Doppler effect of subluminal and superluminal sources in eight dimensions
NASA Astrophysics Data System (ADS)
Chandola, H. C.; Rajput, B. S.
1984-06-01
The study of the relativistic Doppler effect of subliminal and superluminal sources has been undertaken in the eight-dimensional space. It has been shown that correct Doppler shifts are obtained in the external spaces of these sources and the conformal correspondence between Doppler effect curves holds in case of approaching and receeding sources but not in the transverse case.
The indirect effects on the computation of geoid undulations
NASA Technical Reports Server (NTRS)
Wichiencharoen, C.
1982-01-01
The indirect effects on the geoid computation due to the second method of Helmert's condensation were studied. when Helmert's anomalies are used in Stokes's equation, there are three types of corrections to the free air geoid. The first correction, the indirect effect on geoid undulation due to the potential change in Helmert's reduction, had a maximum value of 0.51 meters in the test area covering the United States. The second correction, the attraction change effect on geoid undulation, had a maximum value of 9.50 meters when the 10 deg cap was used in Stokes' equation. The last correction, the secondary indirect effect on geoid undulatin, was found negligible in the test area. The corrections were applied to uncorrected free air geoid undulations at 65 Doppler stations in the test area and compared with the Doppler undulations. Based on the assumption that the Doppler coordinate system has a z shift of 4 meters with respect to the geocenter, these comparisons showed that the corrections presented in this study yielded improved values of gravimetric undulations.
NASA Astrophysics Data System (ADS)
Liu, Xingchen; Hu, Zhiyong; He, Qingbo; Zhang, Shangbin; Zhu, Jun
2017-10-01
Doppler distortion and background noise can reduce the effectiveness of wayside acoustic train bearing monitoring and fault diagnosis. This paper proposes a method of combining a microphone array and matching pursuit algorithm to overcome these difficulties. First, a dictionary is constructed based on the characteristics and mechanism of a far-field assumption. Then, the angle of arrival of the train bearing is acquired when applying matching pursuit to analyze the acoustic array signals. Finally, after obtaining the resampling time series, the Doppler distortion can be corrected, which is convenient for further diagnostic work. Compared with traditional single-microphone Doppler correction methods, the advantages of the presented array method are its robustness to background noise and its barely requiring pre-measuring parameters. Simulation and experimental study show that the proposed method is effective in performing wayside acoustic bearing fault diagnosis.
A new technique for monitoring the water vapor in the atmosphere
NASA Technical Reports Server (NTRS)
Black, H. D.; Eisner, A.
1984-01-01
In the correction of satellite Doppler data for tropospheric effects the precipitable water vapor (PWV) is inferred at the tracking site. The technique depends on: (1) an ephemeris for the satellite; (2) an analytic model for the refraction range effect that is good to a few centimeters; (3) Doppler data with noise level below 10 centimeters; and (4) a surface pressure/temperature measurement at the tracking site. The PWV is a by product of the computation necessary to correct the Doppler data for tropospheric effects. A formulation of the refraction integral minimizes the necessity for explicit water vapor, temperature and pressure profiles.
Doppler-corrected differential detection system
NASA Technical Reports Server (NTRS)
Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor)
1991-01-01
Doppler in a communication system operating with a multiple differential phase-shift-keyed format (MDPSK) creates an adverse phase shift in an incoming signal. An open loop frequency estimation is derived from a Doppler-contaminated incoming signal. Based upon the recognition that, whereas the change in phase of the received signal over a full symbol contains both the differentially encoded data and the Doppler induced phase shift, the same change in phase over half a symbol (within a given symbol interval) contains only the Doppler induced phase shift, and the Doppler effect can be estimated and removed from the incoming signal. Doppler correction occurs prior to the receiver's final output of decoded data. A multiphase system can operate with two samplings per symbol interval at no penalty in signal-to-noise ratio provided that an ideal low pass pre-detection filter is employed, and two samples, at 1/4 and 3/4 of the symbol interval T sub s, are taken and summed together prior to incoming signal data detection.
Signal processing of aircraft flyover noise
NASA Technical Reports Server (NTRS)
Kelly, Jeffrey J.
1991-01-01
A detailed analysis of signal processing concerns for measuring aircraft flyover noise is presented. Development of a de-Dopplerization scheme for both corrected time history and spectral data is discussed along with an analysis of motion effects on measured spectra. A computer code was written to implement the de-Dopplerization scheme. Input to the code is the aircraft position data and the pressure time histories. To facilitate ensemble averaging, a uniform level flyover is considered but the code can accept more general flight profiles. The effects of spectral smearing and its removal is discussed. Using data acquired from XV-15 tilt rotor flyover test comparisons are made showing the measured and corrected spectra. Frequency shifts are accurately accounted for by the method. It is shown that correcting for spherical spreading, Doppler amplitude, and frequency can give some idea about source directivity. The analysis indicated that smearing increases with frequency and is more severe on approach than recession.
NASA Technical Reports Server (NTRS)
Durden, S.; Haddad, Z.
1998-01-01
Observations of Doppler velocity of hydrometeors form airborne Doppler weather radars normally contains a component due to the aircraft motion. Accurate hydrometeor velocity measurements thus require correction by subtracting this velocity from the observed velocity.
Effect of Doppler flow meter position on discharge measurement in surcharged manholes.
Yang, Haoming; Zhu, David Z; Liu, Yanchen
2018-02-01
Determining the proper installation location of flow meters is important for accurate measurement of discharge in sewer systems. In this study, flow field and flow regimes in two types of manholes under surcharged flow were investigated using a commercial computational fluid dynamics (CFD) code. The error in measuring the flow discharge using a Doppler flow meter (based on the velocity in a Doppler beam) was then estimated. The values of the corrective coefficient were obtained for the Doppler flow meter at different locations under various conditions. Suggestions for selecting installation positions are provided.
Microscale Heat Conduction Models and Doppler Feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawari, Ayman I.; Ougouag, Abderrafi
2015-01-22
The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperaturemore » rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.« less
Navigator alignment using radar scan
Doerry, Armin W.; Marquette, Brandeis
2016-04-05
The various technologies presented herein relate to the determination of and correction of heading error of platform. Knowledge of at least one of a maximum Doppler frequency or a minimum Doppler bandwidth pertaining to a plurality of radar echoes can be utilized to facilitate correction of the heading error. Heading error can occur as a result of component drift. In an ideal situation, a boresight direction of an antenna or the front of an aircraft will have associated therewith at least one of a maximum Doppler frequency or a minimum Doppler bandwidth. As the boresight direction of the antenna strays from a direction of travel at least one of the maximum Doppler frequency or a minimum Doppler bandwidth will shift away, either left or right, from the ideal situation.
Frequency Correction for MIRO Chirp Transformation Spectroscopy Spectrum
NASA Technical Reports Server (NTRS)
Lee, Seungwon
2012-01-01
This software processes the flyby spectra of the Chirp Transform Spectrometer (CTS) of the Microwave Instrument for Rosetta Orbiter (MIRO). The tool corrects the effect of Doppler shift and local-oscillator (LO) frequency shift during the flyby mode of MIRO operations. The frequency correction for CTS flyby spectra is performed and is integrated with multiple spectra into a high signal-to-noise averaged spectrum at the rest-frame RF frequency. This innovation also generates the 8 molecular line spectra by dividing continuous 4,096-channel CTS spectra. The 8 line spectra can then be readily used for scientific investigations. A spectral line that is at its rest frequency in the frame of the Earth or an asteroid will be observed with a time-varying Doppler shift as seen by MIRO. The frequency shift is toward the higher RF frequencies on approach, and toward lower RF frequencies on departure. The magnitude of the shift depends on the flyby velocity. The result of time-varying Doppler shift is that of an observed spectral line will be seen to move from channel to channel in the CTS spectrometer. The direction (higher or lower frequency) in the spectrometer depends on the spectral line frequency under consideration. In order to analyze the flyby spectra, two steps are required. First, individual spectra must be corrected for the Doppler shift so that individual spectra can be superimposed at the same rest frequency for integration purposes. Second, a correction needs to be applied to the CTS spectra to account for the LO frequency shifts that are applied to asteroid mode.
Method and system of doppler correction for mobile communications systems
NASA Technical Reports Server (NTRS)
Georghiades, Costas N. (Inventor); Spasojevic, Predrag (Inventor)
1999-01-01
Doppler correction system and method comprising receiving a Doppler effected signal comprising a preamble signal (32). A delayed preamble signal (48) may be generated based on the preamble signal (32). The preamble signal (32) may be multiplied by the delayed preamble signal (48) to generate an in-phase preamble signal (60). The in-phase preamble signal (60) may be filtered to generate a substantially constant in-phase preamble signal (62). A plurality of samples of the substantially constant in-phase preamble signal (62) may be accumulated. A phase-shifted signal (76) may also be generated based on the preamble signal (32). The phase-shifted signal (76) may be multiplied by the delayed preamble signal (48) to generate an out-of-phase preamble signal (80). The out-of-phase preamble signal (80) may be filtered to generate a substantially constant out-of-phase preamble signal (82). A plurality of samples of the substantially constant out-of-phase signal (82) may be accumulated. A sum of the in-phase preamble samples and a sum of the out-of-phase preamble samples may be normalized relative to each other to generate an in-phase Doppler estimator (92) and an out-of-phase Doppler estimator (94).
Generalized Doppler and aberration kernel for frequency-dependent cosmological observables
NASA Astrophysics Data System (ADS)
Yasini, Siavash; Pierpaoli, Elena
2017-11-01
We introduce a frequency-dependent Doppler and aberration transformation kernel for the harmonic multipoles of a general cosmological observable with spin weight s , Doppler weight d and arbitrary frequency spectrum. In the context of cosmic microwave background (CMB) studies, the frequency-dependent formalism allows to correct for the motion-induced aberration and Doppler effects on individual frequency maps with different masks. It also permits to deboost background radiations with non-blackbody frequency spectra, like extragalactic foregrounds and CMB spectra with primordial spectral distortions. The formalism can also be used to correct individual E and B polarization modes and account for motion-induced E/B mixing of polarized observables with d ≠1 at different frequencies. We apply the generalized aberration kernel on polarized and unpolarized specific intensity at 100 and 217 GHz and show that the motion-induced effects typically increase with the frequency of observation. In all-sky CMB experiments, the frequency-dependence of the motion-induced effects for a blackbody spectrum are overall negligible. However in a cut-sky analysis, ignoring the frequency dependence can lead to percent level error in the polarized and unpolarized power spectra over all angular scales. In the specific cut-sky used in our analysis (b >4 5 ° ,fsky≃14 % ), and for the dipole-inferred velocity β =0.00123 typically attributed to our peculiar motion, the Doppler and aberration effects can change polarized and unpolarized power spectra of specific intensity in the CMB rest frame by 1 - 2 % , but we find the polarization cross-leakage between E and B modes to be negligible.
Integrated Doppler Correction to TWSTFT Using Round-Trip Measurement
2010-11-01
42 nd Annual Precise Time and Time Interval (PTTI) Meeting 251 INTEGRATED DOPPLER CORRECTION TO TWSTFT USING ROUND-TRIP MEASUREMENT Yi...Frequency Transfer ( TWSTFT ) data. It is necessary to correct the diurnal variation for comparing the time-scale difference. We focus on the up-/downlink...delay difference caused by satellite motion. In this paper, we propose to correct the TWSTFT data by using round-trip delay measurement. There are
NASA Astrophysics Data System (ADS)
Xiong, Xingting; Qu, Xinghua; Zhang, Fumin
2018-01-01
We propose and describe a novel multi-dimensional absolute distance measurement system. This system incorporates a basic frequency modulated continuous wave (FMCW) radar and an second external cavity laser (ECL). Through the use of trilateration, the system in our paper can provide 3D resolution inherently range. However, the measured optical path length differences (OPD) is often variable in industrial environments and this will causes Doppler effect, which has greatly impact on the measurement result. With using the second ECL, the system can correct the Doppler effect to ensure the precision of absolute distance measurement. Result of the simulation will prove the influence of Doppler effect.
NASA Technical Reports Server (NTRS)
Flock, W. L.
1981-01-01
When high precision is required for range measurement on Earth space paths, it is necessary to correct as accurately as possible for excess range delays due to the dry air, water vapor, and liquid water content of the atmosphere. Calculations based on representative values of atmospheric parameters are useful for illustrating the order of magnitude of the expected delays. Range delay, time delay, and phase delay are simply and directly related. Doppler frequency variations or noise are proportional to the time rate of change of excess range delay. Tropospheric effects were examined as part of an overall consideration of the capability of precision two way ranging and Doppler systems.
Correction of Dual-PRF Doppler Velocity Outliers in the Presence of Aliasing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altube, Patricia; Bech, Joan; Argemí, Oriol
In Doppler weather radars, the presence of unfolding errors or outliers is a well-known quality issue for radial velocity fields estimated using the dual–pulse repetition frequency (PRF) technique. Postprocessing methods have been developed to correct dual-PRF outliers, but these need prior application of a dealiasing algorithm for an adequate correction. Our paper presents an alternative procedure based on circular statistics that corrects dual-PRF errors in the presence of extended Nyquist aliasing. The correction potential of the proposed method is quantitatively tested by means of velocity field simulations and is exemplified in the application to real cases, including severe storm events.more » The comparison with two other existing correction methods indicates an improved performance in the correction of clustered outliers. The technique we propose is well suited for real-time applications requiring high-quality Doppler radar velocity fields, such as wind shear and mesocyclone detection algorithms, or assimilation in numerical weather prediction models.« less
Correction of Dual-PRF Doppler Velocity Outliers in the Presence of Aliasing
Altube, Patricia; Bech, Joan; Argemí, Oriol; ...
2017-07-18
In Doppler weather radars, the presence of unfolding errors or outliers is a well-known quality issue for radial velocity fields estimated using the dual–pulse repetition frequency (PRF) technique. Postprocessing methods have been developed to correct dual-PRF outliers, but these need prior application of a dealiasing algorithm for an adequate correction. Our paper presents an alternative procedure based on circular statistics that corrects dual-PRF errors in the presence of extended Nyquist aliasing. The correction potential of the proposed method is quantitatively tested by means of velocity field simulations and is exemplified in the application to real cases, including severe storm events.more » The comparison with two other existing correction methods indicates an improved performance in the correction of clustered outliers. The technique we propose is well suited for real-time applications requiring high-quality Doppler radar velocity fields, such as wind shear and mesocyclone detection algorithms, or assimilation in numerical weather prediction models.« less
Doppler-corrected Balmer spectroscopy of Rydberg positronium
NASA Astrophysics Data System (ADS)
Jones, A. C. L.; Hisakado, T. H.; Goldman, H. J.; Tom, H. W. K.; Mills, A. P.; Cassidy, D. B.
2014-07-01
The production of long-lived Rydberg positronium (Ps) and correction for Doppler shifts in the excitation laser frequencies are crucial elements of proposed measurements of the gravitational freefall of antimatter and for precision measurements of the optical spectrum of Ps. Using a two-step optical transition via 2P levels, we have prepared Ps atoms in Rydberg states up to the term limit. The spectra are corrected for the first-order Doppler shift using measured velocities, and the Balmer transitions are resolved for 15≤n≤31. The excitation signal amplitude begins to decrease for n >50, consistent with the onset of motional electric field ionization in the 3.5-mT magnetic field at the Ps formation target.
Li, Zhongyu; Wu, Junjie; Huang, Yulin; Yang, Haiguang; Yang, Jianyu
2017-01-23
Bistatic forward-looking SAR (BFSAR) is a kind of bistatic synthetic aperture radar (SAR) system that can image forward-looking terrain in the flight direction of an aircraft. Until now, BFSAR imaging theories and methods for a stationary scene have been researched thoroughly. However, for moving-target imaging with BFSAR, the non-cooperative movement of the moving target induces some new issues: (I) large and unknown range cell migration (RCM) (including range walk and high-order RCM); (II) the spatial-variances of the Doppler parameters (including the Doppler centroid and high-order Doppler) are not only unknown, but also nonlinear for different point-scatterers. In this paper, we put forward an adaptive moving-target imaging method for BFSAR. First, the large and unknown range walk is corrected by applying keystone transform over the whole received echo, and then, the relationships among the unknown high-order RCM, the nonlinear spatial-variances of the Doppler parameters, and the speed of the mover, are established. After that, using an optimization nonlinear chirp scaling (NLCS) technique, not only can the unknown high-order RCM be accurately corrected, but also the nonlinear spatial-variances of the Doppler parameters can be balanced. At last, a high-order polynomial filter is applied to compress the whole azimuth data of the moving target. Numerical simulations verify the effectiveness of the proposed method.
Experimental testing of four correction algorithms for the forward scattering spectrometer probe
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.; Oldenburg, John R.; Lock, James A.
1992-01-01
Three number density correction algorithms and one size distribution correction algorithm for the Forward Scattering Spectrometer Probe (FSSP) were compared with data taken by the Phase Doppler Particle Analyzer (PDPA) and an optical number density measuring instrument (NDMI). Of the three number density correction algorithms, the one that compared best to the PDPA and NDMI data was the algorithm developed by Baumgardner, Strapp, and Dye (1985). The algorithm that corrects sizing errors in the FSSP that was developed by Lock and Hovenac (1989) was shown to be within 25 percent of the Phase Doppler measurements at number densities as high as 3000/cc.
NASA Astrophysics Data System (ADS)
Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi; Song, Xiaoquan
2018-04-01
Shipborne wind observations by the Coherent Doppler Lidar (CDL) during the 2014 Yellow Sea campaign are presented to study the structure of the Marine Atmospheric Boundary Layer (MABL). This paper gives an analysis of the correction for horizontal and vertical wind measurement, demonstrating that the combination of the CDL with the attitude correction system enables the retrieval of wind profiles in the MABL during both anchored and cruising measurement with satisfied statistical uncertainties.
On the utility of the ionosonde Doppler-derived EXB drift during the daytime
NASA Astrophysics Data System (ADS)
Joshi, L. M.; Sripathi, S.
2016-03-01
Vertical EXB drift measured using the ionosonde Doppler sounding during the daytime suffers from an underestimation of the actual EXB drift because the reflection height of the ionosonde signals is also affected by the photochemistry of the ionosphere. Systematic investigations have indicated a fair/good correlation to exist between the C/NOFS and ionosonde Doppler-measured vertical EXB drift during the daytime over magnetic equator. A detailed analysis, however, indicated that the linear relation between the ionosonde Doppler drift and C/NOFS EXB drift varied with seasons. Thus, solar, seasonal, and also geomagnetic variables were included in the Doppler drift correction, using the artificial neural network-based approach. The RMS error in the neural network was found to be smaller than that in the linear regression analysis. Daytime EXB drift was derived using the neural network which was also used to model the ionospheric redistribution in the SAMI2 model. SAMI2 model reproduced strong (weak) equatorial ionization anomaly (EIA) for cases when neural network corrected daytime vertical EXB drift was high (low). Similar features were also observed in GIM TEC maps. Thus, the results indicate that the neural network can be utilized to derive the vertical EXB drift from its proxies, like the ionosonde Doppler drift. These results indicate that the daytime ionosonde measured vertical EXB drift can be relied upon, provided that adequate corrections are applied to it.
Della Pepa, Giuseppe Maria; Sabatino, Giovanni; Sturiale, Carmelo Lucio; Marchese, Enrico; Puca, Alfredo; Olivi, Alessandro; Albanese, Alessio
2018-04-01
In the surgical treatment of spinal dural arteriovenous fistulas (DAVFs), intraoperative definition of anatomic characteristics of the DAVF and identification of the fistulous point is mandatory to effectively exclude the DAVF. Intraoperative ultrasound and contrast-enhanced ultrasound integrated with color Doppler ultrasound was applied in the surgical setting for a cervical DAVF to identify the fistulous point and evaluate correct occlusion of the fistula. Integration of intraoperative ultrasound and contrast-enhanced ultrasound is a simple, cost-effective technique that provides an opportunity for real-time dynamic visualization of DAVF vascular patterns, identification of the fistulous point, and assessment of correct exclusion. Compared with other intraoperative tools, such as indocyanine green videoangiography, it allows the surgeon to visualize hidden anatomic and vascular structures, minimizing surgical manipulation and guiding the surgeon during resection. Copyright © 2018 Elsevier Inc. All rights reserved.
Real Time System for Practical Acoustic Monitoring of Global Ocean Temperature. Volume 3
1994-06-30
signal processing software to the SSAR. This software performs Doppler correction , circulating sums, matched filtering and pulse compression, estimation...Doppler correction , circulating sums, matched filtering and pulse compression, estimation of multipath arrival angle, and peak- picking. At the... geometrica , sound speed, and focuing region sAles to the acoustic wavelengths Our work on this problem is based on an oceanographic application. To
On the utility of the ionosonde Doppler derived EXB drift during the daytime
NASA Astrophysics Data System (ADS)
Mohan Joshi, Lalit; Sripathi, Samireddipelle
2016-07-01
Vertical EXB drift measured using the ionosonde Doppler sounding during the daytime suffers from an underestimation of the actual EXB drift. This is due to the photochemistry that determines the height of the F layer during the daytime, in addition to the zonal electric field. Systematic investigations have indicated a fair/good correlation to exist between the C/NOFS and ionosonde Doppler measured vertical EXB drift during the daytime over magnetic equator. A detailed analysis, however, indicated that the linear relation between the ionosonde Doppler drift and C/NOFS EXB drift varied with seasons. Thus, solar, seasonal and also geomagnetic variables were included in the Doppler drift correction, using the artificial neural network based approach. The RMS error in the neural network was found to be lesser than that in the linear regression analysis. Daytime EXB drift was derived using the neural network which was also used to model the ionospheic redistribution in the SAMI2 model. SAMI2 model reproduced strong (/weak) equatorial ionization anomaly (EIA) for cases when neural network corrected daytime vertical EXB drift was high (/low). Similar features were also observed in GIM TEC maps. Thus, the results indicate that the neural network can be utilized to derive the vertical EXB drift from its proxies, like the ionosonde Doppler drift. These results indicate that the daytime ionosonde measured vertical EXB drift can be relied upon, provided adequate corrections are applied to it.
C-band radar pulse Doppler error: Its discovery, modeling, and elimination
NASA Technical Reports Server (NTRS)
Krabill, W. B.; Dempsey, D. J.
1978-01-01
The discovery of a C Band radar pulse Doppler error is discussed and use of the GEOS 3 satellite's coherent transponder to isolate the error source is described. An analysis of the pulse Doppler tracking loop is presented and a mathematical model for the error was developed. Error correction techniques were developed and are described including implementation details.
Differential correction capability of the GTDS using TDRSS data
NASA Technical Reports Server (NTRS)
Liu, S. Y.; Soskey, D. G.; Jacintho, J.
1980-01-01
A differential correction (DC) capability was implemented in the Goddard Trajectory Determination System (GTDS) to process satellite tracking data acquired via the Tracking and Data Relay Satellite System (TRDRSS). Configuration of the TDRSS is reviewed, observation modeling is presented, and major features of the capability are discussed. The following types of TDRSS data can be processed by GTDS: two way relay range and Doppler measurements, hybrid relay range and Doppler measurements, one way relay Doppler measurements, and differenced one way relay Doppler measurements. These data may be combined with conventional ground based direct tracking data. By using Bayesian weighted least squares techniques, the software allows the simultaneous determination of the trajectories of up to four different satellites - one user satellite and three relay satellites. In addition to satellite trajectories, the following parameters can be optionally solved: for drag coefficient, reflectivity of a satellite for solar radiation pressure, transponder delay, station position, and biases.
Evaluation of transplant renal artery blood flow by Doppler sound-spectrum analysis.
Reinitz, E R; Goldman, M H; Sais, J; Rittgers, S E; Lee, H M; Mendez-Picon, G; Muakkassa, W F; Barnes, R W
1983-04-01
Doppler ultrasonography sound-spectrum analysis (SSA) was used to evaluate blood flow in the transplanted kidney and its renal artery. Seven patients with posttransplant hypertension and a bruit over the transplanted kidney were screened for renal artery stenosis (RAS). In five patients, RAS was diagnosed by SSA, and in two it was not. These findings were confirmed by subsequent angiography in all patients. Three patients studied after surgical correction of their RAS had improvement in their SSA patterns. Fourteen hypertensive patients with a cause other than RAS were evaluated by SSA. None of them had SSA findings suggestive of RAS. Doppler ultrasonography with SSA is an effective, noninvasive technique of monitoring transplant renal blood flow, especially in the screening of hypertensive transplant recipients for transplant RAS.
[Spectral-Doppler-Sonography - Step by Step].
Bönhof, Leoni; Steffgen, Ludwig; Bönhof, Jörg
2018-06-07
Step by step explanation and detailed overview of the correct approach to spectral-Doppler-sonography, including several practical examples. The article provides comprehensive explanations of the appropriate settings in different situations. © Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonin, Timothy A.; Newman, Jennifer F.; Klein, Petra M.
Since turbulence measurements from Doppler lidars are being increasingly used within wind energy and boundary-layer meteorology, it is important to assess and improve the accuracy of these observations. While turbulent quantities are measured by Doppler lidars in several different ways, the simplest and most frequently used statistic is vertical velocity variance ( w' 2) from zenith stares. However, the competing effects of signal noise and resolution volume limitations, which respectively increase and decrease w' 2, reduce the accuracy of these measurements. Herein, an established method that utilises the autocovariance of the signal to remove noise is evaluated and its skillmore » in correcting for volume-averaging effects in the calculation of w' 2 is also assessed. Additionally, this autocovariance technique is further refined by defining the amount of lag time to use for the most accurate estimates of w' 2. Through comparison of observations from two Doppler lidars and sonic anemometers on a 300 m tower, the autocovariance technique is shown to generally improve estimates of w' 2. After the autocovariance technique is applied, values of w' 2 from the Doppler lidars are generally in close agreement ( R 2≈0.95-0.98) with those calculated from sonic anemometer measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonin, Timothy A.; Newman, Jennifer F.; Klein, Petra M.
Since turbulence measurements from Doppler lidars are being increasingly used within wind energy and boundary-layer meteorology, it is important to assess and improve the accuracy of these observations. While turbulent quantities are measured by Doppler lidars in several different ways, the simplest and most frequently used statistic is vertical velocity variance ( w' 2) from zenith stares. But, the competing effects of signal noise and resolution volume limitations, which respectively increase and decrease w' 2, reduce the accuracy of these measurements. Herein, an established method that utilises the autocovariance of the signal to remove noise is evaluated and its skillmore » in correcting for volume-averaging effects in the calculation of w' 2 is also assessed. In addition, this autocovariance technique is further refined by defining the amount of lag time to use for the most accurate estimates of w' 2. And through comparison of observations from two Doppler lidars and sonic anemometers on a 300 m tower, the autocovariance technique is shown to generally improve estimates of w' 2. After the autocovariance technique is applied, values of w' 2 from the Doppler lidars are generally in close agreement ( R 2 ≈ 0.95 -0.98) with those calculated from sonic anemometer measurements.« less
Special relativity corrections for space-based lidars.
Gudimetla, V S; Kavaya, M J
1999-10-20
The theory of special relativity is used to analyze some of the physical phenomena associated with space-based coherent Doppler lidars aimed at Earth and the atmosphere. Two important cases of diffuse scattering and retroreflection by lidar targets are treated. For the case of diffuse scattering, we show that for a coaligned transmitter and receiver on the moving satellite, there is no angle between transmitted and returned radiation. However, the ray that enters the receiver does not correspond to a retroreflected ray by the target. For the retroreflection case there is misalignment between the transmitted ray and the received ray. In addition, the Doppler shift in the frequency and the amount of tip for the receiver aperture when needed are calculated. The error in estimating wind because of the Doppler shift in the frequency due to special relativity effects is examined. The results are then applied to a proposed space-based pulsed coherent Doppler lidar at NASA's Marshall Space Flight Center for wind and aerosol backscatter measurements. The lidar uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and the received frequencies to determine the atmospheric wind velocities. We show that the special relativity effects are small for the proposed system.
Bonin, Timothy A.; Newman, Jennifer F.; Klein, Petra M.; ...
2016-12-06
Since turbulence measurements from Doppler lidars are being increasingly used within wind energy and boundary-layer meteorology, it is important to assess and improve the accuracy of these observations. While turbulent quantities are measured by Doppler lidars in several different ways, the simplest and most frequently used statistic is vertical velocity variance ( w' 2) from zenith stares. But, the competing effects of signal noise and resolution volume limitations, which respectively increase and decrease w' 2, reduce the accuracy of these measurements. Herein, an established method that utilises the autocovariance of the signal to remove noise is evaluated and its skillmore » in correcting for volume-averaging effects in the calculation of w' 2 is also assessed. In addition, this autocovariance technique is further refined by defining the amount of lag time to use for the most accurate estimates of w' 2. And through comparison of observations from two Doppler lidars and sonic anemometers on a 300 m tower, the autocovariance technique is shown to generally improve estimates of w' 2. After the autocovariance technique is applied, values of w' 2 from the Doppler lidars are generally in close agreement ( R 2 ≈ 0.95 -0.98) with those calculated from sonic anemometer measurements.« less
Special Relativity Corrections for Space-Based Lidars
NASA Technical Reports Server (NTRS)
RaoGudimetla, Venkata S.; Kavaya, Michael J.
1999-01-01
The theory of special relativity is used to analyze some of the physical phenomena associated with space-based coherent Doppler lidars aimed at Earth and the atmosphere. Two important cases of diffuse scattering and retroreflection by lidar targets are treated. For the case of diffuse scattering, we show that for a coaligned transmitter and receiver on the moving satellite, there is no angle between transmitted and returned radiation. However, the ray that enters the receiver does not correspond to a retroreflected ray by the target. For the retroreflection case there is misalignment between the transmitted ray and the received ray. In addition, the Doppler shift in the frequency and the amount of tip for the receiver aperture when needed are calculated, The error in estimating wind because of the Doppler shift in the frequency due to special relativity effects is examined. The results are then applied to a proposed space-based pulsed coherent Doppler lidar at NASA's Marshall Space Flight Center for wind and aerosol backscatter measurements. The lidar uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and the received frequencies to determine the atmospheric wind velocities. We show that the special relativity effects are small for the proposed system.
Caumo, F; Carbognin, G; Casarin, A; Pinali, L; Vasori, S; D'Onofrio, M; Pozzi Mucelli, R
2006-02-01
The purpose of this study was to evaluate the accuracy of angiosonography in comparison with colour Doppler ultrasound (US) in the discrimination of suspicious breast lesions with nondiagnostic fine-needle aspiration cytology (FNAC). Pre-operative Power Doppler US and angiosonography were prospectively performed in 20 suspicious breast lesions with non-diagnostic FNAC. A second-generation US contrast agent was utilised with a high-frequency transducer and a contrast-specific algorithm (low acoustic pressure CnTI). The enhancement characteristics of all lesions were analysed using qualitative and quantitative parameters obtained from time-intensity curves with the different imaging modalities. The final diagnosis was confirmed at pathology in all cases. Microvessel density (MVD) was assessed in the surgical specimen using CD34. The correct assessment of biological behaviour was achieved in all cases by angiosonography (sensitivity of 100%; specificity of 91%) and colour Doppler US (45% sensitivity; 78% specificity). MVD correlated with the biological behaviour. Angiosonography is more accurate than colour Doppler US in the correct assessment of biological behaviour of suspicious breast lesions.
Imprints of local lightcone \\ projection effects on the galaxy bispectrum. Part II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolicoeur, Sheean; Umeh, Obinna; Maartens, Roy
General relativistic imprints on the galaxy bispectrum arise from observational (or projection) effects. The lightcone projection effects include local contributions from Doppler and gravitational potential terms, as well as lensing and other integrated contributions. We recently presented for the first time, the correction to the galaxy bispectrum from all local lightcone projection effects up to second order in perturbations. Here we provide the details underlying this correction, together with further results and illustrations. For moderately squeezed shapes, the correction to the Newtonian prediction is ∼ 30% on equality scales at z ∼ 1. We generalise our recent results to includemore » the contribution, up to second order, of magnification bias (which affects some of the local terms) and evolution bias.« less
NASA Astrophysics Data System (ADS)
Bonin, Timothy A.; Newman, Jennifer F.; Klein, Petra M.; Chilson, Phillip B.; Wharton, Sonia
2016-12-01
Since turbulence measurements from Doppler lidars are being increasingly used within wind energy and boundary-layer meteorology, it is important to assess and improve the accuracy of these observations. While turbulent quantities are measured by Doppler lidars in several different ways, the simplest and most frequently used statistic is vertical velocity variance (w'2) from zenith stares. However, the competing effects of signal noise and resolution volume limitations, which respectively increase and decrease w'2, reduce the accuracy of these measurements. Herein, an established method that utilises the autocovariance of the signal to remove noise is evaluated and its skill in correcting for volume-averaging effects in the calculation of w'2 is also assessed. Additionally, this autocovariance technique is further refined by defining the amount of lag time to use for the most accurate estimates of w'2. Through comparison of observations from two Doppler lidars and sonic anemometers on a 300 m tower, the autocovariance technique is shown to generally improve estimates of w'2. After the autocovariance technique is applied, values of w'2 from the Doppler lidars are generally in close agreement (R2 ≈ 0.95 - 0.98) with those calculated from sonic anemometer measurements.
Galileo orbit determination for the Venus and Earth-1 flybys
NASA Astrophysics Data System (ADS)
Kallemeyn, P. H.; Haw, R. J.; Pollmeier, V. M.; Nicholson, F. T.; Murrow, D. W.
1992-08-01
This paper presents the orbit determination strategy and results in navigating the Galileo spacecraft from launch through its Venus and first earth flybys. Many nongravitational effects were estimated, including solar radiation pressure, small velocity impulses from attitude changes and eight trajectory correction maneuvers. Tracking data consisted of S-Band Doppler and range. The fitting of Doppler was difficult since one of the cpacecraft's two antennas was offset from the spin axis, thus producing the sinusoidal velocity fluctuation seen in the data. Finally, Delta Differential One-way Range data was used during the last three months of the earth approach to help deliver the spacecraft to within desired accuracy.
A new Doppler-echo method to quantify regurgitant volume.
Wang, S S; Rubenstein, J J; Goldman, M; Sidd, J J
1992-01-01
An in vitro technique using color flow imaging and continuous wave Doppler was developed to measure the initial regurgitant flow jet diameter and velocity integral to yield the parameters for a volume calculation. Jets were produced by volume-controlled injection through tubes of various diameters (1.3, 1.9, 2.8, and 3.5 mm) to deliver volumes from 1 to 7 ml over 100 to 300 msec at pressures from 40 to 200 mm Hg. One hundred forty-five samples were obtained. Flow jet diameter consistently overestimated tube diameter by 2 mm when injected volume was 1.5 to 7 ml and by 1.5 mm when injected volume was less than 1.5 ml. This offset was stable with various transducers (2.5, 3.5, 5.0 MHz) at normal gain setting (just under noise). Therefore, corrected flow jet diameter (FJD) = FJD - 2 mm, and Doppler volume = corrected flow jet area x velocity integral. A range of injectates from 1.1 to 7 ml generated Doppler volume of 1.0 to 8.2 ml. The relation between Doppler volume (DV) and injected volume (IV) was DV = 1.079 IV - 0.22, r2 = 0.945, p less than 0.01. This relation was not altered by tube diameter. Thus a method combining color flow imaging and continuous wave Doppler provides a reliable and accurate measure of in vitro flow volume.
Effect of Multiple Scattering on the Compton Recoil Current Generated in an EMP, Revisited
Farmer, William A.; Friedman, Alex
2015-06-18
Multiple scattering has historically been treated in EMP modeling through the obliquity factor. The validity of this approach is examined here. A simplified model problem, which correctly captures cyclotron motion, Doppler shifting due to the electron motion, and multiple scattering is first considered. The simplified problem is solved three ways: the obliquity factor, Monte-Carlo, and Fokker-Planck finite-difference. Because of the Doppler effect, skewness occurs in the distribution. It is demonstrated that the obliquity factor does not correctly capture this skewness, but the Monte-Carlo and Fokker-Planck finite-difference approaches do. Here, the obliquity factor and Fokker-Planck finite-difference approaches are then compared inmore » a fuller treatment, which includes the initial Klein-Nishina distribution of the electrons, and the momentum dependence of both drag and scattering. It is found that, in general, the obliquity factor is adequate for most situations. However, as the gamma energy increases and the Klein-Nishina becomes more peaked in the forward direction, skewness in the distribution causes greater disagreement between the obliquity factor and a more accurate model of multiple scattering.« less
Holographic optical system for aberration corrections in laser Doppler velocimetry
NASA Technical Reports Server (NTRS)
Kim, R. C.; Case, S. K.; Schock, H. J.
1985-01-01
An optical system containing multifaceted holographic optical elements (HOEs) has been developed to correct for aberrations introduced by nonflat windows in laser Doppler velocimetry. The multifacet aberration correction approach makes it possible to record on one plate many sets of adjacent HOEs that address different measurement volume locations. By using 5-mm-diameter facets, it is practical to place 10-20 sets of holograms on one 10 x 12.5-cm plate, so that the procedure of moving the entire optical system to examine different locations may not be necessary. The holograms are recorded in dichromated gelatin and therefore are nonabsorptive and suitable for use with high-power argon laser beams. Low f-number optics coupled with a 90-percent efficient distortion-correcting hologram in the collection side of the system yield high optical efficiency.
Position sensitivity in large spectroscopic LaBr3:Ce crystals for Doppler broadening correction
NASA Astrophysics Data System (ADS)
Blasi, N.; Giaz, A.; Boiano, C.; Brambilla, S.; Camera, F.; Million, B.; Riboldi, S.
2016-12-01
The position sensitivity of a large LaBr3:Ce crystal was investigated with the aim of correcting for the Doppler broadening in nuclear physics experiments. The crystal was cylindrical, 3 in×3 in (7.62 cm x 7.62 cm) and with diffusive surfaces as typically used in nuclear physics basic research to measure medium or high energy gamma rays (0.5 MeV
An interactive Doppler velocity dealiasing scheme
NASA Astrophysics Data System (ADS)
Pan, Jiawen; Chen, Qi; Wei, Ming; Gao, Li
2009-10-01
Doppler weather radars are capable of providing high quality wind data at a high spatial and temporal resolution. However, operational application of Doppler velocity data from weather radars is hampered by the infamous limitation of the velocity ambiguity. This paper reviews the cause of velocity folding and presents the unfolding method recently implemented for the CINRAD systems. A simple interactive method for velocity data, which corrects de-aliasing errors, has been developed and tested. It is concluded that the algorithm is very efficient and produces high quality velocity data.
Improving Planck calibration by including frequency-dependent relativistic corrections
NASA Astrophysics Data System (ADS)
Quartin, Miguel; Notari, Alessio
2015-09-01
The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10-3, due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.
Manninen, Antti J.; O'Connor, Ewan J.; Vakkari, Ville; ...
2016-03-03
Current commercially available Doppler lidars provide an economical and robust solution for measuring vertical and horizontal wind velocities, together with the ability to provide co- and cross-polarised backscatter profiles. The high temporal resolution of these instruments allows turbulent properties to be obtained from studying the variation in radial velocities. However, the instrument specifications mean that certain characteristics, especially the background noise behaviour, become a limiting factor for the instrument sensitivity in regions where the aerosol load is low. Turbulent calculations require an accurate estimate of the contribution from velocity uncertainty estimates, which are directly related to the signal-to-noise ratio. Anymore » bias in the signal-to-noise ratio will propagate through as a bias in turbulent properties. In this paper we present a method to correct for artefacts in the background noise behaviour of commercially available Doppler lidars and reduce the signal-to-noise ratio threshold used to discriminate between noise, and cloud or aerosol signals. We show that, for Doppler lidars operating continuously at a number of locations in Finland, the data availability can be increased by as much as 50 % after performing this background correction and subsequent reduction in the threshold. Furthermore the reduction in bias also greatly improves subsequent calculations of turbulent properties in weak signal regimes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manninen, Antti J.; O'Connor, Ewan J.; Vakkari, Ville
Current commercially available Doppler lidars provide an economical and robust solution for measuring vertical and horizontal wind velocities, together with the ability to provide co- and cross-polarised backscatter profiles. The high temporal resolution of these instruments allows turbulent properties to be obtained from studying the variation in radial velocities. However, the instrument specifications mean that certain characteristics, especially the background noise behaviour, become a limiting factor for the instrument sensitivity in regions where the aerosol load is low. Turbulent calculations require an accurate estimate of the contribution from velocity uncertainty estimates, which are directly related to the signal-to-noise ratio. Anymore » bias in the signal-to-noise ratio will propagate through as a bias in turbulent properties. In this paper we present a method to correct for artefacts in the background noise behaviour of commercially available Doppler lidars and reduce the signal-to-noise ratio threshold used to discriminate between noise, and cloud or aerosol signals. We show that, for Doppler lidars operating continuously at a number of locations in Finland, the data availability can be increased by as much as 50 % after performing this background correction and subsequent reduction in the threshold. Furthermore the reduction in bias also greatly improves subsequent calculations of turbulent properties in weak signal regimes.« less
Krejza, J; Rudzinski, W; Pawlak, M A; Tomaszewski, M; Ichord, R; Kwiatkowski, J; Gor, D; Melhem, E R
2007-09-01
Nonimaging transcranial Doppler sonography (TCD) and imaging TCD (TCDI) are used for determination of the risk of stroke in children with sickle cell disease (SCD). The purpose was to compare angle-corrected, uncorrected TCDI, and TCD blood flow velocities in children with SCD. A total of 37 children (mean age, 7.8 +/- 3.0 years) without intracranial arterial narrowing determined with MR angiography, were studied with use of TCD and TCDI at the same session. Depth of insonation and TCDI mean velocities with and without correction for the angle of insonation in the terminal internal carotid artery (ICA) and middle (MCA), anterior (ACA), and posterior (PCA) cerebral arteries were compared with TCD velocities with use of a paired t test. Two arteries were not found on TCDI compared with 15 not found on TCD. Average angle of insonation in the MCA, ACA, ICA, and PCA was 31 degrees , 44 degrees , 25 degrees , and 29 degrees , respectively. TCDI and TCD mean depth of insonation for all arteries did not differ significantly; however, individual differences varied substantially. TCDI velocities were significantly lower than TCD velocities, respectively, for the right and left sides (mean +/- SD): MCA, 106 +/- 22 cm/s and 111 +/- 33 cm/s versus 130 +/- 19 cm/s and 134 +/- 26 cm/s; ICA, 90 +/- 14 cm/s and 98 +/- 27 cm/s versus 117 +/- 18 cm/s and 119 +/- 23 cm/s; ACA, 74 +/- 24 cm/s and 88 +/- 25 cm/s versus 105 +/- 23 cm/s and 105 +/- 31 cm/s; and PCA, 84 +/- 27 cm/s and 82 +/- 21 cm/s versus 95 +/- 23 cm/s and 94 +/- 20 cm/s. TCD and angle-corrected TCDI velocities were not statistically different except for higher angle-corrected TCDI values in the left ACA and right PCA. TCD velocities are significantly higher than TCDI velocities but are not different from the angle-corrected TCDI velocities. TCDI identifies the major intracranial arteries more effectively than TCD.
Doppler tracking in time-dependent cosmological spacetimes
NASA Astrophysics Data System (ADS)
Giulini, Domenico; Carrera, Matteo
I will discuss the theoretical problems associated with Doppler tracking in time dependent background geometries, where ordinary Newtonian kinematics fails. A derivation of an exact general-relativistic formula for the two-way Doppler tracking of a spacecraft in homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes is presented, as well as a controlled approximation in McVittie spacetimes representing an FLRW background with a single spherically-symmetric inhomogeneity (e.g. a single star or black hole). The leading-order corrections of the acceleration as compared to the Newtonian expression are calculated, which are due to retardation and cosmological expansion and which in the Solar System turn out to be significantly below the scale (nanometer per square-second) set by the Pioneer Anomaly. Last, but not least, I discuss kinematical ambiguities connected with notions of "simultaneity" and "spatial distance", which, in principle, also lead to tracking corrections.
Improving Planck calibration by including frequency-dependent relativistic corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quartin, Miguel; Notari, Alessio, E-mail: mquartin@if.ufrj.br, E-mail: notari@ffn.ub.es
2015-09-01
The Planck satellite detectors are calibrated in the 2015 release using the 'orbital dipole', which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10{sup −3}, due to coupling with the 'solar dipole' (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevantmore » for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.« less
Water Surface Currents, Short Gravity-Capillary Waves and Radar Backscatter
NASA Technical Reports Server (NTRS)
Atakturk, Serhad S.; Katsaros, Kristina B.
1993-01-01
Despite their importance for air-sea interaction and microwave remote sensing of the ocean surface, intrinsic properties of short gravity-capillary waves are not well established. This is largely due to water surface currents and their effects on the direct measurements of wave parameters conducted at a fixed point. Frequencies of small scale waves propagating on a surface which itself is in motion, are subject to Doppler shifts. Hence, the high frequency tail of the wave spectra obtained from such temporal observations is smeared. Conversion of this smeared measured-frequency spectra to intrinsic-frequency (or wavenumber) spectra requires corrections for the Doppler shifts. Such attempts in the past have not been very successful in particular when field data were used. This becomes evident if the amplitude modulation of short waves by underlying long waves is considered. Microwave radar studies show that the amplitude of a short wave component attains its maximum value near the crests and its minimum in the troughs of the long waves. Doppler-shifted wave data yield similar results but much larger in modulation magnitude, as expected. In general, Doppler shift corrections reduce the modulation magnitude. Overcorrection may result in a negligible modulation or even in a strong modulation with the maximum amplitude in the wave troughs. The latter situation is clearly contradictory to our visual observations as well as the radar results and imply that the advection by currents is overestimated. In this study, a differential-advection approach is used in which small scale waves are advected by the currents evaluated not at the free surface, but at a depth proportional to their wavelengths. Applicability of this approach is verified by the excellent agreement in phase and magnitude of short-wave modulation between results based on radar and on wave-gauge measurements conducted on a lake.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groot, Paul J., E-mail: pgroot@astro.ru.nl
In eclipsing binaries the stellar rotation of the two components will cause a rotational Doppler beaming during eclipse ingress and egress when only part of the eclipsed component is covered. For eclipsing binaries with fast spinning components this photometric analog of the well-known spectroscopic Rossiter-McLaughlin effect can exceed the strength of the orbital effect. Example light curves are shown for a detached double white dwarf binary, a massive O-star binary and a transiting exoplanet case, similar to WASP-33b. Inclusion of the rotational Doppler beaming in eclipsing systems is a prerequisite for deriving the correct stellar parameters from fitting high-quality photometricmore » light curves and can be used to determine stellar obliquities as well as, e.g., an independent measure of the rotational velocity in those systems that may be expected to be fully synchronized.« less
UAV-borne coherent doppler lidar for marine atmospheric boundary layer observations
NASA Astrophysics Data System (ADS)
Wu, Songhua; Wang, Qichao; Liu, Bingyi; Liu, Jintao; Zhang, Kailin; Song, Xiaoquan
2018-04-01
A compact UAV-borne Coherent Doppler Lidar (UCDL) has been developed at the Ocean University of China for the observation of wind profile and boundary layer structure in Marine Atmospheric Boundary Layer (MABL). The design, specifications and motion-correction methodology of the UCDL are presented. Preliminary results of the first flight campaign in Hailing Island in December 2016 is discussed.
Modified linear predictive coding approach for moving target tracking by Doppler radar
NASA Astrophysics Data System (ADS)
Ding, Yipeng; Lin, Xiaoyi; Sun, Ke-Hui; Xu, Xue-Mei; Liu, Xi-Yao
2016-07-01
Doppler radar is a cost-effective tool for moving target tracking, which can support a large range of civilian and military applications. A modified linear predictive coding (LPC) approach is proposed to increase the target localization accuracy of the Doppler radar. Based on the time-frequency analysis of the received echo, the proposed approach first real-time estimates the noise statistical parameters and constructs an adaptive filter to intelligently suppress the noise interference. Then, a linear predictive model is applied to extend the available data, which can help improve the resolution of the target localization result. Compared with the traditional LPC method, which empirically decides the extension data length, the proposed approach develops an error array to evaluate the prediction accuracy and thus, adjust the optimum extension data length intelligently. Finally, the prediction error array is superimposed with the predictor output to correct the prediction error. A series of experiments are conducted to illustrate the validity and performance of the proposed techniques.
Development of a Simple Positron Age-Momentum Setup
NASA Astrophysics Data System (ADS)
Sheffield, Thomas; Quarles, C. A.
2009-04-01
A positron age-momentum setup that uses NIM Bin electronic modules and a conventional multichannel analyzer (MCA) is described. The essential idea is to accumulate a Doppler broadened spectrum (sensitive to the annihilation electron momentum) using a high purity Germanium detector in coincidence with a BaF2 scintillation counter, which also serves as the stop signal in a conventional positron lifetime setup. The MCA that collects the Doppler spectrum is gated by a selected region of the lifetime spectrum. Thus we can obtain Doppler broadening spectra as a function of positron lifetime: an age-momentum spectrum. The apparatus has been used so far to investigate a ZnO sample where the size of different vacancy trapping sites may affect the positron lifetime and the Doppler broadening spectrum. We are also looking at polymer and rubber carbon-black composite samples where differences in the Doppler spectrum may arise from positron trapping or positronium formation in the samples. Correction for background and contribution from the positron source itself to the Doppler spectrum will be discussed.
NASA Technical Reports Server (NTRS)
Ruyten, Wilhelmus M.; Keefer, Dennis
1992-01-01
The paper investigates the use of optogalvanic (OG) measurements on the neutral 3P1 and 3P2 levels of argon in a hollow cathode lamp for the purpose of calibrating Doppler shifts of laser-induced fluorescence signals from an arcjet plume. It is shown that, even with non-Doppler-free OG detection, accuracy to better than 10 MHz is possible but that, depending on the experiment geometry, corrections of 10-35 MHz may be necessary to offset small axial drift velocities of neutral atoms in the hollow cathode lamp.
Computer and Voice Network Management Through Low Earth Orbiting Satellites
2006-03-01
Correction Chart” [web page] (29 July 2005 [cited 01 DEC 05]); available from World Wide Web @ http://www.amsat.orgamsat/ ariss /news...Available from World Wide Web @ http://www.amsat.orgamsat/ ariss /news/ISS_frequencies_and_Doppler_correction. rtf “Technical Specifications” [web
Harada, K; Tamura, M; Toyono, M; Yasuoka, K
2002-01-01
Dobutamine stress echocardiography has become accepted in the evaluation of cardiac functional reserve. Although the Doppler-derived index of combined systolic/diastolic myocardial performance (Tei index) has been reported to be easily obtainable and useful for predicting left ventricular performance, the effect of dobutamine on the Tei index has not been determined in children. To assess the effect of dobutamine on the Tei index, 8 patients who had undergone surgery for ventricular septal defect and 7 patients who had a history of Kawasaki disease were examined. Echocardiographic recordings were obtained before and after dobutamine infusion (5 microg/kg per minute). Variables measured were transmitral flow velocities (E, A, E/A), rate-corrected mean velocity of circumferential fiber shortening (rate-corrected Vcf), and IMP. We measured isovolumic contraction time (ICT), isovolumic relaxation time (IRT), and ejection time (ET) and then calculated the Tei index using the following formula: Tei index = (ICT + IRT)/ET. Dobutamine infusion increased rate-corrected Vcf (29%, p < 0.01), peak E (7%, p < 0.05), and peak A (13%, p < 0.05). E/A ratio did not change during dobutamine infusion. ET, ICT, and IRT were found to decrease during dobutamine infusion. The magnitude of the change in the ICT (-21%, p < 0.01) was greater than those in IRT (-12%, p < 0.01) and ET (-8%, p < 0.05). The decrease in Tei index (-16%, p < 0.01) resulted in a decrease in ICT/ET (-21%, p < 0.01) and a slight decrease in IRT/ET (-12%, p < 0.05). The Tei index has potential as a sensitive indicator of the effects of inotropic stimilation on global left ventricular function.
Johnson, Karen; Toto, Tami; Jensen, Michael
2011-05-03
For the Ka ARM Zenith Radar (KAZR) data stream, kazrmd.b1 (md=moderate sensitivity), produces significant detection mask, corrects reflectivity for gaseous attenuation, and dealiases mean Doppler velocity.
Johnson, Karen; Toto, Tami; Jensen, Michael
2011-01-18
For the Ka ARM Zenith Radar (KAZR) data stream, kazrhi.b1 (hi=high sensitivity), produces significant detection mask, corrects reflectivity for gaseous attenuation, and dealiases mean Doppler velocity.
Johnson, Karen; Toto, Tami; Jensen, Michael
2011-01-18
For the Ka ARM Zenith Radar (KAZR) data stream, kazrge.b1 (ge=general sensitivity), produces significant detection mask, corrects reflectivity for gaseous attenuation, and dealiases mean Doppler velocity.
3D non-LTE corrections for the 6Li/7Li isotopic ratio in solar-type stars
NASA Astrophysics Data System (ADS)
Harutyunyan, G.; Steffen, M.; Mott, A.; Caffau, E.; Israelian, G.; González Hernández, J. I.; Strassmeier, K. G.
Doppler shifts induced by convective motions in stellar atmospheres affect the shape of spectral absorption lines and create slightly asymmetric line profiles. It is important to take this effect into account in modeling the subtle depression created by the 6Li isotope which lies on the red wing of the Li I 670.8 nm resonance doublet line, since convective motions in stellar atmospheres can mimic a presence of 6Li when intrinsically symmetric theoretical line profiles are presumed for the analysis of the 7Li doublet \\citep{cayrel2007}. Based on CO5BOLD hydrodynamical model atmospheres, we compute 3D non-local thermodynamic equilibrium (NLTE) corrections for the 6Li/7Li isotopic ratio by using a grid of 3D NLTE and 1D LTE synthetic spectra. These corrections must be added to the results of the 1D LTE analysis to correct them for the combined 3D non-LTE effects. As one would expect, the resulting corrections are always negative and they range between 0 and -5 %, depending on effective temperature, surface gravity, and metallicity. For each metallicity we derive an analytic expression approximating the 3D NLTE corrections as a function of effective temperature, surface gravity and projected rotational velocity.
Advantages and limits of hemorrhoidal dearterialization in the treatment of symptomatic hemorrhoids
Giamundo, Paolo
2016-01-01
In the last two decades, hemorrhoidal dearterialization has become universally accepted as a treatment option for symptomatic hemorrhoids. The rationale for this procedure is based on the assumption that arterial blood overflow is mainly responsible for dilatation of the hemorrhoidal plexus due to the absence of capillary interposition between the arterial and venous systems within the anal canal. Dearterialization, with either suture ligation (Doppler-guided hemorrhoid artery ligation/transanal hemorrhoidal dearterialization) or laser (hemorrhoidal laser procedure), may be successfully performed alone or with mucopexy. Although the added value of Doppler-guidance in association with dearterialization has recently been challenged, this imaging method still plays an important role in localizing hemorrhoidal arteries and, therefore, minimizing the effect of anatomic variation among patients. However, it is important to employ the correct Doppler transducer. Some Doppler transducers may not easily detect superficial arteries due to inadequate frequency settings. All techniques of dearterialization have the advantage of preserving the anatomy and physiology of the anal canal, when compared to other surgical treatments for hemorrhoids. This advantage cannot be underestimated as impaired anal function, including fecal incontinence and other defecation disorders, may occur following surgical treatment for hemorrhoids. Furthermore, this potentially devastating problem can occur in patients of all ages, including younger patients. PMID:26843909
Advantages and limits of hemorrhoidal dearterialization in the treatment of symptomatic hemorrhoids.
Giamundo, Paolo
2016-01-27
In the last two decades, hemorrhoidal dearterialization has become universally accepted as a treatment option for symptomatic hemorrhoids. The rationale for this procedure is based on the assumption that arterial blood overflow is mainly responsible for dilatation of the hemorrhoidal plexus due to the absence of capillary interposition between the arterial and venous systems within the anal canal. Dearterialization, with either suture ligation (Doppler-guided hemorrhoid artery ligation/transanal hemorrhoidal dearterialization) or laser (hemorrhoidal laser procedure), may be successfully performed alone or with mucopexy. Although the added value of Doppler-guidance in association with dearterialization has recently been challenged, this imaging method still plays an important role in localizing hemorrhoidal arteries and, therefore, minimizing the effect of anatomic variation among patients. However, it is important to employ the correct Doppler transducer. Some Doppler transducers may not easily detect superficial arteries due to inadequate frequency settings. All techniques of dearterialization have the advantage of preserving the anatomy and physiology of the anal canal, when compared to other surgical treatments for hemorrhoids. This advantage cannot be underestimated as impaired anal function, including fecal incontinence and other defecation disorders, may occur following surgical treatment for hemorrhoids. Furthermore, this potentially devastating problem can occur in patients of all ages, including younger patients.
Dead-time Corrected Disdrometer Data
Bartholomew, Mary Jane
2008-03-05
Original and dead-time corrected disdrometer results for observations made at SGP and TWP. The correction is based on the technique discussed in Sheppard and Joe, 1994. In addition, these files contain calculated radar reflectivity factor, mean Doppler velocity and attenuation for every measurement for both the original and dead-time corrected data at the following wavelengths: 0.316, 0.856, 3.2, 5, and 10cm (W,K,X,C,S bands). Pavlos Kollias provided the code to do these calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghrayeb, Shadi Z.; Ougouag, Abderrafi M.; Ouisloumen, Mohamed
2014-01-01
A multi-group formulation for the exact neutron elastic scattering kernel is developed. It incorporates the neutron up-scattering effects, stemming from lattice atoms thermal motion and accounts for it within the resulting effective nuclear cross-section data. The effects pertain essentially to resonant scattering off of heavy nuclei. The formulation, implemented into a standalone code, produces effective nuclear scattering data that are then supplied directly into the DRAGON lattice physics code where the effects on Doppler Reactivity and neutron flux are demonstrated. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering,more » which in turn affect the estimation of core reactivity and burnup characteristics. The results show an increase in values of Doppler temperature feedback coefficients up to -10% for UOX and MOX LWR fuels compared to the corresponding values derived using the traditional asymptotic elastic scattering kernel. This paper also summarizes the results done on this topic to date.« less
Experimental confirmation of the atomic force microscope cantilever stiffness tilt correction
NASA Astrophysics Data System (ADS)
Gates, Richard S.
2017-12-01
The tilt angle (angle of repose) of an AFM cantilever relative to the surface it is interrogating affects the effective stiffness of the cantilever as it analyzes the surface. For typical AFMs and cantilevers that incline from 10° to 15° tilt, this is thought to be a 3%-7% stiffness increase correction. While the theoretical geometric analysis of this effect may have reached a consensus that it varies with cos-2 θ, there is very little experimental evidence to confirm this using AFM cantilevers. Recently, the laser Doppler vibrometry thermal calibration method utilized at NIST has demonstrated sufficient stiffness calibration accuracy, and precision to allow a definitive experimental confirmation of the particular trigonometric form of this tilt effect using a commercial microfabricated AFM cantilever specially modified to allow strongly tilted (up to 15°) effective cantilever stiffness measurements.
NASA Astrophysics Data System (ADS)
Kalesse, H.; Myagkov, A.; Seifert, P.; Buehl, J.
2015-12-01
Cloud radar Doppler spectra offer much information about cloud processes. By analyzing millimeter radar Doppler spectra from cloud-top to -base in mixed-phase clouds in which super-cooled liquid-layers are present we try to tell the microphysical evolution story of particles that are present by disentangling the contributions of the solid and liquid particles to the total radar returns. Instead of considering vertical profiles, dynamical effects are taken into account by following the particle population evolution along slanted paths which are caused by horizontal advection of the cloud. The goal is to identify regions in which different microphysical processes such as new particle formation (nucleation), water vapor deposition, aggregation, riming, or sublimation occurr. Cloud radar measurements are supplemented by Doppler lidar and Raman lidar observations as well as observations with MWR, wind profiler, and radio sondes. The presence of super-cooled liquid layers is identified by positive liquid water paths in MWR measurements, the vertical location of liquid layers (in non-raining systems and below lidar extinction) is derived from regions of high-backscatter and low depolarization in Raman lidar observations. In collocated cloud radar measurements, we try to identify cloud phase in the cloud radar Doppler spectrum via location of the Doppler peak(s), the existence of multi-modalities or the spectral skewness. Additionally, within the super-cooled liquid layers, the radar-identified liquid droplets are used as air motion tracer to correct the radar Doppler spectrum for vertical air motion w. These radar-derived estimates of w are validated by independent estimates of w from collocated Doppler lidar measurements. A 35 GHz vertically pointing cloud Doppler radar (METEK MIRA-35) in linear depolarization (LDR) mode is used. Data is from the deployment of the Leipzig Aerosol and Cloud Remote Observations System (LACROS) during the Analysis of the Composition of Clouds with Extended Polarization Techniques (ACCEPT) field experiment in Cabauw, Netherlands in Fall 2014. There, another MIRA-35 was operated in simultaneous transmission and simultaneous reception (STSR) mode for obtaining measurements of differential reflectivity (ZDR) and correlation coefficient ρhv.
Analytical estimates of the PP-algorithm at low number of Doppler periods per pulse length
NASA Technical Reports Server (NTRS)
Angelova, M. D.; Stoykova, E. V.; Stoyanov, D. V.
1992-01-01
When discussing the Doppler velocity estimators, it is of significant interest to analyze their behavior at a low number of Doppler periods n(sub D) = 2v(sub r)t(sub s)/lambda is approximately equal to 1 within the resolution cell t(sub s) (v(sub 4) is the radial velocity, lambda is the wavelength). Obviously, at n(sub D) is approximately less than 1 the velocity error is essentially increased. The problem of low n(sub D) arises in the planetary boundary layer (PBL), where higher resolutions are usually required but the signal-to-noise ratio (SNR) is relatively high. In this work analytical expression for the relative root mean square (RMS) error of the PP Doppler estimator at low number of periods for a narrowband Doppler signal and arbitrary model of the noise correlation function is obtained. The results are correct at relatively high SNR. The analysis is supported by computer simulations at various SNR's.
Navigation systems. [for interplanetary flight
NASA Technical Reports Server (NTRS)
Jordan, J. F.
1985-01-01
The elements of the measurement and communications network comprising the global deep space navigation system (DSN) for NASA missions are described. Among the measurement systems discussed are: VLBI, two-way Doppler and range measurements, and optical measurements carried out on board the spacecraft. Processing of navigation measurement is carried out using two modules: an N-body numerical integration of the trajectory (and state transition partial derivatives) based on pre-guessed initial conditions; and partial derivatives of simulated observables corresponding to each actual observation. Calculations of velocity correction parameters is performed by precise modelling of all physical phenomena influencing the observational measurements, including: planetary motions; tracking station locations, gravity field structure, and transmission media effects. Some of the contributions to earth-relative orbit estimate errors for the Doppler/range system on board Voyager are discussed in detail. A line drawing of the DSN navigation system is provided.
Ka-Band ARM Zenith Radar Corrections Value-Added Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Karen; Toto, Tami; Giangrande, Scott
The KAZRCOR Value -added Product (VAP) performs several corrections to the ingested KAZR moments and also creates a significant detection mask for each radar mode. The VAP computes gaseous attenuation as a function of time and radial distance from the radar antenna, based on ambient meteorological observations, and corrects observed reflectivities for that effect. KAZRCOR also dealiases mean Doppler velocities to correct velocities whose magnitudes exceed the radar’s Nyquist velocity. Input KAZR data fields are passed through into the KAZRCOR output files, in their native time and range coordinates. Complementary corrected reflectivity and velocity fields are provided, along with amore » mask of significant detections and a number of data quality flags. This report covers the KAZRCOR VAP as applied to the original KAZR radars and the upgraded KAZR2 radars. Currently there are two separate code bases for the different radar versions, but once KAZR and KAZR2 data formats are harmonized, only a single code base will be required.« less
NASA Astrophysics Data System (ADS)
Wang, Haijiang; Yang, Ling
2014-12-01
In this paper, the application of vector analysis tool in the illuminated area and the Doppler frequency distribution research for the airborne pulse radar is studied. An important feature of vector analysis is that it can closely combine the geometric ideas with algebraic calculations. Through coordinate transform, the relationship between the frame of radar antenna and the ground, under aircraft motion attitude, is derived. Under the time-space analysis, the overlap area between the footprint of radar beam and the pulse-illuminated zone is obtained. Furthermore, the Doppler frequency expression is successfully deduced. In addition, the Doppler frequency distribution is plotted finally. Using the time-space analysis results, some important parameters of a specified airborne radar system are obtained. Simultaneously, the results are applied to correct the phase error brought by attitude change in airborne synthetic aperture radar (SAR) imaging.
Fingerprints of a riming event on cloud radar Doppler spectra: observations and modeling
Kalesse, Heike; Szyrmer, Wanda; Kneifel, Stefan; ...
2016-03-09
In this paper, Radar Doppler spectra measurements are exploited to study a riming event when precipitating ice from a seeder cloud sediment through a supercooled liquid water (SLW) layer. The focus is on the "golden sample" case study for this type of analysis based on observations collected during the deployment of the Atmospheric Radiation Measurement Program's (ARM) mobile facility AMF2 at Hyytiälä, Finland, during the Biogenic Aerosols – Effects on Clouds and Climate (BAECC) field campaign. The presented analysis of the height evolution of the radar Doppler spectra is a state-of-the-art retrieval with profiling cloud radars in SLW layers beyondmore » the traditional use of spectral moments. Dynamical effects are considered by following the particle population evolution along slanted tracks that are caused by horizontal advection of the cloud under wind shear conditions. In the SLW layer, the identified liquid peak is used as an air motion tracer to correct the Doppler spectra for vertical air motion and the ice peak is used to study the radar profiles of rimed particles. A 1-D steady-state bin microphysical model is constrained using the SLW and air motion profiles and cloud top radar observations. The observed radar moment profiles of the rimed snow can be simulated reasonably well by the model, but not without making several assumptions about the ice particle concentration and the relative role of deposition and aggregation. In conclusion, this suggests that in situ observations of key ice properties are needed to complement the profiling radar observations before process-oriented studies can effectively evaluate ice microphysical parameterizations.« less
Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan
2014-09-08
Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.
Relativity experiment on Helios - A status report
NASA Technical Reports Server (NTRS)
Anderson, J. D.; Melbourne, W. G.; Cain, D. L.; Lau, E. K.; Wong, S. K.; Kundt, W.
1975-01-01
The relativity experiment on Helios (Experiment 11) uses S-band and Doppler data, and spacecraft-solar-orbital data to measure the effects of general relativity in the solar system and the quadrupole moment in the solar gravitational field. Specifically, Experiment 11 is converned with measuring the following effects: (1) relativistic orbital corrections described by two parameters of the space-time metric which are both equal to unity in Einstein's theory; (2) orbital perturbations caused by a finite quadrupole moment of an oblate sun, described by zonal harmonics in the solar gravitational field.
