently on the basis of the sensitive communication among structures, morphologies, and properties, it is exemplified that the morphologies and the optical characteristics can be extended to a large scale in doping nanomaterials and proficient chemical sensors applications. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khomchenko, Viktoriya; Mazin, Mikhail; Sopinskyy, Mykola; Lytvyn, Oksana; Dan'ko, Viktor; Piryatinskii, Yurii; Demydiuk, Pavlo
2018-05-01
The simple way for silver doping of ZnO films is presented. The ZnO films were prepared by reactive rf-magnetron sputtering on silicon and sapphire substrates. Ag doping is carried out by sublimation of the Ag source located at close space at atmospheric pressure in air. Then the ZnO and ZnO-Ag films were annealed in wet media. The microstructure and optical properties of the films were compared and studied by atomic force microscopy (AFM), X-ray diffraction (XRD), photoluminescence (PL) and cathodoluminescence (CL). XRD results indicated that all the ZnO films have a polycrystalline hexagonal structure and a preferred orientation with the c-axis perpendicular to the substrate. The annealing and Ag doping promote increasing grain's sizes and modification of grain size distribution. The effect of substrate temperature, substrate type, Ag doping and post-growth annealing of the films was studied by PL spectroscopy. The effect of Ag doping was obvious and identical for all the films, namely the wide visible bands of PL spectra are suppressed by Ag doping. The intensity of ultraviolet band increased 15 times as compared to their reference films on sapphire substrate. The ultraviolet/visible emission ratio was 20. The full width at half maximum (FWHM) for a 380 nm band was 14 nm, which is comparable with that of epitaxial ZnO. The data implies the high quality of ZnO-Ag films. Possible mechanisms to enhance UV emission are discussed.
Laboratory evaluation of borate:amine:copper derivatives In wood for fungal decay protection
George Chen
2011-01-01
This study aimed to evaluate borate:amine:copper derivatives in wood for fungal decay protection as well as the permanence of copper and boron in wood. Each of four derivatives of borate:amine:copper prevented fungal decay in wood. Disodium tetraborate decahydrate (borax):amine:copper derivatives with 0.61-0.63% retention after water leaching prevented decay by...
Corrosion studies of titanium in borated water for TPX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, D.F.; Pawel, S.J.; DeVan, J.H.
1995-12-31
Corrosion testing was performed to demonstrate the compatibility of the titanium vacuum vessel with borated water. Borated water is proposed to fill the annulus of the double wall vacuum vessel to provide effective radiation shielding. Borating the water with 110 grams of boric acid per liter is sufficient to reduce the nuclear heating in the Toroidal Field Coil set and limit the activation of components external to the vacuum vessel. Constant extension rate tensile (CERT) and electrochemical potentiodynamic tests were performed. Results of the CERT tests confirm that stress corrosion cracking is not significant for Ti-6Al4V or Ti-3AI-2.5V. Welded andmore » unwelded specimens were tested in air and in borated water at 150{degree}C. Strength, elongation, and time to failure were nearly identical for all test conditions, and all the samples exhibited ductile failure. Potentiodynamic tests on Ti-6A1-4V and Ti in borated water as a function of temperature showed low corrosion rates over a wide passive potential range. Further, this passivity appeared stable to anodic potentials substantially greater than those expected from MHD effects.« less
Effect of modifying agents on the hydrophobicity and yield of zinc borate synthesized by zinc oxide
NASA Astrophysics Data System (ADS)
Acarali, Nil Baran; Bardakci, Melek; Tugrul, Nurcan; Derun, Emek Moroydor; Piskin, Sabriye
2013-06-01
The aim of this study was to synthesize zinc borate using zinc oxide, reference boric acid, and reference zinc borate (reference ZB) as the seed, and to investigate the effects of modifying agents and reaction parameters on the hydrophobicity and yield, respectively. The reaction parameters include reaction time (1-5 h), reactant ratio (H3BO3/ZnO by mass: 2-5), seed ratio (seed crystal/(H3BO3+ZnO) by mass: 0-2wt%), reaction temperature (50-120°C), cooling temperature (10-80°C), and stirring rate (400-700 r/min); the modifying agents involve propylene glycol (PG, 0-6wt%), kerosene (1wt%-6wt%), and oleic acid (OA, 1wt%-6wt%) with solvents (isopropyl alcohol (IPA), ethanol, and methanol). The results of reaction yield obtained from either magnetically or mechanically stirred systems were compared. Zinc borate produced was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and contact angle tests to identify the hydrophobicity. In conclusion, zinc borate is synthesized successfully under the optimized reaction conditions, and the different modifying agents with various solvents affect the hydrophobicity of zinc borate.
Novel method for early investigation of bioactivity in different borate bio-glasses
NASA Astrophysics Data System (ADS)
Abdelghany, A. M.
Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm-1 after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses.
Liu, Hao; Smedskjaer, Morten M; Tao, Haizheng; Jensen, Lars R; Zhao, Xiujian; Yue, Yuanzheng
2016-04-28
It has been reported that the configurational heat capacity (C(p,conf)) first increases and then becomes saturated with increasing B2O3/SiO2 ratio in borate-silicate mixed glasses. Through Raman spectroscopy measurements, we have, in this work, found an implication for the intermediate range order (IRO) structural connection to the composition dependence of the C(p,conf) of borate-silicate mixed glasses. In the silica-rich compositions, the C(p,conf) rapidly increases with increasing B2O3 content. This is attributed to the increase of the content of the B-O-Si network units ([B2Si2O8](2-)) and 6-membered borate rings with 1 or 2 B(4). In the boron-rich compositions, the C(p,conf) is almost constant, independent of the increase in the B2O3/SiO2 ratio. This is likely attributed to the counteraction between the decrease of the fraction of two types of metaborate groups and the increase of the fraction of other borate superstructural units (particularly 6-membered borate rings). The overall results suggest that the glasses containing more types of superstructural units have a larger C(p,conf).
NASA Astrophysics Data System (ADS)
Khan, Sajid; Kim, H. J.; Lee, M. H.
2016-06-01
This study presents luminescence and scintillation properties of Silver doped LiI crystals. Single crystals of LiI: x% Ag (x=0.02, 0.05, 0.1 and 0.5) were grown by using the Bridgman technique. X-ray induced luminescence spectra show emission bands spanning from 275 nm to 675 nm, dominated by Ag+ band having a peak at 300 nm. Under UV-luminescence, a similar emission band was observed with the peak excitation wavelength of 265 nm. Energy resolution, light yield and decay time profiles of the samples were measured under a 137Cs γ-ray irradiation. The LiI(0.1%Ag) showed the highest light yield and the best energy resolution among the samples. The light yield of LiI(0.1%Ag) is higher than commercially available LiI(Eu) crystal (15,000±1500 ph/MeV). The LiI(Ag) samples exhibit three exponential decay time components except the LiI(0.02%Ag), where the fitting found two decay time components. Temperature dependences of emission spectra, light yield and decay time were studied from 300 K to 10 K. The LiI(0.1%Ag) crystal showed an increase in the light yield and a shortening of decay time with a decrease in temperature..
Stanković, Dalibor M
2015-10-01
Essential oil of Carum copticum seeds, obtained from a local shop, was extracted and content of thymol was analyzed using square-wave voltammetry at boron-doped diamond electrode. The effect of various parameters, such as pH of supporting electrolyte and square-wave voltammetric parameters (modulation amplitude and frequency), was examined. In Britton-Robinson buffer solution (pH 4), thymol provided a single and oval-shaped irreversible oxidation peak at +1.13 V versus silver/silver chloride potassium electrode (3M). Under optimal experimental conditions, a plot of peak height against concentration of thymol was found to be linear over the range of 4 to 100μM consisting of two linear ranges: from 4 to 20μM (R(2)=0.9964) and from 20 to 100μM (R(2)=0.9993). The effect of potential interferences such as p-cymene and γ-terpinene (major components in essential oil of C. copticum seeds) was evaluated. Thus, the proposed method displays a sufficient selectivity toward thymol with a detection limit of 3.9μM, and it was successfully applied for the determination of thymol in essential oil of C. copticum seeds. The Prussian blue method was used for validation of the proposed electroanalytical method. Copyright © 2015 Elsevier Inc. All rights reserved.
Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials
Naik, Gururaj V.; Liu, Jingjing; Kildishev, Alexander V.; Shalaev, Vladimir M.; Boltasseva, Alexandra
2012-01-01
Noble metals such as gold and silver are conventionally used as the primary plasmonic building blocks of optical metamaterials. Making subwavelength-scale structural elements from these metals not only seriously limits the optical performance of a device due to high absorption, it also substantially complicates the manufacturing process of nearly all metamaterial devices in the optical wavelength range. As an alternative to noble metals, we propose to use heavily doped oxide semiconductors that offer both functional and fabrication advantages in the near-infrared wavelength range. In this letter, we replace a metal with aluminum-doped zinc oxide as a new plasmonic material and experimentally demonstrate negative refraction in an Al:ZnO/ZnO metamaterial in the near-infrared range. PMID:22611188
Connections Between Theory and Experiment for Gold and Silver Nanoclusters.
Weerawardene, K L Dimuthu M; Häkkinen, Hannu; Aikens, Christine M
2018-04-20
Ligand-stabilized gold and silver nanoparticles are of tremendous current interest in sensing, catalysis, and energy applications. Experimental and theoretical studies have closely interacted to elucidate properties such as the geometric and electronic structures of these fascinating systems. In this review, the interplay between theory and experiment is described; areas such as optical absorption and doping, where the theory-experiment connections are well established, are discussed in detail; and the current status of these connections in newer fields of study, such as luminescence, transient absorption, and the effects of solvent and the surrounding environment, are highlighted. Close communication between theory and experiment has been extremely valuable for developing an understanding of these nanocluster systems in the past decade and will undoubtedly continue to play a major role in future years.
Connections Between Theory and Experiment for Gold and Silver Nanoclusters
NASA Astrophysics Data System (ADS)
Weerawardene, K. L. Dimuthu M.; Häkkinen, Hannu; Aikens, Christine M.
2018-04-01
Ligand-stabilized gold and silver nanoparticles are of tremendous current interest in sensing, catalysis, and energy applications. Experimental and theoretical studies have closely interacted to elucidate properties such as the geometric and electronic structures of these fascinating systems. In this review, the interplay between theory and experiment is described; areas such as optical absorption and doping, where the theory-experiment connections are well established, are discussed in detail; and the current status of these connections in newer fields of study, such as luminescence, transient absorption, and the effects of solvent and the surrounding environment, are highlighted. Close communication between theory and experiment has been extremely valuable for developing an understanding of these nanocluster systems in the past decade and will undoubtedly continue to play a major role in future years.
Twenty kW fuel cell units of compact design. Part 4: Accompanying research and development
NASA Astrophysics Data System (ADS)
Mund, K.
1980-10-01
Models describing the electrochemical kinetics at porous H2 and O2 electrodes using Raney nickel and silver catalysts were developed and their parameters determined by means of stationary and impedance measurements. A correct description of the hydrogen electrode with a Raney nickel catalyst is shown to encompass proper consideration of both diffusion in the pore electrolyte and surface diffusion. Impedance measurements yield a surface diffusion coefficient of 10 sub-8 cm2 S sub-1. The addition of titanium to the catalyst results in decreased electrode polarization and higher stability. Highly active doped silver catalysts are shown to allow high current densities and diaphragm resistances as low as 3 ohm cm at the oxygen electrode. Service tests show adequate stability of the catalysts.
Borate minerals and origin of the RNA world.
Grew, Edward S; Bada, Jeffrey L; Hazen, Robert M
2011-08-01
The RNA World is generally thought to have been an important link between purely prebiotic (>3.7 Ga) chemistry and modern DNA/protein biochemistry. One concern about the RNA World hypothesis is the geochemical stability of ribose, the sugar moiety of RNA. Prebiotic stabilization of ribose by solutions associated with borate minerals, notably colemanite, ulexite, and kernite, has been proposed as one resolution to this difficulty. However, a critical unresolved issue is whether borate minerals existed in sufficient quantities on the primitive Earth, especially in the period when prebiotic synthesis processes leading to RNA took place. Although the oldest reported colemanite and ulexite are 330 Ma, and the oldest reported kernite, 19 Ma, boron isotope data and geologic context are consistent with an evaporitic borate precursor to 2400-2100 Ma borate deposits in the Liaoning and Jilin Provinces, China, as well as to tourmaline-group minerals at 3300-3450 Ma in the Barberton belt, South Africa. The oldest boron minerals for which the age of crystallization could be determined are the metamorphic tourmaline species schorl and dravite in the Isua complex (metamorphism between ca. 3650 and ca. 3600 Ma). Whether borates such as colemanite, ulexite and kernite were present in the Hadean (>4000 Ma) at the critical juncture when prebiotic molecules such as ribose required stabilization depends on whether a granitic continental crust had yet differentiated, because in its absence we see no means for boron to be sufficiently concentrated for borates to be precipitated.
