Science.gov

Sample records for doppler shift method

  1. Doppler-shift attenuation method lifetime measurements of low-lying states in 111In

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Căta-Danil, I.; Ilaş, G.; Ivaşcu, M.; Mărginean, N.; Stroe, L.; Ur, C. A.

    1996-11-01

    The lifetimes of nine low-lying excited states in 111In have been measured with the Doppler-shift attenuation method in the 111Cd(p,nγ) reaction. A comparison of experimental quantities with predictions based on the interacting boson-fermion model unravels the states due to the coupling of a g9/2 proton hole to the quadrupole vibrations of the core.

  2. Ultrasonic distance and velocity measurement using a pair of LPM signals for cross-correlation method: improvement of Doppler-shift compensation and examination of Doppler velocity estimation.

    PubMed

    Hirata, Shinnosuke; Kurosawa, Minoru Kuribayashi

    2012-09-01

    Real-time distance measurement of a moving object with high accuracy and high resolution using an ultrasonic wave is difficult due to the influence of the Doppler effect or the limit of the calculation cost of signal processing. An over-sampling signal processing method using a pair of LPM signals has been proposed for ultrasonic distance and velocity measurement of moving objects with high accuracy and high resolution. The proposed method consists of cross correlation by single-bit signal processing, high-resolution Doppler velocity estimation with wide measurement range and low-calculation-cost Doppler-shift compensation. The over-sampling cross-correlation function is obtained from cross correlation by single-bit signal processing with low calculation cost. The Doppler velocity and distance of the object are determined from the peak interval and peak form in the cross-correlation function by the proposed method of Doppler velocity estimation and Doppler-shift compensation. In this paper, the proposed method of Doppler-shift compensation is improved. Accuracy of the determined distance was improved from approximately within ±140μm in the previous method to approximately within ±10μm in computer simulations. Then, the proposed method of Doppler velocity estimation is evaluated. In computer simulations, accuracy of the determined Doppler velocity and distance were demonstrated within ±8.471mm/s and ±13.87μm. In experiments, Doppler velocities of the motorized stage could be determined within ±27.9mm/s.

  3. Applications of the two-photon doppler-free method: Hyperfine interactions and isotope shift measurements

    NASA Astrophysics Data System (ADS)

    Cagnac, B.

    1985-08-01

    The hyperfine structures are generally of the same order of magnitude as the Doppler broadening of optical transitions and so are the isotopic shifts in the case of heavy elements. When these structures are too small, one must use Doppler-free methods. Among these methods, the two-photon spectroscopy has obtained good results in highly excited levels. In our laboratory in Paris, we did measurements on neon and helium by two-photon excitation from metastable levels. The precision of the measurements is of the order of one MHz, which permits a precise comparison with theory. We compare the measurements on neon with the theory by Liberman and we obtain a good fit in the first approximation, but must introduce mixing of wave functions for an exact explanation. In the case of helium, we obtain a good fit with the theoretical values obtained from the wave functions by Accad, Pekeris and Schiff. We also give an example where another technique by polarization measurements permits us to obtain experimentally a hyperfine structure smaller than the natural width. We also present a short review of the measurements done by the two-photon method in other laboratories on other elements, Pb, Tl, In and alkaline earths Ca, Sr. Ba.

  4. Lifetime measurement of 2+- state in 74Zn by recoil-distance Doppler-shift method

    NASA Astrophysics Data System (ADS)

    Niikura, M.; Mouginot, B.; Azaiez, F.; Franchoo, S.; Matea, I.; Stefan, I.; Verney, D.; Assie, M.; Bednarczyk, P.; Borcea, C.; Burger, A.; Burgunder, G.; Buta, A.; Cáceres, L.; Cléement, E.; Coquard, L.; de Angelis, G.; de France, G.; de Oliveira Santos, F.; Dewald, A.; Dijon, A.; Dombradi, Z.; Fiori, E.; Fransen, C.; Friessner, G.; Gaudefroy, L.; Georgiev, G.; Grévy, S.; Hackstein, M.; Harakeh, M. N.; Ibrahim, F.; Kamalou, O.; Kmiecik, M.; Lozeva, R.; Maj, A.; Mihai, C.; Möller, O.; Myalski, S.; Negoita, F.; Pantelica, D.; Perrot, L.; Pissulla, Th.; Rotaru, F.; Rother, W.; Scarpaci, J. A.; Stodel, C.; Thomas, J. C.; Ujic, P.

    2013-09-01

    We have performed the first direct lifetime measurement of the 2+- state in 74Zn. The neutron-rich 74Zn beam was produced by in-flight fragmentation of 76Ge at the Grand Accélérateur National d'Ions Lourds and separated with the LISE spectrometer. The lifetime of the 2+- state was measured by the recoil-distance Doppler-shift method with the Cologne plunger device combined with the EXOGAM detectors. The lifetime of the 2+- state in 74Zn was determined to be 27.0(24) ps, which corresponds to a reduced transition probability B(E2; 2+- -> 0+) = 370(33) e2fm4.

  5. Lifetime measurements by the Doppler-shift attenuation method in the Sn115(α,nγ)Te118 reaction

    NASA Astrophysics Data System (ADS)

    Mihai, C.; Pasternak, A. A.; Pascu, S.; Filipescu, D.; Ivaşcu, M.; Bucurescu, D.; Căta-Danil, G.; Căta-Danil, I.; Deleanu, D.; Ghiţă, D. G.; Glodariu, T.; Mărginean, N.; Mărginean, R.; Negret, A.; Sava, T.; Stroe, L.; Suliman, G.; Zamfir, N. V.

    2011-05-01

    γ rays were measured at several angles in both singles and coincidence modes in the Sn115(α,nγ)118Te reaction at 15 MeV on a thick target. Multipolarities and mixing ratios were determined from the γ-ray angular distribution analysis. Lifetimes of 11 low- and medium-spin excited states in Te118 were determined from a Monte Carlo Doppler-shift attenuation method analysis of the Doppler broadened line shapes of γ rays deexciting the levels. The results are discussed in comparison with the predictions of the interacting boson model.

  6. Equations for Bistatic Doppler Shift and Rate of Change of Doppler Shift of Dark Satellite Observations

    DTIC Science & Technology

    Equations are given for the doppler shift and rate of change of doppler shift for the bistatic case where an orbiting, nontransmitting earth... of change of doppler shift, satellite height, earth-center angle between the receiver and the satellite, and zenith angle from receiver to satellite are shown for a typical satellite, 1958 Alpha, Explorer I....have been computed, using transmitting and receiving sites of the Space Surveillance System. Plots of various relationships between doppler shift, rate

  7. Mitigating Doppler shift effect in HF multitone data modem

    NASA Astrophysics Data System (ADS)

    Sonlu, Yasar

    1989-09-01

    Digital communications over High Frequency (HF) radio channels are getting important in recent years. Current HF requirements are for data transmission at rates 2.4 kbps or more to accommodate computer data links and digital secure voice. HF modems which were produced to meet these speeds are, serial modems and parallel modems. On the other hand, the HF sky-wave communication medium, the ionosphere, has some propagation problems such as multipath and Doppler shift. The effect of Doppler shift in a parallel modem which employs Differential Quadrature Phase Shift Keying (DQPSK) modulation is considered and a correction method to mitigate the Doppler Shift effect is introduced.

  8. Shape evolution of the highly deformed {sup 75}Kr nucleus examined with the Doppler-shift attenuation method

    SciTech Connect

    Trivedi, T.; Maurya, K.; Mehrotra, I.; Palit, R.; Naik, Z.; Jain, H. C.; Negi, D.; Mahanto, G.; Kumar, R.; Singh, R. P.; Muralithar, S.; Pancholi, S. C.; Bhowmik, R. K.; Yang, Y.-C.; Sun, Y.; Sheikh, J. A.; Dhal, A.; Raju, M. K.; Appannababu, S.; Kumar, S.

    2009-10-15

    High-spin states of the {sup 75}Kr nucleus have been populated via the {sup 50}Cr({sup 28}Si,2pn){sup 75}Kr reaction at an incident beam energy of 90 MeV. Lifetimes of nine states up to spin I=33/2 for the positive-parity band and seven states up to I=27/2 for the negative-parity band have been measured using the Doppler-shift attenuation method. The deduced transition quadrupole moments Q{sub t} of these bands have been compared to the projected shell-model calculations to gain insight into the evolution of collectivity for the two experimentally studied bands in {sup 75}Kr.

  9. Side feeding patterns and nuclear lifetime determinations by the Doppler shift attenuation method in (α,nγ) reactions

    NASA Astrophysics Data System (ADS)

    Mihai, C.; Pasternak, A. A.; Filipescu, D.; Ivaşcu, M.; Bucurescu, D.; Căta-Danil, G.; Căta-Danil, I.; Deleanu, D.; Ghiţă, D.; Glodariu, T.; Lobach, Yu. N.; Mărginean, N.; Mărginean, R.; Negret, A.; Pascu, S.; Sava, T.; Stroe, L.; Suliman, G.; Zamfir, N. V.

    2010-03-01

    γ rays were measured at several angles in both singles and coincidence mode in the Sn119(α,nγ)Te122 reaction at 15 MeV on a thick target. Lifetimes of excited states in Te122 were determined from a Monte Carlo Doppler shift attenuation method (DSAM) analysis of the Doppler broadened lines shapes of γ rays de-exciting the levels. A comparison of several deduced lifetimes with recent results obtained with the (n,n') reaction allowed us to validate the choice of a parameter used to calculate the contribution of the side feeding times. The ingredients of the DSAM line-shape analysis (stopping power, description of instrumental line shapes, and side feeding evaluation) are presented in some detail. It is concluded that with proper treatment of side feeding, a DSAM line-shape analysis of peaks in singles or coincidence spectra obtained following the (α,nγ) reaction is able to provide rather accurate values for the lifetimes of levels with low and medium spins.

  10. Side feeding patterns and nuclear lifetime determinations by the Doppler shift attenuation method in ({alpha},n{gamma}) reactions

    SciTech Connect

    Mihai, C.; Filipescu, D.; Ivascu, M.; Bucurescu, D.; Cata-Danil, G.; Cata-Danil, I.; Deleanu, D.; Ghita, D.; Glodariu, T.; Marginean, N.; Marginean, R.; Negret, A.; Pascu, S.; Sava, T.; Stroe, L.; Suliman, G.; Zamfir, N. V.; Pasternak, A. A.; Lobach, Yu. N.

    2010-03-15

    {gamma} rays were measured at several angles in both singles and coincidence mode in the {sup 119}Sn({alpha},n{gamma}){sup 122}Te reaction at 15 MeV on a thick target. Lifetimes of excited states in {sup 122}Te were determined from a Monte Carlo Doppler shift attenuation method (DSAM) analysis of the Doppler broadened lines shapes of {gamma} rays de-exciting the levels. A comparison of several deduced lifetimes with recent results obtained with the (n,n{sup '}) reaction allowed us to validate the choice of a parameter used to calculate the contribution of the side feeding times. The ingredients of the DSAM line-shape analysis (stopping power, description of instrumental line shapes, and side feeding evaluation) are presented in some detail. It is concluded that with proper treatment of side feeding, a DSAM line-shape analysis of peaks in singles or coincidence spectra obtained following the ({alpha},n{gamma}) reaction is able to provide rather accurate values for the lifetimes of levels with low and medium spins.

  11. Doppler-shift attenuation method lifetime measurements in 115Sb and 117Sb

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Căta-Danil, I.; Ilaş, G.; Ivaşcu, M.; Stroe, L.; Ur, C. A.

    1995-08-01

    The lifetimes of several low-lying excited levels in 115Sb and 117Sb have been measured by using the DSA method in the 115,117Sn(p,nγ)115,117Sb reactions, respectively. The structure of these nuclei is discussed in the frame of the interacting boson-fermion model.

  12. Lifetime measurements by the Doppler-shift attenuation method in the {sup 115}Sn({alpha},n{gamma}){sup 118}Te reaction

    SciTech Connect

    Mihai, C.; Pasternak, A. A.; Pascu, S.; Filipescu, D.; Ivascu, M.; Bucurescu, D.; Cata-Danil, I.; Deleanu, D.; Ghita, D. G.; Glodariu, T.; Marginean, N.; Marginean, R.; Negret, A.; Sava, T.; Stroe, L.; Suliman, G.; Zamfir, N. V.; Cata-Danil, G.

    2011-05-15

    {gamma} rays were measured at several angles in both singles and coincidence modes in the {sup 115}Sn({alpha},n{gamma}){sup 118}Te reaction at 15 MeV on a thick target. Multipolarities and mixing ratios were determined from the {gamma}-ray angular distribution analysis. Lifetimes of 11 low- and medium-spin excited states in {sup 118}Te were determined from a Monte Carlo Doppler-shift attenuation method analysis of the Doppler broadened line shapes of {gamma} rays deexciting the levels. The results are discussed in comparison with the predictions of the interacting boson model.

  13. Implementation of the Doppler shift attenuation method using TIP/TIGRESS at TRIUMF: Fusion-evaporation lifetime measurements in 22Ne

    NASA Astrophysics Data System (ADS)

    Williams, J.; Andreoiu, C.; Ashley, R.; Ball, G. C.; Ballast, T.; Bender, P. C.; Bolton, C.; Bildstein, V.; Chester, A.; Cross, D. S.; Domingo, T.; Drake, T.; Garnsworthy, A.; Garrett, P.; Hadinia, B.; Hackman, G.; Henderson, R.; Jamieson, D.; Jigmeddorj, B.; Knapton, A.; Kruecken, R.; Miller, D.; Mills, W. J.; Moukaddam, M.; Rajabali, M.; Rizwan, U.; Starosta, K.; Svensson, C. E.; Unsworth, C.; Varela, A. D.; Voss, P.; Wang, Z. M.; Wong, J.

    2017-07-01

    A method is presented for the determination of gamma-ray energies and transition rates in nuclei populated using the fusion-evaporation reaction mechanism and measured using the Doppler-shift attenuation method (DSAM). This method is applied to data collected for the stable benchmark nucleus 22Ne during a commissioning experiment at TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, employing a 12C(18O,2α)22Ne fusion-evaporation reaction. Gamma-ray energies were determined using offline reconstruction to correct for the Doppler shift. Mean lifetimes of the corresponding transitions were then measured via a comparison to Monte-Carlo lineshape simulations developed using the GEANT4 framework. Best fit lifetimes obtained using χ2 analysis were in general agreement with the existing literature, validating the analysis method used.

  14. Analysis of field-angle dependent specific heat in unconventional superconductors: A comparison between Doppler-shift method and Kramer-Pesch approximation

    NASA Astrophysics Data System (ADS)

    Hayashi, Nobuhiko; Nagai, Yuki; Higashi, Yoichi

    2010-12-01

    We theoretically discuss the magnetic-field-angle dependence of the zero-energy density of states (ZEDOS) in superconductors. Point-node and line-node superconducting gaps on spherical and cylindrical Fermi surfaces are considered. The Doppler-shift (DS) method and the Kramer-Pesch approximation (KPA) are used to calculate the ZEDOS. Numerical results show that consequences of the DS method are corrected by the KPA.

  15. Quantum interference of biphotons with a Doppler frequency shift

    NASA Astrophysics Data System (ADS)

    Lariontsev, E. G.

    2016-08-01

    We report a theoretical study of transformation of a biphoton state of light under Bragg diffraction on a travelling sound wave in an acousto-optic modulator (AOM). It is shown that the diffraction of AOM biphotons emitted during the collinear parametric scattering of light leads to a shift of the carrier frequency of a biphoton wave packet, which exceeds twice the Doppler frequency shift for the classical field. A method is proposed for measuring the Doppler frequency shift of a biphoton, which is based on interference between independent biphotons.

  16. The Novel Nonlinear Adaptive Doppler Shift Estimation Technique and the Coherent Doppler Lidar System Validation Lidar

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.

    2006-01-01

    The signal processing aspect of a 2-m wavelength coherent Doppler lidar system under development at NASA Langley Research Center in Virginia is investigated in this paper. The lidar system is named VALIDAR (validation lidar) and its signal processing program estimates and displays various wind parameters in real-time as data acquisition occurs. The goal is to improve the quality of the current estimates such as power, Doppler shift, wind speed, and wind direction, especially in low signal-to-noise-ratio (SNR) regime. A novel Nonlinear Adaptive Doppler Shift Estimation Technique (NADSET) is developed on such behalf and its performance is analyzed using the wind data acquired over a long period of time by VALIDAR. The quality of Doppler shift and power estimations by conventional Fourier-transform-based spectrum estimation methods deteriorates rapidly as SNR decreases. NADSET compensates such deterioration in the quality of wind parameter estimates by adaptively utilizing the statistics of Doppler shift estimate in a strong SNR range and identifying sporadic range bins where good Doppler shift estimates are found. The authenticity of NADSET is established by comparing the trend of wind parameters with and without NADSET applied to the long-period lidar return data.

  17. Doppler interpretation of quasar red shifts.

    PubMed

    Zapolsky, H S

    1966-08-05

    The hypothesis that the quasistellar sources (quasars) are local objects moving with velocities close to the speed of light is examined. Provided there is no observational cutoff on apparent bolometric magnitude for the quasars, the transverse Doppler effect leads to the expectation of fewer blue shifts than red shifts for an isotropic distribution of velocities. Such a distribution also yields a function N(z), the number of objects with red shift less than z which is not inconsistent with the present data. On the basis of two extreme assumptions concerning the origin of such rapidly moving sources, we computed curves of red shift plotted against magnitude. In particular, the curve obtained on the assumption that the quasars originated from an explosion in or nearby our own galaxy is in as good agreement with the observations as the curve of cosmological red shift plotted against magnitude.

  18. Current-induced spin wave Doppler shift

    NASA Astrophysics Data System (ADS)

    Bailleul, Matthieu

    2010-03-01

    In metal ferromagnets -namely Fe, Co and Ni and their alloys- magnetism and electrical transport are strongly entangled (itinerant magnetism). This results in a number of properties such as the tunnel and giant magnetoresistance (i.e. the dependence of the electrical resistance on the magnetic state) and the more recently addressed spin transfer (i.e. the ability to manipulate the magnetic state with the help of an electrical current). The spin waves, being the low-energy elementary excitations of any ferromagnet, also exist in itinerant magnets, but they are expected to exhibit some peculiar properties due the itinerant character of the carriers. Accessing these specific properties experimentally could shed a new light on the microscopic mechanism governing itinerant magnetism, which -in turn- could help in optimizing material properties for spintronics applications. As a simple example of these specific properties, it was predicted theoretically that forcing a DC current through a ferromagnetic metal should induce a shift of the frequency of the spin waves [1,2]. This shift can be identified to a Doppler shift undergone by the electron system when it is put in motion by the electrical current. We will show how detailed spin wave measurements allow one to access this current-induced Doppler shift [3]. From an experimental point of view, we will discuss the peculiarities of propagating spin wave spectroscopy experiments carried out at a sub-micrometer length-scale and with MHz frequency resolution. Then, we will discuss the measured value of the Doppler shift in the context of both the old two-current model of spin-polarized transport and the more recent model of adiabatic spin transfer torque. [4pt] [1] P.Lederer and D.L. Mills, Phys.Rev. 148, 542 (1966).[0pt] [2] J. Fernandez-Rossier et al., Phys. Rev. B 69, 174412 (2004)[0pt] [3] V. Vlaminck and M. Bailleul, Science 322, 410 (2008).

  19. Spectrum of low-energy excitations in the vortex state: Comparison of the Doppler-shift method to a quasiclassical approach

    NASA Astrophysics Data System (ADS)

    Dahm, T.; Graser, S.; Iniotakis, C.; Schopohl, N.

    2002-10-01

    We present a detailed comparison of numerical solutions of the quasiclassical Eilenberger equations with several approximation schemes for the density of states of s- and d-wave superconductors in the vortex state, which have been used recently. In particular, we critically examine the use of the Doppler-shift method, which has been claimed to give good results for d-wave superconductors. Studying the single-vortex case we show that there are important contributions coming from core states, which extend far from the vortex cores into the nodal directions and are not present in the Doppler-shift method, but significantly affect the density of states at low energies. This leads to sizable corrections to Volovik's law, which we expect to be sensitive to impurity scattering. For a vortex lattice we also show comparisons with the method due to Brandt, Pesch, and Tewordt and an approximate analytical method, generalizing a method due to Pesch. These are high-field approximations strictly valid close to the upper critical field Bc2. At low energies the approximate analytical method turns out to give impressively good results over a broad field range and we recommend the use of this method for studies of the vortex state at not too low magnetic fields.

  20. Solar Doppler shifts - Sources of continuous spectra

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Harvey, J. W.

    1986-01-01

    Oscillation observations can be used to study nonoscillatory solar phenomena that exhibit Doppler shifts. The paper discusses several effects of these phenomena and their associated temporal and spatial power spectra: (1) they limit the signal-to-noise ratio and sometimes detectability of oscillation modes; (2) there is the potential for better understanding and/or detection of solar phenomena; (3) large-scale convection may spatially modulate oscillation modes, leading to a continuous background spectrum; and (4) in regions of the spectrum where the resolution to separate modes is lacking one can determine upper limits for the integrated effects of modes.

  1. Simultaneous two-wavelength Doppler phase-shifting digital holography.

    PubMed

    Barada, Daisuke; Kiire, Tomohiro; Sugisaka, Jun-ichiro; Kawata, Shigeo; Yatagai, Toyohiko

    2011-12-01

    This paper presents a method based on the use of an image sensor for obtaining the complex amplitudes of beams diffracted from an object at two different wavelengths. The complex amplitude for each wavelength is extracted by the Doppler phase-shifting method. The principle underlying the proposed method is experimentally verified by using the method with two lasers having different wavelengths to measure the surface shape of a concave mirror. © 2011 Optical Society of America

  2. Using Doppler Shifts of GPS Signals To Measure Angular Speed

    NASA Technical Reports Server (NTRS)

    Campbell, Charles E., Jr.

    2006-01-01

    A method has been proposed for extracting information on the rate of rotation of an aircraft, spacecraft, or other body from differential Doppler shifts of Global Positioning System (GPS) signals received by antennas mounted on the body. In principle, the method should be capable of yielding low-noise estimates of rates of rotation. The method could eliminate the need for gyroscopes to measure rates of rotation. The method is based on the fact that for a given signal of frequency ft transmitted by a given GPS satellite, the differential Doppler shift is attributable to the difference between those components of the instantaneous translational velocities of the antennas that lie along the line of sight from the antennas to the GPS satellite.

  3. Doppler broadening induced spectral shift effects on reactor safety

    SciTech Connect

    Alapour, A.

    1980-01-01

    It is commonly accepted that the resonance reaction rate of any material increases when the temperature is raised. However, in a nuclear reactor the increase in resonance reaction rates with temperature at relatively high energy shifts the neutron spectrum in such a way that a net decrease in the neutron flux results at lower energies. This finding suggested that the spectral shift could significantly affect the Doppler reactivity change, warranting further investigations. The objective was to study the physical characteristics of this new phenomenon and its effects on reactor safety. The desirability of studying this effect was strengthened by the presence of discrepancies between the calculated and measured integral experiments. An exact Doppler broadening kernel, based on the Maxwellian distribution of nuclear velocities, and an accurate integral transport method NDCRAB, capable of including resonance overlap of all materials present in the reactor cell, were used in this study. The ZPR-6 Assembly 7 benchmark, a typical LMFBR reactor, was used to quantify the Doppler reactivity change for an increase in fuel temperature and to analyze the natural UO/sub 3/ sample Doppler worth in this assembly. The quantification of the various components of the Doppler reactivity change shows that the fissile material, /sup 239/Pu, has a large negative Doppler effect and contributes a large fraction to the total negative effect. The calculated Doppler effect of the natural UO/sub 3/ sample in this assembly was in good agreement with the measured value. The calculated and measured values for an increase in sample temperature from 293-0K to 1100/sup 0/K wre -0.887 Ih/kgU and -0.868 Ih/kgU.

  4. Active Region Moss: Doppler Shifts from Hinode/EIS Observations

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-01-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) onboard Hinode on 12-Dec- 2007 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low density cut-off as derived by Tripathi et al. (2010). We have carried out a very careful analysis of the EIS wavelength calibration based on the method described in Young, O Dwyer and Mason (2012). For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km/s with an estimated error of 4 km/s. The width of the distribution decreases with temperature. The mean of the distribution shows a blue shift which increases with increasing temperature and the distribution also shows asymmetries towards blue-shift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. Further observational constraints are needed to distinguish between these two heating scenarios.

  5. Doppler phase shifting using dual, switched phase shifting devices

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor)

    2002-01-01

    A system of inducing a phase shift using moving reflector elements. The moving reflectors can be moving mirrors or an acousto-optical filter. The moving reflectors oscillate i.e. the move first in a first direction and then in a second direction. Two different reflectors are used so that the light can be switched between the reflectors. During a first portion of the cycle the light is coupled to the first modulator which moves the reflector in the first direction. The second modulator is out of phase with the first modulator, and the light is switched to that second modulator during a second portion of the cycle. The second modulator is also moving in the first direction when the light is applied thereto. In this way, the light obtains a constant direction Doppler shift.

  6. Spread-Spectrum Carrier Estimation With Unknown Doppler Shift

    NASA Technical Reports Server (NTRS)

    DeLeon, Phillip L.; Scaife, Bradley J.

    1998-01-01

    We present a method for the frequency estimation of a BPSK modulated, spread-spectrum carrier with unknown Doppler shift. The approach relies on a classic periodogram in conjunction with a spectral matched filter. Simulation results indicate accurate carrier estimation with processing gains near 40. A DSP-based prototype has been implemented for real-time carrier estimation for use in New Mexico State University's proposal for NASA's Demand Assignment Multiple Access service.

  7. Quantitative Measurement of the Doppler Shift at an Ultrasonic Frequency

    ERIC Educational Resources Information Center

    Nerbun, R. C.; Leskovec, R. A.

    1976-01-01

    Discussed is a Doppler shift laboratory experiment for an introductory college physics course. Ultrasonic transducers and a digital phase detector circuit "black box" are used to overcome room noise and "standing waves" and to produce an observable frequency shift. (SL)

  8. Quantitative Measurement of the Doppler Shift at an Ultrasonic Frequency

    ERIC Educational Resources Information Center

    Nerbun, R. C.; Leskovec, R. A.

    1976-01-01

    Discussed is a Doppler shift laboratory experiment for an introductory college physics course. Ultrasonic transducers and a digital phase detector circuit "black box" are used to overcome room noise and "standing waves" and to produce an observable frequency shift. (SL)

  9. Lifetime measurement of candidate chiral doublet bands in the {sup 103,104}Rh isotopes with the recoil-distance Doppler-shift method in inverse kinematics

    SciTech Connect

    Suzuki, T.; Rainovski, G.; Koike, T.; Ahn, T.; Costin, A.; Carpenter, M. P.; Janssens, R. V. F.; Lister, C. J.; Zhu, S.; Danchev, M.; Dewald, A.; Joshi, P.; Wadsworth, R.; Moeller, O.; Pietralla, N.; Shinozuka, T.; Timar, J.; Vaman, C.

    2008-09-15

    Lifetimes of chiral candidate structures in {sup 103,104}Rh were measured using the recoil distance Doppler-shift method. The Gammasphere detector array was used in conjunction with the Cologne plunger device. Excited states of {sup 103,104}Rh were populated by the {sup 11}B({sup 96}Zr,4n){sup 103}Rh and {sup 11}B({sup 96}Zr,3n){sup 104}Rh fusion-evaporation reactions in inverse kinematics. Three and five lifetimes of levels belonging to the proposed chiral doublet bands are measured in {sup 103}Rh and {sup 104}Rh, respectively. The previously observed even-odd spin dependence of the B(M1)/B(E2) values is caused by the variation in the B(E2) values, whereas the B(M1) values decrease as a function of spin.

  10. C IV Doppler shifts observed in active region filaments

    NASA Technical Reports Server (NTRS)

    Klimchuk, J. A.

    1986-01-01

    The Doppler shift properties of 21 active region filaments were studied using C IV Dopplergram data. Most are associated with corridors of weak magnetic field that separate opposite polarity strong fields seen in photospheric magnetograms. A majority of the filaments are relatively blue shifted, although several lie very close to the dividing lines between blue and red shift. Only one filament in the samples is clearly red shifted. A new calibration procedure for Dopplergrams indicates that sizable zero point offsets are often required. The center-to-limb behavior of the resulting absolute Doppler shifts suggests that filament flows are usually quite small. It is possible that they vanish.

  11. Modeling of Doppler frequency shift in multipath radiochannels

    NASA Astrophysics Data System (ADS)

    Penzin, Maksim; Iyin, Nikolay

    2016-06-01

    We discuss the modeling of propagation of a quasi-monochromatic radio signal, represented by a coherent pulse sequence, in a non-stationary multipath radio channel. In such a channel, signal propagation results in the observed frequency shift for each ray (Doppler effect). The modeling is based on the assumption that during propagation of a single pulse a channel can be considered stationary. A phase change in the channel transfer function is shown to cause the observed frequency shift in the received signal. Thus, instead of measuring the Doppler frequency shift, we can measure the rate of change in the mean phase of one pulse relative to another. The modeling is carried out within the framework of the method of normal waves. The method enables us to model the dynamics of the electromagnetic field at a given point with the required accuracy. The modeling reveals that a local change in ionospheric conditions more severely affects the rays whose reflection region is in the area where the changes occur.

  12. Compression of polyphase codes with Doppler shift

    NASA Astrophysics Data System (ADS)

    Wirth, W. D.

    It is shown that pulse compression with sufficient Doppler tolerance may be achieved with polyphase codes derived from linear frequency modulation (LFM) and nonlinear frequency modulation (NLFM). Low sidelobes in range and Doppler are required especially for the radar search function. These may be achieved by an LFM derived phase coder together with Hamming weighting or by applying a PNL polyphase code derived from NLFM. For a discrete and known Doppler frequency with an expanded and mismatched reference vector a sidelobe reduction is possible. The compression is then achieved without a loss in resolution. A set up for the expanded reference gives zero sidelobes only in an interval around the signal peak or a least square minimization for all range elements. This version may be useful for target tracking.

  13. Doppler-Shifted Raman Spectroscopy Measures Flows

    NASA Technical Reports Server (NTRS)

    Exton, Reginald J.; Hillard, Mervin E., Jr.; Lempert, Walter R.; Covell, Peter F.; Miller, David S.

    1990-01-01

    Technique for measuring velocity, static pressure, and translational temperature of flowing molecules by use of stimulated Raman spectroscopy demonstrated in supersonic wind tunnel at NASA Langley Research Center. Nonintrusive, accurate wind-tunnel measurements obtained without seeding flows. Optical equipment for vibration-free Raman doppler velocimetry in wind tunnel includes specially designed retrometer that reduces sensitivity of system to vibrations. This capability very valuable in aerodynamic testing and proves useful in wide variety of laboratory, industrial, and engineering applications.

  14. Radar/sonar signal design for bounded Doppler shifts

    NASA Astrophysics Data System (ADS)

    Altes, R. A.

    1982-07-01

    In many detection and estimation problems, Doppler frequency shifts are bounded. For clutter or multipath that is uniformly distributed in range and symmetrically distributed in Doppler shift relative to the signal, detectability of a point target or a communication signal is improved by minimizing the weighted volume of the magnitude-squared autoambiguity function. When clutter Doppler shifts are bounded, this volume is in a strip containing the range axis on the range-Doppler plane. For scattering function estimation, e.g., for weather radar, Doppler flow meters, and distributed target classifiers, it is again relevant to minimize ambiguity volume in a strip. Strip volume is minimized by using a pulse train, but such a signal has unacceptably large range sidelobe for most applications. Other waveforms that have relatively small sidelobe level within a strip on the range-Doppler plane, as well as small ambiguity volume in the strip, are obtained. The waveforms are composed of pulse pairs that are phase modulated with Golay complementary codes.

  15. A novel approach to estimating the Doppler shift frequency from quadrature mixer output

    NASA Astrophysics Data System (ADS)

    Wang, M. Y.; Liu, A. D.; Zhou, C.; Hu, J. Q.; Li, H.; Lan, T.; Xie, J. L.; Ding, W. X.; Liu, W. D.; Yu, C. X.

    2017-07-01

    Doppler backscattering systems (DBSs) have been widely used in magnetic confinement fusion devices to measure the density fluctuations and propagation velocity of turbulence. However, the received signals of a DBS usually include both zero-order reflection and backscattering components, which results in interference in calculating the Doppler shift frequency from the backscattering components. A novel method is introduced here for estimating the Doppler shift frequency by separating the zero-order reflection and backscattering components using the cross-phase spectrum between the I-signal and Q-signal from a quadrature mixer, based on the difference in symmetrical characteristics between the zero-order reflection and backscattering signal spectra. It is proven that this method is more effective than traditional approaches, such as multiple signal classification and fast Fourier transformation, for extracting Doppler shift information.

  16. Doppler shifted H Ly alpha emission from Jupiter's aurora

    NASA Technical Reports Server (NTRS)

    Clarke, John T.; Trauger, John; Waite, J. Hunter, Jr.

    1989-01-01

    High-spectral-resolution IUE observations of the aurora on Jupiter were obtained in order to search for Doppler shifted H-Ly-alpha emission produced through charge exchange by fast precipitating protons. Although no emission has been observed corresponding to proton energies greater than 200 eV, a large fraction of the H-Ly-alpha emission has appeared Doppler shifted, mainly toward the blue, by about 50 km/s. These results show that the acceleration of ionospheric plasma in an H2 atmosphere can lead to bright Ly-alpha emission, setting constraints on the production of the outer planet airglow emissions.

  17. Doppler shifts of radar return from the sea surface

    NASA Astrophysics Data System (ADS)

    Ermakov, S. A.; Kapustin, I. A.; Molkov, A. A.; Sergievskaya, I. A.; Shomina, O. V.

    2016-10-01

    Investigation of the Doppler shift of radar return from the sea surface is very important for better understanding of capabilities of exploitation of microwave radar for measuring velocities of marine currents. Here new field experiments carried out from a Platform on the Black Sea with a coherent X-band scatterometer, and a Doppler multifrequency (X- /C-/S-band) dual-polarized radar recently designed at IAP RAS are discussed. It is shown that the radar return contains both Bragg (polarized) and non polarized scattering components, presumably giving different contributions to radar Doppler shifts. Radar Doppler shifts were estimated using two different definitions as a) a frequency of the "centre of gravity" of an instantaneous radar return spectrum (ASIS) averaged over periods of dominant wind waves and b) the "centre of gravity" of the averaged over dominant wave periods spectrum (SAS). The ASIS and SAS values for both VV and HH-polarizations are shown to be different due to effects of radar backscatter modulation by dominant (long) wind waves. The radar Modulation Transfer Function (MTF) has been analyzed from experimental data and difference between SAS- and ASIS-values has been satisfactory explained using the measured MTF-values. It is obtained that experimental values of ASIS can be satisfactory described by the Bragg model despite the significant contribution of NP component to the radar backscatter. A physical explanation of the effect is given.

  18. Apparatus and method for noninvasive particle detection using doppler spectroscopy

    DOEpatents

    Sinha, Dipen N.

    2016-05-31

    An apparatus and method for noninvasively detecting the presence of solid particulate matter suspended in a fluid flowing through a pipe or an oil and gas wellbore are described. Fluid flowing through a conduit containing the particulate solids is exposed to a fixed frequency (>1 MHz) of ultrasonic vibrations from a transducer attached to the outside of the pipe. The returning Doppler frequency shifted signal derived from the scattering of sound from the moving solid particles is detected by an adjacent transducer. The transmitted signal and the Doppler signal are combined to provide sensitive particulate detection. The magnitude of the signal and the Doppler frequency shift are used to determine the particle size distribution and the velocity of the particles. Measurement of the phase shift between the applied frequency and the detected Doppler shifted may be used to determine the direction of motion of the particles.

  19. Graphical Representation of the Doppler Shift: Classical and Relativistic

    ERIC Educational Resources Information Center

    Rojas, R.; Fuster, G.

    2007-01-01

    The Doppler shift is a frequency change of a repetitive effect, as measured by a receiver, due to the motion of the wave emitter, to the motion of the wave receiver, or both. A demonstration of the effect is provided by the sound of a car's horn that changes from a higher pitch to a lower pitch when a car drives past. Most derivations of the…

  20. Graphical Representation of the Doppler Shift: Classical and Relativistic

    ERIC Educational Resources Information Center

    Rojas, R.; Fuster, G.

    2007-01-01

    The Doppler shift is a frequency change of a repetitive effect, as measured by a receiver, due to the motion of the wave emitter, to the motion of the wave receiver, or both. A demonstration of the effect is provided by the sound of a car's horn that changes from a higher pitch to a lower pitch when a car drives past. Most derivations of the…

  1. Method for Canceling Ionospheric Doppler Effect

    NASA Technical Reports Server (NTRS)

    Vessot, R. F. C.

    1982-01-01

    Unified transponder system with hydrogen-maser oscillators at both stations can compensate for both motional and ionospheric components of Doppler shift. Appropriate choices of frequency shift in output of mixer m3. System exploits proportionality between dispersive component of frequency shift and reciprocal of frequency to achieve cancellation of dispersive component at output.

  2. Robust population transfer in atomic beams induced by Doppler shifts

    NASA Astrophysics Data System (ADS)

    Unanyan, R. G.

    2016-10-01

    The influence of photon momentum recoil on adiabatic population transfer in an atomic three-level lambda system is studied. It is shown that the Doppler frequency shifts, due to atomic motion, can play an important role in adiabatic population transfer processes of atomic internal states by a pair of laser fields. For the limiting case of slow atoms (Doppler shift much smaller than the photon recoil energy), the atoms occupy the same target state regardless of the order of switching of laser fields, while for the case of fast atoms interacting with the intuitive sequence of pulses, the target state is the intermediate atomic state. Furthermore, it is shown that this novel technique for adiabatic population transfer is related to a level crossing in the bright-intermediate state basis (rather than in the original atomic basis). It is shown that these processes are robust with respect to parameter fluctuations, such as the laser pulse area and the relative spatial offset (delay) of the laser beams. The obtained results can be used for the control of temporal evolution of atomic populations in cold atomic beams by externally adjustable Doppler shifts.

  3. Azimuthal Doppler shift of absorption spectrum in optical vortex laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Yoshimura, Shinji; Aramaki, Mitsutoshi; Ozawa, Naoya; Terasaka, Kenichiro; Tanaka, Masayoshi; Nagaoka, Kenichi; Morisaki, Tomohiro

    2016-10-01

    Laser spectroscopy is a powerful diagnostic tool for measuring the mean flow velocity of plasma particles. We have been developing a new laser spectroscopy method utilizing an optical vortex beam, which has helical phase fronts corresponding to the phase change in the azimuthal direction. Because of this phase change, a Doppler effect is experienced even by an atom crossing the beam vertically. The additional azimuthal Doppler shift is proportional to the topological charge of optical vortex and is inversely proportional to the distance from the beam axis in which the beam intensity is vanished by destructive interference or the phase singularity. In order to detect the azimuthal Doppler shift, we have performed a laser absorption spectroscopy experiment with the linear ECR plasma device HYPER-I. Since the azimuthal Doppler shift depends on a position in the beam cross section, the absorption spectra at various positions were reconstructed from the transmitted beam intensity measured by a beam profiler. We have observed a clear spatial dependence of the Doppler shift, which qualitatively agreed with theory. Detailed experimental results, as well as remaining issues and future prospect, will be discussed at the meeting. This study was partially supported by JAPS KAKENHI Grand Numbers 15K05365 and 25287152.

  4. Estimation of the blood Doppler frequency shift by a time-varying parametric approach.

    PubMed

    Girault, J M; Kouamé, D; Ouahabi, A; Patat, F

    2000-03-01

    Doppler ultrasound is widely used in medical applications to extract the blood Doppler flow velocity in the arteries via spectral analysis. The spectral analysis of non-stationary signals and particularly Doppler signals requires adequate tools that should present both good time and frequency resolutions. It is well-known that the most commonly used time-windowed Fourier transform, which provides a time-frequency representation, is limited by the intrinsic trade-off between time and frequency resolutions. Parametric methods have then been introduced as an alternative to overcome this resolution problem. However, the performance of those methods deteriorates when high non-stationarities are present in the Doppler signal. For the purpose of accurately estimating the Doppler frequency shift, even when the temporal flow velocity is rapid (high non-stationarity), we propose to combine the use of the time-varying autoregressive (AR) method and the (dominant) pole frequency. This proposed method performs well in the context where non-stationarities are very high. A comparative evaluation has been made between classical (FFT based) and AR (both block and recursive) algorithms. Among recursive algorithms we test an adaptive recursive method as well as a time-varying recursive method. Finally, the superiority of the time-varying parametric approach in terms of frequency tracking and delay in the frequency estimate is illustrated for both simulated and in vivo Doppler signals.

  5. Current-induced spin-wave Doppler shift.

    PubMed

    Vlaminck, Vincent; Bailleul, Matthieu

    2008-10-17

    Spin transfer appears to be a promising tool for improving spintronics devices. Experiments that quantitatively access the magnitude of the spin transfer are required for a fundamental understanding of this phenomenon. By inductively measuring spin waves propagating along a permalloy strip subjected to a large electrical current, we observed a current-induced spin wave Doppler shift that we relate to the adiabatic spin transfer torque. Because spin waves provide a well-defined system for performing spin transfer, we anticipate that they could be used as an accurate probe of spin-polarized transport in various itinerant ferromagnets.

  6. Rotational Doppler shift for electromagnetic waves carrying orbital angular momentum based on spectrum analysis

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Wang, Gang

    2017-03-01

    We investigate the rotational Doppler effect for the electromagnetic wave carrying orbital angular momentum (OAM) with a method based on spectrum analysis, which is appropriate for both optics and free-space radio cases. We find that the frequency spectrum received is the convolution of emission spectrum and a discrete spectrum about OAM states, and verify it in the numerical simulations as well. This discovery makes it possible to distinguish the linear and rotational Doppler shift, and is helpful to developments of remote sensing and velocimetry in radar.

  7. Magnetic Compensation for Second-Order Doppler Shift in LITS

    NASA Technical Reports Server (NTRS)

    Burt, Eric; Tjoelker, Robert

    2008-01-01

    The uncertainty in the frequency of a linear-ion-trap frequency standard (LITS) can be reduced substantially by use of a very small magnetic inhomogeneity tailored to compensate for the residual second-order Doppler shift. An effect associated with the relativistic time dilatation, one cause of the second-order Doppler shift, is ion motion that is attributable to the trapping radio-frequency (RF)electromagnetic field used to trap ions. The second-order Doppler shift is reduced by using a multi-pole trap; however it is still the largest source of systematic frequency shift in the latest generation of LITSs, which are among the most stable clocks in the world. The present compensation scheme reduces the frequency instability of the affected LITS to about a tenth of its previous value. The basic principles of prior generation LITSs were discussed in several prior NASA Tech Briefs articles. Below are recapitulated only those items of basic information necessary to place the present development in context. A LITS includes a microwave local oscillator, the frequency of which is stabilized by comparison with the frequency of the ground state hyperfine transition of 199Hg+ ions. The comparison involves a combination of optical and microwave excitation and interrogation of the ions in a linear ion trap in the presence of a nominally uniform magnetic field. In the current version of the LITS, there are two connected traps (see figure): (1) a quadrupole trap wherein the optical excitation and measurement take place and (2) a 12-pole trap (denoted the resonance trap), wherein the microwave interrogation takes place. The ions are initially loaded into the quadrupole trap and are thereafter shuttled between the two traps. Shuttling ions into the resonance trap allows sensitive microwave interrogation to take place well away from loading interference. The axial magnetic field for the resonance trap is generated by an electric current in a finely wound wire coil surrounded by

  8. Doppler-Shifted Flare Emissions Observed by SDO/EVE

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2012-01-01

    The EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory (SDO) has been obtaining unprecedented observations of solar variation on times scales of seconds during flares and over the rising phase of Solar Cycle 24 since its start of normal operations in May 2010. Unexpectedly, as first pointed out in Hudson et. al., Ap.j. (2011), even with EVE's spectral resolution of 0.1 nm and 'irradiance' measurements, EVE has the ability to very accurately determine Doppler shifts in all emissions during solar flares and coronal mass ejections (CMEs). The technique for deriving these absolute velocities is not straightforward, as the optical and instrumental effects must first be eliminated in order to separate the absolute plasma velocities from the instrument effects. This talk will discuss these efforts to eliminate the instrumental component, as well as show some of the first results of absolute velocities of multiple emissions at a wide range of temperatures during solar flares.

  9. Doppler-shifted reflections of X rays in beamfoil spectroscopy

    NASA Technical Reports Server (NTRS)

    Bernstein, E. M.; Mcintyre, L. C., Jr.

    1976-01-01

    Carbon foils were positioned at roughly 10 deg to the conventional perpendicular position so that the spectrometer would view the beam on emergence from the foil, with no radiation shielded by a bowed or wrinkled foil or by the foil holder. Extraneous peaks due to reflected radiation were detected in the spectrum obtained with the tilted foil. A large satellite appears longward of the spectral line and is attributed to Doppler-shifted radiation reflected from the foil surface. Special tests arranged to validate the origin of the satellites are described. The relative intensity of the reflected radiation compared with the direct radiation observed is at variance with the relative intensities reported for longer wavelengths. The reasons for this, possible effects of spectrometer geometry, and applications in the investigation or generation of polarization remain to be investigated

  10. Doppler shifts in a tornado in the solar corona

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Mein, P.; Mein, N.; Levens, P. J.; Labrosse, N.; Ofman, L.

    2017-01-01

    Context. High resolution movies in 193 Å from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamic Observatory (SDO) show apparent rotation in the leg of a prominence observed during a coordinated campaign. Such structures are commonly referred to as tornadoes. Time-distance intensity diagrams of the AIA data show the existence of oscillations suggesting that the structure is rotating. Aims: The aim of this paper is to understand if the cool plasma at chromospheric temperatures inside the tornado is rotating around its central axis. Methods: The tornado was also observed in Hα with a cadence of 30 s by the MSDP spectrograph, operating at the Solar Tower in Meudon. The MSDP provides sequences of simultaneous spectra in a 2D field of view from which a cube of Doppler velocity maps is retrieved. Results: The Hα Doppler maps show a pattern with alternatively blueshifted and redshifted areas of 5 to 10'' wide. Over time the blueshifted areas become redshifted and vice versa, with a quasi-periodicity of 40 to 60 min. Weaker amplitude oscillations with periods of 4 to 6 min are superimposed onto these large period oscillations. Conclusions: The Doppler pattern observed in Hα cannot be interpreted as rotation of the cool plasma inside the tornado. The Hα velocity observations give strong constraints on the possible interpretations of the AIA tornado.

  11. Slow-light-induced Doppler shift in photonic-crystal waveguides

    NASA Astrophysics Data System (ADS)

    Kondo, K.; Baba, T.

    2016-01-01

    In this Rapid Communication, we theoretically discuss a large Doppler shift in a signal slow-light pulse in a photonic-crystal waveguide by considering its reflection at a quasilight speed mirror. The mirror is formed by the photonic band-gap shift induced by the high nonlinearity of a control slow-light pulse, which could be possible in a realistic device. In the simulation, the Doppler shift appears at multiple frequencies due to the Bloch nature of the photonic lattice. Larger but inefficient Doppler shifts occur through nonadiabatic processes, whereas the smallest but more efficient shift (i.e., the intraband Doppler shift) occurs through an adiabatic process. The occurrence of the intraband shift depends on whether the adiabatic process produces a complete reflection of the incident pulse, despite the fact that the pulse penetrates the mirror. A large band-gap shift and a moderately slow mirror satisfy this condition; otherwise, the shift ends at the halfway point.

  12. The quiet Sun average Doppler shift of coronal lines up to 2 MK

    NASA Astrophysics Data System (ADS)

    Dadashi, N.; Teriaca, L.; Solanki, S. K.

    2011-10-01

    Context. The average Doppler shift shown by spectral lines formed from the chromosphere to the corona reveals important information on the mass and energy balance of the solar atmosphere, providing an important observational constraint to any models of the solar corona. Previous spectroscopic observations of vacuum ultra-violet (VUV) lines have revealed a persistent average wavelength shift of lines formed at temperatures up to 1 MK. At higher temperatures, the behaviour is still essentially unknown. Aims: Here we analyse combined SUMER (Solar Ultraviolet Measurements of Emitted Radiation)/SoHO (Solar and Heliospheric Observatory) and EIS (EUV Imaging Spectrometer)/Hinode observations of the quiet Sun around disk centre to determine, for the first time, the average Doppler shift of several spectral lines formed between 1 and 2 MK, where the largest part of the quiet coronal emission is formed. Methods: The measurements are based on a novel technique applied to EIS spectra to measure the difference in Doppler shift between lines formed at different temperatures. Simultaneous wavelength-calibrated SUMER spectra allow establishing the absolute value at the reference temperature of T ≈ 1 MK. Results: The average line shifts at 1 MK < T < 1.8 MK are modestly, but clearly bluer than those observed at 1 MK. By accepting an average blue shift of about (-1.8 ± 0.6) km s-1 at 1 MK (as provided by SUMER measurements), this translates into a maximum Doppler shift of (-4.4 ± 2.2) km s-1 around 1.8 MK. The measured value appears to decrease to about (-1.3 ± 2.6) km s-1 at the Fe xv formation temperature of 2.1 MK. Conclusions: The measured average Doppler shift between 0.01 and 2.1 MK, for which we provide a parametrisation, appears to be qualitatively and roughly quantitatively consistent with what foreseen by 3D coronal models where heating is produced by dissipation of currents induced by photospheric motions and by reconnection with emerging magnetic flux.

  13. Servomechanism for Doppler shift compensation in optical correlator for synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Constaninides, N. J.; Bicknell, T. J. (Inventor)

    1980-01-01

    A method and apparatus for correcting Doppler shifts in synthetic aperture radar data is described. An optical correlator for synthetic aperture radar data has a means for directing a laser beam at a signal film having radar return pulse intensity information recorded on it. A resultant laser beam passes through a range telescope, an azimuth telescope, and a Fourier transform filter located between the range and azimuth telescopes, and forms an image for recording on an image film. A compensation means for Doppler shift in the radar return pulse intensity information includes a beam splitter for reflecting the modulated laser beam, after having passed through the Fourier transform filter, to a detection screen having two photodiodes mounted on it.

  14. 3D velocity measurement by a single camera using Doppler phase-shifting holography

    NASA Astrophysics Data System (ADS)

    Ninomiya, Nao; Kubo, Yamato; Barada, Daisuke; Kiire, Tomohiro

    2016-10-01

    In order to understand the details of the flow field in micro- and nano-fluidic devices, it is necessary to measure the 3D velocities under a microscopy. Thus, there is a strong need for the development of a new measuring technique for 3D velocity by a single camera. One solution is the use of holography, but it is well known that the accuracy in the depth direction is very poor for the commonly used in-line holography. At present, the Doppler phase-shifting holography is used for the 3D measurement of an object. This method extracts the signal of a fixed frequency caused by the Doppler beat between the object light and the reference light. It can measure the 3D shape precisely. Here, the frequency of the Doppler beat is determined by the velocity difference between the object light and the reference light. This implies that the velocity of an object can be calculated by the Doppler frequency. In this study, a Japanese 5 yen coin was traversed at a constant speed and its holography has been observed by a high-speed camera. By extracting only the first order diffraction signal at the Doppler frequency, a precise measurement of the shape and the position of a 5 yen coin has been achieved. At the same time, the longitudinal velocity of a 5 yen coin can be measured by the Doppler frequency. Furthermore, the lateral velocities are obtained by particle image velocimetry (PIV) method. A 5 yen coin has been traversed at different angles and its shapes and the 3D velocities have been measured accurately. This method can be applied to the particle flows in the micro- or nano-devices, and the 3D velocities will be measured under microscopes.

  15. Distribution of mean Doppler shift, spectral width, and skewness of coherent 50-MHz auroral radar backscatter

    SciTech Connect

    Watermann, J.; McNamara, A.G. ); Sofko, G.J.; Koehler, J.A. )

    1989-06-01

    Some 7,700 radio aurora spectra obtained from a six link 50-MHz CW radar network set up on the Canadian prairies were analyzed with respect to the distributions of mean Doppler shift, spectral width and skewness. A comparison with recently published SABRE results obtained at 153 MHz shows substantial differences in the distributions which are probably due to different experimental and geophysical conditions. The spectra are mostly broad with mean Doppler shifts close to zero (type II spectra). The typical groupings of type I and type III spectra are clearly identified. All types appear to be in general much more symmetric than those recorded with SABRE, and the skewness is only weakly dependent on the sign of the mean Doppler shift. Its distribution peaks near zero and shows a weak positive correlation with the type II Doppler shifts while the mostly positive type I Doppler shifts are slightly negatively correlated with the skewness.

  16. Active Region Moss: Doppler Shifts from Hinode/Extreme-ultraviolet Imaging Spectrometer Observations

    NASA Astrophysics Data System (ADS)

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-07-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibration based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s-1 with an estimated error of 4-5 km s-1. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s-1 is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.

  17. Method and apparatus for Doppler frequency modulation of radiation

    NASA Technical Reports Server (NTRS)

    Margolis, J. S.; Mccleese, D. J.; Shumate, M. S.; Seaman, C. H. (Inventor)

    1980-01-01

    A method and apparatus are described for frequency modulating radiation, such as from a laser, for optoacoustic detectors, interferometers, heterodyne spectrometers, and similar devices. Two oppositely reciprocating cats-eye retroreflectors are used to Doppler modulate the radiation. By reciprocally moving both retroreflectors, the center of mass is maintained constant to permit smooth operation at many Hertz. By slightly offsetting the axis of one retroreflector relative to the other, multiple passes of a light beam may be achieved for greater Doppler shifts with the same reciprocating motion of the retroreflectors.

  18. Realizing Tunable Inverse and Normal Doppler Shifts in Reconfigurable RF Metamaterials.

    PubMed

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Sun, Yong; Chen, Hong

    2015-06-26

    The Doppler effect has well-established applications in astronomy, medicine, radar and metrology. Recently, a number of experimental demonstrations of the inverse Doppler effect have begun to appear. However, the inverse Doppler effect has never been observed on an electronically reconfigurable system with an external electromagnetic wave source at radio frequencies (RF) in experiment. Here we demonstrate an experimental observation of the inverse Doppler shift on an electronically reconfigurable RF metamaterial structure, which can exhibit anomalous dispersion, normal dispersion or a stop band, depending on an applied bias voltage. Either inverse or normal Doppler shift is realized by injecting an external RF signal into the electronically reconfigurable metamaterial, on which an electronically controllable moving reflective boundary is formed. The effective velocity of this boundary and the resulting frequency shift can be tuned over a wide range by a digital switching circuit. This work is expected to open up possibilities in applying the inverse Doppler effect in wireless communications, radar and satellite navigation.

  19. Progress Report on Doppler Shift Results from SDO/EVE

    NASA Astrophysics Data System (ADS)

    Chamberlin, Phillip C.

    2015-04-01

    The EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory (SDO) has been obtaining unprecedented observations of solar variation on times scales of seconds during flares and over the rising phase of Solar Cycle 24 since its start of normal operations in May 2010. Unexpectedly, as first pointed out in Hudson et. al., Ap. J. (2011), even with EVE’s spectral resolution of 0.1 nm and ‘irradiance’ measurements, EVE has the ability to very accurately determine Doppler shifts in all emissions during solar flares and coronal mass ejections (CMEs). The technique for deriving these absolute velocities is not straightforward, as the optical and instrumental effects must first be eliminated in order to separate the absolute plasma velocities from the instrument effects. Initial results were first presented at the Solar Dynamics Observatory (SDO) Meeting in Cambridge, MD in March 2013. This presentation will discuss the progress that has been made since then on the efforts to eliminate the instrumental component, as well as show some of the updated results of absolute velocities of multiple emissions at a wide range of temperatures during solar flares.

  20. Doppler wavelength shifts of ultraviolet spectral lines in solar active regions

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Cohen, L.

    1982-01-01

    Doppler shifts are measured for solar UV emission lines formed in the lower transition region of active regions. Doppler shifts in different regions at the same solar location, variations of Doppler shift with position of an active region on the disk, and variations of Doppler shift with time at the same solar location in the same active region were studied. Observations were made with the NRL slit spectrograph on Skylab. Excluding flare and flare-related phenomena, only redshifts are found whose magnitudes correspond to downflow velocities between about 4 and 17 km/s. Shifts are largest for lines formed between about 50,000 and 100,000 K, and are distinctly less for lines formed above 100,000 K. The shifts persist out to the limb, but not above it. There is no obvious change in redshift for lines measured at the same solar location over time intervals of about 20 minutes.

  1. Center of Mass Estimation for a Spinning Spacecraft Using Doppler Shift of the GPS Carrier Frequency

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph E.

    2016-01-01

    A sequential filter is presented for estimating the center of mass (CM) of a spinning spacecraft using Doppler shift data from a set of onboard Global Positioning System (GPS) receivers. The advantage of the proposed method is that it is passive and can be run continuously in the background without using commanded thruster firings to excite spacecraft dynamical motion for observability. The NASA Magnetospheric Multiscale (MMS) mission is used as a test case for the CM estimator. The four MMS spacecraft carry star cameras for accurate attitude and spin rate estimation. The angle between the spacecraft nominal spin axis (for MMS this is the geometric body Z-axis) and the major principal axis of inertia is called the coning angle. The transverse components of the estimated rate provide a direct measure of the coning angle. The coning angle has been seen to shift slightly after every orbit and attitude maneuver. This change is attributed to a small asymmetry in the fuel distribution that changes with each burn. This paper shows a correlation between the apparent mass asymmetry deduced from the variations in the coning angle and the CM estimates made using the GPS Doppler data. The consistency between the changes in the coning angle and the CM provides validation of the proposed GPS Doppler method for estimation of the CM on spinning spacecraft.

  2. An elementary approach to the gravitational Doppler shift

    NASA Astrophysics Data System (ADS)

    Wörner, C. H.; Rojas, Roberto

    2017-01-01

    In college physics courses, treatment of the Doppler effect is usually done far from the first introduction to kinematics. This paper aims to apply a graphical treatment to describe the gravitational redshift, by considering the Doppler effect in two accelerated reference frames and exercising the equivalence principle. This approach seems appropriate to discuss with beginner students and could serve to enrich the didactic processes.

  3. Apparatus for measuring speed through the Doppler frequency shift of sound

    NASA Astrophysics Data System (ADS)

    Schier, Walter

    2011-04-01

    The Doppler frequency shift of sound apparatus is based on a one meter diameter rotary table with a "button" speaker at its outer edge. A semicircular waveguide encloses half the periphery and has a microphone pickup on its wall at the midpoint. The tangential speed of the button speaker can be determined two ways for comparison. One method calculates speed from the frequency shift of sound, the other uses the repeat sound pattern. Agreement to one percent is possible at speeds of about 25 mph. In the lab the microphone output is fed successively to pairs of students at ten computer stations. Students must also perform an exercise in their lab report that introduces them to the red shifted wavelengths of receding galaxies at determined distances from the earth thus introducing them to Hubble's law, the concept of the "Big Bang", and their estimate of the age of the universe.

  4. Method and system of doppler correction for mobile communications systems

    NASA Technical Reports Server (NTRS)

    Georghiades, Costas N. (Inventor); Spasojevic, Predrag (Inventor)

    1999-01-01

    Doppler correction system and method comprising receiving a Doppler effected signal comprising a preamble signal (32). A delayed preamble signal (48) may be generated based on the preamble signal (32). The preamble signal (32) may be multiplied by the delayed preamble signal (48) to generate an in-phase preamble signal (60). The in-phase preamble signal (60) may be filtered to generate a substantially constant in-phase preamble signal (62). A plurality of samples of the substantially constant in-phase preamble signal (62) may be accumulated. A phase-shifted signal (76) may also be generated based on the preamble signal (32). The phase-shifted signal (76) may be multiplied by the delayed preamble signal (48) to generate an out-of-phase preamble signal (80). The out-of-phase preamble signal (80) may be filtered to generate a substantially constant out-of-phase preamble signal (82). A plurality of samples of the substantially constant out-of-phase signal (82) may be accumulated. A sum of the in-phase preamble samples and a sum of the out-of-phase preamble samples may be normalized relative to each other to generate an in-phase Doppler estimator (92) and an out-of-phase Doppler estimator (94).

  5. Non-Data Aided Doppler Shift Estimation for Underwater Acoustic Communication

    DTIC Science & Technology

    2014-05-01

    are presented. Keywords: Blind Doppler Shift Estimation, Underwater Communication, Autocorrelation, Power Spectral Density (PSD), Periodogram . I...Estimation, Underwater Communication, Autocorrelation, Power Spectral Density (PSD), Periodogram . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17

  6. Laser Doppler phase shifting using a high-speed digital micromirror device

    NASA Astrophysics Data System (ADS)

    Kuo, D.; Sharpe, J. P.

    2015-03-01

    Here we demonstrate the use of a binary spatial light modulator (Texas Instruments Digital Micromirror Device) to impart a phase shift to the beams of a laser Doppler velocimeter. Advantages of this approach to laser Doppler phase shifting include low cost, low power consumption, a precisely known phase-stepping frequency and the capability of working with a broad range of optical wavelengths. In the implementation shown here velocities of order 1 cm/s are measured.

  7. ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS

    SciTech Connect

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-07-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibration based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.

  8. An adaptive sampling algorithm for Doppler-shift fluorescence velocimetry in high-speed flows

    NASA Astrophysics Data System (ADS)

    Le Page, Laurent M.; O'Byrne, Sean

    2017-03-01

    We present an approach to improving the efficiency of obtaining samples over a given domain for the peak location of Gaussian line-shapes. The method uses parameter estimates obtained from previous measurements to determine subsequent sampling locations. The method may be applied to determine the location of a spectral peak, where the monetary or time cost is too high to allow a less efficient search method, such as sampling at uniformly distributed domain locations, to be used. We demonstrate the algorithm using linear least-squares fitting of log-scaled planar laser-induced fluorescence data combined with Monte-Carlo simulation of measurements, to accurately determine the Doppler-shifted fluorescence peak frequency for each pixel of a fluorescence image. A simulated comparison between this approach and a uniformly spaced sampling approach is carried out using fits both for a single pixel and for a collection of pixels representing the fluorescence images that would be obtained in a hypersonic flow facility. In all cases, the peak location of Doppler-shifted line-shapes were determined to a similar precision with fewer samples than could be achieved using the more typical uniformly distributed sampling approach.

  9. Carrier Recovery Enhancement for Maximum-Likelihood Doppler Shift Estimation in Mars Exploration Missions

    NASA Astrophysics Data System (ADS)

    Cattivelli, Federico S.; Estabrook, Polly; Satorius, Edgar H.; Sayed, Ali H.

    2008-11-01

    One of the most crucial stages of the Mars exploration missions is the entry, descent, and landing (EDL) phase. During EDL, maintaining reliable communication from the spacecraft to Earth is extremely important for the success of future missions, especially in case of mission failure. EDL is characterized by very deep accelerations, caused by friction, parachute deployment and rocket firing among others. These dynamics cause a severe Doppler shift on the carrier communications link to Earth. Methods have been proposed to estimate the Doppler shift based on Maximum Likelihood. So far these methods have proved successful, but it is expected that the next Mars mission, known as the Mars Science Laboratory, will suffer from higher dynamics and lower SNR. Thus, improving the existing estimation methods becomes a necessity. We propose a Maximum Likelihood approach that takes into account the power in the data tones to enhance carrier recovery, and improve the estimation performance by up to 3 dB. Simulations are performed using real data obtained during the EDL stage of the Mars Exploration Rover B (MERB) mission.