Kul'chitskaia, D B
2009-01-01
The study with the use of laser Doppler flowmetry has revealed pathological changes in the microcirculatory system of patients with arterial hypertension. Their treatment with a low-frequency magnetic field showed that its effect on microcirculation depends on the regime and site of application of magnetotherapy as well as its combination with other physical factors. Frontal application of the magnetic field had the most pronounced beneficial effect on dynamic characteristics of microcirculation. Pulsed regime of magnetotherapy was more efficacious than conventional one. Amplipulse magnetotherapy produced better results than monotherapy.
van der Hulst, Annelies E; Roest, Arno A W; Delgado, Victoria; Kroft, Lucia J M; Holman, Eduard R; Blom, Nico A; Bax, Jeroen J; de Roos, Albert; Westenberg, Jos J M
2011-07-01
To compare velocity-encoded (VE) magnetic resonance (MR) imaging with tissue Doppler imaging to assess right ventricular (RV) peak systolic velocities and timing of velocities in patients with corrected tetralogy of Fallot and healthy subjects. Local institutional review board approval was obtained; patients or their parents gave informed consent. Thirty-three patients (20 male, 13 female; median age, 12 years; interquartile range [IQR], 11-15 years; age range, 8-18 years) and 19 control subjects (12 male, seven female; median age, 14 years; IQR, 12-16 years; age range, 8-18 years) underwent VE MR imaging and tissue Doppler imaging. Peak systolic velocity and time to peak systolic velocity (percentage of cardiac cycle) were assessed at the RV free wall (RVFW) and RV outflow tract (RVOT). Data were analyzed by using linear regression, paired and unpaired tests, and Bland-Altman plots. Good correlation and agreement between the two techniques were observed. For peak systolic velocity at RVFW, r = 0.95 (mean difference, -0.4 cm/sec, P < .01), and at RVOT, r = 0.95 (mean difference, -0.4 cm/sec, P = .02). For timing at RVFW, r = 0.94 (mean difference, -0.2%, P = .44), and at RVOT, r = 0.89 (mean difference, -0.5%, P = .01). Peak systolic velocity was reduced in patients with corrected tetralogy of Fallot (at RVFW, median was 8.2 cm/sec [IQR, 6.4-9.7 cm/sec] vs 12.4 cm/sec [IQR, 10.8-13.8 cm/sec], P < .01; at RVOT, 4.7 cm/sec [IQR, 4.1-7.2 cm/sec] vs 10.2 cm/sec [IQR, 8.7-11.2 cm/sec], P < .01). The time delay between RVFW and RVOT was observed, which was significantly shorter in patients with corrected tetralogy of Fallot (median, 5.9% [IQR, 4.9%-7.4%] vs 8.4% [IQR, 6.6%-12.4%], P < .01). VE MR imaging and tissue Doppler imaging enable assessment of RV systolic performance and timing of velocities at the RVFW and RVOT in patients with corrected tetralogy of Fallot. Both techniques can be used interchangeably to clinically assess velocities and timing of velocities of the RV.
ERIC Educational Resources Information Center
Matrix Research Co., Alexandria, VA.
The handbook covers a comprehensive series of Job-Task Performance Tests for the Doppler Radar (AN/APN) and its Associated Computer (AN/ASN-35). The test series has been developed to measure job performance of the electronic technician. These tests encompass all phases of day-to-day preventative and corrective maintenance that technicians are…
NASA Technical Reports Server (NTRS)
Mccurdy, D. A.; Powell, C. A.
1979-01-01
A laboratory experiment was conducted to determine the effects of duration and other noise characteristics on the annoyance caused by aircraft-flyover noise. Duration, doppler shift, and spectra were individually controlled by specifying aircraft operational factors, such as velocity, altitude, and spectrum, in a computer synthesis of the aircraft-noise stimuli. This control allowed the separation of the effects of duration from the other main factors in the experimental design: velocity, tonal content, and sound pressure level. The annoyance of a set of noise stimuli which were comprised of factorial combinations of a 3 durations, 3 velocities, 3 sound pressure levels, and 2 tone conditions were judged. The judgements were made by using a graphical scale procedure similar to numerical category scaling. Each of the main factors except velocity was found to affect the judged annoyance significantly. The interaction of tonal content with sound pressure level was also found to be significant. The duration correction used in the effective-perceived-noise-level procedure, 3 dB per doubling of effective duration, was found to account most accurately for the effect of duration. No significant effect doppler shift was found.
Canter, C E; Gutierrez, F R; Molina, P; Hartmann, A F; Spray, T L
1991-04-01
Right-sided extracardiac conduits are frequently complicated by obstruction over time. We compared the utility of two-dimensional and Doppler echocardiography and magnetic resonance imaging in the diagnosis of postoperative right-sided obstruction with cardiac catheterization and angiography in 10 patients with xenograft or homograft conduits. Correlation (r = 0.95) between continuous-wave Doppler estimates and catheter pullback pressure gradients across the conduits was excellent. Echocardiography could only visualize five of 10 conduits in their entirety. Magnetic resonance imaging visualized all conduits and showed statistically significant (kappa = 0.58) agreement with angiography in the localization and estimation of severity of a variety of right-sided obstructions in these patients. However, flow voids created by the metallic ring around xenograft valves led to a false negative diagnosis of valvular stenosis in four patients when magnetic resonance imaging was used alone. Doppler studies correctly indicated obstruction in these patients. The combination of magnetic resonance imaging studies and continuous-wave Doppler echocardiography can be useful to noninvasively evaluate right-sided obstruction in postoperative patients with right-sided extracardiac conduits.
Servomechanism for Doppler shift compensation in optical correlator for synthetic aperture radar
NASA Technical Reports Server (NTRS)
Constaninides, N. J.; Bicknell, T. J. (Inventor)
1980-01-01
A method and apparatus for correcting Doppler shifts in synthetic aperture radar data is described. An optical correlator for synthetic aperture radar data has a means for directing a laser beam at a signal film having radar return pulse intensity information recorded on it. A resultant laser beam passes through a range telescope, an azimuth telescope, and a Fourier transform filter located between the range and azimuth telescopes, and forms an image for recording on an image film. A compensation means for Doppler shift in the radar return pulse intensity information includes a beam splitter for reflecting the modulated laser beam, after having passed through the Fourier transform filter, to a detection screen having two photodiodes mounted on it.
Vector Doppler: spatial sampling analysis and presentation techniques for real-time systems
NASA Astrophysics Data System (ADS)
Capineri, Lorenzo; Scabia, Marco; Masotti, Leonardo F.
2001-05-01
The aim of the vector Doppler (VD) technique is the quantitative reconstruction of a velocity field independently of the ultrasonic probe axis to flow angle. In particular vector Doppler is interesting for studying vascular pathologies related to complex blood flow conditions. Clinical applications require a real-time operating mode and the capability to perform Doppler measurements over a defined volume. The combination of these two characteristics produces a real-time vector velocity map. In previous works the authors investigated the theory of pulsed wave (PW) vector Doppler and developed an experimental system capable of producing off-line 3D vector velocity maps. Afterwards, for producing dynamic velocity vector maps, we realized a new 2D vector Doppler system based on a modified commercial echograph. The measurement and presentation of a vector velocity field requires a correct spatial sampling that must satisfy the Shannon criterion. In this work we tackled this problem, establishing a relationship between sampling steps and scanning system characteristics. Another problem posed by the vector Doppler technique is the data representation in real-time that should be easy to interpret for the physician. With this in mine we attempted a multimedia solution that uses both interpolated images and sound to represent the information of the measured vector velocity map. These presentation techniques were experimented for real-time scanning on flow phantoms and preliminary measurements in vivo on a human carotid artery.
Temporal Doppler Effect and Future Orientation: Adaptive Function and Moderating Conditions.
Gan, Yiqun; Miao, Miao; Zheng, Lei; Liu, Haihua
2017-06-01
The objectives of this study were to examine whether the temporal Doppler effect exists in different time intervals and whether certain individual and environmental factors act as moderators of the effect. Using hierarchical linear modeling, we examined the existence of the temporal Doppler effect and the moderating effect of future orientation among 139 university students (Study 1), and then the moderating conditions of the temporal Doppler effect using two independent samples of 143 and 147 university students (Studies 2 and 3). Results indicated that the temporal Doppler effect existed in all of our studies, and that future orientation moderated the temporal Doppler effect. Further, time interval perception mediated the relationship between future orientation and the motivation to cope at long time intervals. Finally, positive affect was found to enhance the temporal Doppler effect, whereas control deprivation did not influence the effect. The temporal Doppler effect is moderated by the personality trait of future orientation and by the situational variable of experimentally manipulated positive affect. We have identified personality and environmental processes that could enhance the temporal Doppler effect, which could be valuable in cases where attention to a future task is necessary. © 2016 Wiley Periodicals, Inc.
Study on characteristics of chirp about Doppler wind lidar system
NASA Astrophysics Data System (ADS)
Du, Li-fang; Yang, Guo-tao; Wang, Ji-hong; Yue, Chuan; Chen, Lin-xiang
2016-11-01
In the doppler wind lidar, usually every 4MHz frequency error will produce wind error of 1m/s of 532nm laser. In the Doppler lidar system, frequency stabilization was achieved through absorption of iodine molecules. Commands that control the instrumental system were based on the PID algorithm and coded using VB language. The frequency of the seed laser was locked to iodine molecular absorption line 1109 which is close to the upper edge of the absorption range, with long-time (>4h) frequency-locking accuracy being≤0.5MHz and long-time frequency stability being 10-9 . The experimental result indicated that the seed frequency and the pulse laser frequency have a deviation, which effect is called the laser chirp characteristics. Finally chirp test system was constructed and tested the frequency offset in time. And such frequency deviation is known as Chirp of the laser pulse. The real-time measured frequency difference of the continuous and pulsed lights was about 10MHz, long-time stability deviation was around 5MHz. After experimental testing technology mature, which can monitoring the signal at long-term with corrected the wind speed.
Ambiguity resolution for satellite Doppler positioning systems
NASA Technical Reports Server (NTRS)
Argentiero, P.; Marini, J.
1979-01-01
The implementation of satellite-based Doppler positioning systems frequently requires the recovery of transmitter position from a single pass of Doppler data. The least-squares approach to the problem yields conjugate solutions on either side of the satellite subtrack. It is important to develop a procedure for choosing the proper solution which is correct in a high percentage of cases. A test for ambiguity resolution which is the most powerful in the sense that it maximizes the probability of a correct decision is derived. When systematic error sources are properly included in the least-squares reduction process to yield an optimal solution the test reduces to choosing the solution which provides the smaller valuation of the least-squares loss function. When systematic error sources are ignored in the least-squares reduction, the most powerful test is a quadratic form comparison with the weighting matrix of the quadratic form obtained by computing the pseudoinverse of a reduced-rank square matrix. A formula for computing the power of the most powerful test is provided. Numerical examples are included in which the power of the test is computed for situations that are relevant to the design of a satellite-aided search and rescue system.
Doppler frequency in interplanetary radar and general relativity
NASA Technical Reports Server (NTRS)
Mcvittie, G. C.
1972-01-01
The change of frequency of an interplanetary radar signal sent from the earth to another planet or to a space probe is worked out according to general relativity. The Schwarzschild spacetime is employed and its null geodesics control the motion of the signals. Exact Doppler frequency formulas are derived for one-way and two-way radar in terms of an arbitrary Schwarzschild radial coordinate. A reduction to the special relativity case is used to interpret the formulas in terms of the relative radial velocity of emitter and target. The general relativity corrections are worked out approximately for each of three possible Schwarzschild radial coordinates, and a numerical example is given. The amount of the correction is different according as one or the other of the Schwarzschild coordinates is identified with the radius vector deduced from classical celestial mechanics. The identification problem is discussed.
Parametric study of statistical bias in laser Doppler velocimetry
NASA Technical Reports Server (NTRS)
Gould, Richard D.; Stevenson, Warren H.; Thompson, H. Doyle
1989-01-01
Analytical studies have often assumed that LDV velocity bias depends on turbulence intensity in conjunction with one or more characteristic time scales, such as the time between validated signals, the time between data samples, and the integral turbulence time-scale. These parameters are presently varied independently, in an effort to quantify the biasing effect. Neither of the post facto correction methods employed is entirely accurate. The mean velocity bias error is found to be nearly independent of data validation rate.
THD Doppler procedure for hemorrhoids: the surgical technique.
Ratto, C
2014-03-01
Transanal hemorrhoidal dearterialization (THD) is an effective treatment for hemorrhoidal disease. The ligation of hemorrhoidal arteries (called "dearterialization") can provide a significant reduction of the arterial overflow to the hemorrhoidal piles. Plication of the redundant rectal mucosa/submucosa (called "mucopexy") can provide a repositioning of prolapsing tissue to the anatomical site. In this paper, the surgical technique and perioperative patient management are illustrated. Following adequate clinical assessment, patients undergo THD under general or spinal anesthesia, in either the lithotomy or the prone position. In all patients, distal Doppler-guided dearterialization is performed, providing the selective ligation of hemorrhoidal arteries identified by Doppler. In patients with hemorrhoidal/muco-hemorrhoidal prolapse, the mucopexy is performed with a continuous suture including the redundant and prolapsing mucosa and submucosa. The description of the surgical procedure is complemented by an accompanying video (see supplementary material). In long-term follow-up, there is resolution of symptoms in the vast majority of patients. The most common complication is transient tenesmus, which sometimes can result in rectal discomfort or pain. Rectal bleeding occurs in a very limited number of patients. Neither fecal incontinence nor chronic pain should occur. Anorectal physiology parameters should be unaltered, and anal sphincters should not be injured by following this procedure. When accurately performed and for the correct indications, THD is a safe procedure and one of the most effective treatments for hemorrhoidal disease.
Jadhav, Sachin; Sattar, Naveed; Petrie, John R; Cobbe, Stuart M; Ferrell, William R
2007-09-01
Interrogation of peripheral vascular function is increasingly recognized as a noninvasive surrogate marker for coronary vascular function and carries with it important prognostic information regarding future cardiovascular risk. Laser Doppler imaging (LDI) is a completely noninvasive method for looking at peripheral microvascular function. We sought to look at reproducibility and repeatability of LDI-derived assessment of peripheral microvascular function between arms and 8 weeks apart. We used LDI in conjunction with iontophoretic application of ACh and SNP to look at endothelium-dependent and -independent microvascular function, respectively, in a mixture of women with cardiac syndrome X and healthy volunteers. We looked at variation between arms (n = 40) and variation at 8 weeks apart (n = 22). When measurements were corrected for skin resistance, there was nonsignificant variation between arms for ACh (2.7%) and SNP (3.8%) and nonsignificant temporal variation for ACh (3.5%) and SNP (4.7%). Construction of Bland-Altman plots reinforce that measurements have good repeatability. Elimination of the baseline perfusion response had deleterious effects on repeatability. LDI can be used to assess peripheral vascular response with good repeatability as long as measurements are corrected for skin resistance, which affects drug delivery. This has important implications for the future use of LDI.
Dura-Bernal, Salvador; Garreau, Guillaume; Georgiou, Julius; Andreou, Andreas G; Denham, Susan L; Wennekers, Thomas
2013-10-01
The ability to recognize the behavior of individuals is of great interest in the general field of safety (e.g. building security, crowd control, transport analysis, independent living for the elderly). Here we report a new real-time acoustic system for human action and behavior recognition that integrates passive audio and active micro-Doppler sonar signatures over multiple time scales. The system architecture is based on a six-layer convolutional neural network, trained and evaluated using a dataset of 10 subjects performing seven different behaviors. Probabilistic combination of system output through time for each modality separately yields 94% (passive audio) and 91% (micro-Doppler sonar) correct behavior classification; probabilistic multimodal integration increases classification performance to 98%. This study supports the efficacy of micro-Doppler sonar systems in characterizing human actions, which can then be efficiently classified using ConvNets. It also demonstrates that the integration of multiple sources of acoustic information can significantly improve the system's performance.
Imaging shear wave propagation for elastic measurement using OCT Doppler variance method
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Miao, Yusi; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping
2016-03-01
In this study, we have developed an acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) method for the visualization of the shear wave and the calculation of the shear modulus based on the OCT Doppler variance method. The vibration perpendicular to the OCT detection direction is induced by the remote acoustic radiation force (ARF) and the shear wave propagating along the OCT beam is visualized by the OCT M-scan. The homogeneous agar phantom and two-layer agar phantom are measured using the ARFOE-OCE system. The results show that the ARFOE-OCE system has the ability to measure the shear modulus beyond the OCT imaging depth. The OCT Doppler variance method, instead of the OCT Doppler phase method, is used for vibration detection without the need of high phase stability and phase wrapping correction. An M-scan instead of the B-scan for the visualization of the shear wave also simplifies the data processing.
SDP_mharwit_1: Demonstration of HIFI Linear Polarization Analysis of Spectral Features
NASA Astrophysics Data System (ADS)
Harwit, M.
2010-03-01
We propose to observe the polarization of the 621 GHz water vapor maser in VY Canis Majoris to demonstrate the capability of HIFI to make polarization observations of Far-Infrared/Submillimeter spectral lines. The proposed Demonstration Phase would: - Show that HIFI is capable of interesting linear polarization measurements of spectral lines; - Test out the highest spectral resolving power to sort out closely spaced Doppler components; - Determine whether the relative intensities predicted by Neufeld and Melnick are correct; - Record the degree and direction of linear polarization for the closely-Doppler shifted peaks.
NASA Technical Reports Server (NTRS)
Hinrichs, C. A.
1974-01-01
A digital simulation is presented for a candidate modem in a modeled atmospheric scintillation environment with Doppler, Doppler rate, and signal attenuation typical of the radio link conditions for an outer planets atmospheric entry probe. The results indicate that the signal acquisition characteristics and the channel error rate are acceptable for the system requirements of the radio link. The simulation also outputs data for calculating other error statistics and a quantized symbol stream from which error correction decoding can be analyzed.
NASA airborne Doppler lidar program: Data characteristics of 1981
NASA Technical Reports Server (NTRS)
Lee, R. W.
1982-01-01
The first flights of the NASA/Marshall airborne CO2 Doppler lidar wind measuring system were made during the summer of 1981. Successful measurements of two-dimensional flow fields were made to ranges of 15 km from the aircraft track. The characteristics of the data obtained are examined. A study of various artifacts introduced into the data set by incomplete compensation for aircraft dynamics is summarized. Most of these artifacts can be corrected by post processing, which reduces velocity errors in the reconstructed flow field to remarkably low levels.
Ghori, Ahmer K; Chung, Kevin C
2007-12-01
The word Doppler is used synonymously in hand surgery for evaluating patency of vascular structures; however, the science and history behind the Doppler effect are not as well-known. We will present the theories behind the Doppler effect and the history of the person who made this discovery.
Turbulence Measurements from Compliant Moorings. Part II: Motion Correction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilcher, Levi F.; Thomson, Jim; Harding, Samuel
2017-06-01
Acoustic Doppler velocimeters (ADVs) are a valuable tool for making highprecision measurements of turbulence, and moorings are a convenient and ubiquitous platform for making many kinds of measurements in the ocean. However—because of concerns that mooring motion can contaminate turbulence measurements and acoustic Doppler profilers are relatively easy to deploy—ADVs are not frequently deployed from moorings. This work details a method for measuring turbulence using moored ADVs that corrects for mooring motion using measurements from inertial motion sensors. Three distinct mooring platforms were deployed in a tidal channel with inertial motion-sensor-equipped ADVs. In each case, the motion correction based onmore » the inertial measurements dramatically reduced contamination from mooring motion. The spectra from these measurements have a shape that is consistent with other measurements in tidal channels, and have a f^(5/3) slope at high frequencies—consistent with Kolmogorov’s theory of isotropic turbulence. Motion correction also improves estimates of cross-spectra and Reynold’s stresses. Comparison of turbulence dissipation with flow speed and turbulence production indicates a bottom boundary layer production-dissipation balance during ebb and flood that is consistent with the strong tidal forcing at the site. These results indicate that inertial-motion-sensor-equipped ADVs are a valuable new tool for measuring turbulence from moorings.« less
Localization and Mapping Using Only a Rotating FMCW Radar Sensor
Vivet, Damien; Checchin, Paul; Chapuis, Roland
2013-01-01
Rotating radar sensors are perception systems rarely used in mobile robotics. This paper is concerned with the use of a mobile ground-based panoramic radar sensor which is able to deliver both distance and velocity of multiple targets in its surrounding. The consequence of using such a sensor in high speed robotics is the appearance of both geometric and Doppler velocity distortions in the collected data. These effects are, in the majority of studies, ignored or considered as noise and then corrected based on proprioceptive sensors or localization systems. Our purpose is to study and use data distortion and Doppler effect as sources of information in order to estimate the vehicle's displacement. The linear and angular velocities of the mobile robot are estimated by analyzing the distortion of the measurements provided by the panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and the radar map of outdoor environments. In this paper, radar-only localization and mapping results are presented for a ground vehicle moving at high speed. PMID:23567523
Localization and mapping using only a rotating FMCW radar sensor.
Vivet, Damien; Checchin, Paul; Chapuis, Roland
2013-04-08
Rotating radar sensors are perception systems rarely used in mobile robotics. This paper is concerned with the use of a mobile ground-based panoramic radar sensor which is able to deliver both distance and velocity of multiple targets in its surrounding. The consequence of using such a sensor in high speed robotics is the appearance of both geometric and Doppler velocity distortions in the collected data. These effects are, in the majority of studies, ignored or considered as noise and then corrected based on proprioceptive sensors or localization systems. Our purpose is to study and use data distortion and Doppler effect as sources of information in order to estimate the vehicle's displacement. The linear and angular velocities of the mobile robot are estimated by analyzing the distortion of the measurements provided by the panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and the radar map of outdoor environments. In this paper, radar-only localization and mapping results are presented for a ground vehicle moving at high speed.
Large-scale 3D galaxy correlation function and non-Gaussianity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raccanelli, Alvise; Doré, Olivier; Bertacca, Daniele
We investigate the properties of the 2-point galaxy correlation function at very large scales, including all geometric and local relativistic effects --- wide-angle effects, redshift space distortions, Doppler terms and Sachs-Wolfe type terms in the gravitational potentials. The general three-dimensional correlation function has a nonzero dipole and octupole, in addition to the even multipoles of the flat-sky limit. We study how corrections due to primordial non-Gaussianity and General Relativity affect the multipolar expansion, and we show that they are of similar magnitude (when f{sub NL} is small), so that a relativistic approach is needed. Furthermore, we look at how large-scalemore » corrections depend on the model for the growth rate in the context of modified gravity, and we discuss how a modified growth can affect the non-Gaussian signal in the multipoles.« less
Measuring the human psychophysiological conditions without contact
NASA Astrophysics Data System (ADS)
Scalise, L.; Casacanditella, L.; Cosoli, G.
2017-08-01
Heart Rate Variability, HRV, studies the variations of cardiac rhythm caused by the autonomic regulation. HRV analysis can be applied to the study of the effects of mental or physical stressors on the psychophysiological conditions. The present work is a pilot study performed on a 23-year-old healthy subject. The measurement of HRV was performed by means of two sensors, that is an electrocardiograph and a Laser Doppler Vibrometer, which is a non-contact device able to detect the skin vibrations related to the cardiac activity. The present study aims to evaluate the effects of a physical task on HRV parameters (in both time and frequency domain), and consequently on the autonomic regulation, and the capability of Laser Doppler Vibrometry in correctly detecting the effects of stress on the Heart Variability. The results show a significant reduction of HRV parameters caused by the execution of the physical task (i.e. variations of 25-40% for parameters in time domain, also higher in frequency domain); this is consistent with the fact that stress causes a reduced capability of the organism in varying the Heart Rate (and, consequently, a limited HRV). LDV was able to correctly detect this phenomenon in the time domain, while the parameters in the frequency domain show significant deviations with respect to the gold standard technique (i.e. ECG). This may be due to the movement artefacts that have consistently modified the shape of the vibration signal measured by means of LDV, after having performed the physical task. In the future, in order to avoid this drawback, the LDV technique could be used to evaluate the effects of a mental task on HRV signals (i.e. the evaluation of mental stress).
Purvis, Dianna; Aldaghlas, Tayseer; Trickey, Amber W; Rizzo, Anne; Sikdar, Siddhartha
2013-06-01
Early detection and treatment of blunt cervical vascular injuries prevent adverse neurologic sequelae. Current screening criteria can miss up to 22% of these injuries. The study objective was to investigate bedside transcranial Doppler sonography for detecting blunt cervical vascular injuries in trauma patients using a novel decision tree approach. This prospective pilot study was conducted at a level I trauma center. Patients undergoing computed tomographic angiography for suspected blunt cervical vascular injuries were studied with transcranial Doppler sonography. Extracranial and intracranial vasculatures were examined with a portable power M-mode transcranial Doppler unit. The middle cerebral artery mean flow velocity, pulsatility index, and their asymmetries were used to quantify flow patterns and develop an injury decision tree screening protocol. Student t tests validated associations between injuries and transcranial Doppler predictive measures. We evaluated 27 trauma patients with 13 injuries. Single vertebral artery injuries were most common (38.5%), followed by single internal carotid artery injuries (30%). Compared to patients without injuries, mean flow velocity asymmetry was higher for single internal carotid artery (P = .003) and single vertebral artery (P = .004) injuries. Similarly, pulsatility index asymmetry was higher in single internal carotid artery (P = .015) and single vertebral artery (P = .042) injuries, whereas the lowest pulsatility index was elevated for bilateral vertebral artery injuries (P = .006). The decision tree yielded 92% specificity, 93% sensitivity, and 93% correct classifications. In this pilot feasibility study, transcranial Doppler measures were significantly associated with the blunt cervical vascular injury status, suggesting that transcranial Doppler sonography might be a viable bedside screening tool for trauma. Patient-specific hemodynamic information from transcranial Doppler assessment has the potential to alter patient care pathways to improve outcomes.
A high-fidelity Monte Carlo evaluation of CANDU-6 safety parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Y.; Hartanto, D.
2012-07-01
Important safety parameters such as the fuel temperature coefficient (FTC) and the power coefficient of reactivity (PCR) of the CANDU-6 (CANada Deuterium Uranium) reactor have been evaluated by using a modified MCNPX code. For accurate analysis of the parameters, the DBRC (Doppler Broadening Rejection Correction) scheme was implemented in MCNPX in order to account for the thermal motion of the heavy uranium nucleus in the neutron-U scattering reactions. In this work, a standard fuel lattice has been modeled and the fuel is depleted by using the MCNPX and the FTC value is evaluated for several burnup points including the mid-burnupmore » representing a near-equilibrium core. The Doppler effect has been evaluated by using several cross section libraries such as ENDF/B-VI, ENDF/B-VII, JEFF, JENDLE. The PCR value is also evaluated at mid-burnup conditions to characterize safety features of equilibrium CANDU-6 reactor. To improve the reliability of the Monte Carlo calculations, huge number of neutron histories are considered in this work and the standard deviation of the k-inf values is only 0.5{approx}1 pcm. It has been found that the FTC is significantly enhanced by accounting for the Doppler broadening of scattering resonance and the PCR are clearly improved. (authors)« less
[Ultrasound diagnosis of aneurysm of the vein of Galen in children].
Gazikalović, S; Kosutić, J; Komar, P; Vukomanović, V; Mogić, M
2001-01-01
Aneurysm of the vein of Galen is rare and complex vascular disorder that develops during embriogenesis and provokes significant haemodynamic changes. Boys are more frequently involved. During the foetal period Ballantyne syndrome may develop, and postnatal clinical presentation vary with ages. Serious haemodynamic changes are followed by congestive heart failure and, if not treated, with lethal exitus. Fast and correct diagnosis is very important. Ultrasound examination of central nervous system supported with Duplex-Doppler and Colour-Doppler examination of the head and heart enables the diagnosis. This text comments ultrasound presentation of the malformation and ultrasound diagnostic possibilities.
Particle-fluid interaction corrections for flow measurements with a laser Doppler flowmeter
NASA Technical Reports Server (NTRS)
Berman, N. S.
1972-01-01
A discussion is given of particle lags in mean flows, acoustic oscillations at single frequencies and in turbulent flows. Some simplified cases lead to exact solutions. For turbulent flows linearization of the equation of motion after assuming the fluid and particle streamlines coincide also leads to a solution. The results show that particle lags are a function of particle size and frequency of oscillation. Additional studies are necessary to evaluate the effect of turbulence when a major portion of the energy is concentrated in small eddies.
2015-10-21
rolls) in preparation for modifying current EDMF expressions We also continued to investigate the sensitivity of the WRF and COAMPS model to modified...allow non-collinear models to interact. During the fourth year, the TODWL data was also utilized by both the WRF and COAMPS model to help characterize...includes the contribution from both corrective and shear driven rolls within SCM, COAMPS and WRF <.’u:^--<^y\\,i/uU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalesse, Heike; Szyrmer, Wanda; Kneifel, Stefan
In this paper, Radar Doppler spectra measurements are exploited to study a riming event when precipitating ice from a seeder cloud sediment through a supercooled liquid water (SLW) layer. The focus is on the "golden sample" case study for this type of analysis based on observations collected during the deployment of the Atmospheric Radiation Measurement Program's (ARM) mobile facility AMF2 at Hyytiälä, Finland, during the Biogenic Aerosols – Effects on Clouds and Climate (BAECC) field campaign. The presented analysis of the height evolution of the radar Doppler spectra is a state-of-the-art retrieval with profiling cloud radars in SLW layers beyondmore » the traditional use of spectral moments. Dynamical effects are considered by following the particle population evolution along slanted tracks that are caused by horizontal advection of the cloud under wind shear conditions. In the SLW layer, the identified liquid peak is used as an air motion tracer to correct the Doppler spectra for vertical air motion and the ice peak is used to study the radar profiles of rimed particles. A 1-D steady-state bin microphysical model is constrained using the SLW and air motion profiles and cloud top radar observations. The observed radar moment profiles of the rimed snow can be simulated reasonably well by the model, but not without making several assumptions about the ice particle concentration and the relative role of deposition and aggregation. In conclusion, this suggests that in situ observations of key ice properties are needed to complement the profiling radar observations before process-oriented studies can effectively evaluate ice microphysical parameterizations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitiashvili, I. N.; Couvidat, S.; Lagg, A.
The solar atmosphere is extremely dynamic, and many important phenomena develop on small scales that are unresolved in observations with the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory. For correct calibration and interpretation of the observations, it is very important to investigate the effects of small-scale structures and dynamics on the HMI observables, such as Doppler shift, continuum intensity, spectral line depth, and width. We use 3D radiative hydrodynamics simulations of the upper turbulent convective layer and the atmosphere of the Sun, and a spectro-polarimetric radiative transfer code to study observational characteristics of the Fe imore » 6173 Å line observed by HMI in quiet-Sun regions. We use the modeling results to investigate the sensitivity of the line Doppler shift to plasma velocity, and also sensitivities of the line parameters to plasma temperature and density, and determine effective line formation heights for observations of solar regions located at different distances from the disk center. These estimates are important for the interpretation of helioseismology measurements. In addition, we consider various center-to-limb effects, such as convective blueshift, variations of helioseismic travel-times, and the “concave” Sun effect, and show that the simulations can qualitatively reproduce the observed phenomena, indicating that these effects are related to a complex interaction of the solar dynamics and radiative transfer.« less
The GPU implementation of micro - Doppler period estimation
NASA Astrophysics Data System (ADS)
Yang, Liyuan; Wang, Junling; Bi, Ran
2018-03-01
Aiming at the problem that the computational complexity and the deficiency of real-time of the wideband radar echo signal, a program is designed to improve the performance of real-time extraction of micro-motion feature in this paper based on the CPU-GPU heterogeneous parallel structure. Firstly, we discuss the principle of the micro-Doppler effect generated by the rolling of the scattering points on the orbiting satellite, analyses how to use Kalman filter to compensate the translational motion of tumbling satellite and how to use the joint time-frequency analysis and inverse Radon transform to extract the micro-motion features from the echo after compensation. Secondly, the advantages of GPU in terms of real-time processing and the working principle of CPU-GPU heterogeneous parallelism are analysed, and a program flow based on GPU to extract the micro-motion feature from the radar echo signal of rolling satellite is designed. At the end of the article the results of extraction are given to verify the correctness of the program and algorithm.
Study of the microdoppler signature of a bicyclist for different directions of approach
NASA Astrophysics Data System (ADS)
Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.
2015-05-01
The successful implementation of autonomous driving in an urban setting depends on the ability of the environment perception system to correctly classify vulnerable road users such as pedestrians and bicyclists in dense, complex scenarios. Self-driving vehicles include sensor systems such as cameras, lidars, and radars to enable decision making. Among these systems, radars are particularly relevant due to their operational robustness under adverse weather and night light conditions. Classification of pedestrian and car in urban settings using automotive radar has been widely investigated, suggesting that micro-Doppler signatures are useful for target discrimination. Our objective is to analyze and study the micro-Doppler signature of bicyclists approaching a vehicle from different directions in order to establish the basis of a classification criterion to distinguish bicycles from other targets including clutter. The micro-Doppler signature is obtained by grouping individual reflecting points using a clustering algorithm and observing the evolution of all the points belonging to an object in the Doppler domain over time. A comparison is then made with simulated data that uses a kinematic model of bicyclists' movement. The suitability of the micro-Doppler bicyclist signature as a classification feature is determined by comparing it to those belonging to cars and pedestrians approaching the automotive radar system.
Liu, Fang; Shen, Changqing; He, Qingbo; Zhang, Ao; Liu, Yongbin; Kong, Fanrang
2014-01-01
A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects. PMID:24803197
NASA Technical Reports Server (NTRS)
Royden, H. N.; Green, D. W.; Walson, G. R.
1981-01-01
Faraday-rotation data from the linearly polarized 137-MHz beacons of the ATS-1, SIRIO, and Kiku-2 geosynchronous satellites are used to determine the ionospheric corrections to the range and Doppler data for interplanetary spacecraft navigation. The JPL operates the Deep Space Network of tracking stations for NASA; these stations monitor Faraday rotation with dual orthogonal, linearly polarized antennas, Teledyne polarization tracking receivers, analog-to-digital converter/scanners, and other support equipment. Computer software examines the Faraday data, resolves the pi ambiguities, constructs a continuous Faraday-rotation profile and converts the profile to columnar zenith total electron content at the ionospheric reference point; a second program computes the line-of-sight ionospheric correction for each pass of the spacecraft over each tracking complex. Line-of-sight ionospheric electron content using mapped Faraday-rotation data is compared with that using dispersive Doppler data from the Voyager spacecraft; a difference of about 0.4 meters, or 5 x 10 to the 16th electrons/sq m is obtained. The technique of determining the electron content of interplanetary plasma by subtraction of the ionospheric contribution is demonstrated on the plasma torus surrounding the orbit of Io.
Inverse Doppler Effects in Broadband Acoustic Metamaterials
Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.
2016-01-01
The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe. PMID:27578317
Inverse Doppler Effects in Broadband Acoustic Metamaterials
NASA Astrophysics Data System (ADS)
Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.
2016-08-01
The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umeh, Obinna; Jolicoeur, Sheean; Maartens, Roy
Next-generation galaxy surveys will increasingly rely on the galaxy bispectrum to improve cosmological constraints, especially on primordial non-Gaussianity. A key theoretical requirement that remains to be developed is the analysis of general relativistic effects on the bispectrum, which arise from observing galaxies on the past lightcone, as well as from relativistic corrections to the dynamics. As an initial step towards a fully relativistic analysis of the galaxy bispectrum, we compute for the first time the local relativistic lightcone effects on the bispectrum, which come from Doppler and gravitational potential contributions. For the galaxy bispectrum, the problem is much more complexmore » than for the power spectrum, since we need the lightcone corrections at second order. Mode-coupling contributions at second order mean that relativistic corrections can be non-negligible at smaller scales than in the case of the power spectrum. In a primordial Gaussian universe, we show that the local lightcone projection effects for squeezed shapes at z ∼ 1 mean that the bispectrum can differ from the Newtonian prediction by ∼> 10% when the short modes are k ∼< (50 Mpc){sup −1}. These relativistic projection effects, if ignored in the analysis of observations, could be mistaken for primordial non-Gaussianity. For upcoming surveys which probe equality scales and beyond, all relativistic lightcone effects and relativistic dynamical corrections should be included for an accurate measurement of primordial non-Gaussianity.« less
Arques, Stephane; Roux, Emmanuel; Sbragia, Pascal; Pieri, Bertrand; Gelisse, Richard; Luccioni, Roger; Ambrosi, Pierre
2007-05-01
The incremental role of bedside tissue Doppler echocardiography and B-type natriuretic peptide (BNP) over the clinical judgment has been recently reported in the emergency diagnosis of congestive heart failure with a normal left ventricular ejection fraction (HFNEF). However, how well does this diagnostic strategy be applicable in the setting of atrial fibrillation is unknown. To investigate the usefulness of bedside tissue Doppler echocardiography and BNP in the emergency diagnosis of HFNEF in elderly patients with permanent, nonvalvular atrial fibrillation. Forty-one consecutive elderly patients with an ejection fraction > or =50% (mean age 84 years; 22 with HFNEF and 19 with noncardiac cause), hospitalized for acute dyspnea at rest, were prospectively enrolled; bedside septal E/Ea and BNP were obtained at admission. By multivariable logistic regression analysis including the clinical judgment of heart failure, E/Ea and BNP, E/Ea (P = 0.014) and BNP (P = 0.018) provided independent diagnostic information. Optimal cutoffs were 13 for E/Ea (area under the ROC curve of 0.846, P < 0.0001; sensitivity 81.8%, specificity 89.5%) and 253 pg/ml for BNP (area under the ROC curve of 0.928, P < 0.0001; sensitivity 86.4%, specificity 89.5%). The concordance between the clinical judgment and BNP concentration at the cutoff of 253 pg/ml correctly classified 24 of 25 patients; E/Ea at the cutoff of 13 correctly classified 14 of the 16 patients with discrepancy. Bedside tissue Doppler echocardiography and BNP provide useful additional diagnostic information over the clinical judgment for the emergency diagnosis of HFNEF in elderly patients with permanent, nonvalvular atrial fibrillation.
Kot, J; Sicko, Z; Zyszkowski, M; Brajta, M
2014-01-01
When going to high altitude (higher than 2,400 meters above mean sea level [about 8,200 feet]), human physiology is strongly affected by changes in atmospheric conditions, including decreased ambient pressure and hypobaric hypoxia, which can lead to severe hypoxemia, brain and/or pulmonary edema, negative changes in body and blood composition, as well as disturbances in regional microcirculation. When adding other factors, such as dehydration, physical exercise and exposure to low temperature, it is likely that nitrogen desaturation after diving at such environmental conditions is far from optimal, There are only single reports on diving at high alti-tudes. In 2007 a Polish team of climbers and divers participated in the Tilicho Lake and Peak Expedition to the Himalaya Mountains in Nepal. During this expedition, four divers conducted six dives in the Tilicho Lake at altitude of 4,919 meters above mean sea level equivalent (16,138 feet) to a maximum depth of 15 meters of fresh water (mfw) (equivalent to 28 mfw at sea level by the Cross Correction method) and 30 mfw (equivalent to 57 mfw at sea level "by Cross correction). Decompression debt was calculated using Cross Correction with some additional safety add-ons. Precordial Doppler recordings were taken every 15 minutes until 90 minutes after surfacing. No signs or symptoms of decompression sickness were observed after diving but in one diver, very high bubble grade Doppler signals were recorded. It can be concluded that diving at high altitude should be accompanied by additional safety precautions as well as taking into account personal sensitivity for such conditions.
NASA Astrophysics Data System (ADS)
Raccanelli, Alvise; Bertacca, Daniele; Jeong, Donghui; Neyrinck, Mark C.; Szalay, Alexander S.
2018-03-01
We study the parity-odd part (that we shall call Doppler term) of the linear galaxy two-point correlation function that arises from wide-angle, velocity, Doppler lensing and cosmic acceleration effects. As it is important at low redshift and at large angular separations, the Doppler term is usually neglected in the current generation of galaxy surveys. For future wide-angle galaxy surveys, however, we show that the Doppler term must be included. The effect of these terms is dominated by the magnification due to relativistic aberration effects and the slope of the galaxy redshift distribution and it generally mimics the effect of the local type primordial non-Gaussianity with the effective nonlinearity parameter fNLeff of a few; we show that this would affect forecasts on measurements of fNL at low-redshift. Our results show that a survey at low redshift with large number density over a wide area of the sky could detect the Doppler term with a signal-to-noise ratio of ∼ 1 - 20, depending on survey specifications.
New Doppler echocardiographic applications for the study of diastolic function
NASA Technical Reports Server (NTRS)
Garcia, M. J.; Thomas, J. D.; Klein, A. L.
1998-01-01
Doppler echocardiography is one of the most useful clinical tools for the assessment of left ventricular (LV) diastolic function. Doppler indices of LV filling and pulmonary venous (PV) flow are used not only for diagnostic purposes but also for establishing prognosis and evaluating the effect of therapeutic interventions. The utility of these indices is limited, however, by the confounding effects of different physiologic variables such as LV relaxation, compliance and filling pressure. Since alterations in these variables result in changes in Doppler indices of opposite direction, it is often difficult to determine the status of a given variable when a specific Doppler filling pattern is observed. Recently, color M-mode and tissue Doppler have provided useful insights in the study of diastolic function. These new Doppler applications have been shown to provide an accurate estimate of LV relaxation and appear to be relatively insensitive to the effects of preload compensation. This review will focus on the complementary role of color M-mode and tissue Doppler echocardiography and traditional Doppler indices of LV filling and PV flow in the assessment of diastolic function.
NASA Astrophysics Data System (ADS)
Kulatilaka, Waruna D.; Lucht, Robert P.
2017-03-01
We discuss the results of high-resolution, sub-Doppler two-photon-absorption laser-induced fluorescence (TPALIF) spectroscopy of nitric oxide at low pressure and room temperature. The measurements were performed using the single-longitudinal mode output of a diode-laser-seeded optical parametric generator (OPG) system with a measured frequency bandwidth of 220 MHz. The measurements were performed using a counter-propagating pump beam geometry, resulting in sub-Doppler TPALIF spectra of NO for various rotational transitions in the (0,0) vibrational band of the A2Σ+ - X2Π electronic transition. The experimental results are compared with the results of a perturbative treatment of the rotational line strengths for the 20 different rotational branches of the X2Π(v″ = 0) → A2Σ+(v' = 0) two-photon absorption band. In the derivation of the expressions for the two-photon transition absorption strength, the closure relation is used for rotational states in the intermediate levels of the two-photon transition in analogy with the Placzek treatment of Raman transitions. The theoretical treatment of the effect of angular momentum coupling on the two-photon rotational line strengths features the use of irreducible spherical tensors and 3j symbols. The final results are expressed in terms of the Hund's case (a) coupling coefficients aJ and bJ for the X2Π(v″ = 0) rotational level wavefunctions, which are intermediate between Hund's case (a) and case (b). Considerable physical insight is provided by this final form of the equations for the rotational line strengths. Corrections to the two-photon absorption rotational line strength for higher order effects such as centrifugal stretching can be included in a straightforward fashion in the analysis by incorporating higher order terms in these coupling coefficients aJ and bJ, although these corrections are essentially negligible for J < 50. The theoretical calculations of relative line intensities are in good agreement both with our experiment and with published experimental results. In addition, the calculated line shapes and relative intensities for closely spaced main branch and satellite transitions are in excellent agreement with our experimental measurements.
NASA Technical Reports Server (NTRS)
Tangborn, Andrew; Menard, Richard; Ortland, David; Einaudi, Franco (Technical Monitor)
2001-01-01
A new approach to the analysis of systematic and random observation errors is presented in which the error statistics are obtained using forecast data rather than observations from a different instrument type. The analysis is carried out at an intermediate retrieval level, instead of the more typical state variable space. This method is carried out on measurements made by the High Resolution Doppler Imager (HRDI) on board the Upper Atmosphere Research Satellite (UARS). HRDI, a limb sounder, is the only satellite instrument measuring winds in the stratosphere, and the only instrument of any kind making global wind measurements in the upper atmosphere. HRDI measures doppler shifts in the two different O2 absorption bands (alpha and B) and the retrieved products are tangent point Line-of-Sight wind component (level 2 retrieval) and UV winds (level 3 retrieval). This analysis is carried out on a level 1.9 retrieval, in which the contributions from different points along the line-of-sight have not been removed. Biases are calculated from O-F (observed minus forecast) LOS wind components and are separated into a measurement parameter space consisting of 16 different values. The bias dependence on these parameters (plus an altitude dependence) is used to create a bias correction scheme carried out on the level 1.9 retrieval. The random error component is analyzed by separating the gamma and B band observations and locating observation pairs where both bands are very nearly looking at the same location at the same time. It is shown that the two observation streams are uncorrelated and that this allows the forecast error variance to be estimated. The bias correction is found to cut the effective observation error variance in half.
Keegan, Jennifer; Raphael, Claire E; Parker, Kim; Simpson, Robin M; Strain, Stephen; de Silva, Ranil; Di Mario, Carlo; Collinson, Julian; Stables, Rod H; Wage, Ricardo; Drivas, Peter; Sugathapala, Malindie; Prasad, Sanjay K; Firmin, David N
2015-10-02
Temporal patterns of coronary blood flow velocity can provide important information on disease state and are currently assessed invasively using a Doppler guidewire. A non-invasive alternative would be beneficial as it would allow study of a wider patient population and serial scanning. A retrospectively-gated breath-hold spiral phase velocity mapping sequence (TR 19 ms) was developed at 3 Tesla. Velocity maps were acquired in 8 proximal right and 15 proximal left coronary arteries of 18 subjects who had previously had a Doppler guidewire study at the time of coronary angiography. Cardiovascular magnetic resonance (CMR) velocity-time curves were processed semi-automatically and compared with corresponding invasive Doppler data. When corrected for differences in heart rate between the two studies, CMR mean velocity through the cardiac cycle, peak systolic velocity (PSV) and peak diastolic velocity (PDV) were approximately 40 % of the peak Doppler values with a moderate - good linear relationship between the two techniques (R(2): 0.57, 0.64 and 0.79 respectively). CMR values of PDV/PSV showed a strong linear relationship with Doppler values with a slope close to unity (0.89 and 0.90 for right and left arteries respectively). In individual vessels, plots of CMR velocities at all cardiac phases against corresponding Doppler velocities showed a consistent linear relationship between the two with high R(2) values (mean +/-SD: 0.79 +/-.13). High temporal resolution breath-hold spiral phase velocity mapping underestimates absolute values of coronary flow velocity but allows accurate assessment of the temporal patterns of blood flow.
NASA Astrophysics Data System (ADS)
Dhutia, Niti M.; Zolgharni, Massoud; Willson, Keith; Cole, Graham; Nowbar, Alexandra N.; Manisty, Charlotte H.; Francis, Darrel P.
2014-03-01
Some of the challenges with tissue Doppler measurement include: apparent inconsistency between manufacturers, uncertainty over which part of the trace to make measurements and a lack of calibration of measurements. We develop and test tools to solve these problems in echocardiography laboratories. We designed and constructed an actuator and phantom setup to produce automatic reproducible motion, and used it to compare velocities measured using 3 echocardiographic modalities: M-mode, speckle tracking, and tissue Doppler, against a non-ultrasound, optical gold standard. In the clinical phase, 25 patients underwent M-mode, speckle tracking and tissue Doppler measurements of tissue velocities. In-vitro, the M-mode and speckle tracking velocities were concordant with optical assessment. Of the three possible tissue Doppler measurement conventions (outer, middle and inner line) only the middle line agreed with the optical assessment (discrepancy -0.20 (95% confidence interval -0.44 to 0.03)cm/s, p=0.11, outer +5.19(4.65 to 5.73)cm/s, p<0.0001, inner -6.26(-6.87 to -5.65)cm/s, p<0.0001). All 4 studied manufacturers showed a similar pattern. M-mode was therefore chosen as the in-vivo gold standard. Clinical measurements of tissue velocities by speckle tracking and the middle line of the tissue Doppler were concordant with M-mode, while the outer line significantly overestimated (+1.27(0.96 to 1.59)cm/s, p<0.0001) and the inner line underestimated (-1.81(-2.11 to -1.52)cm/s, p<0.0001). Echocardiographic velocity measurements can be calibrated by simple, inexpensive tools. We found that the middle of the tissue Doppler trace represents velocity correctly. Echocardiographers requiring velocities to match between different equipment, settings or modalities should use the middle line as the "guideline".
Doppler and range determination for deep space vehicles using active optical transponders.
Kinman, P W; Gagliardi, R M
1988-11-01
This paper describes and analyzes two types of laser system employing active transponders that could accurately determine Doppler and range to deep space vehicles from earth-orbiting satellites. The first is a noncoherent optical system in which the Doppler effect on an intensity-modulating subcarrier is measured. The second is a coherent optical system in which the Doppler effect of the optical carrier itself is measured. Doppler and range measurement errors are mathematically modeled and, for three example systems, numerically evaluated.
Doppler and range determination for deep space vehicles using active optical transponders
NASA Technical Reports Server (NTRS)
Kinman, Peter W.; Gagliardi, Robert M.
1988-01-01
This paper describes and analyzes two types of laser system employing active transponders that could accurately determine Doppler and range to deep space vehicles from earth-orbiting satellites. The first is a noncoherent optical system in which the Doppler effect on an intensity-modulating subcarrier is measured. The second is a coherent optical system in which the Doppler effect of the optical carrier itself is measured. Doppler and range measurement errors are mathematically modeled and, for three example systems, numerically evaluated.
Waveform Synthesizer For Imaging And Ranging Applications
DUDLEY, PETER A.; [et al
2004-11-30
Frequency dependent corrections are provided for quadrature imbalance. An operational procedure filters imbalance effects without prior calibration or equalization. Waveform generation can be adjusted/corrected in a synthetic aperture radar system (SAR), where a rolling phase shift is applied to the SAR's QDWS signal where it is demodulated in a receiver; unwanted energies, such as imbalance energy, are separated from a desired signal in Doppler; the separated energy is filtered from the receiver leaving the desired signal; and the separated energy in the receiver is measured to determine the degree of imbalance that is represented by it. Calibration methods can also be implemented into synthesis. The degree of quadrature imbalance can be used to determine calibration values that can then be provided as compensation for frequency dependent errors in components, such as the QDWS and SSB mixer, affecting quadrature signal quality.
Correlated environmental corrections in TOPEX/POSEIDON, with a note on ionospheric accuracy
NASA Technical Reports Server (NTRS)
Zlotnicki, V.
1994-01-01
Estimates of the effectiveness of an altimetric correction, and interpretation of sea level variability as a response to atmospheric forcing, both depend upon assuming that residual errors in altimetric corrections are uncorrelated among themselves and with residual sea level, or knowing the correlations. Not surprisingly, many corrections are highly correlated since they involve atmospheric properties and the ocean surface's response to them. The full corrections (including their geographically varying time mean values), show correlations between electromagnetic bias (mostly the height of wind waves) and either atmospheric pressure or water vapor of -40%, and between atmospheric pressure and water vapor of 28%. In the more commonly used collinear differences (after removal of the geographically varying time mean), atmospheric pressure and wave height show a -30% correlation, atmospheric pressure and water vapor a -10% correlation, both pressure and water vapor a 7% correlation with residual sea level, and a bit surprisingly, ionospheric electron content and wave height a 15% correlation. Only the ocean tide is totally uncorrelated with other corrections or residual sea level. The effectiveness of three ionospheric corrections (TOPEX dual-frequency, a smoothed version of the TOPEX dual-frequency, and Doppler orbitography and radiopositioning integrated by satellite (DORIS) is also evaluated in terms of their reduction in variance of residual sea level. Smooth (90-200 km along-track) versions of the dual-frequency altimeter ionosphere perform best both globally and within 20 deg in latitude from the equator. The noise variance in the 1/s TOPEX inospheric samples is approximately (11 mm) squared, about the same as noise in the DORIS-based correction; however, the latter has its error over scales of order 10(exp 3) km. Within 20 deg of the equator, the DORIS-based correction adds (14 mm) squared to the residual sea level variance.
NASA Astrophysics Data System (ADS)
Boonman, Arjan M.; Parsons, Stuart; Jones, Gareth
2003-01-01
Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound, Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range-Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range-Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range-Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.
A Software Tool for the Annotation of Embolic Events in Echo Doppler Audio Signals
Pierleoni, Paola; Maurizi, Lorenzo; Palma, Lorenzo; Belli, Alberto; Valenti, Simone; Marroni, Alessandro
2017-01-01
The use of precordial Doppler monitoring to prevent decompression sickness (DS) is well known by the scientific community as an important instrument for early diagnosis of DS. However, the timely and correct diagnosis of DS without assistance from diving medical specialists is unreliable. Thus, a common protocol for the manual annotation of echo Doppler signals and a tool for their automated recording and annotation are necessary. We have implemented original software for efficient bubble appearance annotation and proposed a unified annotation protocol. The tool auto-sets the response time of human “bubble examiners,” performs playback of the Doppler file by rendering it independent of the specific audio player, and enables the annotation of individual bubbles or multiple bubbles known as “showers.” The tool provides a report with an optimized data structure and estimates the embolic risk level according to the Extended Spencer Scale. The tool is built in accordance with ISO/IEC 9126 on software quality and has been projected and tested with assistance from the Divers Alert Network (DAN) Europe Foundation, which employs this tool for its diving data acquisition campaigns. PMID:29242701
Clutter attenuation using the Doppler effect in standoff electromagnetic quantum sensing
NASA Astrophysics Data System (ADS)
Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas, Salvador
2016-05-01
In the context of traditional radar systems, the Doppler effect is crucial to detect and track moving targets in the presence of clutter. In the quantum radar context, however, most theoretical performance analyses to date have assumed static targets. In this paper we consider the Doppler effect at the single photon level. In particular, we describe how the Doppler effect produced by clutter and moving targets modifies the quantum distinguishability and the quantum radar error detection probability equations. Furthermore, we show that Doppler-based delayline cancelers can reduce the effects of clutter in the context of quantum radar, but only in the low-brightness regime. Thus, quantum radar may prove to be an important technology if the electronic battlefield requires stealthy tracking and detection of moving targets in the presence of clutter.
Retrieval of Snow and Rain From Combined X- and W-B and Airborne Radar Measurements
NASA Technical Reports Server (NTRS)
Liao, Liang; Meneghini, Robert; Tian, Lin; Heymsfield, Gerald M.
2008-01-01
Two independent airborne dual-wavelength techniques, based on nadir measurements of radar reflectivity factors and Doppler velocities, respectively, are investigated with respect to their capability of estimating microphysical properties of hydrometeors. The data used to investigate the methods are taken from the ER-2 Doppler radar (X-band) and Cloud Radar System (W-band) airborne Doppler radars during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment campaign in 2002. Validity is assessed by the degree to which the methods produce consistent retrievals of the microphysics. For deriving snow parameters, the reflectivity-based technique has a clear advantage over the Doppler-velocity-based approach because of the large dynamic range in the dual-frequency ratio (DFR) with respect to the median diameter Do and the fact that the difference in mean Doppler velocity at the two frequencies, i.e., the differential Doppler velocity (DDV), in snow is small relative to the measurement errors and is often not uniquely related to Do. The DFR and DDV can also be used to independently derive Do in rain. At W-band, the DFR-based algorithms are highly sensitive to attenuation from rain, cloud water, and water vapor. Thus, the retrieval algorithms depend on various assumptions regarding these components, whereas the DDV-based approach is unaffected by attenuation. In view of the difficulties and ambiguities associated with the attenuation correction at W-band, the DDV approach in rain is more straightforward and potentially more accurate than the DFR method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greebler, P.; Goldman, E.
1962-12-19
Doppler calculations for large fast ceramic reactors (FCR), using recent cross section information and improved methods, are described. Cross sections of U/sup 238/, Pu/sup 239/, and Pu/sup 210/ with fuel temperature variations needed for perturbation calculations of Doppler reactivity changes are tabulated as a function of potential scattering cross section per absorber isotope at energies below 400 kev. These may be used in Doppler calculations for anv fast reactor. Results of Doppler calculations on a large fast ceramic reactor are given to show the effects of the improved calculation methods and of recent cross secrion data on the calculated Dopplermore » coefficient. The updated methods and cross sections used yield a somewhat harder spectrum and accordingly a somewhat smaller Doppler coefficient for a given FCR core size and composition than calculated in earlier work, but they support the essential conclusion derived earlier that the Doppler effect provides an important safety advantage in a large FCR. 28 references. (auth)« less
Turbulence Measurements from Compliant Moorings. Part II: Motion Correction
Kilcher, Levi F.; Thomson, Jim; Harding, Samuel; ...
2017-06-20
Acoustic Doppler velocimeters (ADVs) are a valuable tool for making high-precision measurements of turbulence, and moorings are a convenient and ubiquitous platform for making many kinds of measurements in the ocean. However, because of concerns that mooring motion can contaminate turbulence measurements and that acoustic Doppler profilers make middepth velocity measurements relatively easy, ADVs are not frequently deployed from moorings. This work demonstrates that inertial motion measurements can be used to reduce motion contamination from moored ADV velocity measurements. Three distinct mooring platforms were deployed in a tidal channel with inertial-motion-sensor-equipped ADVs. In each case, motion correction based on themore » inertial measurements reduces mooring motion contamination of velocity measurements. The spectra from these measurements are consistent with other measurements in tidal channels and have an f –5/3 slope at high frequencies - consistent with Kolmogorov's theory of isotropic turbulence. Motion correction also improves estimates of cross spectra and Reynolds stresses. A comparison of turbulence dissipation with flow speed and turbulence production indicates a bottom boundary layer production-dissipation balance during ebb and flood that is consistent with the strong tidal forcing at the site. Finally, these results indicate that inertial-motion-sensor-equipped ADVs are a valuable new tool for making high-precision turbulence measurements from moorings.« less
Configuration and Evaluation of a Dual-Doppler 3-D Wind Field System
NASA Technical Reports Server (NTRS)
Crawford, Winifred C.
2014-01-01
Current LSP, GSDO, and SLS space vehicle operations are halted when wind speeds from specific directions exceed defined thresholds and when lightning is a threat. Strong winds and lightning are difficult parameters for the 45th Weather Squadron (45 WS) to forecast, yet are important in the protection of customer vehicle operations and the personnel that conduct them. A display of the low-level horizontal wind field to reveal areas of high winds or convergence would be a valuable tool for forecasters in assessing the timing of high winds, or convection initiation and subsequent lightning occurrence. This is especially important for areas where no weather observation platforms exist. Developing a dual-Doppler radar capability would provide such a display to assist forecasters in predicting high winds and convection initiation. The wind fields can also be used to initialize a local mesoscale numerical weather prediction model to help improve the model forecast winds, convection initiation, and other phenomena. The 45 WS and NWS MLB tasked the Applied Meteorology Unit (AMU) to develop a dual- Doppler wind field display using data from the 45th Space Wing radar, known as the Weather Surveillance Radar (WSR), NWS MLB Weather Surveillance Radar 1988 Doppler (KMLB), and the Orlando International Airport Terminal Doppler Weather Radar (KMCO). They also stipulated that the software used should be freely available. The AMU evaluated two software packages and, with concurrence from NWS MLB and the 45 WS, chose the Warning Decision Support System-Integrated Information (WDSS-II). The AMU collected data from two significant weather cases: a tornadic event on 14 April 2013 and a severe wind and hail event on 12 February 2014. For the 14 April case, the data were from WSR and KMLB. For the 12 February case, the data were from KMCO and KMLB. The AMU installed WDSS-II on a Linux PC, then processed and quality controlled the radar data for display and analysis using WDSS-II tools. Because of issues with de-aliasing the WSR velocity field, the AMU did not use data from this radar in this study and only analyzed the 12 February case. Merging the data to create the dual-Doppler analysis involved several steps. The AMU used instructions from the WDSS-II website and discussion forum to determine the correct tools to use for the analysis, and was successful in creating a merged reflectivity field, which was critical to the success of creating a merged velocity field. However, the AMU was unable to create a merged velocity field. The AMU researched the WDSS-II forum for discussions on similar issues, asked questions on the forum, and tested different options and values in the merger tool with no success. Developing a dual-Doppler wind field was the main goal of this task, but that was not accomplished. It could be an issue of not using the correct options or the correct value for the options used, or there could be issues with the radar data. There is a follow-on AMU task to install the operational version of WDSS-II in the NWS MLB office. This will provide more opportunities to try different options and input values in order to create a merged wind field from KMCO and KMLB.
2nd Generation Airborne Precipitation Radar (APR-2)
NASA Technical Reports Server (NTRS)
Durden, S.; Tanelli, S.; Haddad, Z.; Im, E.
2012-01-01
Dual-frequency operation with Ku-band (13.4 GHz) and Ka-band (35.6 GHz). Geometry and frequencies chosen to simulate GPM radar. Measures reflectivity at co- and cross-polarizations, and Doppler. Range resolution is approx. 60 m. Horizontal resolution at surface is approx. 1 km. Reflectivity calibration is within 1.5 dB, based on 10 deg sigmaO at Ku-band and Mie scattering calculations in light rain at Ka-band. LDR measurements are OK to near -20 dB; LDR lower than this is likely contaminated by system cross-polarization isolation. Velocity is motion-corrected total Doppler, including particle fall speed. Aliasing can be seen in some places; can usually be dealiased with an algorithm. .
Exciter For X-Band Transmitter And Receiver
NASA Technical Reports Server (NTRS)
Johns, Carl E.
1989-01-01
Report describes developmental X-band exciter for X-band uplink subsystem of Deep Space Network. X-band transmitter-exciting signal expected to have fractional frequency stability of 5.2 X 10 to negative 15th power during 1,000-second integration period. Generates coherent test signals for S- and X-band Block III translator of Deep Space Network, Doppler-reference signal for associated Doppler-extractor system, first-local-oscillator signal for associated receiver, and reference signal for associated ranging subsystem. Tests of prototype exciter show controlling and monitoring and internal phase-correcting loops perform according to applicable design criteria. Measurements of stability of frequency and of single-sideband noise spectral density of transmitter-exciting signal made subsequently.
Firstenberg, M S; Greenberg, N L; Smedira, N G; McCarthy, P M; Garcia, M J; Thomas, J D
2001-01-01
Inertial forces (Mdv/dt) are a significant component of transmitral flow, but cannot be measured with Doppler echo. We validated a method of estimating Mdv/dt. Ten patients had a dual sensor transmitral (TM) catheter placed during cardiac surgery. Doppler and 2D echo was performed while acquiring LA and LV pressures. Mdv/dt was determined from the Bernoulli equation using Doppler velocities and TM gradients. Results were compared with numerical modeling. TM gradients (range: 1.04-14.24 mmHg) consisted of 74.0 +/- 11.0% inertial forcers (range: 0.6-12.9 mmHg). Multivariate analysis predicted Mdv/dt = -4.171(S/D (RATIO)) + 0.063(LAvolume-max) + 5. Using this equation, a strong relationship was obtained for the clinical dataset (y=0.98x - 0.045, r=0.90) and the results of numerical modeling (y=0.96x - 0.16, r=0.84). TM gradients are mainly inertial and, as validated by modeling, can be estimated with echocardiography.
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Curlander, J. C.
1992-01-01
Estimation of the Doppler centroid ambiguity is a necessary element of the signal processing for SAR systems with large antenna pointing errors. Without proper resolution of the Doppler centroid estimation (DCE) ambiguity, the image quality will be degraded in the system impulse response function and the geometric fidelity. Two techniques for resolution of DCE ambiguity for the spaceborne SAR are presented; they include a brief review of the range cross-correlation technique and presentation of a new technique using multiple pulse repetition frequencies (PRFs). For SAR systems, where other performance factors control selection of the PRF's, an algorithm is devised to resolve the ambiguity that uses PRF's of arbitrary numerical values. The performance of this multiple PRF technique is analyzed based on a statistical error model. An example is presented that demonstrates for the Shuttle Imaging Radar-C (SIR-C) C-band SAR, the probability of correct ambiguity resolution is higher than 95 percent for antenna attitude errors as large as 3 deg.
Giraud, J R; Poulain, P; Renaud-Giono, A; Darnault, J P; Proudhon, J F; Grall, J Y; Mocquet, P Y
1997-09-01
Post-partum ovarian vein thrombosis is often overlooked or mistaken for other complications such as endometritis. Color Doppler ultrasonography is a very good diagnostic method when properly indicated and correctly interpreted according to clinical data. This study reports ten cases that were retrospectively studied, during which color Doppler ultrasonography was used. The clinical signs and the results are reviewed. The lesions were clearly visualized in eight of the ten cases; one of the two failures resulted from a methodological fault (uninterpretable result); the other one was due to the lack of experience of the operator and nonrecognition of the clinical signs. Thrombosis appears as a hypoechogenic and tubular image. This type of examination is particularly indicated in the presence of certain clinical signs that were observed in our cases: fever and iliac pain are the main precursor signs, often associated with abdominal meteorism and slow digestive transit; provoked cul-de-sac pain during vaginal probing was the only constant sign, sometimes associated with painful swelling.
Waveform synthesis for imaging and ranging applications
Doerry, Armin W.; Dudley, Peter A.; Dubert, Dale F.; Tise, Bertice L.
2004-12-07
Frequency dependent corrections are provided for quadrature imbalance and Local Oscillator (LO) feed-through. An operational procedure filters imbalance and LO feed-through effects without prior calibration or equalization. Waveform generation can be adjusted/corrected in a synthetic aperture radar system (SAR), where a rolling phase shift is applied to the SAR's QDWS signal where it is demodulated in a receiver; unwanted energies, such as LO feed-through and/or imbalance energy, are separated from a desired signal in Doppler; the separated energy is filtered from the receiver leaving the desired signal; and the separated energy in the receiver is measured to determine the degree of imbalance that is represented by it. Calibration methods can also be implemented into synthesis. The degree of LO feed-through and imbalance can be used to determine calibration values that can then be provided as compensation for frequency dependent errors in components, such as the QDWS and SSB mixer, affecting quadrature signal quality.
NASA Astrophysics Data System (ADS)
Kilian, Gladiné; Pieter, Muyshondt; Joris, Dirckx
2016-06-01
Laser Doppler Vibrometry is an intrinsic highly linear measurement technique which makes it a great tool to measure extremely small nonlinearities in the vibration response of a system. Although the measurement technique is highly linear, other components in the experimental setup may introduce nonlinearities. An important source of artificially introduced nonlinearities is the speaker, which generates the stimulus. In this work, two correction methods to remove the effects of stimulus nonlinearity are investigated. Both correction methods were found to give similar results but have different pros and cons. The aim of this work is to investigate the importance of the conical shape of the eardrum as a source of nonlinearity in hearing. We present measurements on flat and indented membranes. The data shows that the curved membrane exhibit slightly higher levels of nonlinearity compared to the flat membrane.
Waveform Synthesizer For Imaging And Ranging Applications
Dubbert, Dale F.; Dudley, Peter A.; Doerry, Armin W.; Tise, Bertice L.