Biological Impact of Bioactive Glasses and Their Dissolution Products.
Hoppe, Alexander; Boccaccini, Aldo R
2015-01-01
For many years, bioactive glasses (BGs) have been widely considered for bone tissue engineering applications due to their ability to bond to hard as well as soft tissue (a property termed bioactivity) and for their stimulating effects on bone formation. Ionic dissolution products released during the degradation of the BG matrix induce osteogenic gene expression leading to enhanced bone regeneration. Recently, adding bioactive metallic ions (e.g. boron, copper, cobalt, silver, zinc and strontium) to silicate (or phosphate and borate) glasses has emerged as a promising route for developing novel BG formulations with specific therapeutic functionalities, including antibacterial, angiogenic and osteogenic properties. The degradation behaviour of BGs can be tailored by adjusting the glass chemistry making these glass matrices potential carrier systems for controlled therapeutic ion release. This book chapter summarises the fundamental aspects of the effect of ionic dissolution products from BGs on osteogenesis and angiogenesis, whilst discussing novel BG compositions with controlled therapeutic ion release. © 2015 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanan, Manoj Kumar, E-mail: manukokkal01@gmail.com; Shashikala, H. D.
Silver nanoparticle embedded 30BaO-20CaF{sub 2}-50P{sub 2}O{sub 5}-4Ag{sub 2}O-4SnO glasses were prepared by melt-quenching and subsequent heat treatment process. Silver-doped glasses were heat treated at temperatures 500 °C, 525°C and 550 °C for a fixed duration of 10 hours to incorporate metal nanoparticles into the glass matrix. Appearance and shift in peak positions of the surface plasmon resonance (SPR) bands in the optical absorption spectra of heat treated glass samples indicated that both formation and growth of nanoparticle depended on heat treatment temperature. Glass sample heat treated at 525 °C showed a SPR peak around 3 eV, which indicated that sphericalmore » nanoparticles smaller than 20 nm were formed inside the glass matrix. Whereas sample heat treated at 550 °C showed a size dependent red shift in SPR peak due to the presence of silver nanoparticles of size larger than 20 nm. Size of the nanoparticles calculated using full-width at half-maximum (FWHM) of absorption band showed a good agreement with the particle size obtained from transmission electron microscopy (TEM) analysis.« less
Laboratory evaluation of borate/amine/zinc formulations for fungal decay protection
George C. Chen; Rebecca E. Ibach
2010-01-01
The goals of this study were to evaluate borate/amine/zinc formulations in wood for fungal decay protection as well as the permanence of zinc and boron in wood. Wood treated with each of four formulations of borate/amine/zinc prevented or decreased fungal degradation after a 12-week AWPA Standard soil-block test. For non-leached specimens, wood treated with borax/amine...
Pramanik, Chandrani; Sood, Parveen; Niu, Li-Na; Yuan, He; Ghoshal, Sushanta; Henderson, Walter; Liu, Yaodong; Jang, Seung Soon; Kumar, Satish; Pashley, David H; Tay, Franklin R
2016-02-01
Long-term oral and intravenous use of nitrogen-containing bisphosphonates (N-BPs) is associated with osteonecrosis of the jaw. Although N-BPs bind strongly to bone surfaces via non-covalent bonds, it is possible for extrinsic ions to dissociate bound N-BPs from mineralized bone by competitive desorption. Here, we investigate the effects and mechanism of using an ionic cocktail derived from borate bioactive glass for sequestration of heterocyclic N-BPs bound to apatite. By employing solid-state and solution-state analytical techniques, we confirmed that sequestration of N-BPs from bisphosphonate-bound apatite occurs in the presence of the borate-containing ionic cocktail. Simulations by density functional theory computations indicate that magnesium cation and borate anion are well within the extent of the risedronate or zoledronate anion to form precipitate complexes. The sequestration mechanism is due to the borate anion competing with bisphosphonates for similar electron-deficient sites on the apatite surface for binding. Thus, application of the borate-containing ionic cocktail represents a new topical lavage approach for removing apatite-bound heterocyclic N-BPs from exposed necrotic bone in bisphosphonate-related osteonecrosis of the jaw. Long-term oral consumption and injections of nitrogen-containing bisphosphonates (N-BPs) may result in death of the jaw bone when there is traumatic injury to the bone tissues. To date, there is no effective treatment for such a condition. This work reported the use of an ionic cocktail derived from water-soluble borate glass microfibers to displace the most potent type of N-BPs that are bound strongly to the mineral component on bone surfaces. The mechanism responsible for such an effect has been identified to be cation-mediated complexation of borate anions with negatively-charged N-BPs, allowing them to be released from the mineral surface. This borate-containing cocktail may be developed into a novel topical rinse for removing mineral-bound N-BPs from exposed dead bone. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Aranda, Xavier G; Racho, Ronald G; Pacheco-Rodríguez, Gustavo; Alvarez-González, Rafael
2014-01-01
Nucleic acid metabolism is biochemically compartmentalized to the nucleus. Thus, it is necessary to define the proteome of the various macromolecular structures within this organelle. We isolated the nuclear matrix (NM) fraction from rat liver by sequential centrifugation steps at 13,000 rpm, staggered between endogenous nuclease treatment for 2 h at 37°C, followed by high-salt (H.S.; 2.0 M NaCl) and non-ionic detergent extractions (0.1%- or 1.0% Triton X-100) to eliminate the bulk of chromosomal DNA/RNA, histone proteins and the nuclear envelope (NE). Integrity of the NM and NE structures was confirmed by electron microscopy. Next, we analyzed the NM proteome on a 20% polyacrylamide gel using the PhastSystem. We observed the absence of histone proteins and the characteristic presence of the lamins by Coomassie blue staining. By contrast, upon silver staining, following electrophoretic separation with a Tris-Borate-EDTA buffer, we observed the NM-associated nucleic RNA and protein-free ADP-ribose polymers. While polymers are found in much lower concentration than RNA in NM, they were purified by affinity chromatography on boronate resin prior to electrophoresis. We observed the electrophoretic resolution of free ADP-ribose chains (5-25 units) by silver staining. The significance of our observations to cancer studies and carcinogenesis is discussed. Copyright© 2014, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.
NASA Astrophysics Data System (ADS)
Gautam, C. R.; Das, Sangeeta; Gautam, S. S.; Madheshiya, Abhishek; Singh, Anod Kumar
2018-04-01
In this study, various compositions of lead calcium titanate borosilicate glass doped with a fixed amount of germanium were synthesized using the rapid melt quench technique. The amorphous nature of the synthesized glass was confirmed by X-ray diffraction and scanning electron microscopy analyses. The structural and optical properties were deduced using Raman, Fourier transform infrared (FTIR), and ultraviolet-visible (UV-Vis) spectroscopy. FTIR spectroscopy confirmed the presence of borate groups in triangular and tetrahedral coordination. Infrared and Raman analyses detected the vibrational bonds of Gesbnd Osbnd Ge, Bsbnd Osbnd Ge, Sisbnd Osbnd Ge, Sisbnd Osbnd Si, and Pbsbnd Osbnd Ge. The energy band gaps were evaluated for the prepared glass samples based on Tauc plots of the UV-Vis spectra. The calculated values of the optical band gap decreased from 2.91 to 2.85 eV as the PbO content increased from x = 0.0 to x = 0.7. Furthermore, the Urbach energy was studied based on the UV-Vis results to confirm the disordered structure of the glass. The calculated densities of the glass samples (1.5835 g/cm3 to 3.9184 g/cm3) increased as the concentration of PbO increased, whereas they decreased with the molar volume.
Esteve-Adell, Ivan; He, Jinbao; Ramiro, Fernando; Atienzar, Pedro; Primo, Ana; García, Hermenegildo
2018-03-01
A procedure for the one-step preparation of films of few-layer N-doped graphene on top of nanometric hexagonal boron nitride sheets ((N)graphene/h-BN) based on the pyrolysis at 900 °C under an inert atmosphere of a film of chitosan containing about 20 wt% of ammonium borate salt as a precursor is reported. During the pyrolysis a spontaneous segregation of (N)graphene and boron nitride layers takes place. The films were characterized by optical microscopy that shows a thin graphene overlayer covering the boron nitride layer, the latter showing characteristic cracks, and by XPS measurements at different monitoring angles from 0° to 50° where an increase in the proportion of C vs. B and N was observed. The resulting (N)graphene/h-BN films were also characterized by Raman, HRTEM, SEM, FIB-SEM and AFM. The thickness of the (N)graphene and h-BN layers can be controlled by varying the concentration of precursors and the spin coating rate and is typically below 5 nm. Electrical conductivity measurements using microelectrodes can cause the burning of the graphene layer at high intensities, while lower intensities show that (N)graphene/h-BN films behave as capacitors in the range of positive voltages.
Agarwal, A; Sheoran, A; Sanghi, S; Bhatnagar, V; Gupta, S K; Arora, M
2010-03-01
Glasses with compositions xNb(2)O(5).(30-x)M(2)O.69B(2)O(3) (where M=Li, Na, K; x=0, 4, 8 mol%) doped with 1 mol% V(2)O(5) have been prepared using normal melt quench technique. The IR transmission spectra of the glasses have been studied over the range 400-4000 cm(-1). The changes caused by the addition of Nb(2)O(5) on the structure of these glasses have been reported. The electron paramagnetic resonance spectra of VO(2+) ions in these glasses have been recorded in X-band (9.14 GHz) at room temperature (300 K). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) due to V(4+) ions which exist as VO(2+) ions in octahedral coordination with a tetragonal compression in the present glasses. The tetragonality of V(4+)O(6) complex decreases with increasing concentration of Nb(2)O(5). The 3d(xy) orbit contracts with increase in Nb(2)O(5):M(2)O ratio. Values of the theoretical optical basicity, Lambda(th), have also been reported. Copyright 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiong, Shenghu; Yuan, Xiao; Tong, Hua; Yang, Yunxia; Liu, Cui; Ye, Xiaojun; Li, Yongsheng; Wang, Xianhao; Luo, Lan
2018-04-01
Circular transmission line model (CTLM) measurements were applied to study the contact formation mechanism of the silver paste metallization on n-type emitter of crystalline silicon solar cells. The electrical performance parameters ρc,Rsk , and Lt , which are related to the physical and chemical states of the multiphase materials at the interface, were extracted from the CTLM measurements, and were found to be sensitive to sintering temperature. As the temperature increased from 585 °C to 780 °C, initially the ρc value decreased rapidly, then flattened out and increased slightly. The order of resistivity magnitude was restricted by the SiNx passivation layer in the early sintering stages, and relied on the carrier tunneling probability affected by the precipitated silver crystallites or colloids, emitter doping concentration and molten glass layer. Based on the calculations that the sheet resistance underneath the electrode was reduced form 110 Ω / □ to 0.186 Ω / □ , it could be inferred that there was formation of a highly conductive layer of silver crystallites and colloids contained glass on the emitter. The transfer length Lt exhibited a U-shaped variation along with the temperature, reflecting the variation of the interfacial electrical properties. Overall, this article shows that the CTLM method can become a new powerful tool for researchers to meet the challenges of silver paste metallization innovation for manufacturing high-efficiency silicon solar cells.