  10. Design of a fast echo matching algorithm to reduce crosstalk with Doppler shifts in ultrasonic ranging

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Guo, Rui; Wu, Jun-an

    2017-02-01

    Crosstalk is a main factor for wrong distance measurement by ultrasonic sensors, and this problem becomes more difficult to deal with under Doppler effects. In this paper, crosstalk reduction with Doppler shifts on small platforms is focused on, and a fast echo matching algorithm (FEMA) is proposed on the basis of chaotic sequences and pulse coding technology, then verified through applying it to match practical echoes. Finally, we introduce how to select both better mapping methods for chaotic sequences, and algorithm parameters for higher achievable maximum of cross-correlation peaks. The results indicate the following: logistic mapping is preferred to generate good chaotic sequences, with high autocorrelation even when the length is very limited; FEMA can not only match echoes and calculate distance accurately with an error degree mostly below 5%, but also generates nearly the same calculation cost level for static or kinematic ranging, much lower than that by direct Doppler compensation (DDC) with the same frequency compensation step; The sensitivity to threshold value selection and performance of FEMA depend significantly on the achievable maximum of cross-correlation peaks, and a higher peak is preferred, which can be considered as a criterion for algorithm parameter optimization under practical conditions.

  11. MEASUREMENTS OF ANISOTROPIC ION TEMPERATURES, NON-THERMAL VELOCITIES, AND DOPPLER SHIFTS IN A CORONAL HOLE

    SciTech Connect

    Hahn, M.; Savin, D. W.

    2013-02-15

    We present a new diagnostic allowing one to measure the anisotropy of ion temperatures and non-thermal velocities, as well as Doppler shifts with respect to the ambient magnetic field. This method provides new results, as well as an independent test for previous measurements obtained with other techniques. Our spectral data come from observations of a low-latitude, on-disk coronal hole. A potential field source surface model was used to calculate the angle between the magnetic field lines and the line of sight for each spatial bin of the observation. A fit was performed to determine the line widths and Doppler shifts parallel and perpendicular to the magnetic field. For each line width component we derived ion temperatures T {sub i,} and T {sub i, Parallel-To} and non-thermal velocities v {sub nt,} and v {sub nt, Parallel-To }. T {sub i,} was cooler than off-limb polar coronal hole measurements, suggesting increasing collisional cooling with decreasing height. T {sub i, Parallel-To} is consistent with a uniform temperature of (1.8 {+-} 0.2) Multiplication-Sign 10{sup 6} K for each ion. Since parallel ion heating is expected to be weak, this ion temperature should reflect the proton temperature. A comparison between our results and others implies a large proton temperature gradient around 1.02 R {sub Sun }. The non-thermal velocities are thought to be proportional to the amplitudes of various waves. Our results for v {sub nt,} agree with Alfven wave amplitudes inferred from off-limb polar coronal hole line width measurements. Our v {sub nt, Parallel-To} results are consistent with slow magnetosonic wave amplitudes inferred from Fourier analysis of time-varying intensity fluctuations. Doppler shift measurements yield outflows of Almost-Equal-To 5 km s{sup -1} for ions formed over a broad temperature range. This differs from other studies that found a strong Doppler shift dependence on formation temperature.

  12. Wind speed measurements of Doppler-shifted absorption lines using two-beam interferometry.

    PubMed

    Pierce, Robert M; Roark, Shane E

    2012-04-20

    Wind speed can be measured remotely, with varying degrees of success, using interferometry of Doppler-shifted optical spectra. Under favorable conditions, active systems using laser pulse backscatter are capable of high resolution; passive systems, which measure Doppler shifts of atmospheric emission lines in the mesosphere, have also been shown. Two-beam interferometry of Doppler-shifted absorption lines has not been previously investigated; we describe such an effort here. Even in a well-defined environment, measuring absorption line Doppler shifts requires overcoming several technical hurdles in order to obtain sensitivity to wind speeds on the order of 10 m/s. These hurdles include precise knowledge of the shape of the absorption line, tight, stable filtering, and understanding precisely how an interferometer phase should respond to a change in the absorption profile. We discuss the instrument design, a Michelson interferometer and Fabry-Perot filter, and include an analysis of how to choose the optimal optical path difference of the two beams for a given spectrum and filter. We discuss two beam interferometric measurements of emission line and absorption line Doppler shifts, and include an illustration of the effects of filtering on LIDAR Doppler interferometry. Finally, we discuss the construction and implementation of a Michelson interferometer used to measure Doppler shifts of oxygen absorption lines and present results obtained with 5 m/s wind speed measurement precision. Although the theoretical shot noise limited Doppler wind speed measurement of the system described can be less than 1 m/s, the instrument's resolution limit is dominated by residual filter instability. Application of absorption line interferometry to determine atmospheric wind speeds remains problematic.

  13. Stimulated acoustic emission: pseudo-Doppler shifts seen during the destruction of nonmoving microbubbles.

    PubMed

    Tiemann, K; Pohl, C; Schlosser, T; Goenechea, J; Bruce, M; Veltmann, C; Kuntz, S; Bangard, M; Becher, H

    2000-09-01

    The purpose of this study was to evaluate the appearance and the characteristics of stimulated acoustic emission (SAE) as an echo contrast-specific color Doppler phenomenon with impact on myocardial contrast echocardiography (MCE). Stationary microbubbles of the new contrast agent SH-U 563A (Schering AG) were embedded within a tissue-mimicking gel material. Harmonic power Doppler imaging (H-PDI), color Doppler and pulse-wave Doppler data were acquired using an HDI-5000 equipped with a phased-array transducer (1.67/3.3 MHz). In color Doppler mode, bubble destruction resulted in random noise like Doppler signals. PW-Doppler revealed short "pseudo-Doppler" shifts with a broadband frequency spectrum. Quantification of SAE events by H-PDI demonstrated an exponential decay of signal intensities over successive frames. A strong linear relationship was found between bubble concentration and the square root of the linearized H-PDI signal for a range of concentrations of more than two orders of magnitude (R = 0.993, p < 0.0001). Intensity of the H-PDI signals correlated well with emission power (R = 0.96, p = 0.0014). SAE results from disintegration of microbubbles and can be demonstrated by all Doppler imaging modalities, including H-PDI. Intensity of SAE signals is influenced by the applied acoustic power and correlates highly with the concentration of microbubbles. Because intensity of SAE signals correlates highly with echo contrast concentrations, analysis of SAE signals might be used for quantitative MCE.

  14. Doppler-shift attenuation lifetime measurement of the 36Ar21+ level

    NASA Astrophysics Data System (ADS)

    Voss, P.; Drake, T. E.; Starosta, K.; Andreoiu, C.; Ashley, R.; Ball, G. C.; Bender, P. C.; Chester, A.; Churchman, R.; Cross, D. S.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Henderson, R.; Jigmeddorj, B.; Ketelhut, S.; Krücken, R.; Laffoley, A. T.; Leach, K. G.; Miller, D.; Orlandi, R.; Pearson, C. J.; Pore, J.; Rajabali, M. M.; Rand, E. T.; Svensson, C. E.; Tardiff, E.; Unsworth, C.; Wang, Z.-M.; Signoracci, A.

    2017-08-01

    At TRIUMF, the TIGRESS Integrated Plunger device and its suite of ancillary detector systems have been implemented for charged-particle tagging and light-ion identification in coincidence with γ -ray spectroscopy for Doppler-shift lifetime studies and low-energy Coulomb excitation measurements. As a test of the device, the lifetime of the first 2+ excited state in 36Ar was measured from the γ -ray line shape of the 21+→0g.s . + transition using the Doppler-shift attenuation technique following Coulomb excitation. The line-shape signatures, vital for precision lifetime measurements, were significantly improved by enhanced reaction-channel selectivity using a complementary approach of kinematic gating and digital rise-time discrimination of recoiling charged particles in a silicon PIN diode array. The lifetime was determined by comparisons between the data and simulated line shapes generated using our TIGRESS Coulomb excitation code as an input to the Lindhard method, which was then extended and included as a class in geant4. The model-independent lifetime result of 490 ±50 fs corresponds to a reduced quadrupole transition strength of B (E 2 ;21+→0g.s . +) =56 ±6 e2fm4 and agrees well with previous intermediate energy Coulomb excitation measurements, thereby resolving reported discrepancies in the 21+ level lifetime in this self-conjugate nucleus.

  15. Long-term Doppler Shift and Line Profile Studies of Planetary Search Target Stars

    NASA Technical Reports Server (NTRS)

    McMillan, Robert S.

    2002-01-01

    This grant supported attempts to develop a method for measuring the Doppler shifts of solar-type stars more accurately. The expense of future space borne telescopes to search for solar systems like our own makes it worth trying to improve the relatively inexpensive pre-flight reconnaissance by ground-based telescopes. The concepts developed under this grant contributed to the groundwork for such improvements. They were focused on how to distinguish between extrasolar planets and stellar activity (convection) cycles. To measure the Doppler shift (radial velocity; RV) of the center of mass of a star in the presence of changing convection in the star's photosphere, one can either measure the effect of convection separately from that of the star's motion and subtract its contribution to the apparent RV, or measure the RV in a way that is insensitive to convection. This grant supported investigations into both of these approaches. We explored the use of a Fabry-Perot Etalon HE interferometer and a multichannel Fourier Transform Spectrometer (mFTS), and finished making a 1.8-m telescope operational and potentially available for this work.

  16. Nonsearching Doppler parameter and velocity estimation method for synthetic aperture radar ground moving target imaging

    NASA Astrophysics Data System (ADS)

    Li, Zhongyu; Wu, Junjie; Huang, Yunlin; Yang, Haiguang; Yang, Jianyu

    2016-07-01

    For synthetic aperture radar (SAR), ground moving target (GMT) imaging necessitates the compensation of the additional azimuth modulation contributed by the unknown movement of the GMT. That is to say, it is necessary to estimate the Doppler parameters of the GMT without a priori knowledge of the GMT's motion parameters. This paper presents a Doppler parameter and velocity estimation method to refocus the GMT from its smeared response in SAR image. The main idea of this method is that an azimuth reference function is constructed to do the correlation integral with the azimuth signal of the GMT. And in general, the Doppler parameters of the presumed azimuth reference function are different from those of the GMT's azimuth signal since the velocity parameters of the GMT are unknown. Therefore, the correlation operation referred to here is actually mismatched, and the processing result of is shifted and defocused. The shifted and defocused result is utilized to get the real Doppler parameters and the velocity parameters of the GMT. One advantage of this method is that it is a nonsearching method. Another advantage is that both the Doppler centroid and the Doppler frequency rate of the GMT can be simultaneously estimated according to the relationships between the Doppler parameters and the smeared response of the GMT. In addition, the velocity of the GMT can also be obtained based on the estimated Doppler parameters. Numerical simulations and experimental data processing verify the validity of the method proposed.

  17. Realizing Tunable Inverse and Normal Doppler Shifts in Reconfigurable RF Metamaterials

    PubMed Central

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Sun, Yong; Chen, Hong

    2015-01-01

    The Doppler effect has well-established applications in astronomy, medicine, radar and metrology. Recently, a number of experimental demonstrations of the inverse Doppler effect have begun to appear. However, the inverse Doppler effect has never been observed on an electronically reconfigurable system with an external electromagnetic wave source at radio frequencies (RF) in experiment. Here we demonstrate an experimental observation of the inverse Doppler shift on an electronically reconfigurable RF metamaterial structure, which can exhibit anomalous dispersion, normal dispersion or a stop band, depending on an applied bias voltage. Either inverse or normal Doppler shift is realized by injecting an external RF signal into the electronically reconfigurable metamaterial, on which an electronically controllable moving reflective boundary is formed. The effective velocity of this boundary and the resulting frequency shift can be tuned over a wide range by a digital switching circuit. This work is expected to open up possibilities in applying the inverse Doppler effect in wireless communications, radar and satellite navigation. PMID:26111643

  18. Edge technique for measurement of laser frequency shifts including the Doppler shift

    NASA Technical Reports Server (NTRS)

    Korb, Larry (Inventor)

    1991-01-01

    A method is disclosed for determining the frequency shift in a laser system by transmitting an outgoing laser beam. An incoming laser beam having a frequency shift is received. A first signal is acquired by transmitting a portion of the incoming laser beam to an energy monitor detector. A second signal is acquired by transmitting a portion of the incoming laser beam through an edge filter to an edge detector, which derives a first normalized signal which is proportional to the transmission of the edge filter at the frequency of the incoming laser beam. A second normalized signal is acquired which is proportional to the transmission of the edge filter at the frequency of the outgoing laser beam. The frequency shift is determined by processing the first and second normalized signals.

  19. Ultraviolet Properties of Halo Coronal Mass Ejections: Doppler Shifts, Angles, Shocks, and Bulk Morphology

    DTIC Science & Technology

    2006-11-20

    spectrometer that can observe the solar corona terms of knots/threads and Doppler shifts as the core. An exam- from 1.5 LIp to 10 R,., at any polar angle...2004, A&A, 424, 1039 Ciaravella, A., Raymond, J. C., Kahler, S., Vourlidas , A., & Li, J. 2005, Api, Raymond, J. C. 2002, in From Solar Min to Max...broad line profiles, while the line intensities are comparable to the background corona . The Doppler shifts of the front material are generally small

  20. Using Doppler shift induced by Galvanometric mirror scanning to reach shot noise limit with laser optical feedback imaging setup.

    PubMed

    Jacquin, O; Lacot, E; Hugon, O; Guillet de Chatelus, H

    2015-03-10

    This paper proposes what we believe is a new method to remove the contribution of parasitic reflections in the images of the laser optical feedback imaging (LOFI) technique. This simple method allows us to extend the LOFI technique to long-distance applications, as imaging through a fog or a smoke. The LOFI technique is an ultrasensitive imaging technique that is interesting for imaging objects through a scattering medium. However, the LOFI sensitivity can be dramatically limited by parasitic optical feedback occurring in the experimental setup. In previous papers [Appl. Opt.48, 64 (2009)10.1364/AO.48.000064APOPAI1559-128X, Opt. Lett.37, 2514 (2012)10.1364/OL.37.002514OPLEDP0146-9592], we already have proposed methods to filter a parasitic optical feedback, but they are not well suited to metric working distances. This new method uses a Doppler frequency shift induced by the moving mirror used to scan the object to be imaged. Using this Doppler frequency shift, we can distinguish the photons reflected by the target and the parasitic photons reflected by the optical components in the experimental setup. In this paper, we demonstrated theoretically and experimentally the possibility to filter the parasitic reflection in LOFI images using the Doppler frequency shift. This method significantly improves the signal-to-noise ratio by a factor 15 and we can obtain a shot noise limited image through a scattering medium of an object at 3 m from the detector.

  1. A Doppler-Cancellation Technique for Determining the Altitude Dependence of Gravitational Red Shift in an Earth Satellite

    NASA Technical Reports Server (NTRS)

    Badessa, R. S.; Kent, R. L.; Nowell, J. C.; Searle, C. L.

    1960-01-01

    A cancellation technique permits measurement of the frequency of a source moving relative to an observer without the obscuring effect of first-order Doppler shifts. The application of this method to a gravitational red shift experiment involving the use of an earth satellite containing a highly stable oscillator is described. The rapidity with which a measurement can be made permits the taking of data at various altitudes in a given elliptical orbit. Tropospheric and ionospheric effects upon the accuracy of results are estimated.

  2. Spectroscopy at the solar limb. I. Average off-limb profiles and Doppler shifts of Ca II H

    NASA Astrophysics Data System (ADS)

    Beck, C. A. R.; Rezaei, R.

    2011-07-01

    Aims: We present constraints on the thermodynamical structure of the chromosphere from ground-based observations of the Ca ii H line profile near and off the solar limb. Methods: We obtained a slit-spectrograph data set of the Ca ii H line with a high signal-to-noise ratio in a field of view extending 20'' across the limb. We analyzed the spectra for the characteristic properties of average and individual off-limb spectra. We used various tracers of the Doppler shifts, such as the location of the absorption core, the ratio of the two emission peaks H2V and H2R, and intensity images at a fixed wavelength. Results: The average off-limb profiles show a smooth variation with increasing limb distance. The line width increases up to a height of about 2 Mm above the limb. The profile shape is fairly symmetric with nearly identical H2V and H2R intensities; at a height of 5 Mm, it changes into a single Gaussian without emission peaks. We find that all off-limb spectra show large Doppler shifts that fluctuate on the smallest resolved spatial scales. The variation is more prominent in cuts parallel to the solar limb than on those perpendicular to it. As far as individual structures can be unequivocally identified at our spatial resolution, we find a specific relation between intensity enhancements and Doppler shifts: elongated brightenings are often flanked all along their extension by velocities in opposite directions. Conclusions: The average off-limb spectra of Ca ii H present a good opportunity to test static chromospheric atmosphere models because they lack the photospheric contribution that is present in disk-center spectra. We suggest that the observed relation between intensity enhancements and Doppler shifts could be caused by waves propagating along the surfaces of flux tubes: an intrinsic twist of the flux tubes or a wave propagation inclined to the tube axis would cause a helical shape of the Doppler excursions, visible as opposite velocity at the sides of the

  3. Method for ambiguity resolution in range-Doppler measurements

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M. (Inventor); Miller, Lee S. (Inventor)

    1994-01-01

    A method for resolving range and Doppler target ambiguities when the target has substantial range or has a high relative velocity in which a first signal is generated and a second signal is also generated which is coherent with the first signal but at a slightly different frequency such that there exists a difference in frequency between these two signals of Delta f(sub t). The first and second signals are converted into a dual-frequency pulsed signal, amplified, and the dual-frequency pulsed signal is transmitted towards a target. A reflected dual-frequency signal is received from the target, amplified, and changed to an intermediate dual-frequency signal. The intermediate dual-frequency signal is amplified, with extracting of a shifted difference frequency Delta f(sub r) from the amplified intermediate dual-frequency signal done by a nonlinear detector. The final step is generating two quadrature signals from the difference frequency Delta f(sub t) and the shifted difference frequency Delta f(sub r) and processing the two quadrature signals to determine range and Doppler information of the target.

  4. Observation of spin-wave Doppler shift in Co90Fe10/Ru micro-strips for evaluating spin polarization

    NASA Astrophysics Data System (ADS)

    Sugimoto, Satoshi; Rosamond, Mark C.; Linfield, Edmund H.; Marrows, Christopher H.

    2016-09-01

    The current-induced spin-wave Doppler shift has been investigated for Co90Fe10 films, with and without under- and overlayers of Ru, aiming to obtain quantitative insights into the value of spin polarization of the diffusive electrical currents flowing in this material. This extends the use of spin-wave Doppler shift spectroscopy beyond the study of permalloy to other soft magnetic materials suitable for use in spintronic applications such as racetrack memories. The Damon-Eshbach spin-wave mode was employed, and a control experiment of permalloy yielded a value of spin polarization of P = 0.44 ± 0.03 for that material. An extended method to properly evaluate spin-wave Doppler shifts is developed that takes account of the non-negligible Oersted fields that are generated by the current density asymmetry caused by conducting under- or overlayers. The values of spin polarization for various Co90Fe10-based structures are found to lie in the range of 0.3-0.35, only slightly less than in permalloy.

  5. Detection of Earth-rotation Doppler shift from Suomi National Polar-Orbiting Partnership Cross-Track Infrared Sounder.

    PubMed

    Chen, Yong; Han, Yong; Weng, Fuzhong

    2013-09-01

    The Cross-Track Infrared Sounder (CrIS) on the Suomi National Polar-Orbiting Partnership Satellite is a Fourier transform spectrometer and provides a total of 1305 channels for sounding the atmosphere. Quantifying the CrIS spectral accuracy, which is directly related to radiometric accuracy, is crucial for improving its data assimilation in numerical weather prediction. In this study, a cross-correlation method is used for detecting the effect of Earth-rotation Doppler shift (ERDS) on CrIS observations. Based on a theoretical calculation, the ERDS can be as large as about 1.3 parts in 10(6) (ppm) near Earth's equator and at the satellite scan edge for a field of regard (FOR) of 1 or 30. The CrIS observations exhibit a relative Doppler shift as large as 2.6 ppm for a FOR pair of 1 and 30 near the equator. The variation of the ERDS with latitude and scan position detected from CrIS observations is similar to that derived theoretically, which indicates that the spectral stability of the CrIS instrument is very high. To accurately calibrate CrIS spectral accuracy, the ERDS effect should be removed. Since the ERDS is easily predictable, the Doppler shift is correctable in the CrIS spectra.

  6. Fracture toughness curve shift method

    SciTech Connect

    Nanstad, R.K.; Sokolov, M.A.; McCabe, D.E.

    1995-10-01

    The purpose of this task is to examine the technical basis for the currently accepted methods for shifting fracture toughness curves to account for irradiation damage, and to work through national codes and standards bodies to revise those methods, if a change is warranted. During this reporting period, data from all the relevant HSSI Programs were acquired and stored in a database and evaluated. The results from that evaluation have been prepared in a draft letter report and are summarized here. A method employing Weibull statistics was applied to analyze fracture toughness properties of unirradiated and irradiated pressure vessel steels. Application of the concept of a master curve for irradiated materials was examined and used to measure shifts of fracture toughness transition curves. It was shown that the maximum likelihood approach gave good estimations of the reference temperature, T{sub o}, determined by rank method and could be used for analyzing of data sets where application of the rank method did not prove to be feasible. It was shown that, on average, the fracture toughness shifts generally exceeded the Charpy 41-J shifts; a linear least-squares fit to the data set yielded a slope of 1.15. The observed dissimilarity was analyzed by taking into account differences in effects of irradiation on Charpy impact and fracture toughness properties. Based on these comparisons, a procedure to adjust Charpy 41-J shifts for achieving a more reliable correlation with the fracture toughness shifts was evaluated. An adjustment consists of multiplying the 41-J energy level by the ratio of unirradiated to irradiated Charpy upper shelves to determine an irradiated transition temperature, and then subtracting the unirradiated transition temperature determined at 41 J. For LUS welds, however, an unirradiated level of 20 J (15 ft-1b) was used for the corresponding adjustment for irradiated material.

  7. Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Shirley, John A.; Winter, Michael

    1993-01-01

    An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.

  8. FMCW CSAR Doppler shifting correction and the layover phenomenon analysising at a new received signal model

    NASA Astrophysics Data System (ADS)

    Song, Depeng; Qu, Yi; Xie, Yuehui

    2016-10-01

    Because of go-stop mode not applying to FMCW CSAR (frequency modulated continuous wave circular synthetic aperture radar), received signal include Doppler shifting result from the radar fly in one period, which have a bad effect on the quality of imaging in wide-field FMCW CSAR. However the compensation functions of liner SAR are not suitable for CSAR. To solve the problem, the paper rebuild a received mode and elicit the Doppler shifting. At the same time, based on the model, the paper analysis the layover phenomenon while obtaining two-dimensional (2D) representations of 3D large scenes due to the wide-field FMCW CSAR and simulate the phenomenon. By the simulation, the effect of the layover can be expressed clearly.

  9. Measuring D(d,p)T fusion reactant energy spectra with Doppler shifted fusion products

    SciTech Connect

    Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Donovan, D. C.; Piefer, G. R.

    2010-06-15

    Deuterium fusion reactant energy spectra have been measured using a diagnostic that records the Doppler shift imparted to charged particle fusion products of the D(d,p)T reaction by the center-of-mass velocity of the deuterium reactants. This diagnostic, known as the fusion ion Doppler shift diagnostic (FIDO) measures fast deuterium energy spectra in the inertial electrostatic confinement (IEC) experiment at the University of Wisconsin-Madison {l_brace}Santarius et al. [Fusion Sci. Technol. 47, 1238 (2005)]{r_brace}, a device to confine high energy light ions in a spherically symmetric, electrostatic potential well. This article details the first measurements of the fusion reactant energy spectra in an IEC device as well as the design and principles of operation of the FIDO diagnostic. Scaling of reactant energy spectra with a variety of experimental parameters have been explored.

  10. Optical torque reversal and spin-orbit rotational Doppler shift experiments.

    PubMed

    Hakobyan, Davit; Brasselet, Etienne

    2015-11-30

    We report on optical rotational Doppler frequency shift experiments in the context of a counter-intuitive optomechanical phenomenon that is the angular analog of so-called negative optical radiation forces, which involves spin-orbit scattering of light. In practice, spin-orbit opto-mechanical effects arising from the interaction between polarized light and azimuthally varying birefringent optical elements are retrieved from mechano-optical experiments that involve spatial of the medium. Two kinds of experiments (single-beam and two-beam geometries) are performed and both approaches are discussed in the framework of previous dynamical geometric phase and rotational Doppler shift experiments based on spin and/or orbital angular momentum of light.

  11. Linear ion trap for second-order Doppler shift reduction in frequency standard applications

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Janik, Gary R.; Dick, G. John; Maleki, Lute

    1990-01-01

    The authors have designed and are presently testing a novel linear ion trap that permits storage of a large number of ions with reduced susceptibility to the second-order Doppler effect caused by the RF confining fields. This new trap should store about 20 times the number of ions as a conventional RF trap with no corresponding increase in second-order Doppler shift from the confining field. In addition, the sensitivity of this shift to trapping parameters, i.e., RF voltage, RF frequency, and trap size, is greatly reduced. The authors have succeeded in trapping mercury ions and xenon ions in the presence of helium buffer gas. Trap times as long as 2000 s have been measured.

  12. Critical electron pitch angle anisotropy necessary for chorus generation. [Doppler-shifted cyclotron resonance

    NASA Technical Reports Server (NTRS)

    Burton, R. K.

    1976-01-01

    Simultaneous wave, resonant-particle, and ambient-plasma data from OGO 5 for chorus emissions on August 15, 1968, were found consistent with the theoretical critical pitch-angle-anisotropy condition for whistler-mode instability by Doppler-shifted electron cyclotron resonance. Local generation, as determined by wave normal measurements, occurred only when the pitch-angle anisotropy of resonant electrons required for instability substantially exceeded the critical anisotropy defined by Kennel and Petschek (1966).

  13. The gust-front detection and wind-shift algorithms for the Terminal Doppler Weather Radar system

    NASA Technical Reports Server (NTRS)

    Hermes, Laurie G.; Witt, Arthur; Smith, Steven D.; Klingle-Wilson, Diana; Morris, Dale; Stumpf, Gregory J.; Eilts, Michael D.

    1993-01-01

    The Federal Aviation Administration's (FAA) Terminal Doppler Weather Radar (TDWR) system was primarily designed to address the operational needs of pilots in the avoidance of low-altitude wind shears upon takeoff and landing at airports. One of the primary methods of wind-shear detection for the TDWR system is the gust-front detection algorithm. The algorithm is designed to detect gust fronts that produce a wind-shear hazard and/or sustained wind shifts. It serves the hazard warning function by providing an estimate of the wind-speed gain for aircraft penetrating the gust front. The gust-front detection and wind-shift algorithms together serve a planning function by providing forecasted gust-front locations and estimates of the horizontal wind vector behind the front, respectively. This information is used by air traffic managers to determine arrival and departure runway configurations and aircraft movements to minimize the impact of wind shifts on airport capacity. This paper describes the gust-front detection and wind-shift algorithms to be fielded in the initial TDWR systems. Results of a quantitative performance evaluation using Doppler radar data collected during TDWR operational demonstrations at the Denver, Kansas City, and Orlando airports are presented. The algorithms were found to be operationally useful by the FAA airport controllers and supervisors.

  14. Constraining High-speed Winds in Exoplanet Atmospheres through Observations of Anomalous Doppler Shifts during Transit

    NASA Astrophysics Data System (ADS)

    Miller-Ricci Kempton, Eliza; Rauscher, Emily

    2012-06-01

    Three-dimensional (3D) dynamical models of hot Jupiter atmospheres predict very strong wind speeds. For tidally locked hot Jupiters, winds at high altitude in the planet's atmosphere advect heat from the day side to the cooler night side of the planet. Net wind speeds on the order of 1-10 km s-1 directed towards the night side of the planet are predicted at mbar pressures, which is the approximate pressure level probed by transmission spectroscopy. These winds should result in an observed blueshift of spectral lines in transmission on the order of the wind speed. Indeed, Snellen et al. recently observed a 2 ± 1 km s-1 blueshift of CO transmission features for HD 209458b, which has been interpreted as a detection of the day-to-night (substellar to anti-stellar) winds that have been predicted by 3D atmospheric dynamics modeling. Here, we present the results of a coupled 3D atmospheric dynamics and transmission spectrum model, which predicts the Doppler-shifted spectrum of a hot Jupiter during transit resulting from winds in the planet's atmosphere. We explore four different models for the hot Jupiter atmosphere using different prescriptions for atmospheric drag via interaction with planetary magnetic fields. We find that models with no magnetic drag produce net Doppler blueshifts in the transmission spectrum of ~2 km s-1 and that lower Doppler shifts of ~1 km s-1 are found for the higher drag cases, results consistent with—but not yet strongly constrained by—the Snellen et al. measurement. We additionally explore the possibility of recovering the average terminator wind speed as a function of altitude by measuring Doppler shifts of individual spectral lines and spatially resolving wind speeds across the leading and trailing terminators during ingress and egress.

  15. CONSTRAINING HIGH-SPEED WINDS IN EXOPLANET ATMOSPHERES THROUGH OBSERVATIONS OF ANOMALOUS DOPPLER SHIFTS DURING TRANSIT

    SciTech Connect

    Miller-Ricci Kempton, Eliza; Rauscher, Emily

    2012-06-01

    Three-dimensional (3D) dynamical models of hot Jupiter atmospheres predict very strong wind speeds. For tidally locked hot Jupiters, winds at high altitude in the planet's atmosphere advect heat from the day side to the cooler night side of the planet. Net wind speeds on the order of 1-10 km s{sup -1} directed towards the night side of the planet are predicted at mbar pressures, which is the approximate pressure level probed by transmission spectroscopy. These winds should result in an observed blueshift of spectral lines in transmission on the order of the wind speed. Indeed, Snellen et al. recently observed a 2 {+-} 1 km s{sup -1} blueshift of CO transmission features for HD 209458b, which has been interpreted as a detection of the day-to-night (substellar to anti-stellar) winds that have been predicted by 3D atmospheric dynamics modeling. Here, we present the results of a coupled 3D atmospheric dynamics and transmission spectrum model, which predicts the Doppler-shifted spectrum of a hot Jupiter during transit resulting from winds in the planet's atmosphere. We explore four different models for the hot Jupiter atmosphere using different prescriptions for atmospheric drag via interaction with planetary magnetic fields. We find that models with no magnetic drag produce net Doppler blueshifts in the transmission spectrum of {approx}2 km s{sup -1} and that lower Doppler shifts of {approx}1 km s{sup -1} are found for the higher drag cases, results consistent with-but not yet strongly constrained by-the Snellen et al. measurement. We additionally explore the possibility of recovering the average terminator wind speed as a function of altitude by measuring Doppler shifts of individual spectral lines and spatially resolving wind speeds across the leading and trailing terminators during ingress and egress.

  16. Resolution of Chiral Conundrum in Ag106: Doppler-Shift Lifetime Investigation

    NASA Astrophysics Data System (ADS)

    Lieder, E. O.; Lieder, R. M.; Bark, R. A.; Chen, Q. B.; Zhang, S. Q.; Meng, J.; Lawrie, E. A.; Lawrie, J. J.; Bvumbi, S. P.; Kheswa, N. Y.; Ntshangase, S. S.; Madiba, T. E.; Masiteng, P. L.; Mullins, S. M.; Murray, S.; Papka, P.; Roux, D. G.; Shirinda, O.; Zhang, Z. H.; Zhao, P. W.; Li, Z. P.; Peng, J.; Qi, B.; Wang, S. Y.; Xiao, Z. G.; Xu, C.

    2014-05-01

    The nature of the chiral candidate bands in Ag106, one of only two known examples of candidates which actually cross, is investigated experimentally and theoretically. Lifetimes have been determined for these bands in Ag106 using the Doppler-shift attenuation method with the γ-detector array AFRODITE. The level scheme of Ag106 has been extended, and three negative-parity bands have been observed to high spins. Configurations were assigned to the negative-parity bands based on a quasiparticle alignment analysis and on configuration-fixed constrained relativistic mean field calculations. The excitation energies, B(M1) and B(E2) values, as well as B(M1)/B(E2) ratios have been compared with results of particle-rotor model calculations. From the investigations, it is concluded that the three close-lying negative-parity bands are a two-quasiparticle high-K band and a pair of four-quasiparticle bands. The proposal that the two lowest-lying bands are chiral partners has not been confirmed.

  17. Doppler-shifting effects on frequency spectra of gravity waves observed near the summer mesopause at high latitude

    NASA Technical Reports Server (NTRS)

    Fritts, David C.; Wang, Ding-Yi

    1991-01-01

    Results are presented of radar observations of horizontal and vertical velocities near the summer mesopause at Poker Flat (Alaska), showing that the observed vertical velocity spectra were influenced strongly by Doppler-shifting effects. The horizontal velocity spectra, however, were relatively insensitive to horizontal wind speed. The observed spectra are compared with predicted spectra for various models of the intrinsic motion spectrum and degrees of Doppler shifting.

  18. On the sampling method of the JSZ-4 Doppler receiver.

    NASA Astrophysics Data System (ADS)

    Cha, D.-Y.; Huang, K.-Y.

    The authors discuss the properties of the JSZ-4 Doppler receiver and the problem of optimal record. It is shown that the original sampling method losses information. A procedure of improvement is proposed.

  19. Doppler-shift estimation of flat underwater channel using data-aided least-square approach

    NASA Astrophysics Data System (ADS)

    Pan, Weiqiang; Liu, Ping; Chen, Fangjiong; Ji, Fei; Feng, Jing

    2015-06-01

    In this paper we proposed a dada-aided Doppler estimation method for underwater acoustic communication. The training sequence is non-dedicate, hence it can be designed for Doppler estimation as well as channel equalization. We assume the channel has been equalized and consider only flat-fading channel. First, based on the training symbols the theoretical received sequence is composed. Next the least square principle is applied to build the objective function, which minimizes the error between the composed and the actual received signal. Then an iterative approach is applied to solve the least square problem. The proposed approach involves an outer loop and inner loop, which resolve the channel gain and Doppler coefficient, respectively. The theoretical performance bound, i.e. the Cramer-Rao Lower Bound (CRLB) of estimation is also derived. Computer simulations results show that the proposed algorithm achieves the CRLB in medium to high SNR cases.

  20. Doppler-shift compensation behavior by Wagner’s mustached bat, Pteronotus personatus

    PubMed Central

    Smotherman, Michael; Guillén-Servent, Antonio

    2008-01-01

    Doppler-shift compensation behavior (DSC) is a highly specialized vocal response displayed by bats that emit pulses with a prominent constant frequency (CF) component and adjust the frequency of their CF component to compensate for flight-speed induced Doppler shifts in the frequency of the returning echoes. DSC has only been observed in one member of the Neotropical Mormoopidae, a family of bats that use pulses with prominent CF components, leading researchers to suspect that DSC is a uniquely derived trait in the single species Pteronotus parnellii. Yet recent phylogenetic data indicate that the lineage of P. parnellii originates from the most basal node in the evolutionary history of the genus Pteronotus. DSC behavior was investigated in another member of this family, Pteronotus personatus, because molecular data indicated that this species stems from the second most basal node in Pteronotus. DSC was tested for by swinging the bats on a pendulum. P. personatus performed DSC as well as P. parnellii under identical conditions. Two other closely related mormoopids, Pteronotus davyi and Mormoops megalophylla, were also tested and neither shifted the peak frequency of their pulses. These results shed light on the evolutionary history of DSC among the mormoopids. PMID:18537384

  1. Doppler phase-shifting digital holography and its application to surface shape measurement.

    PubMed

    Kikuchi, Yuichi; Barada, Daisuke; Kiire, Tomohiro; Yatagai, Toyohiko

    2010-05-15

    Digital holography utilizing the optical Doppler effect is proposed in which the time variation of interference fringes is recorded using a high-speed CMOS camera. The complex amplitude diffracted from the object wave is extracted by time-domain Fourier transforming the recorded interference fringes. The method was used to measure the surface shape of a concave mirror under a disturbed environment.

  2. New lifetime measurements in the stable semimagic Sn isotopes using the Doppler-shift attenuation technique

    NASA Astrophysics Data System (ADS)

    Jungclaus, A.; Walker, J.; Leske, J.; Speidel, K.-H.; Stuchbery, A. E.; East, M.; Boutachkov, P.; Cederkäll, J.; Doornenbal, P.; Egido, J. L.; Ekström, A.; Gerl, J.; Gernhäuser, R.; Goel, N.; Górska, M.; Kojouharov, I.; Maier-Komor, P.; Modamio, V.; Naqvi, F.; Pietralla, N.; Pietri, S.; Prokopowicz, W.; Schaffner, H.; Schwengner, R.; Wollersheim, H.-J.

    2011-09-01

    Precise measurements of lifetimes in the picosecond range of excited states in the stable even-A Sn isotopes 112,114,116,122Sn have been performed using the Doppler shift attenuation technique. For the first excited 2+ states in 112Sn, 114Sn and 116Sn the E2 transition strengths deduced from the measured lifetimes are in disagreement with the previously adopted values. They indicate a shallow minimum at N = 66 in contrast to the maximum at mid-shell predicted by modern shell model calculations.

  3. A High-Speed Optical Diagnostic that uses Interference Filters to Measure Doppler Shifts

    SciTech Connect

    S.F. Paul; C. Cates; M. Mauel; D. Maurer; G. Navratil; M. Shilov

    2004-08-09

    A high-speed, non-invasive velocity diagnostic has been developed for measuring plasma rotation. The Doppler shift is determined by employing two detectors that view line emission from the identical volume of plasma. Each detector views through an interference filter having a passband that varies linearly with wavelength. One detector views the plasma through a filter whose passband has a negative slope and the second detector views through one with a positive slope. Because each channel views the same volume of plasma, the ratio of the amplitudes is not sensitive to variations in plasma emission. With suitable knowledge of the filter characteristics and the relative gain, the Doppler shift is readily obtained in real time from the ratio of two channels without needing a low throughput spectrometer. The systematic errors--arising from temperature drifts, stability, and frequency response of the detectors and amplifiers, interference filter linearity, and ability to thoroughly homogenize the light from the fiber bundle--can be characterized well enough to obtain velocity data with + or - 1 km/sec with a time resolution of 0.3 msec.

  4. Laser Doppler spectrometer method of particle sizing. [for air pollution

    NASA Technical Reports Server (NTRS)

    Weber, F. N.

    1976-01-01

    A spectrometer for the detection of airborne particulate pollution in the submicron size range is described. In this device, airborne particles are accelerated through a supersonic nozzle, with different sizes achieving different velocities in the gas flow. Information about the velocities of the accelerated particles is obtained with a laser-heterodyne optical system through the Doppler shift of light scattered from the particles. Detection is accomplished by means of a photomultiplier. Nozzle design and signal processing techniques are also discussed.

  5. Measurement of the Stopping Power of Water for Carbon Ions Using Inverted Doppler Shift Attenuation

    SciTech Connect

    Rahm, J.M.; Baek, W.Y.; Rabus, H.; Hofsaess, H.

    2015-07-01

    Carbon ion therapy has gained importance in cancer treatment due to its locally well confined dose distribution, but there is a significant lack of experimental data which is needed for dose calculations and estimation of biological damage. Since tissue is mainly comprised of water, the energy-dependent stopping power of water is the critical measure. Importantly, previous data gathered from experiments with light ions has been limited to water vapour and ice and neglected water in its liquid phase. Additionally, theoretical models regarding the stopping power cannot yet describe the complex charge transfer interactions of the projectile at velocities in the range of the mean velocity of the valence electrons of the traversed medium. There are also discrepancies in the amount of phase effects concerning water and water vapour cross sections. Despite its importance there exists no experimental data for the stopping power of water for carbon ions in the energy region between 1 MeV and 5 MeV. This may be due to the short track length of carbon ions which makes traditional transmission experiments unfeasible. Therefore a project was launched to measure the stopping power of liquid water for carbon ions in the vicinity of the Bragg peak which corresponds to the energy regime of the maximum stopping power. For this measurement the inverted Doppler shift attenuation method was used. This uses the gamma quanta emitted from excited carbon nuclei which are produced by means of the {sup 12}C(α,α'){sup 12}C* reaction. The recorded γ-spectra contain the information of the projectiles velocity at the time they decay to their ground state and an internal clock provided by the exponential decay law. The deceleration of the projectile is directly connected to the stopping power which can be determined with this method as a function of the projectiles kinetic energy. Further measurements have been carried out to improve the experimental method. The setup and the preliminary

  6. EIS observations of Doppler shifts in the structure of on-disk plumes

    NASA Astrophysics Data System (ADS)

    Fu, H.; Xia, L.; Li, B.; JIAO, F.; Mou, C.

    2013-12-01

    The contribution of plumes to the solar wind has been subject to hot debate in the past decades. The EUV Imaging Spectrometer (EIS) on board Hinode provides a unique means to deduce outflow speeds at coronal heights via direct Doppler shift measurements of coronal emission lines. Such direct Doppler shift measurements were not possible with previous spectrometer. We measure the outflow speed at coronal heights in several on-disk long-duration plumes, which are located in coronal holes and show significant blue shifts throughout the entire observational period. In one particular case, a plume is measured 4 hours apart. The deduced outflow speeds are consistent, suggesting that the flows are quasi-steady. Furthermore, we provide an outflow speed profile along the plumes, finding that the speed corrected for the Line-of-Sight effect reads 10 km/s at 1.01 Rsun, 15 km/s at 1.03 Rsun, and 25 km/s at 1.05 Rsun. This clear signature of steady acceleration, combined with the fact that there is no clear blueshift at the base of plumes (Hassler et al. 1999; Wilhelm et al.2000), provides an important constraint on plume models. At these heights, EIS also deduced a density of 10^8.1 cm^-3, resulting a proton flux of 5.5 x 10^9 cm^-2 s^-1 scaled to 1AU, which is an order of magnitude higher than necessary for the proton input to a typical fast solar wind if a radial expansion is assumed. This suggests that, coronal hole plumes may be an important source of the fast solar wind, but they do experience substantial lateral expansion and/or mass exchange with neighboring inter-plume plasmas.

  7. Search for Doppler-shifted gamma-ray emission from SS 433 using the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Geldzahler, B. J.; Share, G. H.; Kinzer, R. L.; Magura, J.; Chupp, E. L.

    1989-01-01

    Data accumulated from 1980 to 1983 with the Gamma Ray Spectrometer aboard NASA's Solar Maximum Mission (SMM) satellite were searched for evidence of red and blue Doppler-shifted 1.37 MeV Mg-24 nuclear lines from SS 433. The SMM data base covers 270 days when SS 433 was in the field of view and includes periods of radio flaring and quiescence. No evidence was found for Doppler-shifted line emission in any of the spectra. The range of 3-sigma upper limits for individual 9 day integration periods was 0.0008-0.0023 photons/sq cm per sec for the blue beam, encompassing the reported about 1.5 MeV line, and 0.0008-0.002 photons/sq cm per sec for the red beam, encompassing the reported about 1.2 MeV line; the average 3-sigma upper limit in each beam for shifted about 1.37 MeV lines is 0.0015 photons/sq cm per sec for single 9 day integrations. The 3-sigma upper limit on 1.37 MeV gamma-ray emission over 23 9-day integration intervals for the red beam and 28 intervals for the blue beam is 0.0002 photons/sq cm per sec. These new limits from SMM can be reconciled with the HEAO 3 results only if SS 433 emits gamma radiation at or above the SMM sensitivity limit on rare occasions due to variable physical conditions in the system.

  8. Discovery of the double Doppler-shifted emission-line systems in the X-ray spectrum of SS 433

    NASA Technical Reports Server (NTRS)

    Kotani, Taro; Kawai, Nobuyuki; Aoki, Takashi; Doty, John; Matsuoka, Masaru; Mitsuda, Kazuhisa; Nagase, Fumiaki; Ricker, George; White, Nick E.

    1994-01-01

    We have used the CCD X-ray spectrometers on ASCA and resolved the X-ray emission line from the jet of SS 433 both into Doppler-shifted components with two distinct velocities, and into emission from different ionization states of iron, i.e., Fe XXV and Fe XXVI. This is the first direct detection of the two Doppler shifted beams in the X-ray spectra of SS 433 and allows the radial velocity of the jet along the line of sight to be determined with an accuracy comparable to the optical spectroscopy. We also found pairs of emission lines from other atomic species, such as ionized silicon and sulfur, with the Doppler shifts consistent with each other. This confirms the origin of the X-ray emission in the high temperature plasma in the jets.

  9. Doppler shift estimation for GNSS reflectometry using a land topography adapted reflection model

    NASA Astrophysics Data System (ADS)

    Semmling, Maximilian; Peraza, Luis; Falck, Carsten; Gerland, Sebastian; Wickert, Jens

    2016-04-01

    A GNSS setup with a receiver capable for reflectometry is operated by GFZ at Kongsfjorden (Spitsbergen), 78°54'14''N, 11°52'37''E, 512 m above ellipsoid (WGS-84). This permanent station at the Zeppelin mountain outpost, operated by the Norwegian Polar Institute (NPI), accumulates data since Summer 2013 observing reflections over the fjord and the adjacent land surface. Especially the presence of sea ice over the fjord and snow cover over land are of interest for reflectometry to investigate altimetry and remote sensing applications. The setup contains a GORS (GNSS Occultation Reflectometry Scatterometry) two-frontend receiver, which is based on commercial JAVAD hardware. The receiver is connected to one up-looking and one horizon-looking patch antenna with right-handed and left-handed circular polarization, respectively. Both antennas are installed on the same mount approximately 475 m above the fjord mean sea level. Reflections are observed at low transmitter elevation angles (between 10 and 2°). For these geometries the relative Doppler shift (sea surface reflected relative to direct signal) is almost constant 0.5 to 0.6 Hz and can be calculated with an established reflection model. Rather easily, sea surface reflections are identified in the data and the corresponding reflection points are located. About 55 daily recurring reflection events over the fjord are observed. They form a fan-shaped swath with 3 to 13 km distance around the receiver, corresponding to elevations of 10° to 2°. Also signatures of potential land reflections are found in the data. About 13 daily recurring events extend mainly over land. The potential land signatures have a rather variable Doppler shift between 0.2 to 1Hz. The significant topography of the mountainous surrounding, which varies between sea level and 900 m altitude, prevents the use of established reflection models. A topography adapted reflection model, which considers sloped surface facets, is developed. It incorporates

  10. Local time distribution of the SSC-associated HF-Doppler frequency shifts

    NASA Technical Reports Server (NTRS)

    Kikuchi, T.; Sugiuchi, H.; Ishimine, T.

    1985-01-01

    The HF-Doppler frequency shift observed at the storm's sudden commencement is composed of a frequency increase (+) and decrease (-), and classified into four types, SCF(+ -), SCF(- +), SCF(+) and SCF(-). Since the latter two types are special cases of the former two types, two different kinds of electrical field exist in the F region and cause the ExB drift motion of plasma. HUANG (1976) interpreted the frequency increase of SCF(+ -) as due to the westward induction electric field proportional to delta H/ delta t and the succeeding frequency decrease due to the eastward conduction electric field which produces ionospheric currents responsible for the magnetic increase on the ground. In spite of his success in interpreting the SCF(+ -), some other interpretations are needed for the explanation of the whole set of SCF's, particularly SCF(- +). Local time distributions of the SCF's are derived from 41 SCF's which are observed on the HF standard signal (JJY) as received in Okinawa (path length =1600 km) and Kokubunji (60 km). It is shown that the SCF(+ -) appears mainly during the day, whereas the SCF(- +) is observed during the night. The results indicate that the preliminary frequency shift (+) of SCF(+ -) and (-) of SCF(- +) is caused by a westward electric field in the dayside hemisphere, while by an eastward electric field in the nightside hemisphere. The main frequency shift (-) of SCF(+ -) and (+) of SCF(- +) is caused by the reversed electric field. Consequently, the preliminary frequency shift is caused by the dusk-to-dawn electric field, while the main frequency shift by the dawn-to-dusk electric field.

  11. Effect of Doppler-shifted photons on subnanosecond breakdown in high-voltage pulse discharge

    SciTech Connect

    Schweigert, I. V.; Alexandrov, A. L.; Zakrevsky, Dm. E.; Bokhan, P. A.

    2016-06-08

    The experiments in high-voltage open discharge in helium [1, 2] showed a controlled current growth rate of 500 A/(cm{sup 2}ns) for an applied voltage of 20 kV and gas pressure of 6 Torr. A kinetic model of the subnanosecond breakdown is developed to analyze the mechanism of current growth, which takes into account the kinetics of electrons, ions, fast atoms and photons with a Doppler shift (DS). DS photons appear in discharge due to collisions of heavy particles. Using particle in cell simulations, we show a critical role of DS photons in the electron emission from the cathode during the breakdown. Our experimental and calculation results show a decrease of the breakdown time with increasing gas pressure from 3 Torr to 16 Torr.

  12. Evidence of Doppler-shifted Bragg scattering in the vertical plane by ocean surface waves.

    PubMed

    Lynch, Stephen D; D'Spain, Gerald L

    2012-03-01

    A set of narrowband tones (280, 370, 535, and 695 Hz) were transmitted by an acoustic source mounted on the ocean floor in 10 m deep water and received by a 64-element hydrophone line array lying on the ocean bottom 1.25 km away. Beamformer output in the vertical plane for the received acoustic tones shows evidence of Doppler-shifted Bragg scattering of the transmitted acoustic signals by the ocean surface waves. The received, scattered signals show dependence on the ocean surface wave frequencies and wavenumber vectors, as well as on acoustic frequencies and acoustic mode wavenumbers. Sidebands in the beamformer output are offset in frequency by amounts corresponding to ocean surface wave frequencies. Deviations in vertical arrival angle from specular reflection agree with those predicted by the Bragg condition through first-order perturbation theory using measured directional surface wave spectra and acoustic modes measured by the horizontal hydrophone array.

  13. Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.; Davis, S. J.; Kessler, W. J.; Sonnenfroh, D. M.

    1992-01-01

    The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties.

  14. Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows

    SciTech Connect

    Allen, M.G.; Davis, S.J.; Kessler, W.J.; Sonnenfroh, D.M. )

    1992-07-01

    The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties. 13 refs.

  15. Constraining hot Jupiter’s atmospheric structure and dynamics through Doppler shifted emission spectra

    NASA Astrophysics Data System (ADS)

    Zhang, Jisheng; Kempton, Eliza; Rauscher, Emily

    2017-01-01

    In recent years, astronomers have begun successfully observing the atmospheres of extrasolar planets using ground-based telescopes equipped with spectrographs capable of observing at high spectral resolution (R~105). Such studies are capable of diagnosing the atmospheric structure, composition, and dynamics (winds and rotation) of both transiting and non-transiting exoplanets. However, few studies have examined how the 3-D atmospheric dynamics could alter the emitted light of hot Jupiters at such high spectral resolution. Here, we present a model to explore such influence on the hot Jupiters’ thermal emission spectra. Our aim is to investigate the extent to which the effects of 3-D atmospheric dynamics are imprinted on planet-averaged thermal emission spectra. We couple together a 3-D general circulation model of hot Jupiter atmospheric dynamics (Rauscher & Menou, 2012) with a radiative transfer solver to predict the planet’s disk-integrated emission spectrum as a function of its orbital phase. For the first time, we self-consistently include the effects of the line-of-sight atmospheric motions (resulting from winds and rotation) in the calculation to produce Doppler-shifted spectral line profiles that result from the atmospheric dynamics. We focus our study on three benchmark hot Jupiters, HD 189733b, HD 209458b, and WASP-43b which have been the focus of previous detailed observational studies. We find that the high-resolution Doppler shifted thermal emission spectra can be used to diagnose key properties of the dynamical atmosphere - the planet’s longitudinal temperature and wind structure, and its rotation rate.

  16. Red Shift, Blue Shift: Investigating Doppler Shifts, Blubber Thickness, and Migration as Explanations of Seasonal Variation in the Tonality of Antarctic Blue Whale Song

    PubMed Central

    Miller, Brian S.; Leaper, Russell; Calderan, Susannah; Gedamke, Jason

    2014-01-01

    The song of Antarctic blue whales (Balaenoptera musculus intermedia) comprises repeated, stereotyped, low-frequency calls. Measurements of these calls from recordings spanning many years have revealed a long-term linear decline as well as an intra-annual pattern in tonal frequency. While a number of hypotheses for this long-term decline have been investigated, including changes in population structure, changes in the physical environment, and changes in the behaviour of the whales, there have been relatively few attempts to explain the intra-annual pattern. An additional hypothesis that has not yet been investigated is that differences in the observed frequency from each call are due to the Doppler effect. The assumptions and implications of the Doppler effect on whale song are investigated using 1) vessel-based acoustic recordings of Antarctic blue whales with simultaneous observation of whale movement and 2) long-term acoustic recordings from both the subtropics and Antarctic. Results from vessel-based recordings of Antarctic blue whales indicate that variation in peak-frequency between calls produced by an individual whale was greater than would be expected by the movement of the whale alone. Furthermore, analysis of intra-annual frequency shift at Antarctic recording stations indicates that the Doppler effect is unlikely to fully explain the observations of intra-annual pattern in the frequency of Antarctic blue whale song. However, data do show cyclical changes in frequency in conjunction with season, thus suggesting that there might be a relationship among tonal frequency, body condition, and migration to and from Antarctic feeding grounds. PMID:25229644

  17. Red shift, blue shift: investigating Doppler shifts, blubber thickness, and migration as explanations of seasonal variation in the tonality of Antarctic blue whale song.

    PubMed

    Miller, Brian S; Leaper, Russell; Calderan, Susannah; Gedamke, Jason

    2014-01-01

    The song of Antarctic blue whales (Balaenoptera musculus intermedia) comprises repeated, stereotyped, low-frequency calls. Measurements of these calls from recordings spanning many years have revealed a long-term linear decline as well as an intra-annual pattern in tonal frequency. While a number of hypotheses for this long-term decline have been investigated, including changes in population structure, changes in the physical environment, and changes in the behaviour of the whales, there have been relatively few attempts to explain the intra-annual pattern. An additional hypothesis that has not yet been investigated is that differences in the observed frequency from each call are due to the Doppler effect. The assumptions and implications of the Doppler effect on whale song are investigated using 1) vessel-based acoustic recordings of Antarctic blue whales with simultaneous observation of whale movement and 2) long-term acoustic recordings from both the subtropics and Antarctic. Results from vessel-based recordings of Antarctic blue whales indicate that variation in peak-frequency between calls produced by an individual whale was greater than would be expected by the movement of the whale alone. Furthermore, analysis of intra-annual frequency shift at Antarctic recording stations indicates that the Doppler effect is unlikely to fully explain the observations of intra-annual pattern in the frequency of Antarctic blue whale song. However, data do show cyclical changes in frequency in conjunction with season, thus suggesting that there might be a relationship among tonal frequency, body condition, and migration to and from Antarctic feeding grounds.

  18. Doppler picture velocimetry applied to hypersonics: automated DPV fringe pattern analysis using the FFT method

    NASA Astrophysics Data System (ADS)

    Pichler, Alexander; George, Alfred; Seiler, Friedrich; Srulijes, Julio; Sauerwein, Berthold

    2009-10-01

    Doppler picture velocimetry (DPV) is a tool for visualizing and measuring the flow velocity distribution of tracer particles in a laser light sheet. A frequency sensitive Michelson interferometer, tuned for detecting the velocity distribution by the Doppler effect, visualizes the velocity information of tracer particles crossing an illuminating laser light sheet as interference fringe patterns. Many efforts have been done to evaluate best these DPV patterns, in order to obtain the frequency distribution and, by applying the Doppler formula, the velocity profile of the tracers. The first processing method, developed in 1982, relied on manual processing of the pictures by the user, due to the unavailability of suitable high performance picture processing algorithms. This drawback made DPV being considered as a rather time-consuming measurement technique with limited accuracy, compared to existing commercial velocity measurement systems (e.g. PIV). This is no more the state of the art: The new DPV analysis software, presented in this paper, allows automated processing of the interference fringe samples obtained by two images, a reference picture without frequency shift and a Doppler picture containing the frequency shift, using single beam velocimetry. Based on Fast Fourier transformation (FFT), the presented algorithm determines the corresponding velocity profile (in pseudo colours) within only a few seconds on a standard personal computer without user intervention.

  19. Measurement of Ultracold Neutrons Produced by Using Doppler-shifted Bragg Reflection at a Pulsed-neutron Source

    DOE R&D Accomplishments Database

    Brun, T. O.; Carpenter, J. M.; Krohn, V. E.; Ringo, G. R.; Cronin, J. W.; Dombeck, T. W.; Lynn, J. W.; Werner, S. A.

    1979-01-01

    Ultracold neutrons (UCN) have been produced at the Argonne pulsed-neutron source by the Doppler shift of 400-m/s neutrons Bragg reflected from a moving crystal. The peak density of UCN produced at the crystal exceeds 0.1 n/cm{sup 3}.

  20. Harmonic Motion Microwave Doppler Imaging method for breast tumor detection.

    PubMed

    Top, Can Barıs; Tafreshi, Azadeh Kamali; Gençer, Nevzat G

    2014-01-01

    Harmonic Motion Microwave Doppler Imaging (HMMDI) method is recently proposed as a non-invasive hybrid breast imaging technique for tumor detection. The acquired data depend on acoustic, elastic and electromagnetic properties of the tissue. The potential of the method is analyzed with simulation studies and phantom experiments. In this paper, the results of these studies are summarized. It is shown that HMMDI method has a potential to detect malignancies inside fibro-glandular tissue.

  1. Propagating Neural Source Revealed by Doppler Shift of Population Spiking Frequency

    PubMed Central

    Zhang, Mingming; Shivacharan, Rajat S.; Chiang, Chia-Chu; Gonzalez-Reyes, Luis E.

    2016-01-01

    Electrical activity in the brain during normal and abnormal function is associated with propagating waves of various speeds and directions. It is unclear how both fast and slow traveling waves with sometime opposite directions can coexist in the same neural tissue. By recording population spikes simultaneously throughout the unfolded rodent hippocampus with a penetrating microelectrode array, we have shown that fast and slow waves are causally related, so a slowly moving neural source generates fast-propagating waves at ∼0.12 m/s. The source of the fast population spikes is limited in space and moving at ∼0.016 m/s based on both direct and Doppler measurements among 36 different spiking trains among eight different hippocampi. The fact that the source is itself moving can account for the surprising direction reversal of the wave. Therefore, these results indicate that a small neural focus can move and that this phenomenon could explain the apparent wave reflection at tissue edges or multiple foci observed at different locations in neural tissue. SIGNIFICANCE STATEMENT The use of novel techniques with an unfolded hippocampus and penetrating microelectrode array to record and analyze neural activity has revealed the existence of a source of neural signals that propagates throughout the hippocampus. The source itself is electrically silent, but its location can be inferred by building isochrone maps of population spikes that the source generates. The movement of the source can also be tracked by observing the Doppler frequency shift of these spikes. These results have general implications for how neural signals are generated and propagated in the hippocampus; moreover, they have important implications for the understanding of seizure generation and foci localization. PMID:27013678

  2. Absolute Doppler shift calibration of laser induced fluorescence signals using optogalvanic measurements in a hollow cathode lamp

    NASA Technical Reports Server (NTRS)

    Ruyten, Wilhelmus M.; Keefer, Dennis

    1992-01-01

    The paper investigates the use of optogalvanic (OG) measurements on the neutral 3P1 and 3P2 levels of argon in a hollow cathode lamp for the purpose of calibrating Doppler shifts of laser-induced fluorescence signals from an arcjet plume. It is shown that, even with non-Doppler-free OG detection, accuracy to better than 10 MHz is possible but that, depending on the experiment geometry, corrections of 10-35 MHz may be necessary to offset small axial drift velocities of neutral atoms in the hollow cathode lamp.

  3. Non-steady-state photoelectromotive force effect under linear and periodical phase modulation: application to detection of Doppler frequency shift.

    PubMed

    Mansurova, S; Zarate, P Moreno; Rodriguez, P; Stepanov, S; Köber, S; Meerholz, K

    2012-02-01

    Non-steady-state photoelectromotive force effect in the presence of periodical and linear phase shift was investigated both theoretically and experimentally. It was shown that superposition of oscillating and linear movements of the interference pattern leads to the appearance of the sharp peak in the frequency dependence of the photoelectromotive force output current when the frequency of periodical modulation matches the frequency of the linear phase shift. We demonstrated experimentally that this effect can be used for determination of a Doppler frequency shift between signal and reference beam.

  4. Evaluation of blood microcirculation parameters by combined use of laser Doppler flowmetry and videocapillaroscopy methods

    NASA Astrophysics Data System (ADS)

    Volkov, M. V.; Kostrova, D. A.; Margaryants, N. B.; Gurov, I. P.; Erofeev, N. P.; Dremin, V. V.; Zharkikh, E. V.; Zherebtsov, E. A.; Kozlov, I. O.; Dunaev, A. V.

    2017-03-01

    Laser Doppler flowmetry (LDF) is widely used for diagnosing blood microcirculation diseases. It is well known that the Doppler shift of laser radiation scattered by moving red blood cells (RBC) can be assessed through analyzing photocurrent produced by a photodetector. LDF signal contains information about regulating blood flow rhythms: myogenic, cardiac, nervous and endothelial. The method of videocapillaroscopy (VCS) allows local capillary blood flow velocity evaluation and, using video data processing algorithms, is able to assess RBC velocity changes into capillary. We present the results of simultaneous investigations of changes in tissue perfusion of the distal phalanx of human finger by the LDF as well as changes in capillary blood flow velocity in the nail bed evaluated by the VCS method during arterial occlusion test. The experimental results confirmed the correspondence between blood perfusion and blood flow velocity.

  5. Determination of solid-propellant transient regression rates using a microwave Doppler shift technique

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Schultz, A. L.; Reedy, G. K.

    1972-01-01

    A microwave Doppler shift system, with increased resolution over earlier microwave techniques, was developed for the purpose of measuring the regression rates of solid propellants during rapid pressure transients. A continuous microwave beam is transmitted to the base of a burning propellant sample cast in a metal waveguide tube. A portion of the wave is reflected from the regressing propellant-flame zone interface. The phase angle difference between the incident and reflected signals and its time differential are continuously measured using a high resolution microwave network analyzer and related instrumentation. The apparent propellant regression rate is directly proportional to this latter differential measurement. Experiments were conducted to verify the (1) spatial and time resolution of the system, (2) effect of propellant surface irregularities and compressibility on the measurements, and (3) accuracy of the system for quasi-steady-state regression rate measurements. The microwave system was also used in two different transient combustion experiments: in a rapid depressurization bomb, and in the high-frequency acoustic pressure environment of a T-burner.

  6. Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves

    SciTech Connect

    Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Vincena, S.; Carter, T. A.; Gekelman, W.; Leneman, D.; Pribyl, P.

    2008-10-15

    The Doppler-shifted cyclotron resonance ({omega}-k{sub z}v{sub z}={omega}{sub f}) between fast ions and shear Alfven waves is experimentally investigated ({omega}, wave frequency; k{sub z}, axial wavenumber; v{sub z}, fast-ion axial speed; {omega}{sub f}, fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li{sup +} source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude {delta} B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8{omega}{sub ci}. Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.

  7. Doppler shift generated by a moving diffraction grating under incidence by polychromatic diffuse light.

    PubMed

    Dossou, Kokou B

    2016-05-20

    We consider the spectral response of moving diffraction gratings, in which the incident light extends over a broad angular range and where the diffracted light is observed from a specific angle. We show that the dispersion relation between the frequency perceived by an observer who is looking at a moving grating and the incident frequency can exhibit some unique features, such as a flat band (i.e., a local minimum). An observer can see the light diffracted into a nonspecular diffraction order from a multitude of incident light rays, and the angle of incidence of each ray is frequency dependent; as a consequence, when the grating is moving, each incident ray experiences a Doppler shift in frequency that depends on its angle of incidence. We find that remarkable features appear near a Wood anomaly where the angle of incidence, for a given diffraction angle, can change very quickly with frequency. This means that light of multiple frequencies and incident from multiple angles can be mixed by the motion of the grating into the same diffracted ray and their frequencies can be compressed into a narrower range. The existence of a flat band means that a moving grating can be used as a device to increase the intensity of the perceived diffracted light due to spectral compression. The properties of a grating in motion in sunlight can also be relevant to the study of naturally occurring gratings which are typically in oscillatory motion.

  8. Ultraviolet Properties of Halo Coronal Mass Ejections: Doppler Shifts, Angles, Shocks, and Bulk Morphology

    NASA Astrophysics Data System (ADS)

    Ciaravella, A.; Raymond, J. C.; Kahler, S. W.