2004-12-28
Frequency dependent corrections are provided for Local Oscillator (LO) feed-through. An operational procedure filters LO feed-through effects without prior calibration or equalization. Waveform generation can be adjusted/corrected in a synthetic aperture radar system (SAR), where a rolling phase shift is applied to the SAR's QDWS signal where it is demodulated in a receiver, unwanted energies, such as LO feed-through energy, are separated from a desired signal in Doppler; the separated energy is filtered from the receiver leaving the desired signal; and the separated energy in the receiver is measured to determine the degree of imbalance that is represented by it. Calibration methods can also be implemented into synthesis. The degree of LO feed-through can be used to determine calibration values that can then be provided as compensation for frequency dependent errors in components, such as the QDWS and SSB mixer, affecting quadrature signal quality.
Enhanced orbit determination filter sensitivity analysis: Error budget development
NASA Technical Reports Server (NTRS)
Estefan, J. A.; Burkhart, P. D.
1994-01-01
An error budget analysis is presented which quantifies the effects of different error sources in the orbit determination process when the enhanced orbit determination filter, recently developed, is used to reduce radio metric data. The enhanced filter strategy differs from more traditional filtering methods in that nearly all of the principal ground system calibration errors affecting the data are represented as filter parameters. Error budget computations were performed for a Mars Observer interplanetary cruise scenario for cases in which only X-band (8.4-GHz) Doppler data were used to determine the spacecraft's orbit, X-band ranging data were used exclusively, and a combined set in which the ranging data were used in addition to the Doppler data. In all three cases, the filter model was assumed to be a correct representation of the physical world. Random nongravitational accelerations were found to be the largest source of error contributing to the individual error budgets. Other significant contributors, depending on the data strategy used, were solar-radiation pressure coefficient uncertainty, random earth-orientation calibration errors, and Deep Space Network (DSN) station location uncertainty.
Fine Structure in Helium-like Fluorine by Fast-Beam Laser Spectroscopy
NASA Astrophysics Data System (ADS)
Myers, E. G.; Thompson, J. K.; Silver, J. D.
1998-05-01
With the aim of providing an additional precise test of higher-order corrections to high precision calculations of fine structure in helium and helium-like ions(T. Zhang, Z.-C. Yan and G.W.F. Drake, Phys. Rev. Lett. 77), 1715 (1996)., a measurement of the 2^3P_2,F - 2^3P_1,F' fine structure in ^19F^7+ is in progress. The method involves doppler-tuned laser spectroscopy using a CO2 laser on a foil-stripped fluorine ion beam. We aim to achieve a higher precision, compared to an earlier measurement(E.G. Myers, P. Kuske, H.J. Andrae, I.A. Armour, H.A. Klein, J.D. Silver, and E. Traebert, Phys. Rev. Lett. 47), 87 (1981)., by using laser beams parallel and anti-parallel to the ion beam, to obtain partial cancellation of the doppler shift(J.K. Thompson, D.J.H. Howie and E.G. Myers, Phys. Rev. A 57), 180 (1998).. A calculation of the hyperfine structure, allowing for relativistic, QED and nuclear size effects, will be required to obtain the ``hyperfine-free'' fine structure interval from the measurements.
Sensitivity Limits of Rydberg Atom-Based Radio Frequency Electric Field Sensing
NASA Astrophysics Data System (ADS)
Jahangiri, Akbar J.; Kumar, Santosh; Kuebler, Harald; Fan, Haoquan; Shaffer, James P.
2017-04-01
We present progress on Rydberg atom-based RF electric field sensing using Rydberg state electromagnetically induced transparency (EIT) in room temperature atomic vapor cells. In recent experiments on homodyne detection with a Mach-Zehnder interferometer and frequency modulation spectroscopy with active control of residual amplitude modulation we determined that photon shot noise on the probe laser detector limits the sensitivity. Another factor that limits the accuracy is residual Doppler broadening due to the wave-vector mismatch between the coupling and the probe lasers. The sensor as limited by project noise can be orders of magnitude better. A multi-photon scheme is presented that can eliminate the residual Doppler effect by matching the wave-vectors of three lasers and reduce the photon shot noise limit by correctly choosing the Rabi frequencies of the first two steps of the EIT scheme. Using density matrix calculations, we predict that the three-photon approach can improve the detection sensitivity to below 200 nV cm-1 Hz- 1 / 2 and expand the Autler-Townes regime which improves the accuracy. This work is supported by DARPA and the NRO.
Digital simulation of a communication link for Pioneer Saturn Uranus atmospheric entry probe, part 1
NASA Technical Reports Server (NTRS)
Hinrichs, C. A.
1975-01-01
A digital simulation study is presented for a candidate modulator/demodulator design in an atmospheric scintillation environment with Doppler, Doppler rate, and signal attenuation typical of the conditions of an outer planet atmospheric probe. The simulation results indicate that the mean channel error rate with and without scintillation are similar to theoretical characterizations of the link. The simulation gives information for calculating other channel statistics and generates a quantized symbol stream on magnetic tape from which error correction decoding is analyzed. Results from the magnetic tape data analyses are also included. The receiver and bit synchronizer are modeled in the simulation at the level of hardware component parameters rather than at the loop equation level and individual hardware parameters are identified. The atmospheric scintillation amplitude and phase are modeled independently. Normal and log normal amplitude processes are studied. In each case the scintillations are low pass filtered. The receiver performance is given for a range of signal to noise ratios with and without the effects of scintillation. The performance is reviewed for critical reciever parameter variations.
The Universe Adventure - Redshift
redshifted. The Doppler Effect in action. A moving fire truck's siren changes pitch as it moves past you . This is known as the Doppler Effect. To get a better idea of how this actually works, we'll look at a common phenomenon: the Doppler Effect. Imagine you hear a fire truck coming right toward you. As the
Analysing Simple Motions Using the Doppler Effect--"Seeing" Sound
ERIC Educational Resources Information Center
Stonawski, Tamás; Gálik, Tamás
2017-01-01
The Doppler effect has seen widespread use in the past hundred years. It is used for medical imaging, for measuring speed, temperature, direction, etc, and it makes the spatial relations of motion easy to map. The Doppler effect also allows GPS receivers to measure the speed of a vehicle significantly more accurately than dashboard speedometers.…
NASA Technical Reports Server (NTRS)
Mileant, A.; Simon, M.
1986-01-01
When a digital phase-locked loop with a long loop update time tracks a signal with high Doppler, the demodualtion losses due to frequency mismatch can become very significant. One way of reducing these Doppler-related losses is to compensate for the Doppler effect using some kind of frequency-rate estimator. The performance of the fixed-window least-squares estimator and the Kalman filter is investigated; several Doppler compensating techniques are proposed. It is shown that the variance of the frequency estimator can be made as small as desired, and with this, the Doppler effect can be effectively compensated. The remaining demodulation losses due to phase jitter in the loop can be less than 0.1 dB.
Liu, Zhao; Zheng, Chaorong; Wu, Yue
2018-02-01
Recently, the government installed a boundary layer profiler (BLP), which is operated under the Doppler beam swinging mode, in a coastal area of China, to acquire useful wind field information in the atmospheric boundary layer for several purposes. And under strong wind conditions, the performance of the BLP is evaluated. It is found that, even though the quality controlled BLP data show good agreement with the balloon observations, a systematic bias can always be found for the BLP data. For the low wind velocities, the BLP data tend to overestimate the atmospheric wind. However, with the increment of wind velocity, the BLP data show a tendency of underestimation. In order to remove the effect of poor quality data on bias correction, the probability distribution function of the differences between the two instruments is discussed, and it is found that the t location scale distribution is the most suitable probability model when compared to other probability models. After the outliers with a large discrepancy, which are outside of 95% confidence interval of the t location scale distribution, are discarded, the systematic bias can be successfully corrected using a first-order polynomial correction function. The methodology of bias correction used in the study not only can be referred for the correction of other wind profiling radars, but also can lay a solid basis for further analysis of the wind profiles.
NASA Astrophysics Data System (ADS)
Liu, Zhao; Zheng, Chaorong; Wu, Yue
2018-02-01
Recently, the government installed a boundary layer profiler (BLP), which is operated under the Doppler beam swinging mode, in a coastal area of China, to acquire useful wind field information in the atmospheric boundary layer for several purposes. And under strong wind conditions, the performance of the BLP is evaluated. It is found that, even though the quality controlled BLP data show good agreement with the balloon observations, a systematic bias can always be found for the BLP data. For the low wind velocities, the BLP data tend to overestimate the atmospheric wind. However, with the increment of wind velocity, the BLP data show a tendency of underestimation. In order to remove the effect of poor quality data on bias correction, the probability distribution function of the differences between the two instruments is discussed, and it is found that the t location scale distribution is the most suitable probability model when compared to other probability models. After the outliers with a large discrepancy, which are outside of 95% confidence interval of the t location scale distribution, are discarded, the systematic bias can be successfully corrected using a first-order polynomial correction function. The methodology of bias correction used in the study not only can be referred for the correction of other wind profiling radars, but also can lay a solid basis for further analysis of the wind profiles.
Wagner, Chad R.; Mueller, David S.
2011-01-01
A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) can be caused by the movement of sediment on or near the streambed. The integration of a global positioning system (GPS) to track the movement of the ADCP can be used to avoid the systematic negative bias associated with a moving streambed. More than 500 discharge transects from 63 discharge measurements with GPS data were collected at sites throughout the US, Canada, and New Zealand with no moving bed to compare GPS and bottom-track-referenced discharges. Although the data indicated some statistical bias depending on site conditions and type of GPS data used, these biases were typically about 0.5% or less. An assessment of differential correction sources was limited by a lack of data collected in a range of different correction sources and different GPS receivers at the same sites. Despite this limitation, the data indicate that the use of Wide Area Augmentation System (WAAS) corrected positional data is acceptable for discharge measurements using GGA as the boat-velocity reference. The discharge data based on GPS-referenced boat velocities from the VTG data string, which does not require differential correction, were comparable to the discharges based on GPS-referenced boat velocities from the differentially-corrected GGA data string. Spatial variability of measure discharges referenced to GGA, VTG and bottom-tracking is higher near the channel banks. The spatial variability of VTG-referenced discharges is correlated with the spatial distribution of maximum Horizontal Dilution of Precision (HDOP) values and the spatial variability of GGA-referenced discharges is correlated with proximity to channel banks.
A Novel Grid SINS/DVL Integrated Navigation Algorithm for Marine Application
Kang, Yingyao; Zhao, Lin; Cheng, Jianhua; Fan, Xiaoliang
2018-01-01
Integrated navigation algorithms under the grid frame have been proposed based on the Kalman filter (KF) to solve the problem of navigation in some special regions. However, in the existing study of grid strapdown inertial navigation system (SINS)/Doppler velocity log (DVL) integrated navigation algorithms, the Earth models of the filter dynamic model and the SINS mechanization are not unified. Besides, traditional integrated systems with the KF based correction scheme are susceptible to measurement errors, which would decrease the accuracy and robustness of the system. In this paper, an adaptive robust Kalman filter (ARKF) based hybrid-correction grid SINS/DVL integrated navigation algorithm is designed with the unified reference ellipsoid Earth model to improve the navigation accuracy in middle-high latitude regions for marine application. Firstly, to unify the Earth models, the mechanization of grid SINS is introduced and the error equations are derived based on the same reference ellipsoid Earth model. Then, a more accurate grid SINS/DVL filter model is designed according to the new error equations. Finally, a hybrid-correction scheme based on the ARKF is proposed to resist the effect of measurement errors. Simulation and experiment results show that, compared with the traditional algorithms, the proposed navigation algorithm can effectively improve the navigation performance in middle-high latitude regions by the unified Earth models and the ARKF based hybrid-correction scheme. PMID:29373549
Acute testicular torsion in children: the role of sonography in the diagnostic workup.
Gunther, P; Schenk, J P; Wunsch, R; Holland-Cunz, S; Kessler, U; Troger, J; Waag, K L
2006-11-01
Acute testicular torsion in children is an emergency and has to be diagnosed urgently. Doppler sonography is increasingly used in imaging the acute scrotum. Nevertheless, in uncertain cases, surgical exploration is required. In this study, we attempted to define the role of Doppler sonography in the diagnostic workup of the acutely painful scrotum. All patients admitted between 1999 and 2005 with acute scrotal pain were included. After clinical assessment, patients were imaged by Doppler sonography with a ''high-end'' instrument. In cases of absent arterial perfusion of the testis in Doppler sonography, surgical exploration was carried out. Patients with unaffected perfusion were followed clinically by ultrasound for up to 2 years. Sixty-one infants and children aged 1 day to 17 years (median: 7.9 years) were included. In 14 cases, sonography demonstrated absent central perfusion, with abnormal parenchymal echogenicity in six. Absence of venous blood flow together with reduction of central arterial perfusion was found in one infant. In these 15 patients, surgical exploration confirmed testicular torsion. Among the other 46 patients, we found four cases with increased testicular perfusion and 27 with increased perfusion of the epididymis. In one infant, a testicular tumour was found sonographically, and orchiectomy confirmed diagnosis of a teratoma. Follow-up examinations of the conservatively treated patients showed good clinical outcome with physiologic central perfusion as well as normal echogenic pattern of both testes. No case of testicular torsion was missed. By means of Doppler sonography, an unequivocal statement regarding testicular perfusion was possible in all cases. The initial Doppler diagnosis was confirmed by operative evaluation and follow-up ultrasound. Testicular torsion can therefore be excluded by correctly performed ultrasound with modern equipment.
Abdelaziz, Omar; Attia, Hussein
2016-01-01
Living-donor liver transplantation has provided a solution to the severe lack of cadaver grafts for the replacement of liver afflicted with end-stage cirrhosis, fulminant disease, or inborn errors of metabolism. Vascular complications remain the most serious complications and a common cause for graft failure after hepatic transplantation. Doppler ultrasound remains the primary radiological imaging modality for the diagnosis of such complications. This article presents a brief review of intra- and post-operative living donor liver transplantation anatomy and a synopsis of the role of ultrasonography and color Doppler in evaluating the graft vascular haemodynamics both during surgery and post-operatively in accurately defining the early vascular complications. Intra-operative ultrasonography of the liver graft provides the surgeon with useful real-time diagnostic and staging information that may result in an alteration in the planned surgical approach and corrections of surgical complications during the procedure of vascular anastomoses. The relevant intra-operative anatomy and the spectrum of normal and abnormal findings are described. Ultrasonography and color Doppler also provides the clinicians and surgeons early post-operative potential developmental complications that may occur during hospital stay. Early detection and thus early problem solving can make the difference between graft survival and failure. PMID:27468207
SuperDARN elevation angle calibration using HAARP-induced backscatter
NASA Astrophysics Data System (ADS)
Shepherd, S. G.; Thomas, E. G.; Palinski, T. J.; Bristow, W.
2017-12-01
SuperDARN radars rely on refraction in the ionosphere to make Doppler measurements of backscatter from ionospheric irregularities or the ground/sea, often to ranges of 4000 km or more. Elevation angle measurements of backscattered signals can be important for proper geolocation, mode identification and Doppler velocity corrections to the data. SuperDARN radars are equipped with a secondary array to make elevation angle measurements, however, calibration is often difficult. One method of calibration is presented here, whereby backscatter from HAARP-induced irregularities, at a known location, is used to independently determine the elevation angle of signals. Comparisons are made for several radars with HAARP in their field-of-view in addition to the results obtained fromray-tracing in a model ionosphere.
Noise normalization and windowing functions for VALIDAR in wind parameter estimation
NASA Astrophysics Data System (ADS)
Beyon, Jeffrey Y.; Koch, Grady J.; Li, Zhiwen
2006-05-01
The wind parameter estimates from a state-of-the-art 2-μm coherent lidar system located at NASA Langley, Virginia, named VALIDAR (validation lidar), were compared after normalizing the noise by its estimated power spectra via the periodogram and the linear predictive coding (LPC) scheme. The power spectra and the Doppler shift estimates were the main parameter estimates for comparison. Different types of windowing functions were implemented in VALIDAR data processing algorithm and their impact on the wind parameter estimates was observed. Time and frequency independent windowing functions such as Rectangular, Hanning, and Kaiser-Bessel and time and frequency dependent apodized windowing function were compared. The briefing of current nonlinear algorithm development for Doppler shift correction subsequently follows.
NASA Technical Reports Server (NTRS)
Cox, Christopher M.; Chao, Benjamin F.; Au, Andrew Y.; Boy, J.-P.
2003-01-01
The oblateness of the Earth's gravity field, 52, has long been observed to undergo a slight decrease due to post-glacial rebound of the mantle. Sometime around 1998 this trend reversed quite suddenly. This reversal persisted until 2001, at which point the atmosphere-corrected time series appears to have reversed yet again. Presently, the time series appears to be returning to the value that would nominally have been reached had the anomaly not occurred. This anomaly signifies a large interannual change in global mass distribution whose J2 effect overshadows that of the post-glacial rebound over such timescales. A number of possible causes have been considered, with oceanic mass redistribution as the leading candidate although other effects, such as glacial melting and core effects may be contributing. The amount by which J2 returns to it's nominal value provides a valuable constraint on the separation of the causes, and will be considered. We will present our latest Satellite Laser Ranging and DORIS Doppler derived time series for J2, and various other low-degree harmonic terms, as well as our investigations into the causes. In addition, we will show the comparison of the J2 results with those derived from CHAMP, as computed at NASA GSFC, and the recently released GRACE gravity model.
Signal and noise level estimation for narrow spectral width returns observed by the Indian MST radar
NASA Astrophysics Data System (ADS)
Hooper, D. A.
1999-07-01
Use is made of five sets of multibeam observations of the lower atmosphere made by the Indian mesosphere-stratosphere-troposphere (MST) radar. Two aspects of signal processing which can lead to serious underestimates of the signal-to-noise ratio are considered. First, a comparison is made of the effects of different data weighting windows applied to the inphase and quadrature components of the radar return samples prior to Fourier transformation. The relatively high degree of spectral leakage associated with the rectangular and Hamming windows can give rise to overestimates of the noise levels by up to 28 dB for the strongest signals. Use of the Hanning window is found to be the most appropriate for these particular data. Second, a technique for removing systematic dc biases from the data in the time domain is compared with the more well-known practice of correction in the frequency domain. The latter technique, which is often used to remove the effects of ground clutter, is shown to be particularly inappropriate for the characteristically narrow spectral width signals observed by the Indian MST radar. For cases of near-zero Doppler shift it can remove up to 30 dB of signal information. The consequences of noise and signal level discrepancies for studies of refractivity structures are discussed. It is shown that neither problem has a significant effect on Doppler shift or spectral width estimates.
Acquisition and Reduction Procedures for MOF Doppler-Magnetograms. [solar observation
NASA Technical Reports Server (NTRS)
Cacciani, Alessandro; Ricci, D.; Rosati, P.; Rhodes, Edward J., Jr.; Smith, E.; Tomczyk, Steven; Ulrich, Roger K.
1988-01-01
Defects in the first magneto-optical filter (MOF) magnetograms, particularly the problem of the apparent contamination between velocity and magnetic fields, are discussed. It is found that a correct acquisition and reduction procedure gives cleaner results. A vector magnetograph is suggested. The vector field at coronal levels is calculated, using one MOF longitudinal magnetogram.
Photoacoustic Doppler effect from flowing small light-absorbing particles.
Fang, Hui; Maslov, Konstantin; Wang, Lihong V
2007-11-02
From the flow of a suspension of micrometer-scale carbon particles, the photoacoustic Doppler shift is observed. As predicted theoretically, the observed Doppler shift equals half of that in Doppler ultrasound and does not depend on the direction of laser illumination. This new physical phenomenon provides a basis for developing photoacoustic Doppler flowmetry, which can potentially be used for detecting fluid flow in optically scattering media and especially low-speed blood flow of relatively deep microcirculation in biological tissue.
NASA Astrophysics Data System (ADS)
Lamer, K.; Fridlind, A. M.; Ackerman, A. S.; Kollias, P.; Clothiaux, E. E.
2017-12-01
An important aspect of evaluating Artic cloud representation in a general circulation model (GCM) consists of using observational benchmarks which are as equivalent as possible to model output in order to avoid methodological bias and focus on correctly diagnosing model dynamical and microphysical misrepresentations. However, current cloud observing systems are known to suffer from biases such as limited sensitivity, and stronger response to large or small hydrometeors. Fortunately, while these observational biases cannot be corrected, they are often well understood and can be reproduced in forward simulations. Here a ground-based millimeter wavelength Doppler radar and micropulse lidar forward simulator able to interface with output from the Goddard Institute for Space Studies (GISS) ModelE GCM is presented. ModelE stratiform hydrometeor fraction, mixing ratio, mass-weighted fall speed and effective radius are forward simulated to vertically-resolved profiles of radar reflectivity, Doppler velocity and spectrum width as well as lidar backscatter and depolarization ratio. These forward simulated fields are then compared to Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) ground-based observations to assess cloud vertical structure (CVS). Model evalution of Arctic mixed-phase cloud would also benefit from hydrometeor phase evaluation. While phase retrieval from synergetic observations often generates large uncertainties, the same retrieval algorithm can be applied to observed and forward-simulated radar-lidar fields, thereby producing retrieved hydrometeor properties with potentially the same uncertainties. Comparing hydrometeor properties retrieved in exactly the same way aims to produce the best apples-to-apples comparisons between GCM ouputs and observations. The use of a comprenhensive ground-based forward simulator coupled with a hydrometeor classification retrieval algorithm provides a new perspective for GCM evaluation of Arctic mixed-phase clouds from the ground where low-level supercooled liquid layer are more easily observed and where additional environmental properties such as cloud condensation nuclei are quantified. This should help assist in choosing between several possible diagnostic ice nucleation schemes for ModelE stratiform cloud.
Trans-skull ultrasonic Doppler system aided by fuzzy logic
NASA Astrophysics Data System (ADS)
Hata, Yutaka; Nakamura, Masato; Yagi, Naomi; Ishikawa, Tomomoto
2012-06-01
This paper describes a trans-skull ultrasonic Doppler system for measuring the blood flow direction in brain under skull. In this system, we use an ultrasonic array probe with the center frequency of 1.0 MHz. The system determines the fuzzy degree of blood flow by Doppler Effect, thereby it locates blood vessel. This Doppler Effect is examined by the center of gravity shift of the frequency magnitudes. In in-vitro experiment, a cow bone was employed as the skull, and three silicon tubes were done as blood vessels, and bubble in water as blood. We received the ultrasonic waves through a protein, the skull and silicon tubes in order. In the system, fuzzy degrees are determined with respect to the Doppler shift, amplitude of the waves and attenuation of the tissues. The fuzzy degrees of bone and blood direction are calculated by them. The experimental results showed that the system successfully visualized the skull and flow direction, compared with the location and flow direction of the phantom. Thus, it detected the flow direction by Doppler Effect under skull, and automatically extracted the region of skull and blood vessel.
Lindsey, Brooks D; Nicoletto, Heather A; Bennett, Ellen R; Laskowitz, Daniel T; Smith, Stephen W
2014-01-01
With stroke currently the second-leading cause of death globally, and 87% of all strokes classified as ischemic, the development of a fast, accessible, cost-effective approach for imaging occlusive stroke could have a significant impact on health care outcomes and costs. Although clinical examination and standard computed tomography alone do not provide adequate information for understanding the complex temporal events that occur during an ischemic stroke, ultrasound imaging is well suited to the task of examining blood flow dynamics in real time and may allow for localization of a clot. A prototype bilateral 3-D ultrasound imaging system using two matrix array probes on either side of the head allows for correction of skull-induced aberration throughout two entire phased array imaging volumes. We investigated the feasibility of applying this custom correction technique in five healthy volunteers with Definity microbubble contrast enhancement. Subjects were scanned simultaneously via both temporal acoustic windows in 3-D color flow mode. The number of color flow voxels above a common threshold increased as a result of aberration correction in five of five subjects, with a mean increase of 33.9%. The percentage of large arteries visualized by 3-D color Doppler imaging increased from 46% without aberration correction to 60% with aberration correction. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Srivastava, Divya; Sahu, Sandeep; Chandra, Abhilash; Tiwari, Tanmay; Kumar, Sanjay; Singh, P K
2015-12-01
Transesophageal Doppler (TED)-guided intraoperative fluid therapy has shown to noninvasively optimize intravascular volume and reduce postoperative morbidity. The aim of this study was to compare the effects of Doppler-guided intraoperative fluid administration and central venous pressure (CVP)-guided fluid therapy on renal allograft outcome and postoperative complications. A prospective nonrandomized active controlled study was conducted on end-stage renal disease patients scheduled for living donor renal transplant surgery. 110 patients received intraoperative fluid guided by corrected flow time (FTc) and variation in stroke volume values obtained by continuous TED monitoring. Data of 104 patients in whom intraoperative fluid administration was guided by CVP values were retrospectively obtained for a control. The amount of intraoperative fluid given in the study group (12.20 ± 4.24 ml/kg/h) was significantly lower than in the controls (22.21 ± 4.67 ml/kg/h). The amount of colloid used was also significantly less and fewer recipients were seen to require colloid (69 vs 85%). The mean arterial pressures were comparable throughout. CVP reached was 7.18 ± 3.17 mmHg in the study group. It was significantly higher in the controls (13.42 ± 3.12 mmHg). The postoperative graft function and rate of dysfunction were comparable. Side-effects like postoperative dyspnoea (4.8 vs 0%) and tissue edema (9.6 vs 2.7%) were higher in the controls. FTc-guided intraoperative fluid therapy achieved the same rate of immediate graft function as CVP-guided fluid therapy but used a significantly less amount of fluid. The incidence of postoperative complications related to fluid overload was also reduced. The use of TED may replace invasive central line insertions in the future.
NASA Astrophysics Data System (ADS)
Adirosi, E.; Baldini, L.; Roberto, N.; Gatlin, P.; Tokay, A.
2016-03-01
A measurement scheme aimed at investigating precipitation properties based on collocated disdrometer and profiling instruments is used in many experimental campaigns. Raindrop size distribution (RSD) estimated by disdrometer is referred to the ground level; the collocated profiling instrument is supposed to provide complementary estimation at different heights of the precipitation column above the instruments. As part of the Special Observation Period 1 of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, conducted between 5 September and 6 November 2012, a K-band vertically pointing micro rain radar (MRR) and a 2D video disdrometer (2DVD) were installed close to each other at a site in the historic center of Rome (Italy). The raindrop size distributions collected by 2D video disdrometer are considered to be fairly accurate within the typical sizes of drops. Vertical profiles of raindrop sizes up to 1085 m are estimated from the Doppler spectra measured by the micro rain radar with a height resolution of 35 m. Several issues related to vertical winds, attenuation correction, Doppler spectra aliasing, and range-Doppler ambiguity limit the performance of MRR in heavy precipitation or in convection, conditions that frequently occur in late summer or in autumn in Mediterranean regions. In this paper, MRR Doppler spectra are reprocessed, exploiting the 2DVD measurements at ground to estimate the effects of vertical winds at 105 m (the most reliable MRR lower height), in order to provide a better estimation of vertical profiles of raindrop size distribution from MRR spectra. Results show that the reprocessing procedure leads to a better agreement between the reflectivity computed at 105 m from the reprocessed MRR spectra and that obtained from the 2DVD data. Finally, vertical profiles of MRR-estimated RSDs and their relevant moments (namely median volume diameter and reflectivity) are presented and discussed in order to investigate the microstructure of rain both in stratiform and convective conditions.
An elementary approach to the gravitational Doppler shift
NASA Astrophysics Data System (ADS)
Wörner, C. H.; Rojas, Roberto
2017-01-01
In college physics courses, treatment of the Doppler effect is usually done far from the first introduction to kinematics. This paper aims to apply a graphical treatment to describe the gravitational redshift, by considering the Doppler effect in two accelerated reference frames and exercising the equivalence principle. This approach seems appropriate to discuss with beginner students and could serve to enrich the didactic processes.
Measuring ionospheric movements using totally reflected radio waves
NASA Astrophysics Data System (ADS)
Sadler, Elaine M.; Whitehead, J. D.; From, W. R.
1988-02-01
It is shown that for radio waves of a particular frequency reflected totally from the ionosphere the effect of refraction as well as reflection can be simulated by an effective reflecting surface. This mirror-like surface will give the correct angle of arrival and Doppler shift for all radars operating at this frequency. It is theoretically possible for the effective reflecting surface to be folded back on itself, but this is unlikely except for F-region echoes refracted by sporadic E-clouds. If the surface is not folded and exists everywhere, it is always possible to describe its motion and change in terms of wave undulations. Experimental data for F-region echoes show that these wave undulations are very dispersive. However, the matching between the best fitting model and the experimental data is worse than expected for reasons we do not understand.
Measuring ionospheric movements using totally reflected radio waves
NASA Astrophysics Data System (ADS)
From, W. R.; Sadler, Elaine M.; Whitehead, J. D.
1988-02-01
It is shown that for radio waves of a particular frequency reflected totally from the ionosphere the effect of refraction as well as reflection can be simulated by an effective reflecting surface. This mirrorlike surface will give the correct angle of arrival and Doppler shift for all radars operating at this frequency. It is theoretically possible for the effective reflecting surface to be folded back on itself, but this is unlikely except for F-region echoes refracted by sporadic E-clouds. If the surface is not folded and exists everywhere, it is always possible to describe its motion and change in terms of wave undulations. Experimental data for F-region echoes show that these wave undulations are very dispersive. However, the matching between the best fitting model and the experimental data is worse than expected for reasons we do not understand.
Acquired pulmonary artery stenosis in four dogs.
Scansen, Brian A; Schober, Karsten E; Bonagura, John D; Smeak, Daniel D
2008-04-15
4 dogs with acquired pulmonary artery stenosis (PAS) were examined for various clinical signs. One was a mixed-breed dog with congenital valvular PAS that subsequently developed peripheral PAS, one was a Golden Retriever with pulmonary valve fibrosarcoma, one was a Pembroke Welsh Corgi in which the left pulmonary artery had inadvertently been ligated during surgery for correction of patent ductus arteriosus, and one was a Boston Terrier with a heart-base mass compressing the pulmonary arteries. All 4 dogs were evaluated with 2-dimensional and Doppler echocardiography to characterize the nature and severity of the stenoses; other diagnostic tests were also performed. The mixed-breed dog with valvular and peripheral PAS was euthanized, surgical resection of the pulmonic valve mass was performed in the Golden Retriever, corrective surgery was performed on the Pembroke Welsh Corgi with left pulmonary artery ligation, and the Boston Terrier with the heart-base mass was managed medically. Acquired PAS in dogs may manifest as a clinically silent heart murmur, syncope, or right-sided heart failure. The diagnosis is made on the basis of imaging findings, particularly results of 2-dimensional and Doppler echocardiography. Treatment may include surgical, interventional, or medical modalities and is targeted at resolving the inciting cause.
Achieving Consistent Doppler Measurements from SDO/HMI Vector Field Inversions
NASA Technical Reports Server (NTRS)
Schuck, Peter W.; Antiochos, S. K.; Leka, K. D.; Barnes, Graham
2016-01-01
NASA's Solar Dynamics Observatory is delivering vector magnetic field observations of the full solar disk with unprecedented temporal and spatial resolution; however, the satellite is in a highly inclined geosynchronous orbit. The relative spacecraft-Sun velocity varies by +/-3 kms-1 over a day, which introduces major orbital artifacts in the Helioseismic Magnetic Imager (HMI) data. We demonstrate that the orbital artifacts contaminate all spatial and temporal scales in the data. We describe a newly developed three-stage procedure for mitigating these artifacts in the Doppler data obtained from the Milne-Eddington inversions in the HMI pipeline. The procedure ultimately uses 32 velocity-dependent coefficients to adjust 10 million pixels-a remarkably sparse correction model given the complexity of the orbital artifacts. This procedure was applied to full-disk images of AR 11084 to produce consistent Dopplergrams. The data adjustments reduce the power in the orbital artifacts by 31 dB. Furthermore, we analyze in detail the corrected images and show that our procedure greatly improves the temporal and spectral properties of the data without adding any new artifacts. We conclude that this new procedure makes a dramatic improvement in the consistency of the HMI data and in its usefulness for precision scientific studies.
Use of global ionospheric maps for HF Doppler measurements interpretation
NASA Astrophysics Data System (ADS)
Petrova, I. R.; Bochkarev, V. V.; Latypov, R. R.
2018-04-01
The HF Doppler technique, a method of measurement of Doppler frequency shift of ionospheric signal, is one of the well-known and widely used techniques of ionosphere research. It allows investigation of various disturbances in the ionosphere. There are different sources of disturbances in the ionosphere such as geomagnetic storms, solar flashes, meteorological effects and atmospheric waves. The HF Doppler technique allows us to find out the influence of earthquakes, explosions and other processes on the ionosphere, which occurs near the Earth. HF Doppler technique has high sensitivity to small frequency variations and high time resolution but interpretation of results is difficult. In this paper, we attempt to use GPS data for Doppler measurements interpretation. Modeling of Doppler frequency shift variations with use of TEC allows separation of ionosphere disturbances of medium scale.
Heart Rate Assessment Immediately after Birth.
Phillipos, Emily; Solevåg, Anne Lee; Pichler, Gerhard; Aziz, Khalid; van Os, Sylvia; O'Reilly, Megan; Cheung, Po-Yin; Schmölzer, Georg M
2016-01-01
Heart rate assessment immediately after birth in newborn infants is critical to the correct guidance of resuscitation efforts. There are disagreements as to the best method to measure heart rate. The aim of this study was to assess different methods of heart rate assessment in newborn infants at birth to determine the fastest and most accurate method. PubMed, EMBASE and Google Scholar were systematically searched using the following terms: 'infant', 'heart rate', 'monitoring', 'delivery room', 'resuscitation', 'stethoscope', 'auscultation', 'palpation', 'pulse oximetry', 'electrocardiogram', 'Doppler ultrasound', 'photoplethysmography' and 'wearable sensors'. Eighteen studies were identified that described various methods of heart rate assessment in newborn infants immediately after birth. Studies examining auscultation, palpation, pulse oximetry, electrocardiography and Doppler ultrasound as ways to measure heart rate were included. Heart rate measurements by pulse oximetry are superior to auscultation and palpation, but there is contradictory evidence about its accuracy depending on whether the sensor is connected to the infant or the oximeter first. Several studies indicate that electrocardiogram provides a reliable heart rate faster than pulse oximetry. Doppler ultrasound shows potential for clinical use, however future evidence is needed to support this conclusion. Heart rate assessment is important and there are many measurement methods. The accuracy of routinely applied methods varies, with palpation and auscultation being the least accurate and electrocardiogram being the most accurate. More research is needed on Doppler ultrasound before its clinical use. © 2015 S. Karger AG, Basel.
Li, Min; Yu, Bing-bing; Wu, Jian-hua; Xu, Lin; Sun, Gang
2013-01-01
Purpose As Doppler ultrasound has been proven to be an effective tool to predict and compress the optimal pulsing windows, we evaluated the effective dose and diagnostic accuracy of coronary CT angiography (CTA) incorporating Doppler-guided prospective electrocardiograph (ECG) gating, which presets pulsing windows according to Doppler analysis, in patients with a heart rate >65 bpm. Materials and Methods 119 patients with a heart rate >65 bpm who were scheduled for invasive coronary angiography were prospectively studied, and patients were randomly divided into traditional prospective (n = 61) and Doppler-guided prospective (n = 58) ECG gating groups. The exposure window of traditional prospective ECG gating was set at 30%–80% of the cardiac cycle. For the Doppler group, the length of diastasis was analyzed by Doppler. For lengths greater than 90 ms, the pulsing window was preset during diastole (during 60%–80%); otherwise, the optimal pulsing intervals were moved from diastole to systole (during 30%–50%). Results The mean heart rates of the traditional ECG and the Doppler-guided group during CT scanning were 75.0±7.7 bpm (range, 66–96 bpm) and 76.5±5.4 bpm (range: 66–105 bpm), respectively. The results indicated that whereas the image quality showed no significant difference between the traditional and Doppler groups (P = 0.42), the radiation dose of the Doppler group was significantly lower than that of the traditional group (5.2±3.4mSv vs. 9.3±4.5mSv, P<0.001). The sensitivities of CTA applying traditional and Doppler-guided prospective ECG gating to diagnose stenosis on a segment level were 95.5% and 94.3%, respectively; specificities 98.0% and 97.1%, respectively; positive predictive values 90.7% and 88.2%, respectively; negative predictive values 99.0% and 98.7%, respectively. There was no statistical difference in concordance between the traditional and Doppler groups (P = 0.22). Conclusion Doppler-guided prospective ECG gating represents an improved method in patients with a high heart rate to reduce effective radiation doses, while maintaining high diagnostic accuracy. PMID:23696793
Relativistic effects in earth-orbiting Doppler lidar return signals.
Ashby, Neil
2007-11-01
Frequency shifts of side-ranging lidar signals are calculated to high order in the small quantities (v/c), where v is the velocity of a spacecraft carrying a lidar laser or of an aerosol particle that scatters the radiation back into a detector (c is the speed of light). Frequency shift measurements determine horizontal components of ground velocity of the scattering particle, but measured fractional frequency shifts are large because of the large velocities of the spacecraft and of the rotating earth. Subtractions of large terms cause a loss of significant digits and magnify the effect of relativistic corrections in determination of wind velocity. Spacecraft acceleration is also considered. Calculations are performed in an earth-centered inertial frame, and appropriate transformations are applied giving the velocities of scatterers relative to the ground.
Perturbed redshifts from N -body simulations
NASA Astrophysics Data System (ADS)
Adamek, Julian
2018-01-01
In order to keep pace with the increasing data quality of astronomical surveys the observed source redshift has to be modeled beyond the well-known Doppler contribution. In this article I want to examine the gauge issue that is often glossed over when one assigns a perturbed redshift to simulated data generated with a Newtonian N -body code. A careful analysis reveals the presence of a correction term that has so far been neglected. It is roughly proportional to the observed length scale divided by the Hubble scale and therefore suppressed inside the horizon. However, on gigaparsec scales it can be comparable to the gravitational redshift and hence amounts to an important relativistic effect.
The relativistic foundations of synchrotron radiation.
Margaritondo, Giorgio; Rafelski, Johann
2017-07-01
Special relativity (SR) determines the properties of synchrotron radiation, but the corresponding mechanisms are frequently misunderstood. Time dilation is often invoked among the causes, whereas its role would violate the principles of SR. Here it is shown that the correct explanation of the synchrotron radiation properties is provided by a combination of the Doppler shift, not dependent on time dilation effects, contrary to a common belief, and of the Lorentz transformation into the particle reference frame of the electromagnetic field of the emission-inducing device, also with no contribution from time dilation. Concluding, the reader is reminded that much, if not all, of our argument has been available since the inception of SR, a research discipline of its own standing.
A visual demo of the Doppler effect
NASA Astrophysics Data System (ADS)
Papacosta, Pangratios
2010-09-01
Most physics teachers are familiar with the standard classroom demonstration of the Doppler effect. We invite students to explain the periodic variation of the pitch produced when we swirl a sounding buzzer over our heads. Students are quick to connect this phenomenon to everyday life experiences such as listening to the sound of the siren of a fast-approaching police car or the bell of an approaching train. In addition to these aural experiences, our understanding of the Doppler effect can be strengthened with a useful visual metaphor.
Photonic Doppler velocimetry probe designed with stereo imaging
NASA Astrophysics Data System (ADS)
Malone, Robert M.; Cata, Brian M.; Daykin, Edward P.; Esquibel, David L.; Frogget, Brent C.; Holtkamp, David B.; Kaufman, Morris I.; McGillivray, Kevin D.; Palagi, Martin J.; Pazuchanics, Peter; Romero, Vincent T.; Sorenson, Danny S.
2014-09-01
During the fabrication of an aspherical mirror, the inspection of the residual wavefront error is critical. In the program of a spaceborne telescope development, primary mirror is made of ZERODUR with clear aperture of 450 mm. The mass is 10 kg after lightweighting. Deformation of mirror due to gravity is expected; hence uniform supporting measured by load cells has been applied to reduce the gravity effect. Inspection has been taken to determine the residual wavefront error at the configuration of mirror face upwards. Correction polishing has been performed according to the measurement. However, after comparing with the data measured by bench test while the primary mirror is at a configuration of mirror face horizontal, deviations have been found for the two measurements. Optical system that is not able to meet the requirement is predicted according to the measured wavefront error by bench test. A target wavefront error of secondary mirror is therefore analyzed to correct that of primary mirror. Optical performance accordingly is presented.
ERIC Educational Resources Information Center
Kozoil, Micah E.
1989-01-01
Discusses the learning needs of students in the concrete operational stage in mathematics. Identifies the phenomenon of reduced cognitive performance in an out-of-class environment as the "Cognitive Doppler." Suggests methods of reducing the pronounced effects of the Cognitive Doppler by capitalizing on the students' ability to memorize…
Riihimaki, Laura D.; Comstock, Jennifer M.; Anderson, Kevin K.; ...
2016-06-10
Knowledge of cloud phase (liquid, ice, mixed, etc.) is necessary to describe the radiative impact of clouds and their lifetimes, but is a property that is difficult to simulate correctly in climate models. One step towards improving those simulations is to make observations of cloud phase with sufficient accuracy to help constrain model representations of cloud processes. In this study, we outline a methodology using a basic Bayesian classifier to estimate the probabilities of cloud-phase class from Atmospheric Radiation Measurement (ARM) vertically pointing active remote sensors. The advantage of this method over previous ones is that it provides uncertainty informationmore » on the phase classification. We also test the value of including higher moments of the cloud radar Doppler spectrum than are traditionally used operationally. Using training data of known phase from the Mixed-Phase Arctic Cloud Experiment (M-PACE) field campaign, we demonstrate a proof of concept for how the method can be used to train an algorithm that identifies ice, liquid, mixed phase, and snow. Over 95 % of data are identified correctly for pure ice and liquid cases used in this study. Mixed-phase and snow cases are more problematic to identify correctly. When lidar data are not available, including additional information from the Doppler spectrum provides substantial improvement to the algorithm. As a result, this is a first step towards an operational algorithm and can be expanded to include additional categories such as drizzle with additional training data.« less
NASA Astrophysics Data System (ADS)
Riihimaki, Laura D.; Comstock, Jennifer M.; Anderson, Kevin K.; Holmes, Aimee; Luke, Edward
2016-06-01
Knowledge of cloud phase (liquid, ice, mixed, etc.) is necessary to describe the radiative impact of clouds and their lifetimes, but is a property that is difficult to simulate correctly in climate models. One step towards improving those simulations is to make observations of cloud phase with sufficient accuracy to help constrain model representations of cloud processes. In this study, we outline a methodology using a basic Bayesian classifier to estimate the probabilities of cloud-phase class from Atmospheric Radiation Measurement (ARM) vertically pointing active remote sensors. The advantage of this method over previous ones is that it provides uncertainty information on the phase classification. We also test the value of including higher moments of the cloud radar Doppler spectrum than are traditionally used operationally. Using training data of known phase from the Mixed-Phase Arctic Cloud Experiment (M-PACE) field campaign, we demonstrate a proof of concept for how the method can be used to train an algorithm that identifies ice, liquid, mixed phase, and snow. Over 95 % of data are identified correctly for pure ice and liquid cases used in this study. Mixed-phase and snow cases are more problematic to identify correctly. When lidar data are not available, including additional information from the Doppler spectrum provides substantial improvement to the algorithm. This is a first step towards an operational algorithm and can be expanded to include additional categories such as drizzle with additional training data.
NASA Astrophysics Data System (ADS)
Atkinson, D. H.; Babuscia, A.; Lazio, J.; Asmar, S.
2017-12-01
Many Radio Science investigations, including the determinations of planetary masses, measurements of planetary atmospheres, studies of the solar wind, and solar system tests of relativistic gravity, rely heavily on precision Doppler tracking. Recent and currently proposed missions such as VERITAS, Bepi Colombo, Juno have shown that the largest error source in the precision Doppler tracking data is noise in the Doppler system. This noise is attributed to un-modeled motions of the ground antenna's phase center and is commonly referred to as "antenna mechanical noise." Attempting to reduce this mechanical noise has proven difficult since the deep space communications antennas utilize large steel structures that are already optimized for mechanical stability. Armstrong et al. (2008) have demonstrated the Time Delay Mechanical-noise Cancellation (TDMC) concept using Goldstone DSN antennas (70 m & 34 m) and the Cassinispacecraft to show that the mechanical noise of the 70 m antenna could be suppressed when two-way Doppler tracking from the 70 m antenna and the receive-only Doppler data from the smaller, stiffer 34 m antenna were combined with suitable delays. The proof-of-concept confirmed that the mechanical noise in the final Doppler observable was reduced to that of the stiffer, more stable antenna. Caltech's Owens Valley Radio Observatory (OVRO) near Bishop, CA now has six 10.4 m diameter antennas, a consequence of the closure of Combined Array for Research in Millimeter Astronomy (CARMA). In principle, a 10 m antenna can lead to an order-of-magnitude improvement for the mechanical noise correction, as the smaller dish offers better mechanical stability compared to a DSN 34-m antenna. These antennas also have existing Ka-band receiving systems, and preliminary discussions with the OVRO staff suggest that much of the existing signal path could be used for Radio Science observations.
Planetary Radio Interferometry and Doppler Experiment (PRIDE) for Planetary Atmospheric Studies
NASA Astrophysics Data System (ADS)
Bocanegra Bahamon, Tatiana; Cimo, Giuseppe; Duev, Dmitry; Gurvits, Leonid; Molera Calves, Guifre; Pogrebenko, Sergei
2015-04-01
The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that allows the determination of the radial velocity and lateral coordinates of planetary spacecraft with very high accuracy (Duev, 2012). The setup of the experiment consists of several ground stations from the European VLBI Network (EVN) located around the globe, which simultaneously perform Doppler tracking of a spacecraft carrier radio signal, and are subsequently processed in a VLBI-style in phase referencing mode. Because of the accurate examination of the changes in phase and amplitude of the radio signal propagating from the spacecraft to the multiple stations on Earth, the PRIDE technique can be used for several fields of planetary research, among which planetary atmospheric studies, gravimetry and ultra-precise celestial mechanics of planetary systems. In the study at hand the application of this technique for planetary atmospheric investigations is demonstrated. As a test case, radio occultation experiments were conducted with PRIDE having as target ESA's Venus Express, during different observing sessions with multiple ground stations in April 2012 and March 2014. Once each of the stations conducts the observation, the raw data is delivered to the correlation center at the Joint Institute for VLBI in Europe (JIVE) located in the Netherlands. The signals are processed with a high spectral resolution and phase detection software package from which Doppler observables of each station are derived. Subsequently the Doppler corrected signals are correlated to derive the VLBI observables. These two sets of observables are used for precise orbit determination. The reconstructed orbit along with the Doppler observables are used as input for the radio occultation processing software, which consists of mainly two modules, the geometrical optics module and the ray tracing inversion module, from which vertical density profiles, and subsequently, temperature and pressure profiles of Venus' atmosphere were derived. The demonstration of the capability of PRIDE as a radio science instrument for planetary atmospheric studies is developed in the framework of the upcoming ESA's JUICE mission to study Jupiter's system.
Arterial and Venous Doppler in Evaluation of the "At-Risk" Fetus.
Turan, Sifa; Turan, Ozhan M
2017-09-01
Our practice utilizes Doppler ultrasound as one of the most objective and effective methods to assess at-risk pregnancies. This review will discuss the application of arterial and venous Doppler techniques in assessing and managing various diseases and conditions for high-risk fetuses.
Coulon, P; Constans, J; Gosse, P
2012-01-01
We lack non-invasive tools for evaluating the coronary and renal microcirculations. Since cutaneous Doppler laser exploration has evidenced impaired cutaneous microvascular responses in coronary artery disease and in impaired renal function, we wanted to find out if there was a link between the impairments in the cutaneous and renal microcirculations. To specify the significance of the rise in the renal resistive index (RI), which is still unclear, we also sought relations between RI and arterial stiffness. We conducted a cross-sectional controlled study in a heterogeneous population including hypertensive patients of various ages with or without a history of cardiovascular disease along with a healthy control group. The cutaneous microcirculation was evaluated by laser Doppler flowmetry of the post-occlusive reactive hyperhemy (PORH) and of the hyperhemy to heat. The renal microcirculation was evaluated by measurement of the RI. Arterial stiffness was evaluated from an ambulatory measurement of the corrected QKD(100-60) interval. We included 22 hypertensives and 11 controls of mean age 60.6 vs 40.8 years. In this population, there was a correlation between RI and basal zero to peak flow variation (BZ-PF) (r=-0.42; P=0.02) and a correlation between RI and rest flow to peak flow variation (RF-PF) (r=-0.44; P=0.01). There was also a significant correlation between RI and the corrected QKD(100-60) (r=-0.47; P=0.01). The significant correlation between PORH parameters and RI indicates that the functional modifications of the renal and cutaneous microcirculations tend to evolve in parallel during ageing or hypertension. The relation between RI and arterial stiffness shows that RI is a compound index of both renal microvascular impairment and the deterioration of macrovascular mechanics.
NASA Technical Reports Server (NTRS)
Berman, A. L.; Wackley, J. A.; Rockwell, S. T.; Yee, J. G.
1976-01-01
The 1976 Pioneer II Solar Conjunction provided the opportunity to accumulate a substantial quantity of doppler noise data over a dynamic range of signal closest approach point heliographic latitudes. The observed doppler noise data were fit to the doppler noise model ISED, and the deviations of the observed doppler noise data from the model were used to construct a (multiplicative) function to describe the effect of heliographic latitude. This expression was then incorporated into the ISED model to produce a new doppler noise model-ISEDB.
NASA Astrophysics Data System (ADS)
Agafonov, M. I.; Karitskaya, E. A.; Sharova, O. I.; Bochkarev, N. G.; Zharikov, S. V.; Butenko, G. Z.; Bondar', A. V.; Bubukin, I. T.
2018-03-01
This is the second paper in a series dedicated to studies of the X-ray binary Cyg X-1 in the HeII λ 4686 Å line using 3D Doppler tomography. A detailed analysis of the tomogram constructed has made it possible for the first time to obtain information about the motions of gaseous flows including all three velocity components. The observations were obtained in June 2007 at the Terskol Branch of the Institute of Astronomy (Russia) and the National Astronomical Observatory of Mexico. The correctness of the tomographic results and their discussion is analyzed. The results are compared with a 2D Doppler tomogram reconstruction. Model-atmosphere computations of HeII λ 4686 Å line profiles are used to estimate the influence of absorption features of the Osupergiant on the emission structure in the tomogram. The correctness of the 3D solutions is confirmed by the good agreement between the original sequence of spectral data and a control data set computed using the constructed 3D Doppler tomogram. Tomograms constructed using the data of each of the two observatories are compared. The results of the reconstruction for inclinations of the system of 40° and 45° essentially coincide. The maximum absorption (corresponding to the O supergiant) and emission structural features in the 3D tomogram are located in its central ( V x , V y ) section, where the velocity component perpendicular to the orbital plane V z is zero. The emission is generated mainly in the outer part of the accretion structure, close to the supergiant. A gaseous stream from the Lagrangian point L1 with its motion close to the orbital plane can be distinguished. Its maximum velocity reaches 800 km/s. The identification of an emission structure with V z 300 km/s and with V x , V y in the velocity interval corresponding to the donor star was unexpected. Its presence may indicate, for example, an outflow of matter from a magnetic pole of the supergiant.
NASA Technical Reports Server (NTRS)
Kirschner, S. M.; Samii, M. V.; Broaddus, S. R.; Doll, C. E.
1988-01-01
The Preliminary Orbit Determination System (PODS) provides early orbit determination capability in the Trajectory Computation and Orbital Products System (TCOPS) for a Tracking and Data Relay Satellite System (TDRSS)-tracked spacecraft. PODS computes a set of orbit states from an a priori estimate and six tracking measurements, consisting of any combination of TDRSS range and Doppler tracking measurements. PODS uses the homotopy continuation method to solve a set of nonlinear equations, and it is particularly effective for the case when the a priori estimate is not well known. Since range and Doppler measurements produce multiple states in PODS, a screening technique selects the desired state. PODS is executed in the TCOPS environment and can directly access all operational data sets. At the completion of the preliminary orbit determination, the PODS-generated state, along with additional tracking measurements, can be directly input to the differential correction (DC) process to generate an improved state. To validate the computational and operational capabilities of PODS, tests were performed using simulated TDRSS tracking measurements for the Cosmic Background Explorer (COBE) satellite and using real TDRSS measurements for the Earth Radiation Budget Satellite (ERBS) and the Solar Mesosphere Explorer (SME) spacecraft. The effects of various measurement combinations, varying arc lengths, and levels of degradation of the a priori state vector on the PODS solutions were considered.
NASA Technical Reports Server (NTRS)
Fritts, David C.; Wang, Ding-Yi
1991-01-01
Results are presented of radar observations of horizontal and vertical velocities near the summer mesopause at Poker Flat (Alaska), showing that the observed vertical velocity spectra were influenced strongly by Doppler-shifting effects. The horizontal velocity spectra, however, were relatively insensitive to horizontal wind speed. The observed spectra are compared with predicted spectra for various models of the intrinsic motion spectrum and degrees of Doppler shifting.
Hydrodynamic Controls on Acoustical and Optical Water Properties in Tropical Reefs
2012-09-30
scattering, absorption, and backscattering , shows more complex variations, with a strong diel signal , but with a tidal influence reflecting asymmetry in...Relative acoustic backscatter (ABS) profiles were derived from individual ADCP beam echo intensity correcting for range and absorption using the sonar...REFERENCES Deines K. L., 1999, Backscatter estimation using Broadband acoustic Doppler current profilers. Proceedings of the IEEE Sixth Working
NASA Astrophysics Data System (ADS)
Benveniste, J.; Cotton, D.; Moreau, T.; Varona, E.; Roca, M.; Cipollini, P.; Cancet, M.; Martin, F.; Fenoglio-Marc, L.; Naeije, M.; Fernandes, J.; Restano, M.; Ambrozio, A.
2016-12-01
The ESA Sentinel-3 satellite, launched in February 2016 as a part of the Copernicus programme, is the second satellite to operate a SAR mode altimeter. The Sentinel 3 Synthetic Aperture Radar Altimeter (SRAL) is based on the heritage from Cryosat-2, but this time complemented by a Microwave Radiometer (MWR) to provide a wet troposphere correction, and operating at Ku and C-Bands to provide an accurate along-track ionospheric correction. Together this instrument package, including both GPS and DORIS instruments for accurate positioning, allows accurate measurements of sea surface height over the ocean, as well as measurements of significant wave height and surface wind speed. SCOOP (SAR Altimetry Coastal & Open Ocean Performance) is a project funded under the ESA SEOM (Scientific Exploitation of Operational Missions) Programme Element, started in September 2015, to characterise the expected performance of Sentinel-3 SRAL SAR mode altimeter products, in the coastal zone and open-ocean, and then to develop and evaluate enhancements to the baseline processing scheme in terms of improvements to ocean measurements. There is also a work package to develop and evaluate an improved Wet Troposphere correction for Sentinel-3, based on the measurements from the on-board MWR, further enhanced mostly in the coastal and polar regions using third party data, and provide recommendations for use. At the end of the project recommendations for further developments and implementations will be provided through a scientific roadmap. In this presentation we provide an overview of the SCOOP project, highlighting the key deliverables and discussing the potential impact of the results in terms of the application of delay-Doppler (SAR) altimeter measurements over the open-ocean and coastal zone. We also present the initial results from the project, including: Key findings from a review of the current "state-of-the-art" for SAR altimetry, Specification of the initial "reference" delay-Doppler and echo modelling /retracking processing schemes, Evaluation of the initial Test Data Set in the Open Ocean and Coastal Zone Overview of modifications planned to the reference delay-Doppler and echo modelling/ re-tracking processing schemes.
Curvature constraints from large scale structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dio, Enea Di; Montanari, Francesco; Raccanelli, Alvise
We modified the CLASS code in order to include relativistic galaxy number counts in spatially curved geometries; we present the formalism and study the effect of relativistic corrections on spatial curvature. The new version of the code is now publicly available. Using a Fisher matrix analysis, we investigate how measurements of the spatial curvature parameter Ω {sub K} with future galaxy surveys are affected by relativistic effects, which influence observations of the large scale galaxy distribution. These effects include contributions from cosmic magnification, Doppler terms and terms involving the gravitational potential. As an application, we consider angle and redshift dependentmore » power spectra, which are especially well suited for model independent cosmological constraints. We compute our results for a representative deep, wide and spectroscopic survey, and our results show the impact of relativistic corrections on spatial curvature parameter estimation. We show that constraints on the curvature parameter may be strongly biased if, in particular, cosmic magnification is not included in the analysis. Other relativistic effects turn out to be subdominant in the studied configuration. We analyze how the shift in the estimated best-fit value for the curvature and other cosmological parameters depends on the magnification bias parameter, and find that significant biases are to be expected if this term is not properly considered in the analysis.« less
NASA Technical Reports Server (NTRS)
Tilley, David G.
1987-01-01
NASA Space Shuttle Challenger SIR-B ocean scenes are used to derive directional wave spectra for which speckle noise is modeled as a function of Rayleigh random phase coherence downrange and Poisson random amplitude errors inherent in the Doppler measurement of along-track position. A Fourier filter that preserves SIR-B image phase relations is used to correct the stationary and dynamic response characteristics of the remote sensor and scene correlator, as well as to subtract an estimate of the speckle noise component. A two-dimensional map of sea surface elevation is obtained after the filtered image is corrected for both random and deterministic motions.
Student Microwave Experiments Involving the Doppler Effect.
ERIC Educational Resources Information Center
Weber, F. Neff; And Others
1980-01-01
Described is the use of the Doppler Effect with microwaves in the measurement of the acceleration due to gravity of falling objects. The experiments described add to the repertoire of quantitative student microwave experiments. (Author/DS)
Hussein, Hassan A
2013-04-15
The aim of this study was to verify the efficacy of color Doppler ultrasonography for diagnosis of degree and duration of uterine torsion in buffaloes. In Assiut province/Upper Egypt, 65 buffaloes (37 with uterine torsion, 28 with normal late pregnancy) were examined clinically and using Doppler ultrasonography. The Doppler indices including resistance index (RI), pulsatility index (PI), time-averaged maximum velocity (TAMV), and blood flow volume (BFV) in the arteries ipsilateral to the uterine torsion (IPUT) and in arteries contralateral to the uterine torsion (COUT) were recorded. Methods of correction were documented along with dam and calf survival. Torsion was recorded postcervically with vaginal involvement in 35/37 (94.6%) of the cases. The degrees of uterine torsion were light and high in 9/37 (24.3%) and 28/37 (75.7%) of the cases, respectively (P = 0.001). Right uterine torsion was present in 36/37 (97.3%) of the cases (P = 0.0001). Pulsatility index, RI, TAMV, and BFV in IPUT and COUT did not differ significantly (P > 0.05) in normal late pregnancy. The PI and RI in IPUT were significantly higher (P < 0.01) than in COUT, and the TAMV and BFV in IPUT were less (P < 0.001) than that in COUT in uterine torsion. The PI and RI of torsion cases in IPUT were higher (P < 0.001) than that in normal pregnancy. Time-averaged maximum velocity and BFV in torsion cases were lower (P < 0.01) than that of normal pregnancy in IPUT. There was approximately 50% of RI and PI higher than in light degree uterine torsion in IPUT (P < 0.001). Consequently, TAMV and BFV were greatly lower (P < 0.0001) than that in light degree in IPUT. Pulsatility index and RI were positively correlated (r = 0.856; P < 0.001) with the duration and degree of the uterine torsion, and TAMV and BFV were negatively correlated (r = -0.763; P < 0.001). In all cases of uterine torsion the uterine flow velocity waveform showed high systolic flow and absence of early diastolic flow and poor uterine and placentomal blood perfusion. In conclusion, depicting blood flow within the middle uterine artery using color Doppler sonography could be helpful in correct diagnosis of duration and degree of uterine torsion and concurrently predicting the viability of the fetus and dam. Copyright © 2013 Elsevier Inc. All rights reserved.
Pericardial constriction after cardiac transplantation.
Bansal, Ramesh; Perez, Leandro; Razzouk, Anees; Wang, Nan; Bailey, Leonard
2010-03-01
In this study we present a series of 5 cases that developed constrictive pericarditis after orthotopic heart transplantation. All 5 patients had pericardial effusion of non-infectious etiology in the early post-transplant period. They subsequently presented with heart failure unresponsive to standard medical management. The diagnosis was made by comprehensive echo-Doppler studies. Findings were confirmed at surgical inspection and complete pericardiectomy led to improvement in hemodynamics in 4 patients. One patient had relief from constriction but died of non-cardiac complications. One patient with constriction has been re-listed for transplantation due to intermittent heart block and associated cardiac allograft vasculopathy. Early diagnosis of pericardial constriction after orthotopic heart transplantation requires a high index of clinical suspicion and optimal use of Doppler echocardiography. Early diagnosis and timely surgical pericardiectomy may correct this condition entirely and result in satisfactory long-term results.
NASA Astrophysics Data System (ADS)
Yang, Chun; Quarles, C. A.
2007-10-01
We have used positron Doppler Broadening Spectroscopy (DBS) to investigate the uniformity of rubber-carbon black composite samples. The amount of carbon black added to a rubber sample is characterized by phr, the number of grams of carbon black per hundred grams of rubber. Typical concentrations in rubber tires are 50 phr. It has been shown that the S parameter measured by DBS depends on the phr of the sample, so the variation in carbon black concentration can be easily measured to 0.5 phr. In doing the experiments we observed a dependence of the S parameter on small variation in the counting rate or deadtime. By carefully calibrating this deadtime correction we can significantly reduce the experimental run time and thus make faster determination of the uniformity of extended samples.
Analysing simple motions using the Doppler effect—‘seeing’ sound
NASA Astrophysics Data System (ADS)
Stonawski, Tamás; Gálik, Tamás
2017-01-01
The Doppler effect has seen widespread use in the past hundred years. It is used for medical imaging, for measuring speed, temperature, direction, etc, and it makes the spatial relations of motion easy to map. The Doppler effect also allows GPS receivers to measure the speed of a vehicle significantly more accurately than dashboard speedometers. Its diverse applications have prompted us to revisit the simple motions from kinematics with the help of everyday objects in our experiments.
Direct measurement of Lorentz transformation with Doppler effects
NASA Astrophysics Data System (ADS)
Chen, Shao-Guang
For space science and astronomy the fundamentality of one-way velocity of light (OWVL) is selfevident. The measurement of OWVL (distance/interval) and the clock synchronization with light-signal transfer make a logical circulation. This means that OWVL could not be directly measured but only come indirectly from astronomical method (Romer's Io eclipse and Bradley's sidereal aberration), furthermore, the light-year by definitional OWVL and the trigonometry distance with AU are also un-measurable. For to solve this problem two methods of clock synchronization were proposed: The direct method is that at one end of dual-speed transmissionline with single clock measure the arriving-time difference of longitudinal wave and transverse wave or ordinary light and extraordinary light, again to calculate the collective sending-time of two wave with Yang's /shear elastic-modulus ratio (E/k) or extraordinary/ordinary light refractive-index ratio (ne/no), which work as one earthquake-station with single clock measures first-shake time and the distance to epicenter; The indirect method is that the one-way wavelength l is measured by dual-counters Ca and Cb and computer's real-time operation of reading difference (Nb - Na) of two counters, the frequency f is also simultaneously measured, then l f is just OWVL. Therefore, with classical Newtonian mechanics and ether wave optics, OWVL can be measured in the Galileo coordinate system with an isotropic length unit (1889 international meter definition). Without any hypotheses special relativity can entirely establish on the metrical results. When a certain wavelength l is defined as length unit, foregoing measurement of one-way wavelength l will become as the measurement of rod's length. Let a rigidity-rod connecting Ca and Cb moves relative to lamp-house with velocity v, rod's length L = (Nb - Na) l will change follow v by known Doppler effect, i.e., L(q) =L0 (1+ (v/c) cos q), where L0 is the proper length when v= 0, v• r = v cos q, r is the unit vector from lamphouse point to counters. Or: L (0) L (pi) =L0 (1+(v/c)) L0 (1 - (v/c)) =L0 2 y2 =L2 Or: L ≡ [L(0)L(pi)]1/2 =L0 y , which y ≡ (1 - (v/c)2 )1/2 is just Fitzgerald-Lorentzian contraction-factor. Also, when a light-wave period p is defined as time unit, from Doppler's frequency-shift the count N with p of one period T of moving-clock is: T(q) = N(q) p = T0 /(1+(v/c) cos q) Or: T ≡ (T(0) T(pi))1/2 = T 0 /y , where T0 is the proper period when v = 0, which is just the moving-clock-slower effect. Let r from clock point to lamp-house ((v/c) symbol reverse), Doppler formula in the usual form is: f (q) = 1/T(q) = f0 (1 - (v/c) cos q). Therefore, Lorentz transformation is the square root average of positive and negative directions twice metrical results of Doppler's frequency-shift, which Doppler's once items ( positive and negative v/c ) are counteract only residual twice item (v/c)2 (relativity-factor). Then Lorentz transformation can be directly measured by Doppler's frequency-shift method. The half-life of moving mu-meson is statistical average of many particles, the usual explanation using relativity-factor y is correct. An airship moving simultaneously along contrary directions is impossible, which makes that the relativity-factor y and the twin-paradox are inexistent in the macroscopical movement. Thereby, in the navigations of airship or satellite only use the measurement of Doppler's frequency-shift but have no use for Lorentz transformation.
NASA Technical Reports Server (NTRS)
Winn, F. B.; Reinbold, S. R.; Yip, K. W.; Koch, R. E.; Lubeley, A.
1975-01-01
Doppler data from Mariner 6, 7, 9, and 10 and Pioneer 10 and 11 were discussed and the rms noise level for various sun-earth-probe angles were shown. The noise levels of both S- and X-band Doppler data for sun-earth-probe angles smaller than 20 deg were observed to be orders of magnitude greater than nominal. Such solar plasma-related Doppler degradation reduced the Mariner 10-Mercury 11 encounter navigation accuracy by nearly a factor of 10. Furthermore, this degradation was shown to be indirectly related to plasma dynamics and not a direct measure of the dynamics.
Analysis of counting errors in the phase/Doppler particle analyzer
NASA Technical Reports Server (NTRS)
Oldenburg, John R.
1987-01-01
NASA is investigating the application of the Phase Doppler measurement technique to provide improved drop sizing and liquid water content measurements in icing research. The magnitude of counting errors were analyzed because these errors contribute to inaccurate liquid water content measurements. The Phase Doppler Particle Analyzer counting errors due to data transfer losses and coincidence losses were analyzed for data input rates from 10 samples/sec to 70,000 samples/sec. Coincidence losses were calculated by determining the Poisson probability of having more than one event occurring during the droplet signal time. The magnitude of the coincidence loss can be determined, and for less than a 15 percent loss, corrections can be made. The data transfer losses were estimated for representative data transfer rates. With direct memory access enabled, data transfer losses are less than 5 percent for input rates below 2000 samples/sec. With direct memory access disabled losses exceeded 20 percent at a rate of 50 samples/sec preventing accurate number density or mass flux measurements. The data transfer losses of a new signal processor were analyzed and found to be less than 1 percent for rates under 65,000 samples/sec.