Liu, Yuanyuan; Chai, Xiaoqi; Cai, Xiao; Chen, Mingyang; Jin, Rongchao; Ding, Weiping; Zhu, Yan
2018-06-19
Clusters with an exact number of atoms are of particular research interest in catalysis. Their catalytic behaviors can be potentially altered with the addition or removal of a single atom. Herein we explore the effects of the single-foreign-atom (Au, Pd and Pt) doping into the core of an Ag cluster with 25-atoms on the catalytic properties, where the foreign atom is protected by 24 Ag atoms (i.e., Au@Ag24, Pd@Ag24, and Pt@Ag24). The central doping of a single atom into the Ag25 cluster is found to have a substantial influence on the catalytic performance in the carboxylation reaction of CO2 with terminal alkyne through C-C bond formation to produce propiolic acid. Our studies reveal that the catalytic properties of the cluster catalysts can be dramatically changed with the subtle alteration by a single atom away from the active sites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Xuefei; Yates, Matthew Z
2018-05-23
Fast recombination of photogenerated charge carriers in titanium dioxide (TiO 2 ) remains a challenging issue, limiting the photocatalytic activity. This study demonstrates increased photocatalytic performance of TiO 2 nanoparticles supported on electrically polarized hydroxyapatite (HA) films. Dense and thermally stable yttrium and fluorine co-doped HA films with giant internal polarization were synthesized as photocatalyst supports. TiO 2 nanoparticles deposited on the support were then used to catalyze the photochemical reduction of aqueous silver ions to produce silver nanoparticles. It was found that significantly more silver nanoparticles were produced on polarized HA supports than on depolarized HA supports. In addition, the photodegradation of methyl orange with TiO 2 nanoparticles on polarized HA supports was found to be much faster than with TiO 2 nanoparticles on depolarized HA supports. It is proposed that separation of photogenerated electrons and holes in TiO nanoparticles is promoted by the internal polarization of the HA support, and consequently, the recombination of charge carriers is mitigated. The results imply that materials with large internal polarization can be used in strategies for enhancing quantum efficiency of photocatalysts.
Electroless silver plating of the surface of organic semiconductors.
Campione, Marcello; Parravicini, Matteo; Moret, Massimo; Papagni, Antonio; Schröter, Bernd; Fritz, Torsten
2011-10-04
The integration of nanoscale processes and devices demands fabrication routes involving rapid, cost-effective steps, preferably carried out under ambient conditions. The realization of the metal/organic semiconductor interface is one of the most demanding steps of device fabrication, since it requires mechanical and/or thermal treatments which increment costs and are often harmful in respect to the active layer. Here, we provide a microscopic analysis of a room temperature, electroless process aimed at the deposition of a nanostructured metallic silver layer with controlled coverage atop the surface of single crystals and thin films of organic semiconductors. This process relies on the reaction of aqueous AgF solutions with the nonwettable crystalline surface of donor-type organic semiconductors. It is observed that the formation of a uniform layer of silver nanoparticles can be accomplished within 20 min contact time. The electrical characterization of two-terminal devices performed before and after the aforementioned treatment shows that the metal deposition process is associated with a redox reaction causing the p-doping of the semiconductor. © 2011 American Chemical Society
Low-energy collisionally activated dissociation of pentose-borate complexes
NASA Astrophysics Data System (ADS)
Pepi, Federico; Garzoli, Stefania; Tata, Alessandra; Giacomello, Pierluigi
2010-01-01
Pentose-borate 1:1 complexes were generated in the ESI source of a triple quadrupole and ion trap mass spectrometer by electrospray ionization of Na2B4O7 and pentose (arabinose, lyxose, ribose, xylose) 2:1 solution in CH3CN/H2O. The study of their low-energy collisionally activated dissociation (CAD) demonstrated that ribose and lyxose are preferentially complexed at the C2-C3 cis-diol function whereas arabinose and xylose are esterified at the C1-C2 hydroxyl groups. No evidence was found of the stronger affinity for ribose to borate. The ribose probiotic rule can be explained by considering its peculiar capability, among the investigated pentoses, to almost totally complex the borate anion at the C2-C3 hydroxyl group, thus enabling the subsequent stages of nucleotide assembly, such as phosphorylation and linkage to the nucleobases. Finally, the differences observed in the pentose-borate complex CAD spectra can be used for the mass spectrometric discrimination of isomeric pentoses in complex mixtures.
NASA Astrophysics Data System (ADS)
Xiang, N.; Song, R. G.; Li, H.; Wang, C.; Mao, Q. Z.; Xiong, Y.
2015-12-01
Plasma electrolytic oxidation (PEO) treated 6063 aluminum alloy was applied in a silicate- and borate-based alkaline solution. The microstructure and electrochemical corrosion behavior were studied by scanning electron microscopy, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization techniques. The results showed that the silicate-based PEO coating was of a denser structure compared with that of borate-based PEO coating. In addition, the silicate-based PEO coating was composed of more phased (Al9Si) than borate-based PEO coating. The results of corrosion test indicated that the silicate-based PEO coating provided a superior protection to 6063 aluminum alloy substrate, while borate-based PEO coating with a porous structure showed an inferior conservancy against corrosive electrolyte. Furthermore, the EIS tests proved that both coatings were capable to resist the aggressive erosion in 0.5 M NaCl solution after 72 h of immersion. However, the borate-based PEO coating could not provide sufficient protection to the substrate after 72-h immersion in 1 M NaCl solution.
NASA Astrophysics Data System (ADS)
Li, Shengli; Long, Beihong; Wang, Zichen; Tian, Yumei; Zheng, Yunhui; Zhang, Qian
2010-04-01
Zinc borate (2ZnO·3B 2O 3·3.5H 2O) has relatively high dehydration on-set temperature which property permits processing in a wide range of polymer system. But zinc borate particles are hardly dispersed in a polymer matrix so that they prevent their using in industry. To address this problem, we synthesized hydrophobic zinc borate (2ZnO·3B 2O 3·3.5H 2O) nanoflakes by employing solid-liquid reaction of zinc oxide (ZnO) and boric acid (H 3BO 3) in the presence of oleic acid. This method does not bring pollution. By conducting morphological and microscopic analyses, we found that this compound displayed nanoflake morphology with particle size of around 100-200 nm, thickness less than 100 nm and there were uniform mesopores with the diameter about 10 nm within the particles. Furthermore, our products had an effect on flame retardant of polyethylene, especially when the zinc borate was modified by oleic acid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozen, L.F.
1991-05-01
This paper reports that borate minerals and refined borates are used extensively for the manufacture of vitreous materials such as insulation and textile fiberglasses, borosilicate glass, and porcelain enamels and frits. In North America, these applications are estimated to account for over 54% of the borate consumption. Other substantial uses are in soaps and detergents, metallurgy, fire retardants, industrial biocides, agriculture, and various miscellaneous applications. Reported domestic borate consumption in 1990 was estimated by the U.S. Bureau of Mines to be 320 000 metric tons B{sub 2}O{sub 3} versus 354 000 metric tons B{sub 2}O{sub 3} in 1989. Consumption ismore » projected to remain essentially static in 1991. Imports were estimated by the Bureau to be 50 000 metric tons B{sub 2}O{sub 3} in 1990. Exports of boric acid and refined borates were approximately 650 000 metric tons of product, a 15 000 metric ton increase from the 1989 level. This increase partially offsets the drop in the 1990 consumption level.« less
Novel method for early investigation of bioactivity in different borate bio-glasses.
Abdelghany, A M
2013-01-01
Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm(-1) after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses. Copyright © 2012 Elsevier B.V. All rights reserved.
Bioactive glass in tissue engineering
Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.
2011-01-01
This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084
Local distortion and EPR parameters of copper(II) in borate glasses
NASA Astrophysics Data System (ADS)
Kuang, Min-Quan; Wang, Li-Dan; Duan, Shu-Kai
2017-12-01
The EPR parameters (g and A tensors) of the paramagnetic Cu2+ sites in CaB4O7, LiCaBO3, Li2B4O7, KLiB4O7 glasses are well explained by utilizing the fourth-order perturbation formulas for 3 d9 ions in the tetragonally elongated octahedral [CuO6]10- clusters. The magnitude of the local distortion for the [CuO6]10- clusters suffering the Jahn-Teller effect is denoted by the relative elongation ratio ρ which is proportional to the ratio Δg///Δg⊥ (Δg//= g//-gs and Δg⊥ = g⊥-gs). The g isotropies giso (=(g//+2g⊥)/3) undergo an linear increase with the decline of the covalecny of the glass systems (i.e., the augment of the orbital reduction factor k). The signs of the hyperfine structure constants are determined by computing the quantitative contributions arising from the isotropic and anisotropic copper 3d-3s (4s) orbital admixtures indicated by the core polarization constant κ and the reduction factor H, respectively. The above correlations are proved to be available for analogous borate glasses doping with copper ions, e.g., MRbB4O7 (M = Li, Na and K), 90M2B4O7·9PbO·CuO (M = Li, Na and K), 10MO·30ZnO·60B2O3 (M = Mg, Ca and Sr) and xLi2O·(30-x)Na2O·69.5B2O3 (5 ≤ x ≤ 25 mol%), and all the results are discussed.
Ravi, O; Prasad, K; Jain, Rajiv; Venkataswamy, M; Chaurasia, Shivanand; Deva Prasad Raju, B
2017-08-01
The spectroscopic properties of Tellurium Calcium Zinc Niobium oxide Borate (TCZNB) glasses of composition (in mol%) 10TeO 2 + 15CaO + 5ZnO + 10 Nb 2 O 5 + (60 - x)B 2 O 3 + Nd 2 O 3 (x = 0.1, 0.5, 1.0 or 1.5 mol%) have been investigated experimentally. The three phenomenological intensity parameters Ω 2 , Ω 4, Ω 6 have been calculated using the Judd-Ofelt theory and in turn radiative properties such as radiative transition probabilities, emission cross-sections, branching ratios and radiative lifetimes have been estimated. The trend found in the JO intensity parameter is Ω 2 > Ω 6 > Ω 4 If Ω 6 > Ω 4 , the glass system is favourable for the laser emission 4 F 3 /2 → 4 I 11 /2 in the infrared (IR) wavelength. The experimental values of branching ratio of 4 F 3 /2 → 4 I 11 /2 transition indicate favourable lasing action with low threshold power. The evaluated total radiative transition probabilities (A T ), stimulated emission cross-section (σ e ) and gain bandwidth parameters (σ e × Δλ p ) were compared with earlier reports. An energy level analysis has been carried out considering the experimental energy positions of the absorption and emission bands. Copyright © 2016 John Wiley & Sons, Ltd.
Peters, Brenton C; Fitzgerald, Christopher J
2006-10-01
Laboratory and field data reported in the literature are confusing with regard to "adequate" protection thresholds for borate timber preservatives. The confusion is compounded by differences in termite species, timber species and test methodology. Laboratory data indicate a borate retention of 0.5% mass/mass (m/m) boric acid equivalent (BAE) would cause > 90% termite mortality and restrict mass loss in test specimens to < or = 5%. Field data generally suggest that borate retentions appreciably > 0.5% m/m BAE are required. We report two field experiments with varying amounts of untreated feeder material in which Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae) responses to borate-treated radiata (Monterey) pine, Pinus radiata D. Don, were measured. The apparently conflicting results between laboratory and field data are explained by the presence or absence of untreated feeder material in the test environment. In the absence of untreated feeder material, wood containing 0.5% BAE provided adequate protection from Coptotermes sp., whereas in the presence of untreated feeder material, increased retentions were required. Furthermore, the retentions required increased with increased amounts of susceptible material present. Some termites, Nasutitermes sp. and Mastotermes darwiniensis Froggatt, for example, are borate-tolerant and borate timber preservatives are not a viable management option with these species. The lack of uniform standards for termite test methodology and assessment criteria for efficacy across the world is recognized as a difficulty with research into the performance of timber preservatives with termites. The many variables in laboratory and field assays make "prescriptive" standards difficult to recommend. The use of "performance" standards to define efficacy criteria ("adequate" protection) is discussed.
Advanced Polymer Systems for Defence Applications: Power Generation, Protection and Sensing
2014-05-01
oxide nanoparticles synthesized via non-sol-gel methods, e.g., via a flame process; and, (d) Amine sensors based on silver nanoparticle- doped ...Hongmin Chen, Guodong Chen, Xiaohong Gu, James L. Lee, E. E. Abdel-Hady, Y. C. Jean. Free Volumes, Glass Transitions, and Cross-Links in Zinc Oxide ...properties in a system of zinc oxide (ZnO) nanoparticles (20 nm) dispersed in waterborne polyurethane (WBPU) were measured using positron annihilation
A buetschliite-type rare-earth borate, KBaY(BO 3) 2
NASA Astrophysics Data System (ADS)
Gao, Jianhua; Song, Limei; Hu, Xiaoyun; Zhang, Dekai
2011-01-01
The title compound was firstly synthesized by solid state reaction and its single crystals were successfully obtained using a selected flux. It is isotypic with the mineral buetschliite, K 2Ca(CO 3) 2, and crystallizes in the trigonal space group R-3m with a = 5.4526(12) Å, c = 17.781(8) Å, Z = 3. In the structure, Ba and K atoms are disordered on a same site in the proportion of 0.492(4):0.508(4). The fundamental building units are YO 6 octahedra and BO 3 triangles. The structure consists of [YB 2O 6] ∞ double layers constructed by corner-sharing YO 6 and BO 3 groups. Ba/K atoms occupy the spaces between these two layers and play the role of bridges. In addition, the luminescence properties of Eu 3+ doped KBaY(BO 3) 2 were also studied.