    2006-11-01

    We present UV spectral information for 22 halo or partial halo CMEs observed by UVCS. The CME fronts show broad line profiles, while the line intensities are comparable to the background corona. The Doppler shifts of the front material are generally small, showing that the motion of gas in the fronts is mostly transverse to the line of sight. This indicates that, at least in halo CMEs, the fronts generally correspond to coronal plasma swept up by a shock or compression wave, rather than plasma carried outward by magnetic loops. This favors an ice cream cone (or a spherical shell) model, as opposed to an expanding arcade of loops. We use the line widths to discriminate between shock heating and bulk expansion. Of 14 cases where we detected the CME front, the line broadening in 7 cases can be attributed to shock heating, while in 3 cases it is the line-of-sight component of the CME expansion. For the CME cores we determine the angles between the motion and the plane of the sky, along with the actual heliocentric distances, in order to provide quantitative estimates of projection effects.

  9. Doppler Frequency-Shift Compensated Photorefractive Interferometer for Ultrasound Detection on Objects in Motion

    NASA Astrophysics Data System (ADS)

    Campagne, B.; Blouin, A.; Néron, C.; Monchalin, J.-P.

    2003-03-01

    Two-wave mixing based interferometry has been demonstrated to be a powerful technique for non-contact, broadband and speckle insensitive measurements of the small surface displacements produced by ultrasonic waves propagating in an object. When the object is in rapid motion along the line-of-sight of the probing laser or when the laser beam is rapidly scanned on a wavy surface, the two-wave mixing photorefractive interferometer loses sensitivity to the point it could become useless. To circumvent the Doppler frequency-shift produced by this relative motion, we propose a dynamic compensation scheme. We report a particularly simple scheme to implement this concept by monitoring the low-frequency output signal of a balanced two-wave mixing demodulator whose output is proportional to the frequency difference between the pump and signal beams, and feeding this signal back to the acousto-optic shifter. With this new concept, the two-wave mixing interferometer can operate on objects in rapid motion while maintaining its sensitivity to low frequency ultrasound.

  10. Multiple track Doppler-shift spectroscopy system for TFTR neutral beam injectors

    SciTech Connect

    Kamperschroer, J.H.; Kugel, H.W.; Reale, M.A.; Hayes, S.L.; Johnson, G.A.; Lowrance, J.L.; Shah, P.A.; Sichta, P.; Sleaford, B.W.; Williams, M.D.; Zucchino, P.M.

    1986-09-01

    A Doppler-shift spectroscopy system has been installed on the TFTR neutral beam injection system to measure species composition during both conditioning and injection pulses. Two intensified vidicon detectors and two spectrometers are utilized in a system capable of resolving data from up to twelve ion sources simultaneously. By imaging the light from six ion sources onto one detector, a cost-effective system has been achieved. Fiber optics are used to locate the diagnostic in an area remote from the hazards of the tokamak test cell allowing continuous access, and eliminating the need for radiation shielding of electronic components. Automatic hardware arming and interactive data analysis allow beam composition to be computed between tokamak shots for use in analyzing plasma heating experiments. Measurements have been made using lines of sight into both the neutralizer and the drift duct. Analysis of the data from the drift duct is both simpler and more accurate since only neutral particles are present in the beam at this location. Comparison of the data taken at these two locations reveals the presence of partially accelerated particles possessing an estimated 1/e half-angle divergence of 15/sup 0/ and accounting for up to 30% of the extracted power.

  11. Wind Profile Retrieval Method for Incoherent Doppler LIDAR in Partly Cloudy Conditions

    NASA Astrophysics Data System (ADS)

    Feng, Changzhong; Liu, Bingyi; Liu, Zhishen

    2014-11-01

    After the launch of ESA's spaceborne Doppler lidar ALADIN, Ocean University of China is going to perform the ground validation using a ground based Doppler wind lidar which utilizes an iodine absorption filter as frequency discriminator to derive Doppler frequency shift of atmospheric wind from combined molecular and aerosol backscatter. Under circumstance of non-uniform aerosol horizontal distribution, such as partly cloudy conditions, the accuracy of wind measurements is seriously influenced. Therefore, an improved VAD (Velocity-Azimuth Display) method for retrieving wind profiles is developed, which significantly increases the accuracy. With the atmospheric return signal obtained from the line-of- sight velocity PPI (Plan Position Indicator) measurements, the spatial distribution of aerosol optical parameters can be derived and considered as a reference for the quality control of line-of-sight velocity. Consequently, the wind profile in partly cloudy conditions can be retrieved by using the quality controlled line-of-sight velocity. As a result, the applicability of the ground based Doppler lidar is improved.

  12. Wind Profile Retrieval Method for Incoherent Doppler LIDAR in Partly Cloudy Conditions

    NASA Astrophysics Data System (ADS)

    Feng, Changzhong; Liu, Bingyi; Liu, Zhishen

    2014-11-01

    After the launch of ESA’s spaceborne Doppler lidar ALADIN, Ocean University of China is going to perform the ground validation using a ground based Doppler wind lidar which utilizes an iodine absorption filter as frequency discriminator to derive Doppler frequency shift of atmospheric wind from combined molecular and aerosol backscatter. Under circumstance of non-uniform aerosol horizontal distribution, such as partly cloudy conditions, the accuracy of wind measurements is seriously influenced. Therefore, an improved VAD (Velocity-Azimuth Display) method for retrieving wind profiles is developed, which significantly increases the accuracy. With the atmospheric return signal obtained from the line-of-sight velocity PPI (Plan Position Indicator) measurements, the spatial distribution of aerosol optical parameters can be derived and considered as a reference for the quality control of line-of-sight velocity. Consequently, the wind profile in partly cloudy conditions can be retrieved by using the quality controlled line-of-sight velocity. As a result, the applicability of the ground based Doppler lidar is improved.

  13. Laser Doppler velocity measurement without directional ambiguity by using frequency shifted incident beams

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.

    1970-01-01

    Laser Doppler heterodyning system for velocity measurements without directional ambiguity, employing incident beams of different frequencies through rotating diffraction grating or Bragg cell application

  14. Doppler measurements of the ionosphere on the occasion of the Apollo-Soyuz test project. Part 1: Computer simulation of ionospheric-induced Doppler shifts

    NASA Technical Reports Server (NTRS)

    Grossi, M. D.; Gay, R. H.

    1975-01-01

    A computer simulation of the ionospheric experiment of the Apollo-Soyuz Test Project (ASTP) was performed. ASTP is the first example of USA/USSR cooperation in space and is scheduled for summer 1975. The experiment consists of performing dual-frequency Doppler measurements (at 162 and 324 MHz) between the Apollo Command Service Module (CSM) and the ASTP Docking Module (DM), both orbiting at 221-km height and at a relative distance of 300 km. The computer simulation showed that, with the Doppler measurement resolution of approximately 3 mHz provided by the instrumentation (in 10-sec integration time), ionospheric-induced Doppler shifts will be measurable accurately at all times, with some rare exceptions occurring when the radio path crosses regions of minimum ionospheric density. The computer simulation evaluated the ability of the experiment to measure changes of columnar electron content between CSM and DM (from which horizontal gradients of electron density at 221-km height can be obtained) and to measure variations in DM-to-ground columnar content (from which an averaged columnar content and the electron density at the DM can be deduced, under some simplifying assumptions).

  15. Doppler measurements of the ionosphere on the occasion of the Apollo-Soyuz test project. Part 2: Inversion of differential and rotating Doppler shifts

    NASA Technical Reports Server (NTRS)

    Gay, R. H.; Grossi, M. D.

    1975-01-01

    The preparation of the analytical approach and of the related software used in the inversion of the differential and rotating Doppler data obtained from the ionospheric experiment of the Apollo-Soyuz Test Project (ASTP) is discussed. These data were collected in space-to-space paths (between the ASTP Docking Module (DM) and the Apollo Command Service Module and in space-to-ground paths (between the DM and ground). The Doppler links operated at 162 and 324 MHz and have an accuracy better than 3 MHz over 10-sec integration time. The inversion approach was tested with dummy data obtained with a computer simulation. It was found that a measurement accuracy of 1 to 10% in the value of the horizontal electron density gradient at 221-km altitude can be achieved, in space-to-space paths. For space-to-ground paths near the orbital plane, possible effects of the horizontal gradients on the received differential Doppler shifts were identified. It was possible to reduce the gradient-associated errors in the inversion that leads to the columnar electron content by approximately one-half. Accuracies of 5 to 10% in columnar electron content are achievable, with this gradient-compensation technique.

  16. Synchrosqueezing an effective method for analyzing Doppler radar physiological signals.

    PubMed

    Yavari, Ehsan; Rahman, Ashikur; Jia Xu; Mandic, Danilo P; Boric-Lubecke, Olga

    2016-08-01

    Doppler radar can monitor vital sign wirelessly. Respiratory and heart rate have time-varying behavior. Capturing the rate variability provides crucial physiological information. However, the common time-frequency methods fail to detect key information. We investigate Synchrosqueezing method to extract oscillatory components of the signal with time varying spectrum. Simulation and experimental result shows the potential of the proposed method for analyzing signals with complex time-frequency behavior like physiological signals. Respiration and heart signals and their components are extracted with higher resolution and without any pre-filtering and signal conditioning.

  17. Planar Particle Imaging and Doppler Velocimetry System and Method

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P. (Inventor)

    2003-01-01

    A planar velocity measurement system (100) is operative to measure all three velocity components of a flowing fluid (106) across an illuminated plane (108) using only a single line of sight. The fluid flow is seeded with small particles which accurately follow the flow field fluctuations. The seeded flow field is illuminated with pulsed laser light source (102) and the positions of the particles in the flow are recorded on CCD cameras (122,124). The in-plane velocities are measured by determining the in-plane particle displacements. The out-of-plane velocity component is determined by measuring the Doppler shift of the light scattered by the particles. Both gas and liquid velocities can be measured, as well as two-phase flows.

  18. Analyses of solar viewing time, beta angle, and doppler shift for solar observations from the space shuttle

    NASA Technical Reports Server (NTRS)

    Brandon, J. P.

    1972-01-01

    Studies of solar physics phenomena are aided by the ability to observe the sun from earth orbit without periodic occultation. Charts are presented for the selection of suitable orbits about the earth at which a spacecraft is continuously illuminated through a period of a few days. Selection of the orbits considers the reduction of Doppler shift and wavefront attenuation due to relative orbital velocity and residual earth atmosphere.

  19. New signal analysis methods for laser doppler flowmetric recordings

    NASA Astrophysics Data System (ADS)

    ǎgǎnescu, G. E., Dr; Todea, Carmen

    2014-01-01

    The laser Doppler flowmetry devices give a series of information like the blood flux and some statistical parameters, automatically estimated. There are also new important attempts based on the Fourier transform of the flow flux signal which gather more information from the laser Doppler flowmetry. The amplitude spectra estimated in these articles, exhibit a series of peaks corresponding to the cardiac variation of the blood flow and noise components of the flow flux signals, dependent on the state of the tooth. The aim of our investigations is to introduce new signal processing methods, based on wavelet continuous tranform, which express in a more sensitive manner the modifications of the flow flux signal with the state of the tooth, and to introduce new quantitative parameters, defined in a previous paper. These parameters express, in a more sensitive manner the modifications of the pulp flow flux signal in relation with the pulp tooth healt, and to introduce new quantitative parameters, defined in a previous paper. These parameters express, in a sensitive way the changes of the blood flux. For practical investigations we used a series of signals recorded with the aid of a Laser Doppler Blood Flow Monitoring device (Moor Instruments) and processed with the computer.

  20. Doppler radar flowmeter

    DOEpatents

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  1. O VI 1032 Å intensity and Doppler shift oscillations above a coronal hole: Magnetosonic waves or quasi-periodic upflows?

    NASA Astrophysics Data System (ADS)

    Mancuso, S.; Raymond, J. C.; Rubinetti, S.; Taricco, C.

    2016-08-01

    On 1996 December 19, the Ultraviolet Coronagraph Spectrometer (UVCS) on board the Solar and Heliospheric Observatory (SOHO) conducted a special high-cadence sit-and-stare observation in the O vi 1032 Å spectral line above a polar coronal hole at a heliocentric distance of 1.38 R⊙. The ~ 9-h dataset was analyzed by applying advanced spectral techniques to investigate the possible presence of propagating waves. Highly significant oscillations in O vi intensity (P = 19.5 min) and Doppler shift (P = 7.2 min) were detected over two different portions of the UVCS entrance slit. A cross-correlation analysis between the O vi intensity and Doppler shift fluctuations shows that the most powerful oscillations were in phase or anti-phase over the same portions of the slit, thus providing a possible signature of propagating magnetosonic waves. The episodic nature of the observed oscillations and the large amplitudes of the Doppler shift fluctuations detected in our observations, if not attributable to line-of-sight effects or inefficient damping, may indicate that the observed fluctuations were produced by quasi-periodic upflows.

  2. Blood viscosity measurement: an integral method using Doppler ultrasonic profiles

    NASA Astrophysics Data System (ADS)

    Flaud, P.; Bensalah, A.

    2005-12-01

    The aim of this work is to present a new indirect and noninvasive method for the measurement of the Newtonian blood viscosity. Based on an integral form of the axial Navier-Stokes equation, this method is particularly suited for in vivo investigations using ultrasonic arterial blood velocity profiles. Its main advantage is that it is applicable to periodic as well as non periodic flows. Moreover it does not require classical filtering methods enhancing signal to noise ratio of the physiological signals. This method only requires the knowledge of the velocimetric data measured inside a spatially and temporally optimized zone of the Doppler velocity profiles. The results obtained using numerical simulation as well as in vitro or in vivo experiments prove the effectiveness of the method. It is then well adapted to the clinical environment as a systematic quasi on-line method for the measurement of the blood viscosity.

  3. A relative performance analysis of atmospheric Laser Doppler Velocimeter methods.

    NASA Technical Reports Server (NTRS)

    Farmer, W. M.; Hornkohl, J. O.; Brayton, D. B.

    1971-01-01

    Evaluation of the effectiveness of atmospheric applications of a Laser Doppler Velocimeter (LDV) at a wavelength of about 0.5 micrometer in conjunction with dual scatter LDV illuminating techniques, or at a wavelength of 10.6 micrometer with local oscillator LDV illuminating techniques. Equations and examples are given to provide a quantitative basis for LDV system selection and performance criteria in atmospheric research. The comparative study shows that specific ranges and conditions exist where performance of one of the methods is superior to that of the other. It is also pointed out that great care must be exercised in choosing system parameters that optimize a particular LDV designed for atmospheric applications.

  4. Spinning disk calibration method and apparatus for laser Doppler velocimeter

    NASA Technical Reports Server (NTRS)

    Snyder, P. K. (Inventor)

    1986-01-01

    A method and apparatus for calibrating laser Doppler velocimeters having one or more intersecting beam pairs are described. These velocimeters measure fluid velocity by observing the light scattered by particles in the fluid stream. Moving fluid particulates are simulated by fine taut wires that are radially mounted on a disk that is rotated at a known velocity. The laser beam intersection locus is first aimed at the very center of the disk and then the disk is translated so that the locus is swept by the rotating wires. The radial distance traversed is precisely measured so that the velocity of the wires (pseudo particles) may be calculated.

  5. Lifetime measurements in the A(180) region using the Doppler-shift recoil distance technique

    NASA Astrophysics Data System (ADS)

    Walpe, John Courtney

    Lifetime measurements, using the Doppler-shift recoil distance technique, have been performed on the ground state rotational bands in P182,186t and the rotational bands built on the proton h9/2 and i13/2 bandheads in I181r and A187u, in order to study the systematics of proton intruder states in the A ~ 180 nuclei and their relationship to the phenomenon known as shape coexistence. High spin levels were populated using the S122n(N 64i,4n)182 Pt,154 Sm(S 36,4n) 186Pt,154 Sm(P31,4n) 181Ir, and S154m(C 37l,4n)187 Au reactions at the Argonne Tandem Linear Accelerator System (ATLAS). γ-rays were measured using the 12 Compton- suppressed HPGe detectors of the Argonne-Notre Dame γ-ray facility, in conjunction with the Notre Dame ``plunger'' device. The plunger allowed for positioning of stretched, self-supporting target foils to within less than 10μm of another similarly stretched Au foil, which was used to stop the recoiling nuclei. γ-rays were measured at target-to-stopper distances ranging from <10μm to ~1cm, and lifetimes extracted from the ratios of the intensities of unshifted components of the γ-rays of interest, to the total peak intensity, at various recoil distances. The lifetime results for the P182,186t nuclei indicate that the ground state band in each case is coexisting with another band built on an excited 0+ state at ~500 keV. This is evidenced by the good agreement of the experimental results with simple two- band mixing calculations which were performed. The lifetime measurements in the I181r and A187u nuclei also indicate shape coexistence. In both nuclei, the results clearly indicate that the band built on the pi13/2 state has a larger quadrupole deformation than that of the band built on the ph9/2 state. In addition, the percentage increase in deformation between the pi13/2 and ph9/2 bands is lower in A187u when compared with that in I181r, due to the addition of the two extra protons.

  6. Measuring Doppler Shifts of X-Ray Lines to Determine the Stellar Wind X-Ray Locations in OB Stars

    NASA Astrophysics Data System (ADS)

    Waldron, Wayne

    1999-09-01

    For almost 20 years we have been trying to determine the source of the X-ray emission in OB stars. It is generally believed that this emission is caused by a distribution of stellar wind shocks. The AXAF grating spectrometers will provide the ultimate test of X-ray models. The shock model predicts that X-ray lines must be Doppler blue-shifted, hence, our primary objective is to measure these blue-shifts. MARX simulations show that the expected X-ray line shifts will be at least 4 times the MEG1 energy resolution limit. ASCA observations have provided stronger constraints on X-ray models, but they have also raised additional questions (e.g., X-ray abundance anomalies). The large number of X-ray lines predicted by MARX simulations will allow us to probe X-ray densities and abundances.

  7. On the Doppler Shift and Asymmetry of Stokes Profiles of Photospheric FeI and Chromospheric MgI Lines

    DTIC Science & Technology

    2010-06-15

    10/09 ON THE DOPPLER SHIFT AND ASYMMETRY OF STOKES PROFILES OF PHOTOSPHERIC Fe I AND CHROMOSPHERIC Mg I LINES NA DENG AND DEBI PRASAD CHOUDHARY...photospheric (Fe I 630.15 and 630.25 nm) and chromospheric (Mg I b2 517.27 nm) lines. The data were obtained with the HAO/NSO Advanced Stokes...among the three spectral lines, which helps us to better understand the chromospheric lines and the magnetic and flow fields in different magnetic

  8. Doppler-Free Spectroscopy Measurements of Isotope Shifts and Hyperfine Components of Near-IR Xenon Lines

    SciTech Connect

    Mazouffre, S.; Pawelec, E.; Tran Bich, N.; Sadeghi, N.

    2006-01-15

    Xenon is currently used as propellant gas in electric thrusters, in which ejection of corresponding ions produces the desired thrust. As such a gas contains 9 stable isotopes, a non-intrusive determination of the velocity distribution function of atoms and ions in the thruster plasma plume, by means of absorption or fluorescence techniques, requires a precise knowledge of the line structure. We used Doppler-free Lamb-dip spectroscopy to determine isotopic shifts and hyperfine components of odd isotopes of several spectral lines of Xe atom and Xe+ ion in the 825 - 835 nm range.

  9. Dzyaloshinskii-Moriya Interaction as a Consequence of a Doppler Shift due to Spin-Orbit-Induced Intrinsic Spin Current

    NASA Astrophysics Data System (ADS)

    Kikuchi, Toru; Koretsune, Takashi; Arita, Ryotaro; Tatara, Gen

    2016-06-01

    We present a physical picture for the emergence of the Dzyaloshinskii-Moriya (DM) interaction based on the idea of the Doppler shift by an intrinsic spin current induced by spin-orbit interaction under broken inversion symmetry. The picture is confirmed by a rigorous effective Hamiltonian theory, which reveals that the DM coefficient is given by the magnitude of the intrinsic spin current. Our approach is directly applicable to first principles calculations and clarifies the relation between the interaction and the electronic band structures. Quantitative agreement with experimental results is obtained for the skyrmion compounds Mn1 -xFexGe and Fe1 -xCoxGe .

  10. Dzyaloshinskii-Moriya Interaction as a Consequence of a Doppler Shift due to Spin-Orbit-Induced Intrinsic Spin Current.

    PubMed

    Kikuchi, Toru; Koretsune, Takashi; Arita, Ryotaro; Tatara, Gen

    2016-06-17

    We present a physical picture for the emergence of the Dzyaloshinskii-Moriya (DM) interaction based on the idea of the Doppler shift by an intrinsic spin current induced by spin-orbit interaction under broken inversion symmetry. The picture is confirmed by a rigorous effective Hamiltonian theory, which reveals that the DM coefficient is given by the magnitude of the intrinsic spin current. Our approach is directly applicable to first principles calculations and clarifies the relation between the interaction and the electronic band structures. Quantitative agreement with experimental results is obtained for the skyrmion compounds Mn_{1-x}Fe_{x}Ge and Fe_{1-x}Co_{x}Ge.

  11. Retracted Article: Doppler shifts on the spin period of the intermediate polar FO Aqr with K2

    NASA Astrophysics Data System (ADS)

    Scaringi, S.; Knigge, C.; Maccarone, T. J.

    2016-10-01

    The Editor and Publisher of the Monthly Notices of the Royal Astronomical Society journal have retracted the following article: S. Scaringi, C. Knigge, and T. J. Maccarone. “Doppler shifts on the spin period of the intermediate polar FO Aqr with K2”. After investigation, the authors have concluded that this paper includes some errors in the data analysis, and thus the interpretation of the results. The authors would like to apologise for any inconvenience this causes to readers of the Monthly Notices of the Royal Astronomical Society.

  12. Doppler and speckle methods for diagnostics in dentistry

    NASA Astrophysics Data System (ADS)

    Ulyanov, Sergey S.; Lepilin, Alexander V.; Lebedeva, Nina G.; Sedykh, Alexey V.; Kharish, Natalia A.; Osipova, Yulia; Karpovich, Alexander

    2002-02-01

    The results of statistical analysis of Doppler spectra of scattered intensity, obtained from tissues of oral cavity membrane of healthy volunteers, are presented. The dependence of the spectral moments of Doppler signal on cutoff frequency is investigated. Some results of statistical analysis of Doppler spectra, obtained from tooth pulp of patients, are presented. New approach for monitoring of blood microcirculation in orthodontics is suggested. Influence of own noise of measuring system on formation of speckle-interferometric signal is studied.

  13. Sorting photons of different rotational Doppler shifts (RDS) by orbital angular momentum of single-photon with spin-orbit-RDS entanglement.

    PubMed

    Chen, Lixiang; She, Weilong

    2008-09-15

    We demonstrate that single photons from a rotating q-plate exhibit an entanglement in three degrees of freedom of spin, orbital angular momentum, and the rotational Doppler shift (RDS) due to the nonconservation of total spin and orbital angular momenta. We find that the rotational Doppler shift deltaomega = Omega((delta)s + deltal) , where s, l and Omega are quantum numbers of spin, orbital angular momentum, and rotating velocity of the q-plate, respectively. Of interest is that the rotational Doppler shift directly reflects the rotational symmetry of q-plates and can be also expressed as deltaomega = (Omega)n , where n = 2(q-1) denotes the fold number of rotational symmetry. Besides, based on this single-photon spin-orbit-RDS entanglement, we propose an experimental scheme to sort photons of different frequency shifts according to individual orbital angular momentum.

  14. Study of 22Ne and 28Mg excited states using fusion-evaporation and Doppler shift measurements

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan; Tigress Collaboration

    2016-09-01

    Electromagnetic transition rate measurements serve as a fundamental probe of nuclear structure and provide a stringent test for theoretical models. Doppler shift lifetime measurements offer an opportunity to directly access information about electromagnetic transition rates and discriminate between model calculations. The TIGRESS Integrated Plunger device (TIP), constructed at SFU, supports Doppler shift lifetime measurements via gamma-ray spectroscopy with the TIGRESS segmented Ge array as part of the experimental program at the ISAC-II facility of TRIUMF. A recent study commissioning the TIP device employed the fusion-evaporation reaction of 18O + 12C at a beam energy of 48 MeV, with reaction channel selection provided via coincident charged particle detection using ancillary CsI(Tl) detectors. Transitions were identified belonging to the 2 alpha particle and 2 proton evaporation channels from the compound system 30Si, corresponding to 22Ne and 28Mg respectively. Lineshapes, from which lifetimes can be determined by comparison to simulated data, have been observed for these transitions. The experimental approach, analysis procedure, and a comparison of lineshapes to simulations obtained using the GEANT4 toolkit will be discussed. Experimental group using the TIGRESS spectrometer at ISAC-II in TRIUMF.

  15. A comparison between coherent and noncoherent mobile systems in large Doppler shift, delay spread, and C/I environment

    NASA Technical Reports Server (NTRS)

    Feher, Kamilo

    1993-01-01

    The performance and implementation complexity of coherent and of noncoherent QPSK and GMSK modulation/demodulation techniques in a complex mobile satellite systems environment, including large Doppler shift, delay spread, and low C/I, are compared. We demonstrate that for large f(sub d)T(sub b) products, where f(sub d) is the Doppler shift and T(sub b) is the bit duration, noncoherent (discriminator detector or differential demodulation) systems have a lower BER floor than their coherent counterparts. For significant delay spreads, e.g., tau(sub rms) greater than 0.4 T(sub b), and low C/I, coherent systems outperform noncoherent systems. However, the synchronization time of coherent systems is longer than that of noncoherent systems. Spectral efficiency, overall capacity, and related hardware complexity issues of these systems are also analyzed. We demonstrate that coherent systems have a simpler overall architecture (IF filter implementation-cost versus carrier recovery) and are more robust in an RF frequency drift environment. Additionally, the prediction tools, computer simulations, and analysis of coherent systems is simpler. The threshold or capture effect in low C/I interference environment is critical for noncoherent discriminator based systems. We conclude with a comparison of hardware architectures of coherent and of noncoherent systems, including recent trends in commercial VLSI technology and direct baseband to RF transmit, RF to baseband (0-IF) receiver implementation strategies.

  16. Shifted power method for computing tensor eigenpairs.

    SciTech Connect

    Mayo, Jackson R.; Kolda, Tamara Gibson

    2010-10-01

    Recent work on eigenvalues and eigenvectors for tensors of order m {>=} 3 has been motivated by applications in blind source separation, magnetic resonance imaging, molecular conformation, and more. In this paper, we consider methods for computing real symmetric-tensor eigenpairs of the form Ax{sup m-1} = {lambda}x subject to {parallel}x{parallel} = 1, which is closely related to optimal rank-1 approximation of a symmetric tensor. Our contribution is a novel shifted symmetric higher-order power method (SS-HOPM), which we showis guaranteed to converge to a tensor eigenpair. SS-HOPM can be viewed as a generalization of the power iteration method for matrices or of the symmetric higher-order power method. Additionally, using fixed point analysis, we can characterize exactly which eigenpairs can and cannot be found by the method. Numerical examples are presented, including examples from an extension of the method to fnding complex eigenpairs.

  17. Accretion in young stars: measure of the stream velocity of TW Hya from the X-ray Doppler shift

    NASA Astrophysics Data System (ADS)

    Argiroffi, Costanza; Bonito, Rosaria; Orlando, Salvatore; Miceli, Marco; Peres, Giovanni

    2015-09-01

    High-resolution X-ray spectra are a unique tool to investigate the accretion process in young stars. In fact X-rays allow to investigate the accretion-shock region, where the infalling material is heated by strong shocks due to the impact with the denser stellar atmosphere. Here we show for the first time that it is possible to constrain the velocity of the accretion stream by measuring the Doppler shift of the emitted X-rays. To this aim we analyzed the deep Chandra/HETGS observation of the accreting young star TW Hya. We selected a sample of emission lines free from significant blends, fitted them with gaussian profiles, computed the radial velocity corresponding to each line, and averaged these velocities to obtain an accurate estimate of the global velocity of the X-ray emitting plasma. After correcting for Earth's motion, we compared this observed velocity with the photospheric radial velocity. In order to check this procedure we applied the same technique to other Chandra/HETGS spectra of single stars, whose X-rays are due only to coronal plasma. While spectra of pure coronal sources provide Doppler shifts in agreement with the known stellar radial velocity, we found that the X-ray spectrum of TW Hya is red-shifted by ~30-40 km/s with respect to the stellar photosphere. This proves that the X-ray emitting plasma on TW Hya is moving with respect to the stellar surface, definitively confirming that it originates in the accretion-shock region. The observed velocity suggests that the base of the accretion region is located at low latitudes of the stellar surface.

  18. Spread-spectrum code acquisition in the presence of Doppler shift and data modulation

    NASA Technical Reports Server (NTRS)

    Cheng, Unjeng; Hurd, William J.; Statman, Joseph I.

    1990-01-01

    A spread-spectrum code acquisition technique for a direct-sequence (DS) system in the presence of Doppler effect and data modulation is investigated. Both the carrier-frequency offset and code-frequency offset due to severe Doppler effect are considered. The code-chip slipping during the correlation process caused by code-frequency offset can degrade the acquisition performance significantly. However, this issue can be alleviated by compensating code-frequency offset in an appropriate manner. Results are presented for the cases with and without data modulation. Coherent detection is considered when there is no data modulation. If data modulation is present, the authors partition the correlation time into subintervals and the integration results in these subintervals are square-law noncoherently combined for detection. The implementation of this code acquisition technique using the fast Fourier transform (FFT) algorithm is described. The use of theoretical results to estimate the hardware complexity of an actual system is illustrated step by step, showing that implementation is feasible with existing technology. The tradeoff between hardware complexity and acquisition performance is discussed.

  19. Accuracy of velocity and power determination by the Doppler method

    NASA Technical Reports Server (NTRS)

    Rottger, J.

    1984-01-01

    When designing a Mesosphere-Stratosphere-Troposphere (MST) radar antenna one has to trade between the choices to optimize the effective aperture or to optimize the sidelobe suppression. An optimization of the aperture increases the sensitivity. Suppression of side-lobes by tapering attenuates undesirable signals which spoil the estimates of reflectivity and velocity. Generally, any sidelobe effects are equivalent to a broadening of the antenna beam. The return signal is due to a product of the antenna pattern with the varying atmospheric reflectivity structures. Thus, knowing the antenna pattern, it is in principle possible to find the signal spectra, which, however, may be a tedious computational and ambiguous procedure. For vertically pointing main beams the sidelobe effects are efficiently suppressed because of the aspect sensitivity. It follows that sidelobes are a minor problem for spaced antenna methods. However, they can be crucial for Doppler methods, which need off-vertical beams. If a sidelobe is pointing towards the zenith a larger power may be received from the vertical than off-vertical directions, but quantitative estimates of this effect are not yet known. To get an error estimate of sidelobe effects with an off-vertical main beam a 1-dimensional example is considered.

  20. Analysis of nozzle effect on pulsed detonation engine performance based on laser absorption spectroscopy with Doppler frequency shift

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-long; Li, Ning; Weng, Chun-sheng; Lv, Xiao-jing

    2016-10-01

    An optical experiment system of tunable diode laser absorption spectroscopy is designed for valveless gas-liquid PDE to reveal the mechanism of nozzle improved the thrust performance. The velocity of detonation exhaust with non-nozzle, convergent nozzle, divergent nozzle and convergent-divergent nozzle is tested by laser Doppler velocimetry. The results indicate that laser Doppler method can accurately infer the instantaneous flow velocity, especially the velocity platform where contributes more to the engine impulse. The maximum value is 1222.66 m/s, 1128.52 m/s, 1338.64 m/s and 1296.93 m/s, the time of duration which the velocity is greater than 400m/s is 8.51ms, 7.58ms, 5.83ms and 17.62ms of the velocity under the condition of non-nozzle, convergent nozzle, divergent nozzle and convergent-divergent nozzle respectively.

  1. Experimental verification of color flow imaging based on wideband Doppler method.

    PubMed

    Tanaka, Naohiko

    2014-01-01

    The purpose of this study is to eliminate the aliasing in color flow imaging. The wideband Doppler method is applied to generate a color flow image, and the validity of the method is experimentally confirmed. The single beam experiment is carried out to confirm the velocity estimation based on the wideband Doppler method. The echo data for the conventional pulsed Doppler method and the wideband Doppler method are obtained using a flow model, and the estimated velocity for each method is compared. The color flow images for each method are also generated using several types of flow model. The generated images are compared, and the characteristics of the imaging based on the wideband Doppler method are discussed. The high velocity beyond the Nyquist limit is successfully estimated by the wideband Doppler method, and the availability in low velocity estimation is also confirmed. The aliasing in color flow images is eliminated, and the generated images show the significance of the elimination of the aliasing in the flow imaging. The aliasing in color flow imaging can be eliminated by the wideband Doppler method. This technique is useful for the exact understanding of blood flow dynamics.

  2. Long-term stability of a Fabry-Perot interferometer used for measurement of stellar Doppler shift

    NASA Technical Reports Server (NTRS)

    Mcmillan, R. S.; Smith, P. H.; Perry, M. L.; Moore, T. L.; Merline, W. J.

    1990-01-01

    The use of a fiber-optic-link CCD-detector Fabry-Perot interferometer (McMillan et al., 1985, 1986, and 1988) to obtain high-accuracy measurements of stellar Doppler shifts at KPNO is described in detail and illustrated with sample data. Particular attention is given to accuracy requirements and techniques for reducing errors, resolution (orders of 50 mA at wavelength 4300 A are separated by 640 mA), CCD sensitivity, observing and data-processing operations, and the control of environmental conditions. Standard-deviation data and statistics on seven solar-type stars are presented in tables, and the time evolution of the radial velocity of Beta Com is shown in a graph.

  3. Doppler and the Doppler Effect.

    DTIC Science & Technology

    1984-06-01

    Doppler Applications Doppler Effect Roemer Doppler Principle Bradley Relative motion Velocity History Light Velocity 20. ABSTRACT (Continue on reverse...of Colorado, Boulder, CO 11-14 Jan 1984 5 1. Historical Background The astronomer Olaf Roemer determined the velocity of light in 1676 from time...approached Jupiter and longer when it receded from Jupiter. In effect, Roemer used a Doppler method in determining the velocity of light . [2 ] In 1727

  4. Development of the doppler electron velocimeter: theory.

    SciTech Connect

    Reu, Phillip L.

    2007-03-01

    Measurement of dynamic events at the nano-scale is currently impossible. This paper presents the theoretical underpinnings of a method for making these measurements using electron microscopes. Building on the work of Moellenstedt and Lichte who demonstrated Doppler shifting of an electron beam with a moving electron mirror, further work is proposed to perfect and utilize this concept in dynamic measurements. Specifically, using the concept of ''fringe-counting'' with the current principles of transmission electron holography, an extension of these methods to dynamic measurements is proposed. A presentation of the theory of Doppler electron wave shifting is given, starting from the development of the de Broglie wave, up through the equations describing interference effects and Doppler shifting in electron waves. A mathematical demonstration that Doppler shifting is identical to the conceptually easier to understand idea of counting moving fringes is given by analogy to optical interferometry. Finally, potential developmental experiments and uses of a Doppler electron microscope are discussed.

  5. Doppler wavelength shifts of transition zone lines measured in Skylab solar spectra

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.; Bohlin, J. D.; Feldman, U.

    1976-01-01

    Wavelengths of lines of the transition-zone ions Si IV, C IV, O IV, N V, and O V are observed to be redshifted relative to the wavelengths of chromospheric lines in XUV spectra obtained from the normal-incidence spectrograph on Skylab. The spectra cover the wavelength range from 1200 to 1565 A and were obtained with the slit positioned over chromospheric network and cell regions, on coronal holes, and above the limb. The network-area and coronal-hole spectra were obtained near the disk center. Only some of the spectra show redshifted transition-zone lines. The observed shifts are between 0.03 and 0.08 A, implying velocities of 15 km/s or less. The amount of wavelength shift does not always appear to be the same for lines of different ions. The shifts imply that descending plasma in the solar atmosphere produces more emission than ascending plasma at temperatures between approximately 70,000 and 200,000 K.

  6. Investigations of spectral resolution and angle dependency in a 2-D tracking Doppler method.

    PubMed

    Fredriksen, Tonje D; Avdal, Jorgen; Ekroll, Ingvild K; Dahl, Torbjorn; Lovstakken, Lasse; Torp, Hans

    2014-07-01

    An important source of error in velocity measurements from conventional pulsed wave (PW) Doppler is the angle used for velocity calibration. Because there are great uncertainties and interobserver variability in the methods used for Doppler angle correction in the clinic today, it is desirable to develop new and more robust methods. In this work, we have investigated how a previously presented method, 2-D tracking Doppler, depends on the tracking angle. A signal model was further developed to include tracking along any angle, providing velocity spectra which showed good agreement with both experimental data and simulations. The full-width at half-maximum (FWHM) bandwidth and the peak value of predicted power spectra were calculated for varying tracking angles. It was shown that the spectra have lowest bandwidth and maximum power when the tracking angle is equal to the beam-to-flow angle. This may facilitate new techniques for velocity calibration, e.g., by manually adjusting the tracking angle, while observing the effect on the spectral display. An in vitro study was performed in which the Doppler angles were predicted by the minimum FWHM and the maximum power of the 2-D tracking Doppler spectra for 3 different flow angles. The estimated Doppler angles had an overall error of 0.24° ± 0.75° when using the minimum FWHM. With an in vivo example, it was demonstrated that the 2-D tracking Doppler method is suited for measurements in a patient with carotid stenosis.

  7. Wind turbines and bat mortality: Doppler shift profiles and ultrasonic bat-like pulse reflection from moving turbine blades.

    PubMed

    Long, Chloe V; Flint, James A; Lepper, Paul A

    2010-10-01

    Bat mortality resulting from actual or near-collision with operational wind turbine rotors is a phenomenon that is widespread but not well understood. Because bats rely on information contained in high-frequency echoes to determine the nature and movement of a target, it is important to consider how ultrasonic pulses similar to those used by bats for echolocation may be interacting with operational turbine rotor blades. By assessing the characteristics of reflected ultrasonic echoes, moving turbine blades operating under low wind speed conditions (<6 m s(-1)) were found to produce distinct Doppler shift profiles at different angles to the rotor. Frequency shifts of up to ±700-800 Hz were produced, which may not be perceptible by some bat species. Monte Carlo simulation of bat-like sampling by echolocation revealed that over 50 rotor echoes could be required by species such as Pipistrellus pipistrellus for accurate interpretation of blade movement, which may not be achieved in the bat's approach time-window. In summary, it was found that echoes returned from moving blades had features which could render them attractive to bats or which might make it difficult for the bat to accurately detect and locate blades in sufficient time to avoid a collision.

  8. Evaluation of Doppler shifts to improve the accuracy of primary atomic fountain clocks.

    PubMed

    Guéna, Jocelyne; Li, Ruoxin; Gibble, Kurt; Bize, Sébastien; Clairon, André

    2011-04-01

    We demonstrate agreement between measurements and ab initio calculations of the frequency shifts caused by distributed cavity phase variations in the microwave cavity of a primary atomic fountain clock. Experimental verification of the finite element models of the cavities gives the first quantitative evaluation of this leading uncertainty and allows it to be reduced to δν/ν=±8.4×10(-17). Applying these experimental techniques to clocks with improved microwave cavities will yield negligible distributed cavity phase uncertainties, less than ±1×10(-17).

  9. Usage of eigenvector methods to improve reliable classifier for Doppler ultrasound signals.

    PubMed

    Ubeyli, Elif Derya

    2008-05-01

    A new approach based on the implementation of the automated diagnostic systems for Doppler ultrasound signals classification with the features extracted by eigenvector methods is presented. In practical applications of pattern recognition, there are often diverse features extracted from raw data which needs recognizing. Because of the importance of making the right decision, the present work is carried out for searching better classification procedures for the Doppler ultrasound signals. Decision making was performed in two stages: feature extraction by the eigenvector methods and classification using the classifiers trained on the extracted features. The aim of the study is classification of the Doppler ultrasound signals by the combination of eigenvector methods and the classifiers. The present research demonstrated that the power levels of the power spectral density (PSD) estimates obtained by the eigenvector methods are the features which well represent the Doppler ultrasound signals and the probabilistic neural networks (PNNs), recurrent neural networks (RNNs) trained on these features achieved high classification accuracies.

  10. Analytical description of a Fabry-Perot spectrometer 6: minimum number of samples required in the determination of Doppler widths and shifts.

    PubMed

    Hernandez, G

    1982-05-01

    The minimum number of samples required to obtain the least uncertainties of determination for measurements of temperature and winds with a Fabry-Perot photoelectric spectrometer are derived. The specific cases for a spectrometer optimized for Doppler width (temperature) and Doppler shift (winds) determinations are treated where the minimum (critical) number of equidistant samples per free spectral range is found to be equal to 14 and 8, respectively. An approximate empirical criterion to derive the number of samples in terms of effective finesse N(e) has been obtained and is equal to approximately 4N(e) for practical spectrometer and source widths.

  11. Photoacoustic Doppler flow measurement in optically scattering media

    NASA Astrophysics Data System (ADS)

    Fang, Hui; Maslov, Konstantin; Wang, Lihong V.

    2007-12-01

    We recently observed the photoacoustic Doppler effect from flowing small light-absorbing particles. Here, we apply the effect to measure blood-mimicking fluid flow in an optically scattering medium. The light scattering in the medium decreases the amplitude of the photoacoustic Doppler signal but does not affect either the magnitude or the directional discrimination of the photoacoustic Doppler shift. This technology may hold promise for a new Doppler method for measuring blood flow in microcirculation with high sensitivity.

  12. Persistent Doppler Shift Oscillations Observed with HINODE-EIS in the Solar Corona: Spectroscopic Signatures of Alfvenic Waves and Recurring Upflows

    NASA Technical Reports Server (NTRS)

    Tian, Hui; McIntosh, Scott W.; Wang, Tongjiang; Offman, Leon; De Pontieu, Bart; Innes, Davina E.; Peter, Hardi

    2012-01-01

    Using data obtained by the EUV Imaging Spectrometer on board Hinode, we have performed a survey of obvious and persistent (without significant damping) Doppler shift oscillations in the corona. We have found mainly two types of oscillations from February to April in 2007. One type is found at loop footpoint regions, with a dominant period around 10 minutes. They are characterized by coherent behavior of all line parameters (line intensity, Doppler shift, line width, and profile asymmetry), and apparent blueshift and blueward asymmetry throughout almost the entire duration. Such oscillations are likely to be signatures of quasi-periodic upflows (small-scale jets, or coronal counterpart of type-II spicules), which may play an important role in the supply of mass and energy to the hot corona. The other type of oscillation is usually associated with the upper part of loops. They are most clearly seen in the Doppler shift of coronal lines with formation temperatures between one and two million degrees. The global wavelets of these oscillations usually peak sharply around a period in the range of three to six minutes. No obvious profile asymmetry is found and the variation of the line width is typically very small. The intensity variation is often less than 2%. These oscillations are more likely to be signatures of kink/Alfv´en waves rather than flows. In a few cases, there seems to be a p/2 phase shift between the intensity and Doppler shift oscillations, which may suggest the presence of slow-mode standing waves according to wave theories. However, we demonstrate that such a phase shift could also be produced by loops moving into and out of a spatial pixel as a result of Alfv´enic oscillations. In this scenario, the intensity oscillations associated with Alfv´enic waves are caused by loop displacement rather than density change. These coronal waves may be used to investigate properties of the coronal plasma and magnetic field.

  13. PERSISTENT DOPPLER SHIFT OSCILLATIONS OBSERVED WITH HINODE/EIS IN THE SOLAR CORONA: SPECTROSCOPIC SIGNATURES OF ALFVENIC WAVES AND RECURRING UPFLOWS

    SciTech Connect

    Tian Hui; McIntosh, Scott W.; Wang, Tongjiang; Ofman, Leon; De Pontieu, Bart; Innes, Davina E.; Peter, Hardi

    2012-11-10

    Using data obtained by the EUV Imaging Spectrometer on board Hinode, we have performed a survey of obvious and persistent (without significant damping) Doppler shift oscillations in the corona. We have found mainly two types of oscillations from February to April in 2007. One type is found at loop footpoint regions, with a dominant period around 10 minutes. They are characterized by coherent behavior of all line parameters (line intensity, Doppler shift, line width, and profile asymmetry), and apparent blueshift and blueward asymmetry throughout almost the entire duration. Such oscillations are likely to be signatures of quasi-periodic upflows (small-scale jets, or coronal counterpart of type-II spicules), which may play an important role in the supply of mass and energy to the hot corona. The other type of oscillation is usually associated with the upper part of loops. They are most clearly seen in the Doppler shift of coronal lines with formation temperatures between one and two million degrees. The global wavelets of these oscillations usually peak sharply around a period in the range of three to six minutes. No obvious profile asymmetry is found and the variation of the line width is typically very small. The intensity variation is often less than 2%. These oscillations are more likely to be signatures of kink/Alfven waves rather than flows. In a few cases, there seems to be a {pi}/2 phase shift between the intensity and Doppler shift oscillations, which may suggest the presence of slow-mode standing waves according to wave theories. However, we demonstrate that such a phase shift could also be produced by loops moving into and out of a spatial pixel as a result of Alfvenic oscillations. In this scenario, the intensity oscillations associated with Alfvenic waves are caused by loop displacement rather than density change. These coronal waves may be used to investigate properties of the coronal plasma and magnetic field.

  14. Evidence for Doppler-Shifted Iron Emission Lines in Black Hole Candidate 4U 1630-47

    NASA Technical Reports Server (NTRS)

    Cui, Wei; Chen, Wan; Zhang, Shuang Nan

    2000-01-01

    We report the first detection of a pair of correlated the X-ray spectrum of black hole candidate 4U 1630-47 outburst, based on Rossi X-Ray Timing Explorer (RXTE) emission lines in during its 1996 observations of the source. At the peak plateau of the outburst, the emission lines are detected, centered mostly at approx. 5.7 and approx. 7.7 keV, respectively, while the line energies exhibit random variability approx. 5%. Interestingly, the lines move in a concerted manner to keep their separation roughly constant. The lines also vary greatly in strength, but with the lower energy line always much stronger than the higher energy one. The measured equivalent width ranges from approx. 50 to approx. 270 eV for the former, and from insignificant detection to approx. 140 eV for the latter; the two are reasonably correlated. The correlation between the lines implies a causal connection; perhaps they share a common origin. Both lines may arise from a single K & alpha; line of highly ionized iron that is Doppler shifted either in a Keplerian accretion disk or in a bipolar outflow or even both. In both scenarios, a change in the line energy might simply reflect a change in the ionization state of line-emitting matter. We discuss the implication of the results and also raise some questions about such interpretations.

  15. Evidence for Doppler-Shifted Iron Emission Lines in Black Hole Candidate 4U 1630-47

    NASA Technical Reports Server (NTRS)

    Cui, Wei; Chen, Wan; Zhang, Shuang Nan

    2000-01-01

    We report the first detection of a pair of correlated the X-ray spectrum of black hole candidate 4U 1630-47 outburst, based on Rossi X-Ray Timing Explorer (RXTE) emission lines in during its 1996 observations of the source. At the peak plateau of the outburst, the emission lines are detected, centered mostly at approx. 5.7 and approx. 7.7 keV, respectively, while the line energies exhibit random variability approx. 5%. Interestingly, the lines move in a concerted manner to keep their separation roughly constant. The lines also vary greatly in strength, but with the lower energy line always much stronger than the higher energy one. The measured equivalent width ranges from approx. 50 to approx. 270 eV for the former, and from insignificant detection to approx. 140 eV for the latter; the two are reasonably correlated. The correlation between the lines implies a causal connection; perhaps they share a common origin. Both lines may arise from a single K & alpha; line of highly ionized iron that is Doppler shifted either in a Keplerian accretion disk or in a bipolar outflow or even both. In both scenarios, a change in the line energy might simply reflect a change in the ionization state of line-emitting matter. We discuss the implication of the results and also raise some questions about such interpretations.

  16. Self-induced transparency scenario revisited via beat-wave heating induced by Doppler shift in overdense plasma layer

    SciTech Connect

    Ghizzo, A.; Del Sarto, D.; Reveille, T.; Besse, N.; Klein, R.

    2007-06-15

    Maxwell-fluid simulations on a flat-topped moderately overdense plasma slab (typically n{sub 0}/n{sub c}=1-2) by Berezhiani et al. [Phys. Plasmas 66, 062308 (2005)] (see also the previous work of Tushentsov et al. [Phys. Rev. Lett. 87, 275002 (2001)]) were seen to lead to dynamic penetration of an ultrahigh intensity laser pulse into an overdense plasma. Two qualitatively different scenarios for the penetration of laser pulse into the overdense plasma were presented depending on the background density. In the first one, the penetration of laser energy occurs by soliton-like structures moving into the plasma. In the last one, electron cavitation occurs and the penetration is possible over a finite length only. A kinetic extension is made in this paper using Vlasov-Maxwell simulations. Vlasov simulations revealed a rich variety of new phenomena associated with the trapped particle dynamics, which cannot be described in fluid models. Most notably is the observation, during the penetration phase of the pump electromagnetic wave, of a beat-wave heating scenario induced by the Doppler shift on the reflected wave at the (moving) wave front. This beat-wave generates low-frequency acoustic-like electron modes characterized by coherent trapping-type structures in phase space leading to an efficient (nonstochastic) heating process.

  17. Application of a commercially-manufactured Doppler-shift laser velocimeter to the measurement of basilar-membrane vibration*

    PubMed Central

    Ruggero, Mario A.; Rich, Nola C.

    2013-01-01

    A commercially-available laser Doppler-shift velocimeter has been coupled to a compound microscope equipped with ultra-long-working-distance objectives for the purpose of measuring basilar membrane vibrations in the chinchilla. The animal preparation is nearly identical to that used in our laboratory for similar measurements using the Mössbauer technique. The vibrometer head is mounted on the third tube of the microscope’s trinocular head and its laser beam is focused on high-refractive-index glass microbeads (10–30 µm) previously dropped, through the perilymph of Scala tympani, on the basilar membrane. For equal sampling times, overall sensitivity of the laser velocimetry system is at least one order of magnitude greater than usually attained using the Mössbauer technique. However, the most important advantage of laser velocimetry vis-à-vis the Mössbauer technique is its linearity, which permits undistorted recording of signals over a wide velocity range. Thus, for example, we have measured basilar-membrane responses to clicks whose waveforms have dynamic ranges exceeding 60 dB. PMID:1827787

  18. Automated method for characterization of diastolic transmitral Doppler velocity contours: early rapid filling.

    PubMed

    Hall, A F; Kovács, S J

    1994-01-01

    Doppler echocardiographic studies of transmitral flow have become a routine clinical tool for the assessment and characterization of ventricular diastolic (filling) function. We have previously derived a parametrized diastolic filling (PDF) formalism for the purpose of diastolic function assessment using Doppler echocardiography. The model accommodates the mechanical "suction" feature of early diastolic filling of the heart by using a simple harmonic oscillator (SHO) as a paradigm for the kinematics of filling. PDF model predictions of transmitral flow velocity have shown excellent agreement with human echocardiographic Doppler contours (temporal profiles) when a visual, transparency overlay method of model fit to clinical Doppler contour comparison was used. The determination of PDF model parameters from the clinical Doppler contour is equivalent to the solution of the "inverse problem" of diastole. Previously, this determination consisted of a manual, iterative method of graphical overlay, in which model predicted contours were visually compared with the echocardiography machine generated Doppler contour using transparencies. To automate the process of model parameter estimation (i.e., solution of the "inverse problem") for the early or "rapid filling" phase of diastole (known in cardiology as the E-wave of the clinical Doppler velocity profile [DVP]) we recorded the acoustic pulsed Doppler signal using the forward channel of a commercial echocardiography machine. The Doppler spectrogram for a particular E-wave was recreated using short-time Fourier transform processing. The maximum velocity envelope (MVE) was extracted from the spectrogram. The PDF model was fit to the E-wave MVE using a Levenberg-Marquardt (iterative) algorithm by the requirement that the mean-square error between the clinical data (MVE) and the model be minimized. Because the model is linear, all of the PDF parameters for the Doppler E-wave can be uniquely determined. We show that: (1

  19. Method and apparatus for ultrasonic doppler velocimetry using speed of sound and reflection mode pulsed wideband doppler

    DOEpatents

    Shekarriz, Alireza; Sheen, David M.

    2000-01-01

    According to the present invention, a method and apparatus rely upon tomographic measurement of the speed of sound and fluid velocity in a pipe. The invention provides a more accurate profile of velocity within flow fields where the speed of sound varies within the cross-section of the pipe. This profile is obtained by reconstruction of the velocity profile from the local speed of sound measurement simultaneously with the flow velocity. The method of the present invention is real-time tomographic ultrasonic Doppler velocimetry utilizing a to plurality of ultrasonic transmission and reflection measurements along two orthogonal sets of parallel acoustic lines-of-sight. The fluid velocity profile and the acoustic velocity profile are determined by iteration between determining a fluid velocity profile and measuring local acoustic velocity until convergence is reached.

  20. Method and apparatus for ultrasonic doppler velocimetry using speed of sound and reflection mode pulsed wideband doppler

    SciTech Connect

    Shekarriz, A.; Sheen, D.M.

    2000-05-30

    According to the present invention, a method and apparatus rely upon tomographic measurement of the speed of sound and fluid velocity in a pipe. The invention provides a more accurate profile of velocity within flow fields where the speed of sound varies within the cross-section of the pipe. This profile is obtained by reconstruction of the velocity profile from the local speed of sound measurement simultaneously with the flow velocity. The method of the present invention is real-time tomographic ultrasonic Doppler velocimetry utilizing a to plurality of ultrasonic transmission and reflection measurements along two orthogonal sets of parallel acoustic lines-of-sight. The fluid velocity profile and the acoustic velocity profile are determined by iteration between determining a fluid velocity profile and measuring local acoustic velocity until convergence is reached.

  1. Doppler ultrasound in the measurement of pulse wave velocity: agreement with the Complior method

    PubMed Central

    2011-01-01

    Aortic stiffness is an independent predictor factor for cardiovascular risk. Different methods for determining pulse wave velocity (PWV) are used, among which the most common are mechanical methods such as SphygmoCor or Complior, which require specific devices and are limited by technical difficulty in obtaining measurements. Doppler guided by 2D ultrasound is a good alternative to these methods. We studied 40 patients (29 male, aged 21 to 82 years) comparing the Complior method with Doppler. Agreement of both devices was high (R = 0.91, 0.84-0.95, 95% CI). The reproducibility analysis revealed no intra-nor interobserver differences. Based on these results, we conclude that Doppler ultrasound is a reliable and reproducible alternative to other established methods for the measurement of aortic PWV. PMID:21496271

  2. SOLAR MERIDIONAL CIRCULATION FROM DOPPLER SHIFTS OF THE Fe I LINE AT 5250 A AS MEASURED BY THE 150-FOOT SOLAR TOWER TELESCOPE AT THE MT. WILSON OBSERVATORY

    SciTech Connect

    Ulrich, Roger K.

    2010-12-10

    Doppler shifts of the Fe I spectral line at 5250 A from the full solar disk obtained over the period 1986 to 2009 are analyzed to determine the circulation velocity of the solar surface along meridional planes. Simultaneous measurements of the Zeeman splitting of this line are used to obtain measurements of the solar magnetic field that are used to select low field points and impose corrections for the magnetically induced Doppler shift. The data utilized is from a new reduction that preserves the full spatial resolution of the original observations so that the circulation flow can be followed to latitudes of 80{sup 0} N/S. The deduced meridional flow is shown to differ from the circulation velocities derived from magnetic pattern movements. A reversed circulation pattern is seen in polar regions for three successive solar minima. A surge in circulation velocity at low latitudes is seen during the rising phases of cycles 22 and 23.

  3. Measurement of angular divergence and ion species ratios of an rf-driven multicusp ion source for diagnostic neutral beam by Doppler shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Yoo, S. J.; Yang, H. L.; Hwang, S. M.

    2000-03-01

    The ion species ratios as well as the angular divergences are measured by using a Doppler shift spectroscopy of Hα spectral lines, which originate from several different ions, such as H2+ and H3+ as well as H+, and are spectrally well resolvable from each other on the measured spectral window of detection system. The angular divergences of the ion beam components are determined from the linewidths of the measured emission lines, and the ratio of mixed species is deduced from the intensity ratio of each peak. The ion species ratios measured by the Doppler shift spectroscopy are cross checked by a mass analyzing magnet. The measurements are performed varying the input rf power and the operating source pressure.

  4. Time dependent Doppler shifts in high-order harmonic generation in intense laser interactions with solid density plasma and frequency chirped pulses

    NASA Astrophysics Data System (ADS)

    Welch, E. C.; Zhang, P.; Dollar, F.; He, Z.-H.; Krushelnick, K.; Thomas, A. G. R.

    2015-05-01

    High order harmonic generation from solid targets is a compelling route to generating intense attosecond or even zeptosecond pulses. However, the effects of ion motion on the generation of harmonics have only recently started to be considered. Here, we study the effects of ion motion in harmonics production at ultrahigh laser intensities interacting with solid density plasma. Using particle-in-cell simulations, we find that there is an optimum density for harmonic production that depends on laser intensity, which scales linearly with a0 with no ion motion but with a reduced scaling if ion motion is included. We derive a scaling for this optimum density with ion motion and also find that the background ion motion induces Doppler red-shifts in the harmonic structures of the reflected pulse. The temporal structure of the Doppler shifts is correlated to the envelope of the incident laser pulse. We demonstrate that by introducing a frequency chirp in the incident pulse we are able to eliminate these Doppler shifts almost completely.

  5. Time dependent Doppler shifts in high-order harmonic generation in intense laser interactions with solid density plasma and frequency chirped pulses

    SciTech Connect

    Welch, E. C.; Zhang, P.; He, Z.-H.; Dollar, F.; Krushelnick, K.; Thomas, A. G. R.

    2015-05-15

    High order harmonic generation from solid targets is a compelling route to generating intense attosecond or even zeptosecond pulses. However, the effects of ion motion on the generation of harmonics have only recently started to be considered. Here, we study the effects of ion motion in harmonics production at ultrahigh laser intensities interacting with solid density plasma. Using particle-in-cell simulations, we find that there is an optimum density for harmonic production that depends on laser intensity, which scales linearly with a{sub 0} with no ion motion but with a reduced scaling if ion motion is included. We derive a scaling for this optimum density with ion motion and also find that the background ion motion induces Doppler red-shifts in the harmonic structures of the reflected pulse. The temporal structure of the Doppler shifts is correlated to the envelope of the incident laser pulse. We demonstrate that by introducing a frequency chirp in the incident pulse we are able to eliminate these Doppler shifts almost completely.

  6. Effect of method and parameters of spectral analysis on selected indices of simulated Doppler spectra.

    PubMed

    Kaluzynski, K; Palko, T

    1993-05-01

    The sensitivity of Doppler spectral indices (mean frequency, maximum frequency, spectral broadening index and turbulence intensity) to the conditions of spectral analysis (estimation method, data window, smoothing window or model order) increases with decreasing signal bandwidth and growing index complexity. The bias of spectral estimate has a more important effect on these indices than its variance. A too low order, in the case of autoregressive modeling and minimum variance methods, and excessive smoothing, in the case of the FFT method, result in increased errors of Doppler spectral indices. There is a trade-off between the errors resulting from a short data window and those due to insufficient temporal resolution.

  7. Comparison of new Doppler echocardiographic methods to differentiate constrictive pericardial heart disease and restrictive cardiomyopathy.

    PubMed

    Rajagopalan, N; Garcia, M J; Rodriguez, L; Murray, R D; Apperson-Hansen, C; Stugaard, M; Thomas, J D; Klein, A L

    2001-01-01

    This study assesses how the newer modalities of tissue Doppler echocardiography and color M-mode flow propagation compare with respiratory variation of Doppler flow in distinguishing between constrictive pericarditis and restrictive cardiomyopathy. We studied 30 patients referred for further evaluation of diastolic function who had a diagnosis of constrictive pericarditis or restrictive cardiomyopathy established by diagnostic tests, including clinical assessment, magnetic resonance imaging, cardiac catheterization, endomyocardial biopsy, and surgical findings. Nineteen patients had constrictive pericarditis and 11 had restrictive cardiomyopathy. We performed 2-dimensional transesophageal echocardiography combined with pulsed-wave Doppler of the pulmonary veins and mitral inflow with respiratory monitoring, tissue Doppler echocardiography of the lateral mitral annulus, and color M-mode flow propagation of left ventricular filling. Respiratory variation of the mitral inflow peak early (peak E) velocity of > or =10% predicted constrictive pericarditis with 84% sensitivity and 91% specificity and variation in the pulmonary venous peak diastolic (peak D) flow velocity of > or =18% distinguished constriction with 79% sensitivity and 91% specificity. Using tissue Doppler echocardiography, a peak early velocity of longitudinal expansion (peak Ea) of > or =8.0 cm/s differentiated patients with constriction from restriction with 89% sensitivity and 100% specificity. A slope of > or =100 cm/s for the first aliasing contour in color M-mode flow propagation predicted patients with constriction with 74% sensitivity and 91% specificity. Thus, the newer methods of tissue Doppler echocardiography and color M-mode flow propagation are equivalent and complimentary with Doppler respiratory variation in distinguishing between constrictive pericarditis and restrictive cardiomyopathy. The additive role of the new methods needs to be established in difficult cases of constrictive

  8. A novel echocardiographic Doppler method for estimation of pulmonary arterial pressures.

    PubMed

    Friedberg, Mark K; Feinstein, Jeffrey A; Rosenthal, David N

    2006-05-01

    Current noninvasive methods for estimating diastolic and mean pulmonary artery pressures (PAp) in children are cumbersome and have limited accuracy. We hypothesized that systolic PAp correlates with diastolic and mean PAp, and that this correlation can be used to estimate diastolic and mean PAp from Doppler flow data. We recorded PAp in 112 patients 30 years or younger catheterized for heart failure, heart transplant, pulmonary hypertension, or congenital heart disease. We derived the relationship of systolic PAp to diastolic and mean PAp. We then applied these relations to systolic PAp measured by tricuspid regurgitation (TR) Doppler flow in a subset of 17 patients with pulmonary hypertension to predict mean and diastolic PAp, and correlated the results. An excellent linear relation was found between systolic PAp and both the diastolic and mean PAp measured at cardiac catheterization (r = 0.95, P < .0001; r = 0.98, P < .0001, respectively). The calculated diastolic PAp calculated from TR Doppler correlated well with invasive data (31 +/- 13 vs 30 +/- 11 mm Hg, respectively, not significant; r = 0.85, P < .0001) and surpassed existing methods that are based on pulmonary regurgitation for predicting diastolic PAp. Similarly, mean PAp calculated from TR Doppler flow correlated well with invasive data (r = 0.86, P < .0001). A strong linear relationship between systolic and diastolic PAp allows for easy and accurate noninvasive estimation of diastolic and mean PAp from TR Doppler flow.

  9. Optimization of Doppler velocity echocardiographic measurements using an automatic contour detection method.

    PubMed

    Gaillard, E; Kadem, L; Pibarot, P; Durand, L-G

    2009-01-01

    Intra- and inter-observer variability in Doppler velocity echocardiographic measurements (DVEM) is a significant issue. Indeed, imprecisions of DVEM can lead to diagnostic errors, particularly in the quantification of the severity of heart valve dysfunction. To minimize the variability and rapidity of DVEM, we have developed an automatic method of Doppler velocity wave contour detection, based on active contour models. To validate our new method, results obtained with this method were compared to those obtained manually by an experienced echocardiographer on Doppler echocardiographic images of left ventricular outflow tract and transvalvular flow velocity signals recorded in 30 patients, 15 with aortic stenosis and 15 with mitral stenosis. We focused on three essential variables that are measured routinely by Doppler echocardiography in the clinical setting: the maximum velocity, the mean velocity and the velocity-time integral. Comparison between the two methods has shown a very good agreement (linear correlation coefficient R(2) = 0.99 between the automatically and the manually extracted variables). Moreover, the computation time was really short, about 5s. This new method applied to DVEM could, therefore, provide a useful tool to eliminate the intra- and inter-observer variabilities associated with DVEM and thereby to improve the diagnosis of cardiovascular disease. This automatic method could also allow the echocardiographer to realize these measurements within a much shorter period of time compared to standard manual tracing method. From a practical point of view, the model developed can be easily implanted in a standard echocardiographic system.