Navigation Concepts for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Long, Anne; Leung, Dominic; Kelbel, David; Beckman, Mark; Grambling, Cheryl
2003-01-01
This paper evaluates the performance that can be achieved using candidate ground and onboard navigation approaches for operation of the James Webb Space Telescope, which will be in an orbit about the Sun-Earth L2 libration point. The ground navigation approach processes standard range and Doppler measurements from the Deep Space Network The onboard navigation approach processes celestial object measurements and/or ground-to- spacecraft Doppler measurements to autonomously estimate the spacecraft s position and velocity and Doppler reference frequency. Particular attention is given to assessing the absolute position and velocity accuracy that can be achieved in the presence of the frequent spacecraft reorientations and momentum unloads planned for this mission. The ground navigation approach provides stable navigation solutions using a tracking schedule of one 30-minute contact per day. The onboard navigation approach that uses only optical quality celestial object measurements provides stable autonomous navigation solutions. This study indicates that unmodeled changes in the solar radiation pressure cross-sectional area and modeled momentum unload velocity changes are the major error sources. These errors can be mitigated by modeling these changes, by estimating corrections to compensate for the changes, or by including acceleration measurements.
Doppler lidar signal and turbulence study
NASA Technical Reports Server (NTRS)
Frost, W.; Huang, K. H.; Fitzjarrald, D. F.
1983-01-01
Comparison of the second moments of the Doppler lidar signal with aircraft and tower measured parameters is being carried out. Lidar binary data tapes were successfully converted to ASCII Code on the VAX 11/780. These data were used to develop the computer programs for analyzing data from the Marshall Space Flight Center field test. Raw lidar amplitude along the first 50 forward and backward beams of Run No. 2, respectively was plotted. Plotting techniques for the same beams except with the amplitude thresholded and range corrected were developed. Plotting routines for the corresponding lidar width of the first 50 forward and backward beams were also established. The relationship between raw lidar amplitude and lidar width was examined. The lidar width is roughly constant for lidar amplitudes less than 120 dB. A field test with the NASA/MSFC ground based Doppler lidar, the instrumented NASA B-57B gust gradient aircraft, and the NASA/MSFC eight tower array was carried out. The data tape for the lidar was received and read. The aircraft data and tower data are being digitized and converted to engineering units. Velocities computed sequentially along each of the lidar beams beginning at 16:40:00, May 12, 1983 were plotted for Run No. 1.
Prediction of the First Variceal Haemorrhage
1997-01-01
We followed 87 cirrhotic patients with esophageal varices and without previous hemorrhage for a mean period of 24 mo to prospectively evaluate the occurance of variceal bleeding within (early) or after (late) 6 mo from entry and the contribution of portal Doppler ultrasound parameters to the prediction of early and late hemorrhage. Clinical, biochemical, endoscopic and portal Doppler ultrasound parameters were recorded at entry. Variceal bleeding occurred in 22 patients (25.3%). Nine (40.9%) bled within the first 6 mo. Cox regression analysis identified variceal size, cherry-red spots, serum bilirubin and congestion index of the portal vein (the ratio of portal vein [cross-sectional area] and portal blood flow velocity) as the only independent predictors of first variceal hemorrhage. Discriminant analysis was used to find the prognostic index cut off points to identify patients who bled within 6 mo (prognostic group 1) or after 6 mo (prognostic group 2) or remained free of bleeding (prognostic group 3). The cumulative proportion of patients correctly classified was 73% in prognostic group 1, 47% in prognostic group 2 and more than 80% in prognostic group 3. The addition of Doppler ultrasound flowmetry to clinical, biochemical and endoscopic parameter only improved the classification of patients with early bleeding. PMID:9184882
On-Orbit Ephemeris Determination with Radio Doppler Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dallmann, Nicholas; Proicou, Michael Chris; Seitz, Daniel Nathan
2016-02-09
Multiple CubeSats are often released from the same host spacecraft into virtually the same orbit at nearly the same time. A satellite team needs the ability to identify and track its own satellites as soon as possible. However, this can be a difficult and confusing task with a large number of satellites. Los Alamos National Laboratory encountered this issue during a launch of LANL-designed CubeSats that were released with more than 20 other objects. A simple radio Doppler method used shortly after launch by the Los Alamos team to select its satellites of interest from the list of available trackedmore » ephemerides is described. This method can also be used for automated real time ephemeris validation. For future efforts, each LANL-designed CubeSat will automatically perform orbit determination from the position, velocity, and covariance estimates provided by an added on-board GPS receiver. This self-determined ephemeris will be automatically downlinked by ground stations for mission planning, antenna tracking, Doppler-pre-correction, etc. A simple algorithm based on established theory and well suited for embedded on-board processing is presented. The trades examined in selecting the algorithm components and data formats are briefly discussed, as is the expected performance.« less
Torp-Pedersen, Søren; Christensen, Robin; Szkudlarek, Marcin; Ellegaard, Karen; D'Agostino, Maria Antonietta; Iagnocco, Annamaria; Naredo, Esperanza; Balint, Peter; Wakefield, Richard J; Torp-Pedersen, Arendse; Terslev, Lene
2015-02-01
To determine how settings for power and color Doppler ultrasound sensitivity vary on different high- and intermediate-range ultrasound machines and to evaluate the impact of these changes on Doppler scoring of inflamed joints. Six different types of ultrasound machines were used. On each machine, the factory setting for superficial musculoskeletal scanning was used unchanged for both color and power Doppler modalities. The settings were then adjusted for increased Doppler sensitivity, and these settings were designated study settings. Eleven patients with rheumatoid arthritis (RA) with wrist involvement were scanned on the 6 machines, each with 4 settings, generating 264 Doppler images for scoring and color quantification. Doppler sensitivity was measured with a quantitative assessment of Doppler activity: color fraction. Higher color fraction indicated higher sensitivity. Power Doppler was more sensitive on half of the machines, whereas color Doppler was more sensitive on the other half, using both factory settings and study settings. There was an average increase in Doppler sensitivity, despite modality, of 78% when study settings were applied. Over the 6 machines, 2 Doppler modalities, and 2 settings, the grades for each of 7 of the patients varied between 0 and 3, while the grades for each of the other 4 patients varied between 0 and 2. The effect of using different machines, Doppler modalities, and settings has a considerable influence on the quantification of inflammation by ultrasound in RA patients, and this must be taken into account in multicenter studies. Copyright © 2015 by the American College of Rheumatology.
A new approach to correct yaw misalignment in the spinning ultrasonic anemometer
NASA Astrophysics Data System (ADS)
Ghaemi-Nasab, M.; Davari, Ali R.; Franchini, S.
2018-01-01
Single-axis ultrasonic anemometers are the modern instruments for accurate wind speed measurements. Despite their widespread and ever increasing applications, little attention has been paid up to now to spinning ultrasonic anemometers that can accurately measure both the wind speed and its direction in a single and robust apparatus. In this study, intensive wind-tunnel tests were conducted on a spinning single-axis ultrasonic anemometer to investigate the yaw misalignment in ultrasonic wind speed measurements during the yaw rotation. The anemometer was rotating inside the test section with various angular velocities, and the experiments were performed at several combinations of wind speed and anemometer angular velocity. The instantaneous angular position of the ultrasonic signal path with wind direction was measured using an angular position sensor. For a spinning anemometer, the circulatory wake and the associated flow distortion, along with the Doppler effect, impart a phase shift in the signals measured by the anemometer, which should be added to the position data for correcting the yaw misalignment. In this paper, the experimental data are used to construct a theoretical model, based on a response surface method, to correct the phase shift for various wind speeds and anemometer rotational velocities. This model is shown to successfully correct the velocity indicated by the spinning anemometer for the phase shift due to the rotation, and can easily be used in the calibration process for such anemometers.
Grossmann, G; Giesler, M; Stein, M; Kochs, M; Höher, M; Hombach, V
1998-10-30
In patients with mitral (n=77: organic=49, functional=28) and tricuspid regurgitation (n=55: functional=54) quantified by angiography, the temporal variation of the proximal flow convergence region throughout systole was assessed by colour Doppler M-Mode, and peak and mean radius of the proximal isovelocity surface area for 28 cm/s blood flow velocity were measured. Additionally, the peak radius derived from two-dimensional colour Doppler was obtained. About 50% of the patients with mitral and tricuspid regurgitation showed a typical temporal variation of the flow convergence region related to the mechanism of regurgitation. The different proximal isovelocity surface area radii were similarly correlated to the angiographic grade in mitral and tricuspid regurgitation (rank correlation coefficients 0.55-0.89) and they differentiated mild to moderate (grade < or =II) from severe (grade > or =III) mitral and tricuspid regurgitation with comparable accuracy (82-96%). However, moderate mitral regurgitation due to leaflet prolapse in two patients was correctly classified by the mean M-mode radius and overestimated by both peak radii. Only half of the patients showed a typical variation of the flow convergence region related to the mechanism of regurgitation. The different proximal isovelocity surface area radii were suitable to quantify mitral and tricuspid regurgitation in most patients. However, in mitral regurgitation due to leaflet prolapse the use of the mean M-mode radius may avoid overestimation.
Jeong, Jin-Won; Park, Ock-Kyu; Park, Yang-Kyu; Tei, Chuwa; Tanaka, Nobuyuki
1998-01-01
Objective To evaluate the applicability of carotid Doppler echography for the assessment of changes of peripheral hemodynamics in the hypertensives. Subjects 28 hypertensives (17 males, 11 females), mean age of 64 yrs and 40 normal controls (24 males, 16 females) mean age of 49 yrs. Methods We recorded the right common carotid arterial Doppler flow velocity (BFV) pattern and measured the peak velocities of the percussion wave (P) and late rising tidal wave (T), the ratio of the two (P/T), the time interval between the two peaks corrected by heart rate (P-Tc), systolic flow velocity integral (FVI) and carotid artery diameter (CAD) before and after 0.4 mg dose of subligual nitroglycerin (NTG). Results 1) In hypertensives, the P wave velocity showed lower and P-Tc interval shorter than those of the normal controls at baseline. 2) After NTG, the P-Tc and P/T increased, but the T and FVI decreased significantly in both groups of subjects. 3) The P/T ratio was less significantly increased after NTG in the hypertensives than in the controls. These results suggest that NTG might have been involved in concomitant reduction and delay of the wave reflection from the peripheral vessels, preferentially in the normal subjects than in hypertensives. Concluson The carotid Doppler echography can be useful for the evaluation of the changes of hemodynamics in the peripheral vessel such as carotid artery in hypertensive subjects. PMID:9538627
Relativity effects for space-based coherent lidar experiments
NASA Technical Reports Server (NTRS)
Gudimetla, V. S. Rao
1996-01-01
An effort was initiated last year in the Astrionics Laboratory at Marshall Space Flight Center to examine and incorporate, if necessary, the effects of relativity in the design of space-based lidar systems. A space-based lidar system, named AEOLUS, is under development at Marshall Space Flight Center and it will be used to accurately measure atmospheric wind profiles. Effects of relativity were also observed in the performance of space-based systems, for example in case of global positioning systems, and corrections were incorporated into the design of instruments. During the last summer, the effects of special relativity on the design of space-based lidar systems were studied in detail, by analyzing the problem of laser scattering off a fixed target when the source and a co-located receiver are moving on a spacecraft. Since the proposed lidar system uses a coherent detection system, errors even in the order of a few microradians must be corrected to achieve a good signal-to-noise ratio. Previous analysis assumed that the ground is flat and the spacecraft is moving parallel to the ground, and developed analytical expressions for the location, direction and Doppler shift of the returning radiation. Because of the assumptions used in that analysis, only special relativity effects were involved. In this report, that analysis is extended to include general relativity and calculate its effects on the design.
The Doppler Effect: A Consideration of Quasar Redshifts.
ERIC Educational Resources Information Center
Gordon, Kurtiss J.
1980-01-01
Provides information on the calculation of the redshift to blueshift ratio introduced by the transverse Doppler effect at relativistic speeds. Indicates that this shift should be mentioned in discussions of whether quasars are "local" rather than "cosmological" objects. (GS)
Third-order-harmonic generation in coherently spinning molecules
NASA Astrophysics Data System (ADS)
Prost, E.; Zhang, H.; Hertz, E.; Billard, F.; Lavorel, B.; Bejot, P.; Zyss, Joseph; Averbukh, Ilya Sh.; Faucher, O.
2017-10-01
The rotational Doppler effect occurs when circularly polarized light interacts with a rotating anisotropic material. It is manifested by the appearance of a spectral shift ensuing from the transfer of angular momentum and energy between radiation and matter. Recently, we reported terahertz-range rotational Doppler shifts produced in third-order nonlinear optical conversion [O. Faucher et al., Phys. Rev. A 94, 051402(R) (2016), 10.1103/PhysRevA.94.051402]. The experiment was performed in an ensemble of coherently spinning molecules prepared by a short laser pulse exhibiting a twisted linear polarization. The present work provides an extensive analysis of the rotational Doppler effect in third-order-harmonic generation from spinning linear molecules. The underlying physics is investigated both experimentally and theoretically. The implication of the rotational Doppler effect in higher-order processes like high-order-harmonic generation is discussed.
2013-10-07
OLEs and Terrain Effects Within the Coastal Zone in the EDMF Parameterization Scheme: An Airborne Doppler Wind Lidar Perspective Annual Report Under...UPP related investigations that will be carried out in Year 3. RELATED PROJECTS ONR contract to study the utilization of Doppler wind lidar (DWL...MATERHORN2012) Paper presented at the Coherent Laser Radar Conference, June 2013 Airborne DWL investigations of flow over complex terrain (MATERHORN
The Pathophysiology of Decompression Sickness and the Effects of Doppler Detectable Bubbles.
1980-12-18
Doppler Ultrasound and a calibrated 6 1 Venous Gas Embol i Scale. C. Electronic Counting of Doppler Bubble Signals 72 £ III. Pulmonary Embolism Studies...IA. Background 75 B. Right Ventricular Systolic Pressure following Gas 81 Embolization and Venous Gas Phase Content IC. Effects of Pulmonary Gas... Embolism on the Development 9 of Limb-Bend Decompression Sickness 1 IV. Gas Phase Formation in Highly Perfused Tissues IA. Renal 9 B. Cerebral 9 1 I I V
[Application of cryogenic stimulation in treatment of chronic wounds].
Vinnik, Iu S; Karapetian, G E; Iakimov, S V; Sychev, A G
2008-01-01
The authors have studied alterations occurring both in the ultrastructure of the cell matrix and in the microcirculatory bed of the chronic wound after local exposure to cryoagent. The up-to-date effective methods including laser Doppler flowmetry were used followed by correct statistical processing of the data obtained. The cryogenic stimulation of the wound was shown to result in considerably improved perfusion of the microcirculatory bed, epithelization and remodeling of the scar. It allowed transformation of a chronic process into acute and thus led to considerably accelerated process of regeneration. The developed method of cryogenic treatment of the chronic wound was used in 35 patients, allowed quicker healing of the chronic wounds and made ambulatory treatment of the patients 3 weeks shorter.
North Pacific Acoustic Laboratory and Deep Water Acoustics
2014-09-30
collaboration with Gerald D’Spain at the Marine Physical Laboratory ( MPL ) has continued. Data from PhilSea10 during the Drift Test have corrected for...Doppler shift, processed and provided to MPL . The collaboration will continue as the analysis progresses. II. Award Number N00014-13-1-0053...Wage (George Mason Univ.), Peter Worcester (Scripps), and others. In addition, we have begun close collaboration with Gerald D’Spain ( MPL
ACHIEVING CONSISTENT DOPPLER MEASUREMENTS FROM SDO /HMI VECTOR FIELD INVERSIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuck, Peter W.; Antiochos, S. K.; Leka, K. D.
NASA’s Solar Dynamics Observatory is delivering vector magnetic field observations of the full solar disk with unprecedented temporal and spatial resolution; however, the satellite is in a highly inclined geosynchronous orbit. The relative spacecraft–Sun velocity varies by ±3 km s{sup −1} over a day, which introduces major orbital artifacts in the Helioseismic Magnetic Imager (HMI) data. We demonstrate that the orbital artifacts contaminate all spatial and temporal scales in the data. We describe a newly developed three-stage procedure for mitigating these artifacts in the Doppler data obtained from the Milne–Eddington inversions in the HMI pipeline. The procedure ultimately uses 32more » velocity-dependent coefficients to adjust 10 million pixels—a remarkably sparse correction model given the complexity of the orbital artifacts. This procedure was applied to full-disk images of AR 11084 to produce consistent Dopplergrams. The data adjustments reduce the power in the orbital artifacts by 31 dB. Furthermore, we analyze in detail the corrected images and show that our procedure greatly improves the temporal and spectral properties of the data without adding any new artifacts. We conclude that this new procedure makes a dramatic improvement in the consistency of the HMI data and in its usefulness for precision scientific studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilcher, Levi F.; Thomson, Jim; Harding, Samuel
Acoustic Doppler velocimeters (ADVs) are a valuable tool for making high-precision measurements of turbulence, and moorings are a convenient and ubiquitous platform for making many kinds of measurements in the ocean. However, because of concerns that mooring motion can contaminate turbulence measurements and that acoustic Doppler profilers make middepth velocity measurements relatively easy, ADVs are not frequently deployed from moorings. This work demonstrates that inertial motion measurements can be used to reduce motion contamination from moored ADV velocity measurements. Three distinct mooring platforms were deployed in a tidal channel with inertial-motion-sensor-equipped ADVs. In each case, motion correction based on themore » inertial measurements reduces mooring motion contamination of velocity measurements. The spectra from these measurements are consistent with other measurements in tidal channels and have an f –5/3 slope at high frequencies - consistent with Kolmogorov's theory of isotropic turbulence. Motion correction also improves estimates of cross spectra and Reynolds stresses. A comparison of turbulence dissipation with flow speed and turbulence production indicates a bottom boundary layer production-dissipation balance during ebb and flood that is consistent with the strong tidal forcing at the site. Finally, these results indicate that inertial-motion-sensor-equipped ADVs are a valuable new tool for making high-precision turbulence measurements from moorings.« less
Nikolaeva, N V; Bolotova, N V; Kamenskikh, T G; Raĭgorodskiĭ, Iu M; Kolbenev, I O; Luk'ianov, V F
2009-01-01
This study included 45 children at the age from 5 to 17 years with type I diabetes mellitus complicated by diabetic retinopathy. All the patients showed retinal thickening at the macula and reduced amplitude of local electroretinogram suggesting compromised capillary circulation. The capillary blood flow was corrected by transcranial magnetotherapy with the use of an AMO-ATOS Ogolovie unit. The results of the treatment were evaluated from characteristics of laser Doppler flometry. A course of transcranial magnetotherapy comprising 10 daily seances resulted in a significant increase of microcirculation index, respiratory rhythm, and myogenic tone (by 1.64, 1.35, and 1.16 times respectively). In addition, morphometric and electrophysiological properties of the retina underwent positive changes. Transcranial exposure to the traveling magnetic field is recommended for the correction of intraocular microcirculation and prevention of diabetic macular oedema.
Five years of Project META - An all-sky narrow-band radio search for extraterrestrial signals
NASA Technical Reports Server (NTRS)
Horowitz, Paul; Sagan, Carl
1993-01-01
We have conducted a five-year search of the northern sky (delta between 30 and 60 deg) for narrow-band radio signals near the 1420 MHz line of neutral hydrogen, and its second harmonic, using an 8.4 x 10 exp 6 channel Fourier spectrometer of 0.05 Hz resolution and 400 kHz instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earth's rotation, which provides a characteristic changing Doppler signature for narrow-band signals of extraterrestrial origin. Among the 6 x 10 exp 13 spectral channels searched, we have found 37 candidate events exceeding the average detection threshold of 1.7 x 10 exp -23 W/sq m, none of which was detected upon reobservation. The strongest of these appear to be dominated by rare processor errors. However, the strongest signals that survive culling for terrestrial interference lie in or near the Galactic plane. We describe the search and candidate events, and set limits on the prevalence of supercivilizations transmitting Doppler-precompensated beacons at H I or its second harmonic. We conclude with recommendations for future searches, based upon these findings, and a description of our next-generation search system.
NASA Astrophysics Data System (ADS)
Dwinovantyo, Angga; Manik, Henry M.; Prartono, Tri; Susilohadi; Ilahude, Delyuzar
2017-01-01
Measurement of suspended sediment concentration (SSC) is one of the parameters needed to determine the characteristics of sediment transport. However, the measurement of SSC nowadays still uses conventional technique and it has limitations; especially in temporal resolution. With advanced technology, the measurement can use hydroacoustic technology such as Acoustic Doppler Current Profiler (ADCP). ADCP measures the intensity of backscatter as echo intensity unit from sediment particles. The frequency of ADCP used in this study was 400 kHz. The samples were measured and collected from Lembeh Strait, North Sulawesi. The highest concentration of suspended sediment was 98.89 mg L-1 and the lowest was 45.20 mg L-1. Time series data showed the tidal condition affected the SSC. From the research, we also made correction from sound signal losses effect such as spherical spreading and sound absorption to get more accurate results by eliminating these parameters in echo intensity data. Simple linear regression analysis at echo intensity measured from ADCP to direct measurement of SSC was performed to obtain the estimation of the SSC. The comparison result of estimation of SSC from ADCP measurements and SSC from laboratory analyses was insignificantly different based on t-test statistical analysis with 95% confidence interval percentage.
Jung, E M; Kubale, R; Jungius, K-P; Jung, W; Lenhart, M; Clevert, D-A
2006-01-01
To investigate the dynamic value of contrast medium-enhanced ultrasonography with Optison for appraisal of the vascularization of hepatic tumors using harmonic imaging, 3D-/power Doppler and B-flow. 60 patients with a mean age of 56 years (range 35-76 years) with 93 liver tumors, including histopathologically proven hepatocellular carcinoma (HCC) [15 cases with 20 lesions], liver metastases of colorectal tumors [17 cases with 33 lesions], metastases of breast cancer [10 cases with 21 lesions] and hemangiomas [10 cases with 19 lesions] were prospectively investigated by means of multislice CT as well as native and contrast medium-enhanced ultrasound using a multifrequency transducer (2.5-4 MHz, Logig 9, GE). B scan was performed with additional color and power Doppler, followed by a bolus injection of 0.5 ml Optison. Tumor vascularization was evaluated with coded harmonic angio (CHA), pulse inversion imaging with power Doppler, 3D power Doppler and in the late phase (>5 min) with B-flow. In 15 cases with HCC, i.a. DSA was performed in addition. The results were also correlated with MRT and histological findings. Compared to spiral-CT/MRT, only 72/93 (77%) of the lesions could be detected in the B scan, 75/93 (81%) with CHA and 93/93 (100%) in the pulse inversion mode. Tumor vascularization was detectable in 43/93 (46%) of lesions with native power Doppler, in 75/93 (81%) of lesions after administering contrast medium in the CHA mode, in 81/93 (87%) of lesions in the pulse inversion mode with power Doppler and in 77/93 (83%) of lesions with contrast-enhanced B-flow. Early arterial and capillary perfusion was best detected with CHA, particularly in 20/20 (100%) of the HCC lesions, allowing a 3D reconstruction. 3D power Doppler was especially useful in investigating the tumor margins. Up to 20 min after contrast medium injection, B-flow was capable of detecting increased metastatic tumor vascularization in 42/54 (78%) of cases and intratumoral perfusion in 17/20 (85%) of HCC cases. All 19 hemangiomas were correctly classified by phase inversion imaging. Contrast medium-enhanced ultrasound investigation of liver tumors with Optison allowed reliable detection of tumor foci and, in most cases, appraisal of tumor vascularization. The time available for evaluation of tumor margin vascularization was substantially longer in B-flow.
Doppler Feature Based Classification of Wind Profiler Data
NASA Astrophysics Data System (ADS)
Sinha, Swati; Chandrasekhar Sarma, T. V.; Lourde. R, Mary
2017-01-01
Wind Profilers (WP) are coherent pulsed Doppler radars in UHF and VHF bands. They are used for vertical profiling of wind velocity and direction. This information is very useful for weather modeling, study of climatic patterns and weather prediction. Observations at different height and different wind velocities are possible by changing the operating parameters of WP. A set of Doppler power spectra is the standard form of WP data. Wind velocity, direction and wind velocity turbulence at different heights can be derived from it. Modern wind profilers operate for long duration and generate approximately 4 megabytes of data per hour. The radar data stream contains Doppler power spectra from different radar configurations with echoes from different atmospheric targets. In order to facilitate systematic study, this data needs to be segregated according the type of target. A reliable automated target classification technique is required to do this job. Classical techniques of radar target identification use pattern matching and minimization of mean squared error, Euclidean distance etc. These techniques are not effective for the classification of WP echoes, as these targets do not have well-defined signature in Doppler power spectra. This paper presents an effective target classification technique based on range-Doppler features.
2005-01-01
Abstract Healthy adult horses were examined by using transabdominal ultrasonography to quantitatively and qualitatively evaluate activity of the jejunum, cecum, and colon with B mode and Doppler techniques. Doppler ultrasound was used to assess jejunal peristaltic activity. Examinations were performed on multiple occasions under imposed colic evaluation conditions, including fasting, nasogastric intubation, and xylazine sedation. In fasted horses, jejunal visibility was increased and jejunal, cecal, and colonic activity was decreased. The stomach was displaced ventrally and was visualized ventral to the costochondral junction. Xylazine sedation in fed horses had minimal effects; however, in fasted horses, xylazine significantly decreased jejunal and cecal activity. Nasogastric intubation in fasted horses had no observable effects on activity, but moved the stomach dorsally. B mode and Doppler jejunal activity were strongly correlated. Prior feeding and sedation status need to be considered when interpreting the results of equine abdominal ultrasound examinations. Doppler techniques may be useful for assessing jejunal activity. PMID:15825515
El-Sayed, Mohamed Adel; Saleh, Said Abdel-Aty; Maher, Mohammad Ahmed; Khidre, Asmaa Mohamed
2018-04-01
To assess efficacy and tolerability of sildenafil citrate on utero-placental blood flow and fetal growth in pregnancies complicated by fetal growth restriction (FGR). From March 2015, a randomized controlled trial of 54 patients at 24 weeks or more complicated by FGR and abnormal Doppler indices were randomly allocated 1:1 into an intervention arm (receive sildenafil citrate, 50 mg) or a control arm (receive placebo). The primary outcomes were changes occurred in the Doppler parameters 2 h following drug administration. Baseline characteristics were similar between groups. Significant difference was observed in the Delta uterine and umbilical Doppler indices among sildenafil group as compared to placebo group (p < 0.001). Middle cerebral Doppler indices, however, decreased significantly after sildenafil, which could be the result of shifting more blood to improve the utero-placental perfusion. No difference regarding Delta cerebro-placental ratio among both groups (p = 0.979). Sildenafil was also associated with pregnancy prolongation (p = .0001), increased gestational age at delivery (p = .004), improved neonatal weight (p = .0001), and less admission to neonatal intensive care unit (p = .03). No adverse effects reported in both treatment arms. Sildenafil citrate, by its vasodilator effect, can improve utero-placental blood flow in pregnancies complicated by FGR and abnormal Doppler. gov Registry: NCT02362399.
Moving target parameter estimation of SAR after two looks cancellation
NASA Astrophysics Data System (ADS)
Gan, Rongbing; Wang, Jianguo; Gao, Xiang
2005-11-01
Moving target detection of synthetic aperture radar (SAR) by two looks cancellation is studied. First, two looks are got by the first and second half of the synthetic aperture. After two looks cancellation, the moving targets are reserved and stationary targets are removed. After that, a Constant False Alarm Rate (CFAR) detector detects moving targets. The ground range velocity and cross-range velocity of moving target can be got by the position shift between the two looks. We developed a method to estimate the cross-range shift due to slant range moving. we estimate cross-range shift by Doppler frequency center. Wigner-Ville Distribution (WVD) is used to estimate the Doppler frequency center (DFC). Because the range position and cross range before correction is known, estimation of DFC is much easier and efficient. Finally experiments results show that our algorithms have good performance. With the algorithms we can estimate the moving target parameter accurately.
Color doppler in clinical cardiology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, W.J.
1987-01-01
A presentation of color doppler, which enables physicians to pinpoint problems and develop effective treatment. State-of-the-art illustrations and layout, with color images and explanatory text are included.
An Efficient Adaptive Angle-Doppler Compensation Approach for Non-Sidelooking Airborne Radar STAP
Shen, Mingwei; Yu, Jia; Wu, Di; Zhu, Daiyin
2015-01-01
In this study, the effects of non-sidelooking airborne radar clutter dispersion on space-time adaptive processing (STAP) is considered, and an efficient adaptive angle-Doppler compensation (EAADC) approach is proposed to improve the clutter suppression performance. In order to reduce the computational complexity, the reduced-dimension sparse reconstruction (RDSR) technique is introduced into the angle-Doppler spectrum estimation to extract the required parameters for compensating the clutter spectral center misalignment. Simulation results to demonstrate the effectiveness of the proposed algorithm are presented. PMID:26053755
NASA Astrophysics Data System (ADS)
Tavakoli, Vahid; Stoddard, Marcus F.; Amini, Amir A.
2013-03-01
Quantitative motion analysis of echocardiographic images helps clinicians with the diagnosis and therapy of patients suffering from cardiac disease. Quantitative analysis is usually based on TDI (Tissue Doppler Imaging) or speckle tracking. These methods are based on two independent techniques - the Doppler Effect and image registration, respectively. In order to increase the accuracy of the speckle tracking technique and cope with the angle dependency of TDI, herein, a combined approach dubbed TDIOF (Tissue Doppler Imaging Optical Flow) is proposed. TDIOF is formulated based on the combination of B-mode and Doppler energy terms in an optical flow framework and minimized using algebraic equations. In this paper, we report on validations with simulated, physical cardiac phantom, and in-vivo patient data. It is shown that the additional Doppler term is able to increase the accuracy of speckle tracking, the basis for several commercially available echocardiography analysis techniques.
Efficient geometric rectification techniques for spectral analysis algorithm
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Pang, S. S.; Curlander, J. C.
1992-01-01
The spectral analysis algorithm is a viable technique for processing synthetic aperture radar (SAR) data in near real time throughput rates by trading the image resolution. One major challenge of the spectral analysis algorithm is that the output image, often referred to as the range-Doppler image, is represented in the iso-range and iso-Doppler lines, a curved grid format. This phenomenon is known to be the fanshape effect. Therefore, resampling is required to convert the range-Doppler image into a rectangular grid format before the individual images can be overlaid together to form seamless multi-look strip imagery. An efficient algorithm for geometric rectification of the range-Doppler image is presented. The proposed algorithm, realized in two one-dimensional resampling steps, takes into consideration the fanshape phenomenon of the range-Doppler image as well as the high squint angle and updates of the cross-track and along-track Doppler parameters. No ground reference points are required.
Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference
Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng
2017-01-01
Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation. PMID:28468257
NASA Astrophysics Data System (ADS)
Gong, YanJun; Wu, ZhenSen; Wang, MingJun; Cao, YunHua
2010-01-01
We propose an analytical model of Doppler power spectra in backscatter from arbitrary rough convex quadric bodies of revolution (whose lateral surface is a quadric) rotating around axes. In the global Cartesian coordinate system, the analytical model deduced is suitable for general convex quadric body of revolution. Based on this analytical model, the Doppler power spectra of cones, cylinders, paraboloids of revolution, and sphere-cones combination are proposed. We analyze numerically the influence of geometric parameters, aspect angle, wavelength and reflectance of rough surface of the objects on the broadened spectra because of the Doppler effect. This analytical solution may contribute to laser Doppler velocimetry, and remote sensing of ballistic missile that spin.
Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference.
Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng
2017-04-29
Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation.
Problem of the elimination of the refractional effects in Doppler positioning.
NASA Astrophysics Data System (ADS)
Gougoutoudis, I.
The influence of the tropospheric refraction on the Doppler positioning is discussed. It is found that the differences of coordinates resulting from the use of standard atmospheric parameters instead of real ones could amount to 0.60 m for single point positioning and 0.20 m for multilocation. The necessity of registration of the real meteorologic parameters at the Doppler station is confirmed.
NASA Astrophysics Data System (ADS)
Passaro, Marcello; Dinardo, Salvatore; Quartly, Graham D.; Snaith, Helen M.; Benveniste, Jérôme; Cipollini, Paolo; Lucas, Bruno
2016-08-01
A regional cross-calibration between the first Delay-Doppler altimetry dataset from CryoSat-2 and a retracked Envisat dataset is here presented, in order to test the benefits of the Delay-Doppler processing and to expand the Envisat time series in the coastal ocean. The Indonesian Seas are chosen for the calibration, since the availability of altimetry data in this region is particularly beneficial due to the lack of in situ measurements and its importance for global ocean circulation. The Envisat data in the region are retracked with the Adaptive Leading Edge Subwaveform (ALES) retracker, which has been previously validated and applied successfully to coastal sea level research. The study demonstrates that CryoSat-2 is able to decrease the 1-Hz noise of sea level estimations by 0.3 cm within 50 km of the coast, when compared to the ALES-reprocessed Envisat dataset. It also shows that Envisat can be confidently used for detailed oceanographic research after the orbit change of October 2010. Cross-calibration at the crossover points indicates that in the region of study a sea state bias correction equal to 5% of the significant wave height is an acceptable approximation for Delay-Doppler altimetry. The analysis of the joint sea level time series reveals the geographic extent of the semiannual signal caused by Kelvin waves during the monsoon transitions, the larger amplitudes of the annual signal due to the Java Coastal Current and the impact of the strong La Niña event of 2010 on rising sea level trends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Tirthabir; Notari, Alessio, E-mail: tbiswas@gravity.psu.edu, E-mail: notari@hep.physics.mcgill.ca
We study an exact Swiss-cheese model of the universe, where inhomogeneous LTB patches are embedded in a flat FLRW background, in order to see how observations of distant sources are affected. We focus mainly on the redshift, both perturbatively and non-perturbatively: the net effect given by one patch is suppressed by (L/R{sub H}){sup 3} (where L is the size of one patch and R{sub H} is the Hubble radius). We disentangle this effect from the Doppler term (which is much larger and has been used recently (Biswas et al 2007 J. Cosmol. Astropart. Phys. JCAP12(2007)017 [astro-ph/0606703]) to try to fitmore » the SN curve without dark energy) by making contact with cosmological perturbation theory. Then, the correction to the angular distance is discussed analytically and estimated to be larger, O(L/R{sub H}){sup 2}, perturbatively and non-perturbatively (although it should go to zero after angular averaging)« less
Ouyang, Kesai; Lu, Siliang; Zhang, Shangbin; Zhang, Haibin; He, Qingbo; Kong, Fanrang
2015-01-01
The railway occupies a fairly important position in transportation due to its high speed and strong transportation capability. As a consequence, it is a key issue to guarantee continuous running and transportation safety of trains. Meanwhile, time consumption of the diagnosis procedure is of extreme importance for the detecting system. However, most of the current adopted techniques in the wayside acoustic defective bearing detector system (ADBD) are offline strategies, which means that the signal is analyzed after the sampling process. This would result in unavoidable time latency. Besides, the acquired acoustic signal would be corrupted by the Doppler effect because of high relative speed between the train and the data acquisition system (DAS). Thus, it is difficult to effectively diagnose the bearing defects immediately. In this paper, a new strategy called online Doppler effect elimination (ODEE) is proposed to remove the Doppler distortion online by the introduced unequal interval sampling scheme. The steps of proposed strategy are as follows: The essential parameters are acquired in advance. Then, the introduced unequal time interval sampling strategy is used to restore the Doppler distortion signal, and the amplitude of the signal is demodulated as well. Thus, the restored Doppler-free signal is obtained online. The proposed ODEE method has been employed in simulation analysis. Ultimately, the ODEE method is implemented in the embedded system for fault diagnosis of the train bearing. The results are in good accordance with the bearing defects, which verifies the good performance of the proposed strategy. PMID:26343657
Lifetime measurement of neutron-rich even-even molybdenum isotopes
NASA Astrophysics Data System (ADS)
Ralet, D.; Pietri, S.; Rodríguez, T.; Alaqeel, M.; Alexander, T.; Alkhomashi, N.; Ameil, F.; Arici, T.; Ataç, A.; Avigo, R.; Bäck, T.; Bazzacco, D.; Birkenbach, B.; Boutachkov, P.; Bruyneel, B.; Bruce, A. M.; Camera, F.; Cederwall, B.; Ceruti, S.; Clément, E.; Cortés, M. L.; Curien, D.; De Angelis, G.; Désesquelles, P.; Dewald, M.; Didierjean, F.; Domingo-Pardo, C.; Doncel, M.; Duchêne, G.; Eberth, J.; Gadea, A.; Gerl, J.; Ghazi Moradi, F.; Geissel, H.; Goigoux, T.; Goel, N.; Golubev, P.; González, V.; Górska, M.; Gottardo, A.; Gregor, E.; Guastalla, G.; Givechev, A.; Habermann, T.; Hackstein, M.; Harkness-Brennan, L.; Henning, G.; Hess, H.; Hüyük, T.; Jolie, J.; Judson, D. S.; Jungclaus, A.; Knoebel, R.; Kojouharov, I.; Korichi, A.; Korten, W.; Kurz, N.; Labiche, M.; Lalović, N.; Louchart-Henning, C.; Mengoni, D.; Merchán, E.; Million, B.; Morales, A. I.; Napoli, D.; Naqvi, F.; Nyberg, J.; Pietralla, N.; Podolyák, Zs.; Pullia, A.; Prochazka, A.; Quintana, B.; Rainovski, G.; Reese, M.; Recchia, F.; Reiter, P.; Rudolph, D.; Salsac, M. D.; Sanchis, E.; Sarmiento, L. G.; Schaffner, H.; Scheidenberger, C.; Sengele, L.; Singh, B. S. Nara; Singh, P. P.; Stahl, C.; Stezowski, O.; Thoele, P.; Valiente Dobon, J. J.; Weick, H.; Wendt, A.; Wieland, O.; Winfield, J. S.; Wollersheim, H. J.; Zielinska, M.; PreSPEC Collaboration
2017-03-01
Background: In the neutron-rich A ≈100 mass region, rapid shape changes as a function of nucleon number as well as coexistence of prolate, oblate, and triaxial shapes are predicted by various theoretical models. Lifetime measurements of excited levels in the molybdenum isotopes allow the determination of transitional quadrupole moments, which in turn provides structural information regarding the predicted shape change. Purpose: The present paper reports on the experimental setup, the method that allowed one to measure the lifetimes of excited states in even-even molybdenum isotopes from mass A =100 up to mass A =108 , and the results that were obtained. Method: The isotopes of interest were populated by secondary knock-out reaction of neutron-rich nuclei separated and identified by the GSI fragment separator at relativistic beam energies and detected by the sensitive PreSPEC-AGATA experimental setup. The latter included the Lund-York-Cologne calorimeter for identification, tracking, and velocity measurement of ejectiles, and AGATA, an array of position sensitive segmented HPGe detectors, used to determine the interaction positions of the γ ray enabling a precise Doppler correction. The lifetimes were determined with a relativistic version of the Doppler-shift-attenuation method using the systematic shift of the energy after Doppler correction of a γ -ray transition with a known energy. This relativistic Doppler-shift-attenuation method allowed the determination of mean lifetimes from 2 to 250 ps. Results: Even-even molybdenum isotopes from mass A =100 to A =108 were studied. The decays of the low-lying states in the ground-state band were observed. In particular, two mean lifetimes were measured for the first time: τ =29 .7-9.1+11.3 ps for the 4+ state of 108Mo and τ =3 .2-0.7+0.7 ps for the 6+ state of 102Mo. Conclusions: The reduced transition strengths B (E 2 ) , calculated from lifetimes measured in this experiment, compared to beyond-mean-field calculations, indicate a gradual shape transition in the chain of molybdenum isotopes when going from A =100 to A =108 with a maximum reached at N =64 . The transition probabilities decrease for 108Mo which may be related to its well-pronounced triaxial shape indicated by the calculations.
NASA Astrophysics Data System (ADS)
Tan, Ou; Liu, Gangjun; Liang, Liu; Gao, Simon S.; Pechauer, Alex D.; Jia, Yali; Huang, David
2015-06-01
An automated algorithm was developed for total retinal blood flow (TRBF) using 70-kHz spectral optical coherence tomography (OCT). The OCT was calibrated for the transformation from Doppler shift to speed based on a flow phantom. The TRBF scan pattern contained five repeated volume scans (2×2 mm) obtained in 3 s and centered on central retinal vessels in the optic disc. The TRBF was calculated using an en face Doppler technique. For each retinal vein, blood flow was measured at an optimal plane where the calculated flow was maximized. The TRBF was calculated by summing flow in all veins. The algorithm tracked vascular branching so that either root or branch veins are summed, but never both. The TRBF in five repeated volumes were averaged to reduce variation due to cardiac cycle pulsation. Finally, the TRBF was corrected for eye length variation. Twelve healthy eyes and 12 glaucomatous eyes were enrolled to test the algorithm. The TRBF was 45.4±6.7 μl/min for healthy control and 34.7±7.6 μl/min for glaucomatous participants (p-value=0.01). The intravisit repeatability was 8.6% for healthy controls and 8.4% for glaucoma participants. The proposed automated method provided repeatable TRBF measurement.
4D microvascular imaging based on ultrafast Doppler tomography.
Demené, Charlie; Tiran, Elodie; Sieu, Lim-Anna; Bergel, Antoine; Gennisson, Jean Luc; Pernot, Mathieu; Deffieux, Thomas; Cohen, Ivan; Tanter, Mickael
2016-02-15
4D ultrasound microvascular imaging was demonstrated by applying ultrafast Doppler tomography (UFD-T) to the imaging of brain hemodynamics in rodents. In vivo real-time imaging of the rat brain was performed using ultrasonic plane wave transmissions at very high frame rates (18,000 frames per second). Such ultrafast frame rates allow for highly sensitive and wide-field-of-view 2D Doppler imaging of blood vessels far beyond conventional ultrasonography. Voxel anisotropy (100 μm × 100 μm × 500 μm) was corrected for by using a tomographic approach, which consisted of ultrafast acquisitions repeated for different imaging plane orientations over multiple cardiac cycles. UFT-D allows for 4D dynamic microvascular imaging of deep-seated vasculature (up to 20 mm) with a very high 4D resolution (respectively 100 μm × 100 μm × 100 μm and 10 ms) and high sensitivity to flow in small vessels (>1 mm/s) for a whole-brain imaging technique without requiring any contrast agent. 4D ultrasound microvascular imaging in vivo could become a valuable tool for the study of brain hemodynamics, such as cerebral flow autoregulation or vascular remodeling after ischemic stroke recovery, and, more generally, tumor vasculature response to therapeutic treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Castellini, Paolo; Esposito, Enrico; Marchetti, Barbara; Paone, Nicola; Tomasini, Enrico P.
2001-10-01
During the last years the growing importance of the correct determination of the state of conservation of artworks has been stated by all personalities in care of Cultural Heritage. There exist many analytical methodologies and techniques to individuate the physical and chemical characteristics of artworks, but at present their structural diagnostics mainly rely on the expertise of the restorer and the typical diagnostic process is accomplished mainly through manual and visual inspection of the object surface. The basic idea behind the proposed technique is to substitute human senses with measurement instruments: surfaces are very slightly vibrated by mechanical actuators, while a laser Doppler vibrometer scans the objects measuring surface velocity and producing 2D or 3D maps. Where a defect occurs velocity is higher than neighboring areas so defects can be easily spotted. Laser vibrometers also identify structural resonance frequencies thus leading to a complete characterization of defects. This work will present the most recent results coming out of the application of Scanning Laser Doppler Vibrometers (SLDV) to different types of artworks: mosaics, ceramics, inlaid wood and easel painting. Real artworks and samples realized on purpose have been studied using the proposed technique and different measuring issues resulting from each artwork category will be described.
Srinivas, Sowmya; Tan, Ou; Wu, Shuang; Nittala, Muneeswar Gupta; Huang, David; Varma, Rohit; Sadda, SriniVas R
2015-02-10
To measure total retinal blood flow (TRBF) in normal, healthy Chinese Americans by using semi-automated analysis of Doppler Fourier-domain optical coherence tomography (FD-OCT) scans. Two hundred sixty-six normal, healthy Chinese-American participants (266 eyes) were enrolled from The Chinese American Eye Study. All participants underwent complete ophthalmic examination, including best-corrected visual acuity, indirect ophthalmoscopy, and Doppler FD-OCT imaging, using the circumpapillary double circular scan protocol. Total retinal blood flow and other vascular parameters (e.g., venous and arterial cross-sectional area and their velocities) were calculated by using Doppler OCT of Retinal Circulation software. Associations between TRBF and other clinical parameters were assessed by using bivariate correlations and linear regression. The mean age of study participants was 57.40 ± 5.60 (range, 50-82) years. The mean TRBF was 49.34 ± 10.08 (range, 27.17-78.08, 95% confidence interval: 25.98-69.10) μL/min. The mean venous area was 0.0548 (±0.0084) mm(2). Superior retinal hemispheric blood flow (25.50 ± 6.62 μL/min) was slightly greater than inferior retinal hemispheric blood flow (23.84 ± 7.19 μL/min, P = 0.008). The mean flow velocity was 15.16 ± 3.12 mm/s. There was a weak but significant negative correlation between TRBF and age (r = -0.15, P = 0.012). No significant correlation was found between TRBF and axial length (r = 0.11, P = 0.08). Retinal blood flow was not significantly correlated with any other clinical parameters, including body mass index, systolic blood pressure, diastolic blood pressure, and intraocular pressure. Normal Doppler OCT-derived total retinal blood values in a Chinese-American population showed considerable variability, some of which was explained by age. These observations should help design future studies evaluating TRBF in populations with eye disease. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
Improved measurements of mean sea surface velocity in the Nordic Seas from synthetic aperture radar
NASA Astrophysics Data System (ADS)
Wergeland Hansen, Morten; Johnsen, Harald; Engen, Geir; Øie Nilsen, Jan Even
2017-04-01
The warm and saline surface Atlantic Water (AW) flowing into the Nordic Seas across the Greenland-Scotland ridge transports heat into the Arctic, maintaining the ice-free oceans and regulating sea-ice extent. The AW influences the region's relatively mild climate and is the northern branch of the global thermohaline overturning circulation. Heat loss in the Norwegian Sea is key for both heat transport and deep water formation. In general, the ocean currents in the Nordic Seas and the North Atlantic Ocean is a complex system of topographically steered barotropic and baroclinic currents of which the wind stress and its variability is a driver of major importance. The synthetic aperture radar (SAR) Doppler centroid shift has been demonstrated to contain geophysical information about sea surface wind, waves and current at an accuracy of 5 Hz and pixel spacing of 3.5 - 9 × 8 km2. This corresponds to a horizontal surface velocity of about 20 cm/s at 35° incidence angle. The ESA Prodex ISAR project aims to implement new and improved SAR Doppler shift processing routines to enable reprocessing of the wide swath acquisitions available from the Envisat ASAR archive (2002-2012) at higher resolution and better accuracy than previously obtained, allowing combined use with Sentinel-1 and Radarsat-2 retrievals to build timeseries of the sea surface velocity in the Nordic Seas. Estimation of the geophysical Doppler shift from new SAR Doppler centroid shift retrievals will be demonstrated, addressing key issues relating to geometric (satellite orbit and attitude) and electronic (antenna mis-pointing) contributions and corrections. Geophysical Doppler shift retrievals from one month of data in January 2010 and the inverted surface velocity in the Nordic Seas are then addressed and compared to other direct and indirect estimates of the upper ocean current, in particular those obtained in the ESA GlobCurrent project.
Steady-state phase error for a phase-locked loop subjected to periodic Doppler inputs
NASA Technical Reports Server (NTRS)
Chen, C.-C.; Win, M. Z.
1991-01-01
The performance of a carrier phase locked loop (PLL) driven by a periodic Doppler input is studied. By expanding the Doppler input into a Fourier series and applying the linearized PLL approximations, it is easy to show that, for periodic frequency disturbances, the resulting steady state phase error is also periodic. Compared to the method of expanding frequency excursion into a power series, the Fourier expansion method can be used to predict the maximum phase error excursion for a periodic Doppler input. For systems with a large Doppler rate fluctuation, such as an optical transponder aboard an Earth orbiting spacecraft, the method can be applied to test whether a lower order tracking loop can provide satisfactory tracking and thereby save the effect of a higher order loop design.
Hotfiel, Thilo; Swoboda, Bernd; Krinner, Sebastian; Grim, Casper; Engelhardt, Martin; Uder, Michael; Heiss, Rafael U
2017-04-01
Hotfiel, T, Swoboda, B, Krinner, S, Grim, C, Engelhardt, M, Uder, M, and Heiss, R. Acute effects of lateral thigh foam rolling on arterial tissue perfusion determined by spectral Doppler and power Doppler ultrasound. J Strength Cond Res 31(4): 893-900, 2017-Foam rolling has been developed as a popular intervention in training and rehabilitation. However, evidence on its effects on the cellular and physiological level is lacking. The aim of this study was to assess the effect of foam rolling on arterial blood flow of the lateral thigh. Twenty-one healthy participants (age, 25 ± 2 years; height, 177 ± 9 cm; body weight, 74 ± 9 kg) were recruited from the medical and sports faculty. Arterial tissue perfusion was determined by spectral Doppler and power Doppler ultrasound, represented as peak flow (Vmax), time average velocity maximum (TAMx), time average velocity mean (TAMn), and resistive index (RI), and with semiquantitative grading that was assessed by 4 blindfolded investigators. Measurement values were assessed under resting conditions and twice after foam rolling exercises of the lateral thigh (0 and 30 minutes after intervention). The trochanteric region, mid portion, and distal tibial insertion of the lateral thigh were representative for data analysis. Arterial blood flow of the lateral thigh increased significantly after foam rolling exercises compared with baseline (p ≤ 0.05). We detected a relative increase in Vmax of 73.6% (0 minutes) and 52.7% (30 minutes) (p < 0.001), in TAMx of 53.2% (p < 0.001) and 38.3% (p = 0.002), and in TAMn of 84.4% (p < 0.001) and 68.2% (p < 0.001). Semiquantitative power Doppler scores at all portions revealed increased average grading of 1.96 after intervention and 2.04 after 30 minutes compared with 0.75 at baseline. Our results may contribute to the understanding of local physiological reactions to self-myofascial release.
AUV Underwater Positioning Algorithm Based on Interactive Assistance of SINS and LBL.
Zhang, Tao; Chen, Liping; Li, Yao
2015-12-30
This paper studies an underwater positioning algorithm based on the interactive assistance of a strapdown inertial navigation system (SINS) and LBL, and this algorithm mainly includes an optimal correlation algorithm with aided tracking of an SINS/Doppler velocity log (DVL)/magnetic compass pilot (MCP), a three-dimensional TDOA positioning algorithm of Taylor series expansion and a multi-sensor information fusion algorithm. The final simulation results show that compared to traditional underwater positioning algorithms, this scheme can not only directly correct accumulative errors caused by a dead reckoning algorithm, but also solves the problem of ambiguous correlation peaks caused by multipath transmission of underwater acoustic signals. The proposed method can calibrate the accumulative error of the AUV position more directly and effectively, which prolongs the underwater operating duration of the AUV.
Beutner, S; May, M; Hoschke, B; Helke, C; Lein, M; Roigas, J; Johannsen, M
2007-01-01
This study investigated whether the therapeutic efficacy and morbidity of three minimally invasive techniques for varicocele correction--laparoscopic varicocelectomy (LV), antegrade sclerotherapy (AS), and retrograde embolization (RE)--differed between children and adults. During a 10-year period, 356 procedures for varicocele correction, including 122 cases of LV, 108 cases of AS, and 126 cases of RE, were performed for 314 patients at our institution. Of these patients, 223 were 19 years of age or younger (group 1), and 133 were older than 19 years (group 2). Diagnosis and postoperative results were established clinically and with the use of Doppler ultrasonography. The failure rates and complications for each procedure were retrospectively evaluated and compared between the two age groups. The median follow-up period was 69 months (range, 6-122 months). For 25 patients (19.8%), RE was not feasible for technical reasons. In both groups, LV had a lower failure rate than AS or RE, but the difference between LV and AS was not significant in group 1 (7.7(% vs 11.9%; p > 0.5). Also in group 1, AS was associated with fewer complications than LV 1 (4.5% vs 15.4%; p < 0.05). In group 2, LV was significantly more effective in correcting varicoceles than the other two techniques (p < 0.01). In this group, the complication rates for all three procedures did not differ significantly (p > 0.05). In our experience, LV was more effective than AS or RE in correcting varicoceles. For children and adolescents, AS may be more indicated because of the slightly lower complication rate and similar recurrence rates, as compared with LV, for this age group. The higher incidence of postoperative hydrocele formation after LV warrants more refined techniques such as the lymphatic-sparing approach.
Conaway, Jeffrey S.
2005-01-01
Acoustic Doppler current profilers (ADCPs) have been in use in the riverine environment for nearly 20 years. Their application primarily has been focused on the measurement of streamflow discharge. ADCPs emit high-frequency sound pulses and receive reflected sound echoes from sediment particles in the water column. The Doppler shift between transmitted and return signals is resolved into a velocity component that is measured in three dimensions by simultaneously transmitting four independent acoustical pulses. To measure the absolute velocity magnitude and direction in the water column, the velocity magnitude and direction of the instrument must also be computed. Typically this is accomplished by ensonifying the streambed with an acoustical pulse that also provides a depth measurement for each of the four acoustic beams. Sediment transport on or near the streambed will bias these measurements and requires external positioning such as a differentially corrected Global Positioning Systems (GPS). Although the influence of hydraulic structures such as spur dikes and bridge piers is typically only measured and described in one or two dimensions, the use of differentially corrected GPS with ADCPs provides a fully three-dimensional measurement of the magnitude and direction of the water column at such structures. The measurement of these flow disturbances in a field setting also captures the natural pulsations of river flow that cannot be easily quantified or modeled by numerical simulations or flumes. Several examples of measured three-dimensional flow conditions at bridge sites throughout Alaska are presented. The bias introduced to the bottom-track measurement is being investigated as a surrogate measurement of bedload transport. By fixing the position of the ADCP for a known period of time the apparent velocity of the streambed at that position can be determined. Initial results and comparison to traditionally measured bedload values are presented. These initial results and those by other researchers are helping to determine a direction for further research of noncontact measurements of sediment transport. Copyright ASCE 2005.
The Martian rotation from Doppler measurements: Simulations of future radioscience experiments
NASA Astrophysics Data System (ADS)
Péters, Marie-Julie; Yseboodt, Marie; Dehant, Véronique; Le Maistre, Sebastien; Marty, Jean-Charles
2016-10-01
The radioscience experiment onboard the future InSight and ExoMars missions consists in two-way Doppler shift measurement from a X-band radio link between a lander on Mars and the ground stations on Earth. The Doppler effect on the radio signal is related to the revolution of the planets around the Sun and to the variations of the orientation and the rotation of Mars. The variations of the orientation of the rotation axis are the precession and nutations, related to the deep interior of Mars and the variations of the rotation rate are the length-of-day variation, related to the dynamic of the atmosphere.We perform numerical simulations of the Doppler measurements in order to quantify the precision that can be achieved on the determination of the Mars rotation and orientation parameters (MOP). For this purpose, we use the GINS (Géodésie par Intégrations Numériques Simultanées) software developed by the CNES and further adapted at the Royal Observatory of Belgium for planetary geodesy applications. This software enables to simulate the relative motion of the lander at the surface of Mars relative to the ground stations and to compute the MOP signature on the Doppler shift. The signature is the difference between the Doppler observable estimated taking into account a MOP and the Doppler estimated without this parameter.The objective is to build a strategy to be applied to future data processing in order to improve our estimation of the MOP. We study the effect of the elevation of the Earth in the sky of the lander, of the tracking duration and number of pass per week, of the tracking time, of the lander position and of Doppler geometry on the signatures. Indeed, due to the geometry, the Doppler data are highly sensitive to the position variations along the line of sight.
How to study the Doppler effect with Audacity software
NASA Astrophysics Data System (ADS)
Adriano Dias, Marco; Simeão Carvalho, Paulo; Rodrigues Ventura, Daniel
2016-05-01
The Doppler effect is one of the recurring themes in college and high school classes. In order to contextualize the topic and engage the students in their own learning process, we propose a simple and easily accessible activity, i.e. the analysis of the videos available on the internet by the students. The sound of the engine of the vehicle passing by the camera is recorded on the video; it is then analyzed with the free software Audacity by measuring the frequency of the sound during approach and recede of the vehicle from the observer. The speed of the vehicle is determined due to the application of Doppler effect equations for acoustic waves.
The effect of clock, media, and station location errors on Doppler measurement accuracy
NASA Technical Reports Server (NTRS)
Miller, J. K.
1993-01-01
Doppler tracking by the Deep Space Network (DSN) is the primary radio metric data type used by navigation to determine the orbit of a spacecraft. The accuracy normally attributed to orbits determined exclusively with Doppler data is about 0.5 microradians in geocentric angle. Recently, the Doppler measurement system has evolved to a high degree of precision primarily because of tracking at X-band frequencies (7.2 to 8.5 GHz). However, the orbit determination system has not been able to fully utilize this improved measurement accuracy because of calibration errors associated with transmission media, the location of tracking stations on the Earth's surface, the orientation of the Earth as an observing platform, and timekeeping. With the introduction of Global Positioning System (GPS) data, it may be possible to remove a significant error associated with the troposphere. In this article, the effect of various calibration errors associated with transmission media, Earth platform parameters, and clocks are examined. With the introduction of GPS calibrations, it is predicted that a Doppler tracking accuracy of 0.05 microradians is achievable.
Dipolar modulation in the size of galaxies: the effect of Doppler magnification
NASA Astrophysics Data System (ADS)
Bonvin, Camille; Andrianomena, Sambatra; Bacon, David; Clarkson, Chris; Maartens, Roy; Moloi, Teboho; Bull, Philip
2017-12-01
Objects falling into an overdensity appear larger on its near side and smaller on its far side than other objects at the same redshift. This produces a dipolar pattern of magnification, primarily as a consequence of the Doppler effect. At low redshift, this Doppler magnification completely dominates the usual integrated gravitational lensing contribution to the lensing magnification. We show that one can optimally observe this pattern by extracting the dipole in the cross-correlation of number counts and galaxy sizes. This dipole allows us to almost completely remove the contribution from gravitational lensing up to redshift ≲0.5, and even at high redshift z ≃ 1, the dipole picks up the Doppler magnification predominantly. Doppler magnification should be easily detectable in current and upcoming optical and radio surveys; by forecasting for telescopes such as the SKA, we show that this technique is competitive with using peculiar velocities via redshift-space distortions to constrain dark energy. It produces similar yet complementary constraints on the cosmological model to those found using measurements of the cosmic shear.
Ultranarrowband searches for extraterrestrial intelligence with dedicated signal-processing hardware
NASA Technical Reports Server (NTRS)
Horowitz, P.; Matthews, B. S.; Forster, J.; Linscott, I.; Teague, C. C.; Chen, K.; Backus, P.
1986-01-01
An evaluation is made of the prospects for SETI applications of multichannel spectroscopy, assuming narrowband RF beacon transmission, with a mHz resolution that matches interstellar medium properties. Receiver Doppler corrections must furnish substantial interference rejection. Results are presented from an Arecibo antenna search of 250 sunlike stars at 1.4 and 2.8 GHz. A meridian transit search of the northern sky is also in progress with the Harvard-Smithsonian 26-m antenna.
Doppler-guided retrograde catheterization system
NASA Astrophysics Data System (ADS)
Frazin, Leon J.; Vonesh, Michael J.; Chandran, Krishnan B.; Khasho, Fouad; Lanza, George M.; Talano, James V.; McPherson, David D.
1991-05-01
The purpose of this study was to investigate a Doppler guided catheterization system as an adjunctive or alternative methodology to overcome the disadvantages of left heart catheterization and angiography. These disadvantages include the biological effects of radiation and the toxic and volume effects of iodine contrast. Doppler retrograde guidance uses a 20 MHz circular pulsed Doppler crystal incorporated into the tip of a triple lumen multipurpose catheter and is advanced retrogradely using the directional flow information provided by the Doppler waveform. The velocity detection limits are either 1 m/second or 4 m/second depending upon the instrumentation. In a physiologic flow model of the human aortic arch, multiple data points revealed a positive wave form when flow was traveling toward the catheter tip indicating proper alignment for retrograde advancement. There was a negative wave form when flow was traveling away from the catheter tip if the catheter was in a branch or bent upon itself indicating improper catheter tip position for retrograde advancement. In a series of six dogs, the catheter was able to be accurately advanced from the femoral artery to the left ventricular chamber under Doppler signal guidance without the use of x-ray. The potential applications of a Doppler guided retrograde catheterization system include decreasing time requirements and allowing safer catheter guidance in patients with atherosclerotic vascular disease and suspected aortic dissection. The Doppler system may allow left ventricular pressure monitoring in the intensive care unit without the need for x-ray and it may allow left sided contrast echocardiography. With pulse velocity detection limits of 4 m/second, this system may allow catheter direction and passage into the aortic root and left ventricle in patients with aortic stenosis. A modification of the Doppler catheter may include transponder technology which would allow precise catheter tip localization once the catheter tip is placed in the aortic root. Such technology may conceivably assist in allowing selective coronary catheterization. These studies have demonstrated that Doppler guided retrograde catheterization provides an accurate method to catheterization the aortic root and left ventricular chamber without x-ray. In humans, it may prove useful in a variety of settings including the development of invasive ultrasonic diagnostic and therapeutic technology.
Weak e+e- lines from internal pair conversion observed in collisions of 238U with heavy nuclei
NASA Astrophysics Data System (ADS)
Heinz, S.; Berdermann, E.; Heine, F.; Joeres, O.; Kienle, P.; Koenig, I.; Koenig, W.; Kozhuharov, C.; Leinberger, U.; Rhein, M.; Schröter, A.; Tsertos, H.
1998-01-01
We present the results of a Doppler-shift correction to the measured e+e- sum-energy spectra obtained from e+e- coincidence measurements in 238U +206Pb and 238U +181Ta collisions at beam energies close to the Coulomb barrier, using an improved experimental setup at the double-Orange spectrometer of GSI. Internal-Pair-Conversion (IPC) e+e- pairs from discrete nuclear transitions of a moving emitter have been observed following Coulomb excitation of the 1.844 MeV (E1) transition in 206Pb and neutron transfer to the 1.770 MeV (M1) transition in 207Pb. In the collision system 238U +181Ta, IPC transitions were observed from the Ta-like as well as from the U-like nuclei. In all systems the Doppler-shift corrected e+e- sum-energy spectra show weak lines at the energies expected from the corresponding γ ray spectra with cross sections being consistent with the measured excitation cross sections of the γ lines and the theoretically predicted IPC coefficients. No other than IPC e+e- sum-energy lines were found in the measured spectra. The transfer cross sections show a strong dependence on the distance of closest approach (Rmin), thus signaling also a strong dependence on the bombarding energy close to the Coulomb barrier.
Scanning Cloud Radar Observations at the ARM sites
NASA Astrophysics Data System (ADS)
Kollias, P.; Clothiaux, E. E.; Shupe, M.; Widener, K.; Bharadwaj, N.; Miller, M. A.; Verlinde, H.; Luke, E. P.; Johnson, K. L.; Jo, I.; Tatarevic, A.; Lamer, K.
2012-12-01
Recently, the DOE Atmospheric Radiation Measurement (ARM) program upgraded its fixed and mobile facilities with the acquisition of state-of-the-art scanning, dual-wavelength, polarimetric, Doppler cloud radars. The scanning ARM cloud radars (SACR's) are the most expensive and significant radar systems at all ARM sites and eight SACR systems will be operational at ARM sites by the end of 2013. The SACR's are the primary instruments for the detection of 3D cloud properties (boundaries, volume cloud fractional coverage, liquid water content, dynamics, etc.) beyond the soda-straw (profiling) limited view. Having scanning capabilities with two frequencies and polarization allows more accurate probing of a variety of cloud systems (e.g., drizzle and shallow, warm rain), better correction for attenuation, use of attenuation for liquid water content retrievals, and polarimetric and dual-wavelength ratio characterization of non-spherical particles for improved ice crystal habit identification. Examples of SACR observations from four ARM sites are presented here: the fixed sites at Southern Great Plains (SGP) and North Slope of Alaska (NSA), and the mobile facility deployments at Graciosa Island, Azores and Cape Cod, Massachusetts. The 3D cloud structure is investigated both at the macro-scale (20-50 km) and cloud-scale (100-500 m). Doppler velocity measurements are corrected for velocity folding and are used either to describe the in-cloud horizontal wind profile or the 3D vertical air motions.
The Doppler effect and the three most famous experiments for special relativity
NASA Astrophysics Data System (ADS)
Klinaku, Shukri
Using the general formula for the Doppler effect at any arbitrary angle, the three famous experiments for special theory of relativity will be examined. Explanation of the experiments of Michelson, Kennedy-Thorndike and Ives-Stilwell will be given in a precise and elegant way without postulates, arbitrary assumptions or approximations.
Propofol Induction's Effect on Cardiac Function
2015-03-31
This Study Was Focused to Evaluate Feasibility of Doppler Tissue Monitoring During the Induction Anesthesia,; and Evaluate Routine Propofol Induction's Effect on Myocardial Tissue Motion, Using Non-invasive Doppler Tissue and 2D Speckle Tracking Imaging.; This is the First Study, to Our Knowledge, Which Has Evaluated the Possible Impact of Propofol Induction on LV Function.
Digital Doppler measurement with spacecraft
NASA Technical Reports Server (NTRS)
Kinman, Peter W.; Hinedi, Sami M.; Labelle, Remi C.; Bevan, Roland P.; Del Castillo, Hector M.; Chong, Dwayne C.
1991-01-01
Digital and analog phase-locked loop (PLL) receivers were operated in parallel, each tracking the residual carrier from a spacecraft. The PLL tracked the downlink carrier and measured its instantaneous phase. This information, combined with a knowledge of the uplink carrier and the transponder ratio, permitted the computation of a Doppler observable. In this way, two separate Doppler measurements were obtained for one observation window. The two receivers agreed on the magnitude of the Doppler effect to within 1 mHz. There was less jitter on the data from the digital receiver. This was due to its smaller noise bandwidth. The demonstration and its results are described.
Single-photon superradiant beating from a Doppler-broadened ladder-type atomic ensemble
NASA Astrophysics Data System (ADS)
Lee, Yoon-Seok; Lee, Sang Min; Kim, Heonoh; Moon, Han Seb
2017-12-01
We report on heralded-single-photon superradiant beating in the spontaneous four-wave mixing process of Doppler-broadened ladder-type 87Rb atoms. When Doppler-broadened atoms contribute to two-photon coherence, the detection probability amplitudes of the heralded single photons are coherently superposed despite inhomogeneous broadened atomic media. Single-photon superradiant beating is observed, which constitutes evidence for the coherent superposition of two-photon amplitudes from different velocity classes in the Doppler-broadened atomic ensemble. We present a theoretical model in which the single-photon superradiant beating originates from the interference between wavelength-separated two-photon amplitudes via the reabsorption filtering effect.