Molecular Simulation Results on Charged Carbon Nanotube Forest-Based Supercapacitors.
Muralidharan, Ajay; Pratt, Lawrence R; Hoffman, Gary G; Chaudhari, Mangesh I; Rempe, Susan B
2018-06-22
Electrochemical double-layer capacitances of charged carbon nanotube (CNT) forests with tetraethyl ammonium tetrafluoro borate electrolyte in propylene carbonate are studied on the basis of molecular dynamics simulation. Direct molecular simulation of the filling of pore spaces of the forest is feasible even with realistic, small CNT spacings. The numerical solution of the Poisson equation based on the extracted average charge densities then yields a regular experimental dependence on the width of the pore spaces, in contrast to the anomalous pattern observed in experiments on other carbon materials and also in simulations on planar slot-like pores. The capacitances obtained have realistic magnitudes but are insensitive to electric potential differences between the electrodes in this model. This agrees with previous calculations on CNT forest supercapacitors, but not with experiments which have suggested electrochemical doping for these systems. Those phenomena remain for further theory/modeling work. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mahmoud, S. A.; Madi, N. K.; Kassem, M. E.; El-Khatib, A.
A study has been made of the temperature dependence of the d.c. conductivity of pure and borated low density polyethylene LDPE (4% and 8% borax). The above calculations were carried out before and after X-ray irradiation. The irradiation dose was varied from 0 to 1000 rad. The d.c. electrical conductivity of Polyvinyl chloride (PVC) and perspex was measured as a function of temperature ranging from 20°C to 100°C. These samples were irradiated with X-rays of dose 200 rad. The variation of the d.c. conductivity of the treated samples versus temperature was investigated. The results reveal that the d.c. conductivity of LDPE is highly affected by radiation and/or dopant. In addition, the sensitivity of the explored polymers to X-ray irradiation is strongly dependent on its chemical nature.
The Mercury Project: A High Average Power, Gas-Cooled Laser For Inertial Fusion Energy Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayramian, A; Armstrong, P; Ault, E
Hundred-joule, kilowatt-class lasers based on diode-pumped solid-state technologies, are being developed worldwide for laser-plasma interactions and as prototypes for fusion energy drivers. The goal of the Mercury Laser Project is to develop key technologies within an architectural framework that demonstrates basic building blocks for scaling to larger multi-kilojoule systems for inertial fusion energy (IFE) applications. Mercury has requirements that include: scalability to IFE beamlines, 10 Hz repetition rate, high efficiency, and 10{sup 9} shot reliability. The Mercury laser has operated continuously for several hours at 55 J and 10 Hz with fourteen 4 x 6 cm{sup 2} ytterbium doped strontiummore » fluoroapatite (Yb:S-FAP) amplifier slabs pumped by eight 100 kW diode arrays. The 1047 nm fundamental wavelength was converted to 523 nm at 160 W average power with 73% conversion efficiency using yttrium calcium oxy-borate (YCOB).« less
Škoch, Karel; Uhlík, Filip; Císařová, Ivana; Štěpnička, Petr
2016-06-28
1'-(Diphenylphosphino)-1-cyanoferrocene () reacts with silver(i) halides at a 1 : 1 metal-to-ligand ratio to afford the heterocubane complexes [Ag(μ3-X)(-κP)]4, where X = Cl (), Br (), and I (). In addition, the reaction with AgCl with 2 equiv. of leads to chloride-bridged dimer [(μ-Cl)2{Ag(-κP)2}2] () and, presumably, also to [(μ(P,N)-){AgCl(-κP)}]2 (). While similar reactions with AgCN furnished only the insoluble coordination polymer [(-κP)2Ag(NC)Ag(CN)]n (), those with AgSCN afforded the heterocubane [Ag(-κP)(μ-SCN-S,S,N)]4 () and the thiocyanato-bridged disilver(i) complex [Ag(-κP)2(μ-SCN-S,N)]2 (), thereby resembling reactions in the AgCl- system. Attempted reactions with AgF led to ill-defined products, among which [Ag(-κP)2(μ-HF2)]2 () and [(μ-SiF6){Ag(-κP)2}2] () could be identified. The latter compound was prepared also from Ag2[SiF6] and . Reactions between and AgClO4 or Ag[BF4] afforded disilver complexes [(μ(P,N)-)Ag(ClO4-κO)]2 () and [(μ(P,N)-)Ag(BF4-κF)]2 () featuring pseudolinear Ag(i) centers that are weakly coordinated by the counter anions. A similar reaction with Ag[SbF6] followed by crystallization from ethyl acetate produced an analogous complex, albeit with coordinated solvent, [(μ(P,N)-)Ag(AcOEt-κO)]2[SbF6]2 (). Ultimately, a compound devoid of any additional ligands at the Ag(i) centers, [(μ(P,N)-)Ag]2[B(C6H3(CF3)2-3,5)4]2 (), was obtained from the reaction of with silver(i) tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. The reaction of Ag[BF4] with two equivalents of produced unique coordination polymer [Ag(-κP)(μ(P,N)-)]n[BF4]n (), the structure of which contained one of the phosphinoferrocene ligands coordinated as a P,N-chelate and the other forming a bridge to an adjacent Ag(i) center. All of these compounds were structurally characterized by single-crystal X-ray crystallography, revealing that the lengths of the bonds between silver and its anionic ligand(s) typically exceed the sum of the respective covalent radii, which is in line with the results of theoretical calculations at the density-functional theory (DFT) level, suggesting that standard covalent dative bonds are formed between silver and phosphorus (soft acid/soft base interactions) while the interactions between silver and the ligand's nitrile group (if coordinated) or the supporting anion are of predominantly electrostatic nature.
NASA Astrophysics Data System (ADS)
Bechambi, Olfa; Chalbi, Manel; Najjar, Wahiba; Sayadi, Sami
2015-08-01
Ag-doped ZnO photocatalysts with different Ag molar content (0.0, 0.5, 1.0, 2.0 and 4.0%) were prepared via hydrothermal method. The X-ray diffraction (XRD), Nitrogen physisorption at 77 K, Fourier transformed infrared spectroscopy (FTIR), UV--Visible spectroscopy, Photoluminescence spectra (PL) and Raman spectroscopy were used to characterize the structural, textural and optical properties of the samples. The results showed that Ag-doping does not change the average crystallite size with the Ag low content (≤1.0%) but slightly decreases with Ag high content (>1.0%). The specific surface area (SBET) increases with the increase of the Ag content. The band gap values of ZnO are decreased with the increase of the Ag doping level. The results of the photocatalytic degradation of bisphenol A (BPA) and nonylphenol (NP) in aqueous solutions under UV irradiation and in the presence of hydrogen peroxide (H2O2) showed that silver ions doping greatly improved the photocatalytic efficiency of ZnO. The TOC conversion BPA and NP are 72.1% and 81.08% respectively obtained using 1% Ag-doped ZnO. The enhancement of photocatalytic activity is ascribed to the fact that the modification of ZnO with an appropriate amount of Ag can increase the separation efficiency of the photogenerated electrons-holes in ZnO. The antibacterial activity of the catalysts which uses Escherichia coli as a model for Gram-negative bacteria confirmed that Ag-doped ZnO possessed more antibacterial activity than the pure ZnO.
Method of recycling lithium borate to lithium borohydride through diborane
Filby, Evan E.
1976-01-01
This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a diborane intermediate to complete the recycle scheme.
Low-energy vibrational dynamics of cesium borate glasses.
Crupi, C; D'Angelo, G; Vasi, C
2012-06-07
Low-temperature specific heat and inelastic light scattering experiments have been performed on a series of cesium borate glasses and on a cesium borate crystal. Raman measurements on the crystalline sample have revealed the existence of cesium rattling modes in the same frequency region where glasses exhibit the boson peak (BP). These localized modes are supposed to overlap with the BP in cesium borate glasses affecting its magnitude. Their influence on the low frequency vibrational dynamics in glassy samples has been considered, and their contribution to the specific heat has been estimated. Evidence for a relation between the changes of the BP induced by the increased amount of metallic oxide and the variations of the elastic medium has been provided.
NASA Astrophysics Data System (ADS)
Ievtushenko, A.; Karpyna, V.; Eriksson, J.; Tsiaoussis, I.; Shtepliuk, I.; Lashkarev, G.; Yakimova, R.; Khranovskyy, V.
2018-05-01
ZnO films and nanostructures were deposited on Si substrates by MOCVD using single source solid state zinc acetylacetonate (Zn(AA)) precursor. Doping by silver was realized in-situ via adding 1 and 10 wt. % of Ag acetylacetonate (Ag(AA)) to zinc precursor. Influence of Ag on the microstructure, electrical and optical properties of ZnO at temperature range 220-550 °C was studied by scanning, transmission electron and Kelvin probe force microscopy, photoluminescence and four-point probe electrical measurements. Ag doping affects the ZnO microstructure via changing the nucleation mode into heterogeneous and thus transforming the polycrystalline films into a matrix of highly c-axis textured hexagonally faceted nanorods. Increase of the work function value from 4.45 to 4.75 eV was observed with Ag content increase, which is attributed to Ag behaviour as a donor impurity. It was observed, that near-band edge emission of ZnO NS was enhanced with Ag doping as a result of quenching deep-level emission. Upon high doping of ZnO by Ag it tends to promote the formation of basal plane stacking faults defect, as it was observed by HR TEM and PL study in the case of 10 wt.% of Ag. Based on the results obtained, it is suggested that NS deposition at lower temperatures (220-300 °C) is more favorable for p-type doping of ZnO.
Optical band gap in a cholesteric elastomer doped by metallic nanospheres
NASA Astrophysics Data System (ADS)
Hernández, Julio C.; Reyes, J. Adrián
2017-12-01
We analyzed the optical band gaps for axially propagating electromagnetic waves throughout a metallic doped cholesteric elastomer. The composed medium is made of metallic nanospheres (silver) randomly dispersed in a cholesteric elastomer liquid crystal whose dielectric properties can be represented by a resonant effective uniaxial tensor. We found that the band gap properties of the periodic system greatly depend on the volume fraction of nanoparticles in the cholesteric elastomer. In particular, we observed a displacement of the reflection band for quite small fraction volumes whereas for larger values of this fraction there appears a secondary band in the higher frequency region. We also have calculated the transmittance and reflectance spectra for our system. These calculations verify the mentioned band structure and provide additional information about the polarization features of the radiation.
Fa, Wei; Zhou, Jian; Dong, Jinming
2013-04-07
Substitutional doping of gold and copper atoms in a (4, 4) silver single-wall nanotube has been investigated using first-principles simulations. It is found that the Au- and Cu-substitutional doping of the tip-suspended (4, 4) Ag tube can maintain the hollow tubular structure at different alloy compositions due to the existence of a local minimum in the string tension variation with their unit cell lengths. The bonding energy differences between the mono-elements and hetero-elements and string tension may play important roles in suppressing the "self-purification" effects so that the nanoalloy tubes can be formed. Analysis of the band structure suggests that the number of conduction channels of the Ag-Au alloy tubes may lie between the pure (4, 4) Ag and Au tubes.
A density functional global optimisation study of neutral 8-atom Cu-Ag and Cu-Au clusters
NASA Astrophysics Data System (ADS)
Heard, Christopher J.; Johnston, Roy L.
2013-02-01
The effect of doping on the energetics and dimensionality of eight atom coinage metal subnanometre particles is fully resolved using a genetic algorithm in tandem with on the fly density functional theory calculations to determine the global minima (GM) for Cu n Ag(8- n) and Cu n Au(8- n) clusters. Comparisons are made to previous ab initio work on mono- and bimetallic clusters, with excellent agreement found. Charge transfer and geometric arguments are considered to rationalise the stability of the particular permutational isomers found. An interesting transition between three dimensional and two dimensional GM structures is observed for copper-gold clusters, which is sharper and appears earlier in the doping series than is known for gold-silver particles.