  10. A comprehensive method of estimating electric fields from vector magnetic field and Doppler measurements

    SciTech Connect

    Kazachenko, Maria D.; Fisher, George H.; Welsch, Brian T.

    2014-11-01

    Photospheric electric fields, estimated from sequences of vector magnetic field and Doppler measurements, can be used to estimate the flux of magnetic energy (the Poynting flux) into the corona and as time-dependent boundary conditions for dynamic models of the coronal magnetic field. We have modified and extended an existing method to estimate photospheric electric fields that combines a poloidal-toroidal decomposition (PTD) of the evolving magnetic field vector with Doppler and horizontal plasma velocities. Our current, more comprehensive method, which we dub the 'PTD-Doppler-FLCT Ideal' (PDFI) technique, can now incorporate Doppler velocities from non-normal viewing angles. It uses the FISHPACK software package to solve several two-dimensional Poisson equations, a faster and more robust approach than our previous implementations. Here, we describe systematic, quantitative tests of the accuracy and robustness of the PDFI technique using synthetic data from anelastic MHD (ANMHD) simulations, which have been used in similar tests in the past. We find that the PDFI method has less than 1% error in the total Poynting flux and a 10% error in the helicity flux rate at a normal viewing angle (θ = 0) and less than 25% and 10% errors, respectively, at large viewing angles (θ < 60°). We compare our results with other inversion methods at zero viewing angle and find that our method's estimates of the fluxes of magnetic energy and helicity are comparable to or more accurate than other methods. We also discuss the limitations of the PDFI method and its uncertainties.

  11. Retrieving microphysical properties and air motion of cirrus clouds based on the doppler moments method using cloud radar

    NASA Astrophysics Data System (ADS)

    Zhong, Lingzhi; Liu, Liping; Deng, Min; Zhou, Xiuji

    2012-05-01

    Radar parameters including radar reflectivity, Doppler velocity, and Doppler spectrum width were obtained from Doppler spectrum moments. The Doppler spectrum moment is the convolution of both the particle spectrum and the mean air vertical motion. Unlike strong precipitation, the motion of particles in cirrus clouds is quite close to the air motion around them. In this study, a method of Doppler moments was developed and used to retrieve cirrus cloud microphysical properties such as the mean air vertical velocity, mass-weighted diameter, effective particle size, and ice content. Ice content values were retrieved using both the Doppler spectrum method and classic Z-IWC (radar reflectivity-ice water content) relationships; however, the former is a more reasonable method.

  12. Influences on Dietary Choices during Day versus Night Shift in Shift Workers: A Mixed Methods Study

    PubMed Central

    Bonnell, Emily K.; Huggins, Catherine E.; Huggins, Chris T.; McCaffrey, Tracy A.; Palermo, Claire; Bonham, Maxine P.

    2017-01-01

    Shift work is associated with diet-related chronic conditions such as obesity and cardiovascular disease. This study aimed to explore factors influencing food choice and dietary intake in shift workers. A fixed mixed method study design was undertaken on a convenience sample of firefighters who continually work a rotating roster. Six focus groups (n = 41) were conducted to establish factors affecting dietary intake whilst at work. Dietary intake was assessed using repeated 24 h dietary recalls (n = 19). Interviews were audio recorded, transcribed verbatim, and interpreted using thematic analysis. Dietary data were entered into FoodWorks and analysed using Wilcoxon signed-rank test; p < 0.05 was considered significant. Thematic analysis highlighted four key themes influencing dietary intake: shift schedule; attitudes and decisions of co-workers; time and accessibility; and knowledge of the relationship between food and health. Participants reported consuming more discretionary foods and limited availability of healthy food choices on night shift. Energy intakes (kJ/day) did not differ between days that included a day or night shift but greater energy density (EDenergy, kJ/g/day) of the diet was observed on night shift compared with day shift. This study has identified a number of dietary-specific shift-related factors that may contribute to an increase in unhealthy behaviours in a shift-working population. Given the increased risk of developing chronic diseases, organisational change to support workers in this environment is warranted. PMID:28245625

  13. Influences on Dietary Choices during Day versus Night Shift in Shift Workers: A Mixed Methods Study.

    PubMed

    Bonnell, Emily K; Huggins, Catherine E; Huggins, Chris T; McCaffrey, Tracy A; Palermo, Claire; Bonham, Maxine P

    2017-02-26

    Shift work is associated with diet-related chronic conditions such as obesity and cardiovascular disease. This study aimed to explore factors influencing food choice and dietary intake in shift workers. A fixed mixed method study design was undertaken on a convenience sample of firefighters who continually work a rotating roster. Six focus groups (n = 41) were conducted to establish factors affecting dietary intake whilst at work. Dietary intake was assessed using repeated 24 h dietary recalls (n = 19). Interviews were audio recorded, transcribed verbatim, and interpreted using thematic analysis. Dietary data were entered into FoodWorks and analysed using Wilcoxon signed-rank test; p < 0.05 was considered significant. Thematic analysis highlighted four key themes influencing dietary intake: shift schedule; attitudes and decisions of co-workers; time and accessibility; and knowledge of the relationship between food and health. Participants reported consuming more discretionary foods and limited availability of healthy food choices on night shift. Energy intakes (kJ/day) did not differ between days that included a day or night shift but greater energy density (EDenergy, kJ/g/day) of the diet was observed on night shift compared with day shift. This study has identified a number of dietary-specific shift-related factors that may contribute to an increase in unhealthy behaviours in a shift-working population. Given the increased risk of developing chronic diseases, organisational change to support workers in this environment is warranted.

  14. Robust phase-shift estimation method for statistical generalized phase-shifting digital holography.

    PubMed

    Yoshikawa, Nobukazu; Shiratori, Takaaki; Kajihara, Kazuki

    2014-06-16

    We propose a robust phase-shift estimation method for statistical generalized phase-shifting digital holography using a slightly off-axis optical configuration. The phase randomness condition in the Fresnel diffraction field of an object can be sufficiently established by the linear phase factor of the oblique incident reference wave. Signed phase-shift values can be estimated with a statistical approach regardless of the statistical properties of the Fresnel diffraction field of the object. We present computer simulations and optical experiments to verify the proposed method.

  15. Analysis of a Four-Station Doppler Tracking Method Using a Simple CW Beacon

    NASA Technical Reports Server (NTRS)

    Fricke, Clifford L.; Watkins, Carl W. L.

    1961-01-01

    A Doppler tracking method is presented in which a very small, simple CW beacon transmitter is used with four Doppler receiving stations to obtain the position and velocity of a space research vehicle. The exact transmitter frequency need not be known, but an initial position is required, and Doppler frequencies must be measured with extreme accuracy. The errors in the system are analyzed and general formulas are derived for position and velocity errors. The proper location of receiving stations is discussed, a rule for avoiding infinite errors is given, and error charts for ideal station configurations are presented. The effect of the index of refraction is also investigated. The system is capable of determining transmitter position within 1,000 feet at a range of 200 miles.

  16. Estimation of orbital Doppler shift change due to nutation of attitude for 2-μm coherent Doppler lidar on ISS-JEM (International Space Station-Japanese Experimental Module)

    NASA Astrophysics Data System (ADS)

    Totsuka, Makoto; Asai, Kazuhiro; Iwasaki, Toshiki; Mizutani, Kohei; Itabe, Toshikasu

    2001-02-01

    Coherent Doppler Lidar (CDL), which has a capability of 3-D wind velocity measurements, can realize a global measurement of the wind profile in the troposphere from space. ISS(International Space Station) has been constructing from last year, and JEM(Japanese Experimental Module) attached to ISS is scheduled to be provided as a laboratory in space. We have been making a feasibility study for ISS-JEM/2-micrometer CDL. We expect that the ISS might give some technical problems because of a large scale and a man attended station. On the other hand, a measurement accuracy of 1m/s is required from the atmospheric science. We have to analyze the systematic error with considering the error factors to meet this requirement. There are two factors of the wind measurement errors caused by the nutation of ISS?fs attitude. One of them is a change of receiving power, since it should change distances between CDL and a observing point. In this case, we have already shown that the wind error estimated was only ?}0.05m/s (assumed width of pitching angle ;?}3deg). The other factor is a change of orbital Doppler shift. The accuracy of 1m/s is corresopnding to 1MHz. We calculated a frequency of orbital Doppler shift in case of non conical scanning one when ISS has the nutation of attitude with ?}3deg,as a pitching angle and a rolling angle,respectively. The results obtained in this syudy are very useful to design a frequency agile CW laser as a local oscillator.In this paper, we describe more details for our analysis.

  17. An improved shape shifting method of critical area extraction

    NASA Astrophysics Data System (ADS)

    Jiaojiao, Zhu; Xiaohua, Luo; Lisheng, Chen; Yi, Ye; Xiaolang, Yan

    2014-02-01

    As die size and complexity increase, accurate and efficient extraction of the critical area is essential for yield prediction. Aiming at eliminating the potential integration errors of the traditional shape shifting method, an improved shape shifting method is proposed for Manhattan layouts. By mathematical analyses of the relevance of critical areas to defect sizes, the critical area for all defect sizes is modeled as a piecewise quadratic polynomial function of defect size, which can be obtained by extracting critical area for some certain defect sizes. Because the improved method calculates critical areas for all defect sizes instead of several discrete values with traditional shape shifting method, it eliminates the integration error of the average critical area. Experiments on industrial layouts show that the improved shape shifting method can improve the accuracy of the average critical area calculation by 24.3% or reduce about 59.7% computational expense compared with the traditional method.

  18. Algorithm of the noninvasive diagnosis method on the atherosclerosis by ultrasonic Doppler effect.

    PubMed

    Yokobori, A T; Ohkuma, T; Sasaki, S; Yoshinari, H; Yokobori, T; Ohuchi, H; Mori, S

    1994-01-01

    Previously we proposed Acoustical Imaging and Processing Method to measure the viscoelastic property of the blood vessels of a canine and the related materials using Ultrasonic Doppler Effect Measurement. Furthermore, its theoretical foundation was presented. In this paper, this method is applied to measure the viscoelastic mechanical property, that is, the mechanical degradation of human blood vessels by a percutaneous noninvasive method. Based on these results, we proposed the algorithm of the noninvasive estimation method on the viscoelastic mechanical property of the blood vessel by using Doppler Effect Sensor. This method makes it possible to discriminate the blood vessel with arteriosclerosis from a normal blood vessel. Clinical applications were successfully performed using our developed computer software based on our proposed algorithm.

  19. The Effect of Doppler Frequency Shift, Frequency Offset of the Local Oscillators, and Phase Noise on the Performance of Coherent OFDM Receivers

    NASA Technical Reports Server (NTRS)

    Xiong, Fuqin; Andro, Monty

    2001-01-01

    This paper first shows that the Doppler frequency shift affects the frequencies of the RF carrier, subcarriers, envelope, and symbol timing by the same percentage in an Orthogonal Frequency Division Multiplexing (OFDM) signal or any other modulated signals. Then the SNR degradation of an OFDM system due to Doppler frequency shift, frequency offset of the local oscillators and phase noise is analyzed. Expressions are given and values for 4-, 16-, 64-, and 256-QAM OFDM systems are calculated and plotted. The calculations show that the Doppler shift of the D3 project is about 305 kHz, and the degradation due to it is about 0.01 to 0.04 dB, which is negligible. The degradation due to frequency offset and phase noise of local oscillators will be the main source of degradation. To keep the SNR degradation under 0.1 dB, the relative frequency offset due to local oscillators must be below 0.01 for the 16 QAM-OFDM. This translates to an offset of 1.55 MHz (0.01 x 155 MHz) or a stability of 77.5 ppm (0.01 x 155 MHz/20 GHz) for the DI project. To keep the SNR degradation under 0.1 dB, the relative linewidth (0) due to phase noise of the local oscillators must be below 0.0004 for the 16 QAM-OFDM. This translates to a linewidth of 0.062 MHz (0.0004 x 155 MHz) of the 20 GHz RIF carrier. For a degradation of 1 dB, beta = 0.04, and the linewidth can be relaxed to 6.2 MHz.

  20. New method to obtain ultrasonic angle independent Doppler color images using a sector transducer.

    PubMed

    Fei, D Y; Fu, C T

    1999-01-01

    A new method based on the multiple beam procedure to obtain ultrasonic angle independent Doppler color (AIDC) images using Doppler color imaging with a sector transducer has been developed. The transducer was sequentially placed at three locations with different direction orientations to acquire velocity information for the same flow field. Equations have been derived and used to obtain the velocity amplitude and flow direction angle for each point in the flow field from the acquired velocity data and the known positions of the transducer. AIDC images then can be reconstructed. To evaluate the feasibility of this method, AIDC images using a sector transducer have been reconstructed for steady flow fields in a latex tube model and for blood flow in the abdominal aorta of normal human subjects. The quantitative results obtained using this method were in reasonably good agreement with those obtained from existing reference methods.

  1. An evaluation method for phase shift extraction algorithms in generalized phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Li, Jie; Wang, Yurong; Meng, Xiangfeng; Yang, Xiulun; Wang, Qingpu

    2013-10-01

    A method to evaluate quantitatively the performance of the phase shift extraction algorithms in generalized phase-shifting interferometry (GPSI) is proposed. A parameter named as reconstruction signal-to-noise ratio (R-SNR) is used as the evaluation measure. The R-SNR is defined with the reconstructed object image as the signal and the residual of the DC term and conjugate image as noise. The more accurate the extracted phase shift is, the less residual of the DC term and conjugate image there is, and then the higher R-SNR is obtained. To avoid the overlap of the DC term and conjugate image and the object image, the off-axis digital holography configuration is adopted. The correctness and effectiveness of the proposed method have been verified by both computer simulation and optical experiments. The major advantage of the proposed method is that it utilizes the experimental detectable data and not only the computer simulation results.

  2. [Quantification and monitoring of vascular resistance in the lower limbs by the Doppler method (animal model)

    NASA Technical Reports Server (NTRS)

    Arbeille, P.; Berson, M.; Blondeau, B.; Durand, A.; Bodard, S.; Locatelli, A.; Fox, G. E. (Principal Investigator)

    1995-01-01

    The object of this study was to define and validate a non-invasive method of evaluation and monitoring of vascular resistances in the leg. Blood flow velocity was measured by Doppler ultrasound in an animal model (ewe) with similar blood flow characteristics in the lower limb as man and allowing access to the required invasive measurements for validation of the method (pressure and flow). Vascular resistances distal to the measuring point (femoral, for example) were assessed using the resistance index R = D/S, S being the peak systolic deflection and D that of diastolic reflux of the Doppler spectral analysis of flow in the femoral artery. The values and variations of this resistance index were compared with the vascular resistances calculated from measurements of pressure and flow at the point of Doppler sampling and expressed in mmHg/ml/min. Femoral flow was measured by Doppler ultrasound (Doppler-echo), and mean pressure by an arterial catheter introduced into the abdominal aorta. Compression of the lower limb veins induced a venous return resulting in a reduction of cardiac output and femoral flow. During compression, femoral flow decreased by an average of 29% (p < 0.001) although mean pressure and heart rate did not change significantly. The femoral resistance index (Rf) increased by an average of 37.5% (p < 0.01) and vascular resistances increased by 45.9% (p < 0.01). Injection of 1 mg adrenaline induced peripheral vasoconstriction with an increase in blood pressure and a decrease in heart rate and femoral flow.(ABSTRACT TRUNCATED AT 250 WORDS).

  3. Contrast of doppler radar wind field retrieval methods between VVP and advanced simple adjoint model

    NASA Astrophysics Data System (ADS)

    Kang, Hao; Wei, Ming; Tang, Liping

    2007-12-01

    The wind retrieval of single Doppler radar data is important for severe weather forecasting. The contrast of wind retrieve methods between VVP and advanced simple adjoint model has been made. The typhoon and rainstorm wind retrieval results indicate two methods have their own advantage and disadvantage because the assume conditions and processing ways are different, this work is valuable for the retrieval wind field application in research and operation.

  4. Optimization of Doppler echocardiographic velocity measurements using an automatic contour detection method.

    PubMed

    Gaillard, Emmanuel; Kadem, Lyes; Clavel, Marie-Annick; Pibarot, Philippe; Durand, Louis-Gilles

    2010-09-01

    Intra- and interobserver variability in Doppler echocardiographic velocity measurements (DEVM) is a significant issue. Indeed, imprecisions of DEVM can lead to diagnostic errors, particularly in the quantification of the severity of heart valve dysfunctions. To reduce the variability and rapidity of DEVM, we have developed an automatic method of Doppler velocity wave contour detection, based on active contour models. To validate our new method, results obtained with this method were compared with those obtained manually by two experienced echocardiographers on Doppler echocardiographic images of left ventricular outflow tract and transvalvular flow velocity signals recorded in 30 patients with aortic or mitral stenosis, 20 with normal sinus rhythm and 10 with atrial fibrillation. We focused on the three essential variables that are measured routinely using Doppler echocardiography in the clinical setting: the maximum velocity (Vmax), the mean velocity (Vmean) and the velocity-time integral (VTI). Comparison between the two methods has shown a very good agreement. A small bias value was found between the two methods (between -3.9% and 0.5% for Vmax, between -4.6% and -1.4% for Vmean and between -3.6% and 4.4% for VTI). Moreover, the computation time was short, approximately 5 s. This new method applied to DEVM could, therefore, provide a useful tool to eliminate the intra- and interobserver variabilities associated with DEVM and thereby to improve the accuracy of the diagnosis of cardiovascular disease. This automatic method could also allow the echocardiographer to realize these measurements within a much shorter period of time compared with the standard manual tracing method. From a practical point of view, the model developed can be easily implemented in a standard echocardiographic system.

  5. Transcranial measurement of blood velocities in the basal cerebral arteries using pulsed Doppler ultrasound: a method of assessing the Circle of Willis.

    PubMed

    Padayachee, T S; Kirkham, F J; Lewis, R R; Gillard, J; Hutchinson, M C; Gosling, R G

    1986-01-01

    Transcranial pulsed Doppler ultrasound and spectral analysis were used for detection of blood velocities in the basal cerebral arteries. The Doppler transducer was placed superior to the zygomatic arch and during insonation of the middle cerebral artery care was taken to obtain maximum Doppler-shift frequency signals since this allowed a small angle between the ultrasound beam and this artery. Doppler signals were obtained from the middle, anterior, and posterior cerebral arteries in 20 volunteers with the average depth of the Doppler gate at 4.9 (4.6-5.2 cm), 5.2 (4.9-5.4 cm), and 6.3 cm (6.0-6.9 cm), respectively. These measurements were in agreement with those obtained for 15 cadaver studies, in whom the distance from the proposed site of the Doppler transducer to each basal cerebral artery was measured as 4.7 +/- 0.6, 5.3 +/- 0.5, and 5.9 +/- 0.9 cm, respectively. The reproducibility of middle cerebral artery blood velocity values was tested in seven subjects and showed a variation of not more than 8% in any individual. The method was used in combination with common carotid compression to assess four patients who had occlusive extracranial carotid disease; in three the disease was more severe on one side and reversal of blood flow in the proximal ipsilateral anterior cerebral artery was demonstrated, consistent with cross flow from the contralateral side via the anterior communicating artery of the Circle of Willis. In the fourth patient augmentation of posterior cerebral artery blood velocities during common carotid compression indicated the major collateral source was from the vertebrobasilar system.

  6. Method and system to measure temperature of gases using coherent anti-stokes doppler spectroscopy

    DOEpatents

    Rhodes, Mark

    2013-12-17

    A method of measuring a temperature of a noble gas in a chamber includes providing the noble gas in the chamber. The noble gas is characterized by a pressure and a temperature. The method also includes directing a first laser beam into the chamber and directing a second laser beam into the chamber. The first laser beam is characterized by a first frequency and the second laser beam is characterized by a second frequency. The method further includes converting at least a portion of the first laser beam and the second laser beam into a coherent anti-Stokes beam, measuring a Doppler broadening of the coherent anti-Stokes beam, and computing the temperature using the Doppler broadening.

  7. Spectral radiative transfer for the 4.0- to 5.0-micron bands of CO and CO2 with mild vibrational relaxation and Doppler shift

    NASA Astrophysics Data System (ADS)

    Limbaugh, C. C.; Hiers, R. S., III; Phillips, W. J.

    1990-06-01

    This paper presents representative results for line-by-line spectral calculations of the 4.3-micron band of CO2 and the 5.0-micron band of CO in a nozzle-constrained, vibrationally relaxing combustion flow. The effects of property gradients are included, with special emphasis on the effects of the frequency shift of the radiation and absorption due to the component of velocity along the line of sight. Broadband spectra resulting from the convolution of the line-by-line results with a broadband filter are examined. It is shown that the effect of the Doppler shift is to broaden the individual spectral features with an attendant increase in the emitted radiation. Spectral detail is lost because of the broadening, and the greatest effect on the magnitude of the emission is for those lines which are optically thick.

  8. Channel Analysis and Estimation and Compensation of Doppler Shift in Underwater Acoustic Communication and Mitigation of IFI, ISI in Ultra-wideband Radio

    NASA Astrophysics Data System (ADS)

    Ahmed, Sadia

    Water occupies three fourth of earth's surface. The remaining one fourth is land. Although human habitats reside on land, there is no denying of the vital connection between land and water. The future sustainability of human species on this planet depends on wise utilization of all available resources, including that provided by the vast water world. Therefore, it is imperative to explore, understand, and define this massive, varying, and in many areas, unexplored water domain. The water domain exploration and data collection can be conducted using manned or unmanned vehicles, as allowed by the water environment. This dissertation addresses three of the key difficulties that occur during underwater acoustic communication among manned and/or unmanned vehicles and proposes feasible solutions to resolve those difficulties. The focus and the contributions of this research involve the following perspectives: 1) Representation of Underwater Acoustic Communication (UAC) Channels: Providing a comprehensive classification and representation of the underwater acoustic communication channel based on the channel environment. 2) Estimation and Compensation of Doppler Shift: Providing compensation algorithm to mitigate varying Doppler shift effect over subcarriers in UAC Orthogonal Frequency Division Multiplexing (OFDM) systems. 3) Mitigation of Inter-symbol Interference (ISI): Providing feasible solution to long delay spread causing ISI in Ultra-wideband channels.

  9. Imaging shear wave propagation for elastic measurement using OCT Doppler variance method

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Miao, Yusi; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping

    2016-03-01

    In this study, we have developed an acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) method for the visualization of the shear wave and the calculation of the shear modulus based on the OCT Doppler variance method. The vibration perpendicular to the OCT detection direction is induced by the remote acoustic radiation force (ARF) and the shear wave propagating along the OCT beam is visualized by the OCT M-scan. The homogeneous agar phantom and two-layer agar phantom are measured using the ARFOE-OCE system. The results show that the ARFOE-OCE system has the ability to measure the shear modulus beyond the OCT imaging depth. The OCT Doppler variance method, instead of the OCT Doppler phase method, is used for vibration detection without the need of high phase stability and phase wrapping correction. An M-scan instead of the B-scan for the visualization of the shear wave also simplifies the data processing.

  10. Comparative analysis of the performance of laser Doppler systems using maximum likelihood and phase increment methods

    NASA Astrophysics Data System (ADS)

    Sobolev, V. S.; Zhuravel', F. A.; Kashcheeva, G. A.

    2016-11-01

    This paper presents a comparative analysis of the errors of two alternative methods of estimating the central frequency of signals of laser Doppler systems, one of which is based on the maximum likelihood criterion and the other on the so-called pulse-pair technique. Using computer simulation, the standard deviations of the Doppler signal frequency from its true values are determined for both methods and plots of the ratios of these deviations as a measure of the accuracy gain of one of them are constructed. The results can be used by developers of appropriate systems to choose an optimal algorithm of signal processing based on a compromise between the accuracy and speed of the systems as well as the labor intensity of calculations.

  11. An in situ method for diagnosing phase shifting interferometry

    NASA Astrophysics Data System (ADS)

    Shao, J.; Ma, D.; Zhang, H.; Xie, Y.

    2016-05-01

    Current diagnosing phase shifting interferometry is a time and funds consuming process. Hence a brief and effective method is necessary to satisfy the real-time testing. In this paper, mathematical solutions for errors were deduced from the difference of intensity patterns. Based on the diversity of error distributions, an effective method for distinguishing and diagnosing the error sources is proposed and verified by an elaborative designed simulation. In the actual comparison experiment, vibration, phase-shift error and intensity fluctuation were imposed to demonstrate this method. The results showed that this method can be applied into the real-time measurement and provide an in situ diagnosing technique.

  12. Earth gravity model improvement - An alternative method for Doppler-tracked satellites

    NASA Astrophysics Data System (ADS)

    Lansard, E.; Biancale, R.

    A new method of earth gravity model improvement based on an analytical formulation of Doppler residuals is presented here in prospect of future geodetic and altimetric missions (DORIS< TOPEX/POSEIDON, ERS1). After an intermediate step of orbit improvement, disturbing forces due to gravity field mismodeling are recovered above tracking statins at satellite altitude. Some significant simulation results for Seasat and DORIS are presented.

  13. Performance Of A Doppler-Corrected MDPSK Detector

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.; Jedrey, Thomas C.; Hinedi, Sami; Agan, Martin J.

    1994-01-01

    Report presents theoretical analysis of effect of rate of change of Doppler shift of received multiple-differential-phase-shift-keyed (MDPSK) radio signal on performance of Doppler-corrected differential detector. In particular detector, phase of received signal corrected for Doppler shift by use of Doppler estimator designed to operate in presence of negligibly small Doppler rate.

  14. Volumetric vessel reconstruction method for absolute blood flow velocity measurement in Doppler OCT images

    NASA Astrophysics Data System (ADS)

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping

    2017-02-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it not only relates to the properties of the laser and the scattering particles, but also relates to the geometry of both directions of the laser beam and the flow. In this paper, focusing on the analysis of cerebral hemodynamics, we presents a method to quantify the total absolute blood flow velocity in middle cerebral artery (MCA) based on volumetric vessel reconstruction from pure DOCT images. A modified region growing segmentation method is first used to localize the MCA on successive DOCT B-scan images. Vessel skeletonization, followed by an averaging gradient angle calculation method, is then carried out to obtain Doppler angles along the entire MCA. Once the Doppler angles are determined, the absolute blood flow velocity of each position on the MCA is easily found. Given a seed point position on the MCA, our approach could achieve automatic quantification of the fully distributed absolute BFV. Based on experiments conducted using a swept-source optical coherence tomography system, our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches in the rodent brain.

  15. Direct and indirect methods for studying the energetics and dynamics of the Auger Doppler effect in femtosecond ultra-fast dissociation

    NASA Astrophysics Data System (ADS)

    Björneholm, O.

    2001-09-01

    Molecules may fragment within a few femtoseconds after core-excitation, a phenomenon known as ultra-fast dissociation. With the aim of providing an understanding of the fundamental phenomenology of the Auger Doppler effect, two methods are presented to study the energetics and dynamics, i.e., the kinetic energy release and the fragment velocities in such processes. The first, direct, method is based on the shifts in kinetic energy of the Auger electrons due to the velocity acquired by the fragment in the ultra-fast dissociation process, i.e., the Auger Doppler effect. The second, indirect, method is based on total-energy arguments in a Born-Haber cycle for excitation, dissociation, and ionization. A combination of the two methods is shown to be able to reproduce experimental spectra well. Based on this, predictions are made for other, yet unstudied, molecular systems. It is also shown that the Auger Doppler effect is not static, but will exhibit dynamic photon energy dependence. The complete energetics of the three-body dissociation of a molecule into an electron, an ion, and a neutral fragment on a time-scale of a few femtoseconds can thus be accounted for.

  16. The N2K Consortium. VI. Doppler Shifts without Templates and Three New Short-Period Planets

    NASA Astrophysics Data System (ADS)

    Johnson, John Asher; Marcy, Geoffrey W.; Fischer, Debra A.; Laughlin, Gregory; Butler, R. Paul; Henry, Gregory W.; Valenti, Jeff A.; Ford, Eric B.; Vogt, Steven S.; Wright, Jason T.

    2006-08-01

    We present a modification to the iodine cell Doppler technique that eliminates the need for an observed stellar template spectrum. For a given target star, we iterate toward a synthetic template spectrum beginning with an existing template of a similar star. We then perturb the shape of this first-guess template to match the program observation of the target star taken through an iodine cell. The elimination of a separate template observation saves valuable telescope time, a feature that is ideally suited for the quick-look strategy employed by the ``Next 2000 Stars'' (N2K) planet search program. Tests using Keck HIRES (High Resolution Echelle Spectrometer) spectra indicate that synthetic templates yield a short-term precision of 3 m s-1 and a long-term, run-to-run precision of 5 m s-1. We used this new Doppler technique to discover three new planets: a 1.50MJ planet in a 2.1375 day orbit around HD 86081; a 0.71MJ planet in circular, 26.73 day orbit around HD 224693; and a Saturn-mass planet in an 18.179 day orbit around HD 33283. The remarkably short period of HD 86081b bridges the gap between the extremely short period planets detected in the Optical Gravitational Lensing Experiment (OGLE) survey and the 16 Doppler-detected hot Jupiters (P < 15 days), which have an orbital period distribution that piles up at about 3 days. We have acquired photometric observations of two of the planetary host stars with the automated photometric telescopes at Fairborn Observatory. HD 86081 and HD 224693 both lack detectable brightness variability on their radial velocity periods, supporting planetary-reflex motion as the cause of the radial velocity variability. HD 86081 shows no evidence of planetary transits in spite of a 17.6% transit probability. We have too few photometric observations to detect or rule out transits for HD 224693. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California

  17. Interferometric method to measure the Goos-Hänchen shift.

    PubMed

    Prajapati, Chandravati; Ranganathan, Dilip; Joseph, Joby

    2013-04-01

    We propose and demonstrate an interferometric method to measure the Goos-Hänchen (GH) shift, which is based on observing the interference between p- and s-polarized beams. In our method both p- and s-polarized beams are observed simultaneously and across the entire beam profile. To demonstrate our method, we measured the GH shift of aluminum (Al) and glass at different values of the incidence angle ranging from 20° to 70°, with a helium-neon laser as source. We compared the experimental result with theoretical calculations and found a good agreement between them. Our method also enables us to measure the GH shift at any point across the entire beam profile, for arbitrary beam profiles. This is not possible with the methods currently in use. We presented the observed values for the Gaussian mode used, which enables us to find the relative shifts between the p and s components at various points on the incident profile after reflection.

  18. Determination of collisional linewidths and shifts by a convolution method

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.

    1980-01-01

    A technique is described for fitting collisional linewidths and shifts from experimental spectral data. The method involves convoluting a low-pressure reference spectrum with a Lorentz shape function and comparing the convoluted spectrum with higher pressure spectra. Several experimental examples are given. One advantage of the method is that no extra information is needed about the instrument response function or spectral modulation. In addition, the method is shown to be relatively insensitive to the presence of reflections in the sample cell.

  19. Initial daytime and nighttime SOFDI observations of thermospheric winds from Fabry-Perot Doppler shift measurements of the 630-nm OI line-shape profile

    NASA Astrophysics Data System (ADS)

    Gerrard, A. J.; Meriwether, J. W.

    2011-09-01

    In this paper we present both night and day thermospheric wind observations made with the Second-generation, Optimized, Fabry-Perot Doppler Imager (SOFDI), a novel triple-etalon Fabry-Perot interferometer (FPI) designed to make 24-h measurements of thermospheric winds from OI 630-nm emission. These results were obtained from the northeastern United States and from under the magnetic equator at Huancayo, Peru and demonstrate the current instrument capability for measurements of Doppler shifts for either night or day. We found the uncertainties in the measurements agree with expected values based upon forward modeling calculations; nighttime wind components having an uncertainty of ~20-m s-1 at 30-min resolution and daytime wind components having an uncertainty of ~70-m s-1 at 20-min resolution. The nighttime uncertainties are typically larger than those seen with traditional single-etalon FPIs, which occur at the cost of being able to achieve daytime measurements. The thermospheric wind measurements from Huancayo replicate recently reported CHAMP zonal winds and are in disagreement with current empirical wind climatologies. In addition, we discuss the incorporation of how multiple point heads in the SOFDI instrument will allow for unique studies of gravity wave activity in future measurements.

  20. Doppler shift measurement of Balmer-alpha line spectrum emission from a plasma in a negative hydrogen ion source

    SciTech Connect

    Wada, M. Doi, K.; Kisaki, M.; Nakano, H.; Tsumori, K.; Nishiura, M.

    2015-04-08

    Balmer-α light emission from the extraction region of the LHD one-third ion source has shown a characteristic Doppler broadening in the wavelength spectrum detected by a high resolution spectrometer. The spectrum resembles Gaussian distribution near the wavelength of the intensity peak, while it has an additional component of a broader foot. The measured broadening near the wavelength of the intensity peak corresponds to 0.6 eV hydrogen atom temperature. The spectrum exhibits a larger expansion in the blue wing which becomes smaller when the line of sight is tilted toward the driver region from the original observation axis parallel to the plasma grid. A surface collision simulation model predicts the possibility of hydrogen reflection at the plasma grid surface to form a broad Balmer-α light emission spectrum.

  1. Quantitative evaluation of solar wind time-shifting methods

    NASA Astrophysics Data System (ADS)

    Cameron, Taylor; Jackel, Brian

    2016-11-01

    Nine years of solar wind dynamic pressure and geosynchronous magnetic field data are used for a large-scale statistical comparison of uncertainties associated with several different algorithms for propagating solar wind measurements. The MVAB-0 scheme is best overall, performing on average a minute more accurately than a flat time-shift. We also evaluate the accuracy of these time-shifting methods as a function of solar wind magnetic field orientation. We find that all time-shifting algorithms perform significantly worse (>5 min) due to geometric effects when the solar wind magnetic field is radial (parallel or antiparallel to the Earth-Sun line). Finally, we present an empirical scheme that performs almost as well as MVAB-0 on average and slightly better than MVAB-0 for intervals with nonradial B.

  2. Doppler flowmeter

    DOEpatents

    Karplus, Henry H. B.; Raptis, Apostolos C.

    1983-01-01

    A Doppler flowmeter impulses an ultrasonic fixed-frequency signal obliquely into a slurry flowing in a pipe and a reflected signal is detected after having been scattered off of the slurry particles, whereby the shift in frequencies between the signals is proportional to the slurry velocity and hence slurry flow rate. This flowmeter filters the Doppler frequency-shift signal, compares the filtered and unfiltered shift signals in a divider to obtain a ratio, and then further compares this ratio against a preset fractional ratio. The flowmeter utilizes a voltage-to-frequency convertor to generate a pulsed signal having a determinable rate of repetition precisely proportional to the divergence of the ratios. The pulsed signal serves as the input control for a frequency-controlled low-pass filter, which provides thereby that the cutoff frequency of the filtered signal is known. The flowmeter provides a feedback control by minimizing the divergence. With the cutoff frequency and preset fractional ratio known, the slurry velocity and hence flow will also be determinable.

  3. Doppler flowmeter

    DOEpatents

    Karplus, H.H.B.; Raptis, A.C.

    1981-11-13

    A Doppler flowmeter impulses an ultrasonic fixed-frequency signal obliquely into a slurry flowing in a pipe and a reflected signal is detected after having been scattered off of the slurry particles, whereby the shift in frequencies between the signals is proportional to the slurry velocity and hence slurry flow rate. This flowmeter filters the Doppler frequency-shift signal, compares the filtered and unfiltered shift signals in a divider to obtain a ratio, and then further compares this ratio against a preset fractional ratio. The flowmeter utilizes a voltage-to-frequency convertor to generate a pulsed signal having a determinable rate of repetition precisely proportional to the divergence of the ratios. The pulsed signal serves as the input control for a frequency-controlled low-pass filter, which provides thereby that the cutoff frequency of the filtered signal is known. The flowmeter provides a feedback control by minimizing the divergence. With the cutoff frequency and preset fractional ratio known, the slurry velocity and hence flow will also be determinable.

  4. Doppler-shifted optical absorption characterization of plume-lateral expansion in laser ablation of a cerium target

    NASA Astrophysics Data System (ADS)

    Miyabe, M.; Oba, M.; Iimura, H.; Akaoka, K.; Maruyama, Y.; Ohba, H.; Tampo, M.; Wakaida, I.

    2012-12-01

    The temporal evolution of the ablation plume of cerium was investigated by absorption spectroscopy. Cerium oxide pellets were ablated in a helium atmosphere by second-harmonic radiation (532 nm) from a Nd:YAG laser at a fluence of 0.5 J/cm2. The lateral velocity (expansion velocity horizontal to the sample surface) of the plume was determined from the magnitude of the Doppler splitting of the absorption spectra measured close to the sample surface. The lateral velocities of neutral and singly ionized atoms were systematically investigated by varying several parameters, such as ambient gas pressure, ablation laser fluence, observation timing, and observation height. In addition, temporal profiles of the absorption signal were measured by detuning the probe laser frequency from the atomic resonant frequency in order to obtain the temporal variation of the velocity. On the basis of the drag force model, the slowing coefficients for atomic and ionic species in a helium atmosphere were evaluated along with lateral velocity in a vacuum. This study may help in understanding the plume dynamics effect on deposited film properties as well as optimizing experimental conditions for ablation-based spectroscopic analysis.

  5. Comparison between two methods for cardiac output measurement in propofol-anesthetized dogs: thermodilution and Doppler.

    PubMed

    Lopes, Patricia Cristina Ferro; Sousa, Marlos Gonçalves; Camacho, Aparecido Antonio; Carareto, Roberta; Nishimori, Celina T D; Santos, Paulo S P; Nunes, Newton

    2010-09-01

    To compare cardiac output (CO) measured by Doppler echocardiography and thermodilution techniques in spontaneously breathing dogs during continuous infusion of propofol. To do so, CO was obtained using the thermodilution method (CO(TD)) and Doppler evaluation of pulmonary flow (CO(DP)) and aortic flow (CO(DA)). Prospective cohort study. Eight adult dogs weighing 8.3 +/- 2.0 kg. Propofol was used for induction (7.5 +/- 1.9 mg kg(-1) IV) followed by a continuous rate infusion at 0.7 mg kg(-1) minute(-1). The animals were positioned in left lateral recumbency on an echocardiography table that allowed for positioning of the transducer at the 3rd and 5th intercostal spaces of the left hemithorax for Doppler evaluation of pulmonary and aortic valves, respectively. CO(DP) and CO(DA) were calculated from pulmonary and aortic velocity spectra, respectively. A pulmonary artery catheter was inserted via the jugular vein and positioned inside the lumen of the pulmonary artery in order to evaluate CO(TD). The first measurement of CO(TD), CO(DP) and CO(DA) was performed 30 minutes after beginning continuous infusion (T0) and then at 15-minute intervals (T15, T30, T45 and T60). Numeric data were submitted to two-way anova for repeated measurements, Pearson's correlation coefficient and Bland & Altman analysis. Data are presented as mean +/- SD. At T0, CO(TD) was lower than CO(DA). CO(DA) was higher than CO(TD) and CO(DP) at T30, T45 and T60. The difference between the CO(TD) and CO(DP), when all data were included, was -0.04 +/- 0.22 L minute(-1) and Pearson's correlation coefficient (r) was 0.86. The difference between the CO(TD) and CO(DA) was -0.87 +/- 0.54 L minute(-1) and r = 0.69. For CO(TD) and CO(DP), the difference was -0.82 +/- 0.59 L minute(-1) and r = 0.61. Doppler evaluation of pulmonary flow was a clinically acceptable method for assessing the CO in propofol-anesthetized dogs.

  6. [The improvement of the Doppler echocardiographic method for the estimation of pulmonary systolic pressure].

    PubMed

    Tamborini, G; Pepi, M; Galli, C; Alimento, M; Barbier, P; Doria, E; Maltagliati, A; Berti, M; Fiorentini, C; Guazzi, M D

    1993-04-01

    The formulas currently utilized for noninvasive evaluation of right ventricular systolic pressure (RVSP) include right ventricular-right atrial pressure gradient (RV-RAG) and right atrial pressure (RAP). The former is expressed by trans-tricuspid systolic flow velocity, the latter is generally assumed. We recently observed that ultrasound estimation of RAP through inferior vena cava collapsibility index (CI) may help in the choice of the more appropriate formula for the evaluation of RVSP. However, these traditional methods (method A:RV-RAG + 10; method B:RV-RAG x 1.1 + 14) have limitations, particularly when RAP is low. The present study was undertaken to improve noninvasive estimation of RVSP through new formulas based on CI prediction of RAP. One hundred and four patients, in whom tricuspid regurgitation was adequately documented with CW-Doppler, were included in this study. They were classified into 3 groups: Group 1 with CI > 45%, Group 2 with CI < or = 35%, Group 3 with CI 35-45%. RVSP was evaluated by 3 different methods: A, B, and C. Method C was based on CI, assigning 6, 16, or 9 mmHg to RAP (respectively, the mean values in the 3 groups of our previous study). Results indicate that method C improves noninvasive estimation of RVSP in Group 1 and Group 2, with respect to other methods, with reduction of the SEE and of the mean difference of the t-test between hemodynamic and echographic values. In Group 3, Doppler estimation by method A and C, and catheter measurements are comparable, whereas method B significantly overestimates the actual value.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Potential accuracy of methods of laser Doppler anemometry in the single-particle scattering mode

    NASA Astrophysics Data System (ADS)

    Sobolev, V. S.; Kashcheeva, G. A.

    2017-05-01

    Potential accuracy of methods of laser Doppler anemometry is determined for the singleparticle scattering mode where the only disturbing factor is shot noise generated by the optical signal itself. The problem is solved by means of computer simulations with the maximum likelihood method. The initial parameters of simulations are chosen to be the number of real or virtual interference fringes in the measurement volume of the anemometer, the signal discretization frequency, and some typical values of the signal/shot noise ratio. The parameters to be estimated are the Doppler frequency as the basic parameter carrying information about the process velocity, the signal amplitude containing information about the size and concentration of scattering particles, and the instant when the particles arrive at the center of the measurement volume of the anemometer, which is needed for reconstruction of the examined flow velocity as a function of time. The estimates obtained in this study show that shot noise produces a minor effect (0.004-0.04%) on the frequency determination accuracy in the entire range of chosen values of the initial parameters. For the signal amplitude and the instant when the particles arrive at the center of the measurement volume of the anemometer, the errors induced by shot noise are in the interval of 0.2-3.5%; if the number of interference fringes is sufficiently large (more than 20), the errors do not exceed 0.2% regardless of the shot noise level.

  8. Doppler echocardiographic measurement of cardiac output using the mitral orifice method.

    PubMed Central

    Zhang, Y; Nitter-Hauge, S; Ihlen, H; Myhre, E

    1985-01-01

    Cardiac output was determined in 20 patients with various cardiac conditions by measuring the cross sectional area of the mitral orifice by echocardiography and the transmitral flow by the Doppler technique. Cardiac output was calculated by multiplying the corrected mitral orifice area by the maximum diastolic velocity integral recorded by the pulsed mode. The results were compared with that obtained by the Fick method. The correlation for cardiac output by the two techniques was high in the whole group, particularly in patients without mitral regurgitation. There was also a good correlation for stroke volume determined by the two methods. Cardiac output was significantly overestimated by the continuous mode and in patients with mitral regurgitation. These results show that the mitral orifice method provides a new and reliable approach to the non-invasive measurement of cardiac output. Images PMID:3966956

  9. New method of laser doppler flowmetry signal processing in pulp vitality evaluation after teeth cosmetic treatment

    NASA Astrophysics Data System (ADS)

    Todea, Carmen; Sarpe, Amalia; Vitez, Bogdan; Draganescu, Gheorghe

    2014-01-01

    The present study aims to assess the pulp vitality before and after different tooth bleaching procedures, in order to determine the changes in pulpal microcirculation and whether they are reversible or not. Twelve volunteers were included in this study. For each volunteer, the pulpal blood flow of maxillary teeth was assessed prior to treatment using Laser Doppler Flowmetry. The "in office" bleaching technique was used 6 anterior teeth, with two different gels, a conventional one chemically activated (Group I 3teeth) and another one activated using Nd:YAG laser (Group II-3 teeth). The bleaching agents were applied on counterpart teeth and, after obtaining a esthetic results for each tooth, the pulpal blood flow was assessed using Laser Doppler Flowmetry immediately after treatment and then after one day and one week. All data were collected and statistically analyzed. Immediately after treatment, the assessment showed an increase of pulpal blood flow, for both study groups, but higher in Group I as compared to Group II (p<0.005). The subsequent assessments showed a reduction of the pulpal blood flow with non - significant differences between the study groups (p<0.005).The results suggest that the tooth bleaching procedurere presents a safe treatment method, which does not lead to irreversible damage to the dental pulp, when used correctly.

  10. Device and method for noresonantly Raman shifting ultraviolet radiation

    DOEpatents

    Loree, Thomas R.; Barker, Dean L.

    1979-01-01

    A device and method for nonresonantly Raman shifting broad band uv excimer laser radiation, which enhances preselected Stokes signals by varying the pressure of the Raman scattering medium, the focal interaction length of the incident radiation within the Raman scattering medium and its power density level. Gaseous molecular H.sub.2, D.sub.2, CH.sub.4 (methane), HD and mixes thereof, and liquid N.sub.2 are used as the Raman scattering medium to frequency shift the outputs of high power KrF and ArF lasers. A cable fed discharge with an unstable resonant cavity configuration is utilized to produce the output laser power levels required for operation.

  11. Development of ultrasonic pulse-train Doppler method for velocity profile and flowrate measurement

    NASA Astrophysics Data System (ADS)

    Wada, Sanehiro; Furuichi, Noriyuki; Shimada, Takashi

    2016-11-01

    We present a novel technique for measuring the velocity profile and flowrate in a pipe. This method, named the ultrasonic pulse-train Doppler method (UPTD), has the advantages of expanding the velocity range and setting the smaller measurement volume with low calculation and instrument costs in comparison with the conventional ultrasonic pulse Doppler method. The conventional method has limited measurement of the velocity range due to the Nyquist sampling theorem. In addition, previous reports indicate that a smaller measurement volume increases the accuracy of the measurement. In consideration of the application of the conventional method to actual flow fields, such as industrial facilities and power plants, the issues of velocity range and measurement volume are important. The UPTD algorithm, which exploits two pulses of ultrasound with a short interval and envelope detection, is proposed. Velocity profiles calculated by this algorithm were examined through simulations and excellent agreement was found in all cases. The influence of the signal-to-noise ratio (SNR) on the algorithm was also estimated. The result indicates that UPTD can measure velocity profiles with high accuracy, even under a small SNR. Experimental measurements were conducted and the results were evaluated at the national standard calibration facility of water flowrate in Japan. Every detected signal forms a set of two pulses and the enveloped line can be observed clearly. The results show that UPTD can measure the velocity profiles over the pipe diameter, even if the velocities exceed the measurable velocity range. The measured flowrates were under 0.6% and the standard deviations for all flowrate conditions were within  ±0.38%, which is the uncertainty of the flowrate measurement estimated in the previous report. In conclusion, UPTD provides superior accuracy and expansion of the velocity range.

  12. Application of the Fractional Fourier Transform and S-Method in Doppler Radar Tomography

    DTIC Science & Technology

    2010-08-01

    Division Defence Science and Technology Organisation DSTO–RR–0357 ABSTRACT Doppler radar tomography is a technique which uses only the Doppler profiles of a...rotating target as projections in two-dimensional radar tomography to obtain an image of the target. The work demonstrates, for the first time, the...Doppler Radar Tomography Executive Summary Radar tomography is the process of constructing a two-dimensional image from one- dimensional projections

  13. Waveform design and Doppler sensitivity analysis for nonlinear FM chirp pulses

    NASA Astrophysics Data System (ADS)

    Johnston, J. A.; Fairhead, A. C.

    1986-04-01

    The use of pulse compression to obtain simultaneous long-range detection and good range resolution is described. The types of modulation that can be used to obtain pulse compression are outlined with particular emphasis on their performance under Doppler shift. It is shown that nonlinear frequency-modulated (FM) signals are capable of providing low range-sidelobes while being compressed using a matched filter. A design method for nonlinear FM signals based on window functions is outlined. Simulation results for pulse compression of nonlinear FM signals based on four different window functions with Doppler shift are presented. The results are used to define the effects of Doppler shift on the pulse compression. An analysis is presented, and interpreted pictorially, that explains the effects of Doppler shift on the pulse compression. The analysis is also extended to explain the better Doppler performance of hybrid FM pulse compression systems.

  14. Information-Driven Blind Doppler Shift Estimation and Compensation Methods for Underwater Wireless Sensor Networks

    DTIC Science & Technology

    2015-08-24

    distributed underwater sensor networks. We also extensively investigated optimal sensor placement in a tree structured multi-hop hierarchical network...We focused on a symmetric tree like multi-hop hierarchical routing topology, which can 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...underwater sensor networks. We also extensively investigated optimal sensor placement in a tree structured multi-hop hierarchical network. We focused on

  15. [A simplified method of continuous-wave Doppler noninvasive assessment of ventricular relaxation in mitral insufficiency].

    PubMed

    García Lledó, J A; Moya Mur, J L; Balaguer Recena, J; Novo García, E; Correa Gorospe, C; Jorge, P; Barea Navarro, R; Boquete, L

    1998-08-01

    The minimum value of dP/dT is a parameter of diastolic function that can be estimated noninvasively by analyzing the profile of velocity of the mitral regurgitant jet, recorded by continuous-wave Doppler. This estimation requires a complex analysis of the curves that impedes its practical use. Our objective was to validate a simplified method to estimate noninvasively the value of dP/dTmin when mitral regurgitation exists. We calculated the pendient of the profile of velocity of the curve of mitral regurgitation during its deceleration, between 3 and 1.5 m/s, an interval that defines a difference in pressure using the formula delta p = (4v2(1) - 4v2(2)). We divided this interval by the time needed by the jet to decelerate from 3 to 1.5 m/s, obtaining the rate of pressure decay, in mmHg/s. We provoked mitral regurgitation in five pigs and registered dP/dT and the curve velocity of mitral regurgitation simultaneously, by micromanometer-tipped catheter and continuous-wave Doppler, respectively. The rate of pressure decay was calculated on the mitral regurgitation curve. We obtained 29 simultaneous registers. The coefficient for the correlationship between dP/dT and the rate of pressure decay was with an r value of 0.62 (p < 0.0001). The rate of pressure decay underestimated systematically the value of dP/dT. Intra and interobserver variability of TDP was 9 and 11%, respectively. This study validates a simplified method to estimate dP/dT noninvasively, with acceptable correlation with invasive measurements and adequate reproducibility.

  16. Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight.

    PubMed

    Hiryu, Shizuko; Katsura, Koji; Lin, Liang-Kong; Riquimaroux, Hiroshi; Watanabe, Yoshiaki

    2005-12-01

    Biosonar behavior was examined in Taiwanese leaf-nosed bats (Hipposideros terasensis; CF-FM bats) during flight. Echolocation sounds were recorded using a telemetry microphone mounted on the bat's head. Flight speed and three-dimensional trajectory of the bat were reconstructed from images taken with a dual high-speed video camera system. Bats were observed to change the intensity and emission rate of pulses depending on the distance from the landing site. Frequencies of the dominant second harmonic constant frequency component (CF2) of calls estimated from the bats' flight speed agreed strongly with observed values. Taiwanese leaf-nosed bats changed CF2 frequencies depending on flight speed, which caused the CF2 frequencies of the Doppler-shifted echoes to remain constant. Pulse frequencies were also estimated using echoes returning directly ahead of the bat and from its sides for two different flight conditions: landing and U-turn. Bats in flight may periodically alter their attended angles from the front to the side when emitting echolocation pulses.

  17. A new Doppler method of assessing left ventricular ejection force in chronic congestive heart failure.

    PubMed

    Isaaz, K; Ethevenot, G; Admant, P; Brembilla, B; Pernot, C

    1989-07-01

    A noninvasive method using Doppler echocardiography was developed to determine the force exerted by the left ventricle in accelerating the blood into the aorta. The value of this new Doppler ejection index in the assessment of left ventricular (LV) performance was tested in 36 patients with chronic congestive heart disease undergoing cardiac catheterization and in 11 age-matched normal control subjects. The 36 patients were subgrouped into 3 groups based on angiographic ejection fraction (LV ejection fraction greater than 60, 41 to 60 and less than or equal to 40%). According to Newton's second law of motion (force = mass X acceleration), the LV ejection force was derived from the product of the mass of blood ejected during the acceleration time with the mean acceleration undergone during that time. In patients with LV ejection fraction less than or equal to 40%, LV ejection force, peak aortic velocity and mean acceleration were severely depressed when compared with the other groups (p less than 0.001). In patients with LV ejection fraction of 41 to 60%, LV ejection force was significantly reduced (22 +/- 3 kdynes) when compared with normal subjects (29 +/- 5 kdynes, p = 0.002) and with patients with LV ejection fraction greater than 60% (29 +/- 7 kdynes, p = 0.009); peak velocity and mean acceleration did not differ between these 3 groups. The LV ejection force showed a good linear correlation with LV ejection fraction (r = 0.86) and a better power fit (r = 0.91). Peak aortic blood velocity and mean acceleration showed less good linear correlations with LV ejection fraction (r = 0.73 and r = 0.66, respectively). The mass of blood ejected during the acceleration time also showed a weak linear correlation with LV ejection fraction (r = 0.64). An LV ejection force less than 20 kdynes was associated with a depressed LV performance (LV ejection fraction less than 50%) with 91% sensitivity and 90% specificity. Thus, these findings suggest that LV ejection force is a new

  18. Method of assessing blood oxygenation in microcirculation vessels based on Doppler approach

    NASA Astrophysics Data System (ADS)

    Sokolov, Vladimir G.; Korsi, Larissa V.; Egorov, Sergei Y.

    2001-06-01

    Combination of laser Doppler flowmetry and pulse oximetry methods allows for the direct assessment of oxygen supply to tissues at the microcirculatory level, namely, in that part of the vascular network where the transcapillary exchange takes place that is responsible for saturating tissues with oxygen. The microcirculation system comprises arterial and venous microvascular parts that differ in blood flow velocities. Frequency separation of the photodetector signal components related to different velocity ranges makes possible to distinguish the hemodynamic processes in these two parts of the microvascular system. Moreover, numerous studies of collective oscillatory processes in hemodynamics reveal that cardio-oscillations are more pronounced in arterioles, whereas venous hemodynamics is mostly influenced by the breath rhythm. Taking account of the above phenomena allows developing a signal-filtration system for separate characterization of blood-oxygenation states in arterial and venous blood flows. Light absorbance in the skin depends on both light wavelength and blood-oxygenation level. Processing the signals obtained with a two-channel dual-wavelength (630 and 1115 nm) laser Doppler flowmeter provides information about blood oxygenation levels at the entrance and exit of the microvascular system and allows assessing the specific levels of oxygenation levels at the entrance and exit of the microvascular system and allows assessing the specific levels of oxygen consumption in tissues. In particular, this approach allows revealing pathogenic processes resulting from hyper- and hypo-oxygenation in tissues. For instance, rapidly growing malignant tumors are characterized by intensive metabolism, rapid formation of capillaries, and active transcapillary oxygen exchange that results in higher level of oxygen diffusion into tissue, while the level of oxygen is lowered in the microvascular veins.

  19. Doppler Lidar (DL) Handbook

    SciTech Connect

    Newsom, RK

    2012-02-13

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  20. Advanced Doppler tracking experiments

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1989-01-01

    The Doppler tracking method is currently the only technique available for broadband gravitational wave searches in the approx. 10(exp -4) to 10(exp -1) Hz low frequency band. A brief review is given of the Doppler method, a discussion of the main noise sources, and a review of experience with current spacecraft and the prospects for sensitivity improvements in an advanced Doppler tracking experiment.

  1. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method.

    PubMed

    Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping

    2015-05-01

    We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.

  2. A comparison of three retrieval methods with single Doppler radar data

    NASA Astrophysics Data System (ADS)

    Zhou, Shenghui; Wei, Ming; Gao, Li; Wang, Hao; Zeng, Qingfeng; Yang, Kun

    2011-11-01

    In single Doppler radar wind retrieval technique there are three methods proposed in recently years, which is VAP, VPP and SVVP method. Three methods were employed to retrieve wind field with the purpose to find out which one is more suitable in practice according their accuracy by using synthetic data and real data. When tests applied with uniform data, the orders of magnitude for relative error of radial velocity is 10-13 for SVVP, much lower than that of VAP and VPP which both are 10-4. Furthermore, the results under condition of wind direction unchanged and wind velocity varied linearity with altitude are 10-8, 10-3, 10-3 for SVVP, VPP and VAP, respectively. In real wind field of typhoon "Pearl", the authenticity of surrounding wind and wind shear retrieved by SVVP and VPP is better than VAP, the deviation of simulation would be increased at some points missing data. Relative errors of radial velocity achieved by VAP, VPP and SVVP are 7.02, 5.78 and 3.1 respectively. It indicated that SVVP method's performance is better than that of other two and suitable in practical applications.

  3. A new method for quantification of regurgitant flow rate using color Doppler flow imaging of the flow convergence region proximal to a discrete orifice. An in vitro study.

    PubMed

    Recusani, F; Bargiggia, G S; Yoganathan, A P; Raisaro, A; Valdes-Cruz, L M; Sung, H W; Bertucci, C; Gallati, M; Moises, V A; Simpson, I A

    1991-02-01

    While color Doppler flow mapping has yielded a quick and relatively sensitive method for visualizing the turbulent jets generated in valvular insufficiency, quantification of the degree of valvular insufficiency has been limited by the dependence of visualization of turbulent jets on hemodynamic as well as instrument-related factors. Color Doppler flow imaging, however, does have the capability of reliably showing the spatial relations of laminar flows. An area where flow accelerates proximal to a regurgitant orifice is commonly visualized on the left ventricular side of a mitral regurgitant orifice, especially when imaging is performed with high gain and a low pulse repetition frequency. This area of flow convergence, where the flow stream narrows symmetrically, can be quantified because velocity and the flow cross-sectional area change in inverse proportion along streamlines centered at the orifice. In this study, a gravity-driven constant-flow system with five sharp-edged diaphragm orifices (ranging from 2.9 to 12 mm in diameter) was imaged both parallel and perpendicular to the direction of flow through the orifice. Color Doppler flow images were produced by zero shifting so that the abrupt change in display color occurred at different velocities. This "aliasing boundary" with a known velocity and a measurable radial distance from the center of the orifice was used to determine an isovelocity hemisphere such that flow rate through the orifice was calculated as 2 pi r2 x Vr, where r is the radial distance from the center of the orifice to the color change and Vr is the velocity at which the color change was noted. Using Vr values from 54 to 14 cm/sec obtained with a 3.75-MHz transducer and from 75 to 18 cm/sec obtained with a 2.5-MHz transducer, we calculated flow rates and found them to correlate with measured flow rates (r = 0.94-0.99). The slope of the regression line was closest to unity when the lowest Vr and the correspondingly largest r were used in the

  4. Coincidence recoil-distance Doppler-shift lifetime measurements in {sup 129,130}Ba with EUROBALL Ge cluster detectors

    SciTech Connect

    Stuch, O.; Jessen, K.; Chakrawarthy, R. S.; Dewald, A.; Kuehn, R.; Kruecken, R.; Petkov, P.; Peusquens, R.; Tiesler, H.; Weil, D.

    2000-04-01

    Picosecond lifetimes in {sup 129,130}Ba were determined using the recoil distance technique with a plunger device coupled to an array of EUROBALL-cluster-detectors for the first time. The differential decay curve method in coincidence mode was employed to derive lifetimes for six states in {sup 129}Ba and twelve states in {sup 130}Ba. The resulting B(E2) values are compared with triaxial rotor plus particle calculations for {sup 129}Ba and, in {sup 130}Ba, to the predictions of the general collective model, the interacting boson model, as well as to the symmetric and asymmetric rotor models. In {sup 130}Ba, the transitional quadrupole moment in the ground state band is remarkably constant before and after the backbend. With this data the two-quasiparticle negative parity band in {sup 130}Ba was confirmed to be based on a {pi}(h{sub 11/2}(multiply-in-circle sign)d{sub 5/2}/g{sub 7/2}) configuration. (c) 2000 The American Physical Society.

  5. A novel INS and Doppler sensors calibration method for long range underwater vehicle navigation.

    PubMed

    Tang, Kanghua; Wang, Jinling; Li, Wanli; Wu, Wenqi

    2013-10-28

    Since the drifts of Inertial Navigation System (INS) solutions are inevitable and also grow over time, a Doppler Velocity Log (DVL) is used to aid the INS to restrain its error growth. Therefore, INS/DVL integration is a common approach for Autonomous Underwater Vehicle (AUV) navigation. The parameters including the scale factor of DVL and misalignments between INS and DVL are key factors which limit the accuracy of the INS/DVL integration. In this paper, a novel parameter calibration method is proposed. An iterative implementation of the method is designed to reduce the error caused by INS initial alignment. Furthermore, a simplified INS/DVL integration scheme is employed. The proposed method is evaluated with both river trial and sea trial data sets. Using 0.03°/h(1σ) ring laser gyroscopes, 5 × 10-5 g(1σ) quartz accelerometers and DVL with accuracy 0.5% V ± 0.5 cm/s, INS/DVL integrated navigation can reach an accuracy of about 1‰ of distance travelled (CEP) in a river trial and 2‰ of distance travelled (CEP) in a sea trial.

  6. A Novel INS and Doppler Sensors Calibration Method for Long Range Underwater Vehicle Navigation

    PubMed Central

    Tang, Kanghua; Wang, Jinling; Li, Wanli; Wu, Wenqi

    2013-01-01

    Since the drifts of Inertial Navigation System (INS) solutions are inevitable and also grow over time, a Doppler Velocity Log (DVL) is used to aid the INS to restrain its error growth. Therefore, INS/DVL integration is a common approach for Autonomous Underwater Vehicle (AUV) navigation. The parameters including the scale factor of DVL and misalignments between INS and DVL are key factors which limit the accuracy of the INS/DVL integration. In this paper, a novel parameter calibration method is proposed. An iterative implementation of the method is designed to reduce the error caused by INS initial alignment. Furthermore, a simplified INS/DVL integration scheme is employed. The proposed method is evaluated with both river trial and sea trial data sets. Using 0.03°/h(1σ) ring laser gyroscopes, 5 × 10−5 g(1σ) quartz accelerometers and DVL with accuracy 0.5% V ± 0.5 cm/s, INS/DVL integrated navigation can reach an accuracy of about 1‰ of distance travelled (CEP) in a river trial and 2‰ of distance travelled (CEP) in a sea trial. PMID:24169542

  7. SYNTHESIZED SPECTRA OF OPTICALLY THIN EMISSION LINES PRODUCED BY THE BIFROST STELLAR ATMOSPHERE CODE, INCLUDING NONEQUILIBRIUM IONIZATION EFFECTS: A STUDY OF THE INTENSITY, NONTHERMAL LINE WIDTHS, AND DOPPLER SHIFTS

    SciTech Connect

    Olluri, K.; Gudiksen, B. V.; Hansteen, V. H.; Pontieu, B. De

    2015-03-20

    In recent years realistic 3D numerical models of the solar atmosphere have become available. The models attempt to recreate the solar atmosphere and mimic observations in the best way, in order to make it possible to couple complicated observations with physical properties such as the temperatures, densities, velocities, and magnetic fields. We here present a study of synthetic spectra created using the Bifrost code in order to assess how well they fit with previously taken solar data. A study of the synthetic intensity, nonthermal line widths, Doppler shifts, and correlations between any two of these three components of the spectra first assuming statistical equilibrium is made, followed by a report on some of the effects nonequilibrium ionization will have on the synthesized spectra. We find that the synthetic intensities compare well with the observations. The synthetic observations depend on the assumed resolution and point-spread function (PSF) of the instrument, and we find a large effect on the results, especially for intensity and nonthermal line width. The Doppler shifts produce the reported persistent redshifts for the transition region (TR) lines and blueshifts for the upper TR and corona lines. The nonthermal line widths reproduce the well-known turnoff point around (2–3) × 10{sup 5} K, but with much lower values than those observed. The nonthermal line widths tend to increase with decreasing assumed instrumental resolution, also when nonequilibrium ionization is included. Correlations between the nonthermal line width of any two TR line studies as reported by Chae et al. are reproduced, while the correlations of intensity to line width are reproduced only after applying a PSF to the data. Doppler shift correlations reported by Doschek for the TR lines and correlations of Doppler shift to nonthermal line width of the Fe xii{sub 19.5} line reported by Doschek et al. are reproduced.