De Boer, M. A.; Heymans, M. W.; Schoonmade, L. J.; Bossuyt, P. M. M.; Mol, B. W. J.; De Groot, C. J. M.; Bax, C. J.
2018-01-01
ABSTRACT Objective Doppler ultrasonographic assessment of the cerebroplacental ratio (CPR) and middle cerebral artery (MCA) is widely used as an adjunct to umbilical artery (UA) Doppler to identify fetuses at risk of adverse perinatal outcome. However, reported estimates of its accuracy vary considerably. The aim of this study was to review systematically the prognostic accuracies of CPR and MCA Doppler in predicting adverse perinatal outcome, and to compare these with UA Doppler, in order to identify whether CPR and MCA Doppler evaluation are of added value to UA Doppler. Methods PubMed, EMBASE, the Cochrane Library and ClinicalTrials.gov were searched, from inception to June 2016, for studies on the prognostic accuracy of UA Doppler compared with CPR and/or MCA Doppler in the prediction of adverse perinatal outcome in women with a singleton pregnancy of any risk profile. Risk of bias and concerns about applicability were assessed using the QUADAS‐2 (Quality Assessment of Diagnostic Accuracy Studies‐2) tool. Meta‐analysis was performed for multiple adverse perinatal outcomes. Using hierarchal summary receiver–operating characteristics meta‐regression models, the prognostic accuracy of CPR vs MCA Doppler was compared indirectly, and CPR and MCA Doppler vs UA Doppler compared directly. Results The search identified 4693 articles, of which 128 studies (involving 47 748 women) were included. Risk of bias or suboptimal reporting was detected in 120/128 studies (94%) and substantial heterogeneity was found, which limited subgroup analyses for fetal growth and gestational age. A large variation was observed in reported sensitivities and specificities, and in thresholds used. CPR outperformed UA Doppler in the prediction of composite adverse outcome (as defined in the included studies) (P < 0.001) and emergency delivery for fetal distress (P = 0.003), but was comparable to UA Doppler for the other outcomes. MCA Doppler performed significantly worse than did UA Doppler in the prediction of low Apgar score (P = 0.017) and emergency delivery for fetal distress (P = 0.034). CPR outperformed MCA Doppler in the prediction of composite adverse outcome (P < 0.001) and emergency delivery for fetal distress (P = 0.013). Conclusion Calculating the CPR with MCA Doppler can add value to UA Doppler assessment in the prediction of adverse perinatal outcome in women with a singleton pregnancy. However, it is unclear to which subgroup of pregnant women this applies. The effectiveness of the CPR in guiding clinical management needs to be evaluated in clinical trials. © 2017 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of the International Society of Ultrasound in Obstetrics and Gynecology. PMID:28708272
Superharmonic microbubble Doppler effect in ultrasound therapy
NASA Astrophysics Data System (ADS)
Pouliopoulos, Antonios N.; Choi, James J.
2016-08-01
The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5 × 104-5 × 107 microbubbles ml-1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s-1, prior to the onset of broadband emissions, which is an indicator for high magnitude inertial cavitation. Although the microbubble redistribution was shown to persist for the entire sonication period in dense populations, it was constrained to the first few milliseconds in lower concentrations. In conclusion, superharmonic microbubble Doppler effects can provide a quantitative measure of effective velocities of a sonicated microbubble population and could be used for monitoring ultrasound therapy in real-time.
Superharmonic microbubble Doppler effect in ultrasound therapy
Pouliopoulos, Antonios N; Choi, James J
2016-01-01
Abstract The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5 × 104–5 × 107 microbubbles ml−1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75–366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s−1, prior to the onset of broadband emissions, which is an indicator for high magnitude inertial cavitation. Although the microbubble redistribution was shown to persist for the entire sonication period in dense populations, it was constrained to the first few milliseconds in lower concentrations. In conclusion, superharmonic microbubble Doppler effects can provide a quantitative measure of effective velocities of a sonicated microbubble population and could be used for monitoring ultrasound therapy in real-time. PMID:27469394
NASA Astrophysics Data System (ADS)
Hast, J.; Myllylä, Risto; Sorvoja, H.; Miettinen, J.
2002-11-01
The self-mixing effect in a diode laser and the Doppler technique are used for quantitative measurements of the cardiovascular pulses from radial arteries of human individuals. 738 cardiovascular pulses from 10 healthy volunteers were studied. The Doppler spectrograms reconstructed from the Doppler signal, which is measured from the radial displacement of the radial artery, are compared to the first derivative of the blood pressure signals measured from the middle finger by the Penaz technique. The mean correlation coefficient between the Doppler spectrograms and the first derivative of the blood pressure signals was 0.84, with a standard deviation of 0.05. Pulses with the correlation coefficient less than 0.7 were neglected in the study. Percentage of successfully detected pulses was 95.7%. It is shown that cardiovascular pulse shape from the radial artery can be measured noninvasively by using the self-mixing interferometry.
Pedestrian recognition using automotive radar sensors
NASA Astrophysics Data System (ADS)
Bartsch, A.; Fitzek, F.; Rasshofer, R. H.
2012-09-01
The application of modern series production automotive radar sensors to pedestrian recognition is an important topic in research on future driver assistance systems. The aim of this paper is to understand the potential and limits of such sensors in pedestrian recognition. This knowledge could be used to develop next generation radar sensors with improved pedestrian recognition capabilities. A new raw radar data signal processing algorithm is proposed that allows deep insights into the object classification process. The impact of raw radar data properties can be directly observed in every layer of the classification system by avoiding machine learning and tracking. This gives information on the limiting factors of raw radar data in terms of classification decision making. To accomplish the very challenging distinction between pedestrians and static objects, five significant and stable object features from the spatial distribution and Doppler information are found. Experimental results with data from a 77 GHz automotive radar sensor show that over 95% of pedestrians can be classified correctly under optimal conditions, which is compareable to modern machine learning systems. The impact of the pedestrian's direction of movement, occlusion, antenna beam elevation angle, linear vehicle movement, and other factors are investigated and discussed. The results show that under real life conditions, radar only based pedestrian recognition is limited due to insufficient Doppler frequency and spatial resolution as well as antenna side lobe effects.
Binzoni, T; Leung, T S; Rüfenacht, D; Delpy, D T
2006-01-21
Based on quasi-elastic scattering theory (and random walk on a lattice approach), a model of laser-Doppler flowmetry (LDF) has been derived which can be applied to measurements in large tissue volumes (e.g. when the interoptode distance is >30 mm). The model holds for a semi-infinite medium and takes into account the transport-corrected scattering coefficient and the absorption coefficient of the tissue, and the scattering coefficient of the red blood cells. The model holds for anisotropic scattering and for multiple scattering of the photons by the moving scatterers of finite size. In particular, it has also been possible to take into account the simultaneous presence of both Brownian and pure translational movements. An analytical and simplified version of the model has also been derived and its validity investigated, for the case of measurements in human skeletal muscle tissue. It is shown that at large optode spacing it is possible to use the simplified model, taking into account only a 'mean' light pathlength, to predict the blood flow related parameters. It is also demonstrated that the 'classical' blood volume parameter, derived from LDF instruments, may not represent the actual blood volume variations when the investigated tissue volume is large. The simplified model does not need knowledge of the tissue optical parameters and thus should allow the development of very simple and cost-effective LDF hardware.
Recognition of binary x-ray systems utilizing the doppler effect
NASA Technical Reports Server (NTRS)
Novak, B. L.
1980-01-01
The possibility of recognizing the duality of a single class of X-ray systems utilizing the Doppler effect is studied. The procedure is based on the presence of a period which coincides with the orbital period at the intensity of the radiation in a fixed energy interval of the X-ray component of a binary system.
Precession feature extraction of ballistic missile warhead with high velocity
NASA Astrophysics Data System (ADS)
Sun, Huixia
2018-04-01
This paper establishes the precession model of ballistic missile warhead, and derives the formulas of micro-Doppler frequency induced by the target with precession. In order to obtain micro-Doppler feature of ballistic missile warhead with precession, micro-Doppler bandwidth estimation algorithm, which avoids velocity compensation, is presented based on high-resolution time-frequency transform. The results of computer simulations confirm the effectiveness of the proposed method even with low signal-to-noise ratio.
Using the global positioning satellite system to determine attitude rates using doppler effects
NASA Technical Reports Server (NTRS)
Campbell, Charles E. (Inventor)
2003-01-01
In the absence of a gyroscope, the attitude and attitude rate of a receiver can be determined using signals received by antennae on the receiver. Based on the signals received by the antennae, the Doppler difference between the signals is calculated. The Doppler difference may then be used to determine the attitude rate. With signals received from two signal sources by three antennae pairs, the three-dimensional attitude rate is determined.
Greco, Stefania; Troisi, Federica; Brunetti, Natale Daniele; Di Biase, Matteo
2009-10-01
Tei index (TI) is a Doppler parameter which reflects combined systolic and diastolic function. We aimed to study the relationship between TI, both traditional and tissue Doppler imaging (TDI) echocardiographic parameters and neurohormonal profile in outpatients with diastolic dysfunction expressed by an abnormal transmitral flow pattern. A total of 67 consecutive outpatients with diastolic dysfunction (abnormal transmitral flow pattern) were studied; all patients underwent clinical evaluation, blood sampling for B-type natriuretic peptide (BNP) plasma assaying, echocardiography for the determination of left ventricular ejection fraction (LVEF), dP/dt, left atrium (LA) dimensions, longitudinal systolic (S) and diastolic wall velocities (E'and A'), TI measured with Doppler echocardiography, and mitral regurgitation (MR) quantified on a semicontinuous scale. TI values were significantly correlated with BNP levels (r = 0.33; P < 0.01), LVEF (r =-0.56; P < 0.001), dP/dt (r =-0.52; P < 0.01), S (r =-0.45; P < 0.001), E'(r =-0.36; P < 0.01), A'(r =-0.27; P < 0.05), LA volume (r = 0.35; P < 0.01), and MR (P for trend < 0.05). In a multivariate regression analysis, TI was an independent predictor of increased BNP levels (beta= 0.32; P < 0.05), even after correction for potential confounders. ROC analysis showed as values of TI >0.59 identified subjects with combined systolic and diastolic dysfunction with a sensitivity of 73.8% and a specificity of 71.4%. In outpatients with diastolic dysfunction, TI, an easy to perform parameter for global ventricular performance assessment, might be useful in identifying subjects with concomitant systolic impairment and neurohormonal activation.
Kim, Dohyun; Park, Sung-Ho
2016-11-01
Recently, Doppler ultrasound has been used for the measurement of pulpal blood flow in human teeth. However, the reliability of this method has not been verified. In this study, we developed a model to simulate arteriole blood flow within the dental pulp by using microfluidics. This arteriole simulator, or flow phantom, was used to determine the reliability of measurements obtained by using a Doppler ultrasound device. A microfluidic chip was fabricated by using the soft lithography technique, and blood-mimicking fluid was pumped through the channel by a microfluidic system. A Doppler ultrasound device was used for the measurement of flow velocity. The peak, mean, and minimal flow velocities obtained from the phantom and the Doppler ultrasound device were compared by using linear regression analysis and Pearson correlation coefficient. Bland-Altman analyses were performed to evaluate the velocity differences between the flow generated by the phantom and the flow measurements made with the Doppler ultrasound device. The microfluidic system was able to generate the flow profiles as intended, and the fluid flow could be monitored and controlled by the software program. There were excellent linear correlations between the peak, mean, and minimal flow velocities of the phantom and those of the Doppler ultrasound device (r = 0.94-0.996, P < .001). However, the velocities were overestimated by the Doppler ultrasound device. This phantom provides opportunities for research and education involving the Doppler ultrasound technique in dentistry. Although Doppler ultrasound can be an effective tool for the measurement of pulpal blood flow velocity, it is essential to validate and calibrate the device before clinical use. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Ivancevich, Nikolas M.; Dahl, Jeremy J.; Smith, Stephen W.
2010-01-01
Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively. PMID:19942503
Ivancevich, Nikolas M; Dahl, Jeremy J; Smith, Stephen W
2009-10-01
Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively.
Farsalinos, Konstantinos E; Tsiapras, Dimitris; Kyrzopoulos, Stamatis; Savvopoulou, Maria; Voudris, Vassilis
2014-06-23
Electronic cigarettes have been developed and marketed in recent years as smoking substitutes. However, no studies have evaluated their effects on the cardiovascular system. The purpose of this study was to examine the immediate effects of electronic cigarette use on left ventricular (LV) function, compared to the well-documented acute adverse effects of smoking. Echocardiographic examinations were performed in 36 healthy heavy smokers (SM, age 36 ± 5 years) before and after smoking 1 cigarette and in 40 electronic cigarette users (ECIG, age 35 ± 5 years) before and after using the device with "medium-strength" nicotine concentration (11 mg/ml) for 7 minutes. Mitral flow diastolic velocities (E, A), their ratio (E/A), deceleration time (DT), isovolumetric relaxation time (IVRT) and corrected-to-heart rate IVRT (IVRTc) were measured. Mitral annulus systolic (Sm), and diastolic (Em, Am) velocities were estimated. Myocardial performance index was calculated from Doppler flow (MPI) and tissue Doppler (MPIt). Longitudinal deformation measurements of global strain (GS), systolic (SRs) and diastolic (SRe, SRa) strain rate were also performed. Baseline measurements were similar in both groups. In SM, IVRT and IVRTc were prolonged, Em and SRe were decreased, and both MPI and MPIt were elevated after smoking. In ECIG, no differences were observed after device use. Comparing after-use measurements, ECIG had higher Em (P = 0.032) and SRe (P = 0.022), and lower IVRTc (P = 0.011), MPI (P = 0.001) and MPIt (P = 0.019). The observed differences were significant even after adjusting for changes in heart rate and blood pressure. Although acute smoking causes a delay in myocardial relaxation, electronic cigarette use has no immediate effects. Electronic cigarettes' role in tobacco harm reduction should be studied intensively in order to determine whether switching to electronic cigarette use may have long-term beneficial effects on smokers' health. Current Controlled Trials ISRCTN16974547.
Ozdemir, Rahmi; Kucuk, Mehmet; Guzel, Orkide; Karadeniz, Cem; Yilmaz, Unsal; Mese, Timur
2016-10-01
The ketogenic diet (KD) has been referred to as an "effective therapy with side effects" for children with intractable epilepsy. Among the most recognized adverse effects, there are cardiac conduction abnormalities, vascular and myocardial dysfunction. However, very limited and controversial data are available regarding the effects of the KD on cardiac functions. We sought to analyze the mid-term effect of ketogenic diet on cardiac functions in patients with intractable epilepsy who received a ketogenic diet for at least 12months using conventional and relatively new imaging techniques. This prospective study included 61 patients with intractable epilepsy who received ketogenic diet for at least 12months. Clinical examinations, serum carnitine and selenium levels as well as electrocardiographic and echocardiographic examinations were scheduled prior to the procedure and at 1, 3, 6 and 12months. We utilized two-dimensional, M-mode, colored Doppler, spectral Doppler and pulsed wave tissue Doppler imaging techniques to investigate ventricular systolic and diastolic functions of this subgroup of patients. In our study, there was no significant difference after 1year of KD therapy compared to baseline values-except a significantly decreased A wave velocity-in terms of pulse wave Doppler echocardiographic measurements of the diastolic function. The tissue Doppler measurements obtained from the lateral wall of tricuspide and mitral annuli were not different at baseline and at month 12 of the treatment, as well. The ketogenic diet appears to have no disturbing effect on ventricular functions in epileptic children in the midterm. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
2012-01-01
lower troposphere as suggested in modeling studies. The reader is 27 referred to Hildebrand et al. (1995, their Figure 2) and Testud et al. (1995...Walther, C. A., Frush, C., Randall, M., Loew, E., Neitzel, R., 10 Parsons, R., Testud , J., Baudin, F., and LeCornec, A.: The ELDORA/ASTRAIA...136, 1671-1685, 15 2010. 16 Testud , J., Hildebrand, P. H., and Lee, W.-C.: A procedure to correct airborne Doppler radar 17 data for navigation
Use of Reference Frames for Interplanetary Navigation at JPL
NASA Technical Reports Server (NTRS)
Heflin, Michael; Jacobs, Chris; Sovers, Ojars; Moore, Angelyn; Owen, Sue
2010-01-01
Navigation of interplanetary spacecraft is typically based on range, Doppler, and differential interferometric measurements made by ground-based telescopes. Acquisition and interpretation of these observations requires accurate knowledge of the terrestrial reference frame and its orientation with respect to the celestial frame. Work is underway at JPL to reprocess historical VLBI and GPS data to improve realizations of the terrestrial and celestial frames. Improvements include minimal constraint alignment, improved tropospheric modeling, better orbit determination, and corrections for antenna phase center patterns.
High-Resolution Radar Waveforms Based on Randomized Latin Square Sequences
2017-04-18
familiar Costas sequence [17]. The ambiguity function first introduced by Woodward in [13] is used to evaluate the matched filter output of a Radar waveform...the zero-delay cut that the result takes the shape of a sinc function which shows, even for significant Doppler shifts, the matched filter output...bad feature as the high ridge of the LFM waveform will still result in a large matched filter response from the target, just not at the correct delay
Trellis coded multilevel DPSK system with doppler correction for mobile satellite channels
NASA Technical Reports Server (NTRS)
Divsalar, Dariush (Inventor); Simon, Marvin K. (Inventor)
1991-01-01
A trellis coded multilevel differential phase shift keyed mobile communication system. The system of the present invention includes a trellis encoder for translating input signals into trellis codes; a differential encoder for differentially encoding the trellis coded signals; a transmitter for transmitting the differentially encoded trellis coded signals; a receiver for receiving the transmitted signals; a differential demodulator for demodulating the received differentially encoded trellis coded signals; and a trellis decoder for decoding the differentially demodulated signals.
Coherent Lidar Design and Performance Verification
NASA Technical Reports Server (NTRS)
Frehlich, Rod
1996-01-01
This final report summarizes the investigative results from the 3 complete years of funding and corresponding publications are listed. The first year saw the verification of beam alignment for coherent Doppler lidar in space by using the surface return. The second year saw the analysis and computerized simulation of using heterodyne efficiency as an absolute measure of performance of coherent Doppler lidar. A new method was proposed to determine the estimation error for Doppler lidar wind measurements without the need for an independent wind measurement. Coherent Doppler lidar signal covariance, including wind shear and turbulence, was derived and calculated for typical atmospheric conditions. The effects of wind turbulence defined by Kolmogorov spatial statistics were investigated theoretically and with simulations. The third year saw the performance of coherent Doppler lidar in the weak signal regime determined by computer simulations using the best velocity estimators. Improved algorithms for extracting the performance of velocity estimators with wind turbulence included were also produced.
Christian Andreas Doppler: A legendary man inspired by the dazzling light of the stars
Katsi, V; Felekos, I; Kallikazaros, I
2013-01-01
Christian Andreas Doppler is renowned primarily for his revolutionary theory of the Doppler effect, which has deeply influenced many areas of modern science and technology, including medicine. His work has laid the foundations for modern ultrasonography and his ideas are still inspiring discoveries more than a hundred years after his death. Doppler may well earn the title of Homo Universalis for his broad knowledge of physics, mathematics and astronomy and most of all for his indefatigable investigations for new ideas and his ingenious mind. According to Bolzano: “It is hard to believe how fruitful a genius Austria has in this man”. His legacy of scientific achievement have seen Doppler honoured in the later years on coinage and money, names of streets, educational institutions, rock groups, even of a lunar crater; while the ultimate tribute to his work is the countless references to the homonymous medical eponym. PMID:24376313
A Microwave Interferometer on an Air Track.
ERIC Educational Resources Information Center
Polley, J. Patrick
1993-01-01
Uses an air track and microwave transmitters and receivers to make a Michelson interferometer. Includes three experiments: (1) measuring the wavelength of microwaves, (2) measuring the wavelength of microwaves by using the Doppler Effect, and (3) measuring the Doppler shift. (MVL)
Lidar Measurements of Tropospheric Wind Profiles with the Double Edge Technique
NASA Technical Reports Server (NTRS)
Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Mathur, Savyasachee; Chen, Huailin
1998-01-01
Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. A variety of direct detection Doppler wind lidar measurements have recently been reported indicating the growing interest in this area. Our program at Goddard has concentrated on the development of the edge technique for lidar wind measurements. Implementations of the edge technique using either the aerosol or molecular backscatter for the Doppler wind measurement have been described. The basic principles have been verified in lab and atmospheric lidar wind experiments. The lidar measurements were obtained with an aerosol edge technique lidar operating at 1064 nm. These measurements demonstrated high spatial resolution (22 m) and high velocity sensitivity (rms variances of 0.1 m/s) in the planetary boundary layer (PBL). The aerosol backscatter is typically high in the PBL and the effects of the molecular backscatter can often be neglected. However, as was discussed in the original edge technique paper, the molecular contribution to the signal is significant above the boundary layer and a correction for the effects of molecular backscatter is required to make wind measurements. In addition, the molecular signal is a dominant source of noise in regions where the molecular to aerosol ratio is large since the energy monitor channel used in the single edge technique measures the sum of the aerosol and molecular signals. To extend the operation of the edge technique into the free troposphere we have developed a variation of the edge technique called the double edge technique. In this paper a ground based aerosol double edge lidar is described and the first measurements of wind profiles in the free troposphere obtained with this lidar will be presented.
NASA Astrophysics Data System (ADS)
Chérigier, L.; Czarnetzki, U.; Luggenhölscher, D.; Schulz-von der Gathen, V.; Döbele, H. F.
1999-01-01
Absolute atomic hydrogen densities were measured in the gaseous electronics conference reference cell parallel plate reactor by Doppler-free two-photon absorption laser induced fluorescence spectroscopy (TALIF) at λ=205 nm. The capacitively coupled radio frequency discharge was operated at 13.56 MHz in pure hydrogen under various input power and pressure conditions. The Doppler-free excitation technique with an unfocused laser beam together with imaging the fluorescence radiation by an intensified charge coupled device camera allows instantaneous spatial resolution along the radial direction. Absolute density calibration is obtained with the aid of a flow tube reactor and titration with NO2. The influence of spatial intensity inhomogenities along the laser beam and subsequent fluorescence are corrected by TALIF in xenon. A full mapping of the absolute density distribution between the electrodes was obtained. The detection limit for atomic hydrogen amounts to about 2×1018 m-3. The dissociation degree is of the order of a few percent.
Coil occlusion of residual shunts after surgical closure of patent ductus arteriosus.
Fujii, Yoko; Keene, Bruce W; Mathews, Kyle G; Atkins, Clarke E; Defrancesco, Teresa C; Hardie, Elizabeth M; Wakao, Yoshito
2006-12-01
OBJECTIVE; To describe use of coil embolization to occlude residual flow through a patent ductus arteriosus (PDA) after incomplete surgical ligation. Clinical study. Dogs (n=4) with continuous murmur after surgical ligation of PDA. After PDA ligation, residual ductal flow through the PDA was visible on color-flow Doppler examination and left ventricular end-diastolic diameter remained increased. Coil embolization by an arterial approach was performed to achieve complete occlusion of the PDA. Embolization coils were delivered without complications and hemodynamically successful occlusion was achieved. Doppler-visible flow resolved in 2 dogs within 3 months after embolization. Left ventricular end-diastolic diameter indexed to body weight decreased in all dogs. Transcatheter coil embolization appears to be a safe and minimally invasive procedure for complete occlusion of residual PDA flow after incomplete surgical ligation. Transcatheter coil embolization should be considered for correction of hemodynamically significant residual shunts in dogs that have incomplete PDA occlusion after open surgical ligation.
Mass motions in the solar chromosphere and transition zone
NASA Technical Reports Server (NTRS)
Mein, P.; Simon, G.; Vial, J. C.; Shine, R. A.
1982-01-01
A comparison is made between H-alpha and C IV observations of Active Region 2717 on October 9, 1980. On the basis of this comparison, it is found that upward velocities are present above sunspots in the chromosphere-corona transition zone (20 km/s). The downward velocities are found to be well correlated in both lines. Doppler-shift ratios between C IV and H-alpha levels (approximately 10) are seen to be much smaller than expected from density ratio estimates. The comparison is seen as suggesting that flow lines are probably far from vertical in the transition zone. It is pointed out, however, that this depends on model densities that may not be correct. A simple method for comparing matter flows is presented. The best fit between H-alpha and C IV levels is obtained when C IV Doppler shifts are multiplied by the line intensity to the power 0.5 (approximately) in order to make allowance for density fluctuations.
The Effect of Sea Surface Slicks on the Doppler Spectrum Width of a Backscattered Microwave Signal.
Karaev, Vladimir; Kanevsky, Mikhail; Meshkov, Eugeny
2008-06-06
The influence of a surface-active substance (SAS) film on the Doppler spectrum width at small incidence angles is theoretically investigated for the first time for microwave radars with narrow-beam and knife-beam antenna patterns. It is shown that the requirements specified for the antenna system depend on the radar motion velocity. A narrow-beam antenna pattern should be used to detect slicks by an immobile radar, whereas radar with a knife-beam antenna pattern is needed for diagnostics from a moving platform. The study has revealed that the slick contrast in the Doppler spectrum width increases as the radar wavelength diminishes, thus it is preferable to utilize wavelengths not larger than 2 cm for solving diagnostic problems. The contrast in the Doppler spectrum width is generally weaker than that in the radar backscattering cross section; however, spatial and temporal fluctuations of the Doppler spectrum width are much weaker than those of the reflected signal power. This enables one to consider the Doppler spectrum as a promising indicator of slicks on water surface.
Editorial special issue on "Laser Doppler vibrometry"
NASA Astrophysics Data System (ADS)
Vanlanduit, Steve; Dirckx, Joris
2017-12-01
The invention of the laser in 1960 has opened up many opportunities in the field of measurement science and technology. Just a few years after the invention of the laser, a novel fluid flow measurement technique based on the Doppler effect was introduced: at that moment the laser Doppler anemometer or shortly LDA [1] was born. The technique enabled fluid velocity measurement by using the light of a He-Ne beam which was scattered by very small polystyrene spheres entrained in the fluid. Later on, in the late nineteen seventees it was recognized that the detection of the Doppler frequency shift that occurs when light is scattered by a moving surface can also be used to measure the vibration velocity of an object. The instrument to perform these vibration measurements was called the laser Doppler vibrometer or LDV [2]. In the last decades several technological advances were made in the field of laser Doppler vibrometry. The result is that nowadays, velocity measurements of fluids (using LDA) and vibrating objects (using LDV) are performed in many challenging applications in different fields (microelectronics, civil structures, biomedical engineering, material science, etc.).
MP3 compression of Doppler ultrasound signals.
Poepping, Tamie L; Gill, Jeremy; Fenster, Aaron; Holdsworth, David W
2003-01-01
The effect of lossy, MP3 compression on spectral parameters derived from Doppler ultrasound (US) signals was investigated. Compression was tested on signals acquired from two sources: 1. phase quadrature and 2. stereo audio directional output. A total of 11, 10-s acquisitions of Doppler US signal were collected from each source at three sites in a flow phantom. Doppler signals were digitized at 44.1 kHz and compressed using four grades of MP3 compression (in kilobits per second, kbps; compression ratios in brackets): 1400 kbps (uncompressed), 128 kbps (11:1), 64 kbps (22:1) and 32 kbps (44:1). Doppler spectra were characterized by peak velocity, mean velocity, spectral width, integrated power and ratio of spectral power between negative and positive velocities. The results suggest that MP3 compression on digital Doppler US signals is feasible at 128 kbps, with a resulting 11:1 compression ratio, without compromising clinically relevant information. Higher compression ratios led to significant differences for both signal sources when compared with the uncompressed signals. Copyright 2003 World Federation for Ultrasound in Medicine & Biology
How to Study the Doppler Effect with Audacity Software
ERIC Educational Resources Information Center
Dias, Marco Adriano; Carvalho, Paulo Simeão; Ventura, Daniel Rodrigues
2016-01-01
The Doppler effect is one of the recurring themes in college and high school classes. In order to contextualize the topic and engage the students in their own learning process, we propose a simple and easily accessible activity, i.e. the analysis of the videos available on the internet by the students. The sound of the engine of the vehicle…
Doppler Effect on Structure Period of Nonlinear Laser Lithography
NASA Astrophysics Data System (ADS)
Yavuz, Ozgun; Kara, Semih; Tokel, Onur; Pavlov, Ihor; Ilday, Fatih Omer
Recently, Nonlinear Laser Lithography (NLL) was developed for large-area, nanopatterning of surfaces. In NLL, nanopatterns emerge through coherent scattering of the laser from the surface, and its interference with the incident beam. The period of the structures is determined by the laser wavelength. It has been shown by Sipe that the period depends on the laser incidence angle (θ) as λ / (1 +/- sinθ). Here, we show that the period not only depends on this angle, but also on the polarisation angle. We update the Sipe equation as λ / (1 +/- sinθsinα) , where ' α' is the angle between scanning direction and polarisation. The physical reason behind this is found through a formal analogy to Doppler effect. In Doppler effect, the measured wavelength of a moving emitter is given as λ / (1 +/- c / vsinθ) , where ' θ'is the angle between observer and the direction of emitter, 'c' is the speed of observer, 'v' is speed of source. In NLL, velocity of source can be written as vsinθ , and the period equation can be shown to take its new form. We believe that this is the first application of Doppler effect in laser-processing of solid materials.
Recoil distance lifetime measurements in 122,124Xe
NASA Astrophysics Data System (ADS)
Govil, I. M.; Kumar, A.; Iyer, H.; Li, H.; Garg, U.; Ghugre, S. S.; Johnson, T.; Kaczarowski, R.; Kharraja, B.; Naguleswaran, S.; Walpe, J. C.
1998-02-01
Lifetimes of the lower-excited states in 122,124Xe are measured using the recoil-distance Doppler-shift technique. The reactions 110Pd(16O,4n)122Xe and 110Pd(18O,4n)124Xe at a beam energy of 66 MeV were used for this experiment. The lifetimes of the 2+, 4+, 6+, and 8+ states of the ground state band were extracted using the computer code LIFETIME including the corrections due to the side feeding and the nuclear deorientation effects. The lifetime of the 2+ state in 122Xe agrees with the recoil distance method (RDM) measurements but for the 124Xe it does not agree with the RDM measurements but agrees with the Coulomb-excitation experiment. The measured B(E2) values for both the nuclei are compared with the standard algebraic and the multishell models.
AUV Underwater Positioning Algorithm Based on Interactive Assistance of SINS and LBL
Zhang, Tao; Chen, Liping; Li, Yao
2015-01-01
This paper studies an underwater positioning algorithm based on the interactive assistance of a strapdown inertial navigation system (SINS) and LBL, and this algorithm mainly includes an optimal correlation algorithm with aided tracking of an SINS/Doppler velocity log (DVL)/magnetic compass pilot (MCP), a three-dimensional TDOA positioning algorithm of Taylor series expansion and a multi-sensor information fusion algorithm. The final simulation results show that compared to traditional underwater positioning algorithms, this scheme can not only directly correct accumulative errors caused by a dead reckoning algorithm, but also solves the problem of ambiguous correlation peaks caused by multipath transmission of underwater acoustic signals. The proposed method can calibrate the accumulative error of the AUV position more directly and effectively, which prolongs the underwater operating duration of the AUV. PMID:26729120
Precision timing measurements of PSR J1012+5307
NASA Astrophysics Data System (ADS)
Lange, Ch.; Camilo, F.; Wex, N.; Kramer, M.; Backer, D. C.; Lyne, A. G.; Doroshenko, O.
2001-09-01
We present results and applications of high-precision timing measurements of the binary millisecond pulsar J1012+5307. Combining our radio timing measurements with results based on optical observations, we derive complete 3D velocity information for this system. Correcting for Doppler effects, we derive the intrinsic spin parameters of this pulsar and a characteristic age of 8.6+/-1.9Gyr. Our upper limit for the orbital eccentricity of only 8×10-7 (68 per cent confidence level) is the smallest ever measured for a binary system. We demonstrate that this makes the pulsar an ideal laboratory in which to test certain aspects of alternative theories of gravitation. Our precision measurements suggest deviations from a simple pulsar spin-down timing model, which are consistent with timing noise and the extrapolation of the known behaviour of slowly rotating pulsars.
NASA Astrophysics Data System (ADS)
Todea, Carmen; Sarpe, Amalia; Vitez, Bogdan; Draganescu, Gheorghe
2014-01-01
The present study aims to assess the pulp vitality before and after different tooth bleaching procedures, in order to determine the changes in pulpal microcirculation and whether they are reversible or not. Twelve volunteers were included in this study. For each volunteer, the pulpal blood flow of maxillary teeth was assessed prior to treatment using Laser Doppler Flowmetry. The "in office" bleaching technique was used 6 anterior teeth, with two different gels, a conventional one chemically activated (Group I 3teeth) and another one activated using Nd:YAG laser (Group II-3 teeth). The bleaching agents were applied on counterpart teeth and, after obtaining a esthetic results for each tooth, the pulpal blood flow was assessed using Laser Doppler Flowmetry immediately after treatment and then after one day and one week. All data were collected and statistically analyzed. Immediately after treatment, the assessment showed an increase of pulpal blood flow, for both study groups, but higher in Group I as compared to Group II (p<0.005). The subsequent assessments showed a reduction of the pulpal blood flow with non - significant differences between the study groups (p<0.005).The results suggest that the tooth bleaching procedurere presents a safe treatment method, which does not lead to irreversible damage to the dental pulp, when used correctly.
Tan, Ou; Liu, Gangjun; Liang, Liu; Gao, Simon S.; Pechauer, Alex D.; Jia, Yali; Huang, David
2015-01-01
Abstract. An automated algorithm was developed for total retinal blood flow (TRBF) using 70-kHz spectral optical coherence tomography (OCT). The OCT was calibrated for the transformation from Doppler shift to speed based on a flow phantom. The TRBF scan pattern contained five repeated volume scans (2×2 mm) obtained in 3 s and centered on central retinal vessels in the optic disc. The TRBF was calculated using an en face Doppler technique. For each retinal vein, blood flow was measured at an optimal plane where the calculated flow was maximized. The TRBF was calculated by summing flow in all veins. The algorithm tracked vascular branching so that either root or branch veins are summed, but never both. The TRBF in five repeated volumes were averaged to reduce variation due to cardiac cycle pulsation. Finally, the TRBF was corrected for eye length variation. Twelve healthy eyes and 12 glaucomatous eyes were enrolled to test the algorithm. The TRBF was 45.4±6.7 μl/min for healthy control and 34.7±7.6 μl/min for glaucomatous participants (p-value=0.01). The intravisit repeatability was 8.6% for healthy controls and 8.4% for glaucoma participants. The proposed automated method provided repeatable TRBF measurement. PMID:26062663
NASA Astrophysics Data System (ADS)
Sabir, Zeeshan; Babar, M. Inayatullah; Shah, Syed Waqar
2012-12-01
Mobile adhoc network (MANET) refers to an arrangement of wireless mobile nodes that have the tendency of dynamically and freely self-organizing into temporary and arbitrary network topologies. Orthogonal frequency division multiplexing (OFDM) is the foremost choice for MANET system designers at the Physical Layer due to its inherent property of high data rate transmission that corresponds to its lofty spectrum efficiency. The downside of OFDM includes its sensitivity to synchronization errors (frequency offsets and symbol time). Most of the present day techniques employing OFDM for data transmission support mobility as one of the primary features. This mobility causes small frequency offsets due to the production of Doppler frequencies. It results in intercarrier interference (ICI) which degrades the signal quality due to a crosstalk between the subcarriers of OFDM symbol. An efficient frequency-domain block-type pilot-assisted ICI mitigation scheme is proposed in this article which nullifies the effect of channel frequency offsets from the received OFDM symbols. Second problem addressed in this article is the noise effect induced by different sources into the received symbol increasing its bit error rate and making it unsuitable for many applications. Forward-error-correcting turbo codes have been employed into the proposed model which adds redundant bits into the system which are later used for error detection and correction purpose. At the receiver end, maximum a posteriori (MAP) decoding algorithm is implemented using two component MAP decoders. These decoders tend to exchange interleaved extrinsic soft information among each other in the form of log likelihood ratio improving the previous estimate regarding the decoded bit in each iteration.
Ratto, C; Parello, A; Veronese, E; Cudazzo, E; D'Agostino, E; Pagano, C; Cavazzoni, E; Brugnano, L; Litta, F
2015-01-01
This multicentre study, based on the largest patient population ever published, aims to evaluate the efficacy of Doppler-guided transanal haemorrhoidal dearterialization (THD Doppler) in the treatment of symptomatic haemorrhoids and to identify the factors predicting failure for an effective mid-term outcome. Eight hundred and three patients affected by Grade II (137, 17.1%), III (548, 68.2%) and IV (118, 14.7%) symptomatic haemorrhoidal disease underwent THD Doppler, with a rectal mucopexy in patients with haemorrhoidal prolapse. The disease was assessed through a specifically designed symptom questionnaire and scoring system. A uni- and multivariate analyses of the potential predictive factors for failure were performed. The morbidity rate was 18.0%, represented mainly by pain or tenesmus (106 patients, 13.0%). Acute bleeding requiring surgical haemostasis occurred in seven patients (0.9%). No serious or life-threatening complications occurred. After a mean follow-up period of 11.1 ± 9.2 months, the overall success rate was 90.7% (728 patients), with a recurrence of haemorrhoidal prolapse, bleeding, and both symptoms in 51 (6.3%), 19 (2.4%) and 5 (0.6%) patients, respectively. Sixteen out of 47 patients undergoing re-operation had a conventional haemorrhoidectomy. All the symptoms were significantly improved in each domain of the score (P < 0.0001). At multivariate analysis the absence of morbidity and performance of a distal Doppler-guided dearterialization were associated with a better outcome. THD Doppler is a safe and effective therapy for haemorrhoidal disease. If this technique is to be employed, an accurate distal Doppler-guided dearterialization and a tailored mucopexy are mandatory to contain and reduce the symptoms. Colorectal Disease © 2014 The Association of Coloproctology of Great Britain and Ireland.
Python Leap Second Management and Implementation of Precise Barycentric Correction (barycorrpy)
NASA Astrophysics Data System (ADS)
Kanodia, Shubham; Wright, Jason
2018-01-01
We announce barycorrpy (BCPy) , a Python implementation to calculate precise barycentric corrections well below the 1 cm/s level, following the algorithm of Wright and Eastman (2014). This level of precision is required in the search for 1 Earth mass planets in the Habitable Zones of Sun-like stars by the Radial Velocity (RV) method, where the maximum semi-amplitude is about 9 cm/s. We have developed BCPy to be used in the pipeline for the next generation Doppler Spectrometers - Habitable-zone Planet Finder (HPF) and NEID. In this work, we also develop an automated leap second management routine to improve upon the one available in Astropy. It checks for and downloads a new leap second file before converting from the UT time scale to TDB.
The GalileoJupiter Probe Doppler Wind Experiment
NASA Astrophysics Data System (ADS)
Atkinson, D. H.
2001-09-01
The GalileoJupiter atmospheric entry probe was launched along with the Galileoorbiter spacecraft from Cape Canaveral in Florida, USA, on October 18, 1989. Following a cruise of greater than six years, the probe arrived at Jupiter on December 7, 1995. During its 57-minute descent, instruments on the probe studied the atmospheric composition and structure, the clouds, lightning, and energy structure of the upper Jovian atmosphere. One of the two radio channels over which the experiment data was transmitted to the orbiter was driven by an ultrastable oscillator. All motions of the probe and orbiter, including the speed of probe descent, Jupiter's rotation, and the atmospheric winds, contributed to a Doppler shift of the probe radio frequency. By accurately measuring the frequency of the probe radio signal, an accurate time history of the probe-orbiter relative motions could be reconstructed. Knowledge of the nominal probe and orbiter trajectories allowed the nominal Doppler shift to be removed from the probe radio frequency leaving a measurable frequency residual arising primarily from the zonal winds in Jupiter's atmosphere, and micromotions of the probe arising from probe spin, swing under the parachute, atmospheric turbulence, and aerodynamic effects. Assuming that the zonal horizontal winds dominate the residual probe motion, a profile of frequency residuals was generated. Inversion of the frequency residuals resulted in the first in situ measurements of the vertical profile of Jupiter's deep zonal winds. It is found that beneath 700 mb, the winds are strong and prograde, rising rapidly to 170 m/s between 1 and 4 bars. Beneath 4 bars to 21 bars, the depth at which the link with the probe was lost, the winds remain constant and strong. When corrections for the high temperatures encountered by the probe are considered, there is no evidence of diminishing or strengthening of the zonal winds in the deepest regions explored by the Galileoprobe. Following the wind recovery, the frequency residuals offer tantalizing clues to microstructure in the atmospheric dynamics, including turbulence and wave motion.
Hacihamdioglu, Duygu Ovunc; Fidanci, Kursat; Kilic, Ayhan; Gok, Faysal; Topaloglu, Rezan
2013-10-01
QT dispersion and JT dispersion are simple noninvasive arrhythmogenic markers that can be used to assess the homogeneity of cardiac repolarization. The aim of this study was to assess QT and JT dispersion and their relation with left ventricular systolic and diastolic functions in children with Bartter syndrome (BS). Nine neonatal patients with BS (median age 9.7 years) and 20 controls (median age 8 years) were investigated at rest. Both study and control subjects underwent electrocardiography (ECG) in which the interval between two R waves and QT intervals, corrected QT, QT dispersion, corrected QT dispersion, JT, corrected JT, JT dispersion and corrected JT dispersion were measured with 12-lead ECG. Two-dimensional, Doppler echocardiographic examinations were performed. Patients and controls did not differ for gender and for serum levels of potassium, magnesium, and calcium (p > 0.05). Both study and control subjects had normal echocardiographic examination and baseline myocardial performance indexes. The QT dispersion and JT dispersion were significantly prolonged in patients with BS compared to those of the controls {37.5 ms [interquartile range (IQR) 32.5-40] vs. 25.5 ms (IQR 20-30), respectively, p = 0.014 and 37.5 ms (IQR 27.5-40) vs. 22.5 ms (IQR 20-30), respectively, p = 0.003}. Elevated QT and JT dispersion during asymptomatic and normokalemic periods may be risk factors for the development of cardiac complications and arrhythmias in children with BS. In these patients the need for systematic cardiac screening and management protocol is extremely important for effective prevention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, S.K.; Russell, G.J.; Foell, W.K.
The Doppler effect for /sup 235/U-enriched UO/sub 2/ fuel pellets has been measured by the Pulsed Activation Doppler (PAD) technique in a TRIGA reactor. A combination of static electrical preheating and pulsed fission heating during irradiation was used to perform the measurements at temperatures extending from 300 K to the melting point of UO/sub 2/ (3115 K). The /sup 235/U enrichment in the experimental samples investigated ranged from 0.22 to 12 percent by weight. Measurements were made at under partially molten conditions of UO/sub 2/. Two sizes of pellets were used, with nominal surface-to-mass ratio values of 0.63 and 1.08more » cm/sup 2//g, respectively. The experimentally determined values of the Doppler ratio were in good agreement with resonance integral ratios determined from GAROL calculations and extrapolations of the low-temperature Hellstrand correlation.« less
Graphical Representation of the Doppler Shift: Classical and Relativistic
ERIC Educational Resources Information Center
Rojas, R.; Fuster, G.
2007-01-01
The Doppler shift is a frequency change of a repetitive effect, as measured by a receiver, due to the motion of the wave emitter, to the motion of the wave receiver, or both. A demonstration of the effect is provided by the sound of a car's horn that changes from a higher pitch to a lower pitch when a car drives past. Most derivations of the…
Radar Astrometry of Asteroid 99942 (2004 MN4): Predicting the 2029 Earth Encounter and Beyond
NASA Astrophysics Data System (ADS)
Giorgini, J. D.; Benner, L. A. M.; Nolan, M. C.; Ostro, S. J.
2005-08-01
Asteroid 2004 MN4 is expected to pass 4.6 (+/- 1.6) Earth-radii above the surface of the Earth on 2029-Apr-13. Such close approaches by objects as large as 2004 MN4 (D ≳ 0.3 km) are thought to occur at ≳ 1000-year intervals on average. 2004 MN4 is expected to reach 3rd magnitude and thus be visible to the unaided eye. With a disk 2-4 arcseconds across, it may be resolved by ground-based telescopes. Arecibo (2380-MHz) delay-Doppler radar astrometry, obtained in late January 2005, significantly corrected 2004 MN4's orbit by revealing a 1.4 arcsecond bias in pre-discovery optical measurements. Doppler-shifted echoes were acquired 4.8σ (176.4 mm/s) away from the predicted frequency on Jan 27. Range on Jan 29 was found to be 747 km (2.8σ ) closer to Earth than the pre-radar orbit predicted. Incorporation of these delay-Doppler measurements into a new weighted least-squares orbit solution moved the 2029-Apr-13 encounter prediction 5σ closer to the Earth, illustrating the problematic nature of prediction and statistical analysis with single-apparition optical data-sets. Without delay-Doppler data, the bias was not apparent, even when optical measurements spanned a full orbit period. The current combined data-set does not permit reliable trajectory propagation to encounters beyond 2029; Monte Carlo analysis shows that, by 2036, the 3σ confidence region wraps >300 degrees of heliocentric longitude around the Sun, with some sections of this statistical region experiencing low-probability encounters with the Earth in the 2030's, gravitationally scattering some possible trajectories inward to the orbit of Venus, or outward toward Mars. Future measurements from radar opportunities in August 2005 and May 2006 (SNR ≈5-10) have the potential to eliminate statistical encounters in the 2030's. Delay-Doppler astrometry from 2013 (SNR ≈30) should permit deterministic encounter prediction through 2070, shrinking the along-track uncertainty in 2036 by two orders of magnitude,from ≳ 8(10)8 km to ≲7(10)6 km.
An Undergraduate Experiment on Nuclear Lifetime Measurement Using the Doppler Effect
ERIC Educational Resources Information Center
Campbell, J. L.; And Others
1972-01-01
While designed for a senior undergraduate laboratory, the experiment illustrates the principles involved in the various Doppler techniques currently used in nuclear lifetime studies and demonstrates the versatility of the Ge(Li) detector in applications other than direct energy or intensity measurement. (Author/TS)
Exact Doppler broadening of tabulated cross sections. [SIGMA 1 kernel broadening method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullen, D.E.; Weisbin, C.R.
1976-07-01
The SIGMA1 kernel broadening method is presented to Doppler broaden to any required accuracy a cross section that is described by a table of values and linear-linear interpolation in energy-cross section between tabulated values. The method is demonstrated to have no temperature or energy limitations and to be equally applicable to neutron or charged-particle cross sections. The method is qualitatively and quantitatively compared to contemporary approximate methods of Doppler broadening with particular emphasis on the effect of each approximation introduced.
NASA Astrophysics Data System (ADS)
de Jong, Daan L. K.; Meel-van den Abeelen, Aisha S. S.; Lagro, Joep; Claassen, Jurgen A. H. R.; Slump, Cornelis H.
2014-03-01
The measurement of the blood flow in the middle cerebral artery (MCA) using transcranial Doppler ultrasound (US) imaging is clinically relevant for the study of cerebral autoregulation. Especially in the aging population, impairement of the autoregulation may coincide or relate to loss of perfusion and consequently loss of brain function. The cerebral autoregulation can be assessed by relating the blood pressure to the blood flow in the brain. Doppler US is a widely used, non-invasive method to measure the blood flow in the MCA. However, Doppler flow imaging is known to produce results that are dependent of the operator. The angle of the probe insonation with respect to the centerline of the blood vessel is a well known factor for output variability. In patients also the skull must be traversed and the MCA must be detected, influencing the US signal intensity. In this contribution we report two studies. We describe first an in-vitro setup to study the Doppler flow in a situation where the ground truth is known. Secondly, we report on a study with healthy volunteers where the effects of small probe displacements on the flow velocity signals are investigated. For the latter purpose, a special probe holder was designed to control the experiment.
NASA Astrophysics Data System (ADS)
Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu
2015-10-01
Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.
NASA Technical Reports Server (NTRS)
Temporelli, P. L.; Scapellato, F.; Corra, U.; Eleuteri, E.; Firstenberg, M. S.; Thomas, J. D.; Giannuzzi, P.
2001-01-01
Previous studies relating Doppler parameters and pulmonary capillary wedge pressures (PCWP) typically exclude patients with severe mitral regurgitation (MR). We evaluated the effects of varying degrees of chronic MR on the Doppler estimation of PCWP. PCWP and mitral Doppler profiles were obtained in 88 patients (mean age 55 +/- 8 years) with severe left ventricular (LV) dysfunction (mean ejection fraction 23% +/- 5%). Patients were classified by severity of MR. Patients with severe MR had greater left atrial areas, LV end-diastolic volumes, and mean PCWPs and lower ejection fractions (each P <.01). In patients with mild MR, multiple echocardiographic parameters correlated with PCWP; however, with worsening MR, only deceleration time strongly related to PCWP. From stepwise multivariate analysis, deceleration time was the best independent predictor of PCWP overall, and it was the only predictor in patients with moderate or severe MR. Doppler-derived early mitral deceleration time reliably predicts PCWP in patients with severe LV dysfunction irrespective of degree of MR.
Sun, Guanghao; Matsui, Takemi
2015-01-01
Noncontact measurement of respiratory rate using Doppler radar will play a vital role in future clinical practice. Doppler radar remotely monitors the tiny chest wall movements induced by respiration activity. The most competitive advantage of this technique is to allow users fully unconstrained with no biological electrode attachments. However, the Doppler radar, unlike other contact-type sensors, is easily affected by the random body movements. In this paper, we proposed a time domain autocorrelation model to process the radar signals for rapid and stable estimation of the respiratory rate. We tested the autocorrelation model on 8 subjects in laboratory, and compared the respiratory rates detected by noncontact radar with reference contact-type respiratory effort belt. Autocorrelation model showed the effects of reducing the random body movement noise added to Doppler radar's respiration signals. Moreover, the respiratory rate can be rapidly calculated from the first main peak in the autocorrelation waveform within 10 s.
Understanding the Doppler effect by analysing spectrograms of the sound of a passing vehicle
NASA Astrophysics Data System (ADS)
Lubyako, Dmitry; Martinez-Piedra, Gordon; Ushenin, Arthur; Denvir, Patrick; Dunlop, John; Hall, Alex; Le Roux, Gus; van Someren, Laurence; Weinberger, Harvey
2017-11-01
The purpose of this paper is to demonstrate how the Doppler effect can be analysed to deduce information about a moving source of sound waves. Specifically, we find the speed of a car and the distance of its closest approach to an observer using sound recordings from smartphones. A key focus of this paper is how this can be achieved in a classroom, both theoretically and experimentally, to deepen students’ understanding of the Doppler effect. Included are our own experimental data (48 sound recordings) to allow others to reproduce the analysis, if they cannot repeat the whole experiment themselves. In addition to its educational purpose, this paper examines the percentage errors in our results. This enabled us to determine sources of error, allowing those conducting similar future investigations to optimize their accuracy.
NASA Technical Reports Server (NTRS)
Lee, Jonggil
1990-01-01
High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.
Spectroscopic Doppler analysis for visible-light optical coherence tomography
NASA Astrophysics Data System (ADS)
Shu, Xiao; Liu, Wenzhong; Duan, Lian; Zhang, Hao F.
2017-12-01
Retinal oxygen metabolic rate can be effectively measured by visible-light optical coherence tomography (vis-OCT), which simultaneously quantifies oxygen saturation and blood flow rate in retinal vessels through spectroscopic analysis and Doppler measurement, respectively. Doppler OCT relates phase variation between sequential A-lines to the axial flow velocity of the scattering medium. The detectable phase shift is between -π and π due to its periodicity, which limits the maximum measurable unambiguous velocity without phase unwrapping. Using shorter wavelengths, vis-OCT is more vulnerable to phase ambiguity since flow induced phase variation is linearly related to the center wavenumber of the probing light. We eliminated the need for phase unwrapping using spectroscopic Doppler analysis. We split the whole vis-OCT spectrum into a series of narrow subbands and reconstructed vis-OCT images to extract corresponding Doppler phase shifts in all the subbands. Then, we quantified flow velocity by analyzing subband-dependent phase shift using linear regression. In the phantom experiment, we showed that spectroscopic Doppler analysis extended the measurable absolute phase shift range without conducting phase unwrapping. We also tested this method to quantify retinal blood flow in rodents in vivo.
Remillard, J.; Fridlind, Ann M.; Ackerman, A. S.; ...
2017-09-20
Here, a case study of persistent stratocumulus over the Azores is simulated using two independent large-eddy simulation (LES) models with bin microphysics, and forward-simulated cloud radar Doppler moments and spectra are compared with observations. Neither model is able to reproduce the monotonic increase of downward mean Doppler velocity with increasing reflectivity that is observed under a variety of conditions, but for differing reasons. To a varying degree, both models also exhibit a tendency to produce too many of the largest droplets, leading to excessive skewness in Doppler velocity distributions, especially below cloud base. Excessive skewness appears to be associated withmore » an insufficiently sharp reduction in droplet number concentration at diameters larger than ~200 μm, where a pronounced shoulder is found for in situ observations and a sharp reduction in reflectivity size distribution is associated with relatively narrow observed Doppler spectra. Effectively using LES with bin microphysics to study drizzle formation and evolution in cloud Doppler radar data evidently requires reducing numerical diffusivity in the treatment of the stochastic collection equation; if that is accomplished sufficiently to reproduce typical spectra, progress toward understanding drizzle processes is likely.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remillard, J.; Fridlind, Ann M.; Ackerman, A. S.
Here, a case study of persistent stratocumulus over the Azores is simulated using two independent large-eddy simulation (LES) models with bin microphysics, and forward-simulated cloud radar Doppler moments and spectra are compared with observations. Neither model is able to reproduce the monotonic increase of downward mean Doppler velocity with increasing reflectivity that is observed under a variety of conditions, but for differing reasons. To a varying degree, both models also exhibit a tendency to produce too many of the largest droplets, leading to excessive skewness in Doppler velocity distributions, especially below cloud base. Excessive skewness appears to be associated withmore » an insufficiently sharp reduction in droplet number concentration at diameters larger than ~200 μm, where a pronounced shoulder is found for in situ observations and a sharp reduction in reflectivity size distribution is associated with relatively narrow observed Doppler spectra. Effectively using LES with bin microphysics to study drizzle formation and evolution in cloud Doppler radar data evidently requires reducing numerical diffusivity in the treatment of the stochastic collection equation; if that is accomplished sufficiently to reproduce typical spectra, progress toward understanding drizzle processes is likely.« less
NASA Technical Reports Server (NTRS)
Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.
1979-01-01
The flow field measured around a hovering 70 percent scale vertical takeoff and landing (V/STOL) aircraft model is described. The velocity measurements were conducted with a ground based laser Doppler velocimeter. The remote sensing instrumentation and experimental tests of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain; the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft height above ground. Results show that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.
Testing the relativistic Doppler boost hypothesis for supermassive black hole binary candidates
NASA Astrophysics Data System (ADS)
Charisi, Maria; Haiman, Zoltán; Schiminovich, David; D'Orazio, Daniel J.
2018-06-01
Supermassive black hole binaries (SMBHBs) should be common in galactic nuclei as a result of frequent galaxy mergers. Recently, a large sample of sub-parsec SMBHB candidates was identified as bright periodically variable quasars in optical surveys. If the observed periodicity corresponds to the redshifted binary orbital period, the inferred orbital velocities are relativistic (v/c ≈ 0.1). The optical and ultraviolet (UV) luminosities are expected to arise from gas bound to the individual BHs, and would be modulated by the relativistic Doppler effect. The optical and UV light curves should vary in tandem with relative amplitudes which depend on the respective spectral slopes. We constructed a control sample of 42 quasars with aperiodic variability, to test whether this Doppler colour signature can be distinguished from intrinsic chromatic variability. We found that the Doppler signature can arise by chance in ˜20 per cent (˜37 per cent) of quasars in the nUV (fUV) band. These probabilities reflect the limited quality of the control sample and represent upper limits on how frequently quasars mimic the Doppler brightness+colour variations. We performed separate tests on the periodic quasar candidates, and found that for the majority, the Doppler boost hypothesis requires an unusually steep UV spectrum or an unexpectedly large BH mass and orbital velocity. We conclude that at most approximately one-third of these periodic candidates can harbor Doppler-modulated SMBHBs.
Correlation of Doppler noise during solar conjunctions with fluctuations in solar activity
NASA Technical Reports Server (NTRS)
Berman, A. L.; Rockwell, S. T.
1975-01-01
Deviations betweeb observed Doppler noise and the noise model during solar conjunction were analyzed. It is tentatively concluded that these deviations are due to short-term fluctuations in solar activity as seen along the signal path, and not to solar/antenna structure effects or system noise temperature.
Doppler and the Doppler Effect.
1984-06-01
that "if the orbital speed of the earth would be ten times its actual value, all fixed stars in the eastern part of the ecliptic would, without...ionosphere by vertical and oblique high-frequency ionospheric soundings. This is illustrated in Figure 1. Over a 24-hour period, signal amplitudes and
[Ultrasonography in acute pelvic pain].
Kupesić, Sanja; Aksamija, Alenka; Vucić, Niksa; Tripalo, Ana; Kurjak, Asim
2002-01-01
Acute pelvic pain may be the manifestation of various gynecologic and non-gynecologic disorders from less alarming rupture of the follicular cyst to life threatening conditions such as rupture of ectopic pregnancy or perforation of inflamed appendix. In order to construct an algorithm for differential diagnosis we divide acute pelvic pain into gynecologic and non-gynecologic etiology, which is than subdivided into gastrointestinal and urinary causes. Appendicitis is the most common surgical emergency and should always be considered in differential diagnosis if appendix has not been removed. Apart of clinical examination and laboratory tests, an ultrasound examination is sensitive up to 90% and specific up to 95% if graded compression technique is used. Still it is user-depended and requires considerable experience in order to perform it reliably. Meckel's diverticulitis, acute terminal ileitis, mesenteric lymphadenitis and functional bowel disease are conditions that should be differentiated from other causes of low abdominal pain by clinical presentation, laboratory and imaging tests. Dilatation of renal pelvis and ureter are typical signs of obstructive uropathy and may be efficiently detected by ultrasound. Additional thinning of renal parenchyma suggests long-term obstructive uropathy. Ruptured ectopic pregnancy, salpingitis and hemorrhagic ovarian cysts are three most commonly diagnosed gynecologic conditions presenting as an acute abdomen. Degenerating leiomyomas and adnexal torsion occur less frequently. For better systematization, gynecologic causes of acute pelvic pain could be divided into conditions with negative pregnancy test and conditions with positive pregnancy test. Pelvic inflammatory disease may be ultrasonically presented with numerous signs such as thickening of the tubal wall, incomplete septa within the dilated tube, demonstration of hyperechoic mural nodules, free fluid in the "cul-de-sac" etc. Color Doppler ultrasound contributes to more accurate diagnosis of this entity since it enables differentiation between acute and chronic stages based on analysis of the vascular resistance. Hemorrhagic ovarian cysts may be presented by variety of ultrasound findings since intracystic echoes depend upon the quality and quantity of the blood clots. Color Doppler investigation demonstrates moderate to low vascular resistance typical of luteal flow. Leiomyomas undergoing degenerative changes are another cause of acute pelvic pain commonly present in patients of reproductive age. Color flow detects regularly separated vessels at the periphery of the leiomyoma, which exhibit moderate vascular resistance. Although the classic symptom of endometriosis is chronic pelvic pain, in some patients acute pelvic pain does occur. Most of these patients demonstrate an endometrioma or "chocolate" cyst containing diffuse carpet-like echoes. Sometimes, solid components may indicate even ovarian malignancy, but if color Doppler ultrasound is applied it is less likely to obtain false positive results. One should be aware that pericystic and/or hillar type of ovarian endometrioma vascularization facilitate correct recognition of this entity. Pelvic congestion syndrome is another condition that can cause an attack of acute pelvic pain. It is usually consequence of dilatation of venous plexuses, arteries or both systems. By switching color Doppler gynecologist can differentiate pelvic congestion syndrome from multilocular cysts, pelvic inflammatory disease or adenomyosis. Ovarian vein thrombosis is a potentially fatal disorder occurring most often in the early postpartal period. Hypercoagulability, infection and stasis are main etiologic factors, and transvaginal color Doppler ultrasound is an excellent diagnostic tool to diagnose it. Acute pelvic pain may occur even in normal intrauterine pregnancy. This may be explained by hormonal changes, rapid growth of the uterus and increased blood flow. Ultrasound is mandatory for distinguishing normal intrauterine pregnancy from threatened or spontaneous abortion, ectopic pregnancy and other complications that may occur in patients with positive pregnancy test. Incomplete abortion is visualized as thickened and irregular endometrial echo with certain amount of intracavitary fluid. If applied, color Doppler ultrasound reveals low vascular resistance signals in richly perfused intracavitary area. Transvaginal sonography has high sensitivity and specificity in visualization of uterine and adnexal signs of ectopic pregnancy. Color Doppler examination may aid in detection of the peritrophoblastic flow. Furthermore, it facilitates detection of ectopic living embryo, tubal ring or unspecific adnexal tumor. Corpus luteum cysts and leiomyomas are another cause of pelvic pain during pregnancy, which can be correctly diagnosed by ultrasound. Detection of uterine dehiscence and rupture in patients with history of prior surgical intervention on uterine wall relies exclusively on correct ultrasound diagnosis. In patients with placental abruption sonographer detects hypoechoic complex representing either retroplacental hematoma, subchorionic hematoma or subamniotic hemorrhage. In closing, ultrasound has already become important and easily available tool which can efficiently recognize patients with possibly threatening conditions of different origins.
Understanding the Doppler Effect by Analysing Spectrograms of the Sound of a Passing Vehicle
ERIC Educational Resources Information Center
Lubyako, Dmitry; Martinez-Piedra, Gordon; Ushenin, Arthur; Ushenin, Arthur; Denvir, Patrick; Dunlop, John; Hall, Alex; Le Roux, Gus; van Someren, Laurence; Weinberger, Harvey
2017-01-01
The purpose of this paper is to demonstrate how the Doppler effect can be analysed to deduce information about a moving source of sound waves. Specifically, we find the speed of a car and the distance of its closest approach to an observer using sound recordings from smartphones. A key focus of this paper is how this can be achieved in a…
The rotation of the Sun: Observations at Stanford. [using the Doppler effect
NASA Technical Reports Server (NTRS)
Scherrer, J. M.; Wilcox, J. M.; Svalgaard, L.
1980-01-01
Daily observations of the photospheric rotation rate using the Doppler effect made at the Stanford Solar Observatory since May 1976 are analyzed. Results show that these observations show no daily or long period variations in the rotation rate that exceed the observational error of about one percent. The average rotation rate is the same as that of the sunspot and the large-scale magnetic field structures.
Experiments Using Cell Phones in Physics Classroom Education: The Computer-Aided g Determination
NASA Astrophysics Data System (ADS)
Vogt, Patrik; Kuhn, Jochen; Müller, Sebastian
2011-09-01
This paper continues the collection of experiments that describe the use of cell phones as experimental tools in physics classroom education.1-4 We describe a computer-aided determination of the free-fall acceleration g using the acoustical Doppler effect. The Doppler shift is a function of the speed of the source. Since a free-falling objects speed is changing linearly with time, the Doppler shift is also changing with time. It is possible to measure this shift using software that is both easy to use and readily available. Students will use the time-dependency of the Doppler shift to experimentally determine the acceleration due to gravity by using a cell phone as a freely falling object emitting a sound with constant frequency.
Radar signal analysis of ballistic missile with micro-motion based on time-frequency distribution
NASA Astrophysics Data System (ADS)
Wang, Jianming; Liu, Lihua; Yu, Hua
2015-12-01
The micro-motion of ballistic missile targets induces micro-Doppler modulation on the radar return signal, which is a unique feature for the warhead discrimination during flight. In order to extract the micro-Doppler feature of ballistic missile targets, time-frequency analysis is employed to process the micro-Doppler modulated time-varying radar signal. The images of time-frequency distribution (TFD) reveal the micro-Doppler modulation characteristic very well. However, there are many existing time-frequency analysis methods to generate the time-frequency distribution images, including the short-time Fourier transform (STFT), Wigner distribution (WD) and Cohen class distribution, etc. Under the background of ballistic missile defence, the paper aims at working out an effective time-frequency analysis method for ballistic missile warhead discrimination from the decoys.
Mufenda, Josef; Gebhardt, Stefan; van Rooyen, Rita; Theron, Gerhard
2015-01-01
UmbiFlow™ is a mobile-connected Doppler device that utilises a continuous waveform to measure resistance in the umbilical artery. The main aim of this pilot study was to determine whether the use of UmbiFlow™ for umbilical artery Doppler in patients with a suspected decreased symphysis fundal (SF) growth could safely lead to a decreased number of patients requiring referral to a more specialised level of care. A secondary aim of the study was to evaluate the effectiveness of UmbiFlow™ Doppler as a screening tool for concealed placental insufficiency in late bookers by using a single screening cut-off value that will be abnormal for any gestation >28 weeks. The cohort comprised two groups of patients: The first group included all follow-up patients with suspected intra-uterine growth restriction (a decreased symphysis-fundus measurement based on serial assessment) who underwent on-site UmbiFlow™Doppler testing performed by the midwife directly after the clinical examination. The second group included late bookers, where gestation was uncertain; but estimated >28 weeks based on clinical grounds. This group was comprised of unselected patients who report to antenatal care late for the first time and received an UmbiFlow™Doppler test for concealed placental insufficiency. UmbiFlow™Doppler could reduce the number of false referrals to hospital by 55%. A single UmbiFlow™Doppler test in late bookers appeared to identify a group of women at moderate risk of lower birth weight babies.
On the Cause of Geodetic Satellite Accelerations and Other Correlated Unmodeled Phenomena
NASA Astrophysics Data System (ADS)
Mayer, A. F.
2005-12-01
An oversight in the development of the Einstein field equations requires a well-defined amendment to general relativity that very slightly modifies the weak-field Schwarzschild geometry yielding unambiguous new predictions of gravitational relativistic phenomena. The secular accelerations of LAGEOS, Etalon and other geodetic satellites are definitively explained as a previously unmodeled relativistic effect of the gravitational field. Observed dynamic variations may be correlated to the complex dynamic relationship between the satellite angular momentum vector and the solar gravitational gradient associated with the orbital motion of the Earth and the natural precession of the satellite orbit. The Pioneer Anomaly, semidiurnal saw-toothed pseudo-range residuals of GPS satellites, peculiar results of radio occultation experiments, secular accelerations of Solar System moons, the conspicuous excess redshift of white dwarf stars and other documented empirical observations are all correlated to the same newly modeled subtle relativistic energy effect. Modern challenges in the determination and maintenance of an accurate and reliable terrestrial reference frame, difficulties with global time synchronization at nanosecond resolution and the purported existence of unlikely excessive undulations of the Geoid relative to the Ellipsoid are all related to this previously unknown phenomenon inherent to the gravitational field. Doppler satellite measurements made by the TRANSIT system (the precursor to GPS) were significantly affected; WGS 84 coordinates and other geodetic data now assumed to be correct to high accuracy require correction based on the new theoretical developments.