NASA Astrophysics Data System (ADS)
Zhang, Yaoyao; Li, Mengyao; Guo, Yinli
2018-01-01
A series of Ag-doped TiO2 powder photocatalysts were prepared by the sol-gel method. The phase structure and morphology of the samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The persistent organic pollutant sodium pentachlorophenol ate (PCP-Na) was selected as the target pollutant, and the photocatalytic property of the material Ag/TiO2 was evaluated by PCP-Na degradation rate. It was found that the calcination at 450 °C was conducive to form the anatase structure with high catalytic activity, and the catalytic activity was higher when the silver mole fraction of Ag/TiO2 was 0.50%. The influence of Ag/TiO2 dosage, hydrogen peroxide volume, silver mole fraction and PCP-Na initial concentration was investigated by the single factor experiment.
Evaluation to the effect of B2O3-La2O3-SrO-Na2O-Al2O3 bonding agent on Ti6Al4V-porcelain bonding.
Zhao, C Q; Wu, S Q; Lu, Y J; Gan, Y L; Guo, S; Lin, J J; Huang, T T; Lin, J X
2016-10-01
Low-fusing bonding agents have been widely applied in Ti-ceramics restorations. As an important category, borate bonding agents have great potentials in increasing Ti-porcelain bonding. The purpose of this study is to evaluate the effect of borate bonding agent with addition of Na2O and Al2O3 on Ti6Al4V-porcelain bonding. The thermal properties of borate bonding agent, such as glass transition temperature (Tg) and crystallization peak temperature (Tp), were investigated to establish the sintering process. And the coefficient of thermal expansion (CTE) was to evaluate the matching effect of porcelain to Ti6Al4V. The bond strength was analyzed by the three point bending test. The microscopic morphology of the borate bonding agent surface after sintering, the interface of Ti-borate bonding agent-porcelain, and the fracture mode after porcelains fracture, were studied to assess the influence of borate bonding agent on Ti6Al4V-ceramics. With the addition of Na2O and Al2O3, the porcelain residues were observed increased indication on the Ti6Al4V surface after porcelain fracture and the bond strength was acquired the maximum (49.45MPa) in the bonding agent composition of 75.70B2O3-5.92La2O3-11.84SrO-4.67Na2O-1.87Al2O3. Those results suggest that borate bonding agent is an effective way to improve the Ti6Al4V-ceramics bond strength. And the addition of Na2O and Al2O3 strengthen this effect. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Mechanism of Boron Mobility in Wheat and Canola Phloem1[C][OA
Stangoulis, James; Tate, Max; Graham, Robin; Bucknall, Martin; Palmer, Lachlan; Boughton, Berin; Reid, Robert
2010-01-01
Low-molecular-weight borate complexes were isolated from canola (Brassica napus) and wheat (Triticum aestivum) phloem exudates, as well as the cytoplasm of the fresh-water alga Chara corallina, and identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Phloem exudate was collected from field-grown canola inflorescence stalks by shallow incision, while wheat phloem exudate was collected by aphid stylectomy. Chara cytoplasm was collected by careful manual separation of the cell wall, vacuole, and cytosolic compartments. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry showed the presence of isotopic borate complexes, at mass-to-charge ratio of 690.22/691.22 in the canola and wheat phloem and at 300.11/301.11 in canola phloem and Chara cytoplasm. Using reference compounds, the borate complexes with mass-to-charge ratio 690.22/691.22 was identified as a bis-sucrose (Suc) borate complex in which the 4,6-hydroxyl pairs from the two α-glucopyranoside moieties formed an [L2B]−1 complex. Further investigation using liquid chromatography electrospray ionization triple quadrupole mass spectrometry analysis confirmed the presence of the bis-Suc borate complex in wheat phloem with a concentration up to 220 μm. The 300.11/301.11 complex was putatively identified as a bis-N-acetyl-serine borate complex but its concentration was below the detection limits of the liquid chromatography electrospray ionization triple quadrupole mass spectrometer so could not be quantified. The presence of borate complexes in the phloem provides a mechanistic explanation for the observed phloem boron mobility in canola and wheat and other species that transport Suc as their primary photoassimilate. PMID:20413647
Geochemical characteristics of The Emet (Espey-Hisarcik) borate deposits, Kütahya, Turkey
NASA Astrophysics Data System (ADS)
Koçak, İ.; Koç, Ş.
2018-06-01
Nearly 72% world's borate reserves are in western part of Turkey. The Emet (Kütahya) deposit is one of these deposits. The Emet borate deposit, like other deposits in western Anatolia, was deposited in Miocene lacustrine environment whose formation coincides with volcanic activity started in Paleogene and lasted to the beginning of Quaternary. The borate ore displaying lenticular structure is alternated with claystone, marl, tuff and thin bedded limestone. The mineral paragenesis is composed of colemanite, hydroboracite, Veatchite, dolomite, calcite, montmorillonite and illite. The Emet borate deposit has been the subject of various geologic and mineralogical studies. In the present study major and trace element contents of 60 borate samples from this deposit are discussed. Among the trace elements, significant enrichment was found in As, Se, Sr, Cs, Sb and Li. Element correlations indicate volcanic source for boron (exhalations and hydrothermal solutions) whilst other elements are found to be derived from a terrestrial source. According to REE data, high Ce concentrations and anomalies are generally indicative of oxygenated depositional environment whilst low Ce contents facilitated the lake waters to be low oxygenated as a result of H2S-rich hydrothermal solutions. The weak negative anomaly detected only in the Hisarcık region is attributed to lacking of Eu contribution to the lake due to insufficient alteration on the continent.
Strontium borate glass: potential biomaterial for bone regeneration
Pan, H. B.; Zhao, X. L.; Zhang, X.; Zhang, K. B.; Li, L. C.; Li, Z. Y.; Lam, W. M.; Lu, W. W.; Wang, D. P.; Huang, W. H.; Lin, K. L.; Chang, J.
2010-01-01
Boron plays important roles in many life processes including embryogenesis, bone growth and maintenance, immune function and psychomotor skills. Thus, the delivery of boron by the degradation of borate glass is of special interest in biomedical applications. However, the cytotoxicity of borate glass which arises with the rapid release of boron has to be carefully considered. In this study, it was found that the incorporation of strontium into borate glass can not only moderate the rapid release of boron, but also induce the adhesion of osteoblast-like cells, SaOS-2, thus significantly increasing the cyto-compatibility of borate glass. The formation of multilayers of apatite with porous structure indicates that complete degradation is optimistic, and the spread of SaOS-2 covered by apatite to form a sandwich structure may induce bone-like tissue formation at earlier stages. Therefore, such novel strontium-incorporated borosilicate may act as a new generation of biomaterial for bone regeneration, which not only renders boron as a nutritious element for bone health, but also delivers strontium to stimulate formation of new bones. PMID:20031984
NASA Astrophysics Data System (ADS)
Scorei, Romulus
2012-02-01
Boron is probably a prebiotic element with special importance in the so-called "sugars world". Boron is not present on Earth in its elemental form. It is found only in compounds, e.g., borax, boric acid, kernite, ulexite, colemanite and other borates. Volcanic spring waters sometimes contain boron-based acids (e.g., boric, metaboric, tetraboric and pyroboric acid). Borates influence the formation of ribofuranose from formaldehyde that feeds the "prebiotic metabolic cycle". The importance of boron in the living world is strongly related to its implications in the prebiotic origins of genetic material; consequently, we believe that throughout the evolution of life, the primary role of boron has been to provide thermal and chemical stability in hostile environments. The complexation of boric acid and borates with organic cis-diols remains the most probable chemical mechanism for the role of this element in the evolution of the living world. Because borates can stabilize ribose and form borate ester nucleotides, boron may have provided an essential contribution to the "pre-RNA world".
Deliormanlı, Aylin M
2015-02-01
Bioactive glasses are widely used in biomedical applications due to their ability to bond to bone and even to soft tissues. In this study, borate based (13-93B3) bioactive glass powders containing up to 5 wt% Ce2O3 and Ga2O3 were prepared by the melt quench technique. Cerium (Ce+3) and gallium (Ga+3) were chosen because of their low toxicity associated with bacteriostatic properties. Bioactive glass scaffolds were fabricated using the polymer foam replication method. In vitro degradation and bioactivity of the scaffolds were evaluated in SBF under static conditions. Results revealed that the cerium- and gallium-containing borate glasses have much lower degradation rates compared to the bare borate glass 13-93B3. In spite of the increased chemical durability, substituted glasses exhibited a good in vitro bioactive response except when the Ce2O3 content was 5 wt%. Taking into account the high in vitro hydroxyapatite forming ability, borate glass scaffolds containing Ce+3 and Ga+3 therapeutic ions are promising candidates for bone tissue engineering applications.
Strontium borate glass: potential biomaterial for bone regeneration.
Pan, H B; Zhao, X L; Zhang, X; Zhang, K B; Li, L C; Li, Z Y; Lam, W M; Lu, W W; Wang, D P; Huang, W H; Lin, K L; Chang, J
2010-07-06
Boron plays important roles in many life processes including embryogenesis, bone growth and maintenance, immune function and psychomotor skills. Thus, the delivery of boron by the degradation of borate glass is of special interest in biomedical applications. However, the cytotoxicity of borate glass which arises with the rapid release of boron has to be carefully considered. In this study, it was found that the incorporation of strontium into borate glass can not only moderate the rapid release of boron, but also induce the adhesion of osteoblast-like cells, SaOS-2, thus significantly increasing the cyto-compatibility of borate glass. The formation of multilayers of apatite with porous structure indicates that complete degradation is optimistic, and the spread of SaOS-2 covered by apatite to form a sandwich structure may induce bone-like tissue formation at earlier stages. Therefore, such novel strontium-incorporated borosilicate may act as a new generation of biomaterial for bone regeneration, which not only renders boron as a nutritious element for bone health, but also delivers strontium to stimulate formation of new bones.
Secondary relaxations in supercooled and glassy sucrose-borate aqueous solutions.
Longinotti, M Paula; Corti, Horacio R; Pablo, Juan J de
2008-10-13
The dielectric relaxation spectra of concentrated aqueous solutions of sucrose-borate mixtures have been measured in the supercooled and glassy regions in the frequency range of 40Hz to 2MHz. The secondary (beta) relaxation process was analyzed in the temperature range 183-233K at water contents between 20 and 30wt%. The relaxation times were obtained, and the activation energy of that process was calculated. In order to assess the effect of borate on the relaxation of disaccharide-water mixtures, we also studied the dielectric behavior of sucrose aqueous solutions in the same range of temperatures and water contents. Our findings support the view that, beyond a water content of approximately 20wt%, the secondary relaxation of water-sucrose and water-sucrose-borate mixtures adopts a universal character that can be explained in terms of a simple exponential function of the temperature scaled by the glass transition temperature (T(g)). The behavior observed for water-sucrose and water-sucrose-borate mixtures is compared with previous results obtained in other water-carbohydrate systems.
Park, Jung Tae; Chi, Won Seok; Jeon, Harim; Kim, Jong Hak
2014-03-07
TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements.
Doping Ag in ZnO Nanorods to Improve the Performance of Related Enzymatic Glucose Sensors.
Zhou, Fan; Jing, Weixuan; Liu, Pengcheng; Han, Dejun; Jiang, Zhuangde; Wei, Zhengying
2017-09-27
In this paper, the performance of a zinc oxide (ZnO) nanorod-based enzymatic glucose sensor was enhanced with silver (Ag)-doped ZnO (ZnO-Ag) nanorods. The effect of the doped Ag on the surface morphologies, wettability, and electron transfer capability of the ZnO-Ag nanorods, as well as the catalytic character of glucose oxidase (GOx) and the performance of the glucose sensor was investigated. The results indicate that the doped Ag slightly weakens the surface roughness and hydrophilicity of the ZnO-Ag nanorods, but remarkably increases their electron transfer ability and enhances the catalytic character of GOx. Consequently, the combined effects of the above influencing factors lead to a notable improvement of the performance of the glucose sensor, that is, the sensitivity increases and the detection limit decreases. The optimal amount of the doped Ag is determined to be 2 mM, and the corresponding glucose sensor exhibits a sensitivity of 3.85 μA/(mM·cm²), detection limit of 1.5 μM, linear range of 1.5 × 10 -3 -6.5 mM, and Michaelis-Menten constant of 3.87 mM. Moreover, the glucose sensor shows excellent selectivity to urea, ascorbic acid, and uric acid, in addition to displaying good storage stability. These results demonstrate that ZnO-Ag nanorods are promising matrix materials for the construction of other enzymatic biosensors.