  8. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar.

    PubMed

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-20

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method.

  9. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar

    PubMed Central

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-01

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835

  10. Advances in Doppler OCT

    PubMed Central

    Liu, Gangjun; Chen, Zhongping

    2014-01-01

    We review the principle and some recent applications of Doppler optical coherence tomography (OCT). The advances of the phase-resolved Doppler OCT method are described. Functional OCT algorithms which are based on an extension of the phase-resolved scheme are also introduced. Recent applications of Doppler OCT for quantification of flow, imaging of microvasculature and vocal fold vibration, and optical coherence elastography are briefly discussed. PMID:24443649

  11. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.; hide

    2016-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by

  12. Reliability of Doppler and stethoscope methods of determining systolic blood pressures: considerations for calculating an ankle-brachial index.

    PubMed

    Chesbro, Steven B; Asongwed, Elmira T; Brown, Jamesha; John, Emmanuel B

    2011-01-01

    The purposes of this study were to: (1) identify the interrater and intrarater reliability of systolic blood pressures using a stethoscope and Doppler to determine an ankle-brachial index (ABI), and (2) to determine the correlation between the 2 methods. Peripheral arterial disease (PAD) affects approximately 8 to 12 million people in the United States, and nearly half of those with this disease are asymptomatic. Early detection and prompt treatment of PAD will improve health outcomes. It is important that clinicians perform tests that determine the presence of PAD. Two individual raters trained in ABI procedure measured the systolic blood pressures of 20 individuals' upper and lower extremities. Standard ABI measurement protocols were observed. Raters individually recorded the systolic blood pressures of each extremity using a stethoscope and a Doppler, for a total of 640 independent measures. Interrater reliability of Doppler measurements to determine SBP at the ankle was very strong (intraclass correlation coefficient [ICC], 0.93-0.99) compared to moderate to strong reliability using a stethoscope (ICC, 0.64-0.87). Agreement between the 2 devices to determine SBP was moderate to very weak (ICC, 0.13-0.61). Comparisons of the use of Doppler and stethoscope to determine ABI showed weak to very weak intrarater correlation (ICC, 0.17-0.35). Linear regression analysis of the 2 methods to determine ABI showed positive but weak to very weak correlations (r2 = .013, P = .184). A Doppler ultrasound is recommended over a stethoscope for accuracy in systolic pressure readings for ABI measurements.

  13. Efficient method for detecting and tracking rainfall clouds in non-Doppler radar images

    NASA Astrophysics Data System (ADS)

    Raaf, Ouarda; El Hamid Adane, Abd

    2014-01-01

    The precipitation echoes collected by non-Doppler meteorological radar are identified and tracked in the covered area. For that a sequence of images, recorded every 5 min by S-band radar in Bordeaux and previously filtered to remove the ground clutter, is considered. In these images, the radar echoes are labeled as precipitation cells and processed using the method of sum and difference histograms of gray levels. Textural parameters are extracted from these images by slicing an analysis window of 5×5 pixels. Energy and homogeneity are found to be the best discriminating parameters because each of them clearly assigns the radar echoes to either stratiform or cumuliform clouds. The convective cells mainly differ from the stratiform ones by their texture and the high values of their reflectivity factor. To account for the downpour development, the time variations of barycenter, surface area, and reflectivity factor have been analyzed for the precipitation cells in the sequence of radar images under consideration. In the case of cumuliform cells having reflectivity factor higher than 40 dBZ, the expansion of their surface area and their progress in the observed region constitute important information about the clouds leading to weather extremes.

  14. Method and apparatus for executing a shift in a hybrid transmission

    DOEpatents

    Gupta, Pinaki; Kaminsky, Lawrence A; Demirovic, Besim

    2013-09-03

    A method for executing a transmission shift in a hybrid transmission including first and second electric machines includes executing a shift-through-neutral sequence from an initial transmission state to a target transmission state including executing an intermediate shift to neutral. Upon detecting a change in an output torque request while executing the shift-through-neutral sequence, possible recovery shift paths are identified. Available ones of the possible recovery shift paths are identified and a shift cost for each said available recovery shift path is evaluated. The available recovery shift path having a minimum shift cost is selected as a preferred recovery shift path and is executed to achieve a non-neutral transmission state.

  15. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar.

    PubMed

    Smalikho, I N; Banakh, V A; Holzäpfel, F; Rahm, S

    2015-09-21

    The method of radial velocities (RV) is applied to estimate aircraft wake vortex parameters from measurements conducted with pulsed coherent Doppler lidar (PCDL). Operations of the Stream Line lidar and the 2-µm PCDL are simulated numerically to analyze the accuracy of the estimated wake vortex parameters with the RV method. The RV method is also used to estimate wake vortex trajectories and circulation from lidar measurements at Tomsk and Munich airports. The method of velocity envelopes and the RV method are compared employing data gathered with the 2-µm PCDL. The domain of applicability of the RV method is determined.

  16. Phase determination method in statistical generalized phase-shifting digital holography.

    PubMed

    Yoshikawa, Nobukazu

    2013-03-20

    A simple estimation method of the relative phase shift for generalized phase-shifting digital holography based on a statistical method is proposed. This method consists of a selection procedure of an optimum cost function and a simple root-finding procedure. The value and sign of the relative phase shift are determined using the coefficient and the solution of the optimum cost function. The complex field of an object wave is obtained using the estimated relative phase shift. The proposed method lifts the typical restriction on the range of the phase shift due to the phase ambiguity problem. Computer simulations and optical experiments are performed to verify the proposed method.

  17. A proposed experimental method for interpreting Doppler effect measurements and determining their precision

    NASA Technical Reports Server (NTRS)

    Klann, P. G.

    1973-01-01

    The principal problem in the measurement of the Doppler reactivity effect is separating it from the thermal reactivity effects of the expansion of the heated sample. It is shown in this proposal that the thermal effects of sample expansion can be experimentally determined by making additional measurements with porous samples having the same mass and/or volume as the primary sample. By combining these results with independent measurements of the linear temperature coefficient and the computed temperature dependence of the Doppler coefficient the magnitude of the Doppler coefficient may be extracted from the data. These addiational measurements are also useful to experimentally determine the precision of the reactivity oscillator technique used to measure the reactivity effects of the heated sample.

  18. A Method for the Automatic Detection of Insect Clutter in Doppler-Radar Returns.

    SciTech Connect

    Luke,E.; Kollias, P.; Johnson, K.

    2006-06-12

    The accurate detection and removal of insect clutter from millimeter wavelength cloud radar (MMCR) returns is of high importance to boundary layer cloud research (e.g., Geerts et al., 2005). When only radar Doppler moments are available, it is difficult to produce a reliable screening of insect clutter from cloud returns because their distributions overlap. Hence, screening of MMCR insect clutter has historically involved a laborious manual process of cross-referencing radar moments against measurements from other collocated instruments, such as lidar. Our study looks beyond traditional radar moments to ask whether analysis of recorded Doppler spectra can serve as the basis for reliable, automatic insect clutter screening. We focus on the MMCR operated by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program at its Southern Great Plains (SGP) facility in Oklahoma. Here, archiving of full Doppler spectra began in September 2003, and during the warmer months, a pronounced insect presence regularly introduces clutter into boundary layer returns.

  19. Evaluation of a fractional filter-based receive beamforming method for low-cost ultrasound color Doppler imaging

    NASA Astrophysics Data System (ADS)

    Yang, Hana; Kang, Jeeun; Chang, Jin Ho; Yoo, Yangmo

    2012-03-01

    In medical ultrasound imaging, dynamic receive beamforming has been used for improving signal-to-noise ratio (SNR) and spatial resolution. For low-cost portable ultrasound imaging systems, a fractional filter-based receive beamforming (FFRB) method was previously proposed to reduce the hardware complexity compared to conventional interpolation filter-based receive beamforming methods (IFRB). While this new beamforming method substantially reduces the hardware complexity, it yields the nonlinear phase response for high frequencies due to the limited length of fractional filter coefficients, leading to the bias on flow estimation in ultrasound color Doppler imaging. In this paper, to evaluate the FFRB method for ultrasound color Doppler imaging, the Field II simulation and string phantom experiments were conducted. In Field II simulation, the radio-frequency (RF) data were generated by assuming a 7.5-MHz linear array probe with the transmit frequency of 6 MHz, the ensemble size of 8, and the sampling frequencies of 20 MHz. In string phantom experiments, the RF channel data were obtained with a commercial SonixTouch ultrasound scanner equipped with a research package (Ultrasonix Corp., Vancouver, BC, Canada; a 5-MHz linear array connected to a SonixDAQ parallel system. The ensemble size and the sampling frequency were set to 10 and 20 MHz, respectively. For the Field II simulation and string phantom experiments, only 1.2% and 2.3 % in color Doppler estimation error ratio was observed with mean and standard deviation along the lateral direction. This result indicates that the proposed FFRB method could be utilized for a low-cost ultrasound color Doppler imaging system with lowered hardware complexity and minimized phase errors.

  20. Frequency Shift During Mass Properties Testing Using Compound Pendulum Method

    NASA Technical Reports Server (NTRS)

    Wolfe, David; Regan, Chris

    2012-01-01

    During mass properties testing on the X-48B Blended Wing Body aircraft (The Boeing Company, Chicago, Illinois) at the National Aeronautics and Space Administration Dryden Flight Research Center, Edwards, California, large inertia measurement errors were observed in results from compound pendulum swings when compared to analytical models. By comparing periods of oscillations as measured from an average over the test period versus the period of each oscillation, it was noticed that the frequency of oscillation was shifting significantly throughout the test. This phenomenon was only noticed during compound pendulum swings, and not during bifilar pendulum swings. The frequency shift was only visible upon extensive data analysis of the frequency for each oscillation, and did not appear in averaged frequency data over the test period. Multiple test articles, test techniques, and hardware setups were used in attempts to eliminate or identify the cause of the frequency shift. Plotting the frequency of oscillation revealed a region of minimal shift that corresponded to a larger amplitude range. This region of minimal shift provided the most accurate results compared to a known test article; however, the amplitudes that produce accurate inertia measurements are amplitudes larger than those generally accepted in mass properties testing. This paper examines two case studies of the frequency shift, using mass properties testing performed on a dummy test article, and on the X-48B Blended Wing Body aircraft.

  1. The Cognitive Doppler.

    ERIC Educational Resources Information Center

    Kozoil, Micah E.

    1989-01-01

    Discusses the learning needs of students in the concrete operational stage in mathematics. Identifies the phenomenon of reduced cognitive performance in an out-of-class environment as the "Cognitive Doppler." Suggests methods of reducing the pronounced effects of the Cognitive Doppler by capitalizing on the students' ability to memorize…

  2. Doppler ultrasound monitoring technology.

    PubMed

    Docker, M F

    1993-03-01

    Developments in the signal processing of Doppler ultrasound used for the detection of fetal heart rate (FHR) have improved the operation of cardiotocographs. These developments are reviewed and the advantages and disadvantages of the various Doppler and signal processing methods are compared.

  3. The Cognitive Doppler.

    ERIC Educational Resources Information Center

    Kozoil, Micah E.

    1989-01-01

    Discusses the learning needs of students in the concrete operational stage in mathematics. Identifies the phenomenon of reduced cognitive performance in an out-of-class environment as the "Cognitive Doppler." Suggests methods of reducing the pronounced effects of the Cognitive Doppler by capitalizing on the students' ability to memorize…

  4. Calibration of echocardiographic tissue doppler velocity, using simple universally applicable methods

    NASA Astrophysics Data System (ADS)

    Dhutia, Niti M.; Zolgharni, Massoud; Willson, Keith; Cole, Graham; Nowbar, Alexandra N.; Manisty, Charlotte H.; Francis, Darrel P.

    2014-03-01

    Some of the challenges with tissue Doppler measurement include: apparent inconsistency between manufacturers, uncertainty over which part of the trace to make measurements and a lack of calibration of measurements. We develop and test tools to solve these problems in echocardiography laboratories. We designed and constructed an actuator and phantom setup to produce automatic reproducible motion, and used it to compare velocities measured using 3 echocardiographic modalities: M-mode, speckle tracking, and tissue Doppler, against a non-ultrasound, optical gold standard. In the clinical phase, 25 patients underwent M-mode, speckle tracking and tissue Doppler measurements of tissue velocities. In-vitro, the M-mode and speckle tracking velocities were concordant with optical assessment. Of the three possible tissue Doppler measurement conventions (outer, middle and inner line) only the middle line agreed with the optical assessment (discrepancy -0.20 (95% confidence interval -0.44 to 0.03)cm/s, p=0.11, outer +5.19(4.65 to 5.73)cm/s, p<0.0001, inner -6.26(-6.87 to -5.65)cm/s, p<0.0001). All 4 studied manufacturers showed a similar pattern. M-mode was therefore chosen as the in-vivo gold standard. Clinical measurements of tissue velocities by speckle tracking and the middle line of the tissue Doppler were concordant with M-mode, while the outer line significantly overestimated (+1.27(0.96 to 1.59)cm/s, p<0.0001) and the inner line underestimated (-1.81(-2.11 to -1.52)cm/s, p<0.0001). Echocardiographic velocity measurements can be calibrated by simple, inexpensive tools. We found that the middle of the tissue Doppler trace represents velocity correctly. Echocardiographers requiring velocities to match between different equipment, settings or modalities should use the middle line as the "guideline".

  5. Kernel reconstruction methods for Doppler broadening — Temperature interpolation by linear combination of reference cross sections at optimally chosen temperatures

    DOE PAGES

    Ducru, Pablo; Josey, Colin; Dibert, Karia; ...

    2017-01-25

    This paper establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (Tj). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T0 to a higher temperature T — namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernel of themore » operation at a given temperature T by means of linear combination of kernels at reference temperatures (Tj). The choice of the L2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (Tj) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [Tmin,Tmax]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross section over the temperature range [300 K,3000 K] with only 9 reference temperatures.« less

  6. Kernel reconstruction methods for Doppler broadening - Temperature interpolation by linear combination of reference cross sections at optimally chosen temperatures

    NASA Astrophysics Data System (ADS)

    Ducru, Pablo; Josey, Colin; Dibert, Karia; Sobes, Vladimir; Forget, Benoit; Smith, Kord

    2017-04-01

    This article establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (Tj). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T0 to a higher temperature T - namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernel of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (Tj). The choice of the L2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (Tj) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [Tmin ,Tmax ]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross section over the temperature range [ 300 K , 3000 K ] with only 9 reference temperatures.

  7. The phase shift method for studying nonlinear acoustics in a soil

    USDA-ARS?s Scientific Manuscript database

    In this paper, a phase shift method for studying nonlinear acoustic behaviors of a soil is described. The method uses a phase-lock-in technique to measure the phase shift caused by increments in the amplitude of an excitation. The measured phase shift as a function of dynamic strain amplitude is use...

  8. Automated assessment of mitral regurgitant volume and regurgitant fraction by a newly developed digital color Doppler velocity profile integration method.

    PubMed

    Hozumi, T; Yoshida, K; Akasaka, T; Takagi, T; Yamamuro, A; Yagi, T; Yoshikawa, J

    1997-11-15

    Recent development of the automated cardiac flow measurement (ACFM) method has provided automated measurement of stroke volume and cardiac output by spatial and temporal integration of digital Doppler velocity profile data. The purpose of this study was to evaluate the clinical usefulness of the ACFM method using digital color Doppler velocity profile integration in the assessment of mitral regurgitant volume and regurgitant fraction from measurements of both aortic outflow and mitral inflow volumes. We calculated both aortic outflow and mitral inflow volumes from the apical approach with the ACFM and pulsed Doppler (PD) methods in 20 patients with isolated mitral regurgitation. Mitral regurgitant volume and regurgitant fraction were calculated by the following equation: mitral regurgitant volume = (mitral inflow volume) - (aortic outflow volume), % regurgitant fraction = (mitral regurgitant volume)/(mitral inflow volume) x 100. Mitral regurgitant volume and regurgitant fraction were compared with that determined by the PD method. Mitral regurgitant volume measurement by the ACFM method showed a good correlation with that measured by the PD method (r = 0.90, y = 0.77x + 11.6, SEE = 9.0 ml); the mean differences between PD and ACFM measurements was -1.7 +/- 12.5 ml. Regurgitant fraction estimated by the ACFM method correlated well with that of the PD method (r = 0.92, y = 0.98x + 2.1, SEE = 8.8%). The mean difference for the measurement of regurgitant fraction between the PD and ACFM methods was 0.8 +/- 6.6%. Total time required for mitral regurgitant volume calculation in 1 cardiac cycle by the ACFM method was significantly shorter than that of the PD method (126 +/- 15 seconds vs 228 +/- 36 seconds, p <0.01). In conclusion, the newly developed ACFM method is simple, quick, and accurate in the automated assessment of mitral regurgitant volume and regurgitant fraction.

  9. Diagnostic methods for deep vein thrombosis: venous Doppler examination, phleborheography, iodine-125 fibrinogen uptake, and phlebography

    SciTech Connect

    Comerota, A.J.; White, J.V.; Katz, M.L.

    1985-10-08

    Since clinical diagnosis of DVT is often inaccurate, it has become accepted that an objective means of diagnosing clot in the deep venous system becomes critically important in the management of these patients. The venous Doppler examination monitors the velocity of blood flowing through a particular vein. Doppler probes in the 5 to 10 mHz range are routinely used. Respiratory variation is a normal finding due to a diminished flow signal during inspiration, followed by a progressive increase in flow signal during expiration. Characteristics of the spontaneous flow signals are the most important part of interpreting the venous Doppler examination. In addition, the response to distal or proximal compression (augmentation) adds important information to the interpretation; however, the response during any augmentation maneuver depends on the rapidity of compression, the force of compression, the quantity of blood in the veins at the time of compression, and the distance between the Doppler probe and the compression point. Phleborheography is a six-channel volumetric plethysmographic technique that monitors volume changes in the lower extremities associated with respiration and foot and calf compression.

  10. Principal components analysis as a de-noising method applied to laser Doppler reactive hyperemia signals

    NASA Astrophysics Data System (ADS)

    Mansouri, C.; Humeau, A.; Abraham, P.; L'Huillier, J. P.

    2005-08-01

    Reactive hyperemia signals obtained with laser Doppler flowmetry are currently used to diagnose peripheral arterial occlusive diseases (PAOD). De-noising of such signals could lead to improved diagnoses. For this purpose, the principal components analysis is applied to signals acquired on PAOD and healthy subjects.

  11. Comparison of FFT, AR and Wavelet Methods in Transcranial Doppler Signal Obtained From Intracerebral Vessels

    DTIC Science & Technology

    2001-10-25

    years. Transcranial Doppler has been used to evaluate intracranial stenoses and cerebral arterivenous mulformations, in the evaluation of cerebral...cerebral vessel have some structured defectiveness or aneurysm . To investigate the narrowing of vessels, sonogram output were obtained for each patients... aneurysm , then carotid blood velocity causes high blood velocity in middle cerebral vessel of temporal region. For this reason, the difference of

  12. The Doppler Effect--A New Approach

    ERIC Educational Resources Information Center

    Allen, J.

    1973-01-01

    Discusses the Doppler effect as it applies to different situations, such as a stationary source of sound with the observer moving, a stationary observer, and the sound source and observer both moving. Police radar, satellite surveillance radar, radar astronomy, and the Doppler navigator, are discussed as applications of Doppler shift. (JR)

  13. The Doppler Effect--A New Approach

    ERIC Educational Resources Information Center

    Allen, J.

    1973-01-01

    Discusses the Doppler effect as it applies to different situations, such as a stationary source of sound with the observer moving, a stationary observer, and the sound source and observer both moving. Police radar, satellite surveillance radar, radar astronomy, and the Doppler navigator, are discussed as applications of Doppler shift. (JR)

  14. Eliminating Doppler Effects in Synthetic-Aperture Radar Optical Processors

    NASA Technical Reports Server (NTRS)

    Constantindes, N. J.; Bicknell, T. J.

    1984-01-01

    Pair of photodetectors generates correction signals. Instrument detects Doppler shifts in radar and corrects processing parameters so ambiguities caused by shifts not manifested as double or overlapping images.

  15. Eliminating Doppler Effects in Synthetic-Aperture Radar Optical Processors

    NASA Technical Reports Server (NTRS)

    Constantindes, N. J.; Bicknell, T. J.

    1984-01-01

    Pair of photodetectors generates correction signals. Instrument detects Doppler shifts in radar and corrects processing parameters so ambiguities caused by shifts not manifested as double or overlapping images.

  16. Doppler Scanning of Sediment Cores: A Useful Method for Studying Sedimentary Structures and Defining the Cutting Angle for Half Cores

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Cagatay, Namik; Biltekin, Demet; Eris, Kadir; Albut, Gulum; Ogretmen, Nazik; Arslan, Tugce; Sari, Erol

    2014-05-01

    We tested the doppler ultrasound scanning of sediment cores in PVC liners using 8 megahertz ultrasonic waves for detection of angular laminations. The method was tested with artificially prepared cores as well as marine and lake sediment cores, and proven to be a useful and fast technique for imaging and determining the vertical angularity of sedimentary structures, such as laminations and beddings. Random cutting axes provide two angularities on X and Y dimensions. In this study, the main scientific problem is 'sequential angular disconformity'. Importance of detection of these anomalies on whole cores before dividing into half cores based on determining the right cutting axes. Successful imaging was obtained from top three centimeter depth of the sediments below the PVC liner, using a linear Doppler probe. Other Doppler probes (e.g., convex probe) did not work for core scanning because of their wave-form and reflection characteristics. Longitudinal and rotational scanning with gap filler and ultrasonic wave conductive gel material for keeping energy range of wave is necessary for detecting the variation in the dip of the bedding and laminae in the cores before separation. Another angular reasoned problem is about horizontal surface and can be easily solved with adjustable position of sensor or ray source placement. Border of sampling points between two different lithology must be stay with regard to neighbour sediment angles. Vertical angularity correction is not easy and its effect on signal propagation, detection biases and effectible to mixed samples contamination during physical sampling (particle size analyzing). Determining the attitude of angled bedding before core splitting is important for further core analyses such as elemental analysis and digital X-ray radiography. After Doppler scanning, the splitting direction (i.e., vertical to bedding and lamination) can be determined. The method is cheap, quick and non- hazardous to health, unlike the x

  17. Spacecraft Doppler Tracking as a Xylophone Detector

    NASA Technical Reports Server (NTRS)

    Tinto, Massimo

    1996-01-01

    We discuss spacecraft Doppler tracking in which Doppler data recorded on the ground are linearly combined with Doppler measurements made on board a spacecraft. By using the four-link radio system first proposed by Vessot and Levine, we derive a new method for removing from the combined data the frequency fluctuations due to the Earth troposphere, ionosphere, and mechanical vibrations of the antenna on the ground. Our method provides also for reducing by several orders of magnitude, at selected Fourier components, the frequency fluctuations due to other noise sources, such as the clock on board the spacecraft or the antenna and buffeting of the probe by non-gravitational forces. In this respect spacecraft Doppler tracking can be regarded as a xylophone detector. Estimates of the sensitivities achievable by this xylophone are presented for two tests of Einstein's theory of relativity: searches for gravitational waves and measurements of the gravitational red shift. This experimental technique could be extended to other tests of the theory of relativity, and to radio science experiments that rely on high-precision Doppler measurements.

  18. Clinical Applications of Doppler OCT and OCT Angiography

    NASA Astrophysics Data System (ADS)

    Tan, Ou; Jia, Yali; Wei, Eric; Huang, David

    Doppler optical coherence tomography (OCT) is a functional extension of OCT that allows for the visualization and measurement of blood flow [1, 2]. Phase-resolved Doppler OCT has become a standard algorithm for measuring Doppler shift with Fourier-domain (FD)-OCT because of its high velocity sensitivity [3]. In ophthalmology, several methods have been developed to measure in vivo retinal blood flow using this algorithm. Since Doppler OCT measures only the velocity component parallel to the OCT probe beam, additional information is needed to calculate absolute velocity and volumetric flow rate. One method is to employ two OCT beams with a fixed offset in incidence angles [4, 5]. However, this approach requires special hardware and is not compatible with commercial single-beam OCT systems. Another approach is to use special scan patterns to measure the Doppler angle (angle between the OCT beam and the blood vessel). Some groups used concentric scan patterns [6, 7], while other groups used raster scan patterns [8, 9]. Finally, Srinivasan et al. developed en face Doppler OCT for cerebral blood flow calculation, which obviated the need for Doppler angle estimation [10]. Bauman et al. adapted the method for total retinal blood flow (TRBF) calculation with ultrafast swept-source OCT [11]. In this chapter, we focus our attention on the double-circular scan pattern developed in our research group, which has been used in a number of clinical studies for preliminary demonstration of utility.

  19. Is color-Doppler US a reliable method in the follow-up of transjugular intrahepatic portosystemic shunt (TIPS)?

    PubMed Central

    Ricci, P.; Cantisani, V.; Lombardi, V.; Alfano, G.; D'Ambrosio, U.; Menichini, G.; Marotta, E.; Drudi, F.M.

    2007-01-01

    Transjugular intrahepatic portosystemic shunt (TIPS) has become a widely accepted treatment for complications of portal hypertension. Shunt or hepatic vein stenoses or occlusions are common short- and mid-term complications of the procedure, with a one-year primary patency ranging from 25% to 66%. When promptly identified, shunt stenosis or occlusion may be treated before the recurrence of gastrointestinal bleeding or ascites. The revision is usually successful and the primary-assisted patency of TIPS is approximately 85% at one year. Doppler sonography is a widely accepted screening modality for TIPS patients, both as a routine follow-up in asymptomatic patients and in those cases with clinically suspected TIPS malfunction. In a routine US follow-up, a TIPS patient is scheduled for a control 24 h after the procedure, and then after one week, 1 month, 3 months, and at 3-month intervals thereafter. Venography is at present performed solely on the basis of a suspected shunt dysfunction during the sonographic examination. Color-Doppler sonography is the most reliable method for monitoring the shunt function after TIPS implantation. Several studies have shown that Doppler sonography is a sensitive and relatively specific way to detect shunt malfunction, particularly when multiple parameters are examined. Achieving high sensitivity is optimal so that malfunctioning shunts can be identified and shunt revision can be performed before symptomatic deterioration. Venous angiography is at present indicated only on the basis of US suspicion of shunt compromise. Power-Doppler US and US contrast media can be useful in particular conditions, but are not really fundamental. PMID:23396711

  20. A MAGNETIC CALIBRATION OF PHOTOSPHERIC DOPPLER VELOCITIES

    SciTech Connect

    Welsch, Brian T.; Fisher, George H.; Sun, Xudong

    2013-03-10

    The zero point of measured photospheric Doppler shifts is uncertain for at least two reasons: instrumental variations (from, e.g., thermal drifts); and the convective blueshift, a known correlation between intensity and upflows. Accurate knowledge of the zero point is, however, useful for (1) improving estimates of the Poynting flux of magnetic energy across the photosphere, and (2) constraining processes underlying flux cancellation, the mutual apparent loss of magnetic flux in closely spaced, opposite-polarity magnetogram features. We present a method to absolutely calibrate line-of-sight (LOS) velocities in solar active regions (ARs) near disk center using three successive vector magnetograms and one Dopplergram coincident with the central magnetogram. It exploits the fact that Doppler shifts measured along polarity inversion lines (PILs) of the LOS magnetic field determine one component of the velocity perpendicular to the magnetic field, and optimizes consistency between changes in LOS flux near PILs and the transport of transverse magnetic flux by LOS velocities, assuming that ideal electric fields govern the magnetic evolution. Previous calibrations fitted the center-to-limb variation of Doppler velocities, but this approach cannot, by itself, account for residual convective shifts at the limb. We apply our method to vector magnetograms of AR 11158, observed by the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory, and find clear evidence of offsets in the Doppler zero point in the range of 50-550 m s{sup -1}. In addition, we note that a simpler calibration can be determined from an LOS magnetogram and Dopplergram pair from the median Doppler velocity among all near-disk-center PIL pixels. We briefly discuss shortcomings in our initial implementation, and suggest ways to address these. In addition, as a step in our data reduction, we discuss the use of temporal continuity in the transverse magnetic field direction to correct apparently

  1. Exploiting continuous scanning laser Doppler vibrometry (CSLDV) in time domain correlation methods for noise source identification

    NASA Astrophysics Data System (ADS)

    Chiariotti, Paolo; Martarelli, Milena; Revel, Gian Marco

    2014-07-01

    This paper proposes the use of continuous scanning laser Doppler vibrometry (CSLDV) in time domain correlation techniques that aim at characterizing the structure-borne contributions of the noise emission of a mechanical system. The time domain correlation technique presented in this paper is based on the use of FIR (finite impulse response) filters obtained from the vibro-acoustic transfer matrix when vibration data are collected by laser Doppler vibrometry (LDV) exploited in continuous scan mode (CSLDV). The advantages, especially in terms of source decorrelation capabilities, related to the use of CSLDV for such purpose, with respect to standard discrete scan (SLDV), are discussed throughout the paper. To validate this approach, vibro-acoustic measurements were performed on a planetary gear motor for home appliances. The analysis of results is also supported by a simulation.

  2. A simple method for retrieving significant wave height from Dopplerized X-band radar

    NASA Astrophysics Data System (ADS)

    Carrasco, Ruben; Streßer, Michael; Horstmann, Jochen

    2017-02-01

    Retrieving spectral wave parameters such as the peak wave direction and wave period from marine radar backscatter intensity is very well developed. However, the retrieval of significant wave height is difficult because the radar image spectrum (a backscatter intensity variance spectrum) has to be transferred to a wave spectrum (a surface elevation variance spectrum) using a modulation transfer function (MTF) which requires extensive calibration for each individual radar setup. In contrast to the backscatter intensity, the Doppler velocity measured by a coherent radar is induced by the radial velocity (or line-of-sight velocity) of the surface scattering and its periodic component is mainly the contribution of surface waves. Therefore, the variance of the Doppler velocity can be utilized to retrieve the significant wave height. Analyzing approximately 100 days of Doppler velocity measurements of a coherent-on-receive radar operating at X-band with vertical polarization in transmit and receive, a simple relation was derived and validated to retrieve significant wave heights. Comparison to wave measurements of a wave rider buoy as well as an acoustic wave and current profiler resulted in a root mean square error of 0.24 m with a bias of 0.08 m. Furthermore, the different sources of error are discussed and investigated.

  3. Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media

    DOEpatents

    Nelson, John Stuart; Milner, Thomas Edward; Chen, Zhongping

    1999-01-01

    Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.

  4. A Color-Doppler Shear-Wave-Imaging Phase-reconstruction Method Using Four Color Flow Images.

    PubMed

    Sunaguchi, Naoki; Yamakoshi, Yoshiki; Nakajima, Takahito

    2017-05-01

    This study investigates shear wave phase map reconstruction using a limited number of color flow images (CFIs) acquired with a color Doppler ultrasound imaging instrument. We propose an efficient reconstruction method to considerably reduce the number of CFIs required for reconstruction and compare this method with Fourier analysis-based color Doppler shear wave imaging. The proposed method uses a two-step phase reconstruction process, including an initial phase map derived from four CFIs using an advanced iterative algorithm of optical interferometry. The second step reduces phase artifacts in the initial phase map using an iterative correction procedure that cycles between the Fourier and inverse Fourier domains while imposing directional filtering and total variation regularization. We demonstrate the efficacy of this method using synthetic and experimental data of a breast phantom and human breast tissue. Our results show that the proposed method maintains image quality and reduces the number of CFIs required to four; previous methods have required at least 32 CFIs to achieve equivalent image quality. The proposed method is applicable to real-time shear wave elastography using a continuous shear wave produced by a mechanical vibrator.

  5. Rheological study of concentrated suspensions in pressure-driven shear flow using a novel in-line ultrasound Doppler method

    NASA Astrophysics Data System (ADS)

    Ouriev, B.; Windhab, E. J.

    In this work a novel in-line non-invasive rheological measuring technique is developed and tested in pilot plant and industrial-scale applications. The method is based on a combination of the ultrasonic pulsed echo Doppler technique (UVP) and pressure difference method (PD). The rheological flow properties are derived from simultaneous recording and on-line analysis of the velocity profiles across the tube channel and related radial shear stress profiles calculated from the pressure loss along the flow channel. It is shown that the in-line UVP-PD technique allows for the non-invasive rheological flow behaviour characterization of non-transparent and highly concentrated suspensions.

  6. Rubidium Atomic Line Filtered (RALF) Doppler Velocimetry

    NASA Astrophysics Data System (ADS)

    Fajardo, Mario; Molek, Christopher; Vesely, Annamaria

    2015-06-01

    We report the successful proof-of-concept demonstration of the Rubidium Atomic Line Filtered (RALF) Doppler velocimetry technique. RALF is a high-velocity and high-acceleration adaptation of the Global Doppler Velocimetry (GDV) method developed in the 1990s by aerodynamics researchers. Laser velocimetry techniques in common use within the shock physics community (e . g . VISAR, Fabry-Perot, PDV) decode the Doppler shift of light reflected from a moving surface via interference phenomena. In contrast, RALF employs a completely different physical principle: the frequency-dependent near-resonant optical transmission of a Rb/N2 gas cell, to convert the Doppler shift of reflected λ0 ~ 780.24 nm light directly into transmitted light intensity. The single-point RALF apparatus used in these experiments is fiber optic based, and incorporates a simultaneous PDV measurement channel as an ``internal standard'' for validation of the RALF results. Future plans include ``line-RALF'' experiments with streak camera detection, and two-dimensional surface velocity mapping using pulsed laser illumination and gated intensified CCD camera detection. [RW PA#4931

  7. Determination of prestenotic flow volume using an automated method based on colour Doppler imaging for evaluating orifice area by the continuity equation: validation in a pulsatile flow model

    PubMed Central

    Dennig, K; Nesser, H; Hall, D; Haase, H; Schomig, A

    1998-01-01

    Objective—To evaluate, in a pulsatile flow model simulating flow conditions in valvar stenoses, whether accurate determination of orifice area can be achieved by the continuity equation using automated determination of flow volumes based on spatiotemporal integration of digital colour Doppler flow velocities.
Methods—A method for automated determination of flow volumes which takes into account the velocity distribution across a region of interest was examined using flow through a tube and various restrictive outlet orifices with areas ranging between 0.2 and 3.1 cm2. The sampling rectangle of the Doppler method was positioned proximal to the obstructions within the flow convergence zone for evaluating prestenotic flow volume. Stenotic jet velocities were recorded by continuous wave Doppler to obtain the integral under the velocity curve. Prestenotic flow volume was then divided by the velocity integral to calculate functional orifice area according to the continuity equation.
Results—The presence of parabolically shaped velocity profiles across the prestenotic region was demonstrated by the Doppler method. Excellent agreement was found between prestenotic flow volumes measured by the Doppler technique and actual values (r = 0.99, SEE = 1.35 ml, y = 0.99x−0.24). Use of the continuity equation led to a close correlation, with a systematic underestimation of geometric orifice sizes. Correction of Doppler data for flow contraction yielded an excellent agreement with actual orifice areas.
Conclusions—The study validated the accuracy of a Doppler method for automated determination of flow volumes for quantifying orifice area by the continuity equation. Prestenotic flow volume and functional orifice area could be evaluated reliably in the presence of non-flat velocity profiles. Thus the method contributes to the non-invasive assessment of valvar stenoses.

 Keywords: Doppler echocardiography;  automated flow volume determination;  valvar

  8. Rubidium atomic line filtered (RALF) Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Fajardo, Mario E.; Molek, Christopher D.; Vesely, Annamaria L.

    2017-01-01

    We report recent improvements to our Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus [M.E. Fajardo, C.D. Molek, and A.L. Vesely, J. Appl. Phys. 118, 144901 (2015)]. RALF is a high-velocity and high-acceleration adaptation of the Doppler Global Velocimetry method for measuring multi-dimensional velocity vector flow fields, which was developed in the 1990s by aerodynamics researchers [H. Komine, U.S. Patent #4,919,536]. Laser velocimetry techniques in common use within the shock physics community (e.g. VISAR, Fabry-Pérot, PDV) decode the Doppler shift of light reflected from a moving surface via interference phenomena. In contrast, RALF employs a completely different physical principle: the frequency-dependent near-resonant optical transmission of a Rb/N2 gas cell, to encode the Doppler shift of reflected λ0 ≈ 780.24 nm light directly onto the transmitted light intensity. Thus, RALF is insensitive to minor changes to the optical pathlengths and transit times of the Doppler shifted light, which promises a number of practical advantages in imaging velocimetry applications. The single-point RALF proof-of-concept apparatus described here is fiber optic based, and our most recent modifications include the incorporation of a larger bandwidth detection system, and a second 780 nm laser for simultaneous upshifted-PDV (UPDV) measurements. We report results for the laser driven launch of a 10-μm-thick aluminum flyer which show good agreement between the RALF and UPDV velocity profiles, within the limitations of the admittedly poor signal:noise ratio (SNR) RALF data.

  9. Doppler effect in optical velocimetry

    NASA Astrophysics Data System (ADS)

    Rinkevichius, Bronius S.

    1996-02-01

    The current state of the optical metrology based on the Doppler effect has been reviewed. Some historical and scientific information is given, in addition the contemporary optical methods of the velocity measurement using the Doppler effect are analyzed. The Doppler effect applications in astrophysics, plasma physics, investigations of gas and liquid flows, acoustics, mechanics of the deforming solid body and of the rotational motion are considered. The description is presented for the following techniques of the velocity measurement: laser Doppler anemometry, laser Doppler vibrometry, laser gyroscopy.

  10. Deconvolution of positron annihilation coincidence Doppler broadening spectra using an iterative projected Newton method with non-negativity constraints

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Beling, C. D.; Fung, S.; Cheng, Vincent K. W.; Ng, Michael K.; Yip, A. M.

    2003-11-01

    A generalized least-square method with Tikonov-Miller regularization and non-negativity constraints has been developed for deconvoluting two-dimensional coincidence Doppler broadening spectroscopy (CDBS) spectra. A projected Newton algorithm is employed to solve the generalized least-square problem. The algorithm has been tested on Monte Carlo generated spectra to find the best regularization parameters for different simulated experimental conditions. Good retrieval of the underlying positron-electron momentum distributions in the low momentum region is demonstrated. The algorithm has been successfully used to deconvolute experimental CDBS data from aluminum.

  11. A data efficient method for characterization of chameleon tongue motion using Doppler radar.

    PubMed

    Singh, Aditya; Hafner, Noah; Lubecke, Victor; Butler, Marguerite

    2012-01-01

    A new technique is described for study of the study of high velocity animal movements using a continuous wave Doppler radar operating at 24 GHz. The movement studied was tongue projection kinematics during prey capture by the lizard Chamaeleo Jacksonii. The measurements were verified with a high speed video reference, recorded at 1000 frames per second. The limitations and advantages of both the methodologies are compared and tongue speeds of 3:65 m/s were observed. These results show a useful application of radar to augment visual sensing of biological motion and enable the use of monitoring in a wider range of situations.

  12. Local heating as a predilatation method for measurement of vasoconstrictor responses with laser-Doppler flowmetry.

    PubMed

    Henricson, Joakim; Tesselaar, Erik; Baiat, Yashma; Nilsson, Gert; Sjöberg, Folke

    2011-04-01

    Studying microvascular responses to iontophoresis of vasoconstricting drugs contributes to a better understanding of the regulatory mechanisms of cutaneous vessels, but measuring these responses with laser-Doppler flowmetry at basal blood flow conditions is technically challenging. This study aimed to investigate whether the measurement of cutaneous vasoconstrictor responses to noradrenaline (NA) and phenylephrine (PE), delivered by iontophoresis, is facilitated by predilatation of the microvascular bed using local heating. We used different drug delivery rates (100 s × 0.12 mA, 200 s × 0.06 mA, 300 s × 0.04 mA) to investigate whether predilatation affects the local drug dynamics by an increased removal of drugs from the skin. In a predilatated vascular bed, iontophoresis of NA and PE resulted in a significant decrease in perfusion from the thermal plateau (p < 0.001). The decrease was 25-33%, depending on drug delivery rate. In unheated skin, a significant vasoconstriction was observed (p < 0.001), with 17% and 14% decrease from baseline for NA and PE, respectively. These results indicate that predilatating the cutaneous vascular bed by local heating facilitates measurement of vasoconstriction with laser-Doppler flowmetry and does not seem to significantly affect the result by an increased removal of drugs from the skin.

  13. A dealiasing method for use with ultrasonic pulsed Doppler in measuring velocity profiles and flow rates in pipes

    NASA Astrophysics Data System (ADS)

    Murakawa, Hideki; Muramatsu, Ei; Sugimoto, Katsumi; Takenaka, Nobuyuki; Furuichi, Noriyuki

    2015-08-01

    The ultrasonic pulsed Doppler method (UDM) is a powerful tool for measuring velocity profiles in a pipe. However, the maximum detectable velocity is limited by the Nyquist sampling theorem. Furthermore, the maximum detectable velocity (also called Nyquist velocity), vmax, and the maximum measurable length are related and cannot be increased at the same time. If the velocity is greater than vmax, velocity aliasing occurs. Hence, the higher velocity that occurs with a larger pipe diameter, i.e. under higher flow rate conditions, cannot be measured with the conventional UDM. To overcome these limitations, dual-pulse repetition frequency (dual PRF) and feedback methods were employed in this study to measure velocity profiles in a pipe. The velocity distributions obtained with the feedback method were found to be more accurate than those obtained with the dual PRF method. However, misdetection of the Nyquist folding number using the feedback method was found to increase with the flow velocity. A feedback method with a moving average is proposed to improve the measurement accuracy. The method can accurately measure the velocity distributions at a velocity five times greater than the maximum velocity that can be measured with the conventional UDM. The measurement volume was found to be among the important parameters that must be considered in assessing the traceability of the reflector during the pulse emission interval. Hence, a larger measurement volume is required to measure higher velocities using the dual PRF method. Integrating velocity distributions measured using the feedback method with a moving average makes it possible to accurately determine flow rates six times greater than those that can be determined using the conventional pulsed Doppler method.

  14. Theoretical analysis and experimental verification on optical rotational Doppler effect.

    PubMed

    Zhou, Hailong; Fu, Dongzhi; Dong, Jianji; Zhang, Pei; Zhang, Xinliang

    2016-05-02

    We present a theoretical model to sufficiently investigate the optical rotational Doppler effect based on modal expansion method. We find that the frequency shift content is only determined by the surface of spinning object and the reduced Doppler shift is linear to the difference of mode index between input and output orbital angular momentum (OAM) light, and linear to the rotating speed of spinning object as well. An experiment is carried out to verify the theoretical model. We explicitly suggest that the spatial spiral phase distribution of spinning object determines the frequency content. The theoretical model makes us better understand the physical processes of rotational Doppler effect, and thus has many related application fields, such as detection of rotating bodies, imaging of surface and measurement of OAM light.

  15. Doppler echocardiography

    SciTech Connect

    Labovitz, A.J.; Williams, G.A.

    1988-01-01

    The authors are successful in presenting a basic book on clinical quantitative Doppler echocardiography. It is not intended to be a comprehensive text, but it does cover clinical applications in a succinct fashion. Only the more common diseases in the adult are considered. The subjects are presented logically and are easy to comprehend. The illustrations are good, and the book is paperbound. The basic principles of Doppler echocardiography are presented briefly. The book ends with chapters on left ventricular function (stroke volume and cardiac output), congenital heart disease, and color Doppler echo-cardiography. There are numerous references and a good glossary and index.

  16. Transverse flowmetry of carbon particles based on photoacoustic Doppler standard deviation using an auto-correlation method

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Sun, Li-jun

    2015-05-01

    In order to measure the flow velocity of carbon particle suspension perpendicular to the receiving axis of ultrasound transducer, the standard deviation of photoacoustic Doppler frequency spectrum is used to estimate the bandwidth broadening, and the spectrum standard deviation is calculated by an auto-correlation method. A 532 nm pulsed laser with the repetition rate of 20 Hz is used as a pumping source to generate photoacoustic signal. The photoacoustic signals are detected using a focused PZT ultrasound transducer with the central frequency of 10 MHz. The suspension of carbon particles is driven by a syringe pump. The complex photoacoustic signal is calculated by Hilbert transformation from time domain signal before auto-correlation. The standard deviation of the Doppler bandwidth broadening is calculated by averaging the auto-correlation results of several individual A scans. The feasibility of the proposed method is demonstrated by measuring the spectrum standard deviation of the transversal carbon particle flow from 5.0 mm/s to 8.4 mm/s. The experimental results show that the auto-correlation result is approximately linearly distributed within the measuring range.

  17. Doppler tracking of planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.

    1992-01-01

    This article concerns the measurement of Doppler shift on microwave links that connect planetary spacecraft with the Deep Space Network. Such measurements are made by tracking the Doppler effect with phase-locked loop receivers. A description of equipment and techniques as well as a summary of the appropriate mathematical models are given. The two-way Doppler shift is measured by transmitting a highly-stable microwave (uplink) carrier from a ground station, having the spacecraft coherently transpond this carrier, and using a phase-locked loop receiver at the ground station to track the returned (downlink) carrier. The largest sources of measurement error are usually plasma noise and thermal noise. The plasma noise, which may originate in the ionosphere or the solar corona, is discussed; and a technique to partially calibrate its effect, involving the use of two simultaneous downlink carriers that are coherently related, is described. Range measurements employing Doppler rate-aiding are also described.

  18. Lifetimes in neutron-rich Nd isotopes measured by Doppler profile method

    SciTech Connect

    Ahmad, I.; Lister, C.J.; Morss, L.R.

    1995-08-01

    Lifetimes of the rotational levels in neutron-rich even-even Nd isotopes were deduced from the analysis of the Doppler broadened line shapes. The experiment was performed at Daresbury with the Eurogam array, which at that time consisted of 45 Compton-suppressed Ge detectors and 5 Low-Energy Photon Spectrometers. The source was in the form of a 7-mm pellet which was prepared by mixing 5-mg; {sup 248}Cm and 65-mg KCl and pressing it under high pressure. Events for which three or more detectors fired were used to construct a cubic data array whose axes represented the {gamma}-ray energies and the contents of each channel the number of events with that particular combination of {gamma}-ray energies. From this cubic array, one-dimensional spectra were generated by placing gates on peaks on the other two axes. Gamma-ray spectra of even-even Nd isotopes were obtained by gating on the transitions in the complimentary Kr fragments. The gamma peaks de-exciting states with I {>=} 12 h were found to be broader than the instrumental line width due to the Doppler effect. The line shapes of they-ray peaks were fitted separately with a simple model for the feeding of the states and assuming a rotational band with constant intrinsic quadruple moment and these are shown in Fig. I-27. The quadrupole moments thus determined were found to be in good agreement with the quadrupole moments measured previously for lower spin states. Because of the success of this technique for the Nd isotopes, we intend to apply this technique to the new larger data set collected with the Eurogam II array. The results of this study were published.

  19. Insonation method and diagnostic flow signatures for transcranial power motion (M-mode) Doppler.

    PubMed

    Alexandrov, Andrei V; Demchuk, Andrew M; Burgin, W Scott

    2002-07-01

    Power motion mode Doppler (PMD) simultaneously displays flow signal intensity and direction over several centimeters of intracranial space. Insonation protocol for PMD and spectral transcranial Doppler (TCD) with typical PMD flow signatures is described in serial patients with acute stroke symptoms examined via conventional windows with a PMD/TCD unit. Thirty-five patients were studied within 12 hours after stroke onset (age 64 +/- 15 years; 8 received intravenous and 3 intra-arterial thrombolysis). One patient had no temporal window, and 3 patients had suboptimal windows. In 90% of patients, PMD showed more than 1 ipsilateral temporal windows. In 63% of patients (n = 22), PMD simultaneously displayed the entire M1 (65-45 mm) and proximal M2 (45-30 mm) flows, leading to spectral TCD examination of the proximal M2 middle cerebral artery (MCA) in 28 of 35 patients (80%). All patients had sufficient foraminal (depth display = 60-110 mm) and orbital (depth display = 30-80 mm) windows. PMD displayed the entire basilar artery stem (75-100+ mm) in 69% (n = 24) of patients, and the distal basilar flow was detected in all patients by both PMD and TCD. TCD results were normal (12), proximal intracranial stenosis (5), large vessel occlusion (17), and cerebral circulatory arrest (1). Compared to spectral TCD, PMD signatures of similar diagnostic significance were low resistance (vessel identification and recanalization), high resistance (ophthalmic artery identification and distal obstruction), collateral (communicating arteries and leptomeningeal flow), reverberating (circulatory arrest), and branch embolization. PMD is a window-finding tool and a guide for spectral TCD gate placement. PMD facilitates flow detection in the M2 branches and the distal basilar artery. PMD can demonstrate recanalization of the entire MCA main stem and proximal branches, increase the yield of embolus detection and procedure monitoring, and facilitate abnormal flow pattern recognition.

  20. A method of hard X-ray phase-shifting digital holography.

    PubMed

    Park, So Yeong; Hong, Chung Ki; Lim, Jun

    2016-07-01

    A new method of phase-shifting digital holography is demonstrated in the hard X-ray region. An in-line-type phase-shifting holography setup was installed in a 6.80 keV hard X-ray synchrotron beamline. By placing a phase plate consisting of a hole and a band at the focusing point of a Fresnel lens, the relative phase of the reference and objective beams could be successfully shifted for use with a three-step phase-shift algorithm. The system was verified by measuring the shape of a gold test pattern and a silica sphere.

  1. Novel instantaneous laser Doppler velocimeter.

    PubMed

    Avidor, J M

    1974-02-01

    A laser Doppler velocimeter capable of directly measuring instantaneous velocities is described. The new LDV uses a novel detection technique based on the utilization of a static slightly defocused spherical Fabry-Perot interferometer used in conjunction with a special mask for the detection of instantaneous Doppler frequency shifts. The essential characteristics of this LDV are discussed, and such a system recently developed is described. Results of turbulent flow measurements show good agreement with data obtained using hot wire anemometry.

  2. Superharmonic microbubble Doppler effect in ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104-5  ×  107 microbubbles ml-1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s-1, prior to the onset of

  3. Superharmonic microbubble Doppler effect in ultrasound therapy.

    PubMed

    Pouliopoulos, Antonios N; Choi, James J

    2016-08-21

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  10(4)-5  ×  10(7) microbubbles ml(-1)) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s(-1), prior to the onset

  4. Superharmonic microbubble Doppler effect in ultrasound therapy

    PubMed Central

    Pouliopoulos, Antonios N; Choi, James J

    2016-01-01

    Abstract The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104–5  ×  107 microbubbles ml−1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75–366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s−1, prior to

  5. Analysis of surface plasmon resonance with Goos-Hanchen shift using FDTD method

    NASA Astrophysics Data System (ADS)

    Oh, Geum-Yoon; Kim, Doo-Gun; Kim, Hong-Seung; Choi, Young-Wan

    2009-02-01

    The Goos-Hanchen (GH) shift is observed from phase transition of the reflected light. However, the reported Artmann's equation is difficult to apply to drastic phase change of the critical and resonance angles because this equation is solved by differential of the phase shift. Therefore, the GH shift can be obtained from the structure optimized by the finite-difference time-domain method. In the surface plasmon resonance (SPR) phenomenon, positive and negative lateral shifts may result from the variation of incidence angle. The GH shift is very important to exactly detect the output power of the micro-size SPR sensor. The accurate positive and negative lateral shifts of -0.49 and +1.46 μm are obtained on the SPR with the incidence angles of 44.4° and 47°, respectively.

  6. Simple phase-shifting method in a wedge-plate lateral-shearing interferometer.

    PubMed

    Song, Jae Bong; Lee, Yun Woo; Lee, In Won; Lee, Yong-Hee

    2004-07-10

    A simple phase-shifting method in a wedge-plate lateral shearing interferometer is described. Simply moving the wedge plate in an in-plane parallel direction gives the amount of phase shift required for phase-shifting interferometry because the thickness of a wedge plate is not constant and varies along the wedge direction. This method requires only one additional linear translator to move the wedge plate. The required moving distance for a phase shift of the wave front with this method is of the order of a millimeter, whereas the typical moving distance for another method that uses a piezoelectric transducer is of the order of a wavelength. This method yields better precision in controlling the moving distance than do the other methods.

  7. Calculation method for a quadrature phase-shifting interferometer and its applications.

    PubMed

    Nakadate, Suezou; Sawada, Shinya; Kiire, Tomohiro; Shibuya, Masato; Yatagai, Toyohiko

    2013-01-01

    A calculation method for a quadrature phase-shifting interferometer is presented, and its applications to specular and speckle interferometers and digital holography are described. Two sets of quadrature phase-shifted interferograms are acquired, and the calculation method proposed gives the phase distribution of the interferograms. The principle of the calculation method with error analysis and experimental results for specular and speckle interferometers and digital holography are also given.

  8. Statistical method for detecting phase shifts in alpha rhythm from human electroencephalogram data

    NASA Astrophysics Data System (ADS)

    Naruse, Yasushi; Takiyama, Ken; Okada, Masato; Umehara, Hiroaki

    2013-04-01

    We developed a statistical method for detecting discontinuous phase changes (phase shifts) in fluctuating alpha rhythms in the human brain from electroencephalogram (EEG) data obtained in a single trial. This method uses the state space models and the line process technique, which is a Bayesian method for detecting discontinuity in an image. By applying this method to simulated data, we were able to detect the phase and amplitude shifts in a single simulated trial. Further, we demonstrated that this method can detect phase shifts caused by a visual stimulus in the alpha rhythm from experimental EEG data even in a single trial. The results for the experimental data showed that the timings of the phase shifts in the early latency period were similar between many of the trials, and that those in the late latency period were different between the trials. The conventional averaging method can only detect phase shifts that occur at similar timings between many of the trials, and therefore, the phase shifts that occur at differing timings cannot be detected using the conventional method. Consequently, our obtained results indicate the practicality of our method. Thus, we believe that our method will contribute to studies examining the phase dynamics of nonlinear alpha rhythm oscillators.

  9. [Methods of shifting body weight in patients with knee arthroses].

    PubMed

    Viton, J M; Atlani, L; Mesure, S; Franceschi, J P; Massion, J; Rochwerger, A; Delarque, A

    1998-11-01

    The aim of this work was to study movement control strategies in patients with knee arthritis. These strategies were expected to be different from healthy subjects because of deficiencies due to knee arthritis (i.e. pain, altered proprioception). A kinetic and kinematic analysis was performed in a population of 10 patients with unilateral knee arthritis and in 11 age-matched control subjects, using an ELITE system and two AMTI force-plates. The different phases of a side step were studied. The timing of the movement was different in the two populations. The postural phase was longer and the monopodal phase was shorter in knee arthritis patients when the affected leg was the supporting one than when the sound leg was supporting. Total step duration and landing-stabilization phase duration were longer in knee arthritis patients than in healthy subjects. This movement analysis method enables to determine and to quantify differences between knee arthritis patients and control subjects. Clinical examination cannot identify these differences. Movement analysis methods bring up additional information to usual clinical evaluation scales and could be used for evaluation of the results of total knee arthroplasty.

  10. Pulse subtraction Doppler

    NASA Astrophysics Data System (ADS)

    Mahue, Veronique; Mari, Jean Martial; Eckersley, Robert J.; Caro, Colin G.; Tang, Meng-Xing

    2010-01-01

    Recent advances have demonstrated the feasibility of molecular imaging using targeted microbubbles and ultrasound. One technical challenge is to selectively detect attached bubbles from those freely flowing bubbles and surrounding tissue. Pulse Inversion Doppler is an imaging technique enabling the selective detection of both static and moving ultrasound contrast agents: linear scatterers generate a single band Doppler spectrum, while non-linear scatterers generate a double band spectrum, one being uniquely correlated with the presence of contrast agents and non-linear tissue signals. We demonstrate that similar spectrums, and thus the same discrimination, can be obtained through a Doppler implementation of Pulse Subtraction. This is achieved by reconstructing a virtual echo using the echo generated from a short pulse transmission. Moreover by subtracting from this virtual echo the one generated from a longer pulse transmission, it is possible to fully suppress the echo from linear scatterers, while for non-linear scatterers, a signal will remain, allowing classical agent detection. Simulations of a single moving microbubble and a moving linear scatterer subject to these pulses show that when the virtual echo and the long pulse echo are used to perform pulsed Doppler, the power Doppler spectrum allows separation of linear and non-linear moving scattering. Similar results are obtained on experimental data acquired on a flow containing either microbubble contrast agents or linear blood mimicking fluid. This new Doppler method constitutes an alternative to Pulse Inversion Doppler and preliminary results suggest that similar dual band spectrums could be obtained by the combination of any non-linear detection technique with Doppler demodulation.

  11. Automated assessment of joint synovitis activity from medical ultrasound and power doppler examinations using image processing and machine learning methods

    PubMed Central

    Ziębiński, Adam

    2016-01-01

    Objectives Rheumatoid arthritis is the most common rheumatic disease with arthritis, and causes substantial functional disability in approximately 50% patients after 10 years. Accurate measurement of the disease activity is crucial to provide an adequate treatment and care to the patients. The aim of this study is focused on a computer aided diagnostic system that supports an assessment of synovitis severity. Material and methods This paper focus on a computer aided diagnostic system that was developed within joint Polish–Norwegian research project related to the automated assessment of the severity of synovitis. Semiquantitative ultrasound with power Doppler is a reliable and widely used method of assessing synovitis. Synovitis is estimated by ultrasound examiner using the scoring system graded from 0 to 3. Activity score is estimated on the basis of the examiner’s experience or standardized ultrasound atlases. The method needs trained medical personnel and the result can be affected by a human error. Results The porotype of a computer-aided diagnostic system and algorithms essential for an analysis of ultrasonic images of finger joints are main scientific output of the MEDUSA project. Medusa Evaluation System prototype uses bone, skin, joint and synovitis area detectors for mutual structural model based evaluation of synovitis. Finally, several algorithms that support the semi-automatic or automatic detection of the bone region were prepared as well as a system that uses the statistical data processing approach in order to automatically localize the regions of interest. Conclusions Semiquantitative ultrasound with power Doppler is a reliable and widely used method of assessing synovitis. Activity score is estimated on the basis of the examiner’s experience and the result can be affected by a human error. In this paper we presented the MEDUSA project which is focused on a computer aided diagnostic system that supports an assessment of synovitis severity

  12. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  13. Proximal flow convergence method by three-dimensional color Doppler echocardiography for mitral valve area assessment in rheumatic mitral stenosis.

    PubMed

    de Agustin, Jose Alberto; Mejia, Hernan; Viliani, Dafne; Marcos-Alberca, Pedro; Gomez de Diego, Jose Juan; Nuñez-Gil, Ivan Javier; Almeria, Carlos; Rodrigo, Jose Luis; Luaces, Maria; Garcia-Fernandez, Miguel Angel; Macaya, Carlos; Perez de Isla, Leopoldo

    2014-08-01

    The two-dimensional (2D) proximal isovelocity surface area (PISA) method has important technical limitations for mitral valve orifice area (MVA) assessment in mitral stenosis (MS), mainly the geometric assumptions of PISA shape and the requirement of an angle correction factor. Single-beat real-time three-dimensional (3D) color Doppler imaging allows the direct measurement of PISA without geometric assumptions or the requirement of an angle correction factor. The aim of this study was to validate this method in patients with rheumatic MS. Sixty-three consecutive patients with rheumatic MS were included. MVA was assessed using the transthoracic 2D and 3D PISA methods. Planimetry of MVA (2D and 3D) and the pressure half-time method were used as reference methods. The 3D PISA method had better correlations with the reference methods (with 2D planimetry, r = 0.85, P < .001; with 3D planimetry, r = 0.89, P < .001; and with pressure half-time, r = 0.85, P < .001) than the conventional 2D PISA method (with 2D planimetry, r = 0.63, P < .001; with 3D planimetry, r = 0.66, P < .001; and with pressure half-time, r = 0.68, P < .001). In addition, a consistent significant underestimation of MVA using the conventional 2D PISA method was observed. A high percentage (30%) of patients with nonsevere MS by 3D planimetry were misclassified by the 2D PISA method as having severe MS (effective regurgitant orifice area < 1 cm(2)). In contrast, the 3D PISA method had 94% agreement with 3D planimetry. Good intra- and interobserver agreement for 3D PISA measurements were observed, with intraclass correlation coefficients of 0.95 and 0.90, respectively. MVA assessment using PISA by single-beat real-time 3D color Doppler echocardiography is feasible in the clinical setting and more accurate than the conventional 2D PISA method. Copyright © 2014 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  14. Automated assessment of joint synovitis activity from medical ultrasound and power doppler examinations using image processing and machine learning methods.

    PubMed

    Cupek, Rafal; Ziębiński, Adam

    2016-01-01

    Rheumatoid arthritis is the most common rheumatic disease with arthritis, and causes substantial functional disability in approximately 50% patients after 10 years. Accurate measurement of the disease activity is crucial to provide an adequate treatment and care to the patients. The aim of this study is focused on a computer aided diagnostic system that supports an assessment of synovitis severity. This paper focus on a computer aided diagnostic system that was developed within joint Polish-Norwegian research project related to the automated assessment of the severity of synovitis. Semiquantitative ultrasound with power Doppler is a reliable and widely used method of assessing synovitis. Synovitis is estimated by ultrasound examiner using the scoring system graded from 0 to 3. Activity score is estimated on the basis of the examiner's experience or standardized ultrasound atlases. The method needs trained medical personnel and the result can be affected by a human error. The porotype of a computer-aided diagnostic system and algorithms essential for an analysis of ultrasonic images of finger joints are main scientific output of the MEDUSA project. Medusa Evaluation System prototype uses bone, skin, joint and synovitis area detectors for mutual structural model based evaluation of synovitis. Finally, several algorithms that support the semi-automatic or automatic detection of the bone region were prepared as well as a system that uses the statistical data processing approach in order to automatically localize the regions of interest. Semiquantitative ultrasound with power Doppler is a reliable and widely used method of assessing synovitis. Activity score is estimated on the basis of the examiner's experience and the result can be affected by a human error. In this paper we presented the MEDUSA project which is focused on a computer aided diagnostic system that supports an assessment of synovitis severity.

  15. A self-reference PRF-shift MR thermometry method utilizing the phase gradient.

    PubMed

    Langley, Jason; Potter, William; Phipps, Corey; Huang, Feng; Zhao, Qun

    2011-12-21

    In magnetic resonance (MR) imaging, the most widely used and accurate method for measuring temperature is based on the shift in proton resonance frequency (PRF). However, inter-scan motion and bulk magnetic field shifts can lead to inaccurate temperature measurements in the PRF-shift MR thermometry method. The self-reference PRF-shift MR thermometry method was introduced to overcome such problems by deriving a reference image from the heated or treated image, and approximates the reference phase map with low-order polynomial functions. In this note, a new approach is presented to calculate the baseline phase map in self-reference PRF-shift MR thermometry. The proposed method utilizes the phase gradient to remove the phase unwrapping step inherent to other self-reference PRF-shift MR thermometry methods. The performance of the proposed method was evaluated using numerical simulations with temperature distributions following a two-dimensional Gaussian function as well as phantom and in vivo experimental data sets. The results from both the numerical simulations and experimental data show that the proposed method is a promising technique for measuring temperature.

  16. A comparison of the Cook-Swartz Doppler with conventional clinical methods for free flap monitoring: A systematic review and a meta-analysis.