Multiphase fluid characterization system
Sinha, Dipen N.
2014-09-02
A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.
Correction of I/Q channel errors without calibration
Doerry, Armin W.; Tise, Bertice L.
2002-01-01
A method of providing a balanced demodular output for a signal such as a Doppler radar having an analog pulsed input; includes adding a variable phase shift as a function of time to the input signal, applying the phase shifted input signal to a demodulator; and generating a baseband signal from the input signal. The baseband signal is low-pass filtered and converted to a digital output signal. By removing the variable phase shift from the digital output signal, a complex data output is formed that is representative of the output of a balanced demodulator.
NASA Technical Reports Server (NTRS)
Colombo, Oscar L. (Editor)
1992-01-01
This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.
ISCE: A Modular, Reusable Library for Scalable SAR/InSAR Processing
NASA Astrophysics Data System (ADS)
Agram, P. S.; Lavalle, M.; Gurrola, E. M.; Sacco, G. F.; Rosen, P. A.
2016-12-01
Traditional community SAR/InSAR processing software tools have primarily focused on differential interferometry and Solid Earth applications. The InSAR Scientific Computing Environment (ISCE) was specifically designed to support the Earth Sciences user community as well as large scale operational processing tasks, thanks to its two-layered (Python+C/Fortran) architecture and modular framework. ISCE is freely distributed as a source tarball, allowing advanced users to modify and extend it for their research purposes and developing exploratory applications, while providing a relatively simple user interface for novice users to perform routine data analysis efficiently. Modular design of the ISCE library also enables easier development of applications to address the needs of Ecosystems, Cryosphere and Disaster Response communities in addition to the traditional Solid Earth applications. In this talk, we would like to emphasize the broader purview of the ISCE library and some of its unique features that sets it apart from other freely available community software like GMTSAR and DORIS, including: Support for multiple geometry regimes - Native Doppler (ALOS-1) as well Zero Doppler (ESA missions) systems. Support for data acquired by airborne platforms - e.g, JPL's UAVSAR and AirMOSS, DLR's F-SAR. Radiometric Terrain Correction - Auxiliary output layers from the geometry modules include projection angles, incidence angles, shadow-layover masks. Dense pixel offsets - Parallelized amplitude cross correlation for cryosphere / ionospheric correction applications. Rubber sheeting - Pixel-by-pixel offsets fields for resampling slave imagery for geometric co-registration/ ionospheric corrections. Preliminary Tandem-X processing support - Bistatic geometry modules. Extensibility to support other non-Solid Earth missions - Modules can be directly adopted for use with other SAR missions, e.g., SWOT. Preliminary support for multi-dimensional data products- multi-polarization, multi-frequency, multi-temporal, multi-baseline stacks via the PLANT and GIAnT toolboxes. Rapid prototyping - Geometry manipulation functionality at the python level allows users to prototype and test processing modules at the interpreter level before optimal implementation in C/C++/Fortran.
Adaptation of Dunn Solar Telescope for Jovian Doppler spectro imaging
NASA Astrophysics Data System (ADS)
Underwood, Thomas A.; Voelz, David; Schmider, François-Xavier; Jackiewicz, Jason; Dejonghe, Julien; Bresson, Yves; Hull, Robert; Goncalves, Ivan; Gualme, Patrick; Morand, Frédéric; Preis, Olivier
2017-09-01
This paper describes instrumentation used to adapt the Dunn Solar Telescope (DST) located on Sacramento Peak in Sunspot, NM for observations using the Doppler Spectro Imager (DSI). The DSI is based on a Mach-Zehnder interferometer and measures the Doppler shift of solar lines allowing for the study of atmospheric dynamics of giant planets and the detection of their acoustic oscillations. The instrumentation is being designed and built through a collaborative effort between a French team from the Observatoire de la Cote d'Azur (OCA) that designed the DSI and a US team at New Mexico State University (NMSU). There are four major components that couple the DSI to the DST: a guider/tracker, fast steering mirror (FSM), pupil stabilizer and transfer optics. The guider/tracker processes digital video to centroid-track the planet and outputs voltages to the DST's heliostat controls. The FSM removes wavefront tip/tilt components primarily due to turbulence and the pupil stabilizer removes any slow pupil "wander" introduced by the telescope's heliostat/turret arrangement. The light received at a science port of the DST is sent through the correction and stabilization components and into the DSI. The FSM and transfer optics designs are being provided by the OCA team and serve much the same functions as they do for other telescopes at which DSI observations have been conducted. The pupil stabilization and guider are new and are required to address characteristics of the DST.
HF Doppler observations of acoustic waves excited by the earthquake
NASA Technical Reports Server (NTRS)
Ichinose, T.; Takagi, K.; Tanaka, T.; Okuzawa, T.; Shibata, T.; Sato, Y.; Nagasawa, C.; Ogawa, T.
1985-01-01
Ionospheric disturbances caused by the earthquake of a relatively small and large epicentral distance have been detected by a network of HF-Doppler sounders in central Japan and Kyoto station, respectively. The HF-Doppler data of a small epicentral distance, together with the seismic data, have been used to formulate a mechanism whereby ionospheric disturbances are produced by the Urakawa-Oki earthquake in Japan. Comparison of the dynamic spectra of these data has revealed experimentally that the atmosphere acts as a low-pass filter for upward-propagating acoustic waves. By surveying the earthquakes for which the magnitude M is larger than 6.0, researchers found the ionospheric effect in 16 cases of 82 seismic events. As almost all these effects have occurred in the daytime, it is considered that it may result from the filtering effect of the upward-propagating acoustic waves.
Relativistic theory for time and frequency transfer to order c-3
NASA Astrophysics Data System (ADS)
Blanchet, L.; Salomon, C.; Teyssandier, P.; Wolf, P.
2001-04-01
This paper is motivated by the current development of several space missions (e.g. ACES on International Space Station) that will use Earth-orbit laser cooled atomic clocks, providing a time-keeping accuracy of the order of 5 10-17 in fractional frequency. We show that to such accuracy, the theory of frequency transfer between Earth and Space must be extended from the currently known relativistic order 1/c2 (which has been needed in previous space experiments such as GP-A) to the next relativistic correction of order 1/c3. We find that the frequency transfer includes the first and second-order Doppler contributions, the Einstein gravitational red-shift and, at the order 1/c3, a mixture of these effects. As for the time transfer, it contains the standard Shapiro time delay, and we present an expression also including the first and second-order Sagnac corrections. Higher-order relativistic corrections, at least {cal O}(1/c4), are numerically negligible for time and frequency transfers in these experiments, being for instance of order 10-20 in fractional frequency. Particular attention is paid to the problem of the frequency transfer in the two-way experimental configuration. In this case we find a simple theoretical expression which extends the previous formula (Vessot et al. \\cite{VessotLevine}) to the next order 1/c3. In the Appendix we present the detailed proofs of all the formulas which will be needed in such experiments.
Use of the Doppler technique to track free roaming animals from satellites
NASA Technical Reports Server (NTRS)
Maxwell, J. C.
1972-01-01
The application of the Doppler effect to track wild animals is discussed, with artificial satellites used to provide wide range coverage. The limitations of radiotelemetry for the purpose of tracking animals are presented. The advantages of the artificial satellite, with specific reference to the Nimbus satellite, are examined.
The Doppler Pendulum Experiment
ERIC Educational Resources Information Center
Lee, C. K.; Wong, H. K.
2011-01-01
An experiment to verify the Doppler effect of sound waves is described. An ultrasonic source is mounted at the end of a simple pendulum. As the pendulum swings, the rapid change of frequency can be recorded by a stationary receiver using a simple frequency-to-voltage converter. The experimental results are in close agreement with the Doppler…
Direct Detection Doppler Lidar for Spaceborne Wind Measurement
NASA Technical Reports Server (NTRS)
Korb, C. Laurence; Flesia, Cristina
1999-01-01
Aerosol and molecular based versions of the double-edge technique can be used for direct detection Doppler lidar spaceborne wind measurement. The edge technique utilizes the edge of a high spectral resolution filter for high accuracy wind measurement using direct detection lidar. The signal is split between an edge filter channel and a broadband energy monitor channel. The energy monitor channel is used for signal normalization. The edge measurement is made as a differential frequency measurement between the outgoing laser signal and the atmospheric backscattered return for each pulse. As a result the measurement is insensitive to laser and edge filter frequency jitter and drift at a level less than a few parts in 10(exp 10). We have developed double edge versions of the edge technique for aerosol and molecular-based lidar measurement of the wind. Aerosol-based wind measurements have been made at Goddard Space Flight Center and molecular-based wind measurements at the University of Geneva. We have demonstrated atmospheric measurements using these techniques for altitudes from 1 to more than 10 km. Measurement accuracies of better than 1.25 m/s have been obtained with integration times from 5 to 30 seconds. The measurements can be scaled to space and agree, within a factor of two, with satellite-based simulations of performance based on Poisson statistics. The theory of the double edge aerosol technique is described by a generalized formulation which substantially extends the capabilities of the edge technique. It uses two edges with opposite slopes located about the laser frequency at approximately the half-width of each edge filter. This doubles the signal change for a given Doppler shift and yields a factor of 1.6 improvement in the measurement accuracy compared to the single edge technique. The use of two high resolution edge filters substantially reduces the effects of Rayleigh scattering on the measurement, as much as order of magnitude, and allows the signal to noise ratio to be substantially improved in areas of low aerosol backscatter. We describe a method that allows the Rayleigh and aerosol components of the signal to be independently determined using the two edge channels and an energy monitor channel. The effects of Rayleigh scattering may then subtracted from the measurement and we show that the correction process does not significantly increase the measurement noise for Rayleigh to aerosol ratios up to 10. We show that for small Doppler shifts a measurement accuracy of 0.4 m/s can be obtained for 5000 detected photon, 1.2 m/s for 1000 detected photons, and 3.7 m/s for 50 detected photons for a Rayleigh to aerosol ratio of 5. Methods for increasing the dynamic range of the aerosol-based system to more than +/- 100 m/s are given.
Xu, Xu-Dong; Ding, Xue-Yan; Liu, Su-Xuan; Bai, Yuan; Zhao, Xian-Xian; Qin, Yong-Wen
2015-01-01
The feasibility and efficacy of simultaneous percutaneous treatment of secundum type atrial septal defect (ASD) combined with pulmonary valve stenosis (PS) have not been proved. To evaluate the safety and efficacy on the clinical benefit of simultaneous percutaneous correction of these two pathologies under local anesthesia and without transesophageal echocardiography guidance. Transpulmonary gradient, functional status, pulmonary regurgitation (PR), and tricuspid regurgitation (TR) were studied in 35 patients undergoing percutaneous balloon pulmonary valvuloplasty and ASD closure from March 2004 to July 2012. All patients were followed up until January 2013, an average of 39 months. According to color Doppler transthoracic echocardiography (TTE) before the intervention, the ASD defect size and transpulmonary gradient were 17±8.4 mm and 88±37.8 mmHg, respectively. Post-interventionally, the peak-to-peak transpulmonary gradient decreased from 77±37.6 mmHg to 20±16.2 mmHg (p<0.001) and the ASD occluder size was 23±10.5 mm. In all those patients, there was no residual shunt detected, and moderate and severe TR decreased from 45.7% (16/35) and 20% (7/35) to 8.6% (3/35) and 5.7% (2/35) before and after intervention detected by TTE, respectively. Eight patients had mild PR after procedure and two of them recovered at 6 months and no patient encountered severe adverse events at the latest follow-up. Simultaneous percutaneous corrections of ASD combined with PS are feasible, safe, and effective with satisfactory results. Copyright © 2014 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Three-dimensional laser cooling at the Doppler limit
NASA Astrophysics Data System (ADS)
Chang, R.; Hoendervanger, A. L.; Bouton, Q.; Fang, Y.; Klafka, T.; Audo, K.; Aspect, A.; Westbrook, C. I.; Clément, D.
2014-12-01
Many predictions of Doppler-cooling theory of two-level atoms have never been verified in a three-dimensional geometry, including the celebrated minimum achievable temperature ℏ Γ /2 kB , where Γ is the transition linewidth. Here we show that, despite their degenerate level structure, we can use helium-4 atoms to achieve a situation in which these predictions can be verified. We make measurements of atomic temperatures, magneto-optical trap sizes, and the sensitivity of optical molasses to a power imbalance in the laser beams, finding excellent agreement with Doppler theory. We show that the special properties of helium, particularly its small mass and narrow transition linewidth, prevent effective sub-Doppler cooling with red-detuned optical molasses. This discussion can be generalized to identify when a given species is likely to be subject to the same limitation.
Geodetic positioning using a global positioning system of satellites
NASA Technical Reports Server (NTRS)
Fell, P. J.
1980-01-01
Geodetic positioning using range, integrated Doppler, and interferometric observations from a constellation of twenty-four Global Positioning System satellites is analyzed. A summary of the proposals for geodetic positioning and baseline determination is given which includes a description of measurement techniques and comments on rank deficiency and error sources. An analysis of variance comparison of range, Doppler, and interferometric time delay to determine their relative geometric strength for baseline determination is included. An analytic examination to the effect of a priori constraints on positioning using simultaneous observations from two stations is presented. Dynamic point positioning and baseline determination using range and Doppler is examined in detail. Models for the error sources influencing dynamic positioning are developed. Included is a discussion of atomic clock stability, and range and Doppler observation error statistics based on random correlated atomic clock error are derived.
NASA Astrophysics Data System (ADS)
Budge, Scott E.; Chester, David B.
2016-05-01
The latest mission proposals for exploration of solar system bodies require accurate position and velocity data during the descent phase in order to ensure safe, soft landing at the pre-designated sites. During landing maneuvers, the accuracy of the on-board inertial measurement unit (IMU) may not be reliable due to drift over extended travel times to destinations. NASA has proposed an advanced Doppler lidar system with multiple beams that can be used to accurately determine attitude and position of the landing vehicle during descent, and to detect hazards that might exist in the landing area. In order to assess the effectiveness of such a Doppler lidar landing system, it is valuable to simulate the system with different beam numbers and configurations. In addition, the effectiveness of the system to detect and map potential landing hazards must be understood. This paper reports the simulated system performance for a proposed multi-beam Doppler lidar using the LadarSIM system simulation software. Details of the simulation methods are given, as well as lidar performance parameters such as range and velocity accuracy, detection and false alarm rates, and examples of the Doppler lidars ability to detect and characterize simulated hazards in the landing site. The simulation includes modulated pulse generation and coherent detection methods, beam footprint simulation, beam scanning, and interaction with terrain.
Reversal of orbital angular momentum arising from an extreme Doppler shift
Toninelli, Ermes; Horsley, Simon A. R.; Hendry, Euan; Phillips, David B.; Padgett, Miles J.
2018-01-01
The linear Doppler shift is familiar as the rise and fall in pitch of a siren as it passes by. Less well known is the rotational Doppler shift, proportional to the rotation rate between source and receiver, multiplied by the angular momentum carried by the beam. In extreme cases the Doppler shift can be larger than the rest-frame frequency and for a red shift, the observed frequency then becomes “negative.” In the linear case, this effect is associated with the time reversal of the received signal, but it can be observed only with supersonic relative motion between the source and receiver. However, the rotational case is different; if the radius of rotation is smaller than the wavelength, then the velocities required to observe negative frequencies are subsonic. Using an acoustic source at ≈100 Hz we create a rotational Doppler shift larger than the laboratory-frame frequency. We observe that once the red-shifted wave passes into the “negative frequency” regime, the angular momentum associated with the sound is reversed in sign compared with that of the laboratory frame. These low-velocity laboratory realizations of extreme Doppler shifts have relevance to superoscillatory fields and offer unique opportunities to probe interactions with rotating bodies and aspects of pseudorelativistic frame translation. PMID:29581257
NASA Technical Reports Server (NTRS)
Hoch, Edward L.; Hallinan, Thomas J.; Stenbaek-Nielsen, Hans C.
1994-01-01
Intensity-calibrated color video recordings of three barium-shaped charge injections in the ionopshere were used to determine the initial ionization, the column density corresponding to unity optical depth, and the yield of vaporized barium in the fast jet. It was found that the initial ionization at the burst was less than 1% and that 0% burst ionization was consistent with the observations. Owing to the Doppler shift, the column density for optical thickness in the neutral barium varies somewhat according to the velocity distribution. For the cases examined here, the column density was 2-5 x 10(exp 10) atoms/sq cm. This value, which occurred 12 to 15 s after release, should be approximately valid for most shaped charge experiments. The yield was near 30% (15% in the fast jet) for two of the releases and was somewhat lower in the third, which also had a lower peak velocity. This study also demonstrated the applicability of the computer simulation code developed for chemical releases by Stenbaek-Nielsen and provided experimental verification of the Doppler-corrected emission rates calculated b Stenbaek-Nielsen (1989).
Pointing Knowledge for SPARCLE and Space-Based Doppler Wind Lidars in General
NASA Technical Reports Server (NTRS)
Emmitt, G. D.; Miller, T.; Spiers, G.
1999-01-01
The SPAce Readiness Coherent Lidar Experiment (SPARCLE) will fly on a space shuttle to demonstrate the use of a coherent Doppler wind lidar to accurately measure global tropospheric winds. To achieve the LOS (Line of Sight) accuracy goal of approx. m/s, the lidar system must be able to account for the orbiter's velocity (approx. 7750 m/s) and the rotational component of the earth's surface motion (approx. 450 m/s). For SPARCLE this requires knowledge of the attitude (roll, pitch and yaw) of the laser beam axis within an accuracy of 80 microradians. (approx. 15 arcsec). Since SPARCLE can not use a dedicated star tracker from its earth-viewing orbiter bay location, a dedicated GPS/INS (Global Positioning System/Inertial Navigation System) will be attached to the lidar instrument rack. Since even the GPS/INS has unacceptable drifts in attitude information, the SPARCLE team has developed a way to periodically scan the instrument itself to obtain less than 10 microradian (2 arcsec) attitude knowledge accuracy that can then be used to correct the GPS/INS output on a 30 minute basis.
Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar
Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping
2015-01-01
A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters’ outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results. PMID:26694385
Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping
2015-12-14
A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters' outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results.
An experimental study of an adaptive-wall wind tunnel
NASA Technical Reports Server (NTRS)
Celik, Zeki; Roberts, Leonard
1988-01-01
A series of adaptive wall ventilated wind tunnel experiments was carried out to demonstrate the feasibility of using the side wall pressure distribution as the flow variable for the assessment of compatibility with free air conditions. Iterative and one step convergence methods were applied using the streamwise velocity component, the side wall pressure distribution and the normal velocity component in order to investigate their relative merits. The advantage of using the side wall pressure as the flow variable is to reduce the data taking time which is one the major contributors to the total testing time. In ventilated adaptive wall wind tunnel testing, side wall pressure measurements require simple instrumentation as opposed to the Laser Doppler Velocimetry used to measure the velocity components. In ventilated adaptive wall tunnel testing, influence coefficients are required to determine the pressure corrections in the plenum compartment. Experiments were carried out to evaluate the influence coefficients from side wall pressure distributions, and from streamwise and normal velocity distributions at two control levels. Velocity measurements were made using a two component Laser Doppler Velocimeter system.
Minami, Yasunori; Kudo, Masatoshi
2009-12-31
The success rate of percutaneous radiofrequency (RF) ablation for hepatocellular carcinoma (HCC) depends on correct targeting via an imaging technique. However, RF electrode insertion is not completely accurate for residual HCC nodules because B-mode ultrasound (US), color Doppler, and power Doppler US findings cannot adequately differentiate between treated and viable residual tumor tissue. Electrode insertion is also difficult when we must identify the true HCC nodule among many large regenerated nodules in cirrhotic liver. Two breakthroughs in the field of US technology, harmonic imaging and the development of second-generation contrast agents, have recently been described and have demonstrated the potential to dramatically broaden the scope of US diagnosis of hepatic lesions. Contrast-enhanced harmonic US imaging with an intravenous contrast agent can evaluate small hypervascular HCC even when B-mode US cannot adequately characterize tumor. Therefore, contrast-enhanced harmonic US can facilitate RF ablation electrode placement in hypervascular HCC, which is poorly depicted by B-mode US. The use of contrast-enhanced harmonic US in ablation therapy for liver cancer is an efficient approach.
NASA Astrophysics Data System (ADS)
Quarles, C. A.; Sheffield, Thomas; Stacy, Scott; Yang, Chun
2009-03-01
The uniformity of rubber-carbon black composite materials has been investigated with positron Doppler Broadening Spectroscopy (DBS). The number of grams of carbon black (CB) mixed into one hundred grams of rubber, phr, is used to characterize a sample. A typical concentration for rubber in tires is 50 phr. The S parameter measured by DBS has been found to depend on the phr of the sample as well as the type of rubber and carbon black. The variation in carbon black concentration within a surface area of about 5 mm diameter can be measured by moving a standard Na-22 or Ge-68 positron source over an extended sample. The precision of the concentration measurement depends on the dwell time at a point on the sample. The time required to determine uniformity over an extended sample can be reduced by running with much higher counting rate than is typical in DBS and correcting for the systematic variation of S parameter with counting rate. Variation in CB concentration with mixing time at the level of about 0.5% has been observed.
Color and Vector Flow Imaging in Parallel Ultrasound With Sub-Nyquist Sampling.
Madiena, Craig; Faurie, Julia; Poree, Jonathan; Garcia, Damien; Garcia, Damien; Madiena, Craig; Faurie, Julia; Poree, Jonathan
2018-05-01
RF acquisition with a high-performance multichannel ultrasound system generates massive data sets in short periods of time, especially in "ultrafast" ultrasound when digital receive beamforming is required. Sampling at a rate four times the carrier frequency is the standard procedure since this rule complies with the Nyquist-Shannon sampling theorem and simplifies quadrature sampling. Bandpass sampling (or undersampling) outputs a bandpass signal at a rate lower than the maximal frequency without harmful aliasing. Advantages over Nyquist sampling are reduced storage volumes and data workflow, and simplified digital signal processing tasks. We used RF undersampling in color flow imaging (CFI) and vector flow imaging (VFI) to decrease data volume significantly (factor of 3 to 13 in our configurations). CFI and VFI with Nyquist and sub-Nyquist samplings were compared in vitro and in vivo. The estimate errors due to undersampling were small or marginal, which illustrates that Doppler and vector Doppler images can be correctly computed with a drastically reduced amount of RF samples. Undersampling can be a method of choice in CFI and VFI to avoid information overload and reduce data transfer and storage.
The role of magnetic resonance imaging and ultrasound in patients with adnexal masses.
Sohaib, S A; Mills, T D; Sahdev, A; Webb, J A W; Vantrappen, P O; Jacobs, I J; Reznek, R H
2005-03-01
To evaluate the accuracy of ultrasonography (US) and magnetic resonance imaging (MRI) in characterizing adnexal masses, and to determine which patients may benefit from MRI. We prospectively studied 72 women (mean age 53 years, range 19 to 86 years) with clinically suspected adnexal masses. A single experienced sonographer performed transabdominal and transvaginal greyscale spectral and colour Doppler examinations. MRI was carried out on a 1.5T system using T1, T2 and fat-suppressed T1-weighted sequences before and after intravenous injection of gadolinium. The adnexal masses were categorized as benign or malignant without knowledge of clinical details, according to the imaging features which were compared with the surgical and pathological findings. For characterizing lesions as malignant, the sensitivity, specificity and accuracy of MRI were 96.6%, 83.7% and 88.9%, respectively, and of US were 100%, 39.5% and 63.9%, respectively. MRI was more specific (p<0.05) than US. Both MRI and US correctly diagnosed 17 (24%) cases with benign and 28 (39%) cases with malignant masses. MRI correctly diagnosed 19 (26%) cases with benign lesion(s), which on US were thought to be malignant. The age, menopausal status and CA-125 levels in these women made benign disease likely, but US features were suggestive of malignancy (large masses and solid-cystic lesions with nodules). MRI is more specific and accurate than US and Doppler assessment for characterizing adnexal masses. Women who clinically have a relatively low risk of malignancy but who have complex sonographic features may benefit from MRI.
Gartner, J.W.; Ganju, N.K.
2007-01-01
Discharge measurements were made by acoustic Doppler current profiler at two locations on the Colorado River during the 2004 controlled flood from Glen Canyon Dam, Arizona. Measurement hardware and software have constantly improved from the 1980s such that discharge measurements by acoustic profiling instruments are now routinely made over a wide range of hydrologic conditions. However, measurements made with instruments deployed from moving boats require reliable boat velocity data for accurate measurements of discharge. This is normally accomplished by using special acoustic bottom track pings that sense instrument motion over bottom. While this method is suitable for most conditions, high current flows that produce downstream bed sediment movement create a condition known as moving bed that will bias velocities and discharge to lower than actual values. When this situation exists, one solution is to determine boat velocity with satellite positioning information. Another solution is to use a lower frequency instrument. Discharge measurements made during the 2004 Glen Canyon controlled flood were subject to moving-bed conditions and frequent loss of bottom track. Due to site conditions and equipment availability, the measurements were conducted without benefit of external positioning information or lower frequency instruments. This paper documents and evaluates several techniques used to correct the resulting underestimated discharge measurements. One technique produces discharge values in good agreement with estimates from numerical model and measured hydrographs during the flood. ?? 2007, by the American Society of Limnology and Oceanography, Inc.
Terahertz Atmospheric Attenuation and Continuum Effects
2013-05-01
comparison of the two pressure-broadened line shapes as well as a Doppler -broadened line shape. As can be seen in the figure, the effect of foreign gas...Conference April 29-‐May 3, 2013, Baltimore, MD Figure 2. A Doppler -broadened absorption line with the partial pressure of... Goldman , A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W. J., Mandin, J. Y., Massie, S. T., Mikhailenko, S. N., Miller, C. E., Moazzen
Pirat, Bahar; Yildirir, Aylin; Simşek, Vahide; Ozin, Bülent; Müderrisoğlu, Haldun
2008-03-01
We investigated the effect of increased preload through postural changes (leg lifting) on tissue Doppler parameters in patients with and without coronary artery disease (CAD). The study included 42 patients who were scheduled for coronary angiography. All the patients underwent standard two-dimensional, color Doppler and tissue Doppler echocardiography before coronary angiography. Tissue Doppler imaging was performed from septal and lateral mitral annuluses at baseline and during 45 degrees leg lifting followed by two-minute stabilization. Patients were grouped based on coronary angiography findings: those having stenosis greater than 70% were considered to have CAD and those with normal coronary arteries comprised the control group. Echocardiography measurements were compared between the two groups. Angiography showed normal coronary arteries or border irregularities in 22 patients and CAD in 20 patients. The two groups were similar with regard to demographic data and ejection fractions, except for male preponderance in the CAD group. Compared with the control group, patients with CAD exhibited a significantly lower isovolumic acceleration rate (IVA) at the lateral (p=0.007) and septal (p=0.03) mitral annuluses. In the control group, leg lifting resulted in increased systolic velocity (S) compared with baseline at the lateral (p=0.009) and septal (p=0.01) annuluses, whereas S wave augmentation was only significant at the septal annulus (p=0.009) in patients with CAD. No significant change was observed in IVA following leg lifting in both groups. Preload alteration induced by leg lifting resulted in similar changes in tissue Doppler parameters in patients with and without CAD, except for blunted augmentation of S wave at the lateral annulus in CAD. Detection of decreased IVA at baseline may be a useful finding for CAD.
A Comparison of the Electromagnetic and Acoustic Doppler Effects Using Geometrical Diagrams
ERIC Educational Resources Information Center
Bokor, Nandor
2009-01-01
Students often find the difference in the electromagnetic and the acoustic Doppler formulae somewhat puzzling. As is shown below, geometrical diagrams and the concept of "event"--a point in spacetime having coordinates (x,y,z,t)--can be a useful and simple way to explain the physical background behind the fundamental differences between the two…
Compact and Rugged Transceiver for Coherent Doppler Wind Lidar Applications in Space
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Amzajerdian, Farzin; Singh, Upendra N.; Trieu, Bo C.; Modlin, Ed A.; Petros, Mulugeta; Bai, Yingxin; Reithmaier, Karl;
2007-01-01
High-accuracy, vertical profiles of the horizontal vector wind in earth s atmosphere, with the global coverage of an orbiting sensor, are a highly desired measurement of NASA, NOAA, and many other agencies and countries. It is the consensus of NASA and NOAA that the most cost effective, lowest risk measurement method with the earliest achievable mission date is the hybrid Doppler lidar method which utilizes both coherent- and direct-detection Doppler lidars to obtain the desired profiles. NASA Langley Research Center (LaRC) has advanced the 2-micron pulsed solid-state laser greatly over the past 15 years and has recently demonstrated 1.2 J of pulse energy whereas the requirement for a 400-km hybrid Doppler lidar mission is only 0.25 J. The IIP project reported here is an effort to increase the ruggedness and to compactly package the LaRC state-of-the-art laser technology.
Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang
2017-01-01
To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method. PMID:28165369
Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang
2017-02-03
To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method.
IR lasers in a struggle against dangerous cosmic objects
NASA Astrophysics Data System (ADS)
Kuzyakov, Boris A.
2001-03-01
Humanity can struggle with the small dangerous cosmic objects in our time and its parameter knowledge are needed. A present paper deals with prospects for the perspective of the laser methods applications for a dangerous asteroids discovering and a remote sensing and for the course correction systems of the influence expedients. The cosmic IR lasers will be used for remote sensing measurement of the various cosmic objects parameters: dimensions are more than 50 m, velocity is more than 10 km/s. The laser methods have the good perspectives among a large fleet of diagnostics technical means. The more effective CO2-laser parameters were defined for the solar systems smaller bodies velocity analysis. The laser is supplied with modulated laser radiation and an automatic tuning optical system. The CO2-lidars are needed for the asteroids detections and remote sensing at the distances of 30,000 km to 1 Mkm. A laser Doppler anemometer method with adaptive selection is used. The power calculations were made for the various asteroids in a cosmic space. The possibilities are estimated for remote sensing and for the course correction systems of the influence expedients also. The such system must be good for the distances nearby 12600 km, as the asteroids velocity can be more than 70 km/s.
NASA Astrophysics Data System (ADS)
Ghafoor, Fazal; Bacha, Bakht Amin; Khan, Salman
2015-05-01
A gain-based four-level atomic medium for the stability in superluminal light propagation using control field and inverse Doppler shift as coherence generators is studied. In regimes of weak and strong control field, a broadband and multiple controllable transparency windows are, respectively, identified with significantly enhanced group indices. The observed Doppler effect for the class of high atomic velocity of the medium is counterintuitive in comparison to the effect of the class of low atomic velocity. The intensity of each of the two pump fields is kept less than the optimum limit reported in [M. D. Stenner and D. J. Gauthier, Phys. Rev. A 67, 063801 (2003), 10.1103/PhysRevA.67.063801] for stability in the superluminal light pulse. Consequently, superluminal stable domains with the generated coherence are explored.
Transcutaneous measurement of volume blood flow
NASA Technical Reports Server (NTRS)
Daigle, R. E.; Mcleod, F. D.; Miller, C. W.; Histand, M. B.; Wells, M. K.
1974-01-01
Blood flow velocity measurements, using Doppler velocimeter, are described. The ability to measure blood velocity using ultrasound is derived from the Doppler effect; the change in frequency which occurs when sound is reflected or transmitted from a moving target. When ultrasound of the appropriate frequency is transmitted through a moving blood stream, the blood cells act as point scatterers of ultrasonic energy. If this scattered ultrasonic energy is detected, it is found to be shifted in frequency according to the velocity of the blood cells, nu, the frequency of the incident sound, f sub o, the speed of sound in the medium, c, and the angle between the sound beam and the velocity vector, o. The relation describing this effect is known as the Doppler equation. Delta f = 2 f sub o x nu x cos alpha/c. The theoretical and experimental methods are evaluated.
NASA Astrophysics Data System (ADS)
Ahmad, S.; Ahmad, A.; Bacha, B. A.; Khan, A. A.; Abdul Jabar, M. S.
2017-12-01
Surface Plasmon Polaritons (SPPs) are theoretically investigated at the interface of a dielectric metal and gold. The output pulse from the dielectric is used as the input pulse for the generation of SPPs. The SPPs show soliton-like behavior at the interface. The solitary form of a SPP is maintained under the effects of Kerr nonlinearity, Doppler broadening and Fresnel dragging whereas its phase shift is significantly modified. A 0.3radian phase shift is calculated in the presence of both Kerr nonlinearity and Fresnel dragging in the absence of plasma motion. The phase shift is enhanced to 60radian due to the combined effect of Doppler broadening, Kerr nonlinearity and Fresnel dragging. The results may have significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster and sensing technology.
Vasospasm is a significant factor in cyclosporine-induced neurotoxicity: case report.
Braakman, Hilde M H; Lodder, Jan; Postma, Alida A; Span, Lambert F R; Mess, Werner H
2010-05-11
The aetiology of central nervous system lesions observed in cerebral cyclosporine neurotoxicity remains controversial. We report a 48-year-old woman with a non-severe aplastic anaemia who presented with stroke-like episodes while on cyclosporine treatment.Transcranial Doppler ultrasound revealed severely elevated flow velocities in several cerebral vessels, consistent with vasospasm. Immediately after reducing the cyclosporine dose, the stroke-like episodes disappeared. Only after cyclosporine withdrawal the transcranial Doppler ultrasound abnormalities fully resolved. This case demonstrates a significant role of vasospasm in the pathway of cyclosporine-induced neurotoxicity. Transcranial Doppler ultrasound is an effective tool for the diagnosis and follow-up of cyclosporine-induced vasospasm.
Aerial ultrasonic micro Doppler sonar detection range in outdoor environments.
Bradley, Marshall; Sabatier, James M
2012-03-01
Current research demonstrates that micro Doppler sonar has the capability to uniquely identify the presence of a moving human, making it an attractive component in surveillance systems for border security applications. Primary environmental factors that limit sonar performance are two-way spreading losses, ultrasonic absorption, and backscattered energy from the ground that appears at zero Doppler shift in the sonar signal processor. Spectral leakage from the backscatter component has a significant effect on sonar performance for slow moving targets. Sonar performance is shown to rapidly decay as the sensor is moved closer to the ground due to increasing surface backscatter levels. © 2012 Acoustical Society of America
Raffo, Antonio; Costanzo, Sandra; Di Massa, Giuseppe
2017-01-08
A vibration sensor based on the use of a Software-Defined Radio (SDR) platform is adopted in this work to provide a contactless and multipurpose solution for low-cost real-time vibrations monitoring. In order to test the vibration detection ability of the proposed non-contact method, a 1 GHz Doppler radar sensor is simulated and successfully assessed on targets at various distances, with various oscillation frequencies and amplitudes. Furthermore, an SDR Doppler platform is practically realized, and preliminary experimental validations on a device able to produce a harmonic motion are illustrated to prove the effectiveness of the proposed approach.
Review of the frequency stabilization of TEA CO2 laser oscillators
NASA Technical Reports Server (NTRS)
Willetts, David V.
1987-01-01
Most applications of TEA CO2 lasers in heterodyne radar systems require that the transmitter has a high degree of frequency stability. This ensures good Doppler resolution and maximizes receiver sensitivity. However, the environment within the device is far from benign with fast acoustic and electrical transients being present. Consequently the phenomena which govern the frequency stability of pulsed lasers are quite different from those operative in their CW counterparts. This review concentrates on the mechanisms of chirping within the output pulse; pulse to pulse frequency drift may be eliminated by frequency measurement and correction on successive pulses. It emerges that good stability hinges on correct cavity design. The energy-dependent laser-induced frequency sweep falls dramatically as mode diameter is increased. Thus, it is necessary to construct resonators with good selectivity for single mode operation while having a large spot size.
Performance analysis of multiple PRF technique for ambiguity resolution
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Curlander, J. C.
1992-01-01
For short wavelength spaceborne synthetic aperture radar (SAR), ambiguity in Doppler centroid estimation occurs when the azimuth squint angle uncertainty is larger than the azimuth antenna beamwidth. Multiple pulse recurrence frequency (PRF) hopping is a technique developed to resolve the ambiguity by operating the radar in different PRF's in the pre-imaging sequence. Performance analysis results of the multiple PRF technique are presented, given the constraints of the attitude bound, the drift rate uncertainty, and the arbitrary numerical values of PRF's. The algorithm performance is derived in terms of the probability of correct ambiguity resolution. Examples, using the Shuttle Imaging Radar-C (SIR-C) and X-SAR parameters, demonstrate that the probability of correct ambiguity resolution obtained by the multiple PRF technique is greater than 95 percent and 80 percent for the SIR-C and X-SAR applications, respectively. The success rate is significantly higher than that achieved by the range cross correlation technique.
Barberato, Silvio H; Mantilla, Diego E V; Misocami, M Arcio; Gonçalves, Simone M; Bignelli, Alexandre T; Riella, Miguel C; Pecoits-Filho, Roberto
2004-11-01
Left atrial (LA) volume has been proposed as a less preload-dependent parameter of diastolic function than Doppler mitral inflow. We hypothesize that in the absence of mitral regurgitation and atrial fibrilation, LA enlargement could be a more practical (and relatively preload-independent) method for the evaluation of left ventricular diastolic function. The aim of the present study was to determine the effects of preload reduction by hemodialysis on LA volume.
Laser Doppler flowmetry for measurement of laminar capillary blood flow in the horse
NASA Astrophysics Data System (ADS)
Adair, Henry S., III
1998-07-01
Current methods for in vivo evaluation of digital hemodynamics in the horse include angiography, scintigraphy, Doppler ultrasound, electromagnetic flow and isolated extracorporeal pump perfused digit preparations. These techniques are either non-quantifiable, do not allow for continuous measurement, require destruction of the horse orare invasive, inducing non- physiologic variables. In vitro techniques have also been reported for the evaluation of the effects of vasoactive agents on the digital vessels. The in vitro techniques are non-physiologic and have evaluated the vasculature proximal to the coronary band. Lastly, many of these techniques require general anesthesia or euthanasia of the animal. Laser Doppler flowmetry is a non-invasive, continuous measure of capillary blood flow. Laser Doppler flowmetry has been used to measure capillary blood flow in many tissues. The principle of this method is to measure the Doppler shift, that is, the frequency change that light undergoes when reflected by moving objects, such as red blood cells. Laser Doppler flowmetry records a continuous measurement of the red cell motion in the outer layer of the tissue under study, with little or no influence on physiologic blood flow. This output value constitutes the flux of red cells and is reported as capillary perfusion units. No direct information concerning oxygen, nutrient or waste metabolite exchange in the surrounding tissue is obtained. The relationship between the flowmeter output signal and the flux of red blood cells is linear. The principles of laser Doppler flowmetry will be discussed and the technique for laminar capillary blood flow measurements will be presented.
Doppler waveform study as indicator of change of portal pressure after administration of octreotide
Haider, Shahbaz; Hussain, Qurban; Tabassum, Sumera; Hussain, Bilal; Durrani, Muhammad Rasheed; Ahmed, Fayyaz
2016-01-01
Objective: To estimate the effect of portal pressure lowering drug ‘octreotide’, by observing the Doppler waveform before and after the administration of intravenous bolus of octreotide and thus to assess indirectly its efficacy to lower the portal pressure. Methods: This quassi experimental study was carried out in Medical Department in collaboration with Radiology Department of Jinnah Postgraduate Medical Center Karachi Pakistan from September 10, 2015 to February 5, 2016. Cases were selected from patients admitted in Medical Wards and those attending Medical OPD. Diagnosis of cirrhosis was confirmed by Clinical Examination and Lab & Imaging investigation in Medical Department. Doppler waveform study was done by experienced radiologist in Radiology Department before and after administration of octreotide. Doppler signals were obtained from the right hepatic vein. Waveform tracings were recorded for five seconds and categorized as ‘monophasic’, ‘biphasic’ and ‘triphasic’. Waveform changes from one waveform to other were noted and analyzed. Results: Significant change i.e. from ‘monophasic’ to ‘biphasic’ or ‘biphasic’ to ‘triphasic’ was seen in 56% cases while ‘monophasic’ to ‘triphasic’ was seen in 20% cases. No change was seen in 24% cases. Improvement in waveform reflects lowering of portal vein pressure. Conclusion: Non invasive Hepatic vein Doppler waveform study showed improvement in Doppler waveform after administration of octreotide in 76% cases. Doppler waveform study has the potential of becoming non invasive ‘follow up tool’ of choice for assessing portal pressure in patients having variceal bleed due to portal hypertension. PMID:27648043
NASA Astrophysics Data System (ADS)
Yazıcı, Birsen; Son, Il-Young; Cagri Yanik, H.
2018-05-01
This paper introduces a new and novel radar interferometry based on Doppler synthetic aperture radar (Doppler-SAR) paradigm. Conventional SAR interferometry relies on wideband transmitted waveforms to obtain high range resolution. Topography of a surface is directly related to the range difference between two antennas configured at different positions. Doppler-SAR is a novel imaging modality that uses ultra-narrowband continuous waves (UNCW). It takes advantage of high resolution Doppler information provided by UNCWs to form high resolution SAR images. We introduce the theory of Doppler-SAR interferometry. We derive an interferometric phase model and develop the equations of height mapping. Unlike conventional SAR interferometry, we show that the topography of a scene is related to the difference in Doppler frequency between two antennas configured at different velocities. While the conventional SAR interferometry uses range, Doppler and Doppler due to interferometric phase in height mapping; Doppler-SAR interferometry uses Doppler, Doppler-rate and Doppler-rate due to interferometric phase in height mapping. We demonstrate our theory in numerical simulations. Doppler-SAR interferometry offers the advantages of long-range, robust, environmentally friendly operations; low-power, low-cost, lightweight systems suitable for low-payload platforms, such as micro-satellites; and passive applications using sources of opportunity transmitting UNCW.
Sequential processing of GNSS-R delay-Doppler maps (DDM's) for ocean wind retrieval
NASA Astrophysics Data System (ADS)
Garrison, J. L.; Rodriguez-Alvarez, N.; Hoffman, R.; Annane, B.; Leidner, M.; Kaitie, S.
2016-12-01
The delay-Doppler map (DDM) is the fundamental data product from GNSS-Reflectometry (GNSS-R), generated by cross-correlating the scattered signal with a local signal model over a range of delays and Doppler frequencies. Delay and Doppler form a set of coordinates on the ocean surface and the shape of the DDM is related to the distribution of ocean slopes. Wind speed can thus be estimated by fitting a scattering model to the shape of the observed DDM or defining an observable (e.g. average power or leading edge slope) which characterizes the change in DDM shape. For spaceborne measurements, the DDM is composed of signals scattered from a glistening zone, which can extend for up to 100 km or more. Setting a reasonable resolution requirement (25 km or less) will limit the usable portion of the DDM at each observation to only a small region near the specular point. Cyclone-GNSS (CYGNSS) is a NASA mission to study developing tropical cyclones using GNSS-R. CYGNSS science requirements call for wind retrieval with an accuracy of 10 percent above 20 m/s within a 25 km resolution. This requirement can be met using an observable defined for DDM samples between +/- 0.25 chips in delay and +/- 1 kHz in Doppler, with some filtering of the observations using a minimum threshold for range corrected gain (RCG). An improved approach, to be reviewed in this presentation, sequentially processes multiple DDM's, to combine observations generated from different "looks" at the same points on the surface. Applying this sequential process to synthetic data indicates a significant improvement in wind retrieval accuracy over a 10 km grid covering a region around the specular point. The attached figure illustrates this improvement, using simulated CYGNSS DDM's generated using the wind fields from hurricanes Earl and Danielle (left). The middle plots show wind retrievals using only an observable defined within the 25 km resolution cell. The plots on the right side show the retrievals from sequential processing of multiple DDM's. Recently, the assimilation of GNSS-R retrievals into weather forecast models has been studied. The authors have begun to investigate the direct assimilation of other data products, such as the DDM itself, or the results of sequential processing.
El Sharkawy, Osama A; Refaat, Emad K; Ibraheem, Abdel Elmoniem M; Mahdy, Wafiya R; Fayed, Nirmeen A; Mourad, Wesam S; Abd Elhafez, Hanaa S; Yassen, Khaled A
2013-10-01
Major hepatic resections may result in hemodynamic changes. Aim is to study transesophageal Doppler (TED) monitoring and fluid management in comparison to central venous pressure (CVP) monitoring. A follow-up comparative hospital based study. 59 consecutive cirrhotic patients (CHILD A) undergoing major hepatotomy. CVP monitoring only (CVP group), (n=30) and TED (Doppler group), (n=29) with CVP transduced but not available on the monitor. Exclusion criteria include contra-indication for Doppler probe insertion or bleeding tendency. An attempt to reduce CVP during the resection in both groups with colloid restriction, but crystalloids infusion of 6 ml/kg/h was allowed to replace insensible loss. Post-resection colloids infusion were CVP guided in CVP group (5-10 mmHg) and corrected flow time (FTc) aortic guided in Doppler group (>0.4 s) blood products given according to the laboratory data. Using the FTc to guide Hydroxyethyl starch 130/0.4 significantly decreased intake in TED versus CVP (1.03 [0.49] versus 1.74 [0.41] Liter; P<0.05). Nausea, vomiting, and chest infection were less in TED with a shorter hospital stay (P<0.05). No correlation between FTc and CVP (r=0.24, P > 0.05). Cardiac index and stroke volume of TED increased post-resection compared to baseline, 3.0 (0.9) versus 3.6 (0.9) L/min/m(2), P<0.05; 67.1 (14.5) versus 76 (13.2) ml, P<0.05, respectively, associated with a decrease in systemic vascular resistance (SVR) 1142.7 (511) versus 835.4 (190.9) dynes.s/cm(5), P<0.05. No significant difference in arterial pressure and CVP between groups at any stage. CVP during resection in TED 6.4 (3.06) mmHg versus 6.1 (1.4) in CVP group, P=0.6. TED placement consumed less time than CVP (7.3 [1.5] min versus 13.2 [2.9], P<0.05). TED in comparison to the CVP monitoring was able to reduced colloids administration post-resection, lower morbidity and shorten hospital stay. TED consumed less time to insert and was also able to present significant hemodynamic changes. Advanced surgical techniques of resection play a key role in reducing blood loss despite CVP more than 5 cm H2O. TED fluid management protocols during resection need to be developed.
Hiremath, Rudresh; Gowda, Goutham; Ibrahim, Jebin; Reddy, Harish T; Chodiboina, Haritha; Shah, Rushit
2017-07-01
The aim of this study was to validate the diagnostic feasibility of a novel scoring system of peripheral arterial disease (PAD) in smokers and patients with diabetes depending on duplex Doppler sonographic features. Patients presenting with the symptomatology of PAD were divided into three groups: diabetes only, smoking only, and smokers with diabetes. The patients were clinically examined, a clinical severity score was obtained, and the subjects were categorized into the three extrapolated categories of mild, moderate, and severe. All 106 subjects also underwent a thorough duplex Doppler examination, and various aspects of PAD were assessed and tabulated. These components were used to create a novel duplex Doppler scoring system. Depending on the scores obtained, each individual was categorized as having mild, moderate, or severe illness. The Cohen kappa value was used to assess interobserver agreement between the two scoring systems. Interobserver agreement between the traditional Rutherford clinical scoring system and the newly invented duplex Doppler scoring system showed a kappa value of 0.83, indicating significant agreement between the two scoring systems (P<0.001). Duplex Doppler imaging is an effective screening investigation for lower extremity arterial disease, as it not only helps in its diagnosis, but also in the staging and grading of the disease, providing information that can be utilized for future management and treatment planning.
NASA Technical Reports Server (NTRS)
Beyon, J. Y.; Koch, G. J.; Kavaya, M. J.
2010-01-01
A data acquisition and signal processing system is being developed for a 2-micron airborne wind profiling coherent Doppler lidar system. This lidar, called the Doppler Aerosol Wind Lidar (DAWN), is based on a Ho:Tm:LuLiF laser transmitter and 15-cm diameter telescope. It is being packaged for flights onboard the NASA DC-8, with the first flights in the summer of 2010 in support of the NASA Genesis and Rapid Intensification Processes (GRIP) campaign for the study of hurricanes. The data acquisition and processing system is housed in a compact PCI chassis and consists of four components such as a digitizer, a digital signal processing (DSP) module, a video controller, and a serial port controller. The data acquisition and processing software (DAPS) is also being developed to control the system including real-time data analysis and display. The system detects an external 10 Hz trigger pulse and initiates the data acquisition and processing process, and displays selected wind profile parameters such as Doppler shift, power distribution, wind directions and velocities. Doppler shift created by aircraft motion is measured by an inertial navigation/GPS sensor and fed to the signal processing system for real-time removal of aircraft effects from wind measurements. A general overview of the system and the DAPS as well as the coherent Doppler lidar system is presented in this paper.
NASA Technical Reports Server (NTRS)
Ulvestad, J. S.; Thurman, S. W.
1992-01-01
An error covariance analysis methodology is used to investigate different weighting schemes for two-way (coherent) Doppler data in the presence of transmission-media and observing-platform calibration errors. The analysis focuses on orbit-determination performance in the interplanetary cruise phase of deep-space missions. Analytical models for the Doppler observable and for transmission-media and observing-platform calibration errors are presented, drawn primarily from previous work. Previously published analytical models were improved upon by the following: (1) considering the effects of errors in the calibration of radio signal propagation through the troposphere and ionosphere as well as station-location errors; (2) modelling the spacecraft state transition matrix using a more accurate piecewise-linear approximation to represent the evolution of the spacecraft trajectory; and (3) incorporating Doppler data weighting functions that are functions of elevation angle, which reduce the sensitivity of the estimated spacecraft trajectory to troposphere and ionosphere calibration errors. The analysis is motivated by the need to develop suitable weighting functions for two-way Doppler data acquired at 8.4 GHz (X-band) and 32 GHz (Ka-band). This weighting is likely to be different from that in the weighting functions currently in use; the current functions were constructed originally for use with 2.3 GHz (S-band) Doppler data, which are affected much more strongly by the ionosphere than are the higher frequency data.
Reversal of orbital angular momentum arising from an extreme Doppler shift.
Gibson, Graham M; Toninelli, Ermes; Horsley, Simon A R; Spalding, Gabriel C; Hendry, Euan; Phillips, David B; Padgett, Miles J
2018-04-10
The linear Doppler shift is familiar as the rise and fall in pitch of a siren as it passes by. Less well known is the rotational Doppler shift, proportional to the rotation rate between source and receiver, multiplied by the angular momentum carried by the beam. In extreme cases the Doppler shift can be larger than the rest-frame frequency and for a red shift, the observed frequency then becomes "negative." In the linear case, this effect is associated with the time reversal of the received signal, but it can be observed only with supersonic relative motion between the source and receiver. However, the rotational case is different; if the radius of rotation is smaller than the wavelength, then the velocities required to observe negative frequencies are subsonic. Using an acoustic source at [Formula: see text]100 Hz we create a rotational Doppler shift larger than the laboratory-frame frequency. We observe that once the red-shifted wave passes into the "negative frequency" regime, the angular momentum associated with the sound is reversed in sign compared with that of the laboratory frame. These low-velocity laboratory realizations of extreme Doppler shifts have relevance to superoscillatory fields and offer unique opportunities to probe interactions with rotating bodies and aspects of pseudorelativistic frame translation. Copyright © 2018 the Author(s). Published by PNAS.
Suzuki, Y; Kambara, H; Kadota, K; Tamaki, S; Yamazato, A; Nohara, R; Osakada, G; Kawai, C
1985-08-01
To evaluate the noninvasive detection of shunt flow using a newly developed real-time 2-dimensional color-coded Doppler flow imaging system (D-2DE), 20 patients were examined, including 10 with secundum atrial septal defect (ASD) and 10 control subjects. These results were compared with contrast 2-dimensional echocardiography (C-2DE). Doppler 2DE displayed the blood flow toward the transducer as red and the blood flow away from the transducer as blue in 8 shades, each shade adding green according to the degree of variance in Doppler frequency. In the patients with ASD, D-2DE clearly visualized left-to-right shunt flow in 7 of 10 patients. In 5 of these 7 patients, C-2DE showed a negative contrast effect in the same area of the right atrium. Thus, D-2DE increased the sensitivity over C-2DE for detecting left-to-right shunt flow (from 50% to 70%). However, the specificity was slightly less in D-2DE (90%) than C-2DE (100%). Doppler 2DE could not visualize right-to-left shunt flow in all patients with ASD, though C-2DE showed a positive contrast effect in the left-sided heart in 9 of 10 patients with ASD. Thus, D-2DE is clinically useful for detecting left-to-right shunt flow in patients with ASD.
Experiments Using Cell Phones in Physics Classroom Education: The Computer-Aided "g" Determination
ERIC Educational Resources Information Center
Vogt, Patrik; Kuhn, Jochen; Muller, Sebastian
2011-01-01
This paper continues the collection of experiments that describe the use of cell phones as experimental tools in physics classroom education. We describe a computer-aided determination of the free-fall acceleration "g" using the acoustical Doppler effect. The Doppler shift is a function of the speed of the source. Since a free-falling objects…
Shen, Changqing; Liu, Fang; Wang, Dong; Zhang, Ao; Kong, Fanrang; Tse, Peter W.
2013-01-01
The condition of locomotive bearings, which are essential components in trains, is crucial to train safety. The Doppler effect significantly distorts acoustic signals during high movement speeds, substantially increasing the difficulty of monitoring locomotive bearings online. In this study, a new Doppler transient model based on the acoustic theory and the Laplace wavelet is presented for the identification of fault-related impact intervals embedded in acoustic signals. An envelope spectrum correlation assessment is conducted between the transient model and the real fault signal in the frequency domain to optimize the model parameters. The proposed method can identify the parameters used for simulated transients (periods in simulated transients) from acoustic signals. Thus, localized bearing faults can be detected successfully based on identified parameters, particularly period intervals. The performance of the proposed method is tested on a simulated signal suffering from the Doppler effect. Besides, the proposed method is used to analyze real acoustic signals of locomotive bearings with inner race and outer race faults, respectively. The results confirm that the periods between the transients, which represent locomotive bearing fault characteristics, can be detected successfully. PMID:24253191
Shen, Changqing; Liu, Fang; Wang, Dong; Zhang, Ao; Kong, Fanrang; Tse, Peter W
2013-11-18
The condition of locomotive bearings, which are essential components in trains, is crucial to train safety. The Doppler effect significantly distorts acoustic signals during high movement speeds, substantially increasing the difficulty of monitoring locomotive bearings online. In this study, a new Doppler transient model based on the acoustic theory and the Laplace wavelet is presented for the identification of fault-related impact intervals embedded in acoustic signals. An envelope spectrum correlation assessment is conducted between the transient model and the real fault signal in the frequency domain to optimize the model parameters. The proposed method can identify the parameters used for simulated transients (periods in simulated transients) from acoustic signals. Thus, localized bearing faults can be detected successfully based on identified parameters, particularly period intervals. The performance of the proposed method is tested on a simulated signal suffering from the Doppler effect. Besides, the proposed method is used to analyze real acoustic signals of locomotive bearings with inner race and outer race faults, respectively. The results confirm that the periods between the transients, which represent locomotive bearing fault characteristics, can be detected successfully.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitriev, A K; Konovalov, A N; Ul'yanov, V A
2014-04-28
We report an experimental study of the self-mixing effect in a single-mode multifrequency erbium fibre laser when radiation backscattered from an external moving object arrives at its cavity. To eliminate resulting chaotic pulsations in the laser, we have proposed a technique for suppressing backscattered radiation through the use of multimode fibre for radiation delivery. The multifrequency operation of the laser has been shown to lead to strong fluctuations of the amplitude of the Doppler signal and a nonmonotonic variation of the amplitude with distance to the scattering object. In spite of these features, the self-mixing signal was detected with amore » high signal-to-noise ratio (above 10{sup 2}) when the radiation was scattered by a rotating disc, and the Doppler frequency shift, evaluated as the centroid of its spectrum, had high stability (0.15%) and linearity relative to the rotation rate. We conclude that the self-mixing effect in this type of fibre laser can be used for measuring the velocity of scattering objects and in Doppler spectroscopy for monitoring the laser evaporation of materials and biological tissues. (control of laser radiation parameters)« less
Dutra, E C; Koch, J A; Presura, R; Angermeier, W A; Darling, T; Haque, S; Mancini, R C; Covington, A M
2016-11-01
Spectroscopic techniques in the visible range are often used in plasma experiments to measure B-field induced Zeeman splitting, electron densities via Stark broadening, and temperatures from Doppler broadening. However, when electron densities and temperatures are sufficiently high, the broadening of the Stark and Doppler components can dominate the emission spectra and obscure the Zeeman component. In this research, we are developing a time-resolved multi-axial technique for measuring the Zeeman, Stark, and Doppler broadened line emission of dense magnetized plasmas for Z-pinch and Dense Plasma Focus (DPF) accelerators. The line emission is used to calculate the electron densities, temperatures, and B-fields. In parallel, we are developing a line-shape modeling code that incorporates the broadening effects due to Stark, Doppler, and Zeeman effects for dense magnetized plasma. This manuscript presents the details of the experimental setup and line shape code, along with the results obtained from an Al iii doublet at the University of Nevada, Reno at Nevada Terawatt Facility. Future tests are planned to further evaluate the technique and modeling on other material wire array, gas puff, and DPF platforms.
NASA Astrophysics Data System (ADS)
Feltens, Joachim; Bellei, Gabriele; Springer, Tim; Kints, Mark V.; Zandbergen, René; Budnik, Frank; Schönemann, Erik
2018-06-01
Context: Calibration of radiometric tracking data for effects in the Earth atmosphere is a crucial element in the field of deep-space orbit determination (OD). The troposphere can induce propagation delays in the order of several meters, the ionosphere up to the meter level for X-band signals and up to tens of meters, in extreme cases, for L-band ones. The use of media calibrations based on Global Navigation Satellite Systems (GNSS) measurement data can improve the accuracy of the radiometric observations modelling and, as a consequence, the quality of orbit determination solutions. Aims: ESOC Flight Dynamics employs ranging, Doppler and delta-DOR (Delta-Differential One-Way Ranging) data for the orbit determination of interplanetary spacecraft. Currently, the media calibrations for troposphere and ionosphere are either computed based on empirical models or, under mission specific agreements, provided by external parties such as the Jet Propulsion Laboratory (JPL) in Pasadena, California. In order to become independent from external models and sources, decision fell to establish a new in-house internal service to create these media calibrations based on GNSS measurements recorded at the ESA tracking sites and processed in-house by the ESOC Navigation Support Office with comparable accuracy and quality. Methods: For its concept, the new service was designed to be as much as possible depending on own data and resources and as less as possible depending on external models and data. Dedicated robust and simple algorithms, well suited for operational use, were worked out for that task. This paper describes the approach built up to realize this new in-house internal media calibration service. Results: Test results collected during three months of running the new media calibrations in quasi-operational mode indicate that GNSS-based tropospheric corrections can remove systematic signatures from the Doppler observations and biases from the range ones. For the ionosphere, a direct way of verification was not possible due to non-availability of independent third party data for comparison. Nevertheless, the tests for ionospheric corrections showed also slight improvements in the tracking data modelling, but not to an extent as seen for the tropospheric corrections. Conclusions: The validation results confirmed that the new approach meets the requirements upon accuracy and operational use for the tropospheric part, while some improvement is still ongoing for the ionospheric one. Based on these test results, green light was given to put the new in-house service for media calibrations into full operational mode in April 2017.
NASA Astrophysics Data System (ADS)
Sinelnikov, V. M.; Lvova, G. P.; Guliaeva, T. L.; Pakhomov, S. V.; Glotov, A. P.
The possibility of measuring the electron density profile in the height interval 70-110 km with a two-frequency coherent transmitter set mounted on a 'small' geophysical rocket of type M-100 is investigated. Results are presented of measurements using the phase Doppler method carried out at middle latitudes in May 1979 and February 1980. Good consistency of the profiles measured for the D and E regions of the ionosphere with those of IRI is not always obtained, even when the correct helio and geophysic conditions of the experiments are given for calculations with IRI.
Decloedt, A; de Clercq, D; van der Vekens, N; Verheyen, T; Ven, S; van Loon, G
2016-01-01
Shortening of atrial fibrillation cycle length (AFCL) is a marker of atrial electrical remodelling due to atrial fibrillation (AF). To investigate the effect of administration of detomidine on AFCL measured invasively from an intra-atrial electrogram (AFCLEGM) and noninvasively by tissue Doppler imaging (AFCLTDI). We hypothesised that detomidine would have no effect on AFCL but would improve the ease of TDI measurements and facilitate noninvasive AFCL determination. Prospective clinical study. Measurements were performed before and after i.v. administration of 7.5 μg/kg bwt detomidine in 33 episodes of AF in 32 horses (582 ± 64 kg bwt, 10 ± 3 years old) referred for electrical cardioversion. The AFCLEGM was measured from a right atrial intracardiac electrogram. The AFCLTDI was measured from atrial colour tissue velocity curves in 5 atrial wall regions. Mean AFCLEGM and AFCLTDI without and with sedation were compared using a repeated-measures linear mixed model with Bonferroni correction for multiple comparisons and calculation of the Bland-Altman mean bias and limits of agreement between AFCLEGM and AFCLTDI. The mean AFCL was significantly increased after sedation, but this increase was very small (mean difference +4 ms). For AFCLTDI measurements, sedation significantly improved the quality of the atrial myocardial velocity curves and the number of AF cycles that could be measured per cardiac cycle. The Bland-Altman bias between AFCLEGM without sedation and AFCLTDI with sedation ranged from -18 to +15 ms depending on wall region. Bland-Altman limits of agreement were similar between AFCLEGM without sedation and AFCLTDI without and with sedation. Therefore, noninvasive AFCLTDI measurements with sedation can be used to estimate the atrial fibrillatory rate. Sedation facilitates noninvasive AFCL measurements but causes a slight increase in AFCL. Noninvasive AFCL measurements can be used as an indicator of atrial electrical remodelling, to study AF pathophysiology and to investigate the effect of anti-arrhythmic drugs. © 2014 EVJ Ltd.
Double frequency of difference frequency signals for optical Doppler effect measuring velocity
NASA Astrophysics Data System (ADS)
Yang, Xiufang; Zhou, Renkui; Wei, W. L.; Wang, Xiaoming
2005-12-01
The mathematical model for measuring moving objects (including fluid body, rolled steel materials in the steel works, turbulent flow, vibration body, etc.) velocity or speed by non-contact method is established using light-wave Doppler effect in this paper. In terms of concrete conditions of different optical circuits, and with the correlated conditions substituted, it is easy to obtain the measurement velocity formulas related to optical circuits. An optical circuit layout of difference Doppler effect measuring velocity is suggested in this paper. The fine beam of light emitted by laser is divided into parallel two beam by spectroscope and mirror They are focused on the object point p by a condenser lens respectively. The object point p become a diffuse source. It scatter rays to every aspect. Some rays scattered by the diffuse source p are collected by a lens. Photoelectric detecter receive the lights collected by the lens. This optical circuit layout can realize the double frequency of difference frequency signals in a novel way.
Wahab, Mohamed Abdel; Shehta, Ahmed; Hamed, Hosam; Elshobary, Mohamed; Salah, Tarek; Sultan, Ahmed Mohamed; Fathy, Omar; Elghawalby, Ahmed; Yassen, Amr; Shiha, Usama
2015-01-01
Introduction The early hepatic venous outflow obstruction (HVOO) is a rare but serious complication after liver transplantation, which may result in graft loss. We report a case of early HVOO after living donor liver transplantation, which was managed by ectopic placement of foley catheter. Presentation A 51 years old male patient with end stage liver disease received a right hemi-liver graft. On the first postoperative day the patient developed impairment of the liver functions. Doppler ultrasound (US) showed absence of blood flow in the right hepatic vein without thrombosis. The decision was to re-explore the patient, which showed torsion of the graft upward and to the right side causing HVOO. This was managed by ectopic placement of a foley catheter between the graft and the diaphragm and the chest wall. Gradual deflation of the catheter was gradually done guided by Doppler US and the patient was discharged without complications. Discussion Mechanical HVOO results from kinking or twisting of the venous anastomosis due to anatomical mismatch between the graft and the recipient abdomen. It should be managed surgically by repositioning of the graft or redo of venous anastomosis. Several ideas had been suggested for repositioning and fixation of the graft by the use of Sengstaken–Blakemore tubes, tissue expanders, and surgical glove expander. Conclusion We report the use of foley catheter to temporary fix the graft and correct the HVOO. It is a simple and safe way, and could be easily monitored and removed under Doppler US without any complications. PMID:25805611
Lahner, D; Kabon, B; Marschalek, C; Chiari, A; Pestel, G; Kaider, A; Fleischmann, E; Hetz, H
2009-09-01
Fluid management guided by oesophageal Doppler monitor has been reported to improve perioperative outcome. Stroke volume variation (SVV) is considered a reliable clinical predictor of fluid responsiveness. Consequently, the aim of the present trial was to evaluate the accuracy of SVV determined by arterial pulse contour (APCO) analysis, using the FloTrac/Vigileo system, to predict fluid responsiveness as measured by the oesophageal Doppler. Patients undergoing major abdominal surgery received intraoperative fluid management guided by oesophageal Doppler monitoring. Fluid boluses of 250 ml each were administered in case of a decrease in corrected flow time (FTc) to <350 ms. Patients were connected to a monitoring device, obtaining SVV by APCO. Haemodynamic variables were recorded before and after fluid bolus application. Fluid responsiveness was defined as an increase in stroke volume index >10%. The ability of SVV to predict fluid responsiveness was assessed by calculation of the area under the receiver operating characteristic (ROC) curve. Twenty patients received 67 fluid boluses. Fifty-two of the 67 fluid boluses administered resulted in fluid responsiveness. SVV achieved an area under the ROC curve of 0.512 [confidence interval (CI) 0.32-0.70]. A cut-off point for fluid responsiveness was found for SVV > or =8.5% (sensitivity: 77%; specificity: 43%; positive predictive value: 84%; and negative predictive value: 33%). This prospective, interventional observer-blinded study demonstrates that SVV obtained by APCO, using the FloTrac/Vigileo system, is not a reliable predictor of fluid responsiveness in the setting of major abdominal surgery.