Synthesis and Spectroscopy of Silver-Doped PbSe Quantum Dots
Kroupa, Daniel M.; Hughes, Barbara K.; Miller, Elisa M.; ...
2017-06-25
Electronic impurity doping of bulk semiconductors is an essential component of semiconductor science and technology. Yet there are only a handful of studies demonstrating control of electronic impurities in semiconductor nanocrystals. Here, we studied electronic impurity doping of colloidal PbSe quantum dots (QDs) using a postsynthetic cation exchange reaction in which Pb is exchanged for Ag. We found that varying the concentration of dopants exposed to the as-synthesized PbSe QDs controls the extent of exchange. The electronic impurity doped QDs exhibit the fundamental spectroscopic signatures associated with injecting a free charge carrier into a QD under equilibrium conditions, including amore » bleach of the first exciton transition and the appearance of a quantum-confined, low-energy intraband absorption feature. Photoelectron spectroscopy confirms that Ag acts as a p-type dopant for PbSe QDs and infrared spectroscopy is consistent with k • p calculations of the size-dependent intraband transition energy. We find that to bleach the first exciton transition by an average of 1 carrier per QD requires that approximately 10% of the Pb be replaced by Ag. Here, we hypothesize that the majority of incorporated Ag remains at the QD surface and does not interact with the core electronic states of the QD. Instead, the excess Ag at the surface promotes the incorporation of <1% Ag into the QD core where it causes p-type doping behavior.« less
NASA Astrophysics Data System (ADS)
Lin, Ray-Ming; Lu, Yuan-Chieh; Chou, Yi-Lun; Chen, Guo-Hsing; Lin, Yung-Hsiang; Wu, Meng-Chyi
2008-06-01
We have studied the characteristics of blue InGaN /GaN multiquantum-well light-emitting diodes (LEDs) after reducing the length of the lateral current path through the transparent layer through formation of a peripheral high-resistance current-blocking region in the Mg-doped GaN layer. To study the mechanism of selective activation in the Mg-doped GaN layer, we deposited titanium (Ti), gold (Au), Ti /Au, silver, and copper individually onto the Mg-doped GaN layer and investigated their effects on the hole concentration in the p-GaN layer. The Mg-doped GaN layer capped with Ti effectively depressed the hole concentration in the p-GaN layer by over one order of magnitude relative to that of the as-grown layer. This may suggest that high resistive regions are formed by diffusion of Ti and depth of high resistive region from the p-GaN surface depends on the capped Ti film thickness. Selective activation of the Mg-doped GaN layer could be used to modulate the length of the lateral current path. Furthermore, the external quantum efficiency of the LEDs was improved significantly after reducing the lateral current spreading length. In our best result, the external quantum efficiency was 52.3% higher (at 100mA) than that of the as-grown blue LEDs.
Nielsen, Michele D.; Jaworski, Christopher M.; Heremans, Joseph P.
2015-03-20
AgSbTe 2 is a thermoelectric semiconductor with an intrinsically low thermal conductivity and a valence band structure that is favorable to obtaining a high thermoelectric figure of merit zT. It also has a very small energy gap Eg ~ 7.6 ± 3 meV. As this gap is less than the thermal excitation energy at room temperature, near-intrinsic AgSbTe 2 is a two carrier system having both holes (concentration p) and electrons ( n). Good thermoelectric performance requires heavy p-type doping ( p > > n). This can be achieved with native defects or with extrinsic doping, e.g. with transition metalmore » element. The use of defect doping is complicated by the fact that many of the ternary Ag-Sb-Te and pseudo-binary Sb 2Te 3-Ag 2Te phase diagrams are contradictory. This paper determines the compositional region most favorable to creating a single phase material. Through a combination of intrinsic and extrinsic doping, values of zT > 1 are achieved, though not on single-phased material. In addition, we show that thermal conductivity is not affected by defects, further demonstrating that the low lattice thermal conductivity of I-V-VI 2 materials is due to an intrinsic mechanism, insensitive to changes in defect structure.« less
NASA Astrophysics Data System (ADS)
Frost, Ray L.; López, Andrés; Xi, Yunfei; Scholz, Ricardo; Souza, Larissa; Lana, Cristiano
2014-07-01
We have studied the borate mineral rhodizite (K, Cs)Al4Be4(B, Be)12O28 using a combination of DEM with EDX and vibrational spectroscopic techniques. The mineral occurs as colorless, gray, yellow to white crystals in the triclinic crystal system. The studied sample is from the Antandrokomby Mine, Sahatany valley, Madagascar. The mineral is prized as a semi-precious jewel. Semi-quantitative chemical composition shows a Al, Ca, borate with minor amounts of K, Mg and Cs. The mineral has a characteristic borate Raman spectrum and bands are assigned to the stretching and bending modes of B, Be and Al. No Raman bands in the OH stretching region were observed.
2002-07-02
cobalt , zirconia, boron carbide, BN, SiC, Si3 N4, zirconium carbide, chromium , gold, silver, platinum, osmium, and the like. The TiB2 (melting point 29000...possible with the new diamond doping Periodic Table such as N, P, As, Sb, Bi, V, Cb, Ta, Pa; method. elements in the Sixth Group (0, S, Se, Te, Po, Cr ...also the surface of many reactive others are done at low temperatures to avoid unwanted metals such as aluminum, magnesium, chromium , silicon, thermal
Formation and Cytotoxicity of Nanoparticles and Nanocubes Prepared from Gold and Silver Salts
NASA Astrophysics Data System (ADS)
Banker, Daniel; Dorrell, Skyler; Ivey, Prescott; Scurti, Joseph; Dobbins, Tabbetha
Photothermal therapy is the use of electromagnetic radiation as the treatment for medical conditions such as cancer. Noble metal nanoparticles and nanocubes are brought to an excited state with laser light and as a result they release vibrational energy in the form of heat, which can be used to kill targeted cancer cells. Wet chemistry gives the basics for the preparation of nanoparticles and nanocubes. Using HAuCl4, AgNO3, tri-sodium citrate and other chemicals, we were able to successfully create gold and silver nanoparticles and nanocubes. The goal is to make sure that 3T3 cells can survive in a nanoparticle or nanocube doped medium so that we can then observe their reaction to photothermal effects. Cell culture techniques were done to 3T3 cells to keep them alive before the testing of cytotoxicity. Photothermal effect refers to the way that our nanoparticles or nanocubes can be photoexcited to release enough heat to kill the cells. We used a UV-Vis spectrophotometer to ensure that the correct wavelength laser. Assuming that the cells will survive living in the doped medium, a medium that has had nanomaterials introduced into it, we will use a high powered laser to observe what the excitation does to the cells since the photothermal effect should result in dead cells.
NASA Astrophysics Data System (ADS)
Ahmadi, F.; Hussin, R.; Ghoshal, S. K.
2017-11-01
We report the modified optical properties of Sm3+ doped magnesium zinc sulfophosphate glass system with silver nanoparticles (Ag NPs) inclusion. Three glass samples were prepared using melt quenching method and characterized. TEM images revealed the nucleation of Ag NPs with average diameter ≈12.50 nm. The UV-Vis-NIR spectra showed thirteen absorption bands. The surface plasmon resonance (SPR) band of Ag NPs was manifested at 446 nm. FTIR spectra disclosed the bonding vibrations for P-O bonds, P-O-P linkages, and PO2 units. Ag NPs concentration dependent bonding parameters and Judd-Ofelt (JO) intensity parameters were calculated. The JO parameter Ω2 was reduced with the increase of Ag NPs contents, indicating the ionicity and symmetry enhancement between Sm3+ ions with their surrounding ligands. The emission spectra of all samples under the excitation wavelength of 402 nm exhibited four significant peaks centered at 562, 599, 644 and 702 nm which are allocated to 4G5/2 →6H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions, respectively. Inclusion of Ag NPs was discerned to augment the luminescence intensity by a factor of two, which was majorly ascribed to the local field effect of Ag NPs and subsequent energy transfer from the NPs to Sm3+ ions.
In vitro chemical and biological effects of Ag, Cu and Cu + Zn adjunction in 46S6 bioactive glasses
NASA Astrophysics Data System (ADS)
Bunetel, L.; Wers, E.; Novella, A.; Bodin, A.; Pellen-Mussi, P.; Oudadesse, H.
2015-09-01
Three bioactive glasses belonging to the system SiO2-CaO- Na2O-P2O5 elaborated by conventional melt-quenching techniques were doped with silver, copper and copper + zinc. They were characterized using the usual physical methods. Human osteoblast cells Saos-2 and human endothelial cells EAhy926 were used for viability assays and to assess the metallic ions, self toxicity. Human monocyte cells THP-1 were used to measure interleukins IL1β and IL6 release. Glass chemical structures did not vary much on introduction of metal ions. A layer of hydroxyapatite was observed on every glass after 30 days of SBF immersion. A proliferative action was seen on Saos-2 after 24 h of incubation, EAhy926 growth was not affected. For both cell lines, a moderate cytotoxicity was found after 72 h. Dose-dependent toxic effects of Ag, Cu and Zn ions were observed on Saos-2 and EAhy926 cells. Measured CD50 of silver against these two cell lines were 8 to 20 fold lower than copper and zinc’s. Except undoped control glass, all doped glasses tested showed anti-inflammatory properties by preventing IL1β and IL6 excretion by differentiated THP-1. In conclusion, strictly monitored adjunction of metal ions to bioglasses ensures good anti-inflammatory properties without altering their biocompatibility.
Polymer based plasmonic elements with dye molecules
NASA Astrophysics Data System (ADS)
Zhang, Douguo; Wang, Xiangxian; Chen, Yikai; Han, Lu; Wang, Pei; Ming, Hai
2012-11-01
Recently, dielectric loaded surface plasmons (SPs) elements are inducing highly interesting in the field of nanooptics, which are composed of dielectric nanostructures fabricated on a metallic thin film. This configuration will provide a route to novel integrated micro-optical devices and components combining photonics and electronics on the same chip. The advantages are easy fabrication, easy integration, and also the potential to realizing active plasmonic devices. In this talk, we will present our recent work in this field. Polymer (PMMA) nano-structures are fabricated on a silver film by the electron beam lithography (EBL) and laser interference lithography. These nano-structures are used to manipulate the behaviors of the SPs, such as converging, diverging, and guiding the propagation of SPs in subwavelength scale. Except for the pure PMMA nano-structures, dye materials (Rhodamine B, RhB) doped PMMA structures are also fabricated on the silver film. The RhB molecules will work as the active medium to excite the SPs or compensation the loss of SPs wave. The dye doped PMMA nanostructure provides a choice to realize active plasmonic elements, such as SPs Bragg gratings. On the other hand, the interaction between the fluorescence molecules and SPs will give rise to some new optical phenomena, such as directional fluorescence emission, anisotropic fluorescence emission. These polymer based plasmonic structures are investigated with a home-built leakage radiation microscopy (LRM).
NASA Astrophysics Data System (ADS)
Pan, Hongfei; Zhao, Xiaona; Fu, Zhanming; Tu, Wenmao; Fang, Pengfei; Zhang, Haining
2018-06-01
High recombination rate of photogenerated electron-hole pairs and relatively narrow photoresponsive range of TiO2-based photocatalysts are the remaining challenges for their practical applications. To address such challenges, photocatalysts consisting of AgCl covered Ag nanoparticles (AgCl@Ag), titanate nanotubes (TiNT), and nitrogen-doped reduced graphite oxide (rGON) are fabricated through alkaline hydrothermal process, followed by deposition and in situ surface-oxidation of silver nanoparticles. In the synthesized photocatalysts, the titanate nanotubes have average length of about 100 nm with inner diameters of about 5 nm and the size of the formed silver nanoparticles is in the range of 50-100 nm. The synthesized photocatalyst degrades almost all the model organic pollutant Rhodamine B in 35 min and remains 90% of photocatalytic efficiency after 5 degradation cycles under visible light irradiation. Since the oxidant FeCl3 applied for oxidation of surface Ag to AgCl is difficult to be completely removed due to the high adsorption capacity of TiNT and rGON, the effect of reside Fe atoms on photocatalytic activity is evaluated and the results reveal that the residue Fe atom only affect the initial photodegradation performance. Nevertheless, the results demonstrate that the formed composite catalyst is a promising candidate for antibiosis and remediation in aquatic environmental contamination.
NASA Astrophysics Data System (ADS)
Madhavi, V.; Kondaiah, P.; Mohan Rao, G.