    PubMed

    Han, Zhao-Feng; Guo, Li-Li; Liu, Lin-Bo; Li, Qian; Zhou, Jian; Wei, Ai-Zhou; Guo, Peng-Fei

    2016-08-01

    Currently there is no consensus on what is the optimal method for monitoring free flaps. Our meta-analysis compared the free flap success and salvage rates of Cook-Swartz Implantable Doppler monitoring with clinical monitoring to gain insight into the relative benefit of these systems. Medline, Cochrane, EMBASE, and Google Scholar databases were searched until January 16, 2016. Search terms included free flap surgery, free flap microsurgery and implantable Doppler. Studies were included if they involved the comparison of Cook-Swartz Doppler and clinical assessment for monitoring free flap function. Studies using free flap monitoring as an outcome measure for drug treatment were also excluded. Sensitivity analysis using the leave-one-out approach was used to assay the reliability of the findings. Initial search identified 14 studies, of which five studies were included in the meta-analysis. Cook-Swartz Doppler had significantly better rate of free flap success and salvage than clinical monitoring methods (P values ≤ 0.006). Data did not markedly changed when each study was removed in turn, showing reliability of the findings. The Cook-Swartz Doppler as a monitoring method may result in a higher rate of free flap success and salvaging but also a greater frequency of false positives than conventional methods. Our analysis is limited by designs of included studies and by heterogeneity of clinical monitoring techniques. More studies are needed to evaluate if Cook-Swartz Doppler can be used alone, or to be better used as an adjunctive technique to complement the clinical method of monitoring. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  17. Measurement of the Doppler power of flowing blood using ultrasound Doppler devices.

    PubMed

    Huang, Chih-Chung; Chou, Hung-Lung; Chen, Pay-Yu

    2015-02-01

    Measurement of the Doppler power of signals backscattered from flowing blood (henceforth referred to as the Doppler power of flowing blood) and the echogenicity of flowing blood have been used widely to assess the degree of red blood cell (RBC) aggregation for more than 20 y. Many studies have used Doppler flowmeters based on an analogue circuit design to obtain the Doppler shifts in the signals backscattered from flowing blood; however, some recent studies have mentioned that the analogue Doppler flowmeter exhibits a frequency-response problem whereby the backscattered energy is lost at higher Doppler shift frequencies. Therefore, the measured Doppler power of flowing blood and evaluations of RBC aggregation obtained using an analogue Doppler device may be inaccurate. To overcome this problem, the present study implemented a field-programmable gate array-based digital pulsed-wave Doppler flowmeter to measure the Doppler power of flowing blood, in the aim of providing more accurate assessments of RBC aggregation. A clinical duplex ultrasound imaging system that can acquire pulsed-wave Doppler spectrograms is now available, but its usefulness for estimating the ultrasound scattering properties of blood is still in doubt. Therefore, the echogenicity and Doppler power of flowing blood under the same flow conditions were measured using a laboratory pulser-receiver system and a clinical ultrasound system, respectively, for comparisons. The experiments were carried out using porcine blood under steady laminar flow with both RBC suspensions and whole blood. The experimental results indicated that a clinical ultrasound system used to measure the Doppler spectrograms is not suitable for quantifying Doppler power. However, the Doppler power measured using a digital Doppler flowmeter can reveal the relationship between backscattering signals and the properties of blood cells because the effects of frequency response are eliminated. The measurements of the Doppler power and

  18. Application of the loop method for correcting acoustic doppler current profiler discharge measurements biased by sediment transport

    USGS Publications Warehouse

    Mueller, David S.; Wagner, Chad R.

    2006-01-01

    A systematic bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) is attributed to the movement of sediment near the streambed-an issue widely acknowledged by the scientific community. This systematic bias leads to an underestimation of measured velocity and discharge. The integration of a differentially corrected Global Positioning System (DGPS) to track the movement of the ADCP can be used to avoid the systematic bias associated with a moving bed. DGPS systems, however, cannot provide consistently accurate positions because of multipath errors and satellite signal reception problems on waterways with dense tree canopy along the banks, in deep valleys or canyons, and near bridges. An alternative method of correcting for the moving-bed bias was investigated by the U.S. Geological Survey.

  19. High Resolution Doppler Lidar

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  20. Cancer research in need of a scientific revolution: Using 'paradigm shift' as a method of investigation.

    PubMed

    Wion, Didier; Appaix, Florence; Burruss, Meriwether; Berger, Francois; van der Sanden, Boudewijn

    2015-09-01

    Despite important human and financial resources and considerable accumulation of scientific publications, patents, and clinical trials, cancer research has been slow in achieving a therapeutic revolution similar to the one that occurred in the last century for infectious diseases. It has been proposed that science proceeds not only by accumulating data but also through paradigm shifts. Here, we propose to use the concept of 'paradigm shift' as a method of investigation when dominant paradigms fail to achieve their promises. The first step in using the 'paradigm shift' method in cancer research requires identifying its founding paradigms. In this review, two of these founding paradigms will be discussed: (i) the reification of cancer as a tumour mass and (ii) the translation of the concepts issued from infectious disease in cancer research. We show how these founding paradigms can generate biases that lead to over-diagnosis and over-treatment and also hamper the development of curative cancer therapies. We apply the 'paradigm shift' method to produce perspective reversals consistent with current experimental evidence. The 'paradigm shift' method enlightens the existence of a tumour physiologic-prophylactic-pathologic continuum. It integrates the target/antitarget concept and that cancer is also an extracellular disease. The 'paradigm shift' method has immediate implications for cancer prevention and therapy. It could be a general method of investigation for other diseases awaiting therapy.

  1. Laser Doppler velocimetry based on the optoacoustic effect in a RF-excited CO2 laser.

    PubMed

    Lee, Teaghee; Choi, Jong Woon; Kim, Yong Pyung

    2012-09-01

    We present a compact optoacoustic laser Doppler velocimetry method that utilizes the self-mixing effect in a RF-excited CO(2) laser. A portion of a Doppler-shifted laser beam, produced by irradiating a single wavelength laser beam on a moving object, is mixed with an originally existing laser beam inside a laser cavity. The fine change of pressure in the laser cavity modulated by the Doppler-shifted frequency is detected by a condenser microphone in the laser tube. In our studies, the frequency of the Doppler signal due to the optoacoustic effect was detected as high as 50 kHz. Our measurements also confirmed that the signal varied linearly with the velocity of the external scatterer (the moving object) and the cosine of the angle between the laser beam and the velocity vector of the object.

  2. Study on glucose photoacoustic signals denoising based on a modified wavelet shift-invariance thresholding method

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong

    2016-11-01

    To improve the denoising effect of the glucose photoacoustic signals, a modified wavelet thresholding combined shift-invariance algorithm was used in this paper. In addition, the shift-invariance method was added into the improved algorithm. To verify the feasibility of modified wavelet shift-invariance threshold denoising algorithm, the simulation experiments were performed. Results show that the denoising effect of modified wavelet shift-invariance thresholding algorithm is better than that of others because its signal-to-noise ratio is largest and the root-mean-square error is lest. Finally, the modified wavelet shift-invariance threshold denoising was used to remove the noises of the photoacoustic signals of glucose aqueous solutions.

  3. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking.

    PubMed

    Armstrong, J W

    2006-01-01

    This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (∼millihertz) gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity 2Δv/c = Δν/ν0, where Δν is the Doppler shift and ν0 is the radio link carrier frequency. A gravitational wave having strain amplitude h incident on the earth-spacecraft system causes perturbations of order h in the time series of Δν/ν0. Unlike other detectors, the ∼ 1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series), some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  4. Early detection of ecosystem regime shifts: a multiple method evaluation for management application.

    PubMed

    Lindegren, Martin; Dakos, Vasilis; Gröger, Joachim P; Gårdmark, Anna; Kornilovs, Georgs; Otto, Saskia A; Möllmann, Christian

    2012-01-01

    Critical transitions between alternative stable states have been shown to occur across an array of complex systems. While our ability to identify abrupt regime shifts in natural ecosystems has improved, detection of potential early-warning signals previous to such shifts is still very limited. Using real monitoring data of a key ecosystem component, we here apply multiple early-warning indicators in order to assess their ability to forewarn a major ecosystem regime shift in the Central Baltic Sea. We show that some indicators and methods can result in clear early-warning signals, while other methods may have limited utility in ecosystem-based management as they show no or weak potential for early-warning. We therefore propose a multiple method approach for early detection of ecosystem regime shifts in monitoring data that may be useful in informing timely management actions in the face of ecosystem change.

  5. Impact of dimming white LEDs: chromaticity shifts due to different dimming methods

    NASA Astrophysics Data System (ADS)

    Dyble, Marc; Narendran, Nadarajah; Bierman, Andrew; Klein, Terence

    2005-09-01

    The goal of this study was to characterize the chromaticity shift that mixed-color and phosphor-converted white LED systems undergo when dimmed. As light-emitting diodes continue to rapidly evolve as a viable light source for lighting applications, their color shift while being dimmed should meet the current requirements of traditional lighting sources. Currently, LED system manufacturers commonly recommend pulse-width-modulation or PWM dimming schemes for operation of LED systems. PWM has the ability to achieve lower intensity levels and more linear control of light intensity compared to continuous current dimming methods. However, little data has been published on the effect dimming has on chromaticity shift of white LED lighting systems. The primary objective of this study was to quantify chromaticity shifts in mixed-color and phosphor-converted white LED systems due to continuous current dimming and pulse-width-modulation dimming schemes. In this study, the light output of the LED system was reduced from 100% to 3% by means of continuous current reduction or PWM methods using a PC white LED system and a mixed-color RGB LED system. Experimental results from this study showed that the PC white LED system exhibited very little chromaticity shift (less than a 4-step MacAdam ellipse) when the light level was changed from 100% to 3% using both dimming schemes. Compared to PC white LEDs, the mixed-color RGB LED system tested in this study showed very large chromaticity shifts in a similar dimming range using both dimming schemes. If a mixed-color RGB system is required, then some active feedback system control must be incorporated to obtain non-perceivable chromaticity shift. In this regard the chromaticity shift caused by the PWM method is easier to correct than the chromaticity shift caused by the continuous current dimming method.

  6. Methods of measuring frequency shifts in the interference structure of the sound field in oceanic waveguides

    NASA Astrophysics Data System (ADS)

    Kuz'kin, V. M.; Pereselkov, S. A.

    2010-07-01

    The efficiency of the correlation method is considered as applied to measuring frequency shifts of maxima in the interference structure of the sound speed under the influence of distortions of the sound-speed profile. The method is based on tracing the position of the maximum of the cross-correlation function corresponding to the spectrum of the transmitted signal in the frequency domain. The distortion is modeled by seasonal variations of the hydrological environment. The noise immunity of the method is analyzed. The correlation method is compared with other known methods of tracing frequency shifts of the interference maxima.

  7. Motion estimation using low-band-shift method for wavelet-based moving-picture coding.

    PubMed

    Park, H W; Kim, H S

    2000-01-01

    The discrete wavelet transform (DWT) has several advantages of multiresolution analysis and subband decomposition, which has been successfully used in image processing. However, the shift-variant property is intrinsic due to the decimation process of the wavelet transform, and it makes the wavelet-domain motion estimation and compensation inefficient. To overcome the shift-variant property, a low-band-shift method is proposed and a motion estimation and compensation method in the wavelet-domain is presented. The proposed method has a superior performance to the conventional motion estimation methods in terms of the mean absolute difference (MAD) as well as the subjective quality. The proposed method can be a model method for the motion estimation in wavelet-domain just like the full-search block matching in the spatial domain.

  8. Phase relation recovery for scanning laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Alveringh, D.; Sanders, R. G. P.; Wiegerink, R. J.; Lötters, J. C.

    2017-02-01

    Laser Doppler vibrometers are able to measure the velocity of a single point compared to a reference point by analyzing the Doppler shift of the laser beams. In many commercially available laser Doppler vibrometers, the laser point can be scanned to obtain an out-of-plane velocity profile of a surface. It is essential that the phase information of the velocities between points is measured as well to be able to fully reproduce the velocity profile of the surface. If this cannot be done by triggering on the actuation signal, the proposed two stage method can be used. This method measures the surface in two stages: one scan with the reference beam at a fixed point and one scan with the reference beam on a moving point. The algorithm in this article calculates the phase and reconstructs the velocity of each point. This is experimentally verified on three different micro structures. The postprocessing algorithm is not intensive in computing power.

  9. Right Ventricular Tissue Doppler in Space Flight

    NASA Technical Reports Server (NTRS)

    Garcia, Kathleen M.; Hamilton, Douglas R.; Sargsyan, Ashot E.; Ebert, Douglas; Martin, David S.; Barratt, Michael R.; Martin, David S.; Bogomolov, Valery V.; Dulchavsky, Scott A.; Duncan, J. Michael

    2010-01-01

    The presentation slides review normal physiology of the right ventricle in space, general physiology of the right ventricle; difficulties in imaging the heart in space, imaging methods, tissue Doppler spectrum, right ventricle tissue Doppler, and Rt Tei Index.

  10. A new approach to NMR chemical shift additivity parameters using simultaneous linear equation method.

    PubMed

    Shahab, Yosif A; Khalil, Rabah A

    2006-10-01

    A new approach to NMR chemical shift additivity parameters using simultaneous linear equation method has been introduced. Three general nitrogen-15 NMR chemical shift additivity parameters with physical significance for aliphatic amines in methanol and cyclohexane and their hydrochlorides in methanol have been derived. A characteristic feature of these additivity parameters is the individual equation can be applied to both open-chain and rigid systems. The factors that influence the (15)N chemical shift of these substances have been determined. A new method for evaluating conformational equilibria at nitrogen in these compounds using the derived additivity parameters has been developed. Conformational analyses of these substances have been worked out. In general, the results indicate that there are four factors affecting the (15)N chemical shift of aliphatic amines; paramagnetic term (p-character), lone pair-proton interactions, proton-proton interactions, symmetry of alkyl substituents and molecular association.

  11. Method for the manufacture of phase shifting masks for EUV lithography

    DOEpatents

    Stearns, Daniel G.; Sweeney, Donald W.; Mirkarimi, Paul B.; Barty, Anton

    2006-04-04

    A method for fabricating an EUV phase shift mask is provided that includes a substrate upon which is deposited a thin film multilayer coating that has a complex-valued reflectance. An absorber layer or a buffer layer is attached onto the thin film multilayer, and the thickness of the thin film multilayer coating is altered to introduce a direct modulation in the complex-valued reflectance to produce phase shifting features.

  12. Doppler characteristics of sea clutter.

    SciTech Connect

    Raynal, Ann Marie; Doerry, Armin Walter

    2010-06-01

    Doppler radars can distinguish targets from clutter if the target's velocity along the radar line of sight is beyond that of the clutter. Some targets of interest may have a Doppler shift similar to that of clutter. The nature of sea clutter is different in the clutter and exo-clutter regions. This behavior requires special consideration regarding where a radar can expect to find sea-clutter returns in Doppler space and what detection algorithms are most appropriate to help mitigate false alarms and increase probability of detection of a target. This paper studies the existing state-of-the-art in the understanding of Doppler characteristics of sea clutter and scattering from the ocean to better understand the design and performance choices of a radar in differentiating targets from clutter under prevailing sea conditions.

  13. Visualisation of the oscillation dynamics of cytoplasm in a living cell of Physarum mixomycete plasmodium by the method of optical coherence Doppler tomography

    SciTech Connect

    Bykov, A V; Priezzhev, A V; Lauri, J; Myllylae, Risto

    2009-04-30

    The method of optical coherence Doppler tomography is used for the first time to visualise the oscillatory amoeboid mobility in strands of Physarum polycephalum mixomycete plasmodium and to record periodic radial contractions of the strands and spatiotemporal variations in the velocity of the cytoplasmic flow inside them. (laser biology)

  14. Visualisation of the oscillation dynamics of cytoplasm in a living cell of Physarum mixomycete plasmodium by the method of optical coherence Doppler tomography

    NASA Astrophysics Data System (ADS)

    Bykov, A. V.; Priezzhev, A. V.; Lauri, J.; Myllylä, Risto

    2009-04-01

    The method of optical coherence Doppler tomography is used for the first time to visualise the oscillatory amoeboid mobility in strands of Physarum polycephalum mixomycete plasmodium and to record periodic radial contractions of the strands and spatiotemporal variations in the velocity of the cytoplasmic flow inside them.

  15. Over/Undervoltage and Undervoltage Shift of Hybrid Islanding Detection Method of Distributed Generation

    PubMed Central

    Premrudeepreechacharn, Suttichai

    2015-01-01

    The mainly used local islanding detection methods may be classified as active and passive methods. Passive methods do not perturb the system but they have larger nondetection zones, whereas active methods have smaller nondetection zones but they perturb the system. In this paper, a new hybrid method is proposed to solve this problem. An over/undervoltage (passive method) has been used to initiate an undervoltage shift (active method), which changes the undervoltage shift of inverter, when the passive method cannot have a clear discrimination between islanding and other events in the system. Simulation results on MATLAB/SIMULINK show that over/undervoltage and undervoltage shifts of hybrid islanding detection method are very effective because they can determine anti-islanding condition very fast. ΔP/P > 38.41% could determine anti-islanding condition within 0.04 s; ΔP/P < −24.39% could determine anti-islanding condition within 0.04 s; −24.39% ≤ ΔP/P ≤ 38.41% could determine anti-islanding condition within 0.08 s. This method perturbed the system, only in the case of −24.39% ≤ ΔP/P ≤ 38.41% at which the control system of inverter injected a signal of undervoltage shift as necessary to check if the occurrence condition was an islanding condition or not. PMID:25879064

  16. Over/Undervoltage and undervoltage shift of hybrid islanding detection method of distributed generation.

    PubMed

    Yingram, Manop; Premrudeepreechacharn, Suttichai

    2015-01-01

    The mainly used local islanding detection methods may be classified as active and passive methods. Passive methods do not perturb the system but they have larger nondetection zones, whereas active methods have smaller nondetection zones but they perturb the system. In this paper, a new hybrid method is proposed to solve this problem. An over/undervoltage (passive method) has been used to initiate an undervoltage shift (active method), which changes the undervoltage shift of inverter, when the passive method cannot have a clear discrimination between islanding and other events in the system. Simulation results on MATLAB/SIMULINK show that over/undervoltage and undervoltage shifts of hybrid islanding detection method are very effective because they can determine anti-islanding condition very fast. ΔP/P > 38.41% could determine anti-islanding condition within 0.04 s; ΔP/P < -24.39% could determine anti-islanding condition within 0.04 s; -24.39% ≤ ΔP/P ≤ 38.41% could determine anti-islanding condition within 0.08 s. This method perturbed the system, only in the case of -24.39% ≤ ΔP/P ≤ 38.41% at which the control system of inverter injected a signal of undervoltage shift as necessary to check if the occurrence condition was an islanding condition or not.

  17. Development of Continuous-Energy Eigenvalue Sensitivity Coefficient Calculation Methods in the Shift Monte Carlo Code

    SciTech Connect

    Perfetti, Christopher M; Martin, William R; Rearden, Bradley T; Williams, Mark L

    2012-01-01

    Three methods for calculating continuous-energy eigenvalue sensitivity coefficients were developed and implemented into the SHIFT Monte Carlo code within the Scale code package. The methods were used for several simple test problems and were evaluated in terms of speed, accuracy, efficiency, and memory requirements. A promising new method for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was developed and produced accurate sensitivity coefficients with figures of merit that were several orders of magnitude larger than those from existing methods.

  18. [Calculation of spectral shifts of the mutants of bacteriorhodopsin by QM/MM methods].

    PubMed

    Orekhov, F S; Shaĭtan, A K; Shaĭtan, K V

    2012-01-01

    In the present work spectral shifts of adsorption maxima for the number of mutants of bacteriorhodopsin have been calculated using QM/MM hybrid methodology. Along with this calculation an analysis of possible mechanisms of spectral modulation has been performed. Also we have carried out a comparative analysis of modern quantum chemical methods in respect of the level of optical spectra predictability they allow. We have shown that modern hybrid quantum chemical methods reach an acceptable level of preciseness when applied in the calculation of spectral shifts even if the absolute values of adsorption maxima predicted by these methods are underestimated. The number of rules has been found linking the value of spectral shift with the structural rearrangement in the apoprotein. The methods we were using as well as those rules we have found out both may be useful for development of nanoelectronical devices based on mutant species of bacteriorhodopsin (memory elements, optical triggers etc.).

  19. Digital phase-shifting atomic force microscope Moiré method

    NASA Astrophysics Data System (ADS)

    Liu, Chia-Ming; Chen, Lien-Wen

    2005-04-01

    In this study, the digital atomic force microscope (AFM) Moiré method with phase-shifting technology is established to measure the in-plane displacement and strain fields. The Moiré pattern is generated by the interference between the specimen grating and the virtual reference grating formed by digital image processes. The overlapped image is filtered by two-dimensional wavelet transformation to obtain the clear interference Moiré patterns. The four-step phase-shifting method is realized by translating the phase of the virtual reference grating from 0 to 2π. The principle of the digital AFM Moiré method and the phase-shifting technology are described in detail. Experimental results show that this method is convenient to use and efficient in realizing the microscale measurement.

  20. On shifted Jacobi spectral method for high-order multi-point boundary value problems

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Bhrawy, A. H.; Hafez, R. M.

    2012-10-01

    This paper reports a spectral tau method for numerically solving multi-point boundary value problems (BVPs) of linear high-order ordinary differential equations. The construction of the shifted Jacobi tau approximation is based on conventional differentiation. This use of differentiation allows the imposition of the governing equation at the whole set of grid points and the straight forward implementation of multiple boundary conditions. Extension of the tau method for high-order multi-point BVPs with variable coefficients is treated using the shifted Jacobi Gauss-Lobatto quadrature. Shifted Jacobi collocation method is developed for solving nonlinear high-order multi-point BVPs. The performance of the proposed methods is investigated by considering several examples. Accurate results and high convergence rates are achieved.

  1. An evaluation of the use of new Doppler methods for detecting longitudinal function abnormalities in a pacing-induced heart failure model

    NASA Technical Reports Server (NTRS)

    Tabata, Tomotsugu; Cardon, Lisa A.; Armstrong, Guy P.; Fukamach, Kiyotaka; Takagaki, Masami; Ochiai, Yoshie; McCarthy, Patrick M.; Thomas, James D.

    2003-01-01

    BACKGROUND: Doppler tissue echocardiography and color M-mode Doppler flow propagation velocity have proven useful in evaluating cross-sections of patients with left ventricular (LV) dysfunction, but experience with serial changes is limited. Purpose and methods: We tested their use by evaluating the temporal changes of LV function in a pacing-induced congestive heart failure model. Rapid ventricular pacing was initiated and maintained in 20 dogs for 4 weeks. Echocardiography was performed at baseline and weekly during brief pacing cessation. RESULTS: With rapid pacing, LV volume significantly increased and ejection fraction (57%-28%), stroke volume (37-18 mL), and mitral annulus systolic velocity (16.1-6.6 cm/s) by Doppler tissue echocardiography significantly decreased, with ejection fraction and mitral annulus systolic velocity closely correlated (r = 0.706, P <.0001). In contrast to the mitral inflow velocities, mitral annulus early diastolic velocity decreased steadily (12.3-7.3 cm/s) resulting in a dramatic decrease in mitral annulus early/late (1.22-0.57) diastolic velocity with no tendency toward pseudonormalization. The color M-mode Doppler flow propagation velocity also showed significant steady decrease (57-24 cm/s) throughout the pacing period. Multiple regression analysis chose mitral annulus systolic velocity (r = 0.895, P <.0001) and propagation velocity (r = 0.782, P <.0001) for the most important factor predicting LV systolic and diastolic function, respectively. CONCLUSIONS: Doppler tissue echocardiography and color M-mode Doppler flow could evaluate the serial deterioration in LV dysfunction throughout the pacing period. These were more useful in quantifying progressive LV dysfunction than conventional ehocardiographic techniques, and were probably relatively independent of preload. These techniques could be suitable for longitudinal evaluation in addition to the cross-sectional study.

  2. An evaluation of the use of new Doppler methods for detecting longitudinal function abnormalities in a pacing-induced heart failure model

    NASA Technical Reports Server (NTRS)

    Tabata, Tomotsugu; Cardon, Lisa A.; Armstrong, Guy P.; Fukamach, Kiyotaka; Takagaki, Masami; Ochiai, Yoshie; McCarthy, Patrick M.; Thomas, James D.

    2003-01-01

    BACKGROUND: Doppler tissue echocardiography and color M-mode Doppler flow propagation velocity have proven useful in evaluating cross-sections of patients with left ventricular (LV) dysfunction, but experience with serial changes is limited. Purpose and methods: We tested their use by evaluating the temporal changes of LV function in a pacing-induced congestive heart failure model. Rapid ventricular pacing was initiated and maintained in 20 dogs for 4 weeks. Echocardiography was performed at baseline and weekly during brief pacing cessation. RESULTS: With rapid pacing, LV volume significantly increased and ejection fraction (57%-28%), stroke volume (37-18 mL), and mitral annulus systolic velocity (16.1-6.6 cm/s) by Doppler tissue echocardiography significantly decreased, with ejection fraction and mitral annulus systolic velocity closely correlated (r = 0.706, P <.0001). In contrast to the mitral inflow velocities, mitral annulus early diastolic velocity decreased steadily (12.3-7.3 cm/s) resulting in a dramatic decrease in mitral annulus early/late (1.22-0.57) diastolic velocity with no tendency toward pseudonormalization. The color M-mode Doppler flow propagation velocity also showed significant steady decrease (57-24 cm/s) throughout the pacing period. Multiple regression analysis chose mitral annulus systolic velocity (r = 0.895, P <.0001) and propagation velocity (r = 0.782, P <.0001) for the most important factor predicting LV systolic and diastolic function, respectively. CONCLUSIONS: Doppler tissue echocardiography and color M-mode Doppler flow could evaluate the serial deterioration in LV dysfunction throughout the pacing period. These were more useful in quantifying progressive LV dysfunction than conventional ehocardiographic techniques, and were probably relatively independent of preload. These techniques could be suitable for longitudinal evaluation in addition to the cross-sectional study.

  3. Application of the Dopplionogram to Doppler-sorted interferometry measurements of ionospheric drift velocity

    NASA Astrophysics Data System (ADS)

    Parkinson, M. L.; Breed, A. M.; Dyson, P. L.; Morris, R. J.

    1999-07-01

    The Dopplionogram was developed as a method of displaying Doppler shifts along the frequency axis of ionograms recorded using B-mode soundings of the Dynasonde, an early type of HF digital ionosonde. The basic idea of recording Doppler shifts in an ionogram format is applied and extended to the Doppler velocity mode of the Digisonde Portable Sounder-4 (DPS-4), a related and more recent type of digital ionosonde. In order to describe our mode of operation a Dopplionogram is redefined to mean a set of stepped-frequency soundings that yields a set of ionospheric Doppler shifts particular to the chosen transmission frequencies. Extension of the technique to include Doppler-sorted interferometry (DSI) analysis of the Doppler spectra facilitates a detailed analysis of ionospheric velocity variations in time and group height. This revitalized approach to DSI should prove useful for the study of ionospheric dynamics for which knowledge of the height profile of electric currents, drift velocity, and neutral winds is required. The technique is demonstrated using measurements of polar cap plasma winds obtained with a DPS-4 located at Casey, Antarctica (66.3°S, 110.5°E).

  4. A Mössbauer experiment in a rotating system on the second-order Doppler shift: confirmation of the corrected result by Kündig

    NASA Astrophysics Data System (ADS)

    Kholmetskii, Alexander L.; Yarman, Tolga; Missevitch, Oleg V.; Rogozev, Boris I.

    2009-06-01

    We present the results of a Mössbauer experiment in a rotating system, whose performance was stimulated by our recent findings (2008 Phys. Scr. 77 035302) and which consisted of the fact that a correct processing of Kündig's experimental data on the subject gives an appreciable deviation of a relative energy shift ΔE/E between emission and absorption resonant lines from the standard prediction based on the relativistic dilation of time (that is, ΔE/E=-v2/2c2 to the accuracy c-2, where v is the tangential velocity of the absorber of resonant radiation, and c is the velocity of light in vacuum). That is, the Kündig result we have corrected becomes ΔE/E=-k(v2/c2), with k=0.596±0.006 (instead of the result k=0.5003±0.006, originally reported by Kündig). In our own experiment, we carried out measurements for two absorbers with a substantially different isomer shift, which allowed us to make a correction of the Mössbauer data regarding vibrations in the rotor system at various rotational frequencies. As a result, we obtained the overall estimation k=0.68±0.03.

  5. X-ray phase-shifts-based method of volumetric breast density measurement.

    PubMed

    Wu, Xizeng; Yan, Aimin; Liu, Hong

    2012-07-01

    The high breast density is one of the biggest risk factors for breast cancer. Identifying patient having persistent high breast density is important for breast cancer screening and prevention. In this work the authors propose for the first time an x-ray phase-shifts-based method of breast density measurement. When x ray traverses the breast, x ray gets not only its intensity attenuated but also its phase shifted. Studying the x-ray phase-shifts generated by the breast tissues, we derived a general formula for determining the volumetric breast density from the breast phase map. The volumetric breast density is reconstructed by retrieving the breast phase map from just a single phase-sensitive projection of the breast, through the use of an innovative phase retrieval method based on the phase-attenuation duality. In order to numerically validate this phase-shifts-based method for measuring the volumetric breast density, the authors performed computer simulations with a digitally simulated anthropomorphic breast phantom. Using the proposed phase-shifts-based method, we reconstructed the breast phantom's volumetric breast density, which differs from the phantom's intrinsic breast density by only 0.06%. In the presence of noises in the projection image, the reconstructed volumetric breast density differs from the phantom's intrinsic breast density by only 1.79% for a projection signal-to-noise-ratio (SNR) of 34. The error in reconstructed breast density is further reduced to 1.61% and 1.55% for SNR = 68 and SNR = 134, respectively, achieving good accuracies in the breast density determination. The authors proposed an x-ray phase-shifts-based method of measuring the volumetric breast density. The simulation results numerically validated the proposed method as a novel method of breast density measurement with good accuracies. © 2012 American Association of Physicists in Medicine.

  6. A novel method for identifying the order of interference using phase-shifting digital holography.

    PubMed

    Sokkar, T Z N; El-Farahaty, K A; Ramadan, W A; Wahba, H H; Raslan, M I; Hamza, A A

    2016-04-01

    In this paper, we introduced a mathematical method for measuring the optical path length differences (OPDs), which is suitable for large OPD values where the fringes connections are difficult to detect. The proposed method is based on varying the width of the fringes, without changing the wavelength of the used coherent source. Also, in this work, we discussed the need for such method in off-axis phase-shifting digital holography. Low-resolution off-axis holograms failed to detect the correct interference order. In general, off-axis phase-shifting digital holography is limited by the resolution of the captured holograms. The results obtained using our proposed technique were compared to the results obtained using off-axis phase-shifting digital holograms and conventional two-beam interferometry. Holograms were given for illustration. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  7. [Tissue Doppler: the physical principles, representational and analytical modalities and clinical applications].

    PubMed

    Trambaiolo, P; Salustri, A; Tonti, G; Fedele, F; Palamara, A

    2000-01-01

    Tissue Doppler imaging or myocardial velocity imaging is a variation of conventional Doppler. This modality allows the quantification of the Doppler shift within the range of myocardial tissue motion. The velocity of motion at a variety of myocardial sites can be determined and distinguished very rapidly using Doppler techniques. The velocity of moving tissue can be studied with pulsed wave tissue Doppler sampling, which displays the velocity of a selected myocardial region against time, with high temporal resolution. In addition, the velocities can be calculated with time velocity maps and displayed as color coded velocity maps in either M-mode or two-dimensional format. This review will focus on the technical aspects and the different methods of tissue Doppler for regional systolic and diastolic left ventricular function analysis. While pulsed wave tissue Doppler allows us to measure the velocities of a selected myocardial region, color tissue Doppler gives the best overall view of cardiac dynamics because the whole scanned color data are displayed simultaneously. However, there is an increasing need for objective evaluation of tissue Doppler information. Digital images and data post-processing allow for quantitative off-line analysis, and the different approaches and parameters proposed from different centers are discussed. In recent years, tissue Doppler imaging has been applied for accurate evaluation of diastolic function, quantifying regional function particularly during stress, pre-excitation syndrome, and left ventricular hypertrophy. The results of these experiences indicate that tissue Doppler imaging is a promising technique for quantifying the response of the myocardium and endocardium during both normal and abnormal function. Again, there is a significant learning curve concerning its application, but with experience it will be a useful and reproducible technique.

  8. A method to design tunable quadrature filters in phase shifting interferometry.

    PubMed

    Mosiño, J F; Doblado, D Malacara; Hernández, D Malacara

    2009-08-31

    The main purpose of this paper is to present a method to design tunable quadrature filters in phase shifting interferometry. The algorithm is obtained from a generalized Fourier transform of a symmetrical quadrature filter. This formalism allows us to represent the detuning phase shift error and bias modulation as geometrical conditions. Therefore, the design of the filter becomes a set of solvable linear equations. Hence, to prove our method, several general tunable filters, like three and four frame algorithms, are obtained. Finally, from our results we reproduce particular symmetrical four frame algorithms reported in literature.

  9. DNA fluorescence shift sensor: a rapid method for the detection of DNA hybridization using silver nanoclusters.

    PubMed

    Lee, Shin Yong; Hairul Bahara, Nur Hidayah; Choong, Yee Siew; Lim, Theam Soon; Tye, Gee Jun

    2014-11-01

    DNA-templated silver nanoclusters (AgNC) are a class of subnanometer sized fluorophores with good photostability and brightness. It has been applied as a diagnostic tool mainly for deoxyribonucleic acid (DNA) detection. Integration of DNA oligomers to generate AgNCs is interesting as varying DNA sequences can result in different fluorescence spectra. This allows a simple fluorescence shifting effect to occur upon DNA hybridization with the hybridization efficiency being a pronominal factor for successful shifting. The ability to shift the fluorescence spectra as a result of hybridization overcomes the issue of background intensities in most fluorescent based assays. Here we describe an optimized method for the detection of single-stranded and double-stranded synthetic forkhead box P3 (FOXP3) target by hybridization with the DNA fluorescence shift sensor. The system forms a three-way junction by successful hybridization of AgNC, G-rich strand (G-rich) to the target DNA, which generated a shift in fluorescence spectra with a marked increase in fluorescence intensity. The DNA fluorescence shift sensor presents a rapid and specific alternative to conventional DNA detection.

  10. Twin-image reduction method for in-line digital holography using periphery and random reference phase-shifting techniques

    NASA Astrophysics Data System (ADS)

    Oshima, Teppei; Matsudo, Yusuke; Kakue, Takashi; Arai, Daisuke; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2015-09-01

    Digital holography has the twin image problem that unwanted lights (conjugate and direct lights) overlap in the object light in the reconstruction process. As a method for extracting only the object light, phase-shifting digital holography is widely used; however, this method is not applicable for the observation of moving objects, because this method requires the recording of plural holograms. In this study, we propose a twin-image reduction method by combining the "periphery" method with the "random phase-shifting" method. The proposed method succeeded in improving the reconstruction quality, compared to other one-shot recording methods ("parallel phase-shifting digital holography" and "random phase-shifting").

  11. [Calculation of the mitral valve area with the proximal convergent flow method with Doppler-color in patients with mitral stenosis].

    PubMed

    Aguilar, J A; Summerson, C; Flores, D; Espinosa, R A; Enciso, R; Badui, E; Hurtado, R

    1994-01-01

    In this study we evaluate prospectively a new color Doppler method for calculating the mitral valve area based on identifying a blue-red aliasing interfase proximal to the orifice, corresponding to the flow convergence region (FCR). This method can be used to calculate areas using the continuity equation. We studied 61 patients with stenosis. The mitral valve area was calculated using pressure half-time (PHT) Doppler method which were compared with values that obtained by the FCR method, according to the following formula. AVM (cm2) = 2 pi r2 x VN/Vmax; where "r" is the FCR radius measured from the orifice to the first color aliasing (blue-red interface); VN is Nyquist velocity and Vmax is the peak flow velocity by continuous wave Doppler. Twenty three patients had pure mitral stenosis and 38 double mitral lesion. Twenty patients were on sinus rhythm while 41 in atrial fibrillation. Calculated mitral valve area using the FCR method correlated well with mitral valve area determined by PHT method at a correlation coefficient of r = 0.96 (y = 0.097 x + 54.9, SEE = 0.10 cm2, p < 0.001). MVA by FCR ranged from 0.4 to 2.5 cm2 (mean = 1.19 cm2). MVA by PHT ranged from 0.42 to 2.48 cm2 (mean = 1.15 cm2). Color Doppler FCR method provides an accurate estimate of effective mitral valve area and may be useful as an alternative to the pressure half-time method. The calculated mitral valve area by the FCR method is not influenced by the presence of mitral regurgitation nor atrial fibrillation.

  12. Simple, flexible, and accurate phase retrieval method for generalized phase-shifting interferometry.

    PubMed

    Yatabe, Kohei; Ishikawa, Kenji; Oikawa, Yasuhiro

    2017-01-01

    This paper presents a non-iterative phase retrieval method from randomly phase-shifted fringe images. By combining the hyperaccurate least squares ellipse fitting method with the subspace method (usually called the principal component analysis), a fast and accurate phase retrieval algorithm is realized. The proposed method is simple, flexible, and accurate. It can be easily coded without iteration, initial guess, or tuning parameter. Its flexibility comes from the fact that totally random phase-shifting steps and any number of fringe images greater than two are acceptable without any specific treatment. Finally, it is accurate because the hyperaccurate least squares method and the modified subspace method enable phase retrieval with a small error as shown by the simulations. A MATLAB code, which is used in the experimental section, is provided within the paper to demonstrate its simplicity and easiness.

  13. Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction.

    PubMed

    Fessler, J A; Booth, S D

    1999-01-01

    Gradient-based iterative methods often converge slowly for tomographic image reconstruction and image restoration problems, but can be accelerated by suitable preconditioners. Diagonal preconditioners offer some improvement in convergence rate, but do not incorporate the structure of the Hessian matrices in imaging problems. Circulant preconditioners can provide remarkable acceleration for inverse problems that are approximately shift-invariant, i.e., for those with approximately block-Toeplitz or block-circulant Hessians. However, in applications with nonuniform noise variance, such as arises from Poisson statistics in emission tomography and in quantum-limited optical imaging, the Hessian of the weighted least-squares objective function is quite shift-variant, and circulant preconditioners perform poorly. Additional shift-variance is caused by edge-preserving regularization methods based on nonquadratic penalty functions. This paper describes new preconditioners that approximate more accurately the Hessian matrices of shift-variant imaging problems. Compared to diagonal or circulant preconditioning, the new preconditioners lead to significantly faster convergence rates for the unconstrained conjugate-gradient (CG) iteration. We also propose a new efficient method for the line-search step required by CG methods. Applications to positron emission tomography (PET) illustrate the method.

  14. Progress in Doppler picture velocimetry (DPV)

    NASA Astrophysics Data System (ADS)

    Seiler, F.; George, A.; Srulijes, J.; Havermann, M.

    2008-03-01

    The special wide-field Michelson interferometer designed at ISL transforms the Doppler frequency shift of light scattered by tracer particles crossing a light sheet into a shift of luminous intensity at the output of the Michelson interferometer, yielding information about the particle velocity. To overcome former disadvantages, the optical set-up as well as the Doppler picture-processing algorithm were further improved. The present status of Doppler picture velocimetry (DPV) is explained by means of measurements carried out at Mach 6 in the ISL shock tunnel STA. The vertical velocity distribution around several bodies, such as a wedge, a sphere and a cylinder was visualized and measured.

  15. A remote and non-contact method for obtaining the blood-pulse waveform with a laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Desjardins, Candida L.; Antonelli, Lynn T.; Soares, Edward

    2007-02-01

    The use of lasers to remotely and non-invasively detect the blood pressure waveform of humans and animals would provide a powerful diagnostic tool. Current blood pressure measurement tools, such as a cuff, are not useful for burn and trauma victims, and animals require catheterization to acquire accurate blood pressure information. The purpose of our sensor method and apparatus invention is to remotely and non-invasively detect the blood pulse waveform of both animals and humans. This device is used to monitor an animal or human's skin in proximity to an artery using radiation from a laser Doppler vibrometer (LDV). This system measures the velocity (or displacement) of the pulsatile motion of the skin, indicative of physiological parameters of the arterial motion in relation to the cardiac cycle. Tests have been conducted that measures surface velocity with an LDV and a signal-processing unit, with enhanced detection obtained with optional hardware including a retro-reflector dot. The blood pulse waveform is obtained by integrating the velocity signal to get surface displacement using standard signal processing techniques. Continuous recording of the blood pulse waveform yields data containing information on cardiac health and can be analyzed to identify important events in the cardiac cycle, such as heart rate, the timing of peak systole, left ventricular ejection time and aortic valve closure. Experimental results are provided that demonstrates the current capabilities of the optical, non-contact sensor for the continuous, non-contact recording of the blood pulse waveform without causing patient distress.

  16. Teaching Doppler Effect with a passing noise source

    NASA Astrophysics Data System (ADS)

    Costa, Ivan F.; Mocellin, Alexandra

    2010-07-01

    The noise pitch variation of a passing noise source allows a low cost experimental approach to calculate speed and, for the first time, distance. We adjusted the recorded noise pitch variation to the Doppler shift equation for sound. We did this by taking into account the frequency delay due to the sound source displacement and performing a Fast Fourier Transform (FFT) of the noise signal using free software. This experimental method was successfully applied to aircraft and automobiles.

  17. Measurement of the n=2 Lamb shift in He+ by the anisotropy method

    NASA Astrophysics Data System (ADS)

    van Wijngaarden, A.; Kwela, J.; Drake, G. W. F.

    1991-04-01

    A high-precision measurement of the 2s 2S1/2-2p 2P1/2 Lamb shift in He+ by the quenching-anisotropy method is reported. The theory and experimental method are described in detail. The measured value of 14042.52+/-0.16 MHz (+/-11 parts per million) rivals the accuracy of Lamb-shift measurements in hydrogen by microwave resonance. By subtracting the known low-order terms in the Lamb shift, we interpret the results as a measurement of the order α(Zα)6mc2 and higher contributions to the electron self-energy GSE(Zα). The various contributions to the Lamb shift are discussed, and a revised value for GSE(Zα) at low Z is extracted from high-Z calculations. The theoretical value for the Lamb shift is 14042.51+/-0.2 MHz, in excellent agreement with experiment. The results provide the most sensitive available determination of GSE(Zα) for low Z. Measurements and calculations for hydrogen and other members of the isoelectronic sequence are discussed.

  18. Double Doppler effect in two-dimensional photonic crystal with negative effective index

    NASA Astrophysics Data System (ADS)

    Jiang, Qiang; Chen, Jiabi; Liang, Binming; Zhuang, Songlin

    2016-11-01

    The inverse Doppler effect in photonic crystal with negative refractive index had been proofed experimentally in our previous research. In this paper, we studied the spatial harmonics of Bloch wave propagating in such PhCs by FFT method. The lagging and front phase evolutions reveal that both backward wave and forward wave exist in these harmonics. Subsequently, we studied the double Doppler effect phenomenon that both the normal and inverse Doppler exist in one photonic crystal simultaneously by using the improved dynamic FDTD method which we made it suitable for dealing with moving objects. The simulative Doppler frequency shifts were consistent with the theoretical values. Our study provides a potential technology in measurement area.

  19. Ultrasonic colour Doppler imaging

    PubMed Central

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been found to be of great value in assessing blood flow in many clinical conditions. Although the method for obtaining the velocity information is in many ways similar to the method for obtaining the anatomical information, it is technically more demanding for a number of reasons. It also has a number of weaknesses, perhaps the greatest being that in conventional systems, the velocities measured and thus displayed are the components of the flow velocity directly towards or away from the transducer, while ideally the method would give information about the magnitude and direction of the three-dimensional flow vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new techniques that seek to overcome the vector problem mentioned above are described. Finally, some examples of vector velocity images are presented. PMID:22866227

  20. Statistical study of generalized nonlinear phase step estimation methods in phase-shifting interferometry

    SciTech Connect

    Langoju, Rajesh; Patil, Abhijit; Rastogi, Pramod

    2007-11-20

    Signal processing methods based on maximum-likelihood theory, discrete chirp Fourier transform, and spectral estimation methods have enabled accurate measurement of phase in phase-shifting interferometry in the presence of nonlinear response of the piezoelectric transducer to the applied voltage. We present the statistical study of these generalized nonlinear phase step estimation methods to identify the best method by deriving the Cramer-Rao bound. We also address important aspects of these methods for implementation in practical applications and compare the performance of the best-identified method with other bench marking algorithms in the presence of harmonics and noise.

  1. Statistical study of generalized nonlinear phase step estimation methods in phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Langoju, Rajesh; Patil, Abhijit; Rastogi, Pramod

    2007-11-01

    Signal processing methods based on maximum-likelihood theory, discrete chirp Fourier transform, and spectral estimation methods have enabled accurate measurement of phase in phase-shifting interferometry in the presence of nonlinear response of the piezoelectric transducer to the applied voltage. We present the statistical study of these generalized nonlinear phase step estimation methods to identify the best method by deriving the Cramér-Rao bound. We also address important aspects of these methods for implementation in practical applications and compare the performance of the best-identified method with other bench marking algorithms in the presence of harmonics and noise.

  2. Regional myocardial long-axis strain and strain rate measured by different tissue Doppler and speckle tracking echocardiography methods: a comparison with tagged magnetic resonance imaging.

    PubMed

    Amundsen, Brage H; Crosby, Jonas; Steen, Per Arvid; Torp, Hans; Slørdahl, Stig A; Støylen, Asbjørn

    2009-03-01

    Compare four different echocardiographic methods, based on tissue Doppler imaging (TDI) and speckle tracking (ST) separately or combined, for long-axis strain and strain rate (SR) measurements, using magnetic resonance imaging (MRI) tagging as a reference. In 21 subjects (10 with myocardial infarction) peak systolic strain and systolic and early diastolic SR were measured by four different echo methods: (i) two-dimensional (2D) strain (B-mode); (ii) ST (custom software) of segment end-points (B-mode); (iii) similar to (ii), but combining ST with tissue Doppler tracking; (iv) strain from tissue Doppler velocity gradients (VG). Agreement with MRI tagging was better for strain than for SR. Ninety-five per cent limits of agreement were wider for the TDI-VG method, and 2D strain showed negative bias compared with MRI tagging and the other echo methods. Reproducibility was better for 2D strain than for MRI tagging and the other echo methods. ST alone or combined with TDI seems to be suitable for automated measurements of regional myocardial deformation. The study gives important information on the strengths and weaknesses of the different methods, which is important for further development to increase accuracy and applicability.

  3. Dual Cylindrical Wave Laser-Doppler Method for Measurement of Skin Friction in Fluid Flow.

    DTIC Science & Technology

    1987-01-01

    METHOD FOR MEASUREMENT OF SKIN FRICTION IN FLUID FLOW 0N by Amir A. Naqwi William C. Reynolds Prepared under the joint support of Army Research Office...Aeromechanics Laboratory, RTL (AVRADCOM) NASA-Ames Research Center JQUNir Report No. TF-28 " 0 ’ Thermosciences Division Department of Mechanical...ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Stanford University [ (If applicable) U. S. Army Research Office c. ADDRESS (City, State, and

  4. A method for crack sizing using Laser Doppler Vibrometer measurements of Surface Acoustic Waves.

    PubMed

    Longo, Roberto; Vanlanduit, Steve; Vanherzeele, Joris; Guillaume, Patrick

    2010-01-01

    The goal of non-destructive testing (NDT) is to determine the position and size of structural defects, in order to measure the quality and evaluate the safety of building materials. Most NDT techniques are rather complex, however, requiring specialized knowledge. In this article, we introduce an experimental method for crack detection that uses Surface Acoustic Waves (SAWs) and optical measurements. The method is tested on a steel beam engraved with slots of known depth. A simple model to determine the cracks size is also proposed. At the end of the article, we describe a possible application: fatigue crack sizing on a damaged slat track. This technique represents a first step toward a better understanding of the crack growth, especially in its early stages (preferably when the cracks can still be repaired) and when it is possible to assume a linear propagation of the crack front. The ultimate goal of this research program is to develop a useful method of monitoring aircraft components during fatigue testing.

  5. 3D Wind Reconstruction and Turbulence Estimation in the Boundary Layer from Doppler Lidar Measurements using Particle Method

    NASA Astrophysics Data System (ADS)

    Rottner, L.; Baehr, C.

    2014-12-01

    Turbulent phenomena in the atmospheric boundary layer (ABL) are characterized by small spatial and temporal scales which make them difficult to observe and to model.New remote sensing instruments, like Doppler Lidar, give access to fine and high-frequency observations of wind in the ABL. This study suggests to use a method of nonlinear estimation based on these observations to reconstruct 3D wind in a hemispheric volume, and to estimate atmospheric turbulent parameters. The wind observations are associated to particle systems which are driven by a local turbulence model. The particles have both fluid and stochastic properties. Therefore, spatial averages and covariances may be deduced from the particles. Among the innovative aspects, we point out the absence of the common hypothesis of stationary-ergodic turbulence and the non-use of particle model closure hypothesis. Every time observations are available, 3D wind is reconstructed and turbulent parameters such as turbulent kinectic energy, dissipation rate, and Turbulent Intensity (TI) are provided. This study presents some results obtained using real wind measurements provided by a five lines of sight Lidar. Compared with classical methods (e.g. eddy covariance) our technic renders equivalent long time results. Moreover it provides finer and real time turbulence estimations. To assess this new method, we suggest computing independently TI using different observation types. First anemometer data are used to have TI reference.Then raw and filtered Lidar observations have also been compared. The TI obtained from raw data is significantly higher than the reference one, whereas the TI estimated with the new algorithm has the same order.In this study we have presented a new class of algorithm to reconstruct local random media. It offers a new way to understand turbulence in the ABL, in both stable or convective conditions. Later, it could be used to refine turbulence parametrization in meteorological meso-scale models.

  6. GEOS-3 Doppler difference tracking

    NASA Technical Reports Server (NTRS)

    Rosenbaum, B.

    1977-01-01

    The Doppler difference method as applied to track the GEOS 3 spacecraft is discussed. In this method a pair of 2 GHz ground tracking stations simultaneously track a spacecraft beacon to generate an observable signal in which bias and instability of the carrier frequency cancel. The baselines are formed by the tracking sites at Bermuda, Rosman, and Merritt Island. Measurements were made to evaluate the effectiveness of the Doppler differencing procedure in tracking a beacon target with the high dynamic rate of the GEOS 3 orbit. Results indicate the precision of the differenced data to be at a level comparable to the conventional precise two way Doppler tracking.

  7. Evaluation of parallel phase-shifting digital holography by photon-counting method

    NASA Astrophysics Data System (ADS)

    Miao, Lin; Nitta, Kouichi; Matoba, Osamu; Awatsuji, Yasuhiro

    2012-11-01

    Minimum optical energy required for parallel four-step phase-shifting digital holography is evaluated numerically by using photon-counting method. One of the attractive features of parallel phase-shifting digital holography is the instantaneous recording of fast 3D events where only the complex amplitude distribution of an object wave is obtained. The reconstruction is executed by numerical wave propagation such as angular spectrum propagation or Fresnel propagation. Numerical results indicate that required optical energy of an input image with 512 × 512 pixels is about 11 pJ. Under the criteria used in the evaluation, the required optical energy is independent of the image size.

  8. Photoshop(®) Assisted Spectroscopy: An Economical and Non-Destructive Method for Tracking Color Shift.

    PubMed

    Wright, Kristi; Herro, Holly

    Many historically and culturally significant objects from the mid-to-late 20(th) century were created with media which contains light sensitive dyes that present problems for collection custodians and conservators. The conservation staff at the National Library of Medicine (NLM), National Institutes of Health, conducted a multi-phase project on the aging of ballpoint pen ink in a variety of enclosure types that ultimately culminated in the development of a new method to detect color shift in documents with light sensitive media. This article offers instructions on how to detect color shift in digitized materials using Photoshop® Assisted Spectroscopy.

  9. Photoshop® Assisted Spectroscopy: An Economical and Non-Destructive Method for Tracking Color Shift

    PubMed Central

    Wright, Kristi; Herro, Holly

    2015-01-01

    Many historically and culturally significant objects from the mid-to-late 20th century were created with media which contains light sensitive dyes that present problems for collection custodians and conservators. The conservation staff at the National Library of Medicine (NLM), National Institutes of Health, conducted a multi-phase project on the aging of ballpoint pen ink in a variety of enclosure types that ultimately culminated in the development of a new method to detect color shift in documents with light sensitive media. This article offers instructions on how to detect color shift in digitized materials using Photoshop® Assisted Spectroscopy. PMID:27182186

  10. New method for lens thickness measurement by the frequency-shifted confocal feedback

    NASA Astrophysics Data System (ADS)

    Tan, Yidong; Zhu, Kaiyi; Zhang, Shulian

    2016-12-01

    We describe a new method for lens thickness and air gap measurement based on the frequency-shifted confocal feedback. The light intensity fluctuation is eliminated by the heterodyne modulation and the detection sensitivity is improved prominently by the frequency-shifted feedback effect. The measurement results for different materials and kinds of lenses are presented in the paper, including K9 plain glasses, fused silica plain glass, and K9 biconvex lens. The uncertainty of the axial positioning is better than 0.0005 mm and the accuracy reaches micron range. It is promising to be applied in the multi-layer interface positioning and measurement area.

  11. Reduction method of DBTT shift due to irradiation for reduced-activation ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Wakai, E.; Okubo, N.; Ando, M.; Yamamoto, T.; Takada, F.

    2010-03-01

    The method for reducing irradiation-induced DBTT shift of reduced-activation ferritic/martensitic steels was examined. F82H-LN (low nitrogen, 20 ppm), F82H+60 ppm 11B+200 ppmN and F82H+60 ppm 10B+200 ppmN steels tempered at 780 °C for 0.5 h were irradiated at 250 °C to 2 dpa, and the results for Charpy impact tests were analyzed. The upper shelf energy of F82H+ 11B+N steel was hardly changed by the irradiation, and DBTT shift was very small. From our research, DBTT shift due to irradiation can be reduced by the control of tempered conditions before irradiation, and it is found to be furthermore reduced by impurity doping with 60 ppm 11B and 200 ppmN to F82H steel.

  12. Correction method for shift-variant characteristics of the SPECT measurement system

    NASA Astrophysics Data System (ADS)

    Mimura, Masahiro; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki

    1997-04-01

    SPECT imaging system has shift-variant characteristics due to nonuniform attenuation of gamma-ray, collimator design, scattered photons, etc. In order to provide quantitatively accurate SPECT images, these shift-variant characteristics should be compensated in reconstruction. This paper presents a method to correct the shift-variant characteristics based on a continuous-discrete mapping model. In the proposed method, the projection data are modified using sensitivity functions so that filtered backprojection (FBP) method can be applied. Since the projection data are assumed to be acquired by narrow ray sum beams in the FBP method, narrow ray sum beams are approximated by a weighted sum of sensitivity functions of the measurement system, then the actual projection data are corrected by the weighting factors. Finally, FBP method is applied to the corrected projection data and a SPECT image is reconstructed. Since the proposed method requires the inversion of smaller matrices than the conventional algebraic methods, the amounts of calculation and memory space become smaller, and the stability of the calculation is greatly improved as well. The results of the numerical simulations are also demonstrated.

  13. Continuous wave ultrasonic Doppler tomography

    PubMed Central

    Liang, Haidong-Dong; Tsui, Chun Sing Louis; Halliwell, Michael; Wells, Peter N. T.

    2011-01-01

    In continuous wave ultrasonic Doppler tomography (DT), the ultrasonic beam moves relative to the scanned object to acquire Doppler-shifted frequency spectra which correspond to cross-range projections of the scattering and reflecting structures within the object. The relative motion can be circular or linear. These data are then backprojected to reconstruct the two-dimensional image of the object cross section. By using coherent processing, the spatial resolution of ultrasonic DT is close to an order of magnitude better than that of traditional pulse-echo imaging at the same ultrasound frequency. PMID:22866236

  14. Teaching the Doppler effect in astrophysics

    NASA Astrophysics Data System (ADS)

    Hughes, Stephen W.; Cowley, Michael

    2017-03-01

    The Doppler effect is a shift in the frequency of waves emitted from an object moving relative to the observer. By observing and analysing the Doppler shift in electromagnetic waves from astronomical objects, astronomers gain greater insight into the structure and operation of our Universe. In this paper, a simple technique is described for teaching the basics of the Doppler effect to undergraduate astrophysics students using acoustic waves. An advantage of the technique is that it produces a visual representation of the acoustic Doppler shift. The equipment comprises a 40 kHz acoustic transmitter and a microphone. The sound is bounced off a computer fan and the signal collected by a DrDAQ ADC and processed by a spectrum analyser. Widening of the spectrum is observed as the fan power supply potential is increased from 4 to 12 V.

  15. Development of continuous-energy eigenvalue sensitivity coefficient calculation methods in the shift Monte Carlo Code

    SciTech Connect

    Perfetti, C.; Martin, W.; Rearden, B.; Williams, M.

    2012-07-01

    Three methods for calculating continuous-energy eigenvalue sensitivity coefficients were developed and implemented into the Shift Monte Carlo code within the SCALE code package. The methods were used for two small-scale test problems and were evaluated in terms of speed, accuracy, efficiency, and memory requirements. A promising new method for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was developed and produced accurate sensitivity coefficients with figures of merit that were several orders of magnitude larger than those from existing methods. (authors)

  16. Laser Doppler velocimetry based on the optoacoustic effect in a RF-excited CO{sub 2} laser

    SciTech Connect

    Lee, Teaghee; Choi, Jong Woon; Kim, Yong Pyung

    2012-09-15

    We present a compact optoacoustic laser Doppler velocimetry method that utilizes the self-mixing effect in a RF-excited CO{sub 2} laser. A portion of a Doppler-shifted laser beam, produced by irradiating a single wavelength laser beam on a moving object, is mixed with an originally existing laser beam inside a laser cavity. The fine change of pressure in the laser cavity modulated by the Doppler-shifted frequency is detected by a condenser microphone in the laser tube. In our studies, the frequency of the Doppler signal due to the optoacoustic effect was detected as high as 50 kHz. Our measurements also confirmed that the signal varied linearly with the velocity of the external scatterer (the moving object) and the cosine of the angle between the laser beam and the velocity vector of the object.

  17. In situ measurement of the topological charge of a perfect vortex using the phase shift method.

    PubMed

    Ma, Haixiang; Li, Xinzhong; Tai, Yuping; Li, Hehe; Wang, Jingge; Tang, Miaomiao; Wang, Yishan; Tang, Jie; Nie, Zhaogang

    2017-01-01

    We propose a method to determine the topological charge (TC) of a perfect vortex. With the phase shift technique, the perfect vortex and its conjugate beam exactly overlap and interfere. Consequently, the TC of a perfect vortex is determined by counting the number of interference fringes. This proposed method enables in situ determination of the TC of the perfect vortex without the need for additional optical elements, and it is immune to environmental vibration and parasitic interference.

  18. Noninvasive Method for Measuring Local Pulse Wave Velocity by Dual Pulse Wave Doppler: In Vitro and In Vivo Studies

    PubMed Central

    Wang, Zhen; Yang, Yong; Yuan, Li-jun; Liu, Jie; Duan, Yun-you; Cao, Tie-sheng

    2015-01-01

    Objectives To evaluate the validity and reproducibility of a noninvasive dual pulse wave Doppler (DPWD) method, which involves simultaneous recording of flow velocity of two independent sample volumes with a measurable distance, for measuring the local arterial pulse wave velocity (PWV) through in vitro and in vivo studies. Methods The DPWD mode of Hitachi HI Vision Preirus ultrasound system with a 5–13MHz transducer was used. An in vitro model was designed to compare the PWV of a homogeneous rubber tubing with the local PWV of its middle part measured by DPWD method. In the in vivo study, local PWV of 45 hypertensive patients (25 male, 49.8±3.1 years) and 45 matched healthy subjects (25 male, 49.3±3.0 years) were investigated at the left common carotid artery (LCCA) by DPWD method. Results In the in vitro study, the local PWV measured by DPWP method and the PWV of the homogeneous rubber tubing did not show statistical difference (5.16 ± 0.28 m/s vs 5.03 ± 0.15 m/s, p = 0.075). The coefficient of variation (CV) of the intra- and inter- measurements for local PWV were 3.46% and 4.96%, for the PWV of the homogeneous rubber tubing were 0.99% and 1.98%. In the in vivo study, a significantly higher local PWV of LCCA was found in the hypertensive patients as compared to that in healthy subjects (6.29±1.04m/s vs. 5.31±0.72m/s, P = 0.019). The CV of the intra- and inter- measurements in hypertensive patients were 2.22% and 3.94%, in healthy subjects were 2.07% and 4.14%. Conclusions This study demonstrated the feasibility of the noninvasive DPWD method to determine the local PWV, which was accurate and reproducible not only in vitro but also in vivo studies. This noninvasive echocardiographic method may be illuminating to clinical use. PMID:25786124

  19. A post-processing method for correction and enhancement of chemical shift images.

    PubMed

    Cheng, Yu-Che; Chen, Jyh-Horng; Wang, Tsu-Tsuen; Lin, Ta-Te

    2009-12-01

    Chemical shift imaging (CSI) relies on a strong and homogeneous main field. Field homogeneity ensures adequate coherence between the precessions of individual spins within each voxel. Variation of field strength between different voxels causes geometric distortion and intensity variation in chemical shift images, resulting in errors when analyzing the spatial distribution of specific chemical compounds. A post-processing method, based on detection of the spectral peak of water and baseline subtraction with Lorentzian functions, was developed in this study to automatically correct spectra offsets caused by field inhomogeneity, thus enhancing the contrast of the chemical shift images. Because this method does not require prior field plot information, it offers advantages over existing correction methods. Furthermore, the method significantly reduces geometric distortion and enhances signals of chemical compounds even when the water suppression protocol was applied during the CSI data acquisition. The experimental results of the water and glucose phantoms showed a considerable reduction of artifacts in the spectroscopic images when this post-processing method was employed. The significance of this method was also demonstrated by an analysis of the spatial distributions of sugar and water contents in ripe and unripe bananas.

  20. Simple Experimental Methods for Determining the Apparent Focal Shift in a Microscope System

    PubMed Central

    Bratton, Benjamin P.; Shaevitz, Joshua W.

    2015-01-01

    Three-dimensional optical microscopy is often complicated by a refractive index mismatch between the sample and objective lens. This mismatch causes focal shift, a difference between sample motion and focal-plane motion, that hinders the accuracy of 3D reconstructions. We present two methods for measuring focal shift using fluorescent beads of different sizes and ring-stained fluorescent beads. These simple methods are applicable to most situations, including total internal reflection objectives and samples very close to the interface. For distances 0–1.5 μm into an aqueous environment, our 1.49-NA objective has a relative focal shift of 0.57 ± 0.02, significantly smaller than the simple n2/n1 approximation of 0.88. We also expand on a previous sub-critical angle theory by means of a simple polynomial extrapolation. We test the validity of this extrapolation by measuring the apparent focal shift in samples where the refractive index is between 1.33 and 1.45 and with objectives with numerical apertures between 1.25 and 1.49. PMID:26270960

  1. Laser Doppler velocimetry based on the photoacoustic effect in a CO{sub 2} laser

    SciTech Connect

    Choi, Jong-woon; Yu, Moon-jong; Kopica, Mirek; Woo, Sam-yong; Choi, Yong-Seok

    2005-02-01

    We report a simple laser Doppler velocimeter in which the photoacoustic effect was used to measure the rotation wheel speed. A Doppler signal, caused by mixing a returning wave with an originally existing wave inside the CO{sub 2} laser cavity, was detected using a microphone in the laser tube. Frequency of the microphone output was in proportion to the rotation speed of a wheel and is dependent on the cosine of the angle between the direction of the laser beam and tangent of wheel velocity. A Doppler-shifted frequency as high as 34 kHz was detected using this method. A frequency response of a few megahertz is expected from the laser Doppler velocimeter based on the photoacoustic effect in a CO{sub 2} laser by using a wider bandwidth microphone.