NASA Technical Reports Server (NTRS)
Tanelli, Simone; Meagher, Jonathan P.; Durden, Stephen L.; Im, Eastwood
2004-01-01
Following the successful Precipitation Radar (PR) of the Tropical Rainfall Measuring Mission, a new airborne, 14/35 GHz rain profiling radar, known as Airborne Precipitation Radar - 2 (APR-2), has been developed as a prototype for an advanced, dual-frequency spaceborne radar for a future spaceborne precipitation measurement mission. . This airborne instrument is capable of making simultaneous measurements of rainfall parameters, including co-pol and cross-pol rain reflectivities and vertical Doppler velocities, at 14 and 35 GHz. furthermore, it also features several advanced technologies for performance improvement, including real-time data processing, low-sidelobe dual-frequency pulse compression, and dual-frequency scanning antenna. Since August 2001, APR-2 has been deployed on the NASA P3 and DC8 aircrafts in four experiments including CAMEX-4 and the Wakasa Bay Experiment. Raw radar data are first processed to obtain reflectivity, LDR (linear depolarization ratio), and Doppler velocity measurements. The dataset is then processed iteratively to accurately estimate the true aircraft navigation parameters and to classify the surface return. These intermediate products are then used to refine reflectivity and LDR calibrations (by analyzing clear air ocean surface returns), and to correct Doppler measurements for the aircraft motion. Finally, the the melting layer of precipitation is detected and its boundaries and characteristics are identifIed at the APR-2 range resolution of 30m. The resulting 3D dataset will be used for validation of other airborne and spaceborne instruments, development of multiparametric rain/snow retrieval algorithms and melting layer characterization and statistics.
Accuracy of a pulse-coherent acoustic Doppler profiler in a wave-dominated flow
Lacy, J.R.; Sherwood, C.R.
2004-01-01
The accuracy of velocities measured by a pulse-coherent acoustic Doppler profiler (PCADP) in the bottom boundary layer of a wave-dominated inner-shelf environment is evaluated. The downward-looking PCADP measured velocities in eight 10-cm cells at 1 Hz. Velocities measured by the PCADP are compared to those measured by an acoustic Doppler velocimeter for wave orbital velocities up to 95 cm s-1 and currents up to 40 cm s-1. An algorithm for correcting ambiguity errors using the resolution velocities was developed. Instrument bias, measured as the average error in burst mean speed, is -0.4 cm s-1 (standard deviation = 0.8). The accuracy (root-mean-square error) of instantaneous velocities has a mean of 8.6 cm s-1 (standard deviation = 6.5) for eastward velocities (the predominant direction of waves), 6.5 cm s-1 (standard deviation = 4.4) for northward velocities, and 2.4 cm s-1 (standard deviation = 1.6) for vertical velocities. Both burst mean and root-mean-square errors are greater for bursts with ub ??? 50 cm s-1. Profiles of burst mean speeds from the bottom five cells were fit to logarithmic curves: 92% of bursts with mean speed ??? 5 cm s-1 have a correlation coefficient R2 > 0.96. In cells close to the transducer, instantaneous velocities are noisy, burst mean velocities are biased low, and bottom orbital velocities are biased high. With adequate blanking distances for both the profile and resolution velocities, the PCADP provides sufficient accuracy to measure velocities in the bottom boundary layer under moderately energetic inner-shelf conditions.
Childhood cognitive development after fetal growth restriction.
Llurba, E; Baschat, A A; Turan, O M; Harding, J; McCowan, L M
2013-04-01
To examine the relationship between prenatal umbilical artery (UA) and internal carotid artery (ICA) Doppler findings and cognitive development at 3 and 6 years in low-birth-weight children. This was a study of 209 low-birth-weight (< 10(th) centile) children born after 28 gestational weeks with UA resistance index (RI) measured within 2 weeks before delivery. Children with normal UA- and ICA-RI were defined as small-for-gestational age (SGA) and those with abnormal UA or ICA Doppler findings as having fetal growth restriction (FGR). Cognitive ability at 3 and 6 years' corrected age was assessed using the fourth edition of the Stanford-Binet Intelligence Scale (SBIS) and compared between SGA and FGR groups. An SBIS score < 85 was considered to indicate delayed development. The median gestational age at diagnosis of abnormal fetal growth was 36.6 (range, 28-41) weeks. There were 87 (41.6%) children classified as having FGR and 122 (58.4%) as SGA. The mean global SBIS score at 3 years was 109.4 (SD, 22.8) and at 6 years it was 110.5 (SD, 13.9). Overall, 22 (10.5%) children had delayed development at 3 years. Total SBIS scores and individual domain scores did not differ between FGR and SGA groups at 3 or 6 years and similar proportions in each group had delayed development. Abnormal prenatal UA and ICA Doppler findings are not associated with lower developmental scores in low-birth-weight children delivered in the third trimester of pregnancy. Copyright © 2013 ISUOG. Published by John Wiley & Sons, Ltd.
A symmetrical laser Doppler velocity meter and its application to turbulence characterization
NASA Technical Reports Server (NTRS)
Mazumder, M. K.
1972-01-01
A symmetrical method of optical heterodyning of the Doppler shifted scattered laser radiation developed for velocity measurements with a minimal instrumental spectral broadening and a high signal-to-noise ratio. The method employs two laser beams incident on the moving scatterer and does not use any reference beam for heterodyning. The Doppler signal frequency is independent of the scattering angle and the signal possesses no receiving aperture broadening. Optical alignment is simple. Typical values of the instrumental spectral broadening were approximately 0.8 percent of the center frequency of the Doppler signal, and the signal-to-noise ratio was approximately 25 dB, obtained from an air flow system using submicron dioctylphthalate scattering aerosol. Experimental and theoretical studies were made on the characteristics of the Doppler signal and the effect of system parameters in turbulent flow measurement. The optimization process involved in the beam optics and in the use of a spatial filter is described. For localized flow measurement in any direction of the three-dimensional orthogonal coordinates, the system, using uncorrected optical components, had a sensing volume which can be described by a sensitive length of 600 microns and a diameter of 100 microns.
Christian Andreas Doppler--the man and his legacy.
Coman, I M
2005-01-01
Reminding the life and legacy of the Austrian Scientist who discovered the famous 'Doppler Effect'. C.A. Doppler was born the 29th of November 1803 in Salzburg. After studies in Linz and Vienna, he graduated in mathematics, became assistant at the University and later worked as a professor in Prague. Back to Vienna, he was appointed as professor at the Polytechnic School and --in 1850--as first director of the new Institute of Physics. C.A. Doppler did publish on magnetism, electricity, optics, and astronomy. He remains in the history of science due to the discovery presented (May 25, 1842) at the Royal Bohemian Society of Science entitled "On the colored light of the double stars and certain other stars of the heavens"; the paper described (applied to light) the shift of frequency which bears nowadays his name. The theory was later experimentally proven and--extended for any electromagnetic and acoustic waves--got myriads if applications in astronomy, physics, aviation, meteorology, and health science. Satomura in Japan (1955) published it's first ultrasound vascular application--with successive achievements in the next decades. Doppler ultrasonagraphy became the main noninvasive instrument for functional assesment of heart and vessels.
High-Precision Sub-Doppler Infrared Spectroscopy of HeH^+
NASA Astrophysics Data System (ADS)
Perry, Adam J.; Hodges, James N.; Markus, Charles; Kocheril, G. Stephen; Jenkins, Paul A., II; McCall, Benjamin J.
2014-06-01
The helium hydride ion, HeH^+, is the simplest heteronuclear diatomic, and is composed of the two most abundant elements in the universe. It is widely believed that this ion was among the first molecules to be formed; thus it has been of great interest to scientists studying the chemistry of the early universe. HeH^+ is also isoelectronic to H_2 which makes it a great target ion for theorists to include adiabatic and non-adiabatic corrections to its Born-Oppenheimer potential energy surface. The accuracy of such calculations is further improved by incorporating electron relativistic and quantum electrodynamic effects. Using the highly sensitive spectroscopic technique of Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy (NICE-OHVMS) we are able to perform sub-Doppler spectroscopy on ions of interest. When combined with frequency calibration from an optical frequency comb we fit line centers with sub-MHz precision as has previously been shown for the H3^+, HCO+, and CH5+ ions. Here we report a list of the most precisely measured rovibrational transitions of HeH^+ to date. These measurements should allow theorists to continue to push the boundaries of ab initio calculations in order to further study this important fundamental species. S. Lepp, P. C. Stancil, A. Dalgarno J. Phys. B (2002), 35, R57. S. Lepp, Astrophys. Space Sci. (2003), 285, 737. K. Pachucki, J. Komasa, J. Chem. Phys (2012), 137, 204314. J. N. Hodges, A. J. Perry, P. A. Jenkins II, B. M. Siller, B. J. McCall J. Chem. Phys. (2013), 139, 164201.
NASA Astrophysics Data System (ADS)
Kavetskyy, T.; Iida, K.; Nagashima, Y.; Kuczumow, A.; Šauša, O.; Nuzhdin, V.; Valeev, V.; Stepanov, A. L.
2017-01-01
The Doppler broadening slow positron beam spectroscopy (SPBS) data for the previously observed effect of carbonization in high-dose (>1016 ion/cm2) 40 keV boron-ion-implanted polymethylmethacrylate (B:PMMA) and another one obtained for the effect of formation of metal nanoparticles in high-dose 30 keV silver-ion-implanted polymer (Ag:PMMA) are compared. Following to the Doppler broadening SPBS results, a difference in the high-dose ion-irradiation-induced processes in B:PMMA and Ag:PMMA is detected.
NASA Technical Reports Server (NTRS)
Shepherd, K. P.
1979-01-01
The effect of the duration of jet aircraft flyover sounds on humans and the annoyance factor are examined. A nine point numerical category scaling technique is utilized for the study. Changes in the spectral characteristics of aircraft sounds caused by atmospheric attenuation are discussed. The effect of Doppler shifts using aircraft noises with minimal pure tone content is reported. The spectral content of sounds independent of duration and Doppler shift are examined by analysis of variance.
Gupta, P J; Kalaskar, S; Taori, S; Heda, P S
2011-12-01
Doppler-guided ligation of hemorrhoidal vessels is being proposed as a treatment of grade 2 and 3 hemorrhoids. Many researchers are coupling this procedure with mucopexy or lifting of hemorrhoids to control the prolapse more effectively. The present study was conducted in patients with 3rd-degree hemorrhoids to determine the usefulness of Doppler-guided hemorrhoidal artery ligation compared to mucopexy of prolapsing hemorrhoids and to compare it with mere mucopexy of the hemorrhoids. A double-blind, randomized controlled study was conducted on 48 consecutive patients with grade III hemorrhoids requiring surgery. The patients were randomized into two groups. Half of them were treated with ligation and mucopexy [SL], while the remaining patients underwent a Doppler-guided hemorrhoidal artery ligation followed by ligation and mucopexy [DSL]. The patients were examined by a blinded independent observer at 2, 4, and 6 weeks and at the end of 1 year after the operation to evaluate postoperative pain scores, amount of analgesics consumed, and complications encountered. The observer also assessed recurrence of hemorrhoids after 1 year. Operative time was significantly longer in the DSL group (31 min vs. 9 min P < 0.003). The postoperative pain score was significantly higher in the Doppler group [4.4 vs. 2.2, P < 0.002 (visual analogue scale)]. The mean total analgesic dose and duration of pain control using analgesics were greater and longer for the Doppler group than for the SL group (17 vs. 11 tablets, and 13 days vs. 9 days, respectively; P < 0. 01). Complications were similar in both the groups. At 1-year follow-up, the recurrence of hemorrhoids was not statistically significant in either group (4 patients in SL group and 3 patients in DSL group; P < 0.93). Suture ligation of hemorrhoids is a simple, cost-effective, and convenient modality for treating grade 3 hemorrhoids. Doppler assistance in ligating the hemorrhoidal vessels prior to hemorrhoidal mucopexy offers no advantage and is a time-consuming procedure.
GFO-1 Geophysical Data Record and Orbit Verifications for Global Change Studies
NASA Technical Reports Server (NTRS)
Shum, C. K.
2000-01-01
This final report summarizes the research work conducted under NASA's Physical Oceanography Program, entitled, GFO-1 Geophysical Data Record And Orbit Verifications For Global Change Studies, for the investigation time period from December 1, 1997 through November 30, 2000. The primary objectives of the investigation include providing verification and improvement for the precise orbit, media, geophysical, and instrument corrections to accurately reduce U.S. Navy's Geosat-Followon-1 (GFO-1) mission radar altimeter data to sea level measurements. The status of the GFO satellite (instrument and spacecraft operations, orbital tracking and altimeter) is summarized. GFO spacecraft has been accepted by the Navy from Ball Aerospace and has been declared operational since November, 2000. We have participated in four official GFO calibration/validation periods (Cal/Val I-IV), spanning from June 1999 through October 2000. Results of verification of the GFO orbit and geophysical data record measurements both from NOAA (IGDR) and from the Navy (NGDR) are reported. Our preliminary results indicate that: (1) the precise orbit (GSFC and OSU) can be determined to approx. 5 - 6 cm rms radially using SLR and altimeter crossovers; (2) estimated GFO MOE (GSFC or NRL) radial orbit accuracy is approx. 7 - 30 cm and Operational Doppler orbit accuracy is approx. 60 - 350 cm. After bias and tilt adjustment (1000 km arc), estimated Doppler orbit accuracy is approx. 1.2 - 6.5 cm rms and the MOE accuracy is approx. 1.0 - 2.3 cm; (3) the geophysical and media corrections have been validated versus in situ measurements and measurements from other operating altimeters (T/P and ERS-2). Altimeter time bias is insignificant with 0-2 ms. Sea state bias is about approx. 3 - 4.5% of SWH. Wet troposphere correction has approx. 1 cm bias and approx. 3 cm rms when compared with ERS-2 data. Use of GIM and IRI95 provide ionosphere correction accurate to 2-3 cm rms during medium to high solar activities; (4) the noise of the GFO altimeter data (uncorrected SSH) is about 15 mm, compared to 19 min for ERS-2, and 12 min for TOPEX. It is anticipated that the operational GFO-1 altimeter data will contribute to a number of researches in physical oceanography. A list of relevant presentations and publications is attached.
Progesterone increases resistance of ophthalmic and central retinal arteries in climacteric women.
Souza, M A M De; Souza, B M De; Geber, S
2013-04-01
To evaluate the effect of a synthetic progestin on the vascular resistance of the ophthalmic and central retinal arteries in climacteric women, compared to placebo, using transorbital ultrasound with Doppler velocimetry. We performed a prospective, randomized, double-blinded, placebo-controlled study with 216 climacteric women. Subjects were randomly allocated to one of two groups: either the group receiving placebo (one pill/day for 30 days) (n = 108) or the group receiving progestin (5 mg medroxyprogesterone acetate/day for 30 days) (n = 108). Transorbital Doppler velocimetric ultrasound was performed, before and after treatment; we measured the pulsatility index, resistance index and systole/diastole ratio. The mean ages of the participants in the study group and the control group were 54 ± 6.2 years (range 48-59 years) and 55 ± 6.8 years (range 46-60 years), respectively. When we compared the effect of the progestin on the central retinal artery before and after treatment, we observed a significant increase after the treatment in all Doppler indices. The same was observed when we compared the effect of the progestin on the ophthalmic artery. In the group of women receiving placebo, the Doppler indices were similar before and after treatment. Our results demonstrate the existence of a progestogenic vasoconstrictive effect in the ophthalmic and central retinal arteries. As this study provides new data, the observed effect needs further investigations to better elucidate its extent. Moreover, our findings may be particularly useful to others interested in understanding the vascular dynamics of the cerebral vessels and to researchers running clinical trials related to hormone replacement therapy.
Thermal effects of diagnostic ultrasound in an anthropomorphic skull model.
Vyskocil, E; Pfaffenberger, S; Kollmann, C; Gleiss, A; Nawratil, G; Kastl, S; Unger, E; Aumayr, K; Schuhfried, O; Huber, K; Wojta, J; Gottsauner-Wolf, M
2012-12-01
Exposure to diagnostic ultrasound (US) can significantly heat biological tissue although conventional routine examinations are regarded as safe. The risk of unwanted thermal effects increases with a high absorption coefficient and extended insonation time. Certain applications of transcranial diagnostic US (TC-US) require prolonged exposure. An anthropomorphic skull model (ASM) was developed to evaluate thermal effects induced by TC-US of different modalities. The objective was to determine whether prolonged continuous TC-US application results in potentially harmful temperature increases. The ASM consists of a human skull with tissue mimicking material and exhibits acoustic and anatomical characteristics of the human skull and brain. Experiments are performed with a diagnostic US device testing four different US modalities: Duplex PW (pulsed wave) Doppler, PW Doppler, color flow Doppler and B-mode. Temperature changes are recorded during 180 minutes of insonation. All measurements revealed significant temperature increases during insonation independent of the US modality. The maximum temperature elevation of + 5.25° C (p < 0.001) was observed on the surface of the skull exposed to duplex PW Doppler. At the bone-brain border a maximum temperature increae of + 2.01 °C (p < 0.001) was noted. Temperature increases within the brain were < 1.23 °C (p = 0.001). The highest values were registered using the duplex PW Doppler modality. TC-US induces significant local heating effects in an ASM. An application duration that extends routine clinical periods causes potentially harmful heating especially in tissue close to bone. TC-US elevates the temperature in the brain mimicking tissue but is not capable of producing harmful temperature increases during routine examinations. However, the risk of thermal injury in brain tissue increases significantly after an exposure time of > 2 hours. © Georg Thieme Verlag KG Stuttgart · New York.
Meemon, Panomsak; Rolland, Jannick P.
2010-01-01
Phase-Resolved Doppler Optical Coherence Tomography (PR-DOCT) allows visualization and characterization of the location, direction, velocity, and profile of flow activity embedded in a static sample structure. The detectable Velocity Dynamic Range (VDR) of each particular PR-DOCT system is governed by a detectable Doppler phase shift, a flow angle, and an acquisition time interval used to determine the Doppler phase shift. In general, the lower boundary of the detectable Doppler phase shift is limited by the phase stability of the system, while the upper boundary is limited by the π phase ambiguity. For a given range of detectable Doppler phase shift, shortening the acquisition duration will increase not only the maximum detectable velocity but unfortunately also the minimum detectable velocity, which may lead to the invisibility of a slow flow. In this paper, we present an alternative acquisition scheme for PR-DOCT that extends the lower limit of the velocity dynamic range, while maintaining the maximum detectable velocity, hence increasing the overall VDR of PR-DOCT system. The essence of the approach is to implement a technique of multi-scale measurement to simultaneously acquire multiple VDRs in a single measurement. We demonstrate an example of implementation of the technique in a dual VDR DOCT, where two Doppler maps having different detectable VDRs were simultaneously detected, processed, and displayed in real time. One was a fixed VDR DOCT capable of measuring axial velocity of up to 10.9 mm/s without phase unwrapping. The other was a variable VDR DOCT capable of adjusting its detectable VDR to reveal slow flow information down to 11.3 μm/s. The technique is shown to effectively extend the overall detectable VDR of the PR-DOCT system. Examples of real time Doppler imaging of an African frog tadpole are demonstrated using the dual-VDR DOCT system. PMID:21258521
System for Processing Coded OFDM Under Doppler and Fading
NASA Technical Reports Server (NTRS)
Tsou, Haiping; Darden, Scott; Lee, Dennis; Yan, Tsun-Yee
2005-01-01
An advanced communication system has been proposed for transmitting and receiving coded digital data conveyed as a form of quadrature amplitude modulation (QAM) on orthogonal frequency-division multiplexing (OFDM) signals in the presence of such adverse propagation-channel effects as large dynamic Doppler shifts and frequency-selective multipath fading. Such adverse channel effects are typical of data communications between mobile units or between mobile and stationary units (e.g., telemetric transmissions from aircraft to ground stations). The proposed system incorporates novel signal processing techniques intended to reduce the losses associated with adverse channel effects while maintaining compatibility with the high-speed physical layer specifications defined for wireless local area networks (LANs) as the standard 802.11a of the Institute of Electrical and Electronics Engineers (IEEE 802.11a). OFDM is a multi-carrier modulation technique that is widely used for wireless transmission of data in LANs and in metropolitan area networks (MANs). OFDM has been adopted in IEEE 802.11a and some other industry standards because it affords robust performance under frequency-selective fading. However, its intrinsic frequency-diversity feature is highly sensitive to synchronization errors; this sensitivity poses a challenge to preserve coherence between the component subcarriers of an OFDM system in order to avoid intercarrier interference in the presence of large dynamic Doppler shifts as well as frequency-selective fading. As a result, heretofore, the use of OFDM has been limited primarily to applications involving small or zero Doppler shifts. The proposed system includes a digital coherent OFDM communication system that would utilize enhanced 802.1la-compatible signal-processing algorithms to overcome effects of frequency-selective fading and large dynamic Doppler shifts. The overall transceiver design would implement a two-frequency-channel architecture (see figure) that would afford frequency diversity for reducing the adverse effects of multipath fading. By using parallel concatenated convolutional codes (also known as Turbo codes) across the dual-channel and advanced OFDM signal processing within each channel, the proposed system is intended to achieve at least an order of magnitude improvement in received signal-to-noise ratio under adverse channel effects while preserving spectral efficiency.
Modelling and extraction technique for micro-doppler signature of aircraft rotor blades
NASA Astrophysics Data System (ADS)
Praveen, N.; Valarmathi, J.
2017-11-01
The process of detecting and distinguishing between different aircrafts has been a major point of interest in Defence applications. Micro-Doppler effect is one such phenomenon unique for aircrafts with different rotor dynamics and design. In this paper, we focus on deducing a mathematical model for micro-Doppler signature, of aircraft rotor blades assumed to be rotating in a plane perpendicular to the flying direction, induced on the incident radar signal. Also, we use the Wigner-Ville Distribution (WVD) to extract this signature from the radar return. This mathematical model is compared with the simulation results obtained from MATLAB, to validate the results and show the accurateness of the developed model.
NASA Technical Reports Server (NTRS)
Grossi, M. D.
1982-01-01
For some time the possibility has been considered to perform an accurate survey from orbit of the earth gravity field by making use of low-low, satellite-to-satellite Doppler tracking with a radio link which operates in the frequency band in the range from 50 to 100 GHz. It is, therefore, of interest to discuss the upper bound in Doppler measurement accuracy imposed by the effects of ionospheric turbulence. The present investigation is concerned with the measurement error induced by ionospheric turbulence. The assumptin is made that the so-called ionospheric refractive 'bias' can be removed with one of the multifrequency methods of the current practice.
NASA Technical Reports Server (NTRS)
Jackson, James A.; Marr, Greg C.; Maher, Michael J.
1995-01-01
NASA GSFC VNS TSG personnel have proposed the use of TDRSS to obtain telemetry and/or S-band one-way return Doppler tracking data for spacecraft which do not have TDRSS-compatible transponders and therefore were never considered candidates for TDRSS support. For spacecraft with less stable local oscillators (LO), one-way return Doppler tracking data is typically of poor quality. It has been demonstrated using UARS, WIND, and NOAA-J tracking data that the simultaneous use of two TDRSS spacecraft can yield differenced one-way return Doppler data of high quality which is usable for orbit determination by differencing away the effects of oscillator instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imshennik, V. S., E-mail: imshennik@itep.r
2010-04-15
The standard problem of a radial motion of test particles in the stationary gravitational field of a spherically symmetric celestial body is solved and is used to determine the time features of this motion. The problem is solved for the equations of motion of general relativity (GR), and the time features are obtained in the post-Newtonian approximation, with linear GR corrections proportional to r{sub g}/r and {beta}{sup 2} (in the solution being considered, they are of the same order of smallness) being taken rigorously into account. Total times obtained by integrating the time differentials along the trajectories of motion aremore » considered as the time features in question. It is shown that, for any parameters of the motion, the proper time (which corresponds to watches comoving with a test particle) exceeds the time of watches at rest (watches at the surface of the celestial body being considered). The mass and the radius of the celestial body, as well as the initial velocity of the test particle, serve as arbitrary parameters of the motion. The time difference indicated above implies a leading role of the gravitational redshift, which decreases somewhat because of the opposite effect of the Doppler shift. The results are estimated quantitatively for the important (from the experimental point of view) case of vertical flights of rockets starting from the Earth's surface. In this case, the GR corrections, albeit being extremely small (a few microseconds for several hours of the flight), aremeasurable with atomic (quantum) watches.« less
HARPS-N OBSERVES THE SUN AS A STAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumusque, Xavier; Glenday, Alex; Phillips, David F.
Radial velocity (RV) perturbations induced by stellar surface inhomogeneities including spots, plages and granules currently limit the detection of Earth-twins using Doppler spectroscopy. Such stellar noise is poorly understood for stars other than the Sun because their surface is unresolved. In particular, the effects of stellar surface inhomogeneities on observed stellar radial velocities are extremely difficult to characterize, and thus developing optimal correction techniques to extract true stellar radial velocities is extremely challenging. In this paper, we present preliminary results of a solar telescope built to feed full-disk sunlight into the HARPS-N spectrograph, which is in turn calibrated with anmore » astro-comb. This setup enables long-term observation of the Sun as a star with state-of-the-art sensitivity to RV changes. Over seven days of observing in 2014, we show an average 50 cm s{sup −1} RV rms over a few hours of observation. After correcting observed radial velocities for spot and plage perturbations using full-disk photometry of the Sun, we lower by a factor of two the weekly RV rms to 60 cm s{sup −1}. The solar telescope is now entering routine operation, and will observe the Sun every clear day for several hours. We will use these radial velocities combined with data from solar satellites to improve our understanding of stellar noise and develop optimal correction methods. If successful, these new methods should enable the detection of Venus over the next two to three years, thus demonstrating the possibility of detecting Earth-twins around other solar-like stars using the RV technique.« less
Laser Cooled YbF Molecules for Measuring the Electron's Electric Dipole Moment
NASA Astrophysics Data System (ADS)
Lim, J.; Almond, J. R.; Trigatzis, M. A.; Devlin, J. A.; Fitch, N. J.; Sauer, B. E.; Tarbutt, M. R.; Hinds, E. A.
2018-03-01
We demonstrate one-dimensional sub-Doppler laser cooling of a beam of YbF molecules to 100 μ K . This is a key step towards a measurement of the electron's electric dipole moment using ultracold molecules. We compare the effectiveness of magnetically assisted and polarization-gradient sub-Doppler cooling mechanisms. We model the experiment and find good agreement with our data.
Laser Cooled YbF Molecules for Measuring the Electron's Electric Dipole Moment.
Lim, J; Almond, J R; Trigatzis, M A; Devlin, J A; Fitch, N J; Sauer, B E; Tarbutt, M R; Hinds, E A
2018-03-23
We demonstrate one-dimensional sub-Doppler laser cooling of a beam of YbF molecules to 100 μK. This is a key step towards a measurement of the electron's electric dipole moment using ultracold molecules. We compare the effectiveness of magnetically assisted and polarization-gradient sub-Doppler cooling mechanisms. We model the experiment and find good agreement with our data.
Park, A Y; Seo, B K; Woo, O H; Jung, K S; Cho, K R; Park, E K; Cha, S H; Cha, J
2018-03-01
To investigate the utility of superb microvascular imaging (SMI) for evaluating the vascularity of breast masses in comparison with colour or power Doppler ultrasound (US) and the effect on diagnostic performance. A total of 191 biopsy-proven masses (99 benign and 92 malignant) in 166 women with greyscale, colour Doppler, power Doppler, and SMI images were enrolled in this retrospective study. Three radiologists analysed the vascular images using a three-factor scoring system to evaluate the number, morphology, and distribution of tumour vessels. They assessed the Breast Imaging-Reporting and Data System categories for greyscale US alone and combinations of greyscale US and each type of vascular US. The Kruskal-Wallis test was performed and the area under the receiver-operating characteristic curve (AUC) measured. On SMI, vascular scores were compared between benign and malignant masses and the optimal cut-off value for the overall score was determined. SMI showed higher vascular scores than colour or power Doppler US and malignant masses had higher scores than benign masses (p<0.001). The diagnostic performance of the combination of greyscale US and SMI was higher than those of greyscale US alone and greyscale and colour or power Doppler US (AUC, 0.815 versus 0.774, 0.789, 0.791; p<0.001). The optimal cut-off value of the overall vascular score was 5 with a sensitivity of 82.3% and a specificity of 65.3% (AUC, 0.808). SMI is superior to colour or power Doppler US for characterising the vascularity in breast masses and improving diagnostic performance. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Buck, Thomas; Hwang, Shawn M; Plicht, Björn; Mucci, Ronald A; Hunold, Peter; Erbel, Raimund; Levine, Robert A
2008-06-01
Cardiac ultrasound imaging systems are limited in the noninvasive quantification of valvular regurgitation due to indirect measurements and inaccurate hemodynamic assumptions. We recently demonstrated that the principle of integration of backscattered acoustic Doppler power times velocity can be used for flow quantification in valvular regurgitation directly at the vena contracta of a regurgitant flow jet. We now aimed to accomplish implementation of automated Doppler power flow analysis software on a standard cardiac ultrasound system utilizing novel matrix-array transducer technology with detailed description of system requirements, components and software contributing to the system. This system based on a 3.5 MHz, matrix-array cardiac ultrasound scanner (Sonos 5500, Philips Medical Systems) was validated by means of comprehensive experimental signal generator trials, in vitro flow phantom trials and in vivo testing in 48 patients with mitral regurgitation of different severity and etiology using magnetic resonance imaging (MRI) for reference. All measurements displayed good correlation to the reference values, indicating successful implementation of automated Doppler power flow analysis on a matrix-array ultrasound imaging system. Systematic underestimation of effective regurgitant orifice areas >0.65 cm(2) and volumes >40 ml was found due to currently limited Doppler beam width that could be readily overcome by the use of new generation 2D matrix-array technology. Automated flow quantification in valvular heart disease based on backscattered Doppler power can be fully implemented on board a routinely used matrix-array ultrasound imaging systems. Such automated Doppler power flow analysis of valvular regurgitant flow directly, noninvasively, and user independent overcomes the practical limitations of current techniques.
NASA Astrophysics Data System (ADS)
Sassi, M. G.; Hoitink, A. J. F.; Vermeulen, B.; Hidayat, null
2011-06-01
Horizontal acoustic Doppler current profilers (H-ADCPs) can be employed to estimate river discharge based on water level measurements and flow velocity array data across a river transect. A new method is presented that accounts for the dip in velocity near the water surface, which is caused by sidewall effects that decrease with the width to depth ratio of a channel. A boundary layer model is introduced to convert single-depth velocity data from the H-ADCP to specific discharge. The parameters of the model include the local roughness length and a dip correction factor, which accounts for the sidewall effects. A regression model is employed to translate specific discharge to total discharge. The method was tested in the River Mahakam, representing a large river of complex bathymetry, where part of the flow is intrinsically three-dimensional and discharge rates exceed 8000 m3 s-1. Results from five moving boat ADCP campaigns covering separate semidiurnal tidal cycles are presented, three of which are used for calibration purposes, whereas the remaining two served for validation of the method. The dip correction factor showed a significant correlation with distance to the wall and bears a strong relation to secondary currents. The sidewall effects appeared to remain relatively constant throughout the tidal cycles under study. Bed roughness length is estimated at periods of maximum velocity, showing more variation at subtidal than at intratidal time scales. Intratidal variations were particularly obvious during bidirectional flow conditions, which occurred only during conditions of low river discharge. The new method was shown to outperform the widely used index velocity method by systematically reducing the relative error in the discharge estimates.
Emission-angle and polarization-rotation effects in the lensed CMB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Antony; Hall, Alex; Challinor, Anthony, E-mail: antony@cosmologist.info, E-mail: ahall@roe.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk
Lensing of the CMB is an important effect, and is usually modelled by remapping the unlensed CMB fields by a lensing deflection. However the lensing deflections also change the photon path so that the emission angle is no longer orthogonal to the background last-scattering surface. We give the first calculation of the emission-angle corrections to the standard lensing approximation from dipole (Doppler) sources for temperature and quadrupole sources for temperature and polarization. We show that while the corrections are negligible for the temperature and E-mode polarization, additional large-scale B-modes are produced with a white spectrum that dominates those from post-Bornmore » field rotation (curl lensing). On large scales about one percent of the total lensing-induced B-mode amplitude is expected to be due to this effect. However, the photon emission angle does remain orthogonal to the perturbed last-scattering surface due to time delay, and half of the large-scale emission-angle B modes cancel with B modes from time delay to give a total contribution of about half a percent. While not important for planned observations, the signal could ultimately limit the ability of delensing to reveal low amplitudes of primordial gravitational waves. We also derive the rotation of polarization due to multiple deflections between emission and observation. The rotation angle is of quadratic order in the deflection angle, and hence negligibly small: polarization typically rotates by less than an arcsecond, orders of magnitude less than a small-scale image rotates due to post-Born field rotation (which is quadratic in the shear). The field-rotation B modes dominate the other effects on small scales.« less
NASA Technical Reports Server (NTRS)
Badessa, R. S.; Kent, R. L.; Nowell, J. C.; Searle, C. L.
1960-01-01
A cancellation technique permits measurement of the frequency of a source moving relative to an observer without the obscuring effect of first-order Doppler shifts. The application of this method to a gravitational red shift experiment involving the use of an earth satellite containing a highly stable oscillator is described. The rapidity with which a measurement can be made permits the taking of data at various altitudes in a given elliptical orbit. Tropospheric and ionospheric effects upon the accuracy of results are estimated.
Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking.
Fadnes, Solveig; Nyrnes, Siri Ann; Torp, Hans; Lovstakken, Lasse
2014-10-01
High-frame-rate ultrasound speckle tracking was used for quantification of peak velocity in shunt flows resulting from septal defects in congenital heart disease. In a duplex acquisition scheme implemented on a research scanner, unfocused transmit beams and full parallel receive beamforming were used to achieve a frame rate of 107 frames/s for full field-of-view flow images with high accuracy, while also ensuring high-quality focused B-mode tissue imaging. The setup was evaluated in vivo for neonates with atrial and ventricular septal defects. The shunt position was automatically tracked in B-mode images and further used in blood speckle tracking to obtain calibrated shunt flow velocities throughout the cardiac cycle. Validation toward color flow imaging and pulsed wave Doppler with manual angle correction indicated that blood speckle tracking could provide accurate estimates of shunt flow velocities. The approach was less biased by clutter filtering compared with color flow imaging and was able to provide velocity estimates beyond the Nyquist range. Possible placements of sample volumes (and angle corrections) for conventional Doppler resulted in a peak shunt velocity variations of 0.49-0.56 m/s for the ventricular septal defect of patient 1 and 0.38-0.58 m/s for the atrial septal defect of patient 2. In comparison, the peak velocities found from speckle tracking were 0.77 and 0.33 m/s for patients 1 and 2, respectively. Results indicated that complex intraventricular flow velocity patterns could be quantified using high-frame-rate speckle tracking of both blood and tissue movement. This could potentially help increase diagnostic accuracy and decrease inter-observer variability when measuring peak velocity in shunt flows. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Field Assessment of Acoustic-Doppler Based Discharge Measurements
Mueller, D.S.; ,
2002-01-01
The use of equipment based on the Doppler principle for measuring water velocity and computing discharge is common within the U.S. Geological Survey (USGS). The instruments and software have changed appreciably during the last 5 years; therefore, the USGS has begun a field validation of the instruments currently (2002) available for making discharge measurements from a moving boat in streams of various sizes. Instruments manufactured by SonTek/YSI2 and RD Instruments, Inc. were used to collect discharge data at five different sites. One or more traditional discharge measurements were made by the use of a Price AA current meter and standard USGS procedures with the acoustic instruments at each site during data collection. The discharges measured with the acoustic instruments were compared with the discharges measured with Price AA meters and the current USGS stage-discharge rating for each site. The mean discharges measured by each acoustic instrument were within 5 percent of the Price AA-based measurement and (or) discharge from the stage-discharge rating. Additional analysis of the data collected indicates that the coefficient of variation of the discharge measurements consistently was less for the RD Instruments, Inc. Rio Grandes than it was for the SonTek/YSI RiverSurveyors. The bottom-tracking referenced measurement had a lower coefficient of variation than the differentially corrected global positioning system referenced measurements. It was observed that the higher frequency RiverSurveyors measured a moving bed more often than the lower frequency Rio Grandes. The detection of a moving bed caused RiverSurveyors to be consistently biased low when referenced to bottom tracking. Differentially corrected global positioning system data may be used to remove the bias observed in the bottom-tracking referenced measurements.
Recent Radar Astrometry of Asteroid 2004 MN4
NASA Astrophysics Data System (ADS)
Giorgini, J. D.; Benner, L. A. M.; Nolan, M. C.; Ostro, S. J.
2005-05-01
Arecibo (2380-MHz) delay-Doppler radar astrometry obtained in late January of 2005 significantly corrected 2004 MN4's orbit. Doppler-shifted echoes were acquired 4.8-sigma away from the predicted frequency on Jan 27, while range to the object on Jan 29 was found to be 747 km (2.8-sigma) closer to Earth than the pre-radar orbit solution predicted. Incorporation of these radar measurements into least-squares orbit solution #82 resulted in a new predicted Earth encounter on 2029-Apr-13 of 36000 +/- 9900 km (3-sigma formal uncertainties), or 5.6 +/- 1.6 Earth radii, from Earth's center. This is inside geosynchronous orbit and 27700 km (4.3 Earth radii) closer to Earth than predicted by the pre-radar ephemeris -- a 5-sigma change compared to the pre-radar orbit solution, illustrating the problematic nature of prediction and statistical analysis when only single-apparition optical data-sets are available. The current data-set does not permit reliable trajectory propagation to encounters later than 2029; this may not be possible until data from 2012-2013 are available. The corrected nominal approach distance in 2029 is approximately twice the classical Roche limit and closer than any known past or future approach by a natural object larger than 10 m, other than those detected after already impacting the Earth or it's atmosphere. Such close approaches by objects as large as 2004 MN4 (D ≳ 0.3 km) are currently thought to occur at ≳ 1000-year intervals on average. 2004 MN4 is expected to reach 3rd magnitude for observers in Europe, western Asia, and Africa, and thus be visible to the unaided eye. The asteroid's disk will be 2-4 arcseconds across and potentially resolvable with small ground-based telescopes.
Bellamy, Justin L; Mundinger, Gerhard S; Flores, José M; Wimmers, Eric G; Yalanis, Georgia C; Rodriguez, Eduardo D; Sacks, Justin M
2015-03-01
Multiple perfusion assessment technologies exist to identify compromised microvascular free flaps. The effectiveness, operability, and cost of each technology vary. The authors investigated surgeon preference and clinical behavior with several perfusion assessment technologies. A questionnaire was sent to members of the American Society for Reconstructive Microsurgery concerning perceptions and frequency of use of several technologies in varied clinical situations. Demographic information was also collected. Adjusted odds ratios were calculated using multinomial logistic regression accounting for clustering of similar practices within institutions/regions. The questionnaire was completed by 157 of 389 participants (40.4 percent response rate). Handheld Doppler was the most commonly preferred free flap-monitoring technology (56.1 percent), followed by implantable Doppler (22.9 percent) and cutaneous tissue oximetry (16.6 percent). Surgeons were significantly more likely to opt for immediate take-back to the operating room when presented with a concerning tissue oximetry readout compared with a concerning handheld Doppler signal (OR, 2.82; p < 0.01), whereas other technologies did not significantly alter postoperative management more than simple handheld Doppler. Clinical decision making did not significantly differ by demographics, training, or practice setup. Although most surgeons still prefer to use standard handheld Doppler for free flap assessment, respondents were significantly more likely to opt for immediate return to the operating room for a concerning tissue oximetry reading than an abnormal Doppler signal. This suggests that tissue oximetry may have the greatest impact on clinical decision making in the postoperative period.
Transthoracic Ultrafast Doppler Imaging of Human Left Ventricular Hemodynamic Function
Osmanski, Bruno-Félix; Maresca, David; Messas, Emmanuel; Tanter, Mickael; Pernot, Mathieu
2016-01-01
Heart diseases can affect intraventricular blood flow patterns. Real-time imaging of blood flow patterns is challenging because it requires both a high frame rate and a large field of view. To date, standard Doppler techniques can only perform blood flow estimation with high temporal resolution within small regions of interest. In this work, we used ultrafast imaging to map in 2D human left ventricular blood flow patterns during the whole cardiac cycle. Cylindrical waves were transmitted at 4800 Hz with a transthoracic phased array probe to achieve ultrafast Doppler imaging of the left ventricle. The high spatio-temporal sampling of ultrafast imaging permits to rely on a much more effective wall filtering and to increase sensitivity when mapping blood flow patterns during the pre-ejection, ejection, early diastole, diastasis and late diastole phases of the heart cycle. The superior sensitivity and temporal resolution of ultrafast Doppler imaging makes it a promising tool for the noninvasive study of intraventricular hemodynamic function. PMID:25073134
Laser Doppler measurement techniques for spacecraft
NASA Technical Reports Server (NTRS)
Kinman, Peter W.; Gagliardi, Robert M.
1986-01-01
Two techniques are proposed for using laser links to measure the relative radial velocity of two spacecraft. The first technique determines the relative radial velocity from a measurement of the two-way Doppler shift on a transponded radio-frequency subcarrier. The subcarrier intensity-modulates reciprocating laser beams. The second technique determines the relative radial velocity from a measurement of the two-way Doppler shift on an optical frequency carrier which is transponded between spacecraft using optical Costas loops. The first technique might be used in conjunction with noncoherent optical communications, while the second technique is compatible with coherent optical communications. The first technique simultaneously exploits the diffraction advantage of laser beams and the maturity of radio-frequency phase-locked loop technology. The second technique exploits both the diffraction advantage of laser beams and the large Doppler effect at optical frequencies. The second technique has the potential for greater accuracy; unfortunately, it is more difficult to implement since it involves optical Costas loops.
Micro-Doppler analysis of multiple frequency continuous wave radar signatures
NASA Astrophysics Data System (ADS)
Anderson, Michael G.; Rogers, Robert L.
2007-04-01
Micro-Doppler refers to Doppler scattering returns produced by non rigid-body motion. Micro-Doppler gives rise to many detailed radar image features in addition to those associated with bulk target motion. Targets of different classes (for example, humans, animals, and vehicles) produce micro-Doppler images that are often distinguishable even by nonexpert observers. Micro-Doppler features have great potential for use in automatic target classification algorithms. Although the potential benefit of using micro-Doppler in classification algorithms is high, relatively little experimental (non-synthetic) micro-Doppler data exists. Much of the existing experimental data comes from highly cooperative targets (human or vehicle targets directly approaching the radar). This research involved field data collection and analysis of micro-Doppler radar signatures from non-cooperative targets. The data was collected using a low cost Xband multiple frequency continuous wave (MFCW) radar with three transmit frequencies. The collected MFCW radar signatures contain data from humans, vehicles, and animals. The presented data includes micro-Doppler signatures previously unavailable in the literature such as crawling humans and various animal species. The animal micro-Doppler signatures include deer, dog, and goat datasets. This research focuses on the analysis of micro-Doppler from noncooperative targets approaching the radar at various angles, maneuvers, and postures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaidos, Eric; Fischer, Debra A.; Mann, Andrew W.
Analyses of exoplanet statistics suggest a trend of giant planet occurrence with host star mass, a clue to how planets like Jupiter form. One missing piece of the puzzle is the occurrence around late K dwarf stars (masses of 0.5-0.75 M{sub Sun} and effective temperatures of 3900-4800 K). We analyzed four years of Doppler radial velocity (RVs) data for 110 late K dwarfs, one of which hosts two previously reported giant planets. We estimate that 4.0% {+-} 2.3% of these stars have Saturn-mass or larger planets with orbital periods <245 days, depending on the planet mass distribution and RV variabilitymore » of stars without giant planets. We also estimate that 0.7% {+-} 0.5% of similar stars observed by Kepler have giant planets. This Kepler rate is significantly (99% confidence) lower than that derived from our Doppler survey, but the difference vanishes if only the single Doppler system (HIP 57274) with completely resolved orbits is considered. The difference could also be explained by the exclusion of close binaries (without giant planets) from the Doppler but not Kepler surveys, the effect of long-period companions and stellar noise on the Doppler data, or an intrinsic difference between the two populations. Our estimates for late K dwarfs bridge those for solar-type stars and M dwarfs, and support a positive trend with stellar mass. Small sample size precludes statements about finer structure, e.g., a ''shoulder'' in the distribution of giant planets with stellar mass. Future surveys such as the Next Generation Transit Survey and the Transiting Exoplanet Satellite Survey will ameliorate this deficiency.« less
Scazzocchio, E; Oros, D; Diaz, D; Ramirez, J C; Ricart, M; Meler, E; González de Agüero, R; Gratacos, E; Figueras, F
2017-04-01
Defective trophoblastic invasion is a key feature in many cases of pre-eclampsia (PE). Uterine artery (UtA) Doppler is a validated non-invasive proxy for trophoblastic invasion. The aim of this study was to explore whether low-dose aspirin, administered from the first trimester, improves trophoblastic invasion, evaluated by UtA Doppler during the second and third trimesters in women defined as high risk by abnormal first-trimester UtA Doppler. This randomized Phase-II study had a triple-blind, parallel-arm, controlled design. Singleton pregnancies with abnormal mean UtA Doppler at 11-14 weeks and absence of other major risk factors for PE received 150 mg extended-release aspirin or identical-appearing placebo tablets from study inclusion to 28 weeks. Main outcome measure was UtA pulsatility index (PI) at 28 weeks' gestation. Secondary outcomes included frequency of development of PE and growth restriction/small-for-gestational age (SGA). A total of 155 women completed the follow-up and were analyzed. No difference in mean UtA-PI was found between women in the aspirin and placebo groups at 28 weeks (mean UtA-PI Z-score (mean ± SD), 0.99 ± 1.48 vs 0.85 ± 1.25; P = 0.52). Seven women developed PE: four (5%) in the aspirin group and three (4%) in the placebo group. There was a trend toward lower incidence of SGA in the aspirin group (8.8% vs 17.3%; P = 0.11). In women with defective trophoblastic invasion, as reflected by abnormal UtA Doppler, low-dose aspirin started in the first trimester does not have a significant effect on UtA impedance as pregnancy progresses; however, the study was underpowered to detect potential small effects . Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.
Modeling streamflow from coupled airborne laser scanning and acoustic Doppler current profiler data
Norris, Lam; Kean, Jason W.; Lyon, Steve
2016-01-01
The rating curve enables the translation of water depth into stream discharge through a reference cross-section. This study investigates coupling national scale airborne laser scanning (ALS) and acoustic Doppler current profiler (ADCP) bathymetric survey data for generating stream rating curves. A digital terrain model was defined from these data and applied in a physically based 1-D hydraulic model to generate rating curves for a regularly monitored location in northern Sweden. Analysis of the ALS data showed that overestimation of the streambank elevation could be adjusted with a root mean square error (RMSE) block adjustment using a higher accuracy manual topographic survey. The results of our study demonstrate that the rating curve generated from the vertically corrected ALS data combined with ADCP data had lower errors (RMSE = 0.79 m3/s) than the empirical rating curve (RMSE = 1.13 m3/s) when compared to streamflow measurements. We consider these findings encouraging as hydrometric agencies can potentially leverage national-scale ALS and ADCP instrumentation to reduce the cost and effort required for maintaining and establishing rating curves at gauging station sites similar to the Röån River.
Early Calibration Results of CYGNSS Mission
NASA Astrophysics Data System (ADS)
Balasubramaniam, R.; Ruf, C. S.; McKague, D. S.; Clarizia, M. P.; Gleason, S.
2017-12-01
The first of its kind, GNSS-R complete orbital mission, CYGNSS was successfully launched on Dec 15 2016. The goal of this mission is to accurately forecast the intensification of tropical cyclones by modelling its inner core. The 8 micro observatories of CYGNSS carry a passive instrument called Delay Doppler Mapping Instrument (DDMI). The DDMIs form a 2D representation called the Delay-Doppler Map (DDM) of the forward scattered power signal. Each DDMI outputs 4 DDMs per second which are compressed and sent to the ground resulting in a total of 32 sea-surface measurements produced by the CYGNSS constellation per second. These are subsequently used in the Level-2 wind retrieval algorithm to extract wind speed information. In this paper, we perform calibration and validation of CYGNSS measurements for accurate extraction of wind speed information. The calibration stage involves identification and correction for dependence of the CYGNSS observables namely Normalised Bistatic Radar Cross Section and Leading Edge Slope of the Integrated Delay Waveform over instrument parameters, geometry etc. The validation stage involves training of the Geophysical Model Function over a multitude of ground truth sources during the Atlantic hurricane season and also refined validation of high wind speed data products.
Cross-shell excitations from the f p shell: Lifetime measurements in 61Zn
NASA Astrophysics Data System (ADS)
Queiser, M.; Vogt, A.; Seidlitz, M.; Reiter, P.; Togashi, T.; Shimizu, N.; Utsuno, Y.; Otsuka, T.; Honma, M.; Petkov, P.; Arnswald, K.; Altenkirch, R.; Birkenbach, B.; Blazhev, A.; Braunroth, T.; Dewald, A.; Eberth, J.; Fransen, C.; Fu, B.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Jolie, J.; Karayonchev, V.; Kaya, L.; Lewandowski, L.; Müller-Gatermann, C.; Régis, J.-M.; Rosiak, D.; Schneiders, D.; Siebeck, B.; Steinbach, T.; Wolf, K.; Zell, K.-O.
2017-10-01
Lifetimes of excited states in the neutron-deficient nucleus 61Zn were measured employing the recoil-distance Doppler-shift (RDDS) and the electronic fast-timing methods at the University of Cologne. The nucleus of interest was populated as an evaporation residue in 40Ca(24Mg,n 2 p )61Zn and 58Ni(α ,n )61Zn reactions at 67 and 19 MeV, respectively. Five lifetimes were measured for the first time, including the lifetime of the 5 /21- isomer at 124 keV. Short lifetimes from the RDDS analysis are corrected for Doppler-shift attenuation (DSA) in the target and stopper foils. Ambiguous observations in previous measurements were resolved. The obtained lifetimes are compared to predictions from different sets of shell-model calculations in the f p , f5 /2p g9 /2 , and multishell f p -g9 /2d5 /2 model spaces. The band built on the 9 /21+ state exhibits a prolate deformation with β ≈0.24 . Especially, the inclusion of cross-shell excitation into the 1 d5 /2 orbital is found to be decisive for the description of collectivity in the first excited positive-parity band.
Echoguided closed commissurotomy for mitral valve stenosis in a dog.
Trehiou-Sechi, Emilie; Behr, Luc; Chetboul, Valérie; Pouchelon, Jean-Louis; Castaignet, Maud; Gouni, Vassiliki; Misbach, Charlotte; Petit, Amandine M P; Borenstein, Nicolas
2011-09-01
Surgical treatment of mitral stenosis (MS) usually consists of open mitral commissurotomy (MC) or percutaneous balloon MC, which require a cardiopulmonary bypass or transseptal approach, respectively. We describe here the first surgical management of congenital MS in a dog using a less invasive procedure, a surgical closed MC under direct echo guidance. A 5-year-old female Cairn terrier was referred for ascites, weakness, and marked exercise intolerance for 2 months, which was refractory to medical treatment. Diagnosis of severe MS associated with atrial fibrillation (AF) was confirmed by echo-Doppler examination and electrocardiography. Poor response to medical treatment suggested a corrective procedure on the valve was indicated. However, due to the cost and high mortality rate associated with cardiopulmonary bypass, a hybrid MC was recommended. A standard left intercostal thoracotomy was performed and three balloon valvuloplasty catheters of differing diameters were sequentially inserted through the left atrium under direct echo guidance. Transesophageal echocardiography revealed a 62% reduction in the pressure half-time compared to the pre-procedure. Thirteen months after surgery the dog is still doing well with resolution of ascites and a marked improvement of most echo-Doppler variables. Copyright © 2011 Elsevier B.V. All rights reserved.
A low cost Doppler system for vascular dialysis access surveillance.
Molina, P S C; Moraes, R; Baggio, J F R; Tognon, E A
2004-01-01
The National Kidney Foundation guidelines for vascular access recommend access surveillance to avoid morbidity among patients undergoing hemodialysis. Methods to detect access failure based on CW Doppler system are being proposed to implement surveillance programs at lower cost. This work describes a low cost Doppler system implemented in a PC notebook designed to carry out this task. A Doppler board samples the blood flow velocity and delivers demodulated quadrature Doppler signals. These signals are sampled by a notebook sound card. Software for Windows OS (running at the notebook) applies CFFT to consecutive 11.6 ms intervals of Doppler signals. The sonogram is presented on the screen in real time. The software also calculates the maximum and the intensity weighted mean frequency envelopes. Since similar systems employ DSP boards to process the Doppler signals, cost reduction was achieved. The Doppler board electronic circuits and routines to process the Doppler signals are presented.
NASA Astrophysics Data System (ADS)
Komovkin, S. V.; Lavrenov, S. M.; Tuchin, A. G.; Tuchin, D. A.; Yaroshevsky, V. S.
2016-12-01
The article describes a model of the two-way measurements of radial velocity based on the Doppler effect. The relations are presented for the instantaneous value of the increment range at the time of measurement and the radial velocity of the mid-dimensional interval. The compensation of methodological errors of interpretation of the two-way Doppler measurements is considered.
Siddiqui, Muhammad Rafay Sameen; Sajid, Muhammad Shafiq; Baig, Mirza Khurram
2009-04-01
The advancement of medical technology and future improvements in public health will lead to surgeons operating on high risk patients. One of these advances is to use intra-operative trans-oesophageal Doppler (TOD) to optimise fluid management. TOD is known to be the most effective technique for intraoperative cardiac monitoring. We report a case of a potentially life threatening complication from intraoperative TOD monitoring.
NASA Astrophysics Data System (ADS)
Schaub, Scott A.; Naqwi, Amir A.; Harding, Foster L.
1998-01-01
We present fundamental studies examining the design of a phase /Doppler laser light-scattering system applicable to on-line measurements of small-diameter ( <15 m) fibers during fiberglass manufacturing. We first discuss off-line diameter measurement techniques currently used in the fiberglass industry and outline the limitations and problems associated with these methods. For the phase /Doppler design study we have developed a theoretical computer model for the response of the measurement system to cylindrical fibers, which is based on electromagnetic scattering theory. The model, valid for arbitrary fiber diameters and hardware configurations, generates simulated detector output as a function of time for a finite absorbing, cylindrical fiber oriented perpendicular to the two incident laser beams. Results of experimental measurements are presented, confirming predictions of the theoretical model. Parametric studies have also been conducted using the computer model to identify experimental arrangements that provide linear phase -diameter relationships for small-diameter fibers, within the measurement constraints imposed by the fiberglass production environment. The effect of variations in optical properties of the glass as well as fiber orientation effects are discussed. Through this research we have identified phase /Doppler arrangements that we expect to have future applications in the fiberglass industry for on-line diameter monitoring and process control.
Schaub, S A; Naqwi, A A; Harding, F L
1998-01-20
We present fundamental studies examining the design of a phase/Doppler laser light-scattering system applicable to on-line measurements of small-diameter (<15 mum) fibers during fiberglass manufacturing. We first discuss off-line diameter measurement techniques currently used in the fiberglass industry and outline the limitations and problems associated with these methods. For the phase/Doppler design study we have developed a theoretical computer model for the response of the measurement system to cylindrical fibers, which is based on electromagnetic scattering theory. The model, valid for arbitrary fiber diameters and hardware configurations, generates simulated detector output as a function of time for a finite absorbing, cylindrical fiber oriented perpendicular to the two incident laser beams. Results of experimental measurements are presented, confirming predictions of the theoretical model. Parametric studies have also been conducted using the computer model to identify experimental arrangements that provide linear phase-diameter relationships for small-diameter fibers, within the measurement constraints imposed by the fiberglass production environment. The effect of variations in optical properties of the glass as well as fiber orientation effects are discussed. Through this research we have identified phase/Doppler arrangements that we expect to have future applications in the fiberglass industry for on-line diameter monitoring and process control.
Xu, L; Chen, H; Lin, G; Ge, Q; Qi, H; He, X
2016-12-01
The aim of this study was to analyse the outcomes of transanal hemorrhoidal dearterialization with mucopexy (THDm) versus open hemorrhoidectomy (OH) in the management of hemorrhoids. Randomized controlled trials in English were found by searching PubMed, Web of science, EMBASE, and the Cochrane Library database. Trials that compared THDm with OH were identified. Data were extracted independently for each study, and a meta-analysis was performed using fixed and random effects models. Four trials, including 316 patients, met the inclusion criteria. No statistically significant differences were noted in either total complications or postoperative bleeding, incontinence, recurrent prolapse, and urinary retention rate. Operative time was significantly longer for THDm with Doppler guidance than for THDm without Doppler guidance. Patients returned to normal activities faster after THDm than after OH. No statistically significant differences between THDm and OH were noted with regard to recurrence and reoperation rates. Our meta-analysis shows that THDm and OH are equally effective and can be attempted for the management of hemorrhoids. However, for THDm with Doppler guidance, more instruments and a longer operative time are required. Future large-scale, high-quality, multicenter trials with long-term outcomes are needed to prove these results and determine whether Doppler guidance in THD is truly necessary or not.
Accuracy of three-dimensional multislice view Doppler in diagnosis of morbid adherent placenta
Abdel Moniem, Alaa M.; Ibrahim, Ahmed; Akl, Sherif A.; Aboul-Enen, Loay; Abdelazim, Ibrahim A.
2015-01-01
Objective To detect the accuracy of the three-dimensional multislice view (3D MSV) Doppler in the diagnosis of morbid adherent placenta (MAP). Material and Methods Fifty pregnant women at ≥28 weeks gestation with suspected MAP were included in this prospective study. Two dimensional (2D) trans-abdominal gray-scale ultrasound scan was performed for the subjects to confirm the gestational age, placental location, and findings suggestive of MAP, followed by the 3D power Doppler and then the 3D MSV Doppler to confirm the diagnosis of MAP. Intraoperative findings and histopathology results of removed uteri in cases managed by emergency hysterectomy were compared with preoperative sonographic findings to detect the accuracy of the 3D MSV Doppler in the diagnosis of MAP. Results The 3D MSV Doppler increased the accuracy and predictive values of the diagnostic criteria of MAP compared with the 3D power Doppler. The sensitivity and negative predictive value (NPV) (79.6% and 82.2%, respectively) of crowded vessels over the peripheral sub-placental zone to detect difficult placental separation and considerable intraoperative blood loss in cases of MAP using the 3D power Doppler was increased to 82.6% and 84%, respectively, using the 3D MSV Doppler. In addition, the sensitivity, specificity, and positive predictive value (PPV) (90.9%, 68.8%, and 47%, respectively) of the disruption of the uterine serosa-bladder interface for the detection of emergency hysterectomy in cases of MAP using the 3D power Doppler was increased to 100%, 71.8%, and 50%, respectively, using the 3D MSV Doppler. Conclusion The 3D MSV Doppler is a useful adjunctive tool to the 3D power Doppler or color Doppler to refine the diagnosis of MAP. PMID:26401104
Independent Confirmation of the Pioneer 10 Anomalous Acceleration
NASA Technical Reports Server (NTRS)
Markwardt, Craig B.
2002-01-01
I perform an independent analysis of radio Doppler tracking data from the Pioneer 10 spacecraft for the time period 1987-1994. All of the tracking data were taken from public archive sources, and the analysis tools were developed independently by myself. I confirm that an apparent anomalous acceleration is acting on the Pioneer 10 spacecraft, which is not accounted for by present physical models of spacecraft navigation. My best fit value for the acceleration, including corrections for systematic biases and uncertainties, is (8.60 plus or minus 1.34) x 10(exp -8) centimeters per second, directed towards the Sun. This value compares favorably to previous results. I examine the robustness of my result to various perturbations of the analysis method, and find agreement to within plus or minus 5%. The anomalous acceleration is reasonably constant with time, with a characteristic variation time scale of greater than 70 yr. Such a variation timescale is still too short to rule out on-board thermal radiation effects, based on this particular Pioneer 10 data set.
Spatial heterogeneity of tungsten transmutation in a fusion device
NASA Astrophysics Data System (ADS)
Gilbert, M. R.; Sublet, J.-Ch.; Dudarev, S. L.
2017-04-01
Accurately quantifying the transmutation rate of tungsten (W) under neutron irradiation is a necessary requirement in the assessment of its performance as an armour material in a fusion power plant. The usual approach of calculating average responses, assuming large, homogenised material volumes, is insufficient to capture the full complexity of the transmutation picture in the context of a realistic fusion power plant design, particularly for rhenium (Re) production from W. Combined neutron transport and inventory simulations for representative spatially heterogeneous high-resolution models of a fusion power plant show that the production rate of Re is strongly influenced by the surrounding local spatial environment. Localised variation in neutron moderation (slowing down) due to structural steel and coolant, particularly water, can dramatically increase Re production because of the huge cross sections of giant resolved resonances in the neutron-capture reaction of 186W at low neutron energies. Calculations using cross section data corrected for temperature (Doppler) effects suggest that temperature may have a relatively lesser influence on transmutation rates.
A model of the instantaneous pressure-velocity relationships of the neonatal cerebral circulation.
Panerai, R B; Coughtrey, H; Rennie, J M; Evans, D H
1993-11-01
The instantaneous relationship between arterial blood pressure (BP) and cerebral blood flow velocity (CBFV), measured with Doppler ultrasound in the anterior cerebral artery, is represented by a vascular waterfall model comprising vascular resistance, compliance, and critical closing pressure. One min recordings obtained from 61 low birth weight newborns were fitted to the model using a least-squares procedures with correction for the time delay between the BP and CBFV signals. A sensitivity analysis was performed to study the effects of low-pass filtering (LPF), cutoff frequency, and noise on the estimated parameters of the model. Results indicate excellent fitting of the model (F-test, p < 0.0001) when the BP and CBFV signals are LPF at 7.5 Hz. Reconstructed CBFV waveforms using the BP signal and the model parameters have a mean correlation coefficient of 0.94 with the measured flow velocity tracing (N = 232 epochs). The model developed can be useful for interpreting clinical findings and as a framework for research into cerebral autoregulation.
Effect of exercise, heat stress and dehydration on myocardial performance.
Fehling, P C; Haller, J M; Lefferts, W K; Hultquist, E M; Wharton, M; Rowland, T W; Smith, D L
2015-06-01
Myocardial dysfunction is a well-documented outcome of extended periods of high cardiac output. Whether similar effects occur during firefighting, an occupation characterized by repeated periods of work compounded by dehydration and heat stress, is uncertain. To investigate the independent and combined effects of moderate heat stress and dehydration on indicators of myocardial performance following intermittent, submaximal treadmill exercise while wearing personal protective equipment (PPE). Twelve aerobically fit young men (age 21.5±2.6 years; maximal oxygen uptake [VO2max] 60.3±4.4ml kg(-1) min(-1)) performed intermittent treadmill walking exercise consisting of three 20min bouts at an intensity of ~40% VO2max separated by two periods of rest in four different conditions in random order: (i) no heat stress-euhydrated, (ii) heat stress-euhydrated (heat stress created by wearing PPE, (iii) no heat stress-dehydrated and (iv) heat stress-dehydrated. We measured core temperature by a telemetric gastrointestinal pill. We determined cardiac variables by standard echocardiographic techniques immediately before and ~30min after exercise. We recorded no significant changes in markers of systolic (ejection fraction, shortening fraction, tissue Doppler-S) or diastolic (mitral peak E velocity, tissue Doppler-E' and E/E') function following exercise in any of the four conditions. In this model of exercise designed to mimic the work, heat stress and dehydration associated with firefighting activities, we observed no negative effects on myocardial inotropic or lusitropic function. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Gay, R. H.; Grossi, M. D.
1975-01-01
The preparation of the analytical approach and of the related software used in the inversion of the differential and rotating Doppler data obtained from the ionospheric experiment of the Apollo-Soyuz Test Project (ASTP) is discussed. These data were collected in space-to-space paths (between the ASTP Docking Module (DM) and the Apollo Command Service Module and in space-to-ground paths (between the DM and ground). The Doppler links operated at 162 and 324 MHz and have an accuracy better than 3 MHz over 10-sec integration time. The inversion approach was tested with dummy data obtained with a computer simulation. It was found that a measurement accuracy of 1 to 10% in the value of the horizontal electron density gradient at 221-km altitude can be achieved, in space-to-space paths. For space-to-ground paths near the orbital plane, possible effects of the horizontal gradients on the received differential Doppler shifts were identified. It was possible to reduce the gradient-associated errors in the inversion that leads to the columnar electron content by approximately one-half. Accuracies of 5 to 10% in columnar electron content are achievable, with this gradient-compensation technique.
Characterization of turbulent wake of wind turbine by coherent Doppler lidar
NASA Astrophysics Data System (ADS)
Wu, Songhua; Yin, Jiaping; Liu, Bingyi; Liu, Jintao; Li, Rongzhong; Wang, Xitao; Feng, Changzhong; Zhuang, Quanfeng; Zhang, Kailin
2014-11-01
The indispensable access to real turbulent wake behavior is provided by the pulsed coherent Doppler Light Detection and Ranging (LIDAR) which operates by transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. The Doppler shift in the frequency of the backscattered signal is analyzed to obtain the line-of-sight (LOS) velocity component of the air motion. From the LOS velocities the characteristic of the turbulent wake can be deduced. The Coherent Doppler LIDAR (CDL) is based on all-fiber laser technology and fast digital-signal-processing technology. The 1.5 µm eye-safe Doppler LIDAR system has a pulse length of 200ns and a pulse repetition frequency of 10 kHz. The speed measurement range is ±50m/s and the speed measurement uncertainty is 0.3 m/s. The 2-axis beam scanner and detection range of 3000m enable the system to monitor the whole wind farming filed. Because of the all-fiber structure adoption, the system is stable, reliable and high-integrated. The wake vortices of wind turbine blades with different spatial and temporal scales have been observed by LIDAR. In this paper, the authors discuss the possibility of using LIDAR measurements to characterize the complicated wind field, specifically wind velocity deficit and terrain effects.
Rezk, Mohamed Abd-Allah; Shawky, Mohamed
2016-01-01
To assess the effectiveness of grey-scale and colour Doppler ultrasound (US) versus magnetic resonance imaging (MRI) for the prenatal diagnosis of placenta accreta. A prospective observational study including a total of 74 patients with placenta previa and previous uterine scar (n = 74). Grey-scale and colour Doppler US was done followed by MRI by different observers to diagnose adherent placenta. Test validity of US and MRI were calculated. Maternal morbidity and mortality were also assessed. A total of 53 patients confirmed to have placenta accreta at operation. The overall sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of US was 94.34, 91.67, 96.15 and 88% compared to 96.08, 87.50, 94.23 and 91.3% for MRI, respectively. The most relevant US sign was turbulent blood flow by colour Doppler, while dark intra-placental band was the most sensitive MRI sign. Venous thromboembolism (1.3%), bladder injury (29.7%), ureteric injury (18.9%), postoperative fever (10.8%), admission to ICU (50%) and re-operation (31.1%). Placenta accreta can be successfully diagnosed by grey-scale and colour Doppler US. MRI would be more likely suggested for either posteriorly or laterally situated placenta previa in order to exclude placental invasion.