2018-04-01
Decreasing recombination of photogenerated charge carriers in photocatalysts is a critical issue for enhancing the efficiency of dye degradation. It is one of the greatest challenges to reduce the recombination of photo generated charge carriers in semiconductor. In this paper, we report that there is an enhancement of photocatalytic activity in presence of Sun light, by introducing Plasmon (silver nanoparticles (Ag)) onto the titanium oxide (TiO2) and nitrogen incorporated titanium oxide (N-TiO2) films. These silver nanoparticles facilitate the charge transport and separation of charge carriers. In this paper we find that the phase transformation accurse from rutile to anatase with increase of nitrogen flow rates. The FE-SEM analysis showed the micro structure changes to dense columnar growth with increase of nitrogen flow rates. XPS studies of the N-TiO2 thin films revealed that the substitution of N atoms within the O sites plays a crucial role in narrowing the band gap of the TiO2. This enables the absorption of visible light radiation and leads to operation of the film as a highly reactive and effective photocatalysis. The synergetic effect of silver nanoparticles on TiO2 and N-TiO2 films tailored the photocatalytic acitivity, charge transfer mechanism, and photocurrent studies. The silver nanoparticle loaded N-TiO2 films showed highest degradation of 95% compare to the N-TiO2 films. The photo degradation rate constant of Ag/N-TiO2 film was larger than the N-TiO2 films.
NASA Astrophysics Data System (ADS)
Markina, Natalia E.; Markin, Alexey V.; Zakharevich, Andrey M.; Gorin, Dmitry A.; Rusanova, Tatiana Yu.; Goryacheva, Irina Yu.
2016-12-01
Multifunctional silica gel with embedded silver nanoparticles (SiO2-AgNP) is proposed for application as sorbent for solid-phase extraction (SPE) and simultaneously as substrate for surface-enhanced Raman spectroscopy (SERS) due to their high sorption properties and ability to enhance Raman signal (SERS-active sorbents). SiO2-AgNP was synthesized via alkaline hydrolysis of tetraethyl orthosilicate with simultaneous reduction of silver ions to silver nanoparticles (AgNP) within the SiO2 bulk. Synthesis of AgNP directly to the SiO2 matrix enables to exclude any additional stabilizers for the nanoparticles that educes signal-to-noise ratio during SERS measurement. Apart from Raman spectroscopy, obtained sorbents were also characterized by scanning electron microscopy and UV-visible diffuse reflectance spectroscopy. The influence of AgNO3 concentration used during the SiO2-AgNP synthesis on its gelling time, color, diffuse reflectance spectra, and enhancement of Raman signal was investigated. A Raman enhancement factor of SiO2-AgNP with optimal composition was around 105. Finally, the sorbents were applied for SPE and subsequent SERS detection of model compounds (rhodamine 6G and folic acid). It was found that SPE enables to decrease detectable concentrations by two orders. Therefore, SPE combined with SERS has high potential for further analytical investigations.
NASA Astrophysics Data System (ADS)
Rasamani, Kowsalya D.; Foley, Jonathan J., IV; Sun, Yugang
2018-03-01
Silver-doped silver chloride [AgCl(Ag)] nanoparticles represent a unique class of visible-light-driven photocatalysts, in which the silver dopants introduce electron-abundant mid-gap energy levels to lower the bandgap of AgCl. However, free-standing AgCl(Ag) nanoparticles, particularly those with small sizes and large surface areas, exhibit low colloidal stability and low compositional stability upon exposure to light irradiation, leading to easy aggregation and conversion to metallic silver and thus a loss of photocatalytic activity. These problems could be eliminated by attaching the small AgCl(Ag) nanoparticles to the surfaces of spherical dielectric silica particles with submicrometer sizes. The high optical transparency in the visible spectral region (400-800 nm), colloidal stability, and chemical/electronic inertness displayed by the silica spheres make them ideal for supporting photocatalysts and significantly improving their stability. The spherical morphology of the dielectric silica particles can support light scattering resonances to generate significantly enhanced electric fields near the silica particle surfaces, on which the optical absorption cross-section of the AgCl(Ag) nanoparticles is dramatically increased to promote their photocatalytic activity. The hybrid silica/AgCl(Ag) structures exhibit superior photocatalytic activity and stability, suitable for supporting photocatalysis sustainably; for instance, their efficiency in the photocatalytic decomposition of methylene blue decreases by only ˜9% even after ten cycles of operation.
Mineral resource of the month: boron
Crangle, Robert D.
2012-01-01
The article offers information on the mineral, boron. Boron compounds, particularly borates, have more commercial applications than its elemental relative which is a metalloid. Making up the 90% of the borates that are used worldwide are colemanite, kernite, tincal, and ulexite. The main borate deposits are located in the Mojave Desert of the U.S., the Tethyan belt in southern Asia, and the Andean belt of South America. Underground and surface mining are being used in gathering boron compounds. INSETS: Fun facts;Boron production and consumption.
High-pressure synthesis and characterization of the first cerium fluoride borate CeB{sub 2}O{sub 4}F
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinteregger, Ernst; Wurst, Klaus; Tribus, Martina
2013-08-15
CeB{sub 2}O{sub 4}F is the first cerium fluoride borate, which is exclusively built up of one-dimensional, infinite chains of condensed trigonal-planar [BO{sub 3}]{sup 3−} groups. This new cerium fluoride borate was synthesized under high-pressure/high-temperature conditions of 0.9 GPa and 1450 °C in a Walker-type multianvil apparatus. The compound crystallizes in the orthorhombic space group Pbca (No. 61) with eight formula units and the lattice parameters a=821.63(5), b=1257.50(9), c=726.71(6) pm, V=750.84(9) Å{sup 3}, R{sub 1}=0.0698, and wR{sub 2}=0.0682 (all data). The structure exhibits a 9+1 coordinated cerium ion, one three-fold coordinated fluoride ion and a one-dimensional chain of [BO{sub 3}]{sup 3−}more » groups. Furthermore, IR spectroscopy, Electron Micro Probe Analysis and temperature-dependent X-ray powder diffraction measurements were performed. - Graphical abstract: A new rare-earth fluoride borate CeB{sub 2}O{sub 4}F could be synthesized under high-pressure/high-temperature conditions of 0.9 °GPa and 1450 °Cin a Walker-type multianvil apparatus. The crystal structure represents a new structure type in the class of rare-earth fluoride borates. The structure exhibits a 9+1 coordinated cerium ion, one three-fold coordinated fluoride ion and a one-dimensional chain of [BO{sub 3}]{sup 3−} groups. A closer view on the ac-plane shows an interesting wave-like modulation of the borate chains. Highlights: • CeB{sub 2}O{sub 4}F is the first fluoride borate exclusively built up of one-dimensional, infinite chains of condensed trigonal-planar [BO{sub 3}]{sup 3−} groups. • CeB{sub 2}O{sub 4}F is the first cerium fluoride borate. • High-pressure conditions were necessary to synthesize CeB{sub 2}O{sub 4}F.« less
Green colorants based on energetic azole borates.
Glück, Johann; Klapötke, Thomas M; Rusan, Magdalena; Stierstorfer, Jörg
2014-11-24
The investigation of green-burning boron-based compounds as colorants in pyrotechnic formulations as alternative for barium nitrate, which is a hazard to health and to the environment, is reported. Metal-free and nitrogen-rich dihydrobis(5-aminotetrazolyl)borate salts and dihydrobis(1,3,4-triazolyl)borate salts have been synthesized and characterized by NMR spectroscopy, elemental analysis, mass spectrometry, and vibrational spectroscopy. Their thermal and energetic properties have been determined as well. Several pyrotechnic compositions using selected azolyl borate salts as green colorants were investigated. Formulations with ammonium dinitramide and ammonium nitrate as oxidizers and boron and magnesium as fuels were tested. The burn time, dominant wavelength, spectral purity, luminous intensity, and luminous efficiency as well as the thermal and energetic properties of these compositions were measured. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Frost, Ray L; López, Andrés; Xi, Yunfei; Scholz, Ricardo; Souza, Larissa; Lana, Cristiano
2014-07-15
We have studied the borate mineral rhodizite (K, Cs)Al4Be4(B, Be)12O28 using a combination of DEM with EDX and vibrational spectroscopic techniques. The mineral occurs as colorless, gray, yellow to white crystals in the triclinic crystal system. The studied sample is from the Antandrokomby Mine, Sahatany valley, Madagascar. The mineral is prized as a semi-precious jewel. Semi-quantitative chemical composition shows a Al, Ca, borate with minor amounts of K, Mg and Cs. The mineral has a characteristic borate Raman spectrum and bands are assigned to the stretching and bending modes of B, Be and Al. No Raman bands in the OH stretching region were observed. Copyright © 2014 Elsevier B.V. All rights reserved.
Thermally reversible gels in electrophoresis. I - Matrix characterization
NASA Technical Reports Server (NTRS)
Righetti, Pier Giorgio; Snyder, Robert S.
1988-01-01
Two series of thermally reversible hydrogen-bonded gels have been characterized: (5 pct) PVA-(4 pct) PEG and (5 pct) PVA-(0.04 pct) borate gels. They both have extremely low melting points (16-17 C) and could be of potential interest for recovery of proteins after preparative electrophoresis. The PVA-borate gels can be exploited in the pH range 7-11 by progressively increasing the borate content in the pH interval 8 to 7 and concomitantly decreasing the borate levels in the pH zone 8 to 11. It is hypothesized that the low melting point of these gels is due to the fact that they are sparingly and sparsely hydrogen bonded along the PVA chain: on the average, 1 OH group out of 3 or 4 OH groups in the PVA polymer should be engaged in H-bond formation.
NASA Astrophysics Data System (ADS)
Vijayakumar, M.; Mahesvaran, K.; Patel, Dinesh K.; Arunkumar, S.; Marimuthu, K.
2014-11-01
Dy3+ doped Aluminofluoroborophosphate glasses (BPAxD) have been prepared following conventional melt quenching technique and their structural and optical properties were explored through XRD, FTIR, optical absorption, excitation, emission and decay measurements. The coexistence of BO3 groups in borate rich domain and BO4 groups in phosphate rich domain have been confirmed through vibrational energy analysis. Negative bonding parameter (δ) values indicate that, the metal-ligand environment in the prepared glasses is of ionic in nature. The oscillator strength and the luminescent intensity Ωλ (λ = 2, 4 and 6) parameters are calculated using Judd-Ofelt theory. The radiative properties such as transition probability (A), stimulated emission cross-section (σpE) and branching ratios (β) have been calculated using JO intensity parameters and compared with the reported Dy3+ doped glasses. Concentration effect on Y/B intensity ratios and the CIE chromaticity coordinates were calculated for the generation of white light from the luminescence spectra. The color purity and the correlated color temperature were also calculated and the results are discussed in the present work. The decay of the 4F9/2 excited level is found to be single exponential for lower concentration and become non-exponential for higher concentration. The non-exponential behavior arises due to the efficient energy transfer between the Dy3+ ions through various non-radiative relaxation channels and the decay of the 4F9/2 excited level have been analyzed with IH model. Among the prepared glasses, BPA0.5D glass exhibits higher σpE, βR, σpE×σpE, σpE×Δλeff and η values for the 6H13/2 emission band which in turn specifies its suitability for white LEDs, laser applications and optical amplifiers.
Gupta, Vinod Kumar; Fakhri, Ali; Azad, Mona; Agarwal, Shilpi
2018-01-15
In this study, the photocatalytic degradation of Strychnine was investigated by ZnS quantum dots and doped with silver in UV systems. ZnS and Ag-ZnS quantum dots were synthesized by chemical method and characterized by powder X-ray diffraction, transmission electron microscopy, UV-vis spectra and photoluminescence. The charge transfer process on the semicon-ductor/electrolyte interface was investigated via electrochemical impedance spectroscopy (EIS) and time-resolved photoluminescence. The average diameters of ZnS and Ag doped ZnS QDs were 3.0-5.0nm and 3.0-5.3nm, respectively. The band gap of ZnS and Ag-ZnS QDs was computed as 3.47 and 3.1eV, respectively. The surface area values of ZnS and Ag-ZnS QDs have been found as 78.25 and 89.54m 2 /g, respectively. The influences of key operating parameters such as initial pH, catalyst dosage, UV radiation intensity, reaction time as well as the effect of initial Strychnine concentration on mineralization extents were studied. The results of the study showed that the maximum removal efficiency of Strychnine had been achieved by un-doped and Ag-doped ZnS QDs at radiation intensity of 100W/m 2 , at time of 60min, pH of 3 and initial Strychnine concentration of 20mg/ml. Also the observations clearly showed that the photocatalysis process with Ag doped ZnS QDs are more effective than un-doped ZnS QDs. Copyright © 2017 Elsevier Inc. All rights reserved.
Abuna, Gabriel; Feitosa, Victor P; Correr, Americo Bortolazzo; Cama, Giuseppe; Giannini, Marcelo; Sinhoreti, Mario A; Pashley, David H; Sauro, Salvatore
2016-09-01
This study examined the bonding performance and dentin remineralization potential of an experimental adhesive containing calcium-phosphate (Ca/P) micro-fillers, and self-etching primers doped with phosphoprotein biomimetic analogs (polyacrylic acid-(PAA) and/or sodium trimetaphosphate-(TMP)). Experimental self-etching primers doped with biomimetic analogs (PAA and/or TMP), and an adhesive containing Ca(2+), PO4(-3)-releasing micro-fillers (Ca/P) were formulated. Sound human dentin specimens were bonded and cut into sticks after aging (24h or 6 months) under simulated pulpal pressure (20cm H2O), and tested for microtensile bond strength (μTBS). Results were analyzed using two-way ANOVA and Tukey's test (p<0.05). Interfacial silver nanoleakage was assessed using SEM. Remineralization of EDTA-demineralized dentin was assessed through FTIR and TEM ultrastructural analysis. Application of the Ca/P-doped adhesive with or without dentin pre-treatments with the primer containing both biomimetic analogs (PAA and TMP) promoted stable μTBS over 6 months. Conversely, μTBS of the control primer and filler-free adhesive significantly decreased after 6 months. Nanoleakage decreased within the resin-dentin interfaces created using the Ca/P-doped adhesives. EDTA-demineralized dentin specimens treated the Ca/P-doped adhesive and the primer containing PAA and TMP showed phosphate uptake (FTIR analysis), as well as deposition of needle-like crystallites at intrafibrillar level (TEM analysis). The use of Ca/P-doped self-etching adhesives applied in combination with analogs of phosphoproteins provides durable resin-dentin bonds. This approach may represent a suitable bonding strategy for remineralization of intrafibrillar dentin collagen within the resin-dentin interface. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Roman, Monsi C.; Weir, Natalee E.; Wilson, Mark E.; Pyle, Barry H.
2006-01-01
A flex hose assembly containing aqueous coolant from the International Space Station (ISS) Internal Active Thermal Control System (IATCS) consisting of a 2 foot section of Teflon hose and quick disconnects (QDs) and a Special Performance Checkout Unit (SPCU) heat exchanger containing separate channels of IATCS coolant and iodinated water used to cool spacesuits and Extravehicular Mobility Units (EMUS) were returned for destructive analyses on Shuttle return to flight mission STS-114. The original aqueous IATCS coolant used in Node 1, the Laboratory Module, and the Airlock consisted of water, borate (pH buffer), phosphate (corrosion control), and silver sulfate (microbiological control) at a pH of 9.5 +/- 0.5. Chemical changes occurred after on-orbit implementation including a decrease to pH 8.4 due to the diffusion of carbon dioxide through the Teflon hoses, an increase in nickel ions due to general corrosion of heat exchanger braze coatings, a decrease in phosphate concentration due to precipitation of nickel phosphate, and the rapid disappearance of silver ions due to deposition on hardware surfaces. Also associated with the coolant chemistry changes was an increase in planktonic microorganisms from less than 100 colony forming units (CFU) per 100 ml to approximately 1 million CFU per 100 ml. Attachment and growth of microorganisms to the system surfaces (biofilm) was suspected due to the levels of planktonic microorganisms in the coolant. Biofilms can reduce coolant flow, reduce heat transfer, amplify degradation of system materials initiated by chemical corrosion, and enhance mineral scale formation.
A multi-frequency EPR and ENDOR study of Rh and Ir complexes in alkali and silver halides
NASA Astrophysics Data System (ADS)
Callens, F.; Vrielinck, H.; Matthys, P.
2003-01-01
Aliovalent Rh and Ir cations have been frequently used to influence the photographic properties of silver halide emulsions. The doping introduces several types of related defects with distinct trapping and recombination properties. EPR and ENDOR are, in principle, ideally suited for the determination of the microscopic structure of the individual centres but it will be demonstrated that well-chosen, sometimes sophisticated multi-frequency experiments are necessary in order to (partially) reach this goal. Model studies on single crystals of AgCl and NaCl also appeared indispensable for the unravelling of the spectra. In the review of Rh-centres in NaCl and AgCl special attention is paid to methods that allow to detect cation vacancies near Rh2+ complexes. An alternative explanation for the high temperature behaviour of the [RhCl6](4-) complexes in AgCl is presented.
Konidakis, Ioannis; Pissadakis, Stavros
2014-08-07
Silver iodide metaphosphate glasses of the x AgI + (1- x )AgPO₃ family are embedded inside the air capillaries of a commercial silica photonic crystal fiber (PCF) by means of vacuum-assisted infiltration technique. In this paper, we report on tuning the photonic bandgap (PBG) guidance characteristics of the fabricated all-glass photonic bandgap fibers, by varying the composition of the fast-ion-conducting phosphate glass infiltration medium. Doping AgPO₃ metaphosphate glass with AgI significantly alters the PBG guidance patterns in the examined range between 350 and 1750 nm, as it leads to the introduction of numerous additional transmission stop-bands, while affecting scattering dependant losses. The effect of phosphate glass cooling method during sample fabrication on the transmission behavior of the x AgI + (1- x )AgPO₃/PCFs is also considered.
NASA Astrophysics Data System (ADS)
Baghbani, Fatemeh; Moztarzadeh, Fathollah; Mozafari, Masoud; Raz, Majid; Rezvani, Hamideh
2016-08-01
Bioactive glasses in the system SiO2-CaO-Na2O-P2O5-MgO with different amounts of zinc (Zn) and silver (Ag) were synthesized by the sol-gel technique and characterized. The bioactivity was studied during in vitro assays: the ability of hydroxycarbonate apatite (HCA) layer to form on the glass surface was examined after contact with simulated body fluid (SBF). The x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and inductively coupled plasma atomic emission spectrometry (ICP) studies were performed after immersion in vitro assays. Also, the antibacterial and antifungal activities of glass samples against Pseudomonas aeruginosa (ATCC 27853), E. coli (ATCC 25922), and Candida albicans were measured by the halo zone test. Introduction of zinc and silver as the trace elements induces several modifications on the observed phenomena at the glass surface and in SBF solution after immersion of the samples. The chemical durability of the glasses, the formation of the silica-rich layer, and the crystallization of the HCA layer were affected. Samples with the higher content of zinc and silver exhibited an excellent antibacterial/antifungal activity.
Chen, Mengmeng; Han, Lu; Zhou, Jie; Sun, Chunyi; Hu, Chengying; Wang, Xinlong; Su, Zhongmin
2018-07-13
Metal-organic frameworks (MOFs) are well-known porous materials able to adsorb CO 2 , and their performance in CO 2 reduction has attracted much attention from researchers. A classical Co-MOF, Co-ZIF-9, has been proposed as a novel photocatalyst for reducing CO 2 into chemical feedstocks. Herein, Co-ZIF-9 with a rod-like structure was obtained through reflux. Ultra-small silver nanoparticles (Ag NPs, smaller than 5 nm) were doped into Co-ZIF-9 by the photodeposition method. With the assistance of a photosensitizer, the resultant composite Ag@Co-ZIF-9 shows catalytic reactivity in converting CO 2 into CO under visible light irradiation. Compared with bare Co-ZIF-9, the photocatalytic performance of Ag@Co-ZIF-9 increases by more than twofold (around 28.4 μmol CO) and the selectivity is enhanced by about 20% (22.9 μmol H 2 ) for 0.5 h of irradiation. This demonstrates that Ag NPs doping may provide a possible way to promote the efficiency and selectivity of MOF materials in CO 2 photoreduction.
NASA Astrophysics Data System (ADS)
Liu, Ming; Xu, Hong-feng; Fu, Jie; Tian, Ying
2016-07-01
Ni-Cr enrichment on stainless steel SS316L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316L substrate. The corrosion resistance of this film in 0.5 mol·L-1 H2SO4 solution containing 5 ppm F- at 80°C was investigated using polarization tests. The results showed that the surface treatment of the SS316L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316L, the Ag-doped carbon-coated SS316L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell (PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 mΩ·cm2 to 21.6 mΩ·cm2 at a compaction pressure of 1.2 MPa.
NASA Astrophysics Data System (ADS)
Chen, Mengmeng; Han, Lu; Zhou, Jie; Sun, Chunyi; Hu, Chengying; Wang, Xinlong; Su, Zhongmin
2018-07-01
Metal–organic frameworks (MOFs) are well-known porous materials able to adsorb CO2, and their performance in CO2 reduction has attracted much attention from researchers. A classical Co-MOF, Co-ZIF-9, has been proposed as a novel photocatalyst for reducing CO2 into chemical feedstocks. Herein, Co-ZIF-9 with a rod-like structure was obtained through reflux. Ultra-small silver nanoparticles (Ag NPs, smaller than 5 nm) were doped into Co-ZIF-9 by the photodeposition method. With the assistance of a photosensitizer, the resultant composite Ag@Co-ZIF-9 shows catalytic reactivity in converting CO2 into CO under visible light irradiation. Compared with bare Co-ZIF-9, the photocatalytic performance of Ag@Co-ZIF-9 increases by more than twofold (around 28.4 μmol CO) and the selectivity is enhanced by about 20% (22.9 μmol H2) for 0.5 h of irradiation. This demonstrates that Ag NPs doping may provide a possible way to promote the efficiency and selectivity of MOF materials in CO2 photoreduction.
Studies on Magnetron Sputtered ZnO-Ag Films: Adhesion Activity of S. aureus
NASA Astrophysics Data System (ADS)
Geetha, S. R.; Dhivya, P.; Raj, P. Deepak; Sridharan, M.; Princy, S. Adline
Zinc oxide (ZnO) thin films have been deposited onto thoroughly cleaned stainless steel (AISI SS 304) substrates by reactive direct current (dc) magnetron sputtering and the films were doped with silver (Ag). The prepared thin films were analyzed using X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) to investigate the structural and morphological properties. The thickness values of the films were in the range of 194 to 256nm. XRD results revealed that the films were crystalline with preferred (002) orientation. Grain size values of pure ZnO films were found to be 19.82-23.72nm. On introducing Ag into ZnO film, the micro-structural properties varied. Adhesion test was carried out with Staphylococcus aureus (S. aureus) in order to know the adherence property of the deposited films. Colony formation units (CFU) were counted manually and bacterial adhesion inhibition (BAI) was calculated. We observed a decrease in the CFU on doping Ag in the ZnO films. BAI of the film deposited at - 100 V substrate bias was found to be increased on Ag doping from 69 to 88%.
Barale, M; Lefèvre, G; Carrette, F; Catalette, H; Fédoroff, M; Cote, G
2008-12-01
Zetametric measurements on suspensions of oxide particles (cobalt ferrite, nickel ferrite, and magnetite) representative of corrosion products from primary circuits of pressurized water reactors were performed at 25 and 70 degrees C in the presence of lithium and borate species. No effect of lithium ions was observed. Borate species cause a decrease of the isoelectric point (IEP), attributed to the sorption of borate as a negative complex MOB(OH)3(-). A predictive model based on thermodynamic calculations (2-pK and diffuse layer models) of the surface acidity constants from the data of acid-base titrations combined with an empirical relationship between the surface potential Psi 0 and the zeta potential determined by zetametry was developed. A whole set of parameters valid at 25 degrees C, in a range of ionic strength between 10(-4) and 10(-2) molL(-1) and in a range of pH between 4 and 8, was determined for this model. Increase of temperature to 70 degrees C in the presence of borate results in a decrease of IEP for cobalt ferrite and an increase of the IEP for nickel ferrite.
Laser Setup for Volume Diffractive Optical Elements Recording in Photo-Thermo-Refractive Glass
2016-04-14
material and an optical glass . PTR glass is a Na2O-ZnO-Al2O3- SiO2 glass doped with silver (Ag), cerium (Ce), and fluorine (F). It is transparent from...SECURITY CLASSIFICATION OF: Recorded in photo-thermo-refractive (PTR) glass volume Bragg gratings (VBGs) have found great applications for...power laser applications, is restrained because of absence of available lasers emitting on PTR glass photosensitivity region (300-350 nm) with large