  2. Experience with the matched filtered weighted-shift-and-add method

    NASA Technical Reports Server (NTRS)

    Hege, E. Keith; Strobel, Nicolas V.; Ribak, Erez; Christou, Julian C.

    1987-01-01

    It is presently demonstrated that while the matched filter formulated by Ribak (1986) for the extension of the weighted-shift-and-add (WSA) method successfully reduces photon statistics-dominated specklegrams, the iterative method originally proposed by Ribak does not converge in the case of photon-noisy specklegrams for objects having more than one maxima. Attention is accordingly given to methods for rendering the procedure more 'artificially intelligent'. An error matrix is defined that is useful in evaluating the validity of the results produced by the matched filter extension of the WSA method.

  3. Development of T m -shift genotyping method for detection of cat-derived Giardia lamblia.

    PubMed

    Pan, Weida; Fu, Yeqi; Abdullahi, Auwalu Yusuf; Wang, Mingwei; Shi, Xianli; Yang, Fang; Yu, Xingang; Yan, Xinxin; Zhang, Pan; Hang, Jianxiong; Li, Guoqing

    2017-04-01

    To develop T m -shift genotyping method for detection of cat-derived Giardia lamblia, two sets of primers with two GC-rich tails of unequal length attached to their 5'-end were designed according to two SNPs (BG434 and BG170) of β-giardin (bg) gene, and specific PCR products were identified by inspection of a melting curve on real-time PCR thermocycler. A series of experiments on the stability, sensitivity, and accuracy of T m -shift method was tested, and clinical samples were also detected. The results showed that two sets of primers based on SNP could distinguish accurately between assemblages A and F. Coefficient of variation of T m values of assemblage A and F was 0.14 and 0.07% in BG434 and 0.10 and 0.11% in BG170, respectively. The lowest detection concentration was 4.52 × 10(-5) and 4.88 × 10(-5) ng/μL samples of assemblage A and F standard plasmids. The T m -shift genotyping results of ten DNA samples from the cat-derived G. lamblia were consistent with their known genotypes. The detection rate of clinical samples by T m -shift was higher than that by microscopy, and their genotyping results were in complete accordance with sequencing results. It is concluded that the T m -shift genotyping method is rapid, specific, and sensitive and may provide a new technological mean for molecular detection and epidemiological investigation of the cat-derived G. lamblia.

  4. A Phase-Shifting Method for Improving the Heating Uniformity of Microwave Processing Materials

    PubMed Central

    Liao, Yinhong; Lan, Junqing; Zhang, Chun; Hong, Tao; Yang, Yang; Huang, Kama; Zhu, Huacheng

    2016-01-01

    Microwave processing of materials has been found to deliver enormous advantages over conventional processing methods in terms of mechanical and physical properties of the materials. However, the non-uniform temperature distribution is the key problem of microwave processing, which is related to the structure of the cavity, and the placement and physical parameters of the material. In this paper, a new microwave cavity structure with a sliding short based on phase-shifting heating is creatively proposed to improve the temperature uniformity. An electronic mathematical model based on the Finite Element Method (FEM) is built to predict the temperature distribution. Meanwhile, a new computational approach based on the theory of transformation optics is first provided to solve the problem of the moving boundary in the model simulation. At first, the experiment is carried out to validate the model, and heating results from the experiment show good agreement with the model’s prediction. Based on the verified model, materials selected among a wide range of dielectric constants are treated by stationary heating and phase-shifting heating. The coefficient of variation (COV) of the temperature and temperature difference has been compared in detail between stationary heating and phase-shifting heating. A significant improvement in heating uniformity can be seen from the temperature distribution for most of the materials. Furthermore, three other materials are also treated at high temperature and the heating uniformity is also improved. Briefly, the strategy of phase-shifting heating plays a significant role in solve the problem of non-uniform heating in microwave-based material processing. A 25%–58% increase in uniformity from adapting the phase-shifting method can be observed for the microwave-processed materials. PMID:28773433

  5. Spaceborne Simulations of Two Direct-Detection Doppler Lidar Techniques

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Li, Steve X.

    1998-01-01

    Direct-detection (or incoherent) lidar is now a proven technique for measuring winds in the atmosphere. Over the last few years, several types of direct-detection lidar have evolved. These methods rely on Fabry-Perot interferometers(also termed etalons) or other narrow-passband filters to provide the required spectral resolution. One method, now called the edge (EDG) technique, uses a sharply-sloping filter and measures changes in the filter transmission caused by Doppler shifting of the laser wavelength. A variation of the EDG method, called the double-edge (DEDG) technique, uses two filters. The molecular DEDG method was first demonstrated by Chanin et al. for stratospheric measurements and more recently Korb et al. successfully demonstrated the aerosol DEDG through the troposphere. A second method, here termed the multi-channel (MC) technique, measures Doppler shifts by observing angular displacement of a Fabry-Perot fringe in a spatially resolving detector. The EDG technique thus employs the Fabry-Perot to convert the frequency shift into an amplitude signal, while the MC technique uses the Fabry-Perot to resolve the spectral signature which is then fitted to determine the centroid. The focus of this presentation is on the DEDG and MC methods because these are viewed as the current state of the art in direct-detection lidar. Successful ground-based demonstrations of direct-detection wind measurements have resulted in proposals for spaceborne systems. With this new emphasis on spaceborne systems comes the need for accurate prediction of spaceborne direct-detection Doppler lidar performance. Previously, the EDG and MC methods have been compared although only for aerosol Doppler systems. A recent paper by McGill and Spinhirne compares the DEDG and MC methods in a non-system specific manner for both the aerosol and molecular Doppler systems. The purpose of this presentation is to extend the previous work of McGill and Spinhirne to examine the performance of

  6. Spaceborne Simulations of Two Direct-Detection Doppler Lidar Techniques

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Li, Steve X.

    1998-01-01

    Direct-detection (or incoherent) lidar is now a proven technique for measuring winds in the atmosphere. Over the last few years, several types of direct-detection lidar have evolved. These methods rely on Fabry-Perot interferometers(also termed etalons) or other narrow-passband filters to provide the required spectral resolution. One method, now called the edge (EDG) technique, uses a sharply-sloping filter and measures changes in the filter transmission caused by Doppler shifting of the laser wavelength. A variation of the EDG method, called the double-edge (DEDG) technique, uses two filters. The molecular DEDG method was first demonstrated by Chanin et al. for stratospheric measurements and more recently Korb et al. successfully demonstrated the aerosol DEDG through the troposphere. A second method, here termed the multi-channel (MC) technique, measures Doppler shifts by observing angular displacement of a Fabry-Perot fringe in a spatially resolving detector. The EDG technique thus employs the Fabry-Perot to convert the frequency shift into an amplitude signal, while the MC technique uses the Fabry-Perot to resolve the spectral signature which is then fitted to determine the centroid. The focus of this presentation is on the DEDG and MC methods because these are viewed as the current state of the art in direct-detection lidar. Successful ground-based demonstrations of direct-detection wind measurements have resulted in proposals for spaceborne systems. With this new emphasis on spaceborne systems comes the need for accurate prediction of spaceborne direct-detection Doppler lidar performance. Previously, the EDG and MC methods have been compared although only for aerosol Doppler systems. A recent paper by McGill and Spinhirne compares the DEDG and MC methods in a non-system specific manner for both the aerosol and molecular Doppler systems. The purpose of this presentation is to extend the previous work of McGill and Spinhirne to examine the performance of

  7. Laser-scanning Doppler photoacoustic microscopy based on temporal correlation

    NASA Astrophysics Data System (ADS)

    Song, Wei; Liu, Wenzhong; Zhang, Hao F.

    2013-05-01

    We present a methodology to measure absolute flow velocity using laser-scanning photoacoustic microscopy. To obtain the Doppler angle, the angle between ultrasonic detection axis and flow direction, we extracted the distances between the transducer and three adjacent scanning points along the flow and repeatedly applied the law of cosines. To measure flow velocity along the ultrasonic detection axis, we calculated the time shift between two consecutive photoacoustic waves at the same scanning point, then converted the time shift to velocity according to the sound velocity and time interval between two laser illuminations. We verified our method by imaging flow phantoms.

  8. Power Doppler sonography versus Tc-99m DMSA scintigraphy for diagnosing acute pyelonephritis in children: are these two methods comparable?

    PubMed

    Bykov, Sergey; Chervinsky, Leonid; Smolkin, Vladislav; Halevi, Rafi; Garty, Izak

    2003-03-01

    PURPOSE This study assessed the role of renal power Doppler ultrasonography (PDU) to identify acute pyelonephritis (APN) and to determine whether PDU can replace Tc-99m DMSA renal scintigraphy in the diagnosis of APN in children. METHODS A prospective study was conducted in 40 infants and young children (78 kidneys were evaluated) with a mean age of 25.9 months (range, 1 to 68 months) who were hospitalized with a first episode of high fever and bacteruria, possibly APN. All children were examined by PDU and Tc-99m DMSA within the first 3 days after admission. Patients with congenital abnormalities, hydronephrosis, and urinary reflux were excluded. RESULTS Twenty-seven of the 78 kidneys appeared abnormal on Tc-99m DMSA, and 20 of them were abnormal on PDU. Fifty-one of 78 kidneys were normal on Tc-99m DMSA, and 3 of 51 appeared diseased on PDU. The accuracy of PDU was 87%, sensitivity was 74%, and specificity was 94%. The positive predictive and negative predictive values were both 87%. When considering the numbers of lesions in 27 kidneys with positive Tc-99m DMSA studies (38 lesions), PDU did not disclose 16 lesions (false-negative results). Thus, the sensitivity of PDU for diagnosing lesions of APN decreased to 58%. CONCLUSIONS A positive PDU finding should obviate the use of Tc-99m DMSA in patients thought to have possible APN. However, because of a large number of false-negative results (26%) and underestimation of the number of pyelonephritic lesions (low sensitivity of 58%), PDU cannot replace Tc-99m DMSA in the diagnosis of APN in children.

  9. Rotational Doppler effect in nonlinear optics

    NASA Astrophysics Data System (ADS)

    Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2016-08-01

    The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.

  10. Suitability of the echo-time-shift method as laboratory standard for thermal ultrasound dosimetry

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Tina; Georg, Olga; Haller, Julian; Jenderka, Klaus-Vitold

    2017-03-01

    Ultrasound therapy is a promising, non-invasive application with potential to significantly improve cancer therapies like surgery, viro- or immunotherapy. This therapy needs faster, cheaper and more easy-to-handle quality assurance tools for therapy devices as well as possibilities to verify treatment plans and for dosimetry. This limits comparability and safety of treatments. Accurate spatial and temporal temperature maps could be used to overcome these shortcomings. In this contribution first results of suitability and accuracy investigations of the echo-time-shift method for two-dimensional temperature mapping during and after sonication are presented. The analysis methods used to calculate time-shifts were a discrete frame-to-frame and a discrete frame-to-base-frame algorithm as well as a sigmoid fit for temperature calculation. In the future accuracy could be significantly enhanced by using continuous methods for time-shift calculation. Further improvements can be achieved by improving filtering algorithms and interpolation of sampled diagnostic ultrasound data. It might be a comparatively accurate, fast and affordable method for laboratory and clinical quality control.

  11. VizieR Online Data Catalog: Spectroscopy at the solar limb. I. Average off-limb profiles and Doppler shifts of Ca II H.

    NASA Astrophysics Data System (ADS)

    Beck, C.; Rezaei, R.

    2011-10-01

    The data used in the publication consist of a set of CaII H spectra taken near and beyond the solar limb on 25/08/2009 at UT 08:43-09:15. The data were obtained with the POLIS instrument at the German VTT. The wavelength range covers the core and the blue wing of the CaII H line from 396.332nm to 396.969nm in 326 steps of 1.96pm. The observations were done by moving the solar image across the slit of the spectrograph with a step width of 0.3-arcsec, yielding in total 134 slit spectra of 326 wavelength points on 244 CCD rows along the slit. The spatial sampling along the slit was 0.3-arcsec. The center of the field-of-view was located at (x,y)=(+37",+920") relative to the center of the solar disk. The data have been corrected for stray-light with the methods described in the article and are normalized to the continuum intensity on disc center. The corresponding data file data.fit is organized as floating array (x,y,wavelength)=(134x244x326) pixels. (1 data file).

  12. Prediction of axis shift distortion during circumferential welding of thin pipes using the finite element method

    SciTech Connect

    Ravichandran, G.; Raghupathy, V.P.; Ganesan, N.; Krishnakumar, R.

    1997-01-01

    Axis shift distortion is one type of distortion encountered during the circumferential welding of large, thin pipes. the result of this is the loss of coaxiality of the pipes. This type of distortion is caused by the time lag in the solidification of various segments of weld metal around the circumference. The development of shrinkage forces in the weld metal especially in the axial direction is nonuniform due to the time lag, and this causes axis shift for the pipes. the development of a mathematical model using the finite element method for prediction of axis shift distortion in thin pipes is described in this work. Thermal analysis and subsequent elastic-plastic stress analysis for the pipe are performed using four-noded, bilinear degenerated shell elements. In addition to axis shift distortion, axial and circumferential stress distributions in the pipe are also determined by the model. The model is validated by conducting partial welding on the circumference of a thin pipe and measuring the transient thermal history and root opening at the bottom. Details of thermal and elastic-plastic analyses, welding trials, thermal and displacement results and axial and circumferential stress results are presented in this paper.

  13. A method for detecting the best reconstructing distance in phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Cao, Wen-Bo; Su, Ping; Ma, Jian-She; Liang, Xian-Ting

    2014-09-01

    In this paper, we propose a novel method to detect the best reconstructing distance in phase-shifting digital holography, which can help one to reconstruct high-quality images even though the recording distance is unkonwn. This scheme is based on an algorithm, two-dimensional discrete cosine transform (DCT). Numerical experiments for this method are shown in this paper. It is shown that this method is not only effective but also fast compared to previous schemes for detecting the focal distance in digital holography. Meanwhile, the algorithm can be effective against different types of noise.

  14. A new estimation method for two-step-only quadrature phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Zhang, Shuqun; Zhou, Jianyang

    2015-01-01

    Two-step-only quadrature phase-shifting digital holography can reconstruct the original complex object using only two holograms without the additional recording of the reference wave intensity and the object wave intensity. Its success depends on the accurate estimation of the reference wave intensity from the two acquired holograms. The previous estimation method is relatively computational expensive. In this paper, we present a novel simple and effective method for estimating the reference wave intensity with low computational load. Simulation results are presented to demonstrate the effectiveness and speedup of the proposed method.

  15. Solvent-induced frequency shifts: configuration interaction singles combined with the effective fragment potential method.

    PubMed

    Arora, Pooja; Slipchenko, Lyudmila V; Webb, Simon P; DeFusco, Albert; Gordon, Mark S

    2010-07-01

    The simplest variational method for treating electronic excited states, configuration interaction with single excitations (CIS), has been interfaced with the effective fragment potential (EFP) method to provide an effective and computationally efficient approach for studying the qualitative effects of solvents on the electronic spectra of molecules. Three different approaches for interfacing a non-self-consistent field (SCF) excited-state quantum mechanics (QM) method and the EFP method are discussed. The most sophisticated and complex approach (termed fully self consistent) calculates the excited-state electron density with fully self-consistent accounting for the polarization (induction) energy of effective fragments. The simplest approach (method 1) includes a strategy that indirectly adds the EFP perturbation to the CIS wave function and energy via modified Hartree-Fock molecular orbitals, so that there is no direct EFP interaction with the excited-state density. An intermediate approach (method 2) accomplishes the latter in a noniterative perturbative manner. Theoretical descriptions of the three approaches are presented, and test results of solvent-induced shifts using methods 1 and 2 are compared with fully ab initio values. These comparisons illustrate that, at least for the test cases examined here, modification of the ground-state Hartree-Fock orbitals is the largest and most important factor in the calculated solvent-induced shifts. Method 1 is then employed to study the aqueous solvation of coumarin 151 and compared with experimental measurements.

  16. Doppler-corrected differential detection system

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor)

    1991-01-01

    Doppler in a communication system operating with a multiple differential phase-shift-keyed format (MDPSK) creates an adverse phase shift in an incoming signal. An open loop frequency estimation is derived from a Doppler-contaminated incoming signal. Based upon the recognition that, whereas the change in phase of the received signal over a full symbol contains both the differentially encoded data and the Doppler induced phase shift, the same change in phase over half a symbol (within a given symbol interval) contains only the Doppler induced phase shift, and the Doppler effect can be estimated and removed from the incoming signal. Doppler correction occurs prior to the receiver's final output of decoded data. A multiphase system can operate with two samplings per symbol interval at no penalty in signal-to-noise ratio provided that an ideal low pass pre-detection filter is employed, and two samples, at 1/4 and 3/4 of the symbol interval T sub s, are taken and summed together prior to incoming signal data detection.

  17. Doppler Velocity Estimation Based on Spectral Characteristics of M-Sequence-Modulated Signals in Ultrasonic Measurement for Moving Objects

    NASA Astrophysics Data System (ADS)

    Hirata, Shinnosuke; Hachiya, Hiroyuki

    2013-07-01

    Pulse compression using maximum-length sequence (M-sequence) can improve the signal-to-noise ratio (SNR) of the reflected echo and distance resolution in the pulse-echo method. In the case of a moving object, however, the echo is modulated due to the Doppler effect. The Doppler-shifted M-sequence-modulated signal cannot be correlated with the reference signal, which corresponds to the transmitted M-sequence-modulated signal. Therefore, Doppler velocity estimation before the correlation and cross correlation of the received signal with Doppler-shifted reference signals has been proposed. In this paper, the proposed Doppler velocity estimation based on spectral characteristics of cyclic M-sequence-modulated signals is described. Then, the Doppler velocity estimation is evaluated based on computer simulations. The Doppler velocity can be estimated from the Fourier-transformed spectral density of cycles of the M-sequence-modulated signal with high resolution even in noisy environments. According to the evaluation, furthermore, the cycle number and the number of carrier waves in 1 digit of the M-sequence-modulated signal should be decreased to improve the resolution and accuracy when the length of the transmitted signal is determined.

  18. Vibration-resistant phase retrieval method with contrast compensation for phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Liu, Qian; He, Huabin; Yuan, Daocheng; He, Jianguo; Ji, Fang

    2017-04-01

    Vibration hinders the application of phase-shifting interferometry (PSI) to on-machine test and large-aperture mirror measurement. The investigation of PSI fringe disturbed by vibration indicates that, besides tilt-shifting error, inter- and intra-frame contrast variation is significant. The contrast variation is another dominant error source in phase retrieval of PSI. An inter- and intra-frame contrast compensation method is proposed here to retrieve wavefront phase from interferograms subjected to vibration. The method constructs algebraic equations with interferogram data and solves equations using iterative procedures. Experiments validate its effectiveness and manifest its capability to suppress vibration-induced error over a large frequency region. To enhance the calculation efficiency, a spatial subsampling strategy is proposed. Practical testing shows that subsampling reduces calculation time exponentially and preserves retrieval accuracy and spatial resolution. The proposed method, of which the unique ability is compensating the tilt-shifting error and fringe blur caused by vibration, predicates an effective and low-cost solution for PSI applied in vibration.

  19. Comparison Between Doppler-Echocardiography and Uncalibrated Pulse Contour Method for Cardiac Output Measurement: A Multicenter Observational Study.

    PubMed

    Scolletta, Sabino; Franchi, Federico; Romagnoli, Stefano; Carlà, Rossella; Donati, Abele; Fabbri, Lea P; Forfori, Francesco; Alonso-Iñigo, José M; Laviola, Silvia; Mangani, Valerio; Maj, Giulia; Martinelli, Giampaolo; Mirabella, Lucia; Morelli, Andrea; Persona, Paolo; Payen, Didier

    2016-07-01

    Echocardiography and pulse contour methods allow, respectively, noninvasive and less invasive cardiac output estimation. The aim of the present study was to compare Doppler echocardiography with the pulse contour method MostCare for cardiac output estimation in a large and nonselected critically ill population. A prospective multicenter observational comparison study. The study was conducted in 15 European medicosurgical ICUs. We assessed cardiac output in 400 patients in whom an echocardiographic evaluation was performed as a routine need or for cardiocirculatory assessment. None. One echocardiographic cardiac output measurement was compared with the corresponding MostCare cardiac output value per patient, considering different ICU admission categories and clinical conditions. For statistical analysis, we used Bland-Altman and linear regression analyses. To assess heterogeneity in results of individual centers, Cochran Q, and the I statistics were applied. A total of 400 paired echocardiographic cardiac output and MostCare cardiac output measures were compared. MostCare cardiac output values ranged from 1.95 to 9.90 L/min, and echocardiographic cardiac output ranged from 1.82 to 9.75 L/min. A significant correlation was found between echocardiographic cardiac output and MostCare cardiac output (r = 0.85; p < 0.0001). Among the different ICUs, the mean bias between echocardiographic cardiac output and MostCare cardiac output ranged from -0.40 to 0.45 L/min, and the percentage error ranged from 13.2% to 47.2%. Overall, the mean bias was -0.03 L/min, with 95% limits of agreement of -1.54 to 1.47 L/min and a relative percentage error of 30.1%. The percentage error was 24% in the sepsis category, 26% in the trauma category, 30% in the surgical category, and 33% in the medical admission category. The final overall percentage error was 27.3% with a 95% CI of 22.2-32.4%. Our results suggest that MostCare could be an alternative to echocardiography to assess

  20. Observation of the Zero Doppler Effect.

    PubMed

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-04-05

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology.

  1. Observation of the Zero Doppler Effect

    PubMed Central

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-01-01

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology. PMID:27046395

  2. Atomic frequency standard relativistic Doppler shift experiment

    NASA Technical Reports Server (NTRS)

    Peters, H. E.; Reinhardt, V. S.

    1974-01-01

    An experiment has been performed to measure possible space anisotropy as it would effect the frequency of a cesium atomic beam standard clock in a laboratory on earth due to motion relative to external coordinate frames. The cesium frequency was measured as a function of orientation with respect to an atomic hydrogen maser standard. Over a period of 34 days 101 measurements were made. The results are consistent with a conclusion that no general orientation dependance attributable to spacial anisotropy was observed. It is shown that both the airplane clock results, and the null results for the atomic beam clock, are consistent with Einstein general or special relativity, or with the Lorentz transformations alone.

  3. Application of thermal wave imaging and phase shifting method for defect detection in Stainless steel

    NASA Astrophysics Data System (ADS)

    Shrestha, Ranjit; Park, Jeonghak; Kim, Wontae

    2016-05-01

    This paper presents an experimental arrangement for detection of artificial subsurface defects in a stainless steel sample by means of thermal wave imaging with lock-in thermography and consequently, the impact of excitation frequency on defect detectability. The experimental analysis was performed at several excitation frequencies to observe the sample beginning from 0.18 Hz all the way down to 0.01 Hz. The phase contrast between the defective and sound regions illustrates the qualitative and quantitative investigation of defects. The two, three, four and five-step phase shifting methods are investigated to obtain the information on defects. A contrast to noise ratio analysis was applied to each phase shifting method allowing the choice of the most appropriate one. Phase contrast with four-step phase shifting at an optimum frequency of 0.01 Hz provides excellent results. The inquiry with the effect of defect size and depth on phase contrast shows that phase contrast decreases with increase in defect depth and increases with the increase in defect size.

  4. Prostate cancer and quality of life: analysis of response shift using triangulation between methods.

    PubMed

    Serdà I Ferrer, Bernat-Carles; Valle, Arantza Del; Marcos-Gragera, Rafael

    2014-06-01

    Quality of life (QoL) after prostate cancer treatment is uncertain. Patient responses to QoL questions shift for a number of reasons: measurement intervals no longer have the same psychological anchors (recalibration), the importance attributed to different QoL domains changes over time (reprioritization), and the definition of QoL differs throughout the disease continuum (reconceptualization). Therefore, the aim of this study was to describe QoL response shift in a cohort of 66 men with prostate cancer. The method involved carrying out a sequential triangulation between quantitative and qualitative methods. Patients were assessed at baseline (P1), followed by a posttest (P2) and a then-test measurement (P3). The difference between P3 and P1 was used to determine the response shift effect (recalibration). From baseline to posttest, QoL significantly decreased. The recalibration then-test confirmed a low QoL in all periods evaluated. Coping mechanisms were found to differ by age group, with older men less concerned about side effects than younger men. Health professionals should be alert to QoL changes over time and possible side effects, should coping skills fail. Copyright 2014, SLACK Incorporated.

  5. Structured-illumination photoacoustic Doppler flowmetry of axial flow in homogeneous scattering media

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiying; Yao, Junjie; Maslov, Konstantin I.; Wang, Lihong V.

    2013-08-01

    We propose a method for photoacoustic flow measurement based on the Doppler effect from a flowing homogeneous medium. Excited by spatially modulated laser pulses, the flowing medium induces a Doppler frequency shift in the received photoacoustic signals. The frequency shift is proportional to the component of the flow speed projected onto the acoustic beam axis, and the sign of the shift reflects the flow direction. Unlike conventional flowmetry, this method does not rely on particle heterogeneity in the medium; thus, it can tolerate extremely high particle density. A red-ink phantom flowing in a tube immersed in water was used to validate the method in both the frequency and time domains. The phantom flow immersed in an intralipid solution was also measured.

  6. Systems and methods for distributing power using photovoltaic resources and a shifting battery system

    DOEpatents

    Mammoli, Andrea A.; Lavrova, Olga; Arellano, Brian; Cheng, Feng; Greenwood, Wesley; Hawkins, Jonathan; Willard, Steve

    2017-06-27

    The present invention is an apparatus and method for delivering energy using a renewable resource. The method includes providing a photovoltaic energy source and applying energy storage to the photovoltaic energy source via a battery storage unit. The energy output from the photovoltaic energy source and the battery system is controlled using a battery control system. The battery control system predicts peak load, develops a schedule that includes when to begin discharging power and when to stop discharging power, shifts power to the battery storage unit when excess power is available, and prioritizes the functionality of the battery storage unit and the photovoltaic energy source.

  7. Chromatic-dispersion measurement by modulation phase-shift method using a Kerr phase-interrogator.

    PubMed

    Baker, Chams; Lu, Yang; Bao, Xiaoyi

    2014-09-22

    We present a novel approach for the measurement of chromatic-dispersion in long optical fibers using a modulation phase-shift method based on a Kerr phase-interrogator. This approach utilizes a Kerr phase-interrogator to measure the phase variation of a sinusoidal optical signal induced by traveling in a fiber under test as the laser carrier wavelength and the sinusoidal signal frequency are varied. Chromatic-dispersion measurement for several fibers including a standard single-mode silica fiber and a dispersion-shifted fiber is experimentally demonstrated. The ultrafast response of the Kerr phase-interrogator opens the way for real-time monitoring of chromatic-dispersion in kilometers-long optical fibers.

  8. Shifted Jacobi spectral collocation method for solving two-sided fractional water wave models

    NASA Astrophysics Data System (ADS)

    Abdelkawy, M. A.; Alqahtani, Rubayyi T.

    2017-01-01

    This paper presents the spectral collocation technique to solve the two-sided fractional water wave models (TSF-WWMs). The shifted Jacobi-Gauss-Lobatto collocation (SJ-GL-C) and shifted Jacobi-Gauss-Radau collocation (SJ-GR-C) methods are developed to approximate the TSF-WWMs. The main idea in the novel algorithm is to reduce the TSF-WWM to a systems of algebraic equations. The applicability and accuracy of the present technique have been examined by the given numerical examples in this paper. By means of these numerical examples, we ensure that the present technique is a simple and very accurate numerical scheme for solving TSF-WWMs.

  9. An automatic system for measurement of retardation of wave plates based on phase-shifted method

    NASA Astrophysics Data System (ADS)

    Gao, Zhishan; Yan, Ming

    2005-02-01

    A practical system is described to measure the retardation of wave plates with phase-shifted method. The tested wave plate is put in and the original angle between the axis of it and the analyzer is random, not 45 degree. For the measurement is made rapidly and automatically, a standard wave plate act as a compensator, the stepping motor is used to drive the analyzer to realize phase shifting and a grating encoder is used to measure its rotating angle. At the same time, while the beam comes out from the analyzer, the photoelectric detector gets its intensity, and then the signals is magnified, filtered and sent to computer through its serial port. The results show the system has the advantages of costing little time and high accuracy.

  10. Using Neural Networks for 13C NMR Chemical Shift Prediction-Comparison with Traditional Methods

    NASA Astrophysics Data System (ADS)

    Meiler, Jens; Maier, Walter; Will, Martin; Meusinger, Reinhard

    2002-08-01

    Interpretation of 13C chemical shifts is essential for structure elucidation of organic molecules by NMR. In this article, we present an improved neural network approach and compare its performance to that of commonly used approaches. Specifically, our recently proposed neural network ( J. Chem. Inf. Comput. Sci. 2000, 40, 1169-1176) is improved by introducing an extended hybrid numerical description of the carbon atom environment, resulting in a standard deviation (std. dev.) of 2.4 ppm for an independent test data set of ˜42,500 carbons. Thus, this neural network allows fast and accurate 13C NMR chemical shift prediction without the necessity of access to molecule or fragment databases. For an unbiased test dataset containing 100 organic structures the accuracy of the improved neural network was compared to that of a prediction method based on the HOSE code ( hierarchically ordered spherical description of environment) using S PECI NFO. The results show the neural network predictions to be of quality (std. dev.=2.7 ppm) comparable to that of the HOSE code prediction (std. dev.=2.6 ppm). Further we compare the neural network predictions to those of a wide variety of other 13C chemical shift prediction tools including incremental methods (C HEMD RAW, S PECT OOL), quantum chemical calculation (G AUSSIAN, C OSMOS), and HOSE code fragment-based prediction (S PECI NFO, ACD/CNMR, P REDICTI T NMR) for the 47 13C-NMR shifts of Taxol, a natural product including many structural features of organic substances. The smallest standard deviations were achieved here with the neural network (1.3 ppm) and S PECI NFO (1.0 ppm).

  11. Laser double Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Poffo, L.; Goujon, J.-M.; Le Page, R.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Bosc, D.

    2014-05-01

    The Laser Doppler flowmetry (LDF) is a non-invasive method for estimating the tissular blood flow and speed at a microscopic scale (microcirculation). It is used for medical research as well as for the diagnosis of diseases related to circulatory system tissues and organs including the issues of microvascular flow (perfusion). It is based on the Doppler effect, created by the interaction between the laser light and tissues. LDF measures the mean blood flow in a volume formed by the single laser beam, that penetrate into the skin. The size of this measurement volume is crucial and depends on skin absorption, and is not directly reachable. Therefore, current developments of the LDF are focused on the use of always more complex and sophisticated signal processing methods. On the other hand, laser Double Doppler Flowmeter (FL2D) proposes to use two laser beams to generate the measurement volume. This volume would be perfectly stable and localized at the intersection of the two laser beams. With FL2D we will be able to determine the absolute blood flow of a specific artery. One aimed application would be to help clinical physicians in health care units.

  12. Motion artifact reduction using hybrid Fourier transform with phase-shifting methods

    NASA Astrophysics Data System (ADS)

    Li, Beiwen; Liu, Ziping; Zhang, Song

    2016-08-01

    We propose to combine the Fourier transform profilometry (FTP) and phase-shifting profilometry (PSP) to reduce motion induced artifacts. The proposed method can be divided into three steps: Step 1 is to obtain a temporarily unwrapped absolute phase map of the entire scene using the FTP method, albeit the absolute phase map has motion introduced artifacts; Step 2 is to generate continuous relative phase maps without motion artifacts for each isolated object by spatially unwrapping each isolated phase map retrieved from the FTP method; and Step 3 is to determine the absolute phase map for each isolate region by referring to the temporally unwrapped phase using PSP method. Experimental results demonstrated success of the proposed method for measuring rapidly moving multiple isolated objects.

  13. Investigations of Near-Zone Doppler Effects.

    NASA Astrophysics Data System (ADS)

    Prouty, Dale Austen

    Far away from an electromagnetic source the normal Doppler shifts in frequency occur--a red shift for receding and a blue shift for approaching. As indicated by previous work with an infinitesimal dipole, different frequency shifts occur when the source and observer move closer together, into the near-zone. These "near-zone Doppler effects" are investigated for general sources and subsequently two specific examples are presented. The general results show that near-zone shifts are similar to far-zone shifts, but the local phase velocity must be used, i.e. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). In the far zone the phase velocity is the speed of light; in the near zone it differs. Fundamentally, the distance between surfaces of constant phase in the near zone is changed. The surfaces of constant phase for the waves are no longer spherical, but more ellipsoidal or spheroidal, so that a moving observer sees a different frequency shift. Two specific examples are presented to indicate the actual magnitude of near-zone effects. The examples include a prolate spheroidal antenna and a circular aperture. Once the magnitude of the effects is determined, the measurability of near-zone Doppler effects is discussed. The investigation concentrates on Fresnel zone effects due to the measurement problem. Finally, it is shown that for an electrically large wire antenna (the spheroidal example) near-zone Doppler effects are measurable.

  14. SU-E-J-126: An Online Replanning Method for FFF Beams Without Couch Shift

    SciTech Connect

    Ahunbay, E; Ates, O; Li, X

    2015-06-15

    Purpose: In a situation that couch shift for patient positioning is not preferred or prohibited (e.g., MR-Linac), segment aperture morphing (SAM) can address target dislocation and deformation. For IMRT/VMAT with flattening filter free (FFF) beams, however, SAM method would lead to an adverse translational dose effect due to the beam unflattening. Here we propose a new 2-step process to address both the translational effect of FFF beams and the target deformation. Methods: The replanning method consists of an offline and an online steps. The offline step is to create a series of pre-shifted plans (PSP) obtained by a so called “warm start” optimization (starting optimization from the original plan, rather from scratch) at a series of isocenter shifts with fixed distance (e.g. 2 cm, at x,y,z = 2,0,0 ; 2,2,0 ; 0,2,0; …;− 2,0,0). The PSPs all have the same number of segments with very similar shapes, since the warm-start optimization only adjusts the MLC positions instead of regenerating them. In the online step, a new plan is obtained by linearly interpolating the MLC positions and the monitor units of the closest PSPs for the shift determined from the image of the day. This two-step process is completely automated, and instantaneously fast (no optimization or dose calculation needed). The previously-developed SAM algorithm is then applied for daily deformation. We tested the method on sample prostate and pancreas cases. Results: The two-step interpolation method can account for the adverse dose effects from FFF beams, while SAM corrects for the target deformation. The whole process takes the same time as the previously reported SAM process (5–10 min). Conclusion: The new two-step method plus SAM can address both the translation effects of FFF beams and target deformation, and can be executed in full automation requiring no additional time from the SAM process. This research was supported by Elekta inc. (Crawley, UK)

  15. Laser Doppler velocimetry primer

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.

    1985-01-01

    Advanced research in experimental fluid dynamics required a familiarity with sophisticated measurement techniques. In some cases, the development and application of new techniques is required for difficult measurements. Optical methods and in particular, the laser Doppler velocimeter (LDV) are now recognized as the most reliable means for performing measurements in complex turbulent flows. And such, the experimental fluid dynamicist should be familiar with the principles of operation of the method and the details associated with its application. Thus, the goals of this primer are to efficiently transmit the basic concepts of the LDV method to potential users and to provide references that describe the specific areas in greater detail.

  16. A new method for detecting velocity shifts and distortions between optical spectra

    SciTech Connect

    Evans, Tyler M.; Murphy, Michael T.

    2013-12-01

    Recent quasar spectroscopy from the Very Large Telescope (VLT) and Keck suggests that fundamental constants may not actually be constant. To better confirm or refute this result, systematic errors between telescopes must be minimized. We present a new method to directly compare spectra of the same object and measure any velocity shifts between them. This method allows for the discovery of wavelength-dependent velocity shifts between spectra, i.e., velocity distortions, that could produce spurious detections of cosmological variations in fundamental constants. This 'direct comparison' method has several advantages over alternative techniques: it is model-independent (cf. line-fitting approaches), blind, in that spectral features do not need to be identified beforehand, and it produces meaningful uncertainty estimates for the velocity shift measurements. In particular, we demonstrate that, when comparing echelle-resolution spectra with unresolved absorption features, the uncertainty estimates are reliable for signal-to-noise ratios ≳7 per pixel. We apply this method to spectra of quasar J2123–0050 observed with Keck and the VLT and find no significant distortions over long wavelength ranges (∼1050 Å) greater than ≈180 m s{sup –1}. We also find no evidence for systematic velocity distortions within echelle orders greater than 500 m s{sup –1}. Moreover, previous constraints on cosmological variations in the proton-electron mass ratio should not have been affected by velocity distortions in these spectra by more than 4.0 ± 4.2 parts per million. This technique may also find application in measuring stellar radial velocities in search of extra-solar planets and attempts to directly observe the expansion history of the universe using quasar absorption spectra.

  17. A new method for joint estimation of delay and Doppler from ambiguity function: combination of stochastic process and spatial processing for noise and clutter suppression

    NASA Astrophysics Data System (ADS)

    Vahab Shojaedini, Seyed

    2014-04-01

    In this article, a new method is introduced for joint delay and Doppler estimation in ambiguity function (AF)-based radars. In this method, first each cell of AF is considered as a random variable and then a stochastic process is estimated for each cell based on its values during consecutive radar scans. In the second step, the AF is divided to high probability target and high probability clutter zones using parameters of the estimated stochastic processes. Finally, exact values of delay and Doppler of radar targets are extracted and localised from the divided AF by employing spatial processing techniques. Performance of the proposed method is evaluated in two different scenarios, corresponding to high and low speed targets, respectively. The obtained results show the greater ability of the suggested method in detection of the above types of targets compared to the present approaches. Furthermore, it can be shown that the proposed method causes more considerable improvement in the detection of low speed targets than high speed targets compared to available methods.

  18. A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm

    PubMed Central

    de Brito, Daniel M.; Maracaja-Coutinho, Vinicius; de Farias, Savio T.; Batista, Leonardo V.; do Rêgo, Thaís G.

    2016-01-01

    Genomic Islands (GIs) are regions of bacterial genomes that are acquired from other organisms by the phenomenon of horizontal transfer. These regions are often responsible for many important acquired adaptations of the bacteria, with great impact on their evolution and behavior. Nevertheless, these adaptations are usually associated with pathogenicity, antibiotic resistance, degradation and metabolism. Identification of such regions is of medical and industrial interest. For this reason, different approaches for genomic islands prediction have been proposed. However, none of them are capable of predicting precisely the complete repertory of GIs in a genome. The difficulties arise due to the changes in performance of different algorithms in the face of the variety of nucleotide distribution in different species. In this paper, we present a novel method to predict GIs that is built upon mean shift clustering algorithm. It does not require any information regarding the number of clusters, and the bandwidth parameter is automatically calculated based on a heuristic approach. The method was implemented in a new user-friendly tool named MSGIP—Mean Shift Genomic Island Predictor. Genomes of bacteria with GIs discussed in other papers were used to evaluate the proposed method. The application of this tool revealed the same GIs predicted by other methods and also different novel unpredicted islands. A detailed investigation of the different features related to typical GI elements inserted in these new regions confirmed its effectiveness. Stand-alone and user-friendly versions for this new methodology are available at http://msgip.integrativebioinformatics.me. PMID:26731657

  19. Estimation of ground and excited state dipole moments of Oil Red O by solvatochromic shift methods.

    PubMed

    Sıdır, İsa; Gülseven Sıdır, Yadigar

    2015-01-25

    Absorption and fluorescence spectra of Oil Red O (abbreviated as ORO) are recorded in various solvents with different polarity in the range of 250-900 nm, at room temperature. The solvatochromic shift methods have been used to determine the ground state (μg) and excited state (μe) dipole moments depending on dielectric constant and refractive index functions. It is observed that fluorescence spectra show positive solvatochromism whereas absorption spectra do not indicates sensitive behavior to solvent polarity. Excited state dipole moment is found as higher than those of ground state for all of the used methods and it is attributed to more polar excited state of ORO. Theoretical μg has been determined by quantum chemical calculations using DFT and semi empirical methods. HOMO, LUMO, molecular electrostatic potential (MEP) and solvent accessible surface of ORO are calculated by using DFT-B3LYP method.

  20. Superresolution imaging method using phase-shifting digital lensless Fourier holography.

    PubMed

    Granero, Luis; Micó, Vicente; Zalevsky, Zeev; García, Javier

    2009-08-17

    A method which is useful for obtaining superresolved imaging in a digital lensless Fourier holographic configuration is presented. By placing a diffraction grating between the input object and the CCD recording device, additional high-order spatial-frequency content of the object spectrum is directed towards the CCD. Unlike other similar methods, the recovery of the different band pass images is performed by inserting a reference beam in on-axis mode and using phase-shifting method. This strategy provides advantages concerning the usage of the whole frequency plane as imaging plane. Thus, the method is no longer limited by the zero order term and the twin image. Finally, the whole process results in a synthetic aperture generation that expands up the system cutoff frequency and yields a superresolution effect. Experimental results validate our concepts for a resolution improvement factor of 3. (c) 2009 Optical Society of America

  1. A 3-year experience implementing blended TBL: active instructional methods can shift student attitudes to learning.

    PubMed

    Davidson, Lindsay K

    2011-01-01

    Medical educators have been encouraged to adopt active instructional strategies that require learners to engage in and direct their own learning. These innovations may be seen as disruptive and face early challenges due to student resistance. We report 3 years of experience implementing a blend of team-based learning (TBL) and online learning modules in an undergraduate medical course. Three sequential cohorts of first year medical students were surveyed exploring how they valued different instructional methods during a period of evolving curricular design. In addition to a demonstrated increase in acceptance of new teaching methods, there was a shift in student perceptions of the relative merits of didactic, online and TBL teaching. Medical students' appreciations of different instructional methods are influenced by the maturity of instructional design. Educational change is best viewed through a longer term lens, acknowledging the necessity for teachers to develop experience in implementing new methods in the context of their institution.

  2. Estimation of ground and excited state dipole moments of Oil Red O by solvatochromic shift methods

    NASA Astrophysics Data System (ADS)

    Sıdır, İsa; Gülseven Sıdır, Yadigar

    2015-01-01

    Absorption and fluorescence spectra of Oil Red O (abbreviated as ORO) are recorded in various solvents with different polarity in the range of 250-900 nm, at room temperature. The solvatochromic shift methods have been used to determine the ground state (μg) and excited state (μe) dipole moments depending on dielectric constant and refractive index functions. It is observed that fluorescence spectra show positive solvatochromism whereas absorption spectra do not indicates sensitive behavior to solvent polarity. Excited state dipole moment is found as higher than those of ground state for all of the used methods and it is attributed to more polar excited state of ORO. Theoretical μg has been determined by quantum chemical calculations using DFT and semi empirical methods. HOMO, LUMO, molecular electrostatic potential (MEP) and solvent accessible surface of ORO are calculated by using DFT-B3LYP method.

  3. Implementing an electronic change-of-shift report using transforming care at the bedside processes and methods.

    PubMed

    Nelson, Beverly A; Massey, Robert

    2010-04-01

    Bedside nurses are well positioned to make changes that positively affect operations and practice. Using Transforming Care at the Bedside processes and methods, the authors describe the clinical nurse-led development, testing, and implementation of an electronic template and process for change-of-shift report. Outcomes included a reduction in time spent in change-of-shift reports, reduced end-of-shift overtime, and a more standardized process, with staff perceived improved information quality and satisfaction with the process.

  4. Evaluation method on steering for the shape-shifting robot in different configurations

    NASA Astrophysics Data System (ADS)

    Chang, Jian; Li, Bin; Wang, Chong; Zheng, Huaibing; Li, Zhiqiang

    2016-01-01

    The evaluation method on steering is based on qualitative manner in existence, which causes the result inaccurate and fuzziness. It reduces the efficiency of process execution. So the method by quantitative manner for the shape-shifting robot in different configurations is proposed. Comparing to traditional evaluation method, the most important aspects which can influence the steering abilities of the robot in different configurations are researched in detail, including the energy, angular velocity, time and space. In order to improve the robustness of system, the ideal and slippage conditions are all considered by mathematical model. Comparing to the traditional weighting confirming method, the extent of robot steering method is proposed by the combination of subjective and objective weighting method. The subjective weighting method can show more preferences of the experts and is based on five-grade scale. The objective weighting method is based on information entropy to determine the factors. By the sensors fixed on the robot, the contract force between track grouser and ground, the intrinsic motion characteristics of robot are obtained and the experiment is done to prove the algorithm which is proposed as the robot in different common configurations. Through the method proposed in the article, fuzziness and inaccurate of the evaluation method has been solved, so the operators can choose the most suitable configuration of the robot to fulfil the different tasks more quickly and simply.

  5. Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method

    NASA Astrophysics Data System (ADS)

    Fukui, H.; Miura, K.; Hirai, A.

    A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.

  6. Modified reverse tapering method to prevent frequency shift of the radiation in the planar undulator

    NASA Astrophysics Data System (ADS)

    Shim, Chi Hyun; Ko, In Soo; Parc, Yong Woon

    2017-03-01

    This paper presents a modified reverse tapering method to generate a polarized soft x ray in x-ray free-electron lasers (XFELs) with a higher photon power and a shorter undulator length than the simple linear reverse tapering method. In the proposed method, a few untapered planar undulators are added before the simple linear reverse tapering section of the undulator line. This simple modification prevents the frequency shift of the radiation that occurs when the simple linear reverse tapering method is applied to planar undulators. In the proposed method, the total length of planar undulators decreased in spite of the additional untapered undulators. When the modified reverse tapering method is used with four untapered planar undulators, the total length of the planar undulators is 64.6 m. On the other hand, the required length of the planar undulators is 94.6 m when the simple linear reverse tapering method is used. The proposed method gives us a way to generate a soft x-ray pulse (1.24 keV) with a high degree of polarization (>0.99 ) and radiation power (>30 GW ) at the new undulator line with a 10-GeV electron beam in the Pohang Accelerator Laboratory X-ray Free-Electron Laser. This method can be applied in the existing XFELs in the world without any change in the undulator lines.

  7. Acoustic attenuation logging using centroid frequency shift and amplitude ratio methods: A numerical study

    SciTech Connect

    Quan, Y.; Harris, J.M.; Chen, X.

    1994-12-31

    The centroid frequency shift method is proposed to estimate seismic attenuation from full waveform acoustic logs. This approach along with the amplitude ratio method is applied to investigate the attenuation properties of the P head wave in fluid-filled boreholes. The generalized reflection and transmission coefficients method is used to perform forward modeling. The authors suggest an empirical formula to describe the frequency-dependent geometrical spreading of the P-wave in a borehole. They simulate a more realistic borehole by including a mudcake and an invaded zone which are modeled by a large number of radially symmetric thin layers. The numerical tests show that this invaded zone exhibits very strong influence on the attenuation measurement.

  8. Doppler effect in Schwarzschild and Kerr geometries

    NASA Astrophysics Data System (ADS)

    Radosz, A.; Augousti, A. T.; Ostasiewicz, K.

    2008-03-01

    Calculation of the Doppler shift in general relativity involves contributions of gravitational and kinematical origins and for most metrics or trajectories these contributions are coupled. The exact expression for this Doppler shift may simplify for particular symmetries. Here the specific case for a light signal emitted by a distant inertial observer and received by an in-falling observer in a Schwarzschild geometry is discussed. The resulting expression the Doppler shift is composed of simple factors that can be clearly identified with contributions arising from classical kinematical, special relativistic and general relativistic origins. This result turns out to be more general and it holds for a case of an arbitrary radial in-fall in Schwarzschild geometry and for a particular type of in-fall in the case of a Kerr metric.

  9. Comparison of transvaginal color Doppler imaging and color Doppler energy for assessment of intraovarian blood flow.

    PubMed

    Tailor, A; Jurkovic, D; Bourne, T H; Natucci, M; Collins, W P; Campbell, S

    1998-04-01

    To investigate any systematic differences in the analysis of blood flow velocity waveforms derived by color Doppler imaging and color Doppler energy examination of corpora lutea and adnexal tumors, to test whether the accuracy for diagnosing ovarian malignancy differs between end points derived by color Doppler imaging and color Doppler energy, and to compare the reproducibility of flow velocity waveform analysis obtained by both methods. Fifty-six asymptomatic women with presumed corpora lutea and 67 women with known adnexal masses were included in the study. They all were examined using transvaginal sonography with color Doppler imaging and color Doppler energy. Pulsed Doppler sonography was used to obtain flow velocity waveforms to determine the pulsatility index (PI), resistance index (RI), peak systolic velocity, and time-averaged maximum velocity. The tumors were classified retrospectively according to histologic criteria. There were 52 women with benign, three with borderline, and 12 with malignant ovarian tumors. Repeated-measures analysis of variance revealed no systematic differences in the values of all four measurements performed under color Doppler imaging and color Doppler energy for all cases of corpora lutea and adnexal tumors (PI: P=.153, RI: P=.197, peak systolic velocity: P=.355, time-averaged maximum velocity: P=.159). All cases of borderline and malignant tumors had detectable pulsatile blood flow with color Doppler imaging and color Doppler energy. Forty-two (80.8%) of the benign tumors had flow detectable with color Doppler imaging, compared with 40 (76.9%) with color Doppler energy (P=.480). Analysis of receiver operating characteristic curves showed a marginal but nonsignificant improvement in diagnostic performance with color Doppler energy compared with color Doppler imaging for all four measurements (PI: P=.182, RI: P=.178, peak systolic velocity: P=.254, time-averaged maximum velocity: P=.238). The intraclass correlation coefficients

  10. Doppler-corrected differential detection of MPSK

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K.; Divsalar, Dariush

    1989-01-01

    An open-loop technique is presented for estimating and correcting Doppler frequency shift in an M-ary differential phase-shift-keyed (MDPSK) receiver. The novelty of the scheme is based on the observation that whereas the change in phase of the received signal over a full symbol contains the sum of the data (phase) and the Doppler-induced phase shift, the same change in phase over half a symbol (within a given symbol interval) contains only the Doppler-induced phase shift. Thus, by proper processing, the latter can be estimated and removed from the former. Analytical and simulation results are given for the variance of the above estimator, and the error probability performance of the MDPSK receiver is evaluated in the presence of the Doppler correction. Next, the practical considerations associated with the application of this technique on bandlimited Nyquist channels are discussed and incorporated into the final design. It is shown that the receiver can, in the absence of timing jitter, be designed to allow combined Doppler correction and data detection with no penalty due to intersymbol interference (ISI). The effects of ISI due to timing jitter are assessed by computer simulation.

  11. Ultrasound for diagnosis of carpal tunnel syndrome: comparison of different methods to determine median nerve volume and value of power Doppler sonography.

    PubMed

    Dejaco, Christian; Stradner, Martin; Zauner, Dorothea; Seel, Werner; Simmet, Nicole Elisabeth; Klammer, Alexander; Heitzer, Petra; Brickmann, Kerstin; Gretler, Judith; Fürst-Moazedi, Florentine C; Thonhofer, Rene; Husic, Rusmir; Hermann, Josef; Graninger, Winfried B; Quasthoff, Stefan

    2013-12-01

    To compare ultrasound measurement of median nerve cross-sectional area (CSA) at different anatomical landmarks and to assess the value of power Doppler signals within the median nerve for diagnosis of carpal tunnel syndrome (CTS). A prospective study of 135 consecutive patients with suspected CTS undergoing two visits within 3 months. A final diagnosis of CTS was established by clinical and electrophysiological findings. CSA was sonographically measured at five different levels at forearm and wrist; and CSA wrist to forearm ratios or differences were calculated. Intraneural power Doppler signals were semiquantitatively graded. Diagnostic values of different ultrasound methods were compared by receiver operating characteristic curves using SPSS. CTS was diagnosed in 111 (45.5%) wrists; 84 (34.4%) had no CTS and 49 (20.1%) were possible CTS cases. Diagnostic values were comparable for all sonographic methods to determine median nerve swelling, with area under the curves ranging from 0.75 to 0.85. Thresholds of 9.8 and 13.8 mm(2) for the largest CSA of the median nerve yielded a sensitivity of 92% and a specificity of 92%. A power Doppler score of 2 or greater had a specificity of 90% for the diagnosis of CTS. Sonographic median nerve volumetry revealed a good reliability with an intraclass correlation coefficient of 0.90 (95% CI 0.79 to 0.95). Sonographic assessment of median nerve swelling and vascularity allows for a reliable diagnosis of CTS. Determination of CSA at its maximal shape offers an easily reproducible tool for CTS classification in daily clinical practice.

  12. Detection of peripheral arterial disease with an improved automated device: comparison of a new oscillometric device and the standard Doppler method

    PubMed Central

    Špan, Matjaž; Geršak, Gregor; Millasseau, Sandrine C; Meža, Marko; Košir, Andrej

    2016-01-01

    In occidental countries, peripheral arterial disease (PAD) is an important health issue; however, most subjects are asymptomatic (~50%) and therefore undiagnosed and untreated. Current guidelines recommend screening for PAD in primary care setting using ankle brachial index (ABI) in all patients with cardiovascular risks. This is, however, not performed strictly because the standard Doppler method is cumbersome and time-consuming. Here, we evaluate the accuracy and reproducibility of ABI measurements obtained by an improved automated oscillometric device, the MESI ABPI MD® device, and the standard Doppler method. ABI was measured in random order in a general practice with Doppler probes by two operators separately (ABI_dop) and twice with the MESI ABPI MD device (ABI_mesi). ABI_dop was calculated dividing the highest systolic blood pressure from both tibial and dorsalis pedis arteries by the highest systolic blood pressure of both brachial arteries. ABI_mesi was obtained automatically with simultaneous measurements on three extremities. According to ABI_dop, PAD was present in 10% of the 136 screened subjects (68.2±7.4 years). Interoperator coefficient of variation was 5.5% for ABI_dop, while the intrasubject coefficient of variation for ABI_mesi was 3.0%. ABI_mesi was correlated with ABI_dop (R=0.61, P<0.0001). The difference between the two techniques was 0.06±0.14 with ABI_mesi providing slightly higher values (P<0.0001) and negligible bias across the range (R=0.19, P<0.0001). Therefore, ABI_mesi ≤1 had a sensitivity of 85% and specificity of 96% to detect ABI_dop ≤0.9 and hence PAD. Doppler measurements took seven times longer than MESI ABPI MD measurements to be performed. In conclusion, MESI improved automated oscillometric method and offered a faster and repeatable measurement of ABI with only a small, clinically irrelevant overestimation of ABI value. The tested MESI ABPI MD-improved oscillometric system can be used as a screening tool for patients

  13. Spectroscopic studies of biologically active coumarin laser dye: Evaluation of dipole moments by solvatochromic shift method

    SciTech Connect

    Koppal, V. V. Muddapur, G. V. Patil, N. R.; Melavanki, R. M.

    2016-05-06

    In this paper we attempted to record absorption and emission spectra of 2-acetyl-3H-benzo[f]chromen-3-one [2AHBC] laser dye in different solvents of varying polarities to investigate its solvatochromic behavior. The two electronic states dipole moments of 2AHBC are calculated using solvatochromic spectral shifts which are correlated with dielectric constant (ε) refractive index (n) of various solvents. A systematic approach is made to estimate ground and excited state dipole moments on the basis of different solvent correlation methods like Bilot-Kawski equations, Lippert-Mataga, Bakhsheiv, Kawaski-Chamma-Viallet and Reichardt methods. Dipole moments in the excited state was found to be higher than the ground state by confirming π→π* transition.

  14. Spectroscopic studies of biologically active coumarin laser dye: Evaluation of dipole moments by solvatochromic shift method

    NASA Astrophysics Data System (ADS)

    Koppal, V. V.; Muddapur, G. V.; Patil, N. R.; Melavanki, R. M.

    2016-05-01

    In this paper we attempted to record absorption and emission spectra of 2-acetyl-3H-benzo[f]chromen-3-one [2AHBC] laser dye in different solvents of varying polarities to investigate its solvatochromic behavior. The two electronic states dipole moments of 2AHBC are calculated using solvatochromic spectral shifts which are correlated with dielectric constant (ɛ) refractive index (n) of various solvents. A systematic approach is made to estimate ground and excited state dipole moments on the basis of different solvent correlation methods like Bilot-Kawski equations, Lippert-Mataga, Bakhsheiv, Kawaski-Chamma-Viallet and Reichardt methods. Dipole moments in the excited state was found to be higher than the ground state by confirming π→π* transition.

  15. Study on simulation and experiment of laser micro-Doppler effect for detecting complex vibration

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Zhang, Juan; Liu, Mei-juan; Zhang, Jun

    2013-08-01

    The spectrum of radar signal will be modulated by moving target or vibration and turning part of the target, this is called micro-Doppler effect. It is a new way of using micro-Doppler effect to realize the feature extraction and target recognition. Because the complex vibration target has more complicated frequency component than the single frequency target, so it is very useful to do the research of simulation and experiment of laser micro-Doppler effect for detecting complex vibration. In this paper, the research on simulation and experiment of laser micro-Doppler effect for detecting complex vibration of moving target was developed based on the simulation research of micro-Doppler effect in lidar. Firstly, the geometry of complex vibrating target detection in radar was established. Secondly, the simulation and experiment signal sources were compared and also the returned signals in radar of the simulation and experiment were compared, the compared results showed that the two complex signal sources were very similar, and the frequency change trend of returned signals in radar was the same. Thirdly, joint time-frequency analysis method of the reassigned smoothed pseudo Wigner-Ville distribution (RSPWVD) was introduced to analyze the signals. The results showed that in RSPWVD, the waveform of the vibration target, the target vibration period, the Doppler frequency shift and the target's speed can be got. The simulation results and the experiment results got by the RSPWVD had the basically same frequency characteristics. So the RSPWVD can reflect very well the micro-Doppler characteristics of moving target's complex vibration. In conclusion it proved the validity of the simulated model, also it proved that using this time-frequency method to analyze the micro-Doppler signal of complex vibration was correct. And it laid the foundation of further using lidar to realize the classification and identification of target.

  16. Development of Point Doppler Velocimetry for Flow Field Investigations

    NASA Technical Reports Server (NTRS)

    Cavone, Angelo A.; Meyers, James F.; Lee, Joseph W.

    2006-01-01

    A Point Doppler Velocimeter (pDv) has been developed using a vapor-limited iodine cell as the sensing medium. The iodine cell is utilized to directly measure the Doppler shift frequency of laser light scattered from submicron particles suspended within a fluid flow. The measured Doppler shift can then be used to compute the velocity of the particles, and hence the fluid. Since this approach does not require resolution of scattered light from individual particles, the potential exists to obtain temporally continuous signals that could be uniformly sampled in the manner as a hot wire anemometer. This leads to the possibility of obtaining flow turbulence power spectra without the limitations of fringe-type laser velocimetry. The development program consisted of a methodical investigation of the technology coupled with the solution of practical engineering problems to produce a usable measurement system. The paper outlines this development along with the evaluation of the resulting system as compared to primary standards and other measurement technologies.

  17. Novel measure for the calibration of laser Doppler flowmetry devices

    NASA Astrophysics Data System (ADS)

    Dunaev, Andrey V.; Zherebtsov, Evgeny A.; Rogatkin, Dmitrii A.; Stewart, Neil A.; Sokolovski, Sergei G.; Rafailov, Edik U.

    2014-03-01

    The metrological basis for optical non-invasive diagnostic devices is an unresolved issue. A major challenge for laser Doppler flowmetry (LDF) is the need to compare the outputs from individual devices and various manufacturers to identify variations useful in clinical diagnostics. The most common methods for instrument calibration are simulants or phantoms composed of colloids of light-scattering particles which simulate the motion of red blood cells based on Brownian motion. However, such systems have limited accuracy or stability and cannot calibrate for the known rhythmic components of perfusion (0.0095-1.6 Hz). To solve this problem, we propose the design of a novel technique based on the simulation of moving particles using an electromechanical transducer, in which a precision piezoelectric actuator is used (e.g., P-602.8SL with maximum movement less than 1 mm). In this system, Doppler shift is generated in the layered structure of different solid materials with different optical light diffusing properties. This comprises a fixed, light transparent upper plane-parallel plate and an oscillating fluoroplastic (PTFE) disk. Preliminary studies on this experimental setup using the LDF-channel of a "LAKK-M" system demonstrated the detection of the linear portion (0-10 Hz with a maximum signal corresponding to Doppler shift of about 20 kHz) of the LDF-signal from the oscillating frequency of the moving layer. The results suggest the possibility of applying this technique for the calibration of LDF devices.

  18. Assessing internet survey data collection methods with ethnic nurse shift workers.

    PubMed

    Hobbs, Barbara Betz; Farr, Lynne A

    2004-01-01

    An increasing number of ethnic minorities are expected to enter the United States workforce based on projected demographic changes. This includes American Indian/Alaskan Native (AI/AN) nurses. Sociocultural influences on sleep disturbances, sleepiness, and other aspects related to shift-work tolerance are of unrecognized importance. More minority nurses are needed to provide culturally congruent care; however, AI/AN nurses represent less than 1% of nurses located throughout the American workforce. This article aims to verify the feasibility of Internet data collection (Web-based survey) methods and instrument stability as the first part of a two-phase study comparing individual differences and shift-work-related sleep disturbances between AI/AN and White non-Hispanic (WNH) nurses. In the first phase, an Internet survey was used to reach a cross-section of AI/AN and WNH nurses. The on-line survey was composed of accepted shift-work-related instruments. Items estimating sleep disturbances, sociocultural choices, time awareness, polychronicity, morningness/ eveningness, ethnic identity, and demographic questions were asked. The survey was linked to a series of Web pages describing the study purpose, inclusion and exclusion criteria, consent form, Web survey, and the second phase of the study in which subjects were invited to participate in actigraphy measurements. The survey was pilot-tested for error codes, item confusion, length, and completion time. Forced-answer questions were added asking ethnicity, age group, license type, state where licensed, and legal name on nursing license before accessing the survey. Data were saved periodically, cued by the word "continue." The database was located on a secure server and password protected. Nurses were recruited using published articles and printed advertisements, hospital e-mail systems, national nursing organization Web sites (minoritynurse.com; NANAINA.org), nursing Web site discussion groups, snow-balling, and word of

  19. Laser Doppler flowmetry in endodontics: a review.

    PubMed

    Jafarzadeh, H

    2009-06-01

    Vascular supply is the most accurate marker of pulp vitality. Tests for assessing vascular supply that rely on the passage of light through a tooth have been considered as possible methods for detecting pulp vitality. Laser Doppler flowmetry (LDF), which is a noninvasive, objective, painless, semi-quantitative method, has been shown to be reliable for measuring pulpal blood flow. The relevant literature on LDF in the context of endodontics up to March 2008 was reviewed using PubMed and MEDLINE database searches. This search identified papers published between June 1983 and March 2008. Laser light is transmitted to the pulp by means of a fibre optic probe. Scattered light from moving red blood cells will be frequency-shifted whilst that from the static tissue remains unshifted. The reflected light, composed of Doppler-shifted and unshifted light, is returned by afferent fibres and a signal is produced. This technique has been successfully employed for estimating pulpal vitality in adults and children, differential diagnosis of apical radiolucencies (on the basis of pulp vitality), examining the reactions to pharmacological agents or electrical and thermal stimulation, and monitoring of pulpal responses to orthodontic procedures and traumatic injuries. Assessments may be highly susceptible to environmental and technique-related factors. Nonpulpal signals, principally from periodontal blood flow, may contaminate the signal. Because this test produces no noxious stimuli, apprehensive or distressed patients accept it more readily than current methods of pulp vitality assessment. A review of the literature and a discussion of the application of this system in endodontics are presented.

  20. An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication.

    PubMed

    MinhHai, Tran; Rie, Saotome; Suzuki, Taisaku; Wada, Tomohisa

    2016-01-01

    We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1) estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2) symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically.

  1. An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication

    PubMed Central

    MinhHai, Tran; Rie, Saotome; Suzuki, Taisaku; Wada, Tomohisa

    2016-01-01

    We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1) estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2) symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically. PMID:27057558

  2. A Quality by Design approach to investigate tablet dissolution shift upon accelerated stability by multivariate methods.

    PubMed

    Huang, Jun; Goolcharran, Chimanlall; Ghosh, Krishnendu

    2011-05-01

    This paper presents the use of experimental design, optimization and multivariate techniques to investigate root-cause of tablet dissolution shift (slow-down) upon stability and develop control strategies for a drug product during formulation and process development. The effectiveness and usefulness of these methodologies were demonstrated through two application examples. In both applications, dissolution slow-down was observed during a 4-week accelerated stability test under 51°C/75%RH storage condition. In Application I, an experimental design was carried out to evaluate the interactions and effects of the design factors on critical quality attribute (CQA) of dissolution upon stability. The design space was studied by design of experiment (DOE) and multivariate analysis to ensure desired dissolution profile and minimal dissolution shift upon stability. Multivariate techniques, such as multi-way principal component analysis (MPCA) of the entire dissolution profiles upon stability, were performed to reveal batch relationships and to evaluate the impact of design factors on dissolution. In Application II, an experiment was conducted to study the impact of varying tablet breaking force on dissolution upon stability utilizing MPCA. It was demonstrated that the use of multivariate methods, defined as Quality by Design (QbD) principles and tools in ICH-Q8 guidance, provides an effective means to achieve a greater understanding of tablet dissolution upon stability.

  3. Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology.

    PubMed

    Radonić, Vasa; Birgermajer, Slobodan; Kitić, Goran

    2017-04-18

    In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor's operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM) 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene-methanol mixture where various concentrations of toluene were analysed.

  4. Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology

    PubMed Central

    Radonić, Vasa; Birgermajer, Slobodan; Kitić, Goran

    2017-01-01

    In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor’s operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM) 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene–methanol mixture where various concentrations of toluene were analysed. PMID:28420217

  5. Calibration method to characterize the accuracy of phase-shifting point diffraction interferometer

    SciTech Connect

    Liu Ke; Li Yanqiu; Wang Hai

    2011-03-15

    Characterization of measurement accuracy of the phase-shifting point diffraction interferometer (PS/PDI) is usually performed by two-pinhole null test. In this procedure, the geometrical coma and detector tilt astigmatism systematic errors are almost one or two magnitude higher than the desired accuracy of PS/PDI. These errors must be accurately removed from the null test result to achieve high accuracy. Published calibration methods, which can remove the geometrical coma error successfully, have some limitations in calibrating the astigmatism error. In this paper, we propose a method to simultaneously calibrate the geometrical coma and detector tilt astigmatism errors in PS/PDI null test. Based on the measurement results obtained from two pinhole pairs in orthogonal directions, the method utilizes the orthogonal and rotational symmetry properties of Zernike polynomials over unit circle to calculate the systematic errors introduced in null test of PS/PDI. The experiment using PS/PDI operated at visible light is performed to verify the method. The results show that the method is effective in isolating the systematic errors of PS/PDI and the measurement accuracy of the calibrated PS/PDI is 0.0088{lambda} rms ({lambda}= 632.8 nm).

  6. Different imaging methods in the comparative assessment of vascular lesions: color-coded duplex sonography, laser Doppler perfusion imaging, and infrared thermography

    NASA Astrophysics Data System (ADS)

    Urban, Peter; Philipp, Carsten M.; Weinberg, Lutz; Berlien, Hans-Peter

    1997-12-01

    Aim of the study was the comparative investigation of cutaneous and subcutaneous vascular lesions. By means of color coded duplex sonography (CCDS), laser doppler perfusion imaging (LDPI) and infrared thermography (IT) we examined hemangiomas, vascular malformations and portwine stains to get some evidence about depth, perfusion and vascularity. LDI is a helpful method to get an impression of the capillary part of vascular lesions and the course of superficial vessels. CCDS has disadvantages in the superficial perfusion's detection but connections to deeper vascularizations can be examined precisely, in some cases it is the only method for visualizing vascular malformations. IT gives additive hints on low blood flow areas or indicates arterial-venous-shunts. Only the combination of all imaging methods allows a complete assessment, not only for planning but also for controlling the laser treatment of vascular lesions.

  7. Method and apparatus for executing an asynchronous clutch-to-clutch shift in a hybrid transmission

    DOEpatents

    Demirovic, Besim; Gupta, Pinaki; Kaminsky, Lawrence A.; Naqvi, Ali K.; Heap, Anthony H.; Sah, Jy-Jen F.

    2014-08-12

    A hybrid transmission includes first and second electric machines. A method for operating the hybrid transmission in response to a command to execute a shift from an initial continuously variable mode to a target continuously variable mode includes increasing torque of an oncoming clutch associated with operating in the target continuously variable mode and correspondingly decreasing a torque of an off-going clutch associated with operating in the initial continuously variable mode. Upon deactivation of the off-going clutch, torque outputs of the first and second electric machines and the torque of the oncoming clutch are controlled to synchronize the oncoming clutch. Upon synchronization of the oncoming clutch, the torque for the oncoming clutch is increased and the transmission is operated in the target continuously variable mode.

  8. Fish protein recovered using ph shifting method and its physicochemical properties

    NASA Astrophysics Data System (ADS)

    Choi, J. Yeung; Kim, Jinx-Soo

    2005-07-01

    The solubility of meat protein of croaker and jack mackerel was significantly affected by pH shifting. The protein yield of alkali-aided processing is higher than those of conventional and acid-aided processing. The addition of sarcoplasmic protein increases the breaking force and deformation value. The breaking force of recovered protein gel from alkali-aided processing is decreased by the addition of NaCl. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that fish protein of alkali is similar to that at pH7.0. Alkali-aided processing for recovering fish protein is a valuable method for increasing the utilization of frozen and pelagic fishes and for making kamaboko products.

  9. Method variation in the impact of missing data on response shift detection.

    PubMed

    Schwartz, Carolyn E; Sajobi, Tolulope T; Verdam, Mathilde G E; Sebille, Veronique; Lix, Lisa M; Guilleux, Alice; Sprangers, Mirjam A G

    2015-03-01

    Missing data due to attrition or item non-response can result in biased estimates and loss of power in longitudinal quality-of-life (QOL) research. The impact of missing data on response shift (RS) detection is relatively unknown. This overview article synthesizes the findings of three methods tested in this special section regarding the impact of missing data patterns on RS detection in incomplete longitudinal data. The RS detection methods investigated include: (1) Relative importance analysis to detect reprioritization RS in stroke caregivers; (2) Oort's structural equation modeling (SEM) to detect recalibration, reprioritization, and reconceptualization RS in cancer patients; and (3) Rasch-based item-response theory-based (IRT) models as compared to SEM models to detect recalibration and reprioritization RS in hospitalized chronic disease patients. Each method dealt with missing data differently, either with imputation (1), attrition-based multi-group analysis (2), or probabilistic analysis that is robust to missingness due to the specific objectivity property (3). Relative importance analyses were sensitive to the type and amount of missing data and imputation method, with multiple imputation showing the largest RS effects. The attrition-based multi-group SEM revealed differential effects of both the changes in health-related QOL and the occurrence of response shift by attrition stratum, and enabled a more complete interpretation of findings. The IRT RS algorithm found evidence of small recalibration and reprioritization effects in General Health, whereas SEM mostly evidenced small recalibration effects. These differences may be due to differences between the two methods in handling of missing data. Missing data imputation techniques result in different conclusions about the presence of reprioritization RS using the relative importance method, while the attrition-based SEM approach highlighted different recalibration and reprioritization RS effects by

  10. Round-robin differential-phase-shift quantum key distribution with a passive decoy state method

    NASA Astrophysics Data System (ADS)

    Liu, Li; Guo, Fen-Zhuo; Qin, Su-Juan; Wen, Qiao-Yan

    2017-02-01

    Recently, a new type of protocol named Round-robin differential-phase-shift quantum key distribution (RRDPS QKD) was proposed, where the security can be guaranteed without monitoring conventional signal disturbances. The active decoy state method can be used in this protocol to overcome the imperfections of the source. But, it may lead to side channel attacks and break the security of QKD systems. In this paper, we apply the passive decoy state method to the RRDPS QKD protocol. Not only can the more environment disturbance be tolerated, but in addition it can overcome side channel attacks on the sources. Importantly, we derive a new key generation rate formula for our RRDPS protocol using passive decoy states and enhance the key generation rate. We also compare the performance of our RRDPS QKD to that using the active decoy state method and the original RRDPS QKD without any decoy states. From numerical simulations, the performance improvement of the RRDPS QKD by our new method can be seen.

  11. Round-robin differential-phase-shift quantum key distribution with a passive decoy state method

    PubMed Central

    Liu, Li; Guo, Fen-Zhuo; Qin, Su-Juan; Wen, Qiao-Yan

    2017-01-01

    Recently, a new type of protocol named Round-robin differential-phase-shift quantum key distribution (RRDPS QKD) was proposed, where the security can be guaranteed without monitoring conventional signal disturbances. The active decoy state method can be used in this protocol to overcome the imperfections of the source. But, it may lead to side channel attacks and break the security of QKD systems. In this paper, we apply the passive decoy state method to the RRDPS QKD protocol. Not only can the more environment disturbance be tolerated, but in addition it can overcome side channel attacks on the sources. Importantly, we derive a new key generation rate formula for our RRDPS protocol using passive decoy states and enhance the key generation rate. We also compare the performance of our RRDPS QKD to that using the active decoy state method and the original RRDPS QKD without any decoy states. From numerical simulations, the performance improvement of the RRDPS QKD by our new method can be seen. PMID:28198808

  12. Round-robin differential-phase-shift quantum key distribution with a passive decoy state method.

    PubMed

    Liu, Li; Guo, Fen-Zhuo; Qin, Su-Juan; Wen, Qiao-Yan

    2017-02-13

    Recently, a new type of protocol named Round-robin differential-phase-shift quantum key distribution (RRDPS QKD) was proposed, where the security can be guaranteed without monitoring conventional signal disturbances. The active decoy state method can be used in this protocol to overcome the imperfections of the source. But, it may lead to side channel attacks and break the security of QKD systems. In this paper, we apply the passive decoy state method to the RRDPS QKD protocol. Not only can the more environment disturbance be tolerated, but in addition it can overcome side channel attacks on the sources. Importantly, we derive a new key generation rate formula for our RRDPS protocol using passive decoy states and enhance the key generation rate. We also compare the performance of our RRDPS QKD to that using the active decoy state method and the original RRDPS QKD without any decoy states. From numerical simulations, the performance improvement of the RRDPS QKD by our new method can be seen.

  13. Imaging doppler velocimeter with downward heterodyning in the optical domain

    DOEpatents

    Reu, Phillip L; Hansche, Bruce D

    2013-05-21

    In a Doppler velocimeter, the incoming Doppler-shifted beams are heterodyned to reduce their frequencies into the bandwidth of a digital camera. This permits the digital camera to produce at every sampling interval a complete two-dimensional array of pixel values. This sequence of pixel value arrays provides a velocity image of the target.

  14. DOPPLER WEATHER SYSTEM

    SciTech Connect

    Berlin, Gary J.

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever five minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.

  15. When are night shifts effective for nursing student clinical learning? Findings from a mixed-method study design.

    PubMed

    Palese, Alvisa; Basso, Felix; Del Negro, Elena; Achil, Illarj; Ferraresi, Annamaria; Morandini, Marzia; Moreale, Renzo; Mansutti, Irene

    2017-05-01

    Some nursing programmes offer night shifts for students while others do not, mainly due to the lack of evidence regarding their effectiveness on clinical learning. The principal aims of the study were to describe nursing students' perceptions and to explore conditions influencing effectiveness on learning processes during night shifts. An explanatory mixed-method study design composed of a cross-sectional study (primary method, first phase) followed by a descriptive phenomenological study design (secondary method, second phase) in 2015. Two bachelor of nursing degree programmes located in Northern Italy, three years in length and requiring night shifts for students starting in the second semester of the 1st year, were involved. First phase: all nursing students ending their last clinical placement of the academic year attended were eligible; 352 out the 370 participated. Second phase: a purposeful sample of nine students among those included in the first phase and who attended the highest amount of night shifts were interviewed. First phase: a questionnaire composed of closed and open-ended questions was adopted; data was analyzed through descriptive statistical methods. Second phase: an open-ended face-to-face audio-recorded interview was adopted and data was analyzed through content analysis. Findings from the quantitative phase, showed that students who attended night shifts reported satisfaction (44.7%) less frequently than those who attended only day shifts (55.9%). They also reported boredom (23.5%) significantly more often compared to day shift students (p=0001). Understanding of the nursing role and learning competence was significantly inferior among night shift students as compared to day shift students, while the perception of wasting time was significantly higher among night shift students compared to their counterparts. Night shift students performed nursing rounds (288; 98.2%), non-nursing tasks (247; 84.3%) and/or less often managed clinical problems

  16. Investigation of the dosimetric accuracy of the isocenter shifting method in prostate cancer patients with and without hip prostheses

    SciTech Connect

    Hwang, Andrew B.; Kinsey, Erica; Xia Ping

    2009-11-15

    Purpose: The use of image guided radiation therapy (IGRT) enables compensation for prostate movement by shifting the treatment isocenter to track the prostate on a daily basis. Although shifting the isocenter can alter the source to skin distances (SSDs) and the effective depth of the target volume, it is commonly assumed that these changes have a negligible dosimetric effect, and therefore, the number of monitor units delivered is usually not adjusted. However, it is unknown whether or not this assumption is valid for patient with hip prostheses, which frequently contain high density materials. Methods: The authors conducted a retrospective study to investigate dosimetric effect of the isocenter shifting method for prostate patients with and without hip prostheses. For each patient, copies of the prostate volume were shifted by up to 1.5 cm from the original position to simulate prostate movement in 0.5 cm increments. Subsequently, 12 plans were created for each patient by creating a copy of the original plan for each prostate position with the isocenter shifted to track the position of the shifted prostate. The dose to the prostate was then recalculated for each plan. For patients with hip prostheses, plans were created both with and without lateral beam angles entering through the prostheses. Results: Without isocenter shifting to compensate for prostate motion of 1.5 cm, the dose to the 95% of the prostate (D-95%) changed by an average of 30% and by up to 64%. This was reduced to less than 3% with the isocenter shifting method. It was found that for patients with hip prostheses, this technique worked best for treatment plans that avoided beam angles passing through the prostheses. Conclusions: The results demonstrated that the isocenter shifting method can accurately deliver dose to the prostate even in patients with hip prostheses.

  17. Two-dimensional multi-frequency imaging of a tumor inclusion in a homogeneous breast phantom using the harmonic motion Doppler imaging method

    NASA Astrophysics Data System (ADS)

    Kamali Tafreshi, Azadeh; Barış Top, Can; Güneri Gençer, Nevzat

    2017-06-01

    Harmonic motion microwave Doppler imaging (HMMDI) is a novel imaging modality for imaging the coupled electrical and mechanical properties of body tissues. In this paper, we used two experimental systems with different receiver configurations to obtain HMMDI images from tissue-mimicking phantoms at multiple vibration frequencies between 15 Hz and 35 Hz. In the first system, we used a spectrum analyzer to obtain the Doppler data in the frequency domain, while in the second one, we used a homodyne receiver that was designed to acquire time-domain data. The developed phantoms mimicked the elastic and dielectric properties of breast fat tissue, and included a 14~\\text{mm}× 9 mm cylindrical inclusion representing the tumor. A focused ultrasound probe was mechanically scanned in two lateral dimensions to obtain two-dimensional HMMDI images of the phantoms. The inclusions were resolved inside the fat phantom using both experimental setups. The image resolution increased with increasing vibration frequency. The designed receiver showed higher sensitivity than the spectrum analyzer measurements. The results also showed that time-domain data acquisition should be used to fully exploit the potential of the HMMDI method.

  18. Two-dimensional multi-frequency imaging of a tumor inclusion in a homogeneous breast phantom using the harmonic motion Doppler imaging method.

    PubMed

    Tafreshi, Azadeh Kamali; Top, Can Barış; Gençer, Nevzat Güneri

    2017-06-21

    Harmonic motion microwave Doppler imaging (HMMDI) is a novel imaging modality for imaging the coupled electrical and mechanical properties of body tissues. In this paper, we used two experimental systems with different receiver configurations to obtain HMMDI images from tissue-mimicking phantoms at multiple vibration frequencies between 15 Hz and 35 Hz. In the first system, we used a spectrum analyzer to obtain the Doppler data in the frequency domain, while in the second one, we used a homodyne receiver that was designed to acquire time-domain data. The developed phantoms mimicked the elastic and dielectric properties of breast fat tissue, and included a [Formula: see text] mm cylindrical inclusion representing the tumor. A focused ultrasound probe was mechanically scanned in two lateral dimensions to obtain two-dimensional HMMDI images of the phantoms. The inclusions were resolved inside the fat phantom using both experimental setups. The image resolution increased with increasing vibration frequency. The designed receiver showed higher sensitivity than the spectrum analyzer measurements. The results also showed that time-domain data acquisition should be used to fully exploit the potential of the HMMDI method.

  19. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; hide

    2014-01-01

    ); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid pulsatility); (5) ocular measures (optical coherence tomography, intraocular pressure, 2-dimensional ultrasound including optic nerve sheath diameter, globe flattening, and retina-choroid thickness, Doppler ultrasound of ophthalmic and retinal arteries, and veins); (6) cardiac variables by ultrasound (inferior vena cava, tricuspid flow and tissue Doppler, pulmonic valve, stroke volume, right heart dimensions and function, four-chamber views); and (7) ICP measures (tympanic membrane displacement, distortion-product otoacoustic emissions, and ICP calculated by MRI). On the ground, acute head-down tilt will induce cephalad fluid shifts, whereas LBNP will oppose these shifts. Controlled Mueller maneuvers will manipulate cardiovascular variables. Through interventions applied before, during, and after flight, we intend to fully evaluate the relationship between fluid shifts and the VIIP syndrome. This study has been selected for flight implementation and is one of the candidate investigations being considered for the one year mission.

  20. Investigation of the dosimetric accuracy of the isocenter shifting method in prostate cancer patients with and without hip prostheses.

    PubMed

    Hwang, Andrew B; Kinsey, Erica; Xia, Ping

    2009-11-01

    The use of image guided radiation therapy (IGRT) enables compensation for prostate movement by shifting the treatment isocenter to track the prostate on a daily basis. Although shifting the isocenter can alter the source to skin distances (SSDs) and the effective depth of the target volume, it is commonly assumed that these changes have a negligible dosimetric effect, and therefore, the number of monitor units delivered is usually not adjusted. However, it is unknown whether or not this assumption is valid for patient with hip prostheses, which frequently contain high density materials. The authors conducted a retrospective study to investigate dosimetric effect of the isocenter shifting method for prostate patients with and without hip prostheses. For each patient, copies of the prostate volume were shifted by up to 1.5 cm from the original position to simulate prostate movement in 0.5 cm increments. Subsequently, 12 plans were created for each patient by creating a copy of the original plan for each prostate position with the isocenter shifted to track the position of the shifted prostate. The dose to the prostate was then recalculated for each plan. For patients with hip prostheses, plans were created both with and without lateral beam angles entering through the prostheses. Without isocenter shifting to compensate for prostate motion of 1.5 cm, the dose to the 95% of the prostate (D-95%) changed by an average of 30% and by up to 64%. This was reduced to less than 3% with the isocenter shifting method. It was found that for patients with hip prostheses, this technique worked best for treatment plans that avoided beam angles passing through the prostheses. The results demonstrated that the isocenter shifting method can accurately deliver dose to the prostate even in patients with hip prostheses.

  1. The Doppler Effect: A Consideration of Quasar Redshifts.

    ERIC Educational Resources Information Center

    Gordon, Kurtiss J.

    1980-01-01

    Provides information on the calculation of the redshift to blueshift ratio introduced by the transverse Doppler effect at relativistic speeds. Indicates that this shift should be mentioned in discussions of whether quasars are "local" rather than "cosmological" objects. (GS)

  2. The Doppler Effect: A Consideration of Quasar Redshifts.

    ERIC Educational Resources Information Center

    Gordon, Kurtiss J.

    1980-01-01

    Provides information on the calculation of the redshift to blueshift ratio introduced by the transverse Doppler effect at relativistic speeds. Indicates that this shift should be mentioned in discussions of whether quasars are "local" rather than "cosmological" objects. (GS)

  3. Phase correction method for least-squares wavefront calculation in statistical generalized phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Nobukazu; Kajihara, Kazuki

    2015-09-01

    When phase-shifting digital holography with a continuous fringe-scanning scheme is implemented using a PC-based measurement system without any synchronous circuit, nonuniform phase-shifted interference fringes are captured because of the fluctuation in the image-capturing interval. To cope with the nonuniform phase shifts, a statistical generalized phase-shifting approach is employed. Because the algorithm is designed to use an arbitrary phase shift, the nonuniform phase shifts do not obstruct object-wave retrieval. Moreover, multiple interference fringes can be obtained in a short time owing to the continuous fringe-scanning scheme. However, the wavefront calculation method is not designed for sequentially recorded interference fringes. To use multiple interference fringes appropriately, we develop a least-squares wavefront calculation method combined with corrections for the initial phase and the direction of phase rotation. We verify the proposed method by numerical simulations and optical experiments. The results show that the object wave with the same initial phase can be correctly reconstructed by using both phase correction methods simultaneously.

  4. Doppler laser radar for range and speed measurement of road targets

    NASA Astrophysics Data System (ADS)

    Lin, Yanfang; Mao, Xuesong; Fang, Jianchao; Zhang, Tao

    2016-11-01

    A pulsed coherent vehicle laser radar system basing on the measurement of light flight time and Doppler frequency shift is demonstrated for the first time, which features a simple design that uses one photodiode (PD) as its optical detector. Pseudo random noise (PN) code is used for modulating the amplitude of transmitting light. Correlation function of the received echoes and the local modulating codes is calculated for measuring the light flight time. Due to PN code modulation, beat signal output from PD is piecewise continuous, which causes equidistant sampling of Doppler sine wave not feasible. In order that Doppler frequency be correctly measured by using fast Fourier transform (FFT), a simple signal amplitude modification method is derived from the definition of Fourier transform.

  5. [The usefulness of range-gated pulsed Doppler echocardiography. A review (author's transl)].

    PubMed

    Lange, L; Allen, H D; Goldberg, S J; Sahn, D J

    1979-03-01

    Single-crystal RGPD Echocardiography has clearly become a useful noninvasive ultrasonic method which enlarges the capabilities of investigating the heart. Recording of flow direction and showing disturbed flow allows additional clarification and confirmation of various diagnoses. This single-crystal technique does not allow flow quantification at the present time. The TIH and auditory signal displays of Doppler shift as presently utilized in commercial devices allow qualitative observation but require much experience in test performance and evaluation. The future here is probably in the area of spectral analysis. Present instrumentation employs M-mode echo for Doppler sample localization. Drawbacks include inprecise sample beam localization and non-variable sample volume size. Further, standardization of the Doppler signal is necessary. Combination with 2-D echo in the future will allow more precise sample beam localization and accuracy in flow quantification. The latter area has particular promise and is under investigation but is not yet commercially available.

  6. A Study of Static Shift Removal Methods in a 3D Magnetotelluric Survey at Pisagua Fault, Chile.

    NASA Astrophysics Data System (ADS)

    Bascur, J.; Comte, D.; Dias, D.; Siripunvaraporn, W.

    2014-12-01

    The static shift is one of the main problems that cause misleads in the magnetotellurics (MT) interpretation. This work presents a study comparing methods for removing the static shift effect from MT data acquired around the Pisagua Fault in Chile (2014). This evaluation considers the methods based on the joint inversion of the subsurface resistivity with the static shift effect and the calibration based on the TDEM data.First, it was developed a formulation in the data space, following the work of W. Siripunvaraporn (2005), that allows the joint inversion of the resistivity model and the static shift effect. That formulation makes it possible to use any linear representation for removing the static shift in the MT stations. This property permits compare the representation proposed by Sasaki (2004) and the static shift tensor, which use a 2x2 matrix to correct the effect. The last one is suggested to be a better model for 3D MT responses, because it can reproduce the distortion on the phase of MT data.Twenty one stations, measuring MT and TDEM methods, were acquired at the east side of the Pisagua town in the North of Chile (figure). In this place, there is an evident scarp on the topography that reveals the existence of an important fault (Pisagua Fault). Also, the Chilean desert at this location is characterized by the presence of shallow nitrate deposits (called "caliche"), whose have an elevated electrical resistance and can produce the static shift effect in the MT stations. For those reasons it was expected that the sector around the Pisagua Fault was an adequate place to evaluate static correction methods, because the data certainly would be distorted by the static shift and a successful correction method should reveal the fault observed at surface.The MT data acquired have mostly a 3D dimensionality (using A. Marti criteria, 2009) and show signs of being static shifted. A 3D inversion of this data, without considering the static shift, results in a poor

  7. An improved Q estimation approach: the weighted centroid frequency shift method

    NASA Astrophysics Data System (ADS)

    Li, Jingnan; Wang, Shangxu; Yang, Dengfeng; Dong, Chunhui; Tao, Yonghui; Zhou, Yatao

    2016-06-01

    Seismic wave propagation in subsurface media suffers from absorption, which can be quantified by the quality factor Q. Accurate estimation of the Q factor is of great importance for the resolution enhancement of seismic data, precise imaging and interpretation, and reservoir prediction and characterization. The centroid frequency shift method (CFS) is currently one of the most commonly used Q estimation methods. However, for seismic data that contain noise, the accuracy and stability of Q extracted using CFS depend on the choice of frequency band. In order to reduce the influence of frequency band choices and obtain Q with greater precision and robustness, we present an improved CFS Q measurement approach—the weighted CFS method (WCFS), which incorporates a Gaussian weighting coefficient into the calculation procedure of the conventional CFS. The basic idea is to enhance the proportion of advantageous frequencies in the amplitude spectrum and reduce the weight of disadvantageous frequencies. In this novel method, we first construct a Gauss function using the centroid frequency and variance of the reference wavelet. Then we employ it as the weighting coefficient for the amplitude spectrum of the original signal. Finally, the conventional CFS is adopted for the weighted amplitude spectrum to extract the Q factor. Numerical tests of noise-free synthetic data demonstrate that the WCFS is feasible and efficient, and produces more accurate results than the conventional CFS. Tests for noisy synthetic data indicate that the new method has better anti-noise capability than the CFS. The application to field vertical seismic profile (VSP) data further demonstrates its validity5.

  8. A Frequency-Shift Method to Measure Shear-Wave Attenuation in Soft Tissues.

    PubMed

    Bernard, Simon; Kazemirad, Siavash; Cloutier, Guy

    2017-03-01

    In vivo quantification of shear-wave attenuation in soft tissues may help to better understand human tissue rheology and lead to new diagnostic strategies. Attenuation is difficult to measure in acoustic radiation force elastography because the shear-wave amplitude decreases due to a combination of diffraction and viscous attenuation. Diffraction correction requires assuming a cylindrical wavefront and an isotropic propagation medium, which may not be the case in some applications. In this paper, the frequency-shift method, used in ultrasound imaging and seismology, was adapted for shear-wave attenuation measurement in elastography. This method is not sensitive to diffraction effects. For a linear frequency dependence of the attenuation, a closed-form relation was obtained between the decrease in the peak frequency of the gamma-distributed wave amplitude spectrum and the attenuation coefficient of the propagation medium. The proposed method was tested against a plane-wave reference method in homogeneous agar-gelatin phantoms with 0%, 10%, and 20% oil concentrations, and hence different attenuations of 0.117, 0.202, and 0.292 [Formula: see text]/Hz, respectively. Applicability to biological tissues was demonstrated with two ex vivo porcine liver samples (0.79 and 1.35 [Formula: see text]/Hz) and an in vivo human muscle, measured along (0.43 [Formula: see text]/Hz) and across (1.77 [Formula: see text]/Hz) the tissue fibers. In all cases, the data supported the assumptions of a gamma-distributed spectrum for the source and linear frequency attenuation for the tissue. This method provides tissue attenuation, which is relevant diagnostic information to model viscosity, in addition to shear-wave velocity used to assess elasticity. Data processing is simple and could be performed automatically in real time for clinical applications.

  9. Nonmechanical axial scanning laser Doppler velocimeter with directional discrimination.

    PubMed

    Maru, Koichi; Hata, Takahiro

    2012-07-10

    An axial scanning laser Doppler velocimeter (LDV) with directional discrimination not requiring any moving mechanism in its probe is proposed. The proposed LDV utilizes frequency shift induced by acousto-optic modulators (AOMs) for discriminating the direction of velocity. The measurement position is axially scanned by changing the wavelength of the light input to the probe. The experimental result reveals that both the axial scan and the directional discrimination can be realized by using the proposed method without any moving element in the probe.

  10. Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne.

    PubMed

    Zhang, Shangjian; Wang, Heng; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-06-15

    An extinction-ratio-independent electrical method is proposed for measuring chirp parameters of Mach-Zehnder electric-optic intensity modulators based on frequency-shifted optical heterodyne. The method utilizes the electrical spectrum analysis of the heterodyne products between the intensity modulated optical signal and the frequency-shifted optical carrier, and achieves the intrinsic chirp parameters measurement at microwave region with high-frequency resolution and wide-frequency range for the Mach-Zehnder modulator with a finite extinction ratio. Moreover, the proposed method avoids calibrating the responsivity fluctuation of the photodiode in spite of the involved photodetection. Chirp parameters as a function of modulation frequency are experimentally measured and compared to those with the conventional optical spectrum analysis method. Our method enables an extinction-ratio-independent and calibration-free electrical measurement of Mach-Zehnder intensity modulators by using the high-resolution frequency-shifted heterodyne technique.

  11. Christian Doppler and the Doppler effect

    NASA Astrophysics Data System (ADS)

    Toman, Kurt

    1984-04-01

    A summary is given of Doppler's life and career. He was born 180 years ago on November 29, 1803, in Salzburg, Austria. He died on March 17, 1853 in Venice. The effect bearing his name was first announced in a presentation before the Royal Bohemian Society of the Sciences in Prague on May 25, 1842. Doppler considered his work a generalization of the aberration theorem as discovered by Bradley. With it came the inference that the perception of physical phenomena can change with the state of motion of the observer. Acceptance of the principle was not without controversy. In 1852, the mathematician Petzval claimed that no useful scientific deductions can be made from Doppler's elementary equations. In 1860, Ernst Mach resolved the misunderstanding that clouded this controversy. The Doppler effect is alive and well. Its role in radio science and related disciplines is enumerated.

  12. Satellite Doppler data processing using a microcomputer

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.; Lynn, J. J.

    1977-01-01

    A microcomputer which was developed to compute ground radio beacon position locations using satellite measurements of Doppler frequency shift is described. Both the computational algorithms and the microcomputer hardware incorporating these algorithms were discussed. Results are presented where the microcomputer in conjunction with the NIMBUS-6 random access measurement system provides real time calculation of beacon latitude and longitude.

  13. Phase-Shifted Based Numerical Method for Modeling Frequency-Dependent Effects on Seismic Reflections

    NASA Astrophysics Data System (ADS)

    Chen, Xuehua; Qi, Yingkai; He, Xilei; He, Zhenhua; Chen, Hui

    2016-08-01

    The significant velocity dispersion and attenuation has often been observed when seismic waves propagate in fluid-saturated porous rocks. Both the magnitude and variation features of the velocity dispersion and attenuation are frequency-dependent and related closely to the physical properties of the fluid-saturated porous rocks. To explore the effects of frequency-dependent dispersion and attenuation on the seismic responses, in this work, we present a numerical method for seismic data modeling based on the diffusive and viscous wave equation (DVWE), which introduces the poroelastic theory and takes into account diffusive and viscous attenuation in diffusive-viscous-theory. We derive a phase-shift wave extrapolation algorithm in frequencywavenumber domain for implementing the DVWE-based simulation method that can handle the simultaneous lateral variations in velocity, diffusive coefficient and viscosity. Then, we design a distributary channels model in which a hydrocarbon-saturated sand reservoir is embedded in one of the channels. Next, we calculated the synthetic seismic data to analytically and comparatively illustrate the seismic frequency-dependent behaviors related to the hydrocarbon-saturated reservoir, by employing DVWE-based and conventional acoustic wave equation (AWE) based method, respectively. The results of the synthetic seismic data delineate the intrinsic energy loss, phase delay, lower instantaneous dominant frequency and narrower bandwidth due to the frequency-dependent dispersion and attenuation when seismic wave travels through the hydrocarbon-saturated reservoir. The numerical modeling method is expected to contribute to improve the understanding of the features and mechanism of the seismic frequency-dependent effects resulted from the hydrocarbon-saturated porous rocks.

  14. Guidance for accurate and consistent tissue Doppler velocity measurement: comparison of echocardiographic methods using a simple vendor-independent method for local validation.

    PubMed

    Dhutia, Niti M; Zolgharni, Massoud; Willson, Keith; Cole, Graham; Nowbar, Alexandra N; Dawson, David; Zielke, Sayeh; Whelan, Carol; Newton, Jim; Mayet, Jamil; Manisty, Charlotte H; Francis, Darrel P

    2014-07-01

    Variability has been described between different echo machines and different modalities when measuring tissue velocities. We assessed the consistency of tissue velocity measurements across different modalities and different manufacturers in an in vitro model and in patients. Furthermore, we present freely available software tools to repeat these evaluations. We constructed a simple setup to generate reproducible motion and used it to compare velocities measured using three echocardiographic modalities: M-mode, speckle tracking, and tissue Doppler, with a straightforward, non-ultrasound, optical gold standard. In the clinical phase, 25 patients underwent M-mode, speckle tracking, and tissue Doppler measurements of s', e', and a' velocities. In vitro, the M-mode and speckle tracking velocities agreed with optical assessment. Of the three possible tissue Doppler measurement conventions (outer, middle, and inner edge) only the middle agreed with optical assessment (discrepancy -0.20 (95% CI -0.44 to 0.03) cm/s, P = 0.11, outer +5.19 (4.65 to 5.73) cm/s, P < 0.0001, inner -6.26 (-6.87 to -5.65) cm/s, P < 0.0001). A similar pattern occurred across all four studied manufacturers. M-mode was therefore chosen as the in vivo gold standard. Clinical measurements of s' velocities by speckle tracking and the middle line of the tissue Doppler showed concordance with M-mode, while the outer line overestimated significantly (+1.27(0.96 to 1.59) cm/s, P < 0.0001) and the inner line underestimated (-1.82 (-2.11 to -1.52) cm/s, P < 0.0001). Echocardiographic velocity measurements can be more consistent than previously suspected. The statistically modal velocity, found at the centre of the spectral pulsed wave tissue Doppler envelope, most closely represents true tissue velocity. This article includes downloadable, vendor-independent software enabling calibration of echocardiographic machines using a simple, inexpensive in vitro setup. Published on behalf of the European Society of

  15. Measuring the shift of a femtosecond laser frequency comb by the interference method

    SciTech Connect

    Basnak, Dmitriy V; Bikmukhametov, K A; Dmitriev, Aleksandr K; Dychkov, Aleksandr S; Kuznetsov, Sergei A; Lugovoy, A A; Mitsziti, P

    2012-01-31

    We have demonstrated the possibility of measuring the femtosecond laser frequency comb shift by the position of a Fabry - Perot interferometer's transmission bands with a statistical error of 10{sup -2} and a systematic shift of 10{sup -1}. (control of laser radiation parameters)

  16. An effective phase shift diffusion equation method for analysis of PFG normal and fractional diffusions

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing

    2015-10-01

    Pulsed field gradient (PFG) diffusion measurement has a lot of applications in NMR and MRI. Its analysis relies on the ability to obtain the signal attenuation expressions, which can be obtained by averaging over the accumulating phase shift distribution (APSD). However, current theoretical models are not robust or require approximations to get the APSD. Here, a new formalism, an effective phase shift diffusion (EPSD) equation method is presented to calculate the APSD directly. This is based on the idea that the gradient pulse effect on the change of the APSD can be viewed as a diffusion process in the virtual phase space (VPS). The EPSD has a diffusion coefficient, Kβ(t)D radβ/sα, where α is time derivative order and β is a space derivative order, respectively. The EPSD equations of VPS are built based on the diffusion equations of real space by replacing the diffusion coefficients and the coordinate system (from real space coordinate to virtual phase coordinate). Two different models, the fractal derivative model and the fractional derivative model from the literature were used to build the EPSD fractional diffusion equations. The APSD obtained from solving these EPSD equations were used to calculate the PFG signal attenuation. From the fractal derivative model the attenuation is exp(-γβgβδβDf1 tα), a stretched exponential function (SEF) attenuation, while from the fractional derivative model the attenuation is Eα,1(-γβgβδβDf2 tα), a Mittag-Leffler function (MLF) attenuation. The MLF attenuation can be reduced to SEF attenuation when α = 1 , and can be approximated as a SEF attenuation when the attenuation is small. Additionally, the effect of finite gradient pulse widths (FGPW) is calculated. From the fractal derivative model, the signal attenuation including FGPW effect is exp[ -Df1 ∫0τ Kβ (t)dtα ] . The results obtained in this study are in good agreement with the results in literature. Several expressions that describe signal

  17. An effective phase shift diffusion equation method for analysis of PFG normal and fractional diffusions.

    PubMed

    Lin, Guoxing

    2015-10-01

    Pulsed field gradient (PFG) diffusion measurement has a lot of applications in NMR and MRI. Its analysis relies on the ability to obtain the signal attenuation expressions, which can be obtained by averaging over the accumulating phase shift distribution (APSD). However, current theoretical models are not robust or require approximations to get the APSD. Here, a new formalism, an effective phase shift diffusion (EPSD) equation method is presented to calculate the APSD directly. This is based on the idea that the gradient pulse effect on the change of the APSD can be viewed as a diffusion process in the virtual phase space (VPS). The EPSD has a diffusion coefficient, K(β)(t)D rad(β)/s(α), where α is time derivative order and β is a space derivative order, respectively. The EPSD equations of VPS are built based on the diffusion equations of real space by replacing the diffusion coefficients and the coordinate system (from real space coordinate to virtual phase coordinate). Two different models, the fractal derivative model and the fractional derivative model from the literature were used to build the EPSD fractional diffusion equations. The APSD obtained from solving these EPSD equations were used to calculate the PFG signal attenuation. From the fractal derivative model the attenuation is exp(-γ(β)g(β)δ(β)Df1t(α)), a stretched exponential function (SEF) attenuation, while from the fractional derivative model the attenuation is Eα,1(-γ(β)g(β)δ(β)Df2t(α)), a Mittag-Leffler function (MLF) attenuation. The MLF attenuation can be reduced to SEF attenuation when α=1, and can be approximated as a SEF attenuation when the attenuation is small. Additionally, the effect of finite gradient pulse widths (FGPW) is calculated. From the fractal derivative model, the signal attenuation including FGPW effect is exp[ -Df1∫0(τ) K(β)(t)dt(α)]. The results obtained in this study are in good agreement with the results in literature. Several expressions that

  18. Methods to recover the narrow Dicke sub-Doppler feature in evacuated wall-coated cells without restrictions on cell size

    NASA Technical Reports Server (NTRS)

    Robinson, H. G.

    1984-01-01

    The hyperfine resonance observed in evacuated wall-coated cells with dimensions lambda/2 (lambda is the hyperfine resonance wavelength) consists of a narrow Dicke sub-Doppler linewidth feature, the spike, superimposed on a broad pedestal. The hydrogen maser provides a classic example of this lineshape. As cell size is increased, an effect unique to evacuated wall-coated cells occurs. Certain combinations of microwave field distribution and cell size result in a lineshape having a pedestal with a small spike feature or only the broad pedestal with no spike. Such conditions are not appropriate for atomic frequency standard applications. The cause of the evacuated wall-coated cell lineshape is reviewed and methods to recover the narrow spike feature without restrictions on cell size is discussed. One example is a cell with dimensions having equal volumes of exposure to opposite phases of the microwave magnetic field.

  19. Ionospheric observations made by a time-interleaved Doppler ionosonde

    NASA Astrophysics Data System (ADS)

    Lynn, Kenneth J. W.

    2008-10-01

    Mid-latitude HF observations of ionospheric Doppler velocity as a function of frequency are reported here as observed over a quiet 24-h period by a KEL IPS71 ionosonde operating at a 5-min sampling rate. The unique time-interleaving technique used in this ionosonde provided a Doppler resolution of 0.04 Hz over a Doppler range of ±2.5 Hz at each sounding frequency via FFT processing and is described here for the first time. The time-interleaving technique can be applied to other types of ionosonde as well as to other applications. The measurements described were made at a middle latitude site (Salisbury, South Australia). Doppler variations (<30 min) were ever present throughout the day and showed short-period TID characteristics. The day-time Doppler shift was found to closely follow the rate-of-change of foF2 as predicted by a simple parabolic layer model. The descending cusp in short-period TIDs is shown to mark an abrupt change with increasing frequency from negative towards positive Doppler shift with the greatest change in Doppler shift being observed below the cusp. The “smilergram” is introduced as observed in both F2 and Sporadic E. The characteristic curve in Doppler versus group height at a single frequency is described and related to changes in reflection symmetry, velocity and depth of moving ionospheric inhomogeneities.

  20. Spline function approximation for velocimeter Doppler frequency measurement

    NASA Technical Reports Server (NTRS)

    Savakis, Andreas E.; Stoughton, John W.; Kanetkar, Sharad V.

    1989-01-01

    A spline function approximation approach for measuring the Doppler spectral peak frequency in a laser Doppler velocimeter system is presented. The processor is designed for signal bursts with mean Doppler shift frequencies up to 100 MHz, input turbulence up to 20 percent, and photon counts as low as 300. The frequency-domain processor uses a bank of digital bandpass filters for the capture of the energy spectrum of each signal burst. The average values of the filter output energies, as a function of normalized frequency, are modeled as deterministic spline functions which are linearly weighted to evaluate the spectral peak location associated with the Doppler shift. The weighting coefficients are chosen to minimize the mean square error. Performance evaluation by simulation yields average errors in estimating mean Doppler frequencies within 0.5 percent for poor signal-to-noise conditions associated with a low photon count of 300 photons/burst.

  1. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-08-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  2. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    PubMed

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-08-31

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  3. Experimental observation of a giant Goos-Hänchen shift in graphene using a beam splitter scanning method.

    PubMed

    Li, Xin; Wang, Peng; Xing, Fei; Chen, Xu-Dong; Liu, Zhi-Bo; Tian, Jian-Guo

    2014-10-01

    A giant Goos-Hänchen (G-H) shift in graphene has been theoretically predicted by previous research. In this Letter, we present experimental measurements of the G-H shift in graphene, in a total internal reflection condition, using a new method we have named "the beam splitter scanning method." Our results show that a focused light source undergoes significant lateral shift when the polarization of incident light changes from transverse magnetic (TM) to transverse electric (TE) mode, indicating a large G-H shift in graphene that is polarization-dependent. We also observed that the difference in the G-H shift for TM versus TE modes (S(TM)-S(TE)) increases with increasing thickness of graphene material. A maximum difference (S(TM)-S(TE)) of 31.16 μm was observed, which is a significant result. Based on this research, the ability to engineer giant G-H shifts in graphene material has now been experimentally confirmed for the first time to the best of our knowledge. We expect that this result will lead to significant new and interesting applications of graphene in various types of optical sensors, and more.

  4. Novel methods reveal shifts in migration phenology of barn swallows in South Africa.

    PubMed

    Altwegg, Res; Broms, Kristin; Erni, Birgit; Barnard, Phoebe; Midgley, Guy F; Underhill, Les G

    2012-04-22

    Many migratory bird species, including the barn swallow (Hirundo rustica), have advanced their arrival date at Northern Hemisphere breeding grounds, showing a clear biotic response to recent climate change. Earlier arrival helps maintain their synchrony with earlier springs, but little is known about the associated changes in phenology at their non-breeding grounds. Here, we examine the phenology of barn swallows in South Africa, where a large proportion of the northern European breeding population spends its non-breeding season. Using novel analytical methods based on bird atlas data, we show that swallows first arrive in the northern parts of the country and gradually appear further south. On their north-bound journey, they leave South Africa rapidly, resulting in mean stopover durations of 140 days in the south and 180 days in the north. We found that swallows are now leaving northern parts of South Africa 8 days earlier than they did 20 years ago, and so shortened their stay in areas where they previously stayed the longest. By contrast, they did not shorten their stopover in other parts of South Africa, leading to a more synchronized departure across the country. Departure was related to environmental variability, measured through the Southern Oscillation Index. Our results suggest that these birds gain their extended breeding season in Europe partly by leaving South Africa earlier, and thus add to scarce evidence for phenology shifts in the Southern Hemisphere.

  5. Novel methods reveal shifts in migration phenology of barn swallows in South Africa

    PubMed Central

    Altwegg, Res; Broms, Kristin; Erni, Birgit; Barnard, Phoebe; Midgley, Guy F.; Underhill, Les G.

    2012-01-01

    Many migratory bird species, including the barn swallow (Hirundo rustica), have advanced their arrival date at Northern Hemisphere breeding grounds, showing a clear biotic response to recent climate change. Earlier arrival helps maintain their synchrony with earlier springs, but little is known about the associated changes in phenology at their non-breeding grounds. Here, we examine the phenology of barn swallows in South Africa, where a large proportion of the northern European breeding population spends its non-breeding season. Using novel analytical methods based on bird atlas data, we show that swallows first arrive in the northern parts of the country and gradually appear further south. On their north-bound journey, they leave South Africa rapidly, resulting in mean stopover durations of 140 days in the south and 180 days in the north. We found that swallows are now leaving northern parts of South Africa 8 days earlier than they did 20 years ago, and so shortened their stay in areas where they previously stayed the longest. By contrast, they did not shorten their stopover in other parts of South Africa, leading to a more synchronized departure across the country. Departure was related to environmental variability, measured through the Southern Oscillation Index. Our results suggest that these birds gain their extended breeding season in Europe partly by leaving South Africa earlier, and thus add to scarce evidence for phenology shifts in the Southern Hemisphere. PMID:22072608

  6. Quantitative validation of a method for correction of intraoperative brain shift

    NASA Astrophysics Data System (ADS)

    Bates, Lisa M.; Goerss, Stephan J.; Robb, Richard A.

    2000-05-01

    Stereotactic neuronavigational systems have demonstrated significant clinical influence during the past decade, and are being used in an increasing number of neurosurgical procedures. Pre-operatively acquired 3D images are used for planning purposes, and also are employed in intraoperative navigations to help localize and resect brain lesions. However, as the operation progresses, multiple factors contribute the changes that limit the accuracy of the navigation based on pore-operative images alone. The opening of the dura with the associated loss of CSF and cortical swelling, the effect of gravity relative to the craniotomy location, tumor decompression, and collapse of neural tissue around the operative site are some of the factors that contribute to errors in navigation, particularly navigation based solely on pre-operatively acquired images. Neuronavigational system assume a one-to-one correlation between patient anatomy in the operating room and the pre- operatively acquired MRI images. Since the brain deforms in a non-linear manner, intraoperative brain shift can really only be corrected via intraoperative sensing methods that effectively update the pre-operatively acquired image data during surgery.

  7. The EVE Doppler Sensitivity and Flare Observations

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Woods, T. N.; Chamberlin, P. C.; Didkovsky, L.; Del Zanna, G.

    2011-01-01

    The Extreme-ultraviolet Variability Experiment (EVE) obtains continuous EUV spectra of the Sun viewed as a star. Its primary objective is the characterization of solar spectral irradiance, but its sensitivity and stability make it extremely interesting for observations of variability on time scales down to the limit imposed by its basic 10 s sample interval. In this paper we characterize the Doppler sensitivity of the EVE data. We find that the 30.4 nm line of He II has a random Doppler error below 0.001 nm (1 pm, better than 10 km/s as a redshift), with ample stability to detect the orbital motion of its satellite, the Solar Dynamics Observatory (SDO). Solar flares also displace the spectrum, both because of Doppler shifts and because of EVE's optical layout, which (as with a slitless spectrograph) confuses position and wavelength. As a flare develops, the centroid of the line displays variations that reflect Doppler shifts and therefore flare dynamics. For the impulsive phase of the flare SOL2010-06-12, we find the line centroid to have a redshift of 16.8 +/- 5.9 km/s relative to that of the flare gradual phase (statistical errors only). We find also that high-temperature lines, such as Fe XXIV 19.2 nm, have well-determined Doppler components for major flares, with decreasing apparent blueshifts as expected from chromospheric evaporation flows.

  8. The EVE Doppler Sensitivity and Flare Observations

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Woods, T. N.; Chamberlin, P. C.; Didkovsky, L.; Del Zanna, G.

    2011-01-01

    The Extreme-ultraviolet Variability Experiment (EVE) obtains continuous EUV spectra of the Sun viewed as a star. Its primary objective is the characterization of solar spectral irradiance, but its sensitivity and stability make it extremely interesting for observations of variability on time scales down to the limit imposed by its basic 10 s sample interval. In this paper we characterize the Doppler sensitivity of the EVE data. We find that the 30.4 nm line of He II has a random Doppler error below 0.001 nm (1 pm, better than 10 km/s as a redshift), with ample stability to detect the orbital motion of its satellite, the Solar Dynamics Observatory (SDO). Solar flares also displace the spectrum, both because of Doppler shifts and because of EVE's optical layout, which (as with a slitless spectrograph) confuses position and wavelength. As a flare develops, the centroid of the line displays variations that reflect Doppler shifts and therefore flare dynamics. For the impulsive phase of the flare SOL2010-06-12, we find the line centroid to have a redshift of 16.8 +/- 5.9 km/s relative to that of the flare gradual phase (statistical errors only). We find also that high-temperature lines, such as Fe XXIV 19.2 nm, have well-determined Doppler components for major flares, with decreasing apparent blueshifts as expected from chromospheric evaporation flows.

  9. Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis.

    PubMed

    Wang, Zhangjun; Liu, Zhishen; Liu, Liping; Wu, Songhua; Liu, Bingyi; Li, Zhigang; Chu, Xinzhao

    2010-12-20

    An incoherent Doppler wind lidar based on iodine edge filters has been developed at the Ocean University of China for remote measurements of atmospheric wind fields. The lidar is compact enough to fit in a minivan for mobile deployment. With its sophisticated and user-friendly data acquisition and analysis system (DAAS), this lidar has made a variety of line-of-sight (LOS) wind measurements in different operational modes. Through carefully developed data retrieval procedures, various wind products are provided by the lidar, including wind profile, LOS wind velocities in plan position indicator (PPI) and range height indicator (RHI) modes, and sea surface wind. Data are processed and displayed in real time, and continuous wind measurements have been demonstrated for as many as 16 days. Full-azimuth-scanned wind measurements in PPI mode and full-elevation-scanned wind measurements in RHI mode have been achieved with this lidar. The detection range of LOS wind velocity PPI and RHI reaches 8-10 km at night and 6-8 km during daytime with range resolution of 10 m and temporal resolution of 3 min. In this paper, we introduce the DAAS architecture and describe the data retrieval methods for various operation modes. We present the measurement procedures and results of LOS wind velocities in PPI and RHI scans along with wind profiles obtained by Doppler beam swing. The sea surface wind measured for the sailing competition during the 2008 Beijing Olympics is also presented. The precision and accuracy of wind measurements are estimated through analysis of the random errors associated with photon noise and the systematic errors introduced by the assumptions made in data retrieval. The three assumptions of horizontal homogeneity of atmosphere, close-to-zero vertical wind, and uniform sensitivity are made in order to experimentally determine the zero wind ratio and the measurement sensitivity, which are important factors in LOS wind retrieval. Deviations may occur under certain

  10. Doppler flowmetry in preeclampsia.

    PubMed

    Zahumensky, J

    2009-01-01

    The purpose of this study was to summarize the new published data on the Doppler flowmetry in preeclampsia. We summarize the new published data on the Doppler flowmetry in uteroplacental, fetoplacental and fetal circulation in preeclampsia. The present review summarized the results of clinical research on the Doppler flowmetry in the screening of risk of preclampsia, in the diagnosis of preclampsia and in the fetal risk in preclampsia (Ref. 19). Full Text (Free, PDF) www.bmj.sk.

  11. Multiparametric fat–water separation method for fast chemical-shift imaging guidance of thermal therapies

    PubMed Central

    Lin, Jonathan S.; Hwang, Ken-Pin; Jackson, Edward F.; Hazle, John D.; Jason Stafford, R.; Taylor, Brian A.

    2013-01-01

    Purpose: A k-means-based classification algorithm is investigated to assess suitability for rapidly separating and classifying fat/water spectral peaks from a fast chemical shift imaging technique for magnetic resonance temperature imaging. Algorithm testing is performed in simulated mathematical phantoms and agar gel phantoms containing mixed fat/water regions. Methods: Proton resonance frequencies (PRFs), apparent spin-spin relaxation (T2*) times, and T1-weighted (T1-W) amplitude values were calculated for each voxel using a single-peak autoregressive moving average (ARMA) signal model. These parameters were then used as criteria for k-means sorting, with the results used to determine PRF ranges of each chemical species cluster for further classification. To detect the presence of secondary chemical species, spectral parameters were recalculated when needed using a two-peak ARMA signal model during the subsequent classification steps. Mathematical phantom simulations involved the modulation of signal-to-noise ratios (SNR), maximum PRF shift (MPS) values, analysis window sizes, and frequency expansion factor sizes in order to characterize the algorithm performance across a variety of conditions. In agar, images were collected on a 1.5T clinical MR scanner using acquisition parameters close to simulation, and algorithm performance was assessed by comparing classification results to manually segmented maps of the fat/water regions. Results: Performance was characterized quantitatively using the Dice Similarity Coefficient (DSC), sensitivity, and specificity. The simulated mathematical phantom experiments demonstrated good fat/water separation depending on conditions, specifically high SNR, moderate MPS value, small analysis window size, and low but nonzero frequency expansion factor size. Physical phantom results demonstrated good identification for both water (0.997 ± 0.001, 0.999 ± 0.001, and 0.986 ± 0.001 for DSC, sensitivity, and specificity, respectively

  12. Phase shift method to estimate solids circulation rate in circulating fluidized beds

    SciTech Connect

    Ludlow, James Christopher; Panday, Rupen; Shadle, Lawrence J.

    2013-01-01

    While solids circulation rate is a critical design and control parameter in circulating fluidized bed (CFB) reactor systems, there are no available techniques to measure it directly at conditions of industrial interest. Cold flow tests have been conducted at NETL in an industrial scale CFB unit where the solids flow has been the topic of research in order to develop an independent method which could be applied to CFBs operating under the erosive and corrosive high temperatures and pressures of a coal fired boiler or gasifier. The dynamic responses of the CFB loop to modest modulated aeration flows in the return leg or standpipe were imposed to establish a periodic response in the unit without causing upset in the process performance. The resulting periodic behavior could then be analyzed with a dynamic model and the average solids circulation rate could be established. This method was applied to the CFB unit operated under a wide range of operating conditions including fast fluidization, core annular flow, dilute and dense transport, and dense suspension upflow. In addition, the system was operated in both low and high total solids inventories to explore the influence of inventory limiting cases on the estimated results. The technique was able to estimate the solids circulation rate for all transport circulating fluidized beds when operating above upper transport velocity, U{sub tr2}. For CFB operating in the fast fluidized bed regime (i.e., U{sub g}< U{sub tr2}), the phase shift technique was not successful. The riser pressure drop becomes independent of the solids circulation rate and the mass flow rate out of the riser does not show modulated behavior even when the riser pressure drop does.

  13. Feasibility, appropriateness, meaningfulness and effectiveness of patient participation at bedside shift reporting: mixed-method research protocol.

    PubMed

    Malfait, Simon; Eeckloo, Kristof; Lust, Elisa; Van Biesen, Wim; Van Hecke, Ann

    2017-02-01

    To evaluate the feasibility, appropriateness, meaningfulness and effectiveness of bedside shift reporting in a minimum of five interventions and five control wards. Hospitals continually improve their quality of care. Next to improvements in clinical performance, more patient participation is stimulated through different methods. Methods to enhance patient participation such as bedside shift reporting lack rigorously performed research to determine their feasibility, appropriateness, meaningfulness and effectiveness. Small-scale research and a previous pilot study indicate that bedside shift reporting improves patient participation, nurse-nurse communication and nurse-patient communication. The development, implementation and evaluation of bedside shift report are based on the Medical Research Council framework for complex interventions in health care. A matched, controlled, mixed-method, longitudinal study design will be used. The Feasibility-Appropriateness-Meaningfulness-Effectiveness framework will be applied for the quantitative and qualitative evaluation of bedside shift report. A tailored intervention and implementation process for bedside shift report will be developed using diagnostic interviews, co-design and acceptability testing. The intervention will be evaluated before implementation and three times after implementation. Individual and focus group interviews will be performed. Questionnaires, observations and analysis of the medical records and administrative databases will be completed. This study was funded in October 2015. Research Ethics Committee approval was granted in March 2016. There is a pressing need for rigorous research into the effects of interventions for improving patient participation. This study addresses the significance of bedside shift report as an intervention to improve quality of care, communication and patient participation within a large-scale, matched, controlled research design. © 2016 John Wiley & Sons Ltd.

  14. The role of the acoustic radiation force in color Doppler twinkling artifacts

    PubMed Central

    2015-01-01

    Purpose: The aim of this experimental study was to evaluate whether the acoustic radiation force (ARF) is a potential source of twinkling artifacts in color Doppler images. Methods: Color Doppler images were obtained using a clinical ultrasonic scanner (Voluson e, GE Healthcare) for a high contrast (+15 dB) circular scattering phantom at pulse repetition frequencies (PRFs) ranging from 0.1 to 13 kHz. Ultrasound transmissions resulting in ARF were measured using a hydrophone at the various PRFs considered. The influence of ARF on the appearance of twinkling colors was examined via the common parameter PRF. This methodology is based on the fact that alternating positive and negative Doppler shifts induced by the ARF are centered at a PRF twice the maximum Doppler frequency on the color scale bar, whereas the twinkling color aliasing is expected to remain similar regardless of PRF. Results: Color twinkling artifacts were observed to be most conspicuous at the lowest PRF of 0.1 kHz. The extent of twinkling rapidly decreased as the PRF increased, eventually disappearing when the PRF ≥0.6 kHz. The measured ultrasound transmissions, however, were found to be insensitive to the PRF, and therefore it can be inferred that the PRF was insensitive to the ARF. Conclusion: Based on our experimental observations, the ARF may not be a source of color Doppler twinkling artifacts. PMID:25754365

  15. Analysis of 7-Membered Lactones by Computational NMR Methods. Proton NMR Chemical Shift Data are More Discriminating than Carbon

    PubMed Central

    Marell, Daniel J.; Emond, Susanna J.; Kulshrestha, Aman; Hoye, Thomas R.

    2014-01-01

    We report an NMR chemical shift study of conformationally challenging seven-membered lactones (1–11); computed and experimental data sets are compared. The computations involved full conformational analysis of each lactone, Boltzmann-weighted averaging of the chemical shifts across all conformers, and linear correction of the computed chemical shifts. DFT geometry optimizations [M06-2X/6-31+G(d,p)] and GIAO NMR chemical shift calculations [B3LYP/6-311+G(2d,p)] provide the computed chemical shifts. The corrected-mean absolute error (CMAE), the average of the differences between the computed and experimental chemical shifts for each of the eleven lactones, is encouragingly small (0.02–0.08 ppm for 1H or 0.8–2.2 ppm for 13C). Three pairs of cis vs. trans diastereomeric lactones were used to assess the ability of the method to distinguish between stereoisomers. The experimental shifts were compared with the computed shifts for each of the two possible isomers. We introduce the use of a “match ratio”—the ratio of the larger (worse fit) to the smaller (better fit) CMAE. A greater match ratio value indicates better distinguishing ability. The match ratios are larger for proton data [2.4–4.0 (ave = 3.2)] than for carbon [1.1–2.3 (ave = 1.6)], indicating that the former provide a better basis for discriminating these diastereomers. PMID:24354614

  16. Analysis and compensation for code Doppler effect of BDS II signal under high dynamics

    NASA Astrophysics Data System (ADS)

    Ouyang, Xiaofeng; Zeng, Fangling

    2016-01-01

    In high dynamic circumstances, the acquisition of BDS (BeiDou Navigation Satellite System) signal would be affected by the pseudo-code Doppler. The pseudo-code frequency shift is more prominent and complex when BOC modulation has been adopted by BDS-II, but is not yet involved in current compensation algorithm. In addition, the most frequently used code Doppler compensation algorithm is modifying the sampling rate or local bit rate, which not only increases the complexity of the acquisition and tracking, but also is barely realizable for the hardware receiver to modify the local frequency. Therefore, this paper proposes a code Doppler compensation method based on double estimator receiver, which simultaneously controls NCO delay of code tracking loop and subcarrier tracking loop to compensate for pseudo-code frequency shift. The simulation and test are implemented with BDS-II BOC signal. The test results demonstrate that the proposed algorithm can effectively compensate for pseudo-code Doppler of BOC signal and has detection probability 3dB higher than the uncompensated situation when the false alarm rate is under 0.01 and the coherent integration time is 1ms.

  17. Ground-Based Rayleigh-Mie Doppler Lidar for Wind Measurements in the Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Khaykin, S. M.; Hauchecorne, A.; Porteneuve, J.; Mariscal, J.-F.; D'Almeida, E.; Cammas, J.-P.; Payen, G.; Evan, S.; Keckhut, P.

    2016-06-01

    A unique Rayleigh-Mie Doppler wind lidar, measuring Doppler shift between the emitted and backscattered light using directdetection technique is deployed at Observatory of Haute Provence Southern France) and at Reunion island (tropical Indian Ocean). The instrument was shown capable of wind measurements between 5 and 50 km with accuracy better than 1 m/s up to 30 km. The system consists of a monomode Nd:Yag laser operating at 532 nm, three telescopes and a double-edge Fabry-Perot interferometer. The laser light is sent alternatively in the vertical as well as zonal and meridional directions at 40° from the zenith using a rotating mirror. The two components of the horizontal wind are obtained from the measurement of the Doppler shift of the return signal spectrally filtered by the Fabry-Perot etalon. After demonstration of the method in 1989 the measurements were used for studying stratospheric dynamics as well as for constructing wind climatology up to 50 km altitude. A new system, featuring a more compact design was installed at Maïdo observatory at Reunion Island (21° S). The design of the instrument, results of observations and comparison against GPS radiosondes are presented. Application of Doppler lidar for validation of the future ADM-Aeolus satellite mission is discussed as well.

  18. Luminosity Dependence and Search Doppler

    NASA Technical Reports Server (NTRS)

    VanParadijs, Johannes A.

    1998-01-01

    The research supported by this grant covered two projects: (1) a study of the luminosity dependence of the properties of atoll sources; and (2) a search for Doppler shifts in the pulse arrival times of the anomalous pulsar 4U 0142+61. Following the discovery of kilohertz quasi-periodic oscillations (QPOS) in Sco X-1 studies of the X-ray properties of atoll sources have been dominated by searches for these QPOS, and the study of their dependence on other source properties, such as X-ray luminosity and spectral state. In the project supported by grant NAG5-3269 we have detected kHz QPOs for several atoll sources. The physical interpretation of these QPO is as yet unclear, but simple models (such as the Keplerian beat frequency model) can probably be excluded. The results of this research have been reported. We have studied the X-ray pulsations of the anomalous X-ray pulsar 4U 0142+61 using the Rossi XTE. A detailed search for Doppler shifts did not lead to a positive detection. The upper limits exclude almost all types of possible companion stars, except white dwarfs. However, the latter can be excluded since anomalous X-ray pulsars are very young objects. We therefore conclude that anomalous X-ray pulsars are single neutron stars.

  19. Red Shifts with Obliquely Approaching Light Sources.

    ERIC Educational Resources Information Center

    Head, C. E.; Moore-Head, M. E.

    1988-01-01

    Refutes the Doppler effect as the explanation of large red shifts in the spectra of distant galaxies and explains the relativistic effects in which the light sources approach the observer obliquely. Provides several diagrams and graphs. (YP)

  20. Red Shifts with Obliquely Approaching Light Sources.

    ERIC Educational Resources Information Center

    Head, C. E.; Moore-Head, M. E.

    1988-01-01

    Refutes the Doppler effect as the explanation of large red shifts in the spectra of distant galaxies and explains the relativistic effects in which the light sources approach the observer obliquely. Provides several diagrams and graphs. (YP)