Bayoglu Tekin, Yesim; Guvendag Guven, Emine Seda; Mete Ural, Ulku; Yazici, Zihni Acar; Kirbas, Aynur; Kir Sahin, Figen
2016-01-01
The aim of this study was to evaluate maternal neutrophil gelatinase-asssociated lipocalin (NGAL) levels and fetal renal artery (fRA) Doppler flow indices in pregnant women fasting in Ramadan in respect of dehydration in long hot summer days as a marker of hypoperfusion and early renal injury. A cross-sectional observational study was carried out at a University Hospital. Fasting pregnant women and non-fasting age, gravidity and gestational age-matched women were evaluated for hematologic, blood biochemistry and urine parameters in the first and fourth weeks of the Ramadan. Umbilical artery and fRA Doppler flows were studied in each evaluation. Blood urea nitrogen, potassium and hematocrit levels, blood and urine NGAL levels were significantly higher, and fRA Doppler indices increased in fasting women (p < 0.05) during the second visit in the last week of the Ramadan, while non-fasting women had no significant alterations in each evaluation (p > 0.05). Adequate maternal vascular volume is essential for the maintenance of healthy pregnancy. Fasting during the long and hot summer days leads to fluid deprivation and dehydration which was found to be related to subclinical maternal renal dysfunction and increased fRA Doppler indices.
Spectroscopic planetary detection
NASA Technical Reports Server (NTRS)
Deming, Drake
1991-01-01
One of the most promising methods for the detection of extra-solar planets is the spectroscopic method, where a small Doppler shift (approx. 10 meter/sec) in the spectrum of the parent star reveals the presence of planetary companions. However, solar type stars may show spurious Doppler shifts due to surface activity. If these effects are periodic, as is the solar activity cycle, then they may masquerade as planetary companions. The goal of this study was to determine whether the solar cycle affects the Doppler stability of integrated sunlight. Observations of integrated sunlight were made in the near infrared (approx. 2 micron), using the Kitt Peak McMath Fourier transform spectrometer, with a N2O gas absorption cell for calibration. An accuracy of approx. 5 meter/sec was achieved.
An Efficient Moving Target Detection Algorithm Based on Sparsity-Aware Spectrum Estimation
Shen, Mingwei; Wang, Jie; Wu, Di; Zhu, Daiyin
2014-01-01
In this paper, an efficient direct data domain space-time adaptive processing (STAP) algorithm for moving targets detection is proposed, which is achieved based on the distinct spectrum features of clutter and target signals in the angle-Doppler domain. To reduce the computational complexity, the high-resolution angle-Doppler spectrum is obtained by finding the sparsest coefficients in the angle domain using the reduced-dimension data within each Doppler bin. Moreover, we will then present a knowledge-aided block-size detection algorithm that can discriminate between the moving targets and the clutter based on the extracted spectrum features. The feasibility and effectiveness of the proposed method are validated through both numerical simulations and raw data processing results. PMID:25222035
Fischer, Andreas; König, Jörg; Haufe, Daniel; Schlüssler, Raimund; Büttner, Lars; Czarske, Jürgen
2013-08-01
To reduce the noise of machines such as aircraft engines, the development and propagation of sound has to be investigated. Since the applicability of microphones is limited due to their intrusiveness, contactless measurement techniques are required. For this reason, the present study describes an optical method based on the Doppler effect and its application for acoustic particle velocity (APV) measurements. While former APV measurements with Doppler techniques are point measurements, the applied system is capable of simultaneous measurements at multiple points. In its current state, the system provides linear array measurements of one component of the APV demonstrated by multi-tone experiments with tones up to 17 kHz for the first time.
NASA Technical Reports Server (NTRS)
Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.; Ray, Taylor J.
2013-01-01
Two versions of airborne wind profiling algorithms for the pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. Each algorithm utilizes different number of line-of-sight (LOS) lidar returns while compensating the adverse effects of different coordinate systems between the aircraft and the Earth. One of the two algorithms APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) estimates wind products using two LOSs. The other algorithm utilizes five LOSs. The airborne lidar data were acquired during the NASA's Genesis and Rapid Intensification Processes (GRIP) campaign in 2010. The wind profile products from the two algorithms are compared with the dropsonde data to validate their results.
NASA Astrophysics Data System (ADS)
Zhang, Ruiying; Yao, Junjie; Maslov, Konstantin I.; Wang, Lihong V.
2013-08-01
We propose a method for photoacoustic flow measurement based on the Doppler effect from a flowing homogeneous medium. Excited by spatially modulated laser pulses, the flowing medium induces a Doppler frequency shift in the received photoacoustic signals. The frequency shift is proportional to the component of the flow speed projected onto the acoustic beam axis, and the sign of the shift reflects the flow direction. Unlike conventional flowmetry, this method does not rely on particle heterogeneity in the medium; thus, it can tolerate extremely high particle density. A red-ink phantom flowing in a tube immersed in water was used to validate the method in both the frequency and time domains. The phantom flow immersed in an intralipid solution was also measured.
NASA Astrophysics Data System (ADS)
Gonzales, Matthew Alejandro
The calculation of the thermal neutron Doppler temperature reactivity feedback co-efficient, a key parameter in the design and safe operation of advanced reactors, using first order perturbation theory in continuous energy Monte Carlo codes is challenging as the continuous energy adjoint flux is not readily available. Traditional approaches of obtaining the adjoint flux attempt to invert the random walk process as well as require data corresponding to all temperatures and their respective temperature derivatives within the system in order to accurately calculate the Doppler temperature feedback. A new method has been developed using adjoint-weighted tallies and On-The-Fly (OTF) generated continuous energy cross sections within the Monte Carlo N-Particle (MCNP6) transport code. The adjoint-weighted tallies are generated during the continuous energy k-eigenvalue Monte Carlo calculation. The weighting is based upon the iterated fission probability interpretation of the adjoint flux, which is the steady state population in a critical nuclear reactor caused by a neutron introduced at that point in phase space. The adjoint-weighted tallies are produced in a forward calculation and do not require an inversion of the random walk. The OTF cross section database uses a high order functional expansion between points on a user-defined energy-temperature mesh in which the coefficients with respect to a polynomial fitting in temperature are stored. The coefficients of the fits are generated before run- time and called upon during the simulation to produce cross sections at any given energy and temperature. The polynomial form of the OTF cross sections allows the possibility of obtaining temperature derivatives of the cross sections on-the-fly. The use of Monte Carlo sampling of adjoint-weighted tallies and the capability of computing derivatives of continuous energy cross sections with respect to temperature are used to calculate the Doppler temperature coefficient in a research version of MCNP6. Temperature feedback results from the cross sections themselves, changes in the probability density functions, as well as changes in the density of the materials. The focus of this work is specific to the Doppler temperature feedback which result from Doppler broadening of cross sections as well as changes in the probability density function within the scattering kernel. This method is compared against published results using Mosteller's numerical benchmark to show accurate evaluations of the Doppler temperature coefficient, fuel assembly calculations, and a benchmark solution based on the heavy gas model for free-gas elastic scattering. An infinite medium benchmark for neutron free gas elastic scattering for large scattering ratios and constant absorption cross section has been developed using the heavy gas model. An exact closed form solution for the neutron energy spectrum is obtained in terms of the confluent hypergeometric function and compared against spectra for the free gas scattering model in MCNP6. Results show a quick increase in convergence of the analytic energy spectrum to the MCNP6 code with increasing target size, showing absolute relative differences of less than 5% for neutrons scattering with carbon. The analytic solution has been generalized to accommodate piecewise constant in energy absorption cross section to produce temperature feedback. Results reinforce the constraints in which heavy gas theory may be applied resulting in a significant target size to accommodate increasing cross section structure. The energy dependent piecewise constant cross section heavy gas model was used to produce a benchmark calculation of the Doppler temperature coefficient to show accurate calculations when using the adjoint-weighted method. Results show the Doppler temperature coefficient using adjoint weighting and cross section derivatives accurately obtains the correct solution within statistics as well as reduce computer runtimes by a factor of 50.
Power Doppler evaluation of joint effusions: investigation in a rabbit model.
Strouse, P J; DiPietro, M A; Teo, E L; Doi, K; Chrisp, C E
1999-08-01
To study the power Doppler findings of septic arthritis and noninfectious synovitis in an animal model. The right knees of 10 rabbits were inoculated with an aqueous suspension of Staphylococcus aureus. The right knees of 5 rabbits were injected with talc suspension. The right knees of 5 rabbits were injected with saline. All 20 left knees were injected with saline. Serial power Doppler images were obtained using constant-imaging parameters. Images were reviewed by blinded observers who assessed for increased power Doppler signal. All 10 knees inoculated with S. aureus developed septic arthritis. Each infected rabbit knee demonstrated increased signal on power Doppler on at least one examination, ranging from 1-6 days after inoculation. Only 23 of 45 examinations of infected knees were unequivocally positive by power Doppler on examinations performed 1 to 6 days after inoculation. No knee with talc synovitis demonstrated increased power Doppler signal. No control knee demonstrated increased power Doppler signal. Increased power Doppler signal may be seen with septic arthritis; however, its intensity and timing may vary from subject to subject. A normal power Doppler examination does not exclude septic arthritis.
NASA Astrophysics Data System (ADS)
Ruiz, Michael J.; Abee, Jeremy
2006-10-01
In this paper we present a design for a Doppler football. The classic Doppler ball uses a piezo buzzer and 9-V battery inside a foam ball. In our Doppler football, the sound level is enhanced by directing the 2.8-kHz tone of the buzzer through a hollow cylinder to one end of the football, with an on-off switch placed at the other end. We discuss our device within the historical context of Doppler demonstrations that have evolved over the many decades since Doppler's discovery.
The new Heavy-ion MCP-based Ancillary Detector DANTE for the CLARA-PRISMA Setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valiente-Dobon, J. J.; Gadea, A.; Corradi, L.
2006-08-14
The CLARA-PRISMA setup is a powerful tool for spectroscopic studies of neutron-rich nuclei produced in multi-nucleon transfer and deep-inelastic reactions. It combines the large acceptance spectrometer PRISMA with the {gamma}-ray array CLARA. At present, the ancillary heavy-ion detector DANTE, based on Micro-Channel Plates to be installed at the CLARA-PRISMA setup, is being constructed at LNL. DANTE will open the possibility of measuring {gamma}-{gamma} Doppler-corrected coincidences for the events outside the acceptance of PRISMA. In this presentation, it is described the heavy-ion detector DANTE, as well as the performances of the first prototype.
Trellis coding techniques for mobile communications
NASA Technical Reports Server (NTRS)
Divsalar, D.; Simon, M. K.; Jedrey, T.
1988-01-01
A criterion for designing optimum trellis codes to be used over fading channels is given. A technique is shown for reducing certain multiple trellis codes, optimally designed for the fading channel, to conventional (i.e., multiplicity one) trellis codes. The computational cutoff rate R0 is evaluated for MPSK transmitted over fading channels. Examples of trellis codes optimally designed for the Rayleigh fading channel are given and compared with respect to R0. Two types of modulation/demodulation techniques are considered, namely coherent (using pilot tone-aided carrier recovery) and differentially coherent with Doppler frequency correction. Simulation results are given for end-to-end performance of two trellis-coded systems.
Correction Factor for Gaussian Deconvolution of Optically Thick Linewidths in Homogeneous Sources
NASA Technical Reports Server (NTRS)
Kastner, S. O.; Bhatia, A. K.
1999-01-01
Profiles of optically thick, non-Gaussian emission line profiles convoluted with Gaussian instrumental profiles are constructed, and are deconvoluted on the usual Gaussian basis to examine the departure from accuracy thereby caused in "measured" linewidths. It is found that "measured" linewidths underestimate the true linewidths of optically thick lines, by a factor which depends on the resolution factor r congruent to Doppler width/instrumental width and on the optical thickness tau(sub 0). An approximating expression is obtained for this factor, applicable in the range of at least 0 <= tau(sub 0) <= 10, which can provide estimates of the true linewidth and optical thickness.
Kim, Se-Young; Kim, Kyoung Won; Choi, Sang Hyun; Kwon, Jae Hyun; Song, Gi-Won; Kwon, Heon-Ju; Yun, Young Ju; Lee, Jeongjin; Lee, Sung-Gyu
2017-11-01
To determine the feasibility of using UltraFast Doppler in post-operative evaluation of the hepatic artery (HA) after liver transplantation (LT), we evaluated 283 simultaneous conventional and UltraFast Doppler sessions in 126 recipients over a 2-mo period after LT, using an Aixplorer scanner The Doppler indexes of the HA (peak systolic velocity [PSV], end-diastolic velocity [EDV], resistive index [RI] and systolic acceleration time [SAT]) by retrospective analysis of retrieved waves from UltraFast Doppler clips were compared with those obtained by conventional spectral Doppler. Correlation, performance in diagnosing the pathologic wave, examination time and reproducibility were evaluated. The PSV, EDV, RI and SAT of spectral and UltraFast Doppler measurements exhibited excellent correlation with favorable diagnostic performance. During the bedside examination, the mean time spent for UltraFast clip storing was significantly shorter than that for conventional Doppler US measurements. Both conventional and UltraFast Doppler exhibited good to excellent inter-analysis consistency. In conclusion, compared with conventional spectral Doppler, UltraFast Doppler values correlated excellently and yielded acceptable pathologic wave diagnostic performance with reduced examination time at the bedside and excellent reproducibility. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Evaluation of meteorological airborne Doppler radar
NASA Technical Reports Server (NTRS)
Hildebrand, P. H.; Mueller, C. K.
1984-01-01
This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.
A Generalized Wave Diagram for Moving Sources
NASA Astrophysics Data System (ADS)
Alt, Robert; Wiley, Sam
2004-12-01
Many introductory physics texts1-5 accompany the discussion of the Doppler effect and the formation of shock waves with diagrams illustrating the effect of a source moving through an elastic medium. Typically these diagrams consist of a series of equally spaced dots, representing the location of the source at different times. These are surrounded by a series of successively smaller circles representing wave fronts (see Fig. 1). While such a diagram provides a clear illustration of the shock wave produced by a source moving at a speed greater than the wave speed, and also the resultant pattern when the source speed is less than the wave speed (the Doppler effect), the texts do not often show the details of the construction. As a result, the key connection between the relative distance traveled by the source and the distance traveled by the wave is not explicitly made. In this paper we describe an approach emphasizing this connection that we have found to be a useful classroom supplement to the usual text presentation. As shown in Fig. 2 and Fig. 3, the Doppler effect and the shock wave can be illustrated by diagrams generated by the construction that follows.
Vessel packaging effect in laser speckle contrast imaging and laser Doppler imaging.
Fredriksson, Ingemar; Larsson, Marcus
2017-10-01
Laser speckle-based techniques are frequently used to assess microcirculatory blood flow. Perfusion estimates are calculated either by analyzing the speckle fluctuations over time as in laser Doppler flowmetry (LDF), or by analyzing the speckle contrast as in laser speckle contrast imaging (LSCI). The perfusion estimates depend on the amount of blood and its speed distribution. However, the perfusion estimates are commonly given in arbitrary units as they are nonlinear and depend on the magnitude and the spatial distribution of the optical properties in the tissue under investigation. We describe how the spatial confinement of blood to vessels, called the vessel packaging effect, can be modeled in LDF and LSCI, which affect the Doppler power spectra and speckle contrast, and the underlying bio-optical mechanisms for these effects. As an example, the perfusion estimate is reduced by 25% for LDF and often more than 50% for LSCI when blood is located in vessels with an average diameter of 40 μm, instead of being homogeneously distributed within the tissue. This significant effect can be compensated for only with knowledge of the average diameter of the vessels in the tissue. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Technical Reports Server (NTRS)
Jamora, Dennis A.
1993-01-01
Ground clutter interference is a major problem for airborne pulse Doppler radar operating at low altitudes in a look-down mode. With Doppler zero set at the aircraft ground speed, ground clutter rejection filtering is typically accomplished using a high-pass filter with real valued coefficients and a stopband notch centered at zero Doppler. Clutter spectra from the NASA Wind Shear Flight Experiments of l991-1992 show that the dominant clutter mode can be located away from zero Doppler, particularly at short ranges dominated by sidelobe returns. Use of digital notch filters with complex valued coefficients so that the stopband notch can be located at any Doppler frequency is investigated. Several clutter mode tracking algorithms are considered to estimate the Doppler frequency location of the dominant clutter mode. From the examination of night data, when a dominant clutter mode away from zero Doppler is present, complex filtering is able to significantly increase clutter rejection over use of a notch filter centered at zero Doppler.
[The application of Doppler broadening and Doppler shift to spectral analysis].
Xu, Wei; Fang, Zi-shen
2002-08-01
The distinction between Doppler broadening and Doppler shift has analyzed, Doppler broadening locally results from the distribution of velocities of the emitting particles, the line width gives the information on temperature of emitting particles. Doppler shift results when the emitting particles have a bulk non random flow velocity in a particular direction, the drift of central wavelength gives the information on flow velocity of emitting particles, and the Doppler shift only drifts the profile of line without changing the width. The difference between Gaussian fitting and the distribution of chord-integral line shape have also been discussed. The distribution of H alpha spectral line shape has been derived from the surface of limiter in HT-6M Tokamak with optical spectroscope multichannel analysis (OSMA), the result by double Gaussian fitting shows that the line shape make up of two port, the emitting of reflect particles with higher energy and the release particle from the limiter surface. Ion temperature and recycling particle flow velocity have been obtained from Doppler broadening and Doppler shift.
Performance Bounds on Micro-Doppler Estimation and Adaptive Waveform Design Using OFDM Signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Satyabrata; Barhen, Jacob; Glover, Charles Wayne
We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute themore » Cram er-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.« less
Jiao, York; Gipson, Keith E; Bonde, Pramod; Mangi, Abeel; Hagberg, Robert; Rosinski, David J; Gross, Jeffrey B; Schonberger, Robert B
Prolonged use of venoarterial extracorporeal membrane oxygenation (VA ECMO) may be complicated by end-organ dysfunction. Although gaseous microemboli (GME) are thought to damage end organs during cardiopulmonary bypass, patient exposures to GME have not been well characterized during VA ECMO. We therefore performed an observational study of GME in adult VA ECMO patients, with correlation to clinical events during routine patient care. After institutional review board (IRB) approval, we used two Doppler probes to detect GME noninvasively in extracorporeal membrane oxygenation (ECMO) circuits on four patients for 15 hours total while also recording patient care events. We then conducted in vitro trials to compare Doppler signals with gold-standard measurements using an Emboli Detection and Classification EDAC quantifier (Luna Innnovations, Inc. Roanoke, VA) (Terumo Cardiovascular, Ann Arbor, MI) during simulated clinical interventions. Correlations between Doppler and EDAC data were used to estimate GME counts and volumes represented by clinical Doppler data. A total of 503 groups of Doppler peaks representing GME showers were observed, including 194 statistically larger showers during patient care activities containing 92% of total Doppler peaks. Intravenous injections accounted for an estimated 68% of GME and 88% of GME volume, whereas care involving movement accounted for an estimated 6% of GME and 3% of volume. Overall estimated embolic rates of 24,000 GME totaling 4 μl/hr rivals reported GME rates during cardiopulmonary bypass. Numerous GME are present in the postmembrane circuit during VA ECMO, raising concern for effects on microcirculation and organ dysfunction. Strategies to detect and minimize GME may be warranted to limit embolic exposures experienced by VA ECMO patients.
Analysis of Lidar Remote Sensing Concepts
NASA Technical Reports Server (NTRS)
Spiers, Gary D.
1999-01-01
Line of sight velocity and measurement position sensitivity analyses for an orbiting coherent Doppler lidar are developed and applied to two lidars, one with a nadir angle of 30 deg. in a 300 km altitude, 58 deg. inclination orbit and the second for a 45 deg. nadir angle instrument in a 833 km altitude, 89 deg. inclination orbit. The effect of orbit related effects on the backscatter sensitivity of a coherent Doppler lidar is also discussed. Draft performance estimate, error budgets and payload accommodation requirements for the SPARCLE (Space Readiness Coherent Lidar) instrument were also developed and documented.
Redistribution of resonance radiation. II - The effect of magnetic fields.
NASA Technical Reports Server (NTRS)
Omont, A.; Cooper, J.; Smith, E. W.
1973-01-01
Previously obtained results for scattering of radiation in the presence of collisions are restated in a density matrix formalism which employs an irreducible-tensor description of the radiation field. This formalism is particularly useful for problems associated with radiative transfer theory. The redistribution is then extended to include the effect of a weak magnetic field. By averaging over a finite bandwidth which is on the order of the Doppler width, simplified expressions of physical significance for the scattering in the Doppler core and the Lorentz wings are obtained. Expressions are also obtained for the corresponding source function of radiative transfer theory.
Doppler-shifted self-reflected wave from a semiconductor
NASA Astrophysics Data System (ADS)
Schuelzgen, Alex; Hughes, S.; Peyghambarian, Nasser
1997-06-01
We report the first experimental observation of a self- reflected wave inside a very dense saturable absorber. An intense femtosecond pulse saturates the absorption and causes a density front moving into the semiconductor sample. Due to the motion of the boundary between saturated and unsaturated areas of the sample the light reflected at this boundary is red-shifted by the Doppler effect. The spectrally shifted reflection makes it possible to distinguish between surface reflection and self-reflection and is used to proof the concept of the dynamic nonlinear skin effect experimentally. Quite well agreement with model calculations is found.
Analysis and prediction of Doppler noise during solar conjunctions
NASA Technical Reports Server (NTRS)
Berman, A. L.; Rockwell, S. T.
1975-01-01
The results of a study of Doppler data noise during solar conjunctions were presented. During the first half of 1975, a sizeable data base of Doppler data noise (estimates) for the Pioneer 10, Pioneer 11, and Helios 1 solar conjunctions was accumulated. To analyze this data, certain physical assumptions are made, leading to the development of a geometric parameter ("ISI") which correlates strongly with Doppler data noise under varying sun-earth-spacecraft geometries. Doppler noise models are then constructed from this parameter, resulting in the newfound ability to predict Doppler data noise during solar conjunctions, and hence to additionally be in a position to validate Doppler data acquired during solar conjunctions.
Doppler radar fall activity detection using the wavelet transform.
Su, Bo Yu; Ho, K C; Rantz, Marilyn J; Skubic, Marjorie
2015-03-01
We propose in this paper the use of Wavelet transform (WT) to detect human falls using a ceiling mounted Doppler range control radar. The radar senses any motions from falls as well as nonfalls due to the Doppler effect. The WT is very effective in distinguishing the falls from other activities, making it a promising technique for radar fall detection in nonobtrusive inhome elder care applications. The proposed radar fall detector consists of two stages. The prescreen stage uses the coefficients of wavelet decomposition at a given scale to identify the time locations in which fall activities may have occurred. The classification stage extracts the time-frequency content from the wavelet coefficients at many scales to form a feature vector for fall versus nonfall classification. The selection of different wavelet functions is examined to achieve better performance. Experimental results using the data from the laboratory and real inhome environments validate the promising and robust performance of the proposed detector.
Garcia, M J; Smedira, N G; Greenberg, N L; Main, M; Firstenberg, M S; Odabashian, J; Thomas, J D
2000-01-01
To determine the effect of preload in color M-mode Doppler flow propagation velocity (v(p)). The interpretation of Doppler filling patterns is limited by confounding effects of left ventricular (LV) relaxation and preload. Color M-mode v(p) has been proposed as a new index of LV relaxation. We studied four dogs before and during inferior caval (IVC) occlusion at five different inotropic stages and 14 patients before and during partial cardiopulmonary bypass. Left ventricular (LV) end-diastolic volumes (LV-EDV), the time constant of isovolumic relaxation (tau), left atrial (LA) pre-A and LV end-diastolic pressures (LV-EDP) were measured. Peak velocity during early filling (E) and v(p) were extracted by digital analysis of color M-mode Doppler images. In both animals and humans, LV-EDV and LV-EDP decreased significantly from baseline to IVC occlusion (both p < 0.001). Peak early filling (E) velocity decreased in animals from 56 +/- 21 to 42 +/- 17 cm/s (p < 0.001) without change in v(p) (from 35 +/- 15 to 35 +/- 16, p = 0.99). Results were similar in humans (from 69 +/- 15 to 53 +/- 22 cm/s, p < 0.001, and 37 +/- 12 to 34 +/- 16, p = 0.30). In both species, there was a strong correlation between LV relaxation (tau) and v(p) (r = 0.78, p < 0.001, r = 0.86, p < 0.001). Our results indicate that color M-mode Doppler v(p) is not affected by preload alterations and confirms that LV relaxation is its main physiologic determinant in both animals during varying lusitropic conditions and in humans with heart disease.
NASA Technical Reports Server (NTRS)
Garcia, M. J.; Smedira, N. G.; Greenberg, N. L.; Main, M.; Firstenberg, M. S.; Odabashian, J.; Thomas, J. D.
2000-01-01
OBJECTIVES: To determine the effect of preload in color M-mode Doppler flow propagation velocity (v(p)). BACKGROUND: The interpretation of Doppler filling patterns is limited by confounding effects of left ventricular (LV) relaxation and preload. Color M-mode v(p) has been proposed as a new index of LV relaxation. METHODS: We studied four dogs before and during inferior caval (IVC) occlusion at five different inotropic stages and 14 patients before and during partial cardiopulmonary bypass. Left ventricular (LV) end-diastolic volumes (LV-EDV), the time constant of isovolumic relaxation (tau), left atrial (LA) pre-A and LV end-diastolic pressures (LV-EDP) were measured. Peak velocity during early filling (E) and v(p) were extracted by digital analysis of color M-mode Doppler images. RESULTS: In both animals and humans, LV-EDV and LV-EDP decreased significantly from baseline to IVC occlusion (both p < 0.001). Peak early filling (E) velocity decreased in animals from 56 +/- 21 to 42 +/- 17 cm/s (p < 0.001) without change in v(p) (from 35 +/- 15 to 35 +/- 16, p = 0.99). Results were similar in humans (from 69 +/- 15 to 53 +/- 22 cm/s, p < 0.001, and 37 +/- 12 to 34 +/- 16, p = 0.30). In both species, there was a strong correlation between LV relaxation (tau) and v(p) (r = 0.78, p < 0.001, r = 0.86, p < 0.001). CONCLUSIONS: Our results indicate that color M-mode Doppler v(p) is not affected by preload alterations and confirms that LV relaxation is its main physiologic determinant in both animals during varying lusitropic conditions and in humans with heart disease.
Schober, Karsten E; Hart, Taye M; Stern, Joshua A; Li, Xiaobai; Samii, Valerie F; Zekas, Lisa J; Scansen, Brian A; Bonagura, John D
2011-08-15
To evaluate the effects of treatment on respiratory rate, serum natriuretic peptide concentrations, and Doppler echocardiographic indices of left ventricular filling pressure in dogs with congestive heart failure (CHF) secondary to degenerative mitral valve disease (MVD) and dilated cardiomyopathy (DCM). Prospective cohort study. 63 client-owned dogs. Physical examination, thoracic radiography, analysis of natriuretic peptide concentrations, and Doppler echocardiography were performed twice, at baseline (examination 1) and 5 to 14 days later (examination 2). Home monitoring of respiratory rate was performed by the owners between examinations. In dogs with MVD, resolution of CHF was associated with a decrease in respiratory rate, serum N-terminal probrain natriuretic peptide (NT-proBNP) concentration, and diastolic functional class and an increase of the ratio of peak velocity of early diastolic transmitral flow to peak velocity of early diastolic lateral mitral annulus motion (E:Ea Lat). In dogs with DCM, resolution of CHF was associated with a decrease in respiratory rate and serum NT-proBNP concentration and significant changes in 7 Doppler echocardiographic variables, including a decrease of E:Ea Lat and the ratio of peak velocity of early diastolic transmitral flow to isovolumic relaxation time. Only respiratory rate predicted the presence of CHF at examination 2 with high accuracy. Resolution of CHF was associated with predictable changes in respiratory rate, serum NT-proBNP concentration, and selected Doppler echocardiographic variables in dogs with DCM and MVD. Home monitoring of respiratory rate was simple and was the most useful in the assessment of successful treatment of CHF.
Sripathi, Smiti; Mahajan, Abhishek
2013-09-01
To analyze qualitative and quantitative parameters of lung tumors by color Doppler sonography, determine the role of color Doppler sonography in predicting chest wall invasion by lung tumors using spectral waveform analysis, and compare color Doppler sonography and computed tomography (CT) for predicting chest wall invasion by lung tumors. Between March and September 2007, 55 patients with pleuropulmonary lesions on chest radiography were assessed by grayscale and color Doppler sonography for chest wall invasion. Four patients were excluded from the study because of poor acoustic windows. Quantitative and qualitative sonographic examinations of the lesions were performed using grayscale and color Doppler imaging. The correlation between the color Doppler and CT findings was determined, and the final outcomes were correlated with the histopathologic findings. Of a total of 51 lesions, 32 were malignant. Vascularity was present on color Doppler sonography in 28 lesions, and chest wall invasion was documented in 22 cases. Computed tomography was performed in 24 of 28 evaluable malignant lesions, and the findings were correlated with the color Doppler findings for chest wall invasion. Of the 24 patients who underwent CT, 19 showed chest wall invasion. The correlation between the color Doppler and CT findings revealed that color Doppler sonography had sensitivity of 95.6% and specificity of 100% for assessing chest wall invasion, whereas CT had sensitivity of 85.7% and specificity of 66.7%. Combined qualitative and quantitative color Doppler sonography can predict chest wall invasion by lung tumors with better sensitivity and specificity than CT. Although surgery is the reference standard, color Doppler sonography is a readily available, affordable, and noninvasive in vivo diagnostic imaging modality that is complementary to CT and magnetic resonance imaging for lung cancer staging.
Sharma, Kaveri; Venkatesh, B.P; Barman, Partho; Roy, Sumit Kumar; Jayagurunathan, Usha; Sellamuthu, Eswaramoorthy; Moidu, Fazil
2015-01-01
Introduction Adenomyosis and Leiomyoma are common disorders affecting females in their reproductive age. They mimic each other in clinical presentation. Due to similarities in clinical symptoms and signs, missing one diagnosis in favour of the other is not very uncommon. Accurate diagnosis of these two conditions is important for their management. In this study we evaluated role of 3D Ultrasound and Doppler in differentiating clinically suspected cases of leiomyoma and adenomyosis of uterus. Materials and Methods A total of 100 patients with symptoms of abnormal uterine bleeding (with or without dysmenorrhoea), lump abdomen, chronic pelvic pain or dysparaunia who were clinically diagnosed as leiomyoma of uterus and/or adenomyosis were enrolled in to the study. These patients underwent transvaginal sonography (TVS), trans abdominal sonography (TAS) along with color and spectral Doppler sonography. Scanning was done in follicular phase of the menstrual cycle to avoid bias due high vascularity of endometrium in secretory phase. The morphology of the lesion, its vascularity, and Pulsality Index (PI), Resistive Index (RI) and Vmax (maximum velocity) were measured. Only those patients who were chosen for operative treatment were included in the study. Radiological diagnosis was then correlated with intra-operative and histopathological diagnosis. Results On imaging, while using morphological criteria and Doppler for diagnosing leiomyoma, it was found that “peripheral vascularity” was seen in 52 (89%) cases, which was the highest. Similarly while diagnosing adenomyosis it was, the criteria “central vascularity” was seen in 28 cases (93%) and “ill defined junctional zone in 3D ultrasound” was seen in 26 cases (86%), which was also observed to be highest. With the cut off values taken for PI,RI and Vmax, diagnosis of leiomyoma was found to be 93.4% sensitive, 95.6% specific and with a positive predictive value of 97.6% and negative predictive value of 88.6%. Diagnosis of adenomyosis showed a sensitivity of 95.6%, specificity of 93.4% and a positive predictive value of 88.6% and negative predictive value of 97.6%. Imaging dignosed the co-existence of both the conditions correctly in 8 (66%) cases. Conclusion The parameters of blood flow impedance (that is PI, RI, and Vmax) of arteries within or around the uterine lesions revealed a consistent and significant difference between leiomyoma and adenomyosis. So apart from morphological criteria used in 3D TAS and TVS, aid of color Doppler can more accurately differentiate and diagnose these conditions. PMID:26023602
Thornton, J G; Hornbuckle, J; Vail, A; Spiegelhalter, D J; Levene, M
Although delivery is widely used for preterm babies failing to thrive in utero, the effect of altering delivery timing has never been assessed in a randomised controlled trial. We aimed to compare the effect of delivering early with delaying birth for as long as possible. 548 pregnant women were recruited by 69 hospitals in 13 European countries. Participants had fetal compromise between 24 and 36 weeks, an umbilical-artery doppler waveform recorded, and clinical uncertainty about whether immediate delivery was indicated. Before birth, 588 babies were randomly assigned to immediate delivery (n=296) or delayed delivery until the obstetrician was no longer uncertain (n=292). The main outcome was death or disability at or beyond 2 years of age. Disability was defined as a Griffiths developmental quotient of 70 or less or the presence of motor or perceptual severe disability. Analysis was by intention-to-treat. This trial has been assigned the International Standard Randomised Controlled Trial Number ISRCTN41358726. Primary outcomes were available on 290 (98%) immediate and 283 (97%) deferred deliveries. Overall rate of death or severe disability at 2 years was 55 (19%) of 290 immediate births, and 44 (16%) of 283 delayed births. With adjustment for gestational age and umbilical-artery doppler category, the odds ratio (95% CrI) was 1.1 (0.7-1.8). Most of the observed difference was in disability in babies younger than 31 weeks of gestation at randomisation: 14 (13%) immediate versus five (5%) delayed deliveries. No important differences in the median Griffiths developmental quotient in survivors was seen. The lack of difference in mortality suggests that obstetricians are delivering sick preterm babies at about the correct moment to minimise mortality. However, they could be delivering too early to minimise brain damage. These results do not lend support to the idea that obstetricians can deliver before terminal hypoxaemia to improve brain development.
Doppler broadening of neutron-induced resonances using ab initio phonon spectrum
NASA Astrophysics Data System (ADS)
Noguere, G.; Maldonado, P.; De Saint Jean, C.
2018-05-01
Neutron resonances observed in neutron cross section data can only be compared with their theoretical analogues after a correct broadening of the resonance widths. This broadening is usually carried out by two different theoretical models, namely the Free Gas Model and the Crystal Lattice Model, which, however, are only applicable under certain assumptions. Here, we use neutron transmission experiments on UO2 samples at T=23.7 K and T=293.7 K, to investigate the limitations of these models when an ab initio phonon spectrum is introduced in the calculations. Comparisons of the experimental and theoretical transmissions highlight the underestimation of the energy transferred at low temperature and its impact on the accurate determination of the radiation widths Γ_{γ_{λ}} of the 238U resonances λ. The observed deficiency of the model represents an experimental evidence that the Debye-Waller factor is not correctly calculated at low temperature near the Neel temperature ( TN=30.8 K).
NASA Astrophysics Data System (ADS)
Tsai, Shih-Chiao; Chen, Jenn-Shyong; Chu, Yen-Hsyang; Su, Ching-Lun; Chen, Jui-Hsiang
2018-01-01
Multi-frequency range imaging (RIM) has been operated in the Chung-Li very high-frequency (VHF) radar, located on the campus of National Central University, Taiwan, since 2008. RIM processes the echo signals with a group of closely spaced transmitting frequencies through appropriate inversion methods to obtain high-resolution distribution of echo power in the range direction. This is beneficial to the investigation of the small-scale structure embedded in dynamic atmosphere. Five transmitting frequencies were employed in the radar experiment for observation of the precipitating atmosphere during the period between 21 and 23 August 2013. Using the Capon and Fourier methods, the radar echoes were synthesized to retrieve the temporal signals at a smaller range step than the original range resolution defined by the pulse width, and such retrieved temporal signals were then processed in the Doppler frequency domain to identify the atmosphere and precipitation echoes. An analysis called conditional averaging was further executed for echo power, Doppler velocity, and spectral width to verify the potential capabilities of the retrieval processing in resolving small-scale precipitation and atmosphere structures. Point-by-point correction of range delay combined with compensation of range-weighting function effect has been performed during the retrieval of temporal signals to improve the continuity of power spectra at gate boundaries, making the small-scale structures in the power spectra more natural and reasonable. We examined stratiform and convective precipitation and demonstrated their different structured characteristics by means of the Capon-processed results. The new element in this study is the implementation of RIM on spectral analysis, especially for precipitation echoes.
Measurements of outflow velocities in on-disk plumes from EIS/Hinode observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Hui; Xia, Lidong; Li, Bo
2014-10-20
The contribution of plumes to the solar wind has been subject to hot debate in the past decades. The EUV Imaging Spectrometer (EIS) on board Hinode provides a unique means to deduce outflow velocities at coronal heights via direct Doppler shift measurements of coronal emission lines. Such direct Doppler shift measurements were not possible with previous spectrometers. We measure the outflow velocity at coronal heights in several on-disk long-duration plumes, which are located in coronal holes (CHs) and show significant blueshifts throughout the entire observational period. In one case, a plume is measured four hours apart. The deduced outflow velocitiesmore » are consistent, suggesting that the flows are quasi-steady. Furthermore, we provide an outflow velocity profile along the plumes, finding that the velocity corrected for the line-of-sight effect can reach 10 km s{sup –1} at 1.02 R {sub ☉}, 15 km s{sup –1} at 1.03 R {sub ☉}, and 25 km s{sup –1} at 1.05 R {sub ☉}. This clear signature of steady acceleration, combined with the fact that there is no significant blueshift at the base of plumes, provides an important constraint on plume models. At the height of 1.03 R {sub ☉}, EIS also deduced a density of 1.3 × 10{sup 8} cm{sup –3}, resulting in a proton flux of about 4.2 × 10{sup 9} cm{sup –2} s{sup –1} scaled to 1 AU, which is an order of magnitude higher than the proton input to a typical solar wind if a radial expansion is assumed. This suggests that CH plumes may be an important source of the solar wind.« less
Jan, Saadia Nosheen; Khan, Farid Ahmed; Bashir, Muhammad Mustehsan; Nasir, Muneeb; Ansari, Hamid Hussain; Shami, Hussan Birkhez; Nazir, Umer; Hanif, Asif; Sohail, Muhammad
2018-03-01
To compare the accuracy of Laser Doppler Imaging (LDI) and clinical assessment in differentiating between superficial and deep partial thickness burns to decide whether early tangential excision and grafting or conservative management should be employed to optimize burn and patient management. March 2015 to November 2016. Ninety two wounds in 34 patients reporting within 5days of less than 40% burn surface area were included. Unstable patients, pregnant females and those who expired were excluded. The wounds were clinically assessed and LDI done concomitantly Plastic Surgeons blinded to each other's findings. Wound appearance, color, blanching, pain, hair follicle dislodgement were the clinical parameters that distinguished between superficial and deep partial thickness burns. On day 21, the wounds were again assessed for the presence of healing by the same plastic surgeons. The findings were correlated with the initial findings on LDI and clinical assessment and the results statistically analyzed. The data of 92 burn wounds was analyzed using SPSS (ver. 17). Clinical assessment correctly identified the depth of 75 and LDI 83 wounds, giving diagnostic accuracies of 81.52% and 90.21% respectively. The sensitivity of clinical assessment was 81% and of LDI 92.75%, whereas the specificity was 82% for both. The positive predictive value was 93% for clinical assessment and 94% for LDI while the negative predictive value was 59% and 79% respectively. Predictive accuracy of LDI was found to be better than clinical assessment in the prediction of wound healing, the gold standard for wound healing being 21 days. As such it can prove to be a reliable and viable cost effective alternative per se to clinical assessment. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, P. J.; Li, Y. D.; Ren, Y.; Zhang, X. D.; Wu, G. J.; Lyu, B.; Shi, T. H.; Xu, L. Q.; Wang, F. D.; Li, Q.; Zhang, J. Z.; Hu, L. Q.; Li, J. G.; the EAST Team
2018-02-01
In this paper, we report an experimental study of the effect of a m/n = -2/-1 (m, n being poloidal and toroidal mode number, separately) classical tearing mode on (intermediate, small)-scale microturbulence (see the definition in section 1) in the core of an EAST L mode plasma discharge. The microturbulence at different scales k ⊥ = 10, 18 and 26 cm-1 (i.e., {k}\\perp {ρ }i˜ 2, 3.6 and 5.2, respectively. Here, {ρ }i is the ion gyroradius and k ⊥ is the perpendicular wavenumber) were measured simultaneously by the EAST multi-channel tangential CO2 laser collective scattering diagnostics. Experimental results confirm that the decrease of microturbulent Doppler shift ({f}{{Doppler}}={k}t{v}t/2π ), inversely correlated to the increase of microturbulent mean frequency (defined in equation (1)), is due to the 2/1 tearing mode. Temporal evolution of frequency-integrated spectral power S tot of microturbulence, found to be correlated with the width of 2/1 magnetic island, suggests the modulation effect on microturbulence by the tearing mode beyond Doppler shift effect. Modulation effects on microturbulence by the tearing mode are further demonstrated by the correlation between microturbulent envelope and magnetic fluctuations.
Comparisons of sodium void and Doppler reactivities in large oxide and carbide LMFBRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, S F
Sodium void and Doppler reactivities in two full scale (3000 MWth) LMFBRs are analyzed; one is fueled with UO/sub 2/ - PuO/sub 2/ and the other is fueled with UC - PuC. These two reactors are analyzed for beginning of life as well as for beginning and end of equilibrium cycle conditions, and the variations of these two safety parameters with burnup are explained. A series of comperative analyses of these two and several hypothetical reactors are carried out to determine how differences in fuel type, sodium content, and heavy metal concentration between an oxide and a carbide reactor affectmore » their sodium void and Doppler reactivities. The effect of the presence of conrol poison on sodium void reactivity is also addressed.« less
Ionospheric S-shaped Doppler fluctuations produced by the tornadoes
NASA Technical Reports Server (NTRS)
Hung, R. J.; Rao, G. L.; Smith, R. E.
1974-01-01
A three-dimensional nine element HF-CW Doppler sounder array has been used to detect ionospheric disturbances which may be due to tornadoes. The typical events chosen in the present study occurred on November 20 and 27, 1973. Both events are apparently associated with tornadoes sighted in the Huntsville, Alabama area. The Doppler records show S-shaped waves rather than the quasi-sinusoidal waves observed in conjunction with and apparently due to thunderstorms. The wave-periods are in the range of 6 to 8 minutes instead of the 3 to 5 minute periods associated with thunderstorms. Dissipation of waves is mostly due to the evanescent effect and they cannot propagate very far from the path of the tornado center. A theory is presented which is in good agreement with the observations.
Multichannel fiber laser Doppler vibrometer studies of low momentum and hypervelocity impacts
NASA Astrophysics Data System (ADS)
Posada-Roman, Julio E.; Jackson, David A.; Cole, Mike J.; Garcia-Souto, Jose A.
2017-12-01
A multichannel optical fiber laser Doppler vibrometer was demonstrated with the capability of making simultaneous non-contact measurements of impacts at 3 different locations. Two sets of measurements were performed, firstly using small ball bearings (1 mm-5.5 mm) falling under gravity and secondly using small projectiles (1 mm) fired from an extremely high velocity light gas gun (LGG) with speeds in the range 1 km/s-8 km/s. Determination of impact damage is important for industries such as aerospace, military and rail, where the effect of an impact on the structure can result in a major structural damage. To our knowledge the research reported here demonstrates the first trials of a multichannel fiber laser Doppler vibrometer being used to detect hypervelocity impacts.
Sensitive sub-Doppler nonlinear spectroscopy for hyperfine-structure analysis using simple atomizers
NASA Astrophysics Data System (ADS)
Mickadeit, Fritz K.; Kemp, Helen; Schafer, Julia; Tong, William M.
1998-05-01
Laser wave-mixing spectroscopy is presented as a sub-Doppler method that offers not only high spectral resolution, but also excellent detection sensitivity. It offers spectral resolution suitable for hyperfine structure analysis and isotope ratio measurements. In a non-planar backward- scattering four-wave mixing optical configuration, two of the three input beams counter propagate and the Doppler broadening is minimized, and hence, spectral resolution is enhanced. Since the signal is a coherent beam, optical collection is efficient and signal detection is convenient. This simple multi-photon nonlinear laser method offers un usually sensitive detection limits that are suitable for trace-concentration isotope analysis using a few different types of simple analytical atomizers. Reliable measurement of hyperfine structures allows effective determination of isotope ratios for chemical analysis.
Directional dual-tree rational-dilation complex wavelet transform.
Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin
2014-01-01
Dyadic discrete wavelet transform (DWT) has been used successfully in processing signals having non-oscillatory transient behaviour. However, due to the low Q-factor property of their wavelet atoms, the dyadic DWT is less effective in processing oscillatory signals such as embolic signals (ESs). ESs are extracted from quadrature Doppler signals, which are the output of Doppler ultrasound systems. In order to process ESs, firstly, a pre-processing operation known as phase filtering for obtaining directional signals from quadrature Doppler signals must be employed. Only then, wavelet based methods can be applied to these directional signals for further analysis. In this study, a directional dual-tree rational-dilation complex wavelet transform, which can be applied directly to quadrature signals and has the ability of extracting directional information during analysis, is introduced.
Analysis of photonic Doppler velocimetry data based on the continuous wavelet transform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Shouxian; Wang Detian; Li Tao
2011-02-15
The short time Fourier transform (STFT) cannot resolve rapid velocity changes in most photonic Doppler velocimetry (PDV) data. A practical analysis method based on the continuous wavelet transform (CWT) was presented to overcome this difficulty. The adaptability of the wavelet family predicates that the continuous wavelet transform uses an adaptive time window to estimate the instantaneous frequency of signals. The local frequencies of signal are accurately determined by finding the ridge in the spectrogram of the CWT and then are converted to target velocity according to the Doppler effects. A performance comparison between the CWT and STFT is demonstrated bymore » a plate-impact experiment data. The results illustrate that the new method is automatic and adequate for analysis of PDV data.« less
Is Doppler ultrasound useful for evaluating gestational trophoblastic disease?
Lin, Lawrence H; Bernardes, Lisandra S; Hase, Eliane A; Fushida, Koji; Francisco, Rossana P V
2015-12-01
Doppler ultrasound is a non-invasive method for evaluating vascularization and is widely used in clinical practice. Gestational trophoblastic neoplasia includes a group of highly vascularized malignancies derived from placental cells. This review summarizes data found in the literature regarding the applications of Doppler ultrasound in managing patients with gestational trophoblastic neoplasia. The PubMed/Medline, Web of Science, Cochrane and LILACS databases were searched for articles published in English until 2014 using the following keywords: "Gestational trophoblastic disease AND Ultrasonography, Doppler." Twenty-eight articles met the inclusion criteria and were separated into the 4 following groups according to the aim of the study. (1) Doppler ultrasound does not seem to be capable of differentiating partial from complete moles, but it might be useful when evaluating pregnancies in which a complete mole coexists with a normal fetus. (2) There is controversy in the role of uterine artery Doppler velocimetry in the prediction of development of gestational trophoblastic neoplasia. (3) Doppler ultrasound is a useful tool in the diagnosis of gestational trophoblastic neoplasia because abnormal myometrial vascularization and lower uterine artery Doppler indices seem to be correlated with invasive disease. (4) Lower uterine artery Doppler indices in the diagnosis of gestational trophoblastic neoplasia are associated with methotrexate resistance and might play a role in prognosis. Several studies support the importance of Doppler ultrasound in the management of patients with gestational trophoblastic neoplasia, particularly the role of Doppler velocimetry in the prediction of trophoblastic neoplasia and the chemoresistance of trophoblastic tumors. Doppler findings should be used as ancillary tools, along with human chorionic gonadotropin assessment, in the diagnosis of gestational trophoblastic neoplasia.
Rigatelli, G L; Carraro, U; Barbiero, M; Zanchetta, M; Rigatelli, G
2002-02-01
There are no data regarding real cardiac assistance in demand dynamic cardiomyoplasty (DDCMP). A test of the use of Doppler flow wire is presented to demonstrate cardiac assistance in DDCMP. Comparative study in hospitalized care. A peripheral Flex Doppler flow wire of 0.018 inch was advanced through a 4F introducer femoral arterial in seven DDCMP patients (age=57.1+/-6.2 years; NYHA= 1.4+/-0.5). A short period of 10 sec with stimulator off and a following period of 15 sec with clinical stimulation were recorded. We measured the maximum peak aortic flow velocity (MPAV) in all beats. Latissimus dorsi (LD) mechanogram was simultaneously recorded. Statistical analysis showed an increase not only in MPAV in assisted period versus rest, but also in assisted beats versus unassisted (8.42+/-6.98% and 7.55+/-3.07%). Intravascular Doppler proved real systolic assistance in DDCMP; in DDCMP systolic assistance is correlated to the LD wrap speed of contraction, suggesting that demand stimulation could be the most effective protocol in dynamic cardiomyoplasty.
A new laser Doppler flowmeter prototype for depth dependent monitoring of skin microcirculation
NASA Astrophysics Data System (ADS)
Figueiras, E.; Campos, R.; Semedo, S.; Oliveira, R.; Requicha Ferreira, L. F.; Humeau-Heurtier, A.
2012-03-01
Laser Doppler flowmetry (LDF) is now commonly used in clinical research to monitor microvascular blood flow. However, the dependence of the LDF signal on the microvascular architecture is still unknown. That is why we propose a new laser Doppler flowmeter for depth dependent monitoring of skin microvascular perfusion. This new laser Doppler flowmeter combines for the first time, in a device, several wavelengths and different spaced detection optical fibres. The calibration of the new apparatus is herein presented together with in vivo validation. Two in vivo validation tests are performed. In the first test, signals collected in the ventral side of the forearm are analyzed; in the second test, signals collected in the ventral side of the forearm are compared with signals collected in the hand palm. There are good indicators that show that different wavelengths and fibre distances probe different skin perfusion layers. However, multiple scattering may affect the results, namely the ones obtained with the larger fibre distance. To clearly understand the wavelength effect in LDF measurements, other tests have to be performed.
Evaluation of tourniquet application in a simulated tactical environment.
Sanak, Tomasz; Brzozowski, Robert; Dabrowski, Marek; Kozak, Magdalena; Dabrowska, Agata; Sip, Maciej; Naylor, Katarzyna; Torres, Kamil
2018-01-01
Application of a tourniquet in a tactical environment is implemented in two ways: the so-called self-aid, which is the application of a tourniquet by the injured, and the so-called buddy aid, which is the application of a tourniquet by the person provide aid. This study aimed to test the quality of tourniquet use in a simulated situation, close quarter battle. The study involved 24 injured operators and 72 operators in the whole simulation, implying 12 sections of six individuals. To validate the application of tourniquets, the recommendations of the Committee of Tactical Combat Care of the Injured were used, and ultrasound with Doppler function was employed to assess the hemodynamic effect of applying tourniquets. Native flow was observed in 15 operators; in three people, a trace flow was noticed, whereas in six people, a full flow was observed. No significant difference was found between the qualities of tourniquet application by the operators themselves compared with those of tourniquet application by another person. The median distance of tourniquet application from the armpit was 9.5 cm for self-aid and buddy aid. In 16 participants the outer arrangement of tourniquets was observed, and in only eight participants tourniquets were correctly located on the internal part of the arm. In 18 participants, tourniquets were not correctly prepared for use in the tactical environment, whereas in only six participants, they were correctly prepared. Most operators with a negative ultrasound flow revealed negative distal observed pulse (DOP). Positive DOP occurred in the majority of operators with full ultrasound flow. The application of tourniquets poses a challenge even in case of specialized units; therefore, there is a need to provide regular training for implementing that procedure.
1983-12-01
effects of the transmitted waveform. This will be accomplished via comparisons of signal-to-noise ratios for non-coherent filtering vs. coherent narrowband...form of frequency or phase modulation. The simulation will assume we are processing the video (baseband) signal which resu fr i an enviroment (target...range, they can be resolved in doppler if AWD/2 > Fr where &wD is the doppler-shift difference. A similiar consideration of target resolution for a
Pretolesi, F; Silvestri, E; Di Maio, G; Martinoli, C; Onetto, F; Sala, P; Derchi, L E
1997-01-01
The aim of this study was to evaluate the changes in volume, structure, and flow pattern of parathyroid glands in uremic patients with secondary hyperparathyroidism treated with long-term intravenous calcitriol (CTL) therapy. Ultrasonography was used to follow-up volume changes occurring in 18 enlarged glands in 11 patients during an 18-month period; in 6 of these cases, 11 glands were followed-up also with color-Doppler to monitor variations in flow pattern. Vascularization was classified using three grades: grade 0 = no color signal; grade I = vessels covering less than 50 % of glandular cross-sectional area; grade II = vascular signals covering more than 50 % of glandular cross-sectional area. No significant changes in volume were demonstrated during the 18 months of follow-up. On the contrary, significant decrease in flow was observed with almost complete disappearance of color-Doppler signals. This finding related well with the observed decrease in parathormone blood levels. Lack of volume changes during medical therapy demonstrates the inability of US alone to monitor the effect of this treatment on the parathyroid glands. Conversely, the observed intraglandular flow reduction indicates the possibility to use color Doppler to monitor the effects of CLT in uremic hemodialyzed patients with secondary hyperparathyroidism. This imaging procedure can be proposed for follow-up of the response of the parathyroid glands to therapy.
Cankar, Ksenija; Music, Mark; Finderle, Zare
2016-11-01
It is generally known that differences exist between males and females with regard to sensitivity to cold. Similar differences even among females in different hormonal balance might influence microvascular response during cold provocation testing. The aim of the present study was to measure sex hormone levels, cold and cold pain perception thresholds and compare them to cutaneous laser-Doppler flux response during local cooling in both the follicular and luteal phases of the menstrual cycle. In the luteal phase a more pronounced decrease in laser-Doppler flux was observed compared to follicular phase during local cooling at 15°C (significant difference by Dunnett's test, p<0.05). In addition, statistically significant correlations between progesterone level and laser-Doppler flux response to local cooling were observed during the follicular (R=-0.552, p=0.0174) and during the luteal phases (R=0.520, p=0.0271). In contrast, the correlation between estradiol level and laser-Doppler flux response was observed only in the follicular phase (R=-0.506, p=0.0324). Our results show that individual sensitivity to cold influences cutaneous microvascular response to local cooling; that microvascular reactivity is more pronounced during the luteal phase of the menstrual cycle; and that reactivity correlates with hormone levels. The effect of specific sex hormone levels is related to the cold-provocation temperature. Copyright © 2016. Published by Elsevier Inc.
Signature analysis of ballistic missile warhead with micro-nutation in terahertz band
NASA Astrophysics Data System (ADS)
Li, Ming; Jiang, Yue-song
2013-08-01
In recent years, the micro-Doppler effect has been proposed as a new technique for signature analysis and extraction of radar targets. The ballistic missile is known as a typical radar target and has been paid many attentions for the complexities of its motions in current researches. The trajectory of a ballistic missile can be generally divided into three stages: boost phase, midcourse phase and terminal phase. The midcourse phase is the most important phase for radar target recognition and interception. In this stage, the warhead forms a typical micro-motion called micro-nutation which consists of three basic micro-motions: spinning, coning and wiggle. This paper addresses the issue of signature analysis of ballistic missile warhead in terahertz band via discussing the micro-Doppler effect. We establish a simplified model (cone-shaped) for the missile warhead followed by the micro-motion models including of spinning, coning and wiggle. Based on the basic formulas of these typical micro-motions, we first derive the theoretical formula of micro-nutation which is the main micro-motion of the missile warhead. Then, we calculate the micro-Doppler frequency in both X band and terahertz band via these micro-Doppler formulas. The simulations are given to show the superiority of our proposed method for the recognition and detection of radar micro targets in terahertz band.
Kalotka-Bratek, H; Drobinski, G; Klimczak, K; Busquet, P; Fraysse, J B; Bejean-Lebuisson, A; Grosgogeat, Y
1989-02-01
In 20 patients with pure aortic regurgitation we studied the relationship between the severity of regurgitation, as assessed haemodynamically by the percentage of leakage (%L), and the half-pressure (T 1/2 P) and half-velocity (T 1/2 V) times, as obtained from doppler aortic blood velocity curves, taking into account the rigidity of the systemic vascular circuit characterized by the pressure wave propagation velocity (PWPV). The systemic arterial circuit was supple in 14 patients (PWPV less than 7.5 m/sec) and rigid in 6 patients (PWPV greater than 7.5 m/sec). The regression slopes between %L and T 1/2 P and between %L and T 1/2 V were calculated with their confidence limits in the 14 patients with supple arteries. The 6 patients with rigid arteries fitted into this nomogram, thus demonstrating that systemic arterial rigidity makes no difference in the relationship between %L and doppler indices. The half-velocity and half-pressure times measured by doppler ultrasound were acquired from a velocity signal directly determined by the aortic regurgitation, without any detectable effect of vascular circuit rigidity. Being equivalent by nature to the signal decrease time constant, they are independent of the absolute protodiastolic value of diastolic pressure gradient or blood flow velocity. For this reason these two doppler parameters are reliable to evaluate the severity of aortic regurgitation.
Mincey, John S.; Silva-Martinez, Jose; Karsilayan, AydinIlker; ...
2017-03-17
In this study, a coherent subsampling digitizer for pulsed Doppler radar systems is proposed. Prior to transmission, the radar system modulates the RF pulse with a known pseudorandom binary phase shift keying (BPSK) sequence. Upon reception, the radar digitizer uses a programmable sample-and-hold circuit to multiply the received waveform by a properly time-delayed version of the known a priori BPSK sequence. This operation demodulates the desired echo signal while suppressing the spectrum of all in-band noncorrelated interferers, making them appear as noise in the frequency domain. The resulting demodulated narrowband Doppler waveform is then subsampled at the IF frequency bymore » a delta-sigma modulator. Because the digitization bandwidth within the delta-sigma feedback loop is much less than the input bandwidth to the digitizer, the thermal noise outside of the Doppler bandwidth is effectively filtered prior to quantization, providing an increase in signal-to-noise ratio (SNR) at the digitizer's output compared with the input SNR. In this demonstration, a delta-sigma correlation digitizer is fabricated in a 0.18-μm CMOS technology. The digitizer has a power consumption of 1.12 mW with an IIP3 of 7.5 dBm. The digitizer is able to recover Doppler tones in the presence of blockers up to 40 dBm greater than the Doppler tone.« less
Miller, Brian S.; Leaper, Russell; Calderan, Susannah; Gedamke, Jason
2014-01-01
The song of Antarctic blue whales (Balaenoptera musculus intermedia) comprises repeated, stereotyped, low-frequency calls. Measurements of these calls from recordings spanning many years have revealed a long-term linear decline as well as an intra-annual pattern in tonal frequency. While a number of hypotheses for this long-term decline have been investigated, including changes in population structure, changes in the physical environment, and changes in the behaviour of the whales, there have been relatively few attempts to explain the intra-annual pattern. An additional hypothesis that has not yet been investigated is that differences in the observed frequency from each call are due to the Doppler effect. The assumptions and implications of the Doppler effect on whale song are investigated using 1) vessel-based acoustic recordings of Antarctic blue whales with simultaneous observation of whale movement and 2) long-term acoustic recordings from both the subtropics and Antarctic. Results from vessel-based recordings of Antarctic blue whales indicate that variation in peak-frequency between calls produced by an individual whale was greater than would be expected by the movement of the whale alone. Furthermore, analysis of intra-annual frequency shift at Antarctic recording stations indicates that the Doppler effect is unlikely to fully explain the observations of intra-annual pattern in the frequency of Antarctic blue whale song. However, data do show cyclical changes in frequency in conjunction with season, thus suggesting that there might be a relationship among tonal frequency, body condition, and migration to and from Antarctic feeding grounds. PMID:25229644
Miller, Brian S; Leaper, Russell; Calderan, Susannah; Gedamke, Jason
2014-01-01
The song of Antarctic blue whales (Balaenoptera musculus intermedia) comprises repeated, stereotyped, low-frequency calls. Measurements of these calls from recordings spanning many years have revealed a long-term linear decline as well as an intra-annual pattern in tonal frequency. While a number of hypotheses for this long-term decline have been investigated, including changes in population structure, changes in the physical environment, and changes in the behaviour of the whales, there have been relatively few attempts to explain the intra-annual pattern. An additional hypothesis that has not yet been investigated is that differences in the observed frequency from each call are due to the Doppler effect. The assumptions and implications of the Doppler effect on whale song are investigated using 1) vessel-based acoustic recordings of Antarctic blue whales with simultaneous observation of whale movement and 2) long-term acoustic recordings from both the subtropics and Antarctic. Results from vessel-based recordings of Antarctic blue whales indicate that variation in peak-frequency between calls produced by an individual whale was greater than would be expected by the movement of the whale alone. Furthermore, analysis of intra-annual frequency shift at Antarctic recording stations indicates that the Doppler effect is unlikely to fully explain the observations of intra-annual pattern in the frequency of Antarctic blue whale song. However, data do show cyclical changes in frequency in conjunction with season, thus suggesting that there might be a relationship among tonal frequency, body condition, and migration to and from Antarctic feeding grounds.
Xuan, Xu-Jun; Bai, Gang; Zhang, Cai-Xia; Xu, Chao; Lu, Fu-Ding; Peng, Yang; Ma, Gang; Han, Cong-Hui; Chen, Jun
2016-01-01
We aim to investigate the correlations between hemodynamic parameters, penile rigidity grading, and the therapeutic effects of phosphodiesterase type 5 inhibitors using color Doppler flow imaging after intracavernosal injection in patients with erectile dysfunction. This study involved 164 patients. After intracavernosal injection with a mixture of papaverine (60 mg), prostaglandin E1 (10 μg), and lidocaine (2%, 0.5–1 ml), the penile vessels were assessed using color Doppler flow imaging. Penile rigidity was classified based on the Erection Hardness Score system as Grades 4, 3, 2 or 1 (corresponding to Schramek Grades V to II). Then, the patients were given oral sildenafil (50–100 mg) and scored according to the International Index of Erectile Function (IIEF-5) questionnaire. The number of patients with penile rigidities of Schramek Grades II to V was 14, 18, 21, and 111, respectively. The IIEF-5 score was positively correlated with the refilling index of the penile cavernosal artery (r = 0.79, P < 0.05), the peak systolic velocity (r = 0.45, P < 0.05), and penile rigidity (r = 0.75, P < 0.05), and was negatively correlated with the end diastolic velocity (r = −0.74, P < 0.05). For patients with erectile dysfunction, both the IIEF-5 score after sildenafil administration, which is correlated with penile rigidity, and the hemodynamic parameters detected using color Doppler flow imaging may predict the effects of phosphodiesterase type 5 inhibitor treatment and could provide a reasonable model for the targeted-treatment of erectile dysfunction. PMID:25994651
Crowe, Lindsey Alexandra; Manasseh, Gibran; Chmielewski, Aneta; Hachulla, Anne-Lise; Speicher, Daniel; Greiser, Andreas; Muller, Hajo; de Perrot, Thomas; Vallee, Jean-Paul; Salomir, Rares
2018-02-01
We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p < 0.0005). Aortic flow showed no difference between ECG- and Doppler-triggered and MOG (p > 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.
Kho, E M; North, R A; Chan, E; Stone, P R; Dekker, G A; McCowan, L M E
2009-09-01
To compare umbilical and uterine artery Doppler waveforms and fetal size at 20 weeks between smokers and nonsmokers. Prospective cohort study. Auckland, New Zealand and Adelaide, Australia. Nulliparous participants in the Screening for Pregnancy Endpoints (SCOPE) study. Self-reported smoking status was determined at 15 +/- 1 weeks' gestation. At the 20 +/- 1 week anatomy scan, uterine and umbilical Doppler resistance indices (RI) and fetal measurements were compared between smokers and nonsmokers. Umbilical and mean uterine artery Doppler RI values, abnormal umbilical and uterine Doppler (RI > 90th centile) and fetal biometry. Among the 2459 women, 248 (10%) were smokers. Smokers had higher umbilical RI [0.75 (SD 0.06) versus 0.73 (0.06), P < 0.0001] and mean uterine RI [0.59 (0.09) versus 0.56 (0.10), P < 0.0001]. They were twice as likely to have an abnormal umbilical Doppler at 20 weeks compared with nonsmokers [n = 35 (14.6%) versus n = 156 (7.2%), OR 2.21, 95% CI 1.49-3.27]. This effect remained significant after adjusting for age, ethnicity, marital status, employment and BMI (adjusted OR 1.62, 95% CI 1.03-2.54). Smokers were more likely to have an abnormal mean uterine RI [n = 33 (13.7%) versus n = 198 (9.2%), OR 1.57, 95% CI 1.06-2.33], but this association was not significant after adjusting for confounders. Fetuses of women who smoked had a small reduction in femur length and estimated weight compared with nonsmokers. At 20 weeks' gestation, women who smoke have higher umbilical artery RI, a surrogate measure for an abnormal placental villous vascular tree. This may contribute to later fetal growth restriction among smokers. Further research is needed to explore the clinical significance of these findings.
Fiocco, U; Ferro, F; Vezzu, M; Cozzi, L; Checchetto, C; Sfriso, P; Botsios, C; Ciprian, L; Armellin, G; Nardacchione, R; Piccoli, A; Todesco, S; Rubaltelli, L
2005-01-01
Objective: To determine the effect of tumour necrosis factor α (TNFα) blockade with etanercept in refractory knee joint synovitis (KJS) in rheumatoid and psoriatic arthritis, by local and systemic disease activity assessment and combined grey scale and power Doppler ultrasonographic monitoring. Methods: 27 knees affected by rheumatoid KJS (n = 12) and psoriatic KJS (n = 8) were assessed before receiving treatment and at 3 and 12 months' follow up. Time dependent clinical changes in disease activity were monitored by C reactive protein, erythrocyte sedimentation rate (ESR), global health status (GHS), and Ritchie (RAI) and knee joint articular (KJAI) indices; synovial changes were monitored by ultrasonographic and power Doppler indices for grey scale synovial thickening and for distinct intrasynovial vessel power Doppler flow configurations (fluid/synovium interface (F/SI-PD) and pannus/cartilage interface (P/CI-PD)). Interobserver and intraobserver variability of grey scale and power Doppler ultrasonographic was evaluated. Response to treatment was assessed by analysis of variance for repeated measures on clinical and ultrasonographic variables. Results: Rapid (3 months) reduction in F/SI-PD flow (p<0.001), parallel to reductions of C reactive protein (p<0.05), ESR (p<0.001), KJAI (p<0.002), RAI, and GHS (p<0.001), was sustained at 12 months when it was accompanied by reduction in both synovial thickening and P/CI-PD flow (p<0.001). No differences (ANOVA) were noted at baseline or at 12 months in clinical and ultrasonographic variables between either the rheumatoid or the psoriatic KJS groups. Conclusion: Grey scale and power Doppler ultrasonography are reliable measures of long term change in rheumatoid and psoriatic KJS disease activity in response to anti-TNFα treatment with etanercept. PMID:15567814
Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun
2016-01-01
For